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Editorial on the Research Topic

Understanding and Bridging the Gap between Neuromorphic Computing and

Machine Learning

INTRODUCTION

On the road toward artificial general intelligence (AGI), two solution paths have been explored:
neuroscience-driven neuromorphic computing such as spiking neural networks (SNNs) and
computer-science-driven machine learning such as artificial neural networks (ANNs). Owing to
availability of data, high-performance processors, effective learning algorithms, and easy-to-use
programming tools, ANNs have achieved tremendous breakthroughs in many intelligent
applications. Recently, SNNs also attracted a lot of attention due to its biological plausibility and
the possibility of achieving energy-efficiency (Roy et al., 2019). However, they suffer from ongoing
debates and skepticisms due to worse accuracy compared to “standard” ANNs. The performance
gap comes from a variety of factors, including learning techniques, benchmarks, programming tools
and execution hardware, all of which in SNNs are not as developed as those in the ANN domain.

To this end, we propose a Research Topic, named “Understanding and Bridging the Gap
between Neuromorphic Computing and Machine Learning,” in Frontiers in Neuroscience and
Frontiers in Computational Neuroscience to collect recent researches on neuromorphic computing
and machine learning to help understand and bridge the aforementioned gap. We received 18
submissions in total and accepted 14 of them in the end. The scope of these accepted papers covers
learning algorithms, applications, and efficient hardware.

LEARNING ALGORITHMS

How to train SNN models is the key to improve its functionality, thus bridging the gap
between ANN models. Unlike the ANN domain that has grown rapidly via sophisticated
backpropagation-based learning algorithms, the SNN domain is still short of effective
learning algorithms due to the complicated spatiotemporal dynamics and non-differentiable
spike activities. Currently, there are overall two categories of learning algorithms for
SNNs: unsupervised synaptic plasticity with biological plausibility [e.g., spike timing
dependent plasticity, STDP (Diehl and Cook, 2015)] and supervised backpropagation
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with gradient descent [e.g., indirect learning by acquiring
gradients from the ANN counterpart (Diehl et al., 2015; Sengupta
et al., 2019), direct learning by acquiring gradients from the SNN
itself (Lee et al., 2016; Wu et al., 2018; Gu et al., 2019; Zheng
et al., 2021), or the combination of both (Rathi et al., 2020)]. The
latter can usually achieve higher accuracy and has advanced the
model scale to handle ImageNet-level tasks. In the future, we look
forward to seeing more studies on SNN learning to close the gap.

Next, we briefly summarize the recent progress of neural
network (especially SNN) learning presented in our accepted
papers. Inspired by the curiosity-based learning mechanism of
the brain, Shi et al. propose curiosity-based SNN (CBSNN)
models. In the first training epoch, the novelty estimations of
all samples are obtained through bio-plausible synaptic plasticity;
next, the samples whose novelty estimations exceed the threshold
are repeatedly learned and the novelty estimations are updated
in the next five epochs; then, all samples are learned with one
more epoch. The last two steps are periodically taken until
convergence. CBSNNs show better accuracy and higher efficiency
in processing several small-scale datasets than conventional
voltage-driven plasticity-centric SNNs. Daram et al. propose
ModNet, an efficient dynamic learning system inspired from
the neuromodulatory mechanism in the insect brain. An inbuilt
modulatory unit regulates learning based on the context and
internal state of the system. The network with modulatory
trace achieves 98.8% ± 1.16 on average over the omniglot
dataset for five-way one-shot image classification task while
using 20x fewer trainable parameters compared to state-of-the-
art models. Kaiser, Mostafa et al. introduce deep continuous
local learning (DECOLLE), an SNN model equipped with local
error functions for online learning. The synaptic plasticity
rules are derived from user-defined cost functions and neural
dynamics by leveraging existing autodifferentiation methods
of machine learning frameworks. The model demonstrates
state-of-the-art performance on N-MNIST and DvsGesture
datasets. Fang et al. propose a bio-plausible noise structure
to optimize the performance of SNNs trained by gradient
descent. Through deducing the strict saddle condition for
synaptic plasticity, they demonstrate that the noise helps the
optimization escape from saddle points on high dimensional
domains. The accuracy improvement can reach at least 10% on
MNIST and CIFAR10 datasets. Panda et al. modify the SNN
configuration with backward residual connections, stochastic
softmax, and hybrid artificial-and-spiking neuronal activations.
In this way, the previous learning methods are improved
with comparable accuracy but large efficiency gains over the
ANN counterparts.

APPLICATIONS

Unlike the artificial neuron in ANNs, each spiking neuron in
SNNs has intrinsic temporal dynamics, which is appropriate
for processing sequence information. In this Research Topic,
we accepted two papers that discuss SNN applications. Wu
et al. explore the first work that uses SNNs for large-
vocabulary continuous automatic speech recognition (LVCSR)

tasks. Their SNNs demonstrate competitive accuracies on
par with their ANN counterparts while consuming only 10
algorithmic timesteps and 0.68× total synaptic operations.
They integrate the models into the PyTorch-Kaldi Speech
Recognition Toolkit for rapid development. Kugele et al. apply
SNNs for processing spatiotemporal event streams (e.g., N-
MNIST, CIFAR10-DVS, N-CARS, and DvsGesture datasets).
They improve the ANN-to-SNN conversion learning method by
introducing connection delays during the pre-training of ANNs
to match the propagation delays in converted SNNs. In this
way, the resulting SNNs can handle the above tasks accurately
and efficiently.

In addition, besides energy-efficiency (Merolla et al., 2014),
recent studies further find that the event-driven computing
paradigm of SNNs endows them high robustness (He et al., 2020;
Liang et al., 2020) and superior capability in learning sparse
features (He et al., 2020). We believe it is very important to mine
the true advantages of SNNs to determine their true value in
practical applications.

EFFICIENT HARDWARE

Performing neural networks on general-purpose processors is
inefficient, which stimulates the development of various domain-
specific hardware platforms, including those for ANNs [e.g.,
DaDianNao (Chen et al., 2014), TPU (Jouppi et al., 2017), Eyeriss
(Chen et al., 2017), Thinker (Yin et al., 2017), etc.), for SNNs (e.g.,
SpiNNaker (Furber et al., 2014), TrueNorth (Merolla et al., 2014),
Loihi (Davies et al., 2018), DYNAPs (Moradi et al., 2017)], and
for cross-paradigm modeling [e.g., Tianjic (Pei et al., 2019; Deng
et al., 2020)]. In this Research Topic, we accepted seven papers
for neural network hardware: three for ANNs, two for SNNs, and
two for cross-paradigm.

Sim and Lee propose SC-CNN, the bitstream-based
convolutional neural network (CNN) inspired by stochastic
computing (SC) that uses bitstreams to represent numbers,
to improve machine learning hardware. Benefitting from
the CNN substrate, SC-CNN can achieve high accuracy;
further benefitting from SC, SC-CNN is highly efficient,
scalable, and fault-tolerant. Different from the common digital
machine learning accelerators, Kaiser, Faria et al. present a
clockless autonomous probabilistic circuit, wherein synaptic
weights are read out in the form of analog voltages, for
fast and efficient learning with no use of digital computing.
They demonstrate a circuit built with existing technology to
emulate the Boltzmann machine learning algorithm. Muller
et al. introduce bias matching, a top-down neural network
design approach, to match the inductive biases required in
a machine learning system to the hardware constraints of
its implementation.

To alleviate the high cost training of SNNs using
backpropagation, Lee et al. propose a spike-train level direct
feedback alignment (ST-DFA) algorithm. Compared to the
state-of-the-art backpropagation learning algorithm, they
demonstrate excellent performance vs. overhead tradeoffs
on FPGA for speech and image classification applications.
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Dutta et al. propose an all ferroelectric field-effect transistors
(FeFET)-based SNN hardware that allows low-power spike-
based information processing and co-localized memory and
computing. They implement a surrogate gradient supervised
learning algorithm on their efficient SNN platform, which
further accounts for the impacts of device variation and
limited bit precision of on-chip synaptic weights on the
classification accuracy.

Parsa et al. build a hierarchical pseudo agent-based multi-
objective Bayesian hyperparameter optimization framework for
both software and hardware. They can not only maximize
the performance of the network, but also minimize the
energy and area overheads of the corresponding neuromorphic
hardware. They validate the proposed framework using both
ANN and SNN models, which involves both deep learning
accelerators [e.g., PUMA (Ankit et al., 2019)] and neuromorphic
hardware [e.g., DANNA2 (Mitchell et al., 2018) and mrDANNA
(Chakma et al., 2017)]. Instead of implementing ANNs
and SNNs separately, integration of them has become a
promising direction to achieve further breakthroughs toward
AGI via complementary advantages (Pei et al., 2019). Therefore,
the efficient hardware that can support individual modeling
of ANNs and SNNs as well as their hybrid modeling
is very important. This has been achieved by the cross-
paradigm Tianjic platform (Deng et al., 2020), based on
which Wang et al. further present an end-to-end mapping
framework for implementing various hybrid neural networks.
By constructing hardware configuration schemes for four
typical signal conversions and establishing a global timing
adjustment mechanism among different heterogeneous modules,
they implement hybrid models with low execution latency and
low power consumption.

CONCLUSION

Machine learning and neuromorphic computing are two
modeling paradigms on the road toward AGI. ANNs have
achieved tremendous breakthroughs in many intelligent
applications benefitting from big data, high-performance
processors, effective learning algorithms, and easy-to-use
programming tools; in contrast, SNNs are still in its infant stage
and there is a dire need for more neuromorphic benchmarks.
Through cross-discipline research, we expect to understand
and bridge the gap between neuromorphic computing and
machine learning. This Research Topic is just a small step in this
direction, and we look forward to more innovations that can
achieve brain-like intelligence.
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Spiking Neural Networks (SNNs) have shown favorable performance recently.

Nonetheless, the time-consuming computation on neuron level and complex

optimization limit their real-time application. Curiosity has shown great performance in

brain learning, which helps biological brains grasp new knowledge efficiently and actively.

Inspired by this leaning mechanism, we propose a curiosity-based SNN (CBSNN)

model, which contains four main learning processes. Firstly, the network is trained with

biologically plausible plasticity principles to get the novelty estimations of all samples in

only one epoch; secondly, the CBSNN begins to repeatedly learn the samples whose

novelty estimations exceed the novelty threshold and dynamically update the novelty

estimations of samples according to the learning results in five epochs; thirdly, in order

to avoid the overfitting of the novel samples and forgetting of the learned samples,

CBSNN retrains all samples in one epoch; finally, step two and step three are periodically

taken until network convergence. Compared with the state-of-the-art Voltage-driven

Plasticity-centric SNN (VPSNN) under standard architecture, our model achieves a higher

accuracy of 98.55%with only 54.95% of its computation cost on theMNIST hand-written

digit recognition dataset. Similar conclusion can also be found out in other datasets,

i.e., Iris, NETtalk, Fashion-MNIST, and CIFAR-10, respectively. More experiments and

analysis further prove that such curiosity-based learning theory is helpful in improving the

efficiency of SNNs. As far as we know, this is the first practical combination of the curiosity

mechanism and SNN, and these improvements will make the realistic application of SNNs

possible on more specific tasks within the von Neumann framework.

Keywords: curiosity, spiking neural network, novelty, STDP, voltage-driven plasticity-centric SNN

1. INTRODUCTION

As neural networks are inspired by the brain at multiple levels and show higher accuracy and
wider adaptability compared with algorithms with fixed parameters, they have become one of
the important methods for the development of artificial intelligence. The deep neural network
(DNN) inspired by the visual cortex has demonstrated its effectiveness in many aspects, such
as: visual tasks (He et al., 2017), audio recognition (Audhkhasi et al., 2017), natural language
processing (Yogatama et al., 2018), reinforcement learning (Pathak et al., 2017) and etc. However,
due to the poor adaptability and interpretability of traditional Artificial Neural Networks (ANNs),
more studies have focused on Spiking Neural Networks (SNNs) whose computational units (e.g.,
Leaky Integrate and Fire Model Gerstner and Kistler, 2002, Hodgkin-Huxley Model, Izhikevich
Model Izhikevich, 2003, and Spike Response Model Gerstner, 2001) and plastic learning methods
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(e.g., Spike-Timing-Dependent Plasticity Dan and Poo, 2004;
Frémaux and Gerstner, 2016 and Hebbian learning Song et al.,
2000) are more similar to that of the human brain, making it
more potential to achieve high levels of cognitive tasks (Maass,
1997; Zenke et al., 2015; Khalil et al., 2017b).

At present, SNNs have been well implemented in some

brain regions modeling and cognitive functions simulation,
like image classification (Zhang et al., 2018b), working memory

maintenance (Zhang et al., 2016), decision-making tasks

(Héricé et al., 2016; Zhao et al., 2018), cortical development
(Khalil et al., 2017a), contingency perception (Pitti et al., 2009)

etc. However, even though the training methods proposed

by Zhang et al. (2018a) and Shrestha and Orchard (2018)
make SNNs performance comparable to ANNs, they are at
the cost of a large amount of time. This is because: (1) the
network has a certain degree of overfitting problem when
fed with a large number of training samples passively; (2)
the SNN’s training itself is difficult which needs to process
sequential spiking signals; (3) until now, the SNNs are
still running on the von Neumann framework instead
of the specific designed neural chips, which makes the
simulation of neurons inefficient, since the information
transformation between CPU and memory usually cost
too much time.

Traditional learning methods typically get representations of
training data from stationary batches, with little regard to the
fact that information becomes incrementally available over time
(Parisi et al., 2019). A system with brain-inspired intelligence
should be composed of inputs, outputs, and plastic components
that change in response to experiences in an environment,
and autonomously discover novel adaptive algorithms
(Soltoggio et al., 2018).

While the curiosity-based learning system in the brain
helps us to grasp new knowledge efficiently and actively.
From the microscopic point of view, as shown in Figure 1,

FIGURE 1 | Pathways in the brain that respond to curiosity.

the continuity of cognitive process in the brain sometimes
may be interrupted by some specific unfamiliar or uncertain
stimulus, which are mostly from the response of mesolimbic
pathway. This pathway is reward pathway (Dreyer, 2010),
which connects the ventral tegmental area in the midbrain,
to the ventral striatum of the basal ganglia in the forebrain
(Ikemoto, 2010) and starts to releases neurotransmitters when
facing unfamiliar information, like dopamine, serotonin, and
opioid which could regulate characteristics associated with
curiosity, like:

Memory: The novelty of stimuli can be considered as the
result of continual comparison between the current state and
previous experiences, which will cover the brain regions related
to long-term and short-term memory, e.g., the hippocampus
and parahippocampus gyrus. After the comparison, individuals
can give a corresponding level of novelty for specific stimuli
(Sahay et al., 2011).
Attention and Learning: With the limitation of energy and
efficiency of the biological system, attention plays a vital role
in focusing on the stimuli most important or relevant. Some
patients with a degenerative disease, for example, Alzheimer’s
disease, show bad performance on identifying novel stimuli,
during which cells in some brain regions, like hippocampus,
don’t run well and thus prevent the communication with
assessing or rewarding process. Attention is a continuous and
gradual learning process during which striatum and precuneus
get involved in influencing levels of curiosity in terms of novelty
(Zola et al., 2011).
Motivation: Curiosity has been described as a desire for
learning and knowledge, especially what is unknown (Kang
et al., 2009). The idea that dopamine modulates novelty seeking
is supported by evidence that novel stimuli excite dopamine
neurons and activate brain regions receiving dopaminergic
input. In an fMRI study, activation in ventral striatum encoded
both standard reward prediction errors and enhanced reward

Frontiers in Computational Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 710

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shi et al. Curiosity-Based Spiking Neural Networks

prediction errors during novelty driven exploration (Costa et al.,
2014).

Curiosity-based exploration behaviors depend on the estimation
of difficulty or novelty of tasks, which are related to one previous
learning situation andwould update gradually (Faraji et al., 2018).
An intuitive paradigm that may enlighten us is designed in
Baranes et al. (2014), during which the subjects are allowed to
choose games with different levels to get high score freely. After
mastering simple skills, people are more likely to repeat hard
or novel games frequently instead of spending time on overly
comfortable or familiar experiments. This result shows that the
difficulty and novelty of tasks have a significant impact on the
motivation of exploration.

In this paper, we propose a curiosity-based SNN (CBSNN),
and the learning process of this model includes four steps:

Step (1): Before the predefined starting time, the CBSNN is
trained with a traditional method to get the novelty
estimations of all samples in only one epoch;

Step (2): Once the current iteration time is over the starting
time, the CBSNNbegins to repeatedly learn the samples
whose novelty estimations exceed the novelty threshold
and dynamically update the novelty estimations of
samples according to the learning results within the
retrain interval (we use five epochs later);

Step (3): When the duration of step (2) reaches the retrain
interval, the CBSNN retrains all samples once (one
epoch) in order to avoid the overfitting of the novel
samples and forgetting of the learned samples.

Step (4): The model repeats step (2) and (3) until the
algorithm converges.

The MNIST hand-written digit recognition dataset is used to
verify the performance of our proposed model. Through a series
of experiments, we analyze how the proposed method affects the
computation efficiency and learning accuracy of the traditional
SNN. By comparing with the state-of-the-art Voltage-driven
Plasticity-centric SNN (VPSNN) (Zhang et al., 2018a) under
standard architecture, our model achieves higher accuracy of
98.55% with only 54.95% of its computation resources.

2. RELATED WORKS

Several curiosity-related works have been proposed in different
research areas, which include but are not limited to active
learning, curriculum learning, sample selection strategies, and
reinforcement learning.

Active learning is good at select discriminating samples
dynamically from large training data sets and training the model
efficiently (Zhou et al., 2017). It pays more attention to some
informative and representative data to overcome the labeling
bottleneck (Konyushkova et al., 2017). However, the curiosity-
based learning strategy dynamically evaluates the difficulty or
novelty of the sample and makes a selection based on the current
learning situation of the network. The quality of learning results

not only depends on the representativeness of the sample itself,
but also is more related to the specific learning process.

Bengio et al. (2009) proposed curriculum learning to imitate
the characteristics of human learning process, and let the model
learn from simple to difficult in multiple stages (Ugur et al.,
2007; Chernova and Veloso, 2009). It defines the difficulty
level of sample before training, and gives the initial weight
distribution. However, in curiosity-based learning process, we
tend to predefine an evaluation function, which could be many
forms, and let the model adjust dynamically.

Cheng et al. (2018) proposed an active sample selection
strategy that reaches state-of-the-art accuracy on visual
models ResNet-50, DenseNet-121, and MobileNet-V1,
which has a lower computation cost compared with
previous networks.

Besides, Schmidhuber (1991a,b) used adaptive “world model”
to implement neural controllers and reinforcement learning.
The system is “curious” in the sense that it described how the
particular algorithm may be augmented by dynamic curiosity
and boredom in a natural manner. Pathak et al. (2017)
introduced a curiosity assessment module which represents the
difference between predicted situation and real situation as an
intrinsic reward signal to make agents complete games quicker
than just using external reward. Savinov et al. (2019) further
uses this strategy to pay more attention to those remarkable
situations in order to speed up the completion of tasks by
agents and avoid the model falling into local optimum to
a certain extent. Inspired by the infants’ ability to generate
novel structured behaviors in unstructured environments that
lack clear extrinsic reward signals, Haber et al. (2018)
mathematically modeled this mechanism using a neural network
that implements curiosity-driven intrinsic motivation to create a
self-supervised agent.

However, most of current studies only discuss the possibility
of application and performance improvement of curiosity-based
learning mechanism under the traditional ANNs’ framework. In
this paper, we try to combine this brain-inspired curiosity-based
learning mechanism with more biologically plausible SNN to
improve its current problems in computation efficiency under
the traditional computing system, so that it can be applied more
widely in the future.

3. METHODS

In this section, we will introduce the network architecture
(including neuron model and network structure) and the
learning process of CBSNN in detail.

3.1. The Architecture of CBSNN
The network should be designed with different neuron model,
synapse model, network structure or learning method in order
to solve different tasks. Diehl and Cook (2015) designed a
simple two-layered SNN to achieve MNIST (LeCun, 1998)
classification. Zhang et al. (2016) had a recurrent part to store
memory and eliminate noise. To have a better performance on
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FIGURE 2 | The neuron model and SNN architecture. (A) The simulation of a basic LIF neuron. When current I(t) inputs to the neuron, the membrane potential V (t)

gradually begins to accumulate and the conductance gE begins to increase. Once the membrane potential reaches the firing threshold, the neuron produces a spike

and delivers it to the postsynaptic neuron, while the membrane potential V (t) returns to the resting state and enters transient refractory period. (B) The architecture of a

standard SNN. The network is fully connected and the input dataset should be transformed into spike sequence.

complex dataset, Shrestha and Orchard (2018) used feed-forward
and back propagation procedure at the same time.

In this paper, we adopt a standard three-layered structure,
which is similar to Zhang et al. (2018a) to verify the validity of
the curiosity-based mechanism in training SNN.

3.1.1. The Neuron Model
Here we adopt the Leaky integrate-and-fire (LIF) neuron model
as the basic processing unit. In the LIF model, the neuron will be
regarded as a node. Regardless of the transmission of electrical
signals in neurons, the variation of the potential difference u(t)
between inside and outside the membrane at time t satisfies
the Equation (1).

Cm
du(t)

dt
= −

u(t)

Rm
+ I(t) (1)

where Cm is the membrane capacitance in which m is the
abbreviation of membrane, Rm is the membrane resistance, and
I(t) is the weighted sum of all input currents (the weight is usually
the connection value wi,j between neuron i and j). If we use V(t)
to denote membrane potential, VL to denote leaky potential, gL
to denote leaky conductance, then we could have Equation (2)
which demonstrates the change of membrane potential.

Cm
dV(t)

dt
= −gL(V(t)− VL)+ I(t) (2)

Under the consideration of real brain, we introduce excitatory
conductance gE and excitatory reversal potential VE and we can
have the membrane potential updating Equation (3) based on
excitatory conductance.

{

τE
dgE
dt
= −gE + η

∑

j∈NE
wj,iδt

τm
dV(t)
dt
= −(V(t)− VL)−

gE
gL
(V(t)− VE)

(3)

When membrane potential integrates up to the firing threshold
Vth, the neuron produces a spike, and sends it to postsynaptic

neurons. After that, the membrane potential is reset to resting
state and the neuron enters into refractory time. The simulation
results are shown in Figure 2A.

3.1.2. The Network Structure
In this paper, we adopt a standard three layers SNN like
(Zhang et al., 2018a). As shown in Figure 2B, the first layer
receives sequential signals converted from original dataset; the
second layer abstracts the input information using non-linear
characteristic; the third layer produces the final classification
signals which will be used to transmit error signals and generate
novelty estimates with the help of the teacher signals.

3.2. The Learning Method of CBSNN
In this section, we will introduce the detailed curiosity-based
learning method on SNN (CBSNN). As shown in Figure 3, we
first transform the original input data into sequential signals.
Then learning process of CBSNN contains four steps: (1) Before
the starting time Tstart of sample selection (we use one epoch
later), the CBSNN is able to train all examples in order to get
the novelty estimation of whole dataset; (2) Once the current
iteration time is over the predefined starting time Tstart , the
CBSNN begins to repeatedly select the sample whose novelty
estimation NEk exceeds the threshold NEth, and dynamically
update the novelty estimations NEk of samples according to the
learning results within the retrain interval Ire (we use 5 epochs
later); (3) When the duration of step (2) reaches the retrain
interval Ire, the CBSNN retrains all data once (one epoch) in
order to avoid the overfitting of the novel samples and forgetting
of the learned samples; (4) themodel repeats step (2) and (3) until
the algorithm converges.

3.2.1. Step 1: Traditional Training Before Starting

Time Tstart
At the beginning of learning, we put all data into the SNN before
the starting time Tstart . With sequential signals passing in feed
forward, the change of membrane potential 1VFF

i of neuron i
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FIGURE 3 | The learning process of CBSNN in spatial and temporal. It processes the sequential input signal and is trained by four steps.

and excitatory conductance 1gE in this stage are first updated by
Equation (3). Then according to the equilibrium tuning which
is one of the efficient ways to solve the non-differential problem
of SNN (Scellier and Bengio, 2017), the membrane potential is
changed again by Equation (4) (Zhang et al., 2018a).

1VES
i = −ηi

Vi − (
∑N

j wj,iVj −
∑N

j Vth,i)

−(Vi − VL)−
gE
gL
(Vi − VE)

(4)

Combining the result of these two stages shown in Equation (5),
we get the final change of membrane potential of neuron i in an
unsupervised way.

1Vi =
t

T
1VFF

i + (1−
t

T
)1VES

i (5)

In order to let the model have a better performance and calculate
the novelty estimation of samples, we introduce the teacher signal

VT . By optimizing the loss function C =
∑L3

i=1(Vi − VT)
2, the

membrane potentials of final layer are changed as Equation (6) in
supervised way.

dVi = −ηc(Vi − VT) (6)

3.2.2. Step 2: Curiosity Learning Based on Novelty

Estimation NE and Novelty Threshold NEth
The weights among these three layers can be updated with
multiform Spike-Timing-Dependent Plasticity (STDP) (Dan and

Poo, 2004). Here we use a simple but effective one: bi-STDP.
Once the current iteration is up to the predefined starting time
Tstart , the weights of the model will be passively changed through

Equation (7) (V
′

i , is the derivation of Vi).

1wj,i ∝ VjV
′

i (7)

After the updating of weights, we should get the assessment
of samples’ learning situation in order to provide an efficient
way to select appropriate samples to train in the next iterations.
According to the curiosity theory, humans tend to explore
novel and difficult problems rather than spend time on general
and simple samples in the learning process. Inspired by this,
we define the novelty estimation NE for samples during the
SNN learning process. As shown in Equation (8), instead of
error rate, we adopt a similarity evaluation method: the cosine
distance between training outputs Vk and the corresponding
teacher signals VT , to get more concrete novelty estimation of
the sample k.

NEk(Vk,VT) = 1− cos < Vk,VT >= 1−
Vk · VT

‖Vk‖ ‖VT‖
(8)

According to the novelty estimation NEk of the sample k and
predefined novelty threshold NEth, we can obtain the sample
selection strategy as shown in Equation (9). And when S(k)
equals to 1, the kth sample is selected. Then, the CBSNN
repeatedly trains the samples whose novelty estimations exceed
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the threshold NEth and temporarily ignores the simple samples
which have already learned well, and dynamically updates the
novelty estimations of samples using Equation (8) based on the
learning results.

S(k) =

{

1 NEk ≥ NEth
0 NEk < NEth

(9)

3.2.3. Step 3: Anti Overfitting and Catastrophic

Forgetting Based on Retrain Interval Ire
If the model only selects novel samples to train in every iteration,
it is inevitable to cause overfitting of novel samples and forgetting
of simple samples. So themodel needs to review the whole dataset
(novel and non-novel) once the duration of dynamic training
of step (2) reaches the retrain interval Ire (Kirkpatrick et al.,
2017). The more detailed learning process of CBSNN is shown
in Algorithm 1.

Algorithm 1 The learning process of CBSNN

1. Initialize Tstart = 1, NEth = 0.05, Ire = 5 and other parameters
of the network.
2. Load dataset (X, Y)
3. Start training procedure

Xs ← X, Ys ← Y , e0 ← Tstart

for every epoch e do
if e 6 Tstart then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 1 ▽

SNNTraining(Xs, Ys, fullsample=True)
end if

if e > Tstart then

if e− e0! = Ire then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 2▽
NE(Vk,VT)← 1− cos < Vk,VT > Equation (8)
(Xs,Ys) ← select(NE(Vk,VT) ≥ NEth)

Equation (9)
SNNTraining(Xs, Ys, fullsample=False)

else. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 3▽
Xs ← X, Ys← Y , e0← e
SNNTraining(Xs, Ys, fullsample=True)

end if

end if

end for

4. Start testing procedure

Function: SNNTraining(Xs, Ys, fullsample=True)

for every batch b do
for every differential time 1t do

1VFF
i,b
← Feed forward (Xs,b) by Equation (3)

1VES
i,b
← Equilibrium state (Vi,b) by Equation (4)

1Vi,b ←
t
T1VFF

i,b
+ (1− t

T )1VES
i,b

Equation (5)

1V
′

i,b
← supervised tuning (Vi,b) by Equation (6)

end for

end for

Passively update weights by Equation (7)

4. EXPERIMENTS

In this section, we verify the effectiveness of CBSNN and analyze
how the proposed method affects the computation efficiency
and learning accuracy of the traditional SNN. And all of our
experimental results are based on MNIST.

4.1. Hyperparameter Configuration on
MNIST
It is hard to get the best values with an exhaustive search
for the limitation of computation cost, especially when given
a large network. Here we firstly get the best hyperparameters
from a smaller network and then apply them to a larger
network. The hyperparameters includes NEth, retrain interval
Ire and Tstart . We set an initial CBSNN which is VPSNN with
200 hidden neurons, novelty threshold NEth = 0.05, retrain
interval Ire = 5, starting time Tstart = 1. And the following
analysis only changes the corresponding parameters on the basis
of this initial CBSNN. The specific computation efficiency is
calculated by the ratio of the computational time cost of CBSNN
and VPSNN.

4.1.1. Starting Time Tstart
Before the starting time Tstart , the network is trained to get

the novelty estimate of all samples based on the teacher’s signal

in few epochs. After that, the network starts to select samples

through the novelty threshold and dynamically updates their
novelty estimation in every iteration. From Figure 4A, we can

see that the starting time has little effect on the accuracy which

is basically stable at about 0.98. While, the computation in

Figure 4B has significant proportional increase when starting

time changes from 5 to 50. That means the starting time is

robust to the accuracy and can greatly improve the computation
efficiency with small value. The result reveals that there is no
use to pour the whole data set into the network during all

iterations. The earlier the sampling based on novelty estimation,
the higher the computation efficiency of the model. And this

is the main motivation that we set a small starting time (one

epoch) as the hyperparameter in step one of the curiosity-based

learning process.

4.1.2. Novelty Threshold NEth
In CBSNN, the novelty threshold NEth determines the volume

of the difficult samples which will be repeatedly learned. The
definition of novelty threshold depends on the difficulty and

scale of tasks. In step 1 and step 3, the NEth is 0 because
we need to learn the features of all samples, and in step 2,

we set the NEth changing from 0.01 to 0.25 for getting the
best threshold which could balance the learning accuracy and

computation cost. As shown in Figure 5, the larger novelty
threshold, the more computation ratio and the lower accuracy we

will get. The reason is that the large novelty threshold causes the

network to repeatedly learn many simple samples, which leads
to overfitting of simple samples and wastes a large amount of

computation. Especially, the performance of CBSNN is better
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FIGURE 4 | The effect of starting time Tstart on (A) accuracy and (B) computation ratio.

FIGURE 5 | The effect of novelty threshold NEth on (A) accuracy and (B) computation ratio.

than VPSNN in all conditions which shows the effectiveness of
the novelty threshold.

4.1.3. Retrain Interval Ire
The retrain interval affects the frequency of retraining of all
samples. As shown in Figure 6, the retrain interval changes
from five epochs to 50 epochs and is inversely proportional
to accuracy and computation ratio. This parameter leads to a
significant decrease in computation (30%), while the accuracy
has a little decrease (1%). Especially, even if the retrain interval
equals to 50 epochs (only retrain all samples 2–3 times during the
whole training), the model can still reach 0.9708 accuracy with
23.75% computation.

To sum up, all parameters have a significant contribution
to improving accuracy and reducing computation ratio. And
the combination of these parameters is a complex nonlinear
relationship. When the CBSNN has comparable accuracy with
the VPSNN, the increase in the starting time and the novelty
threshold results in a rise in the amount of computation,

and the increase in the retrain interval brings about a
computation saving.

4.2. Performance of CBSNN on MNIST
The CBSNN has three main parameters: starting time Tstart ,
novelty threshold NEth and retrain interval Ire. Combining with
the above parameter analysis, we finally obtain a set of parameters
with high accuracy and low computational complexity that is
starting time Tstart = 1 epoch, novelty thresholdNEth = 0.05, and
retrain interval Ire = 5 epochs.

Based on the optimal combination of parameters, we compare
several different strategies to outstand the effectiveness of our
approach further. Table 1 shows the comparisons of accuracy
and corresponding computation ratio based on the different
strategies. The comparisons from the first row to fourth row
is based on the 200 hidden neurons. Our best result is 0.16%
higher than the original VPSNN, and only requires 49.68%
computation. When original VPSNN trained with all data
costs around 49% computation, the accuracy of it decreases to
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FIGURE 6 | The effect of retrain interval Ire on (A) accuracy and (B) computation ratio.

TABLE 1 | The comparison of different strategies.

Strategy Hidden

neurons

Accuracy Computation

ratio (%)

VPSNN 200 0.9783 100

VPSNN with 49% computation 200 0.9773 49.74

VPSNN with 49% random data 200 0.9730 49.43

CBSNN (ours) 200 0.9799 49.68

VPSNN (best) (Zhang et al., 2018a) 4500 0.9852 100

CBSNN (our best) 3000 0.9855 54.95

First part is the comparison of classfication accuracy and computation ratio among

different sample selecting strategies under 200 hidden neurons. The computation ratio

baseline is the VPSNN trained with whole MNIST dataset. The second part is the

comparison of the best results of VPSNN and CBSNN. The results of our proposed

method in this paper are highlighted in bold.

0.9773. When VPSNN is trained by 49% random data, there
is a drop of 0.69% in accuracy compared with CBSNN which
means curiosity-based learning method is important to actively
dig difficult samples. The fifth row of Table 1 shows the best
accuracy of VPSNN (0.9852) with 4,500 hidden neurons while
our proposed CBSNN achieves 0.9855 accuracy with only 54.95%
of VPSNN computation.

In order to compare with VPSNN in large-scaled architecture,
we set the hidden neurons from 100 to 5,000 and keep starting
time Tstart = 1 epoch, novelty threshold NEth = 0.05 and retrain
interval Ire = 5 epochs. As shown in Figure 7, CBSNN can
basically reproduce VPSNN accuracy at every level of the number
of hidden neurons, and extremely save the computation (at least
25%). The best accuracy of CBSNN is 0.9855 with 3,000 neurons
which is better than VPSNN.

4.3. Analysis of the Inner State of CBSNN
on MNIST
The hidden layer and output layer represent highly abstract
features which could account for the specific learning situation. t-
SNE (Maaten and Hinton, 2008) can decrease high-dimensional
data into two or three dimensions and maintain the relationship

of original data as much as possible. Here we use it to observe the
change of relationship among all samples when passing these two
layers and analyze why our proposed method works during the
learning process.

As shown in Table 2, every point represents a sample and
different colors represent different classes. We set two different
sets of parameters for CBSNN. In first group, we have 400 hidden
neurons, starting time Tstart = 1 epoch, novelty threshold NEth
= 0.05 and retrain interval Ire = 5 epochs. After the first step
of CBSNN, the computation ratio is 0.92%, the accuracy rate is
0.9540 and we get the initial novelty estimation of all samples.
At this time, we can see that most of the samples have already
formed different clusters but some of them are still very discrete
and could not be well classified. Then the CBSNN begins to
dig out the difficult samples. During this learning process, those
discrete and difficult samples are gradually being better learned.
Finally, all samples can be well classified and our model reaches
0.9836 accuracy while computation is 40.43%. At this time, the
distance among different clusters is larger, and the distance
among samples in each cluster is closer. While the original
VPSNN with 400 hidden neurons only has 0.9826 accuracy. In
second group, we have 400 hidden neurons, starting time Tstart

= 1 epoch, novelty threshold NEth = 0.25 and retrain interval
Ire = 50 epochs. Under this configuration, the CBSNN could
learn faster but have lower accuracy. Compared with the first
group, there are more points beingmisclassified in every iteration
time, and the distance between different classes is closer. When
the iteration time is 150, the second group only accounts for
20.31% of the computation ratio, but has 0.9753 accuracy which
is lower than that of the first group when it reaches 14.97%
computation ratio. Experiments show that the optimized and
balanced parameter combination can improve the learning rate
and accuracy, and also demonstrate the effectiveness of CBSNN.

4.4. The Validation of CBSNN on Other
Datasets
In this section, we will discuss how CBSNN performs in more
applications. Here we adpoted Iris, NETtalk, Fashion-MNIST
and CIFAR-10 datasets and in each task, CBSNN and VPSNN
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FIGURE 7 | The results of (A) accuracy and (B) computation ratio of VPSNN and CBSNN under different network structures. The solid red triangle line represents

CBSNN, and the dotted white diamond line represents VPSNN. In (B), the baseline of computation ratio under each structure is the time consuming of VPSNN.

TABLE 2 | The t-SNE visualization of CBSNN learning process with two sets of different parameters.

Iteration time 1 50 100 150

Parameter setting one: hidden neurons = 400, Tstart = 1, NEth = 0.05, Ire = 5

Hidden layer

Output layer

Computation ratio 0.92% 14.97% 27.88% 40.34%

Accuracy of CBSNN 0.9540 0.9813 0.9830 0.9836

Parameter setting two: hidden neurons = 400, Tstart = 1, NEth = 0.25, Ire = 50

Hidden layer

Output layer

Computation ratio 1.24% 9.99% 15.12% 20.31%

Accuracy of CBSNN 0.9614 0.9708 0.9730 0.9753

It shows the results of hidden layer, ouput layer, computation ratio (the baseline is VPSNN with 0.9826 accuracy and 100% computation cost) and accuracy of CBSNN after different

iteration times.
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TABLE 3 | The comparison of VPSNN and CBSNN on different tasks.

Dataset Preprocessing
Network architecture

(input-hidden-output)

CBSNN

Accuracy

VPSNN

Accuracy

Computation ratio

(based on VPSNN)

Iris None 4-2-3 1.0000 0.9667 64.59%

NETtalk None 189-80-26 0.8720 0.8680 48.08%

Fashion-MNIST None 784-400-10 0.8574 0.8299 18.35%

CIFAR-10

Gray 1024-500-10 0.3198 0.2947 71.69%

PCA 700-400-10 0.2546 0.2384 15.51%

Conv 300-100-10 0.5285 0.5134 31.11%

In each task, CBSNN and VPSNN have the same network architecture and the accuracy of CBSNN (highlighted in Bold) is higher than that of VPSNN with lower computational cost

(listed in the last column).

share the same network architecture. The corresponding results
are shown in Table 3.

• Iris (Fisher, 1936) is a machine learning dataset for multiple
variable analysis and contains 120 samples of three classes
of Iris flower. We randomly separated it into 90 for training
and 30 for test. Finally, CBSNN performs 100% classification
accuracy with lower computation cost than VPSNN.
• NETtalk (Sejnowski and Rosenberg, 1987) is usually used for

speech generation, consisting 5,033 training and 500 test. The
input is a string of letters with fixed length of 7, which is
encoded into 189 dimensions (each character has a 27 length
one-hot vector). The output is 26 dimensions which represent
72 phonetic principles. For this mapping task with strong
global regularities, VPSNN reaches 0.8680 accuracy. Although
CBSNN is only slightly higher than VPSNN, it saves about half
of the computation cost.
• Fashion-MNIST (Xiao et al., 2017) is more discrete and

includes more semantic information than MNIST. It consists
of 28*28 gray-scale images of 10 categories of objects in
wearing, divided into 60,000 training samples and 10,000
test samples. From Table 3, CBSNN reaches the accuracy
of 85.74% (higher than VPSNN 2.75%) with only 18.35%
computation cost on it.
• CIFAR-10 (Krizhevsky and Hinton, 2009) contains 60,000

samples (50,000 for training and 10,000 for test) and has
image size of 32*32 pixels with three channels, which will
bring the growth of calculation exponentially and exceed
the ability of these two networks. We used some dimension
reduction methods for preprocessing it, i.e., RGBtoGray,
Principal Components Analysis (PCA) and Convolution.
From Table 3, the Convolution which converts the original
data from 32*32*3 into 300 dimensions, works best and helps
CBSNN achieve the best accuracy of 52.85% under only
around a third of computation cost of VPSNN.

5. DISCUSSION

SNN is the third-generation neural network (Maass, 1997). It has
more biological structures and processing mechanisms, such as
discrete sequential spike neurons which make it possible to deal
with spatiotemporal information simultaneously, and non-BP
biological plasticity like STDP. Although both SNN and ANN are
black boxes at present, SNN has biological basis for reference but

ANN does not, so there may be more applications of SNN in the
future. At present, SNN has reached the accuracy comparable to
that of deep network inmany tasks, but it faces a serious problem:
the time-consuming computation on neuron level and complex
optimization limit their real-time application.

In this paper, we propose a CBSNN which is inspired
by the curiosity-based learning mechanism in the brain. The
CBSNN model can improve the accuracy and greatly reduce
the computation of traditional SNN simultaneously. During the
learning process, instead of feeding all data to the network, our
model focuses more on mining difficult samples which is based
on the novelty estimation. And in order to avoid the overfitting
of the novel samples and forgetting of the learned samples, the
CBSNN retrains all samples periodically. Finally, the CBSNN
achieves comparable performance with the previous state-of-
the-art VPSNN using just 54.95% computation of it. Similar
conclusion can also be found out in other datasets, i.e., Iris,
NETtalk, Fashion-MNIST, and CIFAR-10, respectively.

One of the main motivations of the paper is to dramatically
decrease the training time of SNNs and make them better
simulated on traditional computing systems by combining the
biological plausible rules. Besides, with the development of
neuroscience and physiology, more mechanisms in biological
systems will be found out, which would further help SNNs on
the faster processing speed and less computation cost.
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A Corrigendum on

A Curiosity-Based Learning Method for Spiking Neural Networks

by Shi, M., Zhang, T., and Zeng, Y. (2020). Front. Comput. Neurosci. 14:7.
doi: 10.3389/fncom.2020.00007

In the original article, there was an error. In the original main text, there was an inaccurate
statement sentence the result of NETalk in Table 3.

A correction has been made to Experiments, The validation of CBSNN on other datasets:

• NETtalk (Sejnowski and Rosenberg, 1987) is usually used for speech generation, consisting 5,033
training and 500 test. The input is a string of letters with fixed length of 7, which is encoded into
189 dimensions (each character has a 27 length one-hot vector). The output is 26 dimensions
which represent 72 phonetic principles. For this mapping task with strong global regularities,
VPSNN reaches 0.8680 accuracy. Although CBSNN is only slightly higher than VPSNN, it saves
about half of the computation cost.

The authors apologize for this error and state that this does not change the scientific conclusions of
the article in any way. The original article has been updated.
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Probabilistic Circuits for Autonomous
Learning: A Simulation Study
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Modern machine learning is based on powerful algorithms running on digital computing

platforms and there is great interest in accelerating the learning process and making

it more energy efficient. In this paper we present a fully autonomous probabilistic

circuit for fast and efficient learning that makes no use of digital computing. Specifically

we use SPICE simulations to demonstrate a clockless autonomous circuit where the

required synaptic weights are read out in the form of analog voltages. This allows us to

demonstrate a circuit that can be built with existing technology to emulate the Boltzmann

machine learning algorithm based on gradient optimization of the maximum likelihood

function. Such autonomous circuits could be particularly of interest as standalone

learning devices in the context of mobile and edge computing.

Keywords: on-device learning, Boltzmann machine algorithm, probabilistic computing, magnetic tunnel junction

(MTJ), machine learning, analog circuit

1. INTRODUCTION

Machine learning, inference, and many other emerging applications (Schuman et al., 2017) make
use of stochastic neural networks comprising (1) a binary stochastic neuron (BSN) (Ackley et al.,
1985; Neal, 1992) and (2) a synapse that constructs the inputs Ii to the ith BSN from the outputsmj

of all other BSNs.
The output mi of the ith BSN fluctuates between +1 and −1 with a probability controlled by its

input

mi(t + τN) = sgn
[

tanh
(

Ii(t)
)

− r
]

(1)

where r represents a random number in the range [−1,+1], and τN is the time it takes for a neuron
to provide a stochastic outputmi in accordance with a new input Ii

1.
Usually the synaptic function, Ii({m}) is linear and is defined by a set of weightsWij such that

Ii(t + τS) =
∑

j

Wijmj(t) (2)

where τS is the time it takes to recompute the inputs {I} everytime the outputs {m} change. Typically
Equations (1), (2) are implemented in software, often with special accelerators for the synaptic
function using GPU/TPUs (Schmidhuber, 2015; Jouppi, 2016).

The time constants τN and τS are not important when Equations (1) and (2) are implemented on
a digital computer using a clock to ensure that neurons are updated sequentially and the synapse
is updated between any two updates. But they play an important role in clockless operation of
autonomous hardware that makes use of the natural physics of specific systems to implement
Equations (1) and (2) approximately. A key advantage of using BSNs is that Equation (1) can be

1Equation (1) can be written in binary notation with a unit step function and a sigmoid function.
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implemented compactly using stochastic magnetic tunnel
junctions (MTJs) as shown in Camsari et al. (2017a,b), while
resistive or capacitive crossbars can implement Equation (2)
(Hassan et al., 2019a). It has been shown that such hardware
implementations can operate autonomously without clocks, if the
BSN operates slower than the synapse, that is, if τN >> τS shown
by Sutton et al. (2019).

Stochastic neural networks defined by Equations (1) and (2)
can be used for inference whereby the weights Wij are designed
such that the system has a very high probability of visiting
configurations defined by {m} = {v}n, where {v}n represents
a specified set of patterns. However, the most challenging and
time-consuming part of implementing a neural network is not
the inference function, but the learning required to determine
the correct weightsWij for a given application. This is commonly
done using powerful cloud-based processors and there is great
interest in accelerating the learning process and making it more
energy efficient so that it can become a routine part of mobile and
edge computing.

In this paper we present a new approach to the problem
of fast and efficient learning that makes no use of digital
computing at all. Instead it makes use of the natural physics of
a fully autonomous probabilistic circuit composed of standard
electronic components like resistors, capacitors, and transistors
along with stochastic MTJs.

We focus on a fully visible Boltzmann machine (FVBM),
a form of stochastic recurrent neural network, for which the
most common learning algorithm is based on the gradient
ascent approach to optimize the maximum likelihood function
(Carreira-Perpinan and Hinton, 2005; Koller and Friedman,
2009). We use a slightly simplified version of this approach,
whereby the weights are changed incrementally according to

Wij(t + 1t) = Wij(t)+ ǫ[vivj −mimj − λWij(t)]

where ǫ is the learning parameter and λ is the regularization
parameter (Ng, 2004). The term vivj is the correlation between the
ith and the jth entry of the training vector {v}n. The term mimj

corresponds to the sampled correlation taken from the model’s
distribution. The advantage of this network topology is that the
learning rule is local since it only requires information of the two
neurons i and j connected by weightWij. In addition, the learning
rule can tolerate stochasticity for example in the form of sampling
noise which makes it an attractive algorithm to use for hardware
machine learning (Carreira-Perpinan and Hinton, 2005; Fischer
and Igel, 2014; Ernoult et al., 2019).

For our autonomous operation we replace the equation above
with its continuous time version (τL: learning time constant)

dWij

dt
=

vivj −mimj − λWij

τL
(3)

which we translate into an RC circuit by associatingWij with the
voltage on a capacitor C driven by a voltage source (Vv,ij − Vm,ij)
with a series resistance R (Figure 1):

C
dVij

dt
=

Vv,ij − Vm,ij − Vij

R
(4)

with vivj = Vv,ij/(VDD/2) and mimj = Vm,ij/(VDD/2). From
Figure 1 and comparing Equations (3), (4) it is easy to see
how the weights and the learning and regularization parameters
are mapped into circuit elements: Wij = AvVij/V0, λ =

V0/(AvVDD/2), and τL = λRC where Av is the voltage gain of
OP3 in Figure 1 and V0 is the reference voltage of the BSN. For
proper operation the learning time scale τL has to be much larger
than the neuron time τN to be able to collect enough statistics
throughout the learning process.

A key element of this approach is the representation of
the weights W with voltages rather than with programmable
resistances for which memristors and other technologies are still
in development (Li et al., 2018b). By contrast the charging of
capacitors is a textbook phenomenon, allowing us to design
a learning circuit that can be built today with established
technology. The idea of using capacitor voltages to represent
weights in neural networks has been presented by several authors
for different network topologies in analog learning circuits
(Schneider and Card, 1993; Card et al., 1994; Kim et al., 2017;
Sung et al., 2018). The use of capacitors has the advantage of
having a high level of linearity and symmetry for the weight
updates during the training process (Li et al., 2018a).

In section 2, we will describe such a learning circuit that
emulates Equations (1)–(3). The training images or patterns {v}n
are fed in as electrical signals into the input terminals, and the
synaptic weightsWij can then be read out in the form of voltages
from the output terminals. Alternatively the values can be stored
in a non-volatile memory from which they can subsequently be
read and used for inference. In section 3, we will present SPICE
simulations demonstrating the operation of this autonomous
learning circuit.

2. METHODS

The autonomous learning circuit has three parts where each
part represents one of the three Equations (1)–(3). On the left
hand side of Figure 1, the training data is fed into the circuit
by supplying a voltage Vv,ij which is given by the ith entry of
the bipolar training vector vi multiplied by the jth entry of the
training vector vj and scaled by the supply voltage VDD/2. The
training vectors can be fed in sequentially or as an average of
all training vectors. The weight voltage Vij across capacitor C
follows Equation (4) where Vv,ij is compared to voltage Vm,ij

which represents correlation of the outputs of BSNs mi and mj.
Voltage Vm,ij is computed in the circuit by using an XNOR gate
that is connected to the output of BSN i and BSN j. The synapse
in the center of the circuit connects weight voltages to neurons
according to Equation (2). VoltageVij has to bemultiplied by 1 or
−1 depending on the current value ofmj. This is accomplished by
using a switch which connects either the positive or the negative
node ofVij to the operational amplifiers OP1 andOP2. Here, OP1
accumulates all negative contributions and OP2 accumulates all
positive contributions of the synaptic function. The differential
amplifier OP3 takes the difference between the output voltages of
OP2 and OP1 and amplifies the voltage by amplification factor
Av. This voltage conversion is used to control the voltage level
of Vij in relation to the input voltage of each BSN. The voltage
level at the input of the BSN is fixed by the reference voltage
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FIGURE 1 | Clockless learning circuit designed to emulate Equations (1)–(3) autonomously.

of the BSN which is V0. However, the voltage level of Vij can
be adjusted and utilized to adjust the regularization parameter
λ in the learning rule (Equation 3). The functionality of the
BSN is described by Equation (1) where the dimensionless input
is given by Ii(t) = Vi,in(t)/V0. This relates the voltage Vij to
the dimensionless weight by Wij = AvVij/V0. The hardware
implementation of the BSN uses a stochastic MTJ in series with a
transistor as presented by Camsari et al. (2017b). Due to thermal
fluctuations of the low-barrier magnet (LBM) of the MTJ the
output voltage of the MTJ fluctuates randomly but with the right
statistics given by Equation (1). The time dynamics of the LBM
can be obtained by solving the stochastic Landau-Lifshitz-Gilbert
(LLG) equation. Due to the fast thermal fluctuations of the LBM
in the MTJ, Equation (1) can be evaluated on a subnanosecond
timescale leading to fast generation of samples (Hassan et al.,
2019b; Kaiser et al., 2019b).

Figure 1 just shows the hardware implementation of one
weight and one BSN. The size of the whole circuit depends on
the size of the training vector N. For every entry of the training
vector one BSN is needed. The number of weights which is the
number of RC-circuits is given by N(N − 1)/2 where every
connection between BSNs is assumed to be reciprocal. To learn
biases another N RC-circuits are needed.

The learning process is captured by Equations (3) and (4).
The whole learning process has similarity with the software
implementation of persistent contrastive divergence (PCD)
(Tieleman, 2008) since the circuit takes samples from the model’s

distribution (Vm,ij) and compares it to the target distribution
(Vv,ij) without reinitializing the Markov Chain after a weight
update. During the learning process voltageVij reaches a constant

average value where
dVij

dt
≈ 0. This voltage Vij = Vij,learned

corresponds to the learned weight.
For inference the capacitor C is replaced by a voltage

source of voltage Vij,learned. Consequently, the autonomous
circuit will compute the desired functionality given by the
training vectors. In general, training and inference have
to be performed on identical hardware in order to learn
around variations (see Supplementary Material for more
details). It is important to note that in inference mode this
circuit can be used for optimization by performing electrical
annealing. This is done by increasing all weight voltages
Vij by the same factor over time. In this way the ground
state of a Hamiltonian like the Ising Hamiltionian can be
found (Sutton et al., 2017; Camsari et al., 2019).

3. RESULTS

In this section the autonomous learning circuit in Figure 1

is simulated in SPICE. We show how the proposed circuit
can be used for both inference and learning. As examples, we
demonstrate the learning on a full adder (FA) and on 5 × 3
digit images. The BSN models are simulated in the framework
developed by Camsari et al. (2015). For all SPICE simulations the
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TABLE 1 | Truth table of a full adder.

A

v1

B

v2

Cin

v3

S

v4

Cout

v5

Dec PIdeal

−1 −1 −1 −1 −1 0 0.125

−1 −1 1 1 −1 6 0.125

−1 1 −1 1 −1 10 0.125

−1 1 1 −1 1 13 0.125

1 −1 −1 1 −1 18 0.125

1 −1 1 −1 1 21 0.125

1 1 −1 −1 1 25 0.125

1 1 1 1 1 31 0.125

Every 0 in the binary representation of the full adder is replaced by −1 in the bipolar

representation. “Dec” represents the decimal conversion of each line. PIdeal is the ideal

probability distribution were every line’s probability is p=1/8=0.125.

following parameters are used for the stochastic MTJ in the BSN
implementation: Saturation magnetization MS = 1,100 emu/cc,
LBM diameter D = 22 nm, LBM thickness l = 2 nm, TMR =

110%, damping coefficient α = 0.01, temperature T = 300 K
and demagnetization field HD = 4πMS with V = (D/2)2π l. For
the transistors, 14 nmHP-FinFET Predictive Technology Models
(PTM)2 are used with fin number fin = 1 for the inverters
and fin = 2 for XNOR-gates. Ideal operational amplifiers and
switches are used in the synapse. The characteristic time of the
BSNs τN is in the order of 100 ps (Hassan et al., 2019b) and
much larger than the time it takes for the synaptic connections,
namely the resistors and operational amplifiers, to propagate BSN
outputs to neighboring inputs. It has to be noted that in principle
other hardware implementations of the synapse for computing
Equation (2) could be utilized as long as the condition τN ≫ τS
is satisfied.

3.1. Learning Addition
As first training example, we use the probability distribution of
a full adder. The FA has 5 nodes and 10 weights that have to
be learned. In the case of the FA training, no biases are needed.
The probability distribution of a full adder with bipolar variables
is shown in Table 1. To learn this distribution the correlation
terms vivj in the learning rule have to be fed into the voltage node
Vv,ij. The correlation is dependent on what training vector/truth
table line is fed in. For the second line of the truth table for
example v1v2 = −1 · −1 = 1 and v1v3 = −1 · 1 = −1
with A being the first node, B the second node and so on. In
Figure 2B the correlation v1v5 is shown. For the sequential case
the value of v1v5 is obtained by circling through all lines of the
truth table where each training vector is shown for 1 ns. A and
Cout in Table 1 only differ in the fourth and fifth line for which
v1v5 = −1. For all other cases v1v5 = 1. The average of all lines
is shown as red solid line. Figure 2A shows the weight voltage
Vij with i = 1 and j = 5 for FA learning and the first 1,000 ns
of training. The following learning parameters have been used
for the FA: τL = 62.5 ns where C = 1 nF and R = 5 k�,
Av = 10, and Rf = 1 M�. This choice of learning parameters

2http://ptm.asu.edu/

FIGURE 2 | Feeding of training data into the circuit. (A) Weight voltage V1,5

over time for sequential and average feeding in of the correlation between

visible unit i and visible unit j for training a full adder. (B) Correlation v1v5 vs.

time t. All eight lines of the truth table of a full adder are cycled through where

every vector is shown for time T = 1 ns at a time. (C) Enlarged version of

subfigure (A). For sequential feeding in of data, the voltage change in v1v5
directly affects V1,5.

ensures that τL ≫ τN . Due to the averaging effect of the RC-
circuit both sequential and average feeding of the training vector
result in similar learning behavior as long as the RC-constant is
much larger than the timescale of sequential feeding. Figure 2C
shows the enlarged version of Figure 2A. For the sequential
feeding, voltage V1,5 changes substantially every time v1v5
switches to−1.

At the start of training all weight voltages are initialized to
0 V and the probability distribution is uniform. The training
is performed for 5,500 ns. In Figure 3A the ideal probability
distribution of the FA PIdeal is shown together with the
normalized histogram PSPICE of the sampled BSN configurations
taken from the last 500 ns of learning and compared to the
ideal distribution PIdeal. The training vector is fed in as an
average. For PSPICE the eight trained configurations of Table 1
are the dominant peaks. To monitor the training process,
the Kullback-Leibner divergence between the trained and the
ideal probability distribution KL(PIdeal||PSPICE(t)) is plotted as
a function of training time t in Figure 3B where PSPICE(t)
is the normalized histogram taken over 500 ns. PSPICE at
t = 0 corresponds to the histogram taken from t = 0 to
t = 500 ns. During training the KL divergence decreases
over time until it reaches a constant value at about 0.1. It has
to be noted that after the weight matrix is learned correctly
for a fully visible Boltzmann machine, the KL divergence can
be reduced further by increasing all weights uniformly by a
factor I0 which corresponds to inverse temperature of the
Boltzmann machine (Aarts and Korst, 1989). Figure 3 shows
that the probability distribution of a FA can be learned very
fast with the proposed autonomous learning circuit. In addition,
the learning performance is robust when components of the
circuit are subject to variation. In the Supplementary Material,
additional figures of the learning performance are shown
when the diameter of the magnet and the resistances of the
RC-circuits are subject to variation. The robustness against
variations can be explained by the fact that the circuit can
learn around variations. BSNs using LBMs under variations
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FIGURE 3 | Training of a full adder in SPICE. (A) Probability distribution of a

trained full adder is compared to the ideal distribution with binary inputs A, B,

Cin and outputs S and Cout. The training is performed for 5,500 ns. Blue bars

are the probability distribution extracted from SPICE simulations by creating a

histogram of the configurations of m over the last 500 ns of training. (B)

Kullback–Leibler divergence between PSPICE obtained by doing a moving

average of 500 ns and the target distribution defined as

KL(PIdeal||PSPICE(t)) =
∑

m PIdeal(m) log(PIdeal(m)/PTrain (m, t)). Following

parameters have been used in the simulations: C = 1 nF, R = 5 k�,

RF = 1 M�, Av = 10, V0 = 50 mV.

have also been analyzed by Abeed and Bandyopadhyay (2019)
and Drobitch and Bandyopadhyay (2019).

3.2. Learning Image Completion
As second example, the circuit is utilized to train 10 5 × 3 pixel
digit images shown in Figure 4A. Here, 105 reciprocal weights
and 15 biases have to be learned. The network is trained for 3,000
ns and the bipolar training data is fed in as average of the 10
vivj terms for every digit. The same learning parameters as in the
previous section are used here. In Figure 4B, the KL divergence
is shown as a function of time between the SPICE histogram
and the ideal probability distribution where the ideal distribution
has 10 peaks with each peak being 10% for each digit. Most of
the learning happens in the first 1,500 ns of training, however,
the KL divergence still reduces slightly during the later parts of
learning. After 3,000 ns the KL divergence reaches a value of
around 0.5.

For inference we replace the capacitor by a voltage source
where every voltage is given by the previously learned voltage
Vij. The circuit is run for 10 instances where every instance
has a unique clamping pattern of 6 pixels representing one of
the 10 digits. The clamped inputs are shown in Figure 4C. The
input of a clamped BSN is set to ±VDD/2. Each instance is run

FIGURE 4 | Training and testing of 5 × 3 digit images. (A) 5 × 3 digit images

from 0 to 9. (B) Kullback Leibner divergence during training for 3,000 ns using

the autonomous circuit. (C–E) Image completion: For inference, six unique

pixels are clamped for every digit (as shown in C). (D,E) show the heatmap of

BSN outputs during inference for running the circuit for 100 ns for (D) I0 = 1

and (E) I0 = 2.

for 100 ns and the outputs of the BSNs are monitored. The
BSNs fluctuate between the configurations given by the learned
probability distribution. In Figure 4D, the heat map of the output
of the BSNs is shown. For every digit themost likely configuration
is given by the trained digit image. To illustrate this point, the
amount of BSN fluctuations is reduced by increasing the learned
weight voltages by a factor of I0 = 2. The circuit is again run
in inference mode for 100 ns with the same clamping patterns.
In Figure 4E the heatmap is shown. The circuit locks into the
learned digit configuration. This shows that in inference mode
the circuit can be utilized for image completion.

4. DISCUSSION

In this paper we have presented a framework for mapping
a continuous version of Boltzmann machine learning rule
(Equation 3) to a clockless autonomous circuit. We have
shown full SPICE simulations to demonstrate the feasibility of
this circuit running without any digital component with the
learning parameters set by circuit parameters. Due to the fast
BSN operation, samples are drawn at subnanosecond speeds
leading to fast learning, as such the learning speed should
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be at least multiple orders of magnitudes faster compared
to other computing platforms (Adachi and Henderson, 2015;
Korenkevych et al., 2016; Terenin et al., 2019). The advantage
of this autonomous architecture is that it produces random
numbers naturally and does not rely on pseudo random number
generators like linear-feedback shift register (LFSRs) (which are
for example used in Bojnordi and Ipek, 2016). These LFSRs
have overhead and are not as compact and efficient as the
hardware BSN used in this paper. As shown by Borders et al.
(2019), typical LFSRs need about 10x more energy per flip and
more than 100x more area than an MTJ-based BSN. Another
advantage of this approach is that the interfacing with digital
hardware only needs to be performed after the learning has been
completed. Hence, no expensive analog-to-digital conversion has
to be performed during learning. We believe this approach could
be extended to other energy based machine learning algorithms
like equilibrium propagation introduced by Scellier and Bengio
(2017) to design autonomous circuits. Such standalone learning
devices could be particularly of interest in the context of mobile
and edge computing.
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Spiking neural networks (SNNs) present a promising computing model and

enable bio-plausible information processing and event-driven based ultra-low power

neuromorphic hardware. However, training SNNs to reach the same performances

of conventional deep artificial neural networks (ANNs), particularly with error

backpropagation (BP) algorithms, poses a significant challenge due to inherent complex

dynamics and non-differentiable spike activities of spiking neurons. In this paper, we

present the first study on realizing competitive spike-train level backpropagation (BP) like

algorithms to enable on-chip training of SNNs. We propose a novel spike-train level direct

feedback alignment (ST-DFA) algorithm, which is much more bio-plausible and hardware

friendly than BP. Algorithm and hardware co-optimization and efficient online neural signal

computation are explored for on-chip implementation of ST-DFA. On the Xilinx ZC706

FPGA board, the proposed hardware-efficient ST-DFA shows excellent performance vs.

overhead tradeoffs for real-world speech and image classification applications. SNN

neural processors with on-chip ST-DFA training show competitive classification accuracy

of 96.27% for the MNIST dataset with 4× input resolution reduction and 84.88% for the

challenging 16-speaker TI46 speech corpus, respectively. Compared to the hardware

implementation of the state-of-the-art BP algorithm HM2-BP, the design of the proposed

ST-DFA reduces functional resources by 76.7% and backward training latency by 31.6%

while gracefully trading off classification performance.

Keywords: spiking neural networks, backpropagation, on-chip training, hardware neural processor, FPGA

1. INTRODUCTION

As a brain-inspired computational model, spiking neural networks (SNNs) have gathered
significant research interests during recent years. The spike-based operational principles of SNNs
support a variety of information coding schemes including temporal codes and have rendered
energy-efficient VLSI neuromorphic chips, such as IBM’s TrueNorth (Akopyan et al., 2015) and
Intel’s Loihi (Davies et al., 2018). Despite the recent progresses in SNNs and neuromorphic
processor designs, fully leveraging the theoretical computing advantages of SNNs over traditional
artificial neural networks (ANNs) (Maass, 1997) to achieve the state-of-the-art performance for
real-world applications remains challenging. One chief difficulty here lies in training of SNNs in
terms of achievable performance and computational complexity.
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In terms of the learning algorithm of SNNs, there are
several algorithms, such as Spike-timing-dependent plasticity
(STDP)/binary/probabilistic and error backpropagation (BP).
Each algorithm has gathered significant research interests
with the advantages of each algorithm. For example, STDP
mimics biological behavior using the timing between pre-
and post-synaptic spikes, and BP has shown the state-of-the-
art performance in ANNs, implying its potential to be used
in SNNs for achieving excellent accuracy. While the above
algorithms provide a rich set of learning mechanisms that can
be explored, as of now, SNNs exploiting a non-BP algorithm,
such as a STDP/binary/probabilistic method have demonstrated
limited success in competitive real-world applications. Recent
advances in BP have provided algorithms for overcoming
non-differentiability of spike events and capturing temporal
dynamics, and have made it possible to achieve the state-of-the-
art performances among many other algorithms.

Inspired by the success of BP and its variants, such
as stochastic gradient decent in training conventional
ANNs (Rumelhart et al., 1988a), various SNN BP methods
have emerged, aiming at attaining the same level of
performance (Bohte et al., 2002; Lee et al., 2016; Jin et al.,
2018; Wu et al., 2018; Chankyu et al., 2019; Panda et al., 2019).
The major challenges in BP training of SNNs stem from the
non-differentiability of spike events and temporal dynamics
that prevent straightforward derivative computation. SpikeProp
(Bohte et al., 2002) is the first BP algorithm to train SNNs by
BP. However, SpikeProp is limited to single-spike training for
learning simple functions like XOR. Lee et al. (2016) proposes a
BP algorithm which differentiates neuron’s membrane potential
instead of discrete output spikes. Wu et al. (2018) improves Lee
et al. (2016) by capturing temporal effects with backpropagation
through time (BPTT) (Werbos, 1990). However, the error
gradient is still computed by differentiating the membrane
potential, leading to inconsistency w.r.t the rate-coded loss
function. More recently, Panda et al. (2019) provides the hybrid
neural network architecture for approximate gradient descent
(AGD) training methodology achieving good accuracy with large
datasets, such as Imagenet, and Chankyu et al. (2019) proposes
differentiable activation for leaky integrate-and-fire (LIF) spiking
neurons using a spike-based BP algorithm achieving good
classification accuracies with various datasets.

This paper is motivated by one of these approaches (i.e., Jin
et al., 2018), which showed a spike-train level BP algorithm that
achieves the state-of-the-art performance on SNNs. Jin et al.
(2018) proposes a hybrid macro/micro level backpropagation
(HM2-BP) algorithm for training multi-layer SNNs, which
addresses the aforementioned issues. HM2-BP precisely captures
the temporal behavior of the SNN at the microscopic level and
directly computes the gradient of the rate-coded loss function
w.r.t tunable parameters. As a result, HM2-BP demonstrates
the state-of-the art learning performances on widely adopted
SNN benchmarks, such as MNIST (LeCun et al., 1998) and
Neuromorphic-MNIST (N-MNIST) (Orchard et al., 2015),
outperforming all other existing BP algorithms based on the leaky
integrate-and-fire model.

While achieving excellent results, the aforementioned SNNBP
algorithms are hampered by several limitations. The error signal
is propagated backward layer by layer through weights symmetric
to the feed-forward weights. This is considered not biologically-
plausible. Furthermore, BP algorithms involve complex layer-by-
layer backward computations, which is expensive to implement
on-chip and introduces high training latency. For instance, while
HM2-BP improves the scalability of BPTT (Wu et al., 2018) by
operating on the spike-train level, i.e., application of BP does
not discretize time, it still involves complex computations and its
latency in the backward phase is proportional to network depth.

This work aims to answer the following questions: (1)
Can biologically plausible mechanisms be developed to
sidestep complex BP algorithms while delivering competitive
performance? (2) Can such mechanisms be leveraged for efficient
on-chip training of multi-layer SNNs?

We are motivated by the recent direct feedback alignment
(DFA) method developed for conventional ANNs (Nøkland,
2016), where the error is more biologically-plausibly fed back to
each hidden layer through fixed random feedback connections
directly from the output layer, reducing a bulk of the BP
complexity. Furthermore, DFA can be performed for all hidden
layers concurrently, reducing the backward phase latency.

By extending the DFA concept proposed by Nøkland (2016)
for SNNs, we significantly reduce hardware overhead and latency
of the network, while maintaining the advantage of a well-
defined BP-like algorithm in terms of accuracy. Although many
algorithms, such as gradient descent (GD), AGD, and BP, have
been proposed for SNNs, this is the first work presenting
algorithm-hardware co-optimization and demonstrating the
realization of DFA for SNNs with significantly reduced hardware
cost while maintaining competitive accuracies for image/speech
recognition tasks. The main contributions of this work are:

• We demonstrate the first direct feedback alignment algorithm
for training multi-layer SNNs by extending the DFA concept
developed for conventional ANNs;

• Our spiking DFA algorithm is embodied at the spike-train
level, dubbed ST-DFA, to further improve scalability by
avoiding involved error feedback over time;

• We perform algorithm-hardware co-optimization and
demonstrate the first hardware realization of DFA for
SNNs with significantly reduced hardware overhead,
energy dissipation, and latency while achieving competitive
performances for image/speech recognition tasks.

On the Xilinx ZC706 FPGA board, the proposed ST-DFA with
optimized implementation shows excellent cost-effectiveness for
on-chip SNN training. Hardware SNNs with ST-DFA deliver
competitive accuracy of 96.27% for the MNIST (LeCun et al.,
1998) with 4× input resolution reduction and 84.88% for the
challenging 16-speaker TI46 (Liberman et al., 1991) speech
corpus, respectively. Compared to the hardware implementation
of the state-of-the-art BP algorithm HM2-BP, the design of the
proposed ST-DFA reduces functional resources by 76.7% and
backward training latency by 31.6% while gracefully trading off
classification performance.

Frontiers in Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 14330

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lee et al. ST-DFA On-Chip Training

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Direct Feedback Alignment
Backpropagation (BP) has been widely applied to train neural
networks. It is based upon computing a global error at the output
layer and then propagating the error signal to hidden neurons
layer by layer. During this process, the errors of a preceding
layer are multiplied with a weight matrix that is completely
symmetric to the one for the feed-forward connections. This fact
is not considered biologically plausible. A recent discovery called
Feedback Alignment (FA) (Lillicrap et al., 2016) demonstrates
that the weights used for propagating the error layer by layer need
not be symmetric to the weights used for forward propagation to
achieve good performance. The feedback weight matrix can be
randomly generated and then stay unchanged since the network
can learn how to make feedback useful through training. Neftci
et al. (2017) applies FA for training SNNs.

A more disruptive approach called Direct Feedback
Alignment (DFA) is proposed in DNNs (Nøkland, 2016).
DFA is compared with BP in Figure 1. Unlike propagating the
error back layer by layer in BP and FA, DFA feeds back the error
through fixed random feedback connections directly from the
output layer to each hidden layer, eliminating the need for layer-
by-layer error backpropagation or feedback. DFA is considered
more biologically plausible because the error is generated
almost completely local with no long backpropagation/feed back
train and symmetric weights are not required. Nøkland (2016)
shows that for conventional multi-layer ANNs like DNNs, the
use of DFA can achieve competitive results with insignificant
performance drops when compared with the state-of-the-art
BP methods.

In this paper, we extend the DFA for conventional ANNs
(Nøkland, 2016) for SNNs. To the best of our knowledge, this
is the first work applying DFA to SNNs. Furthermore, our
DFA approach, dubbed ST-DFA, operates on the spike-train
level, hence offering improved scalability in both space (network
depth) and time.

2.1.2. Spike-Train Level Post-synaptic Potential
Before describing the proposed ST-DFA in section 2.2, we present
the concept of Spike-train Level Post-synaptic Potential (S-PSP)
that is behind the spike-train level computation of ST-DFA.

The widely adopted leaky integrate-and-fire (LIF) model for
spiking neurons is given by (Gerstner and Kistler, 2002):

τm
ui(t)

dt
= −ui(t)+ R αi(t), (1)

with

τs
αi(t)

dt
= −αi(t)+

∑

j

wij

∑

t
(f )
j

D
(

t − t
(f )
j

)

, (2)

where ui(t) is the membrane potential of the neuron i, αi(t) is
the first order synaptic model with time constant τs, and τm is
the time constant of membrane potential with value τm = RC.
R and C are the effective leaky resistance and effective membrane

capacitance.wij is the weight of the synapse from the pre-synaptic

neuron j to the neuron i. t
(f )
j denotes a particular firing time of the

neuron j. D(t) is the Dirac delta function. R is set to 1 since it can
be absorbed into synaptic weights.

Integrating (1) and (2) gives the spike response model
(SRM) (Jin et al., 2018):

ui(t) =
∑

j

wij

∑

t
(f )
j

ǫ

(

t − t̂
(f )
i , t − t

(f )
j

)

, (3)

where t̂
(f )
i denotes the last firing time of the neuron i. ǫ(s, t)

specifies the normalized time course of the post-synaptic potential
evoked by a single firing spike of the pre-synaptic neuron:

ǫ(s, t) =
1

C

∫ s

0
exp

(

−
t′

τm

)

αi

(

t − t′
)

dt′. (4)

Integrating (4) gives:

ǫ(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[

e

(

−
min(s,t)

τm

)

− e

(

−
min(s,t)

τs

)]

H(s)H(t),

(5)
where H(t) is the Heaviside step function.

The sum of the (normalized) post-synaptic potential of the
neuron i evaluated right before all the neuron i’s firing times
evoked by the spike train of the pre-synaptic neuron j defines the
(normalized) spike-train level post-synaptic potential (S-PSP) ei|j,
which is given by:

ei|j =
∑

t
(f )
i

∑

t
(f )
j

ǫ(t
(f )
i − t̂

(f )
i , t

(f )
i − t

(f )
j ). (6)

S-PSP specifies the aggregated effect of the spike train of the
pre-synaptic neuron j on the membrane potential of the post-
synaptic neuron i, providing a basis for relating firing counts to
spike events.

Summing the weighted S-PSPs from all pre-synaptic neurons
of the neuron i gives the total post-synaptic potential (T-PSP)
ai, which is directly correlated to the neuron i’s firing count oi
through the firing threshold voltage ν:

ai =
∑

j

wij ei|j. oi = g(ai) ≈
ai

ν
(7)

2.2. Proposed Spike-Train Level Direct
Feedback Alignment (ST-DFA)
2.2.1. Proposed ST-DFA Algorithm
For a conventional (non-spiking) ANN, the squared error for one
training example can be defined at the output layer by:

E =
1

2
||o− y||22, (8)

where y and o are vectors specifying the desired output (label)
and the actual output, respectively. The output oi of each neuron
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FIGURE 1 | (A) Backpropagation (BP) vs. (B) Direct feedback alignment (DFA). Solid arrows indicate feedforward paths and dashed arrows indicate feedback paths.

The feedback matrices B1 and B2 need not be symmetric to W2 or W3.

i is determined by the activation function φi: oi = φi(
∑

j wijxj),

where xj is the input value from the presynaptic neuron j and wij

is the weight between the neurons j and i.
The well-known BP algorithm for an ANN (Rumelhart et al.,

1988b), which is ubiquitously used in deep learning, is:

1wij = η
∂E

∂wk
ij

= ηδki φ
k−1
j

δki =

{

oi − yi for output layer,

φ′k+1
i

∑rk+1

l=1 δk+1
l

wk+1
li

for hidden layers,

(9)

where η is the learning rate, δki the error for the ith neuron of the

kth layer, rk the number of neurons in the kth layer.
It has been demonstrated recently that training SNNs using BP

with respect to a rate-coded loss function has produced highly
competitive performances (Lee et al., 2016; Jin et al., 2018; Wu
et al., 2018). Rate-coded loss functions are also adopted for our
ST-DFA. Different from BP, the proposed ST-DFA algorithm for
SSNs computes each error δ by direct feedback from the output
layer on the spike-train level, giving to the following update rule:

1wij = η
∂E

∂wij
= ηδki e

k
i|j,

δki =

{

ooi −yoi
ν

for output layer,
∑ro

l=1 δo
l
bk
li

for hidden layers,

(10)

where η is the learning rate, δki the error of the neuron i in the kth

hidden layer, eki|j the S-PSP from the neuron i to neuron j, ooi the

actual firing count of neuron i in the output layer, yoi the desired
firing count for the neuron i, ν the firing threshold, ro the number
of neurons in the output layer, δo

l
the error of the neuron l in the

output layer, and bk
li
the value of the fixed random feedback.

The last equation of (10) is based on the concept of DFA. As
in Figure 2, with ST-DFA, the output layer is fully connected
to each hidden layer through a different matrix which is called
the random feedback matrix B. The weights (values) in these
matrices are randomly generated and then stay fixed. The error
vector δ

k of the hidden layer k is directly obtained from the error
vector of the output layer δ

o and the random feedback matrix

FIGURE 2 | The proposed spike-train level DFA (ST-DFA).

Bk as: δ
k

= Bk
× δ

o. The detailed derivation of ST-DFA is
introduced next.

2.2.2. Derivation of ST-DFA
Similar to (8) and using (7), we define the rate-coded loss
function as:

E =
1

2
||o− y||22 =

1

2
||
a

ν
− y||22, (11)

where y, o, and a are vectors specifying the desired firing
counts (label), the actual firing counts, and the T-PSP of the
output neurons, respectively. Differentiating the loss function
with respect to each trainable weight wij leads to:

∂E

∂wij
=

∂E

∂aki

∂aki
∂wij

= δki
∂aki
∂wij

, (12)

where aki is the T-PSP of the neuron i in the kth layer.
It is instrumental to note that each S-PSP ei|j depends on both

rate and temporal information of the pre/post-spike trains, i.e.,
ei|j depends on the pre/post-synaptic firing counts oi and oj and

pre/post-synaptic firing times t
(f )
j and t

(f )
i :

ei|j = f (oj, oi, t
(f )
j , t

(f )
i ). (13)
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For the ith output neuron, δoi can be obtained from (12) and (7):

δoi =
∂E

∂aoi
= (oi − yi)

∂oi

∂ai
=

oi − yi

ν
. (14)

For each ith neuron in the hidden layer k, δki is derived from the
chain rule based on (7):

δki =
∂E

∂aki
=

rk+1
∑

l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

rk+1
∑

l=1

δk+1
l

∂ak+1
l

∂aki

=

rk+1
∑

l=1

δk+1
l

wk+1
li

∂ek+1
l|i

∂aki
.

(15)

The first key development in ST-DFA is that the way in which
the error δki is calculated in each hidden layer changes from
∑rk+1

l=1 δk+1
l

wk+1
li

∂ek+1
l|i

∂aki
to

∑ro

l=1 δo
l
dk
li

∂ek+1
l|i

∂aki
, where dk

li
is the direct

feedback alignment from the output neuron l to the hidden layer
neuron i. dk

li
is a randomized and fixed value. In this process, we

replace the wk+1
li

from (k + 1)th layer to kth layer in (15) by dk
li
,

leading to:

δki = δol d
k
li

∂ek+1
l|i

∂aki
. (16)

As such, the error δ
k of each hidden neuron is directly

determined by the output layer error vector δ
o rather than by the

error vector δ
k+1 of the next layer.

Moreover, we have the following key observation. In (16),

since dk
li
is randomly generated,

∂ek+1
l|i

∂aki
can be absorbed into dk

li

to further simplify ST-DFA. Denote the new DFA parameter

absorbing
∂ek+1

l|i

∂aki
by bk

li
= dk

li

∂ek+1
l|i

∂aki
, the simplified error

computation becomes:

δki =

{

ooi −yoi
ν

for output layer,
∑ro

l=1 δo
l
bk
li

for hidden layers,
(17)

where bk
li

is one entry of the random feedback matrix B

in Figure 2.
Thus, ST-DFA reduces the computational complexity by not

only avoiding layer-by-layer propagation but also the additional
simplification via the use of bk

li
.

2.2.3. Simplification for Hardware Friendliness
The last term on the right-hand side of (12) differentiates the
total post-synaptic potential (T-PSP) aki . Considering (7), it can
be written as:

∂aki
∂wij

=
∂

∂wij





rk−1
∑

j=1

wij e
k
i|j



 = eki|j +

rk−1
∑

l=1

wil

∂ek
i|l

∂oki

∂oki
∂wij

= eki|j +
eki|j

ν

rk−1
∑

l=1

wil

∂ek
i|l

∂oki
.

(18)

The exact evaluation of the above expression requires multiple
additions, multiplications, and divisions, introducing high
hardware overhead and additional latency.

The first term eki|j on the right-hand side of (18) can be

interpreted as the direct influence exerted on the T-PSP aki
by changing the synaptic weight wij as seen from (7). The

second term
eki|j
ν

∑rk−1

l=1 wil
∂ek

i|l

∂oki
comes from the fact that changing

the weight wij leads to variation in the post-synaptic spike

train. Thus, the S-PSP ek
i|l

to the neuron i also varies as

it depends on the firing times of the post-synaptic neuron.
Nevertheless, we have observed that the first term dominates
the second term. By dropping the second term, we reach the
final hardware-friendly ST-DFA algorithm of (10), which also
maintains good performance.

In comparison, the spike-train level BP algorithm HM2-BP
is (Jin et al., 2018):

1wij = ηδki e
k
i|j



1+
1

ν

rk−1
∑

l=1

wil

∂ek
i|l

∂oki



 ,

δki =











oki −yki
ν

for output layer,

1
ν

∑rk+1

l=1 δk+1
l

wli
∂ek+1

l|i

∂oki
for hidden layers.

(19)

While HM2-BP delivers the state-of-the-art performance, it
would be very costly to implement on hardware if ever feasible.

In all, compared to HM2-BP in (19), ST-DFA in (10) is much
more hardware friendly. With ST-DFA, direct error feedback to
each hidden layer is accomplished without layer-by-layer back
propagation while HM2 requires high-resolution multiplications
with the transpose of the forward weights and other expensive
operations layer by layer. In the next section, we efficiently realize
the ST-DFA algorithm on digital hardware.

2.3. SNN Accelerators With ST-DFA
On-Chip Training
2.3.1. Architecture
Figure 3 shows the architecture of the proposed multi-layer feed-
forward spiking neural processors with the proposed ST-DFA on-
chip training. Only two hidden layers are shown for illustration
purpose. Architecturally, the processor is comprised of an input
spike buffer feeding multiple hidden layers composed of hidden
neuron elements (HEs). The last hidden layer connects to the
output layer which consists of a set of output neuron elements
(OEs). A modular design approach is taken where each spiking
neuron is implemented in the form of HE or OE. As such, a
proper number of HEs and OEs can be instantiated to form a
multi-layer SNN with arbitrary depth and width.

Both inference and training are supported. Training over an
input example splits into two phases: forward pass and backward
pass. The computation of S-PSPs required for ST-DFA training
are computed in an online manner in the forward pass of
training. The remaining computations of the forward pass are
identical to those performed in inference. To support ST-DFA
training, the error generator utilizes an array of subtractors to
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FIGURE 3 | Proposed architecture of multi-layer SNNs with onchip ST-DFA training. HE represents a digital hidden neuron element; and OE represents a digital output

neuron element.

compute the difference between the actual OE output spike
counts with expected ones (label). At each hidden layer, this
output-layer error vector is multiplied with the associated ST-
DFA random feedback matrix inside each layer to allow weight
updates performed by each neuron.

- On-chip training

For each training example, the forward and backward passes of
the training are controlled by a global controller (FSM) as shown
in Figure 3. Neurons at the same layer process information in
parallel to exploit the inherent parallelism of the hardware SNN
processor architecture. In the forward pass and at each biological
time step, layers are activated by the global controller one at
a time from the input to the output. After output spikes are
generated for the current time step, the global controller pushes
the training forward to the next time step. This process repeats
until the current training example has been entirely learned by
the network. Then, the backward pass starts, in which the first
step is to calculate the output error δo

l
in (10). After that, all

hidden layers start to perform ST-DFA for weight updating at
the same time. The weight update latency of each hidden layer
may be different due to the differences in the number of input
synaptic connections (i.e., the preceding layer width). After all
hidden layers finish ST-DFA weight updates, the training process
moves onto the next training example.

- Neuron unit design

Each HE or OE contains several functional blocks categorized
into feed-forward functional blocks and feedback functional
blocks as shown in Figure 3. OEs are identical to HEs except
that no ST-DFA module is included since the error δki defined
for output neurons is computed by the Error Generator module.
Each neuron unit contains two memory modules that store
the synaptic weights and all its spike-train level post-synaptic
potentials (S-PSPs), respectively. We implement the weight
memory with block RAM (BRAM) and the S-PSP memory with
a 2-D array of flip flops (FFs) on the FPGA. A neuron-level
local controller (FSM) controls the detailed inference/training
steps. The local controller also communicates with the global

controller for synchronizing processes between different layers
and inference/training stages.

In the forward pass of training, first, the synaptic current x
through each synapse is calculated, followed by the spike-train
level post-synaptic potential (S-PSP) update for the same synapse.
The synaptic current update and the S-PSP update modules
shown in Figure 3 are shared by all input synapses. Hence,
processing of all synapses are done in series. After all synaptic
responses are generated, the spike generation module calculates
the neuron’s membrane potential and makes the firing decision
based on the leaky integrate-and-fire (LIF) spiking neuronmodel.
In the backward pass of training, the ST-DFAmodule implements
the proposed on-chip ST-DFA training algorithm, the output
of which is then fed to the weight update module. Finally, the
corresponding synaptic weight is updated and stored back to the
weight memory. Similar to the feedforward blocks, the feedback
functional modules are also shared among all input synapses.

2.3.2. Efficient On-Chip S-PSP Calculation
One important component in the proposed ST-DFA algorithm is
the spike-train level post-synaptic potential (S-PSP), ei|j, in (10).
As demonstrated in (6), by definition, ei|j is the effect of all firing
events of the pre-synaptic neuron j on the post-synaptic neuron i.
However, direct implementation of (6) on hardware is very costly;
all firing events of the pre- and post-synaptic neurons need to be
stored and excessive multiplication, division and exponentiation
operations are involved, incurring much logic complexity and
memory usage.

Instead, we propose an online S-PSP calculation approach
with dramatically reduced hardware overhead. Rather than
recording all firing events of the two neurons and computing ei|j
at once in the backward pass, in the forward pass we accumulate
and update ei|j at the arrival of each firing event and store the
updated ei|j in the S-PSP memory of each neuron element.

Inspecting (3) and (6) reveals that ei|j is the normalized (by
weight) of the contribution from the post-synaptic neuron j to
the aggregated membrane potential of the post-synaptic neuron
i. While the aggregated post-synaptic membrane potential is
effectively tracked by the LIFmodel, each individual contribution
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ei|j to it can be accumulated exactly using the following equations:

τs
pi|j(t)

dt
= −pi|j(t)+

∑

t
(f )
j

D(t − t
(f )
j ),

τm
qi|j(t)

dt
= −qi|j(t)+ pi|j(t),

ei|j(t) =
∑

t
(f )
i

qi|j(t
(f )
i ),

(20)

where pi|j(t) is the (normalized) synaptic input from the neuron
j to neuron i, which is part of (2), and qi|j(t) is interpreted as the
(normalized) post-synaptic membrane voltage contribution from
the neuron j to neuron i, which shall be reset to zero when the

neuron i fires at a particular firing time t
(f )
i .

The hardware realization of (20) is based on discretizing it
using the first-order Euler method with a fixed stepsize:

qi|j[t + 1] = (1−
1

τm
)qi|j[t]+ pi|j[t + 1]

pi|j[t + 1] = (1−
1

τs
)pi|j[t]+

1

τs

∑

t
(f )
j

Dn(t − t
(f )
j )

{

ei|j[t + 1]+ = qi|j[t + 1]

qi|j[t + 1] = 0
if t + 1 = t

(f )
i ,

(21)

where Dn(·) is the unit sample function and we have abused the
notation by using t and t + 1 to indicate a discrete time step and
the step after that.

(21) allows ei|j to be accumulated in an online manner with
great hardware efficiency and its implementation is shown in
Figure 4. At each time step, we first update the value of pi|j,
followed by the updates of qi|j and ei|j, controlled by the FSM
states of the local controller shown in Figure 3. The shaded
blocks in Figure 4 are registers used to store the current-time
variable values. We set both decay constants τs and τm to be
a power of 2 such that multiplications/divisions are realized
efficiently using shift operations. The updated ei|j is stored in the
S-PSP memory and retrieved by the ST-DFA module during the
backward training pass.

2.3.3. Efficient On-Chip ST-DFA Implementation
Figure 5 depicts the ST-DFAmodule in hidden neurons shown in
Figure 3. As in (10), for each hidden neuron i, the inner product
between the error vector δo

l
from the output layer and the ith

column of the random feedback matrix B of the corresponding
layer is computed. The inner product is then multiplied with ei|j
to produce the weight update value1wij for the jth input synapse.
All these inner products for different synapses are computed in
series and would result in large hardware and power overheads.
Furthermore, if each entry of the feedback matrix is set to be
a high-bit resolution random number, high memory usage is
required for storage.

To mitigate the above design complexity, we propose a
hardware-friendly realization of ST-DFA, named ST-DFA-2.

FIGURE 4 | On-line S-PSP calculation onchip.

FIGURE 5 | On-chip ST-DFA weight update computation.

ST-DFA-2 is based on the key observation from extensive
algorithmic experiments that the feedback matrix B need not be
generated in a true random manner; setting each entry bli of B
to one of a small set of fixed numbers at random is sufficient
for achieving good training performance. Furthermore, the set
of fixed numbers can be optimized for hardware efficiency. For
this, we construct this set by making each number a signed power
of 2 with low-bit resolution such that the multiplications in (10)
can be implemented by shift operations and storage for B is kept
at minimal.

Figure 5 illustrates the computation of each weight update.
The corresponding inner product is computed by accumulating
the element-wise products. The idx signal selects a particular
element in the error vector δo

l
and its shift amount mil, which

is set by the corresponding bli in the B matrix according to
|bli| = 2mil . If bli is negative, the shift result is converted to
its compliment before added to δi. Finally, the resulting δi is
multiplied with the S-PSP ei|j to get the weight update value 1wij

for the current synapse.

3. RESULTS

3.1. Experimental Settings and
Benchmarks
Performance evaluation is divided into two parts:

(1) Section 3.2 devotes to evaluate the performance of proposed
ST-DFA and ST-DFA-2 compared to HM2-BP only with
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software simulation. The classification performances are
evaluated by simulation of the digital computations with the
actual bit resolutions implemented on FPGA. Major SNN
variables, for example synaptic weight w, S-PSP ei|j and
membrane potential v, are in the fixed-point representation.
Each w is a signed 17-bit variable with 12-bit fractional.
11 bits are used for each unsigned variable ei|j with 6-bit
fractional and 9 bits are used for each signed variable v with
3-bit fractional.

(2) In section 3.3, we measure various aspects of the SNN neural
processor based on the pure hardware platform (on-board
measurement). We measure the performance vs. hardware
overhead tradeoffs of the proposed on-chip ST-DFA
training on several feed-forward SNN neural processors.
Using multiple SNNs models with varying depths and
widths, we demonstrate competitive performance of pure
hardware (on-board) simulation. Compared to hardware
implementation of HM2-BP, proposed ST-DFA significantly
reduces hardware overhead which proves hardware-
friendliness. FPGA prototypes of SNN neural accelerators
are designed on the Xilinx ZC706 platform for performance
evaluation, design overhead, and power/energy analysis.

Three datasets are employed for evaluation: MNIST (LeCun
et al., 1998), N-MNIST, or the neuromorphic version of
MNIST (Orchard et al., 2015), and the 16-speaker English letter
subset of the TI46 speech corpus (Liberman et al., 1991). The
MNIST handwritten digit dataset (LeCun et al., 1998) contains
60k training and 10k testing examples, each of which is a
28 × 28 grayscale image. Each pixel value of the MNIST image
is converted into a spike train using Poisson sampling and
the probability of spike generation is proportional to the pixel
intensity. Due to the limited hardware resources available on the
Xilinx Zynq ZC706 board, we crop each image to include only the
14× 14 pixels around the center for FPGA evaluation.

The N-MNIST dataset (Orchard et al., 2015) is a
neuromorphic version of MNIST. The static digit images
of MNIST are converted into spike trains using a dynamic vision
sensor (DVS) (Lichtsteiner et al., 2008) moving on a pan-tilt
unit. The image is resized to 34 × 34 since the relative shift of
images during the saccade process is required. Two kinds of
spike events, ON and OFF, are recorded since the intensity can
either increase or decrease. Thus, each N-MNIST image has
34 × 34 × 2 = 2, 312 spike sequences lasting for about 300 ms.
We reduce the time resolution of the N-MNIST images by 500×
to speed up the processing.

The TI46 Speech corpus (Liberman et al., 1991) contains
spoken English letters from 16 speaker. There are 4,142 and 6,628
spoken English letters for training and testing, respectively. The
continuous temporal speech waveforms are first preprocessed
by the Lyon’s ear model (Lyon, 1982) and then encoded
into 78 spike trains using the BSA algorithm (Schrauwen and
Van Campenhout, 2003).

Among these datasets, MNIST and TI46 are tested on
both software and hardware while N-MNIST is only tested on
software simulation due to that the available FPGA resources
are not sufficient to support the large number of spike trains.

Moreover, to thoroughly assess the classification performance
and hardware benefits of our proposed spike-train level direct
feedback alignment (ST-DFA), we build multiple SNNs with
different network depths and widths.

3.2. Classification Accuracies (Software
Simulation)
The proposed spike-train level direct feedback alignment
(ST-DFA) algorithm is inspired by the spike-train level
backpropagation HM2-BP algorithm. In Jin et al. (2018), HM2-
BP is compared with other state-of-the-art spiking or non-
spiking BP methods, such as spike-based BP (Lee et al., 2016),
STBP (Wu et al., 2018), temporal coding BP (Mostafa, 2018),
and non-spiking BP (Neil et al., 2016) on MNIST and N-
MNIST. Apart from its high efficiency due to the spike-train level
processing, HM2-BP outperforms or is on a par with all these
recently developed algorithms. For example, with a single hidden
layer of 800 neurons, HM2-BP can achieve 98.93% accuracy on
MNIST while Neil et al. (2016) gets up to 98.30%. HM2-BP
obtains 98.88% accuracy on N-MNIST compared with 97.80%
by Mostafa (2018). Moreover, HM2-BP delivers competitive
performance on challenging benchmarks, such as the 16-speaker
spoken English letters of TI46 Speech corpus (Liberman et al.,
1991) and 47-class image recognition dataset Extended MNIST
(EMNIST) (Cohen et al., 2017).

As presented in section 2.2, ST-DFA propagates the errors
δ from the output layer to each hidden layer directly without
layer by layer error backpropagation through symmetric weights
matrices. In section 2.3.3, we further optimize ST-DFA by setting
each entry of the random feedback matrix B to a power of 2,
leading to the hardware-friendly ST-DFA-2 algorithm. In this
work, feedback matrix entries are randomly chosen from the set
{−4,−2,−1, 0, 1, 2, 4} for ST-DFA-2.

Table 1 compares the inference accuracies of HM2-BP, ST-
DFA, and ST-DFA-2 on MNIST, N-MNIST, and TI46. Compared
to HM2-BP, ST-DFA, and ST-DFA-2 still maintain rather
competitive performance while the low computational cost and
hardware-friendliness of ST-DFA-2 translate into huge hardware
resources and energy overhead savings as shown later. It shall
be noted that in comparison with ST-DFA, ST-DFA-2 does not
necessarily degrade performance; it can even slightly outperform
ST-DFA in practice.

3.3. FPGA Hardware Evaluations (On-Board
Measurement)
We build several FPGA SNN accelerators on the targeted Xilinx
ZC706 platform, the sizes of which are decided considering the
available resources on-chip. Tables 2, 3 shows the resource and
energy overhead as well as the inference accuracies of these
SNN accelerators with on-chip ST-DFA-2. Training powers are
estimated by the Xilinx Power Analyzer based on application-
specific workloads. With the result of behavioral simulation
using a binary-converted input data sample, the tool measures
the dynamic power of neural processors clocked at 100MHz as
presented in Table 2. Compared hardware cost in two different
designs, i.e., ST-DFA-2 and HM2-BP, is shown in Table 4.
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TABLE 1 | Inference accuracy comparison of HM2BP, ST-DFA, and ST-DFA-2

derived by software simulation.

Dataset Learning rule and network structure Accuracy (%)

MNIST HM2-BP: 784-800-10 98.93

MNIST ST-DFA: 784-800-10 98.64

MNIST ST-DFA-2: 784-800-10 98.74

N-MNIST HM2-BP: 2312-800-10 98.88

N-MNIST ST-DFA: 2312-800-10 98.47

N-MNIST ST-DFA-2: 2312-800-10 98.59

TI46 HM2-BP: 78-800-26 89.92

TI46 ST-DFA: 78-800-26 87.00

TI46 ST-DFA-2: 78-800-26 87.31

All SNNs are fully connected networks with a single hidden layer of 800 neurons. MNIST:

28 × 28 input resolution; N-MNIST: 2,312 input spike trains; 16-speaker TI46: 78 input

spike trains.

TABLE 2 | Overheads of the fully-connected SNNs with on-chip ST-DFA-2

implemented on Xilinx ZC706 board.

MNIST (14 × 14 input resolution) @100 MHz

Resource utilization Training

power

(mW)

Training

latency

(mS)

Training

energy

(mJ)LUTs FFs DSPs

196-50-10 33484 6836 60 113 3.998 0.452

196-50-50-10 62989 12516 110 125 4.836 0.604

196-100-10 73027 12329 110 224 4.802 1.076

196-100-100-10 126482 23331 210 275 6.445 1.772

TI46 (16-speaker Spoken English Letters) @100 MHz

Resource utilization Training

power

(mW)

Training

latency

(mS)

Training

energy

(mJ)LUTs FFs DSPs

78-50-26 38220 8826 76 73 3.688 0.269

78-50-50-26 74709 14641 126 87 5.123 0.445

78-100-26 64280 14096 126 113 5.089 0.575

78-100-100-26 145452 30546 226 185 7.929 1.467

As shown in Tables 2, 3, the implemented networks have
either one or two hidden layer(s), and each hidden layer has
50 or 100 neurons. Numbers of input and output neurons
are application-dependent. The training latency and training
energy are for training a representative input example of
the corresponding dataset using one iteration of forward and
backward passes. Table 2 indicates that the SNNs integrated with
ST-DFA-2 in general have efficient FPGA resource utilization as
well as low training energy dissipation.

Furthermore, with a trimmed down input size and/or
constrained network size, the FPGA SNNs with on-chip ST-
DFA-2 can still deliver competitive classification performance in
reference to the simulated accuracies achieved at full input size
and by larger networks reported in Table 1. For instance, the
accuracy of MNIST in Table 1 is based on full input resolution

TABLE 3 | Inference performances of the fully-connected SNNs with on-chip

ST-DFA-2 measured on Xilinx ZC706 FPGA board.

MNIST (14 × 14 resolution) @100 MHz

Accuracy (On-board) (%)

196-50-10 94.34

196-50-50-10 94.51

196-100-10 95.72

196-100-100-10 96.27

TI46 (16-speaker English Letters) @100 MHz

Accuracy (On-board) (%)

78-50-26 71.63

78-50-50-26 74.95

78-100-26 75.19

78-100-100-26 84.88

TABLE 4 | Overheads of an FPGA SNN with on-chip HM2-BP vs. ST-DFA-2

(Network size:196-100-100-10).

LUTs FFs DSPs Backward phase

latency (uS)

HM2-BP 154477 23462 900 17.560

ST-DFA 126482 23331 210 12.010

Normalized

LUTs (%)

Normalized

FFs (%)

Normalized

DSPs (%)

Normalized B-P

latency (%)

HM2-BP 122 101 429 146

ST-DFA 100 100 100 100

which is 28×28 with a hidden layer of 800 neurons. However, we
implemented on-board simulation with reduced input resolution
and smaller networks due to the Xilinx ZC706 board resource
limitation. We cropped each data of MNIST into 14 × 14
which causes 4X input resolution reduction and built smaller
networks consists of 50 or 100 hidden neurons as shown in
Table 3. Despite the low resolution and the small network size,
SNN neural processors with on-chip ST-DFA training show
competitive classification accuracy of 96.27% for MNIST, 84.88%
for TI46 speech corpus, respectively.

To better illustrate the cost-effectiveness of the proposed ST-
DFA algorithm, we also compare the overheads of implementing
HM2-BP vs. ST-DFA-2 in a fully-connected SNN FPGA with
two hidden layers in Table 4. Since the main difference between
HM2-BP and ST-DFA is the backward pass algorithm, we
designed HM2-BP in hardware based on the weight updating
algorithm represented in Jin et al. (2018). Training latency of
the backward pass of the corresponding SNN neural processor
is also presented in the table. We do not consider forward pass
latency and inference latency since they do not differ significantly
in the two cases. The results in the table indicate that ST-DFA
is much more efficient in terms of hardware implementation on
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both resource utilization and backward pass latency compared
with HM2-BP. The ST-DFA-2 based SNN neural processor saves
18% on LUTs, 76.7% on DSPs and 31.6% on backward phase
latency compared with the HM2-BP based SNN.

4. DISCUSSIONS

While Direct Feedback Alignment (DFA) has been attempted,
this work present first novel approach for implementing
hardware spiking neural networks (SNNs) on FPGA board. This
work aims to build efficient on-chip training FPGA SNN neural
processor with reduced backward training latency and hardware
cost while gracefully trading off classification performance. To be
specific, Table 3 shows competitive software/hardware inference
accuracy despite reduce input resolution and small network size.
Comparing the accuracy of ST-DFA and ST-DFA-2, performance
using ST-DFA can be slightly better than using ST-DFA-2 and vice
versa. This fact shows that the error may vary based on randomly
initialized feedback weight matrix, which makes ST-DFA-2 still
powerful. Table 4 shows the advantages of ST-DFA-2 over HM2-
BP in terms of hardware resource utilization through the DFA
algorithm and the efficient design of the hardware design units.
As shown in Tables 1, 3, this result proves the practicality of the
DFA algorithm and the feasibility of implementing the ST-DFA
algorithm for on-chip training of the SNN processor.

The large additional hardware overhead and backward
latency of HM2-BP mainly come from the layer-by-layer
error propagation and the required multiplication operations.
Moreover, as the network goes deeper, the backward phase
latency grows proportionally in HM2-BP, while in ST-DFA
the backward latency will not affect by the network depth
since the error processing is concurrently executed in all
hidden layers. This property assures the scalability of ST-
DFA which is promising for deeper networks. With the
proposed ST-DFA algorithm, we have sidestepped the complex
backpropagation and enabled cost-effective on-chip training for
multi-layer SNNs.

As discussed in section 1, implementing training of SNNs
using a BP algorithm suffers from high computing complexity
and thus high resource utilization, while a hardware-friendly,
non-BP algorithm, such as STDP, suffers from achieving good
accuracies. We argue that our approach avoids high computation
complexity by extending a BP-like algorithm (i.e., DFA) for
SNNs while maintaining the advantage of a well-defined BP-like
algorithm in terms of accuracy. To the best of our knowledge, this
is the first work presenting algorithm-hardware co-optimization
and demonstrating the realization of DFA, which is an efficient
on-chip training algorithm, for SNNs.

For example, to compare with existing onchip works, Yin
et al. (2017) presented a new BP based training algorithm for
discrete-time SNNs by using a LIF neuron model with a gradient
estimator. This paper introduced a ReLU-like gradient estimation
method to avoid the zero-gradient issue in conventional SNNs
using LIF neurons. However, as the experiment results in Yin
et al. (2017) are based on off-chip training, we guess that this
new BP algorithm still suffers from an efficient on-chip training

method. We think that the main difference of Yin et al. (2017)
and our work is that Yin et al. (2017) proposed a new BP-
based learning algorithm while our work proposes a new BP-
like learning algorithm (i.e., DFA) based on a state-of-the-art
BP algorithm and efficiently implement it in hardware while
delivering competitive accuracy. As a small scale low-power
accelerator, Zheng and Pinaki (2018) proposed a hardware-
friendly STDP on-chip training algorithm. This paper focuses on
capturing the estimated gradients concerning STDP behaviors.
By simplifying the calculation of STDP based gradient for weight
updating, this work presented an efficient on-chip learning
algorithm that can be implemented on hardware. However, this
paper still suffers from accuracy, and the main difference is that
our work is focusing on BP-like training algorithms which have
demonstrated excellent performance in recent years.

However, several challenges should be addressed to achieve
more practical application. Although this paper proposes
hardware-efficient designs, the resource limitation of the FPGA
board does not allow large networks. For instance, we reduced
the input resolution of MNIST dataset from 784 to 196 due to
the limitation. While the proposed DFA based on-chip learning
is demonstrated using relatively small SNNs on FPGA due to
hardware resource limitations, our future work will explore a
number of techniques, such as more advanced neuron model
simplification, architectural level optimization, and/or a larger
FPGA board to demonstrate larger-scale SNNs.

Nevertheless, the main focuses of this paper have been
on extending the DFA concept proposed by Nøkland (2016)
to efficient training of SNNs, and significantly reducing the
hardware cost by algorithm-hardware co-optimization while
maintaining a competitive accuracy. This paper proposes a
novel spike-level direct feedback alignment (ST-DFA) algorithm
for training multi-layer spiking neural networks (SNNs)
with improved bio-plausibility and scalability over traditional
backpropagation algorithms. Moreover, it is demonstrated that
the ST-DFA algorithm with its hardware-friendly optimized
implementation enable efficient on-chip training of FPGA SNN
neural processors while delivering competitive classification
performance for practical speech and image recognition tasks.
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Artificial neural networks (ANN) have become the mainstream acoustic modeling

technique for large vocabulary automatic speech recognition (ASR). A conventional

ANN features a multi-layer architecture that requires massive amounts of computation.

The brain-inspired spiking neural networks (SNN) closely mimic the biological neural

networks and can operate on low-power neuromorphic hardware with spike-based

computation. Motivated by their unprecedented energy-efficiency and rapid information

processing capability, we explore the use of SNNs for speech recognition. In this work,

we use SNNs for acoustic modeling and evaluate their performance on several large

vocabulary recognition scenarios. The experimental results demonstrate competitive

ASR accuracies to their ANN counterparts, while require only 10 algorithmic time steps

and as low as 0.68 times total synaptic operations to classify each audio frame.

Integrating the algorithmic power of deep SNNs with energy-efficient neuromorphic

hardware, therefore, offer an attractive solution for ASR applications running locally on

mobile and embedded devices.

Keywords: deep spiking neural networks, automatic speech recognition, tandem learning, neuromorphic

computing, acoustic modeling

1. INTRODUCTION

Automatic speech recognition (ASR) has enabled the voice interface of mobile devices and smart
home appliances in our everyday life. The rapid progress in the integration of voice interfaces
has been viable on account of the remarkable performance of the ASR systems using artificial
neural networks (ANN) for acoustic modeling (Lippmann, 1989; Lang et al., 1990; Hinton et al.,
2012; Yu and Deng, 2015). Various ANN architectures, either feedforward or recurrent, have been
investigated for modeling the acoustic information preserved in speech signals (Dahl et al., 2012;
Graves et al., 2013; Abdel-Hamid et al., 2014).

The performance gains come with immense computational requirements often due to
the time-synchronous processing of input audio signals. Several techniques have been
proposed to reduce the computational load and memory storage of ANNs by reducing the
number of parameters that have to be used for inference (Sainath et al., 2013; Xue et al.,
2013; He et al., 2014; Povey et al., 2018). Another common solution, for reducing the
processing load, uses a wake word or phrase to control the access to speech recognition
services (Zehetner et al., 2014; Sainath and Parada, 2015; Wu M. et al., 2018). Moreover,
most devices with voice control rely on cloud-based ASR engines rather than local on-device
solutions. The necessity of online processing of speech via cloud computing comes with
various concerns, such as data security and processing speed, etc. There have been multiple
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efforts to develop on-device ASR solutions in which the speech
signal is processed locally using the computational resources of
mobile devices (Lei et al., 2013; McGraw et al., 2016).

Alternatively, event-driven models such as spiking neural
networks (SNNs) inspired by the human brain have attracted
ever-growing attention in recent years. The human brain
is remarkably efficient and capable of performing complex
perceptual and cognitive tasks. Notably, the adult’s brain only
consumes about 20 watts to solve complex tasks that are
equivalent to the power consumption of a dim light bulb
(Laughlin and Sejnowski, 2003). While brain-inspired ANNs
have demonstrated great capabilities in many perceptual (He
et al., 2016; Xiong et al., 2017) and cognitive tasks (Silver
et al., 2017), these models are computationally intensive
and memory inefficient to operate as compared to the
biological brains. Unlike ANNs, asynchronous and event-driven
information processing of SNNs resembles the computing
paradigm that observed in the human brains, whereby the
energy consumption matches the activity levels of sensory
stimuli. Given temporally sparse information transmitted in
the surrounding environment, the event-driven computation,
therefore, exhibits great computational efficiency than the
synchronous computation used in ANNs.

Neuromorphic computing (NC), as a non-von Neumann
computing paradigm, mimics the event-driven computation
of the biological neural systems with SNN in silicon. The
emerging neuromorphic computing architectures (Furber et al.,
2012; Merolla et al., 2014; Davies et al., 2018) leverage on
the massively parallel, low-power computing units to support
spike-based information processing. Notably, the design of co-
located memory and computing units effectively circumvents the
von Neumann bottleneck of low-bandwidth between memory
and the processing units (Monroe, 2014). Therefore, integrating
the algorithmic power of deep SNNs with the compelling
energy efficiency of NC hardware represents an intriguing
solution for pervasive machine learning tasks and always-on
applications. Furthermore, growing research efforts are devoted
to developing novel non-volatile memory devices for ultra-low-
power implementation of biological synapses and neurons (Tang
et al., 2019).

Some preliminary work on SNN-based phone classification or
small-vocabulary speech recognition systems have been explored
in Jim-Shih Liaw and Berger (1998), Näger et al. (2002), Loiselle
et al. (2005), Holmberg et al. (2005), Kröger et al. (2009), Tavanaei
and Maida (2017a,b), Wu et al. (2018a), Wu et al. (2018b),
Zhang et al. (2015), Zhang et al. (2019), Bellec et al. (2018), Wu
et al. (2019b), and Pan et al. (2018). However, these SNN-based
ASR systems are far from the scale and complexity of modern
commercialized ANN-based ASR systems. It is mainly due to
lacking effective training algorithms for deep SNNs and efficient
software toolbox for SNN-based ASR systems.

Due to the discrete and non-differentiable nature of spike
generation, the powerful error back-propagation algorithm is
not directly applicable to the training of deep SNNs. Recently,
considerable research efforts are devoted to addressing this
problem and the resulting learning rules can be broadly
categorized into the SNN-to-ANN conversion (Cao et al., 2015;
Diehl et al., 2015), back-propagation through time with surrogate

gradient (Wu Y. et al., 2018; Neftci et al., 2019; Wu et al., 2019a)
and tandem learning (Wu et al., 2019c). Despite several successful
attempts on the large-scale image classification tasks with deep
SNNs (Rueckauer et al., 2017; Hu et al., 2018; Sengupta et al.,
2019; Wu et al., 2019c), their applications to the large-vocabulary
continuous ASR (LVCSR) tasks remain unexplored. In this work,
we explore an SNN-based acoustic model for LVCSR using a
recently proposed tandem learning rule (Wu et al., 2019c) that
supports an efficient and rapid inference.

To summarize, the main contributions of this work
are threefold:

• Large-Vocabulary Automatic Speech Recognition with

SNNs. We explored the SNN-based acoustic models for
large-vocabulary automatic speech recognition tasks. The
SNN-based ASR systems achieved competitive accuracy
on par with their ANN counterparts across the phone
recognition, low-resourced ASR and large-vocabulary ASR
tasks. To the best of our knowledge, this is the first work that
successfully applied SNNs to the LVCSR task.

• Toward Rapid and Energy-Efficient Speech Recognition.

Our preliminary study of an SNN-based acoustic model
has revealed compelling prospect of rapid inference and
unprecedented energy efficiency of a neuromorphic approach.
Specifically, SNNs can classify each audio frame accurately
with only 10 algorithmic time steps while require as low as 0.68
times total synaptic operations to their ANN counterparts.

• SNN-Based ASR Toolkit. We demonstrate that SNN-based
acoustic models can be effectively developed in PyTorch and
easily integrated into the PyTorch-Kaldi Speech Recognition
Toolkit (Ravanelli et al., 2019) for rapid development of SNN-
based ASR systems.

The rest of the paper is organized as follows: In section 2,
we first give an overview of spiking neural networks, large
vocabulary ASR systems, and existing SNN-based ASR systems.
In section 3, we introduce the spiking neuron model and the
neural coding scheme that converts acoustic features into spike-
based representation. We further present a recently introduced
tandem learning framework for SNN training and how it is
used to train deep SNN-based acoustic models. In section 4,
we present experimental results on the learning capability and
energy efficiency of SNN-based acoustic models across three
different types of recognition tasks including phone recognition,
low-resourced and standard large-vocabulary ASR, and compare
those to the ANN-based implementations. Finally, a discussion
on the experimental findings is given in section 5.

2. FUNDAMENTALS AND RELATED WORK

2.1. Spiking Neural Networks
The third generation spiking neural networks are originally
studied as models to describe the information processing in
the biological neural networks, wherein the information is
communicated and exchanged via stereotypical action potentials
or spikes (Gerstner and Kistler, 2002). Neuroscience studies
reveal that the temporal structure and frequency of these spike
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FIGURE 1 | Comparison of the synchronous and asynchronous

computational paradigms adopted by (A) ANNs and (B) SNNs, respectively

(revised from Pfeiffer and Pfeil, 2018).

trains are both important information carriers in the biological
neural networks. As will be introduced in section 3.1, the spiking
neuron operates asynchronously and integrates the synaptic
current from its incoming spike trains. An output spike is
generated from the spiking neuron whenever its membrane
potential crosses the firing threshold, and this output spike will
be propagated to the connected neurons via the axon.

Motivated by the same connectionism principle, SNNs share
the same network architectures, either feedforward or recurrent,
with the conventional ANNs that use analog neurons. As
shown in Figure 1, the early classification decision can be made
from the SNN since the generation of the first output spike.
However, the quality of the classification decision is typically
improved over time with more evidence accumulated. It differs
significantly from the synchronous information processing of
the conventional ANNs, where the output layer needs to wait
until all preceding layers are fully updated. Therefore, despite
information is transmitted and processed at a speed that is several
orders of magnitude slower in neural substrates than signal
processing in modern transistors, biological neural systems can
perform complex tasks rapidly. For more overviews about SNNs
and their applications, we refer readers to Pfeiffer and Pfeil (2018)
and Tavanaei et al. (2019).

2.2. Large Vocabulary Automatic Speech
Recognition
As shown in Figure 2, conventional ASR systems uses
acoustic and linguistic information preserved in three distinct
components to convert speech signals to the corresponding
text: (1) an acoustic model for preserving the statistical

FIGURE 2 | Block diagram of a conventional ASR system. The acoustic and

linguistic components are incorporated to jointly determine the most likely

hypothesis.

representations of different speech units, e.g., phones, from
speech features, (2) a language model for assigning probabilities
to the co-occurring word sequences and (3) a pronunciation
lexicon for mapping the phonetic transcriptions to orthography.
These resources are jointly used to determine the most likely
hypothesis in the decoding stage.

Acoustic modeling can be achieved by using various statistical
models such as Gaussian Mixture Models (GMM) for assigning
frame-level phone posteriors in conjunction with a Hidden
Markov Model (HMM) for duration modeling (Yu and Deng,
2015). More recently, ANN-based approaches have become the
standard acoustic models providing state-of-the-art performance
across a wide spectrum of ASR tasks (Hinton et al., 2012).
Together with numerous ANN architectures explored for
acoustic modeling, several end-to-end ANN architectures have
been proposed for directly mapping speech features to text with
optional use of the other linguistic components (Graves and
Jaitly, 2014; Chan et al., 2016; Watanabe et al., 2017).

The probabilistic definition of acoustic modeling becomes
more evident via the Bayesian formulation of the speech
recognition task. Given a target speech signal that segmented
into T overlapped frames, the resulting frame-wise features
can be represented as O = [o1 , o2 , . . . , oT ]. An ASR system
assigns the probability P(W|O) to all possible word sequences
W = [w1 ,w2 , . . . ], and the word sequence Ŵ with the highest
probability is the recognized output,

Ŵ = argmax
W

P(W|O) (1)

The probability P(W|O) can be decomposed into two parts by
applying the Bayes’ rule as below,

Ŵ = argmax
W

P(O|W)P(W)

P(O)
(2)
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P(O) can be omitted as it does not depend onW. This results in

Ŵ = argmax
W

P(O|W)P(W) (3)

which formally defines the theoretical foundation of the
conventional ASR systems. P(W) is the prior probability of
the word sequence W and this probability is provided by the
language model which is trained on a large written corpus of
the target language. P(O|W) is the likelihood of the observed
feature sequence O given the word sequence W, and this
probability is associated with the acoustic model. The acoustic
model captures the information about the acoustic component
of speech signals, aiming to classify different acoustic units
accurately. Traditionally, each phone in the phonetic alphabet is
modeled using multiple three-state HMM models for different
preceding and following phonetic context (triphone) (Lee, 1990).
The emission probability of these HMM states are shared
(tied) among different models to reduce the number of model
parameters (Hwang and Huang, 1993). The output layer of the
ANN-based acoustic model is designed accordingly and trained
to assign these frame-level tied triphone HMM state (senone)
probabilities (Dahl et al., 2012). The output layer uses the softmax
function to normalize the output into a probability distribution.
These values are scaled with the prior probabilities of each class,
obtained from the training data, to determine the likelihood
values. These likelihood values are later combined with the
probabilities assigned by the languagemodel during the decoding
stage so as to find the most likely hypothesis.

Speech features, used as the inputs to the acoustic model,
describe the spectrotemporal dynamics of the speech signal and
discriminate among different phones in the target language. Mel-
frequency cepstral coefficients(MFCC) (Davis and Mermelstein,
1980) features are commonly used in conjunction with the
GMM-HMM acoustic model. The MFCC features are extracted
by (1) performing short-time Fourier transform, (2) applying
triangular Mel-scaled filter banks to calculate the power at each
Mel frequency in log domain (FBANK) and (3) performing a
discrete cosine transform to decorrelate the FBANK features.
The third step is often skipped and FBANK features are often
used when training ANN-based acoustic models since these
models can handle correlation among features. In this work,
we incorporate deep SNNs for acoustic modeling instead of
the conventional ANNs and compare their ASR performance
in different ASR scenarios including phone recognition, low-
resourced and standard large vocabulary ASR. The ASR
performance obtained using popular speech features have been
reported to explore the impact of the feature representation space
and its dimensionality for SNN-based acoustic models.

2.3. Speech Recognition With Spiking
Neural Network
SNNs are well-suited for representing and processing spatial-
temporal signals, they hence possess great potentials for speech
recognition tasks. Tavanaei and Maida (2017a,b) proposed
SNN-based feature extractors to extract discriminative features

from the raw speech signal using unsupervised spiking-timing-
dependent plasticity (STDP) rule. While connecting these SNN-
based feature extractors with Support Vector Machine (SVM)
or Hidden Markov Model (HMM) classifiers, competitive
classification accuracies were demonstrated on the isolated
spoken digit recognition task. Wu et al. (2018a,b) introduced
a SOM-SNN framework for environmental sound and speech
recognition. In this framework, the biological-inspired self-
organizing map (SOM) is utilized for feature representation,
which maps frame-based acoustic features into a spike-based
representation that is both sparse and discriminative. The
temporal dynamic of the speech signal is further handled
by the SNN classifier. Zhang et al. (2019) presented a fully
SNN-based speech recognition framework, wherein the spectral
information of consecutive frames are encoded with threshold
coding and subsequently classified by the SNN that is trained
with a novel membrane potential-driven aggregate-labeling
learning algorithm.

Recurrent network of spiking neurons (RSNNs) exhibit
greater memory capacity than the aforementioned feedforward
frameworks. They can capture long temporal information
that are useful for speech recognition tasks. In Zhang et al.
(2015), Zhang et al. presented a spiking liquid-state machine
(LSM) speech recognition framework which is attractive for
low-power very-large-scale-integration (VLSI) implementation.
Bellec et al. recently demonstrated state-of-the-art phone
recognition accuracy on the TIMIT dataset by adding neuronal
adaptation mechanism to the vanilla RSNNs (Bellec et al., 2018).
It is the first time that RSNNs approaching the performance of
LSTM networks (Greff et al., 2016) on the speech recognition
task. These preliminary works on the SNN-based ASR systems
are however limited to the phone classification or small
vocabulary isolated spoken digit recognition tasks. In this
work, we apply deep SNNs to LVCSR tasks and demonstrate
competitive accuracies over the ANN-based ASR systems.

3. METHODS

3.1. Spiking Neuron Model
As shown in Figure 4, the frame-based features are first extracted
and input into the SNN-based acoustic models. Given the short
temporal duration of segmented frames and the slow variation
of speech signals, these features are typically assumed to be
stationary over the short time-period of segmented frames. In
this work, we use the integrate-and-fire (IF) neuron model with
reset by subtraction scheme (Rueckauer et al., 2017), which
can effectively process these stationary frame-based features
with minimal computational costs. Although IF neurons do
not emulate rich temporal dynamics of biological neurons, they
are however ideal for working with the neural representation
that employed in this work, where spike timings play an
insignificant role.

At each time step t of a discrete-time simulation, with a total
number of time steps Ns, the incoming spikes to neuron j at layer
l are transduced into synaptic current as follows

zlj(t) =
∑

i
wl−1
ji · θ l−1

i (t)+ blj (4)
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FIGURE 3 | The neuronal dynamic of an integrate-and-fire neuron (red). In this example, three pre-synaptic neurons are sending asynchronous spike trains to this

neuron. Output spikes are generated when the membrane potential V crosses the firing threshold (top right corner).

where θ l−1
i (t) indicates the occurrence of an input spike from

afferent neuron i at time step t. In addition, the wl−1
ji denotes

the synaptic weight that connects presynaptic neuron i from layer
l − 1. Here, blj can be interpreted as a constant injecting current.

As shown in Figure 3, neuron j integrates the input current zlj(t)

into its membrane potential V l
j (t) as per Equation (5). The V l

j (0)

is reset and initialized to zero for every new frame-based feature
input. Without loss of generality, a unitary membrane resistance
is assumed here. An output spike is generated whenever V l

j (t)

crosses the firing threshold ϑ (Equation 6), which we set to a
value of 1 for all the experiments by assuming that all synaptic
weights are normalized with respect to the ϑ .

V l
j (t) = V l

j (t − 1)+ zlj(t)− ϑ · θ lj (t − 1) (5)

θ lj (t) = 2(V l
j (t)− ϑ) with 2(x) =

{

1, if x ≥ 0
0, otherwise

(6)

According to Equations (4) and (5), the free aggregated
membrane potential of neuron j (no firing) in layer l can be
expressed as

V
l,f
j =

∑

i
wl−1
ji · cl−1

i + blj · Ns (7)

where cl−1
i is the input spike count from pre-synaptic neuron i at

layer l− 1 as per Equation (8).

cl−1
i =

∑Ns

t=1
θ l−1
i (t). (8)

The V
l,f
j summarizes the aggregate membrane potential

contributions of the incoming spikes from pre-synaptic neurons
while ignoring their temporal structures. As will be explained
in the tandem learning framework section, this intermediate
quantity links the SNN layers to the coupled ANN layers for
parameter optimization.

3.2. Neural Coding Scheme
SNNs process information transmitted via spike trains, therefore,
special mechanisms are required to encode the continuous-
valued feature vectors into spike trains and decode the
classification results from the activity of output neurons. To this
end, we adopt the spiking neural encoding scheme that proposed
in Wu et al. (2019c). This encoding scheme first transforms
frame-based input feature vector X0 (e.g., MFCC or FBANK
features), where X0

= [x01, x
0
2, · · ·, x

0
n]

T , through a weighted layer
of rectified linear unit (ReLU) neurons as follows

V
0,f
j (0) ≡ a0j = ρ(

∑

i
w0
ji · x

0
i + b0j ) (9)

where w0
ji is the strength of the synaptic connection between

the input x0i and ReLU neuron j. The b0j is the corresponding

bias term of the neuron j, and ρ(·) denotes the ReLU activation

function. The free aggregate membrane potential V
0,f
j (0) is

defined to be equal to the activation value a0j of the ReLU neuron

j. We distribute this quantity over the encoding time window Ns

and represent it via spike trains as per Equations (10) and (11).

θ0j (t) = 2(V
0,f
j (t − 1)− ϑ) (10)

V
0,f
j (t) = V

0,f
j (t − 1)− ϑ · θ0j (t) (11)

Altogether, the spike train s0 and spike count c0 that output from
the neural encoding layer can be represented as follows

s0 = {θ0(1), . . . , θ0(Ns)} (12)

c0 =
∑Ns

t=1
θ0(t) (13)

This encoding layer performs weighted transformation inside
an end-to-end learning framework. It transforms the original
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FIGURE 4 | System flowchart for SNN training within a tandem neural

network, wherein SNN layers are used in the forward pass to determine the

spike count and spike train. The ANN layers are used for error

back-propagation to approximate the gradient of the coupled SNN layers.

input representation to match the size of the encoding time
windowNs and represents the transformed information via spike
counts. This encoding scheme is beneficial for rapid inference
since the input information can be effectively encoded within a
short encoding window. Start from this neural encoding layer,
as shown in Figure 4, we input the spike count cl and sl to
subsequent ANN and SNN layers for tandem learning.

To ensure smooth learning with high precision error gradients
derived at the output layer, we use the free aggregate membrane
potential of output spiking neurons for neural decoding.
Considering that the dimensionality of input feature vectors and
output classes are much smaller than that of hidden layers, the
computation required will be limited when deploying these two
layers onto the edge devices.

3.3. Tandem Learning for Training Deep
SNNs
Here, we present a recently proposed SNN learning rule,
under the tandem neural network configuration, that exploits a
connection between the activation value of ANN neurons and the
spike count of IF neurons. As the input features are effectively
encoded as spike counts, the temporal structure of the spike
trains carries negligible information. The effective non-linear
transformation of SNN layers therefore can be summarized as

clj = f (sl−1
;wl−1

j , blj) (14)

where f () denotes the transformation performed by spiking
neurons. However, due to the state-dependent nature of spike
generation, it is not viable to determine an analytical expression
from sl−1 to clj directly. Therefore, we simplify the spike

generation process by assuming the resulting synaptic currents
from sl−1 are evenly distributed over the encoding time window.
As such, the interspike interval can be determined as follows

ISIlj = ρ





ϑ

V
l,f
j /Ns



 = ρ







ϑ

(
∑

i
wl−1
ji cl−1

i + blj · Ns)/Ns






(15)

Hence, the approximated “spike count” alj can be derived

according to

alj =
Ns

ISIlj
=

1

ϑ
· ρ

(

∑

i

wl−1
ji cl−1

i + blj · Ns

)

(16)

Given a unitary firing threshold ϑ , alj can be effectively

determined from an ANN layer of ReLU neurons by setting

the spike count cl−1
i as the input and the aggregated constant

injecting current blj · Ns as the bias term. This simplification

of spike generation process allows the spike-train level error
gradients to be approximated from the ANN layer. Wu et al.
(2019c) have revealed that the cosine distances between the
approximated ‘spike count’ al and the actual SNN output spike
count cl are exceedingly small in a high dimensional space,
suggesting high quality error gradients can be approximated from
the coupled ANN layers.

Based on this formulation, we constructed tandem neural
networks as shown in Figure 4. During the activation forward
propagation, the SNN layers are used to determine the exact
spike representation which then propagate the aggregate spike
counts and spike trains to the subsequent ANN and SNN
layers, respectively. This interlaced layer structure ensures the
information that forward propagated to the coupled ANN and
SNN layers are synchronized. It worth noting that the ANN is
just an auxiliary structure to facilitates the training of SNN, while
only SNN is used during inference. The details of this tandem
learning rule are provided in the Algorithm 1.

3.4. SNN-Based Acoustic Modeling
To train the deep SNN-based acoustic models, which is the
main contribution of this work, several popular speech features
have been extracted from the training recordings as described in
section 2.2. Before being fed into the SNNs, these input speech
features are contextualized by splicing multiple frames so as to
exploit more temporal context information. Before training the
SNN-based acoustic model, alignments of the speech features
with the target senone labels are obtained using a conventional
GMM-HMM-based ASR system similar to that described in Dahl
et al. (2012). These frame-level alignments enable the training
of the deep SNN acoustic model with the tandem learning
approach. During the training, the deep SNN learns to map
input speech features to posterior probabilities of senones (cf.
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Algorithm 1: Pseudo Codes For The Tandem Learning Rule

Input: Input frame-based feature vectors X0, target label Y ,
network parameters w, neural encoding window size
Ns

Output: Updated network parameters w

Forward Pass:
c0, s0 = Neural_Encoding(X0)
for layer l = 1 to N-1 do

// State Update of the ANN Layer

al = ANN.layer[l].forward(cl−1, wl−1) ∗

for t = 1 to Ns do

// State Update of the SNN Layer

sl[t] = SNN.layer[l].forward(sl−1[t], wl−1)

// Update the Spike Count

cl =
∑Ns

t=1 s
l[t]

/* Neural Decoding with the Aggregate Membrane Potential */

output = ANN.layer[N].forward(cN−1, wN−1)

Loss: E = LossFunction(Y , output)

Backward Pass:
∂E
∂aN

= LossGradient(Y , output)

for layer l = N-1 to 1 do
// Gradient Update through the ANN Layer
∂E

∂al−1 ,
∂E

∂wl−1 = ANN.layer[l].backward( ∂E
∂al

, cl−1, wl−1)

Update parameters of the ANN layer based on the
calculated gradients.
Copy the updated parameters to the corresponding SNN
layer.

Note:
∗ For inference, state updates are performed on the SNN
layers entirely.

section 2.2) by passing the input speech frames through multiple
layers of spiking neurons.

During the inference phase, the acoustic scores provided by
the trained SNN model are combined with the information
stored in the language model and pronunciation lexicon. It is
a common practice to use the weighted finite state transducers
(WFST) (Mohri et al., 2002) as a unified representation of
different ASR resources for creating the search graph containing
possible hypotheses. The main motivation for using the WFST-
based decoding is: (1) the straightforward composition of
different ASR resources for constructing a mapping from HMM
states to word sequences and (2) the existence of efficient search
algorithms operating on WFST that speed up the decoding
process. As a result of the search process, the most likely
hypotheses are found and stored in the form of a lattice. The
ASR output is chosen based on the weighted sum of the acoustic
and language model scores belonging to hypotheses in the lattice.
For further details of the WFST-based decoding approach used

in this work, we refer the reader to Povey et al. (2012). In the
following sections, we describe the ASR experiments conducted
to evaluate the recognition performance of the proposed SNN-
based acoustic modeling in several recognition scenarios.

3.5. Training and Evaluation
3.5.1. Datasets

The performance of the proposed SNN-based acoustic models is
investigated in three different ASR tasks: (1) phone recognition
using the TIMIT corpus (Garofolo et al., 1993), (2) low-resourced
ASR task using the FAME code-switching Frisian-Dutch
corpus (Yılmaz et al., 2016a) and (3) standard large-vocabulary
continuous ASR task using the Librispeech corpus (Panayotov
et al., 2015). All speech data used in the experiments has a
sampling frequency of 16 kHz.

The train, development and test sets of the standard TIMIT
corpus contain 3,696, 400, and 192 utterances from 462, 50,
and 24 speakers, respectively. Each utterance is phonetically
transcribed using a phonetic alphabet consisting of 48 phones
in total. The training data of the FAME corpus comprises of 8.5
and 3 h of broadcast speech from Frisian and Dutch speakers,
respectively. The training utterances are spoken by 382 speakers
in total. This bilingual dataset contains Frisian-only and Dutch-
only utterances as well as mixed utterances with inter-sentential,
intra-sentential and intra-word code-switching (Myers-Scotton,
1989). The development and test sets consist of 1 h of speech from
Frisian speakers and 20 min of speech from Dutch speakers each.
The total number of speakers is 61 in the development set and 54
in the test set.

The Librispeech corpus contains 1,000 h of reading speech
in total collected from audiobooks. This publicly available
corpus1 has been considered as a popular benchmark for ASR
algorithms with multiple training and testing settings. In the
ASR experiments, we train acoustic models using the 100
(train_clean_100) and 360 (train_clean_360) h of speech and
apply these models to the clean development (dev_clean) and test
(test_clean) sets. Further details about this corpus can be found
in Panayotov et al. (2015).

3.5.2. Implementation Details

All ASR experiments are performed using the PyTorch-Kaldi
ASR toolkit (Ravanelli et al., 2019). This recently introduced
toolkit inherits the flexibility of PyTorch toolkit (Paszke et al.,
2019) for ANN-based acoustic model development and the
efficiency of Kaldi ASR toolkit (Povey et al., 2011).We implement
the SNN tandem learning rule in PyTorch and integrate it into
the PyTorch-Kaldi toolkit for training the proposed SNN-based
acoustic models (cf. Figure 4). The PyTorch implementation
of the described SNN acoustic models is public available
online2. For the baseline ANN models, the standard multi-
layer perceptron recipes are used. The Kaldi toolkit is used
for obtaining the initial alignments, feature extraction, graph
creation, and decoding.

1www.openslr.org/resources/12
2https://github.com/deepspike/snn-for-asr
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For all recognition scenarios, ANNs and SNNs are constructed
with 4 hidden layers and 2,048 hidden units each using the
ReLU activation function. Each fully-connected layer is followed
by a batch normalization layer and a dropout layer with
a drop probability of 10% to prevent overfitting. We train
these models using various popular speech features including
the 13-dimensional Mel-frequency cepstral coefficient (MFCC)
feature, 23-dimensional Mel-filterbank (FBANK) feature, and
higher resolution 40-dimensional MFCC and FBANK features.
We further extract feature space maximum likelihood linear
regression (FMLLR) (Gales, 1998) features to explore the impact
of speaker-dependent features. All features include the deltas
and delta-deltas; mean and variance normalization are applied
before the splicing. The time context size is set to 11 frames
by concatenating 5 frames preceding and following. All features
are encoded within a short time window of 10-time steps for
SNN simulations.

The neural network training is performed by mini-batch
Stochastic Gradient Descent (SGD) with an initial learning rate
of 0.08 and a minibatch size of 128. The learning rate is halved if
the improvement is less than a preset threshold of 0.001. The final
acoustic models of the TIMIT and FAME corpora are obtained
after 24 training epochs, while the models of the Librispeech
corpus are trained for 12 epochs.

For the TIMIT and Librispeech ASR tasks, we follow the same
language model (LM) and pronunciation lexicon preparation
pipeline as provided in the corresponding Kaldi recipes3. The
smallest 3-gram LM (tgsmall) of the Librispeech corpus is
used to create the graph for the decoding stage. The details of
the LM and lexicon used in the FAME recognition task are given
in Yılmaz et al. (2018).

3.5.3. Evaluation Metrics

3.5.3.1. ASR performance
The phone recognition on the TIMIT corpus is reported in
terms of the phone error rate (PER). The word recognition
accuracies on the FAME and Librispeech corpora are reported
in terms of word error rate (WER). Both metrics are calculated
as the ratio of all recognition errors (insertion, deletion, and
substitution) and the total number of phones or words in the
reference transcriptions.

3.5.3.2. Energy efficiency: counting synaptic operations
To compare the energy efficiency of ANN and its equivalent SNN
implementation, we follow the convention from NC community
and compute the total synaptic operations SynOps that required
to perform a certain task (Merolla et al., 2014; Rueckauer
et al., 2017; Sengupta et al., 2019). For ANN, the total synaptic
operations [Multiply-and-Accumulate (MAC)] per classification
is defined as follows

SynOps =

L
∑

l=1

f lin · Nl (17)

3https://github.com/kaldi-asr/kaldi/tree/master/egs/timit;

https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech

where f lin denotes the number of fan-in connections to each
neuron in layer l, and Nl refers to the number of neurons in
layer l. In addition, L denotes the total number of network
layers. Hence, given a particular network configuration, the
total synaptic operations required per classification is a constant
number that jointly determined by f lin and Nl.

While for SNN, as per Equation (18), the total synaptic
operations (Accumulate (AC)) required per classification are
correlated with the spiking neurons’ firing rate, the number of
fan-out connections fout to neurons in the subsequent layer as
well as the simulation time window Ns.

SynOps =

Ns
∑

t=1

L−1
∑

l=1

Nl
∑

j=1

f lout,j · s
l
j(t) (18)

where slj(t) indicates whether a spike is generated by neuron j of

layer l at time instant t.

4. RESULTS

4.1. Phone Recognition on TIMIT Corpus
We report the PER on the development and test sets of
TIMIT corpus in Table 1, with numbers in bold being the best
performance given by the speaker-independent features. ASR
performances of other state-of-the-art systems using various
ANN and SNN architectures are given in the upper panel
for reference purposes. As the results shown in Table 1, the
proposed SNN-based acoustic models are applicable to different
speech features and provide comparable or slightly worse ASR
performance than the ANNs with the same network structure.
In particular, the ANN system trained with the standard 13-
dimensional FBANK feature achieves the best PER of 16.9%
(18.5%) on the development (test) set. The equivalent SNN
system using the same feature achieves slightly worse PER of
17.3% (18.7%) on the development (test) set. Although the state-
of-the-art ASR systems (Ravanelli et al., 2018) give approximately
1% lower PER than the proposed SNN-based phone recognition
system, it is largely credit to the longer time context explored by
the recurrent Li-GRU model.

It worth mentioning that phone recognition is still a
challenging task for spiking neural networks. To the best of our
knowledge, only one recent work with recurrent spiking neural
networks (Bellec et al., 2019) demonstrates some promising test
results on this corpus with a PER of 26.4%. In contrast, our
system has achieved significantly lower PER compared to this
preliminary study of SNN-based acoustic modeling. However,
these results are not directly comparable since the proposed
system incorporates both an acoustic and a language model
during decoding unlike the system described in Bellec et al.
(2019).

The experimental results on the TIMIT phone recognition
task can be considered as an initial indicator of the compelling
prospects of the SNN-based acoustic modeling. Given that
the phone recognition task on TIMIT corpus is simplistic
compared to the modern LVCSR tasks, we further compare the
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TABLE 1 | PER (%) on the TIMIT development and test sets.

Test

Features

AM

Li-GRU (Ravanelli et al.,

2018)

RSNN (Bellec et al., 2019)

MFCC (13-dim.) 16.7 26.4

FBANK (13-dim.) 15.8 –

FMLLR 14.9* –

Features
AM

Dev Test

ANN SNN ANN SNN

MFCC (13-dim.) 17.1 17.8 18.5 19.1

FBANK (13-dim.) 16.9 17.3 18.5 18.7

MFCC (40-dim.) 17.3 18.2 18.7 19.8

FBANK (40-dim.) 16.9 17.8 17.9 19.1

FMLLR 15.8 16.5 17.2 17.4

The upper panel reports the results of various ANN and SNN architectures from the

literatures, and the lower panel presents the results achieved by the ANN and SNNmodels

in this work (AM, acoustic model, *the best result to date). The best results given by the

speaker-independent features at each column are marked in bold.

ANN and SNN performance on newer corpora designed for
LVCSR experiments.

4.2. Low-Resourced ASR on FAME Corpus
In this section, we apply the SNN-based ASR systems to the low-
resourced ASR scenario. As summarized in Table 2, the word
recognition results on the FAME corpus are reported separately
for monolingual Frisian (fy), monolingual Dutch (nl) and code-
switched (cs) utterances. The overall performance (all) is also
included in the rightmost column. Given that 8.5 h Frisian and
3 h of Dutch speech is used during the training phase, we can
compare the ASR performance on different subsets, i.e., fy, nl
and cs, to identify the variations in the ASR performance for
different levels of low-resourcedness. We omit the results on the
development set as they follow a similar pattern to the results on
the test set.

In this scenario, the SNN acoustic models consistently provide
lower WERs than the ANN models for all speech features.
Systems with the FBANK features provide lower WERs than
those usingMFCC features, which is in line with our observations
on the TIMIT corpus. The best performance on the test set is
obtained using SNN models trained on 40-dimensional FBANK
features with an overall WER of 36.9%. In contrast, the ANN
model provides a WER of 39.0% for the same setting, which
is relatively 5.4% worse than the SNN model. Moreover, the
SNN-based acoustic models achieve a relative improvement of
4.7%, 5.2% and 8.2% on the fy, nl and cs subsets of the test
set, respectively. These steady improvements in the recognition
accuracies highlight the effectiveness of the SNN-based acoustic
modeling in scenarios with limited training data compared to
the conventional ANN models. The improved ASR performance
with SNNs, in the low-resourced setting, may credit to the noisy
weight updates derived by the tandem learning framework. It
has been recognized that introducing noises into the training

TABLE 2 | WERs (%) achieved on the monolingual and mixed segments of the

FAME test set.

fy nl cs All

# of Frisian words 10,753 0 1,798 12,551

# of Dutch words 0 3,475 306 3,781

Speech features AM

FBANK (40-dim.) Kaldi-ANN

(Yılmaz et al., 2016b)

32.4 39.7 49.9 36.2

MFCC (40-dim.) TDNN-LSTM

(Yılmaz et al., 2018)

31.5 39.5 47.9 35.2

MFCC (13-dim.) ANN 34.6 50.0 49.9 39.9

MFCC (13-dim.) SNN 33.8 45.3 47.9 38.2

FBANK (13-dim.) ANN 34.3 47.5 48.1 39.0

FBANK (13-dim.) SNN 33.1 44.3 46.5 37.3

MFCC (40-dim.) ANN 35.2 48.4 51.7 40.2

MFCC (40-dim.) SNN 33.7 44.2 46.9 37.7

FBANK (40-dim.) ANN 34.4 46.3 49.8 39.0

FBANK (40-dim.) SNN 32.8 43.9 45.7 36.9

FMLLR ANN 31.2 42.1 47.2 35.7

FMLLR SNN 31.5 39.5 46.6 35.2

The upper panel summarizes the number of words from each language subset. Themiddle

panel provides the results of state-of-the-art ANN architectures (Yılmaz et al., 2016b,

2018) for reference purposes and the lower panel presents the results achieved by the

ANN and SNN models in this work (AM, acoustic model). The best results given by the

speaker-independent features at each column are marked in bold.

stage improves the generalization capability of ANN-based ASR
systems (Yin et al., 2015). As a result, the noisy training of
the tandem learning is expected to improve the recognition
performance in low-resourced scenarios. Further investigation
on the impact of this noisy training procedure remains as
future work.

4.3. LVCSR Experiments on Librispeech
Corpus
In the final set of ASR experiments, we train acoustic models
using the official 100 and 360-h training subsets of the
Librispeech corpus to compare the recognition performance
of ANN and SNN models in a standard LVCSR scenario. As
the results given in the middle panel of Table 3, for 100 h
of training data, the ANN systems perform marginally better
than the corresponding SNN systems across all different speech
features. The absolute WER differences range from 0.1% to
0.6%. These marginal performance degradations of the SNN
models is likely due to the reduced representation power of using
discrete spike counts. Nevertheless, these results are promising
even when comparing to the state-of-the-art ASR systems using
more complex ANN architectures as provided in the upper panel
of Table 3.

It worth noting that both ANN and SNN systems can take
benefit of an increased amount of training data. When increasing
the training data from 100 to 360 h, the WERs of the best
SNN models reduced from 10.0% (10.3%) to 9.2% (9.4%) for
the development (test) sets, respectively. To the best of our
knowledge, it is the first time that SNN-based acoustic models
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TABLE 3 | WER (%) achieved on the Librispeech development and test sets.

Train - 100 h

Dev Test

AM

Kaldi† p-norm ANN 9.2 9.7

PyTorch-Kaldi† Li-GRU – 8.6

Features
AM

ANN SNN ANN SNN

MFCC 10.3 10.5 10.6 10.9

FBANK 9.6 10.0 10.2 10.6

MFCC (40-dim.) 9.5 10.1 10.0 10.6

FBANK (40-dim.) 9.6 10.2 10.1 10.3

FMLLR 9.2 9.3 9.7 9.9

Train - 360 h

Dev Test

Features
AM

ANN SNN ANN SNN

MFCC 9.2 9.9 9.6 10.3

FBANK 8.6 9.7 9.1 10.0

MFCC (40-dim.) 8.6 9.2 8.9 9.4

FBANK (40-dim.) 8.5 9.4 8.9 9.7

FMLLR 8.4 9.2 8.8 9.7

The upper panel gives the results, with 100-h of training data, reported at the Github repo

of Kaldi and PyTorch-Kaldi. The middle and lower panel present the results achieved by

ANN and SNN models in this work using 100-h and 360-h of training data, respectively.

The best results given by the speaker-independent features in the middle and lower panel

are marked in bold. (AM, acoustic model, †: reported at Github repo).

have achieved comparable results over the ANN models for
LVCSR tasks. These results suggest that SNNs are potentially
good candidates for acoustic modeling.

4.4. Energy Efficiency of SNN-Based ASR
Systems
In addition to the promising modeling capability, the SNN-
based ASR systems can achieve unprecedented performance
gain when implemented on the low-power neuromorphic
chips. In this section, we shed light on this prospect by
comparing the energy efficiency of ANN- and SNN-based
acoustic models. Given that data movements are the most
energy-consuming operations for data-driven AI applications,
we calculate the average synaptic operations on 5 randomly
chosen utterances from the TIMIT corpus and report the ratio
of average synaptic operations required per feature classification
[SynOps(SNN)/SynOps(ANN)]. To investigate the effect of
different feature representations, we repeat our analysis on
the 40-dimensional MFCC, FBANK, and FMLLR features as
summarized in Table 4 and Figure 5.

Taking advantage of the short encoding time window (Ns =

10), the sparse neuronal activities are observed for all network
layers as shown in Figure 5. Among the three features explored
in this experiment, it is interesting to note the FMLLR feature
achieves the lowest average spike rate. It is likely due to the

TABLE 4 | Comparison of the computational costs between SNN and ANN.

Utterance Index 1 2 3 4 5 Avg. SynOps Ratio

Num. of frames 474 287 274 268 223

MFCC (40-dim.) 1.71 1.73 1.76 1.71 1.68 1.72

FBANK (40-dim.) 1.08 1.08 1.14 1.09 1.10 1.10

FMLLR 0.67 0.68 0.71 0.66 0.67 0.68

The ratio of their required total synaptic operations [SynOps(SNN) / SynOps(ANN)] is

reported. It worth mentioning that ANNs use more costly MAC operations than the AC

operations used in the SNNs.

FIGURE 5 | Average spike count per neuron of different SNN layers on the

TIMIT corpus. The results of different input features are color-coded. Sparse

neuronal activities can be observed in this bar chart.

more discriminative nature of the speaker-dependent feature,
while it worth to note that the FMLLR feature is not always
available in all ASR scenarios. As provided in Table 4, the
SNN implementations taking MFCC, FBANK and FMLLR input
features require 1.72, 1.10, and 0.68 times synaptic operations
to their ANN counterparts, respectively. Although the average
number of synaptic operations required for SNNs that using
MFCC and FBANK features are slightly higher than the ANNs,
the AC operations performed on SNNs are much cheaper than
the MAC operations required for ANNs. One recent study on
the Global Foundry 28 nm process has revealed that MAC
operations are 14 times more costly than AC operations and
requires 21 times more chip area (Rueckauer et al., 2017). This
study provides some good indicators for the potential energy and
chips area savings that can be received from deploying SNNs
onto the emerging neuromorphic chips for inference (Merolla
et al., 2014; Davies et al., 2018). While the actual energy
savings for SNN-based acoustic models are dependent on the
chip architectures and materials used, which is beyond the
scope of this work.

5. DISCUSSION

The remarkable progress in the automatic speech recognition
systems has revolutionized the human-computer interface. The

Frontiers in Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 19949

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wu et al. Deep SNNs for Large Vocabulary ASR

rapid growing demands of ASR services have raised concerns
on computational efficiency, real-time performance, and data
security, etc. It, therefore, motivates novel solutions to address
all those concerns. As inspired by the event-driven computation
that observed in the biological neural systems, we explore using
brain-inspired spiking neural networks for large vocabulary ASR
tasks. For this purpose, we proposed a novel SNN-based ASR
framework, wherein the SNN is used for acoustic modeling
and map the frame-level features into a set of acoustic units.
These frame-level outputs will further integrate the word-level
information from the corresponding language model to find
the most likely word sequence corresponding to the input
speech signal.

5.1. Superior Speech Recognition
Performance With SNNs
The phone and word recognition experiments on the well-
known TIMIT and Librispeech benchmarks have demonstrated
the promising modeling capacity of SNN acoustic models and
their applicability to different input features. These preliminary
results have shown that the recognition performance of SNNs is
either comparable or slightly worse than the ANNs with the same
network architecture on the TIMIT and Librispeech benchmarks.
A possible reason for this performance degradation is the reduced
representation power of the discrete neural representation (i.e.,
spike counts) as compared to the continuous floating-point
representation of the ANNs (Wu et al., 2019c). This performance
gap could potentially be closed by extending the encoding
window Ns of SNNs. Moreover, the recognition performance
of ANN and SNN models in a low-resourced scenario is
also investigated. In this scenario, the SNN acoustic models
outperform the conventional ANNs that could be attributed to
the noisy training of the tandem learning framework, wherein
error gradients of the SNN layers are approximated from the
coupled ANN layers.

The neural encoding scheme adopted in this work allows input
features to be encoded inside a short encoding time window
for rapid processing by SNNs. It is attractive for the time-
synchronous ASR tasks that require real-time performance. The
preliminary study of the energy efficiency on the TIMIT corpus
reveals attractive energy and chip area savings, as compared to
the equivalent ANNs, can be achieved when deploying the offline
trained SNNs onto neuromorphic chips. The recent study of a
keyword spotting task on the Loihi neuromorphic research chip
(Blouw et al., 2019) has also demonstrated the compelling energy
savings, real-time performance and good scalability of emerging
NC architectures over conventional low-power AI chips designed
for ANNs.

5.2. Development of SNN-Based ASR
Systems
The active development of open-source software toolkits plays
a significant role in the rapid progress of ASR research,
instances include the Kaldi (Povey et al., 2011) and ESPnet
(Watanabe et al., 2018). In this work, we demonstrate that
state-of-the-art SNN acoustic models can be easily developed

in PyTorch and integrated into the PyTorch-Kaldi Speech
Recognition Toolkit (Ravanelli et al., 2019). This software toolkit
integrates the efficiency of Kaldi and the flexibility of PyTorch,
therefore, it can support the rapid development of SNN-based
ASR systems.

5.3. Future Directions
The recurrent neural networks have shown great modeling
capability for temporal signals by exploring long temporal
context information in the input signals (Graves and Jaitly, 2014).
As future work, we will explore the recurrent networks of spiking
neurons for large-vocabulary ASR tasks to further improve the
recognition performance.

The substantial research efforts are devoted to reducing the
computational cost and memory footprint of ANNs during
inference, instances include network compression (Han et al.,
2015), network quantization (Courbariaux et al., 2016; Zhou
et al., 2016) and knowledge distillation (Hinton et al., 2015).
While the computational paradigm underlying the efficient
biological neural networks is fundamentally different from
ANNs and hence fosters enormous potentials for neuromorphic
computing architectures. Furthermore, grounded on the same
connectionism principle, the information of both ANN and
SNN are encoded in the network connectivity and connection
strength. Therefore, SNN can also take benefits from these early
research works on the network compression and quantization of
ANNs to further reduce its memory footprint and computation
cost (Deng et al., 2019).

The event-driven silicon cochlea audio sensors (Liu et al.,
2014) are designed to mimic the functional mechanism of
human cochlea and transform input audio signals into spiking
events. Given temporally sparse information is transmitted in
the surrounding environment, these sensors have shown greater
coding efficiency than conventional microphone sensors (Liu
et al., 2019). There are some interesting preliminary ASR studies
explore the input spiking events captured by these silicon
cochlea sensors (Acharya et al., 2018; Anumula et al., 2018).
Additionally, Dominguez-Morales et al. (2018) have proposed
a fully SNN-based framework for voice commands recognition,
wherein the event-driven silicon cochlea audio sensor is directly
interfaced with the SpiNNaker neuromorphic processor through
the Address-Event Representation protocol (AER). Notably, a
buffering layer is introduced to ensure real-time performance.
However, the scale of the ASR tasks explored in these studies is
relatively small comparing to modern ASR benchmarks due to
the limited availability of event-based ASR corpora. Pan et al.
(2020) recently proposed an efficient and perceptually motivated
auditory neural encoding scheme to encode the large-scale ASR
corpora collected by microphone sensors into spiking events.
With this encoding scheme, approximately 50% spiking events
can be reduced with negligible interference to the perceptual
quality of inputs audio signals. Taking benefits from these
earlier research on the neuromorphic auditory front-end, we are
expecting to further improve the energy efficiency of SNN-based
ASR systems.

The promising initial results demonstrated by the SNN-
based large vocabulary ASR systems in this work is the
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first step toward a myriad opportunities for the integration
of state-of-the-art ASR engines into mobile and embedded
devices with power restrictions. In the long run, the SNN-
based ASR systems are expected to take benefits from ever-
growing research on novel neuromoprhic auditory front-end,
SNN architectures, neuromorphic computing architectures and
ultra-low-power non-volatile memory devices to further improve
the computing performance.
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Numerous experimental studies suggest that noise is inherent in the human brain.

However, the functional importance of noise remains unknown. n particular, from a

computational perspective, such stochasticity is potentially harmful to brain function.

In machine learning, a large number of saddle points are surrounded by high error

plateaus and give the illusion of the existence of local minimum. As a result, being

trapped in the saddle points can dramatically impair learning and adding noise will attack

such saddle point problems in high-dimensional optimization, especially under the strict

saddle condition. Motivated by these arguments, we propose one biologically plausible

noise structure and demonstrate that noise can efficiently improve the optimization

performance of spiking neural networks based on stochastic gradient descent. The strict

saddle condition for synaptic plasticity is deduced, and under such conditions, noise

can help optimization escape from saddle points on high dimensional domains. The

theoretical results explain the stochasticity of synapses and guide us on how to make use

of noise. In addition, we provide biological interpretations of proposed noise structures

from two points: one based on the free energy principle in neuroscience and another

based on observations of in vivo experiments. Our simulation results manifest that in

the learning and test phase, the accuracy of synaptic sampling with noise is almost 20%

higher than that without noise for synthesis dataset, and the gain in accuracy with/without

noise is at least 10% for the MNIST and CIFAR-10 dataset. Our study provides a new

learning framework for the brain and sheds new light on deep noisy spiking neural

networks.

Keywords: noise, strict saddle, synaptic sampling, synaptic plasticity, free energy

1. INTRODUCTION

It has been observed that noise permeates everywhere in the nervous system and affects all aspects
of brain function (Mori and Kai, 2002; Fellous et al., 2004; Faisal et al., 2008). On the other hand,
it has been proposed that action, perception, and learning in the brain such as attention, memory,
neural coding, and evolution, can be understood as an optimization process (Friston, 2010). Both
noise and optimization are prevalent in the nervous system. So, is there a close relationship between
the two?What precisely is the nature of noise that helps the brain compute optimally? In this paper,
we argue that typically the answer is YES.
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In recent years, many studies have provided insight into
which noise structures are present, and how noise affects the
structure and function of the nervous system. As far as we
know, there are mainly three noise models in stochastic neural
circuit computations. The first model is based on the leaky
integrate-and-fire (LIF) model. Although LIF models have been
extensively applied in biological spiking neural networks, they are
still deterministic. Some researchers add a Brownian noise on the
potential of IF neurons for better agreement with experimental
observations (Soula et al., 2004; Burkitt, 2006; Cessac, 2010,
2011). Brownian noise helps them characterize generic behaviors
by exploring a large number of parameters. However, these
researchers did not further study other benefits of noise. The
second model is based on the mean-filed theory. The mean filed
of one neuron represents its effect on the whole neural network.
They add noise in the neuron’s behavior by assuming a neuron
has an instantaneous firing probability in any time step (Galves
and Löcherbach, 2013, 2016; Larremore et al., 2014; Duarte et al.,
2015). This firing probability PF(V) is a function of membrane
potential V . The mean field depends on the synaptic weights
and firing probabilities PF(V) from interconnected neurons.
Therefore, they simplify the analysis and simulation of noisy
spiking neural networks in the mean-field calculation. However,
this model groups all sources of noise into a single firing function
and is therefore agnostic about the origin of noise. As a result,
it is difficult to decompose explicit noise terms from the model,
which is a bad thing for the mathematical analysis of noise.
The third model is based on sampling. General results from
statistical learning theory suggest that both brain computations
and brain plasticity should be understood as probabilistic
inference (Knill and Pouget, 2004; Pouget et al., 2013). These
results have provided insight into how noise plays an essential
role in the networks of spiking neurons. Based on Boltzmann
machines, Maass (2014) propose that knowledge can be stored
in probabilistic distributions of network states, and noise enables
networks of spiking neurons to carry out probabilistic inference
through MCMC sampling. The sample of this model is the
state of neurons and the noise results from the ion channels of
excitable membranes. Based on Langevin sampling, Kappel et al.
(2015, 2018) analyzed continuously ongoing synapse dynamics
and noise endows networks to compensate for internal and
external changes automatically in the local plasticitymechanisms.
The sample of this model is the state of synapses, and the noise
results from the synaptic transmission. In the work by Kappel
et al. (2018) in particular, they discuss the impact of different
temperatures on learning performance, where the strength of
stochasticity can be scaled by the temperature. Results show that
good performance was achieved for a range of temperature values
and temperatures that were too low (such as without noise) or
too high impaired learning. They provide a short explanation
through the perspective of an analogy of simulated annealing.
However, they did not provide a rigorous theoretical analysis
for the noise mechanism. In conclusion, although researchers
using the sampling model have claimed that the benefit of
noise is a functional part of sampling, to perform probabilistic
inference, they do not provide a detailed mathematical analysis
of noise and do not study which noise structure is involved,

or how it enhances the computation power of spiking
neural networks.

In summary, in theoretical neuroscience research, the extent
to which noise is biologically present and how noise improves
computation performance in the brain has rarely been addressed.
Based on the synaptic sampling model (Kappel et al., 2015),
we give a detailed mathematical analysis of noise in spiking
neural networks and try to explain why our brain benefits
from noise. Here, we can generally assume that noise type is
fluctuations in synaptic transmission because the proposed noise
has an important role in synaptic plasticity. There are many
sources of noise in synaptic transmission, such as stochastic
molecular diffusion (Holcman et al., 2005), short-term plasticity
(Abbott and Regehr, 2004), and synaptic neurotransmitter release
(Branco and Staras, 2009). Therefore, we make no assumptions
about the concrete sources of noise. Next, we will sketch the noise
mechanism and try to bridge the gap between neuromorphic
computing and machine learning.

According to the free-energy principle in neuroscience, we
propose a biologically plausible noise structure and prove that
such noise helps optimization escape from bad saddle points in
the brain computation and brain plasticity. First, we propose that
one of the essential roles of noise is to improve optimization
and prove that the noise mechanisms of improving optimization
satisfy the strict-saddle condition of spiking neural networks.
The main bottleneck in optimization is that gradient updates
are trapped in exponentially more saddle points instead of local
minima (Fyodorov and Williams, 2007; Dauphin et al., 2014).
Under the so-called strict saddle property, gradient descent
with noise will escape from bad saddle points and lead to
efficient optimization (Ge et al., 2015). The importance of adding
perturbations for efficient non-convex optimization has been
justified in many machine applications, including deep learning
(Du et al., 2017; Jin et al., 2017). We prove that such noises
make spiking neural networks satisfy strict saddle properties
by changing the curvature of the landscape in the network
parameter space, especially in the area near the saddle points.
In other words, noise helps spiking neural networks build
appropriate Hessian constructions, and optimization can utilize
enriched curvature information of the node in the direction
without ever calculating or storing the Hessian itself. Second,
the proposed noise in the brain theoretically minimizes the free
energy of noise signals. In neuroscience, any self-organizing
system at equilibrium must minimize its free-energy to resist
disorder (Friston, 2010; Joffily and Coricelli, 2013; Apps and
Tsakiris, 2014; Colombo andWright, 2018). Since free energy can
be expressed by long-term average self-information of sensory
signals, such as mean square error, we prove that such a
particular form of noise comes from minimum mean square
error estimation. Third, such noise satisfies the fundamental
biological characteristic. It is popular to use Brownian motion
to describe continuous random fluctuations in spiking activities
(Tuckwell, 1988; Cateau and Fukai, 2003; Câteau and Reyes,
2006; Nobuaki et al., 2009). Compared with traditional Brownian
motion, the difference is that the standard deviation of our noise
has a positive correlation with dendritic spine size. Moreover,
it has been observed that larger spines show the most diverse

Frontiers in Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 34355

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Noise Improves Optimization in the Synaptic Plasticity

FIGURE 1 | The non-strict saddle point (A) and the strict saddle point (B).

changes in CA1 pyramidal neurons (Nobuaki et al., 2009). Our
noise has a greater standard deviation for larger spines and is
hence biologically plausible. Finally, our noisy spiking neural
network can also be extended to multi-layer neural networks
and obtains better performance. It is generally believed that deep
neural networks can learn more complex representations and
has shown remarkable success in diverse fields (LeCun et al.,
2015). As an example, we realize three-layer noisy spiking neural
networks based on gradient back-propagation, which provides a
possibility for the realization of large-scale deep networks.

This paper is organized as follows. In section 2, we introduce
some complex concepts, such as synaptic sampling and the
saddle point problem in non-convex optimization. In section
3, we demonstrate how noise helps optimization escape from
saddle points in the neural dynamics and give a proof of
sketch on the “strict saddle” condition for synaptic sampling.
In section 4, we will explain why the proposed noise structure
is biologically plausible from two points: origin from the free-
energy principle in neuroscience and consistency with biological
observation. In section 5, we derive the learning rule for
multi-layer spiking neural networks based on gradient back-
propagation for better learning abilities. In section 6, numerical
simulations are presented and analyzed. In section 7, we highlight
the main contributions of this work and discuss some related
open problems. Detailed theorem derivations are deferred to
in Appendices 1, 2, 3 (Supplementary Presentation 1).

2. PRELIMINARIES

2.1. Spiking Neural Networks and Hebb
Rule
Spiking neural networks (SNNs) is one of the brain-inspired
computing models. Its spike-based coding tends to represent
more complex information due to spatio-temporal dynamics. In
addition, its computation occurs only when the unit in networks
receives a spike signal. Such event-driven property is consistent
with emerging neuromorphic hardware. Therefore, SNNs have
great potential for energy-efficient processing on neuromorphic
hardware (Deneve, 2008; Merolla et al., 2014).

In experimental neuroscience, changes of synaptic strength
are called synaptic plasticity. The Hebb rule describes how
the strength between pre- and postsynaptic neurons should be

modified in synaptic plasticity. It is informally summarized as
“Cells that fire together, wire together.” Spike-timing-dependent
plasticity (STDP) is one of the Hebbian learning methods.
The strength and direction of learning depends on the timing
difference between pre- and postsynaptic spikes (Bi and Poo,
1998; Gerstner and Kistler, 2002; Sjöström et al., 2002).

2.2. Synaptic Sampling
Network plasticity by maximum likelihood has been studied
in many ways. The inputs x impinge on the network from
its environment. By maximizing the likelihood of the inputs,
the network parameters θ are adjusted to encode the input
information. That is to say, maximizing the likelihood, is to fit
the resulting internal model to the inputs as best as possible.
However, the model tends to produce overfitting, thereby
reducing generalization capabilities. Furthermore, without any
prior distribution, it responds slowly to perturbations. The
solution to such a challenge is how the posterior distribution
of weights can be represented and learned in neural dynamics.
Based on stochastic differential equations, Kappel et al. (2015)
solve this challenge by sampling from posterior distribution
pN(θ |x). This model defined by Equation (1) is referred to as
synaptic sampling. Furthermore, they only understand noise as a
functional aspect of learning because it helps the network sample
from posterior distributions. However, when this model is used
for classification with a standard Gaussian noise, it is difficult
to find a reasonable minimum due to the saddle point problem,
which will be introduced next.

dθki = b

(

∂ log pS(θ)

∂θki
+

∂ log pN(x|θ)

∂θki

)

dt + bdWki (1)

2.3. Saddle Point Problem
Critical points (i.e., minima, maxima, saddle points) are often
surrounded by error plateaus of small curvatures, and hence are
attractive for the gradient-based learning process. However, as
gradient-based algorithms only depend on gradient information,
they often mistake saddle points for local minima or maxima.
Moreover, it is generally believed that a high-dimensional
error functions are likely to have saddle points rather than
local minima because the number of saddle points dominate
over local minimum exponentially with increasing dimensions
(Fyodorov and Williams, 2007; Dauphin et al., 2014). Therefore,
gradient-based algorithms are particularly sensitive to saddle
point problems.

Recently, Ge et al. (2015) identified a “strict saddle” condition,
which guarantees that stochastic gradient descent can escape
from the saddle points quickly (see Theorem 6 in work Ge
et al., 2015). Note that a twice differentiable function f (θ) is a
strict saddle, if all its local maxima have ∇

2f (θ) < 0 and all
its other stationary points satisfy λmax(∇

2f (θ)) > 0. Note that
λmax defines the maximum eigenvalue. In fact, the “strict saddle”
condition guarantees that there will be at least one descent
direction in the small neighborhood of saddle points, not a plain
area. For example, Figure 1A shows one non-strict saddle point.
The area around it is plain and it would be very tough for
optimization to escape from such a bottleneck even with noise.

Frontiers in Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 34356

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Noise Improves Optimization in the Synaptic Plasticity

FIGURE 2 | Architecture of the networks whose dynamics are modeled by Equation (3).

TABLE 1 | Definitions of the main mathematical symbols used in this paper.

xn Vector of the nth input variables
{

xn1, ..., x
n
I

}

yn Vector of the nth hidden variables
{

yn1 , ..., y
n
J

}

zn Vector of the nth output variables
{

zn1, ..., z
n
K

}

hn Vector of the label
{

hn1, ..., h
n
K

}

w Vector of all synaptic weights wki = e(θki−θ0 ) from input neuron i to

network neuron k

θ Vector of all synaptic parameters {θki , k ≤ K, i ≤ I}

pS (θ) Structural constraints following N (µ, σ 2)

pN (J|θ ) Likelihood function with the form of cross-entropy

logpN (J|θ ) =
∑N

n=1

∑K
k=1 2{hnk } logp

(

znk |x
n, θ

)

pN (xn|θ) Poissonian distributions of spikes parameterized by αewki

dWki Stochastic time course of the parameter θki

2
(

hnk
)

Heaviside step function

Sk (t) The spike train of the neuron zk

Figure 1B shows one strict saddle point. There are at least one
descent direction and it will take little time to escape with noise.
Based on the above theory, we propose a sufficient condition that
noise should satisfy and argue that noise plays a critical role in
the brain optimization process.

3. “STRICT SADDLE” CONDITION FOR
SYNAPTIC SAMPLING

In this section, we will take synaptic sampling neural networks as
an example and demonstrate how noise improves optimization
in neural dynamics. We study the effect of noise on the synaptic
sampling defined in Equation (1) for classification. As Figure 2
shows, in the spike-based Winner-Take-All (WTA) circuit, input

neurons tune nth stimulus to 200-ms long spiking activities xn

according to tuning curves. Given the nth stimulus, the input
xi(t) is expressed by the summation of excitatory postsynaptic
potentials (EPSPs) on neurons i in Equation (2).

xi (t) = 6f ǫ(t − t
(f )
i ) (2)

where t
(f )
i denotes the spike times of input neuron i and ǫ

is the response kernel for spike input, i.e., the shape of the
EPSP (Kappel et al., 2015). The corresponding instantaneous
firing rate ρk(t) of neurons k depend exponentially on the
membrane potential uk(t). In this case, neural networks output
a 200-ms spiking pattern zn and the neuron which spikes most
indicates the possible label. Synaptic sampling is then applied
to KxI synapses. The learning goal in Equation (1) becomes the
posterior distribution p∗(θ |J)defined by pS(θ) ∗ pN(J|θ). pN(J|θ)
measures the degree of network fitting to the classification. The
detailed definition is shown in Table 1. The synaptic sampling
rule (Equation 1) yields for this model.

dθki = b

(

1

σ 2
(µ − θki) +

N
∑

n=1

wki

(

xni − αewki
)

(

2
{

hnk
}

−Sk (t)
)

)

dt + bdWki (3)

In Equation (3), the component
(

xni − αewki
) (

2
{

hn
k

}

− Sk (t)
)

of likelihood differential term is a simplified version of STDP
(spike timing-dependent plasticity) (Habenschuss et al., 2013;
Nessler et al., 2013). Biological studies on STDP show that
the timing difference between pre- and post-synaptic spikes
decide the strength and direction of learning (Bi and Poo, 1998;
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Sjöström et al., 2002). When a presynaptic spike comes before
a postsynaptic spike, xi is large and the term

(

xni − αewki
)

is
positive at the time of the postsynaptic spike. Therefore, the
term

(

xni − αewki
)

leads to potentiation. When a presynaptic
spike comes after a postsynaptic spike, wki is large and the
term

(

xni − αewki
)

is negative at the time of the postsynaptic
spike. Therefore, the term

(

xni − αewki
)

leads to depression. In
addition, the intensity of potentiation is inversely correlated
with synaptic weights. It is consistent with experimental STDP
studies (Habenschuss et al., 2013; Nessler et al., 2013).

We show that when the noise takes a certain form, synaptic
sampling networks for classification satisfy the “strict saddle”
condition and leads to efficient optimization. Note that if the
noise is just standard normal distribution, which is a popular
choice for stochastic differential equations, networks will not
satisfy such property.

Theorem 1 (sufficient condition). Given the nth input sample
Xn, output Sn = g(Xn,W) is a firing rate vector in the synaptic
sampling networks and W represents adjustable parameters with
internal noise dW . In the classification setting, the output Sn

can be interpreted as the scores or probabilities of each class,
or as the recognized class label of input sample Xn. A loss
function φ(Hn, g(Xn,W)) measures the discrepancy between the
desired output for input Xn, and the output Sn = g(Xn,W)
computed by the networks. One objective function f (W) =

E(φ(H, g(X,W))) is average loss function φ(Hn, g(Xn,W)) over
a set of labeled examples {(X1,H1), . . . (XN ,HN)}. The supervised
learning problem is to find the local minimum W of objective
function f (W). if the internal noise dW satisfies Equation (4),
function f is strict saddle.

dW= N (0,Nαew)dt (4)

Proof sketch of Theorem. There are mainly two difficulties in
the proof of Theorem 1: how to transfer noise distribution to
the computable function and how to prove λmax

(

∇
2f (θ)

)

>

0 according to the definition of strict saddle condition
in section 2. For the first difficulty, due to the Gauss

property p {|x− µ| < σ } = 0.6826 and
wkie

wki
√

ewki
|
wki→0

=

0, ±Nαwkie
wki represents the general characteristic of noise

distribution appropriately. Therefore, it is plausible to refer to
(
∑

n αwkie
wki
(

Sk (t) − 2{hn
k
}
)

)dt as the noise distribution dWki

in the computation. For the second difficulty, according to the
definition of strict saddle condition in section 2, the sufficient
condition of strict saddle property is λmax

(

∇
2f (θ)

)

> 0.
However, it is difficult to compute λmax directly. In fact, it is
convenient to compute a stronger condition, i.e.,

∑

λ(∇2f (θ)) >

0. According to the equation about trace of n × n matrix A:
tr(A) = λ1 + . . . + λn, we just concentrate on the diagonal
elements of the Hessian matrix. For computational convenience,
we convert the derivative of θ to w according to the chain rule.
We get that ∇f (θ) = 0 ⇔ ∇f (w) = 0 and

∑

k

∑

i ∇f (θki) ≥

0 ⇔
∑

k

∑

i(∇f (wki))w
2
ki
≥ 0. According to the equation about

trace of matrix M: tr(M) =
∑

λ, we get,

∑

λ
(

∇
2f (θ)

)

=

∑

k

∑

i

∇
2f (θki) (5)

= −
KI

σ 2
+

∑

k

∑

i

1

σ 2
(θki − µ)

+

∑

n

∑

k

∑

i

wkiαe
wki (Sk(t)− 2{hnk})

It is obvious that
∑

λ
(

∇
2f (θ)

)

consists of three terms: A =

−
KI
σ 2 , B =

∑

k

∑

i
1
σ 2 (θki − µ), C =

∑

n

∑

k

∑

i wkiαe
wki (Sk(t)−

2{hn
k
}). We need to prove the following equality.

∑

λ
(

∇
2f (θ)

)

= A+ B+ C > 0 (6)

The proof is divided into three steps. Note that the first sentence
of each step below is the conclusion we want to prove.

1) B ≪ C. Only when the noise dWi= N (0,Nαewki )dt, we can
derive that B +

(

xni − αewki
)

C is a variant of the gradient.

According to the zero gradient and STDP learning rule, B
C ≈

0, thereby B can be ignored.
2) C is positive. C ≈ N(

∑

i wkixi −
∑

i wlabel,ixi) which
represents the approximate potential difference of actual and
expected neurons. When networks are trapped in saddle
points, the neuron that releases spikes is not the one expected.
Thus, the potential of actual neurons is higher than expected.

3) A + B + C > 0. A is a negative constant. When N is greater
than a certain value, C is large enough so that A+ B+ C > 0
and the strict saddle property will be satisfied.

The theorem is therefore proven. That is to say, Theorem
1 guarantees noisy synaptic sampling networks satisfy the
strict saddle condition, and hence noise will help escape
from saddle points in Theorem 6 of the work (Ge et al.,
2015). The detailed derivation appears in Appendix 1

(Supplementary Presentation 1) . It is worth noting that
we found that the important step C represents the positive
potential difference of actual and expected neurons, and thus
the strict saddle condition can be satisfied as long as C is large
enough. The realization of such an important step comes from
introducing parameters ±Nαwkie

wki by proposed noise. In other
words, noise helps spiking neural networks build appropriate
Hessian construction, and optimization can utilize enriched
curvature information of the node in the direction without ever
calculating or storing the Hessian itself.

4. BIOLOGICALLY INTERPRETATION FOR
PROPOSED NOISE

4.1. Origin From the Free-Energy Principle
in Neuroscience
The proposed noise structure is inspired by the free-energy
principle. It is generally believed in neuroscience that any
adaptive system at equilibrium with its environment must
minimize its free energy (Friston, 2010; Joffily and Coricelli,
2013; Apps and Tsakiris, 2014; Colombo andWright, 2018). Free
energy can be expressed as self-information plus a Kullback–
Leibler divergence term in Equation (7), where s̃ is a sensation
signal (Friston, 2010).

F = D(q(ϑ |µ)|
∣

∣p (ϑ |̃s)
)

− lnp(̃s|m) (7)

Frontiers in Neuroscience | www.frontiersin.org 5 April 2020 | Volume 14 | Article 34358

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Noise Improves Optimization in the Synaptic Plasticity

Given the noise signals ε̃, the Kullback–Leibler divergence is
the perceptual difference between the recognition density q(ϑ |µ)
encoded by internal states µ and the posterior density p (ϑ |̃ε)

of the causes ϑ . Self-information measures the error between
the true and expected sensation. It is formally the negative log-
probability of a noise outcome ε̃ given the generative model m,
that is, −lnp(̃ε|m). Equivalently, it is also expressed as the long-
term average of the square error between the true and expected
sensation. The divergence is always non-negative, and free energy
is tightly bounded by surprise.

A number of cognition and perception studies show that
brain system implicitly infers the cause (network parameters
ϑ) in a Bayesian fashion (Ernst and Banks, 2002; Yuille and
Kersten, 2006; Beck et al., 2008), the recognition density q(ϑ |µ)
approximates the posterior density p (ϑ |̃ε). That is to say,
Kullback–Leibler divergence approximates zero and free energy
becomes surprise. Therefore, minimizing the free energy is also
a process to minimize the error E (ε − ε̃)2 between the true and
expected noise outcome ε̃. Thereby, we obtain the optimal noise
distribution as shown in Theorem 2.

Theorem 2 (free energy principle). Suppose that a function
g(X) : R

I
→ R

K is a spiked-based winner-take-all neural
network, given the output variable zn = k, the value of input
xni is from a Poisson distribution POISSON(xni |αe

wki ) where the
mean is determined by the synaptic weight wki from input neuron
i to network neuron k. If there is a noise distribution p (ε|θ) in
Equation (8), such a self-organizing system can minimize its free
energy of noise signals. Further, the optimal noise ε̂ is obtained by
the minimum mean square-error estimation E(ε|̂θ).

ε|θ∼ N
(

0,Nαewki
)

(8)

The important step is to obtain the probability distribution
p (ε|θ). By inducing input variables x, the unknown distribution
p (ε|θ) will become the integration of easy distributions p (ε|x)
and p (x|θ) in Equation (9). p (x|θ) is the normal distribution
where both the mean and variance are Nαewki . It has been shown
in the work by Habenschuss et al. (2013) and Kappel et al.
(2015) that in the spiked-based WTA networks, one prominent
motif of cortical microcircuits, p (x|θ) is the integration of N
Poisson distribution with themean αewki , which can approximate
normal distribution. The detailed proof appears in Appendix 2

(Supplementary Presentation 1) .

p (ε|θ) =

∫

p (ε|x) p (x|θ)dx (9)

In this section, we illustrate three points. First, the free energy
principle helps verify the plausibility of the proposed noise.
It is popular to use Brownian motion to describe continuous
random fluctuations in spiking activities. In contrast, the
standard deviation of our noise is Nαew while it is constant
in traditional Brownian noise, which is an important difference
to other similar noise models. According to free energy, only
this type of noise, i.e., N (0,Nαew) can be derived rather than
standard Brownian noise or other forms. Therefore, it is strong
evidence for the plausibility of the proposed noise theoretically.
Second, the free energy principle improves biological relevance

of our noise. In neuroscience, the free energy principle unifies
different aspects of how the brain works, such as attention,
synaptic plasticity, and neuronal coding. Satisfying the free
energy principle complements evidence of the neurobiological
existence of our proposed noise. Third, the origin of our
proposed noise should be illustrated, and why we choose such
type of noise, and not other types of Brownian noise in the strict-
saddle condition, is answered. In fact, we derived the proposed
noise initially inspired by the free energy principle. We then
found that such noise helps spiking neural networks satisfy the
strict-saddle condition.

4.2. Consistency With Biological
Observations
Many biological and biochemical stochastic processes affect the
efficacy of a synaptic connection. Some are indirectly related,
for example, NMDA receptors, PSD-95 in the mammalian
postsynaptic density (PSD), which can affect the amplitude of
postsynaptic potentials and the efficiency on clustering glutamate
receptors (Bhalla and Iyengar, 1999; Gray et al., 2006; Coba et al.,
2009; Ribrault et al., 2011). Some are directly related, such as
the volume of spines at dendrites (Engert and Bonhoeffer, 1999;
Matsuzaki et al., 2001; Zhong et al., 2005; Ho et al., 2011). It is
popular to use Brownian motion W(t) to describe such random
continuous fluctuations (Tuckwell, 1988; Cateau and Fukai, 2003;
Câteau and Reyes, 2006; Nobuaki et al., 2009). Brownian motion
W(t) is utilized in the Langevin equation as Equation (10) shown,

dV(t)

dt
= σ (V (t))

dW(t) (t)

dt
+ µ(V(t)) (10)

whereV(t) represents a stochastic process with an average change
(or drift) µ(V), and standard deviation σ (V), W(t) represents
standard Brownian motion. Nobuaki et al. (2009) applied such a
stochastic process in Equation (10) to the volume of spines V(t).
They recorded the volumes of many individual spines of CA1
pyramidal neurons in a rat hippocampus. They found “intrinsic
volume fluctuations” in the absence of synaptic activity. Figure 3
shows the corresponding quantitative analysis of fluctuations
in spine-head volume in the absence of activity-dependent
plasticity. It shows that average change µ (V) of intrinsic volume
fluctuations is zero, and the standard deviation σ (V) is roughly
proportional to the spine-head volume. It is likely because larger
spines have a greater PSD area. Therefore, it will accumulate
more AMPA-type glutamate receptors andmore synaptic vesicles
in the presynaptic terminal (Harris and Stevens, 1989; Nusser
et al., 1998; Takumi et al., 1999; Harris et al., 2003; Knott et al.,
2006). In our noise structure N (0,Nαew), σ is also greater for
larger spines. It is consistent with this important observation of
spine dynamics, and further, it may be a more plausible model to
describe intrinsic fluctuations.

5. EXTENSION TO MULTI-LAYER NOISY
SPIKING NEURAL NETWORKS

In this section, we will demonstrate one computational
application of our noise model: realization of multi-layer spiking
neural network for better representations. These characteristics
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FIGURE 3 | Quantitative analysis of noise from the proposed theory and physiological experiments in the absence of synaptic activity. (A) Standard deviation (σ ) of

proposed theoretical noise N
(

0,Nαewki
)

. When synaptic weight changes are relatively small, the standard deviation is roughly proportional to synaptic weights. (B,C)

Standard deviation (σ ) and mean (µ) of fluctuations in spine-head volume in the absence of activity-dependent plasticity in physiological experiments. Standard

deviation (σ ) is greater for larger spines. Further, (σ ) has an approximately proportional relationship with spine-head volume. The mean change (µ) is around zero,

which is consistent with that of our noise (cited in Figure 5 of the paper Nobuaki et al., 2009).

FIGURE 4 | Three-layer neural networks diagram.

will shed new light on machine learning. It is generally believed
that deep neural networks can learn representations better than
the two-layer network and are more extensively applied in
various scenarios (LeCun et al., 2015). It is therefore significant
to generalize the depth of noisy spiking neural networks. As an
example, we derive a back-propagation algorithm for synaptic
sampling on the three-layer network in Figure 4. The derivation
for deeper networks is similar.

The prior probability remains the same, which reflects the
structural constraints and rules. The likelihood function is still
the form of cross-entropy, which reflects the class recognition
probabilities. The difference is the posterior probability

p
(

zn = k
∣

∣xn,w
)

becomes the product of Poisson distributions
of both the first and second layers. The likelihood function in
Table 1 becomes,

log pN (J|θ) =

N
∑

n=1

K
∑

k=1

2{hnk} logp
(

zn = k
∣

∣xn,w
)

=

N
∑

n=1

K
∑

k=1

2{hnk} log

∏

i

∑

j POISSON
(

xni
∣

∣αewji
)

POISSON(ynj |αe
wkj )

∑

k

∏

i

∑

j POISSON
(

xni
∣

∣αewji
)

POISSON(ynj |αe
wkj )

(11)

The main difficulty is how to get the gradient in the first layer.
According to the generalized delta rule, derivative results from
the product of two parts: one part represents the change in
likelihood function relative to the change of net inputs, and one
part reflects the change of net inputs relative to a small change of
weight. Thus, we get,

∂ log pN (J|θ)

∂wji
=

∂ log pN (J|θ)

∂yj

∂yj

∂wji
(12)

where yj is net inputs for the second layer. For the second factor,
as the firing rate of stochastic spike response neurons depends
exponentially on the membrane voltage (Jolivet et al., 2006;
Mensi, 2011), we derive that,

∂yj

∂wji
≈ xi (13)

For the first factor, it can be implemented by propagating gradient
information backward through the last layer. According to the
chain rule, it can also be written as the product of two parts, as
shown in (Equation 14).

∂ log pN (J|θ)

∂yj
=

∑

k

∂ logpN (J|θ)

∂wkj

∂wkj

∂yj
(14)
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One part is the gradient of the last layer, and another part is
simply the deviation of mean function E(yj) determined by the
synaptic weight wkj from input neuron j to neuron k. In this case,
substituting Equations (13) and (14) to Equation (12), we finally
get the gradient information of the first layer.

Given the L-layer noisy spiking neural networks, each layer
computes a function Xl

= gl(X
l−1,W l), where Xl is the output

of the lth layer, Xl−1is the input of the lth layer and W l is
the vector of adjustable parameters between the (l − 1)th and
the lth layer. Note the vector X1 in the first layer is the input
sample. The learning rule for L-layer spiking neural networks
can be concluded as follow. The detailed derivation appears in
Appendix 3 (Supplementary Presentation 1) .

dθLkj = b

(

1

σ 2

(

µ − θLkj

)

+

N
∑

n=1

(wL
kj

(

xn,L−1
j − αe

wL
kj

) (

2{hnk}

−SLk (t)
)

)

dt + bdWL
kj (15)

dθ l−1
ji = βα

N
∑

n=1

xn,l−1
i

(

dθ lkj + dθ lmj

)

(2 ≤ l ≤ L) (16)

where dθ l
kj
represents change in parameters corresponding to the

neuron k which releases a spike and dθ lmj represents change in

parameters corresponding to the desired neuronm.

6. SIMULATION RESULTS

We run simulations for synaptic sampling with/without
noise applied to 10-categories of classification. We
test the proposed model on three datasets from
three aspects: (1) application accuracy; (2) neuron
spike responses; (3) reduction rates for trapping in
saddle points.

6.1. Sensory Environment
6.1.1. Synthesis Dataset

We use a cluster of points in 3D space to represent one
sensory experience for visualization. The center of a cluster
is the mean of the Gaussian, which is independently
drawn from N (0.5, 0.2). The covariance matrix of the
cluster is randomly given by 0.04I + 0.01ξ , where I is
the 3-dimensional identity matrix and the element of ξ

is randomly drawn from N (0, 1). Figure 5A shows some
clusters of points in 3D space. Each cluster represents one
class. Different cluster are described by different color.
Figure 5B shows three-dimensional coordinates. For 10-
categories classification, 10 clusters will be generated
equally. We generate a sample by randomly selecting one
Gaussian cluster and then get a sample position from the
corresponding distribution.

FIGURE 5 | Illustration of sensory information tuning to network inputs. (A,B) Examples of 3D points from the Synthesis dataset. Different classes of sensory

information are represented by different clusters of 3D points, each illustrated by different colors. Three coordinate values of one 3D point are shown in (B). They will

be tuned by the input neurons. (C,D) Examples of digits from MNIST dataset. Handwritten digit is a 28 × 28 pixel image with the gray value. Seven hundred and

eighty-four pixel values of one image are shown in (D). (E,F) Examples of images from CIFAR-10 dataset. Each image is a 32 × 32 color image in the RGB format.

3,072 pixel values of one image are shown in (F). (G) Firing rates of input neurons after tuning the normalized sensory information. Firing rates are distributed almost

uniformly in spite of different sensory representations in (B,D,F). (H) Spike trains of some of the input neurons. Given each example, firing rates are kept fixed and

Poisson spike trains are drawn for the 200-ms duration of the input presentation.
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6.1.2. MNIST Dataset

It composes of 10 handwritten Arabic numbers from 0 to 9, which
has a training set of 60,000 examples, and a test set of 10,000
examples. It is a good compromise between real-world data test
and easy preprocessing and formatting. Each example is a 28 ×

28 pixel image with the gray-scale value. In preprocessing the
pixel values are normalized to interval [0, 1]. Images in Figure 5C
are drawn from MNIST dataset. Figure 5D shows the 784 pixel
values of one 28× 28 grayscale image.

6.1.3. CIFAR-10 Dataset

It consists of 60,000 color images in 10 classes, which has
a training set of 50,000 examples, and a test set of 10,000
examples. The 10 classes are completely mutually exclusive, such
as airplane, bird, and cat. Each example is a 32× 32 color image in
the RGB format. In preprocessing the pixel values are normalized
to interval [0, 1]. In Figure 5F, it consists of three similar parts
due to RGB format.

6.1.4. Network Inputs

Both the sample positions in the Synthesis dataset and real-world
images from the MNIST or CIFAR-10 dataset are represented
by the spatiotemporal spike trains. For the Synthesis dataset, the
input layer is 1,000 neurons for one 3D point while for real-world
datasets, each pixel of one image is represented by a single input
neuron. Input neurons have different Gaussian tuning curves.
According to tuning curves, they tune the sample position or
normalized pixel values to corresponding firing rates. In addition,
the 5 Hz background noise is added. Although raw sensory values
of three datasets are differently distributed in Figures 5B,D,F,
corresponding firing rates are scattered over almost the entire
probability space after tuning in Figure 5G. As a result, Poisson
spike trains of each input neuron are drawn with duration of 200
ms in Figure 5H.

6.1.5. Settings

In all simulations, we set N = 1, 000,α = e−6, and
b = 10−5 or b = 10−4. Initial synaptic parameters
are drawn from the prior distribution pS(θ). We adopt the
same configuration about the offset θ0 and actual weights ŵki

with Kappel et al. (2015)
The purpose of our paper is to propose one appropriate

computational hypothesis about whether biologically inherent
noise benefits neural systems and how it occurs precisely. To
test this hypothesis, we chose the biologically appropriate neural
model: synaptic sampling. On the one hand, the inherent noise
is described in variables in synaptic sampling and hence it
easy to capture the details of noise biophysics and dynamics.
The advantage of noise can be analyzed based on mathematical
tractability. On the other hand, synaptic sampling is a biologically
appropriate neural system since it simulates some aspects
of realistic neural systems, such as neuron topology, neuron
type (e.g., excitatory, inhibitory), and Spike Timing Dependent
Plasticity (STDP) learning rule, spatial and temporal effect of
spike signals. The goal of our paper has been achieved when
learning performance is better in the presence of noise than
in its absence in the synaptic sampling experiments. Although

it may perform better with further hand-tuning, it is beyond
the scope of this paper. As far as we know, we first realize
the supervised learning in the synaptic sampling networks.
Apart from the stochastic term, the parameter configuration in
synaptic sampling without noise is the same as that with noise.
Therefore, synaptic sampling without noise is representative of
the basic model.

6.2. Verification on the Two-Layer
Networks
Through the tuning curves of input neurons, 200 ms spike
patterns were communicated to synaptic sampling networks for
each sample. According to Equation (3) and spike-based update
scheme, the sensory experiences were presented sequentially, and
all synapses were updated sequentially. The final predicted label
is the neuron which fires most between the 10 output neurons.
We repeat the simulation 10 runs and the accuracy is averaged
over 10 runs. For the Synthesis dataset, we present 14,400 samples
to 1,000 input neurons for 2.4 h. For the MNIST dataset, we
present 60,000 samples to 784 input neurons. For the CIFAR-
10 dataset, we present 50,000 samples to 3,072 input neurons. As
shown in Figure 6, in the learning and test phase, the accuracy of
synaptic sampling is almost 20% higher than that without noise
for the Synthesis dataset. The gap of accuracy with/without noise
is around 15% for the CIFAR-10 dataset and around 10% for
the MNIST dataset. The accuracy of synaptic sampling without
noise in these datasets is, respectively around 80% (MNIST),
39% (CIFAR-10), 60% (Synthesis dataset). It shows the number
of bad saddle points in the spiking neural network is relatively
small given the MNIST dataset. Therefore, synaptic sampling
without noise also obtains satisfactory performance, and adding
noise obtains the least increase in accuracy compared to other
datasets. On the other hand, the CIFAR-10 dataset is the most
challenging among three datasets due to the larger scale and
more complex representation as shown in Figure 5. It indicates
that there will be a large number of bad saddle points making
it difficult to achieve a significantly better performance. As
a result, the accuracy is only improved from 40% (without
noise) to 55% (with noise). For the three datasets, we found
that synaptic sampling with/without noise tends to converge at
10,000th iteration. Although the speed of convergence in synaptic
sampling with/without noise is similar, synaptic sampling with
noise is faster than that without noise, especially in the CIFAR-
10 dataset. It is likely because spiking neural networks with noise
buildmore appropriate Hessian construction and utilize enriched
curvature information of the node in the direction. As shown
in Figures 6B,D,F, the standard deviation of synaptic sampling
with noise is slightly smaller in spite of additional fluctuations.
That is to say, the precision of the optimization performance
does not become worse with the effect of noise, which is different
from the general idea that noise will lose precision. In addition,
the accuracy in the test phase is similar to that in the learning
phase. It shows that noise prevents spiking neural networks from
overfitting in spite of increasing learning accuracy.

Figure 7 shows the spike trains of 10 readout neurons in
the time course of learning. The ordinate displays 10 readout
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FIGURE 6 | Performance of the two-layer networks with and without internal noise. (A) Learning curves of synaptic sampling with/without noise on the training set for

the Synthesis dataset. Mean values over 10 runs are shown, shaded area indicates STD. (B) Accuracy comparison in the learning and test phase for Synthesis

dataset (averaged over 10 runs). Error bars indicate STD. (C,D) In the MNIST dataset, the performance with internal noise maintains better than that without noise

throughout the whole learning course. (E,F) In the CIFAR-10 dataset, the performance with internal noise maintains better than that without noise throughout the

whole learning course.

neurons. The abscissa displays time. One point (t, x) represents
that at the time t, neuron x releases one spike. In Figures 7D,E, it
shows the 400-ms learning process from the 57,000th example to

the 57,020th example. The corresponding label is [6, 3, 1, 9, 5, 1, 8,
2, 4, 5, 8, 1, 9, 2, 7, 5, 1, 4, 2, 6]. In the learning process, spikes are
scattered almost equally among 10 readout neurons initially and
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FIGURE 7 | Spiking activity of the 10 output neurons in the two-layer networks with/without internal noise motifs. We present 20 samples during a 4 s epoch for one

of the 10 simulations. Ten output neurons in the WTA circuits represent the binary random variables in the supervised classification learning. (A) Firing responses of the

10 output neurons before learning. (B,C) Firing responses of the output neurons after learning with/without noise for Synthesis dataset. Sparsification of firing of

output neurons occurs obviously after learning with noise. (D,E) Same for MNIST dataset. The corresponding labels of 20 samples are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8, 1,

9, 2, 7, 5, 1, 4, 2, 6]. The network enters and remains in different network states (indicated by different positions of grouped spikes), corresponding to different

predicted class in the supervised learning. The tight match between labels and preference neurons suggests that the generated internal model encodes the MNIST

representation efficiently.
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hence responses are unspecific to different inputs in Figure 7A.
However, finally spikes are grouped at the positions from the 6th,
3rd, 1st, 9th, 5th, 1st, 8th, 2nd, 4th, 5th, 8th, 1st, 9th, 2nd, 7th, 5th,
1st, 4th, 2nd, 6th neurons in Figure 7D, which is the same as label
order. Therefore, responses have become preferences for different
inputs. Synaptic sampling with noise obtains the best learning
results of this task, and the corresponding spike responses have
the most obvious preference pattern. In Figure 7E, less spikes
are grouped at the positions which is the same as label order.
Because synaptic sampling without noise learns this task less
accurately. In Figure 7C, preference pattern is not very obvious
since synaptic sampling without noise cannot learn this task
accurately for Synthesis dataset.

Here, we need to discuss one similar work for additional
verification of noise effects. Based on synaptic sampling, Kappel
et al. (2018) presented a framework to maintain the stable
computational power in spite of stochastic spine dynamics.
They proposed that the functional role of noise is the
compensation for network perturbations and hence noise can
help network maintain the stable computational power. They
also conducted the experiments about different temperature
on learning performance, where the strength of stochasticity
can be scaled by the temperature. The results show that good
performance was achieved for a range of temperature values, and
too low (such as without noise) or too high temperature impaired
learning, as shown in the Figures 5D,G of their paper. To some
extent, it is of evidence that synaptic sampling with noise indeed
obtains better performance. However, the difference with our
work is outlined as three points.

First, the type of noise is different. They use the standard
Brownian noise and the strength of stochasticity should be
scaled by the temperature. Therefore, it is an issue to adjust the
strength of noise. In contrast, the strength of our noise can be
adapted automatically based on the synaptic weight. Second, the
perspective from why the noise works is different. They mainly
focus on the realization of stable computational function instead
of noise mechanism, and therefore provide a short analogy using
simulated annealing. However, we analyze the noise theoretically
from the view that noise helps optimization escape from saddle
points. Third, the application is different. Their model is in the
context of reinforcement learning, i.e., levermovement, while our
model is in the context of supervised learning, i.e., classification.

6.3. Verification on the Three-Layer
Networks
In the simulations of three-layer networks, we present 43,200
samples to networks for the Synthesis dataset and 60,000 samples
for the MNIST dataset. Other configurations are the same as
two-layer networks. The number of neurons in the hidden layer
is 500. We repeat the simulation 10 runs and the accuracy is
averaged over 10 runs. As shown in Figure 8, in the learning
and test phase, the accuracy of synaptic sampling is almost 30%
higher than that without noise for the Synthesis dataset and
around 15% for the MNIST dataset. Compared with the two-
layer network in Figure 6, when the number of layers increase,
the performance becomes better, i.e., the accuracy is improved

from 80% in two-layer networks to 88% in three-layer network
for the Synthesis dataset. It is because deeper networks have
the potential for more complex representation. However, the
accuracy of synaptic sampling without noise has not improved
in spite of the increasing number of layers as the number of
saddle points increases exponentially. As shown in Figures 8B,D,
likely, the standard deviation of synaptic sampling with noise is
slightly smaller in spite of additional fluctuations on the three-
layer networks. Therefore, noise improving optimization without
losing precision can also be applied to three-layer spiking neural
networks. In addition, the accuracy in the test phase is similar to
that in the learning phase. It shows that noise prevents spiking
neural networks from overfitting, regardless of the increasing
number of layers. In addition, the speed of convergence in
synaptic sampling slows down in three-layer networks, especially
without noise, compared to Figures 6C, 8C. The increasing
number of layers leads to the increasing number of saddle points
and hence it is more difficult for networks to escape from saddle
points without noise.

In Figure 9, the spike responses are similar to that of the
two-layer networks. For the Synthesis dataset, initial responses
are unspecific to different inputs. After learning, synaptic
sampling with noise learns the best results of this task, and the
corresponding spike responses have the most obvious preference
pattern. Synaptic sampling without noise cannot learn this task
accurately, and the preference pattern is not very obvious in
Figure 8C. For the MNIST dataset, Figures 8D,E show the 400-
ms learning process from the 57,000th example to the 57,020th
example. The corresponding labels are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8,
1, 9, 2, 7, 5, 1, 4, 2, 6]. After learning, more spikes are grouped
at the position as indicated by the label number, compared to
synaptic sampling without noise. Therefore, synaptic sampling
learns the task better and spike responses have more obvious
preference‘pattern.

6.4. Verification for Escaping From the
Saddle Points
We try to clarify that the gain in performance in the experiments
is due to overcoming the saddle point problem. Although it is
difficult to calculate the total number of saddle points and strict-
saddle points, it is easy to calculate the total number of strict-
saddle points which satisfies Equation (6) given the inputs and
network weights. Note that strict-saddle points which satisfies
Equation (6) is the subset of strict-saddle points, and hence it is
plausible to test the existence of escaping from the saddle points
with noise. In Equation (5), given different inputs, the Hessian
property of a single weight may be different. Therefore, the main
configuration of the strict-saddle point depends on the inputs
and network weights. Based on the experiments in section 6.2, we
choose the 30 weights at the convergence stage and 1,000 inputs
for a total 30,000 samples. If Equation (6) is satisfied given one
sample, the corresponding weights belong to a strict-saddle point.
In this way, we count the number of strict-saddle points in the
spiking neural networks with/without noise, denoted as S1 and
S2, respectively. Then, we calculate the reduction rate of strict-
saddle points. To some extent, the reduction rate reflects how
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FIGURE 8 | Performance of the three-layer networks with and without internal noise. (A) Learning curves of synaptic sampling with/without noise on the training set

for Synthesis dataset. Mean values over 10 runs are shown, shaded area indicates STD. (B) Accuracy comparison in the learning and test phase for the Synthesis

dataset (averaged over 10 runs). Error bars indicate STD. (C,D) In the MNIST dataset, the performance with internal noise is better than that without noise throughout

the whole learning course.

effectively noise prevents the learning algorithm from trapping
in the saddle points. The reduction rate is calculated according to
Equation (17).

Reduction Rate =
S2 − S1

S2
(17)

The results are shown in Table 2. It obvious that the strict saddle
points with noise has been reduced greatly for three datasets,
which shows that noise helps optimization escape from many
saddle points. In addition, we sort the datasets according to
the reduction rate in descending order, that is, the Synthesis
dataset >CIFAR-10 >MNIST. According to the accuracy gain
in descending order, the list is, Synthesis dataset >CIFAR-10
>MNIST. Therefore, the above two sort lists show that when
the reduction rate is greater, performance improves, and noise
helps optimization overcome the saddle point problem more
efficiently. Such positive correlation indicates that the gain in
performance is due to overcoming the saddle point problem
as suggested in our manuscript. The number of strict saddle
points in the MNIST dataset is the smallest (i.e., 489) and hence
synaptic sampling without noise can also obtain the satisfactory
performance (∼ 80%). For the CIFAR-10 dataset, although the

reduction rate is not small (68.64%), the number of strict saddle
points is still large in contrast (i.e., 6,157) due to the larger scale
and more complex representation. Therefore, synaptic sampling
with noise only achieves around 54% accuracy.

7. CONCLUSION AND DISCUSSION

In this work, we introduce one biologically plausible noise
structure, which is different from the traditional Gaussian
noise, and investigate the noise mechanism on the brain
computation theoretically. We applied the proposed model
to 10-categories classification problem to demonstrate
the learning ability of noisy spiking neural networks and
compared with networks without noise. Simulation results
show that noisy spiking neural networks have higher learning
accuracy, and spike responses had a more obvious preference
pattern for random spike train inputs. Further, three-layer
noisy spiking neural networks have better learning abilities
compared with two-layer networks. Our contributions are
three fold.

From the perspective of optimization, we propose that one
of the essential roles of noise is to improve optimization in the
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FIGURE 9 | Spiking activity of the 10 output neurons in the three-layer networks with/without internal noise motifs. We present 20 samples during a 4 s epoch for one

of the ten simulations. (A) Firing response of the 10 output neurons before learning. (B,C) Firing response of the output neurons after learning with/without noise for

Synthesis dataset. Sparsification of firing of output neurons occurs obviously after learning with noise. (D,E) Same for MNIST dataset. The corresponding labels of 20

samples are [6, 3, 1, 9, 5, 1, 8, 2, 4, 5, 8, 1, 9, 2, 7, 5, 1, 4, 2, 6].

brain computations and brain plasticity. Noisy spiking networks
for which the synaptic weights affect the noise variance satisfy
strict saddle conditions. In other words, proposed noise brings
more descent directions and Hessian information of networks

by changing the curvature of the landscape in the network
parameter space, especially in the neighborhood near saddle
points. In this case, gradient descent with noise will escape from
bad saddle points leading to efficient optimization.
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TABLE 2 | Reduction results of strict-saddle points and the corresponding gain in accuracy.

Dataset
Number of strict saddle points Reduction

rate (%)
Accuracy (%) Accuracy

gain (%)
With noise (S1) Without noise (S2) With noise Without noise

Synthesis dataset 711 4,157 82.89 ∼ 82 ∼ 60 ∼ 22

MNIST 489 1,167 58.06 ∼ 90 ∼ 80 ∼ 10

CIFAR-10 6,157 19,632 68.64 ∼ 54 ∼ 39 ∼ 15

From the perspective of biology, we give a theoretical
conjecture about the form of noise in the brain. The difference
between our noise and traditional Gaussian noise is a positive
correlation with a dendritic spine size. There are two biological
proofs on such a plausible structure. First, we prove that
the probability distribution of proposed noise satisfies the
minimummean square-error estimation based on the free energy
principle in neuroscience. Second, it has been observed that
larger spines show the most diverse changes in CA1 pyramidal
neurons in vivo experiments, which is consistent with our
noise structure.

From the perspective of the application, our noisy spiking
neural networks can be extended to multi-layer networks based
on the back-propagation algorithm. Deep learning has excellent
abilities in learning complex representations due to its deep
network structure. We hope that multi-layer noisy spiking neural
networks can serve as a first step toward the realization of more
powerful computation.

There are still some related open problems. First, the
proposed noise is associated with the number of samples. It is
worthwhile to study whether it can be automatically adaptive
to some application that is sensitive to the sample size. For
example, it has been tested by many studies in machine learning
that on-line learning is better in large scale problems, while
batch learning is better in small scale problems (Bottou and
Bousquet, 2008; Mairal et al., 2009; Hoffman et al., 2010;
Lin, 2010; Welling and Teh, 2011; Hardt et al., 2015). We
hope the adaptive structure to the sample size in our noise
will take effect on the robustness of sample size in artificial
intelligence. Another important problem is whether there is a
close relationship between proposed noise and similar techniques
of adding noise in machine learning such as drop out, on-line
learning. In future works, we will try to connect artificial and

biological spiking neural networks further by studying the above
two problems.
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Spiking neural networks (SNNs) are potentially highly efficient models for inference on fully

parallel neuromorphic hardware, but existing training methods that convert conventional

artificial neural networks (ANNs) into SNNs are unable to exploit these advantages.

Although ANN-to-SNN conversion has achieved state-of-the-art accuracy for static

image classification tasks, the following subtle but important difference in the way SNNs

and ANNs integrate information over time makes the direct application of conversion

techniques for sequence processing tasks challenging. Whereas all connections in SNNs

have a certain propagation delay larger than zero, ANNs assign different roles to feed-

forward connections, which immediately update all neurons within the same time step,

and recurrent connections, which have to be rolled out in time and are typically assigned

a delay of one time step. Here, we present a novel method to obtain highly accurate

SNNs for sequence processing by modifying the ANN training before conversion, such

that delays induced by ANN rollouts match the propagation delays in the targeted SNN

implementation. Our method builds on the recently introduced framework of streaming

rollouts, which aims for fully parallel model execution of ANNs and inherently allows

for temporal integration by merging paths of different delays between input and output

of the network. The resulting networks achieve state-of-the-art accuracy for multiple

event-based benchmark datasets, including N-MNIST, CIFAR10-DVS, N-CARS, and

DvsGesture, and through the use of spatio-temporal shortcut connections yield

low-latency approximate network responses that improve over time as more of the

input sequence is processed. In addition, our converted SNNs are consistently more

energy-efficient than their corresponding ANNs.

Keywords: spiking neural networks, sequence processing, efficient inference, neuromorphic computing,

event-based vision

1. INTRODUCTION

Spiking neural networks (SNNs) were initially developed as biophysically realistic models of
information processing in nervous systems (Rieke et al., 1999; Gerstner et al., 2014), but they
are also ideally suited to process data from event-based sensors (Posch et al., 2010; Liu and
Delbruck, 2010; Furber et al., 2013; O’Connor et al., 2013; Osswald et al., 2017), and are natively
implemented on various neuromorphic computing platforms (Schemmel et al., 2010; Furber et al.,
2013; Merolla et al., 2014; Qiao et al., 2015; Martí et al., 2015; Davies et al., 2018). Their sparse
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and event-driven mode of computation makes them more
energy-efficient and faster compared to conventional artificial
neural networks (ANNs), and additionally allows for the use of
spatio-temporal spike codes to represent complex relationships
between features in the network. These hypothetical advantages
can, however, only be completely exploited on hardware that
supports fully parallel model execution, which means that spiking
neurons operate independently from each other and their update
is solely based on incoming spikes. This is different from typical
ANN execution schemes, which update all neurons in a fixed
order determined by the network architecture and at fixed
discrete time steps.

The goal of this article is to develop a framework for obtaining
SNNs that run fully in parallel and achieve high accuracy, low
latency, and high energy-efficiency on sequence processing tasks,
in particular classifying streams of events from neuromorphic
sensors. Sequence processing seems to be a natural fit for
the execution mode of SNNs where every neuron has its own
dynamics, but in practice it has proven to be very challenging
to exploit this property to train SNNs on temporally varying
input data. Even more, current state-of-the-art methods for SNN
training are unable to yield competitive accuracies compared
to ANNs even in the simpler case of static inputs (Pfeiffer and
Pfeil, 2018), albeit the gap has become narrower over the past
years due to better training algorithms, such as e.g., variants of
backpropagation for SNNs (Lee et al., 2016; Wu et al., 2018;
Shrestha and Orchard, 2018; Neftci et al., 2019). However, Deng
et al. (2020) argue that SNNs in general are put at a disadvantage
in tasks designed for ANNs, such as image classification, because
of the information loss incurred during conversion of images to
spike trains of finite time window length. SNNs should not be
expected to outperform ANNs in terms of accuracy on frame-
based tasks, but they may be advantageous in terms of memory
and compute costs. SNNs should ideally always be evaluated on
event-based datasets, where they are able to outperform ANNs
by exploiting the spatio-temporal information encoding of event-
streams. Consequently, in this article we use only event-based
datasets to evaluate our SNN performance and report memory
and compute requirements for our networks, as suggested in
Deng et al. (2020).

The currently most successful method for obtaining accurate
SNNs is to train an ANN with conventional deep learning
methods, and convert the resulting ANN architecture and
weights into an equivalent SNN, translating analog neuron
activations into proportional firing rates of spiking neurons (Cao
et al., 2015; Rueckauer et al., 2017). Conversion methods have
achieved the best known SNN accuracies for image classification
tasks, such as MNIST, but they rely on the assumption that input
patterns do not change for some time. This is required because
firing rates in each layer need time to converge to their targets
derived from ANN activations. Spikes are allowed to propagate
instantaneously between layers of the network, since this speeds
up convergence of firing rates in deeper layers, and there is
no additional temporal information beyond rates encoded in
spike trains.

These assumptions are no longer valid when sequence
processing tasks are considered, which require networks capable

of temporal integration. Temporal integration means that
information from different times of the input has to be integrated
at a single point in time at the output of the network. In a multi-
layer network this means that the network architecture as well as
the propagation delays between layers become crucial to control
not just what features of the input are computed, but also when
information computed in other layers can be used to update
the feature computation. Temporal integration is achieved with
recurrent or temporal skip connections, which not only skip
layers in depth-direction of the network, but also bridge time
like recurrent connections. Since temporal skip connections,
in contrast to recurrent connections, serve as shortcuts in time,
and hence, reduce the latency of early approximate network
responses, we omit recurrent connections in the following.

Our goal is to obtain SNNs for model-parallel execution on
actual neuromorphic systems, which requires assigning non-zero
delays to all connections in the network. However, current ANN-
to-SNN conversion methods are unable to deal with the case
of time-varying inputs or with temporal skip connections with
different propagation delays. The main contribution of this paper
is to close these gaps by unifying ANN-to-SNN conversion with
the recently introduced concept of streaming rollouts (Fischer
et al., 2018), thereby greatly extending the applicability of SNN
training methods to novel and important classes of applications.
Since the inference graph of an SNN determines the way
temporal information is being processed, its temporal structure
needs already to be taken into account during ANN training (see
Section 2.2 for details). In other words, it has to be ensured that
information from all required parts of the input sequence and
the resulting activations of intermediate layers arrives at the right
time at the output neurons both during ANN training and after
conversion to SNNs. With this novel method for rolling out and
training ANNs before conversion to SNNs we obtain SNNs that
efficiently and accurately solve sequence processing tasks, and
yield approximate responses as early as possible.

In the following, we describe our methods in detail and
show experimental results that emphasize the advantages of our
approach for event-based sequence processing tasks.

2. METHODS

In this section, we describe the task of classifying event-based
data streams with spiking neural networks (Section 2.1), and
present a recipe for obtaining SNNs to process input sequences
on neuromorphic hardware. First, we define the targeted
inference graph of SNNs (Section 2.2) and, then, describe how
to train (Section 2.3) and convert (Section 2.4) corresponding
artificial neural networks (ANNs). Last, we describe how we
estimate the energy-efficiency of both approaches in Section 2.5.

2.1. Classification With Spiking Neural
Networks
We study the task of training an SNN that processes a given input
spike sequence Sin into a discrete target output y ∈ {1, . . . ,C},
where C is the number of available classes. The input Sin is a
multi-dimensional spike sequence of dimensionality M, where
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S
(i)
in = (t

(i)
in,1, . . . , t

(i)
in,n(i)

) defines the spike times of neuron i ∈

{1, . . . ,M}, and n(i) ≥ 0 is the number of spikes generated by
input neuron i in the input sequence. We define Tmax(Sin) =

maxi=1,...,M t
(i)
in,n(i)

as the length of the complete sequence, i.e., the

time of the final input spike to any input neuron, and we denote
by S[t0, t1] the partial spike train that includes all spikes of S
between t0 and t1. We introduce the shortcut S[t] = S[0, t] for all
spikes up to time t. The output vector y(t) is computed from the
spike trains Sout[t] of a defined output layer of the network after
seeing all spikes up to time t, and can be computed in various
ways, e.g., by applying the softmax function to the spike counts
of all output neurons.

In our experiments the spiking neurons are simple non-
leaky Integrate & Fire (IF) neurons without refractory period,
as described in Rueckauer et al. (2017). Every neuron i is
characterized by its membrane potential Vi(t), which is updated
whenever the neuron receives an input spike from another
neuron j. In this case we update Vi(t) ← Vi(t) + wij. If Vi(t)
exceeds a threshold voltage Vth then the neuron sends out a spike
and resets its membrane potential by the following subtraction:
Vi(t) ← Vi(t) − Vth. Rueckauer et al. (2017) analytically show
how IF neurons can approximate ANN activations with spike
rates. It is possible to use alternative neuron models, e.g., leaky
integrate-and-fire, but to date no practical benefits have been
demonstrated that would warrant their additional analytical and
computational complexity. Hence, we consider only IF models in
this paper.

2.2. Sequence Processing With Streaming
Rollouts
The architecture of the neural network is described by a directed
network graph, in which nodes correspond to layers of a neural
network, and edges represent dependencies between the layers.
The goal is to train a network for sequence processing, which
means the output t at any time depends on the entire input
sequence Sin[t] or at least a spatio-temporal receptive field Sin[t −
τ , t] of duration τ . The network needs to be capable of temporal
integration, i.e., information about the input in the relevant
spatio-temporal receptive field must remain present in some
nodes, and must be continuously combined with new incoming
information. Temporal integration requires a network graph
that includes either recurrent or temporal skip connections, as
discussed next.

In the setting of an ANN processing an input sequence, a
network graph can be rolled out in time in multiple ways (Fischer
et al., 2018). The usual convention of sequential rollouts is to
assume a delay of one time step for recurrent edges, whereas all
other edges in the feed-forward direction from input to output
are assumed to transport information instantaneously without
delay. A mechanism similar to sequential rollouts, although on
the granularity of SNN simulation time steps was proposed by
Wu et al. (2018) to train SNNs with backpropagation, which
allows treating the spatial and temporal domain separately for
backpropagation. However, this notion of sequential rollouts
is in contrast to the fully parallel execution mode of SNNs,
in which all neurons can update their states simultaneously,

but information cannot be instantaneously propagated between
neurons. Converting an ANN trained with sequential rollouts
into an SNN can therefore lead to a mismatch in the way
information is being processed over time.

Fischer et al. (2018) proposed an alternative rollout
mechanism called streaming rollout, in which all edges transport
information to the next rollout frame. We define a rollout frame
as the state of all neurons at a given time point after applying all
instantaneous updates within the same frame, as well as updates
from delayed connections from the previous time step(s). The
streaming rollout is equivalent to introducing an axonal delay
dANN of at least one rollout frame to all connections. Each
neuron’s next state can then be computed exclusively from
values computed in the previous rollout frame, which allows
fully parallel updates within one rollout frame. In previous
conversion approaches, the time to reach good approximations
scales with the network depth, because the spiking activity in any
layer first needs to converge to a good-enough approximation of
ANN activations before the next layer is able to generate precise
approximations. This is resolved by the streaming rollout, as all
layers approximate the activations in parallel, thereby decoupling
the depth from the integration time. We limit our analysis in this
paper to a delay of one rollout frame.

Skip connections under streaming rollout translate to
temporal skip connections, which do not only skip layers in the
depth-direction of the network, but also span time. Furthermore,
temporal skip connections give rise to early approximate
results, and the earliest response is determined by the shortest
path between input and output in the network graph. Initial
predictions are less accurate, because only a shallower network
is used for classification, but getting an early guess is desirable
for many tasks that require real-time decisions. Note that the
scenario we investigate here is different from the typical sequence
processing framework, e.g., NLP or speech, where reasonable
accuracy can only be obtained after seeing most of the input.
The accuracy improves over time as more frames of the input
sequence are processed, and as deeper layers of the network begin
to contribute to the prediction.

Figure 1 illustrates how streaming rollouts achieve temporal
integration for an exemplary network graph (Figure 1B) with
Nl = 4 convolutions and a fully-connected layer (number of
blocks Nb = 1). The temporal shortcuts with dANN = 1
allow for temporal integration over multiple frames in the input
sequence. This is illustrated in Figure 1C by assigning a color
to each of the four processed input frames F1, . . . , F4, and the
mixing of colors indicates which frames provide information to
which layer at every time step. For example, the skip connection
from layer 1 to 4 causes early activity in the output layer already
at k = 3, although with reduced accuracy. Multiple paths of
different lengths connect the input to the output, with a shortest
path (shown in blue) of length 2, and the longest path (in red)
of length 4. The difference between the length of the longest
and the shortest path determines the size of the spatio-temporal
receptive field. In our example, the size of the receptive field
is τ = 3 input frames and, hence, the output in Figure 1C is
shown as a mix of up to three colors. In Figure 1C at k = 6,
input data from k = 2 and 4 arrive at the same time at the
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FIGURE 1 | Network rollout and training of ANNs before conversion to SNNs for sequence processing. (A) Input frames Fin are generated from event data by

averaging ON (red) and OFF (blue) events over time intervals of fixed duration TF (here TF = 25 ms; in the bottom only OFF events are shown). This example is taken

from the N-CARS dataset. (B) Network graph of an exemplary feed-forward SNN consisting of an initial convolutional layer (with index 1), one block of three

convolutional layers (2 to 4) and a fully-connected (FC) layer that are connected to each other. (C) The streaming rollout of the ANN that corresponds to the

connectivity chosen in (B) over K = 6 rollout frames k and dANN = 1 for all connections. Note that the model parallelism required by SNNs is achieved by choosing all

connections to span time, i.e., to bridge rollout frames. For networks with skip connections, this results in paths of different length from input Fk to output yk′ (e.g., red

and blue path from F2 and F4 to y6) allowing for spatio-temporal integration of information over the input sequence Fin. Nodes in the rollout are numbered like in (B)

and identically numbered nodes indicate that they share their weights. (D) Exemplary activity of an SNN (raster plot) after conversion from a trained ANN as shown in

(C). Each row corresponds to a neuron in the SNN and each data point is a single spike. Note that the absence of activity in layers 2–4 in the first rollout frame is

caused by axonal delays.

output layer (via the red and blue path, respectively) and can,
hence, be jointly used for prediction. In addition, the shortest
path between inputs and outputs of such a network (green path)
defines the latency, at which a first approximate prediction can
be made. Long paths (red path), i.e., deeper networks, allow
for better accuracy at the cost of higher computational effort.
In addition, the overall energy-efficiency is further increased
by regularizing all activations with the L2-norm in order to
achieve smaller activations and therefore reduce the number
of operations necessary to reach an accuracy level close to
the maximum possible. Note that in streaming rollouts newly
acquired input frames are immediately processed and fused with
pre-processed information from previous inputs to refine the
output of the network. Since the computation of all layers in a
rollout frame only depends on the outputs of the layers in the last
rollout frame, outputs can be computed frame by frame. This is
in contrast to other methods for sequence processing, for which
multiple input frames are required at once to compute the output
of the network (e.g., van den Oord et al., 2016a).

2.3. Training of Artificial Neural Networks
In all our experiments, the network graphs follow the DenseNet
architecture (Huang et al., 2017) due to two main reasons.
First, DenseNets are established network models and achieve
competitive results across various applications (Zhu and
Newsam, 2017; Huang et al., 2018; Zhang et al., 2018). Second, the
dense connectivity between layers, as described in the following,
results in streaming rollouts, in which the output is updated

every time step. In each block of a DenseNet, every layer is
connected to all previous layers. The blocks are connected by
transition layers that reduce the resolution via pooling. The last
layer is composed of global average pooling and a fully-connected
layer for classification. Throughout this study, we use network
graphs with Nb = 3 blocks, all other hyperparameters and a full
schematic of a two-block DenseNet can be found inAppendix A.

For the streaming rollout of the above network graph, the
temporal window τ is limited by the depth of the network
D = NlNb + 1. This explicit restriction to a finite temporal
window allows choosing a network architecture that matches the
temporal scale of the specific problem at hand. Furthermore,
the latency from first input to output in streamingly rolled out
DenseNets is Nb rollout frames, which is typically shorter than
the latency ofD for recurrent networks that utilize allD layers for
each prediction. These temporal skip connections in streamingly
rolled out DenseNets allow for fast approximate predictions that
are refined over time. For our datasets, we saw an increase in our
accuracy when replacing regular dropout with spatial dropout
(Tompson et al., 2015) and using convolutions with weight
kernels of spatial size 3 × 3 instead of 1 × 1 for the transition
layers (for further hyperparameters, see Appendix A).

For the training of ANNs with streaming rollouts, event-based
input sequences first need to be converted into sequences Fin of
N so-called input frames Fk (e.g., see Figures 1A,C). The input
spike sequences Sin are divided intoN equally sized time intervals
of length TF = T(Sin)/N, and for each interval we compute
the sum of all spikes, which is used as the input to the ANN.
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Since event-based vision sensors distinguish between ON and
OFF events, we compute two separate channels per input frame.

For a given sequence of input frames Fin we use streaming
rollouts to compute the activations of all ANN units over time,
and apply backpropagation-through-time (Werbos, 1990) to
train the weights of the network. To consider all N input frames
Fk in Fin with k ∈ {1, ...,N} with the shortest possible rollout,
the last network output yk of the rollout is connected to the last
input frame FN , via the shortest path ls. This results in rollouts
with K = N + ls rollout frames and as many outputs yk (with
k ∈ {ls, . . . ,K}) as inputs (for an example, see Figure 1C). For
every dataset, the number of rollout frames K is determined by τ ,
the length of the temporal window. If the number of input frames
N is smaller than τ , these input frames are evenly distributed over
the available τ input slots of the fixed rollouts.

The optimization objective is tominimize the categorical cross
entropy L over all predictions yk of the network outputs,

L =

K
∑

k=ls

−akŷk log(yk) (1)

where ŷk are the one-hot class labels and ak are factors to trade off
between early and late accuracy. These factors will be discussed
in detail in Section 3.2. As we are considering classification
problems, the target class label is the same for each output, i.e.,
ŷk = ŷ ∀ k. Observe that ŷk log(yk) is a scalar product and since
ŷk is a one-hot vector, only one term is non-zero. In all layers,
we apply weight decay as regularization, and activation decay for
increased sparsity. For parameterizations and further details, see
Appendix A.

2.4. ANN-to-SNN Conversion
After training the streaming rollout of the ANN, the architecture
and weights of the ANN are translated into an equivalent SNN
for energy-efficient inference. We closely follow the conversion
method described by Rueckauer et al. (2017), who proved that,
under the assumption of ReLU activations and IF neurons, the
firing rate ri of a spiking neuron i becomes proportional to
the activation ai of the corresponding neuron i in the ANN.
Hence, for the same input, the output firing rates of the SNN
approximate the ANN output activations, and the approximation
error decreases with simulation time of the SNN. In order to
speed up this approximation, the authors proposed a weight
normalization scheme to fully use the dynamic range of the
spiking neurons determined by their maximum firing rate.

In this article we go beyond the mechanisms described
Rueckauer et al. (2017), and apply ANN-to-SNN conversion
to a network rolled out in time using streaming rollouts (see
section 2.2 and Figure 1C), thereby allowing to address sequence
processing tasks. Two levels of temporal integration have to be
considered for the SNN: First, for every rollout frame, ANN
activations are approximated by firing rates, which happens in the
time interval defined byTF. Therefore, we have to set the duration
of a rollout frame long enough for firing rates to converge to their
target rates. Second, skip connections in streaming rollouts allow
temporal integration of information. For example, the red and

blue path in Figure 1C are arriving at the same time at layer 4 at
k, because each connection has delay dANN = 1. Consequently,
axonal delays of connections in SNNs have to be set such that
information propagates through the network as predefined by
the rollout of the ANN. If ANN activations in each rollout frame
are approximated by nsf simulation steps in SNNs, the delay in
SNNs has to satisfy d = nsf · dANN = nsf. Additionally, to
prevent neurons from being inactive for too long after receiving a
sustained negative input during one rollout frame we use a lower
bound on the membrane potential. It is expected that the output
rate of a neuron changes smoothly with its input rate. Assuming
that the input changes slowly over time, the membrane voltage
stored at the end of one rollout frame will be a good initialization
for the next rollout frame. In addition, the time until the rate
approximation is sufficiently good decreases for each additional
rollout frame. The limitation is the resolution with which the
rates have to be approximated. A particular advantage of using
skip connections is that the time required for information to
propagate from input to output is determined by the shortest path
ls. This rate of change from input to output is usually higher than
for networks using recurrent instead of skip connections, since
for these the shortest path equals to the full depth of the network
(ls = D), i.e., information needs to propagate through all layers.

Classification outputs in the final layer of the spiking network
are computed as y(t) = argmax(

∑t
t′=t−TF

Sout[t
′]) by summing

all weighted input spikes to each neuron over the time interval
TF and taking the argmax of this vector. This allows faster
adaptation of predictions, does not need an external stimulus,
and handles the case when both output neuron activations
are negative.

One important aspect of a classification method is the latency
between inputs and outputs, especially in scenarios with critical
real-time requirements. A direct approach would be to measure
the wall-clock time required to execute the SNNs. However, the
execution time of SNNs strongly depends on the used hardware
system. In order to disentangle this dependency we introduce
the hardware-agnostic measure of simulation steps per frame
nsf. In a time-stepped SNN simulator, each frame of a sample
is used as input for nsf steps. Then, the actual wall-clock time
depends on, first, the throughput of the SNN simulator/emulator
f in simulation steps per second and, second, the time needed
to accumulate one frame TF (see Figure 1). If a new frame is
accumulated while the network is executed and fnsf ≤ TF holds,
the system runs in real time.

The core idea of ANN-to-SNN conversion is to achieve a
linear mapping between activations of the ANN neurons and
spike rates of the SNN neurons. Neurons should not saturate,
i.e., the rate after mapping should not exceed one spike per
simulation step. Therefore, the activations have to be rescaled,
which can be achieved by rescaling weights and biases in each
layer by a scalar factor. The employed robust scheme scales
the parameters of each layer by a predefined percentile of
the training set activations, as described in Rueckauer et al.
(2017). Rescaling by a percentile of the activations instead of
the maximum activation leads to some neurons saturating (they
should spike more than once per simulation step), but increases
the overall activity in the network, leading to faster propagation
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of information and therefore reduces the latency between input
and output. Additionally, the authors of Rueckauer et al. (2017)
see an increase in accuracy when choosing a percentile as scaling
factor instead of the maximum activation. It should be noted
that this method is not dependent on the layers used, considers
also concatenations of layers and only needs one forward pass
to rescale all layers. For our approach, we have to consider that
activations change over time. We calculate the percentile over
all activations over time, but still for each layer separately. In
contrast to the original work, we also rescale the weights of
Average Pooling layers by a percentile of the activations and
observe an increase in top accuracy.

2.5. Energy-Efficiency and Number of
Operations
In order to compare the energy-efficiency of ANNs and SNNs
we use the same metric as in Rueckauer et al. (2017), i.e., we
measure the average number of operations over all samples in the
used dataset split during inference. The number of operations is
calculated differently for ANNs and SNNs, due to the difference
in their neuron models. As discussed by e.g., Thakur et al. (2018)
and Pfeiffer and Pfeil (2018), many different neuron models
exist for SNNs depending on the desired biological plausibility
and complexity. In this study, we use the IF neuron model as
described in Section 2.1 to match the method for ANN-to-SNN
conversion introduced by Rueckauer et al. (2017). Comparing a
forward pass from layer l to layer l + 1 with activations al and
connection weightsW l

ij in ANNs

al+1i = ReLU(
∑

j

W l
ija

l
j). (2)

to the rate approximations of these activations al in SNNs as
described in Section 2.1, we follow Rueckauer et al. (2017) and
define the number of operations for ANNs and SNNs as follows.

For ANNs, operations are defined as the sum of all multiply-
add computations, and for SNNs, operations are defined as
synaptic operations, i.e., the sum of all spikes processed by
all neurons. The number of ANN operations is constant
across samples and rollout frames and only depends on the
size of the input frame. In contrast, for SNNs, the number
of operations depends on how many spikes are generated
during the execution of the network. The overall number of
spikes typically grows with the number of simulation steps
nsf and the magnitude of ANN activations, while it decreases
with the sparsity of activations. Thus, a smaller number of
simulation steps nsf in SNNs leads to better energy-efficiency,
but also to a less accurate approximation of ANN activations,
potentially reducing accuracy. Generally, real-valued multiply-
add operations in ANNs are computationally more expensive
than synaptic operations in SNNs, but on the other handmemory
accesses are more structured for ANNs. This trade-off varies
between different accelerators and neuromorphic chips. As an
estimate, the energy per multiply-add operation for a recent
FPGA architecture (Manolopoulos et al., 2016) is about 555–
1295.4 pJ, while for neuromorphic devices, a synaptic operation
consumes only 2.8–360 pJ (Thakur et al., 2018). Observe, that

our definition of simulation steps per frame nsf is related to the
number of simulation steps Ttot in Rueckauer et al. (2017) and
Deng et al. (2020) by the number of rollout frames K as Ttot =

nsf ·K, i.e., either one can be used to quantify the tradeoff between
energy-efficiency and accuracy.

3. RESULTS

In this section we demonstrate fast, accurate, and energy-efficient
inference with SNNs on five different sequence processing
tasks. First, a toy dataset is used to illustrate the concept of
temporal integration via streaming rollouts in ANNs, and shows
the energy-efficiency of converted SNNs (Section 3.1). Second,
we apply our approach to event data recorded by an event-
based camera in real-world driving scenes (Section 3.2) and
showcase the trade-off between the latency of network responses,
the classification accuracy, and energy-efficiency. Finally, we
demonstrate state-of-the-art performance on the established
N-MNIST, CIFAR10-DVS, and DvsGesture benchmarks for
classification on event-streams (Sections 3.3 to 3.5).

3.1. Moving Rectangles
This synthetic dataset consists of sequences composed of two
frames containing one rectangle each, and the task is to
determine whether the rectangle has moved to the left or right
in the second image. See Figure 2A for an example of both
classes and Appendix A.1 for more details. This frame-based toy
dataset is a minimal example of temporal integration, because the
direction of movement can only be inferred from the complete
sequence, but not from a single image. For this example, we
use the network graph as described in Section 2.3 with Nl = 1
that results in streaming rollouts with a spatio-temporal receptive
field of duration τ = 3. To demonstrate the effect of temporal
integration, we train this rollout with τ = 6 input frames (for
details, see Section 2.3), of which the first and second half (three
input frames each) comprises the first and second image of the
pair of moving rectangles, respectively.

During ANN inference, the predictions of the first three
outputs of this rollout are on chance level (see data points in the
area with light gray shading in Figure 2B), because only the first
τ = 3 input frames comprising the first rectangle are seen by
these outputs. The network outputs at rollout frames k = 8 to 10
(dark gray shading) retrieve information from both frames of the
input pair and, hence, can integrate this information to perfectly
classify themovement direction of the rectangle. Note that for the
chosen network graph and streaming rollout, the first response
of the network occurs at k = 5, which reflects the length and
the temporal delay ls = 4 of the shortest path between input and
output of the rollout.

Figure 2B shows that the SNN’s accuracy follows that of the
ANN and results in comparable overall performance. However,
the SNN accuracy is lagging behind the ANN accuracy in
Figures 2B,C, by at least one rollout frame. Multiple reasons
could cause this lag: First, the SNN accuracy is calculated by
averaging predictions over the last nsf simulation steps. Second,
accuracies could be further delayed by information that is stored
in the values of the membrane potentials and is carried from one

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 43976

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kugele et al. SNNs for Efficient Sequence Processing

FIGURE 2 | Results for the moving rectangles dataset. (A) Samples for each class. (B) Average classification accuracy over rollout frames and corresponding

simulation steps for ANN (red dashed line) and SNN (blue solid line) with the standard error of the mean in lightly colored areas. Vertical gray lines separate rollout

frames and the shading of the background indicates, which image of the input sequence Fin is seen by the network output y: Light gray for the first and dark gray for

both input frames. Note that the first prediction occurs at the fourth rollout frame after input onset (simulation step = 45), since the shortest path from input to output

has length ls = 4. (C) Determining the trade-off between accuracy and energy-efficiency. (Top) Same as (B), but measured on 1,280 random samples of the training

set and for three different values of nsf. (Bottom) The ratio ρ between the area under curve of the ANN (shaded red) and SNN (shaded blue) for different values of nsf
over the number of operations. The number next to each datum is its respective number of simulation steps per frame nsf. The accuracy ratio ρ saturates at nsf = 15,

which we therefore consider as a good trade-off between accuracy and energy-efficiency. (D) Average classification accuracy over the number of operations for ANN

(red) and SNN (blue). For all data points in (B–D), averages over 10 trials are plotted. Standard error of the means are always plotted, but sometimes too small to be

visible.

to the next rollout frame, which can slow down the convergence
of the approximation of firing rates.

To be able to execute the SNN, we have to determine the
number of simulation steps per frame nsf. Observe, that this
hyperparameter comes with a trade-off between accuracy and
energy-efficiency: With increasing nsf, the rate approximation
error decreases, leading to higher accuracies but also to a higher
number of operations, decreasing energy-efficiency. In order
to determine a good trade-off between accuracy and energy-
efficiency, we sweep over different values for nsf using 1,280
randomly chosen samples from the training set. The area under
the curve is calculated for both the ANN and SNN accuracy over
simulation steps, and the accuracy ratio ρ is calculated as the
ratio between these areas. The difference between the accuracies
of ANNs and SNNs decreases, i.e., ρ increases, with larger nsf
(see Figure 2C). Note that reaching ρ = 1 implies that ANN
activations would have to be approximated by SNN firing rates
instantaneously, i.e., within one simulation step, which is very
unlikely in practice. The accuracy ratio ρ starts to saturate at
nsf = 15 simulation steps per rollout frame and, consequently,

we consider this value as a good trade-off for our experiments in
Figure 2D.

In terms of efficiency, achieving the peak accuracy of 100%
for this task requires 8.4 ± 0.6 MOps operations in the SNNs,
which is approximately a factor of 13 lower compared to their
ANN counterparts (105 MOps, see Figure 2D).

3.2. N-CARS
In this section, we apply our methods to real-world event-based
vision data from driving scenes, for which the task is to classify
the presence of a car in the recorded scene (Sironi et al., 2018).
N-CARS uses event streams with continuous spike times for
ON and OFF events that are triggered by positive and negative
changes in light intensity, respectively. For this experiment, we
choose ANN rollouts with Nl = 5 layers per block resulting in
τ = 16 input slots for the rollout and a spatio-temporal receptive
field of duration τ = 16 (for details, see Appendix A).

Our goal is to obtain good early predictions without sacrificing
accuracies at later outputs (as already discussed in Section 2.2).
This enables us to use early outputs for fast but relatively
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FIGURE 3 | Results for the N-CARS dataset. (A) Average validation accuracies over the index k of the outputs of the network rollouts. Different choices for weighting

these outputs in the loss function are depicted with different colors (for details, see legend and Section 3). (B) Average accuracies of ANNs over real time of the input

sequences for different values for N (see legend). The inset shows the maximum accuracies. (C) Determining the trade-off between accuracy and energy-efficiency.

(Top) Accuracy of ANN and converted SNN over simulation time for N = 16 and nsf ∈ {5, 15, 35}. Note that the first prediction occurs at the fourth rollout frame after

input onset, since the shortest path from input to output has the length ls = 4. (Bottom) The ratio ρ between the area under curve of the ANN (shaded red) and SNN

(shaded blue) for different values of nsf over the number of operations. The number next to each datum is its respective number of simulation steps per frame nsf. The

accuracy ratio ρ saturates at nsf = 15, which we therefore consider as a good trade-off between accuracy and energy-efficiency. (D) Average peak accuracies over

number of operations for the ANNs of (B) and the converted SNNs [same color coding as in (B)]. For all shown data, the error of the mean values are plotted after

averaging over 10 trials, but are often too small to be seen.

inaccurate results and later outputs for slower results with higher
accuracy. This trade-off between early and late performance can
be tuned by the factors ak of the loss function, which weight
the losses from outputs at rollout frames k = 5 to k = 21
(see Eq. (1)). The index starts at k = 5, because the shortest
path through the network is ls = 5. In order to determine a
good choice for ak that achieves good early and late performance,
we evaluated seven different options. Figure 3A shows resulting
accuracies for each output k separately, after training, for the
following proposals of sets of ak:

• ak = 1: Uniformweighting: the factor is identical for all k, such
that early and late accuracy is considered equally important
• ak = k + 1: Linearly increasing weighting: emphasizing

late performance
• ak = exp (k): Exponentially increasing weighting: even

stronger emphasis on late performance
• a0 = 1, others 0: Only consider first output
• ak = 1/(k+1):Moderately decreasing weighting: Emphasizing

early performance
• ak = exp (−k): Exponentially decreasing weighting: even

stronger emphasis on early performance

• a15 = 1, others 0: Only consider last output

In practice, we normalize each set of ak such that
∑

k ak = 1, to
avoid influencing the learning rate. Note that we share weights
over time and, consequently, the very same weights have to fulfill
multiple objectives at once, which could potentially deteriorate
the accuracy of the network outputs. Weighting early outputs
higher improves the early accuracy by up to 4.3% compared
to constant ak (77.9 ± 0.2% for exp (−k) vs. 73.6 ± 0.8% for
ak = 1). However, increasing the accuracy for early outputs
degrades late performance by up to 13.5 % (exp (−k)). This effect
can be explained by the trade-off between using the available
capacity of the network to decrease the loss at early outputs and
to provide meaningful features for further processing required to
decrease the loss at later outputs. Weighting early outputs much
higher than late outputs (exp (−k)) shifts this trade-off toward
using most of the network capacity for instant classification and
suppressing feature generation for later outputs and temporal
integration. In all cases in which the late performance was
prioritized (including ak = 1), the maximum accuracies are
similar to each other (< 0.04% difference). In conclusion,
a uniform weighting ak = 1 represents a good trade-off
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between early and late performance indicating synergies between
generating rich features required to achieve peak performance
and generating sufficient features for immediate classification.
Other choices for the weighting ak either result in lower peak or
lower early accuracy (see Figure 3A).

For ANN training, each event-stream of duration 100 ms is

divided into N input frames and in the following we investigate
the impact of different choices for N on accuracy, latency and

energy-efficiency. The value of each pixel of these input frames

is computed by averaging the firing rate during the resulting
time intervals TF (see also Section 2.3). The sampling frequency

1/TF of event streams has to be chosen high enough to resolve
the temporal information present in the input sequence and to

achieve higher spatial sparsity of the generated input frames, but
higher frequencies also cause lower signal-to-noise ratios due
to fewer events per input frame. In real-time scenarios, higher
sampling frequencies, i.e., smaller TF, result in more frequent
and earlier network responses (see Figure 3B). For example for
N = 16, the first prediction occurs atTF = 100ms/16 = 6.25ms,
while for N = 1 the first prediction occurs at TF = 100 ms.
Note that for simplicity, we assume the computation of the
network output y to be instantaneous in Figure 3B, and hence,
the shown time axis reflects the time scale of the input sequence.
Using the classification accuracies as evaluation criteria, we find
N = 16 to reach the same accuracy with a higher temporal
resolution as other frame intervals (see Figure 3B). For all N,
we observe that the first network outputs (leftmost data points in
Figure 3B) are already above chance level, although they only see
the first input frame via the shortest path of the network. These
early approximate predictions are then refined in later rollout
frames, in which deeper networks can integrate information
over multiple input frames. Overall, although sampled with
different frequencies, the peak accuracy is almost the same across
different N. This indicates that, for the N-CARS dataset, the
information encoded in time is much less important than the
spatial information. We conclude that the information present
in the first 25 ms is already sufficient for a successful classification
close to peak accuracy. This can be observed in the example given
in Figure 1A, where the shape of the car can be distinctively
identified after 25 ms.

After conversion, we have to choose the simulation steps per

rollout frame nsf, which significantly influences the accuracy and

energy-efficiency of our network. As in Rueckauer et al. (2017),

the approximation error of activations in ANNs by firing rates

in SNNs increases over time. However, in our case this only

holds on a per-frame basis, i.e., in our case the approximation

error depends on the number of simulation steps per frame

nsf. Like for the moving rectangles dataset, we measure the

accuracy ratio ρ over nsf to find a good trade-off between energy-

efficiency and accuracy. The accuracy ratio ρ starts to saturate
at nsf = 15 simulation steps per rollout frame (see Figure 3C)

and, consequently, we consider this value as a good trade-off

for our experiments in Figure 3D. For smaller nsf, mostly the

early accuracy (e.g., between simulation step 50 and 150 in
Figure 3C) suffers, which can be explained as follows: First,
SNNs perform worse than ANNs, because for early network

TABLE 1 | Average accuracies for the N-CARS dataset for ANNs and SNNs

(10 rials each).

N-CARS Acc. # params # ops [MOps]

HATS/linear SVM (Sironi et al., 2018) 90.2 – –

Rec. U-Net+CNN (Rebecq et al., 2019) 91.0 > 106 –

ResNet-34 (Gehrig et al., 2019) 92.5 107 –

Streaming rollout ANN (ours) 94.00(±0.05) 105 1, 420(±47)

Converted SNN (ours) 94.07(±0.05) 105 212.9(±2.5)

Numbers in parentheses are standard errors of the mean values. # params are the number

of parameters, i.e., the number of weights and biases of the network. # ops are the

number of operations as defined in section 2.5. A minus sign indicates that the number

of parameters or operations could not be estimated from the information available in the

respective reference. The highest accuracy is highlighted in bold.

outputs, spikes are present only in the short paths from input
to output of the networks. Consequently, the overall spiking
activity is low, slowing down the convergence of the firing
rate approximations. Second, neurons are initialized with lowest
(remember that V ∈ [0, 1]) membrane voltage V(0) = 0,
and, hence, it takes a few simulation steps until the neuron can
spike. Third, transmitting information from one layer to the
next requires at least one simulation step, resulting in a linear
increase of the delay from input to output with the number of
layers. In our case, the shortest path from input to output has
to pass four layers and, hence the information is delayed by four
simulation steps, such that the ideal case of r = 1 is impossible
to reach. Converting ANNs to SNNs and using our choice for
nsf during the simulations of SNNs, results in accuracies of SNNs
that are comparable to their corresponding ANNs, but requiring
less energy. Furthermore, the energy-efficiency increases with the
number of input frames N, up to an 8-fold factor for N = 16.
Overall, to the best of our knowledge, both our ANNs and SNNs
achieve the currently best results on the N-CARS dataset (see
Table 1). In addition, our network has 126 378 parameters for
Nl = 5, which is significantly lower than the other approaches.

Since objects, e.g., cars, in the N-CARS dataset only slightly
move during the short duration of the recordings, the frames of
the input sequence are similar to each other (e.g., see data sample
in Figure 1A). For almost static input, intermediate activations
do not vary between rollout frames, and, hence, activations of
ANNs can be approximated over multiple rollout frames in
SNNs. The low number nsf = 15 of simulation steps per rollout
frame supports this hypothesis. This might also explain, why
the SNN peak performance is above the ANN performance (see
Table 1), since SNNs intrinsically average activations over rollout
frames and may thereby increase the signal-to-noise ratio of the
network outputs.

3.3. N-MNIST
N-MNIST (Orchard et al., 2015) is a widely used benchmark
dataset for SNNs, which allows a comparison of our approach
to various alternatives. Each sample in the N-MNIST dataset
consists of a digit from the MNIST dataset projected onto a
white wall and recorded with an event-based vision sensor, while
performing three quick movements (saccades). The challenge is
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TABLE 2 | Average accuracies for the N-MNIST dataset for ANNs and SNNs

(10 trials each).

N-MNIST Acc. # params # ops [MOps]

SNN with backprop (Lee et al., 2016) 98.66 2 · 106 –

SNN with backprop (Wu et al., 2019) 99.53 2 · 106 –

HATS/linear SVM (Sironi et al., 2018) 99.1 – –

Rec. U-Net+CNN (Rebecq et al., 2019) 98.3 > 106 –

Streaming rollout ANN (ours) 99.56(±0.01) 3 · 105 3, 500(±360)

Converted SNN (ours) 99.54(±0.01) 3 · 105 460(±38)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

that as the digit moves the active pixels overlap, which means
that averaging events over longer time periods results in blurred
images, and classification becomes more difficult. We use the
same network as for N-CARS, but with N = 32 input frames
and a growth factor g = 15, which was determined by sweeping
over g ∈ {9, 12, 15, 18}. Competitive results compared to state-
of-the art methods are achieved (see Table 2) and the SNN
after conversion is ∼7 times more energy-efficient than its ANN
counterpart.

As the number of parameters is not directly listed in the
work we compare to, we estimate them from their experiment
description: Rebecq et al. (2019) use a U-Net + ResNet18, which
typically has 106 to 107 parameters. Gehrig et al. (2019) use a
ResNet-34, which has ∼107 parameters. In Lee et al. (2016),
three layers with (2312, 800, 10) neurons are used, resulting in
1,857,600 parameters. In Wu et al. (2019), they list different
network sizes but we expect their best result to be from
their largest network listed in Table 1 in their paper. Each
convolutional layer has CinCoutkxky parameters, with Cin/out

the number of input/output channels and ki the kernel sizes.
In total, we count 2,840,704 parameters. Our approach has
319,890 parameters for Nl = 5, which is significantly lower
than the other approaches. Sharing weights over time and
taking temporal integration into account through our rollout
mechanisms allows reaching state-of-the-art accuracy with a
small memory footprint.

3.4. Cifar10-DVS
The CIFAR10-DVS dataset (Li et al., 2017) consists of 10,000
images extracted from the popular CIFAR-10 dataset. Each
of the 10 classes is represented by 1,000 images. Each of these
images is scaled up and moves on a diamond-shaped trajectory
on a screen. The scene is recorded by a DVS128 sensor for
1.298 ± 0.040 s (mean and standard deviation over all samples)
corresponding to 6 repetitions of the trajectory. The monitor’s
refresh rate of 60 Hz is filtered out of the event stream after
recording. The dataset is split randomly into a training (90%) and
test (10%) set while maintaining the balance of classes in each set.
Then, the training set is further randomly split into a validation
(20%) and new training (80%) set. After each training epoch, the
accuracy on the validation set is calculated to determine the best
model to be used for testing.

TABLE 3 | Average accuracies for the CIFAR10-DVS dataset for ANNs and

SNNs (10 trials each).

CIFAR10-DVS Acc. # params # ops [MOps]

HATS/linear SVM (Sironi et al., 2018) 52.4 – –

SNN with backprop (Wu et al., 2019) 60.5 2 · 106 –

Streaming rollout ANN (ours) 66.75(±0.22) 5 · 105 8, 800(±1, 300)

Converted SNN (ours) 65.61(±0.20) 5 · 105 1, 551(±65)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

The data is pre-processed by cutting out the first 1.3 s of the
event stream and splitting each sample into 48 frames resulting
in TF = 1.3/48 = 27.08 ms. Each edge of the diamond shape
is, therefore, resolved by 48/6/4 = 2 frames. To enable faster
training and inference, the spatial resolution of each frame is
reduced from 128 × 128 pixels to 32 × 32 pixels by bilinear
interpolation. We use the same hyperparameters for the network
architecture and training as for N-CARS and N-MNIST, but
optimize the growth factor by training networks with g ∈
{9, 12, 18, 22} and evaluating their accuracy on the validation set.
Networks with g = 18 result in the best mean accuracy on
the validation set, resulting in 480,852 parameters. The ANN-
to-SNN conversion is done like for N-CARS and N-MNIST
and nsf = 60 simulation steps are found to be a good trade-
off between accuracy and energy-efficiency. The accuracy of
our approach is better than of any other approach for ANNs
and SNNs reported to date, and our SNNs require 5-fold less
operations than their corresponding ANNs (see Table 3).

3.5. DvsGesture
DvsGesture (Amir et al., 2017) is an action recognition
dataset, where multiple participants performed 11 different
gestures under varying lighting conditions. The gestures have an
average duration of 6.5 ± 1.7 s and are recorded with a DVS128
sensor. The last class is an arbitrary gesture that each participant
came up with. Because this class is not clearly defined, we
train networks both with and without this additional target class,
which has also been done in the approaches we compare to. We
use the original dataset split of (Amir et al., 2017) and generate a
validation set by randomly selecting 10% of the training set.

To simplify training and testing we follow the approach by
Shrestha and Orchard (2018) and use only the first 1.5 s of each
sample, which still contains multiple repetitions of the gesture.
We split each sample into 240 frames corresponding to a frame
interval of TF = 240/1.5 = 6.25 ms. As for CIFAR10-DVS,
we reduce the spatial dimension of each frame from 128 × 128
to 32 × 32 pixels. Inspired by Amir et al. (2017), we use stacks
of 10 consecutive frames as input for each rollout frame in both
ANNs and converted SNNs, such that each of the 24 inputs has 20
channels (as each frame has an on and off channel). This enables
temporal integration over longer time scales without introducing
motion blur in the individual frames. Note that the frequency
of predictions is reduced to only every ten frames, i.e., every
10 · 6.25 ms = 62.5 ms. We use the same hyperparameters as
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TABLE 4 | Average accuracies for the DvsGesture dataset for ANNs and SNNs

(10 trials each).

DvsGesture Acc. # params # ops [MOps]

10 CLASSES

SNN on TrueNorth (Amir

et al., 2017)

96.7 1.5 · 106 –

SNN with backprop

(Shrestha and Orchard,

2018)

93.64(±0.49) – –

PointNet-like ANN

(Wang et al., 2019)

97.08 – –

Streaming rollout ANN

(ours)

97.16(±0.11) 5 · 105 8, 150(±740)

Converted SNN (ours) 96.97(±0.17) 5 · 105 651(±43)

11 CLASSES

SNN on TrueNorth (Amir

et al., 2017)

94.59 1.5 · 106 –

PointNet-like ANN

(Wang et al., 2019)

95.32 – –

Streaming rollout ANN

(ours)

95.68(±0.32) 8 · 105 15.000(±1, 000)

Converted SNN (ours) 95.56(±0.14) 8 · 105 931(±24)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

for CIFAR10-DVS, except for the growth factor. We sweep over
g ∈ {6, 9, 12, 15, 18} and find g = 9 to perform best for 10 classes
and g = 12 for 11 classes. Our networks therefore have 476,460
and 821,820 parameters, respectively. ANN and SNN accuracies
are on par with other state-of-the-art approaches (Table 4). For
our SNNs, the number of operations is ∼12.5 times lower than
for the corresponding ANNs.

We calculate the number of parameters of Amir et al. (2017)
from their Table 1 as params =

∑16
i=1 feat[i] · kernelx[i] ·

kernely[i] · feat[i− 1]/groups[i] = 1, 528, 536. Shrestha and
Orchard (2018) do not provide a detailed network description for
their DvsGesture experiments.

4. DISCUSSION

We have presented a novel way of training efficient SNNs for
sequence processing via conversion from ANNs. The crucial
observation is the connection between axonal delays in the SNN
and the rollout strategy in the ANN. Streaming rollouts of ANNs
are shown to be a particularly good fit, as they closely resemble
the fully model-parallel execution in SNNs. To unify the two
approaches, we introduced several additions to the existing
conversion approach, such as a more general weight rescaling
scheme, a new way to calculate predictions in the SNN, rescaling
of average pooling layers and axonal delays. As a result, we make
ANN-to-SNN conversion applicable in a principled manner to
input signals changing over time, including general time series
and the special case of event-based input data. Due to the fact that

the streaming rollout imposes constraints on the ANN during
training our approach can be interpreted as a “constrain-then-
train” approach for SNNs (Esser et al., 2015; Pfeiffer and Pfeil,
2018), for which the superior training mechanisms available for
ANNs are combined with the efficiency of SNN execution.

We identify and highlight in our experiments particular
advantages of applying conversion to rolled-out networks. Our
proposed training and conversion scheme results in SNNs
that efficiently integrate temporal information, provide early
approximate network outputs, and achieve state-of-the art results
on the N-MNIST, N-CARS, DvsGesture and CIFAR10-DVS
datasets with smaller networks than other approaches, and with
SNNs that are consistently more energy-efficient than their ANN
counterparts. A uniformweighting of the network outputs in the
loss function enables good early and late performance compared
to other weighting patterns, such that even for the first network
output, the prediction is significantly above chance level. Our
framework is flexible enough to allow different trade-offs between
early and late performance by choosing different weight factors
ak. In this study, for the first time, streaming rollouts were applied
to realistic and large-scale time series data, and were shown to
be competitive with other approaches on multiple widely used
event-based vision tasks (see Tables 1–4).

Although we use only delays of one rollout frame in our
experiments, in principle, arbitrary delays can be incorporated
into the network rollouts. This principle is useful to convert
advanced ANN architectures with temporal convolutions
(van den Oord et al., 2016b; Bai et al., 2018) that require multiple
delays when rolled out. This is a big advantage over previous
conversion approaches (e.g., Cao et al., 2015; Rueckauer et al.,
2017), which do not take delays of connections into account.
For purely feed-forward SNNs on suitable hardware (Farabet
et al., 2012; Pérez-Carrasco et al., 2013) a pseudo-simultaneous
spread of information, i.e., all delays in the network are zero,
is advantageous, but causes de-synchronization if information
needs to be integrated over time. Our approach generalizes
the work of Diehl et al. (2016), who have shown a conversion
approach for Elman-type recurrent networks using fixed
delays in the recurrent layer and zero delays for feed-forward
connections. Note that although our experiments only show
DenseNet architectures and therefore lead to a linear growth
of the size of the temporal receptive field with network depth,
this is not a general restriction of our approach. More complex
network graphs, for example containing temporal convolutions
or recurrent connections, lead to a super-linear growth of the
temporal receptive field.

Rescaling weights and biases during conversion by using
percentiles instead of maximum values as upper limits for
ANN activations increases the accuracy. However, the percentile
values of activations calculated over all rollout frames may
overestimate the size of ANN activations in single rollout frames
and would, hence, decrease the effective resolution of the firing
rate approximation (for details, see Section 2.4). For example,
in our network rollouts, the activity increases with each rollout
frame (which does not hold in general). This results in strong
overestimations of activations for early network outputs, which
in turn increase approximation errors and, hence, decrease
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accuracy (see e.g., Figure 3C). As the activity increases with more
andmore paths from input to output of the network contributing
to later network outputs, this approximation error decreases until
an optimal effective resolution is reached when spiking activity is
present in all parts of the network. Adaptively rescaling the SNN
weights or firing thresholds could be a solution to alleviate this
effect. This can be seen as a kind of homeostasis mechanism that
keeps the overall firing rates of SNNs at a constant level.

Instead of simply averaging event rates to obtain input frames,
our approach generalizes to using more advanced features
for event-based vision, such as time surfaces (Sironi et al.,
2018), event spike tensors (Gehrig et al., 2019) or motion-based
features (Clady et al., 2017). As use-cases for event-based vision
are becoming increasingly challenging (Gallego et al., 2019),
and neuromorphic hardware platforms become more mature
(DeBole et al., 2019), our approach fills an important gap to
provide powerful SNNs ready for deployment on those platforms.

A major goal of our approach is achieving energy-efficiency,
which we measure by the number of operations necessary to
reach the desired performance. High efficiency during early
inference is enabled by temporal skip connections and carefully
choosing the weight factors ak in the loss function to achieve a
good early accuracy without deteriorating the later peak accuracy.
After ANN-to-SNN conversion, the SNNs are consistently
more energy-efficient than their corresponding ANNs, and the
achieved relative gain in efficiency is higher than, e.g., reported
by Rueckauer et al. (2017). This may be due to the different
neural architectures and the increased sparsity of the input in our
study. The sparsity of a single frame increases with a decreasing
time interval TF over which events are accumulated. To further
increase the efficiency we ran multiple experiments including
quantization and observed interesting dependencies between
quantization levels, network architectures, energy-efficiency, and
final accuracy. A thorough investigation would exceed the scope
of this study and is left for future studies.

In summary, our approach sets a new standard for spiking
neural networks for processing spatio-temporal event streams
both in terms of accuracy and efficiency. However, in this study,
information is encoded with firing rates, the underlying principle

of network conversions, and we did not exploit the potential of
encoding information with spike times that potentially allow for
evenmore energy-efficient solutions (for an overview, see Pfeiffer
and Pfeil, 2018). We are excited to see our results as a competitive
baseline for further studies in the direction of spike codes.
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A growing body of work underlines striking similarities between biological neural networks

and recurrent, binary neural networks. A relatively smaller body of work, however,

addresses the similarities between learning dynamics employed in deep artificial neural

networks and synaptic plasticity in spiking neural networks. The challenge preventing

this is largely caused by the discrepancy between the dynamical properties of synaptic

plasticity and the requirements for gradient backpropagation. Learning algorithms that

approximate gradient backpropagation using local error functions can overcome this

challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking

neural network equipped with local error functions for online learning with no memory

overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal

representations from spikes relying solely on local information, making it compatible

with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived

systematically from user-defined cost functions and neural dynamics by leveraging

existing autodifferentiation methods of machine learning frameworks. We benchmark

our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture,

on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks

provide continuously learning machines that are relevant to biology and supportive

of event-based, low-power computer vision architectures matching the accuracies of

conventional computers on tasks where temporal precision and speed are essential.

Keywords: spiking neural network, embedded learning, neuromorphic hardware, surrogate gradient algorithm,

backpropagataon

1. INTRODUCTION

Understanding how the plasticity dynamics in multilayer biological neural networks are organized
for efficient data-driven learning is a long-standing question in computational neurosciences
(Sussillo and Abbott, 2009; Clopath et al., 2010; Zenke and Ganguli, 2017). The generally
unmatched success of deep learning algorithms in a wide variety of data-driven tasks prompts
the question of whether the ingredients of their success are compatible with their biological
counterparts, namely Spiking Neural Networks (SNNs). Biological neural networks distinguish
themselves from Artificial Neural Networks (ANNs) by their continuous-time dynamics, the
locality of their operations (Baldi et al., 2017), and their spike(event)-based communication.

84

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00424
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00424&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eneftci@uci.edu
https://doi.org/10.3389/fnins.2020.00424
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full
http://loop.frontiersin.org/people/521786/overview
http://loop.frontiersin.org/people/191357/overview
http://loop.frontiersin.org/people/3753/overview


Kaiser et al. Deep Continuous Local Learning (DECOLLE)

Taking these properties into account in a neural network is
challenging, as the spiking nature of the neurons’ nonlinearity
makes it non-differentiable, the continuous-time dynamics raise
a temporal credit assignment problem and the assumption of
computations being local to the neuron disqualifies the use of
Back-Propagation-Through-Time (BPTT).

In this article, we describe DECOLLE, a SNN model with
plasticity dynamics that solves the three problems above, and that
performs at proficiencies comparable to that of multilayer neural
networks. DECOLLE uses layerwise local readouts (Mostafa
et al., 2017), which enables gradients to be computed locally
(Figure 1). To tackle the temporal dynamics of the neurons,
we use a recently established equivalence between SNNs and
recurrent ANNs (Neftci et al., 2019). This equivalence rests on
a computational graph of the SNN, which can be implemented
with standardmachine learning frameworks as a recurrent neural
network. Unlike BPTT and like Real-Time Recurrent Learning
(RTRL) (Williams and Zipser, 1989), DECOLLE is formulated in
a way that the information necessary to compute the gradient is
propagated forward, making the plasticity rule temporally local.
Existing rules of this sort require dedicated state variables for
every synapse, thus scaling at least quadratically with the number
of neurons (Williams and Zipser, 1989; Zenke and Ganguli,
2017). In contrast, DECOLLE scales linearly with the number
of neurons. This is achieved using a spatially and temporally
local cost function reminiscent of readout mechanisms used
in liquid state machines (Maass et al., 2002), but where the
readout is performed over a fixed random combination of
the neuron outputs. Our approach can be viewed as a type
of synthetic gradient, a technique used to decouple one or
more layers from the rest of the network to prevent layerwise
locking (Jaderberg et al., 2016). Although synthetic gradients
usually involve an outer loop that is equivalent to a full Back-
Propagation (BP) through the network, DECOLLE instead relies
on the random initialization of the local readout and forgoes the
outer loop.

Conveniently, DECOLLE can leverage existing
autodifferentiation tools of modern machine learning
frameworks. Its linear scalability enables the training of
hundreds of thousands of spiking neurons on a single GPU, and
continual learning on very fine time scales. We demonstrate our
approach on the classification of gestures, the IBM DvsGesture
dataset (Amir et al., 2017), recorded using an event-based
neuromorphic sensor and report comparable performance to
deep neural networks and even networks trained with BPTT.

1.1. Related Work
Previous work demonstrated learning in multiple layers of SNN
using feedback alignment (Lillicrap et al., 2016; Neftci et al.,
2017), performing at about 2% classification error on MNIST.
However, those networks operated in the firing rate regime, by
using either large populations or slow dynamics. In those works,
training was not insensitive to the temporal dynamics of the
neurons. The need for temporal dynamics are often obfuscated
by the static nature of the benchmarked problems (e.g., MNIST),
and a long readout interval that allows to ignore initial transients
caused by the dynamics. In our previous work (Neftci et al.,

2017), ignoring temporal dynamics raised a “loop duration”
problem, i.e., that the errors are available only after they have
propagated through the network. This introduces latency or
requires additional buffers for storing intermediate neural states.
In traditional deep learning, the loop duration manifests itself
as “layerwise locking,” during which a layer’s weights cannot
be updated until a global cost function is evaluated (Jaderberg
et al., 2016). This causes under utilization of the computing
resources and a slowdown in learning. Besides the loop duration
problem, multilayer networks trained with feedback alignment
cannot reach the performances of gradient BP, especially with
deeper networks (≥ 30% accuracy drop on ImageNet compared
to backpropagation; Bartunov et al., 2018).

The complex dynamics of spiking neurons is an important
feature that can be exploited for learning spatiotemporal patterns.
In a single layer of neurons, this feature can be leveraged
using gradient descent, since it is applicable to the subthreshold
dynamics of leaky Integrate & Fire (I&F) neurons (Bohte et al.,
2000; Gütig and Sompolinsky, 2006). Because the I&F neuron
output is non-differentiable, however, the application of these
approaches to multiple layers is not straightforward. To deal
with this problem, SuperSpike uses a surrogate network with
differentiable activation functions to compute an approximate
gradient (Zenke and Ganguli, 2017). The authors show that this
learning rule is equivalent to a forward-propagation of errors
using synaptic traces, and is capable of learning in hidden layers
of feedforward multilayer networks.

Because the traces need to be computed for every trainable
parameter, Superspike scales temporally and spatially as O(N2),
where N is the number of neurons. While the complex
biochemical processes at the synapse could account for the
quadratic scaling, it prevents an efficient implementation in
available hardware. Like SuperSpike, DECOLLE uses surrogate
gradients to perform weight updates, but as discussed later, the
cost function is local in time and space, such that only one
trace per input neuron is required. This enables the algorithm
to scale linearly in space. Furthermore, in DECOLLE the
computation of the gradients can reuse the variables computed
for the forward dynamics, such that learning has no additional
memory overhead.

DECOLLE has some resemblance with reservoir networks,
which are neural networks with fixed internal connectivity and
trainable readout functions (Jaeger, 2001; Maass et al., 2002;
Eliasmith and Anderson, 2004; Sussillo and Abbott, 2009).
The local readout in DECOLLE acts like a decoder layer in
the flavor of the linear readouts in reservoir networks. In
contrary to reservoir networks, DECOLLE learns the internal
weights, but the readout weights are random and fixed. The
training of the internal weights allows the network to learn
representations that are easier to classify inputs for subsequent
layers (Mostafa et al., 2017).

Spiking neural networks can be viewed as a subclass of
binary, recurrent ANNs (Neftci et al., 2019). In the ANN sense,
they are recurrent even when all the connections are feed-
forward because the neurons maintain a state that is propagated
forward at every time step. Binary neural networks, where both
activations and/or weights are binary were studied in deep
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FIGURE 1 | Deep Continuous Local Learning (DECOLLE). (Left) Each layer consists of spiking neurons with continuous dynamics. Each layer feeds into a local

readout units through fixed, random connections (diamond-shaped, y). The local layer is trained such that the readout at each layer produce auxiliary targets Ŷ . Errors

are propagated through the random connections to train weights coming into the spiking layer, but no further (curvy, dashed line). To simplify the learning rule and

enable linear scaling of the computations, the cost function is a function of the states in the same time step. The state of the spiking neurons (membrane potential,

synaptic states, refractory state) is carried forward in time. Consequently, even in the absence of recurrent connections, the neurons are stateful in the sense of

recurrent neural networks. (Right) Snapshot of the neural states illustrating the DECOLLE learning rule in the top layer. In this example, the network is trained to

produce three time-varying pseudo-targets Ŷ1, Ŷ2, Ŷ3.

learning as a way to decrease model complexity during inference
(Courbariaux et al., 2016; Rastegari et al., 2016). BPTT for
training SNNs was investigated in Bohte et al. (2000), Lee et al.
(2016), Huh and Sejnowski (2017), Shrestha and Orchard (2018),
and Bellec et al. (2018). BPTT-based approaches provide an
unbiased estimation of the gradients but at a cost in memory,
because the entire sequence and resulting activity states are
stored to compute gradients. Although the truncation of the
sequences (as in truncated BPTT) can mitigate this problem,
it is not adequate when discretizing continuous-time networks,
such as the SNN (Neftci et al., 2019) because the sequences
can consists of hundreds of steps. This is because the time
constants and simulation timestep in SNNs are such that the
truncation window must be much larger. For SNN simulations
with biological time constants, it is common to use simulation
time steps 1t ≤ 1ms. Smaller time steps capture non-linear
dynamics more accurately and determine the temporal precision
of all produced spike times. Assuming 1t = 1ms (as used
in this work), and if relevant interactions occur at one second,
this implies that the truncation window must be at about 1,000
timesteps. This significantly increases the complexity of BPTT
in SNNs. In practice, the size of SNN trainable by BPTT is
severely limited by the available GPU memory (Shrestha and
Orchard, 2018). As we explain later in this article, DECOLLE
requires an order T less memory resources compared to BPTT,
where T is the sequence length. Hence, DECOLLE networks are
generally not memory-limited. Furthermore, DECOLLE can be

formulated as a local, three-factor synaptic plasticity rule, and
is thus amenable to implementation in dedicated, event-based
(neuromorphic) hardware (Davies et al., 2018), and compatible
with neurobiology.

Decoupled Neural Interfaces (DNI) were proposed to mitigate
layerwise locking in training deep neural networks (Jaderberg
et al., 2016). In DNIs, this decoupling is achieved using a
synthetic gradient, a neural network that estimates the gradients
for a portion of the network. In an inner loop, the network
parameters are trained using the synthetic gradients, and in
an outer loop, the synthetic gradient network parameters are
trained using a full BP step. The gradient computed using local
errors in DECOLLE described below can be viewed as a type of
synthetic gradient, which ignores the outer loop to avoid a full
BP step. Although ignoring the outer loop limits DECOLLE’s
adaptation of the features using errors from other layers, we find
that the network performs at or above state-of-the-art accuracy
on N-MNIST and DVS Gesture benchmark tasks.

A related method called E-prop was developed in parallel to
DECOLLE (Bellec et al., 2019). The resulting learning rule in E-
prop is of the same form as Superspike and DECOLLE. E-prop
uses adaptive spiking Long Short TermMemory (LSTM) neurons
to maintain a longer term memory. This generalization allows
to solve tasks with long-term dependencies (similar to LSTMs)
but requires maintaining one trace per synapse. These memory
requirements quickly exceed the capabilities of modern GPUs,
especially when applied to convolutional neural networks. Even
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in neuromorphic hardware, maintaining a synapse-specific trace
can incur a prohibitive cost in area and power (Huayaney et al.,
2016; Davies et al., 2018). In DECOLLE, we focus on networks
which do not incur any memory overhead for training, allowing
to tractably train large networks.

This work builds on a combination of how gradients
are dynamically computed in SuperSpike and local errors.
We show in the methods section that this combination
considerably reduces the computational requirements compared
to a computing a global loss.

2. METHODS

2.1. Neuron and Synapse Model
The neuron and synapse models used in this work follow
leaky, current-based I&F dynamics with a relative refractory
mechanism. The dynamics of the membrane potential Ui of a
neuron i is governed by the following differential equations:

Ui(t) =Vi(t)− ρRi(t)+ bi,

τmem
d

dt
Vi(t) =− Vi(t)+ Ii(t),

τref
d

dt
Ri(t) =− Ri(t)+ Si(t),

(1)

with Si(t) the binary value (0 or 1) representing whether neuron
i spiked at time t. The separation of the membrane potential into
two variables U and V is done here for implementations reasons
only. Biologically, the two states can be interpreted as a special
case of a two-compartment model, consisting of one dendritic
(V) and one somatic (U) compartment (Gerstner et al., 2014,
Chapter 6.4). The absence of dynamics for U can be interpreted
as the special case when somatic capacitance is much smaller than
the distal capacitance. A spike is emitted when the membrane
potential reaches a threshold Si(t) = 2(Ui(t)), where 2(x) = 0
if x < 0, otherwise 1 is the unit step function. The constant bi
represents the intrinsic excitability of the neuron. The refractory
mechanism is captured with the dynamics of Ri: the neuron
inhibits itself after firing, by a constant weight ρ. In contrast
to standard I&F refractory mechanisms, a strong enough input
can still induce the neuron to fire immediately after a spike. The
factors τref and τmem are time constants of the membrane and
refractory dynamics, respectively. Ii denotes the total synaptic
current of neuron i, expressed as:

τsyn
d

dt
Ii(t) =− Ii(t)+

∑

j∈pre

WijSj(t), (2)

where Wij is the synaptic weights between pre-synaptic neuron
j and post-synaptic neuron i. Because Vi and Ii are linear
with respect to the weights Wij, The dynamics of Vi can be

rewritten as:

Vi(t) =
∑

j∈pre

WijPij(t),

τmem
d

dt
Pij(t) =− Pij(t)+ Qij(t),

τsyn
d

dt
Qij(t) =− Qij(t)+ Sj(t).

(3)

The states P and Q describe the traces of the membrane and
the current-based synapse, respectively. For each incoming spike,
the trace Q undergoes a jump of height 1 and otherwise decays
exponentially with a time constant τsyn. Weighting the trace
Qij with the synaptic weight Wij results in the Post–Synaptic
Potentials (PSPs) of neuron i caused by input neuron j.

All efferent synapses with identical time constants have
identical dynamics. By linearity of P and Q, the state of the
synapse can be described by a single synaptic variable per pre-
synaptic neuron (Brette et al., 2007). In the equation above, this is
evident by the fact that Pij andQij are only driven by Sj, and so the
index i can be dropped. This results in as many P and Q variables
as there are pre-synaptic neurons, independently of the number
of synapses. This strategy is commonly used in synapse circuits
in neuromorphic hardware to reduce circuit area (Bartolozzi and
Indiveri, 2006), and in software simulations of spiking neurons
to improve memory consumption and computation time (Brette
et al., 2007).

Discrete Spike Response Model of the Neuron and

Synapse Dynamics
Because a computer will be used to simulate the dynamics,
the dynamics are simulated in discrete time. We denote the
simulation time step with 1t. We also make the layerwise
organization of the network apparent with the superscript l
denoting the layer to which the neuron belongs. The dynamical
equations in Equations (1) and (3) are expressed in discrete
time as:

U l
i [t] =

∑

j

Wl
ijP

l
j[t]− ρRli[t]+ bli,

Sli[t] = 2(U l
i [t]),

Plj[t + 1t] = αPlj[t]+ (1− α)Ql
j[t],

Ql
j[t + 1t] = βQl

j[t]+ (1− β)Sl−1
j [t],

Rli[t + 1t] = γRli[t]+ (1− γ )Sli[t],

(4)

where the constants α = exp(− 1t
τmem

), γ = exp(− 1t
τref

), and

β = exp(− 1t
τsyn

) reflect the decay dynamics of the membrane

potentialU, the refractory state R and the synaptic stateQ during
a 1t timestep. Note that Equation (4) is equivalent to a discrete-
time version of the Spike Response Model (SRM0) with linear
filters (Gerstner and Kistler, 2002).

2.2. Deep Learning With Local Losses
Loss functions are almost always defined using the network
output at the top layer. Assuming a global cost function L(SN)
defined on the spikes SN of the top layer and targets Ŷ , the
gradients with respect to the weights in layer l are:

∂L(SN)

∂W l
ij

=
∂L(SN)

∂Sli

∂Sli

∂U l
i

∂U l
i

∂W l
ij

. (5)
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The factor ∂L(SN )

∂Sli
captures the backpropagated errors, i.e., how

changing the output of neuron i in layer l modifies the global
loss. This problem is known as the credit assignment problem.
It generally involves non-local terms, including the activity of
other neurons, their errors, and their temporal history. Thus,
using local information only, a neuron in a deep layer cannot
infer how a change in its activity will affect the top-layer cost.
An increasing body of work is showing that approximations to
the backpropagated errors in SNNs can allow local learning, for
example in feedback alignment (Lillicrap et al., 2014). However,
maintaining the history of the dynamics efficiently remains a
challenging and open problem. While it is possible to use BPTT
methods to compute these errors, this comes at a significant cost
in memory and computation (Williams and Zipser, 1989), and is
not consistent with the constraint of local information.

We address this conundrum using deep local learning
(Mostafa et al., 2017). We focus on a form of deep local
learning that attaches random readouts to deep layers and defines
auxiliary cost functions over the readout. These auxiliary cost
functions provide a task-relevant source of error for neurons
in deep layers. The random readout is obtained by multiplying
the neural activations with a random and fixed matrix. Training
deep layers using auxiliary local errors that minimize the cost
locally still allows the network as a whole to reach a small top-
layer cost. As explained in Mostafa et al. (2017), minimizing a
local readout’s classification loss puts pressure on deep layers to
learn useful task-relevant features, which allow the random local
classifiers to solve the task. Moreover, each layer builds on the
features of the previous layer to learn features that are further
disentangled with respect to the categories for its local random
classifier compared to the previous layer. Thus, even though no
error information propagates downwards through the layer stack,
the layers indirectly learn useful hierarchical features that end
up minimizing the cost at the top layer. Although the reasons
for the effectiveness of local errors in deep network is intriguing
and merits further work, it is orthogonal to the scope of this
article. In this article, we focus on the fact that, provided local loss
functions, surrogate learning in deep spiking neural networks
becomes particularly efficient.

2.3. Deep Continuous Local
Learning (DECOLLE)
As discussed above, in DECOLLE, we attach a random readout to
each of the N layers of spiking neurons:

Y l
i =

∑

j

Gl
ijS

l
j,

where Gl
ij are fixed, randommatrices (one for each layer l) and 2

is an activation function. The global loss function is then defined
as the sum of the layerwise loss functions defined on the random

readouts, i.e. L =
∑N

l=1 L
l(Y l). To enforce locality, DECOLLE

sets to zero all non-local gradients, i.e., ∂Ll

∂Wm
ij

= 0 if m 6= l. With

this assumption, the weight updates at each layer become:

1W l
ij = −η

∂Ll

∂W l
ij

= −η
∂Ll

∂Sli

∂Sli

∂W l
ij

, (6)

where η is the learning rate. Assuming the loss function depends
only on variables in same time step, the first gradient term on

the right hand side, ∂Ll

∂Sli
, can be trivially computed using the chain

rule of derivatives. Applying the chain of derivatives to the second
gradient term yields:

∂Sli

∂W l
ij

=
∂2(U l

i )

∂U l
i

∂U l
i

∂W l
ij

.

Due to the sparse, binary activation of spiking neurons, this
expression vanishes everywhere except at 0, where it is infinite
(Neftci et al., 2019). To solve this problem, parameter updates
in DECOLLE are based on a differentiable but slightly different
version of the task-performing network. This approach was
previously described as surrogate gradient-based learning (Zenke
and Ganguli, 2017; Neftci et al., 2019):

∂Sli

∂W l
ij

= σ ′(U l
i )

∂U l
i

∂W l
ij

,

where σ ′(U l
i ) is the surrogate gradient of the non-differentiable

step function 2(U l
i ). The rightmost term is computed as:

∂U l
i

∂W l
ij

= Plj − ρ
∂Rli

∂W l
ij

.

The terms involving Rli are difficult to calculate because they
depend on the spiking history of the neuron. As in Superspike,
we ignore these dependencies and use regularization to favor low
firing rates, a regime in which the Rli has a negligible effect on the
membrane dynamics. Putting all three terms together, we obtain
the DECOLLE rule governing the synaptic weight update:

1W l
ij = −η

∂Ll

∂Sli
σ ′(U l

i )P
l
j. (7)

In the special case of the Mean Square Error (MSE) loss for layer
l, described as

Ll =
1

2

∑

i

(

Y l
i − Ŷ l

i

)2
,

the DECOLLE rule becomes

1W l
ij = −η errorli σ

′(U l
i )P

l
j,

errorli =
∑

k

Gl
ki(Y

l
k − Ŷ l

k),
(8)

where Ŷ l is the pseudo-target vector for layer l.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 42488

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kaiser et al. Deep Continuous Local Learning (DECOLLE)

2.3.1. Memory Complexity of DECOLLE

The variables P and U required for learning are local and
readily available from the forward dynamics. Because the errors
are computed locally to each layer, DECOLLE does not need
to store any additional intermediate variables, i.e., there is no
space requirement for the parameter update computation. The
same neural traces P and Q maintained during the forward
pass are sufficient (see section 2.4). The computational cost of
the weight update is the same as the Widrow-Hoff rule (one
addition and two products per connection, see Equation 8). This
makes DECOLLE significantly cheaper to implement compared
to BPTT for training SNN, e.g., SLAYER (Shrestha and Orchard,
2018) which scales spatially as O(NT), where T is the number of
timesteps (see Appendix section 5.2 for details on scaling).

2.3.2. Sign-Concordant Feedback Alignment in the

Local Layers

The gradients of the local losses Lli involve backpropagation

through the local random projection Y l. This is a non-local
operation as it requires the symmetric transpose of the matrix
G. This raises a weight transport problem, whereby the synaptic
weight must be “transported” from one neuron to another.
In a von Neumann computer, this is not a problem since
memory is shared across processes. However, if memory is
local, then a dedicated process must transmit this information.
Feedback alignment in non-spiking networks was demonstrated
to overcome this problem at a cost in accuracy (Mostafa et al.,
2017). In our experiments, we use sign-concordant feedback
weights to compute the gradients of the local losses: the backward
weights have the same sign as the forward ones, but subject
to fixed multiplicative Gaussian noise. The noise here reflects
the fact that weights do not need to be exactly symmetric.
This assumption is the most plausible scenario in mixed-signal
neuromorphic devices, where connections can be programmed
with the same sign bidirectionally, but the effective weights
are subject to fabrication mismatch (Neftci et al., 2011). Since
the weights in the local readouts are fixed, there is no weight
transport problem during learning. Thus, the computation of
the errors can be carried out using another random matrix
Hl (Lillicrap et al., 2016) whose elements are equal to Hl

ij =

Gl,T
ij ωl

ij with a Gaussian distributed ωl
ij ∼ N(1, 12 ). To enforce

sign-concordance, all values ωl
ij below zero were set to zero.

2.3.3. Biological Plausibility of DECOLLE and

Suitability for Neuromorphic Hardware

Equation (8) consists of three factors, one modulatory (errori),
one post-synaptic [σ ′(U l

i )], and one pre-synaptic (Plj). These

types of rules are often termed three-factor rules, which have
been shown to be consistent with biology (Pfister et al., 2006),
while being compatible with a wide number of unsupervised,
supervised, and reinforcement learning paradigms (Urbanczik
and Senn, 2014). The terms P and Q represent neural and
synaptic states that are readily available at the neuron. In our
previous work and general experience, the shape of the surrogate

function σ does not play a major role in DECOLLE1. The
surrogate function σ can be a piecewise linear function (Neftci
et al., 2017), such that σ ′ becomes a boxcar function. This
corresponds to a learning update that is gated by the post-
synaptic membrane potential, and is reminiscent of membrane
voltage-based rules, where spike-driven plasticity is induced only
when membrane voltage is inside an eligibility window (Brader
et al., 2007; Chicca et al., 2013).

In the derivation of the DECOLLE rule, we used an
instantaneous readout function Y l in the sense that it did
not depend on states of the previous time step. In biology,
this readout would be carried out by spiking neurons. This
introduces a temporal dependency. As in SuperSpike, this
temporal dependency significantly increases the complexity of
the learning, and is costly to implement in neuromorphic
hardware. One solution is to compute the errors using spiking
neurons with dynamics faster than those of the hidden neurons.
In mixed signal hardware, this can be achieved through fast
membrane and synaptic time constants. In digital hardware this
could be achieved using a dedicated logic block.

2.3.4. Regularization and Implementation Details

From a technological point of view, SNNs are interesting when
the spike rate is low as dedicated neuromorphic hardware can
directly exploit this sparsity to reduce computations by the same
factor (Merolla et al., 2014; Davies et al., 2018). To ensure
reasonable firing rates and prevent sustained firing, we use two
regularizers. One keeps U below to the firing threshold on
average, and one activity regularizer enforces a minimum firing
rate in each layer. The final loss function is:

Lg =

∑

l

Ll + λ1〈[U
l
i + 0.01]+〉i + λ2[0.1− 〈U l

i〉i]
+ (9)

where 〈·〉i denotes averaging over index i, [·]+ is a linear
rectification, and λ1, λ2 are hyperparameters. The minimum
firing rate regularization is included to prevent the layers
becoming completely silent during the training. Our experiments
used a piecewise linear surrogate activation function, such that
its derivative becomes the boxcar function σ ′(x) = 1 if x ∈

[−0.5, 0.5] and 0 otherwise.
In all our experiments, weight updates are made for each time

step of the simulation. We use the AdaMax optimizer (Kingma
and Ba, 2014) with parameters β1 = 0, β2 = 95 and learning rate
10−9, and a smooth L1 loss. Biases were used for all layers and
trained in all DECOLLE layers. The weights Gl used for the local
readouts were initialized uniformly. PyTorch code and a tutorial
are publicly available on Github2. DECOLLE is simulated using
mini-batches to leverage the GPU’s parallelism.

1Conversely, the particular surrogate function is reported to play an important

role in BPTT (Bellec et al., 2018). This is likely due the product of the gradient

approximations carried across multiple layers. This in turn can cause vanishing or

exploding gradients.
2https://github.com/nmi-lab/decolle-public
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2.4. Computational Graph and
Implementation Using Automatic
Differentiation
Perhaps one of the strongest advantages of DECOLLE is its
out-of-the-box compatibility with Automatic Differentiation
(AD) tools for implementing gradient BP. AD is a technology
recently incorporated in machine learning frameworks to
automatically compute gradients in a computational graph3.
AD operates on the principle that all numerical computations
are compositions of a finite set of elementary operations for
which derivatives are known. By combining the derivatives of the
operations through the chain rule of derivatives, the derivative
of the overall composition can be computed in a single pass
(Baydin et al., 2017).

In practice, machine learning frameworks augment
each elementary computation with its corresponding
derivative function. As the desired operation is constructed,
the dependencies with other variables are recorded as a
computational graph. To perform gradient BP, after a forward
pass, a backward pass computes all the derivatives of the
operations in the graph. The root node of the reverse graph is
typically a scalar loss function, and the leaf nodes are generally
inputs and parameters of the network. After the backward
pass, the gradients of all leaf nodes are applied to the trained
parameters or inputs according to the optimization routine (e.g.,
Adam or similar).

SNNs being a special case of recurrent neural networks,
it is possible to apply AD to the full graph (Shrestha and
Orchard, 2018). On the other hand, DECOLLE only requires
backpropagating through a subgraph corresponding to one layer
and within the same time step (Figure 2). This is because the
information necessary for computing the gradients (P, Q, R, and
U) is carried forward in time, and because local loss functions
provide gradients for each layer.

AD in DECOLLE thus computes the gradients, locally,
for each layer within each timestep. Because some operations
in the subgraph can be non-differentiable (such as the
spiking nonlinearity), we call this the “surrogate gradient
backprop” (Figure 2). This integration allows leveraging the
layers, operations, optimizers and cost functions provided by
the software. All experiments under the Experiments section use
AD to compute derivatives. To prevent AD from unnecessarily
backpropagating in time, we rely on special “stop-gradient”
operations. In the Appendix, we provide pseudocode and
discussion of how this can be achieved.

3. EXPERIMENTS

3.1. Regression With Poisson Spike Trains
To illustrate the inner workings of DECOLLE, we first
demonstrate DECOLLE in a regression task. A three-layer fully
connected network consisting of 512 neurons each is stimulated
with a fixed 500 ms Poisson spike train. Each layer in the network
is trained with a different pseudo-target: Ŷ1, a ramp function;

3Gradient BP is a special case of reverse mode AD, see Baydin et al. (2017) for

complete review.

FIGURE 2 | The unfolded computational graph of a feedforward SNN. Time

flows to the right. Only temporal dependencies between timestep n− 1 and n

are shown here. Green edges indicate variables trained in the presented

version of DECOLLE. Red edges indicate the flow of the gradients. Note that

this graph is similar to that of a simple recurrent neural network. The forward

RTRL approach combined with local errors means that errors do not

propagate through neurons and across layers, as all the information required

for learning is available at the layer and the current time step n. For

implementation purposes however, autodifferentiation can be used to compute

gradients within the neuron and time step (see Appendix section 2.4 for

details). To avoid clutter, the node for R has been omitted.

Ŷ2, a high-frequency sinusoidal function and Ŷ3, a low-frequency
sinusoidal function. Figure 1 illustrates the states of the neurons.
For illustration purposes, the recording of the neural states was
made in the absence of parameter updates (i.e., the learning
rate is 0). The refractory mechanism decreases the membrane
potential after the neuron spikes (U[t]). As discussed in the
methods we use regularization on the membrane potential to
keep the neurons from sustaining high firing rates and an activity
regularizer to maintain a minimum firing rate. Updates to the
weight are made at each time step and can be non-zero when
the derivative of the activation function σ ′(U) and P are non-
zero. The magnitude and direction of the update are determined
by the error. Note that, in effect, the error is randomized as a
consequence of the random local readout. The network learned
to use the input spike times to reliably produce the targets.

3.2. N-MNIST
The N-MNIST dataset was recorded with a Dynamic Vision
Sensor (DVS) (Lichtsteiner et al., 2008) mounted on a pan-
tilt unit performing microsaccadic motions in front of a screen
displaying samples from the MNIST dataset (Orchard et al.,
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2015). Unlike standard imagers, the DVS records streams of
events that signal the temporal intensity changes at each of its
128× 128 pixels. For each of the 10 digits, we used 2,000 samples
for training and 100 samples for testing. The samples are cropped
spatially from 34 × 34 to 32 × 32 and temporally to 300 ms for
both the train and test set. The network is simulated with a 1ms
resolution—in other words, we sum up events in 1 ms time bins.
No further pre-processing is applied to the events.

Events are separated in two channels with respect to their
polarity. A N-MNIST sample is therefore represented as a tensor
of shape 300 × 2 × 32 × 32, stacked into mini-batch of 500
samples. The DECOLLE network is fed with 1 ms slices of the
input at a time. We relied on the same three-layer convolutional
architecture used in the DvsGesture task described below. After
a “burn-in” period of 50 ms during which no update is made,

FIGURE 3 | Classification results on the N-MNIST dataset for the three

DECOLLE layers. Classification Error for the N-MNIST task during learning for

all local errors associated with the convolutional layers. Shadings indicate

standard deviation across the 10 runs.

gradient updates are performed at every simulation step. Hence,
there are 250 weight updates per mini-batch. While the relevance
of the time domain in N-MNIST is debatable (Iyer et al., 2018),
this experiment shows that the neural dynamics of our network
leads to successful classifications in under 300 ms.

The results on the N-MNIST dataset are shown in Figure 3.
The experiment was performed 10 times with different random
seeds. DECOLLE’s final error is 0.96 ± 0.12% for the third layer
with 600,000 training iterations. We note that, due to the large
memory requirements, it is not practical to train the DECOLLE
convolutional network using BPTT. Hence we cannot provide
BPTT baselines.

3.3. DvsGesture
We test DECOLLE at the more challenging task of learning
gestures recorded using a DVS. Amir et al. recorded the
DvsGesture dataset using a DVS, which comprises 1,342
instances of a set of 11 hand and arm gestures, collected from
29 subjects under three different lighting conditions (Amir et al.,
2017). The unique features of each gesture are embedded in
the stream of events. The event streams were downsized from
128 × 128 to 32 × 32 (events from four neighboring pixels were
summed together as a common stream) and binned in frames
of 1ms, the effective time step of the GPU-based simulation
(Figure 4). During training, a sample consisted of 500 ms-long
slices of the sample. To maximize the use of the dataset, the
starting point of the slice was picked randomly, but such that a
full 500 ms sequence could be constructed. The sequences were
presented to the network in mini-batches of 72 samples. Testing
sequences were 1,800 ms-long, each starting from the beginning
of each recording (288 testing sequences). Note that since the
shortest recording in the test set is 1,800 ms, this duration
was selected to simplify and speed up the evaluation. The
classification is obtained by counting spikes at the output starting
from a burn-in period of 50 ms and selecting as output class the
neuron that spiked the most. Test results from the DECOLLE
network are reported with the dropout layer kept active, as
this provided better results. Contrary to Amir et al. (2017), we
did not use stochastic decay and the neural network structure

FIGURE 4 | (Left) DECOLLE setup for DvsGesture recognition. Learning was performed on the dataset provided with Amir et al. (2017) and consists of 11 gestures.

The network consisted of three convolutional layers with max-pooling. A local classifier is attached to every layer and followed by dropout for regularization. DECOLLE

is fed with 1 ms integer frames. (Right) Classification Error for the DvsGesture task during learning for all local errors associated with the convolutional layers .

Shadings indicate standard deviation across runs (5 runs for C3D, 10 runs for DECOLLE).
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TABLE 1 | Classification error at the DvsGesture task.

Model Error Training Iterations References

DECOLLE 4.46± 0.16% Online 0.16M This Work

SLAYER 6.36± 0.49 % BPTT 0.27M Shrestha and Orchard, 2018

C3D 5.46± 1.06% BPTT 0.32M Tran et al., 2015

IBM EEDN 8.23% (5.51%) BPTT 64M Amir et al., 2017

The IBM EEDN error in parentheses refers to the case with sliding window filter. Bold

values emphasize that this work achieves the lowest error.

is a three-layer convolutional neural network, loosely adapted
from Springenberg et al. (2014). We did not observe significant
improvement by adding more than three convolutional layers.
In shallow convolutional neural networks, it is common to use
larger kernel sizes (LeCun et al., 1998; Kubilius et al., 2019)
(Table 2). Since the input sizes were 32× 32, we used 7× 7 kernel
sizes in DECOLLE to ensure that the receptive field of neurons
in the last layer covered the input. The optimal hyperparameters
were found by a combination of manual and grid search. The
learning rate was divided by 5 every 500 steps.

We compared with C3D and energy-efficient deep networks
(EEDN). EEDN is a convolutional deep neural network
architecture that can be trained offline (e.g., on a GPU) and
deployed on the IBM TrueNorth chip (Esser et al., 2016).
EEDN was applied to DVS gestures and provides an important
benchmark on this task (Amir et al., 2017). Because EEDN was
not designed to utilize the temporal dynamics of the spiking
neurons in IBM TrueNorth chip, time is represented using the
channel dimension of 2D convolutional networks. This approach
limits the length of the sequence that EEDN can process.
To overcome this, Amir et al. (2017) used a sliding window
filter. C3D is a 3D convolutional network commonly used for
spatiotemporal classification in videos (Tran et al., 2015), where
the dimensions are time, height, and width. Using 3D kernels,
C3C can learn spatiotemporal patterns. The network was similar
to Tran et al. (2015) except that is was adapted for 32× 32 frames
and using half of the features per layer (seeAppendix for network
layers). We note that the C3D network is deeper and wider than
the DECOLLE network. We found that 16 × 32 × 32 frames,
where each of the 16 representing 32ms slices of the DVS data
performed best.

Overall, DECOLLE’s performance is comparable or better
than other published SNN implementations that use BP for
training (Table 1, Figure 4) and close to much larger C3D
networks. DECOLLE reached the reported accuracies after two
orders of magnitude fewer iterations and smaller network
compared to the IBM EEDN case (Table 1) (Amir et al., 2017).

Interestingly, the first layer of DECOLLE has a low
classification accuracy. A similar effect is observed in non-spiking
neural networks Mostafa et al. (2017). The local classifier errors
improve for the second and third hidden layers compared to the
first hidden layer. This is an indication that the network is able
to make use of depth to obtain better accuracy. An examination
of the filters learning in the first convolutional layer shows filters
of varying frequencies and orientations (Figure 5). Interstingly,

TABLE 2 | DECOLLE Neural network used for the DvsGesture dataset.

Layer type # Data type Dimensions

DVS 2 AEDAT 3.1 128× 128

Downsample (Sum) 2 Integer 32× 32

7× 7 Conv 64 Float 30× 30

2× 2 MaxPool 64 Float 15× 15

Spiking Non-linearity Binary

Dropout (p = 0.5) Float

Dense 11 Float 11

7× 7 Conv 128 Float 13× 13

Spiking Non-linearity Binary

Dropout (p = 0.5) Binary

Dense 11 Float 11

7× 7 Conv 128 Float 11× 11

2× 2 MaxPool 128 Float 5× 5

Spiking Non-linearity Binary

Dropout (p = 0.5) Binary

Dense 11 Float 11

Note that dense layers are used for the local classifiers only and were not fed to the

subsequent convolutional layers. AEDAT 3.1 is a data format used for event-based data.

The spiking nonlinearity was always applied after the pooling layers. Dropout layers were

left active during testing.

FIGURE 5 | 7× 7 Filters learned in the positive polarity channel (Left) and

negative polarity channel (Right) of the first convolutional layer. The similarity

of the kernels across the two polarities reflects the DVS data, where leading

edges and trailing edges co-occur with opposite polarities.

the filters on the positive and negative channels of the DVS
are similar, but exhibit small variations that are consistent with
motion. This correlation is consistent with the DVS data, where
leading edges of one polarity co-occur with trailing edges of
opposite polarity.

4. CONCLUSION

Understanding and deriving neural and synaptic plasticity rules
that can enable hidden weights to learn is an ongoing quest in
neuroscience and neuromorphic engineering. From a machine
learning perspective, locality, and differentiability are key issues
of the spiking neuronmodel operations.While the latter problem
is now being tackled with surrogate gradient approaches, how to
achieve this in deep networks in a scalable and local fashion is still
an open question.
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We presented a novel synaptic plasticity rule, DECOLLE,
derived from a surrogate gradient approach with linear scaling
in the number of neurons. The rule draws on recent work in
surrogate gradient descent in spiking neurons and local learning
with layerwise classifiers. The linear scalability is obtained
through a (instantaneous) rate-based cost function on the local
classifier. The simplicity of the DECOLLE rule equation makes
it amenable for direct exploitation of existing machine learning
software libraries. Thanks to the surrogate gradient approach, the
updates computed through automatic differentiation are equal
to the DECOLLE update. This enables the leveraging of a wide
variety of machine learning frameworks for implementing online
learning of SNNs.

Updates in DECOLLE are performed at every time step,
in accordance with the continuity of the leaky I&F dynamics.
This can lead to a large number of updates and inefficient
implementations in hardware. To tackle this problem,
updates can be made in an error-triggered fashion, as
discussed in Payvand et al. (2020). A direct consequence
of the local classifiers is the lack of cross-layer adaptation
of the layers. To tackle this problem, one could use meta-
learning to adapt the random matrix in the classifier.
In effect, the meta-learning loop would act as the outer
loop in the synthetic gradients approach Jaderberg et al.
(2016). The notion that a “layer” of neurons specialized in
solving certain problems and sensory modalities is natural
in computational neurosciences and can open multiple
investigation avenues for understanding learning and plasticity
in the brain.

DECOLLE is a departure from standard SNNs trained with
Hebbian spike-timing-dependent plasticity, as it uses a normative
learning rule that is partially derived from first principles.
Models of this type can make use of standard processors where
it makes the most sense (i.e., readout, cost functions etc.)
and neuromorphic dedicated hardware for the rest. Because it

leverages the best of both worlds, DECOLLE is poised to make
SNNs take off in event-based computer vision.
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Neuromorphic systems are designed with careful consideration of the physical properties

of the computational substrate they use. Neuromorphic engineers often exploit physical

phenomena to directly implement a desired functionality, enabled by “the isomorphism

between physical processes in different media” (Douglas et al., 1995). This bottom-up

design methodology could be described as matching computational primitives to

physical phenomena. In this paper, we propose a top-down counterpart to the bottom-up

approach to neuromorphic design. Our top-down approach, termed “bias matching,” is

to match the inductive biases required in a learning system to the hardware constraints of

its implementation; a well-known example is enforcing translation equivariance in a neural

network by tying weights (replacing vector-matrix multiplications with convolutions),

which reduces memory requirements. We give numerous examples from the literature

and explain how they can be understood from this perspective. Furthermore, we propose

novel network designs based on this approach in the context of collaborative filtering. Our

simulation results underline our central conclusions: additional hardware constraints can

improve the predictions of a Machine Learning system, and understanding the inductive

biases that underlie these performance gains can be useful in finding applications for a

given constraint.

Keywords: neural network, neuromorphic, bias, constraint, inductive bias, sparsity, regularization, collaborative

filtering

1. INTRODUCTION

A variety of systems are referred to as “neuromorphic,” Originally, “neuromorphic” has referred to
the idea of making use of isomorphisms between physical processes in different media, for example,
drift-diffusion phenomena in silicon to emulate drift-diffusion in neuronal ion channels, in order
to build VLSI chips consisting of neuron-like elements (Mead, 1989; Douglas et al., 1995; Indiveri
et al., 2011). Now, the term is used more broadly and also encompasses systems that accelerate
artificial neural network (ANN) algorithms (Hu et al., 2016) or use a biomimetic processing
principle (Furber, 2016).

Most neuromorphic systems have in common that parameters implemented in them or in the
larger system around them are learned from examples. If this learning process should generalize to
unseen examples, it is well-known that it needs to be biased in some way. Such biases that help a
learning system generalize from its training data are known as inductive biases (Mitchell, 1980).
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FIGURE 1 | General concept of bias matching: we should try to match inductive biases of learning algorithms to constraints on hardware to obtain systems that both

generalize better and are more efficient.

From an algorithmic perspective, inductive biases can come
in many forms: the algorithm’s structure, i.e., how parameters
affect the output (Tai et al., 2015), regularization, e.g., additional
costs (Krogh and Hertz, 1992), constraints on parameters during
training (Ioffe and Szegedy, 2015), or, in the case of Bayesian
models, explicitly as priors such as those described by Griffiths
(2010). These concepts can also be interpreted as constraints
on a learning algorithm’s complexity. From this point of view,
it is evident that, in an ideal world, the hardware on which
the algorithm is implemented exploits this simplicity for more
efficient processing (see Figure 1).

In this paper, we have asked two questions: “Can additional
hardware constraints improve the predictions of a Machine
Learning system?” and “What inductive biases underlie these
performance gains?” We answered these questions by giving
concrete examples and new conceptual designs of “bias
matching”: hardware implementations of machine learning
algorithms, where a useful inductive bias can be exploited for
efficient computation. Our aim was to establish “bias matching”
as a high-level approach in the design of neuromorphic hardware.

“Bias matching” contrasts, as a design-philosophy, with a
traditional bottom-up approach to neuromorphic engineering,
e.g., as described by Douglas et al. (1995). In the bottom-up
approach “the efficiency [...] rests in the power of analogy, the
isomorphism between physical processes in different media”
and “computational primitives such as conservation of charge,
amplification, exponentiation, thresholding, compression and
integration arise naturally out of the physical processes of
aVLSI circuits.” In this bottom-up approach the focus is on
computational primitives and their efficient implementation,
whereas we focus on inductive-biases and how to exploit them
for efficiency.

We will discuss our approach based on examples concerning
the following inductive biases/hardware constraints and
elaborate why they may be relevant for hardware design (see also
Table 1 for an overview):

1. Translation and time-shift equivariance (section 2.1)
2. Spatio-temporal locality (section 2.2)
3. Frequency limitations of input signals (section 2.3)
4. Sparse, low-rank and kernelized low-rank connectivity

(sections 2.4, 2.5 4.1)
5. Low-resolution connection weights (section 2.7)
6. Regularization by batch-size choice (sections 2.6, 4.2).

For each of these, we have defined an inductive bias or hardware
constraint, given (where possible) an example of its relevance,
and outlined how it can impact design. We have looked at
hardware and software implementations from the literature
(section 2), and we have presented novel observations and
simulations to back up our claims (section 4).

2. BACKGROUND

In this section, we have examined examples of neural network
implementations from the literature through the lens of the “bias
matching” design perspective we propose in this paper.

2.1. Translation and Time-Shift
Equivariance by Tying Weights
2.1.1. Inductive Bias

Probably the best know examples of an inductive bias in the
context of neural networks are convolutional neural networks
(CNNs) (Fukushima, 1988; LeCun et al., 1995) that exploit
translation equivariance. Translation equivariance (e.g., Worrall
et al., 2017), means that, if we translate the input of our model,
its output remains the same up to a translation. On the example
of images and CNNs, we can formulate translation equivariance:
given a CNN layer L(·), image X, and the translation operator T,
there exists an operator t such that

L(T(X)) = t(L(X)) (1)
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TABLE 1 | An overview of the pairings of hardware constraints and inductive

biases discussed in this paper.

Hardware constraint Inductive bias Application area Section

Tied weights between

neighborhoods

Translation/Shift

equivariance

Spatial and/or temporal

signals, e.g., images,

audio, video

2.1

Local communication/

decaying memory

Local independence,

spatially/temporally

hierarchical models

Spatial and/or temporal

signals, e.g., images,

audio, video

2.2

Slow state change Eigenvalues of

recurrent network

closer to one

Speech processing 2.3

Connectivity/memory

limitations

Sparse and low-rank

connectivity

Collaborative filtering,

model compression

2.4, 4.1

Low-resolution weights Difficult to interpret,

possibly

anti-synergistic with

SGD

Unknown 2.7

No gradient

aggregation over

samples

Batch-Size

regularization

Collaborative filtering

(among others)

2.6, 4.2

Concretely, for a stride-1 convolution with appropriate padding,
T and t are the same and T(Xi,j) = t(Xi,j) = Xi+t,j+s, where i and j
are pixel indices, and s, t are small natural numbers. Notably, full
CNNs are not translation equivariant, but single convolutional
layers are.

CNNs achieve equivariance by enforcing that some of their
parameters are equal (often referred to as “tying” parameters). A
given neuron n in a CNN receives input from some window w
of the previous layer’s output. For every other window w′ there
exists by construction a neuron n′ with the same input weights as
n (these weights are however applied to a different input, namely
w′). In this sense, the weights of some sets of neurons in a CNN
are tied together (not independent).

Note that time-shift equivariance is a special case of
translation equivariance in one dimension.

2.1.2. Hardware Constraint

Because of its implementation in the form of weight tying,
equivariance is highly relevant for hardware implementations of
CNNs. All neurons belonging to the same input/output channel
pair have the same weight. Hardware implementations of CNNs
making use of this constraint, holding each weight in their
memory only once and applying them to different sections of the
input either by broadcasting (Bose et al., 2019) or sequentially,
as, for example, on GPUs (Chetlur et al., 2014). On GPUs, the
convolution operation is commonly recast as a highly optimized
general matrix multiple between the filters and a copied and tiled
input image (though many variants of GPU convolutions exist).

Recurrent neural networks (RNNs) keep their weights
constant between subsequent time steps and implement time-
shift equivariance in this way. Due to the sequential and non-
linear nature of RNNs, implementations necessarily operate in a
fixed time-unrolled order and explicitly implement weight tying.

2.1.3. Performance Impact

Weight-tied neural networks are state-of-the-art in many
applications, particularly in the audio-visual domain. Some
highly cited examples include digit recognition (LeCun et al.,
1989), image classification (Cireşan et al., 2011; Krizhevsky et al.,
2012; He et al., 2016), and speech recognition (Saon et al., 2017).

2.2. Spatial and Temporal Locality by
Neighborhood Communication
2.2.1. Inductive Bias

Spatial locality means that, in order to compute a quantity
of interest at a given point p, only points that lie in a small
neighborhood of p need to be taken into account simultaneously.
Spatially localized operations are often used to build a hierarchy
of features with increasing spatial extent. The inductive bias
associated with spatial locality is therefore either directly the
independence of neighborhoods or the breaking down of
concepts into a spatial hierarchy.

Temporal locality occurs commonly in Reservoir Computing
(RC) (Lukoševičius et al., 2012) because most RC systems are
designed such that the echo-state property (ESP) holds. Formally,
the ESP states that the influence of any input signal vanishes
asymptotically (Jaeger, 2007). RC is particularly effective when
temporally local information is sufficient to solve the given task.

2.2.2. Hardware Constraint

Spatial locality is a key reason why CNNs can be computed
efficiently (next to translation equivariance). The computation
performed by neurons in a CNN is spatially localized if they
have a small associated filter. An example of a hardware
implementation of spatially localized processing is the SCAMP-5
sensor/processor array (Carey et al., 2013). The nearest-neighbor
communication structure of this chip allows for an efficient pixel-
parallel implementation of convolution filters if the filters are
small (Bose et al., 2019). In GPU implementations of CNNs, small
filters need fewer replications of each source pixel (as well as less
memory for the filters themselves).

A class of hardware implementations that benefit from
temporal locality are photonics-based RC, like Vandoorne et al.
(2014). For silicon-photonics based systems, the integration of
photonic amplifiers can be challenging, making temporal locality
desirable. However, the operation of time-shifted addition (with
small time shifts) is very efficient in these systems, allowing for
cheap communication across “temporal neighborhoods.”

2.2.3. Performance Impact

For spatial locality and associated CNNs, see section 2.1.2.
An example of a very high through-put system made possible

by temporal locality implemented in photonic hardware is Larger
et al. (2017).

2.3. Low-Frequency Signal Components
and Slow Neurons
2.3.1. Inductive Bias

For signals with slow dynamics (opposite to temporally local
signals), an opposite approach can be useful. When analyzing
signals, some of whose salient dynamics are much slower
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than the sampling rate, it can be difficult to learn effective
weights for recurrent neural networks (RNN) because longer
time dependencies are more difficult to discover. A commonly
used remedy for this is low-pass filtering of the hidden state
of the RNN (Mozer, 1992). This inductive bias could also be
described as enforcing eigenvalues of the recurrent connection
matrix that are closer to one (Nair and Indiveri, 2019a) in a
linearized approximation of the RNN.

2.3.2. Hardware Constraint

In a physical implementation, the fact that states of hidden
neurons change slowly can be exploited by implementing them
as leaky-integrate-and-fire (LIF) neurons with spike-frequency
adaptation, which need to emit only few spikes to represent their
state (Nair and Indiveri, 2019b). From the electrical engineering
perspective, such neurons can be interpreted as 61-Modulators
with unsigned 1 steps (Yoon, 2016).

2.3.3. Performance Impact

Nair and Indiveri (2019a,b) indeed observed that, when the
time-constant of such neurons matches the salient structure
of the analyzed signal (i.e., a favorable inductive bias in the
sense of Mozer, 1992 is used), the resulting system exceeds the
performance of an unconstrained system while operating at very
low power.

2.4. Linear Low-Rank Matrix
Approximation by Parameter Sharing
2.4.1. Inductive Bias

Strict low-rankmatrix approximations (Koren et al., 2009) model
a n×mmatrixW asW = QR, where Q is n× k and R is k×m,
where k is the resulting rank of W. Equivalently we can write
the entries of W as dot-products of rows and columns of Q and
R respectively:

wij = Eqi · Erj. (2)

Low-rank matrix approximations are commonly used to model
very large matrices from sparse observations, for example, in
collaborative filtering (Koren et al., 2009).

2.4.2. Hardware Constraint

Low-rank approximation of connection matrices in neural
networks is straightforward to implement with efficiency gains
on general matrix multipliers (GEMMs). This is because a
connection matrix restricted to rank-k is equivalent to the
interposition of a size-k layer with a linear activation function. In
formulae, we can write for a neural network layer with an n×m
weight matrix W that is rank-k; it can be written as W = QR,
where Q is n× k and R is k×m:

WEx = QREx = Q(REx) = QEy. (3)

The time complexity of this moves from O(mn) for WEx to
O(k(m + n)) for performing REx followed by QEy. The memory
required to store the parameters of W or R and Q respectively
also scale this way: the individual entries of the matrix W
share parameters.

2.4.3. Performance Impact

Low-rank reparameterization has been proposed as a model
compression tool for neural networks, both fully-connected
(Denil et al., 2013; Sainath et al., 2013) and convolutional ones
(Jaderberg et al., 2014). Recent examples of practical efficiency
tweaks that can be interpreted as low-rank approximation are the
linear bottleneck and depth-wise convolutions of Mobile-Net-
v2 (Sandler et al., 2018) (note that depth-wise convolutions may
additionally interpose a non-linearity).

2.5. Kernelized Low-Rank Matrix
Approximation by Parameter Sharing
2.5.1. Inductive Bias

Kernelized matrix reparameterization (Liu et al., 2016)
generalizes the dot-product to any kernel function:

wij = K(Eqi, Erj) (4)

It has been shown that such kernelized reparameterizations can
impose interpretable structure on neural networks (Muller et al.,
2018).

2.5.2. Hardware Constraint and Performance Impact

Kernelized reparameterizations are more complicated to
implement directly, and, to the best of our knowledge, this has
not been discussed in the literature. The same reformulation
as above does not work because the analog of Ey would live
in the embedding space of the kernel function, which can be
infinitely dimensional. However, kernelized reparameterizations
have greater representational power than strict low-rank
approximations and have been shown to produce state-of-the-art
results in collaborative filtering benchmarks (Muller et al., 2018).
In the case of architectures where the limiting factor is memory
access, kernelized reparameterizations can also be associated to
a speed-up: instead of looking up the nm entries of W, they can
be computed from only k(n+m) values (entries of the matrixW
share parameters). The additional overhead is the evaluation of a
kernel function.

2.6. Batch-Size Regularization With Model
Parallelism
2.6.1. Inductive Bias

Standard neural network training by stochastic gradient descent
(SGD) and its variants can be seen as a kind of regularization
or inductive bias in itself (Neyshabur et al., 2017) (SGD
with a small learning rate, is more likely to find a solution
with small parameter values). Furthermore, in the case of
mini-batch gradient descent (where gradients are summed or
averaged over a “mini-batch” of examples before being applied
to weights), decreasing the batch-size is often associated with
better generalization (Wilson and Martinez, 2003). This may,
however, depend on the exact variant of gradient descent
used (Smith, 2018).

2.6.2. Hardware Constraint and Performance Impact

For standard GPU implementations of neural networks, this
is somewhat problematic because parallelization is most easily
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implemented as data paralellism over the batch dimension
(Chetlur et al., 2014; Krizhevsky, 2014). In the worst case,
this results in a trade-off between speed-up and generalization
performance. In contrast, hardware implementations with
weight-wise parallelism in the vein of Gokmen and Vlasov (2016)
can have difficulties aggregating gradients over multiple samples
but do not have to make the speed-generalization trade-off.

2.7. Low Resolution Synaptic Weights
2.7.1. Inductive Bias

To the best of our knowledge, there is no clear inductive
bias associated with the use of low-resolution synaptic
weights, and, consequently, it is unclear what task or
learning setup matches low resolution constraints. Intuitively,
low resolution arithmetic might not match the setting of
gradient-based training because the gradient only gives reliable
information in a small neighborhood around the current model
parameters’circumstantial evidence for this is the significant
amount of work on the improvement of training methods in
the context of low-resolution weights (e.g., Müller et al., 2017;
Alizadeh et al., 2019; Helwegen et al., 2019). More generally,
Goodfellow et al. (2014) argue that current neural network
architectures are selected under the constraint that they are
well-suited for training by SGD. The improvement of alternative
training methods (e.g., gradient-free ones) could, in light of this,
be impactful for low resolution neural networks.

2.7.2. Hardware Constraint

In digital hardware, lower resolution directly translates into
more compact designs. In analog hardware, there probably
is an analogous trend due to noise tolerance. The optimal
implementation of the low-resolution arithmetic for neural
networks is in itself an open research question. Both floating-
(Courbariaux et al., 2014) and fixed-point (Lin et al., 2016)
approaches exist combined with different number formats
(Langroudi et al., 2019) and compression approaches (Aimar
et al., 2018). For the extreme case of binary and ternary
weights (Courbariaux et al., 2015; Muller and Indiveri, 2015),
the multiplication between inputs and synaptic weights can
also be simplified, as in Courbariaux et al. (2015) or by sparse
versions thereof.

2.7.3. Performance Impact

State-of-the-art neural networks, in terms of pure predictive
power, use at least 16-bit floating point arithmetic in all
applications we are aware of. However, some ultra-low-resolution
systems are highly competitive in terms of performance per
power (Andri et al., 2016) or performance under limited memory
usage (Uhlich et al., 2020).

3. METHODS

In this section, have given implementation details of the
simulations in the following section. We limited ourselves to
dense, technical descriptions here and have given more context
in the following section. All models were implemented in
tensorflow (Abadi et al., 2016).

3.1. Bias Matching
In section 4, we have given two examples of how to apply bias
matching in a concrete situation. Here, we have provided an
abstract step-by-step description of bias matching.

1. Define a hardware property or constraint.
2. Define an end-to-end machine learning architecture

incorporating the given constraint.
3. Find tasks that benefit from inductive biases associated

with the constraint.

If necessary, revisit point two after the evaluating performances.
While we followed this series of steps in the examples, one could
also take an inductive bias as the starting point and work toward
a hardware constraint.

3.2. Sparse Connectivity With Recurrent
Fixed Weights
In this section, we have defined a neural network layer whose
performance we have compared to that of a standard fully-
connected layer in two different settings.

The layer we proposed, termed the sparseRec-layer, has
the following recurrent definition (the reasoning behind this
definition is given in section 4.1), given input Ex:

Ey0 = WinEx

Eyt = f (Ey∗0 +WrecEyt−1) (5)

where Win is a learned input n × k matrix, and Wrec is a fixed,
randomly drawn recurrent m × m connection matrix. We chose

m > k and will denote s =
k
m as sparsity. Ey∗0 is Ey0 zero-

padded from length k to m. f (·) is an activation function. When
computing the output of such a layer, we applied this recurrent
definition up to tmax while keeping the input fixed.

3.2.1. MNIST

The baseline model is a multilayer perceptron with one hidden
layer trained on MNIST (LeCun et al., 1998). The hidden layer
has m ∈ {16, 31, 62, 125, 250, 500} neurons and a rectified-
linear activation function (Glorot et al., 2011). We trained
with the Adam optimizer (Kingma and Ba, 2014) for 40
epochs at a batch size of 256 and summed categorical cross-
entropy cost. We used drop-out regularization (Srivastava,
2013). We ran a hyperparameter sweep for dropout values
d ∈ {0.0, 0.2, 0.4, and 0.6} and learning rates l ∈

{0.0005, 0.001, 0.002, and 0.003}with five different random seeds.
We selected the best performing parameters on a validation set
and report the best average performance of each model.

Formulaically the networks prediction given input Ex is

y = softmax
(

Wout · Dropout
(

ReLU
(

Win · Dropout(Ex)
)))

(6)

The sparseRec model is identical with some changes: the hidden
layer is replaced with a sparseRec-layer, as described in Equation
(5), and also has a rectified-linear activation function. The
sparsity s and the corresponding number of non-zero columns
k of the feedforward matrix Win is given in Table 2. The values
of Win are constrained to lie in [−1, 1] by reprojection after
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TABLE 2 | Basic network parameters used in the simulations in section 3.2.

# hidden

units (m)

# connected

hidden units (k)

Sparsity (s) (%)

500 500 0

500 250 50

500 125 75

500 62 87.6

500 32 93.2

500 16 96.8

each optimization step. The recurrent matrix Wrec is set to fixed
uniformly random weights of density 0.2 and rescaled to have
spectral radius 0.95 (motivated by the echo-state property, this
limits gradient decay/explosion).

Our goal was to compare the predictive accuracy of the two
models as a function of the number of free parameters.

3.2.2. ML1M

The baseline model is an item-based autoencoder identical to the
one described in Sedhain et al. (2015). It has one or two hidden
layers withm ∈ {280, 300, 350, 400, 450, 500} neurons (each) and
sigmoid activation function. We optimized using full batches and
the L-BFGS optimizer (Zhu et al., 1997) on the summed squared
error of known entries with an L2 regularization strength l2 ∈

{25, 50, 100}. The L2 regularization was applied to the connection
weights (not to biases) in the form of a cost c = l2

∑

ij(Wij)
2.

The sparseRec model is identical with the some changes: the
hidden layer is replaced with a sparseRec-layer, as described
in Equation (5), with a sigmoid activation function (as in the
baseline model). The sparsity s and the corresponding number
of non-zero columns k of the feedforward matrix Win is given
in Table 2. The values of Win are constrained to lie in [−1, 1]
by reprojection during the optimization. The recurrent matrix
Wrec was set to fixed uniformly random weights of density 0.2
and rescaled to have spectral radius 0.95.

As for the MNIST dataset, we compared the predictive
accuracy of the two models.

3.3. Batch-Size Regularization in
Low-Rank Matrix Approximation
The model used was an Factorization Machine (FM) as described
in Rendle (2012), where we adopted two minor deviations from
this description also used in the code accompanying that paper:
weight-decay (L2 regularization) was only applied to parameters
that have non-zero gradient, and themodels output was restricted
to the range of the rating values given in the training set.
Finally, we added a modification for numerical stability with
large batch sizes: the gradient of the global bias b was divided by
the batch-size.

For each batch-size, we individually found the optimal
hyperparameters (L2 regularization strength l2, learning rate) in
{0.02, 0.04, 0.06, 0.08} × {0.0005, 0.001, 0.002, and 0.003}. l2 is
the multiplicative coefficient to an L2 cost given in the previous
subsection. We ran each model for at least five different random

FIGURE 2 | Schematic description of a sparseRec layer. Win is learned, Wrec

is fixed and random. At each layer, a non-linearity is applied. See also

Equation (5).

seeds (resulting in different initial parameters and different train-
test splits). For each batch-size, we picked the hyperparameters
with the best average performance.

Our goal was to examine the test accuracy of the model as a
function of the training batch size.

4. SIMULATION RESULTS AND
DISCUSSION

In this section, we have shown simulation results where we could
identify good use-cases for specific computational limitations. In
these use-cases, the limitations match a task’s preferred inductive
bias. We further observed that, for other tasks, the same biases
may well lead to a deterioration in performance. We emphasize
that we did not perform exhaustive architecture searches for a
given task but conversely performed a constraint search for an
architecture and application that leads to an improvement over
a baseline.

4.1. Sparse Connectivity With Fixed
Weights
In this subsection, we began from a particular hardware
constraint and tried to find a suitable application for it, following
section 3.1 (step 1): we assumed we had developed hardware that
would allow us to cheaplymultiply vectors with a fixed, uniformly
random matrix.

Next, we defined an architecture (step two in section 3.1).
The architecture we considered could be succinctly described
as a deep echo-state network (ESN) (Gallicchio and Micheli,
2016) with trained feed-forward weights or alternatively as a set
of sparsely connected feed-forward layers, with fixed random
recurrent connections within each layer (see Figure 2 for a visual
explanation). As given in the previous section, formulaically we
proposed a neural network layer, termed the sparseRec-layer,
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FIGURE 3 | Schematic setup of the Autorec method (Sedhain et al., 2015) for predicting entries of a sparsely known matrix. The cost function is a squared error
∑

i (xi − yi )
2 on known entries (with regularization).

FIGURE 4 | Performance of MLPs with a hidden sparseRec-layers classifying

MNIST as a function of sparsity compared against two standard MLP

baselines, baseline1 shows the performance at 400,000 parameters,

baseline2 has a varying hidden layer size. Errorbars show the standard error.

The sparse models do not exceed the performance of the dense model.

with the following recurrent definition, given input Ex:

Ey0 = WinEx

Eyt = f (Ey∗0 +WrecEyt−1)

where Win is a learned input n × k matrix, and Wrec is a fixed,
randomly drawn recurrent m × m connection matrix. We chose

m > k and denoted s = k
m as sparsity. Ey∗0 is Ey0 zero-padded from

length k to m. f (·) was an activation function. When computing
the output of such a layer, we applied this recurrent definition up
to tmax while keeping the input fixed.

The intuition behind a sparseRec-layer, is that we want
a high number of linearly independent activations in each
layer. Simultaneously, we wanted to keep the number of
adjustable weights small (for regularization and simpler hardware

FIGURE 5 | Performance of autoencoders with a hidden sparseRec-layer

regressing ratings in ML1M as a function of sparsity (plotted as number of free

parameters) compared against a standard autoencoder baseline. Errorbars

show the standard error. Some sparse models exceed the performance of the

baseline model with the same number of free parameters significantly and

exceed (though not significantly) the performance of the dense model with

more parameters. Baseline1: Performance reported in Sedhain et al. (2015)

with 6M parameters, baseline2: our implementation of the same model with a

single hidden layer of varying size, and baseline 3: with two hidden layers of

varying size. Note that at 6M parameters the tmax = 0.0 model is equivalent to

baseline2.

implementation) compared to the number of fixed weights. From
an implementation perspective, this architecture is interesting
for some of the reasons that also make ESN and Extreme
learning machines (ELM) (Huang et al., 2004) appealing to
hardware designers: the use of mostly fixed weights (that do
not need an updating mechanism) and the recurrent network
structure (that reduces information transport in comparison
to a feed-forward structure). Since we added trained feed-
forward weights, we required that a product of an error vector
with the transpose weight matrix could also be performed
for the purpose of error back-propagation (in contrast to a
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standard deep-esn). Crossbar-arrays (Steinbuch, 1961) are a well-
known example of a kind of architecture that can support
such operations.

As a “naive” first benchmark, we used MNIST (LeCun et al.,
1998) and compared fully-connected networks to the proposed
sparse networks with fixed random recurrent weights in each
layer, as a function of number of free parameters (see Figure 4).
We found a gradual degradation of the performance as the
number of free parameters decreases. This is not surprising:
we are not aware of any reason to expect that sparsity should
improve performance for this task. Indeed, the sparse models do
not exceed the performance of the dense model.

In contrast, it has been observed that sparsified networks can
show improved performance in collaborative filtering settings
(Muller et al., 2018) (step 3 in section 3.1). In the spirit of bias
matching, we investigated whether our given sparse architecture
would improve over the fully-connected baseline in this task.
The setup followed (Sedhain et al., 2015) (see Figure 3). The
goal was to regress missing entries of a large, sparsely known
matrix given in MovieLens-1M (Harper and Konstan, 2015).
To achieve this, the matrix was cut into columns or rows.
Each column was treated as a sample. An autoencoder was
trained to reconstruct columns, where the cost is the squared
error for known entries and zero otherwise, in combination
with L2-regularization. Training was performed by a gradient-
descent variant, namely, L-BFGS (Zhu et al., 1997). We used the
same network of Sedhain et al. (2015) as a baseline, and, for
comparison, we replaced the hidden layer with the layer given
in Equation (5).

Figure 5 shows that, this collaborative filtering setting, the
constraint that degraded performance for the MNIST dataset,
improves the performance over the fully connected baseline at a
given number of free parameters. The performance also does not
significantly change when decreasing the number of parameters
by sparsifying in the proposed way but decreases significantly
when the hidden layer is made smaller (to reach the same number
of free parameters). We further found that additional network
depth explains this in part by comparison to an architecture with
an equal number of parameters and two hidden layers. Overall,
this suggests that the constraint matches well the inductive bias
required to generalize on this task.

Furthermore, we found that applying the fixed, random
matrix more than once does not improve the performance
significantly (tmax = 1 is as good as tmax > 1). This means that
our final layer architecture could be described as a learned input
matrix, followed by a fixed, randommatrix; in spirit, this is closer
to an ELM than an ESN.

4.2. Batch-Size Regularization in
Low-Rank Matrix Approximation
As a second example (step 1 in section 3.1), we considered a
“sparse vector”-“dense matrix” multiplier where the input data
vector is binary, Ex ∈ {0, 1}n, and changes to matrix entries
must occur in place. An example of such a system would
be a spiking neural network with synapses implemented by a
cross-bar array in the vein of Gokmen and Vlasov (2016). The
key constraint we considered here is that such systems usually
have difficulties aggregating gradients over multiple samples

FIGURE 6 | Sparse rank-k matrix decomposition (or a Factorization Machine)

as a (spiking) neural network.

(parallelization occurs across the weight-array instead of across
mini-batches).

As a computational architecture (step 2 in section 3.1), we
chose the Factorization Machine (FM) (Rendle, 2010). Given a
sparse sample of the entries of a matrix, we wished to regress
unknown entries. As a formula, the prediction for an entry r
of the matrix, given the concatenated one-hot encoded row and
column indices x, is

r = b+
∑

i

xiwi + 0.5
∑

j





(

∑

i

vijxi

)2

−

∑

i

v2ijx
2
i



 . (7)

From a neural network perspective, we can describe the setup
as follows (see Figure 6 for further details): we gave as input
to three fully-connected layers the one-hot encoded row and
column indices as a concatenated vector; two of these layers
have a linear, the other a quadratic activation function, and their
weights W,V1,V2 are tied such that V1 = V2

2 . The weights have
sizes W :(nc + nr) × 1 and V :(nc + nr) × k, where nc, nr are
the number of columns and rows, respectively. The three hidden
layers are read out by a dense layer of size one with fixed weights
of plus one (i.e., they are summed). The output of this dense
layer is the prediction for the rating. Training is performed by
gradient-descent with L2-regularization.

We further note that Figure 6 makes it evident that FMs
are closely related to spiking neural networks in the sense that
their central operation is a sparse vector-matrix multiplication.
In addition, Ex ∈ {0, 1}n has a clear interpretation for FMs: In this
case, the FM solves a low-rank factorization problem (Rendle,
2010).

A key area of application of FMs are collaborative filtering
tasks. We therefore considered low-rank matrix factorization of
MovieLens-1M as a test application with the inductive bias of
small training batch sizes (step 3 in section 3.1).
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FIGURE 7 | (A) RMSE (lower is better) and (B) generalization gap (difference between train and test performance, lower is better) of a FM trained on ML1M as a

function of training epoch for various batch sizes. There is a significant preference for smaller batch sizes. Batch-sizes 1 and 100 are not significantly different.

We plotted the performance on a validation set of this
network as a function of the mini-batch size during training
(Figure 7). We found that increasing batch-sizes reduce the
performance of the network (but note that it is possible that
means of regularization other than the ones we tested allow for
the use of larger batch-sizes). This indicates that an interesting
area of application for weight-parallel spiking neural network
accelerators are FMs because they can give a (weight-wise)
parallelization speed-up without the performance degradation
associated with large batch-sizes.

We note that the beneficial effect of using SGD with small
batch-sizes has been observed in other applications as well (as
mentioned in section 2.6, e.g., Wilson and Martinez, 2003).

5. CONCLUSIONS

When one approximates a machine learning model efficiently,
assuming some hardware constraints, the usefulness of these
constraints for generalization is worth careful consideration. In
other words, hardware constraints must match inductive biases.
Such a match can lead to highly efficient and well-performing
systems. For example, when designing a neuromorphic chip to
analyze speech signals, it does not need to support fast state
changes in the hidden neurons (see section 2.3), and building
accelerators for collaborative filtering exploiting sparsity could be
very relevant (see section 4.1).

Similarly, avoidance of an inappropriate bias can also be
crucial, as demonstrated by the Shuffle-Net (Zhang et al., 2018),
where a factorization of the model into independent subnetworks
is avoided by random shuffling of sparsely connected channels.

Recently, the question has arisen as to whether, in machine
learning research, the most successful approach is to look for
ways to apply more computational power to a problem rather
than finding better designed solutions (Sutton, 2019). Through
the many examples of “bias-matching” we have reported in this
paper, we support the contrary notion that finding low-level

improvements (through hardware constraints) that synergize
with the problems one is trying to solve (through inductive
biases) is a kind of thoughtful problem solving that can be crucial
in the development of competitive machine learning systems.

The embodiment of inductive biases as hardware constraints
also implies a caveat for the evaluation of neuromorphic
architectures: if an architecture aims to be general purpose, it is
important to benchmark it on a variety of tasks; otherwise, it may
be the case that the chosen benchmarks benefit from inductive
biases embodied by the constraints of the given architecture.

In this paper, we discussed several examples from the
literature where such a match is given. Furthermore we applied
the idea of bias matching to a novel network architecture that
can make use of fixed, random weights, and found that its
sparse structure leads to improved performance over a dense
baseline on a benchmark for which sparsity has been shown to
be useful previously.
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The two possible pathways toward artificial intelligence (AI)—(i) neuroscience-oriented
neuromorphic computing [like spiking neural network (SNN)] and (ii) computer science
driven machine learning (like deep learning) differ widely in their fundamental formalism
and coding schemes (Pei et al., 2019). Deviating from traditional deep learning approach
of relying on neuronal models with static nonlinearities, SNNs attempt to capture brain-
like features like computation using spikes. This holds the promise of improving the
energy efficiency of the computing platforms. In order to achieve a much higher areal
and energy efficiency compared to today’s hardware implementation of SNN, we need
to go beyond the traditional route of relying on CMOS-based digital or mixed-signal
neuronal circuits and segregation of computation and memory under the von Neumann
architecture. Recently, ferroelectric field-effect transistors (FeFETs) are being explored
as a promising alternative for building neuromorphic hardware by utilizing their non-
volatile nature and rich polarization switching dynamics. In this work, we propose
an all FeFET-based SNN hardware that allows low-power spike-based information
processing and co-localized memory and computing (a.k.a. in-memory computing).
We experimentally demonstrate the essential neuronal and synaptic dynamics in a
28 nm high-K metal gate FeFET technology. Furthermore, drawing inspiration from
the traditional machine learning approach of optimizing a cost function to adjust the
synaptic weights, we implement a surrogate gradient (SG) learning algorithm on our
SNN platform that allows us to perform supervised learning on MNIST dataset. As such,
we provide a pathway toward building energy-efficient neuromorphic hardware that
can support traditional machine learning algorithms. Finally, we undertake synergistic
device-algorithm co-design by accounting for the impacts of device-level variation
(stochasticity) and limited bit precision of on-chip synaptic weights (available analog
states) on the classification accuracy.

Keywords: neuromorphic computing, supervised learning, surrogate gradient learning, ferroelectric FET, spiking
neural network, spiking neuron, analog synapse
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INTRODUCTION

Machine learning, especially deep learning has been a de
facto choice for solving a wide range of real-world complex
tasks and has contributed to the unprecedented success
story of artificial intelligence (AI) in recent years. Fueled by
large datasets and high-performance processors like GPU and
TPU, deep learning has exhibited similar or even superior
performance compared to human capabilities over a broad
spectrum of workloads. However, for applications like smart
devices, wearables for healthcare monitoring, or autonomous
drones for spatial exploration that require constant real-time
information processing, we want to embed implementation of
neural networks on the edge. This imposes stringent constraints
in terms of power, latency, and footprint area and requires us
to rethink the approach toward building hardware for deep
learning. Although the architecture of deep neural networks like
convolutional neural networks (CNNs) is strongly inspired by
the cortical hierarchies, the implementation deviates significantly
from the biological counterpart. One obvious point of difference
is that neurons are implemented using continuous non-linear
functions like sigmoid or ReLu, whereas biological neurons
compute using asynchronous spikes that indicate the occurrence
of an event. Using such asynchronous event-based information
processing may significantly bring down the hardware resources
in terms of computational power and footprint area. A recent
work established a gain of 54% in area and 45% in power
for 65 nm CMOS ASIC implementation of SNN over multi-
layer perceptron (MLP) at iso-accuracy and similar architecture
(Khacef et al., 2018). Furthermore, with event-based sensors like
visual sensors having reached a matured state (Lichtsteiner et al.,
2008), SNNs provide a natural choice to be interfaced with them.
In the last decade, there has been enormous efforts to build
and scale up neuromorphic hardware using CMOS based mixed-
signal (Benjamin et al., 2014; Chicca et al., 2014; Park et al., 2014;
Qiao et al., 2015) and fully digital (Merolla et al., 2014; Davies
et al., 2018) designs. However, there lies several considerations
for hardware implementation of SNN that must be undertaken to
minimize hardware resources (area and energy), some of which
are discussed below.

One major consideration is the choice of the neuronal model
and its hardware emulation either in analog or digital domain
that will ultimately dictate the compactness and energy efficiency.
Biological neurons consist of thin lipid layer membrane whose
potential is altered by the arrival of excitatory or inhibitory
post-synaptic potentials (PSPs) through the dendrites of the
neuron. Upon sufficient stimulation, the neuron generates an
action potential and the event is commonly referred to as
firing or spiking of the neuron. To emulate these neuronal
dynamics in a hardware, including the transient dynamics
as well as the mechanism for neurotransmission, the first
ingredient of the implementation is an appropriate choice
of the neuron model. Although numerous models have been
proposed by drawing inspiration from neuroscience like the
biologically plausible complex Hodgkin–Huxley model (Hodgkin
and Huxley, 1952) and the Izhikevich model (Izhikevich,
2003), we choose the bio-inspired leaky-integrate-and-fire (LIF)

neuron model that provides reduced complexity for hardware
implementation while producing the required key dynamics for
computation. Spiking LIF neuron can be implemented either in
analog or digital domain. While fully digital spiking neurons
have been implemented (Merolla et al., 2014; Davies et al.,
2018), using analog circuits provides an alternative promising
pathway. By using transistors biased in the sub-threshold regime,
exponential behaviors can be easily mimicked allowing non-
discretized continuous-time neural emulation (Indiveri, 2003;
Chicca et al., 2014; Park et al., 2014; Qiao et al., 2015).
Recently, Joubert et al. (2012) provided a quantitative comparison
between a digital and analog implementation of LIF neuron
at 65 nm CMOS technology node with the same level of
performance and established an area and energy benefit of
5x and 20x, respectively, for analog over digital design. One
pitfall for analog implementation is, however, the usage of large
capacitors for emulating the membrane potential. Even with
the most drastically scaled technology node, realizing dense on-
chip capacitance comparable to biological neuronal membranes
(∼10 fF/µm2; Gentet et al., 2000) is challenging. For example,
Joubert et al. (2012) implemented the temporal integration
property of an analog spiking neuron using a 500 fF metal-
insulator-metal (MIM) capacitor that requires 100 µm2 silicon
area while Indiveri et al. (2006) reports using a 432 fF capacitance
occupying 244 µm2 silicon area. Additionally, biological neurons
have been shown to be stochastic and this stochasticity adds
to the richness of biological computation. With the recent
focus on exploiting the physics of functional materials such as
ferroelectrics, magnetics, and phase-change materials to build
nano-scale devices that can emulate the characteristics of a
low-power, stochastic, and capacitor-less spiking neuron, several
proposals have been put forward (Sengupta et al., 2016; Tuma
et al., 2016; Jerry et al., 2017). In this work, we experimentally
demonstrate the essential neuronal dynamics in a 28 nm
ferroelectric field-effect transistor (FeFET) technology with ultra-
scaled gate length. The membrane potential is represented using
the intrinsic ferroelectric polarization and the rich polarization
switching dynamics is utilized to perform temporal integration
of post-synaptic spikes, thus mimicking an LIF neuron.

The second consideration is the design of synaptic weight
storage. Conventional von-Neumann architecture suffers from
time and energy spent in moving data between a centralized
memory and the processing units. In contrast, a non-von-
Neumann architecture allows computation to be done at the
location of the stored synaptic weights, thus circumventing
the problem of data-movement. Typical examples of such
neuromorphic hardware implementing distributed computing
include Intel’s Loihi chip with 128 cores each having a local 2 MB
static random access memory (SRAM) (Davies et al., 2018) and
IBM’s TrueNorth with 4096 neurosynaptic cores each containing
12.75 kB local SRAM (Merolla et al., 2014; Akopyan et al.,
2015). Additionally, novel techniques such as time-multiplexing
has been proposed to reduce hardware resources or facilitate
memory usage efficiently (Akopyan et al., 2015; Davies et al.,
2018; Wang et al., 2018; Abderrahmane et al., 2020). Further
improvement in energy efficient on-chip training and inference
can come from replacing digital SRAM arrays with high density

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 634107

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00634 June 22, 2020 Time: 17:59 # 3

Dutta et al. FeFET-Based Spiking Neural Network

analog synapses that can encode the synaptic weight directly
using a physical property of the device such as conductance. Such
analog synaptic weight cells can substantially reduce power for
both training and inference (Morie and Amemiya, 1994; Burr
et al., 2015; Gokmen and Vlasov, 2016). Desirable characteristics
of such analog devices include fast and low-power programming
of multiple analog states (bit resolution), good retention of the
multiple states, and high endurance. Specifically for achieving
on-chip training, gradual and symmetric conductance update
characteristic is extremely crucial. Recent research efforts have
explored numerous potential candidates for building such analog
synaptic weight cells including resistive random access memory
(RRAM) (Yu et al., 2015; Gao et al., 2015; Prezioso et al., 2015;
Wu et al., 2017), phase-change memory (PCM) (Kuzum et al.,
2012; Burr et al., 2015; Ambrogio et al., 2018) and FeFETs (Jerry
et al., 2018a, 2019; Luo et al., 2019; Sun et al., 2019). In this
work, we provide new experimental results of a FeFET-based
synaptic weight cell at scaled device dimensions using 28 nm
FeFET technology.

Finally, while deep learning, involving non-spiking and often
CNNs, has made remarkable progress in achieving human-
like performance at solving complex tasks, similar efficient
training algorithms have been challenging to design for SNNs.
The difficulty in applying traditional deep learning algorithms
stems from various factors. First, the notion of time is an
important aspect of SNN. As such, a different cost function
has to be used that incorporates the notion of time while
learning spatiotemporal patterns rather than what’s commonly
used in deep learning. Second, spiking neurons are inherently
non-differentiable during their time of spike. Over the recent
years, several efforts on training SNNs have been undertaken.
These include indirect supervised learning like DNN to SNN
conversion (O’Connor et al., 2013; Pérez-Carrasco et al., 2013;
Diehl et al., 2015; Sengupta et al., 2019), direct supervised
learning such as spatiotemporal backpropagation (Wu Y. et al.,
2018; Wu J. et al., 2019), and unsupervised training of SNNs
using bio-inspired local Hebbian learning rule like spike-time-
dependent-plasticity (STDP) (Diehl and Cook, 2015; Panda and
Roy, 2016; Kheradpisheh et al., 2018). In this work, we focus
on the direct supervised learning scheme. Recently, Zenke and
Ganguli (2018) proposed a novel supervised learning algorithm
to train multilayer SNNs using a surrogate gradient (SG) based on
the membrane potential, known as SuperSpike. In this work, we
follow their approach closely by substituting the non-differential
derivative of the step-function in the backward pass with a
normalized negative part of a fast sigmoid of the membrane
potential. Furthermore, we account for the limited bit precision
offered by the FeFET-based synapses by considering weight
quantization during the training process itself (Wu S. et al., 2018).
We quantize the weights in the forward pass while working
with high precision gradients. Previous works have shown that
DNNs are very well capable of achieving state-of-the-art results
with limited precision weights and activations (Choi et al.,
2019) as well as quantized errors and gradients (Wu S. et al.,
2018). Most modern quantization schemes require additional
modification of the learning and inference process by scaling,
clipping, or stochastic rounding of variables. Choi et al. (2019),

for example, train a separate parameter exclusively for activation
clipping and compute a scaling factor for the weights that
minimize quantization error. However, note that Choi et al.
achieve good results with weights quantized using 2 bits in
the forward and backward pass by storing and updating a full
precision copy of the weights as well as quantizing them under
the consideration of the first and second moment of the weight
distribution (SAWB). Since spikes only require 1 bit, the energy
consumption in our case is mainly driven by weights. Hence, we
focus exclusively on the weight quantization and use the weight
quantization method as described by Wu S. et al. (2018) since it
imposes marginal quantization overhead. We perform supervised
learning on MNIST dataset as an example. We further discuss
the impact of FeFET device scaling on the achievable number of
analog synaptic weight states (bit resolution) leading to a loss of
classification accuracy and potential new avenues for research to
circumvent the problem.

MATERIALS AND METHODS

FeFET-Based Analog Adaptive Spiking
Neuron
The general working principle of a SNN is as follows. When
a synapse receives an action potential, also known as a spike,
from its pre-synaptic neuron, it emits a PSP. The PSP in turn
stimulates the membrane potential of the post-synaptic neuron.
The neuronal membrane potential exhibits temporal evolution
where it integrates the PSPs. When the membrane potential
crosses a threshold, the post-synaptic neuron fires, i.e., it emits
an output spike. Figure 1A illustrates the operation of a simple
LIF neuron. Considering a generic LIF neuron, the membrane
potential u is governed by the following equation:

τ
du
dt
= f (u)+

∑
wiIi

where f (u) is the leak term accounting for the leakage of
accumulated charge in the cell membrane, wi is the synaptic
weight, and Ii is the input current that depends on the excitatory
or inhibitory PSPs. Upon arrival of excitatory input voltage
pulses, the membrane potential continuously evolves in time
and as it crosses a threshold, the neuronal circuit sends out
an output voltage pulse thereby creating a “firing event.” The
key idea behind a FeFET-based spiking neuron is to represent
the membrane potential u by the intrinsic state variable, i.e.,
ferroelectric polarization instead of the charge stored by a
capacitor. As will be discussed next, such dynamics can be
achieved within the ferroelectric gate stack of a FeFET that allows
realizing compact and low-power spiking neuron.

Polarization Switching Dynamics
We start by investigating the voltage-dependent polarization
switching dynamics in a 10nm ferroelectric HfxZr1−xO2 thin
film sandwiched between two Tungsten (W) metal electrodes.
Such a metal-ferroelectric-metal (MFM) capacitor is illustrated
in Figure 1B. The fabricated capacitors have lateral dimensions of
80 µm × 80 µm. Figure 1C shows the experimentally measured
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FIGURE 1 | (A) Schematic of a spiking neural network consisting of an array of plastic synapses and a spiking neuron. A key element of the spiking neuron is the
neuronal membrane, which is represented by the intrinsic state variable, i.e., the ferroelectric polarization. (B) Schematic of a metal-ferroelectric-metal (MFM)
capacitor consisting of 10 nm ferroelectric HfxZr1-xO2 thin film sandwiched between two Tungsten (W) metal electrodes that is used to investigating the
voltage-dependent polarization switching dynamics. (C) Experimentally measured polarization vs electric field (P-E) loop exhibiting saturation as well as minor loops
owing to the presence of multiple domains in such ferroelectric thin film. By applying short sub-coercive voltage pulses (D), we can measure the transient
polarization switching highlighting the temporal integration of applied voltage pulses and relaxation during the absence of input pulse (E). This inherent polarization
dynamics closely resembles the neuronal membrane dynamics of the LIF neuron.

polarization vs electric field (P-E) loop exhibiting saturation as
well as minor loops owing to the presence of multiple domains in
such ferroelectric thin film. Starting from a negative polarization
state, where all the dipoles are pointing down, we apply as short
voltage pulse. Since the coercive field (VC) exhibits a Gaussian
distribution in such multidomain thin film, the applied short
voltage pulse becomes larger than VC in some of the domains
leading to a partial polarization switching in the MFM capacitor.

In order to study the temporal evolution of polarization
switching, next we apply short sub-coercive voltage pulses
(Figure 1D) and measure the net switching current ITotal as a
function of time. The total measured current ITotal will have
contribution from two factors—the ferroelectric switching and
the linear dielectric response. We subtract the contribution

from the dielectric portion to reveal the switching dynamics
associated with the polarization alone. Figure 1E shows the
transient polarization switching dynamics highlighting the
temporal integration of applied voltage pulses and relaxation
during the absence of input pulse. The neuronal dynamics is
emulated by utilizing the ferroelectric polarization accumulation
property (Ni et al., 2018; Saha et al., 2019) that allows temporal
integration of PSP. Such ferroelectric polarization switching
dynamics bear close resemblance to that of a LIF spiking
neuron. It is intriguing to compare the dynamics of the
FeFET-based neuron with a standard LIF neuron realized using
dielectric capacitor. It is seen that the integration behavior is
similar for both the neurons. However, the leak characteristics
indicate a surprisingly opposite behavior. As seen in Figure 1E,
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the transient relaxation in ferroelectric polarization when the
voltage pulse is switched off decreases with the increasing in
the number of applied pulses. This is contrary to that of a
standard LIF neuron built using linear dielectric capacitor, where
the discharge rate of the capacitor increases with the pulse
number. Such a deviation in polarization relaxation dynamics
can be understood by considering the interaction among the
ferroelectric domains within the thin film and has been recently
studied using phase-field modeling approach (Dutta et al., 2019b;
Saha et al., 2019).

FeFET Switching Dynamics
Next, we extend the investigation of polarization switching
dynamics to FeFETs that consist of a doped-HfO2 ferroelectric
layer integrated into the gate stack of a conventional MOSFET.
Figure 2A shows the schematic and TEM of a high-K metal
gate FeFET with a poly-Si/TiN/Si:HfO2/SiON/p-Si gate stack
fabricated at 28 nm technology node (Trentzsch et al., 2017). All
experiments reported here have been performed on FeFETs with
channel length of 34 nm and width of 80 nm. On application
of successive sub-coercive voltage pulses to the gate of FeFET,
the ferroelectric polarization within the Si:HfO2 layer switches
due to an accumulative effect (Mulaosmanovic et al., 2018a; Ni
et al., 2018; Saha et al., 2019), resulting in the modulation of
the threshold voltage (VT) of the FeFET. As seen in Figure 2B,
the VT gets modulated abruptly from a high-VT to low-VT
state. The abrupt VT shift arises due to the presence of very
few grains (hence ferroelectric domains) within such a scaled
device. This in turn causes an abrupt increase in the drain-
to-source channel conductance (GDS), thereby exhibiting the
temporal integration of PSPs in FeFET. Figure 2C shows
the measured conductance modulation as a function of the
number of applied pulses over multiple cycles. The cycle-to-
cycle variation arises from the nucleation dominated ferroelectric
polarization switching in FeFET which at the domain level is
known to be a stochastic process (Mulaosmanovic et al., 2018b;
Dutta et al., 2019a; Ni et al., 2019a). Once GDS exceeds a
threshold, the drain current (ID) increases and the FeFET is
said to “fire.” Once in the low-VT state, a negative voltage
needs to be applied across the gate and drain/source in order
to reset the FeFET to high-VT state. Additionally, since the VT
can be gradually increased as well as decreased by applying
positive and negative voltage pulses, respectively, this allows
the incorporation of both excitatory (I > 0) and inhibitory
(I < 0) inputs without any additional circuitry. Figure 2D
shows the continuous conductance modulation due to the
application of PSPs and how the integrate-and-fire (IF) dynamics
repeats after each reset. Owning to the inherent stochasticity,
over multiple IF cycles, a single neuron exhibits a distribution
of inter-spike intervals for a range of applied input voltage
pulse amplitude or width. Figures 2E,F show the distribution
of inter-spike interval for a range of voltage amplitudes and
the corresponding stochastic firing rate of the neuron. Similar
impact of varying the input pulse width on the inter-spike
interval and firing rate is shown in Figures 2G,H. Such
stochasticity can be harnessed for emulating the probabilistic
activity exhibited by biological neurons (Faisal et al., 2008)

without implementing any additional complex circuitry for
randomness generation.

Implementation of Adaptive Spiking Neuron
We leverage this rich dynamics of the FeFET to implement a
low-power spiking neuron circuit consisting of three transistors
and one FeFET. Utilizing the temporal integration property of
FeFET also allows us to avoid using capacitors for membrane
potential, thus providing us an area advantage as well. Figure 3A
illustrates the proposed neuron circuit. The input PSPs are
applied to the PMOS M1. Initially, both the node voltages V0
and V1 are at 0 V. As the PSPs are applied, the node voltage
V0 increases and sub-coercive voltage pulses are applied to the
gate of FeFET. Upon application of successive pulses, the FeFET
abruptly changes from high-VT to low-VT state and the drain
current ID increases. This sends out an output voltage pulse
(“spike”) as well as increases the node voltage V1. Once an output
spike is generated, a reset signal is applied to transistor M3.
This external reset, initiated by an arbiter, enables array-based
operation often seen in large-scale, event-driven, asynchronous
systems such as (Indiveri et al., 2011; Benjamin et al., 2014;
Park et al., 2014). With M1 being cut-off during the inter-
spike intervals, the node voltage V0 is pulled down to 0 V.
This results in a negative VGS across the FeFET, thus switching
the polarization in opposite direction and resetting the FeFET
to high-VT state. We also incorporate bio-inspired homeostatic
mechanism that regulates the activity of a neuron and lowers the
firing rate after every output spike (Liu and Wang, 2001; Benda
and Herz, 2003). The homeostatic spike frequency adaptation
mechanism is introduced through three additional transistors
M4–M6 as shown in Figure 3A. The capacitance CP can be
realized by considering the parasitic capacitance of that node.
During every output spike event, as the node voltage V1 goes
high, transistor M4 gets turned on and that in turn increases the
node voltage V2. The discharge rate of V2 can be controlled by
adding an additional transistor. As V2 increases, M5 gets turned
on gradually with every output spike which in turn increases
the discharge rate of node voltage V0. Thus, the neuron has to
integrate over more input PSPs in order to spike which brings
down the neuron’s firing rate with every output spiking event,
thereby implementing spike frequency adaptation. Figure 3B
shows the SPICE circuit simulation of the FeFET-based adaptive
spiking neuron. To mimic the stochastic switching dynamics
of the FeFET, we introduce a distribution of the coercive field
(VC) for the ferroelectric domains. We performed Monte Carlo
simulation to generate the stochastic spike frequency adaptation
as shown in Figure 3C, where the instantaneous firing rate
goes down with each output spike. The implication of such a
stochastic neuron on the classification accuracy is discussed in
section “Results.”

FeFET-Based Analog Synapse
The idea of voltage-dependent partial polarization switching in
ferroelectric HfxZr1−xO2 can be leveraged to implement a non-
volatile FeFET-based analog synapse. As illustrated in Figure 4A,
the FeFET synapse can be integrated into a pseudo-crossbar
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FIGURE 2 | (A) Schematic and TEM of a high-K metal gate FeFET with a poly-Si/TiN/Si:HfO2/SiON/p-Si gate stack fabricated at 28 nm technology node. (B) On
application of successive sub-coercive voltage pulses to the gate of FeFET, the threshold voltage VT gets modulated abruptly from a high-VT to low-VT state.
(C) Corresponding conductance modulation as a function of number of applied pulses, measured over multiple cycles. (D) The integrate-and-fire dynamics of the
FeFET neuron. After reaching a conductance threshold, the FeFET is reset to the initial polarization state using a negative gate voltage, which results in a sequence
of firing events. (E,F) Distribution of inter-spike interval for a range of voltage amplitudes and the corresponding stochastic firing rate of the FeFET neuron. Similar
impact of varying the input pulse width on the inter-spike interval and firing rate is seen in (G,H).

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 634111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00634 June 22, 2020 Time: 17:59 # 7

Dutta et al. FeFET-Based Spiking Neural Network

FIGURE 3 | (A) Circuit implementation of a FeFET-based spiking neuron. The LIF neuron is implemented using one FeFET and three transistors (M1–M3). Biologically
inspired homeostatic plasticity is implemented using additional transistors (M4–M6). (B) SPICE circuit simulation of the FeFET-based LIF spiking neuron with spike
frequency adaptation. (C) Decrease in the instantaneous firing rate of the neuron with each output spike, exhibiting spike frequency adaptation.

array that is suitable for row-wise weight update and column-
wise summation. Recently, FeFET-based analog synapse has
been experimentally demonstrated on 3 µm long and 20 µm
wide devices that exhibited 32 non-volatile states (equivalent to
5-bit precision) and a dynamic range of 45x with amplitude
modulated programming pulses (Jerry et al., 2018a,b). Here,
we provide experimentally measured conductance modulation
in a scaled 500 nm × 500 nm high-K metal gate FeFET
fabricated at 28 nm technology node (Trentzsch et al., 2017).
As shown in Figure 4B, we used the amplitude modulation
scheme with pulse widths of 1 µs to modulate the conductance
of the FeFET. Applying progressively increasing gate pulses VP
causes the FeFET to transition from the initial high-VT state
to lower VT states as shown by the ID–VG characteristics in
Figure 4B. The resulting channel conductance GDS progressively
increases as shown in Figure 4C. However, due to the lateral
scaling of the device, the number of ferroelectric domains
decreases resulting in a reduced number of non-volatile states.
Since the typical grain size in 10 nm HfO2 is around 10–
15 nm, it can be estimated that there will be around 1000
domains for a 500 nm × 500 nm FeFET. This also results
in cycle-to-cycle (as well as device-to-device) variation, since
the stochastic domain switching contribution from individual
domains becomes more pronounced (Ni et al., 2019a). The
inherent stochasticity results in a variation of the conductance
states measured over multiple cycles for each voltage applied
as shown in Figure 4C. We choose eight non-overlapping GDS
states obtained over multiple cycles using both potentiation
and depression pulses as shown in Figure 4D that allowed
the representation of a 3-bit equivalent analog weight cell.
Figure 4E shows the cumulative distribution of the GDS
states corresponding to potentiation pulse scheme obtained
over multiple cycles. This indicates that while FeFETs are a
promising candidate for non-volatile analog synapse, the number
of available non-volatile states drastically reduce at the scaled
node (Dutta et al., 2019a; Ni et al., 2019a). The implications
of such a reduced bit-precision on learning algorithms are
discussed next. This challenge also opens up new avenues of
research both at the material/device/circuit level, as well as at
the algorithmic level. For example, a FeFET-based synapse has

been recently proposed that utilizes hybrid precision training
and inference to overcome the challenge of limited bit precision
(Sun et al., 2019).

Model of FeFET-Based Analog Spiking
Neuron and Synapse
The inherent ferroelectric polarization switching dynamics
closely resembles the neuronal membrane dynamics of the LIF
neuron and can be captured by a modified quasi-LIF neuron
model. Our description of the FeFET-based neuron model builds
upon the traditional LIF neuron presented by Diehl and Cook
(2015) as given below:

dv
dt
=

αvrest − v
τleak

+

∑ (
ge (Eexc − v)+ gi (Einh − v)

)
τintegrate

τge
dge

dt
= −ge

τgi
dgi

dt
= −gi

τα
dα

dt
= −ge

where v is the membrane potential, vrest denotes the resting
potential of the neuron, and Eexc and Einh are the equilibrium
potentials of excitatory and inhibitory synapses. τleak and τintegrate
are the time constants associated with for the leakage and
integration phase of the neuron, respectively. When the neuron’s
membrane potential crosses the membrane threshold vthres, the
neuron fires and the membrane potential is reset to vreset . We
incorporate the quasi-leaky behavior (decrease in the leak rate of
the neuron during the inter-spike interval) into the neuron model
by using a variable resetting voltage by multiplying vreset with a
parameter α that changes with each incoming spike. Additionally,
this quasi-leak behavior can also be incorporated into the model
by using a variable τleak that also depends on the membrane
potential v (Dutta et al., 2019b). However, owing to very small
relaxation dynamics, one can also ignore the leaky behavior of
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FIGURE 4 | (A) FeFET-based pseudo-crossbar array enabling analog vector–matrix multiplication and row-wise parallel weight update of the synaptic weight with
column-wise summation. (B) Measured Id–Vg characteristics of a 500 nm × 500 nm FeFET upon applying amplitude modulated voltage pulses. Applying
progressively increasing gate pulses VP causes the FeFET to transition from the initial high-VT state to lower VT states. (C) Corresponding channel conductance of
the FeFET upon applying progressively increasing gate pulses VP, measured over multiple cycles. (D) Measured eight non-overlapping GDS states obtained over
multiple cycles using both potentiation and depression pulses that allows the representation of a 3-bit analog weight cell. (E) Cumulative distribution of the GDS

states corresponding to potentiation pulse scheme obtained over multiple cycles.

the FeFET-based neuron and treat it as a perfect IF neuron
(Mulaosmanovic et al., 2018a). Furthermore, we use an adaptive
threshold regime to regulate the neuron’s activity. Once a neuron
hits the threshold and issues a spike, this neuron’s threshold
increases by a fixed amount, thereby making it harder for this
neuron to spike again and prioritizing activities of other neurons.
However, the threshold increase only happens until the neuron
threshold reaches a maximum level, after which the threshold is
not changed by issued spikes anymore.

Synapse models have been incorporated following Diehl
and Cook (2015) where the synaptic conductance changes
instantaneously by weight w when a presynaptic spike arrives at
the synapse, else the conductance decays exponentially. ge and
gi are the conductances of the excitatory and inhibitory synapse,
respectively. τge and τgi are the time constants of the excitatory
and inhibitory PSPs, respectively.

This model is then discretized with a standard Euler method
so we can use discrete time steps in our simulation. The discrete
time version of the models is expressed as:

v [n+ 1] = αErest + βv [n]+ ge [n] Eexc

+βge [n] v [n]+ gi [n] Einh + βgi [n] v [n]

ge [n+ 1] = e−
1t
τge ge[n]

gi [n+ 1] = e
−

1t
τgi gi[n]

α [n+ 1] = e−
1t
τα ge[n]

where v [n] is the discretized membrane potential of the neuron
at time step n. We use a single membrane time constant τv,

accounting for both τleak and τintegrate. β = e−
1t
τv captures the

decay in the membrane potential during a 1t time step.

Supervised Learning for SNNs
The success of deep learning in recent years has largely been
attributed to the power of supervised learning techniques
and gradient based learning (Lecun et al., 2015). Given an
objective function, backpropagation adjusts parameters and
weights of a given network so that its objective function
is minimized. In DNNs, weights are updated in multiple
layers organized hierarchically enabling it to learn complex
classification or regression functions. Two critical challenges
must be overcome in order for SNNs to gain similar success:
(a) The development of hierarchical “deep” networks like (Panda
and Roy, 2016; Kheradpisheh et al., 2018) which can learn
complex representations and (b) enabling the application of
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gradient based learning to deep spiking neural networks (SSNs).
Several studies have proposed ways to train SSNs in order to
address the above challenges, such as (Gütig, 2014; Anwani and
Rajendran, 2015). However, these approaches did not sufficiently
enhance the representative power of SNNs, nor did they enable
the development of deeper more complex networks. Neftci et al.
(2019) identified four streams of research attempting to train
SNNs with hidden units: (i) biologically inspired local learning
rules, (ii) translating conventionally trained “rate-based” neural
networks to SNNs, (iii) smoothing the network model to be
continuously differentiable, and iv) defining a SG as a continuous
relaxation. Fortuitously, the SG-based methods simultaneously
address the two challenges presented and form the basis for the
remainder of this article. This method allows us to build upon
the solid research base of backpropagation with only marginal
modifications of the spiking network model.

Surrogate Gradient Learning
Historically, the spike function in SNNs prevented the
application of gradient based learning rules due to the
discontinuities induced by the non-differentiable spikes,
consequently “stopping the gradient from flowing.” This in turn
results in backpropagation failing to function correctly. The SG
method substitutes the gradient in the backward pass of the
backpropagation with a differentiable proxy or surrogate. This
surrogate is generally based on the membrane potential of a
neuron. As a result of this new gradient, the non-differentiability
is circumvented, and the gradient can propagate. Using this
gradient-based update rule, standard solutions to the credit
assignment problem can be applied. Thus, given a global loss
function, we can apply traditional gradient-based learning
methods such as backpropagation through time (BPTT) (Huh
and Sejnowski, 2018) or other learning rules such as three factor
learning rules (Zenke and Ganguli, 2018) to SNNs. Most modern
machine learning libraries (e.g., PyTorch or TensorFlow)
provide autograd functionalities which facilitate the gradient
computation. Our experiments used BPTT as gradient-based
learning method in conjunction with a SG in the backward pass.
The SGs were computed by applying the normalized negative
part of a fast sigmoid on the membrane potential.

Quantization
As highlighted earlier, the on-chip FeFET-based analog synapse
provides limited bit precision ranging from 5 to 3 bits in
scaled devices. Efficient implementation of (i) off-chip training
followed by reduced bit precision for inference mode and (ii)
on-chip learning and inference with reduced bit precision, both
demand efficient training algorithm taking into consideration the
quantization in synaptic weights. To accurately model the effect
of quantizing the weights, we follow the procedure outlined in
Wu S. et al. (2018). Weights are quantized by restricting them to
a feasible range [−1+ σ(bw), +1− σ(bw)], where σ

(
b
)
= 21−b

and bw is the number of bits encoding the weight. Weights in
each layer are further scaled by γ:

γ = 2
round

log2

 (
1

σ(bw)
−0.5

)
.σ(bw)√

3
fan in




where fan in represents the number of connections into a layer.
Weights are also uniformly initialized in their feasible range and
clipped to the range after each update during training.

RESULTS

We performed supervised learning on MNIST dataset (using
the standard train/test split of 60,000/10,000) using a three-
layer SNN as shown in Figure 5A. The input layer consists of
784 neurons while the output layer has 10 neurons to classify
the digits. The number of hidden layer units is an architectural
question which can have significant impact on the performance.
We used a Bayesian hyperparameter optimization approach
(Bergstra et al., 2013) to determine the number of hidden layer
neurons, learning rate, input multiplier (scaling of the input
spikes), scaling coefficient for the τleak in relation to τintegrate, size
of the regularizer, batch size, and saturation threshold. All these
parameters have an impact on the performance and are sensitive
to the dataset of the network. We use the saturation threshold
method taken from Yousefzadeh et al. (2018) which prevents the
firing threshold from being further increased once it surpasses
the saturation threshold, e.g., once it issued a certain number
of spikes. For the hyperparameter optimization, we gave the
optimizer ranges for the mentioned parameters and programmed
it to train a sampled configuration for 12 epochs. Overall, we
constrained the optimizer to use 75 evaluations and come up
with the best configuration. The number of discrete time steps
remained fixed at 80. In our simulations, we used a negative
loglikelihood loss function, which performed classification by
integrating the last layer’s neurons membrane potential over
time and selecting the class of the neuron with the largest
integration value.

Since the number of analog states that can be represented by a
single FeFET-based synaptic weight cell decreases as we scale the
device, it is important to consider the impact of bit precision of
the synaptic weights (number of analog states) on training as well
as test accuracy. Hence, in our simulation, we varied the weight
bit precision from a high value of 8 bits (that would require a
single FeFET to represent 256 analog states) to 5 bits (32 analog
states demonstrated in a 3 µm × 20 µm device (Jerry et al.,
2018a,b) down to 3 bits (eight analog states demonstrated in
this work). We also compared the results against the full 32-bit
floating point precision available on a CPU. Figure 5B shows the
training accuracy as a function of the number of training epochs
for various precision of the synaptic weight without introducing
any stochastic noise in the simulation. It is seen that while up
to 6 bits, we get a test accuracy of 95.4% which is comparable
(or even better) to that of the full precision accuracy of 95.1%.
The accuracy starts decreasing to 91% for 5 bits and drastically
down to 43.5% for 4 bit precision. The increase of accuracy at
6 bits can be seen as the regularizing effect of more coarse weights.
The sharp decrease of accuracy for 5 or fewer bits likely indicate
the tolerance threshold of SNNs toward reduced weight precision
and the lack of information in spikes coupled with weights after
a certain weight quantization level. Note that previous works like
Choi et al. achieve good results with 2-bit weight quantization
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FIGURE 5 | (A) We performed supervised learning on MNIST dataset using a three-layer SNN. The input layer consists of 784 neurons while the output layer has 10
neurons to classify the digits. We additionally use a Bayesian hyperparameter optimization approach (Bergstra et al., 2013) to determine the number of neurons in
the hidden layer. (B) Training accuracy as a function of the number of training epochs for different synaptic weight bit precision (analog states). (C) Impact of
stochastic noise (incorporated as uniform threshold noise) on the test accuracy for different weight bit precision. (D) Comparison of test accuracy for different weight
bit precision with and without noise.

in the forward and backward pass by storing and updating a full
precision copy of the weights as well as quantizing them under
the consideration of the first and second moment of the weight
distribution (SAWB). In contrast, our results are obtained with
only quantized weights in both the forward and backward pass as
well as a linear quantization step reflecting the capabilities of our
proposed device.

We further studied the impact of stochastic neurons on the
overall performance of the SNN by introducing a uniform noise
around the membrane threshold which can be mimicked by the
stochastic neuronal dynamics (as shown in Figure 2). Figure 5C
shows the impact of noise on the test accuracy. The accuracy
for 5–8 bits increased to 96%. Interesting the accuracy for
4-bit weights improved substantially with more noise around
the threshold which is in accordance with previous works on
ordinary quantized DNNs (Wu S. et al., 2018; Choi et al., 2019).
Over a population of neurons and multiple times steps, the
threshold with more noise becomes more like a soft function
(e.g., sigmoid, softmax, or tanh) rather than a hard threshold and
hence more similar to ordinary DNNs which allows for reduced
weight precision. In the case of 3-bit weights, we were not able to
compensate for the granularity of the weights with noise around

the threshold. Figure 5D shows the testing accuracy as a function
of various weight precision with and without noise indicating that
having a stochastic SNN helps improve the classification accuracy
in the presence of reduced weight precision. As mentioned earlier,
another way to further improve the accuracy will be to resort to a
CMOS-augmented FeFET-based hybrid synapse design that can
provide hybrid precision training and inference to overcome the
challenge of limited bit precision (Sun et al., 2019).

DISCUSSION

In this work, we exploit the rich dynamics of ferroelectric
polarization switching in FeFET to realize compact and low-
power analog spiking neuron and synapse. The membrane
potential of the spiking neuron is represented by the intrinsic
ferroelectric polarization of the FeFET. The neuronal dynamics
is emulated by utilizing the polarization accumulation property
(Ni et al., 2018; Saha et al., 2019) that allows temporal integration
of PSP. This allows the realization of a capacitor-less analog
spiking neuron which proves to be compact and low power.
Table 1 shows a comparative study between our FeFET-based
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TABLE 1 | Comparative study between various hardware implementations of spiking neuron.

Indiveri et al.,
2006

Joubert et al., 2012 Tuma et al.,
2016

Sengupta
et al., 2016

Jerry et al.,
2017

This work

Neuron type LIF Analog LIF Digital LIF LIF LIF Piecewise linear
FHN

LIF

Material CMOS CMOS CMOS Phase change
(PCM)

Magnetic tunnel
junction (MTJ)

Vanadium
dioxide (VO2)

Ferroelectric
HZO

Technology 800 nm 65 nm 65 nm 14 nm – – 45 nm

Integration
mechanism

Capacitor
charging

Capacitor
charging

– Joule heating Magnetization
dynamics

Capacitor
charging

Polarization
accumulative

Circuit
elements

22 Transistor +
one capacitor

33 Transistor +
one capacitor

Pulse
generator,

counter, and
comparator

One PCM +
digital circuit

Two MTJs +
four transistors

One VO2 + one
transistor +

one capacitor

One FeFET +
six transistors

Stochasticity Yes No No Yes Yes Yes Yes

Power or
energy/spike

900 pJ 2 pJ 41.3 pJ 120 µW – 11.9 µW 1–10 pJ

Firing rate 200 Hz 2 MHz 2 MHz 35–40 kHz – 30 kHz 50 kHz

Area 2573 µm2 120 µm2 538 µm2 0.5–1 µm2 – – 2.05 µm2

analog spiking neuron and various other proposals. Compared
to CMOS-based realization of LIF neuron that requires more
than 20 transistors and an explicit capacitor, our proposal of
FeFET-based spiking neuron requires seven transistors including
one FeFET. To estimate the areal requirements, we performed
a layout using a 45nm technology node. The estimated area
is approximately 1.74 × 1.18 µm2 which would be much
smaller than the capacitor-based CMOS circuits. For example,
Joubert et al. (2012) realized an analog spiking neuron with a
footprint area of 120 µm2 at 65 nm technology node, of which
100 µm2 was dedicated to realizing the 500 fF capacitor. Our
estimated footprint area in terms of feature size F is at least 4x
lower than this. Similarly, Indiveri et al. (2006) report using a
432 fF capacitance occupying 244 µm2 silicon area. The energy
dissipated by our FeFET-based analog neuron is comparable to
the analog neuron implementation by Joubert et al. (2012) while
it is 4x lower than the digital implementation and 90x lower
than the energy dissipated by Indiveri et al. (2006). Compared
to PCM-based neuron that requires additional digital circuitry
like a latch and a NOR logic gate (Tuma et al., 2016), our
FeFET-based neuron dissipates 40x lower power and occupies
at least 2.5x lower area in terms of feature size F. Compared
to insulator-to-metel phase-transition vanadium dioxide (VO2)-
based neuron (Jerry et al., 2017), FeFET-based neuron dissipates
300x lower power.

TABLE 2 | Comparative study between various hardware implementations of
analog synaptic weight cell.

PCM RRAM FeFET

Material GST TaOx/HfOx HfxZr1−xO2

States 8 128 8

Variation ∼1.5% ∼3.7% <0.5%

Write voltage 2.5 V 1.6 V 4 V

Write energy 30 pJ ∼10 pJ 0.1 pJ

Cell area 25F2 24F2 24F2

The intrinsic ferroelectric polarization switching mechanism
being a stochastic process (Mulaosmanovic et al., 2018b,
Mulaosmanovic et al., 2018c; Dutta et al., 2019a; Ni et al.,
2019a), the FeFET-based spiking neuron exhibits stochastic firing
that maybe useful for building stochastic neural networks like
neural sampling machine with novel properties like inherent
weight normalization (Detorakis et al., 2019), for applications
like modeling uncertainties in neural networks (Gal and
Ghahramani, 2016) and for probabilistic inferencing (Pecevski
et al., 2011). One key limitation of FeFET-based neuron
compared to generalized neuron model utilized in neuroscience
and CMOS-based circuits is that the membrane potential
is represented by the intrinsic ferroelectric polarization state
variable and the associated stochasticity arises directly from the
ferroelectric domain nucleation process. Hence, the degree of
tuning the neuronal parameters and the stochastic response is
limited which might be disadvantageous for algorithms in which
the parameters and the stochasticity have to be tightly controlled.

The FeFET-based analog synapse is realized using voltage-
dependent partial polarization switching in multi-domain
ferroelectric thin film (Jerry et al., 2018a,b). Recent experimental
works have shown the ability to program FeFETs with voltage
pulse widths as low as 50 ns (Jerry et al., 2018b) while the
programming voltage can be brought down from 4 to 1.8 V
by engineering the gate stack by adding an additional metal
layer between the ferroelectric capacitor and MOS capacitor
(Ni et al., 2019b). Table 2 shows a comparative study between
FeFET-based analog synapse and various other candidates like
PCM (Burr et al., 2010; Athmanathan et al., 2016; Ambrogio
et al., 2018) and RRAM (Lee et al., 2012; Wu et al., 2017;
Wu W. et al., 2018; Luo et al., 2019). One major benefit of
using FeFET for implementing analog synapse is the reduced
variability to less that 0.5% (Luo et al., 2019) and an order of
magnitude reduction in write energy (Dünkel et al., 2018; Ni et al.,
2019b). The cell area is comparable to that of PCM and RRAM.
One limitation of FeFET-based analog synapse is the achievable
number of non-volatile conductance states as we scale down the
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device. While a recent experiment on 60 µm2 size FeFET
devices exhibited 32 conductance states (equivalent to 5-bit
precision) (Jerry et al., 2018a,b), in this work, we achieved eight
non-overlapping conductance states (equivalent to 3 bits) in a
0.25 µm2 size device. The precision of synaptic weight overed
can be further improved by resorting to hybrid mechanisms like
the recently proposed two transistor-one FEFET (2T1F) hybrid
weight cell that allow up to 64 states with improved non-linearity
and asymmetry factors (Luo et al., 2019; Sun et al., 2019). Similar
hybrid schemes have been applied to other novel devices like
the three-transistor, one-capacitor, and two PCM (3T1C+2PCM)
weight cell (Ambrogio et al., 2018).

CONCLUSION

In summary, we explore the rich polarization switching dynamics
and non-volatile nature of FeFETs and propose an all FeFET-
based SNN neuromorphic hardware that can enable low-
power spike-based information processing and co-localized
memory and computing (a.k.a. in-memory computing). We
experimentally demonstrate the essential neuronal and synaptic
dynamics in a 28 nm high-K metal gate FeFET technology.
Furthermore, we implement a SG learning algorithm on our
SNN platform, thus enabling us to perform supervised learning.
As such, the work provides a pathway toward building energy-
efficient neuromorphic hardware that can support traditional
machine learning algorithms. We also undertake synergistic
device-algorithm co-design by accounting for the impacts of
device-level variation (stochasticity) and limited bit precision
of on-chip synaptic weights (available analog states) on the

classification accuracy and highlight possible avenues of future
work to overcome the current challenges such as resorting to
hybrid precision training and inference.
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Spiking Neural Networks (SNNs) may offer an energy-efficient alternative for

implementing deep learning applications. In recent years, there have been several

proposals focused on supervised (conversion, spike-based gradient descent) and

unsupervised (spike timing dependent plasticity) training methods to improve the

accuracy of SNNs on large-scale tasks. However, each of these methods suffer

from scalability, latency, and accuracy limitations. In this paper, we propose novel

algorithmic techniques of modifying the SNN configuration with backward residual

connections, stochastic softmax, and hybrid artificial-and-spiking neuronal activations

to improve the learning ability of the training methodologies to yield competitive

accuracy, while, yielding large efficiency gains over their artificial counterparts. Note,

artificial counterparts refer to conventional deep learning/artificial neural networks. Our

techniques apply to VGG/Residual architectures, and are compatible with all forms

of training methodologies. Our analysis reveals that the proposed solutions yield near

state-of-the-art accuracy with significant energy-efficiency and reduced parameter

overhead translating to hardware improvements on complex visual recognition tasks,

such as, CIFAR10, Imagenet datatsets.

Keywords: spiking neural networks, energy-efficiency, backward residual connection, stochastic softmax,

hybridization, improved accuracy

1. INTRODUCTION

Neuromorphic computing, specifically, Spiking Neural Networks (SNNs) have become very
popular as an energy-efficient alternative for implementing standard artificial intelligence
tasks (Indiveri and Horiuchi, 2011; Cao et al., 2015; Panda and Roy, 2016; Sengupta
et al., 2016; Pfeiffer and Pfeil, 2018; Roy et al., 2019). Spikes or binary events drive
communication and computation in SNNs that not only is close to biological neuronal
processing, but also offer the benefit of event-driven hardware operation (Indiveri et al., 2015;
Ankit et al., 2017; Roy et al., 2019). This makes them attractive for real-time applications
where power consumption and memory bandwidth are important factors. What is lacking,
however, is proper training algorithms that can make SNNs perform at par with conventional
artificial neural networks (ANNs). Today, there is a plethora of work detailing different
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algorithms or learning rules for implementing deep
convolutional spiking architectures for complex visual
recognition tasks (Masquelier and Thorpe, 2007; Masquelier
et al., 2009; O’Connor et al., 2013; Diehl and Cook, 2015;
Diehl et al., 2015; Hunsberger and Eliasmith, 2015; Lee et al.,
2016, 2018a,b; Panda and Roy, 2016; Mostafa, 2017; Panda
et al., 2017; Bellec et al., 2018; Kheradpisheh et al., 2018;
Srinivasan et al., 2018; Neftci et al., 2019; Sengupta et al.,
2019; Severa et al., 2019; Srinivasan and Roy, 2019). Most
algorithmic proposals focus on integrating the discrete or
discontinuous spiking behavior of a neuron in a supervised
or unsupervised learning rule. All proposals maintain overall
sparse network activity (implies low power operation) while
improving the accuracy (implies better performance) on image
recognition applications [mostly, benchmarked against state-
of-the-art datasets like Imagenet (Deng et al., 2009), CIFAR
(Krizhevsky and Hinton, unpublished manuscript), MNIST
(LeCun et al., 2010)].

Collating the previous works, we can broadly categorize the
SNN training methodologies into three types: (1) Conversion
from artificial-to-spiking models (Diehl et al., 2015; Sengupta
et al., 2019), (2) Approximate Gradient Descent (AGD) based
backpropagation with spikes (or accounting temporal events)
(Lee et al., 2016; Neftci et al., 2019), and (3) Unsupervised
Spike Timing Dependent Plasticity (STDP) based learning
(Diehl and Cook, 2015; Srinivasan et al., 2018). Each technique
presents some advantages and some disadvantages. While
conversion methodology has yielded state-of-the-art accuracies
for large datasets like Imagenet on complex architectures
[like VGG (Simonyan and Zisserman, 2014), ResNet (He
et al., 2016)], the latency incurred to process the rate-coded
image1 is very high (Pfeiffer and Pfeil, 2018; Lee et al., 2019;
Sengupta et al., 2019). AGD training addresses the latency
concerns yielding ∼ 10 − 15× benefits as compared to the
conversion (Bellec et al., 2018; Lee et al., 2019; Neftci et al.,
2019). However, AGD still lags behind conversion in terms
of accuracy for larger and complex tasks. The unsupervised
STDP training, while being attractive for real-time hardware
implementation on several emerging and non-von Neumann
architectures (Pérez-Carrasco et al., 2010; Linares-Barranco et al.,
2011; Ankit et al., 2017; Sengupta and Roy, 2017; van de
Burgt et al., 2017; Wang et al., 2017), also suffers from
accuracy/scalability deficiencies.

From the above discussion, we can gather that addressing
Scalability, Latency, and Accuracy issues are key toward
achieving successful SNN methodologies. In this paper, we
precisely address each of these issues through the lens of
network architecture modification, softmax classifier adaptation,
and network hybridization with a mix of Rectified Linear
Unit/ReLU (or ANN-like) and Leaky-Integrate-and-Fire (or SNN-
like) neuronal activations in different layers.

1SNNs process event data obtained with rate or temporal coding instead of real-

valued pixel data. Rate coding is widely used for SNN applications, where, a real-

valued pixel data is converted to a Poisson-distribution based spike train with the

spiking frequency proportional to the pixel value (Diehl and Cook, 2015). That is,

high valued pixels output more spikes and vice-versa.

2. RELATED WORK, MOTIVATION, AND
CONTRIBUTIONS

2.1. Addressing Scalability With Backward
Residual Connections
Scalability limitations of STDP/AGD approaches arises from
their depth incompatibility with deep convolutional networks
which are necessary for achieving competitive accuracies.
SNNs forward propagate spiking information and thus require
sufficient spike activity across all layers of a deep network to
conduct training. However, previous works have shown that
spiking activity decreases drastically for deeper layers of a
network (that we define as vanishing spike propagation), thereby,
causing training issues for networks with large number of
layers (Masquelier et al., 2009; Diehl et al., 2015; Lee et al.,
2016, 2018b; Panda and Roy, 2016; Kheradpisheh et al., 2018;
Srinivasan et al., 2018).

From ANN literature, it is known that depth is key to
achieving improved accuracy for image recognition applications
(LeCun et al., 2015; Szegedy et al., 2015). Then, the question
arises, can we modify the spiking network architecture to be
less deep without compromising accuracy? Kubilius et al. (2018)
proposed Core Object Recognition or CORnet models (with
what we term as backward residual connections) that transform
deep feedforward ANN models into shallow recurrent models.
Figure 1 illustrates the Backward Residual (BackRes) block
architecture. It is similar to that of a recurrent network unrolled
over time with weights shared over repeated computations of the
output. Specifically, the computations in Block1 are performed
twice before processing Block2. For n = 1, Block1 processes
original input information, while, for n = 2, the same Block1
with repeated weights processes the output from previous step.
Note, the original input is processed only once for n = 1. For
n > 1, the block processes its output from the previous step.
Essentially, BackRes connections enable a network to achieve
similar logical depth as that of a deep feedforward network
without introducing additional layers. The 1-convolutional layer
block in Figure 1A achieves the logical depth of a 2-convolutional
layer block as shown in Figure 1B and is expected to achieve near
iso-accuracy with that of the 2-convolutional layer block2. The
BackRes connection brings two key advantages: (1) Reduction in
the total number of parameters since we are reusing the same
weights over multiple steps of unrolling, (2) Diversification of
gradient update for each unrolled step due to different input-
output combinations.

2.1.1. Our Contribution
We utilize BackRes connections and the diversified gradients
to enable training of logically deep SNN models with AGD
or STDP that otherwise cannot be trained (with multiple
layers) due to vanishing spike propagation. Further, we show
that converting a deep ANN (with BackRes blocks) into a

2There is a limit to which BackRes compensates for depth diversity with iso-

accuracy. VGG2x8 network with 2 convolutional layers unrolled 8 timesmay suffer

accuracy loss as compared to a VGG16 network with 16 convolutional layers. But,

VGG2x4 may yield near iso-accuracy as VGG8. Note, VGG2x4 and VGG8 have

same logical depth of 8 convolutional layers.
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FIGURE 1 | (A) A simple neural network architecture with Backward Residual (BackRes with n = 2) connections is shown. The layers in Block1 are unrolled n = 2

times to perform the BackRes computation with weights of Conv layer reused at each unrolling step. (B) A network with 2 unique convolutional layers in Block1 is

shown. Note, BackRes computation in (A) achieves the same logical depth of the network in (B).

deep SNN necessitates the use of multiple threshold-spiking
neurons per BackRes block to achieve lossless conversion. We
also demonstrate that BackRes SNN models (say, VGG2x4)
yield both lower memory complexity (proportional to number
of weights/parameters) and sparser network activity with
decreased computational overhead (proportional to total
inference energy) as compared to a deep architecture
(say, VGG8) of similar logical depth across different SNN
training methodologies.

2.2. Addressing Latency With Stochastic
Softmax (Stochmax)
In order to incur minimal loss during pixel-to-spike
conversion with rate coding1 (generally, used in all SNN
experiments), the number of time steps of the spike
train has to sufficiently large. This, in turn, increases the
latency of computation. Decreasing the latency implies
larger loss in image-to-spike conversion that can result in
lower accuracy.

Across all SNN training methodologies, the final classifier or
output layer which yields the prediction result is usually a softmax
layer similar to that of an ANN. It is general practice, in SNN
implementation, to collect all the accumulated spiking activity
over a given time duration from the penultimate layer of a deep
SNN and feed it to a softmax layer that calculates the loss and
prediction based on the integrated spike information (Masquelier
and Thorpe, 2007; Lee et al., 2016, 2019). While the softmax
classifier based training has produced competitive results, the
latency incurred still is significantly high. The question that
arises here is, “Can we compensate for reduced latency (or, higher
loss during image-to-spike conversion) by improving the learning

capability of the SNN by augmenting the softmax functionality?”
Lee H. B. et al. (2018) proposed a stochastic version of a softmax
function (stochmax) that drops irrelevant (non-target) classes
with adaptive dropout probabilities to obtain improved accuracy
in ANN implementations. Stochmax can be viewed as a stochastic
attention mechanism, where, the classification process at each
training iteration selects a subset of classes that the network has
to attend to for discriminating against other false classes. For
instance, while training for a cat instance, it is useful to train
the model with more focus on discriminating against confusing
classes, such as, jaguar, tiger instead of orthogonal classes like
truck, whale. Softmax, on the other hand, collectively optimizes
the model for target class (cat) against all remaining classes
(jaguar, tiger, truck, whale) in an equally weighted manner,
thereby, not involving attentive discrimination.

2.2.1. Our Contribution
Given that stochmax improves intrinsic discrimination
capability, we utilized this stochastic regularization effect to
decrease the training/inference latency in SNN frameworks.
We show how standard AGD can be integrated with stochmax
classifier functionality to learn deep SNNs. Our analysis yields
that deep SNNs of 3–4 layers trained with stochmax yield
higher accuracy at lower latency than softmax baselines (for
AGD training).

2.3. Addressing Accuracy With Network
Hybridization
It is evident that accuracy loss due to vanishing spike propagation
and input pixel-to-spike coding are innate properties of SNN
design that can be addressed to certain extent, but, cannot be
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completely eliminated. In order to achieve competitive accuracy
as that of an ANN, we believe that taking a hybrid approach with
a partly-artificial-and-partly-spiking neural architecture will be
most beneficial.

2.3.1. Our Contribution
We demonstrate a hybrid neural architecture for AGD training
methodologies. In case of AGD, since the training is performed
end-to-end in a deep network, vanishing spike-propagation
becomes a limiting factor to achieve high accuracy. To address
this, we use ReLU based neurons in the initial layers and have
spiking leaky-integrate-and-fire neurons in the latter layers and
perform end-to-end AGD backpropagation. In this scheme, the
idea is to extract relevant activity from the input in the initial
layers with ReLU neurons. This allows the spiking neurons in
latter layers to optimize the loss function and backpropagate
gradients appropriately based on relevant information extracted
from the input without any information loss.

Finally, we show the combined benefits of incorporating
BackRes connections with stochmax classifiers and network
hybridization across different SNN training methodologies and
show latency, accuracy, and compute-efficiency gains. Through
this work, our goal is to communicate good practices for
deploying SNN frameworks that yield competitive performance
and efficiency as compared to corresponding ANN counterparts.

3. SNN: BACKGROUND AND
FUNDAMENTALS

3.1. Input and Neuron Representation
Figure 2A illustrates a basic spiking network architecture with
Leaky-Integrate-and-Fire (LIF) neurons processing rate-coded
inputs1. It is evident from Figure 2B that converting pixel values
to binarized spike data {1: spike, 0: no spike} in the temporal
domain preserves the integrity of the image over several time
steps. The dynamics of a LIF spiking neuron is given by

τ
dvmem

dt
= −vmem +6iIiwi (1)

The membrane potential vmem integrates incoming spikes Ii
through weights wi and leaks (with time constant τ ) whenever
it does not receive a spike. The neuron outputs a spike event
when vmem crosses certain threshold vthresh. Refractory period
ensues after spike generation during which the post-neuron’s
membrane potential is not affected. In some cases, Integrate-and-
Fire (IF) neurons are also used where leak value is 0 for simplicity
in simulations/hardware implementations. Note, while Figure 2
illustrates a fully-connected network, SNNs can be constructed
with a convolutional hierarchy comprising multiple layers. For
the sake of notation, we will refer to networks with real-valued

FIGURE 2 | (A) A feedforward fully-connected SNN architecture with Leaky-Integrate-and-Fire (LIF) spiking dynamics is shown. The notations correspond to Equation

(1). (B) A sample CIFAR10 RGB pixel image (denoted as original) and corresponding rate-coded spike images at different time instants are shown. The spike image

plotted at t = n is a summation of all spike maps from t = 0 to t = n.
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computations/ReLU neurons as ANNs and networks with spike-
based computations/LIF or IF neurons as SNNs.

3.2. Training Methodology
3.2.1. Conversion From ANN-to-SNN
To achieve higher accuracy with SNNs, a promising approach has
been to convert ANNs trained with standard backpropagation
into spiking versions. Fundamentally, the goal here is to match
the input-output mapping function of the trained ANN to that of
the SNN. Recent works (Diehl et al., 2015; Sengupta et al., 2019)
have proposed weight normalization and threshold balancing
methods in order to obtain minimal loss in accuracy during the
conversion process. In this work, we use the threshold balancing
method (Sengupta et al., 2019) that yields almost zero-loss
ANN-to-SNN conversion performance for deep VGG/ResNet-
like architectures on complex Imagenet dataset.

In threshold balancing, after obtaining the trained ANN, the
first step is to generate a Poisson spike train corresponding to
the entire training dataset for a large simulation duration or time
period (generally, 2,000–2,500 time steps). The Poisson spike train
allows us to record the maximum summation of weighted spike
input (6iwi.Xi(t)) received by the first layer of the ANN. vthresh
value for the first layer is then set to the maximum summation
value. After the threshold for the first layer is set, the network is
again fed the input data to obtain a spike-train at the first layer,
which serves as the input spike-stream for the second layer of
the network. This process of generating spike train and setting
vthresh value is repeated for all layers of the network. Note, the
weights during this balancing process remain unchanged. For
more details on this technique (please see Sengupta et al., 2019).

While conversion approach yields high accuracy, the
computation cost is large due to high latency in processing.
Reducing the time period from 2,000 to 100/10 time steps causes
large decline in accuracy as vthresh balancing fails to match the
output rate of SNN to that of ANN. Note, the accuracy of an
SNN in conversion case is bounded by the accuracy of the
corresponding ANN.

3.2.2. Approximate Gradient Descent (AGD)
The thresholding functionality in the spiking neuron yields
a discontinuous/non-differentiable functionality making it
incompatible with gradient-descent based learning methods.
Consequently, several training methodologies have been
proposed to incorporate the temporal statistics of SNNs and
overcome the gradient descent challenges (O’Connor et al., 2013;
Lee et al., 2016, 2018b; Panda and Roy, 2016; Bellec et al., 2018;
Neftci et al., 2019). The main idea is to approximate the spiking
neuron functionality with a continuously differentiable model or
use surrogate gradients as a relaxed version of the real gradients
to conduct gradient descent training. In our work, we use the
surrogate gradient approach proposed in Neftci et al. (2019).

In Neftci et al. (2019), the authors showed that temporal
statistics incorporated in SNN computations can be implemented
as a recurrent neural network computation graph (in, PyTorch,
Tensorflow; Abadi et al., 2016 frameworks) that can be unrolled
to conduct Backpropagation Through Time (BPTT) (Werbos
et al., 1990). The authors in Neftci et al. (2019) also showed

that using LIF computations in the forward propagation and
surrogate gradient derivatives during backpropagation allows
SNNs (of moderate depth) to be efficiently trained end-to-
end. Using a recurrent computational graph enables the use of
BPTT for appropriately assigning the gradients with chain rule
in the temporal SNN computations. Here, for a given SNN,
rate coded input spike trains are presented and the output
spiking activity at the final layer (which is usually a softmax
classifier) is monitored for a given time period. At the end of the
time period, the loss from the final softmax layer is calculated
and corresponding gradients are backpropagated through the
unrolled SNN computation graph.

Figure 3A illustrates the SNN computational graph. From an
implementation perspective, we can write the dynamics of an LIF
neuron in discrete time as

Vmemi [t + 1] = αVmemi [t]+ Ii[t] (2)

Ii[t] = 6jWijSj[t] (3)

Here, the output spike train Si of neuron i at time step
t is a non-linear function of membrane potential Si[t] ≡

2(Vmemi [t] − vthresh) where 2 is the Heaviside step function
and vthresh is the firing threshold. Ii is the net input current
and α = exp(−1t/τmem) is the decay constant (typically in
the range {0.95, 0.99}). During backpropagation, the derivative
of S(Vmem(t)) = 2(Vmem(t) − vthresh) is zero everywhere except
at Vmem = vthresh where it is not defined. This all-or-nothing
behavior of spiking neurons stops gradient from flowing through
chain rule making it difficult to perform gradient descent. We
approximate the gradient using surrogate derivatives for 2
following (Bellec et al., 2018; Neftci et al., 2019) as

dS[t]

dVmem[t]
= γmax{0, 1− |

Vmem[t]− vthresh

vthresh
|} (4)

where γ is a damping factor (set to 0.3) that yields stable
performance during BPTT. As shown in Figure 3B, using a
surrogate gradient (Equation 4) now replaces a zero derivative
with an approximate linear function. For more details and
insights on surrogate gradient descent training (please see Bellec
et al., 2018; Neftci et al., 2019). For convenience in notation,
we will use AGD to refer to surrogate descent training in the
remainder of the paper.

Using end-to-end training with spiking computations enables
us to lower the computation time period to 50–100 time
steps. However, these methods are limited in terms of
accuracy/performance and are also not suitable for training very
deep networks.

3.2.3. Unsupervised STDP Learning
STDP is a correlation based learning rule which modulates the
weight between two neurons based on the correlation between
pre- and post-neuronal spikes. In this work, we use a variant of
the STDP model used in Diehl and Cook (2015), Srinivasan et al.
(2018), and Srinivasan and Roy (2019) described as

1wSTDP = η × (e−(
tpost−tpre

τ
)
− STDPoffset) (5)
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FIGURE 3 | (A) SNN computational graph unrolled over multiple time-steps for computing the V or Vmem and resultant output spike train S as a function of input

spikes I[t] is shown. (B) Illustration of indeterminate derivative for a threshold or step function that is replaced with a surrogate piecewise linear derivative to allow the

flow of gradients in AGD training.

where 1wSTDP is the weight update, η is the learning rate,
tpost , tpre are the time instants of post- and pre-neuronal spikes,
τ is the STDP time constant. Essentially, the weight is increased
if a pre-neuron triggers a post-neuron to fire within a time
period specified by the STDPoffset implying strong correlation.
If the spike timing difference is large between the pre- and
post-neurons, the weight is decreased. In Srinivasan and Roy
(2019), the authors implemented a mini-batch version of STDP
training for training convolutional SNNs in a layerwise manner.
For training the weight kernels of the convolutional layers
shared between the input and output maps, the pre-/post-
spike timing differences are averaged across a given mini-batch
and corresponding STDP updates are performed. In this work,
we perform mini-batch training as in Lee et al. (2018b) and
Srinivasan and Roy (2019). We also use the uniform threshold
adaptation and dropout scheme following (Lee et al., 2018b;
Srinivasan et al., 2018; Srinivasan and Roy, 2019) to ensure
competitive learning with STDP. For more information on the
learning rule (please see Lee et al., 2018b; Srinivasan et al., 2018).

Generally, a network trained with layerwise STDP (for
convolutional layers) is appended with a classifier (separately
trained with backpropagation) to perform final prediction. The
authors in Srinivasan and Roy (2019) showed that unsupervised
STDP learning (even with binary/probabilistic weight updates)
of a deep SNN, appended with a fully-connected layer of ReLU
neurons, yields reasonable accuracy. However, similar to AGD,
layerwise STDP training is not scalable and yields restrictive
performance for deep multi-layered SNNs.

4. SNNS WITH BACKRES CONNECTIONS

BackRes allows a model to perform complex computation
over multiple logical depth by means of repeated unrolling.
From Figure 1, it appears that the number of output and
input channels in a BackRes block need to be equal for
consistency. However, given a BackRes block with 64 input
channels and 128 output channels (say, VGG2x4 network),
one can randomly drop 64 channels from the output during
unrolled computations. Selecting top-64 channels with maximal
activity, or averaging the response of 128 channels into 64 also
yields similar accuracy as that of a baseline network (VGG8).

For convenience, in our experiments, we use models with same
input/output channels and convert them to BackRes blocks. Next,
we discuss how to integrate BackRes connection for different
SNN training methodologies.

4.1. Conversion
In this methodology, SNN is constructed from a trained ANN.
Hence, the ANN has to incorporate BackRes connections with
repeated ReLU computations (similar to Figure 1) which then
need to be appropriately matched to spiking neuronal rates.
Figure 4 illustrates the conversion from ReLU to IF neurons.
Here, since unrolling each time yields a different output rate,
we need to ensure that we use multiple threshold IF neurons
where IF1 with threshold vthresh1 is activated for n = 1 and
IF2 with threshold vthresh2 for n = 2. Thus, the number of
thresholds vthreshn will be equal to the number of unrolling steps
n. During threshold balancing for conversion (see section 3.2.1),
we need to set the thresholds for each layer as well as each step
of unrolling within a layer separately. Interestingly, we find that
vthresh increases with n, i.e., vthresh1 < vthresh2 . . . < vthreshn .
Increasing threshold implies lesser spiking activity with each
unrolling which reduces the overall energy cost (results shown
in section 8.1).

4.2. AGD Training
In AGD training, an SNN is trained end-to-end with the loss
calculated at the output layer using surrogate gradient descent
on LIF neurons. The thresholds of all neurons are set to a user-
defined value at the beginning of training and remain constant
throughout the learning process. The weight updates inherently
account for the balanced spiking activity given the set thresholds.
Adding BackRes blocks in this case will be similar to training
a recurrent model with unrolled computation, that is treating
the BackRes block as a feedforward network of n layers. During
backpropagation, the gradients are passed through the unrolled
graph of the BackRes block, where, the same weights w are
updated n times.

Figure 5 illustrates the backpropagation chain rule update. It
is worth mentioning that the LIF activity with every unrolling
varies, that eventually affects the weight update value at each
step. As in conversion, we find that networks with BackRes
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FIGURE 4 | Conversion of ANN with BackRes blocks into SNNs using threshold balancing. Here, during BackRes computations, we need to use multiple threshold

vthresh1,2 IF neurons IF1, IF2 to match the input-output activity between ANN and SNN at each unrolling step n = 1, 2.

FIGURE 5 | AGD backpropagation chain rule update with BackRes connections. The BackRes block is essentially unrolled n times and the loss is propagated

through the unrolled graph to compute the weight updates at each unrolling step n = 1, 2 as shown. Note, the Conv layer weights w of the BackRes block receive

two updates with different input and output combinations giving rise to diverse gradients.

blocks and shared weights (say, VGG2x2) generally have lower
spiking activity than equivalent depth baseline network with
separate layers (say, VGG4), yielding energy improvements. This
implies that the repeated computation with unrolling gives rise to
diverse activity that can possibly model diverse features, thereby,
allowing the network to learn even with lesser depth. Note, the
BackRes network and the baseline network have same vthresh
through all layers when trained with AGD. Further, AGD training
has scalability limitations. For instance, a seven-layered VGG
network fails to learn with end-to-end surrogate gradient descent.
However, a network with BackRes blocks with real depth of
five layers and logical depth of seven layers can now be easily
trained and in fact yields competitive accuracy (results shown
in section 8.1).

4.3. STDP Training
SNNs learnt with STDP are trained layerwise in an iterative
manner. Generally, in one iteration of training (comprising of
T time-steps or 1 time period of input presentation), a layer’s
weights are updated k times (k ≤ T) depending upon the
total spike activity in the pre-/post-layer maps and spiking
correlation (as per Equation 5). Since BackRes performs n
repeated computations of a single layer, in this case, we make
k × n weight updates for the given layer in each iteration of
STDP training. From Figure 5, we can gather that the pre-/post-
correlation at n = 1 unrolling step will correspond to input X
and Conv layer’s output that will determine its weight updates.
For n = 2, the Conv layer’s output from previous step will
serve as pre-spiking activity based on which the weights are
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updated again. Similar to AGD training, the overall activity at the
output ofConv changes with nwhich diversifies and improves the
capability of the network to learn better. We also find reduced
energy cost and better scalability toward large logical depth
networks that otherwise (with real depth) could not be trained
in a layerwise manner (results shown in section 8.1).

5. SNNS WITH STOCHMAX

Stochmax as noted earlier is a stochastic version of a softmax
function that allows a network to discriminate better by focusing
or giving importance to confusing classes. A softmax classifier is
defined as

p(y|x; θ) =
exp(ot(x; θ))

6kexp(ok(x; θ))
(6)

where t is the target label for input x, k is the number of
classes, and o(x; θ) = WTh + b, θ = {W, b} is the logits
score generated from the last feature vector h = NN(x;ω) of
a neural network NN(.) parameterized by ω. With Stochmax,
the objective is to randomly drop out classes in the training
phase with a motivation of learning an ensemble of classifiers in
a single training iteration. From Equation (6), we can see that
making exp(ok) = 0 drops class k completely even eliminating
its gradients for backpropagation. Following this, Stochmax is
defined as:

zk|x ∼ Ber(zk; ρk(x; θ),

p(y|x, z; θ ,ψ) =
(zt + ǫ)exp(ot(x; θ))

6k(zk + ǫ)exp(ok(x; θ))
(7)

Here, we drop out classes with a probability (1 − ρk) based on
Bernoulli (Ber) trials. Further, to encode meaningful correlations
in the probabilities ρk, we learn the probabilities as an output
of the neural network which takes last feature vector h as input
and outputs a sigmoidal value ρ(x;ψ) = σ (WT

ψ + bψ ),ψ =

{Wψ , bψ }. By learning ψ , we expect that highly correlated classes
can be dropped or retained together. In essence, by dropping
classes, we let the network learn on different sub-problems at
each iteration. In SNN implementations, we replace the softmax
classifier (Equation 6) with a Stochmax function (Equation 7) at
the output. Generally, the classifier layer is a non-spiking layer
which receives accumulated input from the previous spiking layer
h integrated over the T time-steps per training iteration. The
loss is then calculated from stochmax output which is used to
calculate the gradients and perform weight updates.

It is evident that AGD training where the loss function at the
classifier is used to update the weights at all layers of a deep
SNN will be affected by this softmax-to-stochmax replacement.
We find that this attentive discrimination that implicitly models
many classifiers (providing different decision boundaries) per
training iteration allows an SNN to be trained even with lower
latency (or lesser time steps per training iteration or input
presentation) while yielding high accuracy. Lower latency implies
that pixel-to-spike input coding with Poisson rate will incur more
loss. However, the deficit of the input coding gets rectified with
improved classification.

In Conversion, an ANN is trained separately and is completely
dissociated from the spiking statistics. STDP, on similar lines,
has spike-based training of intermediate feature extractor layers.
The final classifier layers (which are separately trained) are
appended to the STDP-trained layers and again do not influence
the weight or activity learnt in the previous layers. Thus, while
Stochmax classifier inclusion slightly improves the accuracy of
both conversion/STDP methods, they remain unaffected from a
latency perspective.

6. SNNS WITH HYBRID RELU-AND-LIF
NEURONS

The objective with a partly-artificial-and-partly-spiking neural
architecture is to achieve improved accuracy. For artificial-to-
spiking conversion methodology, since training is performed
using ReLU neuronal units and inference with spiking integrate-
and-fire neurons, network hybridization is not necessary
and will not add to the overall accuracy. Most works on
STDP learning use hybrid network architecture where STDP
is used to perform feature extraction with greedy layer-
wise training of the convolutional layers of a deep network.
Then, a one-layer fully connected ANN (with ReLU neurons)
is appended to the STDP trained layers to perform final
classification. However, STDP is limited in its capability to
extract specific features from the input that are key for
classification. We find that strengthening the ANN hierarchy
of an STDP-trained SNN (either with Stochmax or deepening
the ANN with multiple layers) yields significant improvement
in accuracy.

In AGD, since learning is performed end-to-end vanishing
spike-propagation restricts the training of a deep many-layered
network. For instance, a VGG7 network fails to train with AGD.
In fact, even with residual or skip connections that leads to a
ResNet7-like architecture, the model is difficult to train. BackRes
connections are potential solutions for training logically deep
networks. However, to achieve better accuracy for deeper many-
layered networks, there is a need to hybridize the layers of the
network with ReLU and LIF neurons.

Figure 6 illustrates the hybrid network configuration. We
have ReLU neurons in initial layers and temporal LIF neurons
in latter layers. During forward propagation, the input processed
through the ANN − block is then propagated through
the SNN − block unrolled over different time-steps as a
recurrent computational graph to calculate the loss at the final
output layer (that can be softmax/stochmax function). In the
backward phase, the gradient of loss is propagated through
the recurrent graph updating the weights of the SNN block
with surrogate linear approximation of the LIF functionality
corresponding to activity at each time step. The loss gradient
calculated through BPTT are then passed through the ANN-
block (which calculates the weight updates in ANN with
standard chain rule). It is worth mentioning that setting up
a hybrid network in a framework like PyTorch automatically
performs recurrent graph unrolling for SNN-block and standard
feedforward graph for ANN-block and enables appropriate

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 653127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Panda et al. Accurate and Efficient Spiking Networks

FIGURE 6 | A hybrid network architecture with ReLU activation initially and LIF activation in latter layers for AGD training is shown. During AGD backpropagation, the

SNN− block is unrolled and the weight updates are calculated through the unrolled graph over different time-steps using chain-rule. The loss gradient from the

SNN− block, ∂Loss
∂WSNN

, is then backpropagated through the ANN computational graph to calculate the ANN loss gradients ∂Loss
∂WANN

. Note, the SNN− block receives the

real-valued input X computed from the ANN− block at each time-step.

gradient calculation and weight updates. We would also like
to note that we feed in the output of the ANN-block as it
is (without any rate-coding) to the SNN-block. That is, the
unrolled SNN graph at each time-step receives the same real-
valued input X. We find that processing X instead of rate-
coded X[t] yields higher accuracy at nearly-same energy or
computation cost.

Note, there has been recent works (Pei et al., 2019; Voelker
et al., 2020) that also portray hybrid SNN-ANN implementations.
We would like to clarify that our partly-artificial-and-partly-
spiking hybrid neural network implementation is very different
from Pei et al. (2019) and Voelker et al. (2020). In Pei
et al. (2019), the authors propose a hybrid accelerator that
can operate both an SNN and ANN. In their hybrid-mode
network implementation, the hybrid layer used “SNN-input and
ANN-output” cores to integrate SNN spikes and generate ANN
signals (high-precision intermediate membrane potentials), and
then used “ANN-input and SNN-output” cores to accumulate
these ANN signals and fire SNN spikes again. On similar
lines, the hybrid implementation proposed in Pei et al. (2019)
is completely different from our technique. In Voelker et al.
(2020), the authors smoothly interpolate between ANN (i.e.,
32-bit activities) and SNN (i.e., 1-bit activities) regimes. The
key idea is to interpret spiking neurons as one-bit quantizers
that diffuse their quantization error across future time-steps.
In other words, the entire network has neuronal activation
initialized as a temporally diffused quantizer and during the
training period, the quantizer is scaled. Both the approaches are
very different from our proposed hybrid ANN-SNN training
scheme. In our hybrid scheme, we essentially initialize a hybrid
ANN-SNN multi-layered network wherein, certain layers have
standard ReLU neuronal activation and certain layers have
IF neuronal activation that is then trained with appropriate
SNN layer unrolling for proper gradient assignment as shown
in Figure 6.

7. EXPERIMENTS

We conduct a series of experiments for each optimization
scheme, primarily, using CIFAR10 and Imagenet data on VGG
and ResNet architectures of different depths detailing the
advantages and limitation of each approach. We implemented
all SNN models in PyTorch and used the same hyperparameters
(such as, leak time constant, vthresh value, input spike rate etc.)
as used in Sengupta et al. (2019), Neftci et al. (2019), Srinivasan
and Roy (2019) for conversion, surrogate gradient descent, and
STDP training, respectively. In all experiments, we measure
the accuracy, latency, energy or total compute cost, and total
parameters for a given SNN implementation and compare it
to the baseline ANN counterpart. Latency is measured as total
number of time-steps required to perform an inference for one
input. In case of ANN, latency during inference is 1, while, SNN
latency is the total number of time-steps T over which an input is
presented to the network. Note, in all our experiments, all ANNs
and SNNs are trained for different number of epochs/iterations
until maximum accuracy is achieved in each case.

The total compute cost is measured as total number of
floating point operations (FLOPS) which is roughly equivalent
to the number of multiply-and-accumulate (MAC) or dot
product operations performed per inference per input (Han
et al., 2015a,b). In case of SNN, since the computation is
performed over binary events, only accumulate (AC) operations
are required to perform the dot product (without any multiplier).
Thus, SNN /ANN FLOPS count will consider AC/MAC
operations, respectively. For a particular convolutional layer of
an ANN/SNN, with N input channels,M output channels, input
map size I × I, weight kernel size k × k and output size O × O,
total FLOPS count for ANN/SNN is

FLOPSANN = O2
∗ N ∗ k2 ∗M (8)

FLOPSSNN = O2
∗ N ∗ k2 ∗M ∗ SA (9)
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TABLE 1 | Energy table for 45 nm CMOS process.

Operation Energy (pJ)

32-b MULT Int 3.1

32-b ADD Int 0.1

32-b MAC Int 3.2 (EMAC)

32-b AC Int 0.1 (EAC)

Note, FLOPSSNN in Equation (9) is calculated per time-step and
considers the net spiking activity (SA) that is the total number
of firing neurons per layer. In general, SA << 1 in an SNN on
account of sparse event-driven activity, whereas, in ANNs SA =

1. For energy calculation, we specify each MAC or AC operation
at the register transfer logic (RTL) level for 45 nm CMOS
technology (Han et al., 2015b). Considering 32-bit weight values,
the energy consumption for a 32-bit integer MAC/AC operation
(EMAC,EAC) is shown in Table 1. Total inference energy E for
ANN/SNN considering FLOPS count across all N layers of a
network is defined as

EANN = (

N
∑

i=1

FLOPSANN) ∗ EMAC (10)

ESNN = (

N
∑

i=1

FLOPSSNN) ∗ EAC ∗ T (11)

For SNN, the energy calculation considers the latency incurred
as the rate-coded input spike train has to be presented over
T time-steps to yield the final prediction result. Note, this
calculation is a rather rough estimate which does not take into
account memory access energy and other hardware architectural
aspects such as input-sharing or weight-sharing. Given, that
memory access energy remains same irrespective of SNN or
ANN network topology, the overall Energy-Efficiency (EE) EE =

EANN/ESNN will remain unaffected with or without memory
access consideration. Finally, to show the advantage of utilizing
BackRes connections, we also compute the total number of
unique parameters (i.e., total number of weights) in a network
and calculate the compression ratio that BackRes blocks yield
over conventional feedforward blocks of similar logical depth.

8. RESULTS

8.1. Impact of BackRes Connections
First, we show the impact of incorporating BackRes Connections
for conversion based SNNs. Table 2 compares the accuracy
and total # parameters across different network topologies
(described in Table 3) for ANN/SNN implementations on
CIFAR10 data. For the sake of understanding, we provide the
unrolled computation graph of networks with BackRes blocks
and repeated computations in Table 3. For instance, VGG2x4
refers to a network which has two unique convolutional layers
(Conv1,Conv2) where Conv2 receives a BackRes Connection
from its output and is computed 4 times before processing

TABLE 2 | Accuracy and Total # parameters for ANN and corresponding

converted SNN topologies (refer Table 3) for different latency T on CIFAR10 data.

Model
ANN

(T = 1)

SNN

(T = 250)

SNN

(T = 2500)
#Parameters

(Accuracy %)

VGG7 88.74 85.88 88.56 1.2M (1x)

VGG2x4 86.14 81.99 86.23 1.09M (1.1x)

VGG3x2-v1 87.34 83.31 87.15 1.13M (1.06x)

TABLE 3 | CIFAR10 network topologies for Conversion training.

Model Configuration BackRes

VGG7 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)–

Not

applicable

–Conv3(64,64,3 × 3/1)– Conv4(64,64,3 × 3/1)–

–Conv5(64,64,3 × 3/1)–Pool(2x2/2)–Pool(2 × 2/2)–

–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)

VGG2x4 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)–
[Conv2]

repeated

4 times

–Conv2(64,64,3 × 3/1)–Conv2(64,64,3 × 3/1)–

–Conv2(64,64,3 × 3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–

–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)

VGG3x2-v1 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)– [Conv2–

Conv3]

repeated

2 times

–Conv3(64,64,3 × 3/1)–Conv2(64,64,3 × 3/1)–

–Conv3(64,64,3 × 3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–

–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)

ConvN(I,O,k×k/s) denotes Nth convolutional layer with I input channels, O output

channels, kernel of size k×k with stride s. Pool(p×p/sp) denotes average pooling layer with

pooling window size p × p and pooling stride sp. FC(X,Y) denote a fully-connected layer

with X input nodes and Y output nodes. Layers with BackRes connections and repeated

computations have been highlighted in red.

the next layer as depicted in Table 3. Similarly, VGG3x2-
v1 refers to a network with three unique convolutional
layers (Conv1,Conv2,Conv3) with Conv2,Conv3 computation
repeated two times in the order depicted in Table 3. Note,
VGG2x4/VGG3x2-v1 achieve the same logical depth of a 7-
unique layered (including fully connected layers) VGG7 network.

In Table 2, we observe that accuracy of ANNs with BackRes
connections suffer minimal loss (upto ∼ 1 − 2% loss) to
that of the baseline ANN-VGG7 model. The corresponding
converted SNNs with BackRes connections also yield near-
accuracy. It is evident that SNNs with higher computation time
or latency T yield better accuracy. While the improvement in
total # parameters is minimal here, we observe a significant

improvement in energy efficiency [EE =
EANN (1×)

ESNN
calculated

using Equations (10), (11)] with BackRes additions as shown
in Figure 7. Note, the EE of SNNs shown in Figure 7 is plotted
by taking the corresponding ANN topology as baseline (EE of
VGG2x4 SNN is measured with respect to VGG2x4 ANN). The
large efficiency gains observed can be attributed to the sparsity
obtained with event-driven spike-based processing as well as the
repeated computation achieved with BackRes connections. In
fact, we find that net spiking activity for a given layer decreases
over repeated computations (implying a “sparsifying effect”) with
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FIGURE 7 | Energy-Efficiency EE results for different SNN topologies (from

Table 3) with/without BackRes connections trained with Conversion technique

on CIFAR10 data. The efficiency values have been denoted on top of each

graph for clarity. Note, EE > 1 implies EANN > ESNN denoting lower energy

consumption with SNN implementations.

TABLE 4 | Accuracy, Total # parameters and Energy Efficiency EE for converted

SNN topologies (refer Table 5) of latency T = 2, 500 and corresponding ANN on

imagenet data.

Model
ANN

(T = 1)

SNN

(T = 2500)
#Parameters

EE=
EANN (1×)
ESNN

[Accuracy (Top-1/Top-5%)]

VGG16
70.52/

89.39

69.96/

89.01

123.8M

(1x)
1.975x

VGG11x2
69.72/

88.56

68.57/

87.66

116.1M

(1.07x)
3.66x

each unrolling step (due to increasing threshold per unrolling,
see section 4). Consequently, VGG2x4 with n = 4 repeated
computation yields larger EE (∼ 1.3×) than VGG3x2-v1 (n = 2).

Table 4 illustrates the Top-1/Top-5 accuracy, parameter
compression ratio and EE benefits observed with BackRes
connections on Imagenet dataset (for topologies shown
in Table 5). Note, VGG11x2 (comprising of 11 unique
convolutional or fully-connected layers) with BackRes
connections and repeated computations achieves the same
logical depth of 16 layers as that of VGG16. The accuracy loss in
VGG11x2 (SNN) is minimal ∼ 1% while yielding ∼ 2× greater
EE compared to VGG16 (SNN). We also find that for complex
datasets like Imagenet, lower latency of T = 250 yields very low
accuracy with or without BackRes computations.

Next, we evaluate the benefits of adding BackRes connections
for SNNs trained with STDP. As discussed earlier, in STDP
training, the convolutional layers of a network are trained
layerwise with LIF neurons. Then, an ANN classifier is appended
to the STDP trained layers, wherein, the ANN classifier is
trained separately on the overall spiking activity collected at
the SNN layers. Table 6 shows the accuracy, # parameters
and EE benefits of SNN topologies (listed in Table 7) with
respect to corresponding ANN baselines. All ANN baselines
are trained end-to-end with backpropagation and requires the

TABLE 5 | Imagenet network topologies for conversion training.

Model Configuration BackRes

VGG16 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)–

Not

applicable

–Pool(2 × 2/2)–Conv3(64,128,3 × 3/1)–Pool(2 ×

2/2)–Conv4(128,256,3 × 3/1)–

–Conv5(256,256,3 × 3/1)–Conv6(256,256,3 ×

3/1)–Pool(2 × 2/2)–Conv7(256,512,3 × 3/1)–

–Conv8(512,512,3 × 3/1)–Conv9(512,512,3 ×

3/1)–Conv10(512,512,3 × 3/1)–Conv11(512,512,3 ×

3/1)–

–Conv12(512,512,3 × 3/1)–Conv13(512,512,3 ×

3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–

–FC1(25088,4096)–FC2(4096,1000)

VGG11x2 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)–
[Conv5]&

[Conv7-

Conv8-

Conv9]

repeated

2 times

–Pool(2 × 2/2)–Conv3(64,128,3 × 3/1)–Pool(2 ×

2/2)–Conv4(128,256,3 × 3/1)–Conv5(256,256,3 × 3/1)–

–Conv5(256,256,3 × 3/1)–Pool(2 ×

2/2)–Conv6(256,512,3 × 3/1)–Conv7(512,512,3 × 3/1)–

–Conv8(512,512,3 × 3/1)–Conv9(512,512,3 ×

3/1)–Conv7(512,512,3 × 3/1)–Conv8(512,512,3 × 3/1)–

–Conv9(512,512,3 × 3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–

–FC1(25088,4096)–FC2(4096,1000)

Notations are same as that of Table 3. Layers with BackRes connections and repeated

computations have been highlighted in red.

TABLE 6 | Accuracy, Total # parameters and Energy Efficiency EE for

STDP-trained SNN topologies (refer Table 7) of latency T = 100 and

corresponding ANN on CIFAR10 data.

Model
ANN

(T = 1)

SNN

(T = 100)
#Parameters

EEConv/EEFull=

EANN (1×)
ESNN

(Accuracy%)

ResNet2 78.26 61.02 18.9 M 1.64x/1.16x

ResNet3 80.11 51.1 28.37 M 1.81x/1.28x

ResNet2x2 79.39 63.21 28.35 M 10.56x/1.78x

EEConv considers the energy calculated only for the convolutional/pooling layers excluding

the FC layers, EEFull considers the total energy of the network including the FC layers.

entire CIFAR10 training dataset (50,000 labeled instances). On
the other hand, all SNNs requires only 5,000 instances for
training the Convolutional layers. Then, the fully-connected
classifier (comprising of FC1, FC2 layers in Table 7) appended
separately to the STDP-learnt layers are trained on the entire
CIFAR10 dataset.

From Table 6, we observe that SNN accuracy is considerably
lower than corresponding ANN accuracy. This can be attributed
to the limitation of STDP training to extract relevant features in
an unsupervised manner. In fact, deepening the network from
ResNet2 to ResNet3 causes a decline in accuracy corroborating
the results of previous works (Srinivasan and Roy, 2019).
However, adding BackRes connection in ResNet2x2 which
achieves same logical depth as ResNet3 improves the accuracy of
the network while yielding significant gains (∼ 10×) in terms of
EE. For EE, we show the gains considering the full network EEFull
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TABLE 7 | CIFAR10 network topologies for STDP training methodology.

Model Configuration BackRes Skip

ResNet2 Input–Conv1(3,36,3 × 3/1)–Conv2(36,36,3 × 3/1)– Not

applicable

Input-to-Conv2,

Conv1-to-FC1–Pool(2 × 2/2)–FC1(18432,1024)–FC2(1024,10)

ResNet3 Input–Conv1(3,36,3 × 3/1)–

Not

applicable

Input-to-Conv2,

Conv1-to-FC1,

Conv2-to-FC1

–Conv2(36,36,3 × 3/1)–

–Conv3(36,36,3 × 3/1)–Pool(2×2/2)–

–FC1(27648,1024)–FC2(1024,10)

ResNet2x2 Input–Conv1(3,36,3×3/1)–
[Conv2]

repeated

2 times

Input-to-Conv2,

Conv1-to-FC1

–Conv2(36,36,3×3/1)–

–Conv2(36,36,3×3/1)–Pool(2×2/2)–

–FC1(18432,1024)–FC2(1024,10)

Notations are same as that of Table 3. Layers with BackRes connections and repeated computations have been highlighted in red. Forward Residual or Skip connections between

layers of a network are denoted in blue.

TABLE 8 | Accuracy, Total, # parameters, and Energy Efficiency EE for AGD

trained SNN topologies (refer Table 9) of latency T = 25, 50, and corresponding

ANN on CIFAR10 data.

Model
ANN

(T = 1)

SNN

(T = 25)

SNN

(T = 50)
#Parameters

EE=
EANN (1×)

ESNN (T=25)

(Accuracy%)

VGG5 75.86 71.92 72.77 2.21M 14.75x

VGG3x2-v2 74.99 71.07 71.97 2.18M 16.2x

VGG7 72.26 – – 2.3M –

VGG3x4 69.52 74.23 75.01 2.19M 26.44x

TABLE 9 | CIFAR10 network topologies for AGD training methodology.

Model Configuration BackRes

VGG5 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)– Not

applicable–Pool(2x2/2)–Conv3(3,64,3x3/1)–Conv4(64,64,3x3/1)–

–Pool(2x2/2)–FC1(4096,512)–FC2(512,10)

VGG3x2-v2 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)– [Conv3]

repeated

2 times

–Pool(2x2/2)–Conv3(3,64,3x3/1)–Conv3(64,64,3x3/1)–

–Pool(2x2/2)–FC1(4096,512)–FC2(512,10)

VGG7 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)– Not

applicable–Pool(2x2/2)–Conv3(3,64,3x3/1)–Conv4(64,64,3x3/1)–

–Conv5(3,64,3x3/1)–Conv6(64,64,3x3/1)–

–Pool(2x2/2)–FC1(4096,512)–FC2(512,10)

VGG3x4 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)–
[Conv3]

repeated

4 times

–Pool(2x2/2)–Conv3(3,64,3x3/1)–Conv3(64,64,3x3/1)–

–Conv3(3,64,3x3/1)–Conv3(64,64,3x3/1)–

–Pool(2x2/2)–FC1(4096,512)–FC2(512,10)

Notations are same as that of Table 3. Layers with BackRes connections and repeated

computations have been highlighted in red.

(including spiking convolutional and ReLU FC layers), as well as,
the gain considering only the spiking convolutional layers EEConv.
The spiking layers on account of event-driven sparse computing
exhibit higher efficiency than the full network (i.e., EEConv >

EEFull). Interestingly, ResNet2x2 yields ∼ 10× higher efficiency
at the spiking layers which further supports the fact that BackRes
connections have a “sparsifying” effect on the intrinsic spiking
dynamics of the network. This result establishes the advantage of
BackRes connection in enabling scalability of STDP-based SNN
trainingmethodologies toward larger logical depth while yielding
both accuracy and efficiency improvements.

For AGD training, BackRes additions yield both accuracy
and scalability related benefits. Table 8 shows the accuracy, #
parameters and EE benefits of SNN topologies (listed in Table 9)
for different latency T = 25, 50 with respect to corresponding
ANN baselines. Similar to Conversion/STDP results, end-to-end
AGD training with spiking statistics (using surrogate gradient
descent) for VGG5 and VGG3x2-v2 of equivalent logical depth
as VGG5 yields minimal accuracy loss (∼ 2 − 3%) and large
EE gains (∼ 15×) in comparison to corresponding ANNs.
However, for a VGG7 network with 7-layered depth, AGD
fails to train an SNN end-to-end due to vanishing forward
spike-propagation. Interestingly, a VGG3x4 network with similar
logical depth of 7-layers as VGG7 and repeated computations
not only trains well with AGD, but also yields higher accuracy
than both VGG7/VGG3x4 ANN baselines. This implies that LIF
neurons with spiking statistics have the potential of yieldingmore
diversified computation profile with BackRes unrolling than
ReLU neurons. In addition to accuracy and scalability benefits,
SNNs with BackRes connections yield high EE benefits as shown
in Table 8 (due to the inherent “sparsifying” effect) that point to
their suitability for low-power hardware implementations.

8.2. Impact of Stochmax
Stochmax is essentially a classification-performance
improvement technique that can result in improved latency
benefits. First, we show the impact of incorporating stochmax
classifier for SNNs trained with AGD. Table 10 compares the
accuracy of small VGG3 SNN trained with AGD for different
latency T. Here, the FC2 layer of VGG3 topology is implemented
as a softmax or stochmax classifier. We observe a consistent
improvement in accuracy for stochmax implementations.
In Table 11, we show the accuracy results for SNNs of
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TABLE 10 | Accuracy for AGD trained SNN of VGG3 topology (refer to last row)

for different latency T = 5, 10, 25 on CIFAR10 data.

Model T = 5 T = 10 T = 25

VGG3

(StochMax)
50.4 65.24 70.2

VGG3

(SoftMax)
49.1 64.44 67.1

VGG3

(Topology)

Input–Conv1(3,64,3x3/1)–Pool(2x2/2)

–Conv2(64,64,3x3/1)–Pool(2x2/2)–

FC1(4096,512)–FC2(512,10)

TABLE 11 | Accuracy and EE benefits for AGD trained SNN with stochmax

classifier on VGG5/VGG3x2-v2 topology (refer to Table 9) for different latency

T = 25, 50 on CIFAR10 data.

Model T = 25 T = 50
EE=

EANN (1×)
ESNN

EE=
ESNN(softmax)

ESNN(stochmax)

(Accuracy%) (for T = 25)

VGG5 75.26 75.92 23.83x 1.62x

VGG3x2-v2 72.62 73.17 31.88x 1.97x

TABLE 12 | Accuracy and EE benefits for STDP trained SNN with ConvNN

classifier (Table 13) appended to ResNet2, ResNet2x2, ResNet3 topology (refer

to Table 7) on CIFAR10 data.

Model
ANN

T = 1

SNN

T = 100

EEConv/EEFull=

EANN (1×)
ESNN

(Accuracy%)

ResNet2 83.5 77.92 1.64x/1.08x

ResNet3 79.85 76.52 1.81x/1.69x

ResNet2x2 83.2 80.1 10.56x/2.14x

EEConv considers the energy calculated only for the convolutional/pooling layers excluding

the FC layers, EEFull considers the total energy of the network including the FC layers.

VGG5/VGG3x2-v2 topology with stochmax classifiers. It is
evident that stochmax improves the performance by∼ 3− 4% as
compared to softmax implementations in Table 8. In addition to
accuracy, we also observe a larger gain in energy-efficiency with
stochmax implementations. We find that conducting end-to-end
AGD training with stochmax loss leads to sparser spiking activity
across different layers of a network as compared to softmax.
We believe this might be responsible for the efficiency gains.
Further theoretical investigation is required to understand the
role of loss optimization in a temporal processing landscape
toward decreasing the spiking activity without affecting the
gradient values. Tables 10, 11 results suggest stochmax as a
viable technique for practical applications where we need to
obtain higher accuracy and energy benefits with constrained
latency or processing time.

Inclusion of stochmax classifier in SNNs trained with
conversion/STDP training results in a slight improvement in
accuracy ∼ 1 − 2% for CIFAR10 data (for VGG7/ResNet3
topologies from Tables 2, 6), respectively. Since stochmax is
dissociated from the training process in both STDP/conversion,

TABLE 13 | ConvNN classifier network topologies for STDP training methodology.

Model Configuration

ConvNN

ResNet2, ResNet2x2
Input–Conv1(72,72,3x3/1)–Conv2(72,72,3x3/1)–

–Pool(2x2/2)–Conv3(72,144,3x3/1)–

–Conv4(144,144,3x3/1)–Pool(2x2/2)–

–FC1(2304,1024)–FC2(1024,10)

ConvNN

ResNet3
Input–Conv1(108,108,3x3/1)–Conv2(108,108,3x3/1)–

–Pool(2x2/2)–Conv3(108,216,3x3/1)–

–Conv4(216,216,3x3/1)–Pool(2x2/2)–

–FC1(3456,1024)–FC2(1024,10)

Notations are same as that of Table 3.

TABLE 14 | Accuracy, Total, # parameters, and Energy Efficiency EE for AGD

trained SNN topologies (refer Table 15) with hybrid ReLU/LIF neurons of latency

T = 25 and corresponding ANN on CIFAR10 data.

Model
ANN

T = 1

SNN

T = 25
#Parameters

EE=
EANN (1×)
ESNN

(Accuracy%)

VGG9 83.33 84.98 5.96M 3.98x

VGG8x2 83.49 84.26 5.37M 4.1x

TABLE 15 | Network topologies for AGD training methodology with hybrid layers

and stochmax classifier at the end.

Model Configuration BackRes

VGG9 Input–Conv1(3,64,3x3/1)-ReLU–

Not

applicable

–Conv2(64,64,3x3/1)-ReLU–Pool(2x2/2)–

–Conv3(64,128,3x3/1)-LIF–

–Conv4(128,128,3x3/1)-LIF–Pool(2x2/2)–

–Conv5(128,256,3x3/1)-LIF–

–Conv6(256, 256,3x3/1)-LIF–

–Conv7(256,256,3x3/1)-LIF–Pool(2x2/2)–

–FC1(4096,1024)-LIF–FC2(1024,10)

VGG8x2 Input–Conv1(3,64,3x3/1)-ReLU–
[Conv6]

repeated

2 times

–Conv2(64,64,3x3/1)-ReLU–Pool(2x2/2)–

–Conv3(64,128,3x3/1)-LIF–

–Conv4(128,128,3x3/1)-LIF–Pool(2x2/2)–

–Conv5(128,256,3x3/1)-LIF–

–Conv6(256, 256,3x3/1)-LIF–

–Conv6(256,256,3x3/1)-LIF–Pool(2x2/2)–

–FC1(4096,1024)-LIF–FC2(1024,10)

Notations are same as that of Table 3.

the latency and energy efficiency results are not affected. Note, all
results shown in Tables 2–8 use softmax classifier.

8.3. Impact of Hybridization
Except for Conversion, both STDP and AGD training techniques
fail to yield high accuracy for deeper network implementations.
While BackRes connections and Stochmax classifiers improve
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the accuracy, an SNN still lags behind its corresponding ANN
in terms of performance. To improve the accuracy, we employ
hybridization with partially ReLU and partially LIF neurons for
SNN implementations.

For STDP, we strengthen the classifier that is appended to
the STDP trained convolutional layers to get better accuracy.
Essentially, we replace the fully-connected layers FC1, FC2 of
the topologies in Table 7 with a larger convolutional network
ConvNN (ConvNN topology description is given in Table 13).
Table 12 shows the accuracy, EE results for the STDP trained
ResNet topologies appended now with corresponding ConvNN
and compared to a similar ANN baseline (say, ResNet2 ANN
corresponds to an ANN with ResNet2 topology with FC layers
replaced by ConvNN classifier from Table 13). Strengthening
the classifier hierarchy now results in higher accuracies (∼>
75%) comparable to the ANN performance of Table 6, while still
lagging behind the ANN baseline of similar topology. However,
the accuracy loss between ANN and SNN in this case reduces
quite significantly (> 20% loss in Table 6 to ∼ 3% loss in
Table 12). Similar to Table 6, for EE, the gains considering only
spiking layers are greater than that of the full network.

For AGD, as discussed in section 6, we hybridize our
network with initial layers comprising of ReLU and latter
layers of LIF neurons and perform end-to-end gradient descent.
Table 14 shows the accuracy and EE gain results for a VGG9,
VGG8x2 model (topology description in Table 15) with BackRes
connection trained using hybridization for CIFAR10 dara. Note,
only the first two convolutional layers Conv1,Conv2 use ReLU
activation, while the remaining layers use LIF functionality. In
addition, we use a stochmax classifier at the end instead of
softmax to get better accuracy. Earlier, we saw that a 7-layered
network could not be trained with AGD (see Table 8). Inclusion
of ReLU layers now allows a deep 9-layered network to be trained
end-to-end while yielding considerable energy-efficiency gain
with slightly improved accuracy (∼ 1% improvement in accuracy
in SNN) in comparison to a corresponding ANN baseline
(note, ANN baseline has ReLU activation in all layers). To have
fair comparison between ANN and SNN, ANN baselines are
trained without any batch normalization or other regularization
techniques. Including batch normalization and dropout in ANN
training yields ∼ 86% accuracy that is still fairly close to
∼ 85% accuracy obtained with the SNN implementations. To
calculate EE gains in hybrid SNN implementations, we consider
MAC energy for ReLU layers (Conv1,Conv2 in Table 14) and
AC energy for remaining LIF layers (Conv3 − Conv7(6) in
Table 14). VGG8x2 achieves equivalent logical depth as VGG9.
Similar to earlier results, VGG8x2 yields slightly higher benefit
than VGG9 on account of the “sparsifying” effect induced by
BackRes computations.

Table 16 shows the results of a VGG13 model (topology
description in Table 17) trained with hybrid ReLU/LIF neuron
layers on Imagenet dataset learn with end-to-end gradient
descent. Interestingly, for Imagenet data, we had to use ReLU
neuronal activations both in the beginning as well as at the
end as shown in Table 17. After some trial-and-error analysis,
we found that training with more LIF neuronal layers for a
complex dataset like Imagenet did not yield good performance.

TABLE 16 | Accuracy and Energy Efficiency EE for AGD trained SNN topologies

(refer Table 17) with hybrid ReLU/LIF neurons of latency T = 10 and

corresponding ANN on Imagenet data.

Model
ANN

T = 1

SNN

T = 10

EE =

EANN (1×)
ESNN

(Accuracy%)

VGG13
Top-1 69.9

Top-5 89.9

Top-1 67.6

Top-5 88.23
1.31x

TABLE 17 | Network topologies for AGD training methodology with hybrid layers

and softmax classifier at the end for imagenet dataset.

Model Configuration BackRes

VGG13 Input–Conv1(3,64,3x3/1)-ReLU–

Not

applicable

–Conv2(64,64,3x3/1)-ReLU–Pool(2x2/2)–

–Conv3(64,128,3x3/1)-ReLU–

–Conv4(128,128,3x3/1)-ReLU–Pool(2x2/2)–

–Conv5(128,256,3x3/1)-ReLU–

–Conv6(256,256,3x3/1)-ReLU–Pool(2x2/2)–

–Conv7(256, 512,3x3/1)-LIF–

–Conv8(512,512,3x3/1)-LIF–Pool(2x2/2)–

–Conv9(512,512,3x3/1)-ReLU–

–Conv10(512,512,3x3/1)-ReLU–Pool(2x2/2)–

–FC1(25088,4096)-ReLU–FC2(4096,4096)

–FC3(4096,1000)

Notations are same as that of Table 3.

In case of a VGG13 network, converting the middle two layers
into spiking LIF neurons yielded iso-accuracy as that of a fully-
ReLU activation based ANN. Even with a minor portion of
the network offering sparse neuronal spiking activity, we still
observe 1.3× improvement in EEwith our hybrid model over the
standard ANN. It is also worth mentioning that the spiking LIF
neurons of the hybrid VGG13 network have a lower processing
latency of T = 10. We believe that using ReLU activations
in majority of the VGG13 network enabled us to process the
spiking layers at lower latency. We can expect higher EE gains
by adding suitable backward residual connections in the spiking
layers to compensate for depth. It is evident that hybridization
incurs a natural tradeoff between number of spiking/ReLU layers,
processing latency, accuracy and energy-efficiency. Our analysis
shows that hybridization can enable end-to-end backpropagation
training for large-scale networks on complex datasets while
yielding efficiency gains. Further investigation is required to
evaluate the benefits of hybridization in large-scale setting by
varying the tradeoff parameters.

9. DISCUSSION AND CONCLUSION

With the advent of Internet of Things (IoT) and the
necessity to embed intelligence in devices that surround
us (such, smart phones, health trackers), there is a need
for novel computing solutions that offer energy benefits
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while yielding competitive performance. In this regard,
SNNs driven by sparse event-driven processing hold
promise for efficient hardware implementation of real-
world applications. However, training SNNs for large-scale
tasks still remains a challenge. In this work, we outlined the
limitation of the three widely used SNN training methodologies
(Conversion, AGD training and STDP), in terms of, scalability,
latency, and accuracy, and proposed novel solutions to
overcome them.

We propose using backward residual (or BackRes)
connections to achieve logically deep SNNs with shared
network computations and features that can approach the
accuracy of fully-deep SNNs. We show that all three training
methods benefit from the BackRes connection inclusion
in the network configuration, especially, gaining in terms
of energy-efficiency (∼ 10 × −100×) while yielding iso-
accuracy with that of an ANN of similar configuration. We
also find that BackRes connections induce a sparsifying effect
on overall network activity of an SNN, thereby, expending
lower energy (∼ 1.8 − 3.5× lower) than an equivalent depth
full-layered SNN. In summary, BackRes connections address
the scalability limitations of an SNN that arise due to depth
incompatibility and vanishing spike-propagation of different
training techniques.

We propose using stochastic softmax (or stochmax) to
improve the prediction capability of an SNN, specifically,
for AGD training method that uses end-to-end spike-based
backpropagation. We find a significant improvement in accuracy
(∼ 2 − 3%) with stochmax inclusion even for lower latency
or processing time period. Further, stochmax loss based
backpropagation results in lower spiking activity than the
conventional softmax loss. Combining the advantages of lower
latency and sparser activity, we get higher energy-efficiency
improvements (∼ 1.6 − 2×) with stochmax SNNs as compared
to softmax SNNs. Conversion/STDP training do not benefit in
terms of efficiency and latency from stochmax inclusion since
the training in these cases are performed fully/partially with
ANN computations.

The third technique we propose is using a hybrid architecture
with partly-ReLU-and-partly-LIF computations in order to
improve the accuracy obtained with STDP/AGD training
methods. We find that hybridization leads to improved accuracy
at lower latency for AGD/STDP methods, even circumventing
the inadequacy of training very deep networks. The accuracies
observed for CIFAR10 (∼ 80%/85%) with STDP/AGD on hybrid
SNN architectures are in fact comparable/better than ANNs of
similar configuration. We would like to note that hybridization
also offers significant energy-efficiency improvement (∼ 4×)
over a fully ReLU-based ANN. In fact, using hybridization, we
trained a deep VGG13 model on Imagenet data and obtained
iso-accuracy as that of its ANN counterpart with reasonable
energy-efficiency gains. There are interesting possibilities of
performing distributed edge-cloud intelligence with such hybrid
SNN-ANN architecture where, SNN layers can be implemented
on resource-constrained edge devices and ANN layers on
the cloud.

9.1. Latency-Based Coding vs. Rate Coding
Across all SNN implementations in this work, we used rate
coding to convert pixel data of images into spike trains. However,
it is known that rate coding does not allow the network to
use spike-times precisely which can, in turn, enable an SNN
to encode more information or process information rapidly.
Supervised learning based SNNs using latency-based coding
scheme is a good way to decrease the energy consumption,
compared to the rate-coding method (Mostafa, 2017; Comsa
et al., 2019; Kheradpisheh and Masquelier, 2019; Zhou et al.,
2019). In latency-based coding, pixel intensity is represented by
the ascending order of incoming spikes, wherein higher intensity
fires an earlier spike and vice-versa. As a result, more salient
information about a feature is encoded as an earlier spike in the
corresponding neuron leading to overall sparser activity in an
SNN. Furthermore, the inference latency (or overall time steps
required to process an input) can drastically decrease to few 10
time steps with appropriate learning methods instead of the usual
50–100 time steps incurred in rate coding schemes for AGD
training (Mostafa, 2017; Comsa et al., 2019; Kheradpisheh and
Masquelier, 2019; Roy et al., 2019; Zhou et al., 2019).

Mostafa (2017) proposed a direct training based method via
backpropagation error and the networks have achieved very
high accuracy on MNIST compared to the other unsupervised
learning or conversion based SNNs. Nevertheless, the networks
proposed by Mostafa et al. have not been applied to the
more complicated dataset, such as CIFAR10. The reasons are
convolutional layers are not included and the preprocessing
method is not general. In Zhou et al. (2019), the authors
incorporate convolutional layers into the SNNs proposed by
Mostafa et al. In addition, they propose a new way to preprocess
the input data and develop a new kernel operation process
without using ReLU activation. With these new additions, Zhou
et al. present the best results obtained so far on a purely
temporal based backpropagation learning scheme for CIFAR10
(80.5%). In addition, other recent works (Comsa et al., 2019;
Kheradpisheh and Masquelier, 2019) have also shown impressive
and promising results on the use of first-to-spike latency coding
in realizing the energy-efficiency and inference latency benefits
with SNN implementations. However, the framework (including
the network architecture and learning rule used to perform
spike-based backpropagation) is very different in each work. The
inconsistencies in the implementations as well as the algorithmic
details are a slight drawback in arriving at a uniform testbed
implementation with latency-coded techniques.

Furthermore, while rate-coded schemes (specifically, with
conversion training methodology) are approaching ANN-like
competitive performance on a host of datasets (including,
Imagenet), latency-based coding still suffer from accuracy
limitations. However, we believe that latency based coding can
bring out the true advantages of SNNs (both for competitive
accuracy and higher efficiency gains) compared to ANNs. One
advantage of latency-based backpropagation and using AGD, is
that they can make use of temporal coding, so they can actually
outperform an ANN on the same architecture. We see a hint
of this in our AGD trained SNN implementation in Table 8
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(SNN implementation of VGG3x4 model has higher accuracy
(75%) than corresponding ANN (69.52%)). In the future, we will
explore the advantages of incorporating our proposed backward
residual connection, stochmax, and hybrid training schemes on
such latency coded networks and study their impact on the
scalability, latency, and accuracy limitations observed in SNNs.

9.2. Connection Between Binary ANNs and
SNNs
Binary ANNs (Courbariaux et al., 2016; Rastegari et al., 2016)
are extreme quantized form of neural networks that have
neuronal activations and weights represented as binary values.
Thus, binary ANNs have been shown to yield considerable
memory compression and energy efficiency improvements over
conventional full precisions ANNs. Thus, an obvious question
one can ask is, “How SNNs stand against binary ANNs?” In
a recent work by Lu and Sengupta (2020), the authors show
an interesting connection between binarized ANNs and SNNs
with a conversion methodology. Basically, the authors argue
that ANN-SNN conversion provides a mathematical formulation
for expressing multi-bit precision of ANN activations as binary
values over time (in the context of an SNN). The authors achieve
binary SNN models that yield near full-precision accuracies on
large-scale image recognition datasets, while utilizing similar
hardware backbone of binary neural network catered “In-
Memory”computing platforms. The fact that binarized ANNs
have also simplified accumulate operation (instead of multiply
and accumulate) similar to that of an SNN can result in lower
energy savings that one would expect in comparison to a full-
precision ANN. In Lu et al., the authors show that a binary
SNN obtained by converting a constrained ANN on CIFAR100
dataset has ∼ 4× higher computational cost (measured in terms
of number of multiply-accumulate logic operations performed)
than an XNOR-net (Rastegari et al., 2016) of similar architecture.
On the other hand, the binarized SNN yields 20% higher accuracy
(nearly similar to that of the full-precision ANN model) than
the XNOR model. It is well-known that training Binary ANNs
(Courbariaux et al., 2016), XNOR-nets (Rastegari et al., 2016)
from scratch can be prohibitive in terms of training convergence
(due to the fact that the neuronal activations are constrained
to +1 or −1 or 0). In that regard, if we would like to deploy
binarized SNNs, using a strategy similar to Lu and Sengupta
(2020) will be useful. While we will lose in terms of efficiency,
we will tradeoff the slight decremented efficiency with a large
increase in accuracy. Furthermore, in our paper’s context, we
conjecture that since the SNN training convergence improved

in some cases with modifications like backward residual training

and stochmax, training a Binary ANN with such modifications
can potentially give accuracy benefits. In the future, we will
investigate how binary neural networks can be used to generate
low-precision SNNs through conversion, STDP, AGD training.
In fact, training a hybrid ANN-SNN model, where the ANN
comprises of binarized weights and activations, can potentially
give us higher order efficiency gains that requires further
investigation.

Finally, SNNs are a prime candidate today toward enabling
low-powered ubiquitous intelligence. In this paper, we show
the benefit of using good practices while configuring spiking
networks to overcome their inherent training limitations, while,
gaining in terms of energy-efficiency, latency, and accuracy for
image recognition applications. In the future, we will investigate
the extension of the proposed methods for training recurrent
models for natural language or video processing tasks. Further,
conducting reinforcement learning with the above proposed
techniques to analyze the advantages that SNNs offer is another
possible future work direction.
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In resource-constrained environments, such as low-power edge devices and smart

sensors, deploying a fast, compact, and accurate intelligent systemwithminimum energy

is indispensable. Embedding intelligence can be achieved using neural networks on

neuromorphic hardware. Designing such networks would require determining several

inherent hyperparameters. A key challenge is to find the optimum set of hyperparameters

that might belong to the input/output encoding modules, the neural network itself, the

application, or the underlying hardware. In this work, we present a hierarchical pseudo

agent-based multi-objective Bayesian hyperparameter optimization framework (both

software and hardware) that not only maximizes the performance of the network, but

also minimizes the energy and area requirements of the corresponding neuromorphic

hardware. We validate performance of our approach (in terms of accuracy and

computation speed) on several control and classification applications on digital and

mixed-signal (memristor-based) neural accelerators. We show that the optimum set

of hyperparameters might drastically improve the performance of one application (i.e.,

52–71% for Pole-Balance), while having minimum effect on another (i.e., 50–53% for

RoboNav). In addition, we demonstrate resiliency of different input/output encoding,

training neural network, or the underlying accelerator modules in a neuromorphic system

to the changes of the hyperparameters.

Keywords: multi-objective hyperparameter optimization, Bayesian optimization, neuromorphic computing,

spiking neural networks, accurate and energy-efficient machine learning

1. INTRODUCTION

Neuromorphic systems promise a novel alternative to the standard von-Neumann architectures
that are computationally expensive for analyzing big data, and are not efficient for learning and
inference. This novel generation of computing aims at “mimicking” the human brain based on
deploying neural networks on event-driven hardware architectures. A key bottleneck in designing
such brain-inspired architectures is the complexity of co-optimizing the algorithm’s speed and
accuracy along with the hardware’s performance and energy efficiency. This complexity stems from
numerous intrinsic hyperparameters in both software and hardware that need to be optimized for
an optimum design.
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In this work we propose a novel optimization framework
built upon agent-based modeling and hierarchical Bayesian
optimization techniques to obtain the optimum set of
hyperparameters for neuromorphic system design. Bayesian
optimization is a powerful tool for finding the optimal point
of objective functions that are unknown and expensive to
evaluate (Shahriari et al., 2015). However, for problems with
more than one objective function Bayesian-only techniques are
mathematically complex, and suffer from high dimensionality
limitations in parameter-heavy models (Dai et al., 2019). Other
approaches such as Neural Architecture Search (NAS, Zoph
et al., 2018) also require massive computational resources.
These factors were the driving forces to search for alternative
algorithms to find the optimal set of hyperparameters.

Our proposed approach, Hierarchical Pseudo Agent-based
Bayesian Optimization (Hierarchical-PABO), is built upon using
a supervisor agent correlating the results of isolated Bayesian
estimations for each of the objective functions. The agent creates
an extra set of Bayesian estimator focusing only on finding the
Pareto frontier. The hierarchy of Bayesian optimizers enables
predicting the Pareto frontier for complex problems regardless
of the number of objective functions. In comparison with our
previous works in (Parsa et al., 2019a,b), H-PABO is a general
framework that covers both PABO (Parsa et al., 2019a) and
single-objective Bayesian optimization (Parsa et al., 2019b) under
its umbrella. In Parsa et al. (2019a), we introduced PABO, which
was the initial phase toward designing Hierarchical PABO. PABO
has no hierarchy of Bayesian estimators, and the supervisor
agent decides the search direction in favor of the Pareto region,
without any Bayesian estimator. By turning off the extra set
of Bayesian estimators that are used to predict the Pareto
frontier, H-PABO reduces to PABO. In Parsa et al. (2019b), we
used a single objective hyperparameter Bayesian optimization
to optimize performance of spiking neuromorphic systems in
terms of neural network’s accuracy. We showed how critical it
is to use hyperparameter optimization techniques for designing
any neuromorphic computing framework and how Bayesian
approaches can help in this regard. H-PABO reduces to a
single objective hyperparameter optimization problems when the
number of objectives functions are fixed to one.

We tested Hierarchical-PABO on both artificial neural
networks and spiking neural networks. For artificial neural
networks, we validated our approach using AlexNet (Krizhevsky
et al., 2012) and VGG19 (Simonyan and Zisserman, 2014) on
a Programmable Ultra-Efficient Memristor-based Accelerator
(PUMA, Ankit et al., 2019). For spiking neuromorphic
systems, we considered several control and classification tasks
such as the canonical pole balancing (Gomez et al., 2006),
autonomous robotic navigation (Mitchell et al., 2017), satellite
radio signal classification (Reynolds et al., 2018), and Iris
dataset classification (Dua and Graff, 2017) on both digital and
mixed-signal memristor-based accelerators as the underlying
hardware (Chakma et al., 2017; Mitchell et al., 2018; Plank
et al., 2018). Hierarchical-PABO predicts the Pareto frontier
for a three-objective (network performance, the accelerator’s
energy efficiency, and area) optimization with relatively few
evaluations. Compared to the state-of-the-art methods, our

framework is faster by at least an order of magnitude and as
effective, if not more, in finding an optimal solution. Further,
the speed and accuracy of the framework enables designers to
perform sensitivity analyses on hyperparameters to determine the
resiliency of the system to the changes of the hyperparameters.

1.1. Background and Related Work
In the era of the exigent need to design energy efficient
neuromorphic systems for resource-constrained environments
such as mobile edge devices, several approaches have been
proposed in the literature to reduce the massive energy
requirement of these systems. For artificial neural networks
(ANNs), these techniques span from simplifying models, such
as pruning and quantization (Han et al., 2015; Wen et al., 2016;
Yang et al., 2018; Zoph et al., 2018), to designing energy efficient
architectures (Jin et al., 2014; Panda et al., 2016; Parsa et al., 2017;
Wang et al., 2017), and neural architecture search (Zoph et al.,
2018). In spiking neuromorphic domain, these include different
training algorithms such as Schuman et al. (2016), Bohnstingl
et al. (2019) based on evolutionary optimization, Esser et al.
(2015, 2016) on modified backpropagation techniques, Severa
et al. (2019) as binary communication, and Rathi et al. (2020) as
a hybrid approach and then deploying these on neuromorphic
hardware such as Schmitt et al. (2017) and Koo et al. (2020).
In this section, we briefly introduce each of these methods
and continue with the added complexity of co-designing
hardware and software for artificial neural networks and spiking
neuromorphic systems. We then present the contribution of our
work (Hierarchical-PABO) and how we fill the existing gap in
a generic approach of co-designing hardware and software in
the literature.

To reduce the energy requirement of neural network
architectures, model simplification techniques proposed by Han
et al. (2015), and continued with Wen et al. (2016), Zoph et al.
(2018), and Yang et al. (2018). Each of these techniques focus
on simplifying the neural network with different approaches of
pruning, quantization, learning the connections, and leveraging
sparsity. Designing energy-efficient architectures are also well-
studied in the literature with flattened Convolutional Neural
Network (CNN) (Jin et al., 2014), factorized CNN (Wang
et al., 2017), conditional CNN (Panda et al., 2016, 2017), and
staged-conditional CNN (Parsa et al., 2017). More recently,
compact structures such as MobileNets (Howard et al., 2017)
and ShuffleNet (Zhang et al., 2018) are also introduced and
are specifically designed for mobile devices. Although both
approaches of model simplification and efficient architecture
design demonstrate promising results in reducing the energy
requirements of neural networks, they do not necessarily yield
to the optimum designs for energy efficient accelerators. This is
mainly due to the fact that they only locally search the space.
In addition, layers with more parameters do not necessarily
consume more energy (Yang et al., 2017; Dai et al., 2019). Various
techniques proposed for training spiking neural networks with
different underlying hardware, are vital steps toward efficient
neuromorphic computing for edge devices; however, each of
these approaches require several hyperparameters and their
optimum performance depend on prior knowledge on how to
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set these hyperparameters. In Parsa et al. (2020), we showed
that an optimum set of hyperparameters drastically increases the
neuromorphic system performance.

There is a very rich literature on hyperparameter optimization
and neural architecture search (NAS) techniques. Search for the
optimum set of hyperparameters studied by Genetic CNN (Xie
and Yuille, 2017), metaQNN (Baker et al., 2017), and SMBO (Liu
C. et al., 2018). These techniques are built upon using Genetic
algorithms or Bayesian optimizations. NASwas started by Google
Brain (Zoph et al., 2018) to find an optimal neural architecture
by searching for architectural building blocks on a small dataset
and then transferring the block to larger ones. NAS was a starting
point for a series of NAS-based approaches in recent years (Liu
C. et al., 2018; Liu H. et al., 2018; Pham et al., 2018). All of
these works were proposed to design a neural network with
optimum performance, regardless of the energy requirement of
the underlying neural accelerator.

Hardware-aware neural architecture designs can
be categorized in three domains of multi-layer co-
optimization (Reagen et al., 2016), hardware-aware NAS (Cai
et al., 2018; Tan et al., 2019; Wu et al., 2019), and Bayesian-
based hyperparameter optimization (Reagen et al., 2017;
Marculescu et al., 2018; Stamoulis et al., 2018). Each one of
these approaches have their pros and cons. While defining an
optimum neural architecture with energy-efficient hardware in
mind, the multi-layer co-optimization approach cannot easily be
extended to generic platforms. Hardware-aware NAS techniques
are time consuming and require substantial resources, and
Bayesian-based methods are not well-suited for parameter-heavy
models Dai et al. (2019). In Hierarchical-PABO, we propose a
novel hardware-aware approach with minimum mathematical
complexity. This framework is based on hierarchical Bayesian
optimization and agent-based modeling. Using a set of Bayesian
estimators in different levels and correlating them using a
supervisor agent, we overcome the drawbacks of exclusive
Bayesian approaches available in the literature.

1.2. Main Contributions
Wemade the following contributions:

1. A novel optimization framework based on hierarchical

Bayesian optimization and agent-based modeling, suitable

for both artificial neural networks and spiking neuromorphic

systems. With simple yet effective underlying mathematics,
Hierarchical-PABO estimates the Pareto region for multi-
objective hyperparameter optimization problems with few
evaluations.

2. One of the first techniques in the literature for co-

designing software-hardware that is not limited to the

number of objectives to optimize (network performance,

energy consumption, size, speed of inference, etc.). Based on
our knowledge, our proposed technique is one of the first
techniques in the literature that simplifies the mathematical
complexity of exclusive Bayesian approaches for multi-
objective optimization. We do this by adding a supervisor
agent and performing Bayesian optimization in different

levels. This paves the way to effectively optimize more than
two objective functions.

3. Generic framework extendable to various artificial and

spiking neural networks and the underlying digital, analog,

or mixed-signal accelerators. We tested our framework on
several classification and control applications on digital and
mixed-signal accelerators and were able to estimate the Pareto
frontier regardless of the size of the search space.

4. Superior performance in terms of accuracy and

computational speed compared to the state-of-the-art Genetic

Algorithm (GA) optimization approach (in scenarios where
GA-based optimizations were available for comparison, Deb
et al., 2002). Please see Parsa et al. (2019a) for details of this
contribution.

2. METHODOLOGY AND EXPERIMENTAL
SETUP

In order to systematically take the human knowledge out of
the loop in selecting the optimum set of hyperparameters for a
neuromorphic system (and in general any artificial intelligence-
based computing system), we chose Bayesian optimization as
the core of our approach. In this section, we first overview
the basic mathematics of Bayesian modeling and justify the use
of this technique in our proposed Hierarchical Pseudo Agent-
based Bayesian Optimization (Hierarchical-PABO) framework,
and then present the experimental setup for this approach.

2.1. An Introduction to Bayesian
Optimization
Bayesian optimization is a powerful tool for finding the optimum
point of objective functions that are unknown and expensive to
evaluate (Brochu et al., 2010). The problem of finding a global
optimizer for an unknown objective function is formulated in
Equation (1).

x∗ = argmax
x∈X

f (x) (1)

where X is the entire design space, and f is the black-box
objective function without simple closed form. As summarized
by Shahriari et al. (2015), in a sequential manner, we search
for the best location xn+1 to observe yn+1 point in order to
estimate f . After N iterations, the algorithm suggests the best
estimation of the black-box function f . This sequential approach
is based on building a prior estimation over possible objective
functions, and then iteratively re-estimating the prior model
using the observations from updating the Bayesian posterior
model. The posterior representations are the updated knowledge
on the objective function we are trying to optimize. We explore
the search space by leveraging the inherent uncertainty of the
posterior model and mathematically introducing a surrogate
model, called the acquisition function αn. The maximum point
of this function is the next candidate point to observe (xn+1)
and guides the search direction toward the true representation
of the objective function. The efficiency of Bayesian approach
to estimate the global optimizer for the expensive black-box
function with fewer evaluations lies on the ability of Bayesian
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technique to learn from prior belief on the problem and direct
the observations by trading off exploration and exploitation of
the design space.

In the context of neuromorphic computing, x is the
system’s hyperparameters such as inherent hyperparameters for
different input/output encoding schemes, or population size or
optimizer choice for various training techniques. Hardware-
specific hyperparameters are also another choice for parameter x.
Function f is the black-box objective function, such as accuracy
of the network, energy or area requirements of the system, and
speed of inference, for stochastic observations of y. A summary of
the Bayesian approach is illustrated in the Figure 1. See Brochu
et al., 2010; Bergstra et al., 2011; Eggensperger et al., 2013 for
detailed tutorials.

In Figure 1, we are estimating an unknown objective function,
ground truth f . We only have two observations (likelihood
model) in iteration one (red dots). We first build our prior
distribution (current belief) based on these observations using
Gaussian processes. The Gaussian distribution is shown with
mean and standard deviation, solid black line, and highlighted
dashed area, respectively. A surrogate model, acquisition
function, is estimated for this posterior distribution, which
is shown as the highlighted green function. The maximum
point of the acquisition function (green dot) is the best next
point to observe in the next iteration. As the new points are
added to the observations in different iterations, the standard
deviations, and therefore the uncertainty of estimating the
ground truth function, is reduced. Each observation requires
evaluating an unknown, expensive objective function. The ability
of the Bayesian technique in predicting this function (ground
truth in Figure 1) with few evaluations, speeds up the process
of finding the optimum set of hyperparameters with minimum
computational resources.

For configuring the Gaussian process, the covariance function
is a positive definite kernel that specifies the similarity between
points of observations. There are different methods to estimate
this kernel function based on the smoothness, noise level and
periodicity of the ground truth. In our experimental setup,
we selected the Matern kernel function with smoothness value
of 1.5. This particular kernel is selected due to the intrinsic
stochastic nature, and noise level of our problem. Once we
estimate the posterior distribution based on the likelihood model
and the prior distribution, we build an acquisition function to
guide the search direction. This acquisition function defines
whether to search the space where the uncertainty is high

(explore) or sample at locations where the model predicts high
objectives (exploit). There are different methods to calculate
this surrogate model (Kushner, 1964; Lai and Robbins, 1985;
Jones et al., 1998; Jones, 2001; Brochu et al., 2010; Bull, 2011;
Agrawal and Goyal, 2013; Hernández-Lobato et al., 2014). The
choice of the method to use directly impacts the speed of
convergence to the ground truth in Bayesian search. We chose
expected improvement approach for the acquisition function.
This selection does not impact the effectiveness or performance
of our approach; rather, it only impacts the speed of searching the
hyperparameter space and avoid trapping in local minima. More
details in selecting kernel or acquisition function can be found
in Shahriari et al. (2015).

2.2. Hierarchical-PABO
Hierarchical-PABO (Hierarchical Pseudo Agent-based Bayesian
Optimization) is an ultra-efficient Bayesian-based optimization
framework to find an optimum set of hyperparameters for
designing an accurate neural network while minimizing energy
consumption and area requirement of the underlying hardware.

Figure 2 summarizes the Hierarchical-PABO framework. We
randomly select two hyperparameter (HP) combinations from
the design space. In the first level, these current observations
are used to build Bayesian estimation posterior distributions for
each objective function separately.We then define the acquisition
function for each posterior model. The optimum point of these
acquisition functions are the best next point (HP combination)
to evaluate for their corresponding objective function. In the
second level, the supervisor agent level, the process starts
with all current observations (set of HP combinations) and
the candidate HP combination that led to the optimum value
of the acquisition functions in the previous iteration. For
these observations, we estimate an intermediate Pareto frontier
function using a Gaussian distribution. This is calculated based
on the observation points (on the Pareto front set), as well
as a score calculated based on L1-norm of these points after
being normalized. Therefore, a corresponding surrogate model
(acquisition function) for this Gaussian distribution explores
and exploits the search space with the goal of estimating the
current intermediate Pareto function. The next best observation
for this Pareto is then added to the observations for each
Bayesian estimator. With this technique, we force the Bayesian
approach to add extra observations that help in minimizing
the current intermediate Pareto function. This function is

FIGURE 1 | Summary of single objective Bayesian optimization. Reproduced with permission from Parsa et al. (2019a).
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FIGURE 2 | Hierarchical-PABO framework.

updated iteratively and moved toward the actual Pareto region
of the problem.

In Hierarchical-PABO, the Pareto Bayesian estimator in the
second level plays a vital role in correlating the Bayesian
estimators for each objective function in the first level. However,
to speed up the search process, the supervisor agent might turn
off this Pareto Bayesian estimator. If this extra Bayesian estimator
is turned off, the supervisor agent takes HP combinations
taken from optimum point of the acquisition function for each
objective and only allow those that are in favor of moving toward
the Pareto region. Please see the Supplementary Material for
Hierarchical-PABO pseudo-code.

2.3. Experimental Setup
An overview of our experimental setup is shown in Figure 3.
We test Hierarchical-PABO on several devices for various
control and classification tasks. For experiments on Artificial
Neural Networks (ANNs), we select PUMA (Ankit et al.,
2019) as the underlying hardware with two different
deep neural network architectures, AlexNet (Krizhevsky
et al., 2012) and VGG19 (Simonyan and Zisserman,
2014) on Flower17 (Nilsback and Zisserman, 2006), and
CIFAR10 (Krizhevsky, 2009) image classification dataset.

For Spiking Neural Networks (SNNs), we consider both
digital and mixed-signal hardware; DANNA2 (Mitchell et al.,
2018), and mrDANNA (Chakma et al., 2017), respectively.
Additionally, we select Pole-balance (Wieland, 1991; Gomez
et al., 2006), and RoboNav (Mitchell et al., 2017) for experiments
on control applications, and IRIS (Dua and Graff, 2017),
and Radio (Reynolds et al., 2018) dataset for classification
applications. In Figure 3, the experimental setup for ANN is
shown in red, and for SNN in blue.

In SNN domain, we utilize a modified version of the
TENNLab neuromorphic software framework (Plank et al., 2017,
2018). This platform enables studying different applications
and evaluating them on several neuromorphic processor
implementations. This capability is well-suited for the purpose
of our hyperparameter multi-objective optimization as it allows
switching applications and devices within the framework
without the need to change the software. We modify the
TENNLab framework by adding Hierarchical-PABO to its
primary underlying learning algorithm, which is Evolutionary
Optimization for Neuromorphic Systems, EONS (Schuman et al.,
2016). EONS is an evolutionary approach for designing the
network topology and parameters of an SNN for a given
application and neuromorphic hardware implementation. This
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FIGURE 3 | Summary of the experimental setup (ANN and SNN).

evolutionary algorithm follows the same steps as a traditional
evolutionary approach. That is, EONS begins with a population
of potential solutions and evaluates each of those solutions on
the problem at hand (running the potential network solution on
the application on the hardware or a simulation of the hardware)
to get a fitness score for each solution. Then, EONS uses the
fitness scores to perform selection (preferentially selecting better
performing networks to serve as parents) and reproduction (to
produce children networks from the parents). Reproduction
includes both crossover operations (taking components from two
networks to assemble one ormore children), mutation operations
(small-scale changes such as parameter updates or adding or
deleting a neuron or synapse), and duplication. Details of the
experimental setup for both ANN and SNN are described in
this section.

2.3.1. Experimental Setup for ANN
For experiments in ANN domain, to speed up the search for
the optimum hyperparameter, we turn off the extra Bayesian
estimator block in the supervisor agent. In this case, the
supervisor agent only correlates the results of the isolated
Bayesian estimations of each objective function, and decides on
the best hyperparameter combination for the next iteration based
on the ones that might belong to the Pareto frontier. Details
of the Hierarchical-PABO when the extra Bayesian estimator in
supervisor agent is turned off is given in Parsa et al. (2019a).

As discussed in Parsa et al. (2019a), the underlying
hardware we select for our ANN experimental setup is a
programmable ultra-efficient memristor-based accelerator called
PUMA, proposed by Ankit et al. (2019). This spatial general-
purpose architecture is based on hybrid CMOS-memristor
technology that enables mapping machine learning applications
using on-chip memory only. Analog memristor crossbars,
functional units, and instruction execution pipelines are the
building blocks of PUMA’s core. Multiple cores create tiles via
a shared memory. PUMA’s nodes are several tiles connected

through an on-chip network. For large-scale executions, PUMA
nodes are linked with a chip-to-chip interconnect.

To calculate energy consumption of PUMA, we use an
abstract energy consumption model of the memristor crossbars
only. This enables evaluating the impact of hyperparameters
on the energy usage of PUMA, while isolating the benefits
of micro-architectural design. We expect lower energy usage
with less number of crossbars. Details of calculating the energy
consumption of PUMA is given in Equation (2).

Total Energy = [
∑

i

(di × di × ⌈
nci × ki × ki

xs
⌉ × ⌈

nci+1

xs
⌉)

+

∑

i

(⌈
nfi

xs
⌉ × ⌈

nfi+1

xs
⌉)]× epx (2)

In Equation (2), the total energy consumption is the summation
of number of crossbars needed for all convolution and fully
connected layers multiplied by the energy per matrix vector
multiplication operation (epx). In PUMA’s memristive crossbar
accelerator, epx is ≃44 nJ for a 16-bit (inputs and weights)
crossbar operation with crossbar size (xs) of 128 × 128. For the
ith convolution layer, di is the dimension of the output, nci is the
number of input features, and ki is the kernel size. The dimension
of the output in the convolution layer is for the inherent weight-
sharing property of these layers. For the ith fully connected layer,
nfi is the number of input features.

In the ANN’s experimental setup, we used
AlexNet (Krizhevsky et al., 2012) and VGG19 (Simonyan
and Zisserman, 2014) for the deep neural network architectures.
For details on the structures of AlexNet and VGG19 please
refer to the Supplementary Material. We performed several
case studies for different types of hyperparameters, including
the number of layers, kernel sizes, number of features to
extract in each layer, and also the values for learning rate,
momentum, and dropout. The details of the our proposed
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TABLE 1 | Energy estimate per spike for mrDANNA.

Accumulation Fire Learning Idle

Neuron 9.81pJ 12.5pJ - 7.2pJ

Synapse 1.45pJ - 2.58pJ 0.07pJ

hyperparameter optimization technique on ANN results are
given in Parsa et al. (2019a).

2.3.2. Experimental Setup for SNN
As mentioned in section 2.2, based on the complexity of the
problem, the supervisor agent decides to keep the extra Bayesian
estimator block on or off. In SNN domain, this block is turned
on which is well-suited for the hyperparameter optimization of
spiking neuromorphic systems. In these systems, the intrinsic
HPs in different building blocks of these systems are so critical in
the final performance of the system that an additional Bayesian
optimizer is needed to find the optimum set of HPs.

The summary of the applications and neuromorphic
processors we select for SNN experimental setup is shown in
Figure 3. For the applications, we tested Hierarchical-PABO on
both control and classification tasks. Pole-balance (Wieland,
1991; Gomez et al., 2006), and RoboNav (Mitchell et al., 2017)
were the two selected control applications. Pole-balance is
a control benchmark in engineering which involves a pole
connected to a cart through a joint that allows single axis
movement. The goal of this control application is to keep the
pole from falling by moving the cart either direction. RoboNav
is an autonomous navigation system for robotic applications
and is meant to be deployed on a specific robot (Mitchell
et al., 2017). We also used the Iris (Dua and Graff, 2017) and
Radio (Reynolds et al., 2018) datasets for classification tasks. The
former is a multivariate dataset of 50 samples from each of three
species of the Iris flower, and the latter is a satellite radio signal
classification problem.

We use two different neuromorphic implementations that
are already deployed in the TENNLab framework, a fully
digital neuromorphic processor, DANNA2 (Mitchell et al.,
2018), and a memristive mixed-signal neuromorphic processor,
mrDANNA, (Chakma et al., 2017). DANNA2 is a fully
digital programmable device with integrate-and-fire neurons
and synapses, and mrDANNA is a mixed analog-digital
programmable device with metal-oxide memristors. We use
mrDANNA for the case studies where we would like to
minimize energy requirement of the underlying neuromorphic
hardware. Table 1 summarizes the energy estimate per spike
for this neuromorphic device. mrDANNA is a synchronous
neuromorphic architecture and is simulated in a discrete event
simulation. Events in the simulation include accumulations, fires,
and learning. The energy estimates for each event type are given
in Table 1 and we track howmany of each type of event occurs in
the simulation and sum up the energies. If no event is occurring
on a neuron or synapse in a clock cycle, that neuron or synapse is
“idle,” but still performing some operations that contribute to idle

cost. We use these energy estimates to estimate the overall energy
cost of running on a particular application.

3. RESULTS

To validate Hierarchical-PABO we consider different case
studies, which are summarized in Table 2. Different applications
(control and classification), architectures (AlexNet and
VGG19 for ANN, and EONS for SNN), dataset (Flower17,
CIFAR10, IRIS, Radio, and Pole-balance), and accelerators
(PUMA, DANNA2, mrDANNA) are considered with
different search space sizes. These different case studies are
chosen to demonstrate our proposed generic hyperparameter
optimization approach.

3.1. Results for ANN
Table 3 shows a summary of the selected ranges for the
hyperparameters (HPs) for eachANN case study given inTable 2.
All these cases are studied with PUMA as the underlying
hardware. Case study one is designed with a small search space of
size 192 HPs. We begin with the small search space size in order
to estimate the actual Pareto frontier of the problem with a grid
search technique and to compare the Hierarchical-PABO (H-
PABO) result with other state-of-the-art approaches. Case study
two is included to capture the effects of different types of HPs in
the analysis, and case study three is a more realistic experiment
with VGG19 as the chosen architecture on CIFAR10 dataset.

Figure 4 demonstrates results for different case studies. Each
point in this figure corresponds to a set of HPs from the ranges
given in Table 3. H-PABO search points are shown in red circles
and are the selected HP combinations that lead to defining a
Pareto frontier region. As already discussed in section 2.2, this
selection is based on exploring and exploiting the search space.
In all three case studies shown in Figure 4, the H-PABO search
not only emphasizes on the Pareto region, but also explores the
search space to avoid trapping in local minima.

In Figure 4A, H-PABO search points are compared to grid
search (shown in gray crosses), random search (blue diamonds),
and state-of-the-art NSGA-II (Deb et al., 2002) search (black
squares). H-PABO predicts the actual Pareto frontier of the
problem with only 17 evaluations (out of 192 possible HP
combinations). This result outperforms other approaches not
only in accuracy of predicting the Pareto frontier, but also
in superior computational speed. The random search results
are from 40 evaluations of HP combinations, and NSGA-II is
based on a population size of 10 with a maximum generation
of 50. In this case study, H-PABO is 92× faster than NSGA-
II in predicting the actual Pareto frontier of the problem. An
optimal design that belong to the Pareto frontier with 26% error
and 7mJ PUMA energy consumption will lead to almost 40%
decrease in energy consumption compared to a not-optimal
design with 26% error and 12mJ energy consumption. For these
two designs all hyperparameters such as dropout, learning rate,
and optimizer type are similar, except number of fully connected
layers, convolution layers, and two filter sizes. The optimal design
has two fully connected layers, and four convolution layers
with filter sizes 3 in the second and third layers. However, the
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TABLE 2 | Case studies for hierarchical-PABO.

Case study Domain Application Architecture Dataset Accelerator Search space Objective

One ANN Classification AlexNet Flower17 PUMA 192 Accuracy, Energy

Two ANN Classification AlexNet Flower17 PUMA 288 Accuracy, Energy

Three ANN Classification VGG19 CIFAR10 PUMA 3,072 Accuracy, Energy

Four SNN Control EONS Pole-Balance DANNA2 240 Accuracy

Five SNN Control EONS Pole-Balance DANNA2 54,432,000 Accuracy

Six SNN Classification EONS IRIS mrDANNA 1,458 Accuracy, Energy, Size

Seven SNN Classification EONS Radio mrDANNA 1,458 Accuracy, Energy, Size

Eight SNN Classification EONS IRIS mrDANNA 35,460 Accuracy, Energy, Size

Nine SNN Classification EONS Radio mrDANNA 35,460 Accuracy, Energy, Size

TABLE 3 | Evaluated parameters for three different case studies for ANNs.

Case study one Case study two Case study three

Dropout 0.4, 0.5 0.5 Dropout, Layer 1 0.3, 0.4

Learning Rate 0.001 0.001, 0.01 Learning Rate 0.01, 0.1

Momentum 0.85, 0.9, 0.95 - Learning Rate Decay 1e− 6, 1e− 4

Optimizer Momentum Momentum, Adam Weight Decay 0.0005, 0.05

# of FC Layers 2, 3 2, 3 Kernel Size, Layer 6 3, 5

# of Conv. Layers 4, 5 3, 4, 5 Kernel Size, Layer 7 3, 5

Kernel Size, Layer 1 5, 7 3, 5, 7 Kernel Size, Layer 8 3, 5

Kernel Size, Layer 2 3, 5 3, 5 Kernel Size, Layer 9 3, 5, 7

Kernel Size, Layer 3 3, 5 # of Features, Layer 1 64, 128

Kernel Size, Layer 4 3 3, 5 # of Features, Layer 2 128, 256

# of Features, Layer 4 256, 512

Architecture AlexNet AlexNet VGG19

Neural Accelerator PUMA PUMA PUMA

Dataset Flower17 Flower17 CIFAR10

Search Space 192 288 3072

not-optimal design has three fully connected layers, and five
convolution layers with filter sizes 5 in the second and third
layers. Further analysis on the results is given in Parsa et al.
(2019a).

For case study two given in Table 3, we show the convenience
of changing HP types within the H-PABO framework by
incorporating the choice of optimizer as an HP. In Figure 4B,C,
H-PABO estimates the Pareto region with 39 and 22 evaluations,
respectively. The complexity and predictability of the problem
upon changes of HP combinations define the speed of H-PABO
in predicting the Pareto region.

3.2. Results for SNN
Table 4 shows a summary of the selected ranges for the
hyperparameters (HPs) for case studies in SNN domain given
in Table 2. In this table, bk, pk, [ck,Ck], function, and interval
are from the input encoding module, population size, mutation
rate, and crossover rate are for EONS evolutionary-based training
algorithm, and synaptic weight, neuron threshold, and synaptic
delay belong to the underlying neuromorphic hardware. The
input encoding hyperparameters include several approaches such
as binning-based, using bk as the number of bins required for
each input values, spike-count with pk as the maximum number

of spikes to encode a single input value, charge-value with
[ck,Ck] on injecting a specific charge to fire a neuron, function
on how to map the values to spikes, and interval to define
the interval between pulses. For more details on each of these
hyperparameters please refer to Parsa et al. (2019b), Schuman
et al. (2019).

We first show the importance of hyperparameter optimization
for spiking neuromorphic systems by only focusing on single-
objective optimization (performance of the system on the
task) problem, where grid search results are already available
by Schuman et al. (2019). We then continue with Hierarchical-
PABO (H-PABO) results for a three-objective optimization
problem (performance, energy, and network size).

Single-Objective Optimization with Hierarchical-PABO (H-

PABO): While H-PABO is generally aimed for multi-objective
problems, it can easily be reduced to a single-objective
optimization by setting objective functions to one. This is the
case for case study four, where we are only optimizing a single
objective function that is the accuracy of the neural network.
The details of this case study is given in Table 4. Figure 5

shows box plot figures with interquartile ranges. The grid search
result is produced and published by Schuman et al. (2019) and
shown in Figure 5A. For each one of the 240 combinations
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FIGURE 4 | ANN results for multi-objective hyperparameter optimization of network performance and hardware energy requirement. (A) Case study one: HP search

space = 192, Reproduced with permission from Parsa et al. (2019a). (B) Case study two: HP search space = 288. (C) Case study three: HP search space = 3,072,

Reproduced with permission from Parsa et al. (2019a).

TABLE 4 | Evaluated parameters for case studies four to nine for SNNs.

Hyperparameters Case study four Case study five Case studies six, and seven Case studies eight, and nine

bk 1, 2, 4, 8 2, …, 8 2, 4, 8 2, 4, 8, 10, 12

pk 1, 2, 4, 8 1, …, 12 4, 8 2, 4, 8, 10, 12

[ck ,Ck ]

[0,0.5],[0,1],

[0.25,0.5], [0.25,1],

[0.5,0.5],[1,1]

[0,0.5],[0,1],

[0.25,0.5],[0.25,1],

[0.5,0.5],[1,1]

[0,1], [0.5,0.5],

[1,1]

[0,0.5],[0,1],

[0.25,0.5], [0.25,1],

[0.5,0.5],[1,1]

Function

simple,

flip-flop,

triangale

simple,flip-flop,triangale
simple,

flip-flop

simple,

flip-flop,

triangale

Interval 1 1, …, 5 0, 1 0, 1, 2

Population size 1,000
600, 800, 1,000,

1,200, 1,500, 2000
10, 100, 500 10, 100, 500, 700

Mutation rate 0.9 0.6, 0.7, 0.8, 0.9 0.2, 0.6, 0.9 0.2, 0.6, 0.9

Crossover rate 0.5 0.3, 0.4, 0.5, 0.6, 0.7 0.3, 0.5, 0.9 0.3, 0.5, 0.9

Synaptic weight [-255,255]
[-127,127],[-255, 255]

[-511, 511],[-1023, 1,023]
- -

Neuron threshold [0,1,023] 255, 511, 1023 - -

Synaptic delay 127 15, 31, 63, 127, 255 - -

Neural Accelerator DANNA2 DANNA2 mrDANNA mrDANNA

Application Pole-balance Pole-balance
six: IRIS

seven: Radio

eight: IRIS

nine: Radio

Search Space 240 54,432,000 1458 35,640

of the hyperparameters, the network accuracy is calculated
and evaluated for 100 times. In Figure 5B, we used H-PABO
for the same experiment, and with only 40 hyperparameter

combinations, each repeated for 10 times, we are able to predict
not only the exact optimum set of hyperparameter, but also
predict the same trend in the network accuracy changes for
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FIGURE 5 | H-PABO results for single-objective hyperparameter optimization (network performance, accuracy only) for case study four in Table 2. Reproduced with

permission from (Parsa et al., 2019b).

TABLE 5 | Sensitivity analysis for H-PABO single objective optimization.

HPs Experiment 1 Experiment 2 Experiment 3 Experiment 4

Input encoding HPs

bk 2 2 2 2

pk 8 12 8 8

Charge [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5]

Function Flip-flop Flip-flop Flip-flop Flip-flop

Interval 1 5 1 2

EONS HPs

Population size 1000 1500 400 1000

Mutation rate 0.9 0.9 0.9 0.9

Crossover rate 0.5 0.4 0.5 0.7

Accelerator HPs

Synp weight [−255, 255] [−127, 127] [−255, 255] -

Neuron threshold [0, 1023] [0, 1023] [0, 1023] -

Synp delay 127 255 15

Neuromorphic System Performance 52% 70.99% 50% 53%

Accelerator DANNA2 DANNA2 DANNA2 mrDANNA

Application Pole-Balance Pole-Balance RoboNav RoboNav

different hyperparameter combinations (Parsa et al., 2019b). In
this case study the optimum hyperparameter combination leads
to median value of 52%.

The hyperparameters are kept exactly similar between case
studies four and five in Table 4. However the ranges for each
hyperparameter is increased in case study five. Although all
hyperparameters are still in reasonable ranges, the search space is
drastically increased to over 54 million different hyperparameter
combination in case study five. This shows that in real problems
where different hyperparameters exist originating from different
modules of the system such as input encoding, hardware, or
the training algorithm itself, hyperparameter optimization plays
vital role in obtaining the maximum performance of the system.
We performed H-PABO to define the set of hyperparameter
that optimizes network’s accuracy and were able to increase the
median value of the accuracy to 70.99% compared to 52% in case
study four. Please refer to Parsa et al. (2019b) for more details on
single-objective hyperparameter optimization on spiking neural
networks.

In Table 5, a sensitivity analysis is performed for H-
PABO single objective optimization for different classification
applications on two different neural accelerators. These
experiments show how sensitive is pole-balance control
application to the changes of hyperparameters. If we only change
few hyperparameters (all in reasonable ranges), the resulting
accuracy will change from 52 to 70.99% (comparing experiments
1 and 2 in Table 5). Based on these experiments, RoboNav
appears to be less sensitive to changes in hyperparameters
and architectures, but more extensive experiments may be
required in order to understand the full impact on this
particular application.

Three-Objective Optimization with Hierarchical-

PABO (H-PABO): To validate H-PABO technique for
multi-objective hyperparameter optimization problems in
SNN domain, we focus on classification application with
IRIS (Dua and Graff, 2017), and Radio (Eggensperger
et al., 2013) dataset on both digital (Mitchell et al.,
2018), and mixed-signal memristive (Chakma et al., 2017)

Frontiers in Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 667147

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

neuromorphic devices. The summary of the case studies six
to nine, and their corresponding HP ranges are given in
Tables 4, 2, respectively.

Figure 6 demonstrates the Hierarchical-PABO (H-PABO)
results in SNN domain on IRIS classification dataset on a mixed-
signal underlying hardware [mrDANNA, Chakma et al. (2017)].

FIGURE 6 | H-PABO results for three-objective hyperparameter optimization (network performance, hardware energy consumption, and number of synapses) for Iris

classification dataset on mrDANNA with HP search space of (A), 1458, case study six, (B) 35,640, case study eight in Table 4.
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Figure 6A shows theH-PABO results compared to grid search for
the case study six given in Table 4with 1458 different sets of HPs.
Each point in the three-dimension figure represents network
performance, hardware energy consumption, and number of
required synapses for a set of HP combination. The number
of required synapses increases as the color becomes lighter.
The grid search results show that most of the time the energy
consumption increases as the number of synapses increase (the
top left region of Figure 6A). However, we might also have a
larger network with more inhibitory synapses, for example, that
would have less activity and thus less energy than a smaller
network (top right region). The triangles are the H-PABO search
points, and as expected, all different regions of the search space
are explored with H-PABO. The H-PABO Pareto points are
shown with squares. These points are calculated once the H-
PABO search process is completed and are the H-PABO search
points that belong to the Pareto frontier. As shown in Figure 6A

this calculated Pareto frontier is within close proximity to the
actual Pareto frontier of the problem.

Figure 6B shows the H-PABO results for case study eight
in Table 4 for the HP search space of 35640 different HP
combinations. Once again, we see that all regions of the
search space are explored by the H-PABO approach, but that
the majority of the H-PABO points are evaluated are in the
region of interest and near the H-PABO Pareto front. In this
case, H-PABO was able to find well-performing networks with
desired characteristics (low energy consumption and relatively
few synapses) with significantly fewer evaluates than what would
be required for a full grid search of 35,640 points. It is also worth

noting that by optimizing over the additional HPs, the H-PABO
approach is able to find well-performing networks with better
characteristics than the networks found simply optimizing over
the smaller set of HPs (shown in Figure 6B).

Figure 7 shows the H-PABO results from Figure 6, but splits
the results into three different pairwise comparison plots, for
each case study, to show how the different objectives play off
of each other. The third objective is also shown in each plot
through the color of the squares. With these plots, we can see
the different Pareto fronts for each of the pairwise objectives.
For example, in the network performance vs. hardware energy
plots, we can see that there are trade-offs in energy usage in order
to achieve lower error (and similarly for network performance
vs. number of synapses). However, the number of synapses and
energy usage are relatively correlated, such that fewer synapses
typically corresponds to a lower energy value.

Figure 8 gives the results for case studies seven and nine, in
which the H-PABO approach is applied to HP optimization for
the Radio classification dataset on the memristive mixed-signal
system (mrDANNA). The two case studies look at the same HP
combination sets as the Iris dataset and correspond to 1458 and
35640 combinations, respectively. As we can see in the figure,
H-PABO once again explores the space of potential solutions
but is able to find a Pareto front in relatively few evaluations.
Again, similar to the result for the Iris dataset, we can see that by
expanding our HP set to the 35640 potential HP combinations,
H-PABO is able to achieve overall better performing networks
(lower error and energy and fewer synapses required), and in
general moving the Pareto front closer to the desired region.

FIGURE 7 | Comparing three-dimensional H-PABO results, pairwise for (A) case study six with search space size 1,458, (B) case study eight with search space size

35,640.
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FIGURE 8 | H-PABO results for three-objective hyperparameter optimization (network performance, hardware energy consumption, and number of synapses) for

case studies seven and nine in Table 2, Radio classification dataset on mrDANNA, (A) search space size 1,458, (B) search space size 35,640.

4. DISCUSSION AND FUTURE WORK

In this paper, we propose a novel multi-objective optimization
framework based on hierarchical Bayesian optimization and
agent-based modeling (Hierarchical-PABO). With its one of a
kind structure, and simple yet effective underlying mathematics,
we are able to predict a Pareto frontier of a multi-objective
hyperparameter optimization for both non-spiking and spiking
neural network systems with only few evaluations. This
framework paves the way to further analyze and study
sensitivity and resiliency of the system due to the changes of
the hyperparameters.

The main current limitation of Hierarchical-PABO is
scalability and ability to parallelize the approach. The goal of
Hierarchical-PABO is predicting the Pareto region for a search
space with reasonable ranges for the hyperparameters and with
only few evaluations and we do not want to compete with
all NAS-based approaches that search the entire search space
with massive computational resource requirements. However,
improving scalability of Hierarchical-PABO paves the way
for incorporating the technique in different frameworks with
multiple layers of optimization problems and hyperparameters.

For future work, we intend to fully integrate the Hierarchical-
PABO approach into the TENNLab neuromorphic framework
by Plank et al. (2018), so that it can seamlessly determine
hyperparameters for the neuromorphic framework user. Within
that framework, we also intend to apply this hyperparameter
framework to other neuromorphic implementations that
are supported and other applications, including a variety
of control applications (like those described by Plank
et al., 2019) and other classification tasks. We also plan to
apply H-PABO to determine the hyperparameters for other
spiking neural network training approaches, including
reservoir computing algorithms, and back-propagation
style approaches such as Whetstone (Severa et al., 2019)
and SLAYER (Shrestha and Orchard, 2018). To further

accelerate the optimization approach, we plan to investigate
an implementation of H-PABO for high-performance
computers, such as Oak Ridge National Laboratory’s
Summit supercomputer.
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A continual learning system requires the ability to dynamically adapt and generalize to

new tasks with access to only a few samples. In the central nervous system, across

species, it is observed that continual and dynamic behavior in learning is an active result

of a mechanism known as neuromodulation. Therefore, in this work, neuromodulatory

plasticity is embedded with dynamic learning architectures as a first step toward realizing

power and area efficient few shot learning systems. An inbuilt modulatory unit regulates

learning based on the context and internal state of the system. This renders the

system an ability to self modify its weights. In one of the proposed architectures,

ModNet, a modulatory layer is introduced in a random projection framework. ModNet’s

learning capabilities are enhanced by integrating attention along with compartmentalized

plasticity mechanisms. Moreover, to explore modulatory mechanisms in conjunction with

backpropagation in deeper networks, a modulatory trace learning rule is introduced. The

proposed learning rule, uses a time dependent trace to modify the synaptic connections

as a function of ongoing states and activations. The trace itself is updated via simple

plasticity rules thus reducing the demand on resources. The proposed ModNet and

learning rules demonstrate the ability to learn from few samples, train quickly, and perform

few-shot image classification in a computationally efficient manner. The simple ModNet

and the compartmentalized ModNet architecture learn benchmark image classification

tasks in just 2 epochs. The network with modulatory trace achieves an average accuracy

of 98.8%±1.16 on the omniglot dataset for five-way one-shot image classification task

while requiring 20x fewer trainable parameters in comparison to other state of the art

models.

Keywords: neuromodulation, ModNet, one-shot learning, dynamic learning, mushroom body output

neurons (MBONs)

1. INTRODUCTION

Biological brains are capable of processing massive amounts of information for learning, retaining,
and performing cognitive decision making. Moreover, the brains are endowed with the ability to
learn continuously and adapt quickly to changes in the inputs or the environment in an energy
efficient manner. The extraordinary computational capabilities of biological neural systems has
motivated researchers to explore the structural and functional aspects of the brain, in order to
build intelligent systems capable of solving complex tasks (Mead, 1990; Rumelhart et al., 1995;
Kar, 2016; Hassabis et al., 2017). Using the brain as a source of inspiration, researchers have
successfully demonstrated networks with the ability to solve complex learning tasks. For example,
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convolutional neural networks (Lawrence et al., 1997; Huang
et al., 2017) have demonstrated remarkable performance for
image recognition tasks, recurrent neural networks (Williams
and Zipser, 1989; Gers et al., 2002; Greff et al., 2017; Sak and
Senior, 2018) have been able to perform classification, prediction,
and anomaly detection on temporal tasks, and few reinforcement
learning based systems (Sutton and Barto, 1998; Silver et al.,
2016) are able to learn complex cognitive tasks.

While such state-of-the-art networks perform well on narrow
sets of well-defined tasks, they are generally not very good at
generalizing, and they are not able to learn from few samples
(Bengio et al., 2015; Rosenfeld et al., 2018). To address these
issues, biological brains havemechanisms that dynamically adjust
its own parameters for learning in new environments. These
mechanisms play a key role in reacting and responding to
stimulus based on context in a quick and efficient way. It has
been observed in many species—from insects to humans—, that,
in addition to synaptic plasticity, neuromodulation plays a key
role in the facilitation of learning (Decker and McGaugh, 1991).
Brains also use neuromodulation to modify neural connectivity
in response to inputs and internal states. Neuromodulation
is the physiological process by which a given neuron uses
one or more neurotransmitters to regulate a population of
neurons (Katz and Edwards, 1999). This contrasts with classical
synaptic transmission, in which one presynaptic neuron directly
influences a single postsynaptic partner. Neuromodulators
secreted by a small group of neurons diffuse through large areas
of the nervous system thus affecting multiple neurons. Reports
have shown that neuromodulation affects synaptic plasticity,
neural wiring, and attention (Katz, 1999; Doya, 2002).

In this work, we develop computationally efficient dynamic
learning systems inspired from neuromodulatory mechanisms
in the brain wherein a modulatory unit regulates the learning
according to the context and the internal state of the system.
Here, the internal state of the system refers to the activations
of the neurons in response to the current input. When we refer
to dynamic learning, we focus on the capability of associative
learning; where the system learns to discriminate its input
based on a context, which can either be internal to the system
or triggered by an external input, such as a reinforcement
or a modulatory signal. In addition to implementing dynamic
learning capabilities, our architecture needs an attention
component responsible for meta-learning: its main function
is to evaluate when, what, and how much to learn based on
the context. Thus one approach toward solving this problem
is by incorporating the heterosynaptic (neuromodulatory)
mechanisms in conventional neural networks.

Some researchers have incorporated the concept of
neuromodulated plasticity into network models for solving
tasks in dynamic reward-based scenarios. Soltoggio et al. (2008)
proposed an architecture where they introduced the concept
of modulatory neurons that enhances or dampens the neural
plasticity of the target neurons to boost the memory and learning
capabilities. The concept of gated plasticity in Soltoggio et al.
(2008) enabled dynamic targeted update of synapses in the
network, thus leading to more efficient learning. The work in
Miconi et al. (2020), demonstrates that adding neuromodulatory

plasticity mechanisms trained using gradient descent exhibit
superior performance on reinforcement learning and non-
trivial supervised learning tasks like few shot learning, pattern
memorization, and image reconstruction. They also explain that
self-modifying capabilities in the brain play an important role
in learning and adaptation. This work shows that incorporating
these learning mechanisms along with an architecture inspired
from insects enables learning dynamically and from few samples
in a computationally efficient fashion.

The key contributions of this work are:

• Incorporating architectural and functional methods inspired
from the insect brain to enable neuromodulatory interactions
in conventional neural networks.

• Adaptive local learning rules with built-in attention
mechanisms that endow the networks with the capability to
learn from few-samples.

• A compartmentalized network architecture akin to the
mushroom body in the drospohila to process the information
in a scalable and resource efficient way.

• A modified modulatory trace learning rule capable of learning
and efficiently processing inputs from the internal state
of the system.

2. RELATED WORK

2.1. Neuromodulated Plasticity in Neural
Networks
In the brain, the neurons communicate with each other
by releasing neurotransmitters when the axon potential of
the neuron reaches a synapse. Depending on the type of
the neurotransmitter, the receiving neuron can be in either
excitatory or inhibitory state. Neurotransmitters can sometimes
cause an electrical signal to be transmitted down the cell
(excitatory), whereas in other cases, the neurotransmitter can
actually block the signal from continuing, thereby preventing
the message from being carried on (inhibitory). Some of
the neurotransmitters that have spatially distributed and
temporally extended effects on the recipient neurons and circuits,
are called Neuromodulators (Katz and Edwards, 1999). The
best examples of neuromodulators are dopamine, serotonin,
noradrenaline (also called as norepinephrine) and acetylcholine.
Doya (2002) hypothesized the role of different neuromodulators
in the context of reinforcement learning in the brain. His
hypothesis was as followed: Dopamine acts as the global
control and learning signal for the network for predicting
rewards and reinforcement of actions. Serotonin modulates
the balance between the short-term and long-term prediction
of rewards. Similarly, noradrenaline modulates the attention
mechanism in the network in the sense that it controls
the balance between wide exploration and focused execution.
Acetylcholine handles the memory and controls memory storage
and renewal of memory. It modulates the learning wherein,
based on acetylcholine release, learning new tasks and rate
of forgetting of previously learned tasks is handled. Following
that, there have been several other hypotheses on similar lines
(Bargmann, 2012; Pedrosa and Clopath, 2017; Shine et al., 2019)
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regarding the functional role of the neuromodulators in the
brain. Taking inspiration from this, several researchers have
incorporated neuromodulation in deep learning frameworks.
Kondo (2007) proposed a diffusion-reaction based model
using neuromodulation. The neuromodulators via those actions,
regulate the synaptic connectivity and strength. This mechanism
was able to demonstrate online learning capabilities for mobile
robotic control. The concept of neuromodulated spike timing
dependent plasticity in spiking neural networks is introduced
by Frémaux and Gerstner (2016). These gated plasticity based
learning rules show how neuromodulatory signals interact
with the neural activity to bias learning and behavior, and
respond to novelty. Kolouri et al. (2019) proposes an attention
based selective plasticity approach that is based on cholinergic
modulation in the brain to address catastrophic forgetting. The
central idea in most of the previous works portrays the ability
of neuromodulators to impact plasticity predominantly through
gating of plasticity and up-regulation of neuronal activity. These
features or effects of neuromodulators are observed across
multiple species not only including mammals and reptiles, but
also insects.

There is an active research aiming to understand how
smaller brains can be highly capable of learning and cognition
(Montgomer et al., 2018). Despite having brains that are a million
times smaller, insects are able to exhibit almost half the distinct
cognitive behaviors as that of certain mammals like dolphins
(Changizi, 2013; Theobald, 2014) (59 for honeybees compared
to 123 for dolphins). For example, bees build honeycombs and
operate in swarms via symbolic communication, wasps exhibit
chemical communication, termite colonies perform climate
control, etc. The neural circuitry found in insect brains is able to
exhibit complex cognitive behaviors similar to mammals albeit
with a lower resolution and reduced information processing
(Lihoreau et al., 2012). Moreover, cognitive ability does not
necessarily result from greater numbers of neurons but rather it
is the new links between different bundles of neurons that lead to
tangible changes in behavior (Chittka andNiven, 2009). Yanguas-
Gil et al. (2019) shows that architectures inspired from insect
brain are capable of exhibiting context-dependent processing
and learning. Therefore, models based on small brains can still
offer a good baseline of intelligent tasks in a resource and power
efficient manner.

2.2. Few Shot Learning
Several real-world application domains like healthcare, robotics,
etc., operate on irregular and sparse datasets. To address this
issue, few shot learning is becoming a prominent area of
research. However, learning and adapting from few examples
is very challenging. The conventional approaches for image
classification involving convolutional neural networks trained
using backpropagation are unable to offer a satisfactory solution
for learning new concepts rapidly from little data. Hence, there
have been few works that were particularly inclined toward
solving this problem and have been able to achieve good
performance on few shot learning tasks. The Siamese network
model (Koch et al., 2015), tries to approach the problem of
few shot learning by giving the model two samples and then

training it to guess whether the two samples belong to the same
category or not. Another approach to the few shot learning
task is specified in Matching Networks (Vinyals et al., 2016).
Matching Nets use novel attention mechanisms and embedding
functions to enable rapid learning and train the network by
showing only few examples per class. They train the network by
randomly selecting k labeled examples fromN classes that haven’t
previously been trained upon. The task is then to classify a batch
of unlabeled examples into one of these N classes. The model
proposed inMishra et al. (2017) currently achieves state of the art
performance for few shot learning tasks. The authors introduced
temporal convolution (TC) and causal attention layers in the
network, wherein the TC layers provides the context over which
the attention layers operate.

Apart from the prior specified techniques, researchers have
proposed meta-learning based techniques. The work proposed
by Santoro et al. (2016) uses a novel sophisticated memory
based system. It uses Long Short-Term Memories (LSTMs) as
a memory controller that interfaces with the input and outputs
through complex memory accesses. The network learns a general
strategy for the types of representations it should place into
memory and how it should later use these representations
for predictions. Recently, Finn et al. (2017) proposed Model-
Agnostic Meta Learning for fast adaptation of Deep networks,
that introduces a meta learning algorithm that can be trained
with any model with gradient descent and can be used to
solve a variety of problems like classification,regression and
reinforcement learning. Researchers (Doya, 2002; Soltoggio
et al., 2008; Miconi et al., 2020) have studied the role of
neuromodulatory and heterosynaptic update mechanisms for
endowing networks with meta-learning capabilities. In this work,
the authors use plasticity based rules to encode the context and
drive the update of parameters in the network in conjunction
with backpropagation.

3. MODULATION INSPIRED LEARNING
METHODS

In the proposed work, the efficacy of adding neuromodulation
to the neural networks is observed. The first approach couples
synaptic local learning rules with error driven modulation to
enable learning on the edge. The second approach incorporates
neuromodulation in conjunction with backpropagation wherein
a context driven modulatory trace regulates the short term
plasticity of the connections.

3.1. ModNet
The proposed architecture, Modulatory Network (ModNet),
Daram et al. (2019) derives its inspiration from the mushroom
body in the insects and the learning mechanism is inspired
from the neuromodulatory mechanisms in the brain.
Neuromodulators closely affect synaptic plasticity, neural
wiring and the mechanisms of long term potentiation (LTP)
and long-term depression (LTD). The realization that Hebbian
learning is not the only way that synapses are modified (Cooper,
2005) has led to growing interest in neuromodulation. Studies
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on mollusks and insects (Carew et al., 1981; Roberts and
Glanzman, 2003) have shown that in addition to Hebbian
learning, neuromodulatory mechanisms are also involved with
associative learning and synaptic changes.

The learning rule proposed in our architecture derives from
the aforementioned heterosynaptic mechanisms and uses the
concept of Hebbian plasticity for the synaptic weight update. The
pre-synaptic and post-synaptic neurons determine the polarity of
change in the connection while the modulatory neurons regulate
the rate at which the weight is updated.

The mushroom body output neurons (MBONs) in the
Drosophila play a key role in discriminating between stimuli,
learning their predictive value and further using that information
to modify their behavior (Aso et al., 2014). Additionally,
dopaminergic modulation alters the balance within the MBON
network for those stimuli. The input layer in the ModNet
corresponds to the antennal lobe projection neurons (sensory
stimuli). These antennal lobe neurons are sparsely represented
in the Kenyon cells and a similar property is used in ModNet, as
shown in Figure 1 (Daram et al., 2019), the inputs are randomly
projected into a sparse hidden space. Sparsity ensures greater
feature separability and distinctive representation of the inputs.
The Kenyon cells then converge into multiple MBONs and the
plasticity of those connections is regulated by neuromodulation
based on stimuli. Similarly, in ModNet, the hidden layer is
fully connected to the output layer and the plasticity of those
connections is regulated by a modulatory layer. This modulatory
layer takes as input the error calculated at the output layer
and uses it to regulate the plasticity of the hidden-to-output
layer weights.

The network consists of two units, the processing unit which
is responsible for learning the features and the distinctive

representations, and the neuromodulatory layer which is
responsible for learning the context. In the processing unit, the
input features are lifted onto a higher dimensional hidden layer
which extract the spatial features. These features are processed
through sigmoid activation function at the hidden layer and
are learned at the output layer. The learning error from the
output neurons, with respect to a one-hot encoded label as input,
are passed as inputs to the modulatory layer. The modulatory
neurons compensate the error by updating the trainable weights
from the hidden to output layer neurons. During the training
phase, the output neurons have a set of two activations each,
namely the standard activation and the modulatory activation.
The standard activations are computed as sum of the products
of hidden-neuron activations and the hidden-to-output layer
weights. The modulatory activations are computed as sums of
products of the modulatory inputs to the modulatory weights.
The standard and the modulatory activations are calculated as
shown in (1) and (2).

Ai = Sigmoid
(

∑

wijxj

)

(1)

Mi =

∑

w′

ijx
′

j (2)

where wij corresponds to the hidden to output layer weights

from the ith neuron in the output layer to the jth neuron
in the hidden layer, and xj corresponds to the hidden layer

activations. w′

ij corresponds to modulatory weights from the ith

neuron in the output layer to the jth neuron in modulatory
layer and x′j correspond to inputs to modulatory neurons (error

computed at the output layer) ,respectively. Once the activations

FIGURE 1 | The neural circuit formed between the antennal lobe projection neurons, Kenyon cells and lateral horn MBONs (left) in the mushroom body of insects is

akin to the ModNet network architecture proposed (right).
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are calculated, the standard and modulatory weights are updated
as shown in Equations (3) and (6), respectively.

1wij = Sigmoid(
Mi

nij
)× δij (3)

The weight update equation has two components with the first
part being the magnitude component and δij being the plasticity
and direction term. In (3), nij is a scaling parameter that is tuned
while training. The plasticity term δij is realized according to
Equation (4),

δij = ηij
(

β1xixj + β2(xj − xi)+ β3

)

(4)

where ηij is the adaptive learning parameter that is updated while
training, xi and xj are the pre and post-synaptic activations, and
β1, β2, and β3 are the tunable parameters for the network. The
weight update equation has a correlation term β1, a difference
term β2 and a constant term β3 as a bias. The constant term
allows for update of the synapse even in absence of pre or
post synaptic activation. The polarity of ηij is changed based on
the difference between the activations and the polarity of the
connecting weight. Hence in this learning rule, the modulatory
component regulates the magnitude of the rate of weight change
and the plasticity component determines the sign or direction of
the weight update for the given connection. This term selects and
strengthens the set of connections contributing toward learning
a particular task. The adaptive learning rate is updated according
to Equation (5).

ηij = ηin
ei

xi
, (5)

where ηin corresponds to the initial value of the learning rate
and ei and xi correspond to the error and the activation at the
observed output neuron. In the case when ei or xi are 0, then the
ηij is set to ηin. Having the output activation as a divisive factor
enables a more optimized rate of change in learning rate based
on how far it is from correctly learning the associations. The
same equation is also used for updating the modulatory weights,
with the error and the activation terms switching positions.
This mechanism is similar to attention mechanism in neural
networks. The magnitude term that depends on the modulatory
interactions, is also affected by the division term which changes
the dynamic range of the sigmoid by flattening the curve. The
modulatory weights are updated based on Equation (6),

1w′

ij = η′ij(scale) (6)

where η′ij is an adaptive learning parameter and scale is a tunable

magnitude parameter. The sign and magnitude of η′ij is updated

as a function of the network response and the output activations.
The sign of the learning parameter is directly correlated with the
error and the magnitude is increased or decreased based on the
value of output activation. The learning rule proposed inModNet
(Equations 3 and 4) consists of Hebbian update coupled with
a modulatory regularizer wherein the rate of weight change is
either enhanced or dampened with respect to the hidden layer

neurons’ contribution toward learning. The proposed learning
rule enables dynamic learning in the systemwith exposure to only
few samples. But having a sparse hidden layer can lead to many
redundant and unused neurons and synapses. Thus, to make the
algorithm more efficient, a dynamic attention based mechanism
is proposed.

3.2. Region Based Attention Mechanism
ModNet essentially shows a baseline network incorporating
hetero-synaptic interactions in neural networks. But the network
can be designed to be more dynamic to solve complex tasks in
a further efficient fashion. Thus a mechanism to add attention
in the hidden layer is introduced in this section. The algorithm
implements an attention mechanism that distinctly selects
populations of excitatory or active neurons while inhibiting and
filtering the less active ones. This separation enables efficient
distribution of information within the network. Thus, the hidden
layer in the ModNet is divided into regions based on a scaling
factor α to perform selective filtering and inhibition. This
mechanism is adopted while training. The activities of the
neurons in different regions are measured and a normalized
average of neuronal activities in every region is computed. The
activity factors of the regions are computed periodically for every
100 samples. If aik is the activation value of a neuron in kth
region, then the average activity factor of the region is given
by Equation (7).

Ak =

1
amax

∑

aik

N
(7)

where amax is the maximum activation value in the given region
and N represents the number of hidden neurons in the region.
Based on the activity factor, the weights of every region are
further updated according to the Equation (8).

w′

ik = wik − Ak1wik, (8)

where Ak controls the rate of change in synaptic strength and
boosts the strength of the connections for themore active regions.
If the activity (Ak) is less than a threshold value δ, then the
weights of the neurons in those regions are further updated
according to the Equation (9).

w′

ik =











wik − |Ak1wik| when wik > 0

wik + |Ak1wik| when wik < 0

0 otherwise

(9)

As shown in Equation (9), in the regions with lower average
activity or smaller activity factor, the connections of the neurons
in those regions are inhibited and the weights are made to
converge to 0 thereby making those regions sparser. Thus, the
region based attention mechanism is able to determine the
active and inactive regions during training and is dynamically
able to drop out connections and neurons while retaining
the performance. This mechanism further enables introducing
a more complex and mushroom body inspired architectural
formulation known as compartmentalization.
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FIGURE 2 | The mushroom body (left) in insects are organized in a compartmentalized fashion to encode and bias the behavior. Compartmentalized ModNet

architecture (right) incorporates this design aspect to perform selective filtering and resource efficient processing of information.

3.3. Compartmentalized ModNet
In the mushroom body, the MBONs are able to encode the
valence and bias the behavior in a highly compartmentalized
fashion (Aso et al., 2014). Every compartment in the mushroom
body lobe acts as an independent valuation module with different
and changing modular functions. Thus this idea is translated
to a deeper version of the region based ModNet, with each
region actively learning and acting as independent modules in
the network. The core idea behind compartmentalization is to
generate a modular network capable of adapting to different tasks
with different regions learning to respond to certain tasks with
only few data samples. Figure 2 shows the neural architecture
of the compartmentalized organization in the mushroom body
output neurons in insects.

An additional hidden layer is added to the ModNet
architecture. The layers are split into explicit multiple
compartments competing to learn the features and eventually
gating the less active ones. The net activity factor of each
compartment is measured and the connectivity is updated based
on the rule presented in Equations (8) and (9). The net activity
factor for each compartment is measured as a factor of the
activation values of the population of neurons in the respective
compartment. The local connections between the neurons in
the compartments are trained via local plasticity rules. Unlike
gradient descent where the correlations between hierarchical
layers are retained by gradients, the problem with having
multiple rules across layers causes an issue of uncorrelated
knowledge transfer. Hence, an unsupervised covariance based
learning rule as shown in Equation (10), is utilized which actively

updates the synapses based on correlations between the pre and
post synaptic neurons.

1wij = η′[(xpre − s1)(xpost − s2)× w] (10)

In Equation (10), s1 and s2 are hyperparameters that define the
threshold for activations for the pre and post synaptic neurons
to either strengthen or weaken the connection. Moreover, to
alleviate the problem of oscillation of neuronal activity due
to multiple learning rules, the covariance based learning rule
is operated on a slower timescale, thus being updated after
every N inputs wherein N can be set as a hyperparameter. The
preliminary results demonstrate superior performance than the
ModNet architecture on the Fashion-MNIST dataset.

3.4. Modulatory Plasticity in Deep
Networks
ModNet architecture represents one way of introducing
modulatory dynamics to a network and training via modulatory
and plastic learning rules. However, the problem with ModNet
lies in that being a shallow network, the capabilities of ModNet
is limited to solving simpler classification tasks. However, the use
of a gradient descent mechanism like backpropagation in neural
networks has shown to achieve spectacular results in solving
complex tasks. Thus, it would be interesting to add modulatory
plasticity to these non-plastic backpropagation based neural
networks. This way, not only will the weights be optimized
while training via backpropagation but, also the plasticity in
each connection is updated via neuromodulation. To test the
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FIGURE 3 | The input is passed through a convolutional embedding and at the final layer, based on the activations from the feature layer and the output layer, the

network determines the context and modulates the plasticity of those connections.

advantage of having neuromodulated plasticity in the context of
lifelong learning, the task of performing efficient one-shot and
few-shot learning is considered.

Figure 3 shows the concept of incorporating modulatory
dynamics into a CNN for solving the task of few shot learning.
Thus, to train a modulatory network with backpropagation,
a formulation is considered in which each connection has
a standard component and a modulatory component. This
formulation is inspired from the work in Miconi et al. (2018),
wherein the author considers the network to have a fixed
and a plastic component for training. However, the plasticity
component in Miconi et al. (2018), does not account for the full
internal state of the network and thereby does not encode the
global context while updating weights in the network. Hence, the
connection between any neuron i in layer l and another neuron
j in layer l-1 will have a regular connecting weight wij which
constitutes the standard component, and a modulatory trace
Modij which changes based on the current inputs and outputs
to the network. Thus the total weight of the connection between
any two neurons is given by the sum of the regular weight and the
modulatory trace. This is specified in Equation (11).

Wtot = wij + δijModij, (11)

where δij is the modulatory learning factor that can be
either constant for all the connections or different for
each. The role of the modulatory trace is to perform
heterosynatic weight update of the connections in the network.
Hence the output activation is computed as a sum of
products passed through a non-linear activation function
of the input activations and the Wtot as represented in
Equation (12).

xout = σ (
∑

inputs

[wij + δijModij]xin), (12)

where xout corresponds to the output activation value and xin
corresponds to the input activations feeding into the output
neuron. Here, σ corresponds to the non-linear activation
function and the inputs correspond to the input activations from
the previous layer.

The modulatory trace is a time dependent quantity for the
connections in the network. The trace is updated based on

the input and the output activations and a modulatory context
which is responsible for handling the short term memory in the
network. The modulatory trace is computed according to the
Equation (13).

Modij(t) = Modij(t−1)+αij[xout(xin−xoutModij(t−1))], (13)

where Modij(t) is the currently computed trace value and
Modij(t-1) corresponds to the initial trace value or the trace value
for the previous iteration. The modulatory trace is initialized to
zero at the beginning of each epoch or episode. The parameters
wij and δij are trained across all the training epochs and
episodes. These parameters are updated and optimized using
backpropagation during the training process. αij is defined by the
Equation (14).

αij = γ σ ′([
∑

outputs

xout]/n), (14)

where σ ′ is the non-linear activation function, sigmoid in this
case and n is the number of output neurons in the layer and γ

is a hyperparameter to regulate the rate of update. The outputs
correspond to all the output activations. The α term appears
as the modulatory context term which evaluates the network
response to encode the global context to the trace.

The parameter α determines the speed at which new
information is incorporated into the trace and the plastic
component of the network while δ determines the magnitude
of effect of the trace on the respective connection. The Modij
term or the trace is accumulated over time but gated by the
modulatory context term and the output activation. The Modij
term is an episodic quantity, in the sense that it is reset to zero
after every training episode. The modulatory context term and
the weights are lifetime quantities as they are updated throughout
the training procedure. The modulatory trace in the output layer
evaluates the internal state of the system allowing for stable
memories, thus enabling the connections to learn the associations
between the inputs during the episode. This corresponds to
the short term effect of the trace while training during the
episode. The modulatory learning factor regulates the long term
effect of the trace on the connections in the sense that, being
a lifetime parameter, the context term encodes how much, the
heterosynaptic update is required for the given task or episode.
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TABLE 1 | Experimental setup and hyperparameters for evaluating the ModNet

architecture.

Network features ModNet

Datasets MNIST Fashion-MNIST

Network size 100 × 1,000 × 10 784 × 1,000 × 10

Hyperparameters
β1 β2 β3 η

0.1 0.2 0.001 0.001-0.01

Training epochs/Episodes 2

Runs 10

The modulatory context term reinforces the connectivity and
quickly updates the weights in the final layer to adapt to the newer
inputs and thus differentiate between the incoming input features
from n selected classes in a n-way k-shot learning scenario. This
learning mechanism is thus able to perform competitively on
the few shot learning task on the Omniglot dataset. This can
be attributed to the long term and short term effects of the
heterosynaptic mechanisms on the network that are responsible
for understanding the context and regulating the response to the
encoded context.

4. RESULTS AND ANALYSIS

In the proposed work, the ModNet architecture and the
Modulatory trace learning method are evaluated and tested
on different datasets based on the applications. The ModNet
architecture is tested on the MNIST (LeCun et al., 1998)
and the Fashion-MNIST (Xiao et al., 2017) image recognition
benchmarks for classification, and the Modulatory trace learning
method is verified on the Omniglot dataset (Lake et al., 2015) for
few-shot classification task. In this section, the proposed network
architectures are analyzed for performance and efficiency.

4.1. Image Classification Tasks
The ModNet architecture coupled with the learning and
architectural mechanisms proposed in Sections 3.1-3.3 are
evaluated for resource efficient dynamic learning on image
classification benchmarks.

4.1.1. Benchmarks and Experiment Setup
Two spatial datasets are used to study the capability of ModNet
in learning from few samples. Both the datasets consist of 60,000
training and 10,000 testing images. The MNIST dataset images
are normalized and reshaped from 28×28 to 10×10. The images
from the Fashion-MNIST dataset are only normalized and not
reshaped to 10×10 to prevent loss of useful features.

Table 1 shows the network setup for evaluating the ModNet
architecture. The ModNet architecture configuration is set to
100 (input) ×1,000 (hidden) × 10 when testing on the MNIST
dataset. The input layer size is updated to 784 while testing on
the Fashion-MNIST dataset. In the case of Compartmentalized-
ModNet, an additional hidden layer of size 1,000 is added to the
ModNet network and analyzed.

4.1.2. ModNet Performance
As observed in Figure 4, the network is able to attain a test
accuracy of∼91% while training for just 2 epochs on the MNIST
dataset and ∼81% on the Fashion-MNIST dataset. Figure 4A
shows the training performance of ModNet with respect to
the number of samples shown. The network is compared to
a similar shallow random projection based network, called the
Extreme Learning Machine (ELM) (Huang et al., 2004) which
is unable to learn quickly as ModNet. This is a result of the
effect of modulatory activations on weights in the network which
initially try to reward and penalize neurons at a much higher
rate as compared to the later stages when learning begins to
saturate. Figure 4B shows how higher dimensionality leads to
better performance, which correlates well with the biological
counterpart in which themushroom body projection neurons are
lifted in the Kenyon cells. Higher dimensionality in the hidden
layer results in a greater feature separation amongst the inputs.

On the contrary, the network performance does not improve
significantly after increasing the size of the hidden layer past
2,500 neurons. However, the larger network performs better
if it is trained longer. This is a result of the inability of the
shallow network to capture certain distinctive features that could
be realized by increasing the depth of the model. Therefore,
the compartmentalized topology of ModNet and the attention
mechanism are evaluated to address the depth of the network and
efficient processing for shallower networks, respectively.

4.1.3. Exploiting Sparsity for Efficient Processing
To test the efficacy of compartmentalization with attention on
ModNet, the network is re-evaluated on the Fashion-MNIST
dataset. For the compartmentalized network, another hidden
layer is added with the network configuration being 784 (input)
× 1,000 (hidden1)× 1,000 (hidden2)× 10 and selective attention
in the compartments in the hidden layers. The network is able to
classify with an accuracy of∼91% on the Fashion-MNISTmodel.
Figure 5A shows how selective filtering using attention with
compartmentalization and gating allows efficient processing.
Turning off least responding compartments and keeping only
active compartments while training the network thus ensures
greater resource and power efficiency.

Figure 5B shows the effect of region based attention
mechanism and sparse initialization on the performance for
the shallow ModNet architecture. We can observe similar
performance for a 20–30% sparsely gated network in comparison
to the fully connected network. However, other than sparse
initialization, the attention mechanism also induces sparsity into
the network. To find out the optimal sparsity for the network
to perform comparably to the fully connected counterpart, and
realize the effect of the aforementioned mechanisms, further
analysis is performed as shown in Figures 6, 7.

Figure 6 shows the percentage of connections pruned while
training using attention and compartmentalized topologies.
Compartmentalization induces greater sparsity as the network
has more connections, and a modular topology leads to
compartments shutting off after falling below minimum
activity threshold. Moreover, to observe the behavior of these
mechanisms for already sparse or gated networks, the network
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FIGURE 4 | (A) The training accuracy (blue) on the MNIST dataset with respect to the number of trained samples and the change in absolute modulatory activation

values (red) for a hidden layer of size 1,000. (B) Test accuracy with respect to the number of hidden layer neurons and the initialized value of the adaptive learning

parameter when trained for 2 epochs on the MNIST dataset for the ModNet architecture.

FIGURE 5 | The test accuracy (averaged over 5 runs each) (A) of compartmentalized ModNet with respect to the number of epochs and epsilon (initial % of randomly

selected active neurons) for performing classification on the Fashion-MNIST dataset and (B) of ModNet with attention (without compartmentalization) with respect to

the number of epochs and the initial percentage of the active regions (α) on the MNIST dataset.

sparsity after one epoch for these networks is observed. Based
on the results in Figure 7, the optimal sparsity point is observed
to be ≈ 30% for compartmentalized ModNet and ≈ 40%
for region based attention mechanism. This demonstrates the
efficient adaptation aspect of the proposed learning topologies.
The learning mechanisms adapt to the different network
initializations and try to converge to the optimal sparsity
point necessary for performing the task without degrading
the performance. However, increased sparsity also affects the
network performance in other aspects. Thus, an ablation study
is conducted to observe the problems and advantages of each of
the proposed mechanisms.

4.1.4. Ablation Study
Table 2 presents the ablation study to demonstrate the efficacy
of incorporating different mechanisms in addressing learning
from few samples. The results shown in the table are averaged
over 10 runs and the number of samples to reach initial
convergence are an approximated average of the values over
the runs. Coupling attention with the modulatory learning rule
ensures reaching convergence quickly while saving on resources
by increasing sparsity in the network. As discussed in section
4.1.3, compartmentalization is able to make the network more
sparse, but it takes longer to converge as compared to the shallow
counterparts. This is also attributed to increased depth and
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FIGURE 6 | The behavior of the network connectivity with respect to the two

plasticity topologies when trained on the MNIST dataset. Compartmentalization

induces greater sparsity in the network as a result of increased parameters

and finds the optimal sparsity configuration for the given task.

FIGURE 7 | The network sparsity observed after one epoch with respect to

the number of active neurons in the network. Compartmentalization is able to

find an optimal space despite the variance in the network inactivity and it is

observed that the optimal sparsity is achieved at ≈ 30% for compartmentalized

ModNet and ≈ 40% for ModNet with attention (Evaluated on the

MNIST dataset).

learning using multiple learning rules. However, it compensates
by showing improved performance. Enforcing sparsity in the
network enables better distribution of information and thereby
compartmentalization can be extended to a multi task learning
scenario with different subsets of compartments responding to
different tasks.

4.2. Few Shot Learning Tasks
One criticism of ModNet and the proposed learning mechanisms
is regarding their ability to perform well on larger and more
complex problems. Therefore, to evaluate the advantages of using

heterosynaptic interactions for complex tasks, we select the few
shot learning task.

4.2.1. Benchmarks and Experimental Setup
The modulatory trace learning rule is tested for few shot
learning on the Omniglot corpora. The Omniglot dataset Lake
et al. (2015), as shown in Figure 8 contains examples from 50
alphabets ranging from well-established international languages
to lesser known local dialects. It consists of a total of 1,623
characters with letters from each alphabet varying from about 15
to upwards of 40 characters. Each of these are hand drawn by 20
different people. Moreover, each character in Omniglot is a 105×
105 binary image. Thus the dataset has 1,623 classes with 20 (105
× 105 images) examples per class.

Figure 9 shows the baseline CNN architecture used for few
shot learning task. It consists of a stack of modules, each of
which is a 3 × 3 convolution with 64 filters followed by batch
normalization, a ReLU non-linear activation function, and a 2 ×
2 max-pooling layer. The images are resized to 28 × 28 so that,
when 4 modules are stacked, the resulting feature map is 1 × 1
× 64. This output is a 64 sized vector which then feeds into a N-
way softmax layer. Concurrently, the label of the target character
is fed as a one-hot encoded value to the softmax layer, guiding the
correct output when a label is present.

The task is modeled as an N-way, k-shot classification setup,
similar to most of the previous works for few shot classification.
This problem thus can be formalized as follows: pick N unseen
character classes and K examples of each class from those N,
independent of the alphabet and let that set be N, K (Vinyals et al.,
2016) as shown in Figure 8B. Each of these instances together
with the class labels (from 1 to N) are presented to the model.
Then a new unlabeled instance from one of the N classes is
presented to the model. The model’s performance is defined as
the model’s accuracy in classifying this unlabeled example. The
baseline configuration is tested for N = 5 and K = 1(five way, one
shot learning).

The effect of modulatory mechanisms in deeper networks
is evaluated for the task of few shot learning on the
omniglot dataset (Lake et al., 2015). Modulatory plasticity is
introduced in the baseline architecture in Figure 9 for the
weights connecting the final feature layer to the softmax
layer. The rest of the convolutional embedding does not have
modulatory plasticity associated to it. Thus, across the training
episodes, the convolutional architecture is expected to learn an
adequate discriminant between arbitrary handwritten characters.
Meanwhile, the weights between the convolutional network and
the softmax should learn to memorize associations between
observed patterns and outputs, which are directly influenced by
the modulatory context and the labels. Table 3 lists details on the
network configuration and hyperparameters used for few-shot
learning task. Similar to previous works (Finn et al., 2017; Mishra
et al., 2017; Miconi et al., 2018), the dataset is divided into 1,523
classes for training and 100 classes for testing. The network is
trained using anAdam optimizer with a learning rate of 3× 10−5,
multiplied by 2/3 every 100,000 episodes) over 500,000 episodes.
To evaluate the final performance, multiple models with different
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TABLE 2 | Ablation study of the proposed learning methods for ModNet on the MNIST and the Fashion-MNIST datasets.

Network Datasets

MNIST F-MNIST

Samplesa Train Accb Test Accc Samples Train Acc Test Acc

ModNet 8,000 92.87 87.25 12,000 80.87 74.13

ModNet + Attention 9,500 91.46 86.47 13,000 78.65 72.93

ModNet + Attention + Compartment 11,000 93.82 90.86 15,500 90.85 84.73

ModNet + Sparsity* 14,000 91.39 85.82 23,000 78.76 74.27

*The network is initialized with 30% sparse input and output connections.
aRefers to the number of samples to reach initial convergence.
bThe mean training accuracy observed where the network initially converges.
cThe test accuracy of the network when trained for the number of samples specified.

FIGURE 8 | (A) A snapshot of some of the classes in the Omniglot dataset. (B) The sample N way, K-shot problem set. In this figure N is 20 and K is 1. The network

should be capable to classify the unlabeled example from the N character classes.

FIGURE 9 | The convolutional architecture used as the baseline. The modulatory trace is applied to the weights connecting the fully connected feature vector to the

N-way softmax layer.

random seed initializations are trained and then tested on the
previously unseen classes for 200 episodes.

4.2.2. Performance Analysis
To understand how few shot learning networks train and how
the loss varies when presented with new distributions of inputs
in a N-way,k-shot learning task, the moving average of median

loss, and themean loss across the training procedure is visualized.
Figure 10A shows the moving average of the median loss across
multiple runs. The mean is calculated across points after different
milestones spaced evenly for every 50,000 episodes. The average
loss is computed and saved after 100 episodes to create a net
loss matrix. The median of losses along the milestone axis is
computed and the moving average along those median values
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is plotted. The overall median loss decreases as the network is
trained longer. This plot shows how few shot learning task does
not have a standard loss gradient when presented with more
samples as the training involves accessing new set of inputs
every time.

Figure 10B represents how the loss actually varies during the
training phase. The repeated spikes in the loss is due to the way
the network is trained. Since, there are 1,523 classes and 5 classes
are randomly selected and moreover, randomly permuted and
rotated, the high loss scenarios occur mostly when the randomly
selected samples are almost similar. Thus, the loss is higher in
some episodes as a result of being trained on new and difficult
episodes. The 5 samples have very few distinctive features and
thus learning the associations might be difficult in that case. This
type of learning is consistent across multiple runs with different
random initializations as shown in the plot.

The results in Figure 11 show the performance of the
proposed network in comparison to the accuracies reported in
the recent literature. Other than the memory networks, all the
other works make use of the baseline convolutional network
that has been described previously. The accuracy of the model
is almost similar to the computationally intensive MAML (Finn
et al., 2017) approach which optimizes for the loss function

TABLE 3 | Experimental setup and hyperparameters for evaluating the

modulatory trace learning rule.

Network features Modulatory trace learning

Datasets Omniglot

Network size 4 Conv, 1 FC

Hyperparameters
LR γ δ

3 × 10-5 0.02 0.01

Training episodes 500,000

Runs 5

Data augmentation Rotations (Multiples of 90o)

using gradient descent. The results are almost similar to the
Matching networks (Vinyals et al., 2016), Differentiable Plastic
networks (Miconi et al., 2018) and Meta networks (Munkhdalai
and Yu, 2017). The results reported in SNAIL (Mishra et al.,
2017) outperform all the other networks and are currently
state of the art but the difference is barely significant. The
SNAIL approach trains a whole temporal convolutional layer and
causal layers on top of the baseline convolutional embedding
leading to a significant increase in the number of parameters.
The proposed network performance is near state of the art
accuracy for an additional 330 (66×N, with N=5) parameters.
The network has a total of 112,065 parameters. The proposed
model requires ≈10x fewer training episodes than Differentiable
Plastic networks.

4.2.3. Resource Efficiency Through Quantization
To further optimize the resource usage in ModNet, we study
the impact of reducing the bit precision. The convolutional
embedding is pretrained offline and few-shot learning is
performed on a quantized version of the model.

PLA(x) =



















1, when abs(x) ≥ 3

0.06abs(x)+ 0.815, when 1.5 ≤ x < 3

0.443abs(x)+ 0.24, when 0.5 ≤ abs(x) < 1.5

0.924abs(x), otherwise

(15)

Tanh(x) =

{

PLA(x), when x ≥ 0

−PLA(x), otherwise
(16)

The features in the quantized model include inputs and weights
represented in 16-bit fixed-point format with 6 bits for signed
integer and 10 bits for fractional part, along with 32-bit partial
sum accumulators which are again rounded to 16-bit. The tanh
activation is replaced by a piecewise linear approximation as
shown in Equations (15) and (16). One interesting observation
is that the bit-precision of the output layer made a significant
impact on the accuracy. The network performance degraded

FIGURE 10 | The average loss is computed in the interval of 100 episodes along milestones set after every 50,000 episodes. The (A) moving average of the median

loss and (B) the mean loss along the milestone axis, across 10 runs with different random initializations are shown.
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FIGURE 11 | 20-way and 5-way, 1-shot and 5-shot classification accuracies on Omniglot dataset. The proposed model achieves comparable accuracy to

state-of-the-art SNAIL architecture while requiring 20x fewer trainable parameters and fewer training episodes as compared to MAML.

FIGURE 12 | (A) The weight distribution of the output feature vector for 16-bit fixed point quantized weights (blue) and 32-bit floating point precision weights (green).

(B) Variation in network performance with respect to changing bit precision. The performance degradation is minimal for 12-bit precision weights and inputs.

substantially (from ≈ 98 to 47%) when quantized to 16-bit fixed
point. However, the accuracy remained the same as the 32-bit
floating point when the output layer is not quantized. Figure 12
shows the weight distribution of the output feature vector for
the quantized and the 32-bit operations. The plot shows that
the quantized version is able to generate almost similar output
feature activations with low quantization error of 1.254%.

5. CONCLUSIONS

This work shows that incorporating neuromodulatory
mechanisms in neural networks is effective toward realizing
dynamic learning systems that are able to learn associations and
discrimination in the input stream, based on a context. The main
contributions of this work are the design of an architecture and

adaptive learning rules to introduce modulatory dynamics in the
neural networks. The proposed architecture uses simple plasticity
rules with a modulatory control mechanism for learning instead
of using backpropagation. The ModNet architecture is capable
of learning quickly and from fewer samples. This work also
introduces a neuromodulation-inspired training technique
to self-modify weights in a network. These simple plasticity
mechanisms when combined with conventional gradient descent
approaches are able to solve non-trivial tasks like few shot
learning of different human written characters.

ModNet and compartmentalized ModNet, despite being
shallow networks are able to train on the complete MNIST
and Fashion-MNIST dataset in just 2 epochs and reach
convergence within 8,000 samples of MNIST with 91%
accuracy and 12,000 samples of Fashion-MNIST with 89%
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accuracy. Furthermore, the modulatory trace learning rule
in tandem with backpropagation shows accuracy of 98.8%
with a 95% confidence interval on the non-trivial few shot
learning task on the Omniglot dataset for an additional 325
trainable parameters. These experiments prove that compact
and simple meta learning approaches via neuromodulation can
perform as well as current computationally intensive methods.
Compartmentalization integrated with multiple local plasticity
rules might alleviate catastrophic forgetting in neural networks
and enable multi-task learning.
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While convolutional neural networks (CNNs) continue to renew state-of-the-art

performance across many fields of machine learning, their hardware implementations

tend to be very costly and inflexible. Neuromorphic hardware, on the other hand, targets

higher efficiency but their inference accuracy lags far behind that of CNNs. To bridge the

gap between deep learning and neuromorphic computing, we present bitstream-based

neural network, which is both efficient and accurate as well as being flexible in terms

of arithmetic precision and hardware size. Our bitstream-based neural network (called

SC-CNN) is built on top of CNN but inspired by stochastic computing (SC), which uses

bitstreams to represent numbers. Being based on CNN, our SC-CNN can be trained

with backpropagation, ensuring very high inference accuracy. At the same time our

SC-CNN is deterministic, hence repeatable, and is highly accurate and scalable even

to large networks. Our experimental results demonstrate that our SC-CNN is highly

accurate up to ImageNet-targeting CNNs, and improves efficiency over conventional

digital designs ranging through 50–100% in operations-per-area depending on the CNN

and the application scenario, while losing <1% in recognition accuracy. In addition,

our SC-CNN implementations can be much more fault-tolerant than conventional

digital implementations.

Keywords: bitstream-based neural network, neuromorphic computing, stochastic computing, deep learning

hardware, dynamic precision scaling, SC-CNN, variable precision

1. INTRODUCTION

In a broad sense of the term, neuromorphic system refers to a system engineered based on the
organizing principles of the nervous system (Mead, 1990). For instance, a CMOS transistor’s I-
V curve follows an exponential curve under specific conditions and the amount of charge in
a capacitor is the time integration of current. Thus, if a system’s computation mostly consists
of the elementary operations directly derived from the physical principles of devices, such as
exponential and time integration, extremely efficient systems can be built by using those elementary
operations of devices, as opposed to using AND and OR primitives, which is an artifact of
digital design principle (Mead, 1990). Along the same line, neuromorphic system also means
mimicking the structure, in addition to the behavior, of the nervous system, which is argued
to be an important ingredient to attaining desirable system properties, such as high energy
efficiency and error resilience, which may be as essential as accuracy in biological nervous systems
(Hawkins and George, 2006).
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On the other hand, neural networks in the neuromorphic
camp, exemplified by the spiking neural networks (SNNs) (Lee
et al., 2016), are criticized for their low performance; their
inference accuracy lags far behind that of artificial neural
networks used in deep learning (Roy et al., 2019). This criticism
is a serious one, since the deep learning’s efficiency, which is
generally regarded as low compared with that of SNNs and other
neuromorphic-based ones, can be improved a lot, if inference
accuracy can be sacrificed. For instance, low precision networks
(Zhou et al., 2016) and binary/ternary networks (Courbariaux
and Bengio, 2016; Hubara et al., 2017) have far less computation
compared with the original models at the cost of slight accuracy
loss. One may argue that the apparent performance advantage
of deep learning comes partly from the dataset itself, given
the pivotal role played by datasets in the evolution of deep
learning (Roy et al., 2019). Nevertheless, it is clear that there
is a widening gap between neuromorphic computing and deep
learning in terms of accuracy, which must be remedied to make
the neuromorphic approach more appealing.

To bridge the gap between neuromorphic computing and
deep learning, we present a class of neural networks based
on bitstreams. Our neuron model is inspired by stochastic
computing (SC), which is an alternative design principle for
hardware that is distinguished from both digital and analog
design principles. In SC, a number is represented as a bitstream
that can be carried on a single wire over a period of time, which
is reminiscent of analog computing, yet at the same time, SC
circuits can be entirely made out of digital components. The
advantages of SC over digital implementations, such as low-cost
computation (e.g., multiplication), flexible precision, and high
error resilience has led to many applications in image processing
and neural networks (Kim et al., 2016; Li et al., 2016, 2017a,b;
Ren et al., 2016, 2017; Sim et al., 2017; Zhakatayev et al., 2018).
However, the conventional SC as applied to neural networks
suffers from the low accuracy problem especially with large
neural networks, much like neuromorphic computing.

Our bitstream-based neural network, which is based on
convolutional neural network (CNN) and hence called SC-
CNN, addresses the low accuracy problem of SC while retaining
its main advantages. At the same time, our neural network
is deterministic, hence repeatable, and is highly accurate and
scalable even to large networks1. Much like any CNN, our SC-
CNN can be trained with backpropagation, ensuring very high
inference accuracy. In addition, as CNNs grow more complex
and diverse, there is a need for a more reconfigurable hardware
architecture that can run various CNNs with different precision
requirements at high efficiency. Such reconfigurable precision,
which we call dynamic precision scaling (DPS), is particularly
useful for SC, where 1-bit saving can reduce computation latency
by 50% (see Figure 1), suggesting a great potential for higher
efficiency on CNNs with diverse precision requirements.

In this paper, we present SC-CNN, which is highly optimized
for both accuracy and efficiency as well as flexibility, such as

1Despite the deterministic nature of our SC-MAC, we retain the term, SC-MAC,

in this paper because its operation is based on bitstreams. It also helps maintain

consistency with previous work.

dynamically adjustable precision. Specifically, we first propose
dynamic precision scaling for SC-CNN, which extends our
previous work (Sim and Lee, 2017) such that the precision of
input/output data can be arbitrarily modulated at runtime (see
section 3). The extension has very little overhead and allows us
to be efficiently parsimonious with regard to precision, which
gives a considerable reward in latency saving. Second, in terms
of allocating precision across the value range of a variable, we
observe that in some layers input activations are always non-
negative, meaning that we can reduce precision by 1 bit (with
corresponding 50% latency saving) and still get effectively the
same accuracy.We call this optimization half-range specialization
(HRS). Importantly, we implement the HRS optimization as an
add-on feature that can be switched on dynamically, so that
the same hardware can run all layers of a CNN regardless of
the input range (see section 3.4). Third, we present our design
methodology to optimize precision across layers of a CNN in
section 4. Fourth, exploiting the compactness of our neuron we
explore multi-dimensional parallelism to better utilize a given
area budget. This is motivated by the fact that the nervous
system does no time-multiplexing but implements all neurons
with dedicated resources, which is likely an important factor of
its high efficiency. We show that multi-dimensional parallelism
can give a significant efficiency improvement for SC-CNN over
using limited parallelism.

Our experimental results demonstrate that our SC-CNN can
be as efficient as conventional digital designs up to ImageNet-
targeting CNNs, such as AlexNet (Krizhevsky et al., 2012) and
GoogleNet (Szegedy et al., 2015), with <1% degradation in
recognition accuracy. This is quite significant as the previous
work on SC-CNN was only able to show it up to Cifar-10
(Sim and Lee, 2017), which is much smaller than ImageNet.
Second, we show that our SC-CNN can be over 100% more
efficient in terms of operations-per-area over conventional digital
design when the same hardware is used for multiple CNN
applications of varying precision requirements. Third, we show
that even for a single application scenario where the hardware
is designed only for one application (e.g., AlexNet), our SC-
CNN can still be 52% more efficient than conventional digital
design. Fourth, we show that our neuromorphic SC-CNN is
very scalable, achieving very high efficiency at a high throughput
level; more specifically, our 4D-parallel neuromorphic SC-CNN
can give nearly 100 times better efficiency in ADP (area-delay
product) over 2D-parallel architectures. Fifth, our error injection
experiments demonstrate that our SC-CNNs can be significantly
more fault-tolerant than conventional digital implementations.
These results suggest that our SC-CNN, which has several traits
of neuromorphic computing, such as compact and efficient
neurons, flexible precision, and high fault tolerance, can still be
highly accurate and scalable similar to deep learning models.

The rest of the paper is organized as follows. After reviewing
the related work in section 2, we present the SC-CNN
and neuron-level optimizations in section 3. In section 4,
we present the network-level optimizations including those
targeting neuromorphic applications. In section 5, we present our
experimental results, and section 6 concludes the paper with a
summary of the work and future directions.
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FIGURE 1 | Dynamic precision, or using lower precision whenever possible, can give huge boost in efficiency for stochastic computing (SC).

2. RELATED WORK

2.1. SC-Based Neural Network
The most closely related to our work is SC-based neural
networks. Thanks to low implementation cost and high error
resilience, SC is seen as a promising approach to accelerating
applications in certain domains including image processing
and neural network. Previous work on SC-based acceleration
of CNNs can be classified into two categories: fully parallel
and tile-based.

In the fully parallel approach (Kim et al., 2016; Li et al., 2016,
2017a,b; Ren et al., 2016, 2017), all neurons are implemented
spatially using dedicated hardware resources, and they operate in
parallel such that the neural network circuit will produce output
as the wave of input data sweeps through the circuit. It could
have very high energy efficiency owing to the fact that it does
not involve external memory access to store intermediate result,
but has limited applicability because it cannot support arbitrarily
large CNNs.

The tile-based approach (Sim and Lee, 2017; Sim et al., 2017),
on the other hand, is more scalable in terms of the number
of layers and neurons supported, since it works by tiling the
computation of a layer into smaller fixed-sized arrays, each of
which is performed by the same hardware block. This is also
the approach employed by all recent hardware accelerators for
CNNs (Chen et al., 2014, 2017). The intermediate results are
saved to and reloaded from buffers, which are typically on-chip
and backed by external memories. Now for efficiency reasons in
terms of storage and external memory bandwidth, SC data should
be saved in memories as conventional digital numbers, in which
case every on-chip memory access would require a conversion
between SC and digital representations, which is a considerable
overhead in the tile-based approach.

A recent technique (Sim and Lee, 2017) proposes a new SC-
MAC (multiply and accumulate) algorithm by combining the
SNG (stochastic number generator), SC multiply operation, and
an addition in the digital domain. This input and output of the

SC-MAC is conventional digital. As such, it fits nicely with the
tile-based approach, greatly reducing the conversion overhead.
However, the inherent precision disadvantage of SC—that SC
requires exponentially longer bitstreams as precision increases—
has so far kept SC from being competitive on larger CNNs, such
as AlexNet (Krizhevsky et al., 2012).

In terms of accuracy, both the fully parallel (Kim et al., 2016;
Yu et al., 2017) and tile-based approaches (Sim and Lee, 2017; Sim
et al., 2017) have shown competitive result against conventional
digital designs for small CNNs with about 10 classification
categories, such as MNIST (LeCun et al., 2010) and CIFAR-
10 (Krizhevsky and Hinton, 2009). It seems that the retraining
capability of CNNs helps cope with the approximating nature of
stochastic computing.

2.2. Neuromorphic Computing
Neuromorphic computing is multi-faceted. On the one hand,
there is the neuromorphic engineering approach (Mead, 1990),
where researchers try to design useful systems based on the
elementary operations of devices, which could lead to much
more efficient systems than conventional digital designs. On the
other hand, many neuromorphic models (Izhikevich, 2003) and
systems (Markram, 2012) aim to imitate or emulate the nervous
system as faithfully as possible, which can aid, e.g., with brain
scientists studying the nervous system. Some of the effort has
led to the design of dedicated hardware chips, such as TrueNorth
(Akopyan et al., 2015) and Loihi (Davies et al., 2018).

Due to the similarity between neuromorphic computing and
deep learning, there is a hope that the neuromorphic approach
can 1 day lead to a much better neuron model than what
is used today. For instance, spiking neuron, such as leaky
integrate-and-fire (LIF) model (Maass, 1997) is referred to as
the third-generation neuronmodel afterMcCulloch-Pitts neuron
(McCulloch and Pitts, 1943) and perceptron (Hornik et al., 1989).
Since spiking neurons generally use timing information, they
may be able to achieve sparse, event-driven neural networks
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withmuch higher energy efficiency than perceptron-based neural
networks used in today’s deep learning (Roy et al., 2019).
However, it remains to be seen whether SNNs can indeed
show competitive performance as deep learning models on large
datasets. To improve the efficiency of SNNs, a recent technique
(Stöckl and Maass, 2020) reduces the number of spikes a neuron
has to emit to pass information to subsequent neurons, by
essentially encoding the information as a binary number where
each bit position has a different weight. However, it discusses
no hardware implementation, thus with no area- or energy-
efficiency result. To improve the accuracy of SNNs, which is
another way to improve efficiency, a training method (Wu
et al., 2019) was proposed that uses an auxiliary artificial neural
network that approximates the behavior of the coupled SNN and
thereby enables back-propagation-based training for the SNN.
Our training method is also based on back-propagation, which
is why our models can show very high accuracy. Note that the
training method, such as Wu et al. (2019) does not eliminate the
need for (re)training for SNNs, but it only makes SNN training
converge better and faster.

2.3. Deep Learning Hardware
Recent CNN hardware implementations (Chen et al., 2014, 2017;
Han et al., 2016) all have their precision fixed at design time. This
has an obvious disadvantage when the application’s precision
requirement is different from the designed precision, that is,
accuracy loss (when the needed precision is higher) and efficiency
loss (when it is lower). This mismatch can happen even within
a single CNN, such as varying precision requirement among
different layers (Judd et al., 2016), which causes some inefficiency
even when the accelerator is running the CNN for which it is
designed. One solution to the precision mismatch problem is to
use bit-serial hardware, such as bit-serial multiplier (Judd et al.,
2016). Our solution can provide an alternative solution, which
has other advantages, such as error resiliency (see section 5.7)
as well as being more efficient than the bit-serial approach
(see section 5.4).

In comparison, SC can be more efficient partially owing to
the optimizations proposed in this paper. This helps close the
efficiency gap between SC and bit-parallel conventional digital
for a wider range of precisions as we show later in Figure 7,
while still retaining the benefits of SC, such as DPS. Also the
effect of DPS could be higher in SC than in conventional digital,
since 1-bit reduction in SC may reduce the delay of computation
by about 50% as shown in Figure 1. In the figure, the y-axis
shows computation delay, which is given by the bitstream length
needed to deliver the precision on the x-axis. The exponential
relationship holds for both the conventional SC (Kim et al., 2016)
and the new SC-MAC (Sim and Lee, 2017).

3. DYNAMIC PRECISION SCALING
SC-CNN

Our neuron model is built on top of SC-MAC (Sim and Lee,
2017), which uses a deterministic and optimized SC multiply
algorithm. We first briefly review it and its application to neural

networks, and present two extensions: (i) DPS optimization
that allows the hardware precision to vary dynamically
with little overhead, and (ii) HRS optimization that can be
dynamically enabled.

3.1. Analysis of Baseline SC-MAC
The key features of the baseline SC-MAC (Sim and Lee, 2017)
include SNG integration, a novel SC multiply algorithm, and
variable latency, which help it achieve superior efficiency as
compared with conventional SC-based MACs, such as Kim
et al. (2016). The MAC unit takes two operands labeled x and
w, and generates output y that should approximate xw. All
the inputs/output are represented as conventional digital, as
illustrated in Figure 2 (shown in red is for dynamic precision
discussed in the next section).

Let us first consider the unsigned version, where the
inputs/output are interpreted as fractional numbers between 0
and 1. Let integer X = x2Q and integerW = w2Q, where Q is the
width of the X andW registers. TheMUX-FSM circuit is designed
to generate a bitstream whose signal probability is close to x (Sim
and Lee, 2017). Thus, counting bits from the x-bitstream for W
cycles gives approximately xW = xw2Q. Therefore, y ≈ xw with
Q-bit precision.

In the signed version, the inputs/output are 2’s complement
numbers between −1 and 1. Since the MSB (most significant
bit) is used as the sign bit, X = x2(Q−1) and W = w2(Q−1).
The W counter is initialized to the absolute value of W. If W is
positive, feeding the x-bitstream to the Y counter (which is now
an up/down counter) forW cycles will give approximately xW =

xw2(Q−1). To understand why, note (i) unsigned interpretation
of X register after inverting the MSB is (X + 2(Q−1))/2Q, and
(ii) the expected contribution of a single bit z to an up/down
counter is (2z − 1). Thus, the expected change of Y per cycle is
2(X + 2(Q−1))/2Q − 1 = x. If W is negative, the x-bitstream is
inverted, resulting in the negated value of x(−W), or xW in the
Y counter. In either case, y ≈ xw with Q-bit precision (including
the sign bit).

3.2. Acceleration of Neural Network
The baseline SC-MAC can be used to accelerate convolution
and linear (also known as fully connected) layers (Sim and Lee,
2019). The first question is how to combine multiple MACs to
create an array of MACs. Figure 3 illustrates the matrix-vector
multiplier (MVM) block proposed in Sim and Lee (2017), which
is to share the weight parameter (w) among the MACs. The
jth up/down counter in Figure 3 accumulates the product terms
xijwi, eventually computing

∑

i xijwi. In this sense, one SC-MAC,
which consists of an MUX and an up/down counter, can be
regarded as a synapse-neuron pair.

Constructing the MAC array in this manner has two
important benefits. First, since the latency of the SC-MAC is
dependent on w, this scheme ensures that all the SC-MACs
in an MVM block finishes simultaneously; in other words,
there is no synchronization overhead within an MAC array.
Second, the FSM and the down counter connected to w can
be shared across all MACs within an MVM block, leading to
cost-efficient hardware.
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FIGURE 2 | SC-MAC from Sim and Lee (2017) extended for dynamic precision. Datapath remains the same; only the control is changed (p: dynamic precision, Q: the

maximum supported precision). (A) Unsigned version. (B) Signed version.

FIGURE 3 | (A) Stochastic computing (SC) matrix-vector multiplier (simplified) and (B) the operation it performs, where yj =
∑

i wixij , reproduced from

Sim and Lee (2017).
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To use the MVM array as the main computation engine of a
neural network accelerator, we also need to decide the dataflow,
or how to parallelize computation. For convolution layers, for
instance, computation of the output feature map (OFM) uses the
same weight parameters along the width and height dimensions.
Hence the convolution computation can be parallelized along
the two dimensions as suggested in Sim and Lee (2017), which
corresponds to output stationary according to the taxonomy of
Chen et al. (2017). To provide the input to the 2D MAC array
one can use the input reuse network (Rahman et al., 2016)
between the input feature map buffer and the MAC array, or
rearrange input data in advance with some duplication as is
typically known as im2col (Chetlur et al., 2014). We later extend
the 2D parallelism to make a better use of hardware area for
neuromorphic applications (see section 4.6).

3.3. Dynamic Precision Scaling Extension
The extension to support DPS on the SC-MAC costs very little
hardware. In fact, the datapath remains almost the same except
for a few gates, the major difference being in the control logic.
Here, we explain the operation of DPS SC-MAC.

The DPS SC-MAC has an additional input p, which is the
precision of the input/output values. Figure 2 illustrates an
example with p = 3 where the maximum precision Q is 4-bit.

Let us first consider the unsigned version, where the operands
and the output are interpreted as unsigned numbers between 0
and 1. The output, being accumulated, may grow larger than 1,
for which we add extra bits in the Y counter. The X register
holds the integer version of x, or x2p, aligned at the MSB. The
remaining bits, if any, are not used. The W register is initialized
to the integer version of w, or w2p, zero-extended to fill the
Q-bit register, i.e., W = w2p. The selector FSM is unchanged
regardless of p.

It is easy to see that the latency of multiplication is W = w2p

cycles, which is at most 2p − 1. During this period, the LSB
(least significant bit) part of X register that is not initialized
from x is unused (x0 in the example). Thus, counting the x-
bitstream still approximates xW, with less accuracy due to the
reduced precision of W. Since Y ≈ xW = xw2p, y ≈ xw with
p-bit precision.

In the signed version, the X register holds x2(p−1) aligned at
MSB. After inverting the MSB, the unsigned interpretation of X
register is 0.5+x/2 with p-bit precision, assuming a decimal point
right before MSB. The W register is initialized to w2(p−1), sign-
extended to Q-bit, i.e., W = w2(p−1). If W is positive, the Y
counter holds xW = xw2(p−1) after W cycles. If W is negative,
it holds −x(−W) = xW due to the XOR gate. In either case,
y ≈ xw with p-bit precision including the sign bit.

The latency of signed multiplication is |w|2(p−1) cycles. The
maximum latency of DPS SC-MAC is 2(p−1) when w = −1,
in which case the W counter requires p-bit, as indicated by the
dotted box in Figure 2B (but it never needs more than Q bits).
Similarly, the Y counter needs p+1 bits, whichmay exceedQ bits;
however, the Y counter has extra bits already in order to serve as
an accumulator.

Since the p-bit precision of y always starts from LSB, it
means that the decimal point will have to move depending on

the precision. Fixing the decimal point can be done with a
single shifter.

3.4. Half-Range Specialization
Since the latency of an SC-MAC is exponential to the precision,
saving even 1 bit is very worthwhile. HRS is based on the
observation that the range of certain variables, namely, input
activations, are guaranteed to be non-negative due to the
particular shape of activation function (i.e., ReLU) used in the
preceding layer.

One way to exploit the limited range of input is through a
data scaling framework as in section 4.3. But data scaling works
best for symmetrical ranges, and making asymmetrical ranges
symmetrical incurs additional overhead.

Alternatively we can make a full use of input precision in
our DPS SC-MAC of Figure 2B by treating x as unsigned. This
effectively increases x’s precision to p-bit while the precision of
w remains the same [i.e., (p − 1)-bit due to 1-bit sign]. Since w
is unaffected, latency is also the same. The main effect of this
scheme is accuracy improvement: in our evaluation, (p − 1)-
bit multiplication with HRS shows a similar accuracy as p-bit
multiplication without HRS (see Figure 10). Conversely, HRS
can achieve a similar accuracy with 1-bit less precision, or at half
the latency.

It is important to note that HRS cannot guarantee the same
accuracy as that of 1-bit lower precision, since w’s precision
is not increased. However, input activation often turns out to
require a higher precision than weight parameters Judd et al.
(2015), which explains why increasing x’s precision through HRS
is very effective in practice. On the other hand, if a layer or
network requires higher-precision weight (w) than input (x), the
HRS advantage of cost-free increase of x precision by 1 bit will
not be very useful, since weight precision is the bottleneck and
determines the SC-MAC’s precision.

Also important to note is that in order to support layers
whose input is not necessarily one-sided (e.g., the first layer), the
hardware must retain the original behavior of Figure 2B. Thus,
we make HRS runtime-programmable through an extra input
XIS (meaning “x is signed”), as shown in Figure 4.

When XIS is 1, the hardware degenerates into the signed
version. When XIS is 0, the x part becomes like the unsigned
version, and the up/down operation of the Y counter is
suppressed if the x-bitstream’s output is 0, essentially making it
perform either up or down depending on the sign of w, which
ensures a correct operation.

4. DESIGN OPTIMIZATIONS FOR DPS
SC-CNN

4.1. Hardware Precision vs. Software
Precision
So far our notion of precision has been the width of a variable
in the application program as represented in conventional
digital, which typically ranges up to 32-bit. Quantization is to
reduce the precision in the application code. Thus, this kind
of precision may be called software precision. When converted
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FIGURE 4 | Supporting HRS mode for x along with the normal mode. Extension is shown in blue. The new input XIS indicates whether x is signed.

into SC, a variable of n-bit software precision requires about a
2n-bit bitstream.

While a bit-serial multiplier as in (Judd et al., 2016) computes
only one bit at a time, it is quite common in SC to employ
bit-parallel hardware due to the relative simplicity of an SC
multiplier compared to the rest of SC-MAC. To generate a
variable of n-bit software precision, a bit-serial SC multiplier
needs 2n cycles, but a k-bit parallel SCmultiplier can do it in 2n/k
cycles. We define hardware precision as the base-2 logarithm of k.

It is straightforward to extend the DPS SC-MAC to a bit-
parallel version, which supports integer hardware precisions for
efficiency reasons. It is based on the bit-parallel version of the
baseline SC-MAC (Sim and Lee, 2017).

4.2. Design Flow
A design objective is to minimize ADP while meeting accuracy
constraint, which we set to be 1% point below the reference
accuracy achieved by an unquantized version (i.e., floating-point
implementation). We consider the following design parameters:
(i) data scaling parameters, (ii) software precision of each layer,
and (iii) hardware precision of SC-MAC. Next we discuss each
of these.

4.3. Determining Data Scaling Parameters
Previous work (Lin et al., 2016) has pointed out the importance of
scaling input data to better utilize the limited range of SC or fixed-
point representations. The idea is to scale more than covering
the worst case input data, such that some of the input values go
out of range. It may introduce errors to some input, but those in
the range can be represented more precisely. More-than-worst-
case scaling is particularly effective when the out-of-range input
data get saturated. To avoid the overhead due to scaling, scaling
parameters are typically restricted to powers of 2.

The issue here is how to determine data scaling parameters,
the effect of which seems highly unpredictable. We use the
following scheme.

1. Determine the scaling factor so that all values are within range
(i.e., worst-case design).

2. Double the scaling factor and check whether the recognition
accuracy improves.

3. Repeat the above while there is improvement.

The above procedure is repeated for each layer, starting from the
first layer. We do not retrain the CNN during this procedure. We
find this scheme robust as it does not rely on any arbitrary design
parameter, which is a major advantage of the scheme. While
this algorithm is greedy and not able to address the possible
inter-dependence issue among layers, doing so would run into a
combinatorial problem, which may require a prohibitive amount
of resources for large CNNs.

4.4. Determining Software Precision of
Each Layer
Similar to data scaling parameter exploration, here we optimize
one layer at a time in order to avoid combinatorial problems.
There are also differences. First, precision optimization uses
retraining, which is crucial to get meaningful accuracy at low
precisions. On the other hand, retraining takes much longer than
inference, and can take hours and days for the SC version even
when using GP-GPUs for simulation. Second, higher precision
is more detrimental than a lower precision can save. Thus,
we first find the uniform precision for the SC version that
satisfies the accuracy constraint with retraining. This can be
solved in linear time, since all layers have the same precision.
The uniform precision is used as the precision upper-bound
for each layer. Third, knowing the uniform precision also helps
determine hardware precision (see the next section). Fourth, to
speed up the search we use the result of conventional digital
implementation’s optimized precision. However, since there is
usually a gap between the precisions of the two, we use a concept
called precision slack.

To illustrate precision slack, suppose that a conventional
digital implementation is optimized to have the following
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precisions across five layers: 10–9–5–6–8. Precision slack is the
difference in precision between the highest and the current layer,
e.g., 0–1–5–4–2 in this example. Then we subtract precision slack
from the uniform precision value to get the precision lower-
bound. The rationale is that while the SC version gives higher
reward for lower precision, its accuracy is also more sensitive to
it. Also using very low precisions gives diminishing return (see
Figure 1) while often hurting accuracy toomuch. Having a lower-
bound makes it easy to do binary search instead of linear search,
saving retraining time.

4.5. Determining Hardware Precision
Hardware precision affects both delay and area of our SC-CNN
(see section 5.3). Therefore, the decision in this step could affect
the optimality of the precision setting found in the previous step
as ADP can change as we use a different hardware precision. To
avoid this problem, we run this step twice, first for the uniform
precision value, then after non-uniform precision setting is
found. Finding the best hardware precision is straightforward,
and can be done quickly as it has only a linear complexity and
does not require retraining (changing hardware precision does
not affect recognition accuracy, but only ADP).

4.6. Neuromorphic Optimizations
4.6.1. Motivation
One key difference between neuromorphic vs. deep learning
hardware is the separation of computation and memory. In
the nervous system, memory is distributed and computation is
tightly integrated with memory, whereas in today’s deep learning
hardware, memory is clearly separated from the compute engine,
which can create performance bottleneck for certain applications
due to memory wall.

The main reason why today’s deep learning architectures
use the von Naumann architecture is efficiency. Because digital
MACs are large, a typical chip can have only so many of them,
which we must use iteratively, or in a time-multiplexed manner,
in order to handle large layers and networks. Also because of the
large granularity of individual MACs, it would be quite inefficient
and difficult in terms of placement and routing if we distribute
them among memory blocks.

Contrary to a digital MAC, which consists of an n-bit
multiplier and an m-bit accumulator (m > n), an SC-MAC is
extremely small. It allows us to build a massive array of neurons
and synapses on a single chip, for which we explore a much more
parallel architecture than the previous SC neural networks.

We also explore a tight integration of memory (e.g., SRAM
blocks) with SC-MACs. Even though our SC-MAC takes digital
numbers (X and W) as input, only one bit is used at a time (see
Figure 4). By rearranging the bits in the memory, the MUX can
be made redundant, with its function merged into the address
decoder of an SRAM block.

4.6.2. More Parallel Architecture for SC-CNN
While the size of our SC-MAC depends on the hardware
precision as explained in section 4.1, it can be up to 63.9 times
smaller than a digital MAC. To better utilize the massive number
of SC-MACs available, we parallelize along all dimensions of the

convolution kernel. Figure 5 lists the C code of a convolution
kernel that is tiled along all four dimensions of Z,M,R,C. The
remaining two loop levels not tiled, Kr ,Kc, are typically very
small. Those tiled loops are unrolled in hardware, meaning that
the MAC array consists of TZ × TM × TR × TC SC-MACs,
and is able to perform the same number of SC-MAC operations
every cycle. This is in contrast with the previous SC-CNNs (Sim
and Lee, 2017; Sim et al., 2018), where only R,C dimensions
are unrolled, thus having saturating efficiency when the array
size increases (see section 5.6). Conventional digital accelerators
also, such as Chen et al. (2014, 2017), not having been optimized
for such a high degree of parallelism, suffers the same limited
efficiency issue.

Parallelizing along theM-loop is similar to parallelizing along
the R- or C-loop because M, R, and C are all output feature
map dimensions; we replicate the 2D MAC array TM times. But
there is a downside. Each of the 2D MAC arrays uses one weight
value per cycle, hence there are TM weights overall that need to
be supplied per cycle. Consequently, the TM MAC arrays may
have different latency values, which can incur synchronization
overhead among the 2D MAC arrays.

The main idea of parallelizing along the Z-loop is to increase
the number of inputs for the up/down counter in Figure 4 by
TZ times. Instead of having a single bitstream, we now have
TZ bitstreams coming from different input channels; thus, we
employ a TZ bitcount logic to combine TZ bits into an integer,
which is then accumulated. In fact, the up/down counter in
Figure 4 has three operations, i.e., up, down, and no-op (when
update is zero), due to the HRS optimization. Hence, the input
bitstreams are ternary, and the bitcount logic is extended to
handle ternary input. Similar to the parallelization along the M-
loop, the weight parameters from the TZ input channels may
all be different. There are TZ down counters corresponding to
the TZ weights. The done signal from a down counter forces
the corresponding ternary input to zero, which makes the input
effectively ignored by the bitcount logic.

4.6.3. Tight Integration of SRAM and SC-MAC
Among the main components of an SC-MAC, i.e., MUX and
up/down counter, the MUX can be made redundant if we
rearrange the input data in the SRAM. Suppose input x is 8-
bit. In the conventional memory storage, each byte of the input
SRAM contains one value of x, the next byte containing the next
x, and so on. In the previous work (Sim and Lee, 2017; Sim et al.,
2018), all these values of x are loaded simultaneously into the
input registers, but only one bit is accessed per cycle through the
selector FSM.

More specifically, let x1, x2, etc. be 8-bit values loaded to the
input registers of an MAC array. In other words, xj is the jth

element of the input vector Exi in Figure 3A. Let x
(k)
j be the bit

k of xj where 0 ≤ k ≤ 7. Then in the first cycle we need a set of

bits, x
(7)
1 , x

(7)
2 , etc., and in the next cycle we need another set of

bits, x
(6)
1 , x

(6)
2 , etc. This scheme may be called bit-major.

Now we propose to store the input data in such a way that
the bits needed together are stored together in the same byte
as much as possible. For instance in the above example, bits
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FIGURE 5 | Convolution layer tiled along four loop levels (M,R,C,Z). Arrays A, B, and W are input feature map (IFM), output feature map (OFM), and weight

parameters, respectively. The four innermost loops are hardware-unrolled, creating a 4D-parallel architecture.

x
(7)
1 , x

(7)
2 , · · · , x

(7)
8 will make up one byte, and x

(6)
1 , x

(6)
2 , · · · , x

(6)
8

will make up another byte. The latter byte may never need to be
accessed simultaneously as the former, hence can be stored in the
depth direction of an SRAM block. We call this scheme lane-
major. Using the lane-major scheme can eliminate both input
MUXes and input registers. The scheme can also reduce the input
memory bandwidth, or the maximum number of bytes we read
from the input memory in a cycle, by N times compared with
bit-major, where N is the width of input in bytes times 8. For
instance, if the input data are 12-bit wide, it still requires 2 bytes,
thus the saving is 16 times. Using the lane-major scheme does not
significantly affect the capacity of the input memory needed but
does affect the aspect ratio; we now need deeper memory.

On the other hand, since we have eliminated input registers,
we must access the input SRAM every cycle, potentially
increasing the energy consumption. In the worst case, an 8-bit
input data may need to be accessed 256 times in the lane-major
scheme. However, the actual number of accesses depends on the
weight value, which is typically small. Also when using dynamic
precision scaling, the actual precision at themoment can bemuch
less than the width of the input data stored in the memory. Thus,
our scheme fits well with DPS.

While the input data are stored as lane-major, the output
data as produced in an SC-MAC follows bit-major. Therefore,
we need to convert the bit packing scheme of the output data.
This can be done when the output data are loaded from the
external memory to the on-chip input buffer, at which time we
also apply the im2col transformation (Chetlur et al., 2014). In
addition, we can optimize away the XOR gate required by HRS,
by doing the MSB flipping in advance. It can be done during the
bit packing conversion.

5. EXPERIMENTS

5.1. Experimental Setup
To evaluate our approach, we use CNNs targeting ILSVRC2012
(ImageNet Large Scale Visual Recognition Challenge 2012), such
as AlexNet, VGG, and GoogLeNet, in addition to smaller ones.

For training and accuracy evaluation, we use Caffe (Jia et al.,
2014) extended to model the functionality of DPS SC-MAC.
For retraining (also called fine-tuning), 5,000 update iterations
were performed starting from the reference models of the Caffe
Model Zoo.2 For learning parameters, such as weight decay and
batch size, we use the same values as used in the reference
solver script provided with the model, with the only exception
of the base learning rate, which is scaled down by 10× from that
of the reference script. During retraining, forward propagation
is done using the SC algorithm but back-propagation is done
using floating-point arithmetic with weight update done to real-
valued weights, which is essentially the same procedure used
in training quantized neural networks (Hubara et al., 2017).
Note that retraining is needed not only for SC-DNNs but digital
DNNs also, and that the computational overhead of retraining
is very little compared with that of the baseline training (5,000
vs. 450,000 iterations in the case of AlexNet). Recognition
accuracy is reported for the first 10,000 images (out of 50,000)
of the ImageNet validation set. The SC-CNN architecture is
modeled cycle-accurately to generate exact cycle counts in a
data-dependent manner.

We have extended the SC-MVM (matrix-vector multiplier)
(Sim and Lee, 2017) to support our DPS SC-MACs, which
is referred to as DPS SC-MVM. Our DPS SC-MACs have a
few variants depending on hardware precision. Our DPS-2ˆp
processes 2p bits per cycle, therefore being roughly equivalent to
p-bit parallel digital logic. We have implemented the previous
SC-MVM (Sim and Lee, 2017), our DPS SC-MVM, and the
conventional digital baseline MVM in Verilog and synthesized
them using Synopsys Design Compiler. All syntheses were done
for the same target frequency of 1 GHz, although SC is likely
to meet higher frequency. The conventional digital baseline
uses fixed-point binary multipliers with rounding accumulators.
The area for Stripe (Judd et al., 2016) is estimated to be
207% of the digital baseline as per the paper, which however
does not provide power result. Only convolution layers are

2https://github.com/BVLC/caffe/wiki/Model-Zoo

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 543472177

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sim and Lee Bitstream-Based Neural Network

FIGURE 6 | Area overhead of dynamic precision scaling (DPS) SC-MVM vs. SC-MVM.

accelerated in all the approaches compared, permitting us to use
ideal convolution layer speedup for delay comparison. Maximal
accuracy degradation is set to 1% point.

Our main figure of merit is area-delay product (ADP), which
is the product of MVM area and average MAC cycles (thus the
lower, the better), or its inverse representing operations per area.
ADP is chosen because in addition to being a meaningful area-
efficiency metric, it permits direct comparisons with previous
work (e.g., Judd et al., 2016). Though we also report power and
energy results for our designs, these metrics tend to vary a lot,
affected more by such factors as on-chip and off-chip memory
accesses (Chen et al., 2014), which are not the main focus of this
paper, than the design of processing element (PE) arrays.

5.2. Area Overhead of our DPS SC-CNN
Figure 6 compares the area of our proposed DPS SC-MVM
against the previous SC-MVM (Sim and Lee, 2017). The DPS
SC-MVM includes our optimizations, such as HRS, which have
very small extra logic (see Figure 4). Not surprisingly, the graph
shows that the area overhead of ours is mostly small, typically at
around 5%, though varied depending on the hardware precision
shown on the x-axis. The graph also shows that the area is linearly
proportional to the hardware precision, or logarithmically to
bit-parallelism. This is due to the optimization exploiting the
structure of the bitstream ordering. Overall the average area
overhead is 6%, which is small.

5.3. Effect of Software and Hardware
Precision on ADP
Figure 7 shows the ADP trend as we vary software precision.
For our ADP result, we use AlexNet parameters as our SC-
MVM has data-dependent variable latency. The digital baseline
does not support dynamic precision, thus has constant ADP. For
Stripe, delay is proportional to the precision, resulting in linear

ADP. The graph shows that Stripe becomes inefficient over the
conventional digital baseline beyond 7- or 8-bit (➀). DPS-2ˆ4,
which is our DPS SC-MVM with hardware precision of 4, shows
exponentially increasing ADP as software precision increases.
But the range of software precision for which DPS-2ˆ4 is more
efficient than conventional digital is wider than that of Stripe.

DPS-2ˆ8, which is our DPS SC-MAC with hardware precision
of 8, can widen the efficient operating range even further (➁). At
the same time, it has higher ADP than DPS-2ˆ4 when software
precision is lower (➂), as it is more optimized for higher precision
workload. Some of the efficiency loss can be reclaimed by zero
skipping (➃), which is to skip computation of multiplication
whose weight operand is 0 (after quantization) as shown in
the graph.

As demonstrated previously, ADP depends on hardware
precision. Figure 8 shows ADP vs. hardware precision (a) for
a CNN (AlexNet) and (b) for multiple CNNs. As hardware
precision increases, the average delay decreases until it reaches
saturation, whereas area increases more or less linearly to
hardware precision. This suggests that there is an optimal
hardware precision to minimize ADP. In the case of AlexNet in
Figure 8A, for instance, ADP is minimized at hardware precision
of 4, or DPS-2ˆ4. But in other CNNs, different points can be
optimal as there are different weight distributions and precision
requirements depending on the CNN. Figure 8B shows how
ADP as well as optimal hardware precision changes depending
on application. Understandably, large and complex CNNs seem
to be better off with higher hardware precision. Our hardware
precision for the multi-application scenario (see the next section)
is chosen based on this profile.

5.4. Multi-Application Scenario
Figure 9A compares our DPS SC-CNN and previous CNN
implementations. First, ours is highly area efficient, which is not
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FIGURE 7 | Area-delay product (ADP) vs. software precision.

surprising given the area efficiency of SC. Since Stripe is bit-serial,
we use 16 times as many MACs for Stripe as in the baseline, so
that the two can have the same throughput in the worst case
(i.e., when the CNN’s software precision is 16-bit). Hence, Stripe
has the largest tile area as shown in Figure 9B due to the large
number of MACs it has; the others have 256 MACs only.

Figure 9C shows average MAC cycles and Figure 9D shows
the ADP result, which is normalized to the digital baseline.
First, all these results are from implementations that achieve
<1% point accuracy drop from the reference floating-point
implementations (see Table 1). That SC-CNNs can achieve this
high accuracy for large CNNs is very significant. Also this is
why this graph has no comparison with previous SC-CNNs.
Second, at the same time the efficiency of ours as measured in
ADP is actually higher than that of conventional digital, often
significantly. For instance, DPS-2ˆ8, which is optimized for large
CNNs, shows consistently better results than the conventional
digital designs. It also demonstrates the flexibility as well as
efficiency of our DPS SC-CNN. Third, the optimal design as
measured in geometric mean of ADP is DPS-2ˆ6 for this mix of
CNNs, which is obviously influenced by the existence of a small
network. But our scheme can flexibly support different workloads
through the hardware precision, while simultaneously being able
to support dynamic software precision at runtime. Figures 9E,F
present the power and energy comparisons, which show very
similar trends as those of the area and ADP comparisons in
the same figure. Overall, our DPS-2ˆ6 can achieve over 2×
and 1.5× improvements compared with the baseline and Strip,
respectively, in terms of operations per area.

5.5. Single Application Comparison
We also compare different implementations including the
previous state-of-the-art SC-CNN (Sim and Lee, 2017) for a
single application scenario, i.e., when we design and use a chip
for just a single CNN. We use AlexNet as the target CNN.
Figure 10 shows area, average delay, and ADP results in one

graph, all normalized to that of the digital baseline. For SC
designs, hardware precision is set to 4. Maximum software
precision supported (Q) is determined to be the minimum value
that meets the recognition accuracy constraint, which is largely
dependent on how accurate the MAC is. The digital baseline
requires 9-bit while the previous SC-CNN requires 11-bit. Our
DPS SC-CNN requires 10-bit with uniform precision; dynamic
precision setting is listed in Table 1.

The graph shows that the previous SC-CNN has smaller area
than the digital baseline but its average delay is much higher,
which is attributed to the high precision requirement. Applying
HRS to it (but not DPS) can reduce precision requirement by 1-
bit with significant saving in delay, but its average delay is still
higher than that of conventional digital. Applying DPS further
gives 14% reduction in ADP, achieving the best efficiency. The
relatively weak impact of DPS is due to the small number of layers
in AlexNet and our limited precision exploration. For deeper
networks and if we can use the optimal precision combination,
the impact could be higher. Even with these limitations our
proposed design achieves 34 and 46% reduction in ADP (or 52
and 85% increase in operations per area) over the digital baseline
and the previous SC-CNN, respectively.

5.6. Efficiency of Neuromorphic
Architecture
Thanks to its extremely small size, SC-MAC allows us to explore
more flexible architectures including significantly more parallel
architectures and tight integration of memories with compute
elements. In one of those architectures, which more closely
resembles the nervous system and therefore is referred to as
neuromorphic architecture, we use the following parameters.

• It is bit-serial (hardware precision p = 0), meaning that each
SC-MAC processes only one bit in a cycle.

• The tiling parameters (see Figure 5) are as follows: TZ =

TM = TR = TC = 16.
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FIGURE 8 | Area-delay product (ADP) vs. hardware precision. (A) AlexNet and (B) Multi-application.

• Input SRAM is directly integrated into SC-MAC as described
in section 4.6.3.

The same synthesis setting is used as described in section 5.1

including the target clock frequency.

We compare three cases: digital, DPS SC-CNN (DPS-2ˆ4),

and the neuromorphic architecture. The result is summarized

in Table 2. For fair comparison, we use the same number of

synaptic connections, which is set to 64K (216). This means that

all the three architectures compared here have the same number

of multipliers or their equivalents. In the table, the first two
architectures, Digital and DPS-2ˆ4, are the same as in Figure 9A,
with only 256 MACs or synaptic connections, but added here
for comparison. CNN cycles of MNIST for digital and DPS-
2ˆ4 are equivalent because the network precision requirement is
4 (excluding sign-bit) and DPS-2ˆ4 can process the maximum
length of stochastic stream at a cycle. Their “large” versions are
created by increasing the tiling parameters; each has two tiling
parameters, which are multiplied by 16 each. The ADP column is
the geometric mean for both networks.
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FIGURE 9 | Comparison with the digital baseline and Stripe. (A) Area (mm2), (B) #MAC of a tile (1 k), (C) Average cycles, (D) Normalized ADP, (E) Power (mW), and

(F) Normalized energy.

TABLE 1 | Recognition accuracy (for 10K images) and dynamic precision scaling

(DPS) precision setting.

CNN Baseline accuracy

(float)

DPS

accuracy

DPS precisions

found

MNIST 0.9904 0.9826 5 (uniform)

AlexNet (top-5) 0.8070 0.7999 10-9-8-9-9

GoogLeNet (top-5) 0.8926 0.8844 13 (uniform, w/o

fine-tuning)

VGG_S (top-5) 0.8341 0.8247 9-9-10-9-10

The table suggests that among the three architectures with
64K synaptic connections, the neuromorphic architecture has
the best area, performance, and ADP. In terms of area, the
neuromorphic architecture shows several dozen times higher
density, thanks to the use of bit-serial SC-MAC and input
MUX elimination (enabled by SRAM integration). Yet, its

latency is actually lower than that of the others. The DPS
SC-CNN architecture suffers extremely low utilization, which
is the main culprit of the architecture when the number of
MACs is very high. Simply it is not designed to be very
scalable, which is addressed in the neuromorphic architecture.
While the neuromorphic architecture has its own weakness,
i.e., synchronization overhead, it is relatively mild. Our
simulation result shows that the overhead increases average
MAC latency by about 2.96 and 6.97 times for MNIST and
AlexNet, respectively, compared with when the synchronization
overhead is ignored. As a result, the neuromorphic architecture
achieves orders of magnitude improvement in ADP over
DPS SC-CNN.

The table also provides comparisons with previous digital
DNN accelerators. DianNao (Chen et al., 2014) is similar to
our Digital implementation employing the same number of
MAC units but based on a different dataflow, as a result of
which it has lower throughput than our digital implementation.
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FIGURE 10 | Comparison with previous SC-CNN on AlexNet.

TABLE 2 | Processing element (PE) array comparison.

Architecture

(PEs)

#Synaptic

connections

Area

(mm2)

#Synaptic

connections/Area

CNN cycles Area-delay

product (norm.)

Power

(mW)

Energy

(norm.)
MNIST ImageNet

Small Digital 256 0.41 630 27.0K 3.8M 1 171.42 1

DPS-2∧4 256 0.13 1,985 27.0K 4.3M 0.34 41.62 0.26

Large Digital large† 64K 104.04 630 25.5K 2.3M 195.52 43884.54 195.52

DPS-2∧4

large†
64K 33.02 1,985 25.5K 2.4M 62.73 10654.98 47.98

Neuromorphic 64K 1.63 40,261 2.3K 1.1M 0.65 489.26 0.46

Small DianNao* 256 0.85 302 41.6K 4.4M 2.79 132 1.03

Eyeriss* 168 9.63 17 – 20.7M – – –

Our neuromorphic PE array shows much higher synaptic density and better scalability than the scaled-up versions of Digital (the baseline) and our DPS-2ˆ4. The Digital and DPS-2ˆ4 PE

arrays share the same architecture. For context, we also compare the baseline architecture with two previous accelerator architectures (∗based on published papers, †estimated).

The area number of DianNao is after place-and-route, and
thus includes metal wiring space as well, whereas those of
our designs are based on synthesized logic gates only. But
even after discounting the differences due to methodology, the
compute density (i.e., synaptic connections per area) of DianNao
is extremely low, making it unsuitable for neuromorphic
architectures, where a large number of non-time-multiplexing
neurons are expected. We note that the same weakness plagues
our digital implementations as well. Eyeriss (Chen et al., 2017) is a
well-known systolic array architecture to accelerate CNNs. While
it is one of the most energy-efficient digital CNN accelerators,
it has the lowest compute density (synaptic connections per
area) in our comparison. That is because Eyeriss employs large
PEs as well as many intra-PE registers and complex inter-PE
connections, making it hard to scale to tens of thousands
of PEs.

When the number of MACs is small, or when there is no
area constraint, the DPS SC-CNN architecture achieves the
best ADP, beating the neuromorphic architecture by about 2×.
The neuromorphic architecture, on the other hand, shows very
competitive ADP at a high throughput level. Note that the
neuromorphic architecture has the exactly the same accuracy as
the DPS SC-CNN, whose accuracy drop is <1% as shown in
Table 1. All in all, these results indicate that our SC-based neural
network is very flexible and scalable to accommodate various
applications as well as area constraints.

5.7. Fault Tolerance
To evaluate the fault tolerance of our proposed schemes, we have
performed an error injection experiment. For the fault model, we
assume that random bit flip can occur at the input, as is done in
a previous study on SC (Qian et al., 2011). The SRAM memories
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FIGURE 11 | Fault tolerance comparison among different schemes, for AlexNet.

TABLE 3 | Feature comparison (O: supported, X: not supported).

Feature

Digital SC

DianNao (Chen

et al., 2014) Judd et al., 2016
Eyeriss (Chen

et al., 2017) Kim et al., 2016 Sim et al., 2017 Sim and Lee, 2017
Ours

Large (≥5 Conv. layers) CNNs O O O X X X O

Tile based O O O X O O O

Per-CNN precision X O X X X X O

Per-layer precision X O X X X X O

Per-bit precision X O X O O O O

Multi-bit acceleration X X X X X O O

Variable latency operation X X X O X O O

Half-range specialization X X X X X X O

are assumed to be protected, such as using hardened logic or ECC
(error correcting code). For a given fault rate f , we flip the bits
of input registers, whose size varies depending on the scheme,
with the same probability f . This fault model is integrated into the
Caffe framework. No retraining is performed, but only inference,
in the presence of faults.

Figure 11 shows accuracy degradation for AlexNet as we
vary fault rate. First, we observe that SC-based implementations
show significantly higher fault tolerance than the conventional
digital implementation, which agrees with previous studies
(Qian et al., 2011; Zhakatayev et al., 2018). Second, there is
quite a variance among the SC-based implementations. The
neuromorphic implementation, which is based on bit-serial SC,
shows the highest fault tolerance whereas the bit-parallel version,
DPS-2ˆ4, is less error resilient. There are a number of differences

between the two architectures. One relevant fact is that the
bit-parallel version performs a weighted bitcount operation to
process multiple bits in parallel, which is more like digital logic
than SC, and thus may contribute to its lower fault tolerance.

Another difference is that the neuromorphic architecture
reloads input every cycle due to the tight SRAM integration.
(The neuromorphic architecture has input registers too like the
other architectures.) To test if this contributes to the higher fault
tolerance, we test a variant of the DPS-2ˆ4 scheme, denoted by
DPS-2ˆ4*, which is to reload input every cycle even when it is
not necessary to do so. Our experimental result in Figure 11

clearly shows that input reloading helps. This may come as a
surprise, but while input reloading does not lower the average
number of faults in the circuit, it does lower the chance of having
correlated faults, faults that occur at the same bit position of
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the input and therefore are more detrimental to the correctness
of computation. The neuromorphic architecture has the least
correlated faults, which helps achieve the highest fault tolerance.

5.8. Feature Comparison With Previous
Work
In addition to performance numbers, our solution proposed
in this paper has many important features as summarized in
Table 3. The key factors that make our work much more efficient
and accurate than the previous work are the combination of
variable latency, dynamic precision (i.e., per-layer precision),
multi-bit acceleration (crucial for larger CNNs), and HRS (which
is specific to SC). In addition, ours has high fault tolerance
inherent with SC.

6. CONCLUSION

In this paper, we presented a bitstream-based neural network,
which is a highly optimized and deterministic version of
SC neural network. Thanks to many optimizations including
dynamic precision scaling and half-range specialization in
addition to the fundamental redesign of the SC multiplication
operation, our SC-CNN can achieve both very high accuracy
and high efficiency up to ImageNet-targeting CNNs. The SC-
CNN owes some of its accuracy advantage to deep learning
training algorithms, such as backpropagation. However, it has
a distinct set of advantages over deep learning models due
to SC, such as precision flexibility and error resilience. These
advantages can be very useful, for instance, when designing a
single piece of hardware that needs to efficiently support various
neural networks with different precision requirements and when
computation may not be reliable due to advanced semiconductor
process scaling. The flexibility of precision comes with the
challenge of optimizing it. Currently, our optimization flow is

greedy and slow due to the retraining of SC-CNN. Finding better
methods to determine optimal precision settings more quickly
remains for future work.
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Integration of computer-science oriented artificial neural networks (ANNs) and
neuroscience oriented spiking neural networks (SNNs) has emerged as a highly
promising direction to achieve further breakthroughs in artificial intelligence through
complementary advantages. This integration needs to support individual modeling of
ANNs and SNNs as well as their hybrid modeling, which not only simultaneously
calculates single-paradigm networks but also converts their different information
representations. It remains challenging to realize effective calculation and signal
conversion on the existing dedicated hardware platforms. To solve this problem, we
propose an end-to-end mapping framework for implementing various hybrid neural
networks on many-core neuromorphic architectures based on the cross-paradigm
Tianjic chip. We construct hardware configuration schemes for four typical signal
conversions and establish a global timing adjustment mechanism among different
heterogeneous modules. Experimental results show that our framework can implement
these hybrid models with low execution latency and low power consumption with
nearly no accuracy degradation. This work provides a new approach of developing
hybrid neural network models for brain-inspired computing chips and further tapping
the potential of these models.

Keywords: hybrid neural networks, cross-paradigm computing, neuromorphic chip, mapping framework, end-to-
end implementation

INTRODUCTION

Neural networks have been widely used to deal with intelligence problems. In general, they can be
divided into non-spiking artificial neural networks (ANNs) (Lecun et al., 2015) and spiking neural
networks (SNNs) (Maass, 1997; Ghosh-Dastidar and Adeli, 2009). These two types of neural models
are distinct in information representation and processing. In ANNs, information is propagated
with multi-valued data. Intensive representation makes ANNs achieve high accuracies in a myriad
of tasks, such as image classification (He et al., 2016), speech recognition (Lam et al., 2019), and
action recognition (Wu et al., 2016). In contrast, SNNs encode information in event-driven binary
spike trains. Through internal neuron dynamics to memorize spatio-temporal information, SNNs
show advantages in various scenarios with rich temporal information and sparse data streams (Shi
et al., 2017; Haessig et al., 2018; Wu et al., 2019). Owing to their different advantages, in recent
years there is a growing trend of integrating ANNs and SNNs to explore hybrid neural networks
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(HNNs) toward artificial general intelligence (Marblestone et al.,
2016; Zhang et al., 2016; Ullman, 2019). For example, in some
cases of event-driven tasks (Srinivasan and Roy, 2019; Lee
et al., 2020), researchers use SNN modules for abstracting sparse
temporal information, and further combine ANN modules for
improving the classification performance. Similarly, in some
cases of static image processing tasks (Kheradpisheh et al., 2018;
Chancán et al., 2020), researchers use ANN modules to extract
the edge contrasts in images and further process them with SNN
modules for low power consumption. Besides, ANNs and SNNs
also work collaboratively to perform complex tasks in Pei et al.
(2019); Yang et al. (2019).

Hybrid neural networks have a promising perspective on the
development of artificial general intelligence. However, by far
these models are mainly studied and implemented on general-
purpose platforms (i.e., CPU or GPU) (Kheradpisheh et al., 2018;
Srinivasan and Roy, 2019; Chancán et al., 2020; Lee et al., 2020).
On the other side, HNNs retain the basic properties of neural
networks, being promising in high-efficiency implementation
on domain-specific hardware platforms (Sze et al., 2017).
However, their unique cross-paradigm mechanisms, such as the
mixed dataflow of multi-valued data and spike trains, hinder
the implementation on dedicated platforms, thereby slowing
down the exploration of diverse cross-paradigm integration.
Thus, it is highly expected to develop a general scheme of
implementing HNNs on dedicated platforms for high efficiency,
which can facilitate the iteration of software and hardware
co-optimization and eventually promote the development of
hybrid neural models.

There are two challenges in implementing HNNs on dedicated
hardware platforms. The first is to support the simultaneous
execution of ANN and SNN computing paradigms. In the
traditional ANN or SNN field, each has its respective hardware
platforms to support their efficient execution, e.g., deep learning
accelerators for ANNs (Chen et al., 2014; Han et al., 2016; Jouppi
et al., 2017; Chen et al., 2019) and neuromorphic chips for
SNNs (Furber et al., 2014; Merolla et al., 2014; Davies et al.,
2018). However, due to the significant differences between ANNs
and SNNs in terms of information representation, computation
philosophy and memory organization, the basic operators and
data transmission methods of these two types of platforms are
incompatible. Therefore, neither of the above hardware platforms
can simultaneously support the execution of ANNs and SNNs,
which impedes the implementation of HNNs. The second is the
hybrid data interactions between ANNs and SNNs. In HNNs, the
hybrid data interaction modules connect ANNs and SNNs, which
have a non-negligible impact on the performance of the models
when implemented on a hardware platform. Usually, the hybrid
data interaction results in at least two-fold computational costs:
(1) realizing signal conversion between multi-valued data and
spike trains will bring extra resource consumption and execution
delay; (2) the signal conversion and timing configuration will in
turn affect the resource consumption and execution time of ANN
and SNN modules. In current dedicated hardware platforms,
signal conversion at the input interface needs to be implemented
when the external data cannot match the information format
transmitted and processed internally. Therefore, extra devices

and resources are usually required, such as “spike generator”
(Esser et al., 2016; Shukla et al., 2019) or “frame maker”
(Shukla et al., 2019). However, this separative method will not
only destroy the continuity of hardware execution to a certain
extent, but also make it difficult to comprehensively measure
and evaluate the implementation cost of signal conversion and
network computing via a unified standard.

In this paper, we provide a systematic scheme of implementing
HNNs on many-core neuromorphic architectures based on
software-hardware cooperation from the perspectives of
hardware features and mapping framework. First, we use a new
type of cross-paradigm Tianjic chip (Pei et al., 2019) as the
hardware infrastructure. From the aspects of basic operations,
communication method, and timing execution mechanism,
the hardware features that support the implementation of
HNNs are abstracted. On this basis, we propose an end-to-
end mapping framework to implement HNNs on many-core
neuromorphic chips. Inspired by the modular approach, we
divide the implementation of HNNs into the pure computing
modules of single ANNs and SNNs, and the signal conversion
modules between them. The pure computing modules can
be realized by using the existing single-paradigm mapping
methods (Esser et al., 2013; Deng et al., 2018; Ji et al., 2018).
To realize the hybrid data interactions between ANNs and
SNNs, configuration schemes for four typical signal conversions
methods are established. Besides, we also develop a global timing
adjustment mechanism to match the different working periods
among these modules. Taking some HNN models as examples,
we analyze their performance in terms of resource overhead,
running speed, and energy consumption when deployed on
the Tianjic chip. This implementation framework provides a
generic approach for developing hybrid neural models through
the hardware-software collaboration.

The rest of this paper is organized as follows. Section
“Hardware Infrastructure” introduces the basic operation,
communication format, and timing schedule mechanism of
the Tianjic chip from the perspective of hardware feature
abstraction. Section “End-to-End Mapping Framework” shows
the characteristics of neural networks’ execution on many-core
neuromorphic chips, and presents the proposed end-to-end
mapping framework for hybrid neural models. The resource
overhead, timing analysis, and energy consumption of the
example hybrid networks are reported in Section “Experimental
Results.” Finally, we come up with the overall conclusions
and carry out further discussions in Section “Conclusion
and Discussion.”

HARDWARE INFRASTRUCTURE

Tianjic adopts a unified, configurable, and scalable architecture
to support cross-paradigm computing, which provides a general
platform for the separative execution or hybrid computing of
ANNs and SNNs. In this section, we will briefly introduce the
overall architecture of the Tianjic chip (see Figure 1), including
its basic operation, communication format, and timing schedule
mechanism which support our mapping framework.
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FIGURE 1 | Illustration of the Tianjic chip architecture: (A) fine-grained configurable operation modules; (B) unified communication format; (C) adjustable timing
schedule.

Fine-Grained Configurable Operation
Modules
Functional core (FCore) is the basic unit of the Tianjic
chip, which consists of four modules, including an axon for
input organization, a dendrite (with synapses) for integration
operations, a soma for non-linear neuronal transformation, and
a router for activation transmission (Figure 1A). Each module
can be configured to work in different modes or perform
different operations, which enables the chip to support both
ANN and SNN models. Among these modules, the dendrite and
the soma are the main computing engines. Equipped with the
synapse memory, the dendrite constitutes a 256 × 256 virtual
crossbar, which can realize various vector and matrix operations.
Table 1 lists the vector and matrix operations used in this paper,
including vector-matrix multiplication (VMM), vector-vector
accumulation (VVA) and vector buffering (VB).

The calculation results of the dendrite are updated into a
memory shared with the soma and the soma generates the
neuronal output according to the updated membrane potential.
By combining some basic calculations, the soma can realize
a variety of non-linear transformations in different modes of

ANNs and SNNs. In an ANN-mode soma, arbitrary activation
function can be supported by a configurable lookup table (LUT).
In an SNN-mode soma, its internal operation corresponds
to the leaky-integration-and-fire (LIF) operation of spiking
neurons. Furthermore, some more complicated operations, such
as threshold adaption and random firing, can also be enabled

TABLE 1 | Integration and transformation operations in Tianjic.

Mode Definition

Dendrite
operation

VMM y = W·x

VVA y =
∑

i
x1 + x2 + . . .+ xn

VB y = x

Soma
transformation

LUT_fun y = f(u+ b)

LIF_fun Leaky-integration-and-fire operation

Membrane
potential

change Update membrane potential after soma
transformation

keep Membrane potential keeps unchanged after soma
transformation
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through specific configurations. After the transformation of
the soma, the update mode of the shared memory can be
divided into keep or change, corresponding to whether the
membrane potential stored therein will be changed according to
the calculation result of the soma.

Unified Communication Format
These FCores are connected by a multifunctional and scalable
routing network, and arranged in a 2D mesh topology.
The routing network is composed of the router and the
axon in each FCore, which are responsible for sending and
receiving information respectively. In the router, both artificial
and spiking neurons transmit their information through a
unified communication format. In addition to the address
and control information in the traditional AER (Address-
Event Representation) protocol (Mahowald, 1993), the routing
packet can also carry different multi-valued data in this
unified communication format. Specifically, this multi-valued
data represents the efferent activation value of artificial
neurons in the ANN mode and the state information of
spiking neurons (e.g., membrane potential) in SNN mode.
Notably, the router generates a packet only when a spike is
generated and needs to be transmitted, which is in an even-
driven manner.

As shown in Figure 1B, these data packets can be delivered
to single or multiple arbitrary target FCores through point-
to-point (P2P) or multicast routing. When arriving at the
destination FCore, the packet is decoded to a binary spike
or multi-valued activation according to the working mode of
the local axon. In the ANN mode, the axon directly obtains
multi-value activations from routing packets and store them in
a ping-pong buffer. In the SNN mode, the axon stores spike
trains of each input within a historical temporal window. Via a
timing factor calculator (TFC), the spike trains can be weighted
and summed according to the timing factors. Based on this
cross-paradigm and unified data communication format, we can
easily realize the basic connection structure that supports mixed
dataflows as described in section “Execution of Neural Networks
on Neuromorphic Chips.”

Adjustable Timing Schedule
The timing execution mechanism in the Tianjic chip has two
typical characteristics: the reconfigurable phase pattern in an
execution time step and the independent working schedule of
each FCore’s modules.

Reconfigurable phase pattern in an execution time step:
There are two levels of execution period in Tianjic, which are
time phase and time step. The time phase is a basic computational
period to perform a round of computation, and the time step
includes multiple time phases and therefore is a higher level
of execution period. As shown in Figure 1C, the number of
time phases in a time step and their on-off (enable and disable)
pattern are controlled by timing registers (i.e., start-up delay,
#on_phases and #off_phases). This configurable phase pattern
provides a flexible support for matching different execution
periods of ANNs and SNNs.

Independent working schedule of each FCore’s modules: In
a time phase, the dendrite integrates the inputs stored in the axon
and updates the membrane potential into the shared memory,
meanwhile the soma performs non-linear transformation given
the integrated membrane potential. In each FCore, the phase
patterns of the dendrite and the soma can be configured
independently. In this way, different timings of input and
output processing can be implemented in the same FCore
to perform signal conversion between spike trains and multi-
valued activations.

END-TO-END MAPPING FRAMEWORK

Before introducing the mapping scheme, we briefly recall the
execution mechanism of single-paradigm neural network models
on many-core neuromorphic chips. Then, we introduce the
main design features of our end-to-end mapping framework,
which enable a high-performance mapping of HNNs on many-
core neuromorphic chips. With configurable FCores, three basic
connections are designed to support the mixed dataflows. By
using the divide-and-conquer strategy, we further divide the
implementation of HNNs into the pure computing modules of
single ANNs and SNNs, and the hybrid data interaction modules
between them. The pure computation can be implemented using
the existing mapping methods for the single paradigm. To solve
the problem of the hybrid data interaction, we construct the
configuration schemes for typical signal conversion methods
and a global timing adjustment mechanism between these
different modules.

Execution of Neural Networks on
Neuromorphic Chips
Generally, the implementation of neural networks on many-
core neuromorphic chips is achieved by utilizing spatial mapping
methods, in which the calculations in different layers are realized
via the allocated FCore groups. These FCore groups continuously
process the input data in a pipelined manner. Taking a fully
connected network (Figure 2A) for illustration, we present this
process in Figure 2. As shown in Figure 2B, in each layer,
the calculations between input activations and weights are split
into multiple spatial VMM operations due to the limited fan-
in capability (the number of inputs a neuron can handle)
and fan-out capability (the number of outputs a neuron can
drive) of each FCore. Therefore, each VMM FCore obtains
partial calculation results, and extra VVA FCores are required
to accumulate the corresponding neurons’ partial states. In
this layer-wise splitting manner, the workload of the original
network will be mapped to a combination of FCore groups that
perform different operations. Figure 2C exhibits the execution
timing of these FCore groups, wherein each FCore performs
the same operation repeatedly and continuously at every time
phase. In addition, the data is continuously propagated and
processed among FCore groups along the depth dimension of
the network. When the calculation results are sent to the next
FCore group for processing, the current FCore group can start
the processing the following input sample at the same time,
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FIGURE 2 | Illustration of the execution of the neural network on neuromorphic chips: (A) the example network structure; (B) the FCore groups after network
mapping; (C) timing schedule of the FCore groups.

achieving an efficient pipelined processing. This inter-group
pipeline brings high throughput, and is decoupled with the
network depth. Most single-paradigms of ANNs and SNNs follow
this method when implemented on many-core neuromorphic
chips (Akopyan et al., 2015; Ji et al., 2018; Shao et al., 2019;
Jiao et al., 2020). It’s worth noting that since SNNs use the
binary spike for information representation, the multi-valued
data preferred by ANNs are encoded into spike train with a time
window. When an SNN is mapped to many-core neuromorphic
chips, each FCore group needs to perform repeatedly along
the Tw (length of time window) phases to process a frame
image or feature map.

Overall, to end-to-end implement hybrid networks on
neuromorphic chips, it requires to not only establish connections
among FCore groups that support mixed dataflows, but also
coordinate the different requirements of execution phases
between ANNs and SNNs.

Basic Connections for Mixed Dataflow
In order to support mixed dataflows of multi-valued data and
spike trains, we design three basic connections based on the
fine-grained configuration of input and output modes of the
FCores. According to the configuration, four kinds of FCores
with different output and input relations can be formed. When
the axon and the soma are configured in the same mode (either
ANN or SNN mode), the FCore processes pure ANN signals in
multi-value data or SNN signals in binary spikes respectively,

which can be allocated to perform the calculation in ANN and
SNN modules of HNNs. We call such FCores working in the
pure-ANN or pure-SNN mode. When data conversion is needed,
the axon and the soma are configured to work in different modes,
forming hybrid FCores with ANN-input and SNN-output (A2S)
or with SNN-input and ANN-output (S2A). These hybrid FCores
can be used to implement the conversion between multi-valued
data and spike trains, thus supporting hybrid modeling and
interaction in HNNs.

By virtue of the unified routing infrastructure, these different
types of FCores can formulate a variety of basic connections
that enable to process single and mixed dataflows. When the
soma of the pre-connected FCore and the axon of the post-
connected FCore are configured in the same working mode, data
can be directly transmitted between them. Figures 3A,B depict
the connections that can be used to realize conversion from
multi-valued data to spike trains and vice versa, respectively. In
Figure 3A, the first and last FCores work in the pure-ANN and
pure-SNN modes respectively. The intermediate FCore, working
in the A2S mode, receives multi-valued data and converts it
into binary spikes via designed internal operations. Similarly, the
intermediate FCore working in the S2A mode converts the spike
trains to multi-valued data in Figure 3B. In addition, as shown in
Figure 3C, an ANN axon can also directly connect with an SNN
soma and access neuronal state information from the routing
packet. In this connection, the signal conversion occurs during
data transmission and reception.
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FIGURE 3 | Illustration of three basic connections for mixed dataflow: (A)
connection supporting the conversion from multi-valued data to spike trains;
(B,C) connection supporting the conversion from spike trains to multi-valued
data.

By constructing these basic connections for mixed dataflows,
the signal conversion can be naturally performed on the critical
data path of FCores without extra devices. In this manner, the
signal conversion of the model can be realized on the same carrier
as other components. Its effects on the execution performance of
the model can be directly displayed.

Configuration Schemes for Signal
Conversion
In general, different signal conversion methods are applied
according to the algorithm details. The data interaction between
ANNs and SNNs requires signal conversion between spike trains
and multi-valued data. The commonly used data conversion
methods can be summarized as: probabilistic sampling, ANN-
SNN encoding layer, space expansion, and time accumulation
(Deng et al., 2020b). Probabilistic sampling and ANN-SNN
encoding layer are responsible for the conversion from multi-
valued data to spike trains, while spatial expansion and temporal
accumulation are responsible for the conversion from spike trains
to multi-valued data. We establish configuration schemes for
these typical signal conversions (as illustrated in Figure 4), whose
operations are mapped into the configurations of the working
modes of the building blocks in each FCore.

Probabilistic sampling converts multi-valued data to spike
trains through an element-by-element operation. At each time
phase in the time window, a random vector with the same size as
the original multi-valued data is generated. After comparison, the
multi-valued data is sampled as binary spikes. The FCores used
for realizing probabilistic sampling work in the A2S mode. The
axons’ input data is directly transmitted to the soma through VB
operation. Their somas work in the SNN mode and the random
threshold is enabled. Random numbers with uniform distribution
are generated as the threshold of membrane potential, so as to

realize the sampling of input multi-valued data. The update mode
of membrane potential is set to keep, so that the multi-valued data
can be saved after the first reception, which will be converted into
a spike train latter via soma sampling with multiple time phases.

ANN-SNN encoding layer can be regarded as a special SNN
layer that can process multi-valued input data. Different from
probabilistic sampling, the encoding layer adopts a rank-order
coding format. Before being converted into spikes, the original
multi-valued data is processed by a global calculation in advance,
which can be a fully connected calculation (Bellec et al., 2018),
a convolution (Wu et al., 2019), or a difference-of-Gaussians
(DoG) (Kheradpisheh et al., 2018). The integration results are
continuously accumulated onto the membrane potential of the
output neuron, and the neuron fires a spike once the membrane
potential exceeds the firing threshold at any time phase. In
order to reduce redundant integration operations, we implement
the encoding layer in two FCore groups: integration FCores
and conversion FCores. In integration FCores, the dendrite
performs the VMM operation at the first time phase in a
time window and stores the integration results in the shared
memory. The ANN soma of FCores continuously sends out
the integration results (or their partial sums) to the conversion
FCores, where spikes are generated through the LIF operation
in the SNN soma.

Spatial expansion directly transfers the spatio-temporal two-
dimensional spike pattern into a static binary image. Each “1” in
the static binary image corresponds to the existence of a spike
in the original spike pattern. In hardware implementation, this
spatial expansion method needs to buffer and rearrange data
from different time steps. To solve this problem, we establish a
self-feedback routing connection in the conversion FCore. The
input spikes are shifted and sorted at each time phase. The
rearranged spikes are sent to the downstream adjacent ANN axon
through multicast routing as binary image data. However, in this
conversion method, the scale of the newly generated binary data
is proportional to the length of the time window. Consequently,
it will consume massive computing and storage resources in the
case of a large time window.

Temporal accumulation directly accumulates the spike train
of each input node within the time window into a multi-valued
data. This kind of conversion can be regarded as the reverse
process of rate coding, and the converted multi-valued data has
the same spatial size as the input spikes. This conversion can
be realized by the TFC in axon. Spike accumulation for Tw
length is enabled in TFC, and the corresponding time factors
are configured as 1. In this way, the data transmitted to the
dendrite module for integrated calculation is the multi-valued
data obtained by accumulation. In the conversion FCore, only the
axon is used for signal conversion, and the dendrite and the soma
can directly execute the subsequent ANN calculations.

The configuration schemes for these typical signal conversions
are summarized in Table 2. In the hybrid networks, the signal
conversion operations are mapped into the configuration of the
FCore according to the algorithmic computing operations. The
model can generate the corresponding special conversion FCore
groups in accordance with different requirements to form a
connection with hybrid dataflows.
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FIGURE 4 | Illustration of the implementation of typical signal conversions: (A) probabilistic sampling; (B) ANN-SNN encoding layer; (C) spatial expansion; (D)
temporal accumulation.

TABLE 2 | Summary of the configuration schemes for typical signal conversions.

Probabilistic sampling Encoding Layer Spatial expansion Temporal accumulation

Integration Conversion

Axon Mode ANN ANN ANN SNN SNN (with TFC)

Dendrite Operation VB VMM VVA/VB VB VMM

Enable time the first phase the first phase always on always on always on

Soma Mode LIF_fun (random firing) LUT_fun LIF_fun LIF_fun LUT_fun

Enable time always on always on always on the last phase the last phase

Membrane
potential

keep keep change change change

Global Adjustment of Timing Schedule
As introduced in Section “Execution of Neural Networks on
Neuromorphic Chips,” ANNs and SNNs have different pipelining
cycles (1 phase in ANN and Tw phases in SNN) and need to
adjust the timing schedule when combining the ANN layers
and SNN layers together. In hybrid models, when an ANN
layer runs ahead of an SNN layer, the ANN layer is expected
to wait for the SNN layer to execute Tw times continuously
before transmitting the next data. Similarly, when an ANN

layer runs behind an SNN layer, the ANN layer only needs to
perform the calculation once after the SNN layer continuously
executes Tw times. Therefore, it is preferred that in hybrid
models, the ANN only starts at a suitable time for effective
calculation and data transmission, instead of performing the
same operation phase by phase repeatedly. Hence, we use the
configurable phase pattern introduced in Section “Adjustable
Timing Schedule” to realize a global timing adjustment of the
timing schedule of the FCores.
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FIGURE 5 | Illustration of the global adjustment of timing schedule: (A) original ANN and SNN layers; (B) timing configuration of an SNN layer running after an ANN
layer; (C) timing configuration of an ANN layer running after an SNN layer.

We demonstrate this global adjustment mechanism in
Figure 5. Figures 5B,C illustration the situation of “ANN layer
to SNN layer” and “ SNN layer to ANN layer” respectively.
In both situations, the time step is set to include Tw time
phases. In each time step, the FCore groups corresponding to the
SNN calculation execute continuously, while the FCore groups
corresponding to the ANN calculation only start at the first phase.
Therefore, the phase patterns of these two types of FCore groups
will be configured as #on_ phases = Tw, #off_ Phases = 0 and #on_
phases = 1, #off_ phases = Tw-1 respectively. Due to the delay
of data transmission, different FCore groups will have different
start-up time. Generally, this start-up delay is the number of
FCore groups that need to pass before data arrives. However, in
the mapped structure, as long as there exists an FCore group for
ANN-SNN conversion, the subsequent start-up delay needs to
increase the extra time required by the ANN to wait for SNN to
process data (i.e., Tw-1 time phases, see Figure 5C). After setting
the correct start-up delay, the ANN and SNN in the hybrid model
can continually process each frame of input data in a pipelined
manner, “step” by “step.”

As shown in the Table 2, following the same method,
the dendrite and the soma in the conversion FCores are
also configured to have different phase patterns to deal with
the intra-FCore mixed dataflow. These timing patterns are
eventually transformed into the configuration of timing registers
in each FCore. Such a global timing adjustment can not
only keep the original pipeline mechanism, but also reduce
redundant calculations.

EXPERIMENTAL RESULTS

Experimental Setup
We have built some examples of hybrid networks to verify our
mapping framework and illustrate the implementation results.

TABLE 3 | Network models used in the experiments.

Dataset Structure Conversion Method Name

MNIST (28 × 28) MLP Probabilistic Sampling Model 1

Encoding Layer Model 2

LeNet Probabilistic Sampling Model 3

Encoding Layer Model 4

NMNIST (34 × 34 × 2) MLP Spatial extension Model 5

Temporal accumulation Model 6

LeNet Spatial extension Model 7

Temporal accumulation Model 8

We chose MNIST (LeCun et al., 1998) and NMNIST (Orchard
et al., 2015) data sets to demonstrate the proposed conversion
approach. Each digit sample in MNIST is a 28 × 28 grayscale
image and NMNIST is a neuromorphic version of MNIST
with a spike pattern size of 34 × 34 × 2 at each time step.
As for the network structure, we chose the fully connected
structure of input-512-512-10 and the convolutional neural
network structure of LeNet (LeCun et al., 1998) (input-6c5-
AP2-16c5-AP2-120-84-10). The overall settings of input data,
network structure and signal conversion method are shown in
the Table 3.

Figure 6 shows the settings of signal conversion in these
models. From Model 1 to Model 4, the signal conversion from
multi-value data to spike trains happens in the first layer of
the network. At the output of these models, the spikes within
the time window are accumulated and converted into multi-
valued data to obtain the classification results. In Model 5 and
Model 6, the signal conversion from spike trains to multi-
valued data occurs in the connection between the first and
second hidden layers. In Model 7 and Model 8, the signal
conversion is performed between the last pooling layer and the
fully connected classifier.
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We developed a mapping compiler in python to automatically
implement the partition of networks, generation of conversion
FCores, and global timing adjustment in our mapping
framework. We used a direct quantization method for these
hybrid models. We first loaded a pre-trained model with FP32
weights, and then followed the quantization method in Yang
et al. (2020) to re-train the model by quantizing the weights into
INT8 precision during each weight update. After this process,
we can obtain the resource utilization report of network and the
binary file for the chip configuration. At last, the configuration
file is downloaded into the chip for execution, where the latency
and power consumption of network execution can be measured
accurately. We use a single-chip PCB equipped with an Altera
Cyclone 4 FPGA as the test board. The input data is pre-stored
in an SDRAM on the board, and injected into the chip through
FPGA whiling testing. At 300 MHz clock, 16.8 µs is needed
for a time phase.

Analysis of Resource Consumption of
Various Hybrid Models on Tianjic
After mapping, these hybrid network models are transformed
into the connections between FCores with four different input
and output types, as described in Section “Basic Connections
for Mixed Dataflow.” Figure 7 shows the resource utilization
of different types of FCores in each hybrid model. When
mapping the SNN part of these hybrid models, according
to the method in Pei et al. (2019); Deng et al. (2020a), we
transfer the partial sums calculated by VMM in the form
of multi-valued data. This method can avoid the decrease of
accuracy caused by the fan-in limitation of FCores in the
mapping process. Therefore, when the number of input neurons
in an SNN layer exceeds the fan-in of FCore, there exist
S2A-type VMM FCores and A2S-type VVA FCores in the
mapping result. Additionally, we define the ratio of effective
computing FCores as the ratio of the number of FCores that
perform network computing and the number of the total
FCores. The larger the ratio of effective computing FCores

is, the smaller the extra cost of signal conversion in hybrid
models consumes.

In a connection with the signal conversion from multi-
valued data to spike trains, the resource consumption required
by the probabilistic sampling and ANN-SNN encoding layer is
determined by the number of input and output neurons in the
connection, respectively. In the MLP structure, the conversion
takes place in a 784-512 connection. Therefore, compared with
Model 2, Model 1 uses more A2S-type FCores. Similarly, in the
LeNet structure, the size of input and output in the connection
with signal conversion is 28 × 28 × 1 and 24 × 24 × 6,
respectively, which leads to Model 4 consuming more conversion
FCores than Model 3. In the implementation of probabilistic
sampling and ANN-SNN encoding layer, the signal conversions
are carried out through additional FCores. From Figure 7, we
can see that the ratio of effective computing FCores in Model
1∼Model 4 are 84%, 96%, 92%, and 81%, respectively. This result
also indicates that with the increase of the scale of converted
signals, the proportion of the FCores that undertake the network
computation in the hybrid model decreases.

In the implementation of spatial expansion, the conversion
FCores work in the SNN mode to buffer and rearrange
input spikes. As mentioned above, the FCores consumed by
spatial expansion will increase with the increase of the SNN
time window. To observe this trend, we show the resource
consumption of Model 5 and Model 7 when Tw equals 2, 6,
10, and 14 respectively (shown as -T2, -T6, -T10 and T14 in
Figure 7). As we can see, with the increase of Tw, the number
of SNN-type FCores increases concomitantly, which is caused
by the increase of the number of occupied conversion FCores.
Furthermore, due to the growth of the scale of the converted
binary image, the number of ANN-type FCores that are used
to perform subsequent ANN calculations also increases. It is
observed that, under the joint influence of these two kinds of
growth, the ratio of effective computing FCores of the network
finally shows an obvious downward trend. In the implementation
of spatial expansion, only axons in the FCores are used, which
does not affect the subsequent calculation of dendrites and somas.
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FIGURE 7 | Resource consumption of the example hybrid models.

As a result, the ratios of effective computing FCores are both
100% in Model 6 and Model 8. Regardless of the types of FCores,
the resource consumption of these two models is the same as that
of a single-paradigm network with the same structure.

Comparison of Performance on Tianjic
and GPU
We tested the implementation of these hybrid models on
GPU (Nvidia RTX 2080Ti) and the Tianjic chip, respectively,
and summarized the outcomes in Table 4. The time window
of SNNs in these hybrid models was set as 10. These
hybrid models ran on GPU with the default FP32 precision.
While running on Tianjic chip, all the weights and output
activations were quantized to INT8. It is observed that there
is no evident difference in recognition accuracy between
the fixed-point network implemented on the Tianjic chip
and the floating-point network running on GPU. In some
models (i.e., Model 2 and Model 7), the accuracy on
the Tianjic chip was slightly improved, which is owing to
the regularization effect of quantization. Generally speaking,
the accuracy of the model varies within 0.15%, which is
almost negligible.

TABLE 4 | Execution performance of different implementations on Tianjic and
GPU.

GPU (Nvidia RTX 2080Ti) Our Implementation

Acc. (%) Latency (ms) Acc. (%) Latency (ms)

Model1 98.70 6.84 98.69 0.286

Model2 98.20 6.02 98.22 0.269

Model3 99.15 14.27 99.15 0.319

Model4 99.19 13.22 99.13 0.319

Model5 98.43 3.56 98.41 0.252

Model6 98.36 3.22 98.30 0.269

Model7 98.27 8.79 98.28 0.302

Model8 98.97 8.87 98.85 0.319

It is worth noting that, while running on Tianjic, all these
models consume about 300 ms latency to process one frame of
data. Compared with GPU, the processing speed is increased
by an average of 20 times. This is mainly due to the high
computational parallelism of the many-core architecture in the
Tianjic chip. In all these models, the average power consumption
is below 400 mW, verifying the advantage of low power
consumption compared with GPU (usually with a dynamic
power of 1∼100 W).

Through the comprehensive comparison, we can conclude
that when implemented on the Tianjic chip, the hybrid models
not only obtain nearly lossless accuracies, but also exhibit
significant advantages of low processing latency and low power
consumption. In the next section, we will further analyze the
energy consumption of different parts that are responsible for
ANN calculations, SNN calculations, and signal conversions,
respectively, in the hybrid models.

Analysis of Energy Consumption
Taking Model 5 to Model 8 as examples, we analyze the
distribution of dynamic energy consumption and its change
along with the time window. The dynamic energy distribution
in these hybrid models when Tw equals 2, 4, 6, 8, and 10
are visualized in Figure 8. For each Tw value, the dynamic
energy consumption transformation before and after the global
adjustment of timing schedule are also plotted.

The Global adjustment of timing schedule can reduce the total
dynamic energy consumption of network by reducing redundant
ANN operations. Evidently, as the time window increases, the
energy saving of the ANN calculations under the same conversion
method retains the same. Model 5 and Model 7 use the spatial
extension method and the input size of the ANN layer will
increase along with Tw. As shown in Figure 7, the increase
of the input size will consume more ANN FCores and thus
more dynamic energy consumption. Nevertheless, due to the
reduction of redundant operations brought by the global timing
adjustment, the dynamic energy saving of ANN FCores in both
Model 5 and Model 7 increases from about 50% to about 90%
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FIGURE 8 | Variation of dynamic energy consumption distribution with time window of panels (A) Model 5, (B) Model 6, (C) Model 7, and (D) Model 8.

as Tw increases. In Model 6 and Model 8, after the global timing
adjustment, there are still some VMM operations that need to be
executed repeatedly in the conversion FCores to drive the shift
of the axon’s spike buffer. Along with the increase of Tw, these
repeated executions lead to the increase of ANN FCores’ dynamic
energy consumption in the adjusted models. As a result, Model
6 and Model 8 have a lower dynamic energy saving than Model
5 and Model 7, which increases from about 31% to about 56%.
Additionally, due to the different proportion of ANN and SNN,
the total energy saving also differs in different models. In a hybrid
network, the larger the proportion of ANN calculations is, the
more energy can be saved after global timing adjustment.

After the global timing adjustment, when Tw equals 2, the
energy consumptions required for signal conversion in Model
5 to Model 8 accounts for a small part, which are 7.3%, 1.6%,
1.3%, and 0.9%, respectively. With the increase of Tw, these
ratios all increase slightly. In the method of spatial expansion,
because the number of conversion FCores is also increasing,
the proportion will rise a little faster. But these ratios do not
exceed 10% in the end. Furthermore, the difference in the
dynamic energy consumed by SNN and ANN calculations is not
as large as the difference in the number of FCores (about 6: 1
and 10: 1 in MLP and LeNet, respectively), indicating that the
advantage of the computational sparsity in SNNs is well utilized
in hardware execution.

CONCLUSION AND DISCUSSION

In this paper, we propose a systematic solution of implementing
various hybrid networks on many-core neuromorphic

chips through software-hardware cooperation. Based on
the abstraction of the Tianjic chip, we summarize that the
fine-grained configurable basic units, unified communication
format, and adjustable timing schedule provide the hardware
foundation for implementation of hybrid models. On this
basis, we propose an end-to-end mapping framework to
facilitate implementation of hybrid models on hardware. By
constructing basic connections for mixed dataflows, signal
conversions are performed on the critical data paths of FCores
without requiring additional devices. The configuration schemes
for the typical four types of signal conversions are designed
and proved to promote the mapping of the operations in
hybrid models into FCores in the same way as that of the
networks’ computing operation. The global adjustment of
timing schedule not only ensures the continuity and correctness
of data transmission and processing in the network, but
also reduces the energy consumption caused by the repeated
redundant calculations. Furthermore, we built a tool chain to
automatically implement the mapping framework. By mapping
typical hybrid models to the Tianjic chip, we demonstrate
that these models not only obtain almost lossless accuracy
compared with the general computing platform, but also exhibit
significant advantages of low execution latency and low power
consumption. The results of the experiment show that although
the implementation of signal conversion in HNNs generates
additional resource overhead, the overall energy consumption of
the network can be significantly reduced by disabling repeated
redundant operations.

Generally, SNNs have rich coding schemes to encode
information in spatio-temporal domain, including rate coding
schemes (Deng et al., 2020b) and temporal coding schemes
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like rank-order coding schemes (Tang et al., 2020), inter-spike
interval based (Dong et al., 2019) and time-to-first spike based
encoding schemes (Liu and Yue, 2017; Mostafa, 2017). Our
framework can effectively support the rate coding and rank-order
coding scheme for SNNs and in principle can support the
temporal coding schemes via the unified communication format.
The unified communication format can directly transmit the
temporal information through its data segment (i.e., 8-bit
Fire_data in the routing packet) to support the inter-spike
interval based and time-to-first spike based encoding schemes.
To effectively support these temporal coding schemes, efficient
capture of the absolute or interval time information of each
neuron’s output spikes is necessary and requires further improved
hardware design.

With the increasing complexity of tasks and the deepening
of artificial intelligence research, it is expected that more
and further cross-paradigm fusions of ANNs and SNNs will
emerge. Hence, we are convinced that our proposed end-to-
end hardware implementation method will provide a systematic
solution to map hybrid models onto neuromorphic chips, and
provide guidance for further development of hybrid neural
models. Moreover, through the modeling abstraction of hardware
characteristics, mapping mechanisms can be established to fully
explore the potential of the hardware carrier and support more
complex algorithm models. Through the iteration of hardware-
software co-optimization, it is highly possible to develop a
general brain-inspired computing platform that can handle
more complex tasks.
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