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Editorial on the Research Topic

Advances in Computational Neuroscience

The 28th Annual Computational Neuroscience Meeting CNS∗2019 took place from 13 to 17 July
2019 in the city of Barcelona. The conference encompassed a wide diversity of Research Topics and
welcomed participants from around the world, with keynotes on “Brain networks, adolescence,
and schizophrenia” by Professor Ed Bullmore, “Neural circuits for mental simulation” by Professor
Kenji Doya, “One network, many states: varying the excitability of the cerebral cortex” by Professor
Maria Sanchez-Vives, and “Neural circuits for flexible memory and navigation” by Professor Ila
Fiete. The present Research Topic, “Advances in Computational Neuroscience,” contains some of
the leading-edge Computational Neuroscience research presented and discussed at the conference.

Like CNS∗2019, the articles in this Research Topic reflect the diversity and richness of
computational neuroscience research, expanding from subcellular scales to networks, from
biological details to in silico technology, and from computational methods to brain theory.

At the sub-neuronal level, in “ROOTS: An algorithm to generate biologically realistic cortical
axons and an application to electroceutical modeling,” Bingham et al. develop computational
methods for building more accurate computational models, extending the capability of generative
methods for producing neuronal morphology of highly branched cortical axon terminal arbors.
In a similar domain, in “Serotonergic Axons as Fractional Brownian Motion Paths: Insights
into the Self-organization of Regional Densities,” Janušonis et al. describe how a computational
model based on reflected Fractional Brownian Motion can generate steady-state distributions
that approximate the experimentally observed serotonergic fiber distributions in physical brain
sections. Gontier and Pfister, in “Identifiability of a binomial synapse,” expand model principles by
introducing a definition of when a statistical model is practically identifiable and apply this concept
to models of synapses. Felton et al. in “Assessing the Impact of Ih Conductance on Cross-Frequency
Coupling in Model Pyramidal Neurons,” analyze the role of the hyperpolarization-activated mixed
cation current (Ih) in the dynamical phenomenon of cross-frequency coupling. In a similar vein,
Mergenthal et al. in “A Computational Model of the Cholinergic Modulation of CA1 Pyramidal
Cell Activity,” present a computational model of pyramidal cells that includes unprecedented detail
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on receptor activations in response to changes in extracellular
acetylcholine concentration, and describe their effects on cellular
excitability and downstream intracellular calcium dynamics.

Other authors work at the network level. In “From
topological analyses to functional modeling: the case of
hippocampus,” Dabaghian presents an approach to network
modeling in which a combination of topological analyses
provides insights into information processing in mammalian
hippocampus. Similarly, Hasanzadeh et al. in “Necessary
Conditions for Reliable Propagation of Time-Varying Firing
Rate,” investigate which network properties in feed-forward
networks allow stable propagation of asynchronous spikes, while
Zirkle and Rubchinsky, in “Spike-Timing Dependent Plasticity
Effect on the Temporal Patterning of Neural Synchronization,”
investigate in a small network model how plasticity of synapses
can alter synchronization dynamics and induce intermittent
synchronization akin to experimental observations. Tian and
Zhou, on the other hand, focus more on simulation algorithms
in “Exponential Time Differencing Algorithm For Pulse-coupled
Hodgkin-Huxley Neural Networks.”

A third group of works relates computational modeling with
higher-level experimental observations. Endo et al. in “Evaluation
of resting spatio-temporal dynamics of a neural mass model
using resting fMRI connectivity and EEG microstates,” use the
Larter-Breakspear neural mass model to relate to both, fast
EEG/MEG microstates and slow fluctuations observed with
fMRI. Relatedly, Don et al. in “Topological View of Flows
inside the BOLD Spontaneous Activity of the Human Brain,”
use computational topology of data and discover previously
unknown vortex structures in activated brain regions. Finally,
within this category, Li et al. in “Effects of cholinergic
neuromodulation on thalamocortical rhythms during NREM
sleep: a model study,” study a new model of the thalamo-
cortical network with cholinergic modulation that exhibits the
hallmarks of NREM sleep and allows formulating hypotheses
for the role of this important neuromodulator in generating
these hallmarks.

Other works are inspired by principles from statistical physics
and information theory. For instance, in “A computational
framework for controlling the self-restorative brain based on
the free energy and degeneracy principles,” Park and Kang
speculate about a method based on the free energy principle
to identify ways of using the brain’s self-restoration capabilities
to induce desired changes in brain activity. Sorooshyari et
al. in “Object Recognition at Higher Regions of the Ventral
Visual Stream via Dynamic Inference,” hypothesize about the
computations performed by the ventral visual stream during

object recognition based on dynamic inference, and present
simulations of object identification by inferior temporal cortex.
On the other hand, Yamakou et al. in “Optimal self-induced
stochastic resonance in multiplex neural networks: electrical
vs. chemical synapses,” are inspired by stochastic resonance,
and investigate in a computational model the differential roles
of electrical and chemical synapses and their properties for
supporting thismechanism. Finally, Ludl and Soriano, in “Impact
of physical obstacles on the structural and effective connectivity
of in silico neuronal circuits,” take us all the way to cultured
brain circuits and find that in their simulations physical obstacles
placed into the path of neurons growing on silicon substrates lead
to the formation of local effective microcircuits.

While the breadth and diversity of the submitted work could
hardly be larger, there are also striking commonalities. Many
of the works draw on a rich set of advances from several
disciplines. This may reflect the typically multi-disciplinary
background of the author teams, but we believe is also a
sign of the future of the maturing field of computational
neuroscience, which has long since moved beyond building
models of isolated aspects of brains, computation, or behavior.
Our future lies in the cross-disciplinary amalgamation of
methods, theories, models, and experimental data. In this
spirit, we will continue to be an open and welcoming
community as the Computational Neuroscience Meeting enters
its 4th decade.
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Evaluation of Resting
Spatio-Temporal Dynamics of a
Neural Mass Model Using Resting
fMRI Connectivity and EEG
Microstates
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Resting-state brain activities have been extensively investigated to understand the

macro-scale network architecture of the human brain using non-invasive imaging

methods such as fMRI, EEG, and MEG. Previous studies revealed a mechanistic

origin of resting-state networks (RSNs) using the connectome dynamics modeling

approach, where the neural mass dynamics model constrained by the structural

connectivity is simulated to replicate the resting-state networks measured with fMRI

and/or fast synchronization transitions with EEG/MEG. However, there is still little

understanding of the relationship between the slow fluctuations measured with fMRI and

the fast synchronization transitions with EEG/MEG. In this study, as a first step toward

evaluating experimental evidence of resting state activity at two different time scales

but in a unified way, we investigate connectome dynamics models that simultaneously

explain resting-state functional connectivity (rsFC) and EEG microstates. Here, we

introduce empirical rsFC and microstates as evaluation criteria of simulated neuronal

dynamics obtained by the Larter-Breakspear model in one cortical region connected with

those in other cortical regions based on structural connectivity. We optimized the global

coupling strength and the local gain parameter (variance of the excitatory and inhibitory

threshold) of the simulated neuronal dynamics by fitting both rsFC and microstate spatial

patterns to those of experimental ones. As a result, we found that simulated neuronal

dynamics in a narrow optimal parameter range simultaneously reproduced empirical rsFC

and microstates. Two parameter groups had different inter-regional interdependence.

One type of dynamics was synchronized across the whole brain region, and the other

type was synchronized between brain regions with strong structural connectivity. In

other words, both fast synchronization transitions and slow BOLD fluctuation changed

based on structural connectivity in the two parameter groups. Empirical microstates were

similar to simulated microstates in the two parameter groups. Thus, fast synchronization

transitions correlated with slow BOLD fluctuation based on structural connectivity yielded
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characteristics of microstates. Our results demonstrate that a bottom-up approach,

which extends the single neuronal dynamics model based on empirical observations into

a neural mass dynamics model and integrates structural connectivity, effectively reveals

both macroscopic fast, and slow resting-state network dynamics.

Keywords: resting-state networks, resting-state functional connectivity, microstates, neural mass model,

cortico-cortical dynamics

INTRODUCTION

Research on resting-state networks is attracting much attention
in human neuroimaging. Resting-state functional connectivity
(rsFC), i.e., co-activation patterns of slowly fluctuating BOLD
signals measured with fMRI (on the order of seconds), has shown
interesting empirical evidence on functional subnetworks and
their relevance to individual differences (Smith et al., 2013). On
the other hand, the microstates, i.e., fast-transient spatial patterns
of human scalp potential measured with EEG (on the order of
10–100ms), have been regarded as the building blocks of human
information processing, and four canonical microstates appear
in resting-state consistently across subjects and studies (Pascual-
Marqui et al., 1995; Koenig et al., 2002; Michel and Koenig,
2018a). In addition, simultaneous fMRI and EEG measurements
have been used to reveal the relationship between the slow
fluctuation related to rsFC and the fast synchronization transition
related to microstates in terms of the spatiotemporal dynamics of
the human brain’s information processing (Britz et al., 2010; Van
de Ville et al., 2010; Yuan et al., 2012; Schwab et al., 2015; Bréchet
et al., 2019). However, few mechanistic explanations of these two
phenomena have been presented.

Recently, the connectome dynamics models, based on models
of neural dynamics constrained by the whole brain’s structural
connectivity (called connectome), have been investigated to
clarify the generative mechanism of functional brain activities
and networks. Several computational studies have used simulated
neuronal dynamics to understand themechanistic origins of rsFC
patterns (Breakspear et al., 2007; Honey et al., 2009; Deco and
Jirsa, 2012; Deco et al., 2013), dynamic rsFC patterns (Hansen
et al., 2015; Fukushima and Sporns, 2018), and static FC related
to fast synchronization measured by MEG (Nakagawa et al.,
2014; Deco et al., 2017; Abeysuriya et al., 2018). Furthermore,
recent studies have tried to uncover the relationships between fast
synchronization transition and slow fluctuation by combining
experimental fMRI with EEG or/and MEG data. Schirner
et al. proposed a connectome dynamics model that has EEG
source currents in the alpha band as input and demonstrated
that the model replicated multiple experimental observations
measured with fMRI (Schirner et al., 2018). Demirtaş et al.
proposed a locally heterogeneous connectome dynamics model
that improved the replication performance of rsFC and MEG
power spectrum spatial distribution (Demirtaş et al., 2019).
Roberts et al. showed that the Larter-Breakspear model (Sanz-
Leon et al., 2015) constrained by the connectome generated
rich repertoires of rapidly changing spatiotemporal patterns that
are in agreement with the temporal statistics of experimental

data such as electrical waves in cortical tissue, sequential
spatiotemporal patterns in the resting state MEG data, and large-
scale waves in human electrocorticography as well as static rsFC
(Roberts et al., 2019). However, similarities between experimental
and simulated fast-transient spatial patterns have not yet
been investigated.

In this study, to evaluate experimental evidence of resting-
state activity on two different time scales but in a unified way,
we investigated a connectome dynamics model that explains
both experimental rsFC and microstates. We used the Larter-
Breakspear model, in which the inhibitory and excitatory
neurons in one region are connected with those in other
regions based on a connectome measured with diffusion MRI.
We optimized the global coupling strength and the local gain
parameter (variance of the excitatory and inhibitory threshold)
of the simulated neuronal dynamics by fitting both rsFC and
microstate spatial patterns to those of the experimental ones.
As a result, we found that fast synchronization transitions
correlated with slow BOLD fluctuation based on structural
connectivity yielded characteristics of empirical microstates.
In detail, we found that the parameter sets with high fitting
performance to rsFC overlapped with those with high fitting
performance to microstates and that the optimal parameter
range was greatly reduced by adding microstates as evaluation
criteria compared with not adding them as in a previous work
(Honey et al., 2009). We found two parameter regions where
both rsFC and microstate spatial patterns were reproduced
with moderately high accuracy: One had a high local gain
(high variance of the excitatory and inhibitory threshold)
and weak global coupling strength, while the other had a
low local gain (low variance of the excitatory and inhibitory
threshold) and strong global coupling strength. In investigating
the neural mass dynamics generated from these two parameter
sets, the former showed highly periodic and synchronized
activation; the latter showed fewer synchronized and periodic
activations. The temporal transition of the simulated microstates
for the former parameters persisted for about 200ms, and
that for the latter parameters persisted for 150ms. Both
resulted in longer durations than the experimental data.
Our results demonstrate that a bottom-up approach, which
extends microscopic models of single-neuron dynamics based
on empirical studies (Hodgkin and Huxley, 1952; Morris and
Lecar, 1981) into a mesoscopic neural mass dynamics model
(Larter et al., 1999) and integrates macroscopic structural
connectivity, can effectively reveal both macroscopic fast and
slow resting-state network dynamics that are observed in human
neuroimaging measurements.
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MATERIALS AND METHODS

RSNs are characterized by an rsFC based on slow fluctuations
observed by fMRI and microstates based on fast synchronization
transitions observed by EEG. Simulated rsFCs and microstates,
which were obtained by the Larter-Breakspear model that
integrated the empirical structural connectivity, were compared
with the empirical rsFCs and the microstates. Regarding slow
fluctuation, the mean excitatory membrane potentials were
converted into blood-oxygen-level dependent (BOLD) signals by
the Balloon-Windkessel model. Next, after global fluctuations
were regressed out of the BOLD signals, simulated rsFCs
were obtained by calculating the cross-correlation coefficients
among the BOLD signals. The empirical and simulated rsFCs
were evaluated for their spatial pattern similarity. Regarding
the fast synchronization transitions, a simulated EEG was
obtained by multiplying the lead field and transformed into
microstates by applying modified k-means clustering. We
evaluated the empirical and simulated microstates for their
spatial pattern similarity and non-stationary switching of
microstates (Figure 1).

Data Acquisition
Structural and Diffusion MRI Data
To obtain a structural connectivity matrix using a fiber-
tracking algorithm, we measured the T1-weighted structural
(TR: 2,300ms, TE: 2.98ms, Flip angle: 9◦, TI: 900ms, thickness:
1mm, FOV: 256, matrix: 256 × 256, iso-voxel) and diffusion
MRI data (gradient directions: 64, b-value: 1,000, thickness:
2mm, iso-voxel) that were acquired on a 3T Trio (Siemens,
Erlangen, Germany) from 13 participants (11 males and 2
females, aged 28.7 ± 8.47 years). All of the 13 participants
gave informed written consent. All of the experiments in this
study were conducted according to the Declaration of Helsinki
and were approved by the Ethics Committee of the Advanced
Telecommunications Research Institute International, Japan.

Resting-State Functional MRI Data
We recorded the resting-state brain activities for 10min. The
same 13 participants who took part in the dMRI experiment
fixated on a cross, let their mind wander, and avoided focusing
on any one thing. The resting-state functional imaging data (TR:
2,500ms, TE: 30ms, FOV: 212mm, flip angle: 80◦, matrix: 64 ×
64, thickness: 3.2mm, gap: 0.8mm, 40 slices× 244 volumes) were
acquired on a 3T Trio (Siemens, Erlangen, Germany).

Resting-State EEG Data
The resting-state EEGs were recorded for 5min. The four
participants who took part in the fMRI experiment fixated on
the cross, let their mind wander, and avoided focusing on any
one thing. All of the four participants gave informed written
consent. Their EEGs were recorded with a whole-head 63-
channel system (BrainAmp; Brain Products GmbH, Germany).
The sampling frequency was 1 kHz. Electrooculogram (EOG)
signals were simultaneously recorded and then stored in the EEG.

Data Analysis
Empirical Structural Connectivity
We computed the experimental structural connectivity matrix
in accordance with a previous work (Fukushima et al., 2015).
Briefly, the seed and target ROIs used for fiber-tracking were
obtained by FreeSurfer. The participants’ motions were corrected
by the FMRIB Software Library (FSL). Fractional anisotropy
images were then calculated from the corrected images and
used for registering the diffusion-space to the T1-space by a
non-linear registration tool (FNIRT) in FSL. The local model
of the fiber orientations was the fiber orientation distribution
(FOD), reconstructed at each voxel by constrained spherical
deconvolution (Tournier et al., 2007) with six-dimensional
spherical harmonics for the response function. Based on the
reconstructed FOD, fibers were probabilistically tracked by
MRtrix. The fiber tracks were generated 105 times from each ROI.
We calculated the structural connectivity strength as the number
of fibers within each ROI pair ft divided by the total number of
fibers generated from seed ROI fs with voxel size normalization:
(ft/vt)/(fs/vs), where vt and vs are the number of voxels in the
target and the seed ROI. Since the direction of the structural
connectivity strength was not determined by a measurement
principle, the structural connectivity matrix was symmetrized by
assigning the higher strength to both directions. All parameters
were determined as done in a previous work (Fukushima et al.,
2015). The representative structural connectivity matrix was
obtained by averaging the structural connectivity matrices of all
participants with respect to the participants’ common cortical
ROI (Table S1).

Empirical Resting-State Functional Connectivity
The resting-state functional imaging was preprocessed with
SPM8 software (Wellcome Trust Center for Neuroimaging,
University College London, UK) in MATLAB (R2013a,
Mathworks, USA) as follows. First, the raw functional images
were corrected for slice-timing and realigned to the mean image
of that sequence to compensate for the head motion. Second,
the structural images were co-registered to the mean functional
image and segmented into three tissue classes in the Montreal
Neurological Institute (MNI) space. The functional images were
then normalized and resampled in a 2 × 2 × 2mm grid and
smoothed by a Gaussian of 8mm full-width at half-maximum.

We computed the functional connectivity matrix using
parcellation defined by anatomical automatic labeling (AAL) for
each participant. We extracted a representative time course in
each region by averaging the time courses of the voxels therein. A
band-pass filter (transmission range, 0.008–0.1Hz) was applied
to these sets of time courses prior to the following regression
procedure. The filtered time courses were linearly regressed by
the temporal fluctuations of the white matter, the cerebrospinal
fluid, and the entire brain. Here, the fluctuation in each tissue
class was determined from the average time course of the voxels
within a mask created by the segmentation procedure of the
T1 image. These extracted time courses were bandpass-filtered
(transmission range, 0.008–0.1Hz) before the linear regression,
as was done for the regional time courses. All parameters were
determined as done in a previous work (Yahata et al., 2016).
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FIGURE 1 | Evaluation procedures for rsFC and microstates. Mean excitatory membrane potentials obtained by Larter-Breakspear model integrating structural

connectivity were converted into simulated rsFC and microstates by Balloon-Windkessel model and lead field and compared with empirical rsFC and microstates.

Then a representative rsFC was obtained by calculating the
cross-correlation coefficients among the BOLD signals for each
participant and averaging the rsFC of each participant with
respect to the common cortical ROI in all participants.

Microstates
The EEG data were preprocessed with a low-pass FIR filter
with a cutoff frequency of 50Hz, downsampled at 100Hz, and
passed through a high-pass FIR filter with a cutoff frequency
of 0.5Hz. After a common average reference, the EOG artifacts
were removed by generating a multiple linear regression model
to predict the eye-movement-related components in the EEG
data using the EOG data. Cardiac artifacts and sensor noise
were removed by ICA. All of the EEG data were converted into
empirical microstates.

Since microstates are seen as building blocks of human
information processing as noted in a previous work (Koenig
et al., 2002), they were introduced as the criteria to compare
the fast dynamics between empirical and simulated neuronal
dynamics. First, the standard deviation of all EEG signals, called
the global field power (GFP), was calculated as the criterion
of the signal-to-noise ratio (SNR). Second, four microstates
were identified by the basic N-microstate algorithm applied to
the normalized EEG at the local maxima in the GFP curve.
The optimal number of microstates was set to four based on
a large-scale study on microstates (Koenig et al., 2002), and
probabilistically discrete initial values for clustering were chosen
based on the k-means++ algorithm (Arthur and Vassilvitskii,

2007). If the spatial correlation value between one microstate and
another microstate was 0.9 or more, these two microstates were
merged. Third, the transition of the microstates was calculated
by a segmentation-smoothing algorithm. All parameters were
determined as done in a previous work (Pascual-Marqui et al.,
1995). That is, convergence criterion parameter ǫ = 10−6,
window size parameter b = 3, and non-smoothness penalty
parameter λ = 5. The occupation ratio is defined as the time
allocated to a microstate divided by the total time.

Computational Modeling
Larter-Breakspear Model
The Larter-Breakspear model is a phenomenological scheme that
describes the electrophysiological neuronal dynamics in each
region based on structural connectivity. This model consists of
the mean membrane potential of the excitatory neurons (V) and
the inhibitory neurons (Z), and the average number of open
potassium ion channels (W). The mean firing rate for excitatory
and inhibitory populations are described by QV and QZ . The
voltage-dependent fractions of open ion channels are described
by mion. These sigmoidal functions describe averaging over a
population of ion channels and cell firing rates under Gaussian
distribution. Excitatory interactions between region i and j are
described by 〈QV〉

i. Simulations were performed using ode23,
which automatically chooses the step size, maintains a specified
accuracy, and solves ordinary differential equations in MATLAB.
We repeated simulations for each parameter set 10 times with
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TABLE 1 | Parameter values for the Larter-Breakspear model.

Parameter Description Value

TCa Threshold value for Ca channels −0.01

δCa Variance of Ca channel threshold 0.15

gCa Conductance of population of Ca channels 1

VCa Ca Nernst potential 1

TK Threshold value for K channels 0.0

δK Variance of K channel threshold 0.30

gK Conductance of population of K channels 2.0

VK K Nernst potential −0.7

TNa Threshold value for Na channels 0.3

δNa Variance of Na channel threshold 0.15

gNa Conductance of population of Na channels 6.7

VNa Na Nernst potential 0.53

VL Nernst potential leak channels −0.5

gL Conductance of population of leak channels 0.5

VT Threshold potential for excitatory neurons 0.0

ZT Threshold potential for inhibitory neurons 0.0

δZ Variance of inhibitory threshold Same value as δV

QVmax Maximal firing rate for excitatory populations 1.0

QZmin Maximal firing rate for inhibitory populations 1.0

I Subcortical input strength 0.30

aee Excitatory-to-excitatory synaptic strength 0.36

aei Excitatory-to-inhibitory synaptic strength 2

aie Inhibitory-to-excitatory synaptic strength 2

ane Non-specific-to-excitatory synaptic strength 1

ani Non-specific-to-inhibitory synaptic strength 0.4

b Time constant scaling factor 0.1

ϕ Temperature scaling factor 0.7

τK Time constant for K relaxation time 1

rNMDA Ratio of NMDA to AMPA receptors 0.25

δ Random modulation of subcortical input 0

different initial values to reduce the influence of initial values. The
simulation length was set to 10min. We discarded the first 2min
to eliminate the influence of the initial values. All simulation
parameters in Table 1were determined based on a previous work
(Roberts et al., 2019). In the parameter search, the balance of
intra- and inter-regional excitatory synaptic connection strength
was changed by the global coupling strength C, and the oscillation
of the excitatory and inhibitory neural populations was changed
by the variance of the excitatory and inhibitory threshold. It took
about 2 days to complete 10min of simulation for a particular
parameter set and an initial value using our high performance
computer server.

mion = 0.5

(

1+ tanh

(

V i
− Tion

δion

))

, (1)

QV = 0.5QVmax

(

1+ tanh

(

V i
− VT

δV

))

, (2)

QZ = 0.5QZmax

(

1+ tanh

(

Zi
− ZT

δZ

))

, (3)

dV i

dt
= −

(

gCa + (1− C) rNMDAaeeQ
i
V

+CrNMDAaee 〈QV〉
i
)

mCa

(

V i
− VCa

)

−gKW
(

V i
− VK

)

− gL
(

V i
− VL

)

−

(

gNamNa + (1− C) aeeQ
i
V + Caee 〈QV〉

i
) (

V i
− VNa

)

−aieZQ
i
Z + aneI, (4)

dZi

dt
= b

(

aniI + aeiV
iQi

V

)

, (5)

dWi

dt
= φ

mK −Wi

τK
(6)

〈QV〉
i
=

∑

j uijQ
j
V

∑

j uij
. (7)

Here, uij is the structural connectivity strength between region i
and region j.

Simulated Bold
To calculate the simulated rsFC, the mean membrane potential
of the excitatory neurons was converted into simulated BOLD
signals by the Balloon-Windkessel hemodynamic model. In this
paper, neuronal activity was given by the absolute value of
the time derivative of the mean excitatory membrane potential
within each brain region. For the ith region, neuronal activity zi
increased vasodilatory signal si, which is subject to autoregulatory
feedback. Inflow fi responds in proportion to this signal with
concomitant changes in blood volume vi and deoxyhemoglobin
content qi. The following are the related equations:

dsi

dt
= zi − κisi − γi

(

fi − 1
)

, (8)

dfi

dt
= si, (9)

τi
dvi

dt
= fi − v

1/α
i , (10)

τi
dqi

dt
=

fi(1− (1− ρ
1/fi
i ))

ρi
−

v
1/α
i qi

vi
, (11)

where κi = 0.65 is the rate of signal decay, α = 0.32 is Grubb’s
exponent, τi = 0.98 is the hemodynamic transit time, and ρ =

0.34 is the resting oxygen extraction fraction. The BOLD signal
is a static non-linear function of volume and deoxyhemoglobin
comprised of a volume-weighted sum of the extra- and intra-
vascular signals:

yi = V0

(

7ρi
(

1− qi
)

+ 2

(

1−
qi

vi

)

+ (2ρi − 0.2)(1− vi)

)

,

(12)

where V0 = 0.02 is the resting-blood volume fraction. All of the
simulation parameters were determined as done in a previous
work (Friston et al., 2003).

Lead Field
The mean membrane potentials of the excitatory neurons
were converted into simulated EEGs by the lead field that
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represents the linear relation between the sources on the cortical
surface and the measurements on each EEG channel as a gain
matrix. Polygon models of the cortical surfaces (20,004 vertex
points) were constructed from T1 structural images of the same
four participants who took part in the EEG experiment using
FreeSurfer software (Dale et al., 1999). A single current dipole
was assumed at each vertex point to be perpendicular to the
cortical surface. The brain structures were approximated as a
three-layer model by identifying three boundaries, i.e., for the
cerebrospinal fluid (CSF), the skull, and the scalp, assuming
that the conductivities were 0.33, 0.0042, and 0.33, respectively
(Waberski et al., 1998). These surfaces obtained by FreeSurfer
were slightly modified using gray/white/CSF segmentation by
SPM8 (Welcome Department of Cognitive Neurology, UK) and
morphological operations. All of the parameters were determined
as done in a previous work (Aihara et al., 2012).

Singular value decomposition was applied to all points
belonging to one ROI out of 20,004 points. The singular values
were arranged in descending order and the lead field at 80%
accumulation rate of singular values was averaged in one ROI.
(That is, it has almost the same effect as averaging the lead field
within an ROI). We calculated the low-dimensional lead field
(63 channels × 78 ROIs) of each participant by averaging the
components that contribute 80% for each ROI since the Later-
Breakspear model has the same number of neurons in each
ROI. This way, we removed the influence of heterogeneous ROI
sizes in the empirical data. Then the low-dimensional lead field
matrices of all subjects were averaged.

Simulated Microstates
To compare the empirical and simulated microstates, we
converted the mean membrane potential of the excitatory
neurons into simulated EEG signals by the lead field. First,
the simulated EEG signals were calculated by multiplying the
mean membrane potential of the excitatory neurons by the
lead field. Second, a common average reference was applied
for simulated EEG signals and the simulated EEG signals were
bandpass-filtered between 10 and 15Hz. Third, the bandpass-
filtered signals were downsampled from 1,000 to 100Hz. Finally,
the simulated microstates were acquired by applying the basic N-
microstate algorithm and the segmentation smoothing algorithm
to the obtained signals.

Quantitative Evaluation of Empirical and Simulated

Results
The spatial correlation between the empirical and simulated
rsFCs was obtained by averaging the cross-correlation
coefficients of the lower triangular components between
the empirical and simulated rsFCs for each parameter set.

We evaluated the empirical and simulated microstates in
terms of spatial similarity, occupation ratio, mean transition
time, and global explained variance (GEV). GEV represents the
goodness of fit between the microstates and the normalized EEG
weighted by GFP (Khanna et al., 2014). We obtained the spatial
correlation between the empirical and simulated microstates by
the following procedures. For the 24 combinations between the
empirical and simulated microstates, we calculated the average

cross-correlation coefficients of each combination and chose
the one that maximized it. In the simulation, two microstates
that showed similar spatial patterns (similarity over 0.9) were
merged. This happened for several parameter combinations.
If the number of simulated microstates was >4, the cross-
correlation coefficients were set to 0 for the missing simulated
microstates. The occupation ratio was obtained by dividing the
time allocated to each microstate by the total simulation time.
The mean transition time was obtained by averaging required
time to transition from one microstate to another.

Phase-Locking Matrix
The phase-locking matrix quantitatively visualizes the inter-
regional interdependence of the non-linear simulated neuronal
dynamics. First, the 10–15Hz bandpass filter was applied to the
mean membrane potentials. Second, these signals were Hilbert-
transformed, extracting the phase θ . Finally, we calculated the
phase-locking values (PLVs) between regions p and q by the
following formula:

PLVs =

∣

∣

∣

∑NT
t=1 e

i(θ tq−θ tp)
∣

∣

∣

NT
, (13)

where NT represents the sampling number.

RESULTS

Spatial Pattern Similarity of rsFC and

Microstates
In the two parameter groups of strong global coupling strength
and small variance of threshold or weak global coupling
strength and large variance of threshold, the simulated rsFC and
microstates indicated a high spatial similarity to the empirical
rsFCs and microstates (Figure 2). We selected the optimal
parameter groups by considering both the spatial similarities
of rsFC, which were moderately high over a broad range, and
the spatial similarities of the microstates, which were high in a
narrow range. The spatial similarities in the optimal parameter
groups obtained with structural connectivity based on diffusion
MRI were significantly higher than those obtained with shuffled
structural connectivity (Figure S1).

The spatial pattern similarity between empirical and simulated
microstates in the

(

C, δV, Z
)

= (0.35, 0.61) condition is high
but the occupation ratio and the mean transition time are greatly
different from empirical microstates (Figure 2B, Figure S2). The
occupation ratio and themean transition time in the

(

C, δV, Z
)

=

(0.30, 0.61) and (0.25, 0.61) are almost the same as in the
(

C, δV, Z
)

= (0.35, 0.61) condition.

Comparison of Spatiotemporal Patterns

Between Empirical and Simulated

Microstates
Empirical and simulated microstates were obtained by applying
the basic N-microstate algorithm and the segmentation
smoothing algorithm for EEG time-series. Roughly, one
microstate probabilistically transitions to another microstate
when GFP is at a local minimum (Figure S3).
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FIGURE 2 | Spatial pattern similarity of rsFC and microstates for each parameter combination. Averaged cross-correlation coefficients between empirical and

simulated rsFC (A) and microstates (B) are obtained by varying global coupling strength C and variance of threshold δV, Z . Color bars indicate strength of

cross-correlation coefficients.

FIGURE 3 | Occupation ratio and mean transition time of empirical (A) and simulated (B,C) microstates. global explained variance (GEV) was 59, 66, and 69% for the

empirical, simulated weak global coupling strength, and simulated strong global coupling strength microstates, respectively. Each simulated microstate is indicated

with the same color as the empirical microstate with which it is most highly correlated. Interchanging red and blue would correspond to the identical pattern.

Concerning the empirical microstates, MS2 accounted for the
highest proportion, and their mean transition times were about
100ms, as in the previous research (Figure 3A).

In the
(

C, δV, Z
)

= (0.25, 0.70) condition, the simulated
microstates were sustained about twice as long compared
with the empirical microstates. In contrast to the empirical
microstates, MS6 and MS7 accounted for a higher proportion
than MS5. Furthermore, MS8’s temporal transition was also

intermediate between MS2 and MS4 because MS8 accounted
for the lowest proportion, even though it was sustained for the
longest time (Figure 3B).

In the
(

C, δV, Z
)

= (0.50, 0.63) condition, the
simulated microstates were sustained about 1.5 times
longer than the empirical microstates. Unlike the
(

C, δV, Z
)

= (0.25, 0.70) condition, the occupation
ratio of MS10 was about 5% higher than that of MS11.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 9113

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Endo et al. Simulated and Empirical Resting-State Dynamics

FIGURE 4 | Excitatory mean membrane potentials for one second (A) and averaged phase-locking matrix (B). In the
(

C, δV, Z
)

= (0.25, 0.70) condition, excitatory

mean membrane potentials fluctuated in a regular manner and were synchronized across the whole brain region. In the
(

C, δV, Z
)

= (0.50, 0.63) condition, excitatory

mean membrane potentials fluctuated irregularly and were synchronized between brain regions with strong structural connectivity.

Moreover, the spatial pattern of MS12 was biased to the left
hemisphere (Figure 3C).

Comparison of Neuronal Dynamics and

Phase-Locking
In the

(

C, δV, Z
)

= (0.25, 0.70) condition, the excitatory
mean membrane potentials were synchronized across the whole
brain region with weak global coupling strength because the
self-recurrent excitation was higher than the low variance
of the threshold (Figures 4A,B top). In the

(

C, δV, Z
)

=

(0.50, 0.63) condition, the excitatory mean membrane potentials
were synchronized between the brain regions with strong
structural connectivity and were not synchronized between
the brain regions with weak or no structural connectivity
(Figure 4B bottom, Figure S1A). Strong global coupling strength
and structural connectivity are required for excitatory mean
membrane potentials to exceed the excitatory threshold due
to weak self-recurrenct excitation. Due to the synchronized
excitatory mean membrane potentials across the whole brain
region, the mean transition time in the

(

C, δV, Z
)

= (0.25, 0.70)
condition is 1.3 times longer than the mean transition time in the
(

C, δV, Z
)

= (0.50, 0.63) condition (Figure 3).

DISCUSSION

Summary
In this study, we investigated whether there is a model
that simultaneously explains two experimentally observed

phenomena in the resting state: slow fluctuation manifested by
resting-state functional connectivity (rsFC) and fast transient
dynamics manifested by EEGmicrostates. We simulated a neural
mass model using the Larter-Breakspear model constrained by
the structural connectivity and optimized the model parameters
[the global coupling parameter and the local gain parameter
(variance of excitatory and inhibitory threshold)] by fitting the
simulated rsFC to the experimental rsFC and the simulated
microstates to the experimental microstates. As a result, we
obtained three key findings: first, the parameter sets with high
fitting performance to rsFC overlapped with those with high
fitting performance to the microstate; second, two distinct
parameter sets were identified within the overlapped parameter
region; third, the overlapped parameter sets are much narrower
than the parameter sets obtained by fitting only rsFC. In other
words, based on these three findings, both fast synchronization

transitions and slow BOLD fluctuation changed based on
structural connectivity in the overlapped parameter regions.
Empirical microstates were similar to simulated microstates in
these regions. Thus, fast synchronization transitions correlated
with slow BOLD fluctuation based on structural connectivity
yielded microstates. These results suggest that adding the
microstates as fitting criteria is important for significantly
reducing the uncertainty of good model parameters. The
maximal cross-correlation coefficient of the rsFC was about 0.45,
which is almost the same value as that in previous research
(Honey et al., 2009). The maximal cross-correlation coefficient
of the microstates was about 0.7, and the mean transition times
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of the simulated microstates were about 1.5 or 2.0 times longer
than those of the empirical microstates.

Comparison With Previous Research
Since the structural connectivity in this study had stronger
interhemispheric connectivity (Figure S1A) than in the previous
research, the cross-correlation coefficients of rsFC were about
0.05 higher than in the previous research (Honey et al., 2009;
Deco et al., 2013).

In the
(

C, δV, Z
)

= (0.50, 0.63) condition, the dynamics
of the excitatory mean membrane potentials resembled the
dynamics of previous research in terms of irregular firing
(Roberts et al., 2019). The simulated microstates using shuffled
structural connectivity did not reproduce either a spatial pattern
or a temporal transition (Figure S4). In the

(

C, δV, Z
)

=

(0.25, 0.70) condition, the dynamics of the excitatory mean
membrane potentials resembled the dynamics of the previous
research in terms of regular firing (Honey et al., 2009). Simulated
microstates using shuffled structural connectivity reproduced
a spatial pattern but not a temporal transition (Figures S4B,
S5). Furthermore, the transition probability matrix of empirical
microstates is more similar to the simulated one in the
(

C, δV, Z
)

= (0.50, 0.63) condition than in the
(

C, δV, Z
)

=

(0.25, 0.70) condition (Figure S6). Therefore, the dynamics of
the excitatory mean membrane potentials in the

(

C, δV, Z
)

=

(0.50, 0.63) condition resembled the empirical resting-state
activity of the human brain. The dynamics of the excitatory
mean membrane potentials in the

(

C, δV, Z
)

= (0.25, 0.70)
condition were comparatively unconstrained by the structural
connectivity (Figure 4B, top). Although these were bandpass-
filtered dynamics, perhaps they are related to the phenomena in
which the activity spreads to most of the cortex when the cortex is
stimulated with transcranial magnetic stimulation (TMS) during
sleep (Alkire et al., 2008).

Simulated Microstates
The MS7 and MS11 in each simulated case have a larger
occupation ratio than the MS3 in the experiment (Figure 3)
because the structural connectivity strength between the
occipital regions is weak (Figure S1A). We assume that the
interhemispheric structural connectivity was important for
reproducingMS4, considering thatMS4 has an equal distribution
for the distant interhemispheric positions. Thus, the constraints
based on structural connectivity are more important than the
signal noise and the conduction delay proportional to the
inter-regional distance. Signal noise probably affects temporal
transition and the conduction delay proportional to the inter-
regional distance probably results in ROIs close to each other
being synchronized.

Clinical Application for Cognitive

Neuroscience
The development of biomarkers for psychiatric disorders using
microstates and rsFC has been investigated (Yamada et al.,
2017; D’Croz-Baron et al., 2019). One example is autism
spectrum disorder (ASD). ASD patient’s rsFC and microstates
have different spatial and temporal characteristics compared to

healthy individuals. Our results could not reproduce enough
spatiotemporal characteristics of rsFC and microstates to
compare ASD patients and healthy individuals. However, our
results will give hints to solve these problems and enable making
hypotheses about the dependence of slow and fast resting-state
brain activity on neuronal network parameters.

Effects of Averaging Lead Field
In the Larter-Breakspear model, the numbers of excitatory, and
inhibitory neurons are the same in each ROI, and only the
structural connectivity differs between the ROIs. For this reason,
the high-dimensional lead field was averaged in each ROI to
remove the area’s influence in each ROI. If the ROIs were divided
into smaller sections and the lead field was not averaged for
each ROI, the simulated microstates might differ. We note that
the contribution rate of the singular value decomposition did
not affect the simulated microstates because the cross-correlation
coefficient was 0.9995 between the lead fields by singular value
decomposition and the mean value.

Limitation of Current Simulation
The occupation ratio of the empirical and simulated microstates
differed and the simulated microstate did not reproduce the
specific spatial patterns of the empirical microstates. The resting-
state alpha waves in the cerebral cortex are empirically affected
by the thalamus (Sherman, 2016), and slow fluctuation is affected
by the serotonin receptor density (Deco et al., 2018; Shine
et al., 2019). However, the Larter-Breakspear model in this
study does not include thalamic dynamics, conduction delay
proportional to inter-regional distance, signal noise, or serotonin
receptor density. Therefore, incorporating these effects in this
model might more fully reveal how well the simulated rsFC
and microstates reflect the empirical rsFC and microstates in
realistic conditions.

Numbers of Participants
Since empirical EEG and rsFC were obtained by two studies
aiming at different purposes, the number of participants of
EEG and rsFC differ. Empirical rsFC was obtained from 13
participants, sufficient for statistical purposes. Empirical EEG
was obtained from only four participants. However, the four
microstates identified from this empirical EEG are similar to the
four microstates identified by other studies (Michel and Koenig,
2018b). We presume the four microstates will be similar to the
microstates identified from 13 participants.
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It has been suggested that cholinergic neurons shape the oscillatory activity of

the thalamocortical (TC) network in behavioral and electrophysiological experiments.

However, theoretical modeling demonstrating how cholinergic neuromodulation of

thalamocortical rhythms during non-rapid eye movement (NREM) sleep might occur has

been lacking. In this paper, we first develop a novel computational model (TC-ACH) by

incorporating a cholinergic neuron population (CH) into the classical thalamo-cortical

circuitry, where connections between populations are modeled in accordance with

existing knowledge. The neurotransmitter acetylcholine (ACH) released by neurons in CH,

which is able to change the discharge activity of thalamocortical neurons, is the primary

focus of our work. Simulation results with our TC-ACH model reveal that the cholinergic

projection activity is a key factor in modulating oscillation patterns in three ways: (1)

transitions between different patterns of thalamocortical oscillations are dramatically

modulated through diverse projection pathways; (2) the model expresses a stable spindle

oscillation state with certain parameter settings for the cholinergic projection from CH

to thalamus, and more spindles appear when the strength of cholinergic input from

CH to thalamocortical neurons increases; (3) the duration of oscillation patterns during

NREM sleep including K-complexes, spindles, and slow oscillations is longer when

cholinergic input from CH to thalamocortical neurons becomes stronger. Our modeling

results provide insights into the mechanisms by which the sleep state is controlled, and

provide a theoretical basis for future experimental and clinical studies.

Keywords: thalamocortical neural mass model, cholinergic projection, acetylcholine (ACH), thalamocortical

rhythm, NREM sleep

1. INTRODUCTION

Sleep plays a pivotal role in mental and physical health. During sleep, the brain alternates
between two stages, rapid-eye movement (REM) and NREM. This alternation is reflected in the
electrical rhythms generated by the thalamocortical system, evident in the electroencephalogram
(EEG). Specifically, the thalamocortical rhythms in NREM sleep include K-complexes and slow
oscillations (dominated by low-frequency [0.5, 2]Hz, high amplitude oscillations), as well as
spindles (characterized by a waxing and waning waveform in the range [11, 16]Hz). In contrast,
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REM sleep exhibits low amplitude activity of higher frequency,
which is similar with rhythms in wakefulness, including the alpha
oscillation (Rasch and Born, 2013). Studies reveal that spindles
and slow oscillations are very helpful in protecting and stabilizing
sleep (Roth, 2009; Dang-Vu et al., 2010; Kim et al., 2012).

A number of results in behavioral and electrophysiological
experiments suggest that cholinergic neurons, which are
distributed in the basal forebrain and brainstem, help shape the
oscillatory activity of the thalamocortical network (Bellingham
and Funk, 2000; Kobayashi et al., 2003; Boutrel and Koob,
2004; Brown et al., 2012). Meanwhile, it has also been
shown that thalamocortical processing is subject to the
action of modulatory of acetylcholine (ACH) released by
cholinergic neurons (McCormick, 1992). However, a theoretical
framework for understanding the mechanisms of cholinergic
neuromodulation on thalamocortical rhythms during NREM
sleep is still lacking.

Neural mass models (NMMs), which describe the dynamics
of neural populations (Wilson and Cowan, 1973; Lopes da Silva
et al., 1974), have shown success in clarifying the mechanisms
involved in the generation and regulation of oscillation patterns
of the “wakefulness-sleep cycle.” For example, Robinson et al.
(2002) developed a continuum model of large-scale brain
electrical activity to understand the transition from the resting
background state to the spike-wave state. Suffczynski et al. (2004)
proposed a thalamocortical NMM to explain the relation between
mechanisms that generate sleep spindles and those for that
generate spike-wave activity. More recently, Weigenand et al.
(2014) extended a cortical NMM to explore the mechanisms for
generating K-complexes and slow oscillations. Cona et al. (2014)
presented a new NMM to describe the sleeping thalamocortical
system, where thalamic neurons exhibit two firing modes:
bursting and tonic.

Although prior (NMM-based) studies have made progress
in explaining sleep rhythms, the role of ACH modulation of
thalamocortical activities, especially during sleep has not been
thoroughly explored. In this work we model the details of
cholinergic neuromodulation in the cortex and thalamus, and
study the effects of cholinergic projections on thalamocortical
rhythms during NREM sleep.

In this study, a new computational model (TC-ACH) is
first proposed by integrating a cholinergic neuron population
(CH) into classical thalamo-cortical circuitry, with connections
between populations in TC-ACH constructed on the basis of the
existing mechanisms. We concentrate on the neurotransmitter
ACH released by cholinergic neurons, which impacts firing
activity of thalamocortical neurons. The proposed model TC-
ACH is used to investigate effects of ACH modulation on
thalamocortical rhythms during NREM sleep in two ways:
(1) measurement of effects of cholinergic modulation in the
thalamus; (2) measurement of effects of cholinergic modulation
in the thalamocortical system.

The rest of the paper is organized as follows. In section
2, the model framework and mathematical expression of TC-
ACH are introduced. Section 3 presents the simulation results.
A summary and discussion of our work are given in the
last section.

FIGURE 1 | Schematic representation of model TC-ACH.

2. METHODS

2.1. Model Framework
This subsection introduces the topological structure and
computational operators of TC-ACH systematically.

2.1.1. Topological Structure
Our computational model TC-ACH is composed of classical
thalamo-cortical circuitry as well as a cholinergic neuron
population, whose topological structure is illustrated
in Figure 1.

The thalamo-cortical circuitry consists of two mutually
interconnected modules: a cortical module and a thalamic
module. Each module comprises two neural populations, where
pyramidal cells (PY) and inhibitory interneurons (IN) are
included in the cortical module; the thalamic module also
includes thalamocortical cells (TC) and thalamic reticular
cells (RE). Regarding connections between modules, excitatory
neurons (PY or TC) in each module connect to both
populations in the other module. Within each module, two
populations project to each other, and there exist self-
connections within PY, IN, and RE (Costa et al., 2016).
Note that in the thalamo-cortical circuitry, the excitatory and
inhibitory projections are mediated by AMPA and GABA
receptors, respectively.

The cholinergic neuron population (CH) is located in the
basal forebrain and brainstem. The neurons in CH release
neurotransmitter (ACH) into the synaptic cleft, which changes
the activity of thalamocortical neurons. In our proposed model,
there exist three modulated cholinergic projections from CH
to PY, RE, as well as the connection between TC and PY
(represented by red dashed lines in Figure 1), and one mediated
cholinergic projection from CH to RE (represented by blue
the solid line in Figure 1). The coupling coefficients of these
projections are denoted by KPY , KNrr

RE , KCa
RE , KTP, and KI

RE,
respectively. Here, all projections involve by ACH.
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FIGURE 2 | The dynamical evolution in each population in model TC-ACH.

2.1.2. Computational Operators
The dynamical evolution in each population is implemented in
two computational blocks.

The first computational block transforms the average
membrane potential V(t) into the average firing rate
Q(t), formulated by a sigmoid function with the form
(Jansen et al., 1993)

Q(t) =
Qmax

1+ e−(V(t)−θ) /σ
, (1)

where Qmax, θ , σ represent the maximal firing rate, the firing
threshold and the neural gain, respectively.

In the second computational block, the firing rate Q(t) is
first transformed into the fraction of open channels rξ (t) by a
convolution with an alpha function hξ (t), that is,

rξ (t) = hξ (t)⊗ (N · Q(t)), (2)

hξ (t) = γ 2
ξ · te−γξ t , t ≥ 0. (3)

Then the membrane potential V(t) is solved by

τ ˙V(t) = −IL(t)− IAMPA(t)− IGABA(t)

= −gL · (V(t)− EL)

−

∑

ξ

gξ rξ · (V(t)− Eξ ), (4)

which is similar to the classical conductance-based form of
Hodgkin and Huxley (1952) with one leak and two synaptic
currents (say, ξ ∈ {AMPA,GABA}) (Weigenand et al., 2014).
Moreover, for the convenience of calculating the convolution
⊗, rξ (t) can be equivalently obtained by solving the following
second-order differential equation

r̈ξ (t) = γ 2
ξ · (N · Q(t)− rξ (t))− 2γξ ṙξ (t). (5)

In (2)-(5), Eξ and EL denote the reversal potential of the synaptic
current and leak current, respectively, gξ represents the synaptic

input rate that scales rξ and Eξ , gL is the maximal conductivity of
the leak current conductance, τ is the membrane time constant,
N stands for the connectivity constant, and γξ is the rate constant
of synaptic response. The detailed dynamical evolution in each
population is illustrated in Figure 2.

2.2. Mathematical Expression
This subsection formulates the proposed model TC-ACH
mathematically in the logic of five populations included in
the model.

2.2.1. Cholinergic Neuron Population (CH)
We first consider the cholinergic neuronal population, which is
an essential part of TC-ACH in studying the effects of cholinergic
modulation on thalamocortical rhythms during NREM sleep.
Due to the special role of ACH, here, we apply the concentration
of ACH ([ACH]) rather than the firing rate applied in Equation
(1) to complete the transformation from themembrane potential,
with Destexhe et al. (1994)

[ACH](t) =
[ACH]max

1+ e−(Vc(t)−θc) /σc
, (6)

where [ACH]max is the maximum concentration of ACH.
Moreover, CH receives an external input current Iext .

Therefore, the membrane potential Vc(t) in CH obeys

τcV̇c(t) = −IcL(t)− Iext(t), (7)

here, Iext has the form (Rudolph et al., 2004)

Iext = gext(t)(Vc(t)− Ec), (8)

˙gext(t) =

−( gext(t)− g0(t))

τext
+

√

2σ 2
ext

τext
φC(t), (9)

where g0 is the average conductance, τext is the time constant,
σext is the noise standard deviation (SD) value, and φC(t) denotes
the independent Gaussian white noise process of unit SD and
zero mean.
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2.2.2. Populations PY and IN in the Cortical Module
According to Clearwater et al. (2008), we know that ACH acts on
PY both pre-synaptically and post-synaptically over time scales
from milliseconds to minutes.

In the post-synaptic case, ACH acts on PY throughmuscarinic
receptors, which can cause a certain suppression of voltage-
gated potassium channels (McCormick, 1992). Hence, the M-
type potassium current I

p
M generated by the inactivation of these

channels will change the intrinsic excitability of PY. Motivated
by this observation, the membrane potential Vp(t) in PY is then
formulated by

τpV̇p(t) = −I
p
L(t)− I

p
AMPA(t)− I

p
GABA(t)− I

p
M(t), (10)

where I
p
L, I

p
AMPA, I

p
GABA are calculated by Equations (2)–(4). The

newly added current I
p
M is described as follows (Rich et al., 2018)

I
p
M(t) = gM(t) · (Vp(t)− EM)z(t), (11)

where z(t) represents the unitless gating variable of the ionic
current conductance satisfying

ż(t) =
z(t)− z(t)

τz
. (12)

Here, z(t) =
1

1+e(−Vp(t)−39)/5 stands for the voltage-sensitive

steady-state activation function and τz is the time constant. Note
that gM in Equation (11) is not a constant anymore, but varies in
term of [ACH], that is,

gM(t) = g∗M + KPY · [ACH](t), (13)

where g∗M is a constant with the nominal value listed in Table 1.
In the pre-synaptic case, ACH acts on PY to modulate the

properties of thalamocortical synapses via nicotinic receptor,
which can result in changing the thalamocortical synaptic
connection strength from TC to PY (denoted by Ntp) (Gil
et al., 1997). Furthermore, as summarized by Kimura (2000), the
thalamocortical connection strength will increase when the value
of [ACH] becomes larger. Hence, we apply the way in Clearwater
et al. (2008) to reformulate the connection strengthN in Equation
(5) as

Ntp(t) = (N∗

tp − N∞

tp )e
−KTP ·[ACH](t)

µ + N∞

tp . (14)

Obviously, there have

Ntp(t) =

{

N∞

tp , as [ACH](t) → ∞;

N∗

tp, as [ACH](t) → 0.

where N∞

tp and N∗ represent the connectivity values under two
extreme situations, and µ is a concentration constant.

Because in the cortical module IN contributes less than
PY to the effects of cholinergic modulation on thalamocortical
rhythms (Picciotto et al., 2012), in this paper, the dynamic
evolution in IN is assumed to be not affected by [ACH].
That is to say, the mathematical formulation of IN obeys
Equations (1)–(5).

TABLE 1 | Description and nominal values of parameters in model TC-ACH.

Symbol Description Value Unit

Cm Membrane capacitance in the HH

model

1 µF/cm2

Qmax
p

Maximal firing rate

30 · 10−3

msQmax
i 60 · 10−3

Qmax
t ,Qmax

r 400 · 10−3

[ACH]max Maximum [ACH] in the synaptic cleft 1 mM

θ Firing threshold −58.5 mV

σp
Inverse neural gain

4.7
mV

σi , σt, σr 6

θc [ACH] threshold −40 mV

σc The steepness of the sigmoid 4 mV

σext The noise standard deviation 12 nS

γe

Synaptic rate constant

70 · 10−3

ms−1
γg 58.6 · 10−3

γr , γc 100 · 10−3

Npp,Nip,Npi ,Nii

Connectivity constant

120, 72, 90, 90

/

N∗

tp,N
∞

tp 2.5, 5.5

Nrp,Nrt,Ntr 2.6, 3, 5

Nrr 25

Npt,Nit 2.5

τp, τi

Membrane time constant

30

msτt, τr , τc 20

τz, τext 75, 2.73

gx∈{AMPA,GABA} Input rate of synaptic channel 1 ms

g∗M, g
t
T ,gh

Conductivity of ion channel

1.6, 3, 0.62
mS/cm2

gLK 0.18− 0.55

g
r
T Maximum calcium conductivity 3 mS/cm2

ginc Conductivity scaling of h-current 2 /

gACH−n Conductance mediated by nACHR 0.15 mS/cm2

g0 Average conductance 12.1 nS

E
p
L ,E

i
L

Nernst reversal potential

−64

mV

EtL,E
r
L,E

c
L ,Ec −70

ELK ,ECa,Eh −100, 120,−40

EAMPA,EACH−n 0

EGABA −70

µ Concentration constant 1 mM

a,b, c Positive constant 0.05, 0.58, 0.42 /

ωmax Maximum conductance 0.96 mS/cm2

Pd Apparent dissociation constant 0.028 mM

h Hill coefficient of ACH binding to the

receptors

1.8 /

v Axonal rate constant 120 · 10−3 ms−1

(Continued)
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TABLE 1 | Continued

Symbol Description Value Unit

φ0 Mean background noise 0

ms−1φsd
P ,φsd

I Standard deviation of cortical

background noise

120 · 10−3

φsd
T Standard deviation of thalamic

background noise

10 · 10−3

Ki∈{PY ,TP} Coupling coefficient of projection

from CH

1.5− 5.5
/

K
j∈{Ca,Nrr,I}
RE 1− 9

2.2.3. Populations RE and TC in Thalamic Module
We see in Figure 1 that population RE appears to be a central
hub in connecting the cortex and population CH. The electrical
activity occurring in RE is important for regulating information
transmission in the thalamocortical system and the shape of
thalamocortical rhythms. Therefore, we first model the discharge
activity of RE in this section.

On one hand, recent research indicates that thalamic reticular
neurons can be directly excited by activating α7-containing
nicotinic ACH receptor (Ni et al., 2016). Consequently, we
introduce a new current IACH−n as an input of RE from CH
(corresponding the blue solid line in Figure 1).

On the other hand, it has been shown that the potassium
leak current and T-type calcium current are essential for the
generation of spindle oscillation (Langdon et al., 2012). Based
on this fact, two more currents ILK and IT are considered
in the formulation of the membrane potential Vr(t) in
RE simultaneously.

Hence, the final equation is formulated by

τrV̇r(t) = −IrL(t)− IrAMPA(t)− IrGABA(t)− IACH−n(t)

−C−1
m τr · (I

r
LK(t)− IrT(t)). (15)

In Equation (15), IrACH−n, I
r
LK and IrT are defined, respectively, as

IACH−n(t) = gACH−n · (Vr(t)− EACH−n)ω(t) (16)

where ω(t) is solved by

ω̇(t) =
ωmax

1+ (
Pd

KI
RE·[ACH](t)

)h
, (17)

IrLK = grLK · (Vr(t)− ErLK), (18)

IrT(t) = grT(t) · (Vr(t)− ErCa)(m(t))2h(t). (19)

Here, ω denotes the proportion of open ion-channels caused by
binding of ACH. gACH−n and EACH−n stand for the conductance
and reversal potential, respectively. Pd and h represent the
apparent dissociation constant and Hill coefficient of ACH
binding to the receptors, and ωmax is the maximum conductance.
m(t) and h(t) are activation and inactivation functions of T-type
current. Details about Equations (16)–(19) can be seen in Baran

et al. (2010), Sethuramanujam et al. (2016), and Destexhe et al.
(1993). In addition, the calcium conductance grT in Equation (19)
is recognized to be important for generating bursting oscillations
in RE, whose value increases with increasing [ACH] (Fisher and
Johnston, 1990). Specifically, it is expressed by

grT(t) = grT
KCa
RE · [ACH](t)

KCa
RE · [ACH](t)+ a

(20)

where grT and a are positive constants
(Omori and Horiguchi, 2004).

In addition, it has been found that the GABAergic projection
within RE is decreased by increasing [ACH] (Fisher and
Johnston, 1990). This mechanism is then absorbed into
defining the self-feedback connectivity of RE in our work and
formulated by

Nrr(t) = (−b · logKNrr
RE · [ACH](t)+ c) · Nrr , (21)

where Nrr , b and c are positive constants (Omori and Horiguchi,
2004).

τpV̇p = −I
p
L − I

p
AMPA(rep)− I

p
GABA(rgp)− C−1

m τpIM (22)

τiV̇i = −IiL − IiAMPA(rei)− IiGABA(rgi) (23)

τtV̇t = −ItL − ItAMPA(ret)− ItGABA(rgt)− C−1
m τt

(ItLK − ItT − Ih) (24)

τrV̇r = −IrL − IrAMPA(rer)− IrGABA(rgr)− IACH−n

−C−1
m τr(I

r
LK − IrT) (25)

τcV̇c = −IcL − Iext (26)

r̈ep = γ 2
e (NppQp + Ntpηt + φP − rep)− 2γeṙep (27)

r̈ei = γ 2
e (NpiQp + Ntiηt + φI − rei)− 2γeṙei (28)

r̈et = γ 2
e (Nptηp + φT − ret)− 2γeṙet (29)

r̈er = γ 2
e (NtrQt + Nprηp − rer)− 2γeṙer (30)

r̈gp = γ 2
g (NipQi − rgp)− 2γg ṙgp (31)

r̈gi = γ 2
g (NiiQi − rgi)− 2γg ṙgi (32)

r̈gt = γ 2
r (NrtQr − rgt)− 2γr ṙgt (33)

r̈gr = γ 2
r (NrrQr − rgr)− 2γr ṙgr (34)

η̈p = v2(Qp − ηp)− 2vη̇p (35)

η̈t = v2(Qt − ηt)− 2vη̇t (36)

Next, we turn to modeling the discharge activity of TC. Different
from RE, there exists one more h-type current in TC, which
is responsible for the waxing and waning structure of spindle
rhythms in thalamus. Hence, the membrane potentialVt(t) in TC
is formulated by

τt ˙Vt(t) = −ItL(t)− ItAMPA(t)− ItGABA(t)− C−1
m · τt · (I

t
LK(t)

−ItT(t)− Ih(t)), (37)

where ItLK , I
t
T are calculated by Equations (18)–(19), and Ih is

described as Destexhe et al. (1996)

Ih(t) = gh · (Vt(t)− Eh)(mh1(t)+ ginc ·mh2(t)). (38)
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Here, gh and Eh represent the conductance and reversal potential,
ginc is the conductivity scaling. The details of functions mh1(t)
andmh2(t) can be found in Destexhe et al. (1993).

2.2.4. Full Mathematical Expression of TC-ACH
There is, to emphasize, one key point in our model. On account
of the long range afferent, there exist conduction delays between
thalamus and cortex module. According to Costa et al. (2016),
this delay is approximated as a convolution with the alpha
function h(t). In this case, Equation (5) is then reformulated by

r̈ξ (t) = γ 2
ξ (N · (h(t)⊗ Q(t))− rξ (t))− 2γξ ṙξ (t) (39)

during four transmissions “PY → RE,” “PY → TC,” “TC → PY,”
and “TC→ IN.”

The full mathematical expression of TC-ACH is then
formulated by Equations (22)–(36) (see page 5). Note that the
model output is Vp, which can be viewed as the simulated
EEG signals.

Remark 1. The description and nominal values of all
parameters included in the model TC-ACH are listed in Table 1,
whose values are the nominal ones reported in Costa et al. (2016),
Omori and Horiguchi (2004), Clearwater et al. (2008), Rich
et al. (2018), Baran et al. (2010), Sethuramanujam et al. (2016),
Bhattacharya et al. (2012), and Rudolph et al. (2004).

3. RESULTS

In this section, we apply the proposed model TC-ACH to
verify the effects of cholinergic modulation on thalamocortical
rhythms during NREM in two ways: (1) measurement of effects
of cholinergic modulation in the thalamus; (2) measurement of
effects of cholinergic modulation in the thalamocortical system.

All of the numerical simulations are performed in MATLAB
R2017b (MathWorks,USA), using a stochastic Runge-Kutta
method of 4th order (Rößler, 2010) with a step size of 0.1ms.

3.1. The Oscillatory Phenomena Due to
Cholinergic Modulation in Thalamus
The thalamus is believed to act as a “pacemaker” for
thalamocortical rhythms, and is able to independently generate
multiple brain rhythms during sleep (Hughes and Crunelli,
2005; Li et al., 2017). Hence, oscillatory phenomena due to
cholinergic modulation in thalamus are first explored, where
only the thalamic module and projections from CH to RE are
considered. Here, the model output is Vt .

We first show different thalamic oscillations and transitions
between them caused by cholinergic projections. To this end,
we apply one-dimensional bifurcation analysis for several key
parameters, represented by gLK , KI

RE, KCa
RE , and KNrr

RE . The
bifurcation diagram is obtained by plotting the stable local
minimum, as well as top three maximum values of Vt over
changes in each of four parameters. All simulations are executed
for 40 s and those minimum and maximum values are obtained
from the latter stable 30 s of the time series.

Figures 3A–D shows bifurcation diagrams of Vt over changes
in gLK , K

I
RE, K

Ca
RE , and KNrr

RE , respectively. Seen from Figure 3A,

it reveals that there are four different dynamical states including
low firing (I), spindle (II), fast oscillation (III) and slow oscillation
(IV) as gLK varies in [0.018, 0.055]. Specifically, when the value of
gLK is extremely small, the model exhibits a low firing state and
no oscillation behavior can be observed. As gLK becomes a little
larger, the model mainly experiences a spindle oscillation pattern
for a period, in which multiple pairs of maximum and minimum
values are found within each periodic complex. With further
growth of gLK , the model exhibits a fast oscillation pattern, in
which only one pair of maximum and minimum values emerges
within each periodic complex. When strong hyperpolarization
through increasing gLK attains, the model moves from a high
frequency oscillation pattern into a slow oscillation pattern,
in which multiple pairs of maximum and minimum values
can also be observed within each periodic complex, but the
distances between the top maximum and other maximum
values become larger. Figure 3E illustrates the obtained thalamic
oscillations, which correspond to four dynamical states (gLK =

0.018, 0.03, 0.045, 0.052), respectively.
A similar explanation can be given for the cases of KI

RE, K
Ca
RE ,

and KNrr
RE , while only two dynamical states (i.e., II and III) are

obtained. Moreover, the state transition of KI
RE is different from

that of KCa
RE and KNrr

RE . It is apparent that the model has a pattern
transition from state III to an increasingly stable state II as KI

RE
increases (see Figure 3B). By contrast, a transition from state II
to state III with the increase of KCa

RE (or KNrr
RE ) can be observed in

Figure 3C (or Figure 3D). That is to say, the model appears to
demonstrate a stabler spindle oscillation state with the increasing
value of KI

RE, while the growth of KCa
RE (or KNrr

RE ) leads to reduced
spindle rhythms. Prior work has established that spindle rhythms
are helpful to protect sleep (Dang-Vu et al., 2010; Kim et al.,
2012). Therefore, the obtained results implicate that cholinergic
modulation in RE may help promote sleep (or arousal) states.

Next, we check whether our results can be generalized
within a certain range of parameters. The above bifurcation
analysis allows us to further distinguish different dynamical state
regions in the two-parameter space (for example, see Figure 5A).
Moreover, the power spectral analysis is applied to estimate the
dominant frequency (Df) and second dominant frequency (Sec-
Df) of neural oscillations from the time series of Vt . Figure 4
illustrates the box-plots of Df and Sec-Df with respect to three
oscillations (fast, slow and spindle). It is clear from Figure 4

that the Sec-Df has better differentiation capability than Df.
Therefore, the corresponding Sec-Df regions are drawn for
each pair of parameters (for example, see Figure 5B) in the
following analysis.

Figures 5A,B illustrate the dynamical state regions and Sec-
Df regions with 41 × 41 grids in the space of gLK × KI

RE ∈

[0.018, 0.055]× [1, 9]. As shown in Figure 5A, four different state
regions are displayed, whose identification is same as above [i.e.,
low firing (I), spindle (II), fast oscillation (III) and slow oscillation
(IV)]. It can be observed that along with KI

RE rising, the model
generates more spindle oscillation pattern after lasting a certain
fast oscillation period (see the black arrow). By combining
the results of frequency analysis shown in Figure 5B, we can
outline the spindle oscillation region that falls into the 11–14 Hz
frequency range. It should be noted that, the obtained result is
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FIGURE 3 | The bifurcation diagrams of Vt over changes in gLK , K
I
RE , K

Ca
RE , and KNrr

RE . (A) Bifurcation diagram (varying gLK ). (B) Bifurcation diagram (varying K I
RE ). (C)

Bifurcation diagram (varying KCa
RE ). (D) Bifurcation diagram (varying KNrr

RE ). (E) Four thalamic oscillations with respect to different values of gLK .
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FIGURE 4 | The box-plots of (A) Df and (B) Sec-Df with respect to three oscillations (fast, slow, and spindle).

consistent with the frequency range [11, 16]Hz characteristic of
sleep spindles.

Similar results are obtained in the spaces of gLK × KCa
RE

and gLK × K
Nrr
RE , which are illustrated in Figures 5C–F. We

observe that increasing KI
RE promotes the generation of spindle

oscillations in ourmodel (see the black solid arrow in Figure 5A),

while increasing KCa
RE (or K

Nrr
RE ) suppresses generation of spindle

oscillations (see the black dash arrow in Figures 5C,E). These
results are in line with the results mentioned above.

Additionally, in order to demonstrate the interactions among
parameters KI

RE,K
Ca
RE , and KNrr

RE , the dynamical state regions and
Sec-Df regions for each pairwise combination of them are shown
in Figure 6. As expected, both state and Sec-Df analysis in three
panels (KI

RE, K
Ca
RE), (K

I
RE, K

Nrr
RE ), and (KCa

RE , K
Nrr
RE ) provide the same

evidence as the above description, that is, the spindle oscillation
is generated as KI

RE increases (or as K
Ca
RE , K

Nrr
RE decreases).

3.2. The Oscillatory Phenomena Due to
Cholinergic Modulation in the
Thalamocortical System
Here we concentrate on the effects of cholinergic modulation
on thalamocortical rhythms during NREM sleep, including K-
complexes, spindles, and slow oscillations. We fix the values of
the four parameters to be gLK = 0.034, KI

RE = 5.2, KCa
RE = 1.5,

and KNrr
RE = 2.1. Based on the results obtained in the proceeding

subsection, we know that spindle oscillations can be generated in
the thalamus module with such settings.

We first show the dynamical behavior of our TC-ACH model
with variation of KPY , which is the strength of the cholinergic
projection from CH to PY. In this case, we assume that there
is no cholinergic projection from CH to “PY-TC connection”
(KTP = 0), and we apply linear ramps to increase or decrease the
parameter value and observe the effects of continuous changes in
KPY on the model. Figure 7B illustrates the model output Vp as
KPY varies in [2.3, 5] linearly (see Figure 7A). In the beginning,
when KPY = 2.3, the model exhibits K-complex oscillations.
Then we can find that a small ascent of KPY drives a transition
from K-complexes to slow oscillations. Furthermore, with the
gradual increase of KPY , the slow oscillation is kept for a short
period until KPY reaches its higher threshold. At this time, the
slow oscillation is replaced by the α-like oscillation. As KPY

ramps down, the model transitions back into its original state
gradually (that is, from α-like to slow oscillations, and then from
slow oscillations to K-complexes). The enlarged graphs of three
different oscillations in 20 s are displayed in Figures 7E–G.

On the basis of the above observations, we conclude that K-
complexes and slow oscillations can be triggered by weakening
the strength of the cholinergic projection from CH to cortex,
while the emergence of α-like activity, characteristic of REM,
requires stronger cholinergic input. Here, if we roughly consider
that K-complexes and slow oscillations mainly emerge during
NREM sleep and α-like rhythms mostly appear during REM
sleep, the obtained results in our work are consistent with the
conclusion in Lena et al. (2005), that is, the concentration of
ACH is lowest during NREM sleep and highest during wake and
REM sleep.

The spectral analysis and the sample entropy extracted from
the model output Vp also support this conclusion from another
point of view. Figure 7C illustrates the spectrogram of Vp.
During the first and last 40 s where K-complexes and slow
oscillations are emerging, the spectral power of Vp mainly falls
within the [0, 5]Hz range; while in the middle stage where α-like
rhythms begin to appear, it increases to [0, 10]Hz. These results
obviously conform with the frequency ranges of certain sleep
rhythms. Besides, the sample entropy extracted from Vp also
shows a similar tendency. In detail, it is larger in the α-like stage,
but smaller in the K-complex and slow wave oscillation stage
(see Figure 7D). Sample entropy measures signal complexity,
hence this observation is consistent with the conclusion that the
complexity of cortical rhythms are decreased as the deeper sleep
state, but increased during REM and wake (Bruce et al., 2009; See
and Liang, 2011).

Next, we show the dynamical behavior of constructed
model TC-ACH with variation of KTP, which is the strength
of the cholinergic projection from CH to the connection
between PY and TC. Here, KPY shows the trend as in
Figure 7, and KTP is set to be 1.5, 3.5, 5.5, respectively, in
simulations. Figure 8 illustrates the model output Vp under three
different cases.

In the first case where the connectivity between TC and PY is
regulated by a lower strength of cholinergic projection from CH
(i.e., KTP = 1.5), we observe in Figure 8A1 that some weaker
spindle rhythms emerge when the value of KPY is relatively
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FIGURE 5 | The dynamical state regions (A,C,E) and Sec-Df regions (B,D,F) in three panels (gLK ,K
I
RE ), (gLK ,K

Ca
RE ), (gLK ,K

Nrr
RE ).

small. It can be observed more clearly in Figure 8A2 where the
enlarged graph exhibits spindle rhythms (with red circle) and K-
complex oscillations in [20, 40] s. Meanwhile, in Figures 8A3,A4,
we see that the duration of slow oscillation is much longer,
and α-like activity is much less by comparing the results shown
in Figure 7.

This conclusion can be further verified under other two cases.
It can be seen in Figures 8B1–B4 that more spindle rhythms
appear as KPY gradually increases and the α-like activities have

been largely replaced by slow waves in the case where KTP = 3.5.
Furthermore, when KTP is set to be 5.5, the spindle rhythms
run through the model output from the beginning to end. We
can see from Figure 8C4 that there are still spindle rhythms
when KPY attains its maximum value. These observations reveal
that the strength of cholinergic projections from CN to “PY-TC
connection” play an important role in promoting the spindle
rhythms and prolonging the duration of the NREM state in the
thalamocortical system.
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FIGURE 6 | The dynamical state regions (A,C,E) and Sec-Df regions (B,D,F) in three panels (K I
RE , K

Ca
RE ), (K

I
RE , K

Nrr
RE ), and (KCa

RE , K
Nrr
RE ).

4. SUMMARY AND DISCUSSION

In this paper, we first proposed a novel computational model
(TC-ACH) by integrating a neuron population CH into classical
thalamo-cortical circuitry (including populations PY, IN, TC,

and RE). The connections between five populations are built
in accordance with the established mechanisms. Our model
considers the neurotransmitter ACH released by neurons in CH,
which alters discharge activities of thalamocortical neurons. For

simplicity, we represent these additions to the classic model
by four cholinergic projections, where coupling coefficients

KCa
RE ,K

Nrr
RE ,K

I
RE represent different projections from CH to

thalamus, and KPY and KTP represent the projections from CH
to cortex and thalamocortical system, respectively. On the basis
of established model framework of TC-ACH, the corresponding
mathematical expression has been formulated in the logic of
five populations systematically, where the average membrane
potential V(t) is solved to simulate the rhythms generated by
each population.

Next, we applied the developed model TC-ACH to study the
effects of ACH modulation on thalamocortical rhythms during
NREM sleep in two ways:

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 10027

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Li et al. Effects of Cholinergic Neuromodulation on NREM Sleep

FIGURE 7 | The dynamical behavior of model TC-ACH with the variation of KPY : (A) the variation of KPY over time t; (B) the model output Vp; (C) the spectrogram of

Vp; (D) the sample entropy of Vp; (E) the enlarged model output in [10,30]s (including K-complex); (F) the enlarged model output in [30,50]s (including slow

oscillation); (G) the enlarged model output in [65,85]s (including α-like oscillation).

(1) Measurement of effects of cholinergic modulation in the
thalamus. In this case, only the thalamic module and
projections from CH to RE were considered. Simulation
results suggest that cholinergic projection activity is a key
factor in modulating oscillation patterns in the thalamic
module. Specifically, the model appears to be a stabler
spindle oscillation state with the increasing value of KI

RE,
while the growth of KCa

RE (or KNrr
RE ) leads to reduced

spindle rhythms. Moreover, with variation of the potassium
leak conductance gLK , which is dramatically modulated
by the concentration of ACH (McCormick, 1989, 1992),
four different dynamical states including the low firing,
spindle, fast oscillation, and slow oscillation can be obtained
and transited.

(2) Measurement of effects of cholinergic modulation in the
thalamocortical system. In this case, the dynamical behavior
of our TC-ACH model was studied by varying KPY and KTP,
respectively. Simulation results show that the K-complex and
slow oscillations can be triggered by weakening strength of
KPY , while emergence of α-like activity requires stronger
input. Furthermore, when there exists cholinergic input from
CH to “PY-TC connection” (that is, KTP 6= 0), we found
that the duration of oscillation patterns during NREM sleep

including K-complexes, spindles and slow oscillations is
longer. Additionally, when KTP is relatively larger, more
spindle rhythms appear and α-like activities are largely
replaced by slow waves.

It should be noted that a number of electrophysiological
experiments have investigated cholinergic modulation of cortex,

thalamus or thalamocortical system, respectively (McCormick
and Prince, 1986; McCormick, 1989, 1992; Clarke, 2004;
Mesulam, 2004; Hasselmo and Giocomo, 2006; Beierlein, 2014).
However, few studies correlate ACH modulation with rhythmic
activities (Steriade et al., 1993; Steriade, 2004), where the
model-based work to study in theory the effects of cholinergic
modulation on thalamocortical rhythms during sleep is far less.
More than that, what few existing studies are not comprehensive
enough in studying the effects of ACH modulation on
thalamocortical rhythms, especially during sleep. For example,
the effects of ACH modulation are considered only on cortex
or thalamus separately, but not on the whole thalamocortical
system (Omori and Horiguchi, 2004; Li et al., 2017); the
mechanism regarding ACH modulation is only modeled as a
certain parameter, but not as a whole neuron population (Li
et al., 2017); the model is constructed at the microscopic level,
which cannot relate directly to thalamocortical rhythms at the
mesoscopic level (Omori and Horiguchi, 2004). Therefore, in
order to overcome such limitations, we have constructed a novel
computational model (TC-ACH) by incorporating a cholinergic
neuron population into the classical thalamo-cortical circuitry
at the mesoscopic level. By thus doing, a deeper understanding
of the role of cholinergic modulation on thalamocortical system
will be got, and further, a critical insight into the mechanisms
controlling sleep state may be found.

Besides five projections applied in the modeling (represented

by KCa
RE ,K

Nrr
RE ,K

I
RE, KPY , and KTP), there still exist cholinergic

modulators on other projections, such as corticoreticular
and corticothalamic projections. Castro-Alamancos and
Calcagnotto (2001) demonstrated that the corticothalamic
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FIGURE 8 | The dynamical behavior of model TC-ACH in the cases where

KTP = 1.5,KTP = 3.5,KTP = 5.5. (A1,B1,C1) The model output Vp;

(A2,B2,C2) the enlarged model output in [20,40]s; (A3,B3,C3) the enlarged

model output in [40,60]s; (A4,B4,C4) the enlarged model output in [65,85]s.

activity can be filtered by cholinergic activation during
arousal high-pass according to the experiments performed
in vitro and in vivo. In addition, as indicated in Itier
and Bertrand (2002), the cholinergic modulation on
corticoreticular projection may induce the generation of

more complex brain rhythms (such as spike and wave) during
sleep. However, the quantitative description relating such
cholinergic mechanisms to the generation and transition
of typical rhythms during NREM sleep is very limited.
Therefore, we hope these mechanisms could be further
considered with more attempts, to study the cholinergic
modulation of thalamocortical rhythms during sleep in
different cases.

Another point to stress here is the synaptic connection
ways in intra-RE. Previous electrophysiological studies indicated
that the thalamic reticular neurons are functionally connected
through chemical/electrical synapses (Sanchez-Vives et al., 1997;
Landisman et al., 2002; Shu and McCormick, 2002; Long et al.,
2004; Deleuze and Huguenard, 2006; Lam et al., 2006). A
potentially paradigm-shifting question has been presented as to
whether chemical synapses between thalamic reticular neurons
are altogether absent in certain mammals or degenerate as a
function of increasing age (Landisman et al., 2002; Cruikshank
et al., 2010; Hou et al., 2016). However, there still have other
works supporting the existence of GABAergic intrareticular
synapses. For example, one of the most recent model-based
study shows that intrareticular synapses, both chemical and
electrical, manifest certain effects on the signal propagation
and oscillation (Brown et al., 2019). In our modeling work,
by means of considering the chemical synapses in intra-
RE population, the measurement of effects of cholinergic
modulation in thalamocortical system has been completed well.
In contrast, the electrical synapses do not work effectively
under the same situation. Consequently, we roughly hypothesize
that GABAergic synapses may contribute much more than
electrical synapses to the effects of cholinergic modulation in
thalamocortical rhythms, at least at the mesoscopic level. But
on the other hand, we certainly acknowledge that the electrical
intrareticular synapses play important roles vis-à-vis thalamic
signaling. Therefore, an important extension of the current
work would be the modeling of electrical synapses between
reticular neurons from the microscopic point of view, such
as the model-based works in Pham and Haas (2018) and
Brown et al. (2019).

An important limitation of our TC-ACH model is that
it considers only ACH modulation. However, it is known
that thalamocortical rhythms during sleep are also directly
affected by other neuromodulators, such as noradrenalin (NE),
serotonin (5-HT), histamine (HA), and dopamine (DA) from the
hypothalamus and brainstem, whose concentrations vary over
the night (Lena et al., 2005). Therefore, some apparent questions
need to be answered: whether our method can be further
developed to shed light on other sleep-related neuromodulators?
If so, how to model the corresponding mechanisms and
explore their effects on thalamocortical rhythms during sleep?
Fortunately, based on the progressive mathematical description
of sleep regulatory networks (Kumar et al., 2012; Booth et al.,
2017), it may well be possible to carry our model further
by constructing a new thalamocortical NMM which contains
various sleep-related neuron populations (releasing NE, 5-HT,
HA, DA); this is a topic we plan to pursue in future work. In
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addition, such model-based research can make a contribution
to understanding sleep related pathological conditions, such as
sleep-related epilepsy.
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Advances in computation and neuronal modeling have enabled the study of entire
neural tissue systems with an impressive degree of biological realism. These efforts have
focused largely on modeling dendrites and somas while largely neglecting axons. The
need for biologically realistic explicit axonal models is particularly clear for applications
involving clinical and therapeutic electrical stimulation because axons are generally
more excitable than other neuroanatomical subunits. While many modeling efforts
can rely on existing repositories of reconstructed dendritic/somatic morphologies to
study real cells or to estimate parameters for a generative model, such datasets for
axons are scarce and incomplete. Those that do exist may still be insufficient to build
accurate models because the increased geometric variability of axons demands a
proportional increase in data. To address this need, a Ruled-Optimum Ordered Tree
System (ROOTS) was developed that extends the capability of neuronal morphology
generative methods to include highly branched cortical axon terminal arbors. Further,
this study presents and explores a clear use-case for such models in the prediction
of cortical tissue response to externally applied electric fields. The results presented
herein comprise (i) a quantitative and qualitative analysis of the generative algorithm
proposed, (ii) a comparison of generated fibers with those observed in histological
studies, (iii) a study of the requisite spatial and morphological complexity of axonal arbors
for accurate prediction of neuronal response to extracellular electrical stimulation, and
(iv) an extracellular electrical stimulation strength–duration analysis to explore probable
thresholds of excitation of the dentate perforant path under controlled conditions.
ROOTS demonstrates a superior ability to capture biological realism in model fibers,
allowing improved accuracy in predicting the impact that microscale structures and
branching patterns have on spatiotemporal patterns of activity in the presence of
extracellular electric fields.

Keywords: deep brain stimulation (DBS), axons, multi-scale, electrical stimulation (ES), morphology, spatio-
temporal analysis
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INTRODUCTION

In the study of extracellular electrical stimulation of neural
systems, spatial and temporal patterns of activity are strongly
influenced by tissue geometry. One established approach to
studying this relationship is through morphologically detailed
equivalent circuit models of neurons, including axons. While
these models are invaluable for many different applications,
they are especially useful for prediction of tissue response to
extracellular stimulation, where explicit morphologies aid the
prediction of activation thresholds under varying biological and
stimulating conditions (Ranck, 1975; Nowak and Bullier, 1996,
1998). For biologically realistic network models, a common
method involves arranging individual neuron models in virtual
space to reconstruct elements of the tissue system being studied
(Grill, 1999; McIntyre and Grill, 1999; Howell and McIntyre,
2016; Anderson et al., 2018; Bingham et al., 2018). This approach
enables accurate prediction of membrane potentials in response
to changes in electric field geometry and gradient (Clark and
Plonsey, 1970; Figure 1).

Despite an understanding that geometry and topology
influence activity, much of the biological realism in these studies
is reserved for dendritic rather than axonal arbors. This lack
of realism in axonal fibers becomes especially disconcerting
when considering both that (i) central nervous system axon
terminal arbors are often highly branched and tortuous relative
to the mostly straight and long nerves of the periphery, and
(ii) under most typical stimulating conditions, axons have
shorter chronaxies than somas and dendrites (Ranck, 1975;
Johnson and McIntyre, 2008; Rattay et al., 2012). It follows that

FIGURE 1 | Adding biological realism to axon models for the study of
extracellular electrical stimulation allows more accurate analysis of evoked
neural network activity. The proposed algorithm, ROOTS, was developed
specifically to provide increased realism in fiber models. The utility of ROOTS
is to mitigate the challenge portrayed above: without explicit axonal
reconstructions, how does one accurately estimate the site of action potential
initiation and appropriate orthodromic conduction latencies through the
terminal region in the presence of externally applied electric fields? (A)
corresponds to the case where distance-based pure-delay mechanisms are
used. (B) corresponds to explicit and biologically accurate axon
representations.

suprathreshold stimulation events result in coupled local (driven
by the injected electric field) and distal (synaptically driven)
activity, with substantial realism being necessary to predict the
spatiotemporal pattern of the resulting response in totality.
Deliberate arrangement of neuronal structures is also useful
for accurate model-based prediction of tissue–tissue interactions
due to electric fields arising from endogenous current sources
(Anastassiou and Koch, 2015). Accurate estimation of local
field potentials (LFPs) and, therefore, predictions of the region-
specific impact of ephaptic coupling are sensitive to the degree
of biological realism implemented in a model system (Bingham
et al., 2018). Lastly, network models that lack explicit axonal
structures may have unrealistic conduction delays between
connected populations of neurons, leading to potential prediction
errors (Kim et al., 2019). While delays may be trivially added
to network connections once they are known, biologically
appropriate behaviors must first be estimated. Therefore,
geometrical and anatomical realism may also be necessary to
study emergent network activity such as co-oscillatory activity in
hippocampal networks (Whittington et al., 1997; Fries, 2005).

Despite the long record of hippocampal observation, axonal
morphology is not as scrupulously described as the somas
and dendrites of many cell types. With a few exceptions,
studies yielding explicit reconstructions through morphometric
analysis of neuronal branching have focused on dendritic
arbors and overlooked their axons (Desmond and Levy, 1985;
Hama et al., 1989; Claiborne et al., 1990). The dearth of
robust datasets is exacerbated by the general observation from
staining experiments performed in the hippocampus that axonal
structures, even of the same cell type, may be less stereotyped than
dendritic arbors (Hjorth-Simonsen and Jeune, 1972). Perforant
path axon terminal arbors from layer 2/3 entorhinal cortical (EC)
spiny stellate cells are not constrained to simple conical, fanned,
or star-shaped volumes like so many dendritic arbors (Tamamaki
and Nojyo, 1993). Geometric and topological heterogeneity make
the prospect of using explicit reconstructions unfeasible for
direct use in computational models which require in situ cell
density at tissue scale. This becomes particularly apparent when
considering that the unique geometry of the dentate gyrus,
which changes from septal to temporal poles, requires dramatic
inter-region variety in the volume, orientation, and contour of
afferent EC axons.

Despite the general absence of morphometrics for axons, the
shape of terminal fields, distribution of synaptic spines, and a
rough measure of anatomic domains of axon terminal fields
from either histology or other imaging methods provide data
from which minimally functional axons can be grown. Explicit
dendritic reconstructions, spine counting, and anterograde and
retrograde staining experiments provide information regarding
synaptic targets. Distributions of synaptic targets combined with
a knowledge of the general path and origin of a fiber is sufficient
to generate a functional structure that captures the tertiary
conformation and local divergence of the axon terminal arbor.
When representing a neural process as a graph, nodes placed
at synapses and edges to connect between them and the soma
can effectively reconstruct a functional dendritic arbor (Türetken
et al., 2011). Likewise, presynaptic boutons provide nodes that
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can be connected to each other and the soma with a deliberate
arrangement of edges to form a spatial network or graph. In
other words, a minimally functional axon connects a parent cell
to synaptic targets.

Beyond minimally functional morphologies, sophisticated
models of realistic neuronal branching have been proposed with
primary application to either generating unique and artificial
dendritic trees or reconstructing them from a series of images.
There are two chief types of generative models: (i) stochastic
(Rozenberg and Salomaa, 1980) or (ii) greedy (Cuntz et al.,
2007, 2010; Budd et al., 2010; Budd and Kisvarday, 2012).
Stochastic models operate by sampling distributions of branching
statistics extracted from experimentally measured neurons, while
greedy graph-based models are much more frequently used to
reconstruct three-dimensional dendritic trees from stacks of
manually labeled images (Türetken et al., 2011). Although each
of these approaches have been useful under certain conditions,
neither has been properly adapted for use in the generation of
virtual biologically realistic axons.

Consequently, we present in this paper a new graph-based
algorithm for generating biologically realistic tree representations
of axon terminal arbors. The proposed model is inspected
for its utility in studying extracellular electrical stimulation of
cortical tissue through analysis of the impact of arbor topography
and morphometry on activation thresholds and, by extension,
spatiotemporal patterns of activity in the hippocampus. The
results of this work comprise (i) a quantitative analysis
of the generative algorithm proposed, (ii) presentation and
quantitative/qualitative description of generated fibers, (iii)
comparison to leading alternative methods, (iv) demonstration
of a method to reduce spatial complexity of axonal arbors
while maintaining accurate prediction of neuronal response
to extracellular electrical stimulation, and (v) an extracellular
electrical stimulation strength–duration study. The value of these
studies is twofold: (i) establishing the novelty and utility that
this modeling system yields and (ii) determining if stimulation–
response recruitment order (i.e., large before small) for straight,
long, large-diameter, and myelinated peripheral fibers is similarly
true of small, highly branched, and unmyelinated cortical fibers.

MATERIALS AND METHODS

The study presented here focuses on accurately capturing the
emergent spatial features of spiny stellate EC axons within the
dentate gyrus in Sprague-Dawley rats. The model is designed to
be flexible to the inclusion of novel morphometric criteria as new
experimental data become available but, at present, it is clearly
important that (i) fibers are constrained to 1–1.5 mm within the
septotemporal axis (Tamamaki and Nojyo, 1993), (ii) laminar
organization along the transverse axis is inviolate, with medial
and lateral EC axons confined to the middle and outer thirds of
the dentate molecular layer, respectively, and (iii) axons synapse
with a pronounced en passant connective schema, where most
pre-synaptic boutons are non-terminal. Many more features and
their sources are detailed in Table 1. A greedy, graph-based, or
ruled-optimum ordered tree system (ROOTS) was developed to

TABLE 1 | Principle features (left) of entorhinal cortical axons found in the dentate
gyrus perforant path and the studies which reported them (right).

Feature References

Strictly laminar dentate perforant path Hjorth-Simonsen and Jeune, 1972;
Witter, 2007

En passant; mostly non-terminal
boutons

Witter, 2007; Bindocci et al., 2017

Distribution of bifurcation angles
≈80.3 ± 35.7◦

Budd and Kisvarday, 2012

0.1 µm fiber diameter, ≈0.7 µm
boutons

Tamamaki and Nojyo, 1993

Primary bifurcation at/near crest,
envelopes entire transverse of dentate,
continues to CA3

Hjorth-Simonsen and Jeune, 1972;
Schwartz and Coleman, 1981;
Tamamaki and Nojyo, 1993; Witter,
2007

≈17,700 synapses per EC axon Desmond and Levy, 1985; Hama et al.,
1989; Claiborne et al., 1990

Myelination – mixed, though clearest
images show no myelination below the
crest of dentate

Tamamaki and Nojyo, 1993

These features, when combined with the topography of spines in the outer and
middle thirds of the dentate gyrus provide guiding parameters for construction of
artificial tree models. The proposed method utilized these as criteria for generation
of dentate perforant path fibers that provide a test-case for ROOTS as a method.

control these features. First, we will explain the development of
constraints and inputs to the method and then explain, in detail
the functions of the method.

Volume and Nodal Constraints
In the construction of a spatial ordered tree, the number and
topography of target nodes strongly determines the emergent
features of the resulting graph. Therefore, the selection of nodes
is an important step in the successful generation of biologically
appropriate axonal trees. This process was executed using the
Kjoenigsen rat hippocampal atlas slice at −3.34 from Bregma to
segment model boundaries (Kjonigsen et al., 2008). Past efforts
have elucidated the approximate number and spatial distribution
of synaptic targets within the dentate perforant path (Claiborne
et al., 1990; Bingham et al., 2016; Hendrickson et al., 2016). The
approximate number and density of granule cells found within
the dentate region of a 1.5 mm extruded slice was calculated based
on density measurements reported in the literature (Gaarskjaer,
1978; Patton and McNaughton, 1995). Spine counts and the
laminar topology of entorhinal–dentate connections were used
to create a pool of synaptic targets and the number of perforant
path arbors from which afferent connections might be formed
(Desmond and Levy, 1985; Hama et al., 1989; Claiborne et al.,
1990). An abbreviated table derived from Hendrickson et al.
(2016) can be found below to summarize these parameters as they
were used in this study:

To summarize: the number of synaptic spines in the
outer and middle third of hippocampal granule cell dendritic
arbors the size, number, and density of granule cells, and
the number/density of EC cells contributing to the perforant
path provide the necessary arithmetic for deducing the
number of synapses made within each axon terminal field
(Table 2 and Figure 2). When combined with observational
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TABLE 2 | Parameters describing the entorhinal cortical–dentate gyrus topology
used to design the topography of synaptic targets for axon fiber growing
described in later sections.

Entorhinal cortical–dentate gyrus topological parameters

Granule cell # spines: middle 1/3: 1050–1200

Granule cell # spines: outer 1/3: 1100–1300

This table provides a range of spine-counts per dentate granule cell with which
the perforant path fibers may synapse (Claiborne et al., 1990; Desmond and
Levy, 1985). Medial entorhinal cortical fibers synapse in the middle 1/3 and
lateral entorhinal cortical fibers synapse in the outer third of the granule cell
dendritic arbors.

FIGURE 2 | Features of granule cell arbors – including the distributions of
longitudinal, transverse, and dentate normal lengths of arbors shown above –
and afferent connectivity provides guiding information for both the sampling of
target nodes for generation of axon morphologies and the simplification of
generated morphologies (Claiborne et al., 1990).

data regarding the septotemporal range of these axons, this
information provided an approximate volume throughout which
nodes could be distributed and a plausible synthetic terminal
arbor could be grown. These same parameters were used to
construct much larger, more complex, and previously validated
mechanistic models of a rat dentate hippocampus; therefore,
additional details can be found in Bingham et al. (2018)
and Hendrickson et al. (2016).

Constraining Patterns of Axon Branching
While many of the possible branching patterns of a functional
arbor are constrained by the topography of synaptic targets, there
remain as many as n(n−2) trees that span a set of targets (n), few
of which are biologically plausible (Cayley, 1889). It follows that
encouraging biological realism requires additional non-trivial
steps to constrain branching features of generated topologies.
Figure 3 is an algorithm flow diagram and pseudocode (provided
in Supplementary Figure S1) for proper preprocessing and
successful execution of ROOTS. This process generated the trees
analyzed in later sections of this manuscript. In brief, ROOTS
seeks to minimize the quantity of membrane required to span a
set of synaptic targets while satisfying user-specified branching
criteria. These criteria (at the time of writing) include: branch
extension angle (meander) and length (“Extension Criteria”), and
bifurcation angle and length (“Bifurcation Criteria”). The method
was also designed in a manner that allows additional global

criteria (branch order, number of bifurcations, total length, etc.)
to be designed and applied within ROOTS. The process by which
this is accomplished involves serially considering sorted (by
source–target distance or “Likely Path”; according to Figure 3)
open points by alternating between branch extension (appending
points to an existing branch) and bifurcation (beginning of
a new branch). If in the process of extending a branch it is
found that no points satisfy branch extension criteria, then the
algorithm switches to bifurcation. If a bifurcation can be created
according to bifurcation criteria, then the algorithm switches
back to extending the newly begun branch. This iterative process
continues until either extension and bifurcation criteria cannot
be satisfied or no open points remain. Model inputs (synaptic
targets, branching and bifurcating criteria, and global criterial)
dually exert control over the emergent spatial/geometric features
of the entire terminal field and the branching patterns that
develop as the fiber is constructed.

While the core of this algorithm is capable of growing axons
with highly particular geometries, it is limited in the cases
where axons execute acute turns without forming connections
that cross the resulting sulcus. An additional rule can be used
to mitigate this case-specific flaw: a relative location sensitive
dynamic source point and reference angle (Figure 3B). The
principle difference between simplified and dynamic source
updating modes (Figures 3A vs. 3B) is the way in which points
are sorted and, therefore, the order in which points are considered
for inclusion into the tree and the reference angles that are
subsequently calculated. The “likely path sort” components in
Figure 3B, effectively, allow fibers to be grown along manifold
surfaces where the simplified algorithm is for efficient growth
of conical or star-shape fibers. This approach requires additional
preprocessing – replacing the initial sorting of points with respect
to a single source point with a more sophisticated sort and
a dictionary of relative source-points and reference directions.
This new process is performed by (i) finding spatial clusters of
synaptic targets using K-means, (ii) fitting a mesh to the spatial
clusters using Delaunay triangulation, and (iii) discovering the
most likely path to any cluster center from the origin source-point
through the constructed mesh (Hartigan and Wong, 1979; Chew,
1989). The most likely path, found using Dijkstra’s shortest path
algorithm, is then used as a lookup table where the edges leading
to the cluster within which any new point being considered may
be found are used to constrain angles of branch extension and
bifurcation (Chen, 2003). Execution of these three new steps
results in a path directed sorting of targets. It should be noted
that K-means is the least critical new component and is only
used to regularize the triangulation and reduce the complexity
for the steps that follow (between 2500 and 3000 clusters were
used in this implementation to have the desired effect). This
new rule allows successful execution of acute turns, where the
fiber bends backward toward the source point without crossing
the resulting cleft or forming any cycles. Critically, these acute
turns are executed without relaxing constraining parameters for
branching and bifurcating.

While there are many clustering algorithms and many
sophisticated meshing algorithms, K-means and Delaunay
algorithms were selected because of their speed and reliability.
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FIGURE 3 | Flow diagrams describing the ROOTS algorithm. For greater efficiency, the generative algorithm was designed to operate in one of two modes: (A)
Without or (B) with dynamic source-point updating criteria. This feature enables generated morphologies to successfully conform to acute turns of varying radius.
Disabling this feature when not needed improves efficiency.

Because dynamic sourcing (Figures 3B vs. 3A) adds considerable
computational burden, it is valuable to select preprocessing
methods which do not add to this burden needlessly.
Supplementary Figures S2–S4 show development of this stage
of the algorithm and its three constituents: K-means clustering,
Delaunay triangulation, and Dijkstra’s shortest path methods.

Synaptic Boutons
In recognition that axons have complex surfaces and are not
just a series of smooth and simple pipes, additional functions
were written to allow complexities such as synaptic boutons to
be added to an already grown fiber. These boutons, as they are
seen in the dentate perforant path at non-terminal presynaptic
densities, are described by Tamamaki as “periodic varicosities”
(Tamamaki and Nojyo, 1993). Each bouton is ≈5 µm long,
≈0.7 µm in diameter, with varying distances between, depending
on the topography of the synaptic targets. Because neither the
exact distribution of inter-bouton distances nor multisynapse
formation behavior is known in this tissue system, it was assumed
that they were uniformly distributed throughout the terminal
axon arbors every 25 µm, with each bouton being 5 µm in
length and 0.7 µm in diameter. Because these boutons are
non-terminal they are likely to be actively conducting. Lacking
experimental evidence to frustrate this assumption, sodium,
calcium, and potassium channel densities and conductances were
implemented with the same parameters in bouton compartments
as in non-bouton axonal regions.

Following development and testing of this algorithm, fibers
were exported for simulation in environments such as NEURON
(Hines and Carnevale, 2003). Later in this paper, extracellular
electrical stimulation studies performed with the generated
morphologies are presented to demonstrate the maturity of this
analysis pipeline.

Arbor Simplification and Computational
Complexity
Simulation of detailed neuronal models is computationally
expensive. While this study was enabled by non-competitive
access to a 4,040 processors computing cluster, there remain
concerns about impractical and unnecessary model complexities.
With as many as 17,700 possible synaptic connections made by
each EC arbor, it became clear that an approach to morphology
simplification would be necessary to reduce the computational
burden of both generating and simulating arbors in NEURON.
While the exact number is not known, because of the en passant
nature of the perforant path fibers it is likely that a passing
fiber synapses more than once with any target granule cell. This
provides the opportunity to generate trees using fewer nodes due
to the relative co-locality of synaptic connections between an
arbor and any given granule cell. To examine this assumption,
we generated arbors with 8,850 (two synapses per target cell)
or 5,900 (three synapses per target cell) target cells rather than
17,700 target cells and used a single node from each to guide
arbor growth. Perforant path fibers were generated using each
of these node counts and then each was also line simplified. The
Ramer–Douglas–Peucker (RDP) algorithm for line simplification
was used on each of these trees to determine the minimum node
count required to approximate full complexity fibers (Saalfeld,
1999). Using a fraction of the typical dentate granule cell
dendritic arbor height and width (e.g., 20% or ∼45 µm) to set
a maximum RDP-epsilon ensured that path deviations would be
much less likely to make otherwise probable EC–DG connections
anatomically impossible.

Alternative Generative Models
To test the functionality of this algorithm in comparison with
others that already exist, we attempted to create satisfactory
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arbors with two commonly used alternative tools which were
originally designed to grow dendritic arbors: the TREES Matlab
toolbox (Cuntz et al., 2010), and L-NEURON (Ascoli and
Krichmar, 2000; Scorcioni and Ascoli, 2005).

The TREES toolbox, like ROOTS, depends upon carefully
selected nodes or points to grow a graph; therefore, spanning
trees generated by this method can use the same set of synaptic
or cellular targets as those utilized by the proposed system.
Unlike ROOTS, however, the only parameter that can be adjusted
to improve the performance of the resulting morphology is
the balancing factor (BF). This BF represents the weighting
of priority for path length versus conductive delay in the
spanning tree that is generated. To study this approach, a new
topology grown via TREES utilizing the same control points as
a ROOTS fiber. The BF was calibrated by minimizing a multi-
objective function (MOF), formulated as an unweighted sum
of independently normalized mean root square error for each
of the following morphometrics: Euclidean distance/path-length
(BF), branch order, bifurcation angle, and total path length.
The BF of the arbor generated by TREES was set at the value
that minimized the difference between the MOF scores of the
arbors generated by each system. To maximize similarity between
these two morphologies through calibration of the TREES BF,
direct (Euclidean) vs. path length ratios were calculated for
each carrier node, then a histogram of these data was fit with
a kernel density estimate (KDE via Gaussian smoothing). This
process was repeated for path length, branching order, branch
length, and branching angle. The KDEs for direct vs. path length
and branching angle for the TREES axon were subtracted from
those for the ROOTS fiber. These differences were independently
normalized and the RMSE was calculated. Each of these metrics
were summed without any weighting. The TREES BF was then
calibrated through minimizing the summed normalized root
mean-squared error of these differences (U) according to Eq. 1.

U = dBF+ dBO+ dPL+ dBL+ dBA (1)

where each term represents the normalized summed difference of
BF (dBF), branching order (dBO), total path length (dPL), branch
length (dBL), and bifurcation angle (dBA). Unlike TREES and the
proposed algorithm, L-NEURON doesn’t rely on a preselection
of target nodes to construct a topology, but rather depends upon
measures of branching structure of a tree, or morphometrics.
Fitted distributions to these measurements are then stochastically
sampled to grow a tree. This approach is intended to capture
branching patterns without much regard for the emergent spatial
features of a tree. Because of the lack of an extensive database
of EC axons from which to take branching measurements, we
resorted to using the companion tool L-MEASURE to extract
morphometrics from one of our own generated arbors to
gauge the feasibility of using stochastic methods to generate
axonal arbors when such a dataset does become available
(Scorcioni et al., 2008). Extracted morphometrics were then fed
to L-NEURON to generate a morphometrically equivalent arbor.

Virtual arbors were ultimately evaluated based on their ability
to capture known spatial features of EC axon terminal fields,

including a complex geometry which conforms to the contours
of the dentate gyrus.

Strength–Duration Relationship in
Response to Extracellular Electrical
Stimuli
To understand how fiber geometry in the hippocampus gives rise
to patterns of activity, fibers with varying patterns of diameter
were simulated in response to a range of current source–arbor
distances and stimulus amplitudes. Images of spiny stellate fibers
from Tamamaki and Nojyo (1993) and more evidence from
Bindocci et al. (2017) show continuous fibers with “periodic
varicosities,” or non-terminal synaptic boutons on the en passant
fibers. Because fiber diameter has been shown to influence
both conduction velocity and excitability, it was important to
explore the response characteristics of fibers with this sub-
micron variation in diameter (Clark and Plonsey, 1970). A fiber
was generated by ROOTS and instantiated with one of three
patterns of diameter in the simulation environment, NEURON
7.6.2, so that its behavior could be simulated (Hines and
Carnevale, 2003). Hodgkin–Huxley membrane biophysics under
in vivo temperature conditions were inserted in all compartments
and d-lambda rules were used to determine appropriate space
constants for compartmentalization of the fibers (Hines and
Carnevale, 2003). All other biophysical features were borrowed
from nodal biophysics described in Johnson and McIntyre
(2008). An itemized table of biophysical properties can be found
in Supplementary Figure S5. All morphological features for
these fibers, other than the deliberate variations in diameter,
remained as presented in Table 1.

Monopolar point-source stimuli were used in all stimulation
experiments presented in this article. Electrodes were placed
in one of two locations near the primary bifurcation of the
perforant path at distances of 100 and 500 µm from the nearest
neuronal compartment.

Following model construction, two sets of analysis were
performed. The first comprised a strength–duration study of
complex arbors. Square-wave pulses of anodic or cathodic charge
polarities (+ and −, respectively) with widths between 0.025
and 1.4 ms were delivered at each of the two distances. The
extracellular voltage throughout the model space was estimated
using an analog of Coulomb’s law with material resistivity of
3.8 �-m (Eqs 2 and 3) (Clark and Plonsey, 1970; Holt and Koch,
1999; Bingham et al., 2018).

φ(x, y, z) =
I0

4π∗σ∗i ri
(2)

where 8 is the field potential resulting from a current source, I.
The conductance, σ, is the inverse of resistivity. Radial distance,
r, is found by Eq. 3:

ri =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 (3)

By adding new voltage sources in series with the circuital
elements representing each section of membrane, extracellular
potentials calculated via Eqs 2 and 3 were applied to
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neuronal compartments within the NEURON model using the
“extracellular” mechanism. Stimulation was delivered over a
range of current amplitudes designed to cover, at a minimum,
rheobase to twice rheobase for each set of stimulating conditions.

The second analysis examined the same models and
stimulating setup but focused on the temporal distribution of the
response at rheobase. The time it took each compartment in the
fiber to reach action potentiation was recorded, used to populate a
histogram, and then Gaussian smoothed to present a KDE. These
plots were used to identify the impact of boutons on conduction
velocity throughout the complex arbor.

Comparison With Implied Axon
Conduction Latency Estimates
In order to demonstrate the differences between the relatively
sophisticated axonal models grown via ROOTS and more
simple axon representations, a simple distance-based delay
was estimated based on the average conductance velocities
of the ROOTS fibers and visualized using KDEs after the
manner previously described. The distance-based conduction
delay mechanism just explained is described in figures and
relevant results sections as a “pure-delay” mechanism because
no explicit cable model is used to approximate the delay. To
clearly demonstrate the differences that are not readily seen
in the KDE, pair-wise differences (residuals) of compartmental
APs using ROOTS and the pure-delay mechanism were
measured and plotted.

Data/Model Sharing
It is important to us that the method by which functional cortical
axons were generated be highly accessible to other members
of the computational neuroscience community, especially
those studying neuromodulation for the treatment of diverse
neurological disorders. Therefore, the graph-based algorithm
used in this study has been compiled in a user-friendly manner
and distributed to the Python Package Index under the name
Neural Roots (Roots)1,2 along with concise documentation.
Neural Roots was written with Python 3.6.9 and has a few non-
standard dependencies, including: SciPy, NetworkX (Hagberg
et al., 2005), Mayavi (Ramachandran, 2001), Shapely, and Pandas
(McKinney, 2010) (searchable in PyPi, the Python Package
Index). While some backward compatibility is likely, this has not
been extensively tested. The model is also being prepared for
submission to ModelDB where it will be available alongside other
elements presented in this paper.

RESULTS

Results comprise three parts: (i) a qualitative and quantitative
assessment of the proposed algorithm, (ii) a comparative
analysis with alternative methods, and (iii) the presentation
of strength–duration curves and an analysis of EC fiber
recruitment order and temporal distribution of the response to
extracellular stimulation.

1https://github.com/bingsome/roots
2https://pypi.org/project/Roots/

Algorithm Assessment and Validation
There are two chief loops within the core ROOTS algorithm:
branch extension and bifurcation. As the algorithm proceeds,
the complexity of branch extension decreases while that
of bifurcation increases, this can be seen in Figure 4 as
a linear/slightly supra-linear shape of each individual line.
Bifurcation criteria become more difficult to satisfy as the axon
graph becomes more complete, resulting in exponential increases
in time-to-completion when larger and larger axons (more nodes
to connect) are generated. Many aspects of these trends are
dependent upon the spatial topography of the nodes themselves.
For example, if nodes fall along a straight enough line, a single
branch extension loop with no bifurcations will complete the
axon graph and the time-to-completion will be perfectly linear
with respect to the number of nodes.

Arbor Simplification and Computational
Complexity
Consideration of the complexity of the resulting fiber is essential
because simulation of just a few of these fibers at full complexity
could be highly taxing on a single-processor computer.
Supplementary Figure S6 demonstrates the relationship between
simulation efficiency and fiber complexity using the NEURON
engine. Simulation efficiency is reported as the ratio of clock-
time to simulated time. As fiber complexity increases, the
amount of processing time (clock-time) required to complete
an otherwise controlled simulation also increases linearly. Data
for Supplementary Figure S6 were collected on an Acer Aspire
TC-885-UR17 desktop computer.

Ramer–Douglas–Peucker line simplification was performed
on axons with two or three synapses per target granule cell (8,850
or 5,900 nodes). Figure 5 demonstrates that axons with as few
as 2,944 and 2,097 target nodes can be used to approximate the
behavior of an arbor with maximum complexity, 8,850 and 5,900
target granule cells, respectively. These simplifications can be
made while allowing, at most, 38–42 µm deviations from original
contours and <5% reduction in total path length.

FIGURE 4 | Each line represents the time-course of ROOTS execution to
generate an axonal graph with dentate perforant path topography using
different numbers of carrier-points, ranging from 300 to 2000. Each iteration of
the algorithm includes one loop for branch extension and another for
bifurcation. While the above plot presents performance while growing a
specific type of arbor, method performance is highly dependent upon input
parameters and may be faster or slower for other model types.
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FIGURE 5 | As an approach to reducing computational complexity, Ramer–Douglas–Peucker (RDP) line simplification was studied over a range of epsilon (the
maximum distance a simplified curve can be removed from an the original), for reduction in node count (Left y-axis) and change in total path length (Right y-axis).
Simplification was performed for the cases where two or three synapses were made with each targeted cell (˜8,850 or 5,900 starting nodes, left and right plots).
Above 95% path length is preserved by setting epsilon to 38 and 42 µm, resulting in reduction of required number of nodes to 2,944 and 2,097, respectively (˜60%).

Example graph models of EC axon terminal fields which
incorporate these simplifications generated by the proposed
algorithm are presented in Figure 6. The algorithm described in
Figure 3B yielded fibers that captured the known features of layer
2/3 EC spiny stellate axons which make up the dentate perforant
path (Table 1). These features include but were not limited
to: distribution of bifurcation angles of approximately 80±34◦;
a septal–temporal range of between 1 and 1.5 mm; laminar
organization with the MEC and LEC in the outer and middle
thirds of the dentate molecular layers, respectively; saturation of
branching order at a reasonable level to encourage en passant
synapsing; presentation of both DG and CA3 terminal fields
with the preservation of a fissure between the two fields; and
finally, the tree structure passed through a plausible topography

of DG and CA3 arbor domains which enables in situ levels
of connectivity.

Alternative Generative Models
A morphology generated via our own graph-based algorithm
(Figure 3B) was selected and morphometrically described via
L-Measure and then, using the stochastic system called L-Neuron,
attempted to regenerate a morphometric equivalent. This exercise
failed to return a morphology which could conform to the
topography of the molecular layer of the dentate gyrus. The chief
reason being that purely stochastic methods are unable to prevent
excursion of fibers beyond natural boundaries in the volume of
tissue system being modeled. The general stochastic method is,
therefore, unsuitable for generation of anatomically appropriate

FIGURE 6 | Example graph models (red, LEC; teal, MEC) of entorhinal cortical axon terminal fields, generated by the proposed algorithm. These axons have features
expected in in situ fibers, namely: en passant terminal topography, laminar architecture (i.e., MEC/LEC are spatially segregated within the dentate molecular layer),
and fibers proceed to the ends of each supra/infrapyramidal blade of the dentate gyrus and proceed to a terminal field in CA3/2/1.
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FIGURE 7 | (Top) Dorsal aspect of the enclosed blade (suprapyramidal) portion of an entorhinal cortical axon generated by one of two methods: Trees Matlab
toolbox (BF = 5), and the proposed algorithm. Balancing factor, and connection threshold for the Trees toolbox were selected to align these distributions aligned
favorably. (Bottom) Fundamental statistical distributions comparing the two methods in terms of nodal path length, direct distance vs. path distance, branching
order, branch lengths, and bifurcation angles. The plotted curves represent probability densities and the box represents the mean. Despite matching many features
of the proposed algorithm, the Trees generated arbor does not capture the en passant nature of the perforant path [seen in branching order (A), and length (B)] and
has lingering bifurcations which have extreme angles (C).

axonal morphologies without further modification to constrain
emergent spatial characteristics.

Attempts were also made to generate accurate morphologies
using the TREES MatLab toolbox. These efforts yielded trees
superior to those generated by the L-Neuron method, though
still deficient in important ways. An axon generated by TREES
was selected for quantitative and qualitative comparison with
that yielded by earlier analysis using the ROOTS system (Arbor
Simplification and Computational Complexity). Each tree was
constructed using the same set of target nodes; therefore,
all differences in patterns of branching arise from differences
between the two algorithms. The TREES BF was then calibrated
through minimizing a MOF, attempting to find the best possible
match between TREES and ROOTS arbors. This process yielded
a functional axon from the TREES algorithm, though differences
remained that could not be resolved through manipulation of the
BF alone (Figure 7). Despite a high degree of similarity in direct

(Euclidean) vs. path length, total path length, and branching
angle distributions, TREES resulted in a higher than expected
number of terminal branchlets. This shifted the branching order
and branch length distributions to the right and left, respectively.
These shifts demonstrate difficulty for the TREES approach in
appropriately capturing the en passant connection schema which
typifies EC axons of the perforant path, where terminal branchlets
are reportedly rare. Figure 8 (branch length vs. branch order)
further highlights this conformational difference between the
two fibers and provides a useful comparison to experimental
measurements. In this figure, the black line denotes the branch
order at which 99% of the total path length was achieved in layer
two spiny stellate axons reported by Budd et al. (2010). While the
comparison with Budd’s report is useful, it is made with hesitancy
because of the variability of branching that occurs within the long
stretch of fiber between the entorhinal cortex and the extensively
branching terminal arbor. The difficulty TREES has in controlling
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branch order arises from the paradigm of control implemented in
the system. More specifically, the balancing of total path length
versus conduction time (BF) does not provide for fine control of
the shape and branching properties of an arbor within a volume.
The significance of this limitation of TREES with respect to
ROOTS is particularly clear when considering the implications
for extracellular stimulation where it is thought that terminations
and thorough-fare fibers behave differently in the presence of
extracellular electric fields (Joucla and Yvert, 2009).

An additional challenge not satisfied by the TREES approach
is that of performing acute turns. A portion of the perforant
path innervates the CA3/CA2 region of the hippocampus
and therefore must be able to extend from the end of
the enclosed blade of the dentate into these other domains.
The algorithm presented in Figure 3B (dynamic source)
describes how updating reference angles allow the fiber to
bend around complex anatomies successfully without violating
morphometric constraints (Figures 6, 9). An attempt to replicate
this feat using the TREES Matlab toolbox is presented in
Supplementary Figure S7.

Strength–Duration Relationship in
Response to Extracellular Electrical
Stimuli
To determine the importance of including boutons when
simulating extracellular electrical stimulation of axon models,
strength–duration curves for three diameter patterns of a
ROOTS arbor (generated via the algorithm described in
Figure 3B), where diameters correspond to bouton and inter-
bouton sizes (according to Figure 9), were estimated and
presented in Figure 10. When stimulating with anodal pulses,
these results agreed with previous reports that larger diameter
fibers have shorter chronaxies than small, and that this difference
is exaggerated by large electrode-fiber distances and longer
stimulation pulses. For cathodal impulses of such small and
highly branched fibers, the model yielded negligible opportunity
for selective activation of fibers by diameter. This protocol was
repeated for a biologically realistic arbor, complete with boutons.
The recruitment pattern of the boutoned fiber was no different
in a cathodal field but under anodal conditions had activation
thresholds between those of the 0.7 and 0.1 µm uniform diameter
arbors. The differences in threshold between the boutoned fiber
and the 0.7 µm fiber decreased with increasing electrode–
fiber distance. These differences dissolved as the pulse-width
approached 700 µs.

The impact of boutons on temporal dynamics are presented in
Figure 11. The time of first action potential is plotted along the
horizontal axis for each neuronal compartment in the biologically
realistic arbor with the vertical axis representing probability
density (frequency). A fiber with each of three patterns of fiber
diameters (uniform 0.1, 0.7, or boutoned) were simulated in
response to 1 ms stimuli at rheobase amplitude. Activity was
initiated near the electrode and then actively conducted to other
compartments, including those beyond the effective volume of
the extracellular electric field where artifact voltage dropped to
tens of microvolts. In Figure 11 are plotted, as a KDE, the

FIGURE 8 | Plotting path length vs. branch order makes it clear that ROOTS
more accurately captures the en passant nature of the perforant path than
does TREES. Each dot represents the branch order of a NEURON section.
99% of total axon path length of entorhinal cortical spiny stellate cells should
be achieved with fiber of branch order no greater than ≈7 (Budd et al., 2010).
Increased levels of early terminations in TREES is a geometric challenge that
may have significant implications for extracellular stimulation (Joucla and
Yvert, 2009).

time-course of threshold activity of all compartments in each
case. As the average fiber diameter is increased, the shape of
the KDE shifts to the left, indicating that activity in the arbor
is occurring with less delay following stimulation. This shift
is explained by the increased conduction velocity throughout
the arbor which results from changing compartment diameters.
Average conduction velocities were 0.88, 0.53, and 0.12 m/s in
the 0.7 µm, boutoned, and 0.1 µm fibers, respectively. The
boutoned fiber nearly mirrored temporal patterns of activity
of the uniform 0.7 µm fiber, except at very close electrode–
fiber distances.

Comparison With Implied Axon
Conduction Latency Estimates
When compared with a pure-delay mechanism, as in Figure 12
left, ROOTS fibers exhibited a smoother distribution of
compartmental Aps, though the KDEs for the pure-delay
mechanism had similar shape and length. When exploring
the impact of varying the conductance velocity on pair-wise
compartmental AP latencies between the pure-delay mechanism
and each of the ROOTS fiber geometries, the role of fiber
topology on the precise latencies of conduction to each
compartment is more obvious. Especially when comparing
the pure-delay mechanism estimate to the 0.1 µm ROOTS
fiber behavior (Figure 12 right), very large differences in AP
latencies emerge. This demonstrates how sensitive this test is
to conduction velocity alone but also illustrates the importance
of accurate representations of fiber microstructure features
and arbor topology. Even as the differences are reduced in
comparisons with larger and faster conducting fibers, errors
of several milliseconds remain. Even should a modeler be so
lucky to correctly select a proper conduction velocity (not
to mention correctly predicting the site of action potential
initiation), differences are difficult to eliminate without more
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FIGURE 9 | Rendering of a highly branched perforant path axon with presynaptic boutons dispersed evenly throughout the terminal field. 5 µm boutons were
spaced 25 µm apart according to Tamamaki and Nojyo (1993). This arbor, with three different representations (A–C) of diameter, was then used in a set of
stimulation experiments to study the impact of microstructure geometry on emergent patterns of spatiotemporal patterns of activity.

FIGURE 10 | Arbors of three patterns of diameter corresponding to stem and bouton diameters observed by Tamamaki and Nojyo (1993), and a fiber with
appropriately distributed boutons, were simulated in response to cathodal pulses (25 µs–1.25 ms) and a range of stimulus amplitudes from distances of 100 and
500 µm (Left, Right) Tamamaki and Nojyo (1993). Larger fibers have shorter chronaxies than small and this difference is exaggerated by large electrode–fiber
distances and longer pulse-widths. 0.7, 0.1, and Boutoned legend keys correspond to A, B, and C in the Figure 9 legend.
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FIGURE 11 | Kernel density estimates (1.5 ms Gaussian kernel) for compartmental action potential delays in perforant path arbors with a diameter of 0.7 and
0.1 µm, and a boutoned fiber when stimulated at ˜rheobase amplitude for 1 ms. From top to bottom, left to right, showing two electrode-fiber distances and
anodal and cathodal stimulation. Excepting at very close distances, boutoned fibers had temporal activation features best approximated by a fiber with uniform
0.7 µm diameter. 0.7, 0.1, and Boutoned legend keys correspond to A, B, and C in the Figure 9 legend.

FIGURE 12 | (Left) Kernel density estimates (1.5 ms Gaussian kernel) for expected compartmental action potential delays calculated based on the Euclidean
distance from the site of action potential initiation (obtained from ROOTS fibers simulated in Figures 10, 11) to compartment centroids. Three cases are visualized
based on the average conductance velocity calculated from fiber behavior in the ROOTS explicit fiber at threshold (100 µm-case). Average velocities were 0.88,
0.53, and 0.12 m/s, for 0.7 µm, boutoned, and 0.1 µm ROOTS fibers, respectively. (Right) Pair-wise compartmental latencies were compared between a
distance-based delay mechanism and explicit fiber representation via ROOTS across a range of conduction velocities plotted along the x-axis. As the conduction
velocity moved nearer to the average velocity of the ROOTS fiber, average residuals decreased. Error was largest when comparing the smallest ROOTS fiber, but
differences were still on the order of milliseconds near ideal conduction velocity for the faster conducting ROOTS fibers.
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sophisticated methods of approximating the path length to
each compartment.

DISCUSSION

Together with increased computing power, more robust
repositories of electrophysiological and histological information
have created opportunities for neural models of greater
complexity. Despite these ever-improving sources of data,
biologically realistic neural modeling has outpaced experimental
studies in many areas of inquiry, providing a testbed for new
hypotheses as well as a wealth of preliminary data to aid the
design of superior in vitro or in vivo studies. However, the
mismatch in biological realism between experimental and
computational modeling, and continuing ambitions to advance
computational neuronal modeling, creates a need for sound
approaches to generate functional neuronal models that can
be refined as the quantity and quality of experimental data
improve. The modeling approach presented in this paper
demonstrates this utility.

General Application of ROOTS
This manuscript has demonstrated the application of ROOTS to
a single fiber system, but this process could be followed for the
generation of appropriate models from other anatomical regions
with different morphological features. This is true because the
criteria used by ROOTS are generally applicable to axon terminal
arbors that form a spatial network by connecting parent cells
to synaptic targets with a unique branching pattern. The degree
of accuracy that can be obtained with ROOTS is directly linked
to the quality of anatomical data available to constrain the
method. There are three basic tasks that must be accomplished
to generate usable models: identify the topography of synaptic
targets, identify the branching properties of terminal arbors,
and identify the volume from which arbors begin. While these
tasks present a challenge, none are as difficult as describing and
extracting enough explicit reconstructions from histology to fully
recapitulate a large-scale pathway model.

Identifying the topology of synaptic targets, at its most basic,
means combining knowledge of the spatial range of terminal
arbors with an estimate of the number of terminal boutons
expected for each fiber. Identifying branching properties of
terminal arbors requires reduction of experimental observations
of these terminal arbors to a statistical distribution of bifurcation
angles, at the very least. Knowledge of the number of bifurcations,
total fiber length, meander angles, and inter-bifurcation lengths
is also useful. Lastly, identifying the volume from which
arbors initially bifurcate is important in order to force a
fundamental directionality on generated arbors. Each of these
steps yields important parameters that ROOTS expects and uses
to encourage realism in the morphologies that are output by
the software. Should one of these specific data not be available,
the modeler should not be discouraged from attempting to use
ROOTS anyway, as each statistic is merely one part of the
puzzle ROOTS seeks to solve. Generated fibers can still be a

useful stand-in and can always be augmented as superior data
become available.

Limitations and Alternative Methods
Despite the demonstrated functionality of the model presented
herein, it is not without limitations. First among potential
limitations is biological realism, which may still be limited due to
lack of accurate and well described experimental measurements
of fibers from hippocampal tissue samples. The clearest limitation
(though simultaneously the chief motivation for development)
of this modeling approach and the study presented in this
paper is the lack of an extensive dataset describing EC axons
in the perforant path, including rich morphometrics. Existing
explicit reconstructions have readily identifiable errors and,
therefore, should not be used as solitary sources of branching
morphometrics or be virtualized and used in stimulation
models without sophisticated automated and/or manual repair
(Tamamaki and Nojyo, 1993; Budd et al., 2010). The issues
include slicing artifacts which distorts both distances along or
across serial slices and bifurcation angles where branches span
multiple slices; angle and distance mismeasurements due to
imaging along a single axis and, therefore, failing to correct
for the impact of rotation of neural processes with respect
to observer perspective; and failures of automated algorithms
which may result in orphaned sections or even cycles in the
final tree (Quilichini et al., 2010). Despite the unavailability or
verifiability of these data, the modeling methodology presented
in this study represents the most detailed and sophisticated
functional model of layer 2/3 EC spiny stellate dentate perforant
path axons to date. In general, the utility of this modeling
approach is most apparent for cases in which explicitly
reconstructed morphologies are sparse, poorly described, and
the fibers to be modeled have complex geometry and branching
structure. Further, the parameterization of the model is such
that, should this data later become available, the generative
morphologies could be updated to reflect new knowledge of
in situ morphometrics.

While the present study espouses a ROOTS, there are
many algorithms that might achieve topological characteristics
reminiscent of neuronal branching.

Although existing stochastic models may be effective for
dendritic arbor generation, they are not naturally adapted to
the construction of axonal morphologies because they fail to
reliably conform to pre-determined geometries or volumes
that are irregular or highly non-symmetrical (Rozenberg and
Salomaa, 1980). The ability to conform to a predetermined
volume or geometry is a particularly important feature
for axons in the hippocampus, which often have lamellar
organization between layers and laminar organization within
their terminal fields. For stochastic models to accomplish
this, new pre-processing intensive and potentially inefficient
volumetric constraints would be required, adding to algorithmic
complexity (e.g., randomly walking line that must also connect
arbitrary points).

When guided by serial histological sections, spanning-tree
algorithms provide an efficient approach to reconstructing
spatial trees. However, without some modification, traditional
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minimum-spanning-tree algorithms can result in spatial error
and distorted branching patterns (Budd et al., 2010). Using
higher resolution images forces significant biological realism
onto the resulting graph, making error more manageable.
However, minimum-spanning-trees generated from points
sampled at random from a volume representing an axon
terminal field are less biologically realistic due to the extreme
path lengths that result. To moderate this outcome, some
investigators have proposed a spanning-tree algorithm which
balances the minimization of membrane against path length
(Cuntz et al., 2007, 2010; Budd et al., 2010; Budd and Kisvarday,
2012). However, optimizing this balance is known to be an
np-hard problem due to the direct conflict introduced by
including these two variables in the same loss function (Hu,
1974; Alpert et al., 1995; Khuller et al., 1995; Wu et al., 2000;
Gastner and Newman, 2006). Another challenge to using
path-length/membrane-minimization balancing algorithms
is that it only allows indirect control over important tree
morphometrics such as bifurcation angle, branch extension
angle, and inter-bifurcation length. Prominent implementations
of this approach do not allow explicit morphometric thresholds
to be set and, therefore, extreme branching patterns remain
possible. Inflexibility and lack of sufficient parameterization
represent significant limitations of these prior efforts
because branching patterns directly impact spatiotemporal
patterns of activity.

It is plausible that established stochastic methods, known to
be highly proficient at recapitulating tree morphometrics, could
be modified to allow directedness and improved conformation
to terminal field volumes. Despite these feasible and time-worthy
alternatives, the model presented in this study has demonstrated
sufficient performance in terms of accuracy, flexibility, and
computational complexity.

While many alternatives to RDP for tree simplification
exist, this method was preferable to other node cluster-
and-merge methods (e.g, Kruskal’s algorithm) because these
alternatives have the potential to introduce large differences in
branching patterns, creating additional challenges in evaluating
the equivalence of simplified and unsimplified fibers. Evaluation
of the RDP simplification approach could be done in a
very straightforward fashion because line simplification doesn’t
result in changes in branching patterns—simplified arbors were
compared to the reference case on the basis of path length
and subjective evaluation of an acceptable RDP-epsilon, or the
maximum distance between original and simplified contours.

Analysis in this paper involving extracellular field estimations
used analytical methods that fail to completely account for
anisotropy and heterogeneous resistivity of the tissue volume
or full-wave propagation of electric fields. More sophisticated
field estimation techniques (e.g., finite element, finite volume,
boundary element, or admittance methods) that account for
complex impedance or by filtering point-source estimations to
account for amplitude dampening and phase-shift of stimuli
could have been used but were deemed unnecessarily complex
for the principle questions under examination in this article
(Bossetti et al., 2007; Al-Humaidi, 2011). It should be noted,
however, that rheobase predictions result from very long stimulus

pulses, where >95% of the frequency domain signal falls <1 kHz;
it follows that tissue capacitance is only a marginal source of
error in these estimates of EC axon chronaxie. With respect
to resistivity, this exercise is further justified because resistivity
measurements in the region performed by López-Aguado et al.
(2001) show nearly uniform resistivity throughout the molecular
layer of the hippocampus; further, because the current source
in these experiments was placed relatively far from resistive
boundaries, current shunting distortions should be minimized in
our estimations of electric fields in the volume occupied by EC
fibers (Bingham et al., 2018). While future work not limited by
these assumptions will be performed, doing so here falls outside
the scope of the present study.

The study of strength versus duration of stimulus in the
measurement of activation thresholds as performed in this paper
does not provide conclusive data which concretely establishes the
connection between fiber size and excitability for hippocampal
networks. This is due to the realistic elements still missing
from the models used, including non-uniform diameters of
fibers, irregular bouton geometry and volumes, varying bouton
topography, and an electrophysiological study of any differences
in channel density and dynamics between boutoned and non-
boutoned axon regions. Despite these limitations, it seems
important to consider what impact boutons may have on fiber
excitability within the terminal fields of small, highly branched,
and unmyelinated axon fibers. Importantly, these results imply
that action potentials in extracellular anodally stimulated axon
terminal fields are initiated in boutons with lower input resistance
than nearby portions of the fiber and that failing to consider
the impact of boutons on conduction velocity will likely result
in meaningful temporal errors. However, thorough experimental
work is needed to confirm this possibility. It is further valuable to
recognize that for long pulses delivered at more distant locations
uniformly large diameter fibers approximate the vastly more
complex fully boutoned fibers quite well and may provide a viable
approach to reducing the computational demands of models that
include detailed axon terminal arbors.

While much remains to be done, this study represents a
step forward for detailed computational modeling of complex
neuronal systems. Where previous models were either focused on
peripheral axons with less complex arbors or used sophisticated
methods to generate dendritic trees but neglected axons
altogether, the model presented here demonstrates an approach
to constructing functional axonal morphologies that can be
used for diverse applications, including extracellular electrical
stimulation of the cortex. It should be noted that while
ROOTS is itself general, expert knowledge of the tissue system
being virtually recapitulated is required: branching criteria
and synaptic or cellular targets must be provided to the
tool. Critical morphometric parameters include bifurcation
angles, branch extension angle, and internode length; these
must be independently determined by users. Despite these
requirements, ROOTS presents many opportunities to increase
the sophistication of model-based studies of neural tissue system
dynamics and central nervous system neuromodulating devices
such as deep brain stimulation or potential hippocampal memory
prostheses (McIntyre, 2009; Hampson et al., 2018). ROOTS could
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also be used to support models of optical or pharmaceutical
neuromodulation (Foutz et al., 2012; Bouteiller and Berger, 2017).
The model framework could easily be extended to incorporate
high resolution imaging data or combined with more complex
volume conduction (or diffusion, diffraction, etc.) models to
study tissue–electrode interactions at smaller spatial scales (Lujan
et al., 2013). In addition to supporting prosthesis design,
ROOTS facilitates model-based exploration of the effect of
diseases which remodel axons on proper function of hippocampal
tissue (e.g., multiple sclerosis) (Michailidou et al., 2015). More
generally, ROOTS supports efforts to create networks of neuronal
models for the study of biologically plausible spatiotemporal
patterns of activity.

AUTHOR SUMMARY

As computer technology matures, constructing virtual models
of brain parts has become an increasingly valuable approach
to understanding how patterns of activity emerge in different
neuronal structures. Many efforts to model populations of
neurons have emphasized the implementation of biological
realism for cell bodies and dendrites while settling for simplistic
representations of axons. This neglect leads to potentially large
errors in predictions of when and where synaptically driven
activity in a neural circuit might occur. To address this concern,
we have developed a novel algorithm called ROOTS to generate
biologically realistic axon models for use in computer simulations
of the brain. With realistic axons in place, such models can be
used to predict how different regions of the brain respond to
stimulation from implanted electrodes as part of a prosthetic
device. This improvement in the realism of tissue models of the
brain will provide superior support to on-going work to reveal the
mechanisms of brain disorders and to optimize devices or drugs
that are used to treat them.
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FIGURE S1 | Pseudocode of the core algorithm as presented in this study. Other
components such as source point reassignment, and topology simplification
procedures are executed in series with (before or after) the steps outlined here.

FIGURE S2 | Clustering is performed via K-means clustering method. This
regularizes the spatial properties of the mesh which will comprise the volume of
the arbor and reduces computational complexity of subsequent steps.

FIGURE S3 | Delaunay triangulation to construct a surface from spatially clustered
synaptic targets. This yields a network from which ideal paths to potential target
zones can be calculated.

FIGURE S4 | Plotting of each “most likely path” between nodes in the Delaunay
triangulated network of k-means cluster centers. Paths are constructed via
Dijkstra’s algorithm. These paths are provided as inputs to the ROOTS algorithm
to loosely guide branching behavior.

FIGURE S5 | A brief table of biophysical parameters used in simulation of
NEURON models. The only explicitly varying parameter (those not differing due
only to changing compartment areas) was extracellular axial resistance. This
followed the pattern implemented in Johnson and McIntyre (2008) to ensure this
value was sensitive to fiber diameter.

FIGURE S6 | Entorhinal cortical axons may form as many as 17,700 synapses
with granule cells. However, growing axons with this number of nodes is slow and
simulating axons with this complexity is computationally prohibitive when
attempting to simulate in situ scale/density tissue models.

FIGURE S7 | Example graph models (red, LEC; teal, MEC) of entorhinal cortical
axon terminal fields, generated by the TREES toolbox method. These axons were
generated with the addition of a terminal field in CA3/2/1. For very deep folds with
small clefts, the TREES MST method has difficulty suppressing trans-cleft
connections that short the cortical circuit without inappropriate manipulation of the
number and density of targets, further exacerbating the proliferation of
terminal branchlets.

VIDEO S1 | This video shows the spatiotemporal pattern of activity following
stimulation of an axon terminal arbor generated with ROOTS.
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Spatio-temporal brain activities with variable delay detectable in resting-state functional

magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures,

termed cortical lag threads, that propagate from one brain region to another. Using a

computational topology of data approach, we found that persistent, recurring blood

oxygen level dependent (BOLD) signals in triangulated rs-fMRI videoframes display

previously undetected topological findings, i.e., vortex structures that cover brain

activated regions. Measure of persistence of vortex shapes in BOLD signal propagation

is carried out in terms of Betti numbers that rise and fall over time during spontaneous

activity of the brain. Importantly, a topology of data given in terms of geometric shapes

of BOLD signal propagation offers a practical approach in coping with and sidestepping

massive noise in neurodata, such as unwanted dark (low intensity) regions in the

neighborhood of non-zero BOLD signals. Our findings have been codified and visualized

in plots able to track the non-trivial BOLD signals that appear intermittently in a sequence

of rs-fMRI videoframes. The end result of this tracking of changing lag structures is a

so-called persistent barcode, which is a pictograph that offers a convenient visual means

of exhibiting, comparing, and classifying brain activation patterns.

Keywords: Betti Numbers, brain activity, fMRI video, persistence bar code, topological data analysis

1. INTRODUCTION

Point clouds are a natural outcome of a topology of data approach in tracking intermittent as well
as persistent BOLD signals in different sections of the brain. A point cloud is a collection of sampled
pinpointed places in a subregion (Ghrist, 2014). A topology of data circumvents noise in data
and focuses on those data that persist over time (Edelsbrunner and Harer, 2010). Computational
topology of data provides a practical method in isolating, measuring, and classifying persistent
lag structures BOLD signals in each rs-fMRI video frame that are mapped to point clouds in a
finite, bounded region in an n-dimensional Euclidean metric space. It has been observed that brain
activity in one region of the brain propagates to others with variable temporal delay (Mitra et al.,
2015; Matsui et al., 2016; Park et al., 2019), giving rise to brain activity lag (delay) structures. Lag
threads are temporal sequences of propagated brain activities (Mitra et al., 2015). Lag structures in
fMRI video frames are rich source of point clouds. Triangulated brain point clouds are a source
of brain activation area shapes that appear intermittently in different cortical regions during a
rs-fMRI video such as the four videos provided by Mitra et al. (2015). Selected barycenters of
triangles in a triangulated cortical point cloud are connected to form vortexes covering each brain

49
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activation region with its own distinctive shape. Each vortex in
a triangulated rs-fMRI video frame is a collection of connected
cycles (see, e.g., the lower half of Figure 1) that make it possible to
approximate, measure, track and compare brain activation region
shapes. A vortical view of brain activity first appeared in Freeman
(2009).

Each vertex in a triangulated brain activation region point
cloud is represented by a feature vector containing useful
information such as activation region area and representative
Betti number (Giusti et al., 2015). Traditionally, the more
intuitive geometric forms of Betti numbers are counts of cells
(vertexes, edges, filled triangles), cycle counts or surface hole
counts (Zomorodian, 2001). A particularly useful intuitive form
of geometric Betti number is a count of the number of connected
vortex cycles covering an activation subregion (Peters, 2020).
Less frequently used algebraic Betti numbers (counts of the
number of generators in a free Abelian group; Munkres, 2000)
also provide insight concerning the inner workings of cycles
in triangulated brain activation regions. We first consider the
persistence of geometric numbers (vortex cycle counts) over
sequences of sequences of triangulated rs-FMRI video frames.
Later, in Appendix B, the persistence of algebraic Betti numbers
is also considered to obtain an alternative view of the changing

FIGURE 1 | Betti numbers for a rs-fMRI BOLD signal vortex on a Transversal view for four videos.

character of connected cycles in triangulated rs-FMRI lag threads
in three regions of the brain.

Tracking the appearances of the Betti number of a brain
activation vortex containing a particular number of connected
cycles leads to the construction of a persistence barcode (see
the top half of Figure 1) in which a Betti number appears in
a video frame, disappears afterward and possibly reappears one
or more times in later video frames. 2D (planar) as well as 3D
(volumetric) persistent barcodes provide an easy-to-read means
of tracking intermittent BOLD signals in a sequence of rs-fMRI
video frames.

The origin of topological data analysis and persistent
homology can be traced back to Edelsbrunner et al. (2000,
2001). A common approach is to build a continuous shape
(graphs) on top of data to detect complex topological and
underlying geometric structures (Carlsson, 2009; Chazal and
Michel, 2017). This shape is called a simplicial complex or a
nested family of simplicial complexes and the process of shape
construction is commonly referred to a filtration (Zomorodian,
2001). One of the fundamental tools in computational topology
is persistent homology (Zomorodian and Carlsson, 2005), which
is a powerful tool to compute, study, and efficiently encode
multiscale topological features of nested families of simplicial
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complexes and topological spaces (Edelsbrunner and Harer,
2008).

Earlier studies of brain networks primarily focused on a
graph-theoretic approach where the brain regions and their
connections are encoded as a graph (i.e., a network of nodes
and edges) and cycles (representing complex behaviors). Such
networks were modeled and analyzed with methods such as Q-
modularity (Meunier et al., 2009) or with network measures
such as betweeness centrality (Bullmore and Sports, 2009). Brain
networks with weighted edges where problems of selecting
thresholds for edge weights and dealing with sparse edges can
be found in Achard and Bullmore (2007) and van Wijk et al.
(2010). This has led to application of persistent homology to
the problem of determining multiple thresholds derived from
more than one network. A brain network can be considered as
the 1-skeleton of a simplicial complex, where the 0-dimensional
hole is the connected component, and the 1-dimensional hole
is a cycle (Chung et al., 2019). The number of k-dimensional
holes of a simplicial complex is its k-th Betti number. Persistent
homology-based multiscale hierarchical modeling was proposed
in Lee et al. (2011b), Petri et al. (2014), Giusti et al. (2015),
Sizemore et al. (2018), and Chung et al. (2019) to name a
few. Here, graph filtration is used to build these networks in
a hierarchically manner. Filtration is the process of connecting
edges to form a graph.

Betti numbers computed during this filtration process have
been used for further statistical analysis such as Pearson
correlation to MRI image data (Chung et al., 2015) and various
metrics for similarity and distances assessments (Lee et al.,
2011a; Chung et al., 2019). 0-dimensional holes (β0 or zeroth
Betti numbers) have been computed during the graph filtration
process and a persistent barcode has been constructed for
subsequent statistical analysis (Cassidy et al., 2015; Chung et al.,
2017). However, the cycle concept is extremely important to the
study of behavior diffusion and integration of the brain network.
In persistent homology, cycles are measured using the first or
one-dimensional Betti Number (β1). In Chung et al. (2019), the
one dimensional Betti numbers are used to measure cycle and
the significance of the number of cycles is evaluated using the
Kolmogorov–Smirnov (KS) distance.

For geometric representations of rs-fMRI lag threads, an
incisive form of statistical analysis of the geometry is given in
terms of edge density and Eigen values (Giusti et al., 2015). The
results of this form of geometry-based statistical analysis are
given in Appendix A.

In contrast to earlier approaches, we use computational
geometry to detect lag thread shapes in fMRI video frames
using a geometric Betti number that counts the total number
of connected cycles forming a vortex (nested, usually non-
concentric, connected cycles) derived from the triangulation of
brain activation regions.We build on our previous work in Peters
et al. (2017), Don and Peters (2019), and Peters (2020), to evaluate
real BOLD resting state rs-fMRI videos from Mitra et al. (2015).

Here, the video frames are processed directly to obtain Betti
numbers by triangulating the transversal, sagittal, and coronal
sections of the fRMI video frames and constructing vortexes
through a process of filtration. Rather than constructing graphs

of brain networks and analysing cycles in the network, we analyze
cycles by processing the video frames. The vortexes correspond to
the changing activation areas in the video frames. The number of
vortexes in a frame represents the most relevant areas of change.
Higher Betti number values imply that the change is closer to the
center of the section of the brain. To the best of our knowledge,
this method of detecting cycles in persistent homology is novel
and a preliminary version of this paper appeared in Don A. P.
et al. (2019).

2. MATERIALS AND METHODS

2.1. Theory
The basic approach is to introduce a geometric representation
of brain activation regions in terms of intersecting cycles that
are sequences of path-connected vertexes on the barycenters of
triangles forming vortices (Don and Peters, 2019; Peters, 2020).
Each vortex is a collection of connected cycles called a vortex
nerve. Of particular interest are those nerves that have a maximal
collection of triangles of a common vertex in the triangulation
of a finite, bounded planar region. In our case, the planar
region is a rs-fMRI video frame. A vortex nerve results from the
triangulation of the sections of each rs-fMRI brain video frame.
A centroid (also called a seed point), is used as a vertex in the
triangulation of a video frame. A barycenter on a such a triangle
is in a high light intensity video frame region between the dark
regions, which we refer to as holes.

Definition 1 (Hole). A hole is a collection of contiguous low
intensity voxels. The centroid of a hole is the center of mass
of the hole. In an rs-fMRI video frame, the holes are in
background regions containing dark (low intensity) voxels and
the foreground regions are filled with mainly orange voxels.
Sample centroids of brain activation region holes are given
in Figure 1.

Using Delaunay triangulation (Delaunay, 1934; Yung et al.,
2016), each pair of closest neighboring centroids of holes become
the vertexes of edges of triangles covering brain activation regions
in rs-fMRI videos. Each line segment drawn between closest pairs
of centroids becomes the edge of a triangle in the Delaunay
triangulation of an rs-fMRI video frame. The concept of a hole
is crucial to this work, since edges drawn between barycenters in
the interior of adjacent centroidal triangles reveal paths of high
intensity voxels between brain activation region holes.

Definition 2 (Barycenter of centroidal triangle). Recall that the
median line of a triangle is a line drawn from a vertex
to the midpoint of the opposite side of the triangle. The
barycenter of a centroidal triangle is the point of intersection of
the median lines of the triangle. A sample barycenter is given
in Figure 1.

The barycenters of centroidal triangles covering brain
activation regions are always between holes. Barycenters are
stepping stones in the construction vortex cycles.

Definition 3 (Barycentric cycle). A barycentric cycle is a
sequence of edges drawn between neighboring barycenters of
adjacent centroidal triangles.
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FIGURE 2 | Coronal persistence barcode with Betti numbers as vortex cycle counts in a rs-fMRI video frame (see text for further details).

As a result, connected barycenters model paths for high
intensity voxels recorded in a brain activity video frame.
Barycentric cycles are the basic building blocks in the
construction of local vortexes covering triangulated brain
activation regions.

Definition 4 (Local Vortex (briefly, Vortex)). A local vortex is a
collection of nesting, usually non-concentric barycentric cycles.
The simplest vortex contains a single barycentric cycle (see, for
example, the vortex in Figure 3).

2.2. Betti Numbers on a Triangulated Brain
Activation Region
Betti numbers provide a computational topology perspective
on the structure of brain activation subregions. In our case,
the Betti number β1 tells us either the number of connected
vortex cycles in a vortex on a triangulated brain activation region
(geometric view). Later, in Appendix B, we also introduce and
apply the Betti number βα , which is a count of the number
of generators in a free Abelian group representation of an rs-
fMRI video frame vortex (algebraic view). The focus here is
on the persistent geometric Betti numbers across sequences of
triangulated video frames. Each such Betti number is mapped

to an entry in a persistent barcode (see top half of Figure 1).
This topology of data pictographs is useful in representing the
persistence of the brain activation region shapes found in rs-
fMRI brain video sections. From an intuitive perspective, there
are three types of geometric Betti numbers, namely, β0,β1,β2,
introduced in Zomorodian (2001).

Definition 5 (β0). The Betti numberβ0 is a count of the total
number of elementary cell complexes, which are vertexes, edges
and filled triangles attached to each other in a triangulated region.

Definition 6 (β1). The Betti numberβ1 is a count of the
number cycles.

Each β1 in a persistent barcode (Ghrist, 2008) represents the
number of connected barycentric cycles covering an activation
area of the brain.

Definition 7 (β2). The Betti numberβ2 is a count of the number
of holes. In our case, β2 is a count of the number of contiguous
low intensity voxels in brain activation regions in an rs-
fMRI video.

Definition 8 (C0 vortex cycle). cycle C0 is the
innermost cycle in a vortex. In our case, the sequence of
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FIGURE 3 | Method flow graph.

edges connected between barycenters of adjacent triangles
with a common vertex, collectively called an Alexandroff
nerve (Alexandroff, 1965) forms the cycle C0. Notice that cycle
C0 will always be in the interior of a brain activation region
containing high intensity voxels.

Definition 9 (C1). In a vortex with 2 nested cycles, cycle C1 is
the vortex cycle that has only C0 in its interior. In effect, cycle
C1 is a collection of path-connected vertices on a sequence of
edges surrounding C0. Cycle C1 usually overlaps the boundary
of a high intensity brain activation region in an rs-fMRI
video frame.

Definition 10 (Bridge Segment). A bridge segment is an edge
attached between vertices on a pair of neighboring cycles. Let
cycA, cycB be a pair of neighboring cycles (i.e., there are no cycles
in between cycA and cycB) and let p be a vertex on cycA and q, a
vertex on cycB. The edge pq is a bridge segment. Edge cj between
vertices c and j is a bridge segment and there is no bridge segment
between vertices c and i in Figure 5.

In the main body of this paper, we give barcoded video
results for the more intuitive geometric Betti number counts of
vortex cycles on triangulated brain activation regions. Later, in
Appendix B, we give examples of both geometric and algebraic
forms of Betti numbers. A repetition of the same β1 across a
sequence of consecutive frames tells us that a similar vortex shape
recurs in these frames. The geometric Betti number of a vortex
containing two cycles with k bridge segments attached between
the pair of vortex cycles equals k + 2 (Don and Peters, 2019).

For example, the Betti number β0 of the vortex in the lower
half of Figure 1 equals 12 and β1 = 1, since there are 12 cycle
edges and there is only one cycle in the vortex shown.

2.3. rs-fMRI Lag Threads Having
Descriptive Proximity
A pair of objects are descriptively proximal (near each other),
provided the objects have the same description (Di Concilio
et al., 2018). A feature vector provides a description of an object.
In this work, feature vector (Betti number, area) describes a
subregion of a rs-fMRI brain region. Rather than a purely
theoretical, abstract approach to descriptive proximity spaces,
the focus here is on computational descriptively proximities.
Briefly, computational descriptive proximity includes algorithms
as well as structures such as set intersection, union and
closure and proximity space axioms introduced in Peters (2020).
Descriptive proximites provide mathematical framework useful
in measuring, comparing, and classifying (1) lag structures and
threads across frames in the same video or (2) lag structures and
threads across frames in different rs-fMRI videos. For example,
in terms of (1), (Bt , inner vortex cycle area) = (100, 100
mm2) describes a brain activation subregion in the transversal
brain section in frames 10 and 75 in Figure 7. In terms of (2),
Let Bs,Bt ,Bc be Betti numbers for the sagittal, transversal and
coronal brain regions. The feature vector (Bs,Bt ,Bc) is used
to describe and compare lag threads in frames across different
videos. This is an important advantage that accrues from the
application of computational descriptive proximities.

2.4. Methods
This section briefly introduces the method used to derive vortex
cycles on triangulated video frames (steps 0 through 5) and their
geometric Betti numbers (step 6), which are used to construct
persistent barcode for rs-fMRI videos. The fMRI videos (of 688
subjects) used in this work were obtained from the Harvard-
MGH Brain Genomics Superstruct Project (Buckner et al., 2014).
Each video contains 360 frames that exhibit the propagation of
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BOLD signals in the sagittal, transversal and coronal sections
of the human brain (see, e.g., the middle row of Figure 2). Let
K be a rs-fMRI video frame. The steps to obtain triangulation
vortexes covering the brain activation regions shown in Figure 2

are exhibited in the flow graph in Figure 3.
00 After selecting a video frame, find the centroids (centers of
mass) of the dark background regions. Holes are identified by
binarizing each video frame.

10: Triangulate the centroids of the tiny dark regions inside
the brain activation regions in K. A sample centroidal triangle is
shown in Figure 1.

20: Find the barycenter of every centroidal triangle △ in K.
Each barycenter is a voxel representing a high BOLD signal
situated between centroids.

30: Connect the barycenters where there is the greatest
concentration of centroidal triangles △s with a common vertex.
Recall that the vertex common to a collection of triangles is
an example of an Alexandroff nerve (Alexandroff, 1965) (see,
e.g., the collection of centroidal triangles with a common vertex
covered by the inner vortex cycle in Figure 1). In this work, the
focus is on finding maximal Alexandroff nerves.

40: Construct vortex cycles on the barycenters of centroidal
triangles {△} along the boundary of C0.

50: Repeat steps 20 through 40 until there are nomore vortexes
covering subregions containing nonzero BOLD signals. The end
result is a collection of connected nesting non-concentric cycles
that form a vortex. Once these vortexes are generated, the next
step is to compute the β1 for each vortex that has been found in
each of the triangulated video frames. Notice that there is usually
more than one vortex in video frame.

60: Compute Betti number. Count the number of non-single
edge (main) cycles in a vortex plus the number of signal edge
cycles connected between the main vortex cycles. This process
is repeated for each brain section in every frame containing
sagittal, trasversal and coronal brain sections in each of the
sample rs-fMRI videos.

To construct a Betti number-based persistent barcode, insert
a bar in a pictograph (an easy-to-read visualization of brain
activity instants accumulated in what is known as a homology
barcode Ghrist, 2014), using rs-fMRI video frame number (x-
axis) and its corresponding Betti Number (y-axis) (shown in the
top half of Figure 1).

3. RESULTS

3.1. Part 1. Edge Density and Eigen Value
Statistics
Since the focus of this study of brain activation in rs-fMRI videos
is on the formation of nesting cycles (vortexes) covering the
interior brain activation regions, we consider the edge densities
and eigenvalues that reflect the levels of connectedness of these
activation region cycles.

3.1.1. Edge Density
In this work, edge density quantifies the connectedness in the
vortex representation of a brain activation region in a rs-fMRI
video frame. Specifically, edge density is proportional to the

FIGURE 4 | Edge density of sagittal view.

product of the number of vortex bridge segments between cycles
× the number of cycle vertices. Mathematically, we have

E = number of bridge segments between vortex cycles.

V = number of vortex cycle vertices.

EdgeDensity = 2

[

E

V(V − 1)

]

.

An increase in the number of bridge segments E between vortex
cycles results in higher edge density. This can happen in the
case where there is more than one bridge segment connected
to a vortex cycle. An increase in the number of vortex cycle
vertices V with no change in the number of bridge segments,
leads to a lower edge density. This occurs whenever the number
of dark regions increase in a brain activation region, which leads
to an increase in the number of centroidal triangles. This also
leads to an increase in the number of barycenters. Physically,
each barycenter pinpoints the location of high intensity in a
brain activation region. Each vortex cycle vertex represents a
barycenter on brain activation region triangle.

Frequency of occurrence in the plot in Figure 4, for example,
is the number of times a certain edge density appears in the cycles.
Whenever a certain edge density appears, the plot will show the
frequency of occurrence as 1. If it reappears, the frequency of
occurrence will be 2. So it will increase the said value for the
occurrence by 1, each time it appears.

From the plot for the Sagittal view in Figure 4, it can be seen
that each distribution can be represented using three normal
distributions. Observe that the left-most normal distribution has
a mean µ = 0.04 and a standard deviation σ = 0.014 but it has
a lower edge density compared to the other two (middle, right)
distributions. The middle normal distribution has µ = 0.11
and a σ = 0.03. This distribution has the highest frequency of
occurrence of edges. The right normal distribution has a µ =

0.41 and a σ = 0.1 and has the second highest edge frequency.
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FIGURE 5 | Adjacency matrix representation of cortical vortex Connectedness.

When we consider the cycles that are generated by these edge
density values, we can observe the following. In order to get a
edge density value close to 0.4, there needs to be single cycle with
a lower number of vertices. For example, in the case where there
is a single cycle with three vertices (i.e., a triangle), we have the
edge density of 0.66. This represents the highest value attainable
in vortex cycles. Any single or multiple cycles will have a lower
edge density than 0.66. In other words, higher the number of
cycles and vertices in a cycle; the lower the edge density. Hence,
in Figure 4, it can be observed that the highest frequencies of
occurrence of edges is for edge densities between 0.1 and 0.2. For
further evidence of this, see the plots for transversal and coronal
views given in 9 and 10 reported in Appendix A.

3.1.2. Eigenvalue Spectrum
This section briefly introduces an eigenvalue spectrum
representation of the eigen values derived from the connectivity
relations between cortical vortex cycles. A number λ is an
eigenvalue of a linear transformation A (our adjacency matrix),
provided there is a vector x 6= 0 so that A(x) = λx. The
vector x called an eigenvector. Eigen values are computed
using an adjacency matrix A, which is a n × n square matrix
where n is the number of vertices in a vortex cycle. Here, an
eigenvalue spectrum is defined by an activation matrix view of
the connectedness between vertices in a vortex representation
of brain activation regions in rs-fMRI videos. Each adjacency
matrix represents the connectivity in vortex cycles. To help
visualize the connectivity between vertexes in a vortex, a color-
coding scheme is given. That is, the vertices on each vortex cycle
edge are color-coded as shown in Figure 5. In this color-coding
scheme, sub-matrix (a–f) represents inner cycle vertexes (color-
coded Green �). The Sub-matrix (g–n) represents cycle vertexes
(color-coded Orange �). The other two sub matrices represent
the bridge segment vertexes (color-coded Blue �).

FIGURE 6 | Eigen values for the sagittal view.

A bridge segment between vortex cycles with its ending
vertices on neighboring cycles has its connectivity represented by
a cell containing 1 in the two sub-matrices (color-coded Blue �)
that are not on the main diagonal as illustrated in Figure 5. The
bridge segment cj is represented by 1s in cells (c,j) and (j,c). If a
vortex cycle has an edge between two vertices in locations i and
j the cycle, it is represented symmetrically by 1 in a matrix cell
(i,j) and a corresponding cell (j,i). For example if there is a edge
between vertices 4 and 6 then cells (4, 6) and (6, 4) is 1 in the
corresponding adjacency matrix.

Each eigenvalue plot encapsulates results of the sagittal,
transversal and coronal views of brain activations recorded in
rs-fMRI videos. Each plot represents 12 separate brain section
videos = 3 brain sections × 4 original composite videos (i.e., we
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FIGURE 7 | Frame-Betti number-Area for rs-fMRI BOLD signal vortexes on three brain regions.

have extracted three separate brain section videos from each of
the four original composite videos). The separated brain section
videos made it possible for us to carry out statistical analysis
based on the triangulation of the centroids on holes found in
the brain activation regions of each brain section in the reported
experimental results recorded in the original four videos.

Example 1. In Figure 5, connectivity between vertices on vortex
cycles are color-coded. For instance, the connectivity between
vertexes a and b on the inner cycle in Figure 5 is represented by a
green cell � containing a 1 in (b, a) (row b and column a) and by
a green cell containing a 1 in (a, b) (row a and column b). �

Sample results for the eigenvalue spectrum for the sagittal view
of brain activation regions is recorded in the plot in Figure 6.
Plots of the eigenvalue spectrum for the transversal and coronal
views are given in Appendix A.

3.2. Part 2. Derivation of Persistent Brain
Activation Subregion Signature
Each triangulated BOLD signal propagation subregion has a
signature defined by the vector (frame number, cycle count Betti
number, inner vortex cycle area). This leads to the production
of four triangulated rs-fMRI videos available at Don A. et al.
(2019), that are part of the University of Manitoba Vortex
Signature Project. Vortexes have been derived from each of the
triangulation of the BOLD signal activation regions in each of

the brain sections in the video frames in the four rs-fMRI videos
from Buckner et al. (2014).

A straightforward outcome of the derived vortexes is a rich

source of new means of describing individual BOLD signal

activation regions as well as a bridge to various forms of
descriptions of lag threads. For example, each vortex has a Betti

number (count of the number of connected cycles) and various
cycle areas. Each of the three brain regions in each frame in the

Harvard Brain Genomics rs-fMRI videos has its own vortex and,

consequently, its own Betti number. Typically, each video frame
will have more than one Betti number derived from vortexes on
the multiple brain activation subregions.

In this study, the focus is on the area of the inner cycle of a

BOLD signal subregion vortex. This is the case, since each inner

cycle lies entirely within the interior of an activation subregion.
Hence, an inner cycle area is a reliable approximation of a

brain activation area. In sum, geometric Betti numbers and inner
vortex cycle area help gauge the extent of an activation subregion.
Considered either separately or taken together, a vortex on brain
activation subregion provides the basis for a subregion signature,
i.e., a distinctive characteristic of a brain activation subregion in a
rs-fMRI video frame. For example, (frame number, Betti number)
= (140, 60), (200, 60), (210, 60) provides a signature for the
coronal brain region in frames 140, 200, and 210 in Figure 2.
Betti number 60 is an example of a brain activation subregion
characteristic that persists over a sequence of video frames. The
vector (frame number, Betti number, inner vortex cycle area) =
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FIGURE 8 | 3D persistence barcode for 3 rs-fMRI BOLD signal propagated in brain regions.

(180, 40, 10 mm2) depicts a brain activation subregion in the
sagittal brain region in Figure 7. A repetition of the same Betti
number for the same brain region across multiple video frames
defines a lag thread pattern. For example, Bs = Bt = Bc = 100
for the sagittal, transversal and coronal brain regions defines a lag
thread pattern for multiple frames in Figure 7.

The gaps between the sequences of contiguous bars are
important, since gaps in a particular row of pictograph bars
indicates rs-fMRI video frames that do not have the same level
of brain activity represented by bars in the row. The proximity
of the bars (not necessarily contiguous) in a pictograph row call
attention to BOLD signals that are close to each other, temporally.
Repeated bars in a pictograph row indicate a repeated (persistent)
level of brain activity recorded in rs-fMRI video frames. An
example of a pictograph row containing multiple, contiguous
bars can be seen in row 30 (Betti numbers = 30) in Figure 2.
Contiguous bars in a pictograph row indicate the closeness in
time of the corresponding brain activity.

Examples of pictograph rows containing multiple, non-
contiguous bars can be seen in rows 10 and 60 (Betti numbers
= 10 and 60) in Figure 2. A byproduct of the inspection of
a sequence of contiguous bars (geometric β1 Betti numbers)
in a persistent barcode row can lead to the production of a
reduced rs-fMRI video containing only video frames with either
activation sub-regions with the same Betti number or a new

video containing frames with activation sub-regions, each with
a different β1 (vortex cycle count) Betti number.

3.3. Part 3. Confirmation of Highly
Reproducible Lag Thread Topography
From 3D barcodes in Figure 7 as well as in Figure 8, Betti
number-area patterns can be detected within frames in the same
video. That is, one can find many examples of brain activation
subregion Betti number (and corresponding subregion area in
a lag thread in one video frame) that are reproduced in a lag
thread in a different video frame. In other words, the Betti
number-area combination persists across different frames. Many
examples of this Betti number-area persistence phenomenon can
be detected in the two sample 3D homology barcodes when
compared with similar 3D homology barcodes derived from the
frames in the videos available at the University of Manitoba
Vortex Project at DonA. et al. (2019). These persistent repetitions
in the topography detected in different lag threads confirm the
observation that there are commonalities in signal propagation
within each lag thread (Mitra et al., 2015).

3.4. Summary of Findings
This study of the Betti numbers and inner vortex areas of rs-fMRI
BOLD signal propagation subregions of the brain confirms and
supplements earlier findings given in Mitra et al. (2015). A main
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result of this study of the persistence of brain activation subregion
features confirms the contention that the topography of lag
threads is highly reproducible. Starting with the Betti number
of connected cycles derived from triangulated brain activation
regions found in rs-fMRI videos, it is apparent that the vortexes
on brain activation subregions appear over and over in the lag
threads across different rs-fMRI video frames. In other words, we
find that there are commonalities in BOLD signal propagation
within each lag thread.

The question whether intrinsic brain activity contains
reproducible temporal sequences is revisited. It is confirmed
that a human resting state fMRI (rs-fMRI) contains persistent
(repeatable) highly reproducible lag structure. The answer to
this question is given twofold. This is done first in terms of
Betti numbers that are counts of the number of connected
cycles in vortexes on triangulated brain activation subregions.We
introduce a 2D persistence pictograph (barcode) that exhibits the
appearance, disappearance, and repeated reappearance of Betti
numbers across lag threads in sequences of rs-fMRI video frames.
In addition, the reproducibility question is also answered in terms
of the introduction of a video frame-Betti number-vortex cycle
area combination in 3D persistence barcodes that facilitates a
check on how often these features of lag threads appear during
a rs-fMRI session.

Concluding Remarks
This study considers Betti numbers that are counts of the number
of connected barycentric cycles in vortexes on triangulated brain
activation regions. In terms of the area occupied by a vortex
on a brain activation subregion, we have only considered the
area of the interior of the innermost barycentric cycle of each
vortex. Also of interest and of considerable importance is the
area in the interior of other cycles that includes the inner vortex
cycle. Future work would expand the derivation of persistent
barcodes to include the zeroth as well as the oneth Betti numbers.
In working toward the approximation of the area of brain

activation subregion shapes, the areas in the interior of the other
cycles (summing on the innermost vortex cycle area) would
be considered.
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The exponential time differencing (ETD) method allows using a large time step to efficiently

evolve stiff systems such as Hodgkin-Huxley (HH) neural networks. For pulse-coupled

HH networks, the synaptic spike times cannot be predetermined and are convoluted with

neuron’s trajectory itself. This presents a challenging issue for the design of an efficient

numerical simulation algorithm. The stiffness in the HH equations are quite different, for

example, between the spike and non-spike regions. Here, we design a second-order

adaptive exponential time differencing algorithm (AETD2) for the numerical evolution of

HH neural networks. Compared with the regular second-order Runge-Kutta method

(RK2), our AETD2 method can use time steps one order of magnitude larger and improve

computational efficiency more than ten times while excellently capturing accurate traces

of membrane potentials of HH neurons. This high accuracy and efficiency can be robustly

obtained and do not depend on the dynamical regimes, connectivity structure or the

network size.

Keywords: Hodgkin-Huxley, exponential time differencing method, efficiency, pulse-coupled, second-order

1. INTRODUCTION

The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952; Hassard, 1978; Dayan and Abbott,
2003) is a classical neuron model, originally proposed to describe the behaviors of action potentials
of the squid’s giant axon. It provides a useful mechanism that accounts for the detailed generation of
action potentials and the existence of the absolute refractory periods. It also serves as the foundation
for other neuron models such as the one that can describe the behaviors of bursting and adaption
(Pospischil et al., 2008). However, the HH equations are so complicated that it is difficult to study
its properties analytically such as the Hopf bifurcation and chaotic dynamics (Aihara, 1986; Hansel
and Sompolinsky, 1996; Guckenheimer and Oliva, 2002; Lin, 2006). Therefore, its investigation
often relies on numerical simulations, for example, by the Runge-Kutta (RK) methods.

There are several difficulties to design an efficient and accurate numerical algorithm for the HH
neural network, especially when the network size is large. First, when an HH neuron driven by
external input generates an action potential (the interval of action potential is called spike period
in this work), the HH neuron equations become stiff. Regular RK methods have to use very small
time step to satisfy the requirement of numerical stability (Guckenheimer and Oliva, 2002; Börgers
et al., 2005; Kassam and Trefethen, 2005; Börgers and Nectow, 2013). This small time step will
significantly increase the computational cost when studying long time behavior of large-scale HH
networks such as chaotic attractor dynamics or collecting reliable statistical information of HH
neurons such as the distribution of inter-spike-intervals.
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For more realistic situations, the neurons are generally driven
by stochastic spike input and the interaction term is usually
modeled by a Dirac delta function (pulse-coupled), while the
spike-induced conductance dynamics are modeled by an alpha
function (Somers et al., 1995; Hansel et al., 1998; Sun et al.,
2009). These make the system become non-smooth and event-
driven, while providing challenges for the design of efficient
numerical simulation algorithms. For instance, it is impossible to
predetermine the synaptic spike times since they are convoluted
with neurons’ trajectories themselves. As a result, one has to
evolve the HH network by ignoring the spike interactions among
neurons and then use spike-spike interaction to amend the
neurons’ trajectories at the end of the time step (Hansel et al.,
1998; Brette et al., 2007). Without a careful recalibration for the
neuronal spikes, the numerical algorithm often suffers from the
issue of instability or relatively low numerical accuracy.

The exponential time differencing (ETD)method (Hochbruck
et al., 1998; Cox and Matthews, 2002; Kassam and Trefethen,
2005; de la Hoz and Vadillo, 2008; Nie et al., 2008; Hochbruck
and Ostermann, 2010) is proposed for efficient simulation of
stiff ordinary differential equations (ODEs). The basic idea is to
decompose the ODEs into a linear stiff part and a nonlinear non-
stiff part. Then, the linear stiff part can be solved by using the
integrating factor method, while the nonlinear non-stiff part can
be approximated by numerical quadrature (Cox and Matthews,
2002). A second-order ETD (ETD2) method for HH neural
networks has been proposed in a recent work (Börgers and
Nectow, 2013), which allows using a large time step to raise
computational efficiency. In Börgers and Nectow (2013), the
HH equations are linearly approximated in each time step, and
then solved analytically over the time step. The ETD2 method
proposed in Börgers and Nectow (2013) is a reduced situation of
that in Cox andMatthews (2002), but it is difficult to generalize to
higher-order cases, e.g., the fourth-order ETD method. Besides,
although the ETD2 method proposed in Börgers and Nectow
(2013) is proven to be unconditionally stable for HH system, it
will be inaccurate using a large time step (Börgers and Nectow,
2013).

In this work, we first provide an ETD2 method following
the idea proposed in Cox and Matthews (2002) to evolve a
pulse-coupled HH neural network driven by stochastic spike
input. Note that the stiffness of HH equations are quite different,
especially between the spike and non-spike periods, and we find
that the ETD2 method may introduce a relatively large error in
the membrane potentials in the non-stiff period if using the same
time step as that in the stiff period. We then design an adaptive
ETD2 method (AETD2) that using different decompositions of
the linear and non-linear parts in stiff and non-stiff periods. In
addition, for the situation where neurons generate spikes in the
time step, the effects of the spikes are carefully recalibrated in our
AETD2 method to achieve a second-order numerical accuracy.
Our AETD2 method is capable of using a large time step, while
achieving the same high accurate traces of membrane potential of
each neuron as the second-order RK (RK2) method using a very
small time step. It can improve computational efficiency more
than one order of magnitude compared with the RK2 method.
This high numerical accuracy and computational efficiency can

be achieved over a wide range of dynamical regimes and does not
depend on the network connectivity or size.

2. MATERIALS AND METHODS

2.1. The Model
The dynamics of the ith neuron of an HH neural network is
governed by

C
dVi

dt
= −(Vi − VNa)GNam

3
i hi − (Vi − VK)GKn

4
i

− (Vi − VL)GL + I
input
i , (1)

dzi

dt
= (1− zi)αz(Vi)− ziβz(Vi), for z = m, h, n, (2)

where C is the cell membrane capacitance, Vi is the membrane
potential, mi, hi, and ni are gating variables for sodium and
potassium currents, respectively (Dayan and Abbott, 2001). The
parameters VNa,VK , and VL are the reversal potentials for the
sodium, potassium, and leak currents, respectively, GNa,GK , and
GL are the corresponding maximum conductances. The form
of αz and βz are set as (Dayan and Abbott, 2001): αm(V) =

(0.1V+4)/(1−exp(−0.1V−4)), βm(V) = 4 exp(−(V+65)/18),
αh(V) = 0.07 exp(−(V + 65)/20), βh(V) = 1/(1 + exp(−3.5 −
0.1V)), αn(V) = (0.01V + 0.55)/(1 − exp(−0.1V − 5.5)), and
βn(V) = 0.125 exp(−(V + 65)/80).

The input current I
input
i is given by

I
input
i = −GE

i (t)(Vi − VE
G)− GI

i (t)(Vi − VI
G), (3)

where GE
i and GI

i are excitatory and inhibitory conductances,
respectively, VE

G and VI
G are the corresponding reversal

potentials. The dynamics of conductance G
Q
i , Q = E, I, is

governed by

dG
Q
i

dt
= −

G
Q
i

σ
Q
r

+HQ
i , (4)

dH
Q
i

dt
= −

H
Q
i

σ
Q
d

+ FQ
∑

l

δ(t − sil)+
∑

j

SQij

∑

l

δ(t − τjl), (5)

where HQ
i is an auxiliary dynamical variable to make the

conductance GQ
i as a continuous function, δ(·) is the Dirac delta

function, sil is the spike time of the feedforward Poisson input
with strength FQ and rate ν, τjl is the lth spike time of the jth

neuron, and σ
Q
d

and σ
Q
r are slow decay and fast rise time scale,

respectively. Each neuron is either excitatory or inhibitory and
its coupling strength is labeled by its type E or I, respectively. For
example, SEij (S

I
ij) is the coupling strength from the jth excitatory

(inhibitory) neuron to its postsynaptic ith neuron. By analytically
solving Equations (4) and (5), the spike-induced conductance
change can be explicitly expressed as

G(σQ
d
, σQ

r , t) =
σ
Q
d

σ
Q
r

σ
Q
d
− σ

Q
r

(e−t/σ
Q
d − e−t/σ

Q
r )2(t), (6)
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where 2(·) is the Heaviside function. For all neurons, we take
FE = f and FI = 0. The model parameters are C = 1µF·cm−2,
VNa = 50 mV, VK = −77 mV, VL = −54.387 mV, GNa =

120 mS·cm−2, GK = 36 mS·cm−2, GL = 0.3 mS·cm−2, VE
G = 0

mV, VI
G = −80 mV, σ E

r = 0.5 ms, σ E
d

= 3.0 ms, σ I
r = 0.5 ms,

and σ I
d
= 7.0 ms (Dayan and Abbott, 2001).

The voltage Vi evolves continuously according to Equations
(1) and (2). When it reaches the firing threshold V th

= −50
mV (Sun et al., 2009), we say the ith neuron generates a spike
at this time, say τil. Then it will trigger its postsynaptic jth

neuron’s conductance change in the form of SQji G(σQ
d
, σQ

r , t−τil),

Q = E, I. For the ease of discussion about our algorithm design,

we consider an all-to-all connected network with S
Q
ij = S/N,

where Q = E, I, S is the coupling strength, and N is the total
number of neurons in the network. Note that our algorithm
can be easily extended to networks with more complicated
connectivity structure.

2.2. Runge-Kutta Method
Without loss of generality, we consider the RK2 method as the
benchmark and compare it with the ETD methods. We first
introduce the RK2method to evolve the HH neural network with
a fixed time step 1t, for example, to evolve the system from time
t = tk = k1t to t = tk+1 = (k + 1)1t. Since the synaptic spike
times in [tk, tk+1] can not be predetermined, one has to evolve
the network without considering synaptic spike interactions and
reconsider their effects by using spike-spike interactions at the
end of time step (Hansel et al., 1998; Brette et al., 2007).

Due to the pulse-coupled dynamics in Equation (5), the
numerical accuracy may be very low if the spike timing is not well
estimated. For example, suppose that a presynaptic spike fired at
t̃ between tk and tk+1. If one simply assigns it to be the end of
time step tk+1, then the error of the spike-induced conductance
change is

S

N
[G(σQ

d
, σQ

r , t − t̃)− G(σQ
d
, σQ

r , t − tk+1)] = O(tk+1 − t̃) (7)

= O(1t),Q = E, I.

Therefore, the error with the magnitude of 1t will be introduced
when the system evolves to t = tk+1.

We now solve the above issue arising from the pulse-
coupled dynamics to achieve a second-order numerical accuracy.
First, we evolve the HH neural network without considering
the feedforward and synaptic spikes during the time interval
[tk, tk+1]. Then, at time t = tk+1, some neuron’s voltage may
be above the threshold, i.e., generating a spike, say neuron i, if
Vi,k < Vth and Vi,k+1 ≥ Vth where Vi,k and Vi,k+1 represent
Vi(tk) and Vi(tk+1), respectively. The spike time, say τil, can be
estimated following the idea proposed in Hansel et al. (1998) and
Shelley and Tao (2001). The neuron’s membrane potential during
the time interval can be approximated by a linear interpolation:

Vi(t) ≈ Vi,k +
Vi,k+1 − Vi,k

1t
(t − tk), (8)

and the spike time τil can be estimated by solving the equation:

V th
= Vi,k +

Vi,k+1 − Vi,k

1t
(τil − tk). (9)

Since there may be some neurons firing and some feedforward
spikes emitting during the time interval and they will induce
the conductance change, the conductance should be then
recalibrated. When the neuron firing and the feedforward spikes
are not considered, the conductance variables in such cases,
denoted by G̃Q and H̃Q, Q = E, I, are

H̃
Q
j,k+1

= H
Q
j,k
e−1t/σ

Q
d , (10)

G̃
Q
j,k+1

= G
Q
j,k
e−1t/σ

Q
r
+H

Q
i,k

G(σQ
d
, σQ

r ,1t), (11)

and the conductance variables are then recalibrated by taking into
account the neuron firing and the feedforward spikes as

H
Q
j,k+1

= H̃
Q
j,k+1

+ FQ
∑

tk<sjl≤tk+1

e−(tk+1−sjl)/σ
Q
d

+

S

N

∑

i

∑

tk<τil≤tk+1

e−(tk+1−τil)/σ
Q
d , (12)

G
Q
j,k+1

= G̃
Q
j,k+1

+ FQ
∑

tk<sjl≤tk+1

G(σQ
d
, σQ

r , tk+1 − sjl)

+

S

N

∑

i

∑

tk<τil≤tk+1

G(σQ
d
, σQ

r , tk+1 − τil), (13)

for j = 1, 2, ...,N. A detailed algorithm of the RK2 method is
given in Algorithm 1.

Algorithm 1: RK2 algorithm

Input: an initial time tk and feedforward input times {sil}
Output: Solutions at time tk+1

1 for i = 1 to N do

2 Solve the HH equations for the ith neuron without
considering spike input using RK2 scheme.

3 if Vi(tk) < V th and Vi(tk+1) ≥ V th then

4 The ith neuron spiked in [tk, tk+1].
5 Estimate the spike time τil by Equation (9).

6 end

7 end

8 Recalibrate the conductance by Equations (12) and (13).

We show that the above algorithm can indeed achieve a
second-order numerical accuracy as follows. If there are no
feedforward or synaptic spikes, then all the dependent variables
are infinitely differentiable and the RK2 method can achieve
an error of order O(1t2). For the time step that contains
feedforward or synaptic spikes, an error of order O(1t) is
introduced in the conductance with the form of GQ

− G̃Q,Q =

E, I. Nevertheless, the dependent variables of V ,m, h, and n can
have an error of order O(1t2). The synaptic spike times are
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estimated by a linear interpolation and also have an error of
order O(1t2). After recalibration shown in Equations (12) and
(13), the conductance variables GQ and HQ,Q = E, I can achieve
numerical accuracy of second-order at the end of the time step.
Therefore, all the dependent variables V ,m, h, n,GE, GI , HE, and
HI that are numerically solved in each time step have an error of
order O(1t2) (see below for verification of numerical results).

2.3. Exponential Time Differencing Method
Exponential time differencing method is proposed to solve the
stiff problem in differential equations by decomposing the system
into a linear stiff term and a nonlinear non-stiff term (Hochbruck
et al., 1998; Cox and Matthews, 2002; Kassam and Trefethen,
2005; Nie et al., 2008). Following this idea, we propose the ETD
schemes for HH Equations (1) and (2) below. As illustrated
in Algorithm 1, each neuron in the HH network is evolved
independently and their conductances are recalibrated at the
end of time step. Thus, one can first derive an ETD scheme for
a single HH neuron and then consider the spike interactions
among neurons, and obtain an ETD scheme for the numerical
evolution of an HH neural network.

Consider the evolution of a single HH neuron from tk to tk+1.
The first step of the ETD method is to rewrite Equations (1) and
(2) as

dz

dt
= czz + Fz , for z = V ,m, h, n, (14)

where

cV = (−GNam
3
khk − GKn

4
k − GL)/C, (15)

cz = −αz(Vk)− βz(Vk), for z = m, h, n, (16)

FV (t,V ,m, h, n) =
[

−(V − VNa)GNam
3h− (V − VK)GKn

4

−(V − VL)GL + Iinput
]

/C − cVV
(17)

and

Fz(t,V ,m, h, n) = (1− z)αz(V)− zβz(V)− czz, for z = m, h, n,
(18)

where zk represents z(tk) for z = V ,m, h, n of this neuron. Here,
Fz(t,V ,m, h, n) is actually a function of t,V , and z for z = m, h, n,
but we write in this way for ease of illustration. Note that the
linear coefficient cz in Equation (14) is a constant value in the kth
time step [tk, tk+1] and is updated with respect to k. Multiplying
Equation (14) by an integrating factor e−czt and taking integral
from tk to tk+1, we obtain

zk+1 = zke
cz1t

+ ecz1t

∫ 1t

0
e−czτFz(tk

+ τ ,V(tk + τ ),m(tk + τ ), h(tk + τ ), n(tk + τ ))dτ (19)

for z = V ,m, h, and n.
The next step of the ETD method is to derive proper

approximations to the above integration.We take a second-order

ETD formula with RK time stepping which was proposed as
ETD2RK method in Cox and Matthews (2002). Let,

az,k = zke
cz1t

+ Fz,k(e
cz1t

− 1)/cz , (20)

and approximate Fz during the time interval [tk, tk+1] by

Fz(tk + τ ,V(tk + τ ),m(tk + τ ), h(tk + τ ), n(tk + τ )

= Fz,k + τ (Fz(tk+1, aV ,k, am,k, ah,k, an,k)− Fz,k)/1t + O(1t2),
(21)

for z = V ,m, h, and n, where Fz,k represents Fz(tk,Vk,mk, hk, nk).
Substituting the above approximation into Equation (19) yields
the ETD2 scheme (the ETD method which has second-order
numerical accuracy) which is given by

zk+1 = az,k + [Fz(tk+1, aV ,k, am,k, ah,k, an,k)

− Fz,k](e
cz1t

− 1− cz1t)/c2z1t, (22)

for z = V ,m, h, and n. The procedure of the ETD2 algorithm for
an HH neural network is similar to that of the RK2 algorithm
given in Algorithm 1, but the RK2 scheme is replaced by the
ETD2 scheme in Equation (22).

2.4. Adaptive Exponential Time
Differencing Method
The ETD2 method can indeed use a large time step to improve
computational efficiency, but we find that it will introduce
relatively large error in the trajectories of neurons’ membrane
potentials and even lead to the missing of action potentials (see
below for numerical results). In addition, the number of the
missed action potentials in the ETD2 method can grow with the
increase of time steps compared with the RK2 method using a
small time step. Thus, it is important to design an efficient but
also reliable ETD method to solve this issue.

As shown in Figure 1A, the slope of voltage has a very large
value when the neuron generates an action potential (spike
period) and quickly reduces to a value around zero in the non-
spike period until the next spike time. Therefore, the stiffness
of HH equations is quite different between spike and non-spike
periods. In the non-spike period, the slope of voltage is almost
zero, while the linear and nonlinear parts in Equation (14) have
a much larger absolute value and nearly cancel each other out as
shown in Figure 1B. Therefore, the decomposition in Equation
(14) may not be appropriate in the non-spike period since both
the linear and nonlinear parts become stiff while the summation
of them is indeed non-stiff. Based on this, we propose a different
decomposition in the non-stiff period from that in the stiff
period: taking cz = 0 and the whole right hand side of Equation
(14) as the nonlinear part. For such a decomposition, the ETD2
scheme reduces to the RK2 scheme in the non-stiff period.

The stiff period of HH equations can be clearly identified as
shown in Figure 1A and is defined as follows. For each spike
event, the starting point of the stiff period is determined as
the spike time when the voltage reaches the firing threshold
Vth = −50 mV and the interval of stiff period is chosen as 3.5
ms which is sufficient long to cover the highly stiff region of
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FIGURE 1 | (A) Trajectory of voltage (blue solid curve) and the slope of voltage (red dashed curve) for a single HH neuron. (B) Trajectory of the slope of voltage (red

dashed curve), linear part cVV (green dash-dotted curve), and nonlinear part FV (black dotted curve) in Equation (14) for the non-spike period. The time interval of (B)

zooms into the later part of (A).

FIGURE 2 | Illustration of the AETD2 method. After neuron 1 fires a spike, we

use the ETD2 scheme to evolve the HH equations for neuron 1 during the stiff

period indicated by the red vertical lines, while the HH equations for neuron 2

is evolved using RK2 scheme since neuron 2 is in the non-stiff period. The

starting point of the stiff period is determined as the spike time and it lasts for

the following about 3.5 ms. The circles and dots indicate the time nodes

where we use the ETD2 and RK2 schemes, respectively.

the spike. Based on the above observation, we give our AETD2
method for HH neural network as following: each neuron is
evolved using ETD2 scheme if it is in the stiff period and
use the reduced ETD2 scheme, the RK2 scheme, otherwise,
as shown in Figure 2. Detailed AETD2 algorithm is given in
Algorithm 2.

3. RESULTS

We consider an all-to-all connected network of 80 excitatory
and 20 inhibitory neurons driven by Poisson feedforward

Algorithm 2: AETD2 algorithm

Input: an initial time tk, feedforward input times {sil}
Output: Solutions at time tk+1

1 for i = 1 to N do

2 Solve the HH equations for the ith neuron without
considering spike input:

3 if The ith neuron is inside the stiff period then
4 use ETD2 scheme
5 else

6 use RK2 scheme
7 end

8 if Vi(tk) < V th and Vi(tk+1) ≥ V th then

9 The ith neuron spiked in [tk, tk+1].
10 Estimate the spike time τil by Equation (9).

11 end

12 end

13 Recalibrate the conductance by Equations (12) and (13).

input. For the ease of illustration, we choose the Poisson
input strength f = 0.06 mS·cm−2 and input rate ν =

300 Hz, and the coupling strength between neurons are
chosen as S = 0.2 mS·cm−2 throughout this work,
unless indicated otherwise. However, our algorithm can be
applied to HH neural networks under a variety of dynamical
regimes.

First, we verify the second-order numerical accuracy by
performing convergence tests. A high precision solution is
obtained by using RK2 method with a sufficiently small time step
1t = 1 × 10−6 ms and is denoted by a superscript “high.” It
is compared with the solutions computed by the RK2, ETD2,
and AETD2 methods with various values of larger time steps
1t = 2−4, 2−5, ..., 2−12 ms which is denoted by a superscript
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“1t.” Errors of membrane potentials at final run time T = 2, 000
ms and the last spike time of each neuron are computed:

ErrorV =

√

∑

i

(V
(1t)
i (T)− V

(high)
i (T))2, (23)

Errorτ =

√

∑

i

(τ
(1t)
il∗

− τ
(high)

il∗
)2, (24)

where τil∗ indicates the last spike time of the ith neuron during
the run time interval. As shown in Figure 3, if one naively assigns
the end of time step as the spike times in the RK2 method (naive
RK2), the numerical accuracy of the membrane potentials and
spike times can only be of the first-order. In contrast, if one
determines the spike times by linear interpolation and recalibrate
the conductances accordingly, all the RK2, ETD2, and AETD2
methods can achieve a second-order numerical accuracy. In
addition, we find that the ETD2 method has much larger error
compared with the RK2 and AETD2 methods using the same
time step as shown in Figure 3. When using a time step larger
than 1t = 2−6

= 0.0156 ms, the ETD2 method performs even
worse than the naive RK2 method. The underlying reason is that
the HH equations are almost non-stiff in the non-spike period,
but the decomposition in Equation (14) induces a relatively large
stiffness for the nonlinear term as discussed previously.

We next discuss the numerical performance of our AETD2
method and compare it with other different numerical methods.
As shown in the top panel of Figure 4, the AETD2 method with
large time steps (maximum time step 1t = 0.277 ms) can
obtain the same high accuracy in membrane potentials as the
RK2 method using a very small time step 1t = 0.01 ms. The
bottom panel of Figure 4 shows the raster plots (neuron index
vs. its spike time) of the spike events in the network. It can be
seen that the spike times are well-captured by the AETD2method
with large time steps. In contrast, as shown in Figures 5A,B,
the ETD2 method is highly inaccurate in terms of voltage traces
and raster plots when the time step 1t = 0.277 ms is used
(the maximum time step in AETD2 method). Figure 5C shows
the relative error in the mean firing rate (the average number
of synaptic spikes per unit time) between the ETD2 and RK2
methods, and that between the AETD2 and RK2 methods over
different values of coupling strength. It can be seen that the ETD2
method can achieve only one digit of numerical accuracy while
the AETD2 method can robustly achieve more than two digits of
numerical accuracy when the time step 1t = 0.277 ms is used in
both methods. Therefore, the ETD2method has worse numerical
performance compared with the AETD2 method.

To demonstrate the efficiency of our AETD2 method, we
compare the simulation time that RK2, ETD2, and AETD2
methods take for a common total run time. We simulate the
all-to-all connected network by the RK2, ETD2, and AETD2
methods on a Windows platform using an Intel i7 2.6 GHz
processor (the weblink of the source codes is given in section 4),
and the simulation time and numerical accuracy of mean firing
rate are given inTable 1. The AETD2method can achieve over an

order of magnitude of speedup compared with the RK2 method
while achieving the same high accuracy in terms of the mean
firing rate.

In addition, we define the efficiency ratio of the AETD2
method over the RK2 method as

E =

TRK2

TAETD2
(25)

where TRK2 and TAETD2 indicate the simulation times of the RK2
and AETD2 methods, respectively, for the HH neural network to
evolve the run time T. Note that the RK2 and ETD2methods take
almost the same simulation time when using the same small time
step as shown in Table 1. Thus, the above efficiency ratio can be
approximated by the ratio of the total number of time steps each
method requires as

E ≈

T/1tRK2

T/1tAETD2
=

1tAETD2

1tRK2
, (26)

where 1tRK2 and 1tAETD2 indicate the time steps used in
the RK2 and AETD2 methods, respectively. To demonstrate
that the above efficiency ratio is independent of the network
connectivity, size, and dynamical regimes, we evolve the all-to-
all connected network of 80 excitatory and 20 inhibitory neurons
and a randomly connected network of 800 excitatory and 200
inhibitory neurons with a variety choice of coupling strength.
Not surprisingly, the efficiency ratio approximated by Equation
(26) agrees well with the one measured by the ratio of simulation
time between the RK2 andAETD2methods in both two networks
as shown in Figure 6. Hence, the efficiency ratio of the AETD2
method relies on only the size of evolved time steps.

4. DISCUSSION

We have presented an adaptive second-order ETD method
to evolve the pulse-coupled HH neural network. Our AETD2
method can solve the stiff problem in the HH equations when
an HH neuron generates an action potential (spike period). It
can use a large time step to raise computational efficiency while
accurately capturing dynamical properties of HH neurons such
as the trace of membrane potentials, spike times of each neuron,
and the mean firing rate. We point out that our AETD2 method
can robustly enlarge time steps and raise computational efficiency
over one order of magnitude compared with the RK2 method.
This high efficiency seems to be independent of parameter choice
of connectivity structure, dynamical regimes, or network size.

Our adaptive ideas of ETD methods can be applied to
dynamical systems with stiff and non-stiff periods. In addition,
we point out that the ETD scheme in our AETD2 algorithm can
be chosen in a variety of forms according to the properties of
dynamical systems. Here, we use the ETD2 scheme derived by
approximating the integration in Equation (19) with RK time
stepping. Other forms of numerical schemes can also be used
to approximate the integration. For example, one can use a liner
interpolation to approximate the nonlinear part in Equation (14)
to obtain another form of ETD2 scheme. Besides, one can derive
an ETD scheme following the idea proposed in Börgers and
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FIGURE 3 | Errors of membrane potentials (A) and the last spike time of each neuron (B) in the all-to-all connected network when it is evolved using various time

steps. Blue crosses are naive RK2 method without performing the linear interpolation for the estimate of the spike times. Green squares are RK2 method, cyan

diamonds are ETD2 method, and red circles are AETD2 method. The last three methods all perform the linear interpolation to estimate the spike times. The dashed

line and the solid line indicate the numerical convergence of the first-order and the second-order, respectively. The total run time T = 2, 000 ms.

FIGURE 4 | Comparing the AETD2 method with the RK2 method. (Top) Traces of membrane potential of an HH neuron in the all-to-all connected network. (Bottom):

Raster plots of the network spikes. The blue solid curves and dots indicate the results by the RK2 method with time step 1t = 0.01 ms, while the red dashed curves

and circles indicate the results by the AETD2 method. The time steps for the AETD2 method are 1t = 0.01, 0.1, 0.277 ms for (A,D), (B,E), and (C,F), respectively.

Nectow (2013) by linearly approximating the HH equations. The
derived ETD scheme is proven to be unconditionally stable for
HH system in Börgers and Nectow (2013). All these different
ETD schemes can be easily embedded into our AETD2 method
in the same way as given in Algorithm 2. For example, we
can embed the ETD formula proposed in Börgers and Nectow
(2013) into the AETD2 method to evolve the reduced Traub

Miles (RTM) neural networks (Ermentrout and Kopell, 1998;
Olufsen et al., 2003; Börgers and Nectow, 2013). The dynamical
equations for an RTM neuron is almost the same as that for an
HH neuron except that the gating variable m is described by
mi = αm(Vi)/(αm(Vi) + βm(Vi)). The forms of α and β for the
RTMneurons are set as: αm(Vi) = 0.32(Vi+54)/(1−exp(−(Vi+

54)/4)), βm(Vi) = 0.28(Vi+27)/(exp((Vi+27)/5)−1), αh(Vi) =
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FIGURE 5 | Comparing the ETD2 and AETD2 methods with the RK2 method. (A) Voltage trace of the same HH neuron used in Figure 4. (B) Raster plot of the

network spikes. The blue solid curve and dots indicate the results by the RK2 method with time step 1t = 0.01 ms while the red dashed curve and circles indicate the

results by the ETD2 method with time step 1t = 0.277 ms. The coupling strength is S = 0.2 mS·cm−2. (C) Relative error in the mean firing rates between the ETD2

and RK2 methods (cyan diamonds), and that between the AETD2 and RK2 methods (red circles) for different choice of the coupling strength. Both the ETD2 and

AETD2 methods use time step 1t = 0.277 ms. The benchmark mean firing rate is computed by the RK2 method with a very small time step 1t = 1× 10−6 ms.

TABLE 1 | Simulation of the all-to-all connected network with a total run time T = 10 s.

RK2 ETD2 AETD2

1t (ms) CPU Relative error CPU Relative error CPU Relative error

0.005 60.56 s 0 (13.61 Hz) 60.07 s 0 (13.61 Hz) 60.82 s 0 (13.61 Hz)

0.01 30.22 s 0 (13.61 Hz) 30.05 s 0 (13.61 Hz) 30.55 s 0 (13.61 Hz)

0.02 14.99 s 0 (13.61 Hz) 15.03 s 0.074% (13.60 Hz) 15.30 s 0 (13.61 Hz)

0.05 *** *** *** 5.95 s 0.66% (13.52 Hz) 6.16 s 0.074 % (13.62 Hz)

0.1 *** *** *** 2.94 s 2.65% (13.25 Hz) 3.11 s 0.074 % (13.62 Hz)

0.2 *** *** *** 1.48 s 9.99% (12.25 Hz) 1.57 s 0.15 % (13.63 Hz)

0.277 *** *** *** 1.09 s 12.56% (11.29 Hz) 1.15 s 0.59 % (13.69 Hz)

0.5 *** *** *** 0.57 s 41.59% (7.95 Hz) *** *** ***

1 *** *** *** 0.29 s 87.07% (1.76 Hz) *** *** ***

The simulation time is measured in seconds. The relative error in the mean firing rate between each method using different time steps and the RK2 method using a very small time step

1t = 1× 10−6 ms is measured in percentage and the mean firing rate is measured in Hz given inside the parentheses. Asterisks indicate overflow errors.

FIGURE 6 | Efficiency ratio of the AETD2 method when evolving the HH neural network using various time steps (A) and coupling strength (B). In (A,B), the blue lines

are efficiency ratio measured by the approximation in Equation (26), while the black stars and red circles are the efficiency ratio measured by the ratio of simulation

times between the RK2 and AETD2 methods. The black stars represent the results for the all-to-all connected HH neural network of 80 excitatory and 20 inhibitory

neurons, while the red circles represent the results for an HH neural network of 800 excitatory and 200 inhibitory neurons randomly connected with probability 25%.

The black solid and red dashed curves in (B) are the mean firing rates in the smaller network of 100 neurons and larger network of 1,000 neurons, respectively. The

coupling strength in (A) is S/N = 0.002 mS·cm−2 and the time step for AETD2 method in (B) is 1t = 0.277 ms. The time step for RK2 method is 0.01 ms and total

run time is T = 50 seconds in both (A,B).
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FIGURE 7 | The AETD2 method for the RTM neural network. (A) Illustration of the AETD2 method. We take a relatively high firing threshold V th
= 0 mV for the RTM

neurons indicated by the solid horizontal line. The stiff period is defined as the region where |dV/dt| ≥ 20. The circles and dots indicate the time nodes where we use

the ETD2 and RK2 schemes, respectively. (B) Traces of membrane potential of an RTM neuron. The blue solid and red dashed curves indicate the results by the RK2

method with time step 1t = 0.02 ms and the AETD2 method with time step 1t = 0.3 ms, respectively. (C) Relative error in the mean firing rates between the AETD2

and RK2 methods for different choice of time steps used in the AETD2 method for an all-to-all connected RTM network of 80 excitatory and 20 inhibitory neurons with

Poisson input. The dashed horizontal line indicates 5% error, relative error = 0.05. The benchmark mean firing rate is computed by the RK2 method with a very small

time step 1t = 1× 10−6. The parameters for RTM model is C = 1µF·cm−2, VNa = 50 mV, VK = −100 mV, VL = −67 mV, GNa = 100 mS·cm−2, GK = 80 mS·cm−2,

and GL = 0.1 mS·cm−2.

0.128 exp(−(Vi + 50)/18), βh(Vi) = 4/(1+ exp(−(Vi + 27)/5)),
αn(Vi) = 0.032(Vi+ 52)/(1− exp(−(Vi+ 52)/5)), and βn(Vi) =
0.5 exp(−(Vi + 57)/40).

Note that the rising phase of action potentials for the
RTM neurons is extremely short, around 0.03 ms as shown
in Figure 7A. In such a situation, it may not be appropriate
to choose the spike time (when the voltage reaches the firing
threshold) as the starting point of the stiff period in the AETD2
method as shown in Figure 7A since large numerical error will
be introduced, especially when a large time step is used, e.g., time
step 1t = 0.3 ms. This is because the system is evolved by the
RK2 scheme during the time step that contains the rapid rising
region of the neuron’s action potential. Therefore, to achieve
high numerical accuracy, the interval of the stiff period should
cover the rapid rising region. To achieve this, we then define
the stiff period of the RTM neurons as the region where the
magnitude of the slope of voltage is over a proper threshold
as shown in Figure 7A. We point out that our AETD2 method
using a large time step can still accurately capture the membrane
potential traces and the mean firing rates compared with the
RK2 method using a small time step as shown in Figures 7B,C.
Therefore, the definition of the stiff period in our AETD2method
can be flexibly determined based on dynamical properties of
studied systems.

In this work, the numerical accuracy of our AETD2 method
is second-order. In some situations, high accurate traces of
membrane potentials may be required, especially the accurate
shapes of action potentials (Traub et al., 2001; Kopell and
Ermentrout, 2004). Therefore, one future workmay be the design
of the fourth-order ETD method. As illustrated above, due to
the discontinuity arising from the pulse-coupled dynamics, an
even more careful recalibration needs to be designed to achieve
fourth-order numerical accuracy.

Finally, we point out that our AETD2 method can be
easily extended to networks of other HH type neurons
(Pospischil et al., 2008). And our AETD2 method can also
robustly achieve high numerical accuracy and efficiency. In
addition, our method is naturally a parallel algorithm which
can be applied to simulations of large-scale neural network
dynamics. For reproducibility of our results by other researchers,
all the source codes written in C++ can be accessed at
http://github.com/KyleZhongqi/ETD2_HH.
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Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals

of predominantly synchronized activity are interrupted by intervals of desynchronized

activity. Prior studies suggested that this temporal structure of the weakly synchronous

activity might be functionally significant: many short desynchronizations may be

functionally different from few long desynchronizations even if the average synchrony level

is the same. In this study, we used computational neuroscience methods to investigate

the effects of spike-timing dependent plasticity (STDP) on the temporal patterns of

synchronization in a simple model. We employed a small network of conductance-based

model neurons that were connected via excitatory plastic synapses. The dynamics of this

network was subjected to the time-series analysis methods used in prior experimental

studies. We found that STDP could alter the synchronized dynamics in the network

in several ways, depending on the time scale that plasticity acts on. However, in

general, the action of STDP in the simple network considered here is to promote

dynamics with short desynchronizations (i.e., dynamics reminiscent of that observed in

experimental studies). Complex interplay of the cellular and synaptic dynamics may lead

to the activity-dependent adjustment of synaptic strength in such a way as to facilitate

experimentally observed short desynchronizations in the intermittently synchronized

neural activity.

Keywords: STDP, synaptic plasticity, intermittency, synchronization, phase-locking, neural oscillations

INTRODUCTION

Synchronization of neural activity in the brain is involved inmultiple neural functions (e.g., Buzsáki
and Draguhn, 2004; Fell and Axmacher, 2011; Fries, 2015; Harris and Gordon, 2015). Neural
synchronization that is either too strong or too weak may be one of the neurophysiological factors
behind symptoms of several disorders such as Parkinson’s disease and schizophrenia (Schnitzler
and Gross, 2005; Uhlhaas and Singer, 2006; Oswal et al., 2013; Pittman-Polletta et al., 2015). Thus,
the synchronization of neural activity is a ubiquitous phenomenon. In the rest state, the strength of
this synchronization is usually moderate. This means that the intervals of stronger synchrony are
interspersed with desynchronized intervals. This is probably not surprising given the plausibility of
the very general nature of the transient character of neural activity (Rabinovich et al., 2008).

Recent developments in time-series analysis allowed for the exploration of the temporal
patterning of synchronized activity in brain dynamics on very short time-scales. Studies of
different brain signals in different conditions and species suggest an apparently universal feature:
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synchronous activity is interrupted by very short (although
potentially numerous) intervals of desynchronized dynamics
(as opposed to few longer desynchronized episodes). This
phenomenon was observed in the synchrony between local field
potentials (LFPs) and spikes in different parts of the basal ganglia
and EEG in Parkinson’s disease (Park et al., 2010; Ratnadurai-
Giridharan et al., 2016; Ahn et al., 2018), in synchronization
between LFPs recorded in the prefrontal cortex and hippocampus
of normal and amphetamine-sensitized mice (Ahn et al., 2014),
in EEG of healthy human subjects (Ahn and Rubchinsky,
2013), and in EEG in autism spectrum disorders (Malaia et al.,
2020). The differences in the temporal patterning are correlated
with certain behavioral features but the prevalence of short
desynchronizations persisted nevertheless (Ahn et al., 2014, 2018;
Malaia et al., 2020). Therefore, short desynchronizations may be
functionally important and the properties and mechanisms of
desynchronization durations merit exploration.

These observations of the persistence of short
desynchronizations naturally suggest the question about
the biological mechanisms behind this phenomenon. The
modeling study (Ahn and Rubchinsky, 2017) suggested one
possible mechanism: the short desynchronization dynamics
was promoted by the substantial difference in the timescales of
spike-producing sodium and potassium currents. The relative
slowness of the potassium delayed-rectifier current may be one
of the reasons for why short desynchronizations are observed
in different neural systems. However, there may also be other
mechanisms. This paper is aimed at the exploration of one
potential mechanism related to synaptic plasticity. We use
computational modeling to explore how spike-timing dependent
plasticity (STDP) can affect the temporal patterning of neural
synchrony on short timescales.

STDP is a very common neural phenomenon with potentially
multiple effects on neural synchronization. In particular, a
synapse whose conductance is modulated by STDP can enhance
neural synchrony (Nowotny et al., 2003; Cassenaer and Laurent,
2007; Knoblauch et al., 2012; Ratnadurai-Giridharan et al.,
2015). We use a simple neural network of two conductance-
based model neurons coupled via excitatory synapses with
STDP and apply the same time-series analysis techniques as
were used in the prior experimental studies. While this model
network can hardly adequately model field potentials recorded
in some of the experimental studies mentioned above, it serves
as a simple model system exhibiting rich synchronization
dynamics, which is substantiallymodulated by synaptic plasticity.
Numerical analysis of this model shows that STDP may affect
not only the strength of synchronization, but also the temporal
patterning of synchronization, with an ability to facilitate the
short desynchronizations dynamics observed in experiments.

METHODS

Neuronal and Synaptic Modeling
We utilize the network model from Ahn and Rubchinsky (2017)
except that the synapses are plastic in this study. The model is
described below.

The neurons are modeled using a two-dimensional
conductance-based model of a Hodgkin-Huxley type that
is mathematically equivalent to the Morris-Lecar model
(Izhikevich, 2007; Ermentrout and Terman, 2010). The sodium
conductance is assumed to activate instantaneously and to have
no inactivation, while the potassium conductance is controlled
by its gating variable and so varies dynamically.

dv

dt
= −INa − IK − IL − Isyn + Iapp

dw

dt
=

w∞ (v) − w

τ (v)

Here v is the neuron’s transmembrane potential and w is the
gating variable for the potassium current. The synaptic current
between neurons, Isyn, is given below and Iapp is a constant input
current to each neuron to control the frequency of spiking. The
sodium, potassium, and leak currents are:

INa = gNam∞(v)(v− vNa)

IK = gKw(v− vK)

IL = gL(v− vL)

gNa, gK , and gL are the maximal conductances for the sodium,
potassium, and leak currents, respectively. The steady-state
values for the gating variables of the sodium and potassium
currents are:

m∞ (v) =
1

1+ exp
(

−2 v−vm1
vm2

)

w∞ (v) =
1

1+ exp
(

−2 v−vw1
β

)

The voltage-dependent activation time constant of the potassium
current is:

τ (v) =
1

ǫ
∗

2

exp
(

v−vw1
2β

)

+ exp
(

vw1−v
2β

)

All synapses are excitatory, and the synaptic current to neuron i is
given by:

Isyn,i = gsyn(vi − vsyn)
∑

j 6=i

sj
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Where gsyn is the maximal conductance of the synapse (i.e., the
synaptic strength), and sj is the synaptic variable for neuron j and
the summation is taken over all neurons that are connected to the
i-th neuron. The synaptic variable s is governed by:

ds

dt
= αs (1− s)H∞ (v− θv) − βss

H∞ is a sigmoidal function whose input is the presynaptic
neuronal voltage:

H∞ (v) =
1

1+ exp
(

−
v
σs

)

The values of cellular and synaptic parameters are the same as
used in Ahn and Rubchinsky (2017): gNa = 1, gK = 3.1, gL = 0.5,
vNa = 1, vK = −0.7, vL = −0.4, vm1 = −0.01, vm2 = 0.15,
vw1 = 0.08, β = 0.145, Iapp = 0.045, ε1 = 0.02, ε2 = 1.2ε1,
vsyn = 0.5,∝s= 5, βs = 0.2, θv = 0.0, σs = 0.2.

STDP modeling follows (Zhigulin et al., 2003). If neuron i
spikes at time ti and neuron j spikes at time tj, then the strength
of the synapse from neuron i to neuron j is additively updated by
the amount

1gsyn = sgn(1t)Aexp
(

−k|1t|
)

where 1t = tj − ti. The synaptic conductance from neuron j
to neuron i is simultaneously updated by an equal, but opposite,
amount. While the additive update rule does not necessary need
to be symmetric (as it is here), there is experimental evidence
supporting the nature of the update, see for example (Zhang
et al., 1998; Feldman, 2012). We varied the values of our plastic
parameters, in particular A ∈ [0.0001, 0.01] , k ∈ [0.01, 50]. The
synaptic conductance is bounded below by zero.

Numerical Implementation
The system of differential equations was solved numerically in
Python using the built-in odeint function from the SciPy module
(v.1.4.1). This function implements either the Adams method
or a backward differentiation formula (BDF) method depending
on the stiffness of the problem. The solution was reported at
multiples of the time step dt = 0.1 (assuming the time units
are milliseconds), however the function uses an adaptive step size
and there was no lower bound on the length of the intermediate
time steps that may be used (similarly, there was no upper bound
restriction on the number of intermediate steps that were taken).
The absolute and relative tolerances for the method were kept
at the default value of 1.49 × 10−8. While the solution depends
on the initial conditions, its statistical properties (such as the
firing rate, synchrony pattern characteristics etc.) do not. The
system was solved on the time interval [0, 25000], the first 20%
of the time-series was removed from analysis. To implement
plasticity, the integration was paused after each time step and,
if necessary, the synaptic strength was updated. Specifically, the
voltage threshold to define an action potential was set at 0.2.

Synchronization Analysis
The time-series analysis of synchronized dynamics in the
network follows that of Ahn et al. (2011) and Ahn and
Rubchinsky (2017) and is similar to the analysis of the temporal
patterns of neural synchrony in the experimental studies
mentioned in the Introduction. We will briefly describe this
analysis here.

The phase, ϕ (t), of a neuron is defined as

ϕ (t) = tan−1

(

v (t) − v̂

w (t) − ŵ

)

where (ŵ, v̂) is a point selected inside the neuron’s limit cycle in
the (w, v) – plane. The synchronization strength is computed as

γ =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp
(

i1ϕ
(

tj
))

∣

∣

∣

∣

∣

∣

2

where 1ϕ
(

tj
)

= ϕ1

(

tj
)

− ϕ2(tj) is the difference of the phases of
neurons 1 and 2 at time tj. N is the number of data points. The
value of γ ranges from 0 to 1, which represent a complete lack of
synchrony and perfect phase synchrony, respectively.

If there is some degree of phase locking present, then there is
a synchronized state, i.e., a preferred value of the phase difference
1ϕ. For each cycle of oscillation one can check if the actual
phase difference is close to this preferred value or not. Note that
the index γ only represents an average value of phase-locking
over the interval [t1, tN], however to describe the patterning
of synchrony one needs to look at the transitions to and from
a synchronized state on much shorter timescales. This is done
as follows.

When ϕ1 increases past zero, say at time tj,i, then ϕ2

(

tj,i
)

is

recorded. This generates a sequence of numbers
{

ϕ2

(

tj,i
)}M

i=1
.

Due to the presence of some synchrony, there is a clustering
about some phase value, say ϕ0. This is taken as the preferred
phase value, and if ϕ2

(

tj,i
)

= ϕi, for 1 ≤ i ≤ M, differs from it
by more than π

2 then the neurons are desynchronized, otherwise
they are synchronized. The choice of π

2 is not only convenient (it
partitions the (ϕi,ϕi+1) space into quadrants) but was also used
in the experimental studies described in the section Introduction.

The length of a desynchronization event is defined as
the number of consecutive times the system spends in
the desynchronized states. In other words, the length of
desynchronization is the length of the time interval the system
is away from the synchronized state (as defined above); this
length is measured not in the absolute time units, but in the
number of cycles of oscillations (in line with the experimental
studies mentioned in the Introduction). The lengths of all
desynchronization events are recorded and the distribution of
durations is reconstructed. The mode of this distribution is used
as a characteristic of the temporal patterning of synchronized
dynamics. For later reference, a “mode n” system means that
the mode of all lengths of desynchronization events for that
particular system is n. Thus, a mode 1 system (n = 1
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FIGURE 1 | Illustration of dynamics with different desynchronization durations (mode 1 and mode 2 dynamics). (A–D) depict voltage traces of two partially

synchronized neurons (solid and dashed lines). When the neurons exhibit the preferred time difference the voltage traces are thin lines, indicating proximity to a

synchronized state. However, when the phase difference is not close to the preferred one, the lines are thick to indicate the desynchronizations (as defined above).

(A,C) illustrate short desynchronizations (lasting one cycle of oscillations), (B,D) show longer desynchronizations (lasting two cycles of oscillations). (A,B) are artificially

generated examples, while (C,D) present examples generated by the network considered in the section below. In a longer time-series, the desynchronizations of

different durations may coexist, however, usually one duration will prevail. The distributions showing relative frequency of different desynchronizations for the dynamics

with predominantly short desynchronizations (like A,C) and with longer desynchronizations (like B,D) are presented in (E,F), respectively. The mode of the distribution

in (E) is 1, thus this is mode 1 dynamics; the mode of the distribution in (F) is 2, thus this is mode 2 dynamics.
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case) is the system with synchronized dynamics interrupted by
predominantly short desynchronization intervals. The larger n is,
the more prominent the tendency for long desynchronizations
is. This does not necessarily affect the overall synchrony
strength, because it depends not only on the duration of
desynchronizations, but also on their number. The mode is used
to characterize the durations because experimental studies used
the mode for this purpose.

An illustration of different desynchronization durations and
dynamics with different modes of desynchronizations is provided
in Figure 1. Voltages and distributions of desynchronization
durations for mode 1 dynamics are in the left column, the
ones for mode 2 dynamics are in the right column. The
synchronization is not perfect and synchronized dynamics
(phase difference is close to the preferred one) are interspersed
with desynchronized intervals. Note that the preferred phase
difference is not necessarily zero so that the zero lag state is not
necessarily a synchronized state.

Finally, we would like to reiterate that in this approach the
time is measured in terms of cycles of oscillations of the neural
activity, not in absolute time units. This allows one to compare
the properties of variability of synchrony of brain rhythms with
different frequencies.

The phase-locking strength index γ was observed to be usually
about 0.2–0.3 in this study (even after STDP adjustments). These
are moderate values, comparable with experimental results (in
particular with the results reported in the studies references in the
section Introduction). With this moderate synchrony strength,
synchronization effects are hard to see by the naked eye, however,
the quantitative time-series analysis techniques are able to
quantify the synchronized dynamics and its properties including
the temporal patterning of weakly synchronous dynamics.

RESULTS

Building on Ahn and Rubchinsky (2017), we used a simple
network consisting of two neurons connected via excitatory
synapses (see Figure 2); however the synapses are now plastic.
The two neurons have a slightly different firing rate, i.e., their
respective ε values differ slightly (see the list of parameter values
in section Methods). The initial value of the maximal synaptic
conductance is gsyn = 0.005, so that the coupling is weak.
This heterogeneity and weak synaptic coupling ensure that the
synchrony between the two neurons is relatively weak.

The dynamics of the non-plastic variant of this system was
studied in Ahn and Rubchinsky (2017). Based on that study,
we vary values of three parameters of the potassium current in
such a way as to change the dynamics of the non-plastic network
from exhibiting predominantly short desynchronizations (i.e.,
those observed in experiments) to one with a large mode
of desynchronization durations. These parameters are ε [the
reciprocal of the peak value of the activation time-constant
τ (v)], β [which characterizes the widths of the activation time-
constant τ (v) and the steady-state function w∞(v)], and vw1 [a
horizontal translation in w∞(v) and τ (v) which changes their
values over the specific voltage range]. Changes in all these

FIGURE 2 | The schematics of the network: two neurons coupled with

mutually excitatory synapses.

FIGURE 3 | An example of typical temporal evolution of synaptic weights in a

network with plasticity (ε = 0.15, A = 0.009, k = 0.3).

parameters effectively change the activation time-constant τ (v)
to either large or small, which delays or accelerates the activation
of potassium current, respectively. Consequently, the lengths of
the desynchronization events shift to predominantly short or
long. Next, we explore how the introduction of plasticity affects
the durations of desynchronization events. Hence our parameter
space is two-dimensional for each case considered, and consists
only of the plasticity parameters A and k.

In most of the simulations the synaptic weights do not reach
a steady state, but rather exhibit fairly stationary variations, as
illustrated in Figure 3.

Variation of ε
Let us mention here that ε ∝

1
τ
and the maximum value of

τ (v) is 1
ε
. Hence as ε is increased, the value of τ (v) is decreased

across its entire domain as it is a unimodal function. This in turn
accelerates the activation of potassium current because dw

dt
∝

1
τ (v)

. From Ahn and Rubchinsky (2017) we know that smaller

values of ε promote shorter desynchronization events.
For ε = 0.05, the non-plastic system is mode 1. This

means the synchronized dynamics has the following property.
As the system is exhibiting partially synchronized dynamics,
it will be either close in the synchronized state or away from
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synchronized state, the latter is termed desynchronization. The
desynchronized interval length (measured in the number of
cycles of oscillations) varies in time. We obtain the distribution
of the desynchronization durations from numerical simulation
and find the mode of this distribution. If this mode equals
one cycle of oscillation, then the system is mode 1 (see section
Methods for a more detailed explanation). Mode 1 means the
desynchronizations are predominantly short.

Now the non-plastic system is changed to include STDP. The
changes in the temporal patterning of synchronization dynamics
are illustrated in Figure 4. Figure 4A is a diagram of the mode
of the desynchronization durations in the space of plasticity
parameters, A and k. The plasticity effects are negligible across
the top (very large k implies a quick decay of the change in
synaptic strength), and especially in the upper left corner (large
k and a small amplitude A). In these areas the values of the
plasticity parameters are such that the magnitude of the update,
1gsyn, is negligible (the average update is usually in the interval
[0.0, 10−5], on the larger end this corresponds to about 0.2% of
the initial value of gsyn). Hence, the plastic system continues to

be mode 1 in these areas.
The rest of the parameter space, in particular the central

region, displays a high proportion of mode 1 dynamics as well.
In these areas plasticity is not negligible, as the synaptic strength
can vary to a substantial degree. However, even in the presence of
STDP, mode 1 dynamics persist. For the diagram in Figure 4A,
about 85% of the parameter space points correspond to mode
1 systems.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 4B–D. Plasticity
effects increase from left to right. The distribution of durations
changes: at a weak level of plasticity the durations are exclusively
length one, while at a stronger level of plasticity some longer
durations are observed. Yet the preponderance of length one
desynchronization durations is preserved.

Now let us look at the effect of plasticity on the dynamics in
systems with a mode larger than one. We consider ε = 0.15.
The non-plastic system is mode 2 (the synchronization index
γ is virtually unchanged from that of ε = 0.05, although the
frequency of oscillations increases by several times, Ahn and
Rubchinsky, 2017). Mode 2 means the desynchronizations tend
to be longer than those of the mode 1 case.

Figure 5 shows the effect of STDP on the system that is mode 2
in the non-plastic case. As explained earlier, the plasticity effects
are negligible across the top of Figure 5A, and especially in the
upper left corner. We note that this region of the parameter space
exhibits mode 2 dynamics (as expected). However, throughout
the entire parameter space it is seen that a majority of parameter
values correspond to mode 1 systems (the large central region
in Figure 5A). Overall, about 20% of the parameter space points
stay mode 2, while over 65% exhibit mode 1 dynamics (and less
than 15% correspond to larger than mode 2 systems).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 5B–D. Plasticity
effects increase from left to right. Here we see that the
introduction of weak plasticity can be sufficient to shift the

system from mode 2 to mode 1 (Figure 5C). This means
desynchronizations tend to become shorter in the plastic case. At
stronger levels of plasticity (Figure 5D), the distribution widens,
however the vast majority of desynchronization events remain
length one.

Overall, we have seen that mode 1 dynamics are generally
preserved when STDP is introduced to a non-plastic mode 1
system. When STDP is introduced to a non-plastic mode 2
system, the dynamics largely shifts from mode 2 to mode 1. The
same was found with other non-plastic systems exhibiting higher
modes: the introduction of STDP generally shifts the mode of the
system down to one. Finally, we would like to note that there
are several points in the parameter space (see Figures 4A, 5A)
that have very large modes. For example, in Figure 4A when
A = 0.0006, k = 0.01, the resulting system is mode 38 (i.e., most
common desynchronizations are very long). Generally, these
cases have a wide distribution of desynchronization durations.
Therefore, while these systems have a large mode, the mode does
not present a strong tendency in the distribution. Nevertheless,
these situations are relatively rarely found.

Variation of β
The parameter β changes the widths of the voltage-dependent
time-constant of activation τ (v) and the width of the steady-state
activation function w∞(v) for potassium current. In particular, as
β is decreased, the slope at the half-height of w∞(v) is increased,
and this decreases the width of the step (w∞(v) is a sigmoidal
function). Similarly, for τ (v), a decrease in β decreases the width
of the function around the peak. This causes an advancement in
the activation of the potassium current.

A larger value of β promotes shorter desynchronization
durations (Ahn and Rubchinsky, 2017). For β = 0.124, the non-
plastic system is mode 1. The effect of STDP on this system is
presented in Figure 6. Across the top and in the upper left corner
of Figure 6A we see that virtually every point corresponds to a
mode 1 system, as expected. Indeed, a substantial portion of the
entire parameter space displays mode 1 dynamics; about 80% of
the parameter space studied.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 6B–D. Plasticity
effects increase from left to right. The introduction of plasticity
has a minimal effect on the distribution; there is very little change
visibly. Indeed, the proportion of desynchronization durations of
length one increases with plasticity.

Decreasing β increases the mode of a system. If β = 0.091, the
non-plastic system is mode 2. With the introduction of very weak
plasticity (across the top and the upper left corner of Figure 7A)
we see that the dynamics are relatively unchanged, i.e., the mode
of most systems remains two. However, if plasticity is not very
weak, the dynamics shift to mode 1 in a significant portion of
the parameter space. The effect is not as substantial as in the
previous section, but about 35% of parameter space becomes
mode 1 (about 45% remainsmode 2, i.e., themode is unchanged).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 7B–D. Plasticity
effects increase from left to right. We see that the vast majority
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FIGURE 4 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (ε = 0.05). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.05.

FIGURE 5 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (ε = 0.15). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.
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FIGURE 6 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (β = 0.124). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0052, k = 20.0. (D) The system with moderate plasticity: A = 0.0052, k = 0.7.

FIGURE 7 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (β = 0.091). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 5277

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zirkle and Rubchinsky STDP and Patterning of Neural Synchrony

of desynchronization durations become length one as plasticity
becomes stronger.

Variation of vw1
The parameter vw1 affects a horizontal translation in w∞(v)
and τ (v). Increasing vw1 shifts both curves to the right, i.e.,
toward higher voltages; this results in a potassium current that
activates faster.

Smaller values of vw1 result in short desynchronization
durations (Ahn and Rubchinsky, 2017). For vw1 = 0.102, the
non-plastic system ismode 1. The effect of STDP on this system is
presented in Figure 8. We see that mode 1 dynamics is observed
not only for the weak plasticity region (top and upper left corner
of Figure 8A), but for most of the parameter space (about 85% of
the parameter space studied).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 8B–D. Plasticity
effects increase from left to right. We see that as plasticity
increases to a higher level, the prevalence ofmode 1 is unchanged.

Varying vw1 to larger values leads to shorter desynchronization
durations becoming less prevalent. For vw1 = 0.161, the non-
plastic system is mode 2. The effect of STDP is presented in
Figure 9. When plasticity is added we see that the dynamics
are similar to the non-plastic case when plasticity is weak
enough (top and upper left corner of Figure 9A). However, when
the plasticity effects are moderate, the system exhibits mode
1 dynamics frequently (central region of Figure 9A). For the
domain of parameter space studied, the majority of points (about
45%) correspond to mode 1 systems, the rest are either mode 2
(about 40%) or higher.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 9B–D. Plasticity
effects increase from left to right. We see that the mode
of the system shifts down from two to one as plasticity
becomes stronger.

Variation of βw and βτ
Varying either ε, β , or vw1 may affect not only the durations
of the desynchronizations, but also synchronization strength
and the frequency of activity in the system. To control
desynchronization durations while keeping both spiking
frequency and synchronization strength near constant in a non-
plastic system, one can consider the parameter β and separate
it into two independent parameters, βτ and βw. As a result, the
lengths of desynchronization events are almost independent of
the frequency and synchrony strength (Ahn and Rubchinsky,
2017).

Smaller βw and larger βτ result in shorter desynchronization
durations (Ahn and Rubchinsky, 2017). For βw = 0.098, βτ =

0.079, the non-plastic system is mode 1. Figure 10 illustrates the
impact of STDP on this system.Mode 1 dynamics is observed not
only for the weak plasticity region (top and upper left corner of
Figure 10A), but for the majority of the parameter space (about
60% of the parameter space studied).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 10B–D. Plasticity
effects increase from left to right. We see that as plasticity

progresses to a moderate level, the proportion of short
desynchronizations stays largely unchanged. In particular, the
system is still mode 1.

If βw = 0.115, βτ = 0.071, the non-plastic system is
mode 2. Figure 11 illustrates the impact of STDP on this system.
With the addition of plasticity, we see that the system is largely
mode 2 if the plasticity is weak (top and upper left corner of
Figure 11A). However, stronger plasticity shifts the dynamics to
mode 1 for a substantial portion of the parameter space (about
55% of points considered).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 11B–D. Plasticity
effects increase from left to right. We see that the distribution
is largely unchanged for very weak plasticity, but as plasticity
increases, the system becomes mode 1.

DISCUSSION

This study considered intermittent synchronous dynamics
in a small network of simple conductance-based model
neurons. While strong synaptic strength in general can
promote synchronization between neurons, moderate values
of synaptic coupling lead to dynamics with relatively weak
synchronization, and where the episodes of synchronization
are interspersed with episodes of desynchronized dynamics.
Intermittent synchronization in the presence of moderate (and
fixed in time) coupling is quite typical for coupled oscillatory
systems (Pikovsky et al., 2001). In other words, temporal
variability of correlations is observed due to the relative weakness
of a fixed coupling strength. The temporal signatures of this
variability have been previously modeled in Ahn and Rubchinsky
(2017) and were in good agreement with the analysis of the
temporal variability observed in experimental data (see section
Introduction and references therein).

However, many actual synapses are plastic and thus
the synaptic coupling between neurons experiences temporal
variations. This variation may contribute to the temporal
variability of intermittent synchrony as well. This study
considered how one common type of neural plasticity—
spike-timing dependent plasticity—might affect this temporal
variability. Experimental data ubiquitously points to the
prevalence of short desynchronization dynamics in neural
synchrony. This kind of dynamics is naturally generated in
synaptically coupled conductance-based model neurons. We
showed here that the introduction of STDP under quite
general conditions preserves this realistic fine temporal structure
of intermittent neural synchrony. Moreover, when the non-
plastic system parameters are selected in such a way as
to predominantly express longer desynchronizations, STDP
changes the intermittently synchronous dynamics back to one
with short desynchronizations. This was observed while varying
several different parameters, so that STDP may reverse dynamics
from long to short desynchronizations regardless of how the
desynchronizations were obtained in the non-plastic system.

The overall dependence of the dynamics on the characteristics
of plasticity is quite complicated. Numerical simulations
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FIGURE 8 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (vw1 = 0.102). (A) Mode is colored via gray scale, see legend on

the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is

varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.

FIGURE 9 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (vw1 = 0.161). (A) Mode is colored via gray scale, see legend on

the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is

varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0054, k = 1.0.
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FIGURE 10 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (βw = 0.098, βτ = 0.079). (A) Mode is colored via gray scale, see

legend on the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update,

k, is varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0049, k = 50.0. (D) The system with moderate plasticity: A = 0.0052, k = 0.7.

FIGURE 11 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (βw = 0.115, βτ = 0.071). (A) Mode is colored via gray scale, see

legend on the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update,

k, is varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0049, k = 50.0. (D) The system with moderate plasticity: A = 0.0054, k = 0.7.
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indicate that some plasticity parameter values may promote
very unrealistic synchronized dynamics. However, under the
conditions considered, the short desynchronization dynamics
were obtained in large regions of the parameter space. This was
regardless of whether the corresponding non-plastic system was
mode 1, or had a higher mode.

The results of these numerical simulations suggest
that STDP may be one of the contributing factors behind
experimentally observed short desynchronization dynamics.
Moreover, STDP and cellular mechanisms proposed in Ahn
and Rubchinsky (2017) may act cooperatively in promoting
short desynchronizations.

The results discussed here were obtained in the framework
of relatively simple modeling. The actual neuronal synchrony
is, of course, a much more complicated phenomenon than the
model considered here, and there were multiple factors not
included in the model. For example, inhibitory synapses (e.g.,
see Nowotny et al., 2008). The experimental observations of
short desynchronizations were mostly done with LFP and EEG
signals, and the simple network considered here is too simple to
adequately model these signals. However, the similarity between
experimentally observed intermittent neural synchrony and the
temporal patterning of synchrony observed in our study with a
relatively simple model with STDP may speak to the very general
nature of this phenomenon.

The variability of the dynamics on short time-scales may be
a functionally beneficial phenomenon. Short desynchronization

dynamics (which is essentially a high degree of variability of
synchrony on very short time-scales) have been conjectured to
be conducive for quick and efficient formation and break-up of
neural assemblies (Ahn and Rubchinsky, 2013, 2017). As was
noted in these studies, the ease of formation and disappearance
of synchronized states at rest may suggest that a transient
synchronized assembly may be easily formed whenever needed
to facilitate a particular function. The results of this study suggest
that the temporal variability of synaptic strength due to STDP
may potentially further facilitate this phenomenon.
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The ventral visual stream (VVS) is a fundamental pathway involved in visual object

identification and recognition. In this work, we present a hypothesis of a sequence of

computations performed by the VVS during object recognition. The operations performed

by the inferior temporal (IT) cortex are represented as not being akin to a neural-network,

but rather in-line with a dynamic inference instantiation of the untangling notion. The

presentation draws upon a technique for dynamicmaximum a posteriori probability (MAP)

sequence estimation based on the Viterbi algorithm. Simulation results are presented

to show that the decoding portion of the architecture that is associated with the

IT can effectively untangle object identity when presented with synthetic data. More

importantly, we take a step forward in visual neuroscience by presenting a framework

for an inference-based approach that is biologically inspired via attributes implicated in

primate object recognition. The analysis will provide insight in explaining the exceptional

proficiency of the VVS.

Keywords: object recognition, sequence estimation, decoding, IT cortex, dynamic inference, Viterbi algorithm

1. INTRODUCTION

A prevalent hypothesis is that the identities of viewed objects are represented as patterns of activity
across populations of neurons with increasingly complicated computations occurring further along
the ventral visual stream (VVS). Presenting a biologically inspired algorithm where the stimulus
information is processed and exchanged among different populations of neurons is a challenge.
Since the higher visual areas such as inferior temporal (IT) cortex are selective to the more
complex stimuli characteristics than populations in lower levels such as V1 and V2, it has been
postulated that more complicated processing techniques are used by the IT (Riesenhuber and
Poggio, 1999). The term “encoding” has been applied extensively to the manner by which neurons
in the early visual stages respond to and represent stimuli. The presented analysis will treat the
object recognition process performed by the higher regions of the VVS as a decoding operation
and present a model that can commence to unify an understanding of the computations involved
during such a cognitive process. Topical overviews such as DiCarlo et al. (2012) advocate the first
step of unequivocally defining the question of how the brain solves the problem. It is sensible to
presume that as large amounts of data become available the object recognition question will be
asked in different ways. Computer vision algorithms have been lauded for efficacy in categorizing
objects after being trained on large sets of sample data. However, they are also known to suffer from
the invariance problem that has been studied by visual neuroscientists. This is especially true when
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a large number of object categories are considered, and imparts
one to question whether computer vision models are the optimal
means for studying the computational operations performed by
the brain during real-time object recognition. The encoding-
decoding methodology discussed in this work will provide a
model that is a closer, biologically-plausible explanation of the
VVS operation.

Neurons at progressive stages of neuroanatomy receiving
weighted excitatory and inhibitory inputs prior to their state
being subject to a thresholding operation is not a new concept to
vision neuroscience. We consider somewhat more sophisticated
operations that will occur over several populations of neurons.
While the algorithmic operations may be deemed sophisticated,
it is noteworthy that such operations are being performed by
millions of neurons. Furthermore, the fact that primates are
extremely efficient in conducting object recognition vindicates
the use of algorithms to explain the seemingly effortless manner
by which the recognition is performed. The input to the model
will be the representation that the viewed object should evoke at
the IT. This representation is obviously associated with the visual
stimulus, and is immediately encoded by the retina and lateral
geniculate nucleus (LGN) circuitry in order for its meaning
to be communicated along the VVS in a reliable manner.
The model presented in this work provides an alternative to
neural network techniques employing max-pooling, and an
alternative to machine learning approaches that consider object
categorization rather than classification of object attributes
during the recognition process. The analysis additionally brings
forth the question of what metrics to consider in assessing
how well a model performs object recognition. Within the
encoding-decoding framework it is possible to distinguish
between different gradations of recognition. Specifically, one
would be able to quantify the error rate in recognizing objects,
the attributes of an object, and the object category.

Algorithmic operations will be suggested herein for various
stages of the VVS to mirror the functional operations implicated
by prior works in visual neuroscience. The algorithmic structure
in Figure 1 is novel within the context of visual neuroscience.
The biologically-inspired system will be referred to as the
communication-theoretic object recognition (CTOR) model
and will encompass high-level visual function processing
low-level sensory signals. A natural impetus for the derivation
of CTOR is the brain consisting of communication channels
with a task such as object recognition invoking the interchange
of signals between neural circuits as part of the interplay
between top-down and bottom-up processing. There are
several themes that subsist when considering statistical
inference on the output of a non-ideal channel in engineering
or biology: the time-sensitive nature of the information,
the presence of stochastic perturbations, and the possible
compression of the recovered information. Refinements of
CTOR that may spawn from this presentation will need
to include a decoding algorithm for inference. Indeed,
alternate decoding algorithms may be proposed and different
definitions for the elements that comprise the decoded sequence
may emerge.

2. ATTRIBUTES OF BIO-INSPIRED OBJECT
RECOGNITION MODELS

It has been reputed that neural connectivity dictates a hierarchical
organization at the VVS with visual information traversing the
retina to the LGN, and then through cortical area V1, V2,
and V4 before reaching the IT. Neurons in V1 have small
receptive fields and respond to simple features such as edge
orientation (Hubel and Wiesel, 1962). The receptive fields of
V4 neurons are on average four to seven times greater than
those in V1, but are smaller than the receptive fields of IT
neurons. Many V4 neurons are sensitive to stimulus features
of moderate complexity (Cadieu et al., 2007), whereas the IT
neurons are selective to much more complex stimuli such as
faces. The tuning properties of IT cells seem to be shaped by
task learning with their dendritic arbors being more expansive
than those of V1, V2, or V4 neurons (Elston, 2002; Luebke,
2017). The untangling notion advocated in DiCarlo et al. (2012)
serves as motivation for the decoding module in CTOR. As
the viewed object is processed beyond the retina and along the
successive stages of the VVS, it is believed that increasingly
sophisticated processing power is applied to untangle the object’s
identity.When considering the statistics of the input to the lowest
stage in the model, works such as Simoncelli and Olshausen
(2001) have provided a litany of studies that contain empirical
evidence for the non-Gaussianity of natural images. The authors
proceed to describe the neural coding/representation that occurs
in portions of the visual cortex. An array of works have discussed
attributes of the visual cortex that enable the system to be
exceptionally proficient at performing object recognition in a
rapid and effortless manner. The following are what we consider
the most crucial attributes that a biologically-inspired model for
object recognition should address.

• Selectivity: The ability to accurately discriminate between
different objects. Object recognition models typically do not
quantitatively distinguish between object identification and
categorization. The model herein will distinguish between the
two domains and focus on the identification of an object rather
than a rapid categorization.

• Invariance: The ability to recognize an object under
transformations such as scale or position alterations in
the field of view. Furthermore, inconsiderable alternations in
the object’s features should not preclude recognition.

• Robustness: Aspects of the viewed stimulus such as
illumination and clutter may decrease the signal-to-noise ratio
(SNR) of the neural signals communicated along the lower
visual stages. The VVS is frequently able to distinguish among
objects in light of perturbations to the viewed object that
reduce the SNR of the neural information progressing along
the pathway.

• Processing Speed: The recognition of an object within either a
strict or lax temporal constraint imposed by the task. From a
psychophysics perspective, the processing speed corresponds
to how rapidly the object recognition is performed by
the brain.
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FIGURE 1 | The communication-theoretic object recognition (CTOR) model. The structure of CTOR consists of feedforward processing with memory and attention

providing feedback to the decoder portion of the IT. (a) The communication of T, {αi}, and {Gi (t)} of equations (1) and (2) from the PFC, LIP, and FEF regions to V1, V2,

and V4. (b) Attention modulating the channel properties. (c,g) The communication of the transition probabilities {P[rk |bk+1,bk ]} and the priors {P[bk+1|bk ]} to the IT

from the attention and memory circuitry, respectively. (d) The conveying of the number of features F and the number of bits allocated to each feature {Mi} by attention

to the interleaver. (e) Conveyance of the degree of compression from attention. (f) Attention gating memory as far as the object features that are retained following

recognition. (h) The contribution of the retinal, LGN, and V1 stages to the neural noise process constituting the channel. The corresponding brain regions are marked

in the brain above the diagram. The units drawn with solid lines are modeled by algorithmic operations. Filled areas represent brain regions on the surface, while

shaded areas represent those embedded inside the brain. LGN, lateral geniculate nucleus; V1, primary visual cortex; IT, inferior temporal cortex; LIP, lateral

intraparietal area; FEF, frontal eye fields; HPC, hippocampus; AM, amygdala.

• Attentional Gating: The degree and implications of
attention allocated to recognizing an object. The
dynamics of the allocated attention will govern how
the brain parses object features and what is retained
following recognition.

• Dynamic Recurrence: The consideration of feedback as a
necessary complement to the feedforward processing. The
recurrence should be dynamic and involve interaction between
multiple brain areas.

The first two attributes have been discussed in works such as

Serre and Riesenhuber (2004), whereas robustness has been

considered in a multitude of studies (e.g., Cadieu et al.,
2007). The processing speed was elegantly discussed in Thorpe
and Van Rullen (2001), while attentional modulation during
object recognition has also been extensively investigated in the
literature. The processing speed and attentional gating attributes
will have analogues in CTOR. Dynamic recurrence in the VVS
during object recognition has been experimentally instantiated
by works such as Wyatte et al. (2012), O’Reilly et al. (2013),
and Poggio and Kreiman (2013). It seems natural for the brain
to take advantage of feedback pathways to coordinate between
top-down and bottom-up signals during more challenging
recognition tasks such as object completion or identification
in the presence of clutter. In fact, studies on neural circuit

specialization and connectivity have discussed areas V1 and V2
receiving connections from IT and parahippocampal regions
(Rockland, 1997). Consideration of the above attributes presents
an avenue to discuss how CTOR is a bio-inspired model for
object recognition at the VVS. Primate circuits such as the
cerebral cortex, hippocampus, and amygdala are associated
with advanced cognitive functions and have been shown to
contain pyramidal neurons whose architecture seem to be
specialized for the posited task of such neural circuits (Jacobs
and Scheibel, 2002; Elston, 2003). Interestingly, substantial
differences are noted in the number of spines on the basal
dendritic fields of neurons in V1, V2, and IT with the quantity
and density multiplicatively increasing when progressing from
V1 to IT. This is believed to lead to the increased capability
of pyramidal neurons in the latter stages of information
processing such as the IT and PFC to integrate a broader
range of synaptic inputs than neurons at the lower cortical
areas such as V1 and V2 (Elston et al., 1999). Thus, the
anatomy and connectivity of the cortical circuitry are crucial
in determining any prospective computation (Elston, 2003;
Spruston, 2008; Luebke, 2017). The intriguing discussion of
Biederman (1987) brought forth the recognition-by-components
(RBC) view of vision where it was suggested that the brain
parses viewed objects into parts. Partial matches among the
segments are then possible, and the proportion of the similarity
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in the components between the viewed object and a stored
representation is used to assess the fidelity of the match. Elements
of CTOR have been motivated by the valuable discussion in
(Biederman, 1987) and the presented model aims to further
concretize RBC.

3. MODELING OBJECT RECOGNITION AS
DYNAMIC INFERENCE

It is reputed that a study of how the neural populations of the
visual system process scenes so that the brain is capable of object
recognition leads to an overcomplete problem. In a nominal
example an information-rich scene is presented to a subject
with an object of interest embedded in the scene. Regardless
of the object’s salience, the subject has been provided with a
plethora of visual information for the prospective task. The
hierarchical and non-linear nature of the layers that govern
the computations among simple and cortical complex cells
implicate the difficulty of formulating optimization functions
that the visual system may be attempting to minimize/maximize
during such a nominal task. It has also been argued that the
difficulty in attempting to mimic functions of the visual cortex
is further complicated by its columnar organization and the
heterogeneity among the columns Roe (2019). In light of this,
works such as Serre et al. (2007) have motivated the approach
of studying each layer in the system separately. We believe that a
graceful unison should exist between the two disparate avenues
of viewing the system as a whole and dividing it into disjoint
units. Figure 1 depicts the architecture that will be motivated
as a sensible hypothesis for high-level computational processing
occurring in the VVS during object recognition. The conjecture
is unique since it is biologically inspired to reflect the VVS’s
operation while concomitantly being an ideology borrowed
from communication theory. From a communication-theoretic
perspective, the seminal work of Shannon (1948) has led to
countless developments in the design of structured redundancy
applied to information that is conveyed over a noisy channel to
a receiver with processing capability. The transmission of such
structured redundancy is often perturbed in a stochastic manner
by a channel prior to it being decoded, or more appropriately for
this presentation, “untangled” by the destination. The necessary
background on the encoder-channel-decoder structure within
a communication-theoretic setting has been provided in Fano
(1963) as well as classical texts such as Wozencraft and Jacobs
(1965).

It is evident that psychological processes such as attention and
memory are prerequisites for visual perception. There is a wealth
of literature on the computational capacity of cortical circuitry
and the quantitative differences among the population of neurons
associated with vision—see Elston, 2002; Jacobs and Scheibel,
2002; Spruston, 2008; Elston and Fujita, 2014; Luebke, 2017 for
reviews. The work of Mishkin has provided clear evidence for
the inclusion of the hippocampus and amygdala in the so-called
recognition memory circuitry. In fact, Mishkin (1982) concludes
that a model of object recognition would be incomplete
without considering recognition memory and the corresponding

feedback and feedforward projections to the hippocampus
and amygdala. Furthermore, the pyramidal neurons present in
the visual cortex are also seen in the hippocampus and the
amygdala (Feldman, 1984; DeFelipe and Farinas, 1992). The
notion of re-integration is also advocated by Mishkin; lending
credence to the presence of concatenated operations such as
the decoder in Figure 1 being followed by an interleaving
operation. The hierarchical nature of the visual system consists
of bi-directional information flow between the various levels
(Van Essen and Gallant, 1994). Studies such as O’Reilly et al.
(2013) and Lamme and Roelfsema (2000) have advocated
the interaction of feedforward and feedback processing in
delineating between the quick and detailed categorization of
an object. The architecture of Figure 2 considers feedforward
connections as well as feedback projections that are guided by
memory and the neural circuitry associated with attention. It
is noteworthy that neuroanatomical evidence for cell structure
influencing function in the visual system is provided in
studies such as Elston et al. (2005) and Jacobs et al. (2001),
and there are abundant discussions on the specialization of
feedforward and feedback connections along the VVS (Rockland,
1997).

The CTOR formulation is fundamentally different from prior
computational vision works such as Salinas and Abbott (1997) by
considering the operation of the IT neural circuitry along with
the functionality posited to be performed by the lower layers of
the visual system. The notion that visual objects are represented
by patterns of activity across populations of neurons has been
advocated in discussions such as Zhang et al. (2011) and Lee
and Mumford (2003). In accordance, the processing considered
in CTOR can incorporate the representation of the neural
activity via vectors that have dimensionality corresponding to
the considered neural population. The encoding and decoding
operations hypothesize that the neural activity has structure
and is affected by the external environment and a subject’s
memory. Attention is suggested as having an impact on all
operations of CTOR including the encoder, channel, decoder,
interleaver, compression, and memory (Figure 1). The work of
Lee and Mumford (2003) presented Bayesian inference as part
of a graphical model for the viewing of an object by the early
visual cortex. Their analysismakesmention of neural populations
from the IT and V4, but is primarily focused on V1 and V2.
The CTOR formulation will focus on the higher visual regions
by presentingmaximum a posteriori probability (MAP) inference
within the context of the IT’s role in object recognition. We shall
use a binary alphabet to present the signals at the various stages
of CTOR, however, the components should not be automatically
associated with spikes. It is logical to inquire if the elements of
the encoded and decoded CTOR signals are outputs of individual
neurons, the result of a principal component analysis applied
to output of populations of neurons, or perhaps the binary-
thresholded outputs of neural circuits. The dimensionality of
the signals in Figure 1 can be specified to encompass all of the
aforementioned scenarios. While such level of abstraction may
be deemed unnecessary, it is productive for a new model to allow
flexibility so that it can be fit to various data sets. As advocated
in works such as DiCarlo and Cox (2007), CTOR encourages a
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FIGURE 2 | The interaction of the input, encoder, channel, decoder, and interleaver in the CTOR model. The top row depicts the brain regions implicated for the

encoding, decoding, and interleaving operations. The middle row provides an illustration of CTOR operations with the viewed object being a brown bear. The bottom

row illustrates the progression of the dimensions of the neural signals that are subject to the CTOR operations.

shift in emphasis from single-unit spiking activity in favor of the
processing performed by neural circuits.

3.1. Model Input
A seemingly fundamental facet of a model is the input. Object
i will be denoted by a binary representation bi that encompasses
the object’s attributes. The stimulus index i = 1, 2, 3, . . .will serve
as the identity of the viewed object and the representation that
the object should evoke at the IT for correct recognition. The
representation b will be tangled by the retina, LGN, and V1 prior
to being untangled by the IT. In a nominal object recognition trial
the stimulus representation of a viewed object such as a brown
bear (Figure 2) will be faithfully recovered by the IT and then
compressed prior to being stored in memory. The tangling of the
object identity prior to its progression along the VVS has been
elegantly discussed in DiCarlo and Cox (2007) via the notion of
an intertwining of object manifolds. CTOR provides a concrete
means of representing such a tangling, namely the mapping of b
to a codeword as will be discussed below.

3.2. Object Tangling via the Encoder
The early stages of the visual systemwill tangle the representation
b that the viewed stimulus should evoke at the IT. The CTOR
example illustrated in Figure 2 considers the encoder as being
stimulus-driven. A rate coding operation has been advocated
as taking place in various visual areas (Van Essen and Gallant,
1994). The viewed object manifolds conveyed to area V1 by the

retinal and LGN processing are nearly as tangled as the pixel
representation (DiCarlo et al., 2012). This is largely attributed
to the receptive fields in the aforementioned two populations
being functionally akin to point-wise spatial filters (Olshausen
and Field, 2005). Interestingly, as the retinal- and LGN-processed
signals are processed by V1, the total dimensionality of the
representation is increased approximately 30-fold (Stevens,
2001). However, the V1-processed signal is still considered highly
tangled since its response is significantly inferior to human
performance for real-world recognition problems (DiCarlo et al.,
2012). Such biological characteristics are motivation for CTOR
to postulate the encoder as being comprised of the retina, LGN,
and V1 circuitry. Since the object representation is tangled by the
encoder, it is debatable whether LGN—rather than V1—should
be considered as the last stage of the encoder. This judgment is
based on the V1 output still being highly tangled, and that the
dimensionality increase that occurs following V1’s processing of
the LGN output is a trademark of the encoding operation. An
example is shown in Figure 2 where the representation b of a
viewed object, i.e., a brown bear, is encoded into the stream s as
the tangled version of the representation which should be evoked
at the IT when viewing this object. Two parameters are crucial
to the discussion. Assuming a binary alphabet, the integer M
will denote the number of input bits processed by the encoding
stage at a time. The integer K will denote the number of M-bit
units allocated for representing the viewed object. Thus, the IT
representation of a viewed object will consist of KM bits, and the
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IT may have 2KM distinct representations for a temporal window
of duration K. The CTOR model considers a continuous stream
of input bits being processed by the VVS. The continuous stream
of information has been segmented into KM bits at different
object boundaries. In effect, a larger K will correspond to an
increase in the complexity of the viewed object.

Anatomically, the output of the encoder circuitry will be a
length KN codeword s that comprises the neuronal response that
the IT must decode (Figure 2). Although exceptionally large, we
shall consider the number of possible representations as being
finite. From a communication-theoretic perspective, encoding
is an operation where a M-component input is mapped to a
message consisting of N ≥ M components. From a reliability
perspective it is advantageous to haveN≫M because it behooves
the decoder to have access to as many information-bearing
signals as possible in its decision of which message to declare
as the untangled representation. The ratio M/N ≤ 1 is dubbed
the code rate and the N = M scenario is the somewhat
anomalous case referred to as rateless coding because it provides
no redundancy. An important parameter stems from the non-
restrictive assumption that the encoder generates the codewords
via a shift-register structure (Lin and Costello, 1983). The
maximal memory order of the shift register will be designated
by L. For ease in presentation, we shall assume a simple shift-
register structure where the total memory is equal to the maximal
memory (L). In communication theory, this quantity is referred
to as the encoder constraint length and the same name will
be used henceforth. It shall be assumed that only one bit is
fed into the encoder at each time instant (i.e., M = 1)—this
is also a non-restrictive assumption that is made for ease of
presentation. At each time instant there will be 2L possible states
{S0, S1, . . . , S2L−1}, that the encoder can take, and we shall denote
the encoder state at time k by Sk,i : i = 0, 1, . . . , 2L − 1. The time
index k = 1, 2, 3, . . . will be suppressed unless when necessary.
When in state Sk,i an encoder can produce only one of two
possible codewords at time k+1. Similarly, a generated codeword
could have only been preceded by two possible codewords at
time k − 1. The length-N codeword s1, s2, . . . , sN at time k will
be denoted by the vector sk. The N components of the output
codeword sk will be dependent on bi

k
as well as the L prior

inputs to the encoder: bi
k−1

, bi
k−2

, . . . , bi
k−L

. The codewords
s1, s2, . . . , sK for duration K are concatenated as the encoder
output vector s (Figure 2). In evaluating the CTOR operation and
performance in the ensuing sections we shall consider bi

k
as being

comprised of a small number of bits of synthetic data. The use
of such synthetic data is a logical first step for introducing and
motivating the model. In subsequent works an image stimuli can
be considered by devising the sequences bi

k−1
, bi

k−2
, . . . , bi

k−L
to be binary representations of the pixels in the object that is
viewed by a subject. Expanding CTOR functionality to operate on
input consisting of pixel intensities is a future consideration. As a
summary, the biological implication of the encoder is relatively
simple - a viewed object should elicit a representation at the
IT; the representation is tangled via the encoding operation
performed by the lower layers of the visual system. Assuming a
binary alphabet, the neural signal corresponding to the encoded
object will be represented by KN bits.

It is believed that the spiking of visual neurons is greater
when attention is allocated to a stimulus than when attention
has not been allocated to the same stimulus. The spiking rate of
the retinal and V1 populations of neurons will be represented via
the relation

si(t) = Gi(t)si,rest(t) for i = 1, 2, . . . N. (1)

The above reflects attention, modeled by a positive and time-
varying quantity Gi(t) that has a multiplicative effect on the
firing rate of the neurons. The process si,rest(t) denotes the
unmodulated firing rate of the ith V1 neuron. Works such as
McAdams and Maunsell (1999) and Salinas and Abbott (1997)
have provided evidence for Gi(t) being a Gaussian function with
parameters dependent on the attended location and the preferred
attentional locus of the ith neuron. A codeword of length N
denoted by a stream s1, s2, . . . , sN will designate the activity of
the V1 population of neurons, with the ith codeword component
being “1” if the ith neuron has fired more than αi > 0 times
during an interval (e.g., 50 ms as noted in DiCarlo et al., 2012),
and “0” otherwise. In other words, it is conceivable to consider
an assignment

si =

{

1 if
∫ T
0 si(t)dt > αi

0 otherwise
(2)

as the rate coding rule for each of the N units over a time epoch
of T seconds. More elaborate scenarios can be concocted where
sub-populations of the lower-visual level neurons each form
codewords that are multiplexed to form a larger codeword that is
signaled to the IT. The CTOR model will specify the codeword
s1, s2, . . . , sN constructed by an encoder with a state-machine
structure such as that shown in Figure 3A. The state diagram in
Figure 3B illustrates the input-output dynamics of this encoder,
where it is evident from Figure 3A that the encoder output will
depend on the prior inputs to the encoder. Biologically, this
implies that the output of the retina, LGN, and V1 stage is
not a memoryless sequence, but rather follows a pattern that is
modulated by various processes.

3.3. The Channel
Visual recognition is affected by dynamic perturbations that can
have impeding effects such as obfuscating the object identity,
delaying the recognition, and possibly leading to an erroneous
identification of the object or its characteristics. The hindrances
might stem from the properties of the viewed object (e.g., the
novelty, or the object being obscured in the scene), or a subject’s
attentional state. Since neurons are inherently noisy, it is also
possible for the encoder to be imperfect during its encoding of
the stimulus. The CTOR model will subsume such impediments
within a channel that separates the encoding and decoding
operations (Figure 2). The output of the channel will be denoted
by the vector r and shall constitute the input to the IT. For
clarity in presentation, and in cadence with the communication
and information theory literature, we separate the encoder and
channel in Figure 2 despite the fact that they are compound
entities within a VVS. Although the channel separates the early
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FIGURE 3 | The structure and state diagram of a simple encoder. (A) The

so-called simple-encoder considered as performing the tangling operation at

the retina and LGN in Figure 1. The “D” elements denote a unit delay inherent

in the encoder’s processing. The above is a definite simplification of encoding

performed by the neural circuitry, but will serve to illustrate an instance of

CTOR’s encoding operation when the early visual stages are presented with an

object. (B) A state diagram representation depicting the dynamics of the

encoder in (A). The grouping 100, 1 above the state transition S1 → S2

indicates that when the neural circuits representing the retinal and V1 stages

(i.e., the encoder) are in a state of S1, a stimulus value of 1 would result in a

transition to state S2 as well as the encoder output of 100. The contents of the

“D” elements in (A) representing the corresponding state are given between

parentheses in (B).

visual stages from the IT, the early stages’ operations will resonate
in shaping the stochastic perturbations that are modeled via
the channel.

The instantiation of a channel plays a role in studying
the robustness attribute that we have discussed for object
recognition. A channel provides a source of dispersion (Figure 2)
by distorting the codeword and will be represented via a
conditional distribution P[r|s] where r is a perturbed version
of the signal and s is the encoder output. The channel may
perturb the encoder output in either a continuous or discrete (i.e.,
quantized) fashion, accordingly, P[r|s] will be represented either
by a probability density function (pdf) or a probability mass
function (pmf), respectively. The simplest linear, continuous
channel consists of a noise process n being added to the encoder
output via

r = s+ n. (3)

A prevalent channel quality metric (CQM) for a continuous
channel is the SNR. For (3) the SNR of neural signals conveyed to
the IT will be expressed as

SNRi =
max(si)−min(si)

E[n2i ]
=

1

E[n2i ]
for i = 1, 2, . . . ,N (4)

with the denominator representing the neuronal noise power.
The SNR of single neurons has been considered in numerous
studies. In the spirit of works such as Mar et al. (1999), we
consider an aggregate, population-wide CQM for the collective
effect of the units comprising the retina, LGN, V1, V2, and V4.
An insightful CQM for a discrete channel will quantify the
uncertainty in the probabilistic mapping of the channel inputs
to the channel outputs. The conditional entropy

H(ri|si = n) = −

|r|
∑

m=1

P[ri = m|si = n] log (P[ri = m|si = n])

(5)

for n = 0, 1 and i = 1, 2, . . . ,N

is viewed as the equivocation between a discrete channel’s input
and output, with |r| denoting the cardinality of the set of possible
channel outputs. From a biological perspective it is sensible to
assume that over a short time-scale associated with a task, a
continuous channel will maintain a probability distribution, but
the parameters that characterize the distribution (e.g., mean and
variance) will vary. Similarly, for a discrete channel it would be
expected that during the viewing of an object the components
of P[r|s] change but the values {H(ri|si)} do not drastically vary.
Over longer time-scales that span the viewing of different scenes
it is expected that the channel’s distribution will vary due to
different stimuli and changes in attention.

3.4. The Decoder
There is evidence that in the visual cortex, neurons such
as pyramidal cells become increasingly large, more branched,
and more spinous as one progresses along the VVS (Elston,
2002). From the perspective of information transmission, the
identity of a viewed object propagates along the VVS until
reaching the IT. Works such as Karklin and Lewicki (2009) have
suggested that sensory signals from early visual areas convey
information that allows the higher visual areas to construct more
complex representations of the sensory input. With CTOR, it
is the objective of the decoder to determine the object identity
and classify its characteristics. In effect, the decoded message
will represent the object that the IT has identified from the
representation propagated to the IT by the lower visual stages.
After K time instances the sequence of vectors r1, r2, . . . , rK
will be available to the decoder with rk representing a length-
N perturbed codeword that is to be untangled into a length-
M message. Accordingly, the decoder will continuously process
the channel output at every time instant, with its output
being a length-KM binary vector denoted by ̂b. The selectivity
attribute discussed in section 2 is accounted for by the fact that
the objective of decoding is discriminating between different
patterns. A good decoder operating over a channel that is not
inordinately dispersive will be capable of discriminating among
various object representations with high likelihood. In effect, at
each discrete time instant the decoder transforms a N-length
sequence that may take on a number of possibilities to a M-
length binary sequence. A decoding operation is conceived
by considering various metrics, for example, a MAP decoder
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would select ̂b = bi for the bi that maximizes the probability
P[bi|r] where i ∈ {1, 2, . . . , 2KM}. Dynamic programming is
often used to solve large-scale inference problems when it is
desired to recover a sequence that has the highest possibility
of having occurred. The Viterbi algorithm provides the most
probable sequence of states when the environment is described
by a hidden Markov model (HMM) (Eddy, 2004) with the
similarities between the principle and dynamic programming
discussed in the seminal work of Forney (1973). A description
of the Viterbi algorithm is provided in Appendix A and the
terminology there will be incorporated henceforth. The CTOR
proposal for the VVS proficiency at object recognition lies in
the IT implementing the untangling notion via a MAP decoding
algorithm in order to infer the object identity and attributes. The
untangling notion can be equated to seeking the most likely path
in a state transition diagram with 2L states at time k. The length
of prospective transitions between two states bk+1 and bk at time
k is quantified via

λ(bk+1, bk) = − ln(P[bk+1|bk])− ln(P[rk|bk+1, bk]) (6)

where P[bk+1|bk] is the a priori probability of state bk+1

given the observance of state bk, and the transition probability
P[rk|bk+1, bk] denotes the probability between a given pair
of successive states and the sequence rk. The process is
illustrated in the decoder portion of the example in Figure 2

with the IT performing dynamic sequence estimation of the
tangled representation.

An appeasing feature of the CTOR proposal is that the
invariance, robustness, and selectivity attributes discussed in
section 2 may be considered in unison. This is because when
decoding r the MAP sequence estimation technique attempts to
recover the correct message, or one that is as “close” as possible
to the correct message despite disparity in certain attributes.
The disparity is noted by the bit streams disagreeing at various
positions, and the degree of closeness is quantified by the
Hamming distance between the sequence decoded by the IT and
the representation that the viewed object should have evoked at
the IT. We define the deviation by

d(̂b, bi) , ||̂b⊕ bi||0 (7)

where ⊕ denotes the component-wise XOR operation and ||x||0
denotes the number of non-zero elements in the vector x.
Invariance has been considered since correct decoding and object
recognition are possible despite transformations induced to the
sequence bi (via the channel) prior to its entering the decoder.
Works such as (Usher and Niebur, 1996) have advocated the IT
exhibiting a larger overlap in its representations of similar objects
than in its representation of dissimilar objects. The overlap of the
similar objects is conveniently modeled in CTOR by such objects
having decoded sequences that are relatively close in Hamming
distance. Conversely, the decoding of dissimilar objects will result
in sequences that have a larger discrepancy in Hamming distance.
For instance, the representation of an object such as b1 =brown
bear is expected to be closer in Hamming distance to b2 =baby

elephant than to b3 =green hat. Inspection of a simple, synthetic
example such as

brown bear : b1 = 110010111001001

baby elephant : b2 = 110010111001100

green hat : b3 = 101100101100101 (8)

indicates that d(b1, b2) < d(b1, b3), and d(b1, b2) < d(b2, b3).
In other words, the first two decoded sequences are closer to
each other than either sequence is to the third. We note that
the decoding accuracy is dependent not only on the decoder,
but also the encoder and the channel properties. For instance,
the robustness attribute can not be realized by the encoder and
decoder alone because a channel with a very poor CQM would
perturb the encoded representation to a degree that the decoder
would be incapable of correctly untangling the object’s identity.

Visual processing works such as Reynolds and Chelazzi (2004)
and Usher and Niebur (1996) have discussed the so-called
competition among the neural representation of objects along
the VVS. The competition occurs between a target object and
distractors that are concomitantly present during the viewing.
We posit that there is also competition among the objects stored
in memory that are vying to be declared the viewed object. Such
competition is incorporated in CTOR as the closeness among
the decoded codewords. For example, in (8) there will be more
competition among the representations b1 and b2 than among
b2 and b3. Figure 4 depicts this notion with the closest messages
competing within a decision space to be the representation
associated with the viewed object. Models such as Usher and
Niebur (1996) consider a suppression of the neural activity for
a competing stimuli following a decision as to which object
is present. With CTOR, the suppression of competitive stimuli
occurs by the decoding operation discarding all prospective
messages except for the selected ̂b. A comparative mechanism
is inherent during the decoding operation since the codeword
that is closest to the represented formulation is selected by the
decoder as the decoded message. It was reported in Rust and
DiCarlo (2010) that performance on visual discrimination tasks
depend considerably on the number of neurons included in the
analysis and the number of images included in the stimulus set.
The decoding framework incorporates analogues for these two
dimensions via the codeword length N, and the cardinality of the
set of possible representations (i.e., |{bi}| = 2KM), respectively.

3.5. The Interleaver
As the IT processes the representation from V4, the neural
response is reformatted to be more selective for feature
conjunctions (Rust and DiCarlo, 2010). In CTOR such
processing is modeled via an interleaving operation. Interleavers
are discussed in communication theoretic works such as Ramsey
(1970), and have found application in computer science as well
(Andrews et al., 1997). The biological motivation behind the
interleaver lies in the necessity for the information output by the
decoder to be parsed into a set representing the attributes and also
the importance of the attributes for recognition. The interleaver
shall arrange the decoder output into a sequence where the
ordering has neurological significance for the efferent circuitry
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FIGURE 4 | An example of the decision regions at the IT’s decoder at a

specific time instant. Suppose KM = 15 with 2KM = 32, 768 possible

representations that the decoder can declare as having been the viewed

object. The circle denotes the possible space of received r sequences with

r ∈ R
KN. The red dots denote the representation of such objects in a decision

space. The closed region that surrounds a dot represents the region where the

VVS would declare ̂b = bi if r were to lie in that region. The sequences b1, b2,

and b3 are three prototypical objects.

(Brady et al., 2009; Nassar et al., 2018). Since there is a need
for considering the notion of feature grouping within the visual
system (Olshausen, 2013), the interleaving operation in CTOR is
a functional equivalent to the IT deciding the order of importance
given to the features by consciousness and attention. In the
example of the viewed object being a brown bear, the identity,
size, color, and shape are ranked according to their importance.
More important features such as identity appear before the less
important features such as color (Figure 2). Figure 5 provides an
example of the interleaving with the decoded message ̂b being
partitioned into smaller groups that correspond to the object’s
features. The ordering of the bits that comprise the interleaver
output via the vector b̃ signify the order-of-importance of the
features. This parsing and segmentation into components has
been motivated by Biederman (1987). In Figure 5, the KM bits
in the decoded message have been partitioned into F features
with the variables M1,M2, . . . ,MF denoting the number of bits
attributed to each feature. There is an obvious constraint that
∑F

i=1Mi = KM. The F features that we allude to correspond
to the stimulus dimensions introduced by the feature-integration
theory of attention (Treisman and Gelade, 1980) that has been
further elaborated upon in works such as Van Essen and Gallant
(1994). Since the plasticity of the IT is responsible for refining the
basic vocabulary of features (Serre et al., 2007; Rust and DiCarlo,
2010) it is expected that the interleaver is vastly distinct among
different brains. It is also logical to posit that the interleaving
operation is a highly dynamic process within a subject. With
respect to neurophysiology, works such as Poggio and Kreiman
(2013) and Meyers et al. (2008) have discussed the prefrontal
cortex (PFC) guiding the IT (via a top-down signal) in the
activation of subgroups of neurons to specific object features.
It has been shown that PFC neurons also exhibit an increase in
dendritic and spine complexity that is seen in the latter stages of
visual cortical processing (Jacobs et al., 2001; Jacobs and Scheibel,
2002; Elston et al., 2011), and that the complexity is amenable to
the progressive increase in sophistication of the computational
operations. This was a motivation for the PFC-IT interaction
considered in Figure 1 as the mechanism driving the interleaving

operation. The interleaving operation constitutes a computation
that is performed by populations of neurons acting collectively.
Thus, the M-to-M component mapping of ̂b → b̃ entails the
coordinated firing among a population of neurons rather than the
autonomous firing of neurons that may occur in populations at
the lower visual layers. The output of the interleaver is comprised
of F clusters with each cluster distinguishing a feature of the
viewed object. In effect, the sequence b̃ is the information that the
VVS has extracted (i.e., untangled) from the scene during object
recognition via the decoding and interleaving operations.

3.6. Declaration of the Object Category
Despite the advancements in the study of primate vision, it
has not been ascertained at what specific juncture in the VVS
a viewed object can be said to have been recognized. The
authors in (Neri and Heeger, 2002) advocate the presence of
two stages in the VVS with the first performing object detection
∼ 100ms prior to the second stage performing identification
of the object’s features. Figure 6 is a more detailed depiction of
the operations associated with declaring the object category that
was alluded to in Figure 1. In Figure 6, a classifier deciphers the
object category by processing the decoded output. The CTOR
model considers the progression of the decoder output into a
classifier and an interleaver. Such parallel processing reflects
the VVS’s capability to classify the object category concomitant
to discerning its features. A computationally simple model for
object categorization is the inner product of the decoder output
with a weight vector w via

f (̂b) = wT
̂b. (9)

This is essentially the linear classifier readout advocated in
(Rust and DiCarlo, 2010) although it is expected that the
dimensionality dim(w) = dim(̂b) = KM for CTOR will be
significantly larger than what has been previously considered.
It is important to note that the output of f (·) is not sensitive
to the order of the elements in the column vector ̂b since w

can be adjusted accordingly. Works such as Rust and DiCarlo
(2010) and Pagan et al. (2013) have determined a realization
of the vector w for every presented image in a set. While the
selection of a classification technique for determining w is not
the objective of this work, we remark on a crucial point. The
assignment wT

= [1, 1, . . . , 1] would lead to the discernment of
the object identity being solely a function of the Hamming weight
of the decoded message. The above consideration for f (·) also
instantiates CTOR as exhibiting the invariance attribute since
the components in ̂b can be re-arranged without a change in
a declaration of the identified object’s category. The distinction
between an object’s category and identity should be apparent. In
the presented example, “brown bear” is the identity of the input
object while “bear” is a declared category.

4. THE NECESSITY OF ATTENTION,
COMPRESSION, AND MEMORY

Seminal works such as Biederman (1987) and Treisman
and Gelade (1980) have motivated the importance of
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FIGURE 5 | Depiction of the signal structure as it evolves along the VVS model presented in Figure 1. The KN-component vector r with ri ∈ R has been decoded into

a message ̂b with KM components, wherêbi ∈ {0, 1} and N≫M. At the output of the interleaver the KM components are partitioned into a message ˜b with F

features—or feature dimensions as denoted in works such as Kanwisher and Wojciulik (2000)—of variable bit lengths. In the above example, F = 4 feature groupings

are presented.

considering memory, attention, and object recognition within
a unified model. The patent biological interplay between the
aforementioned processes leads one to believe that an incomplete
analysis would result by not considering such processes as
interacting either via feedforward or feedback connections. The
authors of Usher and Niebur (1996) have also advocated the
concurrent consideration of attention and memory with the
neural activity associated with the early visual stages. The model
presented in the aforementioned work considers the necessity
of a top-down feedback projection when a subject is searching
for an expected target in a scene. This section will discuss how
CTOR accounts for the interaction of attention and memory to
provide a unified model for object recognition.

4.1. Attention as a Top-Down Modulatory
Signal
The incorporation of attention as the modulator of the neural
processes associated with object recognition is crucial. A review
of the neural circuitry in the visual cortex that is actively
modulated by attentional feedback has been presented in
Reynolds and Chelazzi (2004). From analysis in monkeys it is

natural to suggest that the attentionmodule in Figures 1, 6would
contain the lateral intraparietal area (LIP) and frontal eye fields
(FEF). CTOR posits attention as modulating components such as
the encoder, channel, decoder, and compression via a top-down
regulatory mechanism (Figure 6). Attention affects the encoder
via the multiplicative factors {Gi(t)} in (1) that drive the spiking
rates of the retinal and V1 neurons. This reflects a role associated
with the projection from the attentional circuitry to the encoder.
A subject’s attentional state will also influence the channel by
affecting the conditional distribution P[r|s]. In the case of a
continuous channel the effect may be seen on the SNR values
{SNRi} which are a function of a subject’s vigilance as well as the
inherent neural noise along the VVS. It is sensible to assume that
the SNR values increase with greater levels of attention. In the
case of a discrete channel a similar modulation is expected with
the conditional entropy values being affected by attention. The
decoder is immanently influenced by a subject’s attentional state
through the vector r that the decoder must process during each
epoch. This is seen by noticing that the transition metrics, path
metrics, and survivor paths computed at the decoder en-route
to declaring a messagêb are determined by the channel and the
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FIGURE 6 | The interaction of attention and the declaration of object category. The top row depicts PFC, LIP, and FEF regions as they govern attention which is

affected by the declared object category. The middle and bottom row provide an example of the CTOR operations and the dimensionality of the associated signals

during the declaration of a viewed object’s category. The scrolls denote different categories that viewed objects may be classified into prior to affecting attention.

Attending to a categorized object is believed to modulate the firing rates of V1 neurons as discussed in Equation (1) and depicted via the projection (a) of Figure 1.

encoder. We have mentioned that with CTOR the number of bits
attributed to each feature by the interleaver is a dynamic process
modulated by attention. Works such as Cukura et al. (2013) and
Huth et al. (2012) provide experiments that illustrate attention
driving the degree of compression applied to what constitutes the
F interleaved features in CTOR.

Attention also modulates the goals of object recognition.
Consider the general scenario of a subject knowing that he/she
must espy a scene before making a critical decision on an object
in the scene. A nominal example of this is a driver checking
a blind-spot immediately before changing lanes on a highway.
The brain will have a snapshot view of the scene and, due
to the heightened level of attention necessary for this task,
perform object recognition much more quickly than during
typical visual tasks. In such a pedestrian example the IT’s decoder
would recognize a car but the brain would allocate significantly

more importance to the location and proximity of the car
than its color or luminance. Brain imaging neuropsychological
studies conducted in works such as Kanwisher and Wojciulik
(2000) and Turk-Browne et al. (2013) have explored attentional
modulation of visual encoding, memory formation, and the
brain’s capability to prioritize the sensory information that is
most relevant for a task. It is necessary that a computational
vision model also incorporate such notions. The CTOR model
currently considers attentional selection by the increased firing
of V1 neurons, while not accounting for the more sophisticated
scenario of overlapping objects as described in works such
as Baldauf and Desimone (2014). The incorporation of the
biological functions associated with the capability of the VVS
to separate attended and unattended objects is an avenue for
the advancement of CTOR as its constituent portions are
expanded upon. For instance, it can not be claimed that the entire
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VVS would consist of a single realization of Figure 1. Rather,
it is more likely that there would be multitudes of such an
architecture acting in parallel prior to a convergence. In Kersten
et al. (2004), the parallel implementation of Bayesian models
is mentioned and the authors advocate decomposing a scene
or concurrently viewed objects into m features. Figures 1, 2,
which have been a thrust of this work, will need to be cascaded
into parallel streams to form a more comprehensive scheme
that accounts for the case of overlapping objects competing
for attention.

4.2. A Compressed Representation of
Recognized Objects
It is infeasible to conceive that the brain will commit every
feature of each identified object to memory. The CTOR model
allows for the incorporation of a compressive operation to
proceed the interleaving process. The degree of compression
will be a dynamic process modulated by attention and will
shorten the representation of each object based on its most
important features. This may be achieved by prioritizing the
features that have been highly ranked by the interleaver while
summarizing or even discarding the less-important features of
a viewed object. Figure 7 depicts compression taking place in
the hippocampus and amygdala where all objects’ features such
as identity, size, and color are subject to compression prior to
being committed to memory. In CTOR, this process is achieved
by combining multiple occurrences of similar objects into a
single representation in memory as a sequence˜bc. The memory
circuitry is also driven by attention and will be presumed to
have a fundamental role of providing the IT with the top-
down a priori probabilities necessary for the IT to perform
inference. The hippocampus’s storage and rapid consolidation
of object representations has been considered for decades with
works such as O’Reilly andMcClelland (1994) suggesting that the
hippocampus is constructed to perform such a function. From a
reverse engineering perspective, it is highly efficient that an object
viewed at the highest frequency be allocated the smallest number
of bits in memory. Different from the compression technique in
CTOR, this alternative strategy would minimize storage and be
akin to compression in the sense of Huffman coding or more
recent proposals that suggest the hippocampus is performing
even more sophisticated compression techniques (Petrantonakis
and Poirazi, 2014).

4.3. The Consideration of Memory
For an object to be accurately recognized, a representation of
the object must have been previously compressed and stored
at an acceptable fidelity. There has been substantial evidence
that memory-associated brain regions such as the hippocampus
and amygdala are crucial for the neural processing underlying
object recognition. Classical studies have referred to the area
TE as containing “neural traces” associated with previously
viewed stimuli (Mishkin et al., 1983). Such traces serve as stored
representations against which subsequently viewed stimuli are
compared. CTOR subsumes the comparisons into the decoding
operation performed at the IT. The formation and storage

of the traces are deemed as occurring at the hippocampus-
amygdala circuitry that Figure 7 portrays communicating with
the IT via feedforward and feedback connections. This is also
illustrated in Figure 1 as the feedback connection from memory
to decoder. The prevalence of the signaling from the memory
circuitry to the IT and the neural circuits governing attention
has also been justified in works such as Chelazzi et al. (1998)
where the authors considered feedback provided by memory as
a top-down signal for modulating the attention allocated to the
object’s attributes. The CTOR model considers two interactions
between the memory and decoding circuitry that will propagate
the transition probabilities {P[rk|bk+1, bk]} and the a-priori
probabilities {P[bk+1|bk]} between the two entities. Firstly, the
feedforward signal from the decoder that enters the hippocampus
reflects memory formation following the recognition of an
object and its associated features. Conversely, when a subject
is processing a scene and attempting to recognize an object
within the scene, the brain vests attention and draws upon
stored memories to perform the recognition. It is expected that
memory provides the a priori probabilities {P[bk+1|bk]} to the
decoder during decoding (Figure 7). Works such as Olshausen
(2013) have discussed the importance of feedback in the visual
system as a potential means of communicating, via a top-
down signal, the a priori probabilities that the brain uses when
performing inference in stimulus space. The feedback connection
considered by CTOR from memory is a means of enabling
the decoder portion of the IT to operate in Bayesian fashion
by providing the decoder with updated a priori probabilities.
Secondly, object recognition can not occur without the IT having
access to an itemized list of objects and attributes. We posit
that such a dictionary exists and is continuously updated via
the feedforward and feedback signaling discussed herein. The
components of the dictionary are compressed versions of the
previously viewed representations. The work of Mishkin has
provided analytical motivation and experimental results on the
notion of recognition memory. The interaction of the PFC
in guiding working memory and visual search has also been
considered in a model presented in Usher and Niebur (1996)
that was further advocated in Poggio and Kreiman (2013). For
a decoder at the IT to implement the Viterbi algorithm it must
have knowledge of the encoder and the channel statistics. We
can explain this as synaptic plasticity that occurs between neural
populations of various brain regions that share connection.
That is how an upstream population in IT could learn about
some properties of the V4 and V1 neurons that constitutes
the transition probabilities. In other words, the transition
probabilities {P[rk|bk+1, bk]} must be conveyed to the decoder
from the memory circuitry. The hippocampus and amygdala will
continuously update their account of the transition probabilities
by repeated interaction with the decoder in the IT. It is
conceivable that during a developmental or training phase—that
a subject may be agnostic to—the memory circuitry extensively
communicates with the IT in order to update its estimates
of the transition probabilities. Works such as Van Essen and
Gallant (1994) and Miyashita (1993) have also cited IT neuron
responses in primates as being markedly changed through
repeated exposure to a limited set of stimuli. Accordingly, with
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FIGURE 7 | The operation of compression, memory and feedback in CTOR. The top row illustrates the brain regions (HPC, AM) involved in the memory and the

compression operation while the middle row provides an illustrative example of the CTOR operations with brown bear being the viewed object. The bottom row

depicts the dimensions of the neural signals during the aforementioned operations. The a priori probability P[bk+1|bk ] that is fed back to IT is estimated as P[˜bck+1|
˜bck ]

from the compressed sequence ˜bc.

CTOR the IT-hippocampus interaction will be an iterative
process—if the decoded output is such that̂b ≈ b, then the VVS
may maintain the transition probabilities as legitimate estimates
for ensuing epochs until̂b deviates sufficiently from b (Kersten
et al., 2004). In statistical communication theory the above
procedure is referred to as the decoder learning the channel and
is implemented via means such as the Baum–Welch algorithm
(Hastie et al., 2009).

5. THE OPERATION OF CTOR

It is insightful to consider an example of CTOR operation that
commences with the tangling of the stimulus representation
and concludes with a decoding, interleaving, and commitment
to memory of the untangled object identity. We consider an
example where at each time instant the early visual stages
will tangle M = 1 bits of the object identity into a
N = 3 bit sequence. We also consider K = 4 and thus
the identity of the viewed objects will lie in a space with
a cardinality of 16. As part of this toy example, suppose
that the viewed object has the representation b = 1100

at the IT. Of course this constitutes a highly synthetic
stimulus signal with M, N, and K values small enough
for the analysis to be tractable while still elucidating the
computations advocated by CTOR. We caution that although
computational intractability is avoided in this example, it is by
no means reflective of the VVS avoiding such intractabilities—
obviously the VVS’s prospective implementation of the encoding
and decoding would encompass significantly larger K and
N values. The interleaving, categorization, and compression
operations will also be instantiated in the toy example of
this section.

5.1. Object Tangling and Manifestation of
the Channel
From a biologically-inspired perspective, an encoder of rate
1/3 signifies that every bit from the representation that the
viewed object should evoke at the IT has been tangled by
the retina, LGN, and V1 into three bits. We shall consider
the encoder in Figure 3A since it has already been discussed
in section 3.2. Communication theorists would describe this
encoder via a so-called algebraic generator sequence G(D) =
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[

1+ D, 1+ D2, 1+ D+ D2
]

and recognize that the encoder has
a maximal memory of L = 2 that allows the encoder to take 2L =

4 possible states at each time instant. The encoder in Figure 3A

has been extensively discussed in Lin and Costello (1983) and
will be dubbed “simple-encoder” for the remainder of the paper.
For clarity, the four states shall be referenced via {S0, S1, S2, S3}
as shown in the state diagram in Figure 3B. The number of
possible transitions in the encoder state diagram is 2N = 8. For
instance, S0 → S2 : 111, 1 and S0 → S0 : 000, 0 denote two of
the transitions. The N = 3 bits written above each transition is
the encoder output that is generated due to the combination of
that transition and the M = 1 bit input to the encoder (e.g., “1”
and “0” for the S0 → S2 and S0 → S0 transitions, respectively).
The encoding operation has structure that is modeled via a state-
machine - this reflects that the tangled signals converging at the
IT via afferent projections are not completely random patterns.
For instance, regardless of the nature of the viewed object, it is
obvious that the encoder in Figure 3 would prohibit an encoded
sequence of 111 to be followed by an encoded sequence of 001. It
can be verified that the considered sequence b = 1100 would
be encoded into s = 111 010 110 011 according to the state
diagram of simple-encoder.

During the encoding or tangling operation the neural
representation that a viewed object should evoke at the IT is
perturbed by a channel that encompasses the visual impairments
inherent to the scene as well as neural noise inherent to the
VVS. We model this via each element in s being stochastically
transformed into one of four values denoted by A, B, C, and D.
The four values reflect different intervals for the neural activity
produced by the circuitry that projects to the IT. Consider
the discrete memoryless channel quantified by the following
conditional probabilities:

P[ri = A|si = 0] = 0.4

P[ri = B|si = 0] = 0.3

P[ri = C|si = 0] = 0.2

P[ri = D|si = 0] = 0.1

P[ri = A|si = 1] = 0.1

P[ri = B|si = 1] = 0.2

P[ri = C|si = 1] = 0.3

P[ri = D|si = 1] = 0.4. (10)

The above is one of the channels considered in Lin and Costello
(1983) and it is used in this illustrative example for its relative
simplicity—it is easy to verify that H(ri|si = 0) = H(ri|si = 1) =
1.846 bits. The channel output is presumed to be the sequence

r = (DCA, DDB, DDA, DDD). (11)

The decoder considered in the following section will process the
sequence r via the Viterbi algorithm in order to attain a MAP
estimate of the viewed object’s representation. The accuracy of
the recovery process will quantify the fidelity at which the object
identity b has been untangled at the IT.

FIGURE 8 | An example from Lin and Costello (1983) to illustrate the

dynamics of Viterbi decoding. The path marked with “O” denotes the final

survivor path selected based on the smallest path length which corresponds

to the MAP estimate of the sequence that the encoder desired to convey to

the decoder. The transitions marked with “X” denote non-survivor transitions,

while the unlabeled transitions denote survivors that were not part of the final

survivor path.

5.2. Decoding Dynamics
Neural activity at the IT is believed to correspond to the
untangled identity of the object that has been communicated
to the IT (in tangled form) by the lower layers of the VVS.
Cortical computation presentations such as Rao and Ballard
(1999), Olshausen (2013), Lee and Mumford (2003), and Kersten
et al. (2004) have advocated a hierarchical Bayesian model
with top-down and bottom-up information flow. Such dynamics
are at the heart of proposed decoding operation for the IT.
The decoder uses bottom-up information from the encoder
in conjunction with top-down information from memory to
recover the object identity. The top-down information quantified
by the a priori probabilities {P[bk+1|bk]} will be assumed as
uniform (i.e., equally-probable) among the different competing
stimuli representations, and thus will not affect the transition
lengths in (6). The decoding procedure applied to the sequence in
(11) is shown via the trellis diagram of Figure 8with the decoder’s
initial condition given by b0 = S0. At time k = 1 the decoder
computes the transition lengths via (6) as

λ(b1 = S0, b0 = S0) = − ln(P[DCA|b1 = S0, b0 = S0])

= − ln(P[r1 = D|input = 0])

− ln(P[r1 = C|input = 0])

− ln(P[r1 = A|input = 0]) = 4.82

λ(b1 = S2, b0 = S0) = − ln(P[DCA|b1 = S2, b0 = S0])

= − ln(P[r1 = D|input = 1])

− ln(P[r1 = C|input = 1])

− ln(P[r1 = A|input = 1]) = 4.42.(12)

The two possible transitions above are considered by the Viterbi
algorithm because of the encoder’s state diagram in Figure 3B.
It should be noted that at k = 1 there are two rather than
2L = 4 survivors because the decoding has just commenced.
Subsequently, the decoder computes

Ŵ(b1 = S0, b0 = S0) = Ŵ(b0 = S0)+ λ(b1 = S0, b0 = S0) = 0+ 4.82

Ŵ(b1 = S2, b0 = S0) = Ŵ(b0 = S0)+ λ(b1 = S2, b0 = S0) = 0+ 4.42.

(13)
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This process is repeated for time k = 1, 2, ... K (see the steps
in Appendix B). At k = K the Viterbi algorithm proceeds
backwards in the trellis of Figure 8 to arrive at (b1 = S2, b0 =

S0), (b2 = S3, b1 = S2), (b3 = S1, b2 = S3), (b4 = S0, b3 = S1) as
the final survivor path because it has the smallest metric among
all of the candidates. The decoded sequence corresponding to this
survivor path is

ŝ = 111 010 110 011 (14)

which corresponds to the decoder’s estimate of the encoded
message being

̂b = 1100. (15)

By decoding, the stream r in the above example into the sequence
̂b, the IT has untangled the object’s representation that was
propagated along the VVS. In the above examplêb = b which
indicates perfect object recognition at the IT.

The assignment of uniform priors to the metric in (6) has
the biological ramification of the IT having no prior memory,
or synonymously, an unbiased account of what object to expect.
If the VVS were to have identified an object in the prior K =

4 discrete time instances, then it would be sensible for the IT
to have non-uniform priors with the first term in (6) biasing
the transition metrics toward a particular representation. In
organizing the CTOR model to emulate VVS operation, an
updating rule should be presented to adjust the priors based
on the object that was decoded in previous epochs, or is
expected during the current viewing interval. As discussed in
section 4.3, the a priori probabilities will be communicated from
memory to the decoder (via the feedback signal in Figure 1) to
be used in the ensuing decoding. Formulation of an updating
rule for the priors that are stored in memory is an important
future avenue because it would further substantiate the model’s
biological feasibility.

Properties such as poor visibility and a subject’s inattention are
factors that can adversely affect the decoding process by bringing
about a channel with a low CQM. This will affect the decoding
process in a conspicuous manner regardless of the decoder’s
proficiency. For instance, consider a case where (10) is replaced
with the following channel

P[ri = j|si = 0] = 0.25

P[ri = j|si = 1] = 0.25 for j = A,B,C,D (16)

that has a conditional entropy of H(ri|si = 0) = H(ri|si =

1) = 2 bits. Assuming uniform priors, it can be confirmed
from (6) that the above channel would yield transition metrics
of equal value at each time instant in the decoding process.
The consequence of this is that the IT will have no choice but
to arbitrarily select one of the possible 1/2KM sequences. The
preceding is an example of how recognition can be obscured by a
catastrophically bad channel. The properties associated with the
stimulus, environment, and neural circuitry that may bring about
such a channel are not immediately obvious, but this is a question
that warrants scrutiny. Following the decoding operation it is
possible that the IT is indecisive as to the stimulus identity. In

such a case the VVS may declare an erasure (Forney, 1968) as a
means of requiring additional time to decide upon the identity or
attributes of the viewed object. From a psychophysics perspective
it is expected that the erasure is reflected by a higher reaction
time and degraded processing speed for recognizing the object.
The dynamics and threshold associated with the declaration of
an erasure by the IT after decoding is an avenue for future
consideration. It is interesting to note that an erasure may not
be a complete waste of time and resources by the VVS since
information may be gained and used about the viewed object
at subsequent time epochs. This is expected of an adaptive
system that has been optimized through continuous training
and evolution.

5.3. Declaration of Object Category
In this example, we assume wT

= [1, 1, 1, 1] which would result
in f (̂b) = wT

̂b = 2 via (9). This operation is perhaps too
elementary in this toy example because we except more than
four object categories to exist during the viewing of a stimulus.
It is more insightful to examine the scenario given by (8). The
assignment of w as a 15-dimensional vector of 1’s yields f (̂b) = 8
for the three decoded sequences of (8), and hence the three
stimuli would be categorized into the same category. There are
three important points that follow with respect to this dubious
outcome. First, although the three objects would be classified
under the same category, their differing features can be still
discerned by the IT assuming a sufficient degree of redundancy
at the encoder, a channel that is not too dispersive, and adequate
processing at the decoder. Second, the choice of w has not been
determined via an SVM or even a correlation-based classifier as
considered in works such as Rust and DiCarlo (2010) andMeyers
et al. (2008), respectively. Both techniques would provide a w

that has been acquired via a training process on already-viewed
stimuli. For instance, it is easy to confirm that the (non-unique)
choice wT

= [1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1] would yield
perfect classification of category for this example. Third, a more
biologically realistic scenario would have a significantly larger N
value. This would lead to greater granularity among the object
categories and significantly better classification capability.

5.4. Interleaver Operation, Message
Compression, and Memory
The interleaving operation is considered as a means for
identifying the important features in the decoded sequence. In
this example we consider two features via F = 2 with M1 = 2
and M2 = 2. The static interleaving operation given by I =

[[1, 3], [2, 4]] will be assumed where [1, 3] signifies the bit indices
corresponding to themore important featureM1, and [2, 4] refers
to the bit indices of a less important feature M2. Thus, the
interleaving will lead to the following grouping

̂b = 1100 → ˜b = [1̂b1,
2̂b2,

1̂b3,
2̂b4] =

11211020

where the left superscript of each bit indicates its importance level
as dictated by the interleaver. The operation I is equivalent to
a mapping that ranks the importance of the bits in the decoded
stream via the features that they correspond to. In the present
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example, the more important feature, M1, represents the object
identity while M2 will correspond to the object’s size. As shown
in Figure 1, the interleaving operation is dynamically guided
by attention in the prioritization of sensory information that is
necessary for a task. To consider an instance of compression,
suppose that the same object is presented to a subject
during the next three viewing intervals with the corresponding
representation given by ̂b = 1100 1100 1110 1101. The third
representation has a different object identity than the other
three while the fourth representation differs from the first two
due to the object’s size varying as a result of a change in
viewing distance. The 16-bit decoded version of this sequence
̂b would be interleaved to b̃. With the hippocampus performing
a compressive operation, the most important features of the
representation b̃ =

11211020 11211020 11211120 11211021
are committed to memory with less compression than the less-
important features. More specifically, the features with a left
superscript of “1” are 10 and 11 while the less important features
have been labeled via a superscript of “2,” i.e., 10 and 11. A
compression mechanism may entail the less important features
being compressed among viewed objects that share the same
important features. In the present example, the first and second
representations 1100, and the fourth representation 1101 share
the same value of important feature 10. These three objects can be
compressed in memory as 1100 since it appears more frequently
than 1101. The other value for the important feature (i.e., 11)
occurs only in the third viewing of the object via 1110 which is
stored in memory as well. Thus, for the considered compression,
the 16-bit input ̂b = 1100 1100 1110 1101 is compressed into
the 8-bit representation b̃c = 1100 1110.

Having attained a compressed representation of the viewed
object, it is possible for the a priori probabilities {P[bk+1|bk]}
to be computed at the hippocampus and amygdala. The neural
circuitry can estimate P(bk+1 = S1|bk = S3) from the
sequence b̃c = 1100 1110 by counting the occurrences of
S1 = 10 after S3 = 11 and normalizing that value by the
occurrences of S3 = 11. In the present example, S3 = 11
occurs three times with two occurrences followed by S1 =

10, therefore P(bk+1 = S1|bk = S3) = 2/3. A more
descriptive analysis of how the VVS may perform such a
calculation for the remaining a priori probabilities is provided in
Appendix C.

6. THE PERFORMANCE OF CTOR, AND
USE OF PRIOR KNOWLEDGE IN OBJECT
RECOGNITION

The previous section provided an instantiation of CTOR
operation. It is also necessary to have an idea of the performance
that is possible with this model. Accordingly, a more realistic

scenario must be considered than the toy example of the previous
section; clearly a larger stream is present as the input to the

primate VVS. Since CTOR is not based on a neural network or a

SVM, the metrics used to assess the performance of models based
on the aforementioned methods are by-in-large not applicable

here. To assess the performance of CTOR, several metrics must
be discussed within the object recognition paradigm.

• Bit Correct Rate (BCR): According to (7) the Hamming
distance d(̂b, bi) was derived between the decoded sequence
at the IT and the representation that the object should induce
at the IT. The expression

BCR = 1−
1

T

T
∑

t=1

[

d(̂b, bi)

KM

]

t

(17)

provides a measure of the deviation between the expected
and decoded representations over T viewed sequences. In the
above expression [X]t denotes the value of the argument X at
the t-th iteration. It is not difficult to observe that at chance
BCR= 1/2.

• Symbol Correct Rate (SCR): A more stringent measure of
correct object recognition is given by

SCR =

1

T

T
∑

t=1

[

1(d(̂b, bi) = 0)
]

t
. (18)

In the above expression 1(·) denotes the indicator function
and the condition inside the indicator function is only satisfied
for perfect recovery of the object identity. It can be verified that
at chance SCR= 1/2KM .

• Category Correct Rate (CCR): A distinction between object
recognition and categorization has been made in the
presentation of CTOR. Accordingly, we consider ameasure for
the correct identification of object category via

CCR =

1

T

T
∑

t=1

[

1(wT
̂b = wTbi)

]

t
. (19)

It should be apparent that the classification vector w used in
(19) is derived based on a classifier cost function rather than
the CCR metric, otherwise the trivial solution w = 0 would
result. At chance this metric will equal the reciprocal of the
number of categories considered i.e., CCR= 1/KM.

• Approximate Category Correct Rate (ACCR): A less stringent
measure of categorization accuracy follows from considering
the metric

ACCR =

1

T

T
∑

t=1

[

1(|wT
̂b− wTbi| ≤ c1)

]

t
. (20)

The constant c1 > 0 is the maximum tolerable difference
between the expected and recovered representation for the
category to be determined at an acceptable fidelity. By its
definition it can be noted that AACR ≥ CCR.

The performance of the CTOR model for the VVS will be
analyzed for all of the aforementioned metrics. We are, in
effect, attempting to justify the utility of the BCR, SCR,
CCR, and ACCR within the object recognition paradigm. It is
interesting that the presented dialogue has provided a means to
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quantitatively decipher between categorization performance and
object recognition performance. To the best of our knowledge
prior works have not made such a quantitative distinction and
this may be viewed as a void in object recognition models.

The performance of CTOR with the simple-encoder in
Figure 3A and its corresponding decoder implementing the
Viterbi algorithm will be analyzed via simulation. The object
representation b will be comprised of K = 6, 12, 24, 36, 48, or 60
bits meaning that the encoder will entangle such representations
into a sequence s consisting of 3K bits. Without loss of generality,
we specify the viewed stimulus as having a representation at
the IT given by an alternating sequence of 1 and 0, e.g., for
K = 6, b = 101010. For each object T = 106 iterations
will be considered in a Monte-Carlo (MC) simulation. Each
iteration entails the components of the encoded sequence being
probabilistically perturbed by the channel (10). The dispersive
nature of (10) will be shown by examining object recognition in a
less-dispersive discrete memoryless channel where the transition
probabilities are given by

P[ri = A|si = 0] = 0.65

P[ri = B|si = 0] = 0.2

P[ri = C|si = 0] = 0.1

P[ri = D|si = 0] = 0.05

P[ri = A|si = 1] = 0.05

P[ri = B|si = 1] = 0.1

P[ri = C|si = 1] = 0.2

P[ri = D|si = 1] = 0.65 (21)

and lead to H(ri|si = 0) = H(ri|si = 1) = 1.416 bits.
Figures 9A,B contain simulation results of the object recognition
metrics for CTOR with simple-encoder and the channels given
by (10) and (21). A value of c1 = 1 was used when computing
the ACCR metric, in other words, a disagreement in Hamming
distance of one between ̂b and bi was deemed tolerable in the
recovery of the object category. The representation of more
complicated stimuli would require a larger number of bits and
may result in a degradation in the VVS’s capability to accurately
perform object recognition and classification. It is also expected
that the more complex stimuli will require increased amounts
of neural processing leading to longer message lengths (i.e.,
larger K values). The more convoluted an object, the worse a
subject’s performance in recognizing, categorizing, and parsing
the attributes of the object. The CTOR model is capable of
reflecting this aspect that seems fundamental to the working of
the VVS. Indeed, the BCR, SCR, CCR, and ACCR metrics in
Figures 9A,B show a degradation with increasing K values. It is
interesting that the SCR shows the most precipitous degradation
with increasing object complexity. This is attributed to the correct
decoding of the entire object representation being more difficult,
and hence more sensitive to the viewed object complexity, than
a partial or a category-only recovery. A comparison of the four
metrics shown in Figures 9A,B confirm an improvement in
recognition and categorization performance when the channel
is represented by (21) instead of (10). Thus, the impact of a

degradation in CQM on object recognition is patent since the
recognition and classification accuracies are lower for the more
dispersive channel. The consideration of the retina, LGN, and
V1 stage via a more sophisticated encoder shall be referred to
as “complex-encoder.” The rate of the encoder is maintained at
1/3, but a maximal memory order of L = 8 is considered via the
following generator sequence

G(D) =

[

1+ D2
+ D3

+ D5
+ D6

+ D7
+ D8, 1+ D+ D3

+ D4

+D7
+ D8, 1+ D+ D2

+ D5
+ D8

]

.

The above encoder has been studied in Lin and Costello (1983);
its shift-register structure and state diagram are not shown
because of their involved nature in comparison to simple-
encoder. For instance, the decoding would consist of a trellis
with 28 = 256 states at time k and two prospective transitions
out of each state. Via a higher constraint length (L), there
are a larger number of paths to compare at each stage of the
trellis and this leads to an increase in resolution when making
a decision on every encoded bit. Thus, a decoder that would
accommodate complex-encoder will generally be more accurate
in recovering representations than the decoder accommodating
simple-encoder. The performance of CTOR with complex-
encoder shall now be assessed. Due to the increased complexity
and run time, rather than using the complete Viterbi algorithm
that was used for simple-encoder, MATLAB’s vitdec(·) function
with soft-decision decoding and 4 levels (i.e., nsdec = 2) were
used in the simulations with complex-encoder. It shall still be
assumed that the viewed object has a representation at the IT
given by an alternating sequence of 1 and 0. The evaluation of the
BCR, SCR, CCR, and ACCR in Figures 9C,D show that similar
conclusions can be drawn for CTOR with complex-encoder as
with simple-encoder. With the exception of the BCR for the
channel of (21), the metrics in Figure 9 exhibit a degradation
with increasing K values.

There are findings to discuss in light of the simulation results
shown in Figure 9. The BCR appears to be the most robust of the
metrics with respect to increasing degrees of stimulus complexity.
By definition the BCR is restricted to the interval [0.5, 1], and the
observed limited range in comparison to the other metrics in the
simulations indicates that the BCR may not be as insightful of a
metric. A comparison of the performance of simple- vs. complex-
encoder shows that the latter exhibits a clear improvement across
all of the metrics for the less-dispersive channel. Interestingly,
the affect of the channel is more pronounced on the metrics
for complex-encoder than for simple-encoder. In the case of the
highly dispersive channel, however, the two systems yield similar
performance. This is attributed to the increased processing not
being able to overcome the detriments brought forth by the high
dispersion. For an engineered system, so long as the channel is
not overly dispersive, a higher L is desirable because it yieldsmore
reliable communication (i.e., higher BCR and SCR), the tradeoff
is that an increase in constraint length leads to an increase in
complexity and processing. Of course the VVS is not subject
to the same tradeoffs that exist in engineered systems, thus it
may be presumed that a CTOR implementation of the VVS will
entail a large L value and accommodate the decoder (i.e., IT
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FIGURE 9 | The performance of CTOR with the encoding, channel, and decoding structures discussed in this work. (A) The performance attained with simple

encoder and the more-dispersive channel in (10), and (B) with the less-dispersive channel in (21). The decoding for the simple encoder was implemented with custom

code in MATLAB. (C) The performance attained for complex encoder with the more-dispersive channel, and (D) with the less-dispersive channel. The decoding for the

complex decoder was implemented using MATLAB’s vitdec(·) function with 4 levels specified in the Viterbi soft-decision decoding algorithm.

circuitry) being able to process an immense number of states in
the prospective trellis.

The operation of the CTOR model has been studied with the
view of uniform a priori probabilities for the state transitions
that are used at the IT for untangling the representation of the
viewed object. While this has been done for ease in presentation,
such an assumption reduces maximum a posteriori probability
(MAP) decoding to maximum likelihood estimation (MLE).
We shall now consider the scenario of non-uniform a priori
probabilities for the state transitions. The simple encoder, more
dispersive channel in (10), and an input sequence of K = 60 bits
shall be assumed in considering the Viterbi algorithm operation
with MLE (Figure 10A) and MAP (Figure 10B) decoding. The
simulations were performed in the same manner as in Figure 9

except T = 103 iterations were considered for each object.
With MAP decoding, the a priori probabilities are estimated
from the previous iteration using the technique described in
section 5.4. The BCR attained with MLE fluctuates between
0.4 and 0.8 and has a mean of 0.581, while the mean BCR
attained with MAP is 0.695 with the BCR equating to 1 at
several iterations (Figure 10C). The SCR results show a similar
trend as the MLE does not correctly recover the entire object
at any iteration (i.e., mean SCR = 0) whereas MAP is able to
do so (mean SCR = 0.032) (Figure 10D). A kymograph of the

decoded bits across each iteration illustrates that the correctly
recovered bits are more clustered for MAP decoding than with
MLE (Figure 10E). This is because knowledge of the a priori
probabilities guides the fidelity with which consecutive bits are
decoded. It is observed that the a priori probabilities computed
at the decoder during MAP decoding are rather constant across
the 103 iterations (Figure 10F). This is expected because the
same input sequence was used for each iteration. Furthermore,
we note that the state transitions S2 → S1 and S3 → S1
are assigned the highest a priori probabilities. This is also
expected since it can be verified that the transitions 11 → 10
and 01 → 10 will be the most frequent transitions for the
considered input stream. In summary, the CTOR formulation
with MAP decoding surpasses the performance noted with MLE
(Figures 10C,D), thus confirming the value of the feedforward-
feedback interaction between the IT and hippocampus during
object recognition.

CONCLUSION

Three communities are concurrently involved in the
comprehension of visual object recognition: neuroscientists,
computer vision scientists, and visual psychophysicists. The
presented CTOR model has drawn upon elements advocated
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FIGURE 10 | A comparison of MLE and MAP with a simple encoder, the dispersive channel of (10) and K = 60 bit object identity. (A,B) Algorithmic depictions of the

MLE and MAP decoding schemes. The transition length λ(·, ·) is computed for both schemes, and for MAP decoding, includes the a priori probability P[bk+1|bk ] in

addition to the transition probability P[rk |bk+1,bk ]. (C) The progression of the BCR at each iteration of CTOR when considering MLE and MAP for the same viewed

object. (D) The progression of the SCR at each iteration of CTOR when considering MLE and MAP for the same viewed object. It should be noted that the SCR can

only take on values of {0, 1} at any iteration. (E) A kymograph of the decoded sequence over different viewing intervals (i.e., iterations). Red represents a bit correctly

identified by the decoder and blue indicates that the bit was erroneously identified. (F) A kymograph of the a priori probabilities calculated by the attention and

memory circuitry over the duration of each viewing interval.

from the three realms. Previously considered for lower visual
areas, dynamic inference via an on-line algorithm for MAP
sequence estimation has been proposed for the higher visual
areas implicated during object recognition. Although the
primary motivation for CTOR is to provide an account for the
proficiency of the IT, the formulation is also a starting point for a

more comprehensive scrutiny of the computations performed by
the VVS during real-time object recognition. The performance
of the model was evaluated by presenting several metrics to
assess categorization accuracy and object identity recognition.
The simulation results provide insight into the dynamics
and capabilities of CTOR. The role of attention and memory
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have been incorporated via top-down signaling that guides
the inference, and is also affected by the cognition. Empirical
corroboration of CTOR would entail presentation of data to
support or verify the algorithmic notions discussed in this work.
In order to test or affirm aspects of CTOR in the framework of
current knowledge, it is crucial to consider primate neuroscience
studies that have already amassed high-dimensional recordings
from multiple brain regions and pursued computational
questions. The study in Shinomoto et al. (2009) considers neural
spike data from 15 cortical areas in awake, behaving monkeys
that were collected at different labs. The authors used this data
to make statements about the functional category of the cortical
area. A similar methodology can be used to assess aspects
of CTOR. For instance, an experiment could entail showing
the same objects to subjects, recording V1, V4, and IT neural
responses, and amassing the collected data among different
labs into one dataset to evaluate the encoding and decoding
operations. Initially, the IT neural population responses would
be compared to the V1 responses in order to determine the
encoder. In effect, a code rate, constraint length, and encoder
structure would be assumed, evaluated, and altered in iterative
fashion until a candidate has been deemed as fitting the data
appropriately. Such iterative searches are routinely performed by
coding theorists—e.g., for convolutional codes see Conan, 1984;
Chang et al., 1997; Katsiotis et al., 2010—to discover encoders
that satisfy a criterion. The considered scenario is unique in
selecting the code that best fits the data in connecting the IT
response to the V1 response. Subsequently, parameters associated
with the decoder and the channel can be evaluated or fit to the
V4 neural population responses from the same viewed objects.
Such analysis would also require initial assumptions about the
channel (e.g., continuous vs. discrete) and the decoder prior to
performing the iterative searches over their associated parameter
spaces. In a different study, Lehky et al. (2011) recorded responses
of 674 IT neurons across two monkeys as they were shown 806
objects. The authors analyzed the data in holistic fashion to
determine that the heavy tails of the population responses are
suggestive of different neurons being tuned to different features.
More recently, Dong et al. (2017) incorporated the 806 × 674
data matrix of the aforementioned work to develop simulations

for a large number of neuronal responses with various settings
for neuron number, stimulus number and identity, and noise
level. Through their simulations, the authors justify the findings
in Lehky et al. (2011) and also provide an instance of how
information can be extracted from a dataset to test additional
hypotheses with different assumptions for the underlying
processes. Similar to the analysis of Dong et al. (2017), the
CTOR hypotheses can be scrutinized by simulating the neuronal
responses of the populations in Figures 1, 2 with the variables
listed in Appendix D. Although CTOR is a proposition; it is
biologically inspired, motivated by prior empirical discussions,
and mirrors the tangling-untangling notion that has been
accredited within the primate vision community.
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All vertebrate brains contain a dense matrix of thin fibers that release serotonin

(5-hydroxytryptamine), a neurotransmitter that modulates a wide range of neural,

glial, and vascular processes. Perturbations in the density of this matrix have been

associated with a number of mental disorders, including autism and depression, but

its self-organization and plasticity remain poorly understood. We introduce a model

based on reflected Fractional Brownian Motion (FBM), a rigorously defined stochastic

process, and show that it recapitulates some key features of regional serotonergic fiber

densities. Specifically, we use supercomputing simulations to model fibers as FBM-paths

in two-dimensional brain-like domains and demonstrate that the resultant steady state

distributions approximate the fiber distributions in physical brain sections immunostained

for the serotonin transporter (a marker for serotonergic axons in the adult brain). We

suggest that this framework can support predictive descriptions and manipulations of

the serotonergic matrix and that it can be further extended to incorporate the detailed

physical properties of the fibers and their environment.

Keywords: brain, 5-hydroxytryptamine, serotonin, fibers, density, stochastic process, anomalous diffusion,

fractional Brownian motion

INTRODUCTION

All cells in vertebrate brains are surrounded by a matrix of highly tortuous fibers that release
serotonin (5-hydroxytryptamine, 5-HT), a major neurotransmitter. Presently the self-organization
and dynamics of this matrix are not understood beyond neuroanatomical descriptions. Altered
densities of serotonergic (serotonin-releasing) fibers have been associated with many mental
disorders and conditions, including Autism Spectrum Disorder (Azmitia et al., 2011), Major
Depressive Disorder (Numasawa et al., 2017), epilepsy (Maia et al., 2019), and exposure
to 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) (Adori et al., 2011). Predictive
computational models can significantly advance this research and support its biomedical
applications. Motivated by this potential, we used a stochastic process framework to develop a
model of serotonergic fibers and reproduced some key features of their density distribution in the
mouse brain.
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Serotonergic fibers are axons of neurons whose bodies are
located in several brainstem clusters known as the raphe nuclei
(Stuesse et al., 1991; Jacobs and Azmitia, 1992; Hornung, 2003).
In mammals, these neurons mature early in development. They
begin synthesizing serotonin around embryonic day 11–13 in the
mouse and rat brains (Lidov andMolliver, 1982; Hendricks et al.,
1999; Hawthorne et al., 2010) and around 5 weeks of gestation in
the human brain (Sundstrom et al., 1993;Mai and Ashwell, 2004).
In the adult mammalian brain, serotonergic axons are unusual
in their ability to regenerate, with potential implications for the
efforts to restore other axon systems after injury (Hawthorne
et al., 2011; Jin et al., 2016; Kajstura et al., 2018). A recent study
has shown that they may share this property with other axons in
the ascending reticular activating system (Dougherty et al., 2019).

Recent studies have revealed great diversity of serotonergic
neurons (Okaty et al., 2015, 2019), the functional significance
of which is an active area of research (Ren et al., 2018).
Paradoxically, transgenic mouse models with no serotonin
synthesis in the brain during development have no gross
neuroanatomical abnormalities and show only mild behavioral
deficits (Mosienko et al., 2015; Pratelli and Pasqualetti, 2019).
Serotonergic neurons can release other major neurotransmitters,
such as glutamate (Okaty et al., 2019) and perhaps GABA (Stamp
and Semba, 1995; Okaty et al., 2019). In the raphe nuclei,
serotonergic neurons coexist with many other neurons (Cardozo
Pinto et al., 2019; Schneeberger et al., 2019), some of which may
participate in stereotypic synaptic arrangements (Soiza-Reilly
et al., 2013).

The development of serotonergic fibers is currently
conceptualized to proceed in two or three stages: the initial
growth in well-defined fiber tracts, followed by extensive
arborization and eventual dispersal in “terminal” fields (Lidov
and Molliver, 1982; Carrera et al., 2008; Kiyasova and Gaspar,
2011; Jin et al., 2016; Maddaloni et al., 2017; Donovan et al.,
2019). This orderly sequence is generally consistent with
experimental observations at the level of local fiber populations,
visualized with tract-tracing techniques or quantified with
density measures. It is also theoretically appealing in that it
mirrors the development of brain projections that connect two
well-defined brain regions (e.g., the lateral geniculate nucleus
and the primary visual cortex).

There is little doubt that the initial serotonergic projections
form well-defined paths, which we have studied in our own
research (Janušonis et al., 2004; Slaten et al., 2010). These
paths are well-described because they are followed by axon
bundles, thus facilitating their visualization in time and space.
In contrast, the processes that lead to the formation of regional
fiber densities remain poorly understood. Fundamentally, they
require a rigorous description of the behavior of single fibers,
each one of which has a unique, meandering trajectory. Since
these processes are the main focus of the present study, we note
several important challenges.

The first detailed morphological description of single
serotonergic axons has become available only recently (Gagnon
and Parent, 2014). This study has reconstructed a small set of
axons originating in the dorsal raphe nucleus and has concluded
that they travel through multiple brain regions, rarely branching

in some of them and producing profuse arborizations in others.
However, true branching points are difficult to distinguish from
highly tortuous fiber segments that simply pass each other,
especially in bright field microscopy (used in this study). A
branching point can be unambiguously demonstrated only by
examining an individual fiber at high resolution in all three-
dimensions, within the physical section (Pratelli et al., 2017).
Even when a confocal system with high-power objectives is
used, a branching point can be difficult to distinguish from
fibers crossing each other at sub-micrometer distances (Janušonis
and Detering, 2019; Janušonis et al., 2019). The extent of
local sprouting in regeneration also remains an open problem
(Hawthorne et al., 2010; Jin et al., 2016), but current evidence
suggests that it may not be significant (Jin et al., 2016). The
rapidly developing methods of super-resolution microscopy and
tissue expansion are well-positioned to provide definitive answers
to some of these questions (Janušonis et al., 2019; Wassie et al.,
2019).

If serotonergic fiber densities are determined by local
arborization, it is unclear how fibers can be restricted to specific
“terminal” regions, such as cerebral cortical layers (Linley et al.,
2013). Because of their high degree of tortuosity, they are likely
to cross over to adjacent areas, suggesting a subtle balance
between region-specific branching and a diffusion-like process.
Furthermore, the concept of “terminal region” is ambiguous for
the serotonergic axons that typically do not form conventional
synapses and can release serotonin at virtually any segment of
their trajectory, based on in vivo and in vitro observations of
axon varicosities (Benzekhroufa et al., 2009; Gagnon and Parent,
2014; Quentin et al., 2018). Serotonergic neurons also can release
serotonin from the soma, dendrites, and growth cones, effectively
making their entire membrane surface active (Ivgy-May et al.,
1994; Quentin et al., 2018). It should be noted that serotonergic
axons may also form conventional synapses (Papadopoulos et al.,
1987), but the extent of this “wiring” transmission (Agnati and
Fuxe, 2014) is currently unknown and continues to be debated.

In this study, we model individual serotonergic fibers as paths
of a stochastic process that reflects their physical properties and
show that regional arborization or other local control is not
necessary to arrive at a good approximation of the observed
fiber densities. Instead, these densities may strongly depend
on the geometry of the brain. Our novel approach may offer
insights into the self-organization of serotonergic densities in
development and may also explain their stability in adulthood,
without assuming the permanence of individual fiber trajectories.
Consistent with this hypothesis, a recent study has shown that
in the adult mouse brain regenerating serotonergic fibers do not
follow the pathways left by degenerated fibers but can still restore
the layer-specific densities after cortical injury (Jin et al., 2016).

We focus on Fractional Brownian Motion (FBM), a process
first described under this name by Mandelbrot and Van
Ness in 1968 (Mandelbrot and Van Ness, 1968). FBM and
related stochastic processes have emerged as flexible and
theoretically rich models in a variety of physical and biological
systems. In particular, they have been used to understand the
behavior of filamentous objects, such as biopolymer chains and
chromosomes (Polovnikov et al., 2018, 2019).
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The application of Brownian random walks to polymer chains
dates back to the seminal works of Paul Flory, a founder of
modern polymer physics and the winner of the 1974 Nobel Prize
in Chemistry (Flory, 1986). In this theoretical approach, a fully
flexible polymer in a poor solvent can be represented by a discrete
random walk, in which each step corresponds to a monomer.
However, these models are insufficient to reproduce polymer
behavior in good solvents. Self-avoiding walks (SAWs) on lattices
may be useful in these systems, but they are difficult to treat
analytically and in computer simulations. FBM offers a more
powerful theoretical solution, in which the fractal dimension
of the path (the polymer chain in space) can be reproduced
by a scaling exponent that controls the decay of the long-
range correlation of the FBM steps (Chakravarty and Sebastian,
1997; Qian et al., 1998). This fractal dimension is a measure
of how often the chain intersects itself (Hu and Nualart, 2005;
Polovnikov et al., 2019). The same mathematical framework also
allows modeling active motion, for instance, in living biological
cells (Reverey et al., 2015). In the polymer language, these
trajectories correspond to long chains that can show persistence
in their spatial direction.

Theoretically, FBM extends the normal Brownian motion
(BM), which for over a century has served as a standard
model to describe simple diffusion and other similar processes
(e.g., simple polymer dynamics and stock markets). While BM
assumes independence between non-overlapping increments,
FBM expands this model by allowing non-zero correlations. The
sign and strength of the increment correlation is determined by
the Hurst index (H), which defines two fundamentally different
FBM regimes. If 0 < H < ½, two neighboring increments
are negatively correlated, which produces highly jittery, “anti-
persistent” trajectories (also known as “rough paths”). If ½ <

H < 1, two neighboring increments are positively correlated,
which produces “persistent” trajectories that tend to maintain
their current direction. In precise terms, the correlation between
two neighboring increments is given by 22H−1

− 1 and the
mean-square displacement follows the power law

〈

x2
〉

∼ n2H ,
where n is the number of performed steps. In this framework,
BM becomes a special case of FBM, represented by H = ½.
According to the scaling of the mean-square displacement, which
can be (in the number or steps) sublinear (for 0 < H < ½)
or superlinear (for ½ < H < 1), FBM can be classified as
subdiffusion or superdiffusion, respectively. Since the trajectories
of serotonergic fibers are considerably less jittery than BM and
have the tendency to maintain their current direction, one can
expect to capture their behavior with superdiffusive FBM. In
the polymer language, H < ½ would increase the tendency
to create coiled configurations, whereas H > ½ would lead to
more stretched configurations. The ballistic limit H = 1 would
correspond to a fully stretched chain.

In addition, FBM has four convenient properties that make it
a natural choice in this context. First, it is a continuous process,
which is consistent with the time-continuity of axon growth.
Second, it has stationary increments, which informally means
that its statistical properties do not change as the process evolves
(this assumption is reasonable from the biological perspective).
Third, it is a self-similar process, which ensures that the

estimation of H does not depend on the discretization grid of
experimental observations. Since time-dependent information is
difficult to obtain in growing fibers [e.g., with time-lapse imaging
in live animals Jin et al., 2016], this property ensures robustness.
Fourth, its increments are normally distributed. Assuming that
randomness in the fiber trajectory arises from collision-like
events in its microenvironment and that each of these events has
a small effect on the trajectory, the total effect of these collisions
inevitably leads to a normal distribution (by the Central Limit
Theorem). Importantly, FBM is the only stochastic process with
all of these properties (assuming mean-zero increments).

Although FBM was introduced over a half-century ago, it
poses major challenges in theoretical analyses. This is due
to the fact that FBM is neither a Markovian process nor a
semimartingale (in contrast to BM). A particularly important
problem for biological sciences is the behavior of FBM in
bounded domains (e.g., in two- or three-dimensional shapes).
Reflected BM is well-understood (Ito and McKean, 1965),
but it is not until very recently that the first description
of the properties of reflected FBM (rFBM) have become
available, in one-dimensional domains (Wada and Vojta, 2018;
Guggenberger et al., 2019; Wada et al., 2019). The present
study is the first application of this theoretical framework to
serotonergic fiber distributions, on the whole-brain scale. We
determine the steady state distributions of superdiffusive rFBM in
constrained brain-like domains and show that they approximate
neuroanatomical observations.

MATERIALS AND METHODS

Immunohistochemistry and Imaging
Two adult male mice (C57BL/6J, 8 months of age, The Jackson
Laboratory) were deeply anesthetized with a mixture of ketamine
(200 mg/kg) and xylazine (20 mg/kg) and perfused transcardially
with saline, followed by 4% paraformaldehyde. Their brains
were dissected, postfixed in 4% paraformaldehyde overnight
at 4◦C, cryoprotected in 30% sucrose overnight at 4◦C, and
sectioned coronally at 40µm thickness on a freezing microtome.
The sections were rinsed in 0.1M phosphate-buffered saline
(PBS, pH 7.2), incubated in 0.3% H2O2 in PBS for 20min
to suppress endogenous peroxidase activity, rinsed in PBS (3
times, 5min each), blocked in 5% normal donkey serum (NDS)
and 0.3% Triton X-100 (TX), and incubated in rabbit anti-
serotonin transporter (SERT) IgG (1:5000; ImmunoStar, #24330)
with 5% NDS and 0.3% TX in PBS for 2.5 days at 4◦C on a
shaker. The sections were rinsed in PBS (3 times, 10min each),
incubated in biotinylated donkey anti-rabbit IgG (1:1000; Jackson
ImmunoResearch, #711-065-152) with 2% NDS and 0.3% TX
in PBS, rinsed in PBS (3 times, 10min each), incubated in the
avidin-biotin-peroxidase complex (1:100; Vector Laboratories,
#PK-6100), rinsed in PBS (3 times, 10min each), developed with
3,3’-diaminobenzidine and H2O2 using nickel intensification for
5min (Vector Laboratories, #SK-4100), rinsed in PBS (3 times,
5min each), mounted onto gelatin/chromium-subbed slides,
allowed to air-dry, and coverslipped with Permount. They were
imaged on the Zeiss Axio Imager Z1 system with the following

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 56107

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Janušonis et al. Serotonergic Fibers as Stochastic Process Paths

objectives: 1 × (NA = 0.025; used for whole sections), 10 ×

(NA = 0.45), 20 × (NA = 0.80), and 40 × (NA = 1.30, oil).
All procedures have been approved by the UCSB Institutional
Animal Care and Use Committee.

Preparation of 2D-Shapes
The outer border, ventricular spaces, and major white matter
tracts of imaged sections were hand-traced in Adobe Illustrator
CC by an expert trained in neuroanatomy. To reduce the number
of contours, major tracts at the edge of the section were left out of
the border contour. The contours were imported into Wolfram
Mathematica 12. The outer border contour was split along the
median (sagittal) symmetry line. The right side of the contour was
smoothed with a moving average and reflected on the left side.
The same procedure was used for internal contours symmetric
with respect to the median line (e.g., the cerebral aqueduct).
Inner contours away from the median line (e.g., the fornix) were
smoothed on the right side with a moving average and reflected
on the left side. Therefore, the final digitized contours (rational-
valued arrays of X- and Y-coordinates) were perfectly bilaterally
symmetric, compensating for minor sectioning plane deviations
and real (minor) brain asymmetries.

The obtained contours were next reformatted for FBM
simulations. They were transformed into N × 2 matrices,
the rows of which represented consecutive, integer-valued Y-
coordinates and the two columns of which represented the
leftmost and rightmost X-coordinates of the contour (also
integer-valued). To arrive at this format, the original contour
coordinates were divided by an integer factor that after rounding
produced at least four X-values for each consecutive Y-value,
and the minimal and maximal X-values were chosen. Since
this procedure effectively reduced the size of the contour,
it was enlarged back to its original size by multiplying the
integer coordinates by the same factor and filling in the new,
empty rows with X-values obtained by linear interpolation
between the nearest available X-coordinates. Because this format
cannot encode concavities oriented along the Y-axis (e.g., the
third ventricle), such concavities were stored as separate inner
contours. In the study, all such concavities were centered on the
median line, which allowed their easy capture with the maximal
X-value left to the line and the minimal X-value right to the line.
For the purpose of this study, all inner contours were treated
as impenetrable obstacles, irrespective of their physical nature
(ventricular spaces, outer border concavities, whitematter tracts).

The computer simulations described in detail below were
performed on the Frontera supercomputing system (NSF, Texas
Advanced Computing Center).

Discrete Reflected FBM
In the simulations, each individual serotonergic fiber was
represented as the trajectory of a discrete two-dimensional FBM
(Qian, 2003). Consider a random walker starting at position
r0 and moving according to the recursion relation rn+1 =

rn + ξn, where ξn is a two-component fractional Gaussian
noise. This means that the x and y components of ξn are
Gaussian random numbers with zero average and variance
σ 2, and that each component features long-range correlations

between the steps (but the x and y motion are independent
of each other). The corresponding covariance function is given
by

〈

ξx,m ξx,n+m

〉

=

〈

ξy,m ξy,n+m

〉

=
1
2 σ 2 [|n+ 1|2H −

2 |n|2H + |n− 1|2H], where H is the Hurst index. The Fourier-
filtering method (Makse et al., 1996) was employed to generate
these long-range correlated random numbers on the computer
(Wada and Vojta, 2018).

If the random walker encounters a boundary (i.e., an
outer or inner contour), it is reflected. This reflection can be
implemented in several different ways, including a repulsive
potential force or a simple reflection condition that either
prevents the trajectory from entering the forbidden region or
mirrors it at the reflecting wall. Extensive test calculations
(Vojta et al., 2020) have demonstrated that the choice of the
reflection condition does not affect the resulting probability
density for rFBM outside a narrow region (just a few
steps wide) at the boundary. The following simulations thus
employed the condition that a step that would lead the
random walker into the forbidden region was simply not
carried out.

Reflected FBM-Paths in Brain-Like Shapes
The goal of the FBM simulations in brain-like shapes was
to model the two-dimensional distributions of serotonergic
fiber densities at different rostro-caudal levels. The brain is a
three-dimensional structure, but two-dimensional simulations
are sufficient to approximate the densities, provided that the
brain geometry does not change too rapidly in the direction
perpendicular to the selected section. Serotonergic fibers do not
form fascicles and show no preferred orientation (i.e., they are
spatially isotropic) in terminal fields (Janušonis et al., 2019). As
the three spatial coordinates in FBM are independent of each
other, this implies that the motion perpendicular to the selected
section can be neglected [for further information, see Vojta et al.
(2020)].

Most simulations were performed with H = 0.8, but values
between H = 0.3 and 0.9 were also studied for comparison.
Each dataset consisted of 960 individual fibers (FBM trajectories)
starting from random positions inside the shape. Each trajectory
had 222 ≈ 4 million steps of size (standard deviation) σ =

1.29µm. Sample trajectories are shown in Figure 1. The local
density (ds) was determined by counting the total number of
random walk segments inside each cell (of linear size 12.9µm)
of a square grid covering the shape. The trajectories were
sufficiently long for the relative densities to reach a steady
state (i.e., they did not change if the trajectory lengths were
increased further).

For comparison between the simulated fiber densities and the
densities observed in the actual (immunostained) sections, the
simulated densities were scaled to “optical densities” by the (Beer-
Lambert law-like) transformation do = 1 − exp(−kds), where
the attenuation parameter k was chosen such that the mean pixel
value in the simulated section matched the mean pixel value in
the image of the immunostained section. This transformation
removed the dependence on the arbitrarily chosen number and
length of the FBM trajectories, and it also realistically constrained
density values to a finite interval.
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FIGURE 1 | (A) Serotonergic fibers visualized with SERT-immunohistochemistry at high resolution (40 ×, NA = 1.3 oil) in the mouse primary somatosensory cortex

(S1). The image represents five focal levels (in a 40 µm-thick coronal section) that have been digitally merged. Scale bar = 20µm. (B) Simulated FBM sample paths

(H = 0.8).

Reflected FMB-Paths in a Ring With a Varying

Curvature
The boundary curvature may strongly affect the accumulation of
fibers, which has direct implications for brain neuroanatomy. For
example, in the coronal plane the curvature of the cerebral cortex
can be high near the sagittal plane, as the outer border turns
toward the corpus callosum, and low in the lateral convexities.
The cortical gyri and sulci of the human brain create additional
variability of local curvature, which can further modulate the
accumulation of serotonergic fibers. Therefore, a qualitative
relationship between boundary curvatures and fiber densities
can allow theoretical predictions in neuroanatomy and may
obviate the need for detailed computer simulations for each
individual shape. However, caution should be exercised in shapes
with complex geometry because superdiffusive rFBM is not
a local process, due to its long-range correlations. Therefore,
its properties can be potentially affected by the geometry of
the entire domain. A systematic quantitative analysis of rFBM
in geometrically idealized spatial domains (in two and three
dimensions) falls outside the scope of the present analysis and
is presented elsewhere (Vojta et al., 2020).

In order to gain an insight into how the density of FBM-
trajectories varies as a function of H and the contour curvature,
especially in neuroanatomically-relevant shapes, we investigated
a ring-like shape bounded by the contours Router = 100(1 +

0.5 cos2 (4ϕ)) and Rinner = 50 (defined in polar coordinates,
where ϕ ∈ [0, 2π)). This shape can represent a cross section
through an abstracted vertebrate brain. Vertebrate brains develop
from the neural tube and remain topologically tube-like in
adulthood, where the “hollow” inside of the tube is the ventricular
space filled with the cerebrospinal fluid (CSF).

These simulations were performed with H = 0.3, 0.5, and
0.8. Each data set consisted of 100 individual fibers (FBM
trajectories), starting from random positions inside the shape.
Each trajectory had 220 ≈ 1 million steps of size (standard

deviation) σ = 0.4. In the subdiffusive case (H = 0.3), it was
necessary to increase the step size to 1 to ensure that the
simulations reached the stationary regime. As before, the local
fiber density (ds) was determined by counting the total number
of random walk segments inside each cell (of linear size 1) of a
square grid covering the shape.

Simulation of Reflected FBM-Paths in a 2D-Disk With

Crowding
The brain tissue is a highly crowded space, but little quantitative
information is available about the extent and geometry of the
extracellular space in different brain regions (Hrabetova et al.,
2018). In order to assess the sensitivity of our results to crowding
effects, we performed FBM simulations in a large disk of radius
R = 100, filled with 1,013 small disk-shaped obstacles of radius
Robs = 2. The obstacles were located within a circle of radius 90,
leaving an outer ring of width 10 unoccupied. This shape was
intended to represent a highly abstracted neocortical region, with
the empty outer rim representing cortical layer I. In adulthood,
this layer is nearly devoid of neuron somata (but contains
many dendrites and axons that for simplicity were ignored in
the simulation).

The simulations were performed with H = 0.8. Each dataset
consisted of 192 individual fibers (FBM trajectories) starting from
random positions inside the shape. Each trajectory had 225 ≈

34 million steps of size (standard deviation) σ = 0.4. As before,
the local fiber density (ds) was determined by counting the total
number of random walk segments inside each cell (of linear size
0.5) of a square grid covering the shape.

RESULTS

Serotonergic fiber densities are typically described with regard to
specific neuroanatomical brain regions, with the assumption that
they reflect the region’s functional demands and are supported by
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FIGURE 2 | Serotonergic fibers visualized with SERT-immunohistochemistry in coronal sections of the mouse brain. (A) The primary somatosensory cortex (S1). (B)

The cingulate cortex, area 29c (A29c). (C) The piriform cortex (Pir). (D) The habenula (MHb, medial habenula; LHb, lateral labenula; sm, stria medullaris) and the

dentate gyrus (DG) of the hippocampus. (E) The periaqueductal region in the mesencephalon (Aq, cerebral aqueduct). (F) The region around the fasciculus retroflexus

(fr) in the diencephalon. The inset is a high-magnification image of the border (marked with circles) between the fasciculus retroflexus and the surrounding brain tissue.

The arrowheads indicate increased fiber densities. Scale bars = 50µm in (A–D), 100µm in (E,F), and 20µm in the inset of F.

local biological factors. Our immunolabeling results (Figure 2)
are consistent with the previously reported density maps in the
rat and hamster brains (Steinbusch, 1981; Morin and Meyer-
Bernstein, 1999). In particular, they show high fiber densities
in the superficial layers of the cerebral cortex, consistent with
observations in the rat and ferret (Voigt and de Lima, 1991a;
Linley et al., 2013).

In contrast to previous interpretations, we suggest that
these data indicate a general tendency of serotonergic fibers
to accumulate near the borders of neural tissue (at the pial
or ependymal surfaces) (Figures 2A–E). This observation has
been previously made in some brain regions [e.g., in the
hamster thalamus Morin and Meyer-Bernstein, 1999] but to our

knowledge has never been extended to the entire brain. We next
show that this tendency is consistent with the behavior of rFBM
in the superdiffusion regime.

Supercomputing FBM simulations (with H = 0.8) were
performed in four two-dimensional shapes that closely
approximated the shape of actual coronal sections. Since major
white matter tracts may act as forbidden regions (Figure 2F), we
included them as “obstacles” in the simulations. Qualitatively,
FBM sample paths closely resembled the trajectories of individual
serotonergic fibers (Figure 1).

The comparisons between the simulated and actual fiber
densities are shown in Figures 3–6. These densities showed
similar increases at the outer brain border, irrespective of the
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FIGURE 3 | (A) The density of serotonergic fibers (immunostained for SERT) in a coronal section of the mouse telencephalon. (B) The equilibrium density of simulated

fibers performing FBM-walks in the same 2D-shape (H = 0.8; 960 fibers). In both (A,B), darker regions represent higher densities. (C) The main neuroanatomical

structures and two density cuts, plotted in (D,E). The end points of the plotted segments are marked with small squares. Acb, nucleus accumbens; aca, anterior

commissure; cc, corpus callosum; CPu, caudate/putamen; LV, lateral ventricle; M1, primary motor cortex; S, septum; VP, ventral pallidum. Scale bar = 1mm. In (D,E),

the experimental and simulated densities are shown in blue and red, respectively. The simulated densities have been transformed to “optical densities,” as described

in Materials and Methods (the Y-axis ranges from 0 to 1). The rostro-caudal level in the sagittal view is shown at the top.

rostro-caudal level. A similar trend was observed around the
ventricles. Interestingly, high simulated fiber densities were
obtained in some neuroanatomically-defined brain regions,
such as the lateral geniculate nucleus and the hypothalamus
(Figures 4, 5), even though these regions were not specifically
modeled and the increase was induced purely by the contour
geometry. It should be noted that both of these regions
have a convex border with a relatively high curvature. We
investigated this potential association using a simple shape and
a range of H values (Figure 7), which further supported this

conjecture. It leads to verifiable predictions of how serotonergic
fiber densities can vary across brain regions and may also
support comparative neuroanatomy, where differences in the
fiber densities across mammalian species may be caused, at least
in part, by differences in the brain shapes (despite the highly
similar neuroanatomical plans).

At the outer border, a considerable mismatch was observed
between some gradients of densities (e.g., Figure 4E).
Considering the neuroanatomical simplicity of the simulated
shape (e.g., it contained no “cells”), this result is not surprising.
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FIGURE 4 | (A) The density of serotonergic fibers (immunostained for SERT) in a coronal section of the mouse rostral diencephalon. (B) The equilibrium density of

simulated fibers performing FBM-walks in the same 2D-shape (H = 0.8; 960 fibers). In both (A,B), darker regions represent higher densities. (C) The main

neuroanatomical structures and two density cuts, plotted in (D,E). The end points of the plotted segments are marked with small squares. DLG, dorsal lateral

geniculate nucleus; cp, cerebral peduncle; f, fornix; fr, fasciculus retroflexus; Hyp, hypothalamus; ml, medial lemniscus; mt, mammillothalamic tract; str, superior

thalamic radiation; VPM, ventral posteromedial nucleus. Scale bar = 1mm. In (D,E), the experimental and simulated densities are shown in blue and red, respectively.

The simulated densities have been transformed to “optical densities,” as described in Materials and Methods (the Y-axis ranges from 0 to 1). The rostro-caudal level in

the sagittal view is shown at the top.

Also, the simulated gradients depend on the value of H and
the attenuation parameter of “optical transformation” (e.g.,
they can be made less steep, with an effect on the overall
density intensity). Matching the simulated and actual gradients
precisely is difficult because the true fiber density cannot
be determined in immunostained sections without tracing
every fiber. Also, many non-linear effects can take place
between the section and the image sensor, even at optimal
illumination settings.

The strongest discrepancy was found between the strong
density spikes around white matter tracts in the simulations
(where the tracts were modeled as impenetrable “obstacles”) and
the virtual absence of such spikes in the actual (immunostained)
sections. This suggests that these tracts cannot be modeled as
“hard” obstacles and that other FBM-reflection models may
reflect their properties more accurately.

Since a fixed H was used in the simulations, we investigated
the sensitivity of the obtained results to a range of H

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 56112

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Janušonis et al. Serotonergic Fibers as Stochastic Process Paths

FIGURE 5 | (A) The density of serotonergic fibers (immunostained for SERT) in a coronal section of the mouse caudal diencephalon. (B) The equilibrium density of

simulated fibers performing FBM-walks in the same 2D-shape (H = 0.8; 960 fibers). In both (A,B), darker regions represent higher densities. (C) The main

neuroanatomical structures and two density cuts, plotted in (D,E). The end points of the plotted segments are marked with small squares. 3V, third ventricle; bsc,

brachium of the superior colliculus; cp, cerebral peduncle; DLG, dorsal lateral geniculate nucleus; fr, fasciculus retroflexus; Hyp, hypothalamus; ml, medial lemniscus;

mt, mammillothalamic tract; opt, optic tract; pc, posterior commissure; ZI, zona incerta. Scale bar = 1mm. In (D,E), the experimental and simulated densities are

shown in blue and red, respectively. The simulated densities have been transformed to “optical densities,” as described in Materials and Methods (the Y-axis ranges

from 0 to 1). The rostro-caudal level in the sagittal view is shown at the top.

values (Figures 6, 7). The density distribution patterns varied
dramatically across the three diffusion regimes, as anticipated
(Wada and Vojta, 2018). However, they were robust within the
superdiffusion regime, suggesting that the results can be safely
generalized to other H values, beyond the one that was used in
the simulations (0.8).

Finally, we examined the sensitivity of the results to cell
packing. Heterogeneous crowding is an essential property of
neural tissue (Hrabetova et al., 2018), but currently little is known

about the variability of the crowding density in brain regions.
In the present study, we used a relatively simple model and
tested whether the accumulation of fibers at borders could be
reversed by many cell-like obstacles that can potentially retard
or trap fibers in the interior region of the bounded domain
(Figure 8). Despite the presence of many obstacle surfaces,
the simulation produced only thin, high-density layers around
the obstacles, with no major effect on the overall density
distribution. This result supports the robustness of our findings
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FIGURE 6 | (A) The density of serotonergic fibers (immunostained for SERT) in a coronal section of the mouse mesencephalon. (B) The equilibrium density of

simulated fibers performing FBM-walks in the same 2D-shape (H = 0.8; 960 fibers). In both (A,B), darker regions represent higher densities. (C) The main

neuroanatomical structures and two density cuts, plotted in (D,E). The end points of the plotted segments are marked with small squares. Aq, aqueduct; cp, cerebral

peduncle; csc, commissure of the superior colliculus; fr, fasciculus retroflexus; MG, medial geniculate nucleus; ml, medial lemniscus; PAG, periaqueductal gray; SC,

superior colliculus; SNR, substantia nigra pars reticulata. Scale bar = 1mm. In (D,E), the experimental and simulated densities are shown in blue and red, respectively.

For comparison, this figure shows simulated densities obtained with three other H values [thin lines: H = 0.3 (green), H = 0.5 (gray), H = 0.6 (pink)]. Note that H = 0.3

produces drastically reduced densities at the border and obstacles and that H = 0.5 produces densities that remain constant along the cut, with no change at the

border or obstacles. Neither of these results is consistent with the real densities, in contrast to H values in the superdiffusion regime (H > 0.5). For visualization of

these patterns in two dimensions, see Figure 7. All simulated densities have been transformed to “optical” densities, as described in Materials and Methods (the

Y-axis ranges from 0 to 1). The rostro-caudal level in the sagittal view is shown at the top.

and is generally consistent with experimental observations in the
cerebral cortex, where the high density of serotonergic fibers may
not be restricted to cortical layer I (which is virtually devoid of
neuron somata) and may also include layers II-III (which contain

densely packed neurons) (Voigt and de Lima, 1991b). However,
this finding should not be overgeneralized without future
studies of the interactions among different shape geometries,
heterogeneous crowding, and the physical constraints of the
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FIGURE 7 | The dependence of equilibrium fiber density on the Hurst index (H). Two shapes were used: the cross-section of a cylinder with an outer boundary that

has a non-constant curvature (representing an abstracted neural tube; left column) and a shape representing the coronal section of the mouse rostral diencephalon

(also used in Figure 4; right column). The contour borders are shown in blue in the subdiffusion regime (H = 0.3); no borders are marked in the other regimes (but

they are clearly visible due to the accumulation of fibers). The simulated densities are plotted with no transformation. One hundred fibers were used for the abstracted

shape in the left column, while 960 trajectories were used for the coronal section in the right column. The simulated densities are mapped linearly to the color scale,

such that darker regions represent higher densities.

serotonergic fibers (e.g., the simulated trajectories in our study
had no physical width).

DISCUSSION

We introduce a novel approach to the self-organization of
serotonergic fibers in the brain and demonstrate that rFBM can

replicate the behavior of these fibers at “hard” borders (such
as the pial and ependymal surfaces of the brain). In contrast,
major white matter tracts do not appear to significantly “reflect”
serotonergic fibers, even though they constrain their trajectories
as obstacles. This phenomenon may be due to the fact that
many individual fibers can penetrate (and perhaps traverse) these
tracts (Figure 2F). The presence of serotonergic fibers in some
major pathways, such as the fasciculus retroflexus, has been noted
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FIGURE 8 | The sensitivity of equilibrium fiber density (A) to densely packed internal obstacles (B) (represented by the small, impenetrable white discs inside the large

shape). Even though fibers accumulate around the border of each individual obstacle, the obstacles have only a minor effect on the overall density distribution,

especially near the outer border (where the density is higher). In the simulations, H = 0.8 and 192 fibers were used. The simulated densities are mapped linearly to the

color scale, such that darker regions represent higher densities.

in early neuroanatomical studies (Lidov and Molliver, 1982).
These phenomena can be included in our model by treating
the boundaries of white matter tracts differently from other
boundaries, such as modeling them as soft repulsive potentials
(Vojta et al., 2020).

Our model does not include the rich brain architecture and
biological signals that may act on serotonergic fibers. While the
simulated fiber densities are a good approximation of the actual
fiber densities, some of these factors may be important for more
accurate predictions. We briefly mention some of them.

We used two-dimensional shapes, even though the brain
is a three-dimensional object. As explained in the section
Reflected FBM-paths in Brain-like Shapes, the reduction to
two dimensions unlikely produced major distortions. However,
some discrepancies between the actual and simulated densities
may be due to the geometry of coronal sections just rostral or
caudal to the selected section, with some fibers “spilling into”
or “leaking from” the examined section. This problem may be
particularly significant where the geometry of ventricular spaces
rapidly changes in the rostro-caudal direction (e.g., ventricular
spaces “fuse” or “separate” in two-dimensional projections).
Conceptually, the computational approach can be easily extended
to three dimensions, provided a fully three-dimensional model
of the brain geometry is available. However, the numerical effort
for such simulations would be significantly higher. Specifically,
it would require the parametrization of a two-dimensional
manifold (the boundary), leading to increased computational
costs close to the boundary (where the decision has to be made
whether the walker is in the allowed region or not). One potential
solution is using two-dimensional brain shapes obtained in two
or three perpendicular planes (e.g., coronal, sagittal, axial), which
may allow a more accurate reconstruction of densities in all
three dimensions.

The brain can be viewed as a highly heterogeneous material.
It is densely packed with cells, their processes, microvasculature,
and other elements that serotonergic fibers cannot penetrate.
Axons can be assembled into major white matter tracts which
may require detours; for example, the number of axons in the
primate corpus callosum can be on the order of 107-108 (Doty,
2007). The fine structure of the extracellular space (ECS) in
the brain requires state-of-the-art experimental methods and
currently is an active area of research (Nicholson and Hrabetova,
2017; Hrabetova et al., 2018). The stochastic geometry of the
ECS may impose a particular covariance structure on traveling
fibers (or a “memory effect”) (Morgado et al., 2002; Bénichou
et al., 2013), possibly in a region-specific manner. Some of this
geometry can be modeled with sphere packing (to represent
cell bodies) (Picka, 2012). Similar problems arise in intracellular
environments (Smith et al., 2017). In addition to the “hard”
geometry, the stochastic properties of fibers may be affected by
the viscoelastic properties of their environment (Cherstvy et al.,
2019). In the case of FBM, it may lead to different H values in
different brain regions, with implications for local fiber densities.
Conversely, the estimated H values of fibers can be potentially
used to obtain information about the structure and integrity of
the ECS, with possible biomedical applications.

Since individual serotonergic fibers can be visualized,
estimates ofH can be obtained from experimental data. However,
it requires overcoming a few technical challenges, which are a
focus of our larger research program (in the present study, we
assumed H = 0.8 and demonstrated the robustness of the main
results). For example, tracing a single fiber in immunostained
brain sections (e.g., 40µm in thickness) is difficult because
most fibers exit the section in the Z-direction, before advancing
substantially in the X-Y plane (Janušonis et al., 2019). Modern
tissue clearing methods and light-sheet microscopy allow direct
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3D-imaging with no sectioning (Mano et al., 2018; Hillman et al.,
2019), but light-sheet microscopy is only now approaching the
sub-micrometer resolution needed for the imaging of individual
serotonergic fibers (Chakraborty et al., 2019). The high fiber
densities in most brain regions presents another problem, where
single-fiber tracing has to be performed in the presence of
interfering signals, such as other fibers and potential branching
points. Advances in computer image analysis (Kayasandik et al.,
2018; Falk et al., 2019), combined with transgenic technologies
that allow labeling individual neurons and their processes with
unique combinations of fluorophores [such as Brainbow 3.2 Cai
et al., 2013], are well positioned to advance these efforts.

Our model assumes no self-avoidance or biological feedback
signals that depend on fiber density. Several factors have been
reported to control the growth of distribution of serotonergic
fibers, but this research has been heavily influenced by the
notion that orderly distribution cannot be achieved without
tight biological control [see, e.g., Chen et al. (2017)]. The
simulation results provide evidence that a considerable degree
of self-organization can be achieved with simple assumptions,
but it does not rule out these factors. Early studies have
found that S100β, a biologically active protein, may promote
the development of serotonergic fibers. Interestingly, S100β
can be released from astrocytes, in response of activation of
serotonin 5-HT1A receptors, suggesting a positive feedback
loop (Whitaker-Azmitia, 2001). Also, the absence of brain
serotonin synthesis alters the development of normal fiber
densities, but this effect appears to be strongly region-dependent
(Migliarini et al., 2013). It may be mediated by the brain-derived
neurotrophic factor (BDNF) which has long been implicated
in the growth of serotonergic fibers (Mamounas et al., 1995;
Migliarini et al., 2013). It remains unclear how serotonin affects
fiber densities under physiological conditions because a different
genetic model (with a less severe reduction of brain serotonin
levels) has failed to reproduce these effects (Donovan et al.,
2019). Recently, protocadherin-αc2 has been strongly implicated
in the distribution of serotonergic fibers, through homophilic
interaction between individual axons (Katori et al., 2009, 2017;
Chen et al., 2017). Intriguingly, protocadherin-α mutants show
pronounced increases in the fiber densities in layer I of the
primary motor cortex and in the lacunosum-moleculare layer
of the hippocampus, both of which are at the border of their
respective brain regions. This study also has noted that in some
other regions the “distribution of serotonin axonal terminals
was [. . . ] dense at the periphery of each region but sparse in
the center” (Katori et al., 2009). Our results suggest that this
experimental result may reflect either a more pronounced rFBM
behavior (in the absence of fiber interaction) or an rFBM with a
higher H (induced by the genetic mutation).

It is important to note that FBM is not the only mathematical
model that allows superdiffusion (or anomalous diffusion, more
generally). Superdiffusion can also be modeled with Lévy flights
or with continuous-time random walks (CTRWs) that have a
heavy-tailed displacement probability density (Codling et al.,
2008; Schulz et al., 2013; Metzler et al., 2014). These two
processes allow large, instantaneous (spatially discontinuous)
jumps from one location to another, but CTRWs are additionally

parametrized by the waiting-time probability density (therefore,
a Lévy flight can be viewed as a special CTRW). They are highly
appropriate for some physical processes [e.g., the dynamics of
molecular complexes jumping from one segment of a polymer
to another, facilitated by folding-induced physical proximity
Lomholt et al., 2005], but they do not well-represent axon growth
where instantaneous jumps are not biologically realistic. Also,
the trajectories of growing axons are likely to show long-range
temporal correlations that are an inherent property of FBM (in
addition to other useful properties reviewed in the Introduction;
here we assume H 6= 1/2). It should be noted that the long-
range correlations in FBM extend to arbitrarily large distances
(Biagini et al., 2010), which may exceed biological reality, but
a possible theoretical refinement may be provided by stochastic
processes in which the long-range correlations are cut off at a
large but finite distance (Molina-Garcia et al., 2018). In addition,
branching FBM-like processes may offer insights into how the
bifurcation or arborization of serotonergic fibers can affect their
steady state distribution. Direct simulations of macromolecular
dynamics in confined domains can further enrich these studies;
for example, in some simulations particles near the wall tend
to stay near the wall (Chow and Skolnick, 2015), which may
explain the tendency of serotonergic fibers to orient parallel
to the edge immediately below the pia (for depths up to 25–
50µm; Figure 2). Finally, it has been recently demonstrated
(Vojta et al., 2019) that the increased density close to a boundary
arises from the non-equilibrium nature of FBM. A similar
anomalous diffusion process in thermal equilibrium, modeled by
the fractional Langevin equation, does not lead to accumulation
at the boundary. This property of FBM is consistent with the
active growth of the serotonergic fibers.

In summary, the present study demonstrates that FBM
offers a promising theoretical framework for the modeling
of serotonergic fibers. Since serotonin-releasing fibers are
a part of the larger ascending reticular activating system,
which releases other major neurotransmitters and has
widespread projections, this framework may also be useful
in advancing the understanding of other stochastic axon systems
in vertebrate brains.
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Reliable propagation of slow-modulations of the firing rate across multiple layers of a

feedforward network (FFN) has proven difficult to capture in spiking neural models.

In this paper, we explore necessary conditions for reliable and stable propagation

of time-varying asynchronous spikes whose instantaneous rate of changes—in fairly

short time windows [20–100] msec—represents information of slow fluctuations of the

stimulus. Specifically, we study the effect of network size, level of background synaptic

noise, and the variability of synaptic delays in an FFN with all-to-all connectivity. We show

that network size and the level of background synaptic noise, together with the strength

of synapses, are substantial factors enabling the propagation of asynchronous spikes in

deep layers of an FFN. In contrast, the variability of synaptic delays has a minor effect on

signal propagation.

Keywords: time-varying rate coding, information propagation, feed-forward neural network, noise, network size,

synaptic delays

INTRODUCTION

Information in the brain is encoded by either the number of spikes in a relatively long time
window, i.e., rate code, or by their precise timing, i.e., temporal code (Abeles et al., 1994; Panzeri
et al., 2001, 2017; Montemurro et al., 2007; Kremkow et al., 2010; London et al., 2010; Zuo et al.,
2015; Runyan et al., 2017; Noble, 2019). The feasibility of utilizing both coding strategies has also
been shown in different neural systems (Kumar et al., 2010; Lankarany et al., 2019). In temporal
coding, information is carried by groups of neurons that fire synchronously, as in synfire chains
(Abeles et al., 1994; Diesmann et al., 1999), whereas in rate coding, neuronal firing ideally remains
asynchronous across neurons (Litvak et al., 2003). Information processing in a hierarchically
organized cortical system relies on the reliable propagation of synchronous and asynchronous
spikes (Joglekar et al., 2018).

The reliable propagation of synchronous spikes (temporal code) is well-understood and
relatively easy to implement in computer models (Kumar et al., 2008, 2010; Joglekar et al., 2018).
In contrast, the reliable propagation of rate-modulated asynchronous spiking (rate code) is poorly
understood and remains challenging to implement in computermodels (Litvak et al., 2003). Indeed,
spikes may synchronize as the signal progresses through deeper layers or may tend toward an
attractor state representing quiescence or a fixed rate. In all of the scenarios, rate-based coding
is compromised.
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Several studies have addressed the conditions required for
spike-rate propagation (Shadlen and Newsome, 1994; van
Rossum et al., 2002; Litvak et al., 2003; Wang et al., 2006;
Kumar et al., 2008, 2010; Joglekar et al., 2018; Barral et al.,
2019; Han et al., 2019). Shadlen and Newsome (Shadlen and
Newsome, 1994) demonstrated the feasibility of rate transmission
using leaky integrate and fire (LIF) models receiving balanced
excitatory and inhibitory inputs. Nevertheless, Litvak et al. (2003)
showed, using the same parameters quoted by Shadlen and
Newsome (1994), that rate was not reliably transmitted when >2
layers were considered. They concluded that rate transmission
in FFNs is highly unlikely. van Rossum et al. (2002) showed
the feasibility of reliable transmission of instantaneous firing
rate (asynchronous spikes) in un-balanced FFNs where the
input to each layer is delivered as an injected current. Kumar
et al. (2008) studied conditions for propagating synchronous
and asynchronous spikes utilizing biologically realistic network
models. The coexistence of firing rate and synchrony propagation
was shown under precise combinations of synaptic strength and
connection probability (Kumar et al., 2010). Cortes and van
Vreeswijk (2015) showed that the pulvinar thalamic nucleus
allows for asynchronous spike propagation through the cortex;
they supply the input-output firing rate relationship between two
cortical areas without manipulating synaptic strengths.

Neuronal networks with feedforward connections consisting
of excitatory neurons are thought of as the model for linking
upstream neurons with downstream neurons, either across
different layers within the same cortical region or between
different cortical regions. Recent studies have capitalized on
the role of recurrent connections in reliable transmission of
synchronous and asynchronous spikes (Joglekar et al., 2018;
Barral et al., 2019). A recent study has demonstrated that
networks with recurrent excitation and lateral inhibition stabilize
signal transmission (Joglekar et al., 2018). As well, a recurrent
network including AMPA and NMDA-mediated components
that operates in an excitatory-inhibitory balanced regime (with
respect to both magnitude and time of excitatory and inhibitory
synaptic inputs) has been recently proposed as a novel model of
information propagation (Barral et al., 2019).

Despite undoubtedly significant impacts of biologically
realistic network architectures in conveying information
across/between layers, neuronal networks with feedforward
connections play a substantial role in understanding the
mechanisms of faithful propagation of different types of spikes
(Kumar et al., 2010). Due to the simplicity of feedforward
networks (FFNs) compared to networks with recurrent
connections, the impact of different factors like intrinsic
properties of neurons in reliable propagation of spikes can be
better studied using FFNs. For example, Han et al. (2019) showed
that layer-to-layer heterogeneity arising from lamina-specific
cellular properties facilitates propagation of synchronous and
asynchronous spikes in FFNs.

In this paper, we focus to systematically explore the
necessary conditions underlying which information of time-
varying asynchronous spikes can be reliably transmitted in deep
layers of an FFN. Using optimal synaptic weights (Faraz et al.,
2020), we study the roles of (i) network size, (ii) the level of

background synaptic noise, and (iii) the variability of synaptic
delays in propagation of slowly time-varying asynchronous
spikes. We show that unlike the variability of synaptic delays
that has a minor effect on signal propagation, network size and
the level of background synaptic noise are substantial factors
enabling the propagation of asynchronous spikes in deep layers
of an FFN.

METHODS

Network size, level of background synaptic noise, and variability
of synaptic delays are the main factors that were investigated in
a feedforward architecture. We created an FFN composed
of excitatory neurons, modeled by leaky integrate and
fire (LIF) model, receiving shared input from the previous
layer plus background synaptic noise. We calculated coding
fraction—representing goodness of propagation of time-varying
asynchronous spikes—for different levels of background synaptic
noise, network size, and variability of synaptic delays.

Optimal vs. Fixed Synaptic Weights
To test the effect of each factor, we estimated synaptic
weights using a reduced network model whose function, in the
propagation of a shared input, is equivalent to an FFNwith all-to-
all connectivity [see (Lankarany, 2019; Faraz et al., 2020) for more
details]. Schematic representations of the reduced network and
an FFNwith all-to-all connectivity were shown in Figures S1A,B.
To better distinguish between the performances of an FFN
with and without optimal synaptic weight, we calculated the
input signal of the second layer of an FFN given the spikes
of the first layer. This input, the reconstructed stimulus, was
shown in Figures S1C,D for optimal and fixed synaptic weights,
respectively. The value of the fixed synaptic weights generated
0.5mV postsynaptic potential (per spike), which is within a
biologically realistic range. As can be seen in these figures, the
stimulus reconstructed by optimal synaptic weights significantly
better tracked the original stimulus (specifically for the optimal
range of network size and noise level). For a reduced network
model with a fixed number of neurons and a constant level of
synaptic noise, the optimal weights were estimated to minimize
the L2-norm error between the reconstructed (in the first layer)
and original stimulus (Faraz et al., 2020). Of note in the reduced
model, is the vector representation of the synaptic weights
(rather than the matrix form) that enables the use of convex
optimization techniques to calculate these weights. Given the
estimated weights in the reduced network model, the mean and
standard deviation (std) of the weights were calculated. To obtain
synaptic weights for an FFN with all-to-all connectivity, we drew
samples from a Gaussian distribution of the mean and std of
the estimated weights. Codes for estimating synaptic weights are
available at https://github.com/nsbspl/async-spike-propagation.

Slow Stimulus
The slow signal was delivered to the neurons in the first layer of
an FFN and modeled by an Ornstein-Uhlenbeck (OU) process of
the time constant of 50 msec. This slow signal can, for example,
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represent the luminance of a natural stimulus (Lankarany et al.,
2019). The OU process can be written as:

dx

dt
= −

x (t) − µ

τ
+ a

√

2

τ
ξ (t) (1)

where ξ is a random number drawn from a Gaussian distribution
with 0 average and unit variance. τ is the time constant, µ

and α indicate the mean and standard deviation of variable x,
respectively. The mean and variance of the slow signal is 16 and
15 pA, respectively.

Level of Background Synaptic Noise (OU
Process)
Background synaptic noise was modeled by an OU process of
the time constant of 5 msec (Destexhe et al., 2001). The mean
of synaptic noise is 0 that balances the effect of background
excitatory and inhibitory synaptic inputs. The standard deviation
of noise varied in a range of (5, 10, 15, 20, 25, 30, 35, 40) pA,
which generated background (no stimulus) spiking activity in a
range of (1.2–10.4) Hz.

Neuron Model
We used leaky integrate and fire (LIF) model. The dynamics of
membrane potential is expressed as follows.

dV

dt
=

− (V − EL) + RIinj

τV
(2)

where EL =−70mV, R= 1 M�, and τV = 10 msec. Iinj indicates
the injected current (slow signal as the stimulus of the first layer).
Spike occurs when V≥Vth, where Vth = −40mV and the reset
voltage is −90mV. For the neurons in the subsequent layers,
Iinj is equal to the total presynaptic input (weighted by synaptic
strengths) plus independent synaptic noise. A double exponential
function of τrise = 0.5msec & τfall = 5msec was used to model an
identical synaptic waveform.

Network Size
Our computational study was performed by varying the number
of neurons in an FFN. Network sizes were varied in a range of
[50, 100, 200, 300, 400, 500, 750, 1000].

Variability in Synaptic Delays
Variability in synaptic delays introduced heterogeneities in
the network. This variability can be interpreted as an un-
equal distance between pre- and post-synaptic neurons (see
Discussion). We modeled such variability by a Gaussian
distribution whose mean represents the synaptic delay (3 msec)
and standard deviation indicates the level of variability across
neurons. The std of synaptic delays varies within an interval of
(0:0.25:1.5) msec, which is in agreement with small variations of
synaptic latencies in the cortex (Boudkkazi et al., 2007).

Instantaneous Firing Rate and Optimal
Kernel Width
The instantaneous firing rate was calculated by convolving
superimposed spikes (of each layer of an FFN) with a Gaussian

kernel. To achieve a consistent comparison between the firing
rates across layers, we used a Gaussian kernel of width = 25
msec. This kernel width was near to optimal for spikes in the
first layer of the FFN (regardless the network size and noise
level). We used a method proposed in Shimazaki and Shinomoto
(2010) to calculate the optimum (Gaussian) kernel width of the
spikes in the first layer. The optimal kernel width was equal to
21.8 msec. We plotted the instantaneous firing rates estimated by
these widths against each other in Figure S2 to demonstrate the
similarities between these estimates.

Coding Fraction and Kullback–Leibler
Divergence
To quantify how much network size and the level of background
synaptic noise effect the propagation of asynchronous spikes in a
network, we used coding fraction (CF) that represents how good
the instantaneous firing rate of the second layer tracks that of the
first layer. CF is calculated as follows.

CF = 1−

∥

∥Firing(Layer 2)− Firing(Layer 1)
∥

∥

2
∥

∥Firing(Layer 1)
∥

∥

2

(3)

where Firing (Layer 1) and Firing (Layer 2) denote the
instantaneous firing rate of the 1st and the 2nd layers,
respectively. And, ||.||2 indicates the norm 2. CF lies within [−1,
1], where 1 represents perfect transmission.

Besides, in order to validate whether CF is equivalent to an
information-theoretic measure, we calculated Kullback–Leibler
(KL) divergence measures between the instantaneous firing rate
of the second and the first layers of the FFN. The Kullback–
Leibler (KL) divergence (Timme and Lapish, 2018) quantifies
the similarity between the probability distributions of the
instantaneous firing rates of the first (Fr1) and the second (Fr2)
layers. The KL divergence is defined as (Perez-Cruz, 2008):

DKL

(

PFr2 (r2) , PFr1 (r1)
)

=

∑

r1∈Fr1 , r2∈Fr2PFr2 (r2) ∗

log

(

PFr2 (r2)

PFr1 (r1)

)

(4)

where PFr1 and PFr2 are the probability distributions of the
firing rates, namely, Fr1 and Fr2, respectively. To calculate
these probability distributions, we utilized a non-parametric
estimation method to approximate them using normal kernel
smoothing (Bowman and Azzalini, 1997). The estimated density

function, ˆfh (x), for each layer, can be written as follows.

ˆfh (x) =
1

Nh

N
∑

i=1

K(
x− xi

h
) ; −∞ < x < ∞ (5)

where N is the sample size, K(.) is the kernel function, and h is
the bandwidth. DKL is non-negative (≥ 0) and non-symmetric
in P(r2) and P(r1). DKL is equal to zero if P(r2) and P(r1)
match exactly, and can potentially equal infinity if there is no
similarity between the two distributions. In other words, the KL
measure is equal to zero if the firing rates of both layers have the
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same statistical characteristics, implying a perfect information
propagation (across two layers).

We calculated CF and KL divergence for different levels
of background synaptic noise (for N = 400 and N = 500).
Figure S3 shows that these twomeasures are inversely correlated,
i.e., a higher CF is equivalent to a lower KL divergence, which
represents more similarities between the probability distributions
of the firing rates, and thus, a better propagation of the
asynchronous firing rates.

Synchrony Measure
Similar to Lankarany et al. (2019), we used a threshold method
to detect synchronous events. Synchrony threshold, for each
layer of an FFN with specific network size, noise level, and
optimal synaptic weights, was chosen such that the superimposed
spikes during a 10 msec interval generate >20mV post-synaptic
potential. As the optimal synaptic weights depend on the network
size and noise level, the synchrony threshold can be interpreted as
a minimum number of spikes required for post-synaptic neurons
to fire in a short interval.

RESULTS

Network Size and Level of Background
Synaptic Noise Are Substanital Factors
That Enable Reliable Propagation of Slowly
Time-Varying Asynchronous Spikes in
FFNs
To explore the effects of network size and the level of
background synaptic noise in the propagation of slowly time-
varying asynchronous spikes, we vary these parameters in an FFN
consisting of two layers and calculate the coding fraction (CF).
In addition, the number of synchronous events (see Methods)
is quantified to provide more numerical characterizations of the
roles of the above parameters in signal propagation.

A recent study (Barral et al., 2019) has shown that channel
capacity and decoding accuracy decreased after the first layer but
remained above the chance (and almost unchanged). However,
the rationale behind using two layers is that the propagation of
information across layers of an FFN is more likely to maintain
robust if the information is preserved within the first two layers.

Figure 1A shows CF and synchrony measure of spikes as a
function of network size and std of the background synaptic
noise. Three values underlying each parameter are chosen to
classify the range of network size and level of noise into three
categories, namely, small (low), medium (moderate), and large
(high). Note that spikes in the second layer of an FFN (for each
pair of parameters) are produced by optimal synaptic weights (see
Methods and Distribution of Optimal SynapticWeights Depends
on Network Size and Level of Synaptic Noise).

CF increases for medium and large network sizes with
moderate to high levels of background noise. However, CF is
relatively low outside these ranges; it decreases for small network
sizes regardless of the noise level. More precise characterization
of CF against different values of network size and noise level (see
Figure S4) indicates that CF has the highest values for a specific

range of parameters, i.e., network sizes in a range of {400–500}
and std of the noise in a range of {20–30}pA.

The number of synchronous events increases for medium-
and large-size FFNs with low levels of noise (also note that the
signal is not well represented in small-size FFNs with low noise).
Thus, one can predict that more synchronous events would be
generated in the subsequent layers for low levels of background
synaptic noise. Figure 1A (right) also shows that synchronous
events occur in large-size FFNs with moderate level of noise,
suggesting that an improper ratio of network size and noise level
causes synchrony propagation in the subsequent layers.

To visually inspect the effects of network size and noise
std, the instantaneous firing rates of the first and the second
layers are shown in Figure 1B. CF is relatively high for (i) large
network sizes (≥750) with a high level of synaptic noise (σ =

(35–40) pA) and (ii) small network sizes (<300) with a high
level of synaptic noise (σ = 40 pA). In (i), signal propagation
in deeper layers is not stable due to the high level of noise:
the rate code remains asynchronous but tends to the average
firing rate (see Figure S5B). As will be discussed in section
Distribution of Optimal Synaptic Weights Depends on Network
Size and Level of Synaptic Noise, the corresponding synaptic
weights are very weak and biologically unrealistic (N = 750,
σ = 40 pA). The high level of noise in (ii) makes the network
spontaneously active, so it is not possible to discern any signal
from background synaptic activity. As shown in Figure 1B, a
large network size (N = 750) with a small level of background
activity (σ = 10 pA) increases the shared input activity and
amplifies the signal in the second layer. In this case, synchrony
increases across the layers (see also Figure S5C for medium-size
network with low noise). In medium-size FFNs (N = 400), small
(10 pA) and large (40 pA) synaptic noise amplifies and attenuates
signal propagation, respectively.

To better understand the effects of network size and noise level
on the transmission of asynchronous spikes within the first two
layers of an FFN, CF is plotted in Figure 2 for different values of
each factor while the other factor is kept constant. Figure 2 (Left)
shows CF for different network sizes when the noise std, σ =

30 pA. CF is maximized for N = 400 and N = 500, meaning
that information of asynchronous spikes is best transmitted to
the 2nd layer of an FFN for particular network sizes (given a fixed
level of synaptic noise). Similarly, Figure 2 (Right) shows CF as a
function of background synaptic noise for FFNs consisting of 400
and 500 neurons. CF decreases for small and large (CF= 0.56 for
σ = 50 pA, data is not shown in the figure) levels of background
synaptic noise which implies that information is best transmitted
to the 2nd layer of a medium-size FFN (N = 400, 500) given a
moderate level of synaptic noise, i.e., σ = 30 pA.

Simulating an FFN with the optimal network size and level
of synaptic noise enhances the propagation of asynchronous
spikes in deeper layers. To evaluate the performance of an FFN
with the optimal parameters in the propagation of asynchronous
spikes in deeper layers, we show the raster plot and the
instantaneous firing rate of an FFN up to five layers in
Figure 3. Stable propagation of asynchronous spikes can be
seen in this figure for N = 400, σ = 30 pA (as well as in
Figure S5A). The instantaneous firing rates represent signal
propagation across layers (bottom right curves in Figure 3).
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FIGURE 1 | (A) Coding fraction (CF), CF is plotted for different values of network size and the level of background synaptic noise (in a two layers FFN).

(B) Instantaneous firing rate of the 2nd layer (purple) vs. that of the 1st layer (gray) for different pairs of network size and noise level. Note that the delay between layers

is compensated in these curves.

Previously, it was shown that a homogeneous random network
could not transmit a completely asynchronous population
activity due to the existence of the residual correlations (Kumar
et al., 2008). Such correlations are mainly originated from the
shared connectivity and could be reduced by increasing the
network size (Kumar et al., 2008). Unlike homogeneous random
networks, in an FFN with all-to-all connectivity, i.e., a dense
network, a larger network size results in a larger number of
shared pre-synaptic inputs. Although background synaptic noise
induces some heterogeneities in the network, the propagation
of asynchronous spikes in deeper layers is not enhanced for
network sizes > 750. It is to be noted that increasing the

noise level in large network sizes remains spikes propagated
asynchronously; however, at the expense of losing information
of time-varying firing rates (Figure S5B). Moreover, decreasing
the level of background synaptic noise causes synchronous
spikes built up in the subsequent layers of a medium-size
FFN (Figure S5C).

Distribution of Optimal Synaptic Weights
Depends on Network Size and Level of
Synaptic Noise
In addition to synaptic noise that provides heterogeneities in
an FFN [or a locally connected random network (Mehring
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FIGURE 2 | 1-D CF. CF vs. different network sizes when noise std is equal to 30 pA (Left). CF vs. std of synaptic noise (Right) for FFNs with 400 (blue dashed line)

and 500 neurons (purple).

FIGURE 3 | Reliable propagation of slowly-time varying asynchronous spikes in 5 layers [raster plot & instantaneous firing rate (Gaussian kernel of width 25 msec)] of

FFNs with optimal values of network size (500), level of synaptic noise (30 pA), and synaptic strength. Note: the delay between layers is compensated in these curves.

et al., 2003)], previous studies considered that a distribution of
passive properties of neurons that rises to a distribution of the
synaptic weights (Kumar et al., 2008) induces heterogeneities
across neurons. In this study, synaptic weights are estimated from
the firing activities of the first layer, and the underlying mean and
standard deviation (with an assumption of Gaussian distribution)
are used to draw weights for subsequent layers. Thus, the mean
of the estimated weights reflects the strength of the synapses, and
the std of the weights indicates heterogeneities across synapses.

To test whether the estimated weights are biologically realistic,
we validate if the corresponding postsynaptic potential (PSP) lies
within a biologically-reasonable range. We show in Figure 4, a
heatmap of PSPs—corresponding to the mean of the estimated
weights—as a function of network size and level of background

synaptic noise. Synaptic weights generating extremely weak (<
0.05mV) or extremely strong (>1.5mV) PSPs per presynaptic
spike are considered as unrealistic weights. As can be seen in this
figure, the synaptic weights for large network sizes (N > 750)
and moderate to high background noise are weak, generating
postsynaptic potentials less than 0.1mV (per single presynaptic
spikes). In contrast to the large network sizes with weak synapses,
the estimated synaptic weights of FFNs with small network sizes
generate larger postsynaptic potentials, specifically for the lower
levels of synaptic noise. Therefore, one can conclude that only a
specific range of synaptic weights is biologically realistic.

Improper selection of synaptic weights for an FFN results
in unstable propagation of asynchronous spikes. Systematically
varying synaptic strengths from moderately weak to moderately
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FIGURE 4 | Heat map of postsynaptic potentials (corresponding to synaptic weights) for different network sizes and levels of synaptic noise.

FIGURE 5 | Improper synaptic weights result in either attenuation or amplification of the slow signal in the subsequent layers. Instantaneous firing rates of an FFN with

N = 500 and noise std = 30pA for (A) proper synaptic weights, (B) strong synapses (corresponding to N = 400 and noise std = 30pA), and (C) weak synapses

(corresponding to N = 600 and noise std = 30pA).

strong synapses, we find a transition between attenuation
mode, where transmission of time-varying rates failed, to an
amplification mode where the average firing rate increased
at the subsequent layers (Figure 5). We repeat running
an FFN of size 500 with the level of noise of 30 pA
with synaptic weights (mean and std) obtained from an
FFN with the same level of synaptic noise but different
network sizes, i.e., relatively stronger synapses (0.1 pA/mV
corresponding to N = 400) and weaker synapses (< 0.05 pA/mV
corresponding to N = 600). Figure 5 demonstrates that the
propagation of a slow signal is either amplified (Figure 5B)
or attenuated (Figure 5C) when the weights are stronger or
weaker, respectively.

It is to be noted that the time constants of excitatory
synapses and neurons’ membrane potential influence the
estimated synaptic weights. Chan et al. (2016) showed that

different combinations of these time constants alter the pair-
wise correlation and synchrony of spikes, e.g., burst firing
occurs when the time constant the neuron’s membrane
is small and that for excitatory synapses is large. These
time constants are fixed in our estimation method (see
Methods), and no burst firing was observed in medium-size
FFNs (N = 400, 500) with a moderate level of synaptic
noise (20, 25, and 30 pA).

Variability of Synaptic Delays Has a Slight
Influence on the Propagation of
Asynchronous Spikes
In biologically-realistic scenarios, presynaptic inputs are
delivered from neurons with different distances to the target
(postsynaptic) neuron. In the context of signal propagation,
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FIGURE 6 | CF vs. std of synaptic delays in a two-layer FFN with N = 500 and noise std = 30pA.

for example, Joglekar et al. (2018) have introduced inter-areal
delays by considering the corresponding inter-areal wiring
distances (Markov et al., 2014) and assuming a constant axonal
conduction velocity. To explore how different distances between
the pre- and post-synaptic neurons affect signal propagation,
we introduce variability in the synaptic delays. Synaptic delays
are drawn from a Gaussian distribution of a fixed mean (3
msec) and variable std. We calculate CF for different values
of the std of synaptic delays in a two-layer FFN (N = 500 and
σ = 30 pA). Figure 6 shows that CF is nearly independent
of the variability of synaptic delays. In addition, we show the
propagation of asynchronous spikes in an FFN with two levels of
variabilities of synaptic delays in Figure S6. Similar to Figure 3,
the FFN comprises 500 neurons, each receiving 30 pA synaptic
noise. As expected, the variability of synaptic delays does not
change signal propagation significantly compared to that with
no variability.

What Range of Firing Rates Can Be
Reliably Tranmistted Across Multiple
Layers?
We construct logistic maps of the firing rates in the first and the
5th layers of an FFN (N = 500 and σ = 30 pA) to determine the
range of frequencies that can be reliably transmitted. Figure 7
shows that the information of asynchronous spikes is preserved
across layers for frequencies in the range of [5–25] Hz. The
curve in this figure is obtained by superimposing the average
instantaneous firing rate of 5 networks, each of which receiving
different slow stimuli (with the same time constants). For
frequencies > 10Hz, although the logistic curve becomes slightly
sublinear, the firing rate of the 5th layer still tracks that of the
first layer, indicating that the firing rate is uniquely represented
in deep layers of the FFNs. However, for frequencies > 25Hz, the
logistic curve is supralinear that capitalizes on the tendency of the
transmitted firing rates to the synchrony mode.

FIGURE 7 | Logistic map showing output rate (firing rate in layer 5) vs. input

rate (firing rate in layer 1). The red dashed line has a slope of 1.

DISCUSSION

Necessary conditions for reliable propagation of time-varying
asynchronous spikes in FFNs were investigated in this
paper. Previous studies have addressed those conditions
for transmission of synchronous spikes as well as the
mean of firing rate of asynchronous spikes. However, these
conditions barely remain valid for transmission of time-varying
asynchronous spikes whose instantaneous rate of changes
represents information of slow fluctuations of the stimulus. In
this paper, we investigated the necessary conditions for reliable
transmission of asynchronous spikes in an FFN. Specifically, we
explored the effect of network size, level of background synaptic
noise, and the variability of synaptic delays in an FFN with all-to-
all connectivity. We demonstrated that network size and the level
of background synaptic noise, together with optimal synaptic
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weights, were substantial factors that cooperatively enable the
propagation of asynchronous spikes in deep layers of an FFN.
Nevertheless, the variability of synaptic delays had a minor effect
on signal propagation. Varying these factors systematically, we
found that an FFN of network size of {400–500} with the level
of synaptic noise in a range of {20–30} pA and proper synaptic
weights transmits time-varying asynchronous spikes reliably.

Reliable propagation of a rate code is challenging: even weak
pairwise correlations in the spike timing can notably deteriorate
the fidelity of the rate code (Kumar et al., 2010). Thus, the robust
transmission of asynchronous spikes cannot be simply achieved
from a general theory based on the balance of (common) signal
and (background) noise. We showed that the same level of
(moderate) noise provides very different signal propagations in
networks with different numbers of neurons; it degrades the
firing rate of an FFN of size = 100 whereas it can maintain a
reliable signal propagation for a network size of 400 (the synaptic
weights are optimized in both networks). One can interpret that
the network size and noise level are competing to maintain a
constant signal to noise ratio. Nevertheless, this interpretation
is not necessarily correct in the context of signal propagation
through an FFN with all-to-all connectivity. For example, the
performance of signal representation in the second layer of an
FFN with N = 400 & σ = 25 pA is almost equivalent with that
of N = 750 & σ = 40 pA (see Figure 1B). However, despite
the similarity within the two layers, the firing rate of the latter
degrades in the subsequent layers. Therefore, a specific range
of parameters—network size, synaptic strength, and level of
synaptic noise in an FFN—should be identified to cooperatively
maintain a consistent representation of the common (slow) signal
across multiple layers.

Signal Propoagation in Neural Networks
With Recurrent Connections
Despite the focus of this paper on the use of networks with feed-
forward connections, recent studies demonstrated the feasibility
of reliable signal propagation in recurrent networks (Joglekar
et al., 2018; Barral et al., 2019). Of note in these studies is
that lateral or feedback connectivity are biologically plausible
architectures to transmit information between cortical layers
(Stroud and Vogels, 2018). Joglekar et al. (2018) showed that
reliable signal propagation could be achieved in large-scale
recurrent network models of the macaque cortex. It is worth
mentioning that the activity dynamics of recurrent networks
can be compatible with those of FFNs (Kumar et al., 2010).
Kumar et al. (2010) used FFNs as a part of a recurrent network
to study reliable signal propagation in a biologically plausible
scenario. In the context of visual perception, a recent study
showed that a recurrent neural network with a few layers can
be unfolded as very deep FFNs (Liao and Poggio, 2016; Rajaei
et al., 2019). In addition, other studies illustrated that recurrent
random networks may behave similar to an FFN (Ganguli et al.,
2008; Goldman, 2009; Murphy and Miller, 2009; Kumar et al.,
2010).

Thus, studying conditions of reliable signal propagation in an
FFN helps better understanding the underlying mechanisms of

information propagation in more biologically realistic scenarios
in which the dynamics of an FFN interact with that of the
embedding recurrent network.

Impact of Heterogeneous Synaptic Delays
on Signal Transmission in Recurrent Neural
Network
We showed that the impact of heterogeneous synaptic delays
on the propagation of asynchronous spikes in an FFN was not
significant. However, the heterogeneity in synaptic delays can
alter the dynamics of a recurrent neural network and have a
substantial effect on signal transmission. Here, we discuss three
scenarios that capitalize on the substantial but ambiguous impact
of the variability of synaptic delays in signal propagation. First,
the heterogeneity in synaptic delays might have contrasting
effects if applied to excitatory and inhibitory neurons. In
a strongly recurrent network with excitatory synapses, this
heterogeneity can reduce the likelihood of synchronization.
In contrast, it can alter the tight balance of excitatory and
inhibitory inputs—necessary for a reliable signal propagation—
in a recurrent network with lateral inhibition (Joglekar et al.,
2018; Stroud and Vogels, 2018). Second, the variability of
synaptic delays might be compromised by that caused by synaptic
transmissions. A recent study demonstrated that a network with
non-instantaneous synaptic transmission and fixed spike delivery
delay is equivalent to a network with a proper distribution of
spike delays and instantaneous synaptic transmission (Mattia
et al., 2019). Thus, a network with various types of synapses is
differently influenced by the heterogeneity of synaptic delays. For
example, the impact of the variability of synaptic delays (e.g.,
std ∼ 1 msec) can be more significant in a recurrent network
with AMPA receptors (with a short time constant) compared to
that with NMDA receptors (with a large time constant). Third,
the variability of synaptic delays can be regulated by short- and
long-term forms of synaptic plasticity. It was experimentally
demonstrated that the synaptic latency at monosynaptically
connected pairs of L5 and CA3 pyramidal neurons is inversely
correlated with the amplitude of the postsynaptic current and
sensitive to manipulations of the presynaptic release probability
(Boudkkazi et al., 2007). Therefore, incorporating models of
synaptic plasticity in the simulation of neural networks can
induce another source of heterogeneity in synaptic delays, which
in turn, alters signal propagation.

Optimal Level of Synaptic Noise and
Stochastic Resonance
Stochastic resonance in the neural systems was first observed
in the response of the neuronal network to a weak periodic
signal (Gluckman et al., 1996) [see (Bulsara et al., 1991;
Longtin, 1993) for stochastic resonance in neuron models].
In stochastic resonance, a proper amount of noise can boost
signal representation. Noise in our model recreated the effect
of the background synaptic noise that exists in vivo (Destexhe
et al., 2001). Previous studies, e.g., (van Rossum et al., 2002;
Kumar et al., 2010), demonstrated that background synaptic
noise may balance the synchronizing effect of shared connectivity
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in an FFN, thereby enabling the propagation of asynchronous
firing rates. Unlike other studies that the average firing rate of
asynchronous spikes is the sole information that must remain
unchanged across layers, we used a time-varying slow signal
as an input to an FFN to explore to what extent information
of slow fluctuations can be transmitted across layers. In this
study, although the input was not fully periodic, we found
that a certain range of noise (see Results) enables maximum
information transfer across layers. Interestingly, this range of
noise (std of membrane fluctuations (no stimulus) ≈ 4mV
for std of noise = 25 pA) is in agreement with the level of
background synaptic noise observed in-vivo high-conductance
state (Destexhe et al., 2003). Thus, from a system level perspective
and in the context of consistent information transfer, one can
conclude that stochastic resonance might occur in an FFN with
the optimal level of background synaptic noise (see also the effect
of network topologies on stochastic resonance in FFNs Zhao
et al., 2018).

Optimal Network Size and System-Size
Coherent Resonance
Similar to noise-induced resonance, an optimal number of
elements in a biological system can maximize the regularity in
the emitted signal (in the presence of optimal level of noise),
i.e., system-size coherence resonance (Toral et al., 2003). Toral
et al. (2003) demonstrated that there is a coherence resonance
effect, in the sense of maximum regularity in the signal generated
by an ensemble of globally coupled Fitzhugh-Nagumo models,
as a function of the number of coupled neurons, namely, N, in
the presence of noise. It was shown that, for a specific set of
parameters, the maximum regularity occurs for N ≈160 (Toral
et al., 2003). A coherence resonance with respect to the number of
neurons may exist in an FFN. Both the stochastic resonance and
coherence resonance (CR) were investigated in the triple-neuron
feed-forward-loop network motifs (Guo and Li, 2009). It was
demonstrated that noise could enrich the stochastic dynamics
of those motifs. In this study, we showed that for specific
distribution of synaptic strength and optimal level of background
synaptic noise, a reliable propagation of the time-varying rate

of asynchronous spikes occurs for medium size FFNs (in the
rang of {400–500}). Despite differences in the types of inputs,
the architecture of an FFN vs. excitatory/inhibitory coupled
neurons, propagation vs. representation, and other factors that
resulted in two different values underlying optimum network
size [compared to Toral et al. (2003)], our study capitalized
on the significance of system-size coherence resonance in
neuronal dynamics.
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Electrical and chemical synapses shape the dynamics of neural networks, and their

functional roles in information processing have been a longstanding question in

neurobiology. In this paper, we investigate the role of synapses on the optimization of the

phenomenon of self-induced stochastic resonance in a delayed multiplex neural network

by using analytical and numerical methods. We consider a two-layer multiplex network

in which, at the intra-layer level, neurons are coupled either by electrical synapses or

by inhibitory chemical synapses. For each isolated layer, computations indicate that

weaker electrical and chemical synaptic couplings are better optimizers of self-induced

stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical

synaptic delays are found to be better optimizers of the phenomenon than shorter

chemical synaptic delays, while longer chemical synaptic delays are better optimizers

than longer electrical synaptic delays; in both cases, the poorer optimizers are, in fact,

worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the

two layers having only electrical synapses at the intra-layer levels can each optimize

the phenomenon. Additionally, only excitatory chemical multiplexing of the two layers

having only inhibitory chemical synapses at the intra-layer levels can optimize the

phenomenon. These results may guide experiments aimed at establishing or confirming

to the mechanism of self-induced stochastic resonance in networks of artificial neural

circuits as well as in real biological neural networks.

Keywords: optimization, self-induced stochastic resonance, synapses, multiplex neural network, community

structure

1. INTRODUCTION

Noise is an inherent part of neuronal dynamics, and its effects can be observed experimentally
in neuronal activity at different spatiotemporal scales, e.g., at the level of ion channels,
neuronal membrane potentials, local field potentials, and electroencephalographic or
magnetoencephalographic measurements (Guo et al., 2018). While noise is mostly undesirable in
many systems, it is now widely accepted that its presence is crucial to the proper functioning of
neurons in terms of their information processing capabilities.

132

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00062
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00062&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yamakoumarius@gmail.com
https://doi.org/10.3389/fncom.2020.00062
https://www.frontiersin.org/articles/10.3389/fncom.2020.00062/full
http://loop.frontiersin.org/people/943687/overview
http://loop.frontiersin.org/people/933831/overview
http://loop.frontiersin.org/people/93069/overview


Yamakou et al. Optimal Self-Induced Stochastic Resonance

Some mechanisms for optimal information processing are
provided via the well-known and extensively studied phenomena
of stochastic resonance (SR) (Benzi et al., 1981; Longtin, 1993;
Gammaitoni et al., 1998; Lindner et al., 2004; Zhang et al.,
2015) and coherence resonance (CR) (Hu and MacDonald, 1993;
Neiman et al., 1997; Pikovsky and Kurths, 1997; Lindner and
Schimansky-Geier, 1999; Lindner et al., 2004; Beato et al., 2007;
Hizanidis and Schöll, 2008; Liu et al., 2010; Bing et al., 2011;
Gu et al., 2011) or via the lesser-known phenomenon of self-
induced stochastic resonance (SISR) (Freidlin, 2001; Muratov
et al., 2005; DeVille and Vanden-Eijnden, 2007; DeVille et al.,
2007; Yamakou and Jost, 2017, 2018) whose mechanism remains
to be confirmed experimentally in real neural systems. Although
these noise-induced phenomena may exhibit similar dynamical
behaviors, each of them has different dynamical preconditions
and emergent mechanisms and may therefore play different
functional roles in information processing. For further details
behind the mechanisms of SR and CR, we refer the reader to
references given above. We also note that the control of SR
and CR in neural networks has attracted a lot of attention.
In particular, it has been shown that hybrid synapses and
autapses (i.e., those characterized by both electrical and chemical
coupling) could be effectively used to control SR and CR (Yilmaz
et al., 2013, 2016).

In this paper, we focus on self-induced stochastic resonance
(SISR). SISR can occur when a multiple timescale excitable
dynamical system is driven by vanishingly small noise. During
SISR, the escape time of trajectories from one attracting region
in phase space to another is distributed exponentially, and the
associated transition frequency is governed by an activation
energy. Suppose the system describing the neuron is placed out of
equilibrium, and its activation energy decreases monotonically as
the neuron relaxes slowly to a stable quiescent state (fixed point);
then, at a specific instant during the relaxation, the timescale
of escape events and the timescale of relaxation match, and the
neuron almost surely fires at this point. If this activation brings
the neuron back out-of-equilibrium, the relaxation stage can start
over again, and the scenario repeats itself indefinitely, leading
to a cyclic coherent spiking of the neuron which cannot occur
without noise. SISR essentially depends on (i) strong timescale
separation between the dynamical variables; (ii) vanishingly small
noise amplitude; (iii) a monotonic activation energy barrier;
(iv) and, most importantly, the periodic matching of the slow
timescale of neuron’s dynamics to the timescale characteristic
to the noise. Thus, compared to CR and SR, the conditions to
be met for observing SISR are more subtle: Like CR, SISR does
not require an external periodic signal as in SR. Remarkably,
unlike CR, SISR does not require the neuron’s parameters be
close to the bifurcation thresholds, making it more robust to
parameter tuning than CR. Moreover, unlike both SR and CR,
SISR requires a strong timescale separation between the neuron’s
dynamical variables.

The mechanism behind SISR suggests that, in an excitable
neuron, the level of noise embedded in the neuron’s synaptic
input may be decoded into a (quasi-) deterministic and coherent
signal. To exemplify, in a network of neurons in a quiescent
state (without any activity), the action of a sufficiently weak

synaptic noise amplitude could occasionally generate a spike in
each neuron. These spikes will have random phases so that their
total input on each individual neuron may average to a stationary
random signal of low intensity. If the noise amplitude suddenly
increases due to a change in the synaptic input, the neurons may
switch to the noise-assisted oscillatory mode. This can further
increase the effective noise amplitude so that the oscillatory
mode may persist even after the disturbance is removed and the
entire neural network in a dormant state may wake up from the
outside rattle. The phenomenon of SISR in neural networks could
therefore play important functional roles in the regulation of the
Sleep-wake transition (Patriarca et al., 2012; Booth and Behn,
2014; Pereda, 2014).

Communication between neurons occurs through
synaptic interactions. Two main types of synapses may be
identified in neural networks, electrical synapses and chemical
synapses (Pereda, 2014). The corresponding functional form
of the bidirectional interaction mediated by the electrical
synapses is defined as the difference between the membrane
potentials of two adjacent neurons, thereby making the coupling
mediated by electrical synapses to be local. Meanwhile, chemical
synaptic interaction always takes place unidirectionally, with
the signal conveyed chemically via neurotransmitter molecules
through the synapses, thereby making chemical synaptic
couplings nonlocal. The functional form of the chemical synaptic
interaction is considered as a nonlinear sigmoidal input-output
function (Greengard, 2001). Moreover, chemical synapses can be
inhibitory or excitatory.When an inhibitory pre-synaptic neuron
spikes, the post-synapses neuron connected to it is prevented
from spiking. When an excitatory neuron spikes, it induces the
post-synaptic neuron to spike. In real biological neurons, the
distance between pre- and post-synaptic ends is approximately
3.5 nm in electrical synapses, and it is comparatively large,
nearly 20–40 nm (Hormuzdi et al., 2004), in chemical synapses.
Distances between pre- and post-synaptic ends induce time
delays in neural networks with the time delays of electrical
synapses being generally shorter than those of chemical synapses.

It is well-known from magnetic resonance imaging that
neural networks may exhibit several types of coupling schemes:
neurons coupled via electrical synapses only; neurons coupled via
chemical synapses only; and neurons coupled by both electrical
and chemical synapses—so-called hybrid synapses (Galarreta
and Hestrin, 1999, 2001; Gibson et al., 1999; Connors and
Long, 2004; Hestrin and Galarreta, 2005; Yilmaz et al., 2013;
Bera et al., 2019; Majhi et al., 2019). Moreover, multiplex
networks of neurons can be formed from different network
layers depending on their connectivity through a chemical link
or by an ionic channel. In brain networks, different regions
can be seen connected by functional and structural neural
networks (Pisarchik et al., 2014; De Domenico, 2017; Andreev
et al., 2018). In a multiplex network, each type of interaction
between the nodes is described by a single layer network and
the different layers of networks describe the different modes of
interaction. Multilayer networks (Pisarchik et al., 2014) open
up new possibilities of optimization, allowing to regulate neural
information processing by means of the interplay between the
neurons’ dynamics andmultiplexing (Crofts et al., 2016; Battiston
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et al., 2017). Optimization based on multiplexing could have
many advantages. In particular, the coherent spiking activity of
one layer (induced for example by SISR) can be optimized by
adjusting the parameters of another layer. This is important from
the point of view of engineering and brain surgery since it is not
always possible to directly access the desired layer, though the
network with which this layer is multiplexed may be accessible
and adaptable.

Several studies have shown that multiplex networks can
generate patterns with significant differences from those
observed in single-layer networks (Kouvaris et al., 2015; Majhi
et al., 2016, 2017; Berner et al., 2020). Their use in the
optimization and control of dynamical behaviors have therefore
attracted much attention recently. The multiplexing of networks
has been shown to control many dynamical behaviors in neural
networks, including synchronization (Gambuzza et al., 2015;
Singh et al., 2015; Andrzejak et al., 2017; Leyva et al., 2017; Zhang
et al., 2017), pattern formation (Kouvaris et al., 2015; Ghosh and
Jalan, 2016; Ghosh et al., 2016, 2018; Maksimenko et al., 2016;
Bera et al., 2017; Bukh et al., 2017), solitary waves (Mikhaylenko
et al., 2019), and chimera states (Panaggio and Abrams, 2015;
Schöll, 2016; Ghosh et al., 2018, 2019; Omelchenko et al., 2018;
Sawicki et al., 2019). Chimera states are synchronization patterns
occurring in symmetric networks (on average), characterized by
the coexistence of varying synchronization levels side-by-side.
They have been shown to exist in mechanical and chemical
experiments (Tinsley et al., 2012; Martens et al., 2013; Totz
et al., 2017) and are thought play an important role in neural
systems (Andrzejak et al., 2016; Bera et al., 2019; Majhi et al.,
2019). In particular, synchronization patterns such as chimera
states occur in networks with community structure where
connections are all-to-all, but coupling strengths are modulated
so that the inter-coupling between communities (layers) are
weak/sparse compared to their intra-coupling (Abrams et al.,
2008; Martens et al., 2016a,b; Bick et al., 2020)—a configuration
that bears strong similarity with the multilayer structure.
Chimera states in such networks are of interest as they
are multistable (Martens, 2010) and thus configurable; they
can in principle be employed to solve functional tasks such
as computations (Bick and Martens, 2015) and routing of
information (Deschle et al., 2019) in the brain. Moreover,
community networks of QIF neurons exhibit synchronization
patterns that have been demonstrated viable for memory storage
and recall (Schmidt et al., 2018). However, the optimization of
noise-induced resonance mechanisms in neural networks based
on the multiplexing approach have only very recently attracted
attention. The few research works investigating the optimization
of CR in neural networks are those of Semenova and Zakharova
(2018) and Yamakou and Jost (2019).

In Semenova and Zakharova (2018), it is shown that
connecting a one-layer network exhibiting CR in a multiplex
way to another one-layer network, i.e., multiplexing, allows
us to control CR in the latter layer network. In particular,
it is found that multiplexing induces CR in networks that
do not demonstrate this phenomenon in isolation. Moreover,
it has been shown that CR can be achieved even for weak
multiplexing between the layers. Surprisingly, it has also been

shown that the multiplex-induced CR in the layer which is
deterministic in isolation can manifest itself even more strongly
than the CR in the noisy layer. However, the work in Semenova
and Zakharova (2018) considers only instantaneous synaptic
connections, while it is well known that synaptic time delays (not
negligible in neural networks) exhibit crucial effects in neural
information processing.

Yamakou and Jost (2019) considered synaptic time delays
and their role in optimizing CR in a layer affected by another
layer via multiplexing, which already exhibits optimal CR or
SISR. In an isolated layer, it was shown that shorter synaptic
time delays combined with weaker synaptic strengths optimize
CR. Meanwhile, in the multiplex network configurations,
stronger synaptic strengths combined with shorter synaptic time
delays between layers induce and optimize CR in the layer
where this phenomenon is non-existent in isolation. Moreover,
their numerical simulations indicate that, even at very long
multiplexing time delays, weak (but not too weak) multiplexing
strengths between the layers can induce and optimize CR in the
layer where it is non-existent in isolation. Interestingly, it was
further shown that, with the occurrence of a different resonance
phenomenon (i.e., SISR) in one layer, weak multiplexing, even
at very short synaptic time delays, completely fails to optimize
CR in the other layer where latter phenomenon does not
exist in isolation. This behavior further confirms the fact that,
even though SISR and CR lead to the occurrence of the same
dynamical behavior (i.e., coherent noise-induced spiking activity)
in neurons in the excitable regime, they are fundamentally
different in their dynamical and emergent nature (DeVille et al.,
2005); in particular, SISR and CR also lead to different behaviors
in multiplex networks, and they possibly therefore play different
functional roles in neural information processing.

The optimization of CR in neural networks based on the
multiplexing approach have so far been studied only in Semenova
and Zakharova (2018) and Yamakou and Jost (2019). A study
on the optimization of SISR in neural networks based on the
multiplexing approach is still lacking. Moreover, in Semenova
and Zakharova (2018) and Yamakou and Jost (2019), the
coupling between the neurons are mediated only by electrical
synapses. The role of chemical synapses in the optimization
of noise-induced resonance mechanisms should be equally
important. Therefore, the aim of this paper is to study the
optimization of SISR based on the multiplex approach of
neural networks connected through time-delayed electrical and
chemical synapses. In particular, we wish to address the following
main questions:

(i) Can SISR occurring in one layer of a multiplex network
be used to optimize SISR in another layer where the
phenomenon non-existent in isolation?

(ii) What combinations of intra- and inter-layer synaptic
strengths and time delays best optimize SISR?

(iii) Which type (electrical, inhibitory, or excitatory) of synapse
is best optimizer SISR within an isolated layer and in the
multiplex configuration?

The rest of the paper is organized as follows: in section 2, we
present the mathematical model equations, and we explain and
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motivate the different configurations considered. In section 3,
we briefly describe the numerical methods used in simulations
and analysis. In section 4, we consider an isolated single
layer of neurons, coupled either by electrical synapses or
chemical synapses. For both types of coupling, we analytically
establish the necessary conditions in terms of noise amplitudes
and timescale separation parameter that allow us to observe
SISR. In section 5, we systematically investigate synaptic
parameterizations that best optimize SISR in an isolated layer
in which the neurons are coupled either by electrical synapses
or by inhibitory chemical synapses. We will then compare
the optimization of SISR by electrical and inhibitory chemical
synapses. In section 6, we consider multiplexed layer networks
using numerical simulations. Having identified which synaptic
configurations deteriorate SISR the most in isolated layers,
we use the multiplexing between a first layer, where SISR
is optimal and a second layer where SISR is non-optimal
(very poor or even non-existent), with the goal of optimizing
SISR in the second layer. For multiplex networks, we will
consider the optimization of SISR in six case scenarios: electrical,
inhibitory, and excitatory multiplexing of two layers with
electrical synaptic intra-connections and electrical, inhibitory,
and excitatory multiplexing of two layers with inhibitory synaptic
intra-connections. Finally, we summarize and conclude our
findings in section 7.

2. MATHEMATICAL MODEL

We consider a two-layer multiplex neuronal network in the
excitable regime in the presence of synaptic noise, as illustrated
in Figure 1. In our study, we consider one of the simplest
network topologies—a ring network topology within layers and
a multiplex network between these layers such that they contain
the same number of neurons and the interaction between the
layers are allowed only for replica neurons. Each layer consists
of N identical FitzHugh-Nagumo (FHN) neurons (Hodgkin and
Huxley, 1952; FitzHugh, 1961), connected in a ring by either
only electrical synapses or inhibitory chemical synapses, while
the inter-connections between layers can be either via electrical,
inhibitory chemical synapses, or excitatory chemical synapses. It
is important to point out that excitatory chemical synapses are
found to induce, via time-delayed coupling bifurcations, a self-
sustained spiking activity in the network of FHN neurons (each
in the excitable regime) even in the complete absence of noise.
We want to avoid such regimes—those in which the deterministic
network can oscillate due to some time-delayed coupling induced
bifurcations—as the coherent oscillations induced by SISR
should be due only to the presence of noise and not because
of the occurrence of bifurcations. For this reason, the excitatory
chemical synapses are used in the optimization of SISR only when
they do not induce oscillatory behaviors in the deterministic
network, i.e., only in the multiplexing connections with carefully
chosen synaptic strengths and time delays.

Real electrical synapses mediate bidirectional interactions
and transfer signals only between neighboring neurons; in
contrast, chemical synapses convey information unidirectionally

FIGURE 1 | Neurons are connected in a multiplex network with two layers

l = 1, 2. Neurons within a layer are coupled in a ring, while neurons in adjacent

layers are connected only to their adjacent neurons. (A) Neurons within each

layer are coupled in a ring and interact only with their nearest neighbors via

electrical synapses (κ
1,e
, τ

1,e
, κ

2,e
, τ

2,e
); multiplexing between these layers,

represented by the black vertical dashed lines, may occur via electrical

(κm,e , τm,e ) or (inhibitory or excitatory) chemical synapses (κm,c , τm,c ). (B) Neurons

within each layer are coupled in a ring and interact with nl,c nearest neighbors

via inhibitory chemical synapses (κ
1,c
, τ

1,c
, κ

2,c
, τ

2,c
); multiplexing between these

layers, represented by the black vertical dashed lines, may occur via electrical

(κm,e , τm,e ) or (inhibitory or excitatory) chemical (κm,c , τm,c ) synapses. In both

scenarios, an enhanced SISR in layer l = 1 is used to optimize a poor or

non-existent SISR in layer l = 2 by variation of the time-delay coupling

parameters within a population (κ
1,e
, τ

1,e
, κ

2,e
, τ

2,e
, κ

1,c
, τ

1,c
, κ

2,c
, τ

2,c
) and

between populations (κm,e , τm,e , κm,c , τm,c ).

between distantly situated neurons. To account for this,
the model implements layers with bidirectional electrical
coupling with nearest neighbor interactions (Figure 1A), while
unidirectional chemical coupling is implemented with nonlocal
interactions, i.e., also including connections other than nearest
neighbor interactions (Figure 1B). These coupling topologies
and interaction modes are biologically relevant and will also
allow us to compare the functional role played by chemical
and electrical synaptic interactions in processing information
generated during SISR.

The stochastic differential equations resulting from this two-
layer FHN neural network are given by



























dv
l,i

=

(

v
l,i
−

v3
l,i

3
− w

l,i
+ E

l,i
+Me

l,i
− C

l,i
−Mc

l,i

)

dt

+ σl dWl,i
,

dw
l,i
= ε(v

l,i
+ α − βw

l,i
) dt,

(1)
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where each neuron is represented by a node i = 1, . . . ,N in
the multiplex network with layers l = 1, 2, and the functional
dependencies are given by,


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




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
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
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
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


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






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















































E
l,i

=

κ
l,e

2n
l,e

i+n
l,e

∑

j=i−n
l,e

(

v
l,j
(t − τ

l,e
)− v

l,i
(t)
)

,

C
l,i

=

κ
l,c

2n
l,c

(v
l,i
(t)− Vsyn )

i+n
l,c

∑

j=i−n
l,c

{

1+ exp
[

−λ

(

v
l,j
(t − τ

l,c
)− 2syn

)]}

−1
,

Me
1,i

= κm,e

(

v2,i (t − τm,e )− v1,i (t)
)

,

Me
2,i

= κm,e

(

v1,i (t − τm,e )− v2,i (t)
)

,

Mc
1,i

= κm,c

(

v1,i (t)− Vsyn

)

{

1+ exp
[

−λ
(

v2,i (t − τm,c )− 2syn

)]}

−1
,

Mc
2,i

= κm,c

(

v2,i (t)− Vsyn

)

{

1+ exp
[

−λ
(

v1,i (t − τm,c )− 2syn

)]}

−1
.

(2)

We fixed the number of neurons per layer to N = 25 throughout
this study. The membrane potential and the recovery current
variables of neuron i in layer l are given by v

l,i
∈ R and w

l,i
∈

R, respectively, and 0 < ε ≪ 1 sets the timescale separation
between the fast membrane potential and the slow recovery
current variables. The excitability threshold β > 0 of the neurons
is a codimension-one Hopf bifurcation parameter. α ∈ (0, 1) is
a constant parameter. The additive noise term dW

l,i
represents

mean-centered Gaussian noise with 〈dW
l,i
(t) dW

l,i
(t′)〉t = δ(t −

t′) and variance (strength) σ
l
, and it models the synaptic

fluctuations observed in neural networks.
E
l,i

represent the electrical synaptic interactions between
neurons coupled within a ring layer network with strength κ

l,e

and time delay τ
le
, respectively, and an interaction range set

to n
l,e

= 1 since electrical synapses interact only locally. The
coupling mediated by electrical synapses is of diffusive type, i.e.,
the electrical coupling term (intra- or inter-layer) vanishes if v1,i
and v1,j (resp. v2,i and v2,j ) or v1,i and v2,i are equal.

Me
1,i

and Me
2,i

represent the coupling between layers via
electrical synapses (i.e., electrical multiplexing of layers) with
strength κm,e and delay τm,e , respectively.

C
l,i
represent chemical synaptic interactions between neurons

coupled within a layer with ring topology, with strength κ
l,c
and

time delay τ
l,c

and where 1 < n
l,c

< (N − 1)/2 represents
interaction range on the ring network layer; we fix n

l,e
= 8 all

through this paper. The chemical synaptic function is modeled

by a sigmoidal input-output function, Ŵ(vi) =
1

1+ e−λ(vi−2syn )

(see Equation 2 in Greengard, 2001), where parameter λ = 10.0
determines the slope of the function and 2syn = −0.25 the
synaptic firing threshold.

Mc
1,i
and Mc

2,i
represent the coupling between layers mediated

by chemical synapses (i.e., chemical multiplexing of layers)

with κm,c and τm,c representing the strength and time delay,
respectively. Vsyn represents the synaptic reversal potential. For
Vsyn < v

l,i
(t), the chemical synaptic interaction has a depolarizing

effect that makes the synapse inhibitory; for Vsyn > v
l,i
(t), the

synaptic interaction has a hyper-polarizing effect, making the
synapse excitatory. For the version of the FHN neuron model
used in this study, the membrane potentials |v

l,i
(t)| ≤ 2.0

(l = 1, 2; i = 1, 2, . . . ,N) for all time t. For the choice of
fixed Vsyn = −3.0 (maintained throughout our computations),
the term (v

l,i
(t) − Vsyn) in Equation (2) is always positive. So,

the inhibitory and excitatory natures of chemical synapses will
depend only on the sign in front of the synaptic coupling
strengths κ

l,c
and κm,c . To make the chemical synapse inhibitory,

we chose a negative sign i.e., when the pre-synaptic neuron
spikes, it prevents the post-synaptic neuron from spiking and,
conversely, a positive sign for excitatory chemical synapses.

3. NUMERICAL METHODS

In our numerical simulations, we used the fourth-order Runge-
Kutta algorithm for stochastic processes (Kasdin, 1995) to
integrate over a very long time interval (T = 600, 000 time units)
to average time series over time with seven realizations for each
noise amplitude. In the numerical simulations, this long time
interval permitted us to collect with a small noise amplitude at
least 125 interspike intervals with ε = 0.0005≪ 1. Each network
layer had N = 25 neurons.

To measure how pronounced SISR is, we used the coefficient
of variation (RT ), which is an important statistical measure
based on the time intervals between spikes. It measures the
regularity of noise induced spiking and therefore a measure of
how pronounced SISR can be at a particular noise amplitude. RT

exploits the inter-spike interval (ISI) where the mth interval is
defined as the difference between two consecutive spike times tmi
and tm+1

i of neuron i in a network, namely ISIi = tm+1
i − tmi > 0.

For the ith neuron, the ratio between the standard deviation and
themean defines the coefficient of variation of the ISIs over a time
interval [0,T] as (Pikovsky and Kurths, 1997):

RTi
=

√

〈ISI2i 〉 − 〈ISIi〉2

〈ISIi〉
, (3)

where 〈ISIi〉 and 〈ISI
2
i 〉 represent the mean and the mean squared

inter-spike intervals of the ith neuron, respectively. The above
definition of RT is limited to characterizing SISR in an isolated
neuron. For a network of coupled neurons, SISR can bemeasured
by redefining RT as follows (Masoliver et al., 2017):

RT =

√

〈ISI2〉 − 〈ISI〉2

〈ISI〉
, (4)

with


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





















〈ISI〉 =
1

N

N
∑

i=1

〈ISIi〉,

〈ISI2〉 =
1

N

N
∑

i=1

〈ISI2i 〉,

(5)
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where the extra bar indicates the additional average over the total
number of neurons N in the layer.

Of course, other statistical measures exist such as the
correlation time, the power spectral density, and the signal-to-
noise ratio which are commonly used measures to quantify the
coherence of noise induced spiking activity. However, from a
neurobiological point of view, RT is more important than the
other measures because it is related to the timing precision of
the information processing in neural systems (Pei et al., 1996).
Because of RT ’s importance in neural information processing, we
shall use it to characterize the regularity of the noise-induced
oscillations generated by SISR in our neural network. For a
Poissonian spike train (rare and incoherent spiking), RT = 1. If
RT < 1, the sequence becomes more coherent, and RT vanishes
for a periodic deterministic spike train. RT values greater than 1
correspond to a point process that is more variable than a Poisson
process (Kurrer and Schulten, 1995; Yamakou and Jost, 2018).

4. CONDITIONS FOR SISR IN ISOLATED
LAYERS IN THE EXCITABLE REGIME

We first consider the case of isolated layers of the multiplex
networks in Figures 1A,B. Thus, neurons in such an isolated
layer are connected either only via electrical synapses or via
chemical synapses. In particular, here we will establish the
analytic conditions necessary for the emergence of the SISR in
these isolated network layers of FHN neurons in the excitable
regime. From these conditions, we will furthermore obtain the
minimum and maximum noise amplitudes required for SISR to
occur in an isolated layer.

For SISR to occur, it is necessary to be in the excitable
parameter regime. The isolated FHN neuron has a unique and
stable fixed point in this regime. Choosing an initial condition in
the basin of attraction of this fixed point will result in at most one
large non-monotonic excursion into the phase space after which
the trajectory asymptotically approaches the fixed point and stays
there until initial conditions are changed again (Izhikevich, 2000;
Yamakou and Jost, 2018).

Considering the multiplex networks in Figure 1 with
disconnected layers (κm,e = κm,c = 0), we may place an isolated
neuron (κ

l,e
= 0 or κ

l,c
= 0) into an excitable regime by fixing

parameter α = 0.5. The bifurcation parameter β is chosen such
that β > β

h
(ε), where β

h
(ε) is defined as the Hopf bifurcation

value of an isolated neuron. Fixing the timescale separation
parameter value to ε = 0.0005, we calculate the Hopf bifurcation
value to be β

h
(ε) = 0.7497. It is important to note That, for

β ≤ β
h
(ε), an isolated neuron is in the oscillatory regime—

a regime that we want to avoid since the coherent oscillations
generated by SISR are due only to the presence of noise rather
than to the occurrence of a Hopf bifurcation (Yamakou and Jost,
2018).

Moreover, we have to ensure that the network of coupled
neurons as a whole stays in the excitable regime rather than
just single neurons in isolation. Indeed, certain time-delayed
couplings may induce self-sustained oscillations in a network
layer even though the isolated neurons remain inside the

excitable regime. In layers with excitatory chemical synapses, a
saddle-node bifurcation onto a limit cycle may generate self-
sustained oscillations induced via time-delayed couplings (Schöll
et al., 2009). On the other hand, when used for the multiplexing
of layers, some values of time delays and coupling strengths of the
excitatory chemical synapses cannot provoke this saddle-node
bifurcation. Therefore, we did not consider excitatory chemical
synapses for the coupling of neurons within layers but rather only
for the coupling between layers. We therefore need to make sure
that neurons connected in each network layer stay outside the
parameter regime where oscillations are induced by time-delayed
coupling. First, we need to determine if such a regime exists and
identify it.

Taking the limit ε → 0 in the isolated layer l = 1, 2 (κm,e =

κm,c = 0) for either electrical (κ
l,c

= 0) or chemical synapses
(κ

l,e
= 0) only, the equations for each neuron in this layer reduces

to coupled Langevin equations of the form,

dv
l,i
= −

∂Ue,c
i (v

l,i
,w

l,i
)

∂v
l,i

dt + σl dWl,i, (6)

where the electrical Ue
i (vl,i ,wl,i

) and chemical Uc
i (vl,i ,wl,i

)
interaction potentials (i = 1, . . . ,N) are double-well potentials
given by Equation (7) and may be viewed as functions of v

l,i

where w
l,i
is nearly constant. Figures 2, 3, respectively show the

modulation of landscapes of electrical and chemical interaction
potentials with changing synaptic strength.
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2
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i+n
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v
l,i
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v
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v
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,

(7)

We observe three different behaviors for the electrical potential
interaction Ue

i (vl,i ,wl,i
). (i) When wl,i < 0, we find that

Ue
i (vl,i ,wl,i

) is asymmetric with the shallower well on the left.
The neuron is close to the stable homogeneous fixed point at
(v∗

l,i
,w∗

l,i
) = (−1.003975,−0.666651), and a spike consists of

jumping over the left energy barrier△U le(w
l,i
) into the right well

(see Figure 2A). (ii)Whenw
l,i
= 0, thenUe

i (vl,i ,wl,i
) is symmetric

with △U le(w
l,i
) = △Ure(w

l,i
), and the neuron is half way

between the quiescent state and the spike state (see Figure 2B).
(iii) When w

l,i
> 0, then Ue

i (vl,i ,wl,i
) is also asymmetric. The

neuron has spiked and a return to the quiescent state (the
homogeneous fixed point) consists of jumping over the right
energy barrier △Ure(w

l,i
) into the left well (see Figure 2C). The

intra-layer electrical synapse κ
l,e
does not change the symmetry

(or asymmetry) of the interaction potential Ue
i (vl,i ,wl,i

). It only
changes the depth of the energy barriers. The stronger κ

l,e
is,
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FIGURE 2 | The electrical interaction potential Ue
i (vl,i ,wl,i

) in Equation (7) is shown for a locally coupled ring network topology (n
l,e
= 1) with the energy barriers for the

asymmetric cases (wl,i 6= 0) (A,C) and symmetric (wl,i = 0) case (B). The stronger the intra-layer synaptic strength κ
l,e
is, the deeper the energy barrier functions

△Ule
i (wl,i ) and △Ure

i (wl,i
) are. The saddle point and the left and right minima of the interaction potential are located at v

l,i
= v∗m(wl,i

), v
l,i
= v∗l (wl,i

), and v
l,i
= v∗r (wl,i

),

respectively.

the deeper the energy barrier functions△U le(w
l,i
) and△Ure(w

l,i
)

defined in Equation (9) are.
The chemical potential interaction Uc

i (vl,i ,wl,i
) shows richer

landscape dynamics due to its stronger nonlinearity. We first
notice that, just like with intra-layer electrical synaptic strength
κ
l,e
, intra-layer inhibitory chemical synaptic strength κ

l,c
changes

the depth of the energy barriers △U lc
i (wl,i) and △Urc

i (wl,i). That

is, the stronger κ
l,c
is, the deeper the energy barriers △U lc

i (wl,i)
and △Urc

i (wl,i) are. In contrast to the electrical synaptic strength
κ
l,e
, the inhibitory chemical synaptic strength κ

l,c
is capable of

changing the symmetry or (asymmetry) of the chemical potential
Uc
i (vl,i ,wl,i

), where we distinguish the following cases: (i) When
wl,i < 0, then Uc

i (vl,i ,wl,i
) can be symmetric or asymmetric

depending on the value of the inhibitory chemical synaptic
strength κ

l,c
. If wl,i < 0 and κ

l,c
= 0.16, we see from Figure 3A

that Uc
i (vl,i ,wl,i

) is symmetric and becomes asymmetric as κ
l,c

changes. (ii) When wl,i = 0.0, we do not have any symmetric
chemical potential landscape as shown in Figure 3B, contrasting
our observations for the electrical potential. (iii) For wl,i > 0
(see Figure 3C), the chemical potential landscape is symmetric
for κ

l,c
= 0.2 and becomes asymmetric as κ

l,c
changes. Moreover,

we notice that, for values of the chemical synaptic strength κl,c for
which the chemical interaction potential is symmetric, the energy
barriers functions are shallower than in the symmetric case of
the electrical potential. The important common feature of the
electrical and inhibitory chemical potential is the deepening of

the energy barriers △U le,c
i (wl,i) and △Ure,c

i (wl,i) with increase in
the intra-layer electrical κ

l,e
, and inhibitory chemical κ

l,c
synaptic

strengths shall explain why SISR is deteriorated by stronger
intra-layer synaptic connections.

We choose parameters of the coupled neurons in Equation (6)
such that they satisfy the conditions necessary for the occurrence
of SISR. These conditions are adapted from those valid for an
isolated FHN neuron (DeVille et al., 2005; Yamakou and Jost,
2018) so that they include (one at a time) the time-delayed
electrical and inhibitory chemical synaptic connections between
the FHN neurons coupled in a ring network. The resulting
conditions are
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)
)

,

lim
(ε,σl)→(0,0)

σ 2
l

2
ln(ε−1) ∈

(

△U lc
i (w

∗

l,i
), Fc(κl,c

, τ
l,c
, n

l,c
)
)

,

lim
(ε,σl)→(0,0)

σ 2
l

2
ln(ε−1) = O(1),

β − βh(ε) > 0,

(8)

where















































Fe(κl,e
, τ

l,e
, n

l,e
) : =

{

(κ
l,e
, τ

l,e
, n

l,e
) :△U le

i (wl,i
) = △Ure

i (wl,i
)
}

,

Fc(κl,c
, τ

l,c
, n

l,c
) : =

{

(κ
l,c
, τ

l,c
, n

l,c
) :△U lc

i (wl,i
) or △Urc

i (wl,i
)

is maximum
}

,

△U le,c
i (w

l,i
) : = Ue,c

i

(

v∗m(wl,i),w
l,i

)

− Ue,c
i

(

v∗
l
(w

l,i
),w

l,i

)

,

△Ure,c
i (w

l,i
) : = Ue,c

i

(

v∗m(wl,i),w
l,i

)

− Ue,c
i

(

v∗r (wl,i
),w

l,i

)

,

(9)

with

v∗l,m,r(wl,i
) : =

{

v
l,i
: v

l,i
−

v3
l,i

3
− w

l,i
+

κ
l,e

2n
l,e

i+n
l,e

∑

j=i−n
l,e

(

v
l,j
(t − τ

l,e
)− v

l,i
(t)
)

= 0
}

,

(10)

for electrical synapses and

v∗l,m,r(wl,i
) : =

{

v
l,i
: v

l,i
−

v3
l,i

3
− w

l,i
−

κ
l,c

2n
l,c

i+n
l,c

∑

j=i−n
l,c

(v
l,i
− Vsyn )

{

1+ exp
[

− λ

(

v
l,j
(t − τm,c )− 2syn

)]}

−1
= 0

}

,

(11)
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FIGURE 3 | Landscapes of the inhibitory chemical interaction potential Uc
i (vl,i ,wl,i

) in Eq. (7) for a non-locally (nl,c = 8) coupled ring network topology. The symmetry of

the potential is governed not by the slow variable w
l,i
as in the case of the electrical interaction potential, but by the chemical synaptic strength κ

l,c
. In (A) with wl,i < 0,

the asymmetric potential can become symmetric when the synaptic strength is κl,c = 0.16. In (B) with wl,i = 0, the potential remains asymmetric for all values of the

synaptic strength κl,c. In (C) with wl,i > 0, the asymmetric potential can again become symmetric when the synaptic strength is κl,c = 0.20. Similarly to the electrical

synaptic strength, the stronger the intra-layer chemical synaptic strength κl,c is, the deeper the energy barrier functions △Ulc
i (wl,i

) and △Urc
i (wl,i

) are.

for chemical synapses. Furthermore, the solution sets of
Equations (10) and (11) are such that v∗

l
(w

l,i
) < v∗m(wl,i

) <

v∗r (wl,i
) define the left stable, middle unstable, and right stable

branches of the cubic nullcline of each FHN neuron.
The energy barrier functions △U le,c

i (w
l,i
) and △Ure,c

i (w
l,i
)

can be obtained from the electrical interaction potential
Ue
i (vl,i ,wl,i

) and the inhibitory chemical interaction potential
Uc
i (vl,i ,wl,i

) by taking the difference between the potential
function value at the saddle point v∗m(wl,i

) and at the local
minima v∗

l,r
(w

l,i
) of these interaction potentials (Yamakou and

Jost, 2018). The energy barriers △U le
i

(

w∗

l,i

)

or △U lc
i

(

w∗

l,i

)

(which

has to be crossed to induce a spike) is the value of the left
energy barrier function at the w

l,i
-coordinate of the stable

homogeneous steady state
[

v∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
),w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
)
]

or
[

v∗
l,i
(κ

l,c
, τ

l,c
, n

l,c
),w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
)
]

, respectively. This is

where the electrical △U le
i

[

w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
)
]

and chemical

△U lc
i

[

w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
)
]

energy barrier functions get their κ
l,e
, τ

l,e
,

n
l,e
and κ

l,c
, τ

l,c
, n

l,c
dependence from.

Now from the first two conditions of Equation (8), we
obtain the noise amplitude range [σmin

l
, σmax

l
] within which SISR

occurs in the layer network of electrically (chemically) coupled
FHN neurons:



































































σmine

l =

√

2△U le
i

(

w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
)
)

ln(ε−1)
,

σmaxe

l =

√

2Fe(κl,e
, τ

l,e
, n

l,e
)

ln(ε−1)
.

σminc

l =

√

2△U lc
i

(

w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
)
)

ln(ε−1)
,

σmaxc

l =

√

2Fc
(

κ
l,c
, τ

l,c
, n

l,c

)

ln(ε−1)
.

(12)

We observe that σmine

l
and σminc

l
depend on the fixed point

coordinatew∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
) andw∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
) which in turn also

depends on the synaptic parameters κ
l,e
, τ

l,e
, n

l,e
and κ

l,c
, τ

l,c
, n

l,c
,

respectively. Therefore, changing (κ
l,e
, τ

l,e
, n

l,e
) or (κ

l,c
, τ

l,c
, n

l,c
) will

change the value of w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
) or w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
), which will

in turn change the value of σmine

l
or σminc

l
via the energy barrier

function△U le
i (w

∗

l,i
) or△U lc

i (w
∗

l,i
), respectively. However, because

of the local nature electrical synapses and non-locality of the
chemical synapses, we fixed n

l,e
= 1 and n

l,c
= 8 throughout our

numerical computations. Hence, the two control parameters used
are the synaptic time-delayed couplings (τ

l,e
, κ

l,e
) and (τ

l,c
, κ

l,c
).

On the other boundary, σmaxe

l
and σmaxc

l
do not depend on

the coordinates of the stable homogeneous fixed point but on
the complicated functions Fe(κl,e

, τ
l,e
, n

l,e
) and Fc(κl,c

, τ
l,c
, n

l,c
),

completely defined in Equations (9), (10), and (11). Knowing the
minimum and maximum range of the noise amplitude within
which SISR occurs will be very useful in discussing the numerical
results in the following sections.

5. SISR IN ISOLATED LAYERS

5.1. SISR in Isolated Layers With Electrical
Synapses Only
We begin our numerical study with the dynamics of layer
l in isolation, where neurons are connected only via local
electrical synapses in a ring network topology, i.e., we consider
Equation (1) with n

l,e
= 1, κ

l,e
6= 0 and κm,e = κm,c = κ

l,c
= 0.

Figure 4 shows the variation of RT against the noise amplitude
σl for this layer. In the numerical computations, we choose ε =

0.0005≪1 because SISR can only occur in the singular limit, ε →

0, and the weak noise limit, σl → 0, imposed by Equation (8).
In Figure 4A, a weak electrical synaptic strength is considered

fixed, κ
l,e

= 0.1. All the flat-bottom RT -curves obtained with

different time delays (τ
l,e

= 0.0, τ
l,e

= 5.0, τ
l,e

= 10.0, τ
l,e

=

15.0, τ
l,e

= 20.0) show a deep and broad minimum, indicating

that the spike train has a high degree of coherence due to SISR

for a wide range of the noise amplitude. We notice that even
though the minimum (and low) values of RT stays constant for
various time delays, the left branch of the RT -curve is significantly
being shifted to the right as the time delay increases. This means
that with weak electrical synapses, the coherence of the spiking
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FIGURE 4 | Coefficient of variation R
T
against noise amplitude σ

l
of layer l in isolation. In (A) and (B), we have the R

T
curves of weak and strong electrical synaptic

strengths κ
l,e
, respectively, for short, intermediate and long synaptic time delays τ

l,e
. In (C) and (D), we have the R

T
curves of short and relatively long synaptic time

delays τ
l,e
, respectively, for weak, intermediate and strong synaptic strengths κ

l,e
. Increasing (decreasing) the electrical synaptic strength κ

l,e
or the length of its time

delay τ
l,e
, deteriorates (enhances) SISR by increasing (decreasing) the values of R

T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can

achieve very low values. For example, in (D), for κ
l,e
= 1.0 and τ

l,e
= 10.0, the red R

T
-curve lies entirely above the line R

T
= 1.0 with a lowest value of R

Tmin
= 1.24

occurring at just one point σ
l
= 4.6× 10−4, indicating the non-existence of SISR. Parameters of layer l: N = 25, n

l,e
= 1, β = 0.75, ε = 0.0005, α = 0.5.

activity due to SISR is not affected as the time delay becomes
longer, but the coherence is achieved only at relatively larger
noise amplitudes σ

l
. Thus, we can obtain the same degree of

SISR with longer time delays provided we increase the noise
amplitude (within the interval given in Equation 12) as the time
delay increases. In Figure 4A, we have approximately the same
minimum value of RTmin

≈ 0.015 for: τ
l,e
= 0.0 with σ

l
∈

(

3.7 ×

10−7, 1.9 × 10−2
)

; τ
l,e
= 5.0 with σ

l
∈

(

2.8 × 10−6, 1.9 × 10−2
)

;

τ
l,e

= 10.0 with σ
l
∈

(

5.5 × 10−6, 1.0 × 10−2
)

; τ
l,e

= 15.0

with σ
l

∈

(

1.9 × 10−5, 1.0 × 10−2
)

; and τ
l,e

= 20.0 with

σ
l
∈

(

2.8 × 10−5, 1.0 × 10−2
)

. We note that the lower bound
of the noise intervals increases as the time delay increases while
the upper bounds are almost fixed.

In Figure 4B, we consider a strong electrical synapse (κ
l,e

=

1.0). We observe that, in contrast to Figure 4A with a weak
electrical synapse, increasing the time delay squeezes the left and
right branches of the RT -curves into a smaller noise interval,
while shifting the curves to higher values, thus deteriorating
SISR. In Figure 4B, we have different noise intervals for
different minima of RT : RTmin

= 0.015 at τ
l,e

= 0.0 for σ
l
∈

(

2.8 × 10−7, 2.9 × 10−2
)

; RTmin
= 0.029 at τ

l,e
= 2.0 for

σ
l
∈

(

2.8 × 10−5, 2.8 × 10−3
)

; RTmin
= 0.078 at τ

l,e
= 4.0

for σ
l
∈

(

1.9 × 10−4, 6.4 × 10−4
)

. In the last two cases, the
noise intervals, in which we have the most deteriorated SISR,
have shrunk to points with RTmin

= 0.51 at σ
l
= 1.9 × 10−4

for τ
l,e
= 7.0; and RTmin

= 1.24 at σ
l
= 4.6× 10−4 for τ

l,e
= 10.0.

We thus see that, with strong electrical synapses, the effect of the
time delay on SISR becomes significant, unlike when the electrical
synapse is weak as in Figure 4A. In Figure 4B, we observe that
even though the RT -curves for τ

l,e
= 7.0 and τ

l,e
= 10.0 are non-

monotonic (characteristic of the existence of an optimal noise
value for coherence), the minimum values of these curves are
high (0.51 and 1.24, respectively). Here, at only τ

l,e
= 10.0, RTmin

is already above 1.0 (indicating a stochastic spiking activity that
is more variable than the Poisson process), whereas with weak
electrical synapses in Figure 4A, even at τ

l,e
= 20.0, we still have

RTmin
≈ 0.015.

In Figures 4C,D, we vary the electrical synaptic strength

while the synaptic time is fixed at a short (τ
l,e

= 1.0) and

a long (τ
l,e

= 10.0) delay, respectively. A similar behavior as

in Figures 4A,B is observed, with weak and strong electrical

synaptic strengths, respectively. That is, at short synaptic time
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delays (see Figure 4C), the RT -curves show a deep and broad
minimum, indicating a high degree of coherence due to SISR for
a wide range of the noise amplitude when the electrical synaptic
strength κ

l,e
is varied. Here, as κ

l,e
increases, and only the left

branches of the RT -curves are shifted to the right, while the
right branch of the RT -curves are fixed, thereby fixing the upper
bound of the noise amplitude σ

l
below which SISR is optimal.

This means that at short electrical time delays, the coherence of
the spiking activity due to SISR is not affected as the electrical
synaptic strength becomes stronger, but the coherence is achieved
only at relatively larger noise amplitudes σ

l
. In Figure 4D, where

electrical synaptic time delays are longer, increasing the electrical
synaptic strength not only increases the minimum value of the
RT -curves (thereby deteriorating SISR), but also shrinks the size
of the noise interval in which SISR is optimized on both ends.

The response of SISR to changes in the synaptic strength κ
l,e

and time delay τ
l,e
in Figure 4 can be explained in terms of the

electrical interaction potential Ue
i (vl,i ,wl,i

) given in Equation (7)
and represented in Figure 2. We observe in Figure 2 that, for
a fixed (n

l,e
= 1) ring network topology and time delay τ

l,e
, as

the synaptic strength κ
l,e
increases, the energy barriers △U le

i (wl,i
)

and △Ure
i (wl,i

) become deeper. In particular, when w
l,i

< 0, the
trajectory is in the left potential well and as κ

l,e
becomes stronger

(0.25, 0.5, 0.75, 1.0), the left energy barrier △U le
i (wl,i

) becomes
deeper (hence the trajectory at the bottom of the well get closer
to the homogeneous stable fixed point at w∗

l,i
= −0.666651).

The deeper the left energy barrier △U le
i (wl,i

) is (in other words,
the stronger the electrical synaptic strength κ

l,e
is), therefore,

the closer the trajectory to the stable fixed point is and the
further away the neural system from the oscillatory regime is.
For the trajectory to jump over a high energy barrier △U le

i (wl,i
),

a stronger noise amplitude σ
l
is of course needed. This is why

in Figure 4 as κ
l,e

increases, the left branch of the RT -curve is
shifted to the right, meaning that stronger noise amplitudes are
required to induce frequent spiking (i.e., frequent escaping from
the deep left energy barrier). But, as the noise amplitude becomes
bigger, the condition in Equation (8) requiring σ

l
→ 0 for

the occurrence of SISR is violated. Hence, SISR disappears with
increasing synaptic strength.

We can also see from Figure 4D that at longer time delay
τ
l,e
, this effect (the shifting of the left branch of the RT -curve

to the right) is more pronounced than in Figure 4C with a
shorter time delay. This is because, in Equation (7), the longer
the time delay is (τ

l,e
≫ 0), the further away is the quantity

[

v
l,i
(t)v

l,j
(t−τ

l,e
)−v

l,i
(t)2

]

from zero (since neurons are identical);
hence, the stronger is the effect of the synaptic strength κ

l,e
on

the electrical interaction potential, the energy barrier functions,
and, consequently, on the RT -curves. Otherwise, if τl,e → 0, then

because the neurons are identical,
[

v
l,i
(t)v

l,j
(t−τ

l,e
)−v

l,i
(t)2

]

→ 0,
and κ

l,e
will have little effect on the electrical interaction potential,

the energy barriers functions, and consequently on theRT -curves.
This is why the synaptic strength κ

l,e
has a stronger effect on

SISR only when τ
l,e
gets longer, and vice versa. This theoretical

explanation will also support the behavior of the time-delayed
chemical synapses in the optimization of SISR as we shall see
further below.

Secondly, at weak electrical synaptic strengths and short time
delays (Figures 4A,C), the upper bound of the noise interval for
which the RT -curves achieve their minima is almost constant.
Here, only the lower bound of the noise intervals is shifted to the
right. Whereas, at strong electrical synaptic strengths and long
time delays (Figures 4B,D), both the lower and upper bounds
of the noise intervals are shifted to the right and to t4he left as
τ
l,e

and κ
l,e

increase, respectively. This has the overall effect of
shrinking the noise interval in which the RT -curves achieve their
minima to a single value of σ

l
. This behavior can be explained in

terms of the minimum and maximum noise amplitudes between
which SISR occurs obtained in Equation (12).

We observe from Equation (12) that σmine

l
depends on

the fixed point coordinate w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
), which, in turn, also

depends on κ
l,e
, τ

l,e
, and n

l,e
= 1. Therefore, changing κ

l,e

and τ
l,e

will change the value of w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
), which will,

in turn, change the value of σmine

l
via the energy barrier

function△U le
i (w

∗

l,i
). Numerical computations indicate that σmine

l

increases as κ
l,e

and τ
l,e

increase (see Figure 4). On the other

boundary, σmaxe

l
does not depend on the coordinates of the

homogeneous stable fixed point, but on the complicated function
Fe(κl,e

, τ
l,e
, n2,e ), fully determined by Equations (9) and (10). In

Figures 4A,C (i.e., in the regimes of weak electrical synaptic
strength and short time delays, respectively), we notice that
σmaxe

l
≈ 10−2 is nearly constant for all values of the time delay

and electrical synaptic strength used. In Yamakou and Jost (2018),
where a single isolate FHN neuron is considered, such fixation of
the upper bound of the noise interval in which SISR occurs was
already observed. In the case of a single isolated FHN neuron,
the function Fe in Equation (9) takes a simple constant value

Fe =

3

4
. This implies (for a fixed ε = 0.0005) a fixed value for

σmaxe

l
=

[

3/2 · loge(ε
−1)
]1/2

.
In the case where a network of coupled FHN neurons is

considered, the fixation of the upper bound of the noise interval
for which SISR occurs can only be observed if Fe(κl,e

, τ
l,e
, n2,e ) →

C, where C is a constant. In particular, in a weak electrical
synaptic regime (κ

l,e
→ 0) and short time delay (τ

l,e
→ 0) regime

(or more precisely, [v
l,i
v
l,j
(t − τ

l,e
) − v2

l,i
(t)] → 0 as τ

l,e
→ 0,

because all the neurons are identical), F(κ
l,e
, τ

l,e
, n

l,e
) →

3

4
. In

these regimes (see Figures 4A,C), we observe that σmaxe

l
≈ 10−2,

corresponding to the value obtained in Yamakou and Jost (2018)
for the case of a single isolated FHN neuron (κ

l,e
= 0). In the

regimes of strong coupling (κ
l,e
≫ 0) and of long time delays

(τ
l,e
≫ 0 ⇒ [v

l,i
v
l,j
(t− τ

l,e
)− v2

l,i
(t)] 6= 0) shown in Figures 4B,D,

the function Fe in Equation (9) is now strongly modified by the
large values of κ

l,e
and τ

l,e
. This is why in these regimes, the upper

bound σmaxe

l
of the noise interval, for which SISR occurs, is not

fixed any longer but shifted to the left as τ
l,e

and κ
l,e

take on

larger values. In the case of chemical synapses, as we shall see

later, the same theoretical explanation holds for the shrinking, on

both ends, of the interval of the noise amplitude in which SISR is

optimized. Later, we shall focus on layer l = 2 with a non-existent
SISR when it is in isolation (κ2,e = 1.0 and τ2,e = 10.0; see the red
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FIGURE 5 | Coefficient of variation R
T
vs noise amplitude σ

l
of layer l in isolation. In (A) and (B), we have the R

T
curves of weak and strong chemical synaptic

strengths κ
l,c
, respectively, for short, intermediate and long synaptic time delays τ

l,c
. In (C) and (D), we have the R

T
curves of short and relatively long synaptic time

delays τ
l,c
, respectively, for weak, intermediate and strong synaptic strengths κ

l,c
. Increasing (decreasing) the inhibitory chemical synaptic strength κ

l,c
deteriorates

(enhances) SISR by increasing (decreasing) the values of R
T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can achieve very low values.

Thus, inhibitory chemical synaptic strength qualitatively behaves as the electrical synaptic strength in optimizing SISR. However, electrical synaptic and inhibitory

chemical synaptic time delays show opposite behaviors in the enhancement of SISR. Decreasing (increasing) the length of inhibitory chemical time delays τ
l,c
,

deteriorates (enhances) SISR by increasing (decreasing) the values of R
T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can achieve very

low values. This effect is particularly pronounced when the chemical synaptic strength is strong. For example, in (C), for κ
l,c
= 1.0 and τ

l,e
= 1.0, the red R

T
-curve

achieves relatively high minimum value R
Tmin

= 0.71 occurring at a relatively large noise amplitude σ
l
= 4.6× 10−4, indicating a very poor SISR. Parameters for layer l

are: N = 25, n
l,c
= 8, β = 0.75, ε = 0.0005, α = 0.5.

curve in Figure 4D with RTmin
> 1) and then investigate which

multiplexing configuration can best optimize SISR in this layer
when it is multiplexed with layer l = 1 when it already exhibits
pronounced SISR.

5.2. SISR in Isolated Layers With Inhibitory
Chemical Synapses Only
We investigated the dynamics of layer l in isolation, where
neurons are connected only via (non-local) inhibitory chemical
synapses in a ring network topology. Specifically, we consider
Equation (1) with n

l,e
= 8, κ

l,c
6= 0 and κm,e = κm,c =

κ
l,e

= 0. Figure 5 shows the variation of RT against the noise
amplitude σl for this layer. We also fixed ε = 0.0005 ≪ 1 so
that Equation (8) can be satisfied in a weak noise limit σl →

0, leading to the occurrence of SISR. We shall now mainly
compare the enhancement of SISR in layer l for two situations,

i.e., when the neurons are locally connected via time-delayed
electrical synapses (see Figure 4) and when the neurons are non-
locally connected via time-delayed inhibitory chemical synapses
(see Figure 5).

The first observation is that longer inhibitory time delays
enhance SISR, while longer electrical time delays deteriorate
SISR. However, similarly to electric time delays, chemical time
delays (τ

l,c
) have a strong effect on SISR only for stronger

chemical synaptic strength (κ
l,c
). In Figure 4A, the electrical

synaptic strength is weak (κ
l,e

= 0.1). Even though the interval
of the noise amplitude, for which a pronounced SISR occurs
(as indicated by the very low values of RT ), shrinks on the left
bound with increasing time delay, the low values of RT within
that interval remain unchanged (≈ 0.015). Similarly, results
in Figure 5A with the same weak inhibitory synaptic strength
(κ

l,c
= 0.1) show that changing the chemical time delays does also
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not affect the low and constant values of RT ≈ 0.014 (indicating
an optimized SISR). In contrast, however, the lower bound of
the noise interval with optimal SISR remains independent of
varying levels of time delay. Thus, for weak synaptic strength and
for increasing synaptic time delays, inhibitory chemical synapses
outperform electrical synapses in optimizing SISR, in the sense
that the former allow for a wider range of noise amplitudes for
which RT remains low.

In Figure 5B, where a large inhibitory chemical synaptic
strength (κ

l,c
= 1.0) is considered, time delays can have

significant effect on SISR, and this is in contrast to Figure 5A,
where κ

l,c
is weak. In Figure 5B, increasing the chemical time

delay enhances SISR by lowering the minimum value of RT . In
comparison to Figure 5A, the noise interval for which SISR is
optimal has shrunk on both sides. The reason for this shrinking
on both ends of the optimal noise interval is essentially the same
as for the case where the strength of electrical synapses is varied
(see Figures 4B,D). In Figure 5B, we have RTmin

= 0.29 at σ
l
=

3.7 × 10−5 for τ
l,c

= 5.0; RTmin
= 0.21 at σ

l
= 3.7 × 10−5 for

τ
l,c

= 10.0; RTmin
= 0.17 at σ

l
= 4.6 × 10−5 for τ

l,c
= 15.0;

RTmin
= 0.15 at σ

l
= 4.6 × 10−5 for τ

l,c
= 20.0; RTmin

= 0.12 at

σ
l
= 3.7× 10−5 for τ

l,c
= 25.0. However, the deteriorating effects

of electrical time delays on SISR is more pronounced than those
of the chemical time delays at the same synaptic strength (κ

l,e
=

κ
l,c

= 1.0) (see Figures 4B, 5B. This confirms that chemical
synapses are better at optimizing SISR than electrical synapses,
not only because they allow for a wider range of noise amplitude
in which optimal SISR may occur but also for the occurrence of
a more enhanced SISR, as indicated by the relatively lower values
of RT at long time delays.

In Figures 5C,D, we investigate the effects of chemical
synaptic strength in a short and long time delay regime.
Irrespective of the time delay regime, the stronger the chemical
synaptic strength is, the more deteriorated SISR is. The reason
behind this behavior is the same as the one given for the case
of electrical synapses. That is, as the chemical synaptic strength
κ
l,c
becomes larger, the energy barriers △U lc

i (wl,i
) and △Urc

i (wl,i
)

become deeper (see Figure 3). However, now a stronger noise
amplitude is required to jump over the deep energy barriers
and induce spiking, and this strong noise amplitude destroys
the coherence of the spiking (by violating the conditions in
Equation (8) requiring σ

l
→ 0) and hence deteriorates SISR.

The deterioration of SISR by stronger chemical synaptic
strengths is also observed with stronger electrical synaptic
strength. However, for short synaptic time delay regimes (τ

l,e
=

1.0 = τ
l,c
, see Figures 4C, 5C), we notice the following difference

for both synaptic types: When the time delay is relatively short,
electrical synapses optimize SISR compared to chemical synapses
as the synaptic strength is weakened. We see in Figure 5C with
τ
l,c

= 1.0 that SISR is destroyed as the κ
l,c

increases, whereas
in Figure 4C with τ

l,e
= 1.0, SISR remains enhanced as κ

l,e

increases. This means that an electrical synapse is a better means
than a chemical synapse in optimizing SISR at very short time
delays, irrespective of the synaptic strengths, while a chemical
synapse is better than an electrical synapse at very long time
delays, irrespective of the synaptic strengths.

In Figure 5, the reason for the deterioration of SISR with
decreasing time delays could be inferred from the reason given
for the deterioration of SISR with increasing synaptic strength.
That is, shortening the chemical synaptic time delays increases
the depth of the chemical energy barrier functions given in
Equation (9). This will in turn demand larger noise amplitude
to jump over deep energies barriers to induce spiking with no
coherence and hence very poor SISR, as seen, for example, from
the red curve in Figure 5C. Here, we see that rare spiking can
be induced only when the noise σ

l
≥ 10−4 as RT stays high

with increasing noise amplitude σ
l
. However, from conditions in

Equation (8), SISR requires σ
l
→ 0, which implies that increasing

the noise would not improve SISR. We can see from the red
curve in Figure 5C that a minimum value of RTmin

≈ 0.71,
already indicating a very poor SISR, occurs at a relatively large
noise amplitude of σ

l
= 0.18. Below, we shall focus on the

enhancement of this very poor SISR in layer l = 2 (for κ2,c =

τ2,c = 1.0; see also red curve in Figure 5C) by using various
multiplexing configurations, where layer l = 1 already exhibits
enhanced SISR in isolation.

6. MULTIPLEXING AND OPTIMIZATION OF
SISR

We now address the following questions: (1) Is an optimization
of SISR based on the multiplexing of layers possible? (2) Which
synaptic multiplexing configuration is the best optimizer of
SISR? To answer these two questions, we configure the synaptic
strength and time delay of one layer (say layer 1) such that SISR
is optimal in this layer. The corresponding parameters of layer 2
are configured such that SISR is non-existent in this layer. Then,
we connect these two layers in a multiplex fashion (see Figure 1)
in six different multiplexing configurations.

In the first three configurations, the two layers of themultiplex
network each consist of neurons that are intra-connected by
only electrical synapses (κ1,e , τ1,e ) and (κ2,e , τ2,e ), and are inter-
connected (multiplexed) by (i) electrical synapses (κm,e , τm,e ),
(ii) inhibitory chemical synapses (κm,c , τm,c ), and (iii) excitatory
chemical synapses (κm,c , τm,c ).

In the next three configurations, we use the same three
synaptic multiplexing configurations of two layers, each
consisting of neurons that are intra-connected by only inhibitory
chemical synapses. We do not consider excitatory chemical
synapses for intra-connectivity because this type of synapse
induces coherent spiking activities even in the absence of noise,
which is not a requirement for SISR. On the other hand, we
use excitatory chemical synapses in the inter-layer connections
(multiplexing) Because, for some synaptic strengths and time
delays, the multiplex network remains in the excitable regime
in the absence of noise—a requirement for observing SISR.
However, we also have situations in which the multiplexing
excitatory chemical synapses strengthen the excitable regime
of the network by making the homogeneous fixed point more
stable, thereby requiring very large noise amplitudes to have a
chance of inducing a spike. Large noise amplitudes, however,
violate the conditions necessary for the occurrence of SISR.
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FIGURE 6 | Color-coded minimum coefficient of variation (R
Tmin

) of layer 2 as a function of the multiplexing parameters. Both layers 1 and 2 are intra-connected by

electrical synapses. (A) Shows the enhancement performances of the electrical multiplexing (κm,e , τm,e ). For optimized SISR in layer 2, we need either a shorter τm,e and

stronger κm,e ; or a longer τm,e and a weaker κm,e . (B) Shows the enhancement performances of inhibitory chemical multiplexing (κm,c , τm,c ). For optimized SISR in layer

2, we need a stronger κm,c and a very long τm,c . (C) Shows the enhancement performances of excitatory chemical multiplexing (κm,c , τm,c ). For optimized SISR in layer 2

we need very short τm,c and stronger κm,c . Parameters for layer 1, we need N = 25, n
1,e

= 1, β = 0.75, ε = 0.0005, α = 0.5, κ
1,e

= 0.1, and τ
1,e

= 1.0. Parameters for

layer 2, we need N = 25, n
2,e

= 1, β = 0.75, ε = 0.0005, α = 0.5, κ
2,e

= 1.0, and τ
2,e

= 10.0.

We shall therefore also avoid such regimes and stay in the
excitable regimes where vanishingly small noise amplitudes have
a non-zero probability of inducing at least a spike in the large
time interval we considered in our simulations.

In the following numerical simulations, we have ensured that
the multiplex network stays in the excitable regime by checking
that all the synaptic strengths and time delays of the multiplexing
synapses are such that no self-sustained spiking activity occurs
in the absence of noise. It is worth mentioning here that
the optimization of SISR based on the multiplexing approach
appears not to be feasible in a network of mixed layer type, i.e.,
consisting of an electrical layer multiplexed to a chemical layer.
We investigated all the possible configurations of mixed layered
networks, i.e., those with electrical, inhibitory, and excitatory
chemical multiplexing. Extensive numerical simulations (not
shown) clearly indicated that the optimization of SISR, for the
ranges of the multiplexing synaptic strengths and time delays
considered, was not possible in mixed layered networks. For
this reason, we only discuss the layered networks that display
the capability of optimizing SISR and compare the optimization
abilities of various multiplexing connections between two
electrical layers and then between two inhibitory chemical layers.

6.1. Multiplexing of Electrical Layers
We consider layer 1 and layer 2 in which neurons are electrically
coupled only. We choose the synaptic parameters (κ1,e , τ1,e ) of
layer 1 such that SISR is pronounced, i.e., we choose a weak
synaptic strength κ1,e = 0.1 and a short synaptic time delay τ1,e =

1.0 (green RT -curve Figure 4C with RTmin
= 0.015). For layer

2, we set the synaptic parameters such that SISR is non-existent,
i.e., we choose a strong synaptic strength κ1,e = 1.0 and a long
synaptic time delay τ2,e = 10.0 (red RT -curve Figure 4D with
RTmin

= 1.24). These two layers are then coupled in a multiplex
network as shown in Figure 1A. Themultiplexing introduces two
other parameters—themultiplexing synaptic strengths {κm,e , κm,c}

and their corresponding time delays {τm,e , τm,c}. Figure 6 shows

the color-coded minimum values of the coefficient of variation
RTmin

of layer 2 as a function of the multiplexing parameters for
the three multiplexing configurations considered.

In Figure 6A, the multiplexing between the two layers is
mediated by electrical synapses with parameters (κm,e , τm,e ). We
can clearly see that even very weak multiplexing κm,e ≥ 0.1,
particularly at short time delays τm,e ≤ 9.5, can induce a very
pronounced SISR in layer 2 (where SISR was non-existent in
isolation) as indicated by the dark red color corresponding to
very low values of RTmin

. In the region τm,e ≤ 9.5, stronger
multiplexing strengths push RTmin

to even lower values as
indicated by the darker red color, thus optimizing SISR in layer 2.
However, as the multiplexing time delay becomes longer τm,e >

9.5, this time delay starts to dominate the control of SISR. As the
time delay τm,e > 9.5 increases, SISR progressively deteriorates
and the effect of strong multiplexing is reversed, i.e., the stronger
κm,e is, the more SISR deteriorates, as indicated by the change
of color of RTmin

from dark red to light red. While in this same
region, i.e., τm,e > 9.5, weaker multiplexing optimize SISR better
than strong ones, as seen in the region bounded by τm,e ∈

[9.5, 15.0] and κm,e ∈ [0.1, 1.0] with a dark red color.
In Figure 6B, the multiplexing between the two electrical

layers is mediated by inhibitory chemical synapses with
parameters (κm,c , τm,c ). We notice, in contrast to Figure 6A, that
the multiplexing inhibitory chemical synaptic strength takes
a maximum value of κm,c = 0.2, i.e., it stays in the weak
multiplexing regime and the time delay goes up to the very large
value of τm,c = 3, 000. As already pointed out, we always want the
network to stay in the excitable regime such that self-sustained
oscillations do not arise due to bifurcations. In this multiplexing
configuration, values of the inhibitory chemical synaptic strength
greater than 0.2 induces oscillations in the absence of noise—
for SISR, the system should oscillate coherently due only to the
presence of noise and not due to a bifurcation. As we can see
in Figure 6B, weak multiplexing inhibitory chemical synaptic
strength κm,c ∈ [0.0, 0.2] cannot induce SISR in layer 2 as the
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values of RTmin
stay very high above 1.0, except at very long

multiplexing delays τm,c ≥ 2, 750. It can be observed that for
time delays τm,c ≤ 1, 500, stronger multiplexing values, κ2,c & 0.1,
deteriorate SISR (yellow region) to a larger extent than the weaker
values, κ2,e . 0.1 (orange region). But when the multiplexing
time delay becomes very long, e.g., at τm,c = 3, 000, stronger
multiplexing (κ2,c & 0.1) induces an optimized (dark red color
of RTmin

) SISR in layer 2, while weaker multiplexing (κ2,c . 0.1)
cannot optimize SISR, as indicated by the orange color of RTmin

.
This means that multiplexing with inhibitory chemical synapses
has the opposite effect compared to multiplexing with electrical
synapses, in terms of SISR in layer 2. To sum up, stronger κm,c

means poorer SISR at shorter τm,c but better SISR at longer τm,c ;
the opposite is also true, as stronger κm,e means better SISR at
shorter τm,e , but poorer SISR at longer τm,e .

In Figure 6C, the multiplexing between the two electrical
layers is mediated by excitatory chemical synapses with
parameters (κm,c , τm,c ). First, we notice the range of the synaptic
strength and the time delay. For κm,c > 0.4, the excitability of
the network becomes so strong that even large noise amplitudes
(SISR requires vanishingly small noise) are not longer capable
of inducing a spike in the large time interval considered. In
contrast to weak multiplexing electrical synapses in Figure 6A,
weak multiplexing excitatory chemical synapses are incapable of
inducing SISR in layer 2. In Figure 6C, for a weak multiplexing
κm,c ∈ [0.0, 0.28], RTmin

remains high with the lowest value above
0.5 (as indicated by the white, yellow, orange, and light red colors
of RTmin

) for all of the time delays considered. This inability of
weak excitatory chemical multiplexing to optimize SISR in layer
2 is similar to that of weak inhibitory chemical multiplexing
in Figure 6B. However, for an intermediate excitatory chemical
multiplexing, i.e., κm,c ∈]0.28, 0.4], an optimized SISR is induced
in layer 2 (just like with intermediate electrical multiplexing in
Figure 6A), but only at very short time delays τm,c ∈ [0.0, 2.0],
where RTmin

assumes low values corresponding to the dark red
colors of RTmin

. And the main difference between inhibitory
chemical multiplexing and excitatory chemical multiplexing
is in terms of their time delays. While inhibitory chemical
multiplexing requires extremely long time delay (τm,c ≥ 2, 750)
to optimize SISR in layer 2, excitatory chemical multiplexing
requires extremely short time delays (τm,c ∈ [0.0, 2.0]) for
the optimization.

6.2. Multiplexing of Inhibitory Chemical
Layers
Here we consider layers 1 and 2 in which neurons are coupled
only via inhibitory chemical synapses. We set the synaptic
parameters (κ1,c , τ1,c ) of layer 1 such that SISR is pronounced,
i.e., we choose a weak synaptic strength κ1,c = 0.1 and a
long synaptic time delay τ1,c = 25.0, see the green RT -curve
Figure 5D with RTmin

= 0.015. For layer 2, we set the synaptic
parameters such that SISR is very poor, i.e., we choose a strong
synaptic strength κ1,c = 1.0 and a short synaptic time delay
τ2,c = 1.0, see the red RT -curve Figure 5C with RTmin

= 0.71.
These two layers are then coupled in a multiplex network as
shown in Figure 1B. The multiplexing introduces two other
parameters—the multiplexing synaptic strengths {κm,e , κm,c} and
their corresponding time delays {τm,e , τm,c}. Figure 7 shows the

color-coded minimum values of the coefficient of variation RTmin

of layer 2 as a function of the multiplexing parameters for the
three multiplexing configurations considered.

In Figure 7A, the multiplexing between the two inhibitory
chemical layers is mediated by electrical synapses with
parameters (κm,e , τm,e ). It is observed that electrical multiplexing
cannot at all optimize SISR in layer 2 as indicated by the
very high values of RTmin

in the entire κm,e − τm,e parameter
space. Comparing Figure 6A and Figure 7A, we can conclude
that electrical multiplexing become good optimizers of SISR
only when the multiplexed layers are both intra-connected by
electrical synapses. In particular, we observe that, while a strong
multiplexing κm,e with a short delay τm,e of layers intra-connected
by electrical synapses optimizes SISR in layer 2, (see Figure 6A),
a strong multiplexing κm,e with a short delay τm,e of layers
intra-connected by inhibitory chemical synapses makes SISR
rather worse (RTmin

≥ 1.0, see Figure 7A) in layer 2 than when
this layer is in isolation (RTmin

= 0.71).
In Figure 7B, the multiplexing between the two inhibitory

chemical layers is mediated by inhibitory chemical synapses
with parameters (κm,c , τm,c ). In this multiplexing configuration,
an optimization of SISR in layer 2 is impossible as well,
especially at intermediate multiplexing strengths and short time
delays, where the RTmin

assumes an even larger value (RTmin
≈

0.9) than layer 2 in isolation (RTmin
= 0.71). Moreover,

even very long multiplexing time delays, as in the case of
electrical layers multiplexed by inhibitory chemical synapses
(see Figure 6B), cannot optimize SISR in layer 2 irrespective of
the multiplexing strength. Thus, we conclude that multiplexing
inhibitory chemical synapses is generally a bad optimizer of SISR
in layers intra-connected by either chemical synapses or electrical
synapses. However, recall that inhibitory chemical synapses can
be very good optimizers of SISR within a layer (see Figure 5).

In Figure 7C, the multiplexing between the two inhibitory
chemical layers is mediated by excitatory chemical synapses
with parameters (κm,c , τm,c ). Note that the range of multiplexing
time delay we considered is very short, i.e., τm,c ∈ [0.0, 2.0].
For τm,c > 2.0, excitatory chemical multiplexing induces
self-sustained oscillations in the absence of noise—a regime
not required for SISR. In contrast to electrical and inhibitory
chemical multiplexing of layers intra-connected with chemical
synapses (see Figures 7A,B), excitatory chemical multiplexing
of such layers can perform extremely well at optimizing SISR.
However, this capability for very strong optimization is only
possible at strong excitatory chemical multiplexing (κm,c ≥ 0.8)
and very short time delays (τ2,c ∈ [0.0, 1.2]) with RTmin

≈

0.03. This implies that excitatory chemical synapses, as a
multiplexing synapse, could play more important functional
roles (than electrical and inhibitory chemical synapses) in neural
information processing due to SISR in multiplexed layers intra-
connected by inhibitory chemical synapses.

7. CONCLUSION

We have investigated the effects of electrical and chemical
synaptic couplings on the noise-induced phenomenon of SISR
in isolated layers as well as in multiplexed layer networks of the
FHN neuron model in the excitable regime. We have presented
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FIGURE 7 | Color-coded minimum coefficient of variation (R
Tmin

) of layer 2 against multiplexing parameters. Each of layer 1 and layer 2 is intra-connected by inhibitory

chemical synapses. (A) Shows the enhancement performances of the electrical multiplexing (κm,e , τm,e ). Here, we observe that electrical multiplexing cannot optimize

SISR in layer 2, especially at stronger multiplexing. (B) Shows the enhancement performances of the inhibitory chemical multiplexing (κm,c , τm,c ). In this case, the

enhancement of SISR is even worse than in (A), especially at intermediate multiplexing strengths and short time delays. (C) Shows the enhancement performances of

the excitatory chemical multiplexing (κm,c , τm,c ). Here, an enhancement is possible. An optimized SISR (R
Tmin

≈ 0.03) emerging at strong excitatory chemical synapses

(κm,c ≥ 0.8) with short time delays (τm,c ≤ 1.2). Parameters of layer 1: N = 25, n
1,c

= 8, β = 0.75, ε = 0.0005, α = 0.5, κ
1c

= 0.1, τ
1,c

= 25.0. Parameters of layer 2:

N = 25, n
l,c
= 8, β = 0.75, ε = 0.0005, α = 0.5, κ

l,c
= 1.0, τ

l,c
= 1.0.

the analytic conditions necessary for SISR to occur in isolated
layers with neurons connected either via electrical or inhibitory
chemical synapses. From these analytic conditions, we have also
obtained the minimum and maximum synaptic noise amplitude
required for the occurrence of SISR in isolated layers.

Numerical computations indicate that, in an isolated layer,
the weaker the electrical synaptic strength and the shorter the
corresponding synaptic time delay are, the more enhanced SISR
is. However, the deteriorating effect of stronger electrical synaptic
couplings is significant only at longer time delays and vice versa.
On the other hand, in an isolated layer with inhibitory chemical
synapses, weaker inhibitory chemical synaptic couplings just like
their weaker electrical counterparts enhance SISR. Moreover, the
longer the synaptic time delay is, the more enhanced SISR is—in
contrast to isolated layers with electrical synapses. The enhancing
effect of the longer synaptic time delays in isolated layers with
inhibitory chemical synapses becomes significant only at stronger
synaptic strengths. Furthermore, it is also found that at very short
time delays and irrespective of the synaptic strengths, electrical
synapses are better optimizers of SISR than chemical synapses.
Meanwhile, at very long time delays, and irrespective of the
synaptic strengths, chemical synapses are a better optimizers
of SISR than electrical synapses. The expressions of electrical
and chemical interaction potentials together with the minimum
and maximum values of the noise amplitude within which an
optimized SISR can occur are used to provide a theoretical
explanation of the above effects.

After identifying the electrical and chemical synaptic strengths
and time delays that destroy (or optimize) SISR in an isolated
layer, we proceeded with identifying multiplexing configurations
between the two layers that would optimize SISR in the second
layer where SISR would be very poor or non-existent in isolation.
For this identification, the synaptic parameters of one layer is
configured such that SISR is optimal and this layer is multiplexed
with a second layer where synaptic parameters are such that SISR
is very poor or even non-existent. We then investigated which

multiplexing connection (i,e., electrical, inhibitory chemical, or
excitatory chemical synapses) is a better optimizer of SISR in the
second layer.

In the first optimization configuration, we were interested in
optimizing SISR in an electrically coupled layer (i.e., a layer where
neurons are coupled only via electrical synapses) by multiplexing
this layer with another electrically coupled layer. We found
that even weak multiplexing with electrical synaptic connections
may optimize SISR in the layer where SISR was even absent in
isolation. However, the longer themultiplexing electrical synaptic
time delay is, the less efficient this configuration becomes
in optimizing SISR. In a second scenario, the multiplexing
connection was mediated by inhibitory chemical synapses
between these electrical layers. Here, we found that only very long
multiplexing inhibitory chemical synaptic time delays at weak
(but not too weak) synaptic strength may optimize SISR in the
layer where it was non-existent in isolation. And in the third
scenario, themultiplexing connection wasmediated by excitatory
chemical synapses between these electrical layers. It is found that
only very short multiplexing excitatory chemical time delays at
intermediate synaptic strengths can optimize SISR in the layer
where the phenomenon is non-existent in isolation.

In the second optimization configuration, we were interested
in optimizing SISR in an (inhibitory) chemically coupled layer
(i.e., a layer where neurons are coupled only via inhibitory
chemical synapses) by multiplexing this layer with another
(inhibitory) chemically coupled layer. Here it is found that the
optimization of SISR based multiplexing between chemical layers
does work equally well as in the case of the multiplexing between
electrical layers. Multiplexing of the chemical layers by electrical
synapses and inhibitory chemical synapses cannot optimize SISR
at all in the chemical layer, where in isolation SIRS is otherwise
very poor. We found that only multiplexing excitatory chemical
synapses (using a strong synaptic coupling and short time delay
regime) can optimize SISR in the chemical layer, whereas SISR in
isolation is very poor.
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Comparing the first and the second optimization
configurations of SISR, we conclude that the optimization of
SISR is generally better in layers with electrically coupled neurons
rather than with chemically coupled neurons, provided that
multiplexing connections between the layers are either electrical
or inhibitory chemical synapses. Vice versa, optimization of
SISR is generally better in layers with (inhibitory) chemically
coupled neurons than with electrically coupled neurons, when
multiplexing connections between the layers are excitatory
chemical synapses.

The manipulation of chemical and electrical patterns in
the brain has become more accessible, either via drugs that
cross the blood brain barrier, via electrical stimulation delivered
through electrodes implanted in the brain, or via light delivered
through optical fibers selectively exciting genetically manipulated
neurons (Runnova et al., 2016; De Domenico, 2017; Andreev
et al., 2018); however, the manipulation of the functional
connectivity seems to be a more difficult goal to achieve. Our
approach of modeling multi-layer networks in combination with
stochastic dynamics offers a novel perspective on the modeling of
the brain’s structural and functional connectivity. We therefore
expect that our findings could provide promising applications in
controlling synaptic connections to optimize neural information
(generated by noise-induced phenomena like SISR and CR)
processing in experiments, surgery involving brain networks
stimulation, and in designing networks of artificial neural circuits
to optimize information processing via SISR (Eberhardt et al.,
1989; Moopenn et al., 1989, 1990).

Interesting future research directions on the topic would be
to investigate the optimization performances of electrical and
chemical synapses in other intra-layer topologies like small-
world network, scale-free network, and random network; and
other inter-layer topologies like the multiplex topology in which
neurons in one layer are connected (randomly) to more than one
neuron in the other layer.
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Scaffolds and patterned substrates are among the most successful strategies to dictate

the connectivity between neurons in culture. Here, we used numerical simulations to

investigate the capacity of physical obstacles placed on a flat substrate to shape

structural connectivity, and in turn collective dynamics and effective connectivity, in

biologically-realistic neuronal networks. We considered µ-sized obstacles placed in

mm-sized networks. Three main obstacle shapes were explored, namely crosses, circles

and triangles of isosceles profile. They occupied either a small area fraction of the

substrate or populated it entirely in a periodic manner. From the point of view of structure,

all obstacles promoted short length-scale connections, shifted the in- and out-degree

distributions toward lower values, and increased the modularity of the networks. The

capacity of obstacles to shape distinct structural traits depended on their density and

the ratio between axonal length and substrate diameter. For high densities, different

features were triggered depending on obstacle shape, with crosses trapping axons

in their vicinity and triangles funneling axons along the reverse direction of their tip.

From the point of view of dynamics, obstacles reduced the capacity of networks to

spontaneously activate, with triangles in turn strongly dictating the direction of activity

propagation. Effective connectivity networks, inferred using transfer entropy, exhibited

distinct modular traits, indicating that the presence of obstacles facilitated the formation

of local effective microcircuits. Our study illustrates the potential of physical constraints to

shape structural blueprints and remodel collective activity, and may guide investigations

aimed at mimicking organizational traits of biological neuronal circuits.

Keywords: network formation, simulations, patterned networks, structural connectivity, effective connectivity,

network bursts, modularity, network measures

1. INTRODUCTION

Naturally formed biological neuronal networks are characterized by an intricate spatial
organization that is central to ensure the functionality of the neuronal circuits (Achard and
Bullmore, 2007; Bullmore and Sporns, 2012). The brain’s cortex for instance is arranged in
columns and hyper-columns that shape structural and functional modules that conduct specialized
tasks. The abnormal formation of neuronal circuits during development or their damage due to
disease are known to substantially alter circuits’ activity patterns. It is therefore well-accepted
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that the structure of a neuronal circuit shapes its dynamics in
great measure. Although a direct relationship between structure
and dynamics cannot be established given the intrinsic non-
linear nature of neuronal circuits and the coexistence of
diverse dynamic physiological mechanisms, there is a wealth
of evidence indicating direct correspondences between key
structural traits and dynamics (Honey et al., 2010; Sporns,
2011). These traits emerge from general constraints imposed
by the spatial embedding of brain circuits (Bullmore and
Sporns, 2012; Stiso and Bassett, 2018) together with specific
topological characteristics such as high clustering, modularity
and the existence of central hub nodes (Sporns, 2011). It has
been suggested that these traits and even network motifs can
in part be explained from the trade-off between topological
integration and the biological cost incurred by nervous systems
(Schröter et al., 2017).

In the quest to understand the relationship between structure
and dynamics, in particular the importance of structural traits,
numerical simulations and in vitro studies of neuronal cultures
have emerged as invaluable tools. On the one hand, numerical
models have been employed to explore various configurations
ranging from small-scale circuits (Voges and Perrinet, 2012;
Orlandi et al., 2013; Pernice et al., 2013; Faci-Lázaro et al.,
2019) to whole-brain dynamics (Honey et al., 2007; Messé
et al., 2014; Cabral et al., 2017). Messé et al. for instance used
elaborate computational models and anatomical brain data to
predict the activity patterns observed in resting-state functional
magnetic resonance imaging, and concluded that the backbone
of anatomical connectivity strongly shaped overall dynamical
traits. Neuronal cultures, on the other hand, have helped
elucidate the importance of spatial embedding and imposed
metric correlations in shaping spontaneous activity (Orlandi
et al., 2013; Hernández-Navarro et al., 2017; Okujeni et al., 2017;
Tibau et al., 2020), the impact of modular organization (Shein-
Idelson et al., 2011; Tang-Schomer et al., 2014; Yamamoto et al.,
2018), the emergence of small-worldness (Downes et al., 2012;
de Santos-Sierra et al., 2014), or the role of hubs (Schroeter et al.,
2015).

The above studies demonstrated that non-random structural
characteristics are central to shape distinct activity patterns
and, in turn, specific functional connectivity traits. However,
an interesting aspect still to be explored in detail is the
impact of definite structural motifs on global network dynamics.
This is particularly relevant in the context of engineered
neuronal cultures (Aebersold et al., 2016), in which the spatial
arrangement of neurons and connections is dictated by chemical
or physical constraints. Microfabricated structures or scaffolds
have revolutionized the concept of engineered neuronal cultures
by providing both connectivity guidance and structural support
to two- and three-dimensional neuronal assemblies (Kunze et al.,
2011; Bosi et al., 2015; Severino et al., 2016; Larramendy et al.,
2019).

In an effort to help understanding how scaffolds, or specific
structural motifs, shape the blueprint, dynamics and effective
connectivity of neuronal cultures, we explored numerically
small two-dimensional neuronal networks similar to biological
in vitro ones which incorporated specific scaffold designs in the

form of arrays of obstacles. We considered µ-sized scaffolds
embedded in a mm-size substrate. Three designs with distinct
geometries were explored to examine whether they could imprint
specific structural and dynamic features to the networks. The
studied obstacles were crosses, circles and isosceles triangles.
They were designed to facilitate the trapping or deflection
of axons (crosses), to gently modulate connectivity across the
network (circles) and to dictate the directionality of connectivity
(triangles). We selected these shapes in view of recent
experimental studies aimed at guiding neuronal connectivity
through microfabrication technology (Crowe et al., 2020). We
observed that the obstacles molded structural connectivity at
short and long length scales. This induced characteristic features
of network dynamics and of effective connectivity. Our study can
be extended to tailored designs that mimic specific experimental
configurations. Thus, it can improve predictions of the action of
scaffolds on living neuronal circuits, for instance to tailor specific
dynamic patterns or network functionality.

2. RESULTS

2.1. Impact of Obstacle Shape on
Structural Connectivity
We explored in silico neuronal networks with spatial constraints
by considering different sets of obstacles arranged on a circular
area of either 2 or 4 mm in diameter. This size was selected to
mimic the characteristic size of small in vitro cultures (Orlandi
et al., 2013; Tibau et al., 2020). In the simulations, neurons
were laid out on the surface in a homogeneous manner and
connected to one another following a geometric model as
in Orlandi et al. (2013), in which the axons grew as concatenated
segments according to a biased random walk (Figure 1A)
and that is known to mimic well the behavior of individual
axons (Feinerman et al., 2008). The presence of obstacles altered
axonal growth, an aspect that was modeled by reflecting the
axon with the same angle of incidence upon contact with an
obstacle (Figures 1A,B). This “reflection rule” was inspired by
experimental observations in cultures of physically-constrained
neurons (Feinerman et al., 2008; Gladkov et al., 2017) and was
the simplest way to introduce interaction with obstacles for
this biased random walk. More biologically-accurate models,
in which axons may attach to the walls or follow the path of
previous axons (Simitzi et al., 2017) were disregarded for the
sake of simplicity. We considered three characteristic sets of
obstacles, namely crosses, circles and triangles of isosceles profile
(Figure 1C), that either occupied a small fraction of the available
area or populated it entirely. Table 1 and Figure 2 summarize
the different designs chosen and their major characteristics. The
density of neurons in the simulations in all configurations was
maintained constant at 200 neurons/mm2, leading to networks
with 625 and 2, 500 neurons for the 2 and 4 mm diameter
sizes, respectively.

The shape of the obstacles had an important effect on the
paths followed by the axons and on the capacity of neurons
to connect to one another. The bottom panels of Figure 2

show a detail of the positions of neurons and axons and the
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FIGURE 1 | Neuronal network construction. (A) Axons are laid out on the

substrate by concatenating segments of length l that follow a quasistraight

path. Whenever the axon hits an obstacle it is deflected with the same angle of

incidence. The dendritic tree of the neuron is modeled as a circle (gray area)

with a given radius of interaction. (B) Neuronal axons in the studied networks

interact with obstacles and connect to other neurons. A connection i→ j is

established whenever the axon of a neuron i crosses the dendritic tree of

another neuron j. In the sketch, dark gray arrows indicate the connections and

their direction, with neurons connecting as 1→ 2 and 2→ 3. (C) Sketch of

the obstacle geometries used and their dimensions.

interaction of the latter with the obstacles. Crosses (Figure 2D)
tended to either deflect axons or to trap them in their vicinity,
thus potentially inducing strong local inhomogeneities in the
connectivity of the network. Circles (Figure 2E) had a milder
effect, deflecting the axons toward the neighborhood, but causing
alterations in the connectivity due to the relatively large area
that they occupied, reducing the probability of spatially close

neurons to interconnect. Finally, triangles shaped as arrowheads
pointing upwards (Figure 2F) promoted a strong anisotropy
in the connectivity by funneling the axons reverse in the
direction opposite to the triangles’ tips. This is because axons
had a much higher probability to be deflected at the base of a
triangle than at its tip. Effectively, as illustrated in Figure 2F,
most axons were vertically aligned—although some orthogonal
growth remained—and thus neurons tended to connect vertically
and downwards.

To quantify the impact of each configuration on network
characteristics we analyzed the topological traits of the resulting
structural connectivities. Figure 3A shows representative
structural adjacency matrices of the empty configuration
together with the configurations made of crosses, circles, and
triangles that fully cover the available area. Neuron indices in the
matrices are arranged to highlight the existence of communities
along the diagonal. We note that communities already appear
in the empty configuration (modularity Q ≃ 0.37), a trait
that is due to the presence of metric correlations in spatially
embedded networks (Hernández-Navarro et al., 2017; Faci-
Lázaro et al., 2019) which facilitates the formation of local
neuronal microcircuits. The global efficiency is relatively high
(Geff ≃ 0.54), indicating that the neurons in the network are well
bound together despite spatial effects. The presence of obstacles
in the networks in general increased Q and decreased Geff,
which reveals a strengthening of metric effects and a reduced
capacity for the neurons to connect to one another. The impact
of obstacles on structural connectivity depended on their shape.
Crosses exhibited the strongest impact, with an increase of Q
by 43%, while for the other configurations the increase was by
27% (circles) and 30% (triangles). We argue that the trapping of
axons caused by the crosses is the cause of the high increase in Q
for this configuration.

The number and size of structural communities was similar
across the panel of configurations. This indicates that neurons
were still capable of interconnecting to some degree despite
the high spatial density of obstacles. In other words, structural
microcircuits emerged but they were not fully isolated. This was
verified by analyzing the spatial distribution of the observed
communities (Figure 3B), which were physically compact but
interlinked. Crosses and circles showed spatial features that were
similar to the empty case, with communities appearing in patches
of similar shape and size. The triangles configuration, however,
shaped communities distinctively organized as vertical stripes
and that revealed the strong capacity of triangles to dictate
vertical funneling of axons.

To shed light on the impact of obstacles on neuron-to-
neuron connectivity and network structure, we investigated the
distributions of Euclidean connection distances d and angles θ

of connections (Figure 3C). For the empty reference case, the
distribution of distances was broad, with most of the neurons
connecting in the range 0.1 − 1 mm, although there was a
marked peak at d ≃ 0.15 mm, a trait again due to the fact
that nearby neurons are more likely to connect in spatially
embedded networks. For crosses, however, the distribution
was strongly shifted toward small connection distances, clearly
indicating the capacity of the crosses to trap axons and boost
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TABLE 1 | Network descriptors for 2 and 4 mm configurations.

aobs/atotal(%) kin kin kout kout d (mm) d (mm)

µ σ µ σ m s.d.

2 mm

Triangles 47.2 53.34 22.92 50.21 25.73 0.403 0.306

Circles 44.7 59.08 13.18 54.26 26.26 0.422 0.314

Crosses

Empty 0.0 66.28 13.83 60.29 33.16 0.533 0.375

1 array 2.4 63.46 15.23 58.21 29.71 0.477 0.346

2 arrays 4.8 60.93 15.06 55.50 28.38 0.446 0.330

Full 13.6 47.98 11.37 45.49 18.07 0.312 0.238

4 mm (crosses)

Empty 0.0 73.51 14.67 67.35 33.97 0.301 0.220

1 array 0.6 72.75 14.37 66.46 34.44 0.293 0.214

2 arrays 1.2 72.20 15.07 65.72 34.63 0.285 0.209

4 arrays 2.4 70.52 15.82 63.37 33.06 0.271 0.202

For each configuration, we provide the area fraction occupied by the obstacles (aobs/atotal ) as well as the average value (µ) and standard deviation (σ ) obtained for the Gaussian fits to

the distributions of in- and out-degrees (kin, kout ), and the statistical average value (m) and standard deviation (s.d.) of the distribution of connection distances (d).

FIGURE 2 | Configurations of obstacles. The top row shows the black and white masks used to set up the simulations, with neurons and connections only placeable

in the black areas. The bottom row shows details of the simulated networks, marking the location of neurons (arrowheads) and axons (lines). Obstacles are shown in

gray and the blue scale bars are 100 µm. (A) Reference empty configuration. (B,C) Layouts with 1 array and 2 arrays of crosses. (D–F) Layouts of crosses, circles

and upwards-pointing isosceles triangles fully covering the substrate.

short-range connectivity. Circle and triangle configurations
exhibited a behavior in between the previous cases, with broader
distributions than crosses but with characteristic peaks that are
associated to the size and inter-spacing of the obstacles. On
the other hand, the distribution of angles θ was in general
homogeneous and similar across configurations except for
triangles, with a characteristic peak at θ ≃ 180◦ associated to the
guided top-to-bottom connectivity in the network. Additional
peaks appeared at θ ≃ 90◦ and 270◦, which revealed the existence
of orthogonal connectivity that facilitated the entire network to
be interlinked.

To further analyze the impact of obstacles on connectivity,
we inspected the distributions of in-degrees (kin) and out-
degrees (kout), and also looked in more detail at the distributions

of connection distances d at different length-scales. The
distributions shown in Figure 4 represent averages over 12
replicates for each configuration with the statistical standard
deviations shown by the shaded areas. The average value of each
distribution and its statistical standard deviation are depicted at
the bottom of each graph.

First, we compared the distributions among configurations
of circles, triangles and crosses that fully populated the
2 mm substrate (Figures 4A–C). The deviations from the
empty configuration were pronounced. Circles, on the one
hand, showed kin and kout distributions (Figures 4A,B) that
lay between those for empty and crosses configurations. This
moderate impact contrasted with the existence of periodic peaks
in the distribution of distances (Figure 4C). The first peak
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FIGURE 3 | Structural connectivity of 2 mm diameter networks with obstacles. (A) Representative connectivity matrices for the “empty” configuration and for

networks filled with crosses, circles or triangles. Matrices are arranged to highlight modular structure (colored squares). The values above each matrix indicate the

modularity Q and the global efficiency Geff. (B) Spatial localization of the identified modules. The color coding matches that of the adjacency matrices. Modularity

increases with the presence of obstacles, and the modules are distinctively vertically arranged for triangles. (C) Corresponding distribution of connection distances d

and angles θ between all pairs of connected neurons in each configuration. For triangles there is a characteristic peak at 180◦, indicating that most of the neurons

connect downwards, i.e., reversed with respect to the triangles’ orientation.

occurred at 170 µm, which is the distance between the centers
of neighboring circles (120 µm circle diameter plus 50 µm
separation), and the rest of the peaks are multiples of this typical
distance. Thus, circles induced characteristic length scales in
the network without strongly altering the degree distributions.
Triangles, on the other hand, exhibited a shift of kin toward lower
values and a marked broadening of the distribution. Their effect
on kout was very similar to that of circles. Clearly, the capacity
of the triangles to funnel axons along the substrate facilitated
long-range connections, whereas the limited orthogonal growth

promoted short-range ones. The distribution of distances for
triangles (Figure 4C) also shows periodic peaks multiples of
50 µm, the triangle height. These peaks are sharper and steeper
for triangles than for circles, the values of which lie in between
those for triangles. Crosses showed strong effects as well, which
we discuss in detail below.

For crosses, we considered the scenario in which they
gradually covered a higher area fraction of the substrate, and
compared the empty, 1 array, 2 arrays, and full coverage
configurations. As shown in Figures 4D,E, both kin and kout
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FIGURE 4 | Structural connectivity statistics. (A–C) Probability distributions of in- and out-degree (kin, kout ) and connection distances d for the empty configuration

and crosses, circles and triangles configurations that fully cover the substrate. Crosses and triangles exhibit the strongest effect on kin and kout. (D–F) The same

distributions for empty, 1 array of crosses, 2 arrays and full coverage in the 2 mm diameter networks. The strongest effect was observed for the configuration in which

the crosses fully populated the area, with kin and kout distributions shifting to lower values and the distribution of distances exhibiting a marked peak at small length

scales. (G–I) The same study in a 4 mm diameter network with crosses partially covering the substrate. Empty, 1, 2, and 4 arrays of crosses are compared. The kin
distribution gradually shifts to lower values, and the short distances gain prominence, as the number of arrays increases. The inset of panel (I) shows the difference

between each distance distribution P and that of the empty configuration Pempty. For all distributions and configurations, data is averaged over 12 network replicates.

For the distributions of kin and kout lines show a Gaussian fit to the data, their parameters are given in Table 1.

distributions gradually shifted toward lower values as the density
of occupation increased, although the change was substantial
only for full coverage, with the average values of kin and kout
decreasing by 30%. The distribution of connection distances d

(Figure 4F) also experienced a strong change for full coverage,
with short-range connections dominating the distribution at the
expense of highly depleted mid- and long-range ones. These
results confirm the hypothesis that crosses either trap axons in
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a neighborhood or deflect them away, reducing the capacity
of neuron to interconnect. The results also reveal that a small
occupation of the substrate by obstacles only causes a minor
effect in the distribution of connections. This was confirmed
by investigating bigger substrates of 4 mm in diameter where
the physical dimensions of the crosses were maintained, which
thus occupied a very small area fraction (see Table 1). As can
be seen in Figures 4G–I, the distributions for the empty, 1, 2
and 4 arrays are very similar to each other and fall within the
fluctuations among replicates. Here, the effect of an increase
in the number of obstacles is most noticeable on the distance
distributions (Figure 4I). As the effect is much smaller than in
the previous configurations, we computed the difference between
each distribution and that of the empty configuration shown in
the inset. It confirms the trend of excess short-range (< 0.7 mm)
and depleted long-range connections with increased number of
obstacles, as seen in the 2 mm configurations. However, these
effects are much smaller in the 4 mm case due to the small area
fraction occupied by the scaffolds.

An interesting trait of the distribution of distances is the
presence of a plateau for the empty case (Figure 4 and Figure S1).
This plateau is associated with the broad range of possible axonal
lengths, and whose average length (ℓa = 1.1 mm) is an order
of magnitude larger than the average radius of the dendritic
tree (150 µm), effectively shaping a neighborhood around the
neurons in which connection probability is independent of the
distance. The presence of obstacles alters this plateau, particularly
when they fully cover the substrate, since axons cannot extend
freely for long distances.

We next explored the effect of substrate size on structural
connectivity. We observed that alterations in kin and kout
degree distributions—relative to the empty configuration—were
more prominent when the substrate radius was similar to
the characteristic axonal length, approximately 1 mm in our
case. This is illustrated in Figure 5, where we compare the
degree distributions among 3 networks grown on substrates
whose diameters were scaled up from 2 to 12 mm (see
Table 2). We considered the empty configuration and the
crosses configurations with either 1 array or full coverage. The
dimensions of the crosses were also scaled up according to
the substrate diameter to preserve the area fraction occupied
by obstacles at 2.4% for 1 array and 13.6% for the covered
configuration. As shown in panels A and B of the figure,
distributions corresponding to the 1-array configuration at
different scaling factors were very similar among themselves
except for the smallest size of 2 mm diameter, which markedly
shifted to low kin and kout values. Only for this diameter
differences between the empty and obstacles configurations could
be appraised. However, for the configuration covered with crosses
the effects were stronger as shown in Figures 5C,D. At 2 mm
the mean value of kin decreases by 26.5% and kout by 24.1% in
obstacles compared to empty configurations. At 4 and 6 mm the
distributions of both in- and out-degree were still clearly shifted
and narrower for the covered configuration. The effect was less
clear but still perceptible at 8 and 12mm scales.We thus conclude
that size effects are very important and that they clearly attenuate
effects of scaffolds at the area fractions explored here. When the

system size is significantly larger than the characteristic axonal
length, then metric correlations at short length scales mask out
the alterations induced by the obstacles. Nonetheless, obstacles
still have an impact on their neighborhood, but from a global
perspective the network may appear unaffected.

To complete the analysis of connectivity, we studied the
spatial variability in the degree distributions and in clustering
coefficients (CCs) in the 2 mm substrate. For sake of simplicity,
we considered only kin in this analysis since it is the distribution
that exhibits the strongest differences among configurations. We
represented average values of kin and CC in square regions
of side 0.031 mm, containing each about 0.2 neurons. As
shown in Figures 6A,C, the empty configuration portrayed
strong inhomogeneities in kin which originated from metric
correlations. The addition of obstacles in the form of 1 array
or 2 arrays of crosses reduced the in-degree values within the
scaffolds and lead to higher values in localized areas outside the
scaffolds, hence accentuating inhomogeneities in the network.
We note that the kin distributions shown in Figures 4A,B could
not capture these inhomogeneities. Thus, this spatial analysis
helps to highlight important fluctuations in the network that
cannot be appreciated from solely inspecting the shape of the
degree distributions averaged over replicates. The CC values,
however, did not show a clear trend in spatial distribution upon
the inclusion of scaffolds, although the maximum CCs increased
by 20% and tended to concentrated around the scaffolds area,
possibly as a consequence of the deflected axons and that
facilitated the formation of a higher number of triangles.

The corresponding spatial analysis for obstacles fully
covering the network is shown in Figures 6D–F. For crosses,
the maximum kin dropped by 15% relative to the empty
configuration and the maximum values appeared concentrated
in mostly a few adjacent cells, while patches of low in-degree
were more evenly spread across the network. This behavior
contrasts with the circles configuration, in which fluctuations
among neighboring regions are much weaker, although very
high kin values occur near the border. For triangles, a strong
gradient of kin values emerged that extended across the entire
network, with kin decreasing sixfold in the direction of the
tips of the triangles. This patterned distribution of kin values
highlights the strong guidance of the axons, which also favored
an increase of the maximum kin values by 15% compared to
the empty configuration. The highest values were localized at
the lower edge of the triangles pattern. The CC values for these
configurations showed an overall increase of the maximum
values by 30% for crosses and triangles, but only increased by
10% for circles. Spatial fluctuations in CCs were marked for
crosses and milder for circles and triangles.

2.2. Dynamic and Effective Connectivity
Alterations Induced by Obstacles
We simulated dynamics of excitatory cortical neurons in the
generated structural networks through an integrate and fire
model with adaptation, whose parameters were adjusted as
in Orlandi et al. (2013) to provide rich spontaneous activity
for the empty configuration. Activity was simulated for 30 min
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FIGURE 5 | Impact of network size scaling on degree distributions. (A) Distributions of in-degree for the empty configuration and for the configuration with 1 array of

crosses scaled up to different diameters, preserving the relative size of the scaffolds with respect to substrate diameter. (B) Corresponding out-degree distributions.

(C,D) Distributions of in- and out-degree of the configuration covered by crosses scaled up to different diameters, compared with the empty configuration. For all

distributions, effects were more marked for smaller sizes. The data correspond to one representative replicate for each configuration. The lines show a Gaussian fit to

the data, their parameters are given in Table 2.

for four replicates of each configuration. Then, we explored the
changes in collective activity and effective connectivity due to
the presence of obstacles in 2 mm diameter cultures which were
the ones displaying the strongest effects in the above analyses of
structural connectivity. We must note that spontaneous activity
comprises both sporadic neuronal activations and network-
wide coordinated episodes in the form of network bursts. An
abundance of sporadic activations may mask the statistics of
network activity and induce artifacts in the analysis of effective
connectivity. Thus, in the analysis that follows we filtered out
sporadic activity data to emphasize network bursting events, and
retained only coordinated activations that encompassed at least
25% of the network.

We first considered the situation in which cross-shaped
obstacles progressively populated a larger fraction of the
substrate’s area. As shown in Figure 7A, network bursting
was high for the empty and 1 array configurations, and
progressively diminished as the density of obstacles grew.
Collective activity almost halted in the configuration in which

the obstacles fully populated the area, suggesting that the
substantially reduced structural in- and out-degree values
strongly affected the capacity of the network to trigger activity
and initiate bursts.

The corresponding analysis of the effective connectivity is
shown in Figures 7B,C, which provide the adjacency matrices
obtained through transfer entropy together with the network
maps of community organization and effective out-degree
distributions. In the maps, the size of a node is proportional to
its out-degree. We chose to plot the out-degree since it reveals
the initiation of activity, i.e., which neurons in the network
tended to activate other neurons. The adjacency matrix for the
empty configuration shows modular traits (Q ≃ 0.28) and
reveals that some groups of neurons tended to coactivate more
frequently with each other than with the rest of the network.
The effective modules, however, did not shape compact areas in
the network maps but were highly intermixed. This reveals that,
despite modularity, network intercommunication was strong as
indicated by the high global efficiency (Geff ≃ 0.41). Activity
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TABLE 2 | Scaled configurations without obstacles (empty), with 1 array of crosses and covered with crosses (full).

diameter Nneur. kin kin kout kout

(mm) µ σ µ σ

Empty 2 625 64.77 13.67 59.13 31.50

Empty 4 2, 500 72.57 14.02 67.32 33.44

Empty 6 5, 625 75.68 14.92 69.05 36.11

Empty 8 10, 000 76.69 15.18 70.78 35.49

Empty 12 22, 500 78.24 15.57 72.23 36.01

1 array 2 625 65.26 15.60 61.23 29.07

1 array 4 2, 500 72.92 14.49 66.98 35.81

1 array 6 5, 625 75.87 15.69 69.44 34.78

1 array 8 10, 000 77.06 15.25 70.73 35.65

1 array 12 22, 500 77.70 15.48 71.23 35.82

Full 2 625 47.60 10.55 44.89 17.13

Full 4 2, 500 58.78 13.35 56.08 23.17

Full 6 5, 625 67.01 13.25 66.63 31.13

Full 8 10 000 72.19 15.14 62.51 28.71

Full 12 22, 500 75.88 18.68 69.26 33.17

We report the diameter of the configuration, the number of neurons (Nneur.), as well as the average value (µ) and standard deviation (σ ) obtained for the Gaussian fits to the distributions

of in- and out-degree (kin, kout ).

also initiated in a similar manner throughout the culture, with
the highest values of kout spread out homogeneously.

A similar overall trend was observed for the configuration
with 1 array of crosses, which yielded very similar values of Q
and Geff. However, the effective modules were more compact
and no high out-degree values were observed in the center
of the map, where the array is placed, indicating that activity
did not initiate within the array. For the 2-array configuration,
modularity increased by 25% relative to the empty case, which
was accompanied by an increase in the number of modules. This
is a sign of higher fragmentation of the dynamics. One of the
modules was also compact when represented in the network map
(pink-colored neurons), indicating that the obstacles weakened
the capacity for whole-network interaction of activity. Most of
the activity initiated in this module at the bottom of the map
or in small regions at the top, and weak activity was detected
within the arrays. These results indicate that the obstacles were
capable of shaping effective microcircuits, i.e., a neighborhood
of highly activate neurons that poorly interacted with the rest
of the network. The isolation of these effective microcircuits
strengthen for the configuration in which the crosses fully
covered the area (Figures 7B,C, right panels). Here we observed
a substantial increase in modularity by about 80% relative to
the empty case, with some modules at the verge of full dynamic
isolation, as recognized in the effective connectivity matrices
by the few links outside the diagonal. Geff practically fell to
zero, indicating the severely reduced capacity of the network to
exchange information. This appears in the map as a large number
of disconnected neurons. Activity tended to start at the right
edge of the culture (high density of out-degree values), possibly
facilitated by the border of the substrate.

To complete the analysis of activity, we also looked at
the spatiotemporal structure of network bursts. As shown in

Figure 7D, bursting events propagated as circular or quasiflat
fronts for the empty and 1 array configurations, reflecting
a reduced sensitivity to connectivity inhomogeneities in the
network. This neat propagation pattern was altered in the
2-array and full configurations, with propagation showing a
richer structure that evinced the strong spatial fluctuations
in connectivity.

We note that the dynamics in the 2-array and full coverage
configurations were very sensitive to the details of the network
replicate. We observed that in some instances the simulated
networks were incapable of generating network bursts. We
characterized this effect on network bursting by computing the
spatial distribution of burst initiation events (Figure 8). For the
2 mm diameter network, burst initiation was distributed over
most of the area in the empty configuration, but it became
increasingly localized as more obstacles were incorporated.
Initiation took place outside the scaffolds except for the full
coverage configuration, for which the bursting fronts were
so fragmented that the identification of initiation could not
accurately be determined andmost likely occurred near the edges
of the network. For comparison, we also provide the results for
4 mm diameter networks. In those simulations the initiation
was much richer and the impact of the obstacles was smaller.
However, initiation never occurred within the arrays and became
more localized as more arrays were added.

The equivalent effective connectivity analysis for the different
types of obstacles fully covering the substrate is shown in
Figure 9. The raster plots compare the characteristic dynamics
across configurations. Although all of them displayed decreased
activity due to the obstacles, bursting was least affected in
circles, mildly in triangles and strongly in crosses, as discussed
above. In all cases, however, the effective connectivity matrices
(Figure 9B) showed a trend toward high Q values relative to
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FIGURE 6 | Spatial distributions of in-degree kin and clustering coefficient CC for the different configurations in the 2 mm substrate. (A–C) Distributions for the empty

configuration, 1 array and 2 arrays of crosses. The value of kin decreases by 30% inside the arrays of crosses, while CC is not appreciably affected. (D–F)

Corresponding distributions for crosses, circles and triangles entirely covering the substrate. Strong effects are observed in the distribution of kin for crosses and

triangles. Compared to the empty configuration, crosses show a decrease of the maximum kin by 15%; triangles show a gradient of kin values, which increase in the

direction opposite to the tips of the triangles which is indicated next to the colorbar (F). The data correspond to one representative replicate for each configuration.

the empty configuration which was reflected in an abundance
of small sized modules. Circles and triangles, as compared
to crosses, exhibited well interlinked modules, with few silent
neurons, and therefore their Geff values were not as small as
in the crosses configuration. The network maps (Figure 9C)
illustrate the strong cohesion of the effective networks for
circles and triangles, with modules extending all across the
area. Effective out-degree values were well spread for circles,
indicating that activity initiation equally occurred everywhere.
For triangles there was a clear localization of out-degree values
toward the bottom of the map, the region that contains also the
highest structural kin values. This correlation between structural
and dynamical traits highlights that adequate configurations
of obstacles help dictating activity initiation. The structure of
spatiotemporal fronts (Figure 9D) shows that all configurations
developed structured activity propagation patterns. We point out
that the velocity of propagation varied among configurations.
Propagating fronts crossed the network in about 30 ms for the
empty and circles configurations, while this time increased to 60
ms for crosses and to 300 ms for triangles. The slow propagation

observed in triangles is due to the strong connectivity differences
between the direction parallel to the triangles’ orientation (with
high connectivity) and the direction orthogonal to it (weak
connectivity), causing the front to advance faster in one direction
but slower in the other.

To conclude our study, we compare the major dynamic
and network characteristics—structural and effective—
among configurations. Figure 9A provides a comparison
of the distributions of inter-burst intervals (IBIs), showing
the contrasting differences between crosses and the rest of
configurations. Figures 9B,C provide the comparison of Q
and Geff, respectively. The main plots summarizes the data
for the 2 mm diameter networks, while the insets provide
the data for the 4 mm ones. All data is organized so that
the magnitudes of a given property increase toward the
right. For the 2 mm data, the structural network properties
varied gently and with very small fluctuations. This contrasts
with the effective network properties that exhibited strong
changes among configurations and with substantial variability
among replicates. For the 4 mm data, all network measures
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FIGURE 7 | Dynamics and effective connectivity in 2 mm diameter networks with increasing density of cross-shaped obstacles. (A) Representative raster plots of

bursting events for the empty, 1 and 2 arrays of crosses and full coverage. Bursting activity decreases as the density of obstacles increases. (B) Corresponding

effective adjacency matrices, with modules along the diagonal. Modularity increases as the density of crosses grows, with a boost by 80% for the full coverage relative

to the empty configuration. (C) Spatial maps of the effective networks. Neurons are color-coded according to their modularity class, and their diameter is proportional

to the out-degree of effective connectivity which reflects activity initiation. Edges are colored according to the outgoing module. The network fully populated with

crosses exhibits strong spatial anisotropies. (D) Spatiotemporal patterns of representative network bursts. The activity fronts advance as a quasicircular front for the

empty and 1 array configurations, to become more structured and erratic for higher densities of crosses. The data correspond to one representative replicate for each

configuration.

varied gently, either structural or effective, which again
highlights the importance of fully covering the substrate with
obstacles to induce substantial changes in both structure
and dynamics.

3. DISCUSSION

Our results show that obstacles imprint features on the structural
connectivity that may lead to strong alterations in the collective
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FIGURE 8 | Initiation points for the 2 and 4 mm diameter networks. The blue-yellow patterns are the locations where network bursts commenced. The brighter the

color, the higher the occurrence of a burst initiation event in that area. The data shown correspond to one representative replicate of each configuration.

dynamics and effective connectivity of neuronal networks. With
those designs of obstacles that we explored, the molding of
structural connectivity can occur in two different ways. The
first one is by funneling axons in a given direction, as observed
with triangles, and the second one is by modifying the spatial
density of incoming or outgoing connections in a given region, as
observed with crosses. In either case, the capacity of the network
to recruit, amplify and propagate activity is affected, thus causing
alterations in the timing and spatiotemporal structure of network
bursts whose details are sculpted by the underlying structure.
When the obstacles fully populated the substrate, their shape was
much more important than the total area they occupied. Circles
and triangles configurations, both occupying an area fraction of
about 45%, caused a twofold increase of the inter-burst interval
(Figure 10A), while for crosses the increase was sixfold even
though they occupied just 14% of the available area. The capacity
of crosses to either trap or deflect axons emerged as a key property
as compared to the funneling of axons by triangles or the gentle
alteration of axonal paths by circles. In addition to shape, the
ratio of typical axonal length to substrate diameter was also a
key parameter. When obstacles occupied only a small region of
the substrate, as the 1 or 2 arrays of crosses for instance, they
induced local alterations whose global effects were masked by the
connectivity traits of the rest of the network (Figure 5).

Our simulations reflect the importance of metric correlations
in shaping connectivity and dynamics in neuronal circuits.
Metric correlations appear naturally in spatially embedded

networks (Orlandi et al., 2013; Tibau et al., 2020). As in our
simulations, other studies pointed out the spatial distribution of
neurons and the characteristic axonal length relative to system
size as central ingredients in shaping local and global structural
traits (Schmeltzer et al., 2014; Hernández-Navarro et al., 2017;
Okujeni et al., 2017). The importance of metric correlations is
that they facilitate spatial heterogeneities in the connectivity of
the network which greatly influence the dynamic behavior of the
entire system, in particular its capacity to initiate and propagate
coherent activity in the form of network bursts (Orlandi et al.,
2013; Okujeni et al., 2017; Faci-Lázaro et al., 2019). Our work
goes a step further and shows that obstacles affect connectivity
by changing the shape and average values of in- and out-degree
distributions and by altering the range of connection distances,
which promoted variations that could be locally very strong. The
crosses and triangles configurations were the ones that more
significantly altered the spatial structure of connectivity. The in-
degree values dropped substantially within areas populated with
crosses, while triangles induced a strong gradient of in-degrees
along their orientation.

The mechanisms that caused a reduction of the spontaneous
activity when obstacles were incorporated are complex. The
detailed studies of burst initiation mechanisms by Orlandi et al.
(2013) showed that a balance of different network observables
was required to maximize bursting, which included in- and
out-degrees, clustering coefficients, feed-forward loops and feed-
backward loops, among others. Additionally, the study of Orlandi
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FIGURE 9 | Dynamics and effective connectivity in 2 mm diameter networks filled with obstacles. (A) Representative raster plots of bursting events for the empty

configuration and full coverage by crosses, circles and triangles. (B) Corresponding effective adjacency matrices, with modules highlighted along the diagonal. The

modularity Q depends on the specific obstacle design, but the number of communities is higher in all cases as compared to the empty configuration. (C) Spatial maps

of the effective networks. Neurons are color-coded according to their modularity class, and their diameter is proportional to the out-degree of the effective connectivity

which reflects activity initiation. Edges are colored according to the outgoing module. While the configuration of circles exhibits traits similar to the empty one, the

triangles show a tendency for activity to initiate at the bottom of the network, where kin is higher. (D) Spatiotemporal patterns of representative network bursts. Activity

flow is structured for the networks with obstacles. The speed of propagation is a factor 2 and 10 lower for crosses and triangles, respectively, relative to the empty

configuration. The data shown correspond to one representative replicate of each configuration.

and coworkers pointed out that an excess or deficit of some of
these observables could substantially reduce bursting frequency.
Our observation that the in- and out-degree distributions are

substantially shifted to lower values suggests that they could be
major actors in the alteration of activity. This is supported by a
recent study of Faci-Lázaro et al. (2019), in which they observed
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FIGURE 10 | Bursting and effective connectivity statistics for 2 mm networks

with obstacles. (A) Box plots of the distribution of inter-burst intervals (IBIs) for

all the explored configurations. For each box: the inner square is the mean; the

central horizontal line the median; the top and bottom box edges are,

respectively, the 25th and 75th percentiles; the bottom and top crosses are,

respectively, the 1st and 99th percentiles; and the bottom and top dashes are

the data range. The IBI in general increases as the density of obstacles grows.

Among obstacles fully covering the network, crosses show the strongest

alteration on the timing of activity. (B) Modularity Q and global efficiency Geff for

(Continued)

FIGURE 10 | the different configurations of obstacles, comparing structural

network traits with effective ones. Main plots correspond to networks of 2 mm

diameter, and insets to those of 4 mm diameter. Each data point is an average

over four replicates, and error bars denote standard deviation.

in simulations of neuronal networks similar to ours that the loss
of nodes with the highest out-degree precipitated a substantial
drop in the number of bursting episodes. The important shift
of the out-degree distribution toward lower values for cross-
shaped obstacles in Figure 4, much stronger than for other types
of obstacles, suggests that out-degree decrease could be one of the
most important factors in activity reduction.

We observed that the structural network traits of the studied
networks were very similar across network replicates. Even for
the configurations in which the obstacles fully populated the
substrate, the distributions of kin and kout and the values ofQ and
Geff varied less than 5% among replicates of the same obstacle
design (Figure 10, structural data). However, the effective traits
substantially changed as evinced by the large dispersion of
both Q and Geff (Figure 10, effective data). Since the effective
connectivity reflects dynamics, the strong contrast between these
two network descriptions clearly shows the complex relationship
between structure and dynamics, and that the former cannot
be directly inferred from the latter with current methods. For
instance, the network maps of the configurations with obstacles
in Figure 9 are qualitatively similar to one another, but by
analyzing only them or the corresponding effective matrices we
cannot deduce precisely which structural connectivity or obstacle
configuration they emerged from. Thus, our work invites to
proceed with caution when trying to infer structural connectivity
features from effective ones.

The simulations showed that obstacles increased the
modularity in the network, with an impact on both structure
and dynamics (effective connectivity). We observed that the
impact on structure was similar for all types of obstacles at full
coverage of the substrate, with an increase of Q by about 30%
with respect to the empty case. However, the impact on effective
connectivity was much higher, with Q increasing by 50% for
circles and 80% for crosses. This suggests that the sharp edges
of the crosses configuration greatly facilitate the isolation of
groups of neurons, a characteristic that is especially relevant
for experimental, in vitro preparations aimed at enriching the
dynamic and functional organization of neuronal networks. For
instance, crosses could be placed in groups of four and closer
to one another, shaping a structure similar to a hollow square
with tiny entrances. Such a structure would create communities
of strongly connected neurons with weak connectivity among
communities, mimicking for instance the designs of Yamamoto
et al. (2018).

Configurations of tailored obstacles could also help shaping
networks-of-networks such as the experimentally observed
aggregated neuronal networks (Sorkin et al., 2006; Teller et al.,
2014) or fractal designs (Díaz Lantada et al., 2013). The latter
can be employed to capture the non-Euclidean geometry of
the human brain and its relation with developmental traits and
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multi-scale dynamics (Werner, 2010; Hofman, 2014). Fractality
and multi-scale organization are indeed inherent properties
of cortical circuits and are closely related to the concept of
criticality (Poil et al., 2008; Friedman et al., 2012; Haimovici
et al., 2013; Massobrio et al., 2015; Marshall et al., 2016;
Johnson et al., 2019), in which a neuronal circuit operates at
the boundary between an ordered, strongly coupled state and a
disordered, weakly coupled one. Neuronal systems at criticality
exhibit long-range spatial and temporal correlations with power-
law distributed statistics, facilitating a broad dynamic repertoire
and swift communication among distant areas. Massobrio et al.
(2015) showed through experiments and theoretical analysis
that a critical state can be favored by combining short- and
long-range connections, i.e., by imprinting small-world features
into a neuronal circuit. Here, we observed that the presence of
obstacles, particularly crosses, increased the “small-worldness”
(Watts and Strogatz, 1998; Humphries and Gurney, 2008) from
2.46 to 4.03 (SM, Table S1). This confirms that the obstacles trap
axons and increase connectivity locally while preserving some
long-range connectivity.

Although our simulations aimed at providing a numerical
playground to investigate the impact of physical constraints
on structural connectivity and dynamics, they were limited
by a number of simplifications that could be relaxed in
future studies. A first simplification concerns the rule for the
growth of axons. We disregarded for simplicity the interaction
of axons with neurons or with other axons, and used a
simple “reflection” rule to model the interaction between axons
and obstacles. In vitro experiments in engineered neuronal
cultures (Feinerman et al., 2008; Li et al., 2014; Casanova
et al., 2018) and microfluidic chambers (Renault et al., 2016;
Yamada et al., 2016; Holloway et al., 2019) have shown that
axons interact in complex ways with obstacles and that axons
often attach to and follow walls. Thus, for a more realistic
representation of in vitro behavior those interactions should
be incorporated in future simulations. A second simplification
was the use of excitatory neurons only, which facilitated the
inference and analysis of connectivity and its relation with
overall network dynamics. The inclusion of inhibition, which
typically comprises of about 20% of connections in cortical
circuits (Soriano et al., 2008; Schröter et al., 2017), would reduce
whole-network bursting and promote a richer spatio-temporal
dynamics, as observed experimentally in two-dimensional
homogeneous and engineered neuronal cultures (Cohen et al.,
2008; Orlandi et al., 2013; Okujeni et al., 2017; Yamamoto
et al., 2018). A third simplification was the use of soma and
synapse dynamical models that shape cortical-only neuronal
networks without plasticity. The inclusion of different cell types
and activity-regulatory mechanisms could help investigating
questions such as the capacity of the networks to reach
activity set points or their response to neuronal loss, as
recently explored experimentally in vitro (Slomowitz et al.,
2015; Teller et al., 2019). And a fourth simplification was the
use of solely two-dimensional networks, which only partially
reflect the structural complexity and functional richness of
naturally-formed brain circuits. Severino et al. (2016) recently
showed experimentally and numerically that three-dimensional

neuronal networks with fractal organization maintain modular
characteristics while promoting long-range connections. As
discussed above this facilitates the emergence of a small-world
architecture and enhances whole-network bursting. Thus, fractal
or three-dimensional patterns could be employed to design more
realistic simulations aiming to mimic the dynamic behavior of
in vivo circuits.

4. CONCLUSION

We have shown that it is possible to dictate the structure of
neuronal circuits by incorporating obstacles, whose impact on
dynamics and effective connectivity depends on their shape
and density. Our work invites the exploration of various
configurations in an effort to control the dynamics of the
resulting networks. However, achieving precise control remains
difficult due to the complex interplay between connectivity,
intrinsic neuronal dynamics and noise. Nonetheless, our study
provides a method and tools that will allow computational
neuroscientists not only to explore a variety of configurations
systematically, but eventually contribute to the understanding of
the way in which geometry influences the emergence of patterns
in growing networks of living neuronal circuits. Thereby, our
study can assist in the design of substrates to guide the
growth of networks in vitro, inviting a quicker and more
efficient investigation of prototype geometries than in wet-lab
experiments. This will help in finding and selecting suitable
candidate geometries for scaffolds or complex architectures in
brain-on-a-chip investigations.

5. METHODS

5.1. Geometric Patterns
Three types of obstacles were studied: crosses, circles and
triangles. Arrays of obstacles were placed in circular areas of
either 2 or 4 mm diameter. Patterns were set as white objects on
a black substrate (Figure 2), and simulated neuronal soma and
axons were only allowed to grow on the black areas. The neuronal
density was set to 200 neurons/mm2, leading to networks with
625 and 2500 neurons for the 2 and 4 mm diameter sizes,
respectively. An empty configuration with the same number
of neurons was also considered as reference (Figure 2A). The
different obstacles’ geometries are described in detail below.

Crosses: The cross-shaped obstacles were 130 µm high and
wide, with a beam thickness of 20 µm. The spacing between
crosses was 50 µm. They were arranged either in arrays of 4 × 4
crosses, each array covering a square area of side 670 µm, or
filling the available substrate entirely (Figures 2B–D). For the
latter, a ring 50 µm wide at the edge of the substrate, and
free of obstacles, was incorporated to ensure that border effects
were the same everywhere in the network. Arrays were placed
at the center of the circular substrate. For the 2 mm diameter
networks, simulation schemes considered 1 array, 2 arrays, and
full occupation; for the 4 mm, simulations considered 1, 2, and 4
arrays. The spacing between arrays was 230 µm. The empty and
1 array configurations were also simulated in a version scaled up
by factors 2, 3, 4 and 6. In these scaled versions, the dimensions of
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the crosses changed according to the scaling factor. The number
of neurons placed within the area was scaled to conserve the
neuronal density of the smallest configuration (see Table 2).

Circles: This design consisted in circles of 120 µm in
diameter that were placed in a hexagonal grid covering the entire
substrate as shown in Figure 2E. The separation between circles
was 50 µm. A 50 µm spacing at the edge of the substrate was
incorporated as for the crosses.

Triangles: The triangle-shaped obstacles were designed to
mimic the geometry of experimental scaffold structures (Crowe
et al., 2020). Triangles were of isosceles shape with 50 µm
height and 20 µm width. They were placed pointing upwards
(Figure 2F). Triangles were arranged in an array that entirely
filled the substrate excepted at the edge, that incorporated a
ring 5 µm wide free of triangles. The horizontal and vertical
separation between triangles at their base was 5 µm.

5.2. Network Generation
Neurons were randomly positioned without overlap in the
black areas of the designed patterns. Neuronal soma were
virtual objects that did not occupy physical space. Thus the
axons interacted only with the obstacles and not with the
neurons. Neuronal dendritic trees and axons were incorporated
following (Orlandi et al., 2013). Briefly, dendritic trees were
modeled as circular areas with radius drawn from a normal
distribution (mean µ = 150 µm and standard deviation σ =

20 µm), while axons grew at random angles from the neurons’
center and followed a biased random walk of concatenated
segments of length ℓ (Figure 1), with a total length drawn from
a Rayleigh distribution with width σ = 0.9 mm and average
axonal length ℓa = 1.1 mm. Upon encountering an obstacle’s
edge an axon was reflected on the opposite side of the normal
to the reflecting surface with a symmetric angle. Once the axons
were positioned on the substrate, a connection was established
whenever the axon of a given neuron intersected the dendritic
tree of any other neuron. The whole network connectivity that
resulted from this geometric construction was stored in the
structural adjacency matrix S = {sij}, where sji = 1 corresponds
to a connection i→ j and sji = 0 otherwise.

5.3. Neuron and Synapse Dynamics
A quadratic integrate and fire model with adaptation, based on
Izhikevich (Izhikevich, 2003, 2007; Alvarez-Lacalle and Moses,
2009), was used to model the soma dynamics. The equations
governing a single neuron are

τc
d

dt
v = k(v− vr)(v− vt)− u+ I + η, (1)

τa
d

dt
u = b(v− vr)− u, (2)

if v ≥ vp then v← vc, u← u+ d0. (3)

d

dt
D =

1

τD
(1− D)− (1− β)Dδ(t − tm), (4)

where the fast soma membrane potential is v, the slow inhibitory
current is u, with τc and τa their respective time constants.
The synaptic inputs are denoted by I, and the spontaneous
emission of spikes is reflected by the noise term η. The resting
membrane potential is vr . Above the threshold potential vt ,
v rises to its peak value vp generating a spike, whereafter it
is reset to vc. The membrane potential u is reset with the
parameter d0 which describes high threshold conductances.
Synaptic depression in Equation (4) is modeled as in Alvarez-
Lacalle and Moses (2009), with the characteristic recovery time
of synaptic vesicles τD (Cohen and Segal, 2011). Initially, D is 1
and after a current injection, i.e., an action potential, at time tm it
decreases as D→ βD with 0 < β < 1.

We used the same implementation as in (Orlandi et al.,
2013; Tibau et al., 2020). Parameter values were similar to those
used in (Orlandi et al., 2013) and were chosen so that the
model reproduces typical behavior of cortical neurons. They
are also given in the SM (Table S2). Here, all neurons were set
to be excitatory for the sake of simplicity. Specifically, we set
gAMPA and gminis equal to 9.5 for all simulations. These values
facilitated the generation of network bursts, i.e., activity fronts
that encompassed a large fraction of the network, although the
timing and spatiotemporal structure of the fronts varied with
the obstacles’ designs. The time step in all simulations was set to
0.1 ms, with a total duration of 30 min.

5.4. Data Processing
5.4.1. Neuronal Activity, Data Filtering and Network

Bursts
Simulated networks exhibited rich spontaneous activity that
combined sporadic neuronal events with coherent activations
of different sizes. Typically, neurons fired either individually or
in a coordinated manner at a rate in the range 0.1 − 0.5 Hz.
Since effective connectivity inference was not reliable when
sporadic activations were abundant, raster plots of neuronal
activity were filtered to retain only coordinated activity episodes.
The filtering consisted in computing first the size of coherent
network activations in a window of 0.5 s, and next to inspect
the distribution of sizes. About 95% of the collective events
encompassed at least 25% of the network. Therefore this
threshold was chosen to eliminate sporadic activations from the
raster plots while only minimally affecting collective bursting
episodes. The inter-burst interval (IBI) was then defined as the
average time elapsing between two network bursts in which at
least 25% of the network participated.

5.4.2. Initiation Points and Representative

Spatiotemporal Activity Patterns
Network burst ignition events originated in specific areas of the
network, which were termed “initiation points” as introduced
in Orlandi et al. (2013). The spatial distribution of these events
was obtained by first identifying the starting time of each burst in
the raster plots. The neurons in each burst were then reindexed
using the time of their first firing during the burst and that
provided its spatiotemporal structure in the form of a wave
front. This front was fitted to a space-time cone whose apex
provided the spatial location of the origin of this burst. Wave
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fronts that procured coordinates outside the area containing
neurons were considered unreliable and excluded. The cone
fitting assumed that activity propagated like a circular wave across
the network, an assumption that was found valid only for the
obstacles’ configuration made of crosses. Therefore, the analysis
of initiation points was carried out only for this configuration.
Given the errors in the cone fitting, the final distributions of
initiation points were smoothed versions of the spatially binned
histograms of initiation points.

The information about the timing of burst and neuronal
reindexing was also used to draw representative spatiotemporal
activity patterns. The x and y coordinates of the neurons
participating in the burst were mapped into a grid of 25 × 25
elements. The mapped data was then represented as an smoothed
image plot with a color scheme proportional to the propagation
time of the burst throughout the network.

5.4.3. Structural and Effective Connectivity
Structural connectivity: It corresponded to the ground truth
topology that resulted from the geometric construction of the
networks. Data was stored in the adjacency matrix S = {sij}

which is by construction directed and non-weighted. Their
major topological traits were examined using the specified
network measures.

Distributions of connection distances and angles for the

structural connectivity: They were presented as histograms in
the figures, and were obtained by combining the information
about the spatial location of the neurons and their ground truth
topology. The distance dij was the Euclidean distance between
the centers of the somas of two physically connected neurons i
and j. The corresponding angle θij was measured as the angle
between the vertical axis and the straight line corresponding to
the distance dij.

Effective connectivity: It was inferred using a modified
version of Transfer Entropy (TE) (Schreiber, 2000). For neurons
X and Y with signals xn and yn indexed by 0 ≤ n ≤ nmax,
where nmax is the total number of time steps in the data, TE was
computed as

TEY→X = −

∑

0≤n≤nmax
0≤k≤kM

p
(

xn+1, x
(k)
n , y(k)n

)

×log2

p
(

xn+1

∣

∣

∣
x
(k)
n , y

(k)
n

)

p
(

xn+1

∣

∣

∣
x
(k)
n

) ,

(5)
where k is the index of the past time step considered, i.e., the

length of the vectors {x
(k)
n }, and kM = 2 is the Markov order of

the model. Here, instantaneous feedback was assumed, meaning
that X and Y could interact within a time bin, as in Generalized
Transfer Entropy (Stetter et al., 2012; Orlandi et al., 2014). Thus,

the Markov order superscript indices on {x
(k)
n } and {y

(k)
n } are

identical. This assumption was justified because the synaptic
time constants (≃ 1 ms) were much smaller than the time bins
(50 ms) used. This binning also ensured that data analysis was
feasible and reasonably fast. Effective connectivity was inferred
for 30 min long raster plots (nmax = 36, 000) containing network
bursting events only. For any connection X to Y , significance z
was established by comparing the TEY→X estimate with the joint
distribution of TE for all input scores X′ to Y and output scores

X to Y ′ (for any X′ and Y ′), as

z =
TEY→X − 〈TEjoint〉

σjoint
, (6)

where 〈TEjoint〉 is the average value of the joint distribution and
σjoint is its standard deviation. Significant connections were then
set as those with z ≥ 2. This threshold was considered optimal
since it captured the flow of neuronal communication during
activity at both local and global scales. A lower threshold of
z = 1 yielded networks that excessively emphasized whole-
network coordinated activity, effectively shaping random graphs
in all studied cases. Thresholds z & 3 emphasized the strongest
neuron-to-neuron interactions and often yielded emptymatrices.
Significant connections were finally thresholded to 0 (absence of
connection) and 1 (presence of connection). The final effective
connectivity matrices E were then directed and non-weighted.

5.4.4. Network Analysis and Measures
The following network statistics and centrality measures were
computed for both structural (S, ground truth) and effective
(E) topologies.

In- and out-degree distributions and clustering coefficient:

Degree statistics were computed in Python using the Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010). For
the structural connectivity, these distributions reflected the
capacity of the obstacles to shape or dictate a distinct circuitry.
For the effective connectivity, they reflected the flow of activity.
Clustering coefficients (CC) (Fagiolo, 2007) were computed using
the Python module NetworkX (Hagberg et al., 2008). The spatial
distributions represented as heatmaps in Figure 6 show the
average values of in-degree (kin) and CC in square regions of side
0.031 mm, containing≈ 0.2 neurons on average for the networks
of 2 mm in diameter. Therefore, linear interpolation was used to
improve readability of the heatmap. For larger network sizes, the
size of the squares was scaled up proportionally to the diameter
of the network.

Modularity Q: It quantified the likelihood that neurons were
organized in communities, i.e., that neurons within a community
were more connected with themselves than with neurons in
other communities. Following Rubinov and Sporns (2010),Qwas
computed as

Q =
1

2m

∑

0≤i,j≤N

(

Aij −
kikj

2m

)

δ(ci, cj), (7)

where N is the number of neurons, Aij represents the weight

of the connection between i and j, ki =
∑N

j=1 Aij is the sum

of the weights of the connections attached to neuron i, ci is
the community to which neuron i belongs, m = 1

2

∑N
i,j=1 Aij,

and the δ(u, v) function is 1 for u = v and 0 otherwise.
Optimal community structure was computed using the Louvain
algorithm (Blondel et al., 2008).Q ranged from 0 to 1, withQ ≈ 0
for a random, non-modular network and Q → 1 for a strong
modular organization.

Global efficiency Geff: It quantified the integration capacity
of the network, i.e., the performance of information exchange
among neurons across the network. It was calculated using
the BCT. Following (Latora and Marchiori, 2001; Rubinov and
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Sporns, 2010), the efficiency E of a network of N nodes was
computed as

E =
1

N(N − 1)

∑

0≤i,j≤N

1

λ(i, j)
, (8)

where N is the number of neurons and λ(i, j) is the length
of the shortest path connecting neurons i and j. The global
efficiency Geff is the relative value Geff = E/Eid, where Eid
refers to the efficiency of an ideal graph that has all N(N − 1)
possible connections.
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Dysfunction in cholinergic modulation has been linked to a variety of cognitive disorders

including Alzheimer’s disease. The important role of this neurotransmitter has been

explored in a variety of experiments, yet many questions remain unanswered about

the contribution of cholinergic modulation to healthy hippocampal function. To address

this question, we have developed a model of CA1 pyramidal neuron that takes into

consideration muscarinic receptor activation in response to changes in extracellular

concentration of acetylcholine and its effects on cellular excitability and downstream

intracellular calcium dynamics. This model incorporates a variety of molecular agents

to accurately simulate several processes heretofore ignored in computational modeling

of CA1 pyramidal neurons. These processes include the inhibition of ionic channels by

phospholipid depletion along with the release of calcium from intracellular stores (i.e.,

the endoplasmic reticulum). This paper describes the model and the methods used

to calibrate its behavior to match experimental results. The result of this work is a

compartmental model with calibrated mechanisms for simulating the intracellular calcium

dynamics of CA1 pyramidal cells with a focus on those related to release from calcium

stores in the endoplasmic reticulum. From this model we also make various predictions

for how the inhibitory and excitatory responses to cholinergic modulation vary with

agonist concentration. This model expands the capabilities of CA1 pyramidal cell models

through the explicit modeling of molecular interactions involved in healthy cognitive

function and disease. Through this expanded model we come closer to simulating these

diseases and gaining the knowledge required to develop novel treatments.

Keywords: hippocampus, acetylcholine, CA1, muscarinic, compartmental model, pyramidal, computational

1. INTRODUCTION

Acetylcholine (ACh) directly modulates the activity of neurons within every subregion of the
hippocampus, including both principal neurons and interneurons (Aznavour et al., 2002; Takács
et al., 2018). The dense distribution of the cholinergic terminals within the hippocampus suggests
that this neurotransmitter plays an important role in healthy hippocampal functioning. This
important role is further evidenced by the correlation of dysfunctions reported in cholinergic
terminals with cognitive impairment. The progression of Alzheimer’s disease (AD) has long been
associated with the decline of cholinergic markers in the hippocampus (Schliebs and Arendt,
2011). Other cognitive disorders such as depression and schizophrenia are also associated with
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alterations in cholinergic disregulation (Higley and Picciotto,
2014). On an even broader scale, changes in cholinergic
expression are associated with the cognitive decline due to
advanced age (Schliebs and Arendt, 2011). The variety of
cognitive dysfunctions related to ACh suggests that it plays not
only an important, but a complex role. In a 2-year double-
blind study, 35% of patients taking an acetylcholinesterase
inhibitor to slow cognitive decline due to AD had a recurrence
of major depressive episodes vs. 19% of those on a placebo
(Reynolds et al., 2011). In other words, a drug meant to
counteract one form of cholinergic dysfunction exacerbated
a separate form of cholinergic dysfunction. Developing better
treatments for these disorders requires a better understanding
of the dynamics of healthy cholinergic modulation. Currently,
ACh is understood to play a role in a variety of cognitive
processes. We will summarize some of these effects briefly
but for fuller reviews (see Dannenberg et al., 2017; Solari and
Hangya, 2018). Acetylcholine has long been understood to be
involved in the generation of theta oscillations (4–12 Hz) in
the hippocampus. Theta oscillations are theorized to organize
memory encoding and retrieval into distinct phases (Hasselmo
et al., 2002). Acetylcholine seems to be involved with the
generation of the lower frequency portion of theta oscillations,
as these frequencies can be blocked by the cholinergic receptor
antagonist atropine (Kramis et al., 1975). On a behavioral level,
the blockade of cholinergic receptors in animal models leads to a
variety of memory deficits involving both spatial navigation and
the acquisition of conditioned fear responses (Jiang et al., 2016;
Solari and Hangya, 2018). These effects result from the activation
of a variety of cholinergic receptors in the hippocampus. These
receptors can be sorted into two types. The first type, nicotinic
receptors, act as ionotropic receptors and allow the passage
of ions through the plasma membrane. In the CA1, nicotinic
receptors primarily modulate interneuron activity (McQuiston,
2014), but they also appear in low densities on pyramidal cells
(Kalappa et al., 2010). The second type, muscarinic receptors,
have a much larger effect in modulating CA1 pyramidal cell
activity (Dasari and Gulledge, 2011). These receptors are G
protein coupled receptors with their activation setting off a
cascade of intracellular reactions. Among the five subtypes of
muscarinic acetylcholine receptors (mAChRs), the subtypes that
primarily modulate CA1 pyramidal activity are the M1 and
M4 mAChRs. M4 mAChRs suppress glutamatergic release from
excitatory synapses originating from the CA3 subregion (Dasari
and Gulledge, 2011). M1 mAChRs are present throughout the
cell’s morphology and alter its overall excitability along with
altering the intracellular calcium dynamics (Dasari and Gulledge,
2011). Thus, the M1 mAChRs are responsible for the majority of
the cholinergic response in this cell type. The M1 mAChR, as a
G-protein coupled receptor, activates a cascade of intracellular
reactions (Falkenburger et al., 2010a,b). It is through these
reactions that the M1 receptor is able to modulate the behavior
of a variety of ion channels. Teithehe M-current was given that
name due to muscarinic receptors suppressing its activity (Brown
and Adams, 1980). Inhibition of this current in CA1 pyramidal
cells through bath application of theM-current antagonist XE991
lead to a depolarized resting membrane potential and increased

spiking activity (Shah et al., 2008). This current was also shown
to be inhibited after bath application of the muscarinic agonist
Oxotremorine-M (Oxo-M) (Carver and Shapiro, 2019). The
channels responsible for the M-current, Kv7 Potassium channels,
require phosphatidylinositol 4,5-bisphosphate (PIP2) in the cell
membrane to maintain its open state. M1 activation leads
to the activation of phospholipase C (PLC) which hydrolyzes
PIP2 into inositol(1,4,5)triphosphate (IP3) and diacylglycerol
(Falkenburger et al., 2010a,b). It is through this depletion of PIP2
that mAChRs inhibit the M-current. Also, by producing IP3, M1
receptors trigger the release of calcium from the endoplasmic
reticulum (ER) via IP3 receptors. This leads to an increase
in intracellular calcium which activates calcium dependent
potassium (SK) channels. In CA1 pyramidal cells M1 activation
is followed by a hyperpolarization which is able to inhibit action
potentials. These hyperpolarizations can be blocked through
the application of apamin, an SK channel antagonist (Dasari
and Gulledge, 2011). Figure 1 provides both a flowchart and a
cartoon illustrate these processes. One long term goal of our lab
has been to create a large scale model of the hippocampus and
through thismodel, gain a better understanding of the underlying
dynamics of this system (Hendrickson et al., 2015), thereby
facilitating the development of better treatments (electrical
or pharmaceutical) to alleviate hippocampal dysfunctions.
Experimental evidence has demonstrated that cholinergic
modulation plays an important role in controlling the dynamics
of this system. This has driven the development of this single cell
model, which will act as a foundation for integrating cholinergic
modulation into our efforts for a large-scale hippocampal model.
We have chosen to build the single cell model on a biophysically
realistic basis wherever possible. This is for two reasons. First, the
collection of experimental data for calibrating a model gives a
perspective on the depth of understanding and raises questions
to guide further in vitro or in vivo experimental efforts. Second,
the inclusion of biochemical mechanisms allows for broad
parametric manipulations which (i) facilitate the simulation
of pathological processes and disease states and (ii) provide
useful insights for the identification and development of novel
treatment options. By creating a biophysically realistic model, we
have developed a tool that allows more cohesive collaboration
with other experimental efforts. What follows is a description of
a model for the cholinergic modulation of the somatic activity
of pyramidal cells within the CA1 region of the hippocampus.
Within the hippocampus, this cell type is the most studied
in terms of cholinergic modulation and will constitute a solid
foundation for the construction of larger cell network models.

2. MATERIALS AND METHODS

The primary task of this research was to evaluate and bring
together a variety of mechanisms and models to accurately
capture the dynamic response of CA1 pyramidal cells to
acetylcholine. As a starting point, we used a compartmental
model of the CA1 pyramidal cell (mpg141209_A_idA as
downloaded from ModelDB) (Migliore et al., 2018) previously
developed for the NEURON simulation environment (Carnevale
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FIGURE 1 | Mechanisms of CA1 pyramidal cell modulation by M1 MAChRs. (A) Flowchart description of the steps between M1 activation and modulated membrane

potential. (B) Illustrated stages of activation: (Left) Before activation the cell is at rest with Kv7 channels open. (Center) M1 activation leads to hydrolysis of PIP2 from

cell membrane (inhibiting Kv7 channels) and the release of intracellular Ca2+ (activating SK channels) through the generation of IP3. (Right) As Ca2+ is extruded from

the intracellular space SK channels close while Kv7 channels remain closed. (C) Membrane potential at different stages of activation. (D) Intracellular calcium levels at

different stages of activation.

and Hines, 2006). We chose to use this simulation environment
as its RXD module (McDougal et al., 2013) allowed us to
efficiently expand the model’s intracellular calcium mechanisms.
The code for these simulations was developed in the Python
programming language. The base model included mechanisms
for the M-current, SK channels, voltage-gated calcium channels
(VGCC). Entry through VGCCs was the only mechanism
through which intracellular calcium increased, while calcium
efflux was simulated as an exponential decay of the intracellular
calcium to its resting value. As one of the focuses of this
work was to simulate intracellular calcium release we needed
to insert and calibrate all of the mechanisms for simulating the
storage and release of calcium from the endoplasmic reticulum,
buffering the intracellular calcium concentration, and extrusion
of excess calcium into the extracellular space. Without these
mechanisms, none of the inhibitory effects seen in Figure 1

could be replicated. These calcium mechanisms were only
expanded in the sections that comprise the soma and the first
200 µm of the apical dendritic trunk. Figure S1 illustrates

which sections within the full morphology were given expanded
calcium mechanisms. One reason for the decision to only
expand the calcium model into these sections was that the
calcium dynamics in these regions are the most studied due
their diameters being large enough for calcium imaging using
fluorescent dyes. Second, cholinergic modulation in synaptic
spines seems to play a role in plasticity (Dennis et al., 2016).
However, plasticity in these synapses is also dependent upon
postsynaptic spiking activity. To properly simulate how plasticity
is altered by cholinergic modulation requires we first make
a working model of how cholinergic modulation alters cell
excitability and spike generation. Finally, the mechanisms of
action differ between synaptic and somatic modulation. For
instance, the hyperpolarization seen at the soma is due to
the activation of SK channels as evidenced by its blockade by
apamin (Dasari and Gulledge, 2011), while synaptic cholinergic
modulation has been tied to the inhibition of SK channels
(Buchanan et al., 2010). Calibrating these differing mechanisms
requires a separate series of simulations and would be best
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explained in a separate work. Our goal in selecting additional
mechanisms was to create a relatively simple model capable
of replicating intracellular calcium dynamics. Disease and age
have been reported to alter several of the mechanisms included
(e.g., calcium buffering; Gant et al., 2006; Oh et al., 2013).
By incorporating mechanistic models for these altered states,
we can explore how the cell behavior changes, and how these
changes impact network-level outcomes. Of importance, fidelity
to the biochemistry of the intracellular space must be balanced
against the realities of computational modeling. A model that
includes all of the known molecular interactions would have too
many parameters to constrain with the available experimental
evidence. Additionally, simulations using this model would be
computationally expensive even for a single cell model. In
addition, our goal of including this model into large scale
network simulations only exacerbates this limitation. We have
thus strived to include the minimum collection of mechanisms
that is necessary for capturing cholinergic modulation in the
soma and apical trunk. Expanding themodel to other regions and
to include other mechanisms will be performed in subsequent
work. A visualization of themechanisms in the expanded calcium
model can be found in Figure 2, while the concentrations
and kinetic parameters for these mechanisms can be found in
Tables S1, S2, respectively. The addition of a mechanism often
required constraining parameter values to properly replicate
experimental results. In order to simplify the calibration process,
the mechanisms were divided into groups based upon region
of action (e.g., endoplasmic reticulum vs. intracellular). These
groups were then calibrated in a specific order, starting from
protocols that required the smallest number of mechanisms and
comprised a minimum number of interdependent parameters.
For example, the rate at which the endoplasmic reticulum (ER)
regains depleted calcium at rest is based upon the balance
between the rate of calcium uptake from sarco/endoplasmic
reticulum calcium pumps (SERCA) vs. the rate of calcium
leakage from the ER. Since the conductance of VGCCs does not
factor into this result it can be ignored. Conversely, replicating
intracellular calcium transients after an action potential requires
constraining parameters for VGCC conductance and calcium
extrusion, in addition to SERCA and ER leak flux, as ER
calcium sequestration alters the dynamics in the intracellular
space. Since we could relatively isolate the ER mechanisms, those
parameters were calibrated first. This simplified the calibration
of later parameters based on results that depend on more
mechanisms. The following sections describe the mechanisms
that were implemented and the experimental data from which
constrained these parameter values.

2.1. Calibrating the Endoplasmic Reticulum
The first step in creating the model was to calibrate the
parameters pertaining to the ER. We chose to model the
ER as an idealized 10% of the intracellular volume to avoid
explicitlymodeling the intricate and dynamic geometry of the ER.
Reconstructions of the ER in CA1 pyramidal cells have focused
on the organelle’s volume in either the dendritic branches or
synaptic spines while ignoring the volume of the ER in the soma
and apical trunk. Using smaller values for the percentage of ER

volume, such as those found in dendritic reconstructions (2–
8% of dendrite volume) (Spacek and Harris, 1997), decreased
the capacity of calcium storage such that the model could not
replicate the amplitude of calcium release events. The 10% value
is therefore a compromise that allows larger intracellular calcium
release events while remaining near the experimentally measured
range. The resting concentration inside the ER was initialized at
175 µM (Solovyova et al., 2002). For the initial calibration, there
were three mechanisms that defined the ER calcium dynamics:
calreticulin (CALR) concentration, SERCA pumps, and calcium
leak. The inositol(1,4,5)triphosphate receptor mechanism (IP3R)
was calibrated at a later stage as the IP3R model produced
negligible currents at resting IP3 concentrations. CALR acts
as the major calcium buffer in the lumen of the ER and its
concentration defines the amount of buffered calcium reserves
for a given lumenal calcium concentration. We used the CALR
kinetics and concentration found in an earlier ER model (Doi
et al., 2005).

Expressions (1) and (2) were used for the SERCA pump
mechanism while Expression (3) was the formula used to
calculate the leak of calcium from the ER into the cytosol.
Expression (4) shows the chemical formula used for CALR
binding to calcium.

Ca2+cyt

kS
f

−→Ca2+ER (1)

kSf =
gS · [Ca

2+
cyt ]

2

[Ca2+cyt ]
2
+ 0.00132

(2)

Ca2+ER

kleak ER
f
−→ Ca2+cyt (3)

CALR+ Ca2 +
kcalr
f

⇋
kcalr
b

CALRCa (4)

From these mechanisms we calibrated two parameters, gS, the
SERCA conductance, and kleak ER

f
, the rate of leakage from the

ER. Due to the model ER not having a set geometry it also lacks a
set surface area. Therefore these mechanisms were implemented
as direct fluxes between the two volumes without consideration
of surface density. To constrain the SERCA and leakmechanisms,
we used an experimental result (Garaschuk et al., 1997) for which
the return of Ca2+ER to resting concentrations was fit with an
exponential function with a time constant of 59 s. This time
constant along with the experimental Ca2+ER resting concentration

gave us a target with which wemanually calibrated gS and k
leak ER
f

.

The results of this calibration are illustrated in Figure 2B.

2.2. Calibrating Intracellular Calcium and
Indicator Model
With the ER related mechanisms calibrated, we moved to
calibrating the mechanisms related to the intracellular space.
The major mechanisms of interest in this portion of the model
pertain to the extrusion of excess calcium into the extracellular
space [i.e., plasma membrane calcium pumps (PMCA)] and
the conductance of VGCCs. However, experimental evidence to
constrain these parameters required the addition of mechanisms
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FIGURE 2 | (A) Visualization of mechanisms included in expanded CA1 pyramidal cell calcium model. (B) Results of tuning model mechanisms that replenish calcium

stores in the endoplasmic reticulum without action potentials. Plotted value is simulated calcium stored in endoplasmic reticulum over time (x-axis = 50 s, y-axis = 50

µM). Target data is based on experiments in Garaschuk et al. (1997). (C) Results of tuning model mechanisms that determine calcium dynamics following an action

potential. Plotted value is the percent change in fluorescence of a simulated calcium indicator (OGB-1) over time (Scale: x-axis = 1 s, y-axis= 10% change in

fluorescence). Target data is based on results from Power and Sah (2002).

to replicate experiments using fluorescent calcium indicators.
Fluorescence measurements constitute the primary method to
visualize calcium dynamics. However these indicators act as a
high affinity calcium buffer and alter the very dynamics they
are supposed to report. We therefore included mechanisms to
simulate the binding of calcium to Oregon Green BAPTA-1
(OGB-1), as this was the indicator used in the experimental
results we sought to replicate. The kinetic parameters we used
for the OGB-1 mechanism were based on measurements in an
intracellular environment as interactions with intracellular ions
can change the affinity from its reported in vitro value (Thomas
et al., 2000). Expression (5) was the chemical formula used for
the binding of calcium to OGB-1. According to the product
information sheet OGB-1 bound to calcium fluoresces 14 times
the rate of the unbound state (Molecular Probes, 2005). We
used this fact to create Expression (6), which provides a method
to calculate the simulated fluorescence. With this mechanism
we could use fluorescence experiments that used this calcium
indicator to constrain the other intracellular mechanisms. This
OGB-1 mechanism for creating a simulated fluorescence was
only used in this portion of the calibration process and was not
included in later parameter calibrations.

OGB+ Ca2 +
k
ogb1

f

⇋
k
ogb1

b

OGBCa (5)

F = fmult · OGB1Ca+ OGB1 (6)

Deciding what concentration of Calbindin-D28k (CB) to use in
our simulations was another obstacle. The presence of CB is
among the ways that CA1 pyramidal cells display heterogeneity,

with only around 50% of cells expressing this protein (Müller
et al., 2005). Expression of CB is not correlated with the
bursting/regular firing characteristic that serves as the major
dichotomy within CA1 pyramidal cells (Baimbridge et al., 1991),
so the spiking response of base compartmental model could
not be used as a constraint. Additionally CB is mostly mobile,
so a large portion of CB likely diffused out of the cell and
into the electrodes used to inject the fluorescent indicators as
demonstrated in Müller et al. (2005). These factors make it
difficult to have full confidence in the intracellular concentration
of CB during the fluorescent measurements we used to calibrate
the parameters. In simulations replicating fluorescent data,
we assumed these cells did express this protein but that
the concentration was diminished. We set the diminished
concentration to 20% of its regular value as that proportion
was estimated to be immobile in neurons (Schmidt et al., 2005).
Expression (7) is the chemical formula for the binding of CB
to calcium.

CB+ Ca2 +
kcb
f

⇋
kcb
b

CBCa (7)

Expression (8) describes the binding of pmca to calcium
while Expression (9) describes the release of calcium into the
extracellular volume. This series of reactions describes how
PMCA acts as the mechanism for the extrusion of calcium from
the cytosol to the extracellular space.

PMCA+ Ca2+
k
pmca ca

f

⇋
k
pmca ca

b

PMCACa (8)
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PMCACa
kpmca rel

−→ PMCA (9)

Among these mechanisms there were two parameters that
required calibration. First, we needed to tune the overall rate of
calcium extrusion due to PMCA. While we had the parameters
for its binding kinetics, we needed to tune the overall flux by
altering the mechanism’s surface density. Second, we had to
alter the conductances of the VGCCs. In altering the model we
had expanded the volume the model tracked while calculating
calcium concentration. The original conductance values were
tuned assuming a thin shell on the inner surface of the cell
membrane. This expanded volume required increasing the
channel conductances such that the calcium influx was enough
to drive the fluctuations seen in the target experimental data.

As our target for constraining the intracellular calcium
dynamics we chose the calcium fluorescence following an
action potential (AP) (Power and Sah, 2002) as this protocol
minimized the amount of calcium released from the ER. These
experiments measured fluorescence transients in both the soma
and the apical dendritic trunk, allowing us to calibrate separate
parameter values for different section types. To calibrate these
mechanisms we induced a simulated AP. We then modified
the parameters values by hand until the simulated calcium
fluorescence matched the target data. By altering the VGCC
conductances we could alter the overall amplitude of the calcium
transient. Due to differences in target amplitude, separate VGCC
conductance values were calibrated for the soma and apical
dendritic trunk. Increasing the density of PMCA decreased the
maximum amplitude of the calcium along with increasing the
rate the transient decayed to resting concentrations. The results
of this calibration can be seen in Figure 2C.

2.3. Calibrating Calcium Release and Spike
Acceleration
With the components for the calcium dynamics in place, the next
step was to calibrate the production of IP3 following M1 mAChR
activation. For the M1 mAChR model we turned to the kinetic
models developed by the Hille lab (Falkenburger et al., 2010a,b,
2013; Kruse et al., 2016). This model included mechanisms that
describe the process from the receptor activation by its agonist to
PIP2 hydrolysis into IP3 and DAG. A schematic representation
of this model including all of the associated reactions can
be found in Figure S2. However, the model required notable
modifications to fit our purpose. First, the Hille model simulated
the agonist Oxo-M, not acetylcholine (ACh). While Oxo-M is an
important muscarinic agonist, the goal of simulating endogenous
cholinergic modulation required the mechanism to include ACh.
Our work added the action of ACh on the M1 mAChR model
through the calibration of additional parameters. Second, the
rate of IP3 production was extremely slow compared to the
behavior seen in CA1 pyramidal cells. Recordings of spiking CA1
pyramidal cells exposed to brief (40 ms) pulses of ACh were
provided by the authors of Gulledge andKawaguchi (2007). From
these recordings we selected a subset of traces demonstrating
regular spiking activity where the pre-ACh spiking frequency was
<15 Hz. This provided 16 cell voltage traces. From these selected
recordings it was determined that the regenerative release

occurred within 200 ms of receptor activation as spikes were
inhibited by this time. Both of these issues required the alteration
of parameter values in order to achieve the desired responses.

In Falkenburger et al. (2010b), the authors used fluorescence
resonance energy transfer (FRET) to measure the binding of
M1 mAChRs to Oxo-M. A separate study performed an analysis
of ACh binding to M1 using similar FRET techniques (Ziegler
et al., 2011). From this study we took the half maximal effective
concentration value of ACh and used that value to calibrate
the parameters for agonist binding the receptor (see reaction 1
in Table S2). The change in the receptor’s response to agonist
concentration can be seen in Figure S3.

The discrepancy between the rapid release of intracellular
calcium after M1 activation seen in CA1 pyramidal cells and the
slow generation of IP3 in the Kruse et al. (2016) model was solved
by increasing a subset of kinetic parameters in two portions of
the M1 model. This discrepancy is most likely due to the original
model being constrained to fit the response within sympathetic
neurons. Activation of M1 channels in this neuron type leads
to PIP2 depletion but not large releases of intracellular calcium.
The rate of PLC activity will differ depending on the specific
isozymes present within the cell type. Hippocampal cells contain
PLC isozymes which are activated by increased intracellular
calcium (Nakahara et al., 2005), creating a positive feedback for
the hydrolysis of PIP2. It stands to reason that PIP2 hydrolysis
would be triggered more rapidly than in the original model.
The first portion of the model that needed faster dynamics was
the activation and inactivation of PLC through its binding and
unbinding to the G protein. Expressions (10) and (11) describe
these reactions.

PLC+ Gα − GTP
kPLCassoc
−→ Gα − GTP-PLC (10)

Gα − GDP-PLC
kPLCdiss
−→ Gα − GDP+ PLC (11)

From these reactions we recalibrated the two forward rates
(kPLCassoc and kPLCdiss). If we examine the original dynamics as
seen in Figures 3A,B, one can see that the PLC activation peaks
around 2 s after the ACh pulse and that IP3 levels peak around the
same time. However, looking at the cell recordings (see Figure 4A
for an example), by this time the calcium transients have already
largely ended by 2 s as the cells have largely resumed spiking by
then. Using the original parameter values led to a longer weak
release of calcium from the ER as opposed to the approximately 1
s duration strong release we required to reach higher (>1 µM)
intracellular calcium concentrations. The two parameters were
therefore both increased by a factor of 10. The difference in
dynamics can be seen in Figure 3A.

The second portion of the M1 model that required changed
kinetics was the hydrolysis of PIP2 into DAG and IP3.
Expressions (12) and (13) describe this reaction.

PIP2
kPLC
−→ IP3 + DAG (12)

kPLC = rPLC ∗ Gα-GTP-PLC (13)

Here the parameter, rPLC, was increased by a factor of 100. If we
look at Figure 3B, we can see how this altered the dynamics of
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FIGURE 3 | Comparison of dynamics after a simulated 50 ms 100 µM ACh

pulse. (A) Activated PLC dynamics using original parameter values from Kruse

et al. (2016) (red dash) to recalibrated parameter values used in final model

(black solid). (B) IP3 dynamics using either the original parameters (red dash),

increased PLC activation parameters (blue dash-dot), or increased PLC

activation parameters along with increased hydrolysis rate (kPLC) (black solid)

(C) PIP2 dynamics using either using either the original parameters (red dash),

increased PLC activation parameters (blue dash-dot), increased PLC activation

parameters along with increased hydrolysis rate (kPLC) (gray dot), or all

increased parameters including those that drive synthesis of PIP2 (black solid).

the reaction. By increasing the rate of the hydrolysis along with
increasing the rates in Expressions (10) and (11), the production
of IP3 occurred far more rapidly and was largely complete within

FIGURE 4 | (A) Experimental recording of CA1 pyramidal cell responding to a

40 ms pulse of 100 µM while driven to spiking. (B) Model response to 50 ms

pulse of 100 µM ACh while cell is driven to regular spiking. (C) Comparison of

instantaneous firing rate of experimental response and model response.

2 s of the ACh pulse. This also rapidly depleted the PIP2 as seen
in Figure 3C.

The next goals were to calibrate the calcium release required
for spike inhibition and the rate of PIP2 synthesis. This latter
process controls the rate of reactivation of the M-current, and
thereby controls the duration of spike acceleration. With the
rate of IP3 increased in previous calibration steps, overall IP3
levels were controlled by altering the total concentrations of IP3
Kinase (IP3K) (Expressions 16, 17, and 18) and IP 5-phosphatase
(IP5P) (Expressions 14, 15). Similar reasoning to the increased
rate of IP3 production drove tuning the rate of IP3 removal.
The concentration of IP3 needed to return to near resting levels
quickly enough that calcium release ended within seconds of the
ACh pulse. This allowed mechanisms to restore calcium to the
ER and also allowed the cell’s activity to sharply transition from
hyperpolarization to accelerated spiking.

IP5P+ IP3
k
ip5p

f

⇋
k
ip5p

b

IP5P− IP3 (14)

IP5P− IP3
kip2
−→ IP5P+ IP2 (15)

IP3K+ 2Ca2+
k
ip3k ca

f

⇋
k
ip3k ca

b

IP3K− 2Ca2 (16)

IP3K− Ca2 + IP3

k
ip3k ip3

f

⇋
k
ip3k ip3

b

IP3K− 2Ca2 − IP3 (17)

Frontiers in Computational Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 75176

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Mergenthal et al. Cholinergic Modulation of CA1 Cells

IP3K− Ca2 − IP3
kip4
−→ IP3K− Ca2 + IP4 (18)

The mechanism for calcium efflux through IP3 receptors is
described by Expressions (19) and (20). Here ROpen refers to the
open state of the full kinetic model. For the full kinetic scheme of
the IP3 receptor model (see Figure S2B).

Ca2+ER

kIP3R
f
−→Ca2+cyt (19)

kIP3Rf = gIP3R · ROpen (20)

By manipulating the maximum flux, gIP3R, and the rate of IP3
breakdown we were able to produce calcium transients with
peaks reached >1 µM that resolved within the desired duration
range (1–3 s).

The final set of parameters we altered to replicate the CA1
pyramidal cells’ behavior were involved in the synthesis of PIP2.
The resynthesis of PIP2 is due to activity in the ER that varies with
the proteins a cell type expresses (Blunsom and Cockcroft, 2020).
As these species are not characterized within the CA1 pyramidal
cell, we chose to use the mechanisms present in the model
and to calibrate the kinetic parameters to match the behavior
seen in in vitro experiments. The following expressions describe
these reactions.

PI
k4K
−→PI(4)P (21)

PI(4)P
k5K
−→PIP2 (22)

PI(4)P
k4P
−→PI (23)

PIP2
k5P
−→PI(4)P (24)

From these expressions four parameters needed to be recalibrated
(k4K , k5K , k4P, and k5P). These parameters were recalibrated
based upon the rate the instantaneous firing rate (IFR) returned
to its pre-ACh value. In our model, this increased spiking is
due to the inhibition of the M-current following PIP2 depletion.
By simulating the original experiments used in Gulledge and
Kawaguchi (2007), we could replicate the altered spiking behavior
and calibrate the kinetic parameters for PIP2 synthesis so that the
resolution of spike accelerationmatched the experimental results.
Figure 3C shows how the recalibrated parameters changed the
synthesis of PIP2. Figure 4 shows a simulated experiment along
with an example of a cell recording and demonstrates the model’s
ability to replicate the changes to IFR over time.

2.4. Depolarization Activated Calcium
Store Replenishment
The final mechanism we resolved to include in this model was
the role of store operated calcium entry (SOCE). Briefly, this is
a process by which the depletion of lumenal calcium causes the
activation of calcium channels on the plasma membrane. These
channels are positioned in membrane junctions or regions where
the distance between the plasma and ER membrane is <100 nm.
This allows the calcium that enters through SOCE to almost
directly enter the ER without altering the overall intracellular

calcium concentration. For a more in depth review of this process
(see Majewski and Kuznicki, 2014). Interestingly this process
is also dependent on depolarization of the cell (Dasari et al.,
2017). Without depolarization, repeated phasic exposure fails to
demonstrate repeated hyperpolarizing responses to intracellular
calcium release.

While this process is well documented and the responsible
actors have been partly identified, the kinetics of this process
have not been quantified. Not including a mechanism to replicate
SOCE would make it impossible to simulate network activity
with synaptic release of ACh, as the cell model would only be
able to respond to one release event. To overcome this limitation
we included a mechanism that replicated the behavior of SOCE
without explicitly modeling the underlying molecular events.
This mechanism is based on a series of assumptions.

• Depolarization is required for activation (Dasari et al., 2017).
• Hyperpolarization does not cause a leak from intracellular

stores.
• CaER depletion is required for activation (Majewski and

Kuznicki, 2014).
• The action of this mechanism bypasses the intracellular

calcium concentration as calcium directly moves from the
extracellular space to the ER lumen.

Expression (25) was the mechanism we used which fit the
above criteria.

dCa2+ER = gSOCE · ln(1+ evm−vinit ) · e
−(CaER−Cad)

kSOCE (25)

This mechanism avoids altering the intracellular calcium
concentration by directly changing the value of CaER. Through
the use of a softplus function this mechanism will have
minimum activation except when the cell’s membrane potential is
depolarized from it’s resting value (vinit). Also asCaER approaches
its resting value, this mechanism deactivates, ensuring it is
maximally activated after calcium store depletion. As seen in
Figure S4 this mechanism allows repeated hyperpolarizations
following intracellular calcium release if the cell depolarizes, but
intracellular calcium release cannot repeatedly occur if the cell
maintains a near resting membrane potential. This replicates
behavior seen in cortical pyramidal cells (Dasari et al., 2017).

3. RESULTS

3.1. Acetylcholine and Cell Excitability
With the compartmental model able to replicate experimental
responses of CA1 cells, we sought to explore how variations in the
concentration of ACh would alter the model’s behavior. As our
model only captures themodulation in the soma, axon, and apical
trunk of the cell, we focused on simulating how ACh alters the
cell’s excitability. Experiments tend to use agonist concentrations
that will drive a significant and unambiguous response.
These experimental concentrations may not be biologically
relevant, however. While some measurements of in vivo ACh
concentrations have been made, these measurements were
made under the assumption of volumetric transmission. Recent
work, however, has demonstrated that cholinergic terminals
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form synapses, undermining this volumetric assumption (Takács
et al., 2018). It therefore remains unclear what concentrations
muscarinic receptors see during cognition. This particular aspect
will be further discussed later. To avoid testing an exact
concentration profile we sought to explore how our model
responds to a wide range of concentrations. We also explored
how the model behaved differently under a synaptic release of
ACh vs. a steady state exposure. Short pulses (50 ms) replicated
a simultaneous synaptic release we termed “phasic,” while long
term (>5 s) exposures simulated a steady state exposure referred
to as “tonic” exposure.

We first replicated phasic exposure while the cell is at a
resting membrane potential. Figure 5 demonstrates how the
model replicates these changes to membrane potential. At 100
µM the model produces a−9.05 mV hyperpolarization followed
by a depolarization of 1.98 mV. From Figures 5C,D, it is clear
that the amplitudes of these reactions are highly concentration
dependent. From Figure 5D, its clear that for concentrations
<0.1 µM, the release of calcium from intracellular stores is
negligible and consequently no hyperpolarization occurs. In
Figure 5C, we see that the hyperpolarizing effect is induced at
lower concentrations (EC50 = 0.499µM) than the depolarization
(EC50 = 1.95 µM). This suggests that for cells at rest, within
a certain range of concentrations, short pulses of acetylcholine
would only have an inhibitory effect on the cell without
producing much excitatory modulation.

We then sought to explore how phasic ACh exposure would
alter the spiking activity of the cell model. We ran a series
of simulations in which current injections drove the cell to
spike at a constant rate of 10 Hz. At the 1 s mark we then
modeled the injection of a 50 ms pulse of ACh with each
simulation having a different concentration. The results of these
simulations can be seen in Figure 6. Looking at Figure 6C, we
can see that once spiking resumes, the IFR increases rapidly
reaching a peak around 2–3 s after the ACh pulse. The increased
firing rate then slowly returned to its baseline rate over several
seconds. We calculated the peak percent increase in IFR, or
spike acceleration, for each simulated concentration. As shown
in Figure 6D, this value formed a smooth sigmoidal curve
when plotted against concentration. The duration of the spike
inhibition, seen in Figure 6E varied in a way similar to the
variation seen in the resting conditions, abruptly beginning at
concentrations above 0.1 µM. That spike inhibition begins so
abruptly means that for ACh concentrations of 0.1 µM or less
the firing rate will have noticeably increased without a period
of spike inhibition. Additionally, while the peak acceleration
followed a sigmoidal curve, the longest spike inhibition occurred
at 1 µM, with the duration of inhibition decreasing thereafter. If
we examine Figure 7, we can see the cause of this nonlinearity.
In Figure 7A, we can see that as the concentration of the
ACh pulse increases, the peak concentration of the intracellular
calcium transient increases. Figure 7B demonstrates that these
peak values form a sigmoidal curve. However, while the peak
values is increasing, the duration of the calcium transient
is also decreasing. This is due to larger ACh pulses driving
increased IP3 production and thereby causing a more rapid
depletion of ER calcium stores. As the stores are depleted,

FIGURE 5 | Simulated response to phasic (50 ms) exposure at varying

concentrations of acetylcholine. (A) Cell membrane potential with no other

stimulation besides acetylcholine pulse. (B) Simulated intracellular calcium

release. (C) Peak hyperpolarization and depolarization values at different

concentrations of acetylcholine. (D) The peak intracellular calcium

concentration following acetylcholine pulse.
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FIGURE 6 | Simulated response to phasic (50 ms) exposure of varying

concentrations of acetylcholine. (A) Cell injected with a current amplitude such

that it spikes at a steady rate of 10 Hz. Current injection is present throughout

simulation. (B) Repeat of experiment with the addition of a 100 µM

acetylcholine pulse that starts at t = 1 s and lasts for the duration of the

simulation. (C) Instantaneous firing rate over time for different concentrations

of ACh. This rate is the inverse of the inter spike interval. (D) The peak spike

acceleration increased with higher concentrations of ACh. (E) The duration of

the pause in spiking vs. the concentration of ACh.

FIGURE 7 | (A) Time series of intracellular calcium concentration after phasic

(50 ms) exposure to ACh. (B) Peak cytosol calcium vs. the concentration of

the phasic ACh pulse.

the calcium transient begins to decay. It is this accelerated
depletion of ER calcium which leads to the shorter duration of
inhibition for higher concentrations of ACh. This nonlinearity
in spike inhibition could have interesting implications for
network activity, and will be a subject of discussion later in
this paper.

Under tonic exposure to ACh, we noted multiple ways
that the cell model displayed increased excitability. As can be
seen in Figure 8 the rheobase (defined here as the minimum
amplitude of a 200 ms current pulse required to elicit an
action potential) decreased with increasing concentrations
of ACh. Starting at a value of 263 pA, the rheobase
decreased 40.5% to a value of 156 pA with 14.3 nM of
ACh producing half of the maximum decrease. The cell
model also demonstrated increased excitability, illustrated by
an increase of 39.1% in the input resistance measured at the
soma. The increase in simulated input resistance can be see in
Figure 9. This increased excitability plateaus in the high hundred
nanomolar range with the increased excitability starting within
nanomolar concentrations. This suggests that even relatively
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FIGURE 8 | Measuring reduction in rheobase due to tonic acetylcholine

exposure. (A) A 200 ms current pulse of varying amplitude is applied at a time

sufficiently after the start of a simulated acetylcholine exposure such that the

system is at steady state. A binary search was performed to find the minimum

current injection amplitude which would generate an action potential. (B) Cell

rheobase decreases with increased concentration of acetylcholine.

low background concentrations should be able to alter cell
spiking behavior. Long term exposure of ACh also produced a
depolarization that persisted through the duration of exposure.
The amplitude of this depolarization varied as a function of
ACh concentration as demonstrated in Figure 10. Finally, tonic
exposure caused accelerated spiking for a given amplitude
of current injected at the soma. This accelerated spiking is
demonstrated in Figure 11.

3.2. Intracellular Calcium Release
Focal application of muscarinic agonists and stimulation
of cholinergic terminals were demonstrated to generate
calcium waves that progressed from the apical dendritic
trunk to the soma (Power and Sah, 2002). Our model, as
demonstrated in Figure 12, replicates many aspects of these
calcium waves. As seen experimentally, the sections in the
apical trunk reached a higher peak calcium concentration
more rapidly than the somatic section. This is likely
due to dendritic regions having higher surface area to
volume ratios.

FIGURE 9 | Increasing the concentration of tonic acetylcholine increases the

input resistance of the cell model as measured at the soma. Input resistance

was measured by performing a series of somatic current injections and then

performing linear regression on the relation between membrane depolarization

to current amplitude. The values plotted are the slopes of the estimated linear

functions. The current amplitudes used were 0, −100, and 100 pA.

4. DISCUSSION

4.1. Novel Additions to CA1
Compartmental Model
This model includes a number of mechanisms that have
largely been absent from previous compartmental computational
models of the CA1 pyramidal cell. In addition to including
the M1 mAChR model, the intracellular calcium related
mechanisms have been greatly expanded. Among these new
calcium mechanisms were calbindin and PMCA. We have
also been able to replicate the calcium wave phenomenon by
including the endoplasmic reticulum. The parameters for these
mechanisms were calibrated using experimental measurements
obtained in CA1 pyramidal cells to ensure the resulting model
accurately replicates this cell type’s behavior. The addition of
these novel mechanisms allows our model to replicate several
molecular interactions that have been heretofore ignored in
whole cell computational models of CA1 pyramidal cells.

4.2. Predictions From Model
The expanded CA1 pyramidal cell model have allowed us to
generate some predictions which could be tested experimentally.
First, the model predicts that intracellular calcium release can
be triggered over a wide range of ACh concentrations. Later
experimental evidence may show a more tightly regulated
threshold that the transition between minimum and maximum
responses occurs over a narrower range of concentrations.
These hypothetical results would then suggest that there are
mechanisms involved which introduce additional nonlinearities
that increase the threshold for calcium release. For example the
rate of PIP2 hydrolysis into IP3 being dependent on calcium
would likely cause a sharper threshold for calcium waves.

A second prediction is that the duration of spike suppression
as seen in Figures 6E, 11D does not increase monotonically;
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FIGURE 10 | Measuring depolarization and hyperpolarization after tonic (60 s)

exposure to acetylcholine. (A) Simulated response of somatic membrane

potential to different concentrations. (B) Amplitude of steady depolarization

and temporary hyperpolarization vs. acetylcholine concentration.

instead the maximum duration occurs at intermediate
concentrations (0.1 µM for tonic and 1 µM for phasic
exposure). This result is likely due to the interplay between
two competing processes: regenerative calcium release and the
rate of calcium store depletion. The concentrations with the
longest suppressions generate enough IP3 to drive regenerative
calcium release through IP3Rs while minimizing the rate of Ca2+

release from intracellular stores. Higher ACh concentrations
drive higher IP3 production and so IP3Rs open more fully and
deplete intracellular stores more rapidly. This modulation of the
length of inhibition is interesting when considering the possible
functional roles calcium waves play in CA1 pyramidal cells.

If the function of calcium waves is to provide an inhibitory
signal, then this inhibitory signal would have some interesting
properties. First, as IP3 is the trigger for this inhibition, multiple
sources (whether mGluRs or mAChRs) could be required to
work in concert to generate this signal. The non-monotonically
increasing duration of spike cessation suggests that coactivation
of additional IP3 sources after the regenerative calcium release
threshold has been passed may cause a shorter inhibition as the
additional IP3 will only lead to faster calcium stores depletion.
Second, the rate at which intracellular calcium stores are depleted
depends upon the amount of calcium stored. A cell with

FIGURE 11 | Increasing the concentration of tonic acetylcholine increases

spike rate for a given injected current amplitude. (A) Cell injected with a current

amplitude such that it spikes at a steady rate of 10 Hz. Current injection is

present throughout simulation. (B) Repeat of experiment with the addition of a

100 µM acetylcholine pulse that starts at t = 1 s and lasts for the duration of

the simulation. (C) The maximum spike frequency acceleration vs.

acetylcholine concentration. Spike frequency acceleration was measured as

the percent increase from the rate before acetylcholine exposure. (D) Duration

of spike inhibition vs. tonic acetylcholine concentration as measured as the

longest inter spike interval after the initiation of the acetylcholine pulse.

more calcium buffered in the ER will have a longer inhibitory
reaction to cholinergic modulation. Since every action potential
increases the amount of calcium in the ER, calcium waves
would be longer for cells that have had more action potentials
in the recent past. This mechanism would thereby act as an
internal inhibition which encodes each cell’s past activity. These
two properties suggest scenarios where cholinergic modulation
causes shorter inhibition for cells that are currently receiving a
large glutamatergic signal but have not been spiking much in
the past while cells that have been consistently spiking and only
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FIGURE 12 | Acetylcholine leads to the release of intracellular calcium. All

sections in the apical trunk and soma were simultaneously exposed to a 50 ms

pulse of 100 µM ACh. (A) Simulated time course of intracellular calcium after

acetylcholine exposure. More distal sections achieve higher concentrations

more rapidly than somatic sections. (B) Display of concentrations in all model

compartments at different time steps throughout calcium wave.

receive cholinergic modulation are inhibited for a longer period.
The implications of these properties may have a crucial impact on
the downstream effects of calcium homeostasis, amongst which
are excitotoxicity and learning and memory; these aspects will be
studied in later work (see section 4.4 below).

4.3. Refining Model
In developing this model there have been gaps in experimental
evidence which have made it difficult to model all of the
experimental reactions to cholinergic modulation. First of all
the dynamics of the phosphoinositides in the CA1 pyramidal
cell plasma membranes are not well understood. This has
forced us to make assumptions based on electrophysiological
results, but further research into this area would aid in refining
the model. As the ER plays a role in the production of
these phospholipids, it is likely that the depletion of calcium
stores leads to changed dynamics. Indeed experiments in CA1
pyramidal cells have suggested that prolonged activation of
mAChRs can drive oscillations in PIP2 levels (Hackelberg and
Oliver, 2018). The signaling cascade that drives these oscillations,
however, is not well-understood and therefore could not be
included in this model iteration. As these dynamics become
better understood, more explicit cascades can be incorporated

into the model allowing for a better simulation of the depletion
and synthesis of PIP2.

Tonic cholinergic activation was also shown to inhibit
the early portions of slow after hyperpolarization (sAHP)
following trains of action potentials (Dasari and Gulledge, 2011).
Experimental evidence suggests this sAHP is largely due to
sodium-potassium exchange pumps (Gulledge et al., 2013; Tiwari
et al., 2018). It is unclear how these exchange pumps interact with
the mechanisms involved with mAChR activation. Without this
clearer understanding, we have no way to properly calibrate the
level of sAHP inhibition to variations in ACh concentration.

The model could also be expanded through adding
mechanisms which model mitochondrial calcium dynamics. The
mitochondria, along with being vital for the energy metabolism
of the cell, play a large role in calcium dynamics through
interactions with the ER (Krols et al., 2016). As mitochondrial
dysfunction has a well established link with Alzheimer’s disease
(Cenini and Voos, 2019), this expansion would provide a method
for exploring the functional consequences to network behavior
and how best to intercede.

4.4. Future Uses
Though the present work is a significant advancement
for modeling the interactions between cholinergic input,
intracellular calcium, and neuronal dynamics, the model is far
from encompassing all of the mechanisms that participate in
cholinergic response. Yet this work represents a framework
within which additional mechanisms can be added as the
knowledge of the system evolves. We have sought to use
best practices while generating the code base to facilitate its
understanding and allow future users to expand upon its
capabilities. The current cell model focused on cholinergic
modulation in the apical dendritic trunk and the somatic region
and consequently does not incorporate the modulation of
synaptic transmission. Experimental evidence has shown that
in synapses originating from the CA3 region, the activation of
presynaptic M4 mAChRs suppresses the amplitude of excitatory
postsynaptic potentials (EPSPs) (Dasari and Gulledge, 2011).
This signal suppression has been suggested to shift control of
CA1 pyramidal cell activity away from the CA3 toward synaptic
inputs from the entorhinal cortex (EC). This is theorized to set
the CA1 network into a state more conducive for encoding the
sensory information encoded by the EC synapses (Hasselmo and
McGaughy, 2004). However, the synaptic connections from the
EC are located in the most distal portions of the CA1 pyramidal
cell dendritic tree. In order for these inputs to become dominant,
the CA1 pyramidal cell would need to become more sensitive
to distal inputs. Our model has demonstrated that it is capable
of replicating an increased excitability as measured by increased
input resistance and lower rheobase at higher concentrations of
ACh. This increased excitability, in conjunction with suppressed
CA3 synaptic activity would replicate increased sensitivity to
distal inputs. Our model thereby constitutes a solid foundation
for future work exploring the consequences of this modulation
for the integration of inputs from EC vs. CA3.

Additionally, synaptic connections from CA3 pyramidal cells
to CA1 pyramidal cells demonstrate plasticity that is dependent
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upon postsynaptic calcium concentrations (Cummings et al.,
1996). M1 mAChRs are known to be present at these synapses
(Yamasaki et al., 2010) and have been linked to both long-
term potentiation and long-term depression (Dennis et al.,
2016). Our lab has already developed a kinetic model for the
postsynaptic calcium seen in the spine head (Hu et al., 2018).
While this previous model did not include any mechanisms to
link M1 activation to intracellular calcium release, these missing
mechanisms could easily be added. This would allow us to
expand upon previous modeling efforts that sought to tie calcium
dynamics to plasticity (Shouval et al., 2002) to explore how
cholinergic modulation alters the network dynamics through
long term changes in connectivity.

Another direction of interest would consist of expanding
the model to explicitly model cholinergic synapses. Currently
our simulations treat acetylcholine concentration as a fixed
value which we change in a step-wise manner. The addition of
cholinergic synapses would allow us to explore how the model
responds to varying synaptic parameters. For example, tonic ACh
concentration is based upon both the amount of ACh released
but also the rate of hydrolysis due to acetylcholinesterase (AChE).
This enzyme is the target for a class of drugs, AChE inhibitors,
used in the treatment of AD. Exploring how these drugs
alter CA1 network dynamics could point to better treatment
strategies. Additionally, cholinergic synapses have been shown
to cotransmit ACh with GABA (Granger et al., 2016; Takács
et al., 2018). This cotransmission could have dramatic effects on
network coherence.

Finally, although pyramidal cells are the most numerous cell
type in the CA1, they are not alone. There are a variety of
interneuron cell types which are also the subject of cholinergic
modulation. If ACh does play a role in shifting the focus of
information processing from synapses from the CA3 to synapses
from the EC, interneurons likely contribute to this process.
This is due to certain interneurons’ ability to disinhibit CA1
pyramidal cells (e.g., CCK+ Basket Cells; Karson et al., 2009).
Furthermore, interneurons also participate in the generation
of network oscillations which help organize network processes

(e.g., OLM cells; Mikulovic et al., 2018). Understanding how

these cells, through AChmodulation regulate the overall network
activity would aid our understanding of the complex role ACh
plays in the hippocampus.
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Large cortical and hippocampal pyramidal neurons are elements of neuronal circuitry

that have been implicated in cross-frequency coupling (CFC) during cognitive tasks.

We investigate potential mechanisms for CFC within these neurons by examining the

role that the hyperpolarization-activated mixed cation current (Ih) plays in modulating

CFC characteristics in multicompartment neuronal models. We quantify CFC along

the soma-apical dendrite axis and tuft of three models configured to have different

spatial distributions of Ih conductance density: (1) exponential gradient along the

soma-apical dendrite axis, (2) uniform distribution, and (3) no Ih conductance. We

simulated two current injection scenarios: distal apical 4Hz modulation and perisomatic

4Hz modulation, each with perisomatic, mid-apical, and distal apical 40Hz injections.

We used two metrics to quantify CFC strength—modulation index and height ratio—and

we analyzed CFC phase properties. For all models, CFC was strongest in distal apical

regions when the 40Hz injection occurred near the soma and the 4Hz modulation

occurred in distal apical dendrite. The strongest CFC values were observed in the

model with uniformly distributed Ih conductance density, but when the exponential

gradient in Ih conductance density was added, CFC strength decreased by almost 50%.

When Ih was in the model, regions with much larger membrane potential fluctuations

at 4Hz than at 40Hz had stronger CFC. Excluding the Ih conductance from the

model resulted in CFC either reduced or comparable in strength relative to the model

with the exponential gradient in Ih conductance. The Ih conductance also imposed

order on the phase characteristics of CFC such that minimum (maximum) amplitude

40Hz membrane potential oscillations occurred during Ih conductance deactivation

(activation). On the other hand, when there was no Ih conductance, phase relationships

between minimum and maximum 40Hz oscillation often inverted and occurred much

closer together. This analysis can help experimentalists discriminate between CFC that

186

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00081
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00081&domain=pdf&date_stamp=2020-09-10
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:melvin.a.felton.civ@mail.mil
https://doi.org/10.3389/fncom.2020.00081
https://www.frontiersin.org/articles/10.3389/fncom.2020.00081/full


Felton et al. CFC in Single Pyramidal Neurons

originates from different underlying physiological mechanisms and can help illuminate the

reasons why there are differences between CFC strength observed in different regions

of the brain and between different populations of neurons based on the configuration of

the Ih conductance.

Keywords: cross-frequency coupling, phase-amplitude coupling, theta-gamma coupling, pyramidal neuron, Ih

conductance

INTRODUCTION

Cross-frequency coupling (CFC) has been associated withmental
processes like perceptual and memory-related tasks, and is
often observed via electroencephalogram (EEG) and local field
potential (LFP) measurements (Jensen and Colgin, 2007; Tort
et al., 2009; Canolty and Knight, 2010; Lisman and Jenson, 2013).
Different types of network properties can yield distinct CFC
signatures [see Hyafil et al. (2015) for a review], and there are
a variety of physiological mechanisms believed to contribute
to CFC in pyramidal neurons, such as the timing of upstream
inputs (Fernández-Ruiz et al., 2017), or fast synaptic inhibition
(Wuff et al., 2009), and NMDA-mediated excitation of related
interneuronal populations (Korotkova et al., 2010). However, the
detailed nature of the role that intracellular mechanisms play in
CFC of pyramidal neurons is still uncertain.

The way individual pyramidal neurons, and therefore the
neuronal networks they are a part of, respond to synaptic
input in particular frequency ranges is largely governed by ion
channels (Lai and Jan, 2006; Nusser, 2012). In particular, the
hyperpolarization-activated mixed cation current (Ih) plays a
multitude of roles in the regulation of neuronal and network
excitability impacting both membrane resting potential and
rhythmic activity, as well as the magnitude of excitatory post-
synaptic potentials (EPSPs) (Nusser, 2009; Brennan et al., 2016).
The different effects of the Ih conductance suggest that it
may play an important role in the occurrence of CFC within
individual pyramidal neurons, however this remains uncertain.
Vaidya and Johnston (2013) report gamma-theta correlation of
synaptic currents observed in single CA1 pyramidal neurons
that is distinct from the phenomenon of cross-frequency phase
coupling observed at the network level. In addition, using a
model of hippocampal CA3, Neymotin et al. (2013) showed that
the density of pyramidal neuron Ih conductance modulated the
amplitude of CFC observed in the simulated LFP (network-level
CFC). Because there are differences in the subcellular distribution
of Ih in distinct classes of pyramidal neurons (Bullis et al.,
2006; Nusser, 2009), Ih may have a variable impact on CFC
depending upon factors like regional specialization or underlying
pathological conditions.

As an extension of our previous work examining coupling
between perisomatic and distal apical functional zones in cortical
layer five pyramidal neurons (Felton et al., 2018), we examined
CFC along the soma-apical dendrite axis and tuft of realistic
compartmental models of large pyramidal neurons. In particular,
our baselinemodel neuron possessed an exponentially-increasing
gradient of Ih conductance density along the apical dendrite like
cortical layer five and hippocampal CA1 pyramidal neurons are

known to possess (Hu et al., 2009; Nusser, 2009; Hay et al., 2011).
To assess the role of the Ih conductance in the occurrence of CFC
within neocortical and limbic pyramidal neurons, we configured
a total of three models, each with the same morphology, but
with different spatial distributions of Ih conductance density.
We also examine the effect on CFC of fundamentally different
input configurations to large pyramidal neurons. We simulated
two modulation scenarios, one based on distal 4Hz modulation
and the other on perisomatic 4Hz modulation. For each of these
modulation types, 40Hz current injections were simulated in key
locations throughout the apical dendrite, namely in perisomatic,
middle apical, and distal apical compartments. We used two
metrics to quantify the strength of CFC—modulation index and
height ratio (Tort et al., 2010)—and we analyzed the phase
properties of CFC.

METHODS

Models
For this study, we adapted the model of a large cortical
pyramidal neuron used in Felton et al. (2018). This model was
obtained by modifying the regular-spiking, layer five pyramidal
neuron model used by Traub et al. (2005), so that it possessed
characteristics now known to be common among this class
of neuron. The characteristics of this model included an
exponentially increasing gradient of the Ih conductance density
ascending along the soma-apical dendrite axis, and a distal apical
Ca2+ hot zone where the conductance densities for the high-
threshold and low-threshold Ca2+ channels are 10 and 100 times
higher, respectively, than anywhere else in the apical dendrite
and tuft (Hay et al., 2011). However, our focus in the current
study is primarily on the impact of Ih on CFC. Therefore,
the conductance densities for the two Ca2+ conductances were
reverted back to Traub et al. (2003, 2005).

To evaluate the impact of the Ih conductance on CFC, we
evaluated three models distinguished by the configuration of
the Ih conductance throughout the neuronal membrane. The
first model had a somato-apical dendritic exponential gradient
in the Ih conductance common to many pyramidal neurons in
layer five of the cortex or in the hippocampus (Hu et al., 2009;
Nusser, 2009; Hay et al., 2011). The second model had almost an
entirely uniform Ih conductance density distribution which can
be found in various neuron types throughout the cortex, and in
some cases, a uniformly-distributed Ih conductance can underlie
pathological conditions like epilepsy (Nusser, 2009; Brennan
et al., 2016). The third model did not have an Ih conductance,
which may not be common at all in the cortex or hippocampus
for large pyramidal neurons, but can be induced with the use
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FIGURE 1 | CFC analysis performed on model pyramidal neuron. (A) A 1.5 nA 40Hz sinusoidal current was injected into the base of the apical dendrite while a 1.5 nA

4Hz sinusoidal current was injected into the distal apical dendrite. Additonal labels include: soma, apical dendrite, and apical tuft; apical dendrite compartments 1–13

(apdend1, apdend2, …, apdend13); and the distance from soma to end of apical tuft−1,200µm. (B) From top to bottom: membrane potential oscillations in the 11th

distal apical dendrite compartment (apdend11) resulting from the 40Hz and 4Hz current injections, filtered 4Hz component of the membrane potential oscillation,

time series of 4Hz phase, and filtered 40Hz component of membrane potential oscillation (black) and amplitude envelope of 40Hz oscillation (red). (C)

Phase-amplitude plot for two complete 4Hz cycles with a phase bin size of 5◦ (LG–low gamma, ∼40 Hz).

of an Ih channel blocker, such as 4-(N-ethyl-N-phenylamino)-1,
2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288)
(Zhang et al., 2016). See Table 1 for detailed ionic conductance
density configuration for each of these three models.

CFC Analysis
Our CFC quantification analysis was based on the work of Tort
et al. (2010). In our study, we focus on theta-gamma phase-
amplitude coupling within large pyramidal neurons, which is
commonly observed in cortex and hippocampus (Tort et al.,
2010). Figure 1A illustrates an example simulation scenario
where CFCwas induced by injecting a 40Hz sinusoidal current at
the base of the apical dendrite while a 4Hz sinusoidal current was
injected in the distal apical dendrite. Figures 1B,C show several
diagnostic plots that result from the CFC quantification analysis,
in this case, for the 11th apical dendrite compartment from the
soma (distal).

Following Tort et al. (2010), we obtain the diagnostic plots
in Figure 1B that, from top to bottom, show the unfiltered
membrane potential oscillations for the compartment that result
from the two current injections, the filtered 4Hz membrane
potential oscillation for the compartment, the time series of the
4Hz oscillation phase for the compartment, and the amplitude
envelope (red) and filtered 40Hz oscillation for the compartment

(black). In this example, the simulation was run on the model
with an exponential gradient in Ih conductance density.

To obtain the phase-amplitude plot from which the two CFC
metrics used in this analysis are calculated, we first bin the phases
of 4Hz oscillations over the time period of analysis, and then
calculate the mean of the 40Hz oscillation amplitude envelope
within each phase bin, j, denoted by 〈A40〉 (j). After normalizing
by the sum over all phase bins (N), we obtain the following
expression for the normalized amplitude (P) distribution:

P
(

j
)

=

〈A40〉 (j)
∑N

k=1 〈A40〉 (k)
(1)

Figure 1C is a phase-amplitude plot that is obtained by plotting
P as a function of phase bin. For our analysis, we chose N = 72
to obtain high-resolution CFC phase information (5◦ bins of the
4Hz signal phase).

We use two metrics to quantify CFC. We calculate a
modulation index, MI, introduced by Tort et al. (2010). With
values between 0 and 1, this metric quantifies the distance
between the normalized amplitude distribution, P, and the
uniform distribution, or, the case when there is no CFC.

MI =
logN +

∑N
j=1 P(j) logP(j)

logN
(2)
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TABLE 1 | Membrane conductance densities (mS/m2 ) by level in the model structure for the three model pyramidal neurons.

Level gNa(F) gNa(P) gK(DR) gK(C) gK(A) gK(M) gK2 gCa(H) gCa(L) gh_exp gh_unif gh_0

0 0 5 450 0 6 600 15 0 0 0 0 0

1 0 5 450 0 6 300 15 0 0 0 0 0

2 0 5 750 288 200 250 15 16 1 1 1 0

3 0 0.6 250 288 40 136 0 16 1 1.7635 1 0

4 0 0.12 0 9 40 136 0 16 1 2.4515 1 0

5 0 0.12 0 9 40 136 0 16 1 3.3194 1 0

6 0 1.2 500 288 40 136 15 16 1 1.7635 1 0

7 0 0.6 150 288 40 136 15 16 1 2.4515 1 0

8 0 0.12 2 9 40 136 15 16 1 3.3194 1 0

9 0 0.12 2 9 40 40 0 4 1 4.4141 1 0

10 0 0.12 2 9 40 40 0 4 1 5.7950 1 0

11 0 0.12 2 9 40 40 0 4 1 7.5368 1 0

12 0 0.12 2 9 40 40 0 4 1 9.7338 1 0

13 0 0.12 2 9 40 40 0 4 1 12.5050 1 0

14 0 0.12 2 9 40 40 0 4 1 16.0006 1 0

15 0 0.024 2 9 40 40 0 4 1 20.4098 1 0

16 0 0.024 2 9 40 10 10 4 1 25.9714 1 0

17 0 0.024 2 9 40 10 10 4 1 32.9866 1 0

18 0 0.024 2 9 40 10 10 4 1 41.8355 1 0

19 0 0.024 2 9 40 10 10 10.8 1 52.9971 2 0

20 0 0.024 2 9 40 10 10 2.4 1 52.9971 2 0

Ih columns are highlighted in maroon because their conductance density values were varied to obtain the three scenarios considered in this study: gh_exp- exponential gradient (Hay

et al., 2011), gh_unif - uniform (Traub et al., 2005), gh_0- no Ih. Explanation of levels: level 0 = initial axon; level 1 = rest of axon; level 2 = soma; level 3 = proximal basal and oblique

dendrites; level 4=middle basal and oblique dendrites; level 5= distal basal and oblique dendrites; levels 6–18= progressively more distal apical dendrite shaft (apdend1 to apdend13);

level 19 = proximal apical tuft; level 20 = distal apical tuft.

The second metric we use to quantify CFC is height ratio, which
is defined as:

height ratio =
hmax − hmin

hmax
(3)

where hmax and hmin are the maximal and minimal
normalized amplitudes, respectively, in the phase-amplitude
plot (Figure 1C). The MI and height ratio values for the
phase-amplitude plot in Figure 1C are 3.97 × 10−4 and
0.1735, respectively.

Sensitivity Analysis: Number of Bins and

Injection Current Amplitude
The dependence of Equations (1–3) on N indicates that the
number of bins chosen affects the calculated value for MI and
height ratio. To better understand these dependencies, we ran
the CFC analysis for several values of N (10, 12, 18, 20, 36,
and 72). For this test, we injected a 1.5 nA 4Hz sinusoidal
current into the soma and a 1.5 nA 40Hz sinusoidal current
into the base of the apical dendrite in the model with an
exponential gradient in Ih conductance density along the soma-
apical dendrite axis. Over the range of values for N considered,
MI decreased monotonically with some flattening as N increased
(Figure 2). By contrast, height ratio remained mostly constant,
particularly as the value of N increased (Figure 2). This result

suggests that height ratio is the CFC metric that can more
readily be compared across experiments that use different bin
sizes. For this reason, we use height ratio as the CFC metric
to present the results of this study. The corresponding MI
values are presented in Figures S1, S2. For reference, Tort et al.
(2010) determined that the significance threshold for concluding
if CFC is present is MI = 4.30 × 10−5 (number of bins
N = 18).

It has been reported that the amplitude of the membrane
potential oscillations involved in CFC can affect the strength
of CFC. In particular, this has been observed for slow
frequencies, such as delta (0.5–4Hz), theta (4–8Hz), and alpha
(8–12Hz) (Hyafil et al., 2015). To examine this effect, we
performed an amplitude sensitivity test for both the 4 and
40Hz current injections (Figure 3) in the model with a soma-
apical dendrite exponential gradient in Ih conductance density.
In one scenario, we kept the amplitude of the 40Hz current
injection into the base of the apical dendrite constant at 1.5
nA while we performed the CFC analysis three times for
4Hz somatic current injections with amplitudes of 1.5, 1.0,
and 0.5 nA. Similarly, we ran the CFC analysis with constant
4Hz amplitude of 1.5 and 40Hz amplitudes of 1.5, 1.0, and
0.5 nA.

For both MI and height ratio, differences in amplitude of
the 4Hz current injection had a much bigger impact on CFC
strength. Because we employ a variety of injection scenarios and
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FIGURE 2 | Sensitivity analysis for the number of bins (N). MI index (solid, left ordinate) and height ratio (dashed, right ordinate) as a function of N. Values for N

evaluated (10, 12, 18, 20, 36, and 72) indicated by dots.

FIGURE 3 | Current injection amplitude sensitivity analysis. (A,C) MI and height ratio, respectively, for amplitudes of the 4Hz current injection of 0.5, 1.0, and 1.5 nA

while the amplitude of the 40Hz injection was held constant at 1.5 nA. (B,D) MI and height ratio, respectively, for amplitudes of the 40Hz current injection of 0.5, 1.0,

and 1.5 nA while the amplitude of the 4Hz injection was held constant at 1.5 nA.

there is a differential degree of filtering for the 4 and 40Hz
oscillations as they spread from their respective injection sites,
the results of this amplitude sensitivity test will be useful for
interpreting the CFC observed in our simulations.

RESULTS

Two Injection Scenarios
We used two injection scenarios to test for a range of possible
input configurations of large cortical and limbic pyramidal
neurons. In the first injection scenario, we simulated a 1.5 nA
4Hz sinusoidal current injection into the most distal apical

dendrite compartment while a 1.5 nA 40Hz sinusoidal current
was injected into a perisomatic (base of apical dendrite), middle
apical, and distal apical dendrite compartment on successive runs
(not simultaneous). This injection scenario is consistent with
slow distal modulation of cortical pyramidal neurons via matrix
thalamocortical or higher-order feedback (VanRullen and Koch,
2003; Spruston, 2008; Larkum, 2013).

A second injection scenario simulates perisomatic 4Hz
modulation. A 1.5 nA 4Hz sinusoidal current was injected
into the soma while a 1.5 nA 40Hz sinusoidal current was
injected into a perisomatic, middle apical, and distal apical
dendrite compartment on successive runs. This type of slow
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FIGURE 4 | (A) Distal apical dendrite 1.5 nA, 4Hz modulation (black arrow) with 1.5 nA 40Hz current injections in base of apical dendrite (black arrow, solid red

outline), middle apical dendrite (black arrow, dashed red outline), and distal apical dendrite (black arrow, dot-dashed red outline). (B) Height ratio calculated for the

soma, apical dendrite, and apical tuft in the model with exponential gradient in Ih conductance density along apical dendrite. (C) Height ratio calculated for the soma,

apical dendrite, and apical tuft in model with uniform Ih conductance density. (D) Height ratio calculated for the soma, apical dendrite, and apical tuft in model with no

Ih conductance. Dot symbols along the profiles in (B–D) indicate the distance from the soma of compartments along the soma-apical dendrite axis and apical tuft

(measured from the beginning of each compartment).

modulation of the soma can be mediated by parvalbumin
immunoreactive interneurons (PV) in the hippocampus and
cortex (Stark et al., 2013).

CFC Strength: Distal 4Hz Modulation
The locations of the current injections for the distal 4Hz
modulation scenario are presented in Figure 4A, and the
profiles of height ratio along the soma-apical dendrite
axis for models with Ih conductance densities configured

for a soma-apical dendrite exponential gradient, uniform
distribution, and zero conductance are presented in
Figures 4B–D, respectively. (For clarity of presentation, the
height ratio profiles in Figures 4B–D, 5B–D, and MI profiles
in Figures S1B–D, S2B–D, were not calculated as continuous
functions of distance from the soma, rather they were computed
for each compartment which is shown in relation to distance
from the soma in part A of each plot. The same format is used in
Figures 6–8). All three Ih configurations show the same general
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FIGURE 5 | (A) Perisomatic 1.5 nA, 4Hz modulation (black arrow) with 1.5 nA 40Hz current injections in base of apical dendrite (black arrow, solid red outline), middle

apical dendrite (black arrow, dashed red outline), and distal apical dendrite (black arrow, dot-dashed red outline). (B) Height ratio calculated for the soma, apical

dendrite, and apical tuft in model with exponential gradient in Ih conductance density along apical dendrite. (C) Height ratio calculated for the soma, apical dendrite,

and apical tuft in model with uniform Ih conductance density. (D) Height ratio calculated for the soma, apical dendrite, and apical tuft in model with no Ih conductance.

Dot symbols along the profiles in (B–D) indicate the distance from the soma of compartments along the soma-apical dendrite axis and apical tuft (measured from the

beginning of each compartment).

pattern: strongest CFC in apical tuft (975–1,200µm from the
soma), with the soma and most of the lower apical dendrite
(<700µm from soma) exhibiting weaker CFC. For all three Ih
configurations, the weakest CFC was observed between the soma
and middle apical dendrite (0–450µm from soma) when the
40Hz current injection occurred in the soma or middle apical
compartments. In particular, under these conditions in themodel
with either exponential gradient in Ih or no Ih, CFC strength
almost reduced to zero (height ratios <0.02). On the other hand,
when the 40Hz current injection occurred in the distal apical

dendrite (12th apical dendrite compartment, 825µm from the
soma), CFC was strong throughout the soma-apical dendrite
axis and tuft.

The strongest CFC occurred in the model with a uniform
distribution in Ih conductance density (Figure 4C). When the
exponential gradient was added to the model (Figure 4B),
CFC strength was uniformly lower, by almost 50%. When Ih
was removed from the model, CFC strength was also lower,
with differences in both the shape and relationships among
the profiles.
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FIGURE 6 | Amplitude ratio and theta phase of CFC for model with exponential gradient in Ih conductance. (A) Distal 4Hz modulation, amplitude ratio (top), and theta

phase (bottom) of minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite

(solid lines), middle of apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines). (B) Perisomatic 4Hz modulation, amplitude ratio (top) and theta

phase (bottom) of minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite

(solid lines), middle of apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines).

CFC Strength: Perisomatic 4Hz Modulation
The locations of the current injections for the perisomatic
4Hz modulation scenario are presented in Figure 5A, and the
profiles of height ratio along the soma-apical dendrite axis for
models with Ih conductance densities configured for a soma-
apical dendrite exponential gradient, uniform distribution, and
zero conductance are presented in Figures 5B–D, respectively.
All three Ih configurations again show a similar pattern for
CFC strength. For compartments nearest the soma, CFC was
strongest when the 40Hz current injection occurred in distal
apical dendrite, followed by 40Hz current injection in middle
apical dendrite, and finally weakest for 40Hz current injection
at the base of the apical dendrite (37.5µm from soma). As you
move up the apical dendrite toward the apical tuft, crossovers
occur where now the strongest CFC was observed for 40Hz
current injection into the base of the apical dendrite, followed
by injection into middle apical dendrite, and lastly injection into
distal apical dendrite. When Ih is in the model and the 40Hz
current injection occurs in distal apical dendrite, CFC is almost
completely eliminated at the site of the injection (12th apical
dendrite compartment) (also see Figures S2B,C). On the other
hand, CFC is almost completely eliminated in the middle apical

compartments when Ih is not included in the model and the
40Hz current injection occurs in themiddle of the apical dendrite
(see also Figure S2D).

Once again, CFC was strongest in the model with uniform Ih
conductance density. CFC strength decreased by 30–40% when
the exponential gradient in Ih conductance density was added to
the model. Unlike in the previous injection scenario when the
4Hz modulation occurred distally, when Ih was excluded from
the model, there was a more noticeable decrease in CFC strength,
particularly for the case when the 40Hz current was injected into
the base and middle of the apical dendrite.

AMPLITUDE AND PHASE INFORMATION

Amplitude
The current injection amplitude sensitivity analysis presented
in Figure 3 showed that there is greater dependence of CFC
strength on the amplitude of the 4Hz current injection than
on the amplitude of the 40Hz current injection. Because these
two current injections differentially contribute to membrane
potential oscillations throughout the model, it should be useful to
compare the relative strength of membrane potential oscillations
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FIGURE 7 | Amplitude ratio and theta phase of CFC for model with uniform Ih conductance. (A) Distal 4Hz modulation, amplitude ratio (top) and theta phase (bottom)

of minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite (solid lines), middle

of apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines). (B) Perisomatic 4Hz modulation, amplitude ratio (top), and theta phase (bottom) of

minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite (solid lines), middle of

apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines).

at 4 and 40Hz to better understand CFC strength for any
given compartment. The top panel in Figures 6A,B (exponential
gradient Ih), Figures 7A,B (uniform Ih), and Figures 8A,B (no
Ih) show the amplitude ratio of membrane potential fluctuations

at 4Hz to the membrane potential fluctuations at 40Hz [
Vm(4Hz)

Vm(40Hz)
]

along the soma-apical dendrite axis and apical tuft. Because of
the low-pass filtering properties of the membrane, this ratio is
expected to be higher the greater the distance is between the 4
and 40Hz current injections. Another condition in which this
ratio is expected to be high is when both the 4 and 40Hz current
injection occurred on the same end of the soma-apical dendrite
axis and have traveled the length of this axis to the opposite
end. In both of these situations, the 40Hz signal experiences a
greater degree of filtering than the 4Hz signal due to the passive
and active membrane properties. To see separately the filtered 4
and 40Hz components of membrane potential oscillations for the
simulation runs of this study, see Figures S3, S4.

When the 4Hz current was injected in distal apical dendrite
(Figures 6A, 7A, 8A, top), amplitude ratios were highest in distal
apical dendrite and apical tuft when there was distance between
the 4 and 40Hz current injections, i.e., when the 40Hz current
was injected in the base or middle of the apical dendrite. On
the other hand, when the 40Hz current injection also occurred

distally, the amplitude ratiowas highest in the soma yet still lower
than the case of 40Hz current injected in the base ormiddle of the
apical dendrite.

When the 4Hz current was injected in the soma (Figures 6B,
7B, 8B, top), amplitude ratios were highest in perisomatic
compartments when there was distance between the 4 and 40Hz
injections (40Hz injections in middle and distal apical dendrite).
When the 40Hz injection occurred in the base of the apical
dendrite, the amplitude ratio was highest in distal apical regions.

Phase
The bottom panel in Figures 6A,B (exponential gradient Ih),
Figures 7A,B (uniform Ih), and Figures 8A,B (no Ih) show
the phase of the theta cycle that both the maximum and
minimum amplitudes of the 40Hz oscillation occur along
the soma-apical dendrite axis and apical tuft. When Ih is
present, minimum amplitudes for the 40Hz oscillation occurred
consistently within the first half of the theta cycle (20–130◦)
while maximum amplitudes for the 40Hz oscillation occurred
consistently within the second half of the theta cycle (180–
340◦). In addition, there tends to be a shift toward earlier
theta phases that both the minimum and maximum 40Hz
oscillation amplitude occurs. This shift occurs in the lower
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FIGURE 8 | Amplitude ratio and theta phase of CFC for model with no Ih conductance. (A) Distal 4Hz modulation, amplitude ratio (top), and theta phase (bottom) of

minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite (solid lines), middle of

apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines). (B) Perisomatic 4Hz modulation, amplitude ratio (top), and theta phase (bottom) of

minimum (black) and maximum (red) amplitude of 40Hz membrane potential oscillation. Forty Hertz current injected into base of apical dendrite (solid lines), middle of

apical dendrite (dashed lines), and distal apical dendrite (dot-dashed lines).

half of the apical dendrite when the 40Hz injection occurs
there. This effect was the strongest (>100◦ shift to earlier theta
phase) when the 40Hz current was injected in the middle
of the apical dendrite. In addition, this phase shift was very
consistent because it occurred no matter the location of the 4Hz
modulation and for both exponential gradient and uniform Ih
conductance densities—Figures 6A,B bottom and Figures 7A,B

bottom, respectively. The phase shift that occurred when the
40Hz current was injected into the base of the apical dendrite
was more variable, being drastically reduced when the 4Hz
modulation occurred in distal apical dendrite (Figure 6A bottom
and Figure 7A bottom).

When Ih is removed from the model, the phase relationship

between minimum and maximum 40Hz oscillation amplitude

fundamentally changes (Figures 8A,B bottom). In the case of
distal 4Hz modulation, the phase relationship almost entirely
flips so that the maximum 40Hz oscillation amplitude often
times occurred in the first half of the theta cycle while
minimum 40Hz oscillation amplitude occurs in the second half
of the theta cycle. Whether the 4Hz modulation occurs distally
(Figure 8A bottom) or perisomatically (Figure 8B bottom),
the phases of the minimum and maximum 40Hz oscillation
amplitude occur much closer together near the middle of

the theta cycle relative to when the Ih conductance is in
the model.

DISCUSSION

Implications on the Circuitry Underlying

CFC
Distal 4Hz modulation produced the strongest CFC in the distal
regions of the model regardless of the location of the 40Hz
injection. In particular, when Ih was present, whether uniformly
or exhibiting an exponential gradient, CFC was strongest for
distal 4Hz modulation and 40Hz injection into the base and
middle of the apical dendrite. On the other hand, when the 4Hz
modulation occurred in the soma, each model saw a significant
reduction in the maximum strength of CFC.

The injection scenario of distal 4Hz modulation and 40Hz
current injection in the base and middle of the apical dendrite
is similar to what is typically believed to be a common input
pattern to large cortical pyramidal neurons, such as theta or
alpha matrix thalamocortical input to distal apical dendrite and
tuft, and gamma core thalamocortical input in the perisomatic
region (VanRullen and Koch, 2003; Spruston, 2008; Hawkins and
Ahmad, 2016). Our results suggest that the processing of this type
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TABLE 2 | Input resistance (M�) for the compartments receiving the 4Hz injection

(soma and apdend13) for all models used in this study.

No Ih Uniform Ih Exp gradient Ih

perisomatic modulation (4Hz, soma) 54 34 25

distal modulation(4Hz, apdend13) 76 52 30

Input resistance obtained by dividing the amplitude of the filtered 4Hz membrane potential

oscillation for a compartment by the amplitude of the 4Hz current injected into the

compartment (1.5 nA).

of input to large cortical pyramidal neurons could be a source of
CFC observed within the cortex.

The different Ih conductance density distributions used
in our models impacts each model’s input resistance to the
4Hz modulation (Table 2). Input resistance increases as the
Ih conductance density decreases, which happens when the
distribution is changed from the exponential gradient to the
uniform distribution. Input resistance increases further when
Ih is removed. The effect of higher input resistance is larger
membrane potential oscillations at 4Hz in response to the 4Hz
modulation. Therefore, the exponential gradient in Ih more
effectively filters the 4Hz signal, leading to smaller amplitude
ratios for this model than for the model with uniform Ih.
Likewise, removing Ih lead to the highest amplitude ratios. As
suggested by Figure 3, the profiles of amplitude ratio for the
exponential gradient Ih model and uniform Ih model are a good
indicator of CFC strength. In general, the higher the amplitude
ratio, the stronger the CFC. However, for the model with no Ih,
this trend did not continue. In this case, the highest amplitude
ratios less faithfully produced the strongest CFC. Furthermore,
despite producing the highest amplitude ratios seen in this study,
the model with no Ih produced CFC that was comparable in
strength to that produced by the exponential gradient Ih model
when 4Hz modulation was distal, and weaker CFC when 4Hz
modulation occurred perisomatically. This suggests that the
amplitude ratio is only a good predictor of CFC strength when
the Ih conductance is present.

Implications for Experimentalists
CFC has been observed for a wide range of spatiotemporal scales
of brain activity, such as intracellular, LFP, and EEG recordings
(Tort et al., 2010; Hyafil et al., 2015). The CFC profiles that
we have observed for our current injection scenarios of distal
4Hz modulation with perisomatic and middle apical dendrite
40Hz injection is compatible with CFC results obtained by Sotero
et al. (2015) who obtained LFPmeasurements at 100µm intervals
throughout the cortical depth in rats and performed CFC analysis
on the signals. In our simulations, the 40Hz oscillation generally
was maximum during the hyperpolarizing phase of the 4Hz
oscillation and was minimum during the depolarizing phase of
the 4Hz modulation. A similar phase relationship between the
4 and 40Hz oscillation was observed in Sotero et al. (2015).
The results of the simulations in our study and the results of
experimental work further suggests that the processing of distal
slow input and perisomatic fast input by large cortical pyramidal

FIGURE 9 | Ih conductance (A) activation function (B) time constant.

neurons could be an underlying contributor to the CFC observed
by meso- and macro-scale measurements, such as LFP and EEG.

Due to the impact of the Ih conductance on resting membrane
potential, a compartment’s resting membrane potential depends
on where it is in the model and on which model it is in. The
range of resting membrane potentials for the compartments in
this study was −85 to −56mV. The 4Hz modulation starting
from resting membrane potential will alternately activate and
deactivate the Ih conductance [modeled after the anomalous
rectifier in Traub et al. (2003, 2005)] to varying degrees
depending on the compartment and Ih configuration (Figure 9).
We observed that the presence of the Ih conductance in our
models not only modulated the strength of CFC, it also imposed
order in the phase characteristics of CFC. The phase information
in the results of our simulations suggest that the amplitude of
the 40Hz oscillation is minimized when the Ih conductance
is deactivating. This occurs during the depolarizing phase of
the 4Hz modulation which raises the membrane potential of
the neuron and reduces the activation of the Ih conductance.
On the other hand, our results show that the amplitude of
the 40Hz oscillation is maximized when the Ih conductance
is activating, which occurs during the hyperpolarizing phase
of the 4Hz modulation. Removing the Ih conductance often
resulted in an inverted and much more variable relationship
between maximum 40Hz membrane potential oscillation and
minimum 40Hz membrane potential oscillation, suggesting that
the activation and deactivation of the Ih conductance plays a
critical role in producing the CFC seen in our simulations. There
are other ionic conductances included in our model that can,
along with the Ih conductance, contribute to the occurrence of
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CFC. However, our results indicate that the Ih conductance can
significantly moderate the strength of CFC and impose order on
the timing of the modulation experienced by the faster signal.

Connection to Epilepsy Research
Large pyramidal neurons in cortical layer five and the
hippocampus are known to have an exponentially-increasing
gradient in the conductance density for the Ih conductance
along the soma-apical dendrite axis (Hu et al., 2009; Nusser,
2009; Hay et al., 2011). It has been reported that when these
neurons lack this exponential gradient, the result is that these
neurons may become epileptic sources, at least in part because
of increased excitability of these neurons (Brennan et al., 2016).
In our study, we have seen that a lack of this exponential gradient
is also associated with increased CFC. Therefore, epilepsy may
be impacted by not only increased excitability in the underlying
neurons, but also increased CFC within these neurons.

CONCLUSION

We take a detailed look at the possible contribution of individual
pyramidal neurons to CFC. Large pyramidal neurons, such as
neocortical layer five or hippocampal pyramidal neurons, play
a central role in the functioning of neocortical and limbic
microcircuits. The neuronal membrane of these neurons has
a large spatial extent and different parts of the neuron (e.g.,
proximal vs. distal) receive inputs from different populations
of neurons within both local and widespread circuitry. Our
study examined the ways in which different configurations of
simultaneous fast and slow input are processed by individual
pyramidal neurons and interact with each other to produce CFC.
Furthermore, we have identified Ih as a current that has a large
impact on the occurrence of CFC within pyramidal neurons.

This study can potentially shed light on which configurations
of fast and slow input to pyramidal neurons produce the
strongest CFC, and where exactly within the neuron CFC is
strongest under realistic conditions of input. In addition, this
study can illuminate the reasons why there may be differences
between CFC strength observed in different regions of the
brain and between different populations of neurons based on
the configuration of the Ih conductance. This type of analysis
may help experimentalists discriminate between CFC that

originates from different underlying physiological mechanisms
or determine if an exponential gradient in Ih conductance density
is present or not.
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Synapses are highly stochastic transmission units. A classical model describing this

stochastic transmission is called the binomial model, and its underlying parameters can

be estimated from postsynaptic responses to evoked stimuli. The accuracy of parameter

estimates obtained via such a model-based approach depends on the identifiability of

the model. A model is said to be structurally identifiable if its parameters can be uniquely

inferred from the distribution of its outputs. However, this theoretical property does not

necessarily imply practical identifiability. For instance, if the number of observations

is low or if the recording noise is high, the model’s parameters can only be loosely

estimated. Structural identifiability, which is an intrinsic property of a model, has been

widely characterized; but practical identifiability, which is a property of both the model

and the experimental protocol, is usually only qualitatively assessed. Here, we propose

a formal definition for the practical identifiability domain of a statistical model. For a given

experimental protocol, this domain corresponds to the set of parameters for which the

model is correctly identified as the ground truth compared to a simpler alternative model.

Considering a model selection problem instead of a parameter inference problem allows

to derive a non-arbitrary criterion for practical identifiability. We apply our definition to

the study of neurotransmitter release at a chemical synapse. Our contribution to the

analysis of synaptic stochasticity is three-fold: firstly, we propose a quantitative criterion

for the practical identifiability of a statistical model, and compute the identifiability domains

of different variants of the binomial release model (uni or multi-quantal, with or without

short-term plasticity); secondly, we extend the Bayesian Information Criterion (BIC), a

classically used tool for model selection, to models with correlated data (which is the

case for most models of chemical synapses); finally, we show that our approach allows

to perform data free model selection, i.e., to verify if a model used to fit data was

indeed identifiable even without access to the data, but having only access to the

fitted parameters.

Keywords: model selection, practical identifiability, structural identifiability, binomial, synapse

1. INTRODUCTION

Model selection is highly relevant to neuroscience, as neurons, dendrites, and synapses can be
represented by models with different levels of complexity and abstraction. When it comes to fitting
recorded data, predicting the output of a system to a given stimulus, or making sense of an observed
phenomenon, several possible models can be used: this raises the question of what makes a good
model. Finding the correct model is a crucial issue in studying the brain.
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Firstly, a good model needs to be sufficiently complex
to account for observed data, while being simple enough to
generalize to future observations. Competingmodels are typically
compared based on their ability to fit an observed data set,
while being penalized for their complexity (or number of
free parameters) to avoid overfitting. Different model selection
tools (Bayesian Information Criterion, Akaike Information
Criterion,...) are classically used to determine which model is the
best one to fit a data set (Daw et al., 2011).

Secondly, models also differ in their nature, and can be
classified as phenomenological, normative, or biophysical. On
the one hand, purely phenomenological models are useful for
relating the output of a system to its input, and can provide
a computationally efficient way to make prediction. However,
as they are solely based on the empirical relation between the
input and the output of the system, and not on its inner
biological principles, they lack interpretability. On the other
hand, normative and biophysical models can be computationally
challenging to fit on data, but are more realistic. In a normative
approach, the output of a system is computed from an objective
function which models its high-level functions and principles. As
opposed to this top-down approach, biophysical models aim at
precisely describing the low-level biological components of the
system. An interesting property of these biophysical models is
that their parameters correspond to real physical quantities: when
the parameters of a system cannot be measured directly, they
can be estimated by fitting a corresponding biophysical model on
recorded output data of the system, a procedure known asmodel-
based inference. By computing the likelihood of the data as a
function of the parameters, it is possible to follow a maximum-
likelihood approach to obtain a point estimate of the parameters
(Barri et al., 2016), or to compute the full posterior distribution
over them (Bird et al., 2016).

Such a parameter inference requires that the model used
is identifiable. Structural (i.e., model-based) identifiability is a
property of the model, regardless of experimental results. In a
structurally identifiable system, the dimension of the output is
sufficiently high with respect to the dimension of the parameters
vector to uniquely define it: the parameters can be non-
ambiguously inferred if the complete distribution of the output is
known. Structural identifiability has been widely studied in many
fields of physics and biology (Raue et al., 2009, 2011; Komorowski
et al., 2011; Koyama, 2012; Hines et al., 2014), and different
criteria exist to assess the structural identifiability of a model
(Massonis and Villaverde, 2020).

This theoretical property is not equivalent to practical (i.e.,
experiment-based) identifiability, which is a property of both
the model and the experimental protocol: a model which
is structurally identifiable might lead to a poor practical
identifiability of parameters if data points are noisy or scarce.
The accuracy of model-based methods for inferring the values of
parameters depends on the experimental protocol used to record
the data, as observations need to be sufficiently informative
to allow a correct estimation of the parameters. Contrary
to structural identifiability, a quantitative criterion is lacking
for practical identifiability, which is usually only qualitatively
assessed. Non-practical identifiability refers to regimes in which

parameters can only be loosely estimated; but one would need
to define what does “loose” mean. Such a definition could be
intrinsic to the model: a model could be considered as practically
identifiable given a certain experimental protocol if the expected
variance of its parameters’ estimate is below a threshold. But
this threshold would need to be arbitrarily defined. Here, we
propose an extrinsic yet non-arbitrary definition of practical
identifiability, by transforming a model identifiability problem
into a model selection problem.

A model is said to be practically identifiable when its
parameters can be correctly inferred given a certain experimental
protocol. But, as explained previously, different possible models
can be fitted on a data set. Recorded data need to be sufficiently
informative not only to give a correct estimate of the parameters
of a model, but also to select the correct model (i.e., the model
from which they have been generated). We argue that a model is
practically identifiable if and only if it is also correctly identified
as the model providing the best fit to the data. For a given
experimental protocol, we define the practical identifiability
domain of a statistical model as the set of parameters for which
the model is correctly identified as the ground truth compared to
a simpler alternative submodel.

Our proposed definition of practical identifiability can be
applied to any setting where submodels or a nested family of
models can be defined. Here, we apply it to the particular
problem of estimating the parameters of a chemical synapse. A
classical biophysical model used to describe the stochastic release
of neurotransmitter at chemical synapses is called the binomial
model (Katz, 1969), for which different variants of increasing
complexity (in term of the number of free parameters) can
be considered.

Different model-based approaches have been proposed
(Bykowska et al., 2019) for obtaining an accurate estimate
of the parameters describing a synapse (namely, its number
of independent release sites, their release probability upon
the arrival of a presynaptic spike, the quantum of current
elicited by one release event, etc.) These parameters cannot
be measured directly, but can be inferred using excitatory
postsynaptic currents (EPSCs1) recorded on the post-synaptic
side and elicited by experimental stimulation of the presynaptic
cell. By measuring their values before and after a stimulation
protocol, it is possible to study the mechanisms and loci of
synaptic plasticity (Costa et al., 2015, 2017a,b) and homeostasis
(Davis and Müller, 2015; Wentzel et al., 2018). On a more
theoretical level, a correct inference of synaptic parameters
is necessary to study the computational role of synaptic
stochasticity (Levy and Baxter, 2002; Guo and Li, 2012).
Finally, an accurate inference of synaptic parameters would
allow to clarify the role of synaptic transmission in different
diseases (Van Spronsen and Hoogenraad, 2010), such as mental
retardation (Pfeiffer and Huber, 2009), schizophrenia (Stephan
et al., 2006), Parkinson’s disease (Calabresi et al., 2006), autism
(Südhof, 2008), Alzheimer’s disease (Selkoe, 2002), compulsive

1It is also possible to perform model-based inference of synaptic parameters based

on post-synaptic spike trains instead of EPSCs, as in Ghanbari et al. (2017, 2020)
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behavior (Welch et al., 2007), and addiction (Kauer andMalenka,
2007).

Our contribution to the analysis of synaptic stochasticity
is three-fold. Firstly, we propose a definition for the practical
identifiability of a model of synaptic transmission, and compute
the identifiability domains of different variants of the binomial
release model. Besides, we observe that model selection criteria
are classically derived by assuming that recorded data are not
correlated, which does not hold for most models of chemical
synapse. We extend the Bayesian Information Criterion (BIC),
a classically used tool for model selection, to models with
correlated data. Finally, a proper description of the model
selection step is often missing in studies where a model based-
approach is used to infer synaptic parameters. We show that our
approach allows to perform data free model selection, i.e., to
verify if a model used to fit data was indeed identifiable even if
a proper model selection step had not been performed.

2. METHODS

2.1. Binomial Models of Neurotransmitter
Release
2.1.1. The Classical Binomial Model
The quantal nature of synaptic transmission was first unveiled in
Del Castillo and Katz (1954), in which the authors observed that
the postsynaptic responses to presynaptic stimulations were all
multiples of a small unit of current. They explained how the total
response is built up of several of these units, or quanta, each of
them arising from a single presynaptic release event. Upon the
arrival of an action potential in the presynaptic terminal, vesicles
are released with a given probability p. The binomial model (Katz,
1969) assumes that there are N independent release sites and that
for each site the release probability p is identical. Therefore, the
number of released vesicles ki after spike i is distributed according
to a binomial distribution. This model further assumes that each
vesicle release gives rise to a quantal current q, such that the
overall excitatory postsynaptic current is given by ei = qki + ǫ,
where ǫ models a measurement noise typically drawn from a
normal distribution with variance σ 2. Under the binomial model
described by its parameters N, p, q, and σ , the distribution of
EPSCs is given by

p(ei) =

N
∑

ki=0

p(ei|ki)p(ki)

where ki follows a binomial distribution with parametersN and p,
and ei conditioned on ki follows a normal distribution with mean
qki and variance σ 2. Postsynaptic responses are characterized by
their meanNpq and their variance q2Np(1−p)+σ 2. A first feature
of synaptic transmission is thus its stochasticity. Due to different
sources of noise, such as probabilistic vesicles release or recording
noise, postsynaptic recordings exhibit trial-to-trial variability.

2.1.2. Full Model of Synaptic Transmission
Although this simple binomial model accounts for synaptic
stochasticity, it does not allow to model its dynamics:

postsynaptic responses do not only depend on the parameters
of the synapse, but also on its previous activity. On the one
hand, successive presynaptic stimulations within a short time
interval will lead to a depletion of the readily-releasable vesicle
pool, and hence to reduced successive postsynaptic responses,
a phenomenon known as short-term depression. This can be
modeled by assuming that the number of available vesicles at time
i is ni ≤ N (while the simplified binomial model described above
assumes that all vesicles are readily releasable, and hence ni = N).
On the other hand, successive stimulations will gradually increase
the presynaptic calcium concentration, and hence the release
probability, which is called short-term facilitation.

Short-term depression and facilitation can be modeled using
the Tsodyks-Markram model (Tsodyks et al., 1998; Costa et al.,
2015). It consists in two ordinary differential equations, which
model the proportion of available vesicles ri and the release
probability ui at time i. ri is reduced by an amount uiri after each
presynaptic spike, and recovers back to 1 with a depression time
constant τD between each spike. Similarly, ui is increased by an
amount p(1− ui), and decays back to p (its baseline value) with a
facilitation time constant τF . Different values of the parameters p,
τD, and τF allow to represent different synaptic dynamics (either
depression, facilitation, or no plasticity at all).

However, such a deterministic approach to short-term
plasticity only allows to model averages, and neglects correlations
between successive postsynaptic responses. In recent studies
(Barri et al., 2016; Bird et al., 2016), models of synapses
incorporating both short-term plasticity and binomial models of
vesicles release and refill have been proposed. In these models,
the release probability ui evolves according to the equation of
the Tsodyks-Markram model, while each vesicle refills with a
probability 1 − exp(−1ti/τD), where 1ti is the time interval
between two successive presynaptic stimulations. This approach
allows to represent both the stochasticity and the dynamics of
neurotransmitter release, and to compute the likelihood of a set
of recorded data D given the parameters θ and the presynaptic
stimulation protocol 9 .

We consider a model of chemical synapse which encompasses
both short-term depression (STD) and facilitation (STF) (Barri
et al., 2016; Bird et al., 2016). Its parameters are (Figure 1A):

– N: the number of independent release sites [-]
– p: their initial release probability [-]
– σ : the recording noise. It encompasses both the noise

coming from the experimental apparatus (thermal noise of
the amplifier, electric line noise, etc.) and from the recordings
per se (such as fluctuations in the membrane potential of the
cell) [A]

– q: the quantum of current elicited by one release event [A]2

– τD: the time constant of vesicles refilling, and hence of short-
term depression [s]

– τF : the time constant of Ca2+ dynamics, and hence of short-
term facilitation [s]

2The outputs of a model of chemical synapse can be either electric postsynaptic

currents (EPSC) or potentials (EPSP). In the latter case, σ and q will be expressed

in [V] instead of [A].

Frontiers in Computational Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 558477201

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gontier and Pfister Identifiability of a Binomial Synapse

which defines a vector θ = (N, p, q, σ , τD, τF). A probability
conditioned on a parametrization θ is written pθ .

n = {ni}1≤i≤T , k = {ki}1≤i≤T , and D = {ei}1≤i≤T represent
respectively the number of available vesicles at the moment of
spike i, the number of vesicles released after spike i, and the i-
th recorded EPSC (Figure 1B). The experimental protocol 9 =

{t1, t2, . . . , tT} encompasses the times of presynaptic stimulation:
the time of the i-th spike is written ti and 1ti = ti − ti−1. For
simplicity, we will drop the dependency on 9 from the notations
of probabilities.

The probability of recording D is computed as the marginal
of the joint distribution of the observations D and the hidden
variables n and k:

pθ (D,n, k) = pθ (e1|k1)pθ (k1|n1)pθ (n1)

T
∏

i=2

pθ (ei|ki)pθ (ki|ni)pθ (ni|ni−1, ki−1) (1)

where pθ (ei|ki) is the emission probability, i.e., the probability to
record ei knowing that ki vesicles released neurotransmitter and
assuming a normally distributed recording noise3:

pθ (ei|ki) =
1

σ
√

2π
exp

(

−

(ei − qki)
2

2σ 2

)

(2)

pθ (ki|ni) is the binomial distribution and represents the
probability that, given ni available vesicles, ki of them will indeed
release neurotransmitter:

pθ (ki|ni) =

(

ni
ki

)

u
ki
i (1− ui)

ni−ki (3)

where the release probability ui evolves as

ui = p+ ui−1(1− p) exp

(

−

1ti

τF

)

(4)

with u1 = p. pθ (ni|ni−1, ki−1) represents the process of vesicles
refilling. During the time interval 1ti, each empty vesicle can
refill with a probability Ii:

pθ (ni|ni−1, ki−1) =

(

N − ni−1 + ki−1

ni − ni−1 + ki−1

)

I
ni−ni−1+ki−1
i (1−Ii)

N−ni

(5)
with

Ii = 1− exp

(

−

1ti

τD

)

(6)

It is usually assumed that, at the beginning of the experiment, all
release sites are filled, and hence that n1 = N (Barri et al., 2016;
Bird et al., 2016).

3Other distributions can also be used for the emission probability. Barri et al.

(2016) assumed an inverse Gaussian to account for the observed right-skewness

of mEPSP (Bekkers et al., 1990; Bhumbra and Beato, 2013)

2.2. Models, Submodels, and Nested
Families
Definition 2.1. Model. For a given data set D and experimental
protocol 9 , a model M is defined as a triplet M = {2,π ,L}
where 2 is the space of parameters θ ∈ 2, π is the prior for
the parameters π(θ) = p(θ |M), and L is the likelihood of the
parameters L(θ |D) = p(D|θ ,M,9).

Examples: Different models can be derived from Equations
(1) to (6). We consider four models of decreasing complexity:

Model M3 is the full model with both STD and STF. Its
six parameters are N, p, q, σ , τD, and τF , and hence 23 =

N
∗
× [0, 1] × (R+)

4. Its likelihood function L3 is obtained by
marginalizing out the hidden variables n and k:

L3(θ |D) =
∑

n,k

pθ (D,n, k) (7)

where pθ (D,n, k) is given by Equation (1).
ModelM2 has only short-term depression (and no short-term

facilitation). Its five parameters are N, p, q, σ , and τD, and hence
22 = N

∗
× [0, 1] ×(R+)

3. Its likelihoodL2 can be derived from
(7) by further assuming that ui is a constant equal to p.

Model M1 shows no short-term plasticity at all, and can be
derived from model M2 by further assuming that Ii (defined in
6) is a constant equal to 1 (and hence ni = N). Its four parameters
are N, p, q, and σ , and hence 21 = N

∗
× [0, 1] × (R+)

2. In this
setting, data points are independent and (7) becomes

L1(θ |D) =

T
∏

i=1





N
∑

ki=0

pθ (ei|ki)pθ (ki)



 (8)

with pθ (ki) =

(

N
ki

)

pki (1 − p)N−ki being the binomial

distribution;
Model M0 is a Gaussian model, in which EPSCs are simply

generated from a normal distribution parameterized by its mean
and variance. Its two parameters are µ and σ 2, and hence 20 =

R × R+. Its likelihood L0 is simply

L0(θ |D) =

T
∏

i=1

pθ (ei) (9)

with pθ (ei) =
1

σ
√

2π
exp

(

−
(ei−µ)2

2σ 2

)

.

To ensure the completeness of the definition of the models,
we will assume for each parameter θ a uniform prior between
two values θmin and θmax (Bird et al., 2016). Note however that
the approximate identifiability domain defined in (17) does not
depend on the prior.

Definition 2.2. Submodels.Although ubiquitous in statistics (as
in the likelihood-ratio test or Pearson’s chi-squared test), the
notion of submodels (or nestedmodels) is rarely formally defined
in the literature (Edwards and MacCallum, 2012). It is usually
said that M0 is a submodel of M1 (or is nested within M1)
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FIGURE 1 | (A) Illustration of the binomial model. (1): the presynaptic button is artificially stimulated. Red vertical bars show 5 presynaptic spikes with a constant

interspike interval. (2): these evoked stimuli lead to neurotransmitter release. After spike i, ki vesicles (out of the ni vesicles from the readily-releasable vesicle pool)

release their neurotransmitter with a probability ui . (3): neurotransmitter bind to receptors and elicit a postsynaptic current. A single release event triggers a quantal

response of amplitude q. (4): the recorded postsynaptic response after spike i is the sum of the effects of the ki release events. EPSCs correspond to the amplitude of

each peak of the postsynaptic response to a presynaptic spike. (5): out of the N release sites, only ni are in the readily-releasable vesicle pool at the moment of spike i.

After releasing, vesicles recover with a time constant τD which determines short-term depression. (6): in the same time, each spike increases the calcium concentration

in the presynaptic button, and hence increases the release probability ui . This short-term facilitation is characterized by a time constant τF . (B) Generative model for

the dynamical binomial model where ni is the number of ready releasable vesicles and ki is the number of released vesicles at time i. ei is the EPSC amplitude at time ti .

if M0 can be obtained by constraining the parameters of M1

(Gottman, 1995). We propose the following formal definition,
that encompasses the space of parameters, their priors, and their
likelihood.

M0 = {20,π0,L0} is said to be a submodel of M1 =

{21,π1,L1} if

1. 20 ⊂ 21 (i.e. the parameters ofM0 also appear inM1)
2. π0(θ0) =

∫

21\20
π1(θ0, θ̃)dθ̃ , ∀θ0 ∈ 20 (i.e. M0 and

M1 share the same priors for the parameters they have in
common)

3. ∀θ0 ∈ 20, ∃θ̃ s.t. p(D|θ0,M0) = p(D|(θ0, θ̃),M1) with
(θ0, θ̃) ∈ 21 (i.e., M0 can be retrieved from M1 by
constraining its parameters).

We use the notationM0 � M1.

Examples: The model M2 with only short-term depression
is a submodel of M3 (which accounts for both depression and
facilitation). Indeed, they have the parameters N, p, q, σ , and τD
in common, and M2 can be retrieved from M3 by constraining
τF −→ 0. Similarly, the model without STP M1 is a submodel of
M2 where τD −→ 0; and the uni-quantal modelM0 is a submodel
of the multi-quantal modelM1 where p = 1 and µ = Nq.

We propose the following definitions to characterize the
nestedness of a family of models:

Definition 2.3. Nested family. F = {M0,M1, . . . ,Mn} is said
to be a nested family if

Mi � Mj, ∀0 ≤ i ≤ j ≤ n

2.3. Structural Identifiability
Definition 2.4. Structural identifiability domain. Consistently
with Raue et al. (2009) andMassonis andVillaverde (2020), let the
structural identifiability domain2S of amodelM = {2,π ,L} be
defined as:

2S = {θ ∈ 2 | ∀θ ′ ∈ 2, θ 6= θ ′ ⇐⇒ p(D|θ ,M) 6= p(D|θ ′,M)}
(10)

Similarly,M is said to be structurally identifiable if 2 = 2S.
If θ is in the structural identifiability domain of M, it can

be uniquely identified from p(D|θ ,M). For instance, a Gaussian
distribution of mean µ and variance σ 2 is uniquely defined by
its parameters θ = (µ, σ 2). Its structural identifiability domain
is thus 2S = R × R

+. Similarly, if N 6= 0, p 6= 0, p 6= 1, and
q 6= 0, the probability density of EPSCs under the binomialmodel
without short-term plasticityM1 is structurally identifiable if we
restrict 21 to N

∗
× ]0, 1[×(R∗

+
)2 (Figure 2).

2.4. Informative Domain
In some regimes, parameters may not be precisely inferred from
observations, even though the model is otherwise structurally
identifiable. Indeed, in practice we usually only have access
to a finite number of (possibly noisy) observations. Practical
identifiability thus differs from the structural identifiability
defined in section 2.3.

A definition for the practical identifiability of a parameter has
previously been proposed in Raue et al. (2009), along with an
approach for detecting practical non-identifiabilities based on the
profile likelihood (Venzon and Moolgavkar, 1988; Murphy and
Van der Vaart, 2000). The authors first define the likelihood-
based confidence intervals for the estimator θ̂i of the i-th
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FIGURE 2 | (A) Structural identifiability domain of the binomial model M1. This model, parameterized by θ = (N,p,q, σ ), is structurally identifiable if and only if N 6= 0,

p 6= 0, p 6= 1, and q 6= 0. These conditions are represented by the red hyperplanes in the N× p× q domain. (B) Two different sets of parameters θ0 and θ ′

0 may lead

to the same distribution of observations if taken out of the structural identifiability domain. If p = 1, the distribution of EPSCs under model M1 follows a Gaussian law

of variance σ 2 and mean Nq: different combinations of N and q can thus ambiguously describe it. Blue distribution: N = 5, p = 1, q = 1, σ = 0.2. Orange distribution:

N = 10, p = 1, q = 0.5, σ = 0.2. (C) Two different sets of parameters θ1 and θ2 will lead to different distributions when taken within the structural identifiability domain

of M1: its distribution is uniquely defined by its parameters. Blue distribution: N = 5, p = 0.5, q = 1, σ = 0.2. Orange distribution: N = 5, p = 0.4, q = 0.9, σ = 0.15.

parameter of a modelM:

Ci,1 = {θi | L(θ̂i|D)− L(θi|D) < 1}

where

L(θi|D) = max
θj6=i

L(θ |D)

for a given threshold 1. Then, they propose the following
definition: A parameter estimate θ̂i is practically non-identifiable,
if the likelihood-based confidence region is infinitely extended in
increasing and/or decreasing direction of θi, although the likelihood
has a unique minimum for this parameter, meaning that the
decrease in likelihood compared to the optimal parameters
estimate stays below the threshold 1 in direction of θi.
When plotting the likelihood as a function of the parameters,
practical non-identifiability can be seen as an infinitely extended
flat valley, in which the decrease in likelihood stays below
1. The authors also describe an algorithm for computing
the profile likelihood and hence detecting such practical
non-identifiabilities: Structural non-identifiable parameters are
characterized by a flat profile likelihood. The profile likelihood of a
practically non-identifiable parameter has a minimum, but is not
excessing a threshold 1 for increasing and/or decreasing values of
θi (see Figure 3 in Raue et al., 2009).

An important limitation of this definition is to be data-
dependent: it only holds for a specific set of recorded data
D. Indeed, likelihood-based confidence intervals, and hence
practical identifiability, are defined with respect to a certain
data set D, and may thus vary for different realizations of the
experiment. However, an identifiability criterion can be made
data-independent by averaging it over all possible realizations
of D, i.e., by computing its expectation with respect to the
distribution p(D|θ∗,M,9). Such an averaged criterion would
correspond to the a priori expected identifiability before a specific
D is recorded.

Practical information about θ is a function of the experimental
protocol 9 : for a given 9 , the informative domain 2I(9) of a
modelM could be defined based on the variance of the estimator.

For instance, in a Bayesian setting, the domain 2I(9) could be
the set of parameters for which the expected informativeness of
the posterior distribution of the parameters (measured as the
Kullback-Leibler divergence between the posterior and the prior)
is above a threshold 1:

2I(9) = {θ∗ ∈ 2 | 〈DKL(p(θ |D,M,9) || p(θ |M))〉p(D|θ∗ ,M,9) ≥ 1}

(11)

Although data-independent, this definition suffers from the same
limitation as the one proposed in Raue et al. (2009): it requires
to set a specific threshold 1. Instead of defining an arbitrary
criterion 1 on the possible precision of parameters estimate, we
will derive our definition from a model selection argument.

2.5. Model Selection
In model selection, the plausibility of two competing models
M = {2,π ,L} and M

′
= {2′,π ′,L′

} based on observations D
can be assessed using the Bayes Factor (Kass and Raftery, 1995):

BM,M′ (D) =
p(D|M)

p(D|M
′)

=

∫

2
L(θ |D)π(θ)dθ

∫

2′ L
′(θ |D)π ′(θ)dθ

(12)

If the Bayes Factor is superior to 1, then the evidence for M is
higher than the evidence for M

′. It is worth pointing out that
the Bayes Factor will not only favor models which provide a
good fit to the data, but also includes a tendency to favor simpler
models, a natural form of Occam’s Razor (Jefferys and Berger,
1991; MacKay andMacKay, 2003). Indeed, a complex model (i.e.,
a model with many independent parameters or with a broader
prior for its parameters) will be able to explain a larger set of
possible observed data than a simple model; but this comes at
the price of spreading its likelihood over a larger set of possible
outcomes. Hence, if twomodels fit the observed data equally well,
the simpler one will be favored.

2.6. Proposed Definition of Practical Model
Identifiability
To compute the identifiability domain of any model M

compared to another model M′, we introduce the Average Log

Frontiers in Computational Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 558477204

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gontier and Pfister Identifiability of a Binomial Synapse

FIGURE 3 | (A) Illustration of practical identifiability. Orange: theoretical distribution for model M1 parameterized with N = 5, p = 0.5, q = 1, σ = 0.2. Blue:

histogram of 2,000 simulated EPSCs generated using the same parameters. Parameters can be precisely inferred from the observations, which fit their theoretical

distribution. (B) Illustration of practical non-identifiability. Blue: histogram of 100 simulated EPSCs with N = 5, p = 0.5, q = 1, σ = 0.4. Due to the small number of

data points and high recording noise σ , the binomial parameters can only be loosely estimated, which is characterized by the fact that a Gaussian distribution (green)

will provide a better fit to the data than a binomial distribution (orange).

Bayes Factor:

BM,M′ (θ∗,9) = 〈logBM,M′ (D)〉p(D|θ∗ ,M,9) (13)

For a given parameter θ∗ and protocol 9 , modelM is said to be
practically identifiable compared to M

′ if BM,M′ (θ∗,9) ≥ 0.
Intuitively, the identifiability domain of M compared to M

′

corresponds to all the settings (parameters and protocols) for
which, on average, data generated from the ground truthM will
be better explained byM than byM′.

In contrast to the definition in Raue et al. (2009), our proposed
definition does not require to set a (possibly arbitrary) threshold
1. Instead, it is derived from a model selection criterion.
We argue that the parameters of a model M are practically
identifiable if M is itself practically identifiable. In some settings
(as for the nestedmodels of chemical synapse described in section
2.1), a family of submodels might naturally arise, while the choice
of a threshold 1 would be arbitrary.

Another interest of our approach is to be data-independent,

while the definition proposed in Raue et al. (2009) only holds
for a specific set of recorded data D. Indeed, we define practical

identifiability as a data-independent and intrinsic property of
the model M and experimental protocol 9 . As the log-Bayes
Factor in (13) is averaged over all possible realizations of D,

it corresponds to the a priori expected identifiability before

D is recorded. Our approach thus allows to define practical

identifiability domains:

Definition 2.5. Practical identifiability domain. Consider a
model M = {2,π ,L} and a submodel M′

= {2′,π ′,L′
} of M.

For a given experimental protocol 9 , the practical identifiability
domain 2P(9) of M is the set of parameters θ∗ for which it is
identifiable compared to its submodel:

2P(9) = {θ∗ ∈ 2 | BM,M′ (θ∗,9) ≥ 0} (14)

Note that in the limit where the priors π and π ′ are highly peaked
(i.e., π(θ) = δ(θ − θ̄) and π ′(θ) = δ(θ − θ̄ ′)), the condition
BM,M′ (θ∗,9) ≥ 0 is always satisfied due to Gibbs’ inequality.
In this case we have 2P(9) = 2,∀9 . However, generically
the condition BM,M′ (θ∗,9) ≥ 0 is not always satisfied since
p(D|M) is not equal to p(D|θ∗,M). The latter is the probability
of observing D given M and a certain parametrization θ∗, while
the former is the marginal likelihood over all parameters (12).

Two examples can illustrate this correspondence between
model selection and parameter inference. Consider first the case
of data recorded from M1. If the experimental protocol is not
sufficiently informative (i.e., if data are scarce or noisy), not only
will the inference of synaptic parameters be poor, but a Gaussian
distribution will also provide a better fit than a binomial release
model to the data. Indeed, as [ei|ki] ∼ N(qki, σ ), in the absence
of recording noise (i.e., if σ = 0), the distribution of EPSCs
is a series of Dirac delta functions located at each multiple of
the quantal size qk for k ∈ {0, 1, . . . ,N}. In this ideal case, q
is clearly identifiable (Figure 3A). However, upon addition of a
recording noise of amplitude σ , EPSCs are normally distributed
around qk for k ∈ {0, 1, . . . ,N}, and the peaks on the histogram
corresponding to each multiple of the quantal size might overlap
if σ is sufficiently high with respect to q (Figure 3B).

Similarly, we can consider the example of a synapse which
shows short-term depression (STD) with a time constant τD
(model M2). If the presynaptic cell is stimulated with an inter-
spike intervals longer than τD, no depression will be visible in
the recorded data, and the true model with STD will not be
identifiable from a simpler binomial model without STD. In the
same time, it will impossible to correctly infer the value of τD.

Our proposed definition of practical identifiability and of the
identifiability domain of a model extend the landscaping
technique introduced in Navarro et al. (2004) as well
as the framework for testing identifiability of Bayesian
models introduced in Acerbi et al. (2014). Especially,
comparing the expected supports 〈log p(D|M)〉p(D|θ∗,M,9)

and 〈log p(D|M
′)〉p(D|θ∗,M,9) of M and M

′ (given that values
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are averaged over 〈·〉p(D|θ∗ ,M,9)) allows us to define a quantitative
criterion for identifiability.

The model evidence p(D|M) in (12) is often intractable
in practice for complex models, as it requires to integrate
marginals for each parameter. Different methods have been
proposed to approximate it: MCMC computations (Weinberg
et al., 2012), Savage-Dickey method (Wagenmakers et al., 2010),
supermodels (Mootoovaloo et al., 2016). A practical and time-
efficient approximation of the model evidence is given by the
Bayesian Information Criterion BICM(D) (Schwarz et al., 1978):

BICM(D) = −2 log p(D|θ̂ ,M)+ kM log(T) ≈ −2 log p(D|M)
(15)

where θ̂ = argmaxθ L(θ |D) is the maximum likelihood
estimator (MLE) of L(θ |D), kM = dim(2) is the number of
independent parameters of M, and T = |9| is the number
of data points in D. A detailed derivation is provided in
Supplementary Material. The BIC is the sum of two terms: a
likelihood term −2 log p(D|θ̂ ,M) which represents the ability of
the modelM to explain D, and a penalty term kM log(T) which
favors simpler models, as explained in section 2.5.

The BIC is commonly used as an approximation of the model
evidence p(D|M) in model selection: the model with the lowest
BIC is preferred over the others. The main advantage of using
the BIC is to transform a complex integration problem (i.e., the
computation of p(D|M)) into a simpler optimization problem
(i.e. the computation of θ̂). Besides, it allows to perform model
selection without the need to specify a prior for the parameters,
and is thus a popular tool for model selection (Daw et al., 2011).

As stated in Supplementary Material, the approximation
BICM(D) ≈ −2 log p(D|M) is only valid under the hypothesis
that data points are independent and identically distributed
(i.i.d.), which is not the case for models with short-term
plasticity. If data are correlated, we are left with the following
approximation, which does not simplify in the general case:

− 2 log p(D|M) ≈ −2 log p(D|θ̂ ,M)+ log(|H(θ̂)|) (16)

where H(θ̂) is the Hessian matrix of − log p(D|θ ,M) in
Equation (15).

We emphasize that the classical definition of the BIC (15)
should not be used if observations are correlated. Here, for
models in which output are not independent, we use the
approximation given by Equation (16), in which the term
kM log(T) in the BIC is replaced by log(|H(θ̂)|). In some settings,
the computation of the Hessian matrix can be challenging.
However, MCMC methods can be used to approximate H(θ̂),
even without an explicit expression for the gradient of the
function (Spall, 2005). In our case, a numerical method for
computing |H(θ̂)| is detailed in the Supplementary Material.

Using approximation (15) in definition (14) yields the
following approximation for the practical identifiability domain
in case the model evidence p(D|M) in (12) is intractable:

2̃P(9) = {θ∗ ∈ 2 | 〈BICM(D)〉p(D|θ∗,M,9)

≤ 〈BIC
M

′ (D)〉p(D|θ∗,M,9)} (17)

3. RESULTS

3.1. Identifiability Domain of the Binomial
Model Without Short-Term Plasticity
We study here the conditions under which a binomial model
without short-term plasticity M1 can be correctly identified
from a Gaussian model having the same mean and variance
(M0). In order for the binomial model to be identifiable from
a Gaussian quantum-less distribution, the recording noise needs
to be sufficiently low compared to q for the peaks on the
histogram of recorded EPSC to be identified. We will thus plot
the identifiability domain as a function of the recording noise of
amplitude σ for a fixed q. The identifiability domain corresponds
to the points θ in the parameters space 21 for which the average
BIC ofM1 over all possible outputs ofM1 parameterized with θ

is lower than the average BIC ofM0.
Per se, the identifiability domain depends on all the parameters

ofM1, as well as on the experimental protocol. For simplicity and
in order to obtain a plot in 2 dimensions, we will only plot it as a
function of p and σ while holding other variables to a fixed value.
For a given experimental setup 9 (which encompasses only
the number of recorded data points T, the inter-spike intervals
playing no role in these models), the following Markov-Chain-
Monte-Carlo (MCMC) procedure is implemented:

1. A set of values p∗ and σ ∗ are chosen from the space of possible
values for p and σ ;

2. Using p∗ and σ ∗, 400 independent data sets (Di)1≤i≤400 are
generated fromM1. Each data set consists in T EPSCs;

3. For each Di, the BIC of both models are computed; these
values are averaged over i to compute an average BIC and
identifiability is assessed if M1 is preferred over M0, which
corresponds to the black dots in Figure 4A.

The procedure of plotting a complete identifiability domain
can be quite time-consuming. Indeed, it requires to span the
entire space of parameters; for each vector θ∗, to generate a
large number of independent data sets (Di); and for each of
these data sets, to compute the maximum likelihood estimator
θ̂ using the Expectation-Maximization algorithm (Barri et al.,
2016). Details on the computation of θ̂ are available in
Supplementary Material.

However, as both modelsM0 andM1 generate i.i.d. data, and
by making the approximation θ̂ ≈ θ∗ (i.e., by assuming that the
maximum likelihood estimator θ̂ will be close to the true value θ∗

from which data were generated), the condition that model M1

is identifiable (17) can be approximated as follows:

− 2T

∫

p(e|θ∗,M1) log p(e|θ
∗,M1)de+ kM1

log(T) ≤

−2T

∫

p(e|θ∗,M1) log p(e|θ̂M0
,M0)de+ kM0

log(T) (18)

where θ̂M0
= (µ, σ 2) represents the mean µ ≈ N∗p∗q∗ and the

variance σ 2
≈ N∗p∗(1−p∗)q∗2+σ ∗2 of the data generated from

M1.
The condition specified by inequality (18) can be checked

for any point θ∗ without the need to generate a large number
of independent data sets nor to compute the estimator θ̂ .
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Solving (18) numerically for σ allows to draw the border of
the identifiability domain of M1, represented as solid lines in
Figures 4A,B.

Several points are worth highlighting. Firstly, Figure 4A

shows a good agreement between the results of the MCMC
simulations (black dots) and those from the semi-analytical
method (18) (blue line). Secondly, as expected, Figures 4A,B
illustrate that the identifiability domain increases with the
number of data points T: intuitively, a larger data set
facilitates the correct identification of a complex model. Besides,
irrespective of the values of T and σ , for p = 0 and p = 1
the model M1 is structurally indistinguishable from a Gaussian
distribution (see Figure 2A). Finally, the maximum noise σ

which makes the binomial model M1 indistinguishable from a
Gaussian distribution M0 is larger for extreme values of p (close
to 0.9 or 0.1) than for p = 0.5. Indeed, in the latter case, the
distributions of EPSC will be symmetric (as in the upper panel
of Figure 4C), and hence just a little increase in recording noise
will be enough to cover the inter-peak intervals and make the
distributionGaussian-shaped. In the former case, the distribution
will be highly skewed, and thus difficult to approximate with a
normal distribution.

The same approach can then be extended tomore complicated
models, by defining their identifiability domains as the part of the
parameters plane where their average BIC will be lower than the
BIC of a simpler one.

3.2. Identifiability Domain of the Binomial
Model With Short Term Depression
We study here the conditions under which a binomial model
with short-term depression (M2) can be correctly identified from
a model without short-term plasticity (M1). In a first example,
we assume that the presynaptic cell is stimulated at a constant
inter-spike interval (ISI), which needs to be sufficiently short with
respect to the time constant τD to make depression visible. We
thus plot the identifiability domain as a function of both p and
τD. We use the same method as in 3.1: For each set of parameters
p∗ and τ ∗D, 400 independent data sets are generated from M2.
Both models M2 and M1 are fitted on them, and black dots in
Figure 5A correspond to the parameters for which the average
BIC ofM2 is lower than the average BIC ofM1.

As expected, we verify that the identifiability of M2 is
only possible when τD is sufficiently long with respect to the
inter-spike interval. Besides, if the release probability p is low,
correlations between recordings will be weak and the effect of
short-term depression will not be detectable. A major difference
between models M1 and M2 is that, in the latter, observations
{ei}1≤i≤T are not i.i.d.. The value of the i-th recorded EPSC is
a function of the number of available and released vesicles ni
and ki, which in turn depend on their previous values and on
the ISI 1ti. This has two main consequences. Firstly, using the
same approximation as in (18) would lead to a biased estimate
of the identifiability domain. Secondly, the classical definition of
the BIC (15) should not be used since observations are correlated.
Rather, we use Equation (16) to compare the evidence for M1

andM2 for a given data set.

Plotting the identifiability domain of a model also allows to
investigate how the identifiability depends on the experimental
protocol. For model M1, we already saw that the identifiability
domain increases with the number of data points T (see
Figures 4B,D): a larger data set is more informative and
allows for more reliable inference. In this case, T is the only
experimental variable, as observations {ei}1≤i≤T are i.i.d. On
the other hand, the identifiability domain of M2 will depend
not only on the number of data points, but also on the
stimulation protocol. We compare the constant stimulation
protocol (T data points with a constant inter-spike interval
ISI = 0.05s) of Figure 5A with a more realistic stimulation
protocol in Figure 5B. In electrophysiological recordings,
synaptic transmission is classically studied by stimulating the
presynaptic cell with short regular train of spikes at a given
frequency, followed by a recovery spike. This protocol is then
repeated several times (Costa et al., 2013; Barri et al., 2016; Bird
et al., 2016). Such periodic trains are more informative than a
constant stimulation protocol, as they allow to probe a broader
range of temporal dynamics.

In Figure 5B, we use 20 repetitions of a train of 4 spikes at
20Hz (ISI = 0.05s), followed by a recovery spike 0.5s later. This
protocol entails the same number of data points T = 100 as the
constant one, but allows to identify STD for a broader range of
depression time constants (namely, for τD < 0.3s). On the other
hand, since there are fewer successive stimulations within a short
time interval than in the constant protocol, depression can only
be identified when the release probability p is sufficiently high to
induce vesicle pool depletion.

3.3. Data Free Model Selection
In model-based inference of synaptic parameters, a crucial step
related to the estimation of the parameters is model selection,
which is usually performed in several steps:

1. Data D are acquired from a synapse using protocol 9 ;
2. A nested family of n + 1 possible models F =

{M0,M1, ...,Mn} is defined;
3. Each of these models is fitted on D to obtain n + 1 MLE

θ̂0, θ̂1, ..., θ̂n;
4. A model selection criterion (Bayes Factor, BIC, AIC...) is

computed to quantify and rank the fitness of eachmodel onD;
5. If Mi is the selected model, then its MLE θ̂i is selected as the

inference of synaptic parameters.

However, in many studies (Barri et al., 2016; Bird et al., 2016;
Ghanbari et al., 2017), such a model selection step is not
described. In this section, we investigate the possibility, having
only access to the inferred values θ̂ of the parameters and to the
description of the experimental protocol 9 , to verify that the
model used to infer θ̂ was indeed practically identifiable (i.e.,
to verify if a simpler model would have given a better fit to
the data).

We use the notation D for a set of data generated from a
model M parameterized with θ∗, and θ̂ the inferred parameters
obtained by fitting the parameters θ of model M on D. If θ∗ is
within the practical identifiability domain of M as we defined it,
it is then possible to correctly infer it from D, and hence θ̂ ≈ θ∗
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FIGURE 4 | (A) Identifiability domain of M1 as a function of p and σ . Blue line: domain of identifiability from Equation (18). On the left part of the blue line, the

recording noise σ is sufficiently low to identify M1. Black dots: values (p∗, σ ∗) for which the average BIC of 400 data sets results in the correct identifiability of M1.

Results obtained for N = 5, q = 1, and T = 100. (B) Identifiability domain of the binomial model M1 compared to a Gaussian distribution M0, computed from (18),

for different values of T. (C) To visualize the effect of σ on the data, this panel shows histograms of data generated from σ = 0.2 (1) and σ = 0.4 (2), alongside with

their theoretical distribution from Equation (8) (orange line in the upper panel) or when a Gaussian distribution is fitted on them (green line in the lower panel). In the

identifiability domain (1), quantal peaks are clearly visible. Outside of the identifiability domain (2), the binomial distribution becomes Gaussian-shaped. (D) Another

visualization of the identifiability domains displayed in (A,B). For different values of p, the maximum recording noise σ (i.e., the boundary of the identifiability domain) is

plotted as a function of the number of data points T. The identifiability domain increases with T: intuitively, a larger data set facilitates the correct identification of a

complex model.

will also be within the identifiability domain of M. Reciprocally,
if θ̂ is not in the identifiability domain of M, then a submodel
would have provided a better fit to the data D than M. Is it thus
possible to verify ifM overfits the data simply by verifying if θ̂ is
in its identifiability domain, without having access to the data.

This is illustrated in Figures 6A,B, whereM1 is fitted on data
generated from its submodel M0. For six different values of θ∗0
(Figure 6A), the inferred parameters are out of the identifiability
domain of M1 (Figure 6B), showing that data are indeed better
explained byM0 than byM1.

3.3.1. First Example: Application to the Data From

Katz et al. (1954)
We first apply our data free model selection method to the
seminal 1954 paper from Del Castillo and Katz (1954), in

which the quantal nature of neurotransmitter release is identified
for the first time. In order to observe mEPSP, they artificially
reduced the release probability p by lowering the external calcium
concentration. Although the quantal components of postsynaptic
potentials are clearly visible and thoroughly analyzed, it would
be interesting to verify, using our proposed model identifiability
analysis method, that the binomial model (i.e., a multi-quantal
distribution) indeed provides a better fit to the data than a simpler
Gaussian model (i.e., a uni-quantal distribution).

Data (Fatt and Katz, 1952) consist in 328 EPSPs recorded
at the neuro-muscular junction (NMJ) of a frog muscle. Fitting
the binomial model and running the Expectation-Maximization
algorithm on them yields N̂ = 42, p̂ = 0.013, q̂ = 0.875 mV ,

and σ̂ = 0.15 mV (and hence σ̂
q̂

≈ 17%). For this particular

example, we have not only access to the inferred parameters θ̂ ,
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FIGURE 5 | Identifiability domain of the binomial model with short-term depression M2 as a function of p and τD. Black dots correspond to the parameters for which

the average BIC of 400 data sets results in the correct identifiability of the depressed model. Results obtained for N = 5, q = 1, σ = 0.2, and T = 100. (A) Constant

stimulation protocol with an inter-spike interval ISI = 0.05s (red dotted line). (B) Stimulation protocol consisting in 20 repetitions of the same spike train: 4 spikes with

an inter-spike interval ISI = 0.05s followed by a recovery spike 0.5s later.

but also to the data: it is thus possible to directly compare the BIC
of a Gaussian (BICM0

= 764.95) and of a binomial (BICM1
=

470.37) distributions, which indeed confirms that data are better
explained by the binomial quantal model.

However, even without the data, we can verify that the point in
the parameter-protocol space specified by θ̂ (the inferred values
of the parameters) and 9 (the number of data points T =

328) is indeed within the identifiability domain of the binomial
model M1 compared to M0 (see Figure 6C), thus confirming
the multi-quantal nature of the recordings.

3.3.2. Second Example: Application to the Data From

Barri et al. (2016)
We then apply our method to the results presented in the 2016
paper from Barri et al. (2016), in which the complete binomial
model (with STD and STF) is fitted on recordings from layer 5
pyramidal neurons. They use a slight variation of the binomial
release model with short term plasticity described by Equations
(1)–(6), in which the emission probability does not follow a
Gaussian, but an inverse Gaussian distribution:

pθ (ei|ki) =
q3/2ki

√

2πσ 2e3i

exp

(

−

q(ei − qki)
2

2σ 2ei

)

(19)

To verify that the data would not have been better fitted
by a simpler model (and hence, that the published estimates
of synaptic parameters are reliable), 100 synthetic data sets
were generated from the complete binomial model using the
stimulation protocol and the inferred values of the parameters
described in (Barri et al., 2016):

– 20 repetitions of the same stimulation protocol consisting in
8 presynaptic spikes at 20Hz followed by a recovery spike
500ms later;

– N∗
= 17, p∗ = 0.27, q∗ = 0.18 mV , σ ∗

= 0.06 mV ,
τ ∗D = 202ms, and τ ∗F = 449ms.

M0, M1, M2, and M3 were then fitted on the generated data.
Average values of their respective BIC are presented in Figure 7,
and confirm the identifiability of the model used in the study.

4. DISCUSSION

Obtaining an accurate estimate of the parameters of a system
from noisy and scarce observations is a crucial problem in
neuroscience. Especially, different methods have been proposed
for estimating the parameters describing a synapse (namely, its
number of independent release sites, their release probability
upon the arrival of a presynaptic spike, the quantum of current
elicited by one release event, the time constants of depression
and facilitation, etc...). Inferring their values allows to analyze
the locus of synaptic plasticity and homeostasis; to study possibly
synapse-related diseases; and more generally to investigate
learning, memory, and neural dynamics, which are mediated by
synaptic transmission.

It is usually impossible to measure directly these parameters.
However, they can be estimated by fitting a biophysical model
of synapse on currents recorded on the post-synaptic side and
elicited by experimental stimulation of the presynaptic cell. This
approach for estimating the parameters of a system is referred to
as model-based inference. As different competing models may be
used to describe the system and explain its output, model-based
inference of parameters thus raises the question of what makes a
good model.

Prior to any data recording, a required property for competing
models is identifiability. Although structural identifiability has
been widely studied, no quantitative criterion exists for practical
identifiability, which is usually only qualitatively assessed. Here,
we propose a definition for the practical identifiability of a
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FIGURE 6 | (A) Data sets were generated from a Gaussian model M0 (for six different means µ and variances σ 2). (B) A binomial model M1 was fitted on them. In

each case, inferred parameters (colored dots) are out of the identifiability domain of M1. It is thus possible to verify if a model used to fit data was indeed identifiable,

without having access to the data and only using inferred parameters. (C) Blue line: identifiability domain of the binomial model compared to a Gaussian distribution,

for N = 42 and T = 328, computed from (18). The red cross corresponds to the parameters inferred from (Del Castillo and Katz, 1954), and is indeed within the

identifiability domain.

FIGURE 7 | Average BIC of M0, M1, M2, and M3 when fitted on 100

independent data sets generated from M3 parameterized with N∗
= 17,

p∗ = 0.27, q∗ = 0.18 mV, σ ∗
= 0.06 mV, τ ∗

D = 202 ms, and τ ∗

F = 449 ms.

M3 has the lowest average BIC compared to its submodels, showing that the

parameters used to generate the data are indeed within the identifiability

domain of M3. As a consequence, we can infer that M3 indeed provided the

best fit to the data compared to its submodels, and that inferred parameters

presented in Barri et al. (2016) are reliable. The facilitating nature of the

synapse is illustrated by the fact that the BIC of M2 (the model with only STD

and no STF) is substantially larger than the one of M3.

model, based on its expected support given the distribution of
the data. We define the practical identifiability domain of a
statistical model as the set of parameters for which the model is
correctly identified as the ground truth compared to a simpler
alternative submodel, and we study the identifiability domains of
different models of synaptic release. In the process, we propose
an extension of the Bayesian Information Criterion (BIC) for
models with correlated data. The BIC is a widely used tool for
model selection, but it is derived by assuming that the outputs of
the system are mutually independent, which is not the case for
models of chemical synapse. Finally, we show that our approach
allows to perform data free model selection, i.e., to verify the
identifiability of a model without having access to the data.

The definition of practical identifiability we introduced here
differs from the influential contribution of Raue et al. (2009)
in two ways. Firstly, our definition is data-independent: it does
not only hold for a specific set of recorded data D. Indeed,
we define practical identifiability as an intrinsic property of the
model M and experimental protocol 9 . We actually define the
a priori expected identifiability before a specific D is recorded,
which allows to study how identifiability is affected by different
experimental protocols. Secondly, since our definition is derived
from a model-selection argument, it does not require to select
a possibly arbitrary threshold on the practical identifiability of
parameters. Rather, it is defined with respect to a particular
submodel. Although the choice of the submodel might itself be
arbitrary, we argue that nested models and families naturally
arise in commonly used statistical techniques, such as polynomial
regression (Edwards and MacCallum, 2012), or Generalized
Linear Models (GLM) (Pillow et al., 2008). Especially, the
widespread use of phenomenological models in neuroscience
(Kobayashi et al., 2009; Melanson et al., 2014; Wang et al., 2016;
Levenstein et al., 2020) makes the use of nested families and
submodels relevant.

Another limitation of our approach is its practical
implementation. As mentioned, the model evidence p(D|M),
on which our definition is based, is often intractable in practice
for complex models, and needs to be estimated. For practical
purpose, we used the Bayesian Information Criterion (BIC) to
compute the identifiability domains of our different models of
synapse. However, we acknowledge that the BIC only provides
a valid approximation of the model evidence when the number
of samples is sufficiently large. A future step would be to study
the robustness of our approach to different computations of the
model evidence or to other approximations, such as the Akaike
Information Criterion (AIC) (Burnham and Anderson, 2004).

Our identifiability domains are similar to the approach
adopted in Koyama (2012), in which the authors study under
which regime of rate fluctuation are the temporal variations
of a neuron firing rate correctly identified. Spike trains are
generated from a model of spiking neuron with a fluctuating
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firing rate (complex model); but under a certain value of rate
fluctuation, this model becomes indistinguishable from a model
of spiking neuron with a constant rate (simple model). Plotting
the identifiability of the fluctuating-rate model as a function
of the amplitude of rate fluctuation allows them to identify
which distribution of inter-spike intervals has the broader
identifiability domain (and thus maximizes the efficiency of rate
fluctuation transmission).

In model-based inference and parameter estimation, one is
often interested in obtaining theoretical bounds on the achievable
error performance. Such theoretical bounds allow to assess a
priori the possibility to correctly infer the parameters. A well-
known theoretical result is the Cramér-Rao bound (Van Trees,
2004; Van Trees and Bell, 2007), which provides a lower bound
on the variance of the parameter estimator. This bound, which
depends on the model, its parameters, and the experimental
protocol, may actually be too loose in practice, and does not
account for the threshold effect described in Kostal et al.
(2015). In many cases, as the number of data points increases,
the estimate error displays a threshold-like transition, from a
region of low performance to a region of high performance
where the Cramér-Rao bound is attained. Our definition of
practical identifiability also discriminates between regions of low
information (for small signal-to-noise ratios and sample size) and
high accuracy, provides a quantitative criterion to discriminate
them, and can be extended to the case of non-i.i.d. data. An
interesting future step would be to verify how the boundaries of
our proposed identifiability domains compare with the transition
threshold described in Kostal et al. (2015).

An interesting topic would be to study the practical
identifiability domain as the number of observations T
goes to infinity. In this asymptotic case, practical non-
identifiability means that the model cannot be identified,
even with an infinite amount of data. We can conjecture
that practical identifiability is equivalent to structural
identifiability in this asymptotic case, as hinted by Figure 4:
the identifiability domain increases with T. A future step
would be to verify if the practical identifiability domain of
a model is included in its structural identifiability domain,
and how it behaves when the number of observations T goes
to infinity.

We applied our analysis to four variants of the binomial
model, of increasing complexity: a Gaussian model (i.e., a uni-
quantal distribution); a binomial model without short-term
plasticity; a binomial model with only short-term depression;
and a binomial model with both short-term depression and
facilitation. A future step would be to extend our analysis
to further generalizations of the binomial model, in order to
account for parameters heterogeneity. Especially, the binomial
model assumes that the release probability and the quantal
amplitude are identical for each release site. It is however
possible to hypothesize that there are several pools of vesicles,
each having different parameters (for instance a fast depleting
pool and a slow depleting pool). There will be regimes
in which those sub-pools can be detected and other in
which the noise is too high or the experimental protocol
not informative enough to identify them, which can be

quantified using our definition of identifiability. Another possible
generalization of the binomial model is to assume that the
postsynaptic response to one vesicle release is not fixed, but
follows for instance a Gamma distribution (Bhumbra and
Beato, 2013) to account for variability in vesicles size and
neurotransmitter content.

Model selection is not only a first step in model-based
inference of synaptic parameters (as it is necessary to have
a reliable estimates of the parameters), but also a tool
to study the mechanisms of neurotransmitter release at a
chemical synapse. An alternative hypothesis (e.g., “this synapse
shows short-term plasticity”) can be compared to a null
hypothesis (“this synapse does not show short-term plasticity”)
by computing how well the complex model (i.e. with short-
term plasticity) explains the behavior of the synapse compared
to the simple model (i.e., without short-term plasticity). Testing
models of growing complexity allows to study the nature of
the synapse and to identify mechanisms of neurotransmitter
release. But the possibility to correctly select the model
that corresponds to the true behavior of the synapse will
depend on its parameters and on the experimental protocol
used to record data: there are regimes in which the specific
features of a model do not appear in the data. Such regimes
correspond to the identifiability domain of the model, and
studying them allows to draw conclusions on the nature of
the synapse.

As stated previously, the problem of inferring parameters
from noisy and scarce observations is not restricted
to synaptic parameters estimation, but is a crucial
question in neuroscience. Our proposed methodology
could also be applied to models of single neurons
(Koch, 2004; Jolivet et al., 2008; Gerstner and Naud,
2009; Mensi et al., 2012), neural population dynamics
(René et al., 2020), or calcium-driven vesicles fusion
(Schneggenburger and Neher, 2000; Lou et al., 2005; Sun
et al., 2007).

On a broader scale, instead of seeing parametric non-
identifiability as a statistical problem, we could consider it
as a biophysical feature. The total synaptic strength between
two cells is a function of both presynaptic (N, p) and
postsynaptic (q) parameters. Different combinations of these
parameters could lead to the same average postsynaptic
response: a presynaptic modification of the number of release
sites N can be compensated by an inverse modification
of the postsynaptic number of receptors affecting q. This
combined effect of presynaptic and postsynaptic plasticity
has been shown to enable reliable and flexible learning
(Costa et al., 2015) and homeostatic modulation (Davis and
Müller, 2015). More generally, the question of degeneracy,
defined as the ability of different elements to perform the
same function, could be addressed within the framework
of identifiability analysis (Drion et al., 2015; Rathour and
Narayanan, 2019).

Finally, our proposed definition of model identifiability is
paving the way toward Optimal Experiment Design (OED)
for model selection and parameter inference. The information
conveyed by the data about the ground truth model and its
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parameters depends on the experimental protocol: number of
recorded data points, stimulation frequency, etc. The goal of
OED is to optimize the experimental protocol in order to
maximize the possibility to discriminate between competing
models (Vanlier et al., 2014; Balietti et al., 2018) and the
precision of the inference of their parameters. An OED for
inferring the parameters of a given model maximizes the
mutual information between the data and the parameters
I(D, θ) (Huan and Marzouk, 2013). This quantity turns out
to be equal to the expected gain in information about θ

(defined as the Kullback-Leibler divergence between its prior
and its posterior), on which our proposed definition of the
informative domain (11) is based. Similarly, maximizing the
Average Log Bayes Factor (13) is equivalent to maximizing
the discriminability between the two models M and M

′, and
hence finding an OED for model selection. As a thorough
theoretical preliminary analysis of the properties of the
competing models is a first step prior to model selection
and parameter inference (Asprey and Macchietto, 2000), we
believe that our theoretical contribution to model analysis will
contribute to the development of OED techniques for synaptic
transmission study.
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From Topological Analyses to
Functional Modeling: The Case of
Hippocampus
Yuri Dabaghian*

Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, United States

Topological data analyses are widely used for describing and conceptualizing large

volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal

ensembles and thus understanding the functions of the corresponding networks. Below

we discuss an approach in which convergent topological analyses produce insights

into how information may be processed in mammalian hippocampus—a brain part

that plays a key role in learning and memory. The resulting functional model provides

a unifying framework for integrating spiking data at different timescales and following

the course of spatial learning at different levels of spatiotemporal granularity. This

approach allows accounting for contributions from various physiological phenomena into

spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization

by different brain waves, the roles played by synaptic efficacies and so forth. In

particular, it is possible to demonstrate that networks with plastic and transient synaptic

architectures can encode stable cognitive maps, revealing the characteristic timescales

of memory processing.

Keywords: spatial learning, hippocampus, topological methods, place cells, theoretical model

1. INTRODUCTION

Spatial cognition in mammals is based on an internal representation of their environments—a
cognitive map—used for spatial planning, navigating paths, finding shortcuts, remembering the
location of the home nest, food sources and so forth. A central role in producing these maps
is played by the hippocampal neurons famous for their spatially tuned spiking activity. In rats,
these neurons, known as “place cells,” fire in specific domains of the navigated environment—their
respective “place fields” (O’Keefe and Nadel, 1978; Moser et al., 2008). Thus, the spatial layout of
the place fields in a given environment E—a place field map ME—defines the temporal order in
which place cells fire during animal’s moves (Schmidt and Redish, 2013; Agarwal et al., 2014), and
can therefore be viewed as a geometric “proxy” of the animal’s cognitive map.

Experiments in “morphing” 2D environments demonstrate that place field maps are flexible: if
the environment is deformed, then the place fields may change their shapes, sizes and locations,
while preserving mutual overlaps, adjacencies, containments, etc. (Gothard et al., 1996; Leutgeb et
al., 2005; Touretzky et al., 2005;Wills et al., 2005; Dabaghian et al., 2014; Bellmund et al., 2020; Place
andNitz, 2020). Hence the sequences in which the place cells fire during animal’s navigation remain
largely invariant within a certain range of geometric transformations, which suggests that the
hippocampus provides a qualitative, topological representation of space—more akin to a subway
map than a than to a topographical city street map (Alvernhe et al., 2012; Dabaghian et al., 2014;
Wu and Foster, 2014).
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The mechanisms that produce cognitive maps and the
computational principles by which the brain converts patterns
of neuronal firing into global representations of external space
remain vague. Broadly, it is believed that the information
provided by the individual place cells is somehow combined
into single coherent whole. However, this “fusion” should
not be viewed as a naïve aggregation of the smaller “pieces,”
because the signals provided by the individual neurons have
no intrinsic spatial attributes; rather, spatial properties are
emergent, i.e., appearing at a neuronal ensemble level (Wilson and
McNaughton, 1993; Pouget et al. , 2000; Postle, 2006).

A computational framework developed in Dabaghian et al.
(2012), Arai et al. (2014), Hoffman et al. (2016), Basso et
al. (2016), Babichev et al. (2016a,b), Babichev and Dabaghian
(2018), Dabaghian (2019), and Dabaghian (2016) helps to

understand these phenomena by integrating the activity of the
individual neurons into a large-scale map of the environment
and to study the dynamics of its appearance, using algebraic
topology techniques. Below we review some basic ideas and key
concepts used in this framework, and discuss how theymay apply
to hippocampal physiology and cognitive realm. We then outline
several examples that demonstrate how various characteristics
of individual cells and synapses can be incorporated into the
model and what effect these “microscopic” parameters produce
at a “macroscale,” i.e., in the map that they jointly encode.

2. TOPOLOGICAL MODEL

2.1. Alexandrov-Čech’s Theorem
The topological nature of the cognitive map suggests that
the information transmitted via place cell spiking should be
amenable to topological analyses. For example, a place field map
can be viewed as a cover of the environment E by the place fields
υi, E = ∪iυi, which, according to the Alexandrov-Čech’s theorem
(Alexandroff, 1928; Čech, 1932), encodes the topological shape of
E . To evaluate its specific characteristics, one constructs the nerve
of the cover—an abstract simplicial complexN whose simplexes,
νi0 ,i1 ,...,ik = [υi0 , υi1 , . . . υik ], correspond to non-empty overlaps
between the place fields, υi0 ∩υi1 ∩ . . .∩υik 6= ∅. If these overlaps
are contractible, thenN has the same topological shape as E , i.e.,
the same number of components, holes, tunnels, etc. (Hatcher,
2002). An implication of this construction is that if the place fields
cover the environment sufficiently densely, then their overlaps
encode the topology of E , which provides a link between the place
cells’ spiking pattern and the topology of the represented space
(De Silva and Ghrist, 2007; Curto and Itskov, 2008; Chen et al. ,
2012; Dabaghian et al., 2012; Kang et al., 2020).

2.2. Temporal Coactivity Complex
From the physiological perspective, the arguments based on the
analyses of place fields provide only an indirect description of the
information processing in the brain. In reality, the hippocampus
and the downstream brain regions do not have access to the
shapes and the locations of the place fields, which are but artificial
constructs used by experimentalists to visualize their data. In
the brain, the information is transmitted via neuronal spiking
activity: if the animal enters a location where several place fields

overlap, then there is a probability that the corresponding place
cells will produce spike trains that overlap temporally (Curto
and Itskov, 2008; Dabaghian et al., 2012). Such coactivities may
be interpreted intrinsically by the downstream brain areas, and
integrated into a global map of the ambient space. Thus, a proper
description of place cell (co)activity requires a temporal analog
of the nerve complex, built using temporal relationships between
spike trains—which is, in fact, straightforward. Indeed, since the
place field overlaps represent place cells’ coactivities, one can
construct a “coactivity complex” T whose simplexes correspond
to combinations of active place cells, σ = [ci0 , ci1 , . . . , cik ]. It was
shown in De Silva and Ghrist (2007), Curto and Itskov (2008),
and Dabaghian et al. (2012) that if such a complex is sufficiently
complete (i.e., if it incorporates a sufficient number of the
coactivity events) then its structure is similar to the structure of
the spatially-derived nerve complexN , e.g., T correctly captures
the topology of the physical environment. Note however, that
structural similarity between N and T (representability of T )
is a non-trivial point with profound mathematical implications
(Tancer, 2013).

2.3. Simplicial Schemas of Cognitive Maps
Both complexes N and T provide a contextual framework
for representing spatial information encoded by the place
cells (Babichev et al., 2016b). For example, a sequence of
place fields traversed during the rat’s moves over a particular
trajectory γ and the place cell combinations ignited along
this trajectory can be represented, respectively, by a “nerve
path” ŴN = {ν1, ν2, . . . , νk}—a chain of nerve-simplexes
in N , or by a “coactivity path” ŴT = {σ1, σ2, . . . , σk}—a
chain of the coactivity-simplexes in T (see also Babichev and
Dabaghian , 2018). These simplicial paths qualitatively represent
the shape of the physical trajectories: a closed simplicial path
represents a closed physical route; a non-contractible simplicial
path corresponds to a class of the physical paths that enclose
unreachable or yet unexplored parts of the environment; two
topologically equivalent simplicial paths Ŵ1 ∼ Ŵ2 represent
physical paths γ1 and γ2 that can be deformed into one another
and so forth (Brown et al., 1998; Jensen and Lisman, 2000;
Guger et al., 2011; Dabaghian, 2016). By the Alexandrov-Čech’s
theorem, the net pool of the simplicial paths can thus be used
to describe the topological connectivity of the environment E via
homological characteristics ofN and T .

2.4. The Large-Scale Topology of the
Cognitive Map
C(E), as represented by a coactivity complex, can be described at
different levels. A particularly concise description of a topological
shape is given in terms of its topological loops (surfaces identified
up to topological equivalence) in different dimensions, i.e., by
its Betti numbers bn, n = 0, 1, . . . (Alexandrov, 1965; Hatcher,
2002). For example, the number of inequivalent topological loops
that can be contracted to a zero-dimensional (0D) vertex, b0(T ),
corresponds to the number of the connected components in
T ; the number of loops that contract to a one-dimensional
(1D) chain of links, b1(T ), defines the number of holes and
so forth (Alexandrov, 1965; Hatcher, 2002). The full list of
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the Betti numbers of a space or a complex X is known as its
topological barcode, b(T ) = (b0(T ), b1(T ), b2(T ), . . .), which
captures the topological identity of T (Zomorodian, 2005;
Zomorodian and Carlsson, 2005; Ghrist, 2008; Carlsson, 2009,
2013; Edelsbrunner and Harer, 2010). For example, the barcode
b = (1, 1, 0, . . .) corresponds to a topological annulus, the
barcode b = (1, 0, 1, 0, . . .)—to a two-dimensional (2D) sphere
S2, the barcode b = (1, 2, 1, 0, . . .)—to a torus T2 and so forth
(Edelsbrunner andHarer, 2010). Thus, by comparing the barcode
of the coactivity complex b(T ) to the barcode of the environment
b(E) one can establish whether their topological shapes may
match, i.e., whether the coactivity complex provides a faithful
representation of the environment at a given moment t.

2.5. A Model of Spatial Learning
A key difference between the complexes N and T is that the
topological shape of N is fully defined by the structure of the
place field map, whereas the shape of T unfolds in time at the rate
with which the spike trains are produced. At every given moment
of time, the coactivity complex T represents connections between
the place fields that the animal had time to “probe”: as the animal
begins to explore a new environment, T is small, fragmented and
may contain gaps that represent lacunae in the animal’s internal
map of the navigated space, rather than physical obstacles or
inaccessible spatial domains. As the animal continues to navigate,
more combinations of coactive place cells contribute connectivity
information, the coactivity complex grows, T (t) ⊆ T (t′), t <

t′, and acquires more details, converging to a stable shape that
captures the physical structure of the surroundings.

Mathematically, T can thus be viewed as a filtered complex,
with the filtration defined by the times of the simplexes’
first appearance, tσ (Dabaghian et al., 2012). Methods of the
Persistent Homology theory allow describing the dynamics of the
topological loops in T , e.g., evaluating the minimal time Tmin

after which the topological structure of T matches the topology
of the environment, bn(T ) = bn(E) (De Silva and Ghrist, 2007;
Curto and Itskov, 2008; Dabaghian et al., 2012). Biologically,
this value provides a low-bound theoretical estimate for the time
required to learn a novel topological map from place cell outputs
(Figure 1A) (Dabaghian et al., 2012; Arai et al., 2014; Babichev
et al., 2016a,b, 2018; Basso et al., 2016; Hoffman et al., 2016;
Dabaghian, 2019).

2.6. Facing the Biological Realm
The physiological viability of these algebraic-topological
constructions depends on the parameters of neuronal firing
activity: just as there must be a sufficient number of place fields
covering a space in order to produce a topologically correct
nerve complex N , certain conditions must be met by the
place cell spiking profiles in order to produce an operational
coactivity complex T . For example, there should be enough
cofiring of place cells with sufficient spatial specificity of
spiking; the encoded relationships should not be washed out
by noise; the model should make realistic predictions, e.g.,
produce viable learning periods in different environments,
etc. Given that biological systems are highly variable (Fenton
and Muller, 1998), these criteria may or may not be met

by the physiological place cell ensembles, or vice versa,
the model may single out a certain “operational” scope of
parameters that may not match the biological range. In
the following, we discuss this and other correspondences
between the topological model and hippocampal physiology.
We demonstrate that, first, the model can incorporate a vast
scope of physiologically relevant characteristics of spike times,
spiking statistics, their modulations by the “brain waves,”
efficacies of synaptic connections, architectures of the neuronal
networks, etc., all of which correlate with dynamics of spatial
learning. Second, the model allows converting this information
consistently into coherent, biologically viable descriptions of
a wide scope of neurophysiological phenomena. It becomes
possible to systematically deduce functional properties of the
system following not just the only empirical observations
or experimental line of reasoning that currently dominate
neurophysiological literature, but also the models’ own,
intrinsic logic.

2.7. Parameterization
To cope with the complexity of the cognitive map’s construction,
the model is built hierarchically: its main components implement
most prominent physiological phenomena, and more subtle
effects are incorporated as modifications of the skeletal
structures. In the following, we will proceed in steps, by selecting
a specific phenomenon, embedding it into the model using
a minimal set of tools, outlining the results and discussing
biological implications.

To simplify the approach, we will describe neuronal spiking
in terms of Poisson firing rates, which, in case of the place cells,
can be approximated by Gaussian functions of rat’s coordinates
with the amplitude fi (the ith place cell’s maximal firing rate), and
the width si (the size of the corresponding place field) (Barbieri
et al., 2004; Dabaghian et al., 2012). For an ensemble of N place
cells, the N values si and fi can be viewed as instantiations of two
random variables drawn from their respective distributions with
certain modes (s and f correspondingly) and standard deviations,
σs and σf . To avoid overly broad or overly narrow distributions
we impose additional conditions σs = bs and σf = af with the
coefficients a and b selected so match the experimental statistics
(Brunel et al., 2004; Barbour et al., 2007; Buzsáki and Mizuseki,
2014). As a result, each specific place cell ensemble can be indexed
by a triplet of parameters, (s, f ,N).

Second block of parameters characterizes animal’s behavior,
e.g., speeds and trajectory shapes, which are computationally
intractable. We assume a practical approach to this problem
and simulate non-preferential exploratory spatial behavior, with
no artificial moving patterns or favoring of one segment of the
environment over another, with typical experimentally observed
speed ranges. Such approach allows reproducing a natural flow of
spiking data and estimating how long it takes to integrate it into
a topological map. The statistical alternatives for the model are
produced by randomizing place field maps over a fixed trajectory
rather than by sampling over different trajectories, which is
practically much more efficient.

It should be emphasized however, that these and all the
subsequent simplifications should not be viewed as limitations
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FIGURE 1 | Topological description of spatial learning. (A) As the rat begins to explore an environment, the simplicial complex T (t) contains many 0D cycles that mark

contractible spatial domains represented by small groups of cofiring place cells. Additionally, there exists many 1D cycles that represent transient holes in T (t). As

exploration continues, spurious cycles disappear, leaving behind only a few persisting ones, which express stable topological information. (B) Each point in the

parameters space with coordinates (s, f ,N) represents a particular place cell ensemble. The colors of the dots represent the mean learning time Tmin; the larger the

dot, the higher the rate of capturing the correct topological information for the corresponding (s, f ,N). The ensembles that can produce a correct map occupy a

particular domain of the parametric space—the Learning Region, L, where learning is fastest and most accurate; near the boundary, map forms over times and

exhibits higher error rates. Outside of L learning fails. Importantly, the parameter values that correspond to L happen to parallel experimentally derived values, which

indicates a biological relevance of the model. The smaller L on the left panel corresponds to a 2D arena with a hole, about 1.5× 1.5 m in size, and the larger L on the

right corresponds to a quasi-linear environment (top right corner of each panel). The more complex the environment, the more tuned the neural ensembles have to be

to learn the space.

of the approach but only as approximations used for simplifying
specific computations. The model would also work with more
detailed information, e.g., using more precisely estimated
spike times or behavioral parameters, physiologically recorded
or generated via accurate network models, detailed synaptic
transmission mechanisms, etc.

3. OVERVIEW OF THE RESULTS

3.1. The Learning Region
For a particular set of values (s, f ,N), a trajectory traversing
a place field map ME produces a certain time-dependent
coactivity complex T (t). Onemay inquire whether, and for which
ensembles, such a complex acquires the correct topological shape
and how long this process may take. As it turns out, the coactivity
complexes produced by generic place field maps can assume
correct topological shapes, bk(T ) = bk(E), k ≥ 0, in a biologically
feasible period—if the spiking parameters fall into a specific
domain in the parameter space that we refer to as the learning
region, L (Figure 1B). It is important to note that although the
exact structure of T (t) depends profusely on the details of the
map ME (Babichev and Dabaghian , 2018), most large-scale
characteristics of T (t), e.g., its Betti numbers, are largely ME -
independent. This leads to the model’s first predictive outcome,
namely to the observation that the mean spiking parameters
(s, f ,N) may be used to identify a particular hippocampal “state”
with a certain learning capacity,

Tmin = Tmin(s, f ,N). (1)

The second key observation is that the placement of the learning
region in the parameter space matches the biological range of
spiking characteristics derived from electrophysiologically

recorded data (Dabaghian et al., 2012). A priori, this
correspondence is not guaranteed: the region L that emerges
from the “homological” computations could have appeared
anywhere in the parameter space. However, the fact that the
“operational” domain of the topological model appears to match
the biological domain, suggests that the topological approach
captures actual aspects of the neurophysiological computations
taking place in the hippocampal network. In particular, it
indicates that the physiological neurons can indeed encode a
topological map of space in a biologically feasible time. On the
other hand, boundedness of L also shows that spatial selectivity
of firing does not, by itself, guarantee a reliable mapping of the
environment, despite a widespread belief among neuroscientists
to the contrary.

Third, the size and the shape of L reflect the scope of
the biological variability that the hippocampus can afford in
a given environment: the larger the learning region L, the
more stable the map (Figure 1B). Indeed, the model implies
that the hippocampus can change its operating state inside L

without compromising the integrity of the topological map:
if one parameter begins to move outside the learning region,
then a successful spatial learning can still occur, provided that
compensatory changes of other parameters can keep the neuronal
ensemble inside L. This observation allows reasoning about
the effects of certain diseases [e.g., Alzheimer’s Cacucci et al.,
2008; Cohen et al., 2013] or environmental toxins [e.g., ethanol
Matthews et al., 1996; White and Best, 2000, cannabinoids Robbe
and Buzsáki, 2009] that produce more diffuse place fields, lower
place cell firing rates, smaller numbers of active cells and thus
may disrupt spatial learning by shifting system’s parameters
beyond the perimeter of the learning region.

Fourth, the structure of the learning region may also vary
with the geometry of the environment, the laboriousness of
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navigation: the greater the task’s complexity, the narrower the
range that can sustain learning—as suggested by experimental
studies (Nithianantharajah and Hannan, 2006; Fenton et al.,
2008; Eckert and Abraham, 2010). Thus, despite the topological
nature of the information processing, the place cells are not
“agnostic” about the scale and the shape of the navigated space. In
fact, it can be shown that maps of large spaces can be assembled
from the maps of their parts, e.g., if a domain E is split into two
subdomains E1 and E2 that meet but do not overlap, then one
can compute the individual learning times Tmin(E1) and Tmin(E2)
using only the spikes fired within each subdomain. The sum of
these learning times is similar to total time spent by rat in the
entire arena, Tmin(E) ≈ Tmin(E1) + Tmin(E2), with statistically
insignificant differences (Arai et al., 2014). Mathematically, this
result may be viewed as an adaptation of the Mayer-Vietoris
theorem that states that if a space E is split into pieces E1

and E2 that overlap over a domain with vanishing homologies,
Hq(E1 ∩ E2) = 0, then the homologies of the whole space are
given by the direct sum of the homologies of the components,
Hq(E) = Hq(E1) ⊕ Hq(E2) (Hatcher, 2002). In case of the
coactivity complexes, simulations demonstrate that persistent
loops that represent topological obstacles in two complementary
domains combine into the set of the persistent loops that
represent the whole space, providing a novel perspective on the
learning process.

These outcomes of the model correspond well with our
subjective learning experiences: the complexity of the task and
the size of the navigated environment influence learning time;
difficult tasks are accomplished at or just beyond the limits of our
capacity; disease or intoxication can reveal limits in our spatial
cognition that would normally be compensated for, and so forth.

3.2. Coactivity Window
The results discussed above are based on topological analyses
of spiking data produced by large populations of coactive place
cells; but what defines neuronal coactivity in the first place?
At a phenomenological level, an instance of coactivity may be
characterized by the length of the period allocated for detecting
the spikes fired by two ormore cells. Experimental studies suggest
that the “physiological” width w of the coactivity window ranges
between tens to hundreds of milliseconds, with the standard
estimate w ∼ 200 ms (Ang et al., 2005; Huhn et al., 2005; Maurer
et al., 2006; Mizuseki et al., 2009). The topological model allows
addressing this question theoretically: one can ask, e.g., what
range of window sizes could allow constructing topological maps
and would these values match the biological range of coactivity
periods? One can also inquire, given a particular width w,
whether the dynamics of T (t) depends on a specific arrangement
of the coactivity intervals along the time axis and how sensitive
the results may be with respect to the windows’ variations from
one instance of coactivity to another. In biological terms: can the
noise and/or variability of coactivity readouts affect the animal’s
learning capacity?

As it turns out, the answer to the latter two questions
is negative: the statistics of place cell coactivity and hence
the structure of the coactivity complex do not exhibit strong
dependence on either the coactivity windows’ random temporal

FIGURE 2 | Dependence of learning time on window width, with (blue line)

and without (black line) θ-modulation of spiking activity. The radius of the

circles indicates the percentage of times when topological learning is

successful. In both cases, the coactivity complexes with physically correct

topological shapes start to form at about wo = 0.2 θ-periods, when the

learning time is long (hours) and sensitive to the variations of w, and fail at

w ∼ 4.5 θ-periods, when learning becomes unreliable. At ws ∼ 1.5 θ-periods

the dependence Tmin(w) plateaus, marking the domain of stable w, which

continues to ws ∼ 3 θ-periods. As w grows further, the success rate

diminishes, and for ws > 5.5 θ-periods topological learning fails. Here s = 23

cm, f = 28 Hz, and N = 350 cells.

shifts or on the window sizes’ “jitter” (both for up to 50% of
the mean w). On the one hand, this justifies using a single
parameter w for studying the dependence of the coactivity
complex’ structure on the window width. On the other hand, it
is clear that learning dynamics should depend on the systematic
changes of w: if the coactivity window is too narrow, then the
spike trains produced by the place cells will often “miss” one
another, so that the map will either fail or take a long time to
emerge. However, if w is too wide, then the place cells with
disconnected place fields will contribute spurious links that may
compromise the map’s structure.

Simulations show that indeed, an accurate topological map
emerges within a well-defined range of ws, wo ≈ 25 ≤

w ≤ wc ≈ 1, 250 ms, beyond which the maps have vanishing
convergence rates (i.e., maps rarely or never produces the correct
Betti numbers). In-between, the learning time follows a power
law dependence, Tmin(w) ∼ w−α , with α ≈ 1.2 starting at high
values [Tmin(wo) ≈ 5 h] that rapidly decrease with growing w
(Figure 2). The “operational” range of ws is even smaller since
the biological dependence Tmin(w) should be not only finite, but
also stable, i.e., it should not be hypersensitive to variations of
w or exhibit low convergence rates. In the model, such a range
of ws lays approximately between 125 and 250 ms (Figure 2),
which matches the domain implicated in experimental studies.
Thus, the model once again allows deriving the physiologically
observed values—in this case the operational widths of the
coactivity windows—from purely theoretical considerations.

3.3. The Brain Waves
The temporal organization of the spike trains is strongly
influenced by the oscillating extracellular electrical fields—the
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brain waves, that control the temporal architecture of the spiking
activity and the parcellation of the information flow in the brain
(Buzsáki and Draguhn, 2004). In particular, the θ-wave (4–
12 Hz) and the γ -waves (40–80 Hz), are known to modulate
the place cells’ activity at several timescales and affect spatial
leaning (Buzsáki, 2002; Hasselmo et al., 2002; Colgin and Moser,
2010). However, it remains unclear at what level, and through
what mechanisms, do these waves exert their influence. Most
theoretical analyses address the effect of θ- and γ -rhythms on
individual cells’ spiking (Lisman and Idiart, 1995; Jensen and
Lisman, 2000; Hasselmo et al., 2002). In contrast, the topological
model allows addressing this question at the ensemble level, by
tracing how the θ- and the γ -modulation of spike trains changes
the dynamics of the corresponding coactivity complexes, e.g., the
speed of their convergence toward correct topological shape, the
statistics of topological defects exhibited during this process and
so forth. Let us discuss a few examples.

(i) θ-phase precession is a key mechanism by which the θ-
wave controls place cell’s spiking: as a rat moves through a
place field, the corresponding place cell spikes near a certain
preferred θ-phase that progressively diminishes for each new
θ-cycle (Buzsáki, 2005; Huxter et al., 2008) (Figure 3A). As
discussed in Jensen and Lisman (1996) and Skaggs et al. (1996),
this phenomenon helps to recapitulate the temporal sequence of
the rat’s positions in space during each θ-period and it is therefore
widely believed to enhance learning (Buzsáki, 2002, 2005).

Simulations show that indeed, θ-precession significantly
enlarges the learning region, making otherwise poorly
performing ensembles much more capable of learning. Without
θ-precession, the learning region L is small and sparse, and
vice versa, certain place cell ensembles that in absence of θ lay
beyond the learning region, become functional with the addition
of θ-precession (Figure 3B). Moreover, θ-precession increases
the probability of the correct outcome for ensembles that
occasionally fail to form an accurate map, which suggests that
θ-precession may not just correlate with, but actually enforce
spatial learning (Arai et al., 2014).

In terms of the coactivity complex’ structure, θ-enhancement
of learning is manifested through shortened durations of the
spurious 1D cycles, while initially increasing their number. In
other words, θ-modulation suppresses spurious defects in the
cognitive map at the price of creating more transient errors at
the initial stages of the navigation. Curiously, simulations also
show that learning times are relatively insensitive to the details
of the θ-wave structure: the presence of a spike-modulating θ-
rhythm by itself is more important than a specific wave shape
(Arai et al., 2014).

As for the interplay with the coactivity parameters,
the stabilization of the Tmin(w) dependence is achieved at
approximately the same range of ws as without the θ-precession,
at w ∼ 1 − 2 θ-cycles (Arai et al., 2014) (Figure 2). Such
recurrent matches between the preferred coactivity timescale
and the θ-timescale suggest that the interplay between neuronal
spiking and the parameters of animal’s behavior (e.g., speed)
required for optimal processing of topological information
may actually define the temporal domain of neuronal
synchronization in the rat’s hippocampal network. Thus,

θ-modulated coactivity complexes provide a self-consistent
description of the hippocampal network’s function at the θ-
timescale, predicting inter alia an optimal integration window
for reading out the information and the temporal domain
of synchronization.

(ii) γ -modulation of spiking. As w shrinks beyond the
range predicted for the independently θ-precessing place cells
(w < wo), spatial learning fails. Interestingly, this happens
precisely at the timescale where complementary mechanisms of
spike synchronization, driven by the second key component of
the hippocampal brain waves—the γ -oscillations—are taking
over (Colgin et al., 2009; Buzsáki and Wang, 2012). This raises
question about whether an additional γ -synchronization
of spiking could improve the predicted properties of
the cognitive map, i.e., produce topologically correct
coactivity complexes.

Physiologically, γ -wave represents fast oscillations of the
inhibitory post-synaptic potentials. As its amplitude Aγ (t) drops
at a certain location, the surrounding cells with high membrane
potential spike (Lisman, 2005; Jia and Kohn, 2011; Nikoli et
al., 2013). As a result, each γ -trough defines the preferred θ-
phase of several cells, i.e., marks an ignition of a particular
place cell combination, represented by a coactivity simplex.
Computationally, coupling spike times with the γ -wave can be
achieved by modulating neuronal firing rates with a Boltzmann
factor e−Aγ (t)/τi . The parameter τi can be interpreted as an
effective “temperature” that controls the temporal spread of
spikes around the ith γ -trough: for large mean τ = 〈τi〉, the
spikes are “hot,” i.e., spread diffusely near the γ -troughs and for
small τ they “freeze” at them. In particular, the case in which the
spike trains are uncorrelated with the γ -troughs corresponds to
the limiting case of an “infinitely hot” hippocampus (τ = ∞,
e.g., the pure θ-modulated cells discussed above). Meanwhile,
the “physiological” effective temperature that describes the
characteristic huddling of spikes within a γ -period observed in
the experiments (Colgin et al., 2009; Colgin and Moser, 2010) is
comparable to the mean γ -amplitude, τ ≈ Aγ .

The net effect of the γ -modulation on the coactivity
complexes is as follows: as the effective temperature drops and
the temporal spread of the spikes near the γ -troughs shrinks, the
coactivity complexes produce fewer, faster-contracting spurious
loops. In particular, at the “physiological” effective temperatures,
γ -synchronized cognitive map can robustly capture the topology
of the environment by integrating place cell coactivity at the γ -
timescale, i.e., yield finite learning times at w < wos, which
provides a direct demonstration of the importance of the γ -
synchronization at the systemic level.

This result may shed light on the well-known correlation
between successful learning and retrieval with the increase
of the γ -amplitude in raised attention states (Moretti et al.,
2009; Vugt et al., 2010; Lundqvist et al., 2011; Trimper et al.,
2014). In particular, it helps understanding why suppression of
the γ -waves induced, e.g., by psychoactive drugs (Whittington
et al., 2000a,b), such as cocaine (Dilgen et al., 2013; McCracken
and Grace, 2013), or arising due to neurodegeneration or
aging (Vreugdenhil and Toescu, 2005; Lu et al., 2011), usually
correlates with learning impairments—according to the model,
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FIGURE 3 | Brain waves enhances learning. (A) θ-precession and γ -synchronization modulate place cell spiking activity: Spike times precess with the θ-rhythm (≈ 8

Hz), schematically shown by the red wave: as the rat traverses a place field, the corresponding place cell discharges at a progressively earlier phase in each new

θ-cycle. The preferred θ-phases correspond to γ -cycles (≈ 60 Hz). The blue wave shows the net θ + γ amplitude. Boxed image: the spikes, shown by tickmarks

colored according to the place fields traversed by the animal’s trajectory, cluster over the γ -troughs, yielding dynamical cell assemblies. The spike time probabilities

are modulated by a Boltzmann factor e−Aγ (t)/τ , where Aγ the amplitude of a trough and τ is an “effective temperature.” (B) Learning regions with θ-precession (left)

and without it (right). In the latter case, the size and the density of L diminishes, indicating that θ-oscillations enhance place cells’ ability of to encode spatial maps,

making them more resilient in the face of the spiking rate or population size changes. Computations are made for a 1× 1 m environment shown in the top left corner.

all these phenomena suppress map formation—or retrieval—at
the γ timescale. On the constructive side, the model suggests
a new characteristics of the γ -synchronized spiking activity—
the effective γ -temperature of spiking—that may be studied
empirically and explained via neuronal mechanisms.

3.4. Ramifications of Coactivity Complexes
The predictions derived from the constructions discussed above
are not universal. For example, a direct application of the model
to the case of the bats navigating 3D caves (Ulanovsky and Moss,
2007; Yartsev and Ulanovsky, 2013) often produces dysfunctional
coactivity complexes, with hundreds of persistent spurious
loops—even for the experimentally observed parameters of
spiking activity (Hoffman et al., 2016). On the one hand, this
failure can be explained by the relatively high speeds of the
bat’s movements (over 2 m/s), which allows producing spurious
coactivities between place cells with non-overlapping place fields
(Hoffman et al., 2016). On the other hand, it also suggests that
the very idea that place cells operate by responding to certain
spatial domains (currently dominating in the field) may be only a
simplified interpretation of their spiking mechanism, suitable for
low speeds and basic environments. The model points out that
deriving topological maps from such “passive responses” may, at
higher speeds, generate mismatches between the spatial pattern
of the prearranged place fields and the temporal pattern of the
corresponding place cells’ coactivities. In other words, the model
suggests that the raw pool of place cell spiking data requires
editing—a surprising conclusion because it appeals to reasoning
beyond the model’s original setup. In effect, it suggests that the
hippocampal network should be wired to highlight some place
cell coactivities and suppress others, even though no explicit
references to the networks’ structure were made in the original
Alexandrov-Čech construction.

Curiously, this line of arguments addresses to a well-
known neurophysiological phenomenon, namely the fact
that place cells tend to form operative units known as
cell assemblies—functionally interconnected groups of neurons
that drive their respective “readout” neurons in the downstream
networks (Harris et al., 2003; Harris, 2005; Jackson and Redish,
2007; O’Neill et al. , 2008; Buzsaki, 2010). The spiking response
of the latter actualizes connectivity relationships between the
regions encoded by the individual place cells: if a specific instance
of place cell coactivity does not elicit a response of a readout
neuron, then the corresponding connectivity information does
not contribute to the hippocampal map (Buzsaki, 2010; Babichev
et al., 2016b). A cell assembly network of a specific architecture
can thus control processing of the information supplied by the
place cell spiking activity and the overall connectivity structure
of the cognitive maps (Figure 4A).

3.4.1. Clique Coactivity Complexes
A simple model a place cell assembly network can be built by
constructing a coactivity graph G, whose vertexes vi correspond
to place cells ci and the links, ςi0i1 = [vi0 , vi1 ] represent
the connections (functional or physiological) between pairs of
coactive cells (Burgess and O’Keefe, 1996; Muller et al., 1996).
The place cell assemblies then correspond to fully interconnected
subgraphs of G, i.e., to its maximal cliques ς = [ci0 , ci1 , . . . , cin ].
As a combinatorial objects, cliques are identical to the simplexes
span by the same sets of vertexes; hence the collection of G-
cliques produces a complex (Jonsson, 2008) that may serve as a
schematic representation of either the cell assembly network or
the cognitive map encoded by it (Babichev et al., 2016a).

Simulations show that such complexes, denoted below as Tς ,
are structurally very similar to the original coactivity complexes
derived from the higher-order place cell coactivities, which we
will denote as Tσ . However functionally, Tς s often performmuch
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FIGURE 4 | Synaptic efficacies and cell assembly complexes. (A) Cell assemblies are functionally interconnected network of place cells (black dots) are modeled as

cliques of the coactivity graph G. Spikes from kth pair of coactive place cells in an assembly σ are transmitted to a readout neuron (blue pentagons) with probability

pσ ,k < 1 (an ignited cell assembly is shown in red). The net structure of the cell assembly network is represented by the corresponding cell assembly complex TCA,

which captures the topology of underlying environment E . (B) The number of coactivity links shrinks with the diminishing spike transmission probability at a power rate

(black line), whereas the number of spurious topological loops in TCA proliferates exponentially. (C) As synapses weaken, the learning time Tmin grows at a power rate.

The size of the data points represents the percentage of the outcomes with the correct Betti numbers [b0,1(TCA) = b0,1(E ) = 1]. Computations are performed using an

ensemble of N = 400 neurons with a mean firing rate of f = 28 Hz and mean place field size 30 cm.

better than Tσ s, e.g., they exhibit a much smaller number of
shorter-living spurious loops, more robust learning times, etc.
(Babichev et al., 2016a; Basso et al., 2016; Hoffman et al., 2016).
The explanation for this effect is simple: the lowest order, pairwise
place cell coactivities are captured easier and more reliably than
the higher-order coactivity events (Katz et al., 2007; Brette, 2012).
An additional advantage is offered by a structural flexibility of
the clique coactivity complexes, since it is possible to assemble its
individual cliques ς ∈ Tς by accumulating low order coactivities
over time, rather than by detecting higher-order coactivity events.
For example, in order to identify a third-order coactivity clique,
ς = [ci0 , ci1 , ci2 ], one can first detect the coactive pair [ci0 , ci1 ],
then [ci1 , ci2 ] and then [ci0 , ci2 ], over an extended integration
window ̟ , whereas in order to produce a coactivity simplex
σ = [ci0 , ci1 , ci2 ], all three cells must become active within a single
coactivity window w.

From the physiological perspective, the clique construction
can be used to model a wide scope of physiological phenomena,
e.g., for testing whether the readout neurons may operate as
“coincidence detectors” that respond to nearly simultaneous
activity of the pre-synaptic cells [for short integration windows
̟ ∼ w Katz et al., 2007; Brette, 2012] or as “integrators”
of the spiking inputs [for ̟ ≫ w König et al., 1996; Magee,
2000; London and Häusser, 2005; Spruston, 2008; Ratté et al.,
2015], along with the intermediate and/or mixed cases. The
original approach based on the Alexandrov-Čech’s construction
corroborates with the first scenario: indeed, the nerve complexN
is derived from the spatial overlaps between the regions, which
mark the domains of nearly simultaneous place cell coactivity.
The architecture of the clique coactivity complex suggests an
alternative approach that significantly broadens the models’
capacity to represent synaptic computations.

Simulations show that, in fact, the connections within most
cliques of G activate nearly simultaneously, i.e., most simplexes

of Tσ are also present in Tς . Nevertheless, there exists a small
population of cliques that are never observed as simultaneous
coactivity events and require assembling over extended periods
(Hoffman et al., 2016). As a result, clique coactivity complexes Tς

are typically larger and produce much fewer spurious topological
loops that rapidly disappear with learning. In particular, such
complexes produce correct topological maps of 3D spaces for
the experimentally observed parameters of the spiking activity
(Hoffman et al., 2016), suggesting that the readout neurons in
bats’ (para)hippocampal areas should function as integrators
of synaptic inputs (with estimated spike integration period of
about 4 min), rather than detectors of place cells’ coactivity—a
prediction that may potentially be verified experimentally.

Another curious difference between the rats’ and the bats’
cognitive map construction mechanism is that less than 4%
of the bat’s place cells exhibit significant θ-modulated firing
(Yartsev and Ulanovsky, 2013), which implies that θ-precession
in these animals may not play the same role as in rats. Indeed,
simulating bat’s movements with and without θ-precession
reveals that in the θ-off case, the ensembles of place cells
acquire correct maps faster than in the θ-on cases, producing
fewer topological loops both in the simplicial and in the clique
coactivity complexes (Hoffman et al., 2016). To explain these
results, one can consider the effect of θ-precession from two
perspectives: on the one hand, it synchronizes place cells and
hence increases their coactivity rate, which may help learning
(Buzsáki, 2002; Harris et al., 2002; Lee et al., 2004; Geisler et
al., 2010; Jezek et al., 2011). On the other hand, it can be
viewed as a constraint that reduces the probability of the cells’
coactivity and hence decimates the pool of coactivity events
(Skaggs et al., 1996). In relatively slow moving rats, when the
coactivity events are reliably captured, the first effect dominates,
contributing a steady influx of grouped spikes to downstream
neurons. In rapidly moving bats however, when the network
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struggles to capture the coactivities, the constraint imposed by
phase precession acts more as an impediment and slows down
spatial learning process.

3.5. Cell Assembly Complex
Question arises, whether the coactivity complexes may be
implemented, in some capacity, in physiological networks or vice
versa, whether it is possible to construct complexes that capture
the organization of the cell assembly networks. Simulations
show that the original set of coactive place cell combinations
is very large: the numbers of d-dimensional simplexes in Tς ,

Nd, scale proportionally to the binomial coefficients Cd+1
N . More

specifically, it can be shown that the ratios ηd = Nd/C
d+1
N depend

primarily on themean place field sizes and the firing rates and not
on the number of cells within the ensemble, N (Arai et al., 2014).
In contrast, the number of cells that may potentially serve as
readout neurons is similar to the number of place cells N, which
implies that only a small fraction of coactive place cell groups
can form assemblies (Shepherd, 2004; Buzsaki, 2010). This raises
the question: is it possible to identify a sufficiently small but
functionally complete set of place cell combinations—putative
cell assemblies—using simple selection rules?

In model’s terms, the task of identifying a subpopulation
of coactive place cell combinations corresponds to selecting
a “cell assembly subcomplex” TCA of Tς , according to some
biologically motivated criteria. First, the total number of the
maximal simplexes in TCA should be comparable to the number
of its vertexes (i.e., of active cells), Nmax(TCA) ≈ N(TCA),
but the latter should not differ significantly from the original
number of place cells, N(TCA) ≈ N(Tς ). Second, only a few cell
assemblies (selected cliques) should be active at a given location,
to avoid redundancy of the place cell code. Conversely, the
periods during which all place cell assemblies are inactive should
be short, so that the rat’s movements should not go unnoticed
by the hippocampal network. Third, the larger is the number
of cells shared by consecutively igniting cell assemblies (i.e., by
the adjacent simplexes in a simplicial path), the more contiguous
is the representation of the rat’s moves. Hence the contiguity
between the simplexes in TCA should not decrease compared to
Tς . Lastly, TCA should correctly capture the topological shape of
the environment (Babichev et al., 2016a).

As it turns out, it is possible to carry out the required
construction by selecting the most prominent combinations of
coactive place cells—the ones that appear most frequently. This
selection principle is motivated by theHebbian “fire together wire
together” neuronal plasticity mechanisms: frequently appearing
combinations have a higher chance of being wired into the
network (Neves et al., 2008). Specifically, one can construct
the desired clique complexes by identifying the connections the
coactivity graphs G(ξ ) that activate at a rate exceeding a certain
threshold ξ . Alternatively, one can select, for every cell ci, its n0
neighbor-cells that are most frequently coactive with ci, which
yields another family of coactivity graphs, G(n0). Computations
show that the first family, G(ξ ), exhibits certain random graph
properties while the second family, G(n0), demonstrates scale-
free properties (Barabási and Albert, 1999; Albert and Barabási,

2002), characteristic of the hippocampal network (Bonifazi et
al., 2009; Li et al., 2010). However, both families of “restricted”
coactivity graphs allow constructing operational cognitive map
models, for a viable set of ξ s and n0s.

As expected, the size and the dimensionality of the
corresponding clique complexes, Tς (ξ ) and Tς (n0), decrease with
the growing threshold ξ or diminishing n0. In addition, their
maximal simplexes become more contiguous and their number,
Nmax, remains close to the number of cells. Lastly, the topological
behavior of both Tς (ξ ) and Tς (n0) is also regular: with minor
rectification algorithms that do not change significantly the
complex’s structure or alter the appearance rate of simplexes,
correct topological shapes can be attained as fast and as reliably
as with the entire set of the place cell coactivities, without
compromising the place cell coverage of the environment or
fragmenting the map (Babichev et al., 2016a). Thus, the generic
biological requirements listed above are met and we may
conclude that the selected “critical mass” of coactive place cell
combinations can produce viable cell assembly complexes TCA(ξ )
and TCA(n0) (Babichev et al., 2016a).

3.6. Synaptic Parameters
The physiologically implementable cell assembly complexes TCA
set the stage for further developments of the topological model.
For example, the simplexes of TCA can be rigged with parameters
describing transferring, detecting and interpreting neuronal
(co)activity in the corresponding cell assemblies, allowing us to
account for the effects of the hippocampal network’s synaptic
architecture and providing a basic description of the synaptic
computations in the cell assemblies.

In a phenomenological approach, synaptic connections can be
characterized simply by the probabilities of transmitting spikes
from a place cell to a readout neurons’ membranes and by
the probabilities that the latter will spike upon collecting their
inputs. If the cell assemblies are modeled as cliques of the
coactivity graph, then the key role is played by the probability
of transmitting the coactivity from the pairs of coactive place
cells to the corresponding readout neurons’ and response
probabilities. In principle, these probabilities can be evaluated
using detailed neuronal and synaptic models; however, in a
simpler phenomenological approach, they may be regarded as
random variables drawn from stationary, unimodal distributions
with the modes p∗ (transmission) and q∗ (response) and the
variances 1p and 1q. The stationarity here implies that we
disregard synaptic plasticity processes (Brunel et al., 2004;
Barbour et al., 2007; Buzsáki and Mizuseki, 2014).

Under such assumptions, it is possible to study how the large
scale, systemic characteristics of the spatial memory map depend
on the synaptic strengths, at what point spatial learning may
fail, and so forth. It can be shown, e.g., that if the characteristic
coactivity transmission probability is high (0.9 ≤ p∗ ≤ 1) then
its small variations do not produce strong effects on the spatial
map. On the other hand, as p∗ decreases further, the changes
accumulate and, as p∗ approaches a certain critical value pcrit ,
learning times diverge at a power rate,

Tmin ∝ (p∗ − pcrit)
−κ ,
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with κ ranging typically between 0.1 and 0.5 (Figure 4B). The
effects produced by the diminishing probability of the post-
synaptic neurons’ responses, q∗, are qualitatively similar but
weaker than the effects of lowering the spike transmission
probability p∗ (Dabaghian, 2019).

These results suggest explanations for numerous observations
of correlative links between weakening memory capacity and
deterioration of synapses, broadly discussed in neuroscience
literature (Shapiro, 2001; Selkoe, 2002; Toth et al., 2012).
According to model, weakening synapses reduce the size the
coactivity complex and degrade its topological structure. For
example, simulations demonstrate the number of connections in
the coactivity graph G near pcrit drops as N2 ∝ (p∗ − pcrit)

δ ,
δ ∼ 1, whereas the number of longer-lasting 1D spurious loops
in the corresponding coactivity complex grows exponentially,
log(b1) ∝ (pcrit − p∗) (Figure 4C), suggesting a phase transition
from a regular to an irregular state (Donato et al., 2016). In
physiological terms, this implies that synaptic depletion reduces
the number of detectable coactivities while generating defects
in the cognitive map, which results in a rapid increase of the
learning time.

Moreover, weakening synapses reduce the learning region
down to its compete disappearance at p∗ = pcrit , which suggests
that spatial learning may fail not only because the parameters
of neuronal firing are pushed beyond a certain fixed “working
range,” but also because that range itself may shrink or cease to
exist. In particular, the fact that the learning region disappears
if the transmission probability drops below the critical value
implies that deterioration of memory capacity produced by the
synaptic failure cannot be compensated by increasing the place
field’s firing rates or by recruiting a larger population of active
neurons—for more details see Dabaghian (2019).

3.7. Dynamical Cell Assemblies
Physiologically, cell assemblies are dynamic structures: they may
form among the cells that demonstrate repeated coactivity and
disband as a result of deterioration of synaptic connections,
caused by reduction or cessation of spiking, then reappear during
a subsequent surge of coactivity, disband again and so forth
(Harris et al., 2003; Buzsaki, 2010). In the model, the formation
and disbanding of the cell assemblies is represented by the
appearances and disappearances of the corresponding simplexes,
so that the net dynamics of the cell assembly network and the
evolution of the resulting cognitive map is represented by a
“flickering” cell assembly complex, denoted as F(t). Unlike its
“perennial” counterpart T (t), which can only grow and stabilize
with time (Figures 5A,B), the flickering complex F(t) may
inflate, shrink, fragment into pieces that may fuse back together,
produce transient holes, fractures, gaps, and other dynamic
“topological defects” (Figures 5C,D).

One of the key questions that can be addressed by the
model is the following: experimentally, cell assemblies’ lifetimes
range between minutes (Goldman-Rakic, 1995; Billeh et al.,
2014; Hiratani and Fukai, 2014) and hundreds of milliseconds
(Whittington et al., 2000a,b; Bi and Poo, 2001; Bennett et al.,
2018), whereas cognitive representations of environments can
last for days and months (Clayton et al., 2003; Brown et al.,
2007; Meck et al., 2013). How can a rapidly rewiring network

sustain stable representations of the world? In model’s terms,
can the large-scale topological properties of F(t) be stable,
despite rapid recycling of its simplexes? Computationally, this
question can be addressed using Zigzag Persistent Homology
theory (Edelsbrunner et al., 2002; Carlsson et al., 2009; Carlsson
and Silva, 2010).

(i) Decaying flickering coactivity complexes. Flickering of the
coactivity complexes and their topological dynamics can be
simulated in many ways (see Battiston et al., 2020 for a broad
review). A simple model can be based on the dynamics of links of
the coactivity graph G as follows.

• Vertexes ςi of G appear at the moment of the
corresponding place cells’ first activation and thereupon
remain stable, as place cells do in learned environments
(Thompson and Best, 1990).

• A link ςij between vertexes ςi and ςj appears with

probability p+ij = 1 at the moment when cells ci
and cj become coactive and disappears with probability

p−ij (t) =∼ e−t/τij , where time t is counted from the

moment of ςij’s last activation and τij defines its proper
decay time. Below we consider a simple case in which all
connections decay at the same rate, τij = τ ,

p−ij (t) =∼ e−t/τ , (2)

so that the decay dynamics of the flickering coactivity
graph depends on a single parameter τ .

• The behavior of the higher-order cliques and hence of the
flickering complex Fτ are also defined by the link decay
period τ . Note that pairs of place cells may coactivate
before decaying, i.e., links in Gτ can rejuvenate; hence
cliques of orders m ≥ 1 may acquire effective lifetimes

τ
(m)
e > τ .

As mentioned in §1 of this section, details of the coactivity
complex’ dynamics depend on the sequence in which the rat
traverses place fields in a map ME . For a given map ME ,
a trajectory γ (t) and fixed physiological parameters (firing
rates, place field sizes, etc.), the Betti numbers bk(Fτ (t))
depend primarily on the links’ decay time τ (Babichev and
Dabaghian, 2017a,b; Babichev et al., 2018, 2019). One would
expect that if τ is too small (e.g., if the coactivity simplexes
tend to disappear between two consecutive co-activations of
the corresponding cells), then the flickering complex should
rapidly deteriorate without attaining an adequate topological
shape. If τ is too large, then the effect of the decaying
connections should be insignificant, i.e., the flickering complex
Fτ (t) should follow the dynamics of its “perennial” counterpart
T (t) ≡ F∞(t), constructed for the same spiking parameters. In
particular, if the place cells’ coactivity complex T (t) assumes the
correct topological shape in a biologically viable time Tmin(T ),
then a similar behavior should be expected from its slowly
decomposing counterpart Fτ (t). For intermediate values of τ ,
the topological dynamics of Fτ (t) may exhibit a rich variety
of behaviors.

Simulations show that a characteristic interval between
successive activations of links in the environment shown on
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FIGURE 5 | Perennial and flickering coactivity complexes. (A) In absence of decay, the coactivity complex T steadily grows. At first, it contains many pieces riddled

transient holes, but then, as the place cells’ spiking information accumulates, there emerges just one stable piece and only one hole survives (shown by red chain of

simplexes)—the one that corresponds to non-contractible simplicial path encircling a hole in the environment E (Figures 3B, 4A). (B) The timelines of 0D (top) and 1D

(bottom) topological loops in T , computed using Persistent Homology theory methods, show that the topological shape of the coactivity complex stabilizes. One

persistent loop in each dimension remaining after the minimal learning time Tmin (vertical dashed line) indicate the stable topological barcode of T . (C) If decay is

allowed, then the coactivity simplexes may not only appear but also disappear, yielding a “flickering” coactivity complex F . Unlike the perennial complexes T ,

flickering complexes F may never stabilize, i.e., transient topological defects, described by Zigzag Persistent Homology theory (D) may persist indefinitely.

Figures 5A,C is about 1t ≈ 30 s. If the proper decay times are
not too large (2.51t . τ . 4.51t), then the time intervals
between consecutive births and deaths of a link ς distribute
bimodally: the relatively short lifetimes distribute exponentially,

with about twice longer effective lifetimes τ
(2)
e ≈ 2τ (higher-

order simplexes decay more rapidly, e.g., τ
(3)
e ≈ τ , etc.). In

addition, there appears a pool of long-living connections that
persist throughout the entire navigation period (Figure 6A). In
other words, the flickering coactivity complex Fτ (t) acquires a
stable “core” formed by a population of “surviving simplexes,”
enveloped by a population of “rapidly fluttering” simplexes.

The resulting mix of skeletal (stable) and fluttering simplexes
rapidly grows at the onset of the navigation and begins to
saturate by the time a typical link makes an appearance, which,
incidentally, is comparable to the “perennial” learning time
Tmin(T ) (a few minutes). The characteristic size of Fτ (t) grows
to about a half of the size of F∞(t), with about 15% fluctuations
(Figure 6B). Thus, the population of simplexes in Fτ (t) is indeed
transient: although the size of Fτ (t) fluctuates slowly from one
moment of time to the next, the set of simplexes that are present
at a given moment of time t but missing at a later moment t′,
grows as a function of temporal separation |t − t′|, becoming
close to the sizes of either Fτ (t) or Fτ (t

′) in approximately one
learning period Tmin(T ) (Babichev et al., 2018, 2019).

The topological shape of Fτ (t) changes much slower: after
a brief initial stabilization period, the topological barcode
b(Fτ ) remains similar to the barcode of the navigated
environment E , exhibiting occasional topological fluctuations at
the Tmin-timescale (Figure 6C). Thus, the coactivity complex
Fτ can preserve not only its approximate size but also
its topological structure, despite the ongoing recycling of
its simplexes.

As τ grows, the effective lifetimes τ
(2)
e and τ

(3)
e , as well

as the number of simplexes actualized at a given moment
increase approximately linearly, yielding a growing “stable core”
(Figure 6). As a result, a complete suppression of topological

fluctuations in the coactivity complex is achieved at a finite
values of τ = τ∗ (Figure 7), which gives a theoretical estimate
for the rate of physiological transience that permits stable
representations of the environment E (Babichev et al., 2018). This
observation illustrates the phenomenon of emergent topological
stability in flickering complexes, which may provide insight into
how transient networks sustain lasting representations of stable
physical reality.

(ii) Finite latency flickering coactivity complexes. An alternative
model of flickering clique complexes can be built by restricting
the period over which the coactivity graph is formed to a shorter
“spike integration” time window ̟ (Theunissen and Miller,
1995; Hoffman et al., 2016; Perea, 2019). In such approach, the
coactivity simplexes that emerge within the starting ̟ -period,
̟1, will constitute a coactivity complex F(̟1); the simplexes
appearing within the next window, ̟2 will form the complex
F(̟2) and so forth. A given clique-simplex ς (as defined by
the set of its vertexes) may therefore appear through a chain
of consecutive windows, ̟1,̟2, . . . ,̟k−1, then disappear at
the kth step ̟k (i.e., ς ∈ F(̟k−1), but ς /∈ F(̟k)), then
reappear in a later window ̟l≥k, then disappear again, and so
forth. The duration of ς ’s existence between its k-th consecutive
appearance and disappearance, δtς ,k, can then be as short as the
shift between the consecutive windows 1̟ or as long as the
animal’s navigation session.

It is natural to view the individual, “instantaneous” complexes

F(̟i) as instantiations of a single “finite latency” flickering

coactivity complex, F(̟i) = F̟ (ti). As it turns out, such
complexes exhibit a number similarities with the decaying

complexes Fτ (t), e.g., for ̟ ≥ Tmin(T ) the pool of maximal

simplexes is renewed at about ̟ timescale, but the net number

of simplexes contained in F̟ (t) changes within about 5 − 10%
of its mean value (Figure 8A). Biologically, this implies that a

cell assembly network that described by F̟ (t) fully rewires in

about a ̟ period, without changing its overall size. Specifically,

for ̟ exceeding the perennial learning time Tmin(T ) and small
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FIGURE 6 | Topological dynamics of the decaying coactivity complex. (A) The histogram of the time intervals between the connections’ consecutive appearances and

disappearances: the lifetimes the rapidly “fluttering” simplexes are distributed exponentially (red line fit). The population of the “survivor” links produces a bulging tail of

the distribution (red arrow). (B) The population of 1D (blue trace) and 2D (green trace) simplexes in the decaying “flickering” complex Fτ (t), compared to the population

of 1D and 2D simplexes in the perennial complex T (t) (dashed lines). The size of Fτ (t) remains dynamic, whereas T (t) saturates in about 10 min. (C) At τ = 125 s

decay period, the mean Betti numbers b0(Fτ ) (blue) and b1(Fτ ) (green) converge to their “physical” values b0,1 = 1 as the active place cell population increases from

N = 300 to N = 750 units; the b0,1-fluctuations decrease (shrinking error bars) and the rates ξ0,1 of producing the correct Betti values grow to nearly 100%. Statistics

evaluated over a T = 25 min navigation period.

FIGURE 7 | Topological stabilization. As the decay constant τ grows from ∼ 75 to ∼ 135 s, the topological shape of Fτ (t) stabilizes. A complete suppression of

topological fluctuations is achieved for τ ≈ 2− 2.5 min, with the other system parameters (rat’s speed, place cell firing rates, place field sizes, etc.) within a

physiological range. Blue and green dots show Betti numbers b0 and b1 at select moments of time. The ξ values show the percentage of times when physically

correct topological signature was captured.

time steps 1̟ & 0.01̟ , the intervals δtς ,k, as well as their
means, tς = 〈δtς ,k〉k, are exponentially distributed, which allows
characterizing the simulated cell assemblies by a half-life, τ̟ that
typically varies within τς ≈ 3 − 20 s. As ̟ widens, the mean
lifetimes tς of the maximal simplexes grow, and vice versa, as the
memory window shrinks, simplex-flickerings intensify.

On the other hand, the large-scale shape of F̟ (t) is much
more stable than its individual simplexes, as in the case of
the “decay model” (2). The topological fluctuation reduce with
growing ̟ , and, for sufficiently long latency periods ̟ ≥

̟∗ ≈ 1.5Tmin they tend to disappear completely (Figure 8B)—
even though the simplexes’ lifetimes remain short (τ ∗̟ ≈ 15 s
for the environment illustrated on Figure 5A). For sufficiently

long latencies, ̟ & 1.2Tmin(T ), the time required to produce
physical barcode b(F̟ ) = b(E) within typical window ̟k

is similar to the perennial learning time, T̄min = 〈T
(k)
min〉k ≈

Tmin(s, f ,N), with a variance of about 20 − 40% of the mean,
which shows that topological dynamics of the simulated cognitive
maps is largely time-invariant. In plain words, this result shows
that accumulation of the topological information can start at any
point (e.g., at the onset of the navigation or after an exploratory
delay) and produce the desired stable map after about the same
period of learning. In effect, this observation justifies using
perennial coactivity complexes for estimating Tmin in Dabaghian
et al. (2012), Arai et al. (2014), Basso et al. (2016), Hoffman et al.
(2016), and Dabaghian (2019).
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FIGURE 8 | Topological dynamics in the finite latency flickering complexes. (A) At each moment, tn, the blue line shows the proportion of maximal simplexes of F̟ (tn)

that were present at the previous time tn−1, i.e., in F̟ (tn−1). The green line shows the proportion of maximal simplexes of F̟ (tn) that were present at the onset of the

navigation, i.e., in F̟ (t1). The latter population changes by about 95% in about 2 min. (B) The low-dimensional Betti numbers, b1, b2, b3, and b4 (colors shown in the

left box) as a function of time, computed using ̟ = 1.5Tmin demonstrate full topological stabilization of F̟ (t), whose shape fully matches the topological shape of the

underlying environment (right box) at all times. Here (s, f ,N) is (23, 28, 350).

Moreover, for these latencies [̟ & ̟crit ≈ 1.4Tmin(T )],

the instantaneous learning times T
(k)
min become ̟ -independent,

i.e., the finite latency model can provide a parameter-free
characterization of the time required by a network of place cell
assemblies to represent the topology of the environment and
establishes the timescale for the topological fluctuations in the
simulated cognitive map.

Note that finite latency model (ii) cannot be naívely reduced
to the decay model (i) by fixing the links’ lifetimes, i.e., by using
the decay probability

p−(t) =

{

1 if t = τ

0 if t 6= τ .
(3)

The topological structure of the “quenched-decay” coactivity
complex F

∗

τ (t) controlled by the distribution (3) exhibits more
unstable dynamics than either F̟ (t) or Fτ (t), even for the
τ -values that reliably produce physical Betti numbers for the
exponentially distributed lifetimes. As decay slows down (i.e., as
τ grows), the population of survivor links produced by (3) also
grows and the topological structure ofF∗

τ (t) eventually stabilizes;
nevertheless, robust Betti numbers appear at much higher values
of τ than with the exponentially decaying links, and the match
between them and the physical Betti numbers is much less
frequent. Thus, the statistical spread of the connections’ lifetimes
produced by the tail of the exponential distribution (2) plays an
important role in attaining the net complex’ stability, i.e., that
a certain “synaptic disorder” is required for effective learning
(Chowdhury et al., 2018).

Overall, the model suggests that although many details of
topological dynamics of flickering complexes may depend on
the simplexes’ lifetimes and other parameters, several qualitative
features, notably the emergent topological stability of F(t) are
universal, i.e., largely independent from the simplex-recycling
mechanisms. In fact, even if the functional connections between

place cells are established and pruned randomly, at a rate that
matches the statistics (2), the resulting random connectivity
graph Gr(t) produces a random clique complex Fr(t) whose Betti
numbers converge to the Betti numbers of the environment at the
same timescale as the Betti numbers ofFτ (t) orF̟ (t), exhibiting
similar pattern of the topological fluctuations. Importantly, in the
latter case, the details of these processes are controlled by the
physiological parameters, e.g., by the number of active cells and
their firing rates (see Figure 6C and Babichev et al., 2018, 2019).

3.8. Memory Spaces
In the above discussion, the coactivity complexes were used
to describe topological structure of the hippocampal spatial
memory frameworks—cognitive maps (Moser et al., 2008;
Schmidt and Redish, 2013). However, it is well-known that
hippocampus encodes not only spatial but also generic, non-
spatial memories (Wood et al., 2000; Ginther et al., 2011; Wixted
et al., 2018; Wu et al., 2020), embedding them into broader
contexts, placing them in sequence of preceding and succeeding
events (Agster et al., 2002; Fortin et al., 2002). In Eichenbaum et
al. (1999) it was suggested that the resulting integrated memory
structure may be viewed as a memory space M that subjects
can “mentally explore” or “mentally navigate” (Theves et al.,
2020). In other words, it was suggested that individual memory
episodes and the spatiotemporal relationships between them
may be viewed as “locations” or “regions” that may overlap,
contain one another or be otherwise related in a spatial manner
(Babichev and Dabaghian , 2018). In particular, the standard
spatial inferences that enable spatial cognition and behavior are
viewed as particular examples of the memory space navigations
(Johnson and Redish, 2007; Hopfield, 2010; Issa and Zhang, 2012;
Dabaghian, 2016).

From a physiological perspective, the fact that a memory
space associated with a given environment E is encoded by the
same place cell population that produces a cognitive map of E ,
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suggests that the corresponding coactivity complex TCA may be
used to represent both structures. To gain an insight into this
representation, notice that any simplicial complex, in particular
TCA, defines a finite topological space A(TCA), endowed with
Alexandrov topology: the locations in A(TCA) correspond to
the coactivity simplexes and the topological neighborhoods of
a given location represented by a simplex ς are formed by
the locations whose simplexes include ς (Alexandroff, 1937;
Babichev and Dabaghian , 2018). Since the simplexes of TCA

represent combinations of coactive place cells, which, in turn,
are believed to represent memory elements, one may view
the resulting “topological space of coactivities” A(TCA) as a
representation of the topological memory space encoded by the
corresponding cell assembly network, M = A(TCA). There are
three immediate implications of this construction.

i. The dynamics of the large-scale topological structure
of memory space can be inferred directly from the algebro-
topological studies of the corresponding coactivity complexes,
since the (singular) homologies of M(TCA) are identical to the
(simplicial) homologies of the coactivity complex TCA (McCord,
1966; Stong, 1966; Babichev et al., 2016a). This implies, e.g.,
that a memory space that contains a topological map of a given
environment emerges over the same learning period Tmin and
within the same scope of spiking parameters L as the cognitive
map, that it is similarly affected by the brain waves, by the
deteriorating synapses, etc., and by the remappings (Babichev
and Dabaghian , 2018).

ii. It can be shown that neuronal activity representing a
trajectory γ traced by the animal in physical space maps
continuously into path ℘ navigated in the Alexandrov topology
of the memory space M(TCA). This provides a theoretical base
for the intuition of “mental exploration,” allowing to interpret
the succession of the place cell activities as a representation of
a continuous succession of memory episodes (Samsonovich and
McNaughton, 1997; Issa and Zhang, 2012; Buzsáki et al., 2014;
Dabaghian, 2016).

iii. In neuroscience literature it is recognized that “space
is constructed in the brain rather than perceived, and the
hippocampus is central to this construction,” and yet its meaning
remains unclear: “how can spaceless data enter the hippocampal
system and spatial cognitive maps come out” (O’Keefe and Nadel,
1978; Nadel and Hardt, 2004). The topological model may shed
light on these problems, because it allows interpreting spatiality
intrinsically, as a certain relational structure defined on spiking
activity (Vickers, 1989; Roeper, 1997; Cohn and Hazarika, 2001),
thus providing an ontological foundation for the emergent
spatiality of the cognitive map, mentioned in the Introduction.

4. DISCUSSION

Extensive studies are dedicated to establishing correlations
between parameters of neuronal activity and the characteristics
of cognitive phenomena that emerge from this activity (Postle,
2006). The approach discussed above aims at filling the “semantic
gap” between these two scales of information processing within
a unified framework, based on the conjecture about topological

nature of the hippocampal memory organization (Dabaghian
et al., 2014; Babichev et al., 2016b; Babichev and Dabaghian ,
2018). A formal connection with the realm of simplicial topology
is made based on an observation that neuronal computations
may be described as operations over spike combinations—
which ones are produced over a given period, which ones
are detected or transformed into specific outputs, etc. Viewing
each particular collection of spikes as an abstract simplex
allows representing large volumes of spiking data as abstract
simplicial complexes whose topological properties describe the
net qualitative information emerging at the neuronal ensemble
level. With this approach, the simplicial complex’ dynamics
may be used as a metaphor for the learning processes, which
permits not only phenomenological descriptions at different
spatiotemporal scales but also possesses explanatory power, i.e.,
allows embedding empirical data into qualitative and quantitative
schemas for reasoning about cognitive phenomena.

The framework also allows describing the flow of information
in transient networks, which significantly expands the scope of
the modeled phenomena. The net structure of this information
is represented by flickering coactivity complexes that exhibit
topological dynamics at three complementary timescales. The
fastest timescale corresponds to rapid recycling of the local
connections, which represents the flow of the ongoing, temporary
information—the short-term memory (Hebb, 1949; Cowan,
2008). The net topological dynamics, described by the time-
dependent invariants, e.g., Betti numbers, unfolds at a timescale
that is by about an order of magnitude slower than the simplex-
level fluctuations. Physiologically, this “operational” timescale
corresponds to the intermediate-term memory (Eichenbaum et
al., 1994; Kesner and Hunsaker, 2010). Lastly, the topological
variations occur over a robust base that marks persistent,
qualitative characteristics that marks the long-term memory.
Such stratification indicates functional importance of the
complementary learning systems for processing information
at different levels of spatiotemporal granularity (O’Reilly
and McClelland, 1994; McClelland et al., 1995; Fusi et al.,
2005).

The model reveals complex interactions between these
dynamics; for example, for sufficiently slow transience rates,
the fluctuations of the topological shapes encoded by the
network freeze out, i.e., the simulated cognitive map can acquire
topological stability. Physiologically, this implies that if the
cell assemblies rewire sufficiently slowly, then the net map
encoded by the corresponding network may retain its structure
despite the recycling connections in its neuronal substrate. In
other words, the model suggests that synaptic and structural
plasticity, which are ultimately responsible for the network’s
ability to incorporate new information (McHugh and Tonegawa,
2009; Leuner et al., 2010; Schaefers et al., 2010), do not
necessarily compromise the qualitative information represented
by the system. Rather, renewing connections allow correcting
errors, e.g., removing spurious topological defects that may
have appeared by an accident. As a result, a network capable
of recycling information demonstrates better learning capacity,
suggesting that both learning and forgetting components are
necessary for physiological learning (Dupret et al., 2010; Kuhl
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et al., 2010; Murre et al., 2013). The model also suggests
that memory deterioration caused by an overly rapid decay of
the network’s connections may be compensated by increasing
neuronal activity, e.g., by boosting the neuronal firing rates
(Babichev et al., 2018) or by increasing the “off-line,” endogenous
activity of the hippocampal network that can occur in wake
or in sleep states (Ji and Wilson, 2007; Karlsson and Frank,
2009; Dragoi and Tonegawa, 2011, 2013). In certain contexts,
such replays can be viewed as manifestations of the animal’s
“mental explorations” of its cognitive map (Foster and Wilson,
2006; Johnson and Redish, 2007; Hopfield, 2010; Issa and Zhang,
2012; Dabaghian, 2016), which are believed to help learning
and memory consolidation (Girardeau et al., 2010; Roux et al.,
2017). Indeed, the model shows that frequent place cell replays
significantly reduce the structural fluctuations in the cognitive
map, thus helping to separate the fast and the slow timescales and
to extract stable, qualitative representation of the external world
(Babichev et al., 2019).
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The brain is a non-linear dynamical systemwith a self-restoration process, which protects

itself from external damage but is often a bottleneck for clinical treatment. To treat

the brain to induce the desired functionality, formulation of a self-restoration process

is necessary for optimal brain control. This study proposes a computational model for

the brain’s self-restoration process following the free-energy and degeneracy principles.

Based on this model, a computational framework for brain control is established. We

posited that the pre-treatment brain circuit has long been configured in response to the

environmental (the other neural populations’) demands on the circuit. Since the demands

persist even after treatment, the treated circuit’s response to the demand may gradually

approximate the pre-treatment functionality. In this framework, an energy landscape

of regional activities, estimated from resting-state endogenous activities by a pairwise

maximum entropy model, is used to represent the pre-treatment functionality. The

approximation of the pre-treatment functionality occurs via reconfiguration of interactions

among neural populations within the treated circuit. To establish the current framework’s

construct validity, we conducted various simulations. The simulations suggested that

brain control should include the self-restoration process, without which the treatment

was not optimal. We also presented simulations for optimizing repetitive treatments

and optimal timing of the treatment. These results suggest a plausibility of the current

framework in controlling the non-linear dynamical brain with a self-restoration process.

Keywords: free energy principle, resting state, brain dynamics, energy landscape, self-restoration, maximum

entropy model, degeneracy

INTRODUCTION

The goal of clinical treatment for the brain is to modify the brain circuit to yield a desirable
brain function. Since the brain is a complex non-linear dynamic system, clinical treatment can be
considered a control problem. For the clinical treatment to the human brain, various methods have
been developed, such as thermal ablation with the high intensity focused ultrasound (Park et al.,
2017), deep brain stimulation (DBS) (Park et al., 2015), vagus nerve stimulation (Yu et al., 2018),
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and transcranial magnetic stimulation (TMS) (Park et al., 2013;
Kar, 2019) as well as conventional medications and traditional
surgical operations (Schreglmann et al., 2018). Despite the
remarkable advancement of these therapeutic techniques, the
optimal control of the brain by treatments has many practical
challenges due to the complexity of the brain and ethical issues.
Since various experiments are not allowed in the human brain,
establishing optimal control procedures for the brain is very slow
and limited. Therefore, optimal brain control remains mostly
theoretical and based on computational models.

The brain control studies with computational models have
been conducted mainly in two approaches: characterization
of the network controllability and prediction of the network
behavior based on the state dynamic equation of the brain. To
characterize the brain network, the controllability of a brain
system has been evaluated in the graph-theoretic perspective (Liu
et al., 2011; Gu et al., 2017; Tang et al., 2017; Cornblath et al.,
2019; Lee et al., 2019; Stiso et al., 2019; Karrer et al., 2020). This
approach optimizes input signals to increase or decrease activity
at some brain network nodes to induce the desired brain activity
at all the brain nodes. The other approach is to predict a brain
system’s behavior by altering some nodes or edges of the brain. In
this approach, the optimal control is determined by evaluating
the outcome after removing nodes or edges or changing the
system’s parameters in the virtual brainmodel (Falcon et al., 2016;
Jirsa et al., 2017; Proix et al., 2017; An et al., 2019; Olmi et al.,
2019). Those two types of computational approaches on brain
control have primarily focused on the immediate changes in
the brain network’s activity or function. Those studies, however,
did not consider the fact that the brain has self-restorative
plasticity, making the system resilient to external treatments
or perturbations.

Self-restoration capacity in the brain has been found
after damage or stress via neural, molecular, and hormonal
mechanisms (Russo et al., 2012; King, 2016; Murrough and
Russo, 2019). At the macroscopic level, the self-restoration
process toward the initial functionality has widely been reported
in clinical neuroscience, for e.g., functional recovery after stroke
(Murphy and Corbett, 2009; Malone and Felling, 2020), recovery
of the language capacity (Saur et al., 2006), recovery of the
vision after surgery (Mikellidou et al., 2019). This self-restorative
property of the brain is advantageous in protecting the brain after
various external attacks (Glassman, 1987). In terms of clinical
treatment, however, this self-restoration process is a bottleneck
as it tends to recover the initial abnormal functionality, acting
against the aim of any treatment. Examples of this anti-
treatment action can be found with neurological or antipsychotic
medication (Abbott, 2010) showing drug resistance in most brain
disease such as schizophrenia (Potkin et al., 2020), depression
(Bennabi et al., 2019), Parkinson’s diseases (Vorovenci et al.,
2016), and epilepsy (Lee et al., 2017). Goellner et al. (2013)
showed that the late seizure recurrence after temporal lobe
epilepsy surgery was as much as 48.9%. Despite the anatomical
alteration by resection, the treated brains, initially showing free or
reduction of abnormal function (seizure behavior) after surgical
dissection, returned to the initial state of abnormal functionality
in a certain period after treatment.

In this respect, the brain’s self-restoration process may well
be included as an essential part of the computational model of
brain control. Despite the criticality of the brain’s self-restoration
process, research that has a self-restoration process in the control
problem is hardly found. This may be partly attributable to the
difficulty in defining the driving force of the self-restoration
process and its mathematical formulation. In contrast to the
microscopic level, where the mechanism of the self-recovery
process has actively been researched in terms of neurogenesis
(e.g., Mattson, 2008), a systematic understanding of the self-
restoration process at the macroscopic level is still lacking. Are
there any principles that we may refer to formulate the brain’s
self-restoration process at the macroscopic level?

In the current study, as an extension of our previous study
(Kang et al., 2021), we propose a computational framework for
controlling the self-restorative brain by formulating the driving
force of self-restoration based on the free-energy principle
(Friston et al., 2006; Friston, 2010) and the degeneracy nature
of a non-linear complex system (Glassman, 1987). According
to the free-energy principle, the brain acts based on a model
established to minimize long-term average surprise from the
external environment (Friston et al., 2006; Friston, 2010). The
brain network and its behavior can be considered a result of
long-term adjustment to meet environmental demands (Park
and Friston, 2013). For a neural population at any level of the
information hierarchy, neural populations that send signals to
and receive signals from the neural population are environment
to the neural population. For a neural circuit of the brain,
the circuit’s environment can involve lower-level and higher-
level neural populations, affecting the neural circuit by sensation
from the lower-level neural populations and regulation from the
higher-level neural populations (Friston, 2008). The long-term
demands of the environment to a neural circuit or system can
be represented by the statistics of bottom-up (from the lower-
level neural populations) and top-down (from the higher-level
neural populations) signals. Although any clinical treatment may
alter a neural circuit, the circuit’s environmental demands persist
and do not change rapidly even after alteration in the circuitry.
Since the functionality before treatment has been developed as
an optimal solution to environmental demands, we posit that
the altered neural circuit gradually approximates the pretreated
neural circuit’s functionality while adjusting itself to meet the
environmental demands after treatment.

In this framework, the pre-treatment state the brain circuit
tends to recover is not the same circuit, but the functionality that
the circuit has established to satisfy the external demands. Inmost
cases, the functionality for ongoing environmental demands
has to be approximated via reallocation of the reduced circuit
resources after treatment (e.g., after removing a node of the
circuit). In this respect, the recovery of functionality via an
altered circuit can be referred to as a well-known property of
the complex biological system called “degeneracy” (Glassman,
1987; Edelman andGally, 2001). Degeneracy of a system indicates
a function (or behavior) can be implemented with different
network configurations (Friston and Price, 2003). Degeneracy
of the self-reorganizing biological system is essential to manage
and protect its functionality from damage (Marder andGoaillard,
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2006; Marder et al., 2017). This study is based on the degeneracy
principle as it focuses on the restoration of the pre-treatment
functionality, not the pre-treatment circuit.

The final component of the current framework for brain
control is to define the pre-treatment functionality of the brain.
As a representation of the brain’s functionality, we used the non-
linear dynamics of regional activity while the brain is at rest
(called resting-state). A strong relationship exists between the
resting-state connectivity (or distributed patterns of endogenous
activity) with task-related brain activation or connectivity (Biswal
et al., 1995; Smith et al., 2009; Cole et al., 2014, 2016; Krienen
et al., 2014; Park et al., 2014; Yeo et al., 2015; Tavor et al.,
2016; Jung et al., 2018). Fox and Raichle (2007) argued that
resting-state connectivity might serve as a potential scaffold
that supports diverse configurations subserving the functional
elements of a given task (Fox and Raichle, 2007). In this respect, a
stabilized brain network’s resting-state dynamics were considered
to summarize the environmental demands established by long-
term interactions with the environment.

The resting-state brain network may behave as a non-linear
dynamical system with its microstate (defined by distributed
regional activity pattern) transitioning over the energy landscape
of multistable microstates (attractors) (Freyer et al., 2011, 2012;
Rabinovich and Varona, 2011; Deco and Jirsa, 2012; Kelso,
2012; Cabral et al., 2014; Tognoli and Kelso, 2014; Deco et al.,
2015; Breakspear, 2017). The non-linear dynamics of the brain
circuit can be modeled in terms of non-linear interactions
among nodes in the network using a pairwise maximum entropy
model (MEM) (Watanabe et al., 2013, 2014a,b,c; Kang et al.,
2017, 2019; Ezaki et al., 2018; Gu et al., 2018). From the
pairwise MEM, we can infer the probability distribution of
each microstate (an activation pattern), the microstates’ energy
landscape. In the energy landscape, a microstate’s energy is
the minus (scaled) log of its probability of occurrence. In this
model, the microstate dynamics (represented in microstates’
energy landscape) are emergent from the underlying complex
network (or circuitry). They are considered to represent the gross
functionality of a brain.

In summary, our proposal for the recovery process can be
explained by the free energy principle to satisfy environmental
demands by reconfiguring the remained resources after
treatment according to the degeneracy principle of the complex
brain. Utilizing this self-restoration model, we could develop a
strategy to identify the optimal treatment target region (nodes
or edges in the network) and the amount of treatment strength
within a source system to be treated (e.g., a disease system) to
induce microstate dynamics of the desired goal system (a healthy
system).We call this procedure optimal brain control throughout
the paper. In the conventional control theory problems, control
signals are inputs to the system to achieve the desired system’s
state without changing the system parameters. Meanwhile,
the optimal brain control in this study refers to adjusting the
source system’s model parameters to approximate the desired
functionality of the goal system. In this study based on the
pairwise MEM, the model parameters include the sensitivity
of a brain region and interaction among brain regions, which
indicate neurobiological connectivity or synaptic efficacy that

modulate the input and output relationship, i.e., the functionality
of the brain.

We used the term “optimal brain control” in consideration
of clinical treatment settings that call for optimal selection of
treatment target gray matter regions (nodes) or white matter
regions (edges) and treatment strength, within limited access
to the brain circuit at a time. For example, the circuit that
generates epileptic seizures is the source system, and the goal
system is a healthy functioning state without a seizure. The
treatment target can be multiple nodes in the medication.
For example, lorazepam enhances the effect of the inhibitory
neurotransmitter gamma-aminobutyric acid (GABA) receptors
distributed inmultiple brain areas. The target can be a single node
by temporal lobectomy, which removes a part of the anterior
temporal lobe. Callosotomy, which dissects interhemispheric
fibers, is an example of targeting edges in the network.

The current paper is composed in the following order. It
begins with a mathematical description of pairwise MEM and its
energy landscape analysis. We then formulated a self-restoration
process and optimal control in a non-linear dynamical system.
Based on this formulation, we present diverse simulations to
illustrate the self-restoration process and show the effect of
modeling the self-restoration process in brain control. We also
present simulations for optimizing repetitive treatment strategy
and its timing in consideration of the clinical practice, where
any treatment is highly restricted. Using these simulations, we
expected to show the construct validity of the current framework
in the brain’s control.

BACKGROUND

Dynamic Properties of the Brain Using
Pairwise Maximum Entropy Model
To define the dynamic properties of a system, we used the energy
landscape of microstate established on pairwise MEM. Here, we
briefly explain the pairwise MEMmodel. The details for deriving
the MEM of the resting-state functional magnetic resonance
imaging (rsfMRI) can be found elsewhere (Watanabe et al., 2013,
2014a; Kang et al., 2017, 2019).

In the pairwise MEMmodel of a brain with N regions, a brain
state Vk, is defined as an N-dimensional binary vector;

Vk = (σ1, ..., σN) , (1)

where σi = 1 for an activated state and σi = 0 for an inactivated
state at region i. Thus, totally 2N states exist. An energy E(Vk) of
a state Vk is defined as

E (Vk) = −

N
∑

i=1

Hiσi (Vk)−

N−1
∑

i=1

N
∑

j=i+1

Jijσi (Vk) σj (Vk) , (2)

where Hi and Jij are model parameters that represent weights
for independent activation of region i and pairwise interaction
(coactivation) between regions i and j, respectively. For
simplicity, we used A = {Hi, Jij}|i=1,··· ,N,j=1,··· ,N to express all the
model parameters. These model parameters were estimated using
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the maximum likelihood estimation approach. For a detailed
mathematical review, see Yeh et al. (2010).

The probability of a state Vk is given by the Boltzmann
distribution p(Vk),

p (Vk) =
exp

(

−E(Vk)
)

∑2N

j=1 exp
(

−E
(

Vj

))

. (3)

To analyze the energy landscape of state dynamics, we defined
local minima (attractors, LM) and occupation time ratio of each
local minimum (OCR(LMi)) as below.

Local Minimum

A local minimum (LMi) of an energy landscape of a system with
parameters A is a state with lower energy than its neighbor states.
Neighbor states are defined as states that differ from each other
by only one element (one region) of the activation state.

Occupation Time Ratio

OCR(LMi): Occupation time ratio of LMi is the sum of
probabilities of all states in the basin region of LMi. The basin
region of LMi is the set of states that belong to the LMi. To
determine whether a state belongs to the LMi, each element of
the state is gradually changed along the energy gradient until it
reaches one of the local minima.

Functional Distance Between Energy
Landscapes
To measure the functional distance between the target and
source systems, At and As, in the energy landscape, we defined a
distance function between states in terms of dynamic properties
(energy landscape) of the two systems, governed by the system’s
network parameters.

To focus on the functional distance between major attractors
and their properties in the optimal treatment, we use a partial
Kullback–Leibler (KL)-divergence defined as follows.

D
(

At ,As
)

=

∑

k∈R

p
(

Vk

∣

∣At
)

ln
p
(

Vk

∣

∣At
)

p (Vk|As)
, (4)

where R represents a set of states that belong to basin regions of
major attractors.

We also defined the similarity between two systems in terms of
system parameters by the root-mean-square deviation (RMSD)
of the two systems’ parameter vectors.

RMSD(At ,As) =
∣

∣

∣

∣At
− As

∣

∣

∣

∣ . (5)

Recovery Process
We modeled the recovery process based on three assumptions:
(1) recovery occurs by adjusting the network connectivity
(interactions) of the neighbors of the treated node or edge; (2)
adjustment of connectivity is performed within a range of its
flexibility, and (3) recovery occurs to meet the external demands,
which were represented in the state dynamics of the pretreated
stabilized system.

The treatment at region m (a node or an edge, for simplicity,
we call it “region”) is denoted by changing the element A

p
m in the

pretreated network parameters Ap with

Atr
m ⇐ A

p
m + α (6)

where α is the amount of treatment. The system parameters right

after treatment can be expressed as At
=

{

Atr
m,A

p
\m

}

, where m

and \m represent the treated and untreated regions, respectively
(Figure 2D).m can be multiple nodes or edges. In this theoretical
study, we assumed that we know how to achieve the desired level
α and achieve the desired parameter Atr

m. The treated state A
t of a

system is the starting point of the recovery A0
r .

The system proceeds with its recovery to minimize the
functional distance between state dynamics before treatment
and recovery (Figure 2B). When we decompose the network
elements (nodes or edges) into recovery regions (strongly
connected neighbors of the treated node or edge), Rm, and
unchanged (weakly or unconnected) regions, \Rm, for a treated
region (node or edge) m with a treatment strength Atr

m, the
network state of the treated system just after treatment, At

=

{Atr
m,A

p
\m}, can be written as At

= {At
Rm

,At
\Rm
}. The recovery

then begins from At and the recovery regions Rm cooperate to
find an optimal parameter set A∗

Rm
within a constrained bound C

to return to the pre-treatment state Ap. This recovery process can
be written as below:

A∗
Rm
= arg min

At′

Rm
,
∣

∣

∣
At′

Rm

∣

∣

∣
≤C

Dr

(

Ap,At′
∣

∣

∣
At′

Rm

)

(7)

At′
= {At′

Rm
,At
\Rm
},Ar
=

{

A∗
Rm

,At
\Rm

}

,

where Dr indicates the distance function between the stabilized
state before treatment Ap and a plausible treatment solution
At′ by adjusting parameters At′

Rm
in the recovery region Rm while

keeping the other region \Rm unchanged after treatment At . The
final recovered state Ar is composed of the optimal parameter
set within the recovered regions A∗

Rm
and the unchanged regions

of the treated system At
\Rm

. Considering the limited capacity of

the biological change, we restricted maximum changes at the
recovered regions A∗

Rm
to be <20 % of those of the previous step.

In this study, we define the pre-treatment network parameter
Ap as a stable state after a long period of adaptation to the
environment. The optimally recovered state Ar can be a new
pre-treatment network state Ap for a subsequent treatment, after
stabilization, e.g., A∞

r
= Ap, where ∞ indicates a sufficient

time for stabilization. Since the treated system may not revert
completely to the pre-treatment network state by utilizing the
constrained resources of the recovery regions, Ap is a function
of trial number or time, moving toward the target system over a
very long time scale. It should also be noted that a subsequent
treatment can be applied to a system before the system is
stabilized. We refer to treatment before stabilization as the
treatment at the transient network stage. We considered that
the transient state does not satisfy the environment’s demands.
In this case, the pre-treatment network parameter Ap was not
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updated with the state right before treatment, but instead referred
to the recent stabilized state.We utilized functional distanceDr to
generate similar dynamics instead of generating similar network
parameters for the recovering and initial systems.

The reorganization is performed by modifying the network
parameters of neighbors Rm but within a plausible range of each
parameter (connectivity)’s flexibility. In Eq. 7, we denote this with
∣

∣

∣
At′

Rm

∣

∣

∣
≤ C, indicating plausible parameters within a constrained

bound C. The amount of change at each node or edge in the
recovery regions can be defined proportionally to the treated
system’s baseline (pretreated state). For the treated region m, we
can assign less flexibility than for neighbors or assign inflexibility
(i.e., no change) after treatment during the recovery process.

To measure effects of a treatment on brain dynamics, we
define a recovery capacity as the difference between functional
distance (partial KL divergence) of the treated state At and
pretreated state Ap, D

(

Ap,At
)

, and the functional distance
between the recovered state Ar and pretreated state Ap, D

(

p,Ar
)

as follows,

Recovery capacity = △D = D
(

Ap,At
)

− D
(

Ap,Ar
)

.

Optimal Control
A self-restorative system As is decomposed into the region that
requires treatment m and the unaffected (untreated) region \m
and is represented as As

= {As
m,A

s
\m}. When a target system

Ag is given as the goal to achieve for a source system As, the
optimal treatment is to find a region m and its treatment level
At∗
m to minimize the distance functionD between the goal system

Ag and recovered system As′r that develops following the self-
restoration process of the source system As in response to
the treatment. To differentiate this from the distance function
D between Ag and As′r , we use D

+ to indicate the functional
distance D between Ag and As. The optimal control is defined
as below,

At∗
m = argmin D

+

(

Ag ,As′
∣

∣

∣
As′

m′

)

(8)

= argmin D

(

Ag ,As′r
∣

∣

∣
As′

m′

)

, (9)

As′
=

{

As′

m′ ,A
s
\m′

}

,

As′r
=

{

As′∗

Rm′
,As′

\Rm′

}

,

At
= {At∗

m ,A
s
\ m},

where the recovered system As′r is achieved following a self-
restoration process after changes in the neighbors Rm′ of the
treated region m′, according to Equation 7. The optimal control
is conducted by searching for the best solution to achieve the

goal system’s dynamics by adjusting the parameter As′

m′ in the
treated regionm′ while maintaining the other parameters As

\m′ in

untreated regions m′ unchanged. The final treated system At is
composed of the optimal treatment region with its strength At∗

m

and the unaffected parameters of the treated system As
\ m.

Note that the distance function D is defined in functional
space (between energy landscapes), not in parameter space. In

other words,D indicates a distance between the source dynamics
that emerge from the source system with a parameter As, and
the target dynamics that emerge from the goal system with a
parameter Ag . From the perspective of degeneracy, the minimal
distance function D in the dynamics space does not necessarily
indicate the closeness in the network parameter space. Even
though the two parameter sets, Ag and As, are distant in the
parameter space, they can be close in the dynamics space.

Strategy for Iterative Optimal Treatment
Optimal treatment is a recursive procedure between treatment
planning by the operator and the restoration process in the
treated system (Figures 1, 2C). The target region (node and edge)
to be treated and the strength of treatment was chosen using a
grid search algorithm in this study. In practice, the treatment to
the system was performed by altering the MEM parameter Ai (an
activity of a region Hi or a pairwise interaction Jij) by an amount
of α. We assumed that only neighboring nodes and edges of the
treated node participate in the recovery process to return the
brain dynamics to the pre-treatment state (Figures 1B,C). The
treatment strength induces changes in the energy landscape in
a non-linear manner (Figure 2A). When a node is altered (i.e.,
Hi is changed), edges that are strongly connected with the node
(Figure 1B) undergo self-restoration steps, gradually changing
the energy landscape (Figure 2B).When an edge is treated (i.e., Jij
is selected for treatment), two nodes that are connected with the
treated edge and the strongly connected edges of the two nodes
undergo self-restoration (Figure 1C). A threshold (|Jij| ≥ 0.1)
was used to determine strongly connected edges. If we applied
treatments multiple times, the energy landscape evolved as the
iteration of treatment and restoration (Figure 2C).

The restoration process is an optimization procedure with
reference to the stable pre-treatment state (Figure 2B) as shown
in Equation 7. When the restoration process is saturated (no
significant improvement in minimizing the functional distance
by changing parameters), the saturated network becomes a new
pre-treatment state for a new restoration step, i.e., A∞

r
= Ap

(Figure 2C).
To implement the recovery process in Equation 7, we adopted

the gradient ascent method, which is generally used to estimate
the pairwise MEM model parameters from the experimental
data by maximizing the log-likelihood (Watanabe et al., 2013,
2014a; Kang et al., 2017, 2019). To maximize the log-likelihood,
model parameters,Hi and Jij, are updated iteratively according to
differences between data-driven and model-driven expectations
of activations and coactivations, as shown below.

Hi (t + 1)← Hi (t)+ αg

(

log 〈σi〉 − log 〈σi〉A
)

, (10)

Jij (t + 1)← Jij (t)+ αg

(

log
〈

σiσj
〉

− log
〈

σiσj
〉

A

)

, (11)

where αg is a learning rate, 〈σi〉 and
〈

σiσj
〉

are expectations
of activations and coactivations of the brain regions evaluated
using the empirical data. From the pairwise MEM parameter
A, probability p (Vk|A) for each state Vk can be derived
using Equation 3, based on which the expected activations
and coactivations of the brain regions are derived using the
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FIGURE 1 | An illustration of the brain control for a self-restorative brain. (A) The state dynamics (or behaviors) of a source system and a desired target system

emerge from the networks of the two systems. The state dynamics of a system is represented in the energy landscape, where the log of the inverse probability of each

state (distributed brain activation) is defined as energy. The treatment on a network node or edge of the source system is determined to generate dynamics of the

desired target system. Restoration is assumed to occur in the neighbors of the treated node (B) or edge (C). Optimal control is the recursive procedure of treatment

and restoration steps to achieve the desired dynamics of the goal system.

following equation.

〈σi〉A =

2N
∑

k=1

σi(Vk)p(Vk|A), (12)

〈

σiσj
〉

A
=

2N
∑

k=1

σiσj(Vk)p(Vk|A). (13)

If the dynamics of a pretreated system Ap follows the pairwise
MEM (we assumed in this study), the expected activations
〈σi〉 and coactivations

〈

σiσj
〉

of sufficiently large samples from
the stabilized system Ap, equal to the model-driven expectations
of the activation 〈σi〉Ap and coactivation

〈

σiσj
〉

Ap of the brain
regions. Then, a recovery process can be explained as follows:

Hi(t + 1)← Hi(t)+ αg

(

log 〈σi〉Ap − log 〈σi〉Ar

)

, (14)

Jij (t + 1)← Jij (t)+ αg

(

log
〈

σiσj
〉

Ap − log
〈

σiσj
〉

Ar

)

, (15)

Ar
=

{

Hi, Jij
}

|i=1,··· ,N,j=1,··· ,N

The recovery is proceeded by adjusting the network parameters
of neighbors (At

Rm
) of the treated node or edgem.

In general, a treatment is applied to a system when the
recovery process is saturated for a sufficient time after each
treatment. However, we also presented a simulation of treatment
in the transient state before full saturation. We denote the

transition state as the proportion of time relative to the time
for full recovery. In this case, we used a grid search method
to determine the optimal treatment time without waiting for
full recovery, as well as the target region and its scale. In this
situation, we denote the functional distance D+ as a function of
treatment timing T.

At∗
m = argmin D

+

(

Ag ,As′
∣

∣

∣
As′

m
′ ,T

)

(16)

MATERIALS AND METHODS

A Test System: the Subcortical Limbic
Brain
As a test system for optimal control, we reused the MEM
for the subcortical human brain (Kang et al., 2017). Briefly,
the system consists of 15 subcortical regions of interests
(ROIs): the hippocampus (HIPP), amygdala (AMYG), caudate
(CAU), putamen (PUT), pallidum (PAL), thalamus (THL),
nucleus accumbens (NACC) of the left (L), and right (R)
hemispheres, and the brainstem (BSTEM). TheMEM parameters
were estimated from the resting-state fMRI data of 470
participants in the HCP database (Van Essen et al., 2012).
The estimated parameters are presented in Figures 3A,B. The
subcortical-limbic system has highly symmetric interactions
across hemispheres and appears to be modular. We sorted local
minima (LMs) with their occupation time ratios and selected
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FIGURE 2 | Dynamics of energy landscapes (state dynamics) by treatment in the network parameters and by self-restoration processes. (A) Different treatments on

the network alter the energy landscape of the system non-linearly. (B) The brain has a tendency to revert to its initial state before treatment via non-linear state

transitions. (C) Optimal treatment to induce desired behaviors (dynamics) can be achieved by iterative treatment and self-restoration via an optimal adjustment in the

network parameters. (D) Notations for iterative procedures in the optimal control of the brain are explained. Ap, At, and Ar indicate system (network) parameters for

the pretreated state, treated state, and self-recovery state; At*
m: optimal strength of a treated node or edge (m); Ap

\m: the pre-treatment parameters of untreated node

or edge (\m); A*
Rm

: optimal parameters within the recovered regions Rm; At
\Rm

: parameters of the unchanged regions in the recovery process. See the Method section

for details.

the five top local minima that have the highest occupation time
ratios. Among 18 LMs, the five major LMs, i.e., LM1(8000),
LM2(24769), LM3(32768), LM4(1), and LM5(25286), occupied
83.5% of all possible states (Figure 3E). The brain activation
patterns for the two major local minima are displayed in
Figure 3F. In this study, we set this system as a goal of the control
for the virtual abnormal systems. By controlling the regional
activity parameter Hi and pairwise interaction parameter Jij
(node and edge of the MEM parameters) of a virtual abnormal
system, the abnormal system is expected to be guided to have
dynamics of this goal system.

Overview of Simulations
We conducted six simulation experiments to show the construct
validity of the proposed framework. In simulation 1, we present
an example to show the self-restoration process in the energy
landscape of the brain network after treatment (or damage) in
a region. In simulation 2, we present the effects of treatment
on nodes and edges according to the number of neighbors to
show the advantage of more neighboring edges in the restoration
process. In simulation 3, we show the need for a self-restoration
process in the control model by comparing treatment effects
with and without considering the system’s self-restoration. In
simulation 4, we show the effects of repetitive treatment on
each node of a source system to induce the desired dynamics.
In simulation 5, we further control the timing of subsequent
treatments before full recovery when treating a system. In
simulation 6, we optimize the dissection of interhemispheric

connectivity to simulate a corpus callosotomy for epilepsy
surgery. All of these simulations were conducted to show the
effects of the self-restoration process and how to treat the system
to achieve the desired behaviors.

Simulation 1: The System’s
Self-Restoration Process After Treatment
To illustrate the self-restoration process, we presented a
perturbation simulation of the right thalamus (R THL) by adding
0.5 to its Hi parameter. After this perturbation, the neighboring
edges connected to the node were gradually reconfigured to
generate state dynamics similar to those of the initial pre-
treatment state (Figure 4A). For a treatment that induced a
deviation of state dynamics from the pre-treatment state, the
self-restoration procedure gradually moved the system toward
the pre-treatment state, which induced a shorter functional
distance D (partial KL-divergence) between the recovering and
pre-treatment states (Figure 4B), and receded its parameters
from those of the pre-treatment state (Figures 4B,C). Despite the
increasing distance in the parameter space (RMSD, Figure 4C),
the distance in the state dynamics from the pre-treatment state
is reduced (D, Figure 4B). This is an example of degeneracy,
which refers to the phenomenon where similar behaviors can be
formulated using different networks.

Treatment of the right thalamus changed the energy landscape
significantly from that of the pre-treatment state (Figure 4D);
the OCR of LM1 increased from 28.8 to 40.0, and the OCR of
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FIGURE 3 | The human subcortical-limbic system used in the study as a test system. (A) MEM parameters of the baseline sensitivity parameter (Hi ) and pairwise

interaction parameters (Jij ) are displayed as diagonal and off-diagonal elements in the matrix. (B) The system is displayed in the interaction diagram. The pairwise

interaction is displayed for |Jij | > 0.12. The thickness of the lines represents the strength of the pairwise interactions. The red dotted line represents negative pairwise

interactions (Jij < 0). Red and blue nodes represent ROIs that belong to modules 1 and 2. Modified from Kang et al. (2017). (C) Node degree of the subcortical-limbic

system under a threshold |Jij | = 0.1 is shown. (D) A schematic illustration of the energy landscape of the subcortical-limbic system is displayed. (E) The energy

landscape of the human subcortical system is represented in terms of local minima (LM) displayed in circles. The sizes of circles for LMs reflect the occupation time

ratios (OCR) of LMs. The OCRs of LMs are displayed in percentiles. (F) Activation patterns corresponding to two major local minima (LM), i.e., LM1 and LM2, are

displayed. The subcortical-limbic system includes the hippocampus (HIPP, Hi), amygdala (AMYG, Am), caudate (CAU, Ca), putamen (PUT, Pu), pallidum (PAL, Pa),

thalamus (THL, Th), nucleus accumbens (NACC, Ac), and brainstem (BSTEM, Br). Red and blue colors represent activated and inactivated regions, respectively.

LM2 decreased from 29.02 to 18.9. During self-restoration, this
asymmetric energy landscape (between LM1 and LM2) gradually
recovered (Figure 4D). In the final stage of the self-restoration,
the OCRs of LM1 and LM2 were 37.5 and 31.9, similar to those
of the initial system. Full recovery was not achieved in this system
as it utilized only the limited resources of neighboring edges.
Figure 4E shows the changes in the major two local minima
(LM1 and LM4) along with the treatment and transient states
in the recovery process. This suggests that the system recovers
similar energy landscapes after recovery.

Simulation 2: Region-Specific
Self-Restoration Capacity
To test the node- or edge-specific recovery capacity, we
evaluated the self-restoration process after treating each node

(Figure 5) and each edge (Figure 6) one by one. The degree
of freedom was defined by the number of neighboring edges
that participated in the self-restoration process. In the node’s
treatment, the neighboring edges were strongly (threshold
(|Jij| ≥ 0.1) connected with the treated node (Figure 1B). In
the treatment of an edge, neighboring nodes connected to
the treated edge and strongly connected edges connected to
these neighboring nodes were considered to participate in the
self-restoration process (Figure 1C).

Figure 5 presents the node-specific restoration process in the
real subcortical-limbic system. Nodes with diverse node degrees
(Figure 5B) have different recovery capacities (Figure 5A) and
recovery curves (Figure 5C). The finally recovered network
parameters and energy landscapes differed from each other
(Figures 5C,D). The recovery capacity depended highly on the
number of neighbors (or node degrees); nodes with more
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FIGURE 4 | Explanation of the self-restoration process. (A) MEM parameters (and differences from the initial system) at the initial, treated (the time point n = 0),

half-restored (n = 18), and fully restored (n = 36) states are displayed. (B,C) A distance curve (partial KL-divergence) (B) and an RMSD curve of J (interaction

parameters) (C) from the pre-treatment state are displayed. Despite the increasing distance in parameter space, the distance of state dynamics from the

pre-treatment state is reduced in the functional space. (D) Schematic diagrams for energy landscapes of the pre-treatment state (Ap) and self-restored state (Ar ) are

displayed along the time course. (E) Alterations in the energy landscapes following treatment and during the restoration process are explained in terms of the two

major local minima LM1 and LM2. After restoration, the occupation time ratios of LM1 and LM2 become closer to those of the pretreated state.

neighbors had a higher recovery capacity. In this case, the
node degree acted as a degree of freedom of the system.
This was also found in the treatment of edges shown in
Figure 6. In this case, the number of neighboring edges of
the system again explained the recovery capacity. The edges
with a higher number of neighboring edges (size of neighbors
Rm in Figure 6B) showed better restoration (Figure 6C). For
example, greater self-restoration occurred after treatment in
the edge between R CAU and L THL compared to the
edge between L PAL and L NACC (Figure 6D). The latter
utilizes adjustments of more edges than the former one in the
self-restoration (Figure 6E).

Simulation 3. Effects of the
Self-Restoration Process in Controlling the
Brain System
We simulated treatments with and without considering the self-
restorative properties of the system. In this study, we generated a

virtual system by adding a Gaussian random noise ∼N(0, 0.1) to
the parameters of the human subcortical-limbic system presented
in Figure 3. We considered the virtual system as a source system
and the human subcortical system as a goal system (Figure 7A).

For each node, the best strength of treatment (|α|) was
identified using a grid search method among a set of α, 0.05, 0.10,

0.15, . . . , and 0.5. We selected the best treatment strength that

minimizes the functional distance between the final restoration

state and goal state based on Equations 8, 9. Figure 7B shows the

expected treatment effects without considering the restoration

process, while Figure 7C shows the actual treatment results for

the self-restorative system. Discrepancies between the expected

and treatment effects occurred when the self-restoration process
was not considered. In contrast, when the recovery process was
considered, we obtained increased treatment effects (Figure 7D),
with functional distances from the goal system shorter than that
of treatments without considering the system’s recovery process
(Figure 7C). Optimal nodes differed according to how the nodes
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FIGURE 5 | The recovery capacity at the nodes of the subcortical-limbic system. (A) Recovery capacity D is shown for each node. (B) The node degree plays as

degrees of freedom, i.e., numbers of adjustable parameters for the recovery. (C) For the three representative nodes (R HIPP, R THR, and R NACC), recovery curves

are displayed in terms of the functional distance (partial KL divergence) between the restoring state and the pre-treatment state. (D) Differences between parameters

of the restored and pre-treatment states, and schematic energy landscapes at the final restoration state are displayed. The restoration at the R THL was most

successful in terms of recovering the energy landscape of the pretreated state.

were chosen with or without a self-restorative model. When we
determine the optimal node and its treatment strength to treat
without considering the recovery process, an optimal treatment
target was chosen in the left putamen (L PUT) with a treatment
strength of 0.45 (Figure 7B) but the optimal treatment did not
effectively change the system to the desired goal after restoration
(Figures 7C,E). When we consider the restoration’s effects, the
best treatment was selected on BSTEM with−0.5 (Figure 7D).
For this treatment, functional distance from the desired state
decreased right after treatment, followed by an increase during
the restoration process (Figure 7G). The final treatment effects
by considering the restorative process are better in this
treatment than the treatment without considering restoration
(Figure 7E).

Simulation 4. Repetitive Treatment at a
Single Node
In the clinic, most treatments are repetitive, particularly
concerning medications. We simulated repetitive treatments
without changing the treated node. In the repetitive treatment
simulation, the subsequent treatment was applied after the effects
of the previous treatment had become saturated (i.e., reached an
equilibrium state). Figure 8 shows the results of the repetitive
treatment at each node. Compared to the single treatment shown

in Figure 7D, repetitive treatments with a sequence of different
strengths (Figures 8C,F) made the system closer to the desired
goal (Figure 8B). After repetitive treatment, the treated system’s
final energy landscape gets closer to that of the target goal system
(Figure 8H).

In Figure 8E, the state change due to the second treatment
suggests the non-linear nature of the treatment vs. the
behavioral response (dynamics). The optimal treatment was
not always chosen to minimize the distance to the goal
system in the early stages of the time curves, as shown in
the first treatment effect (Figure 8E). Instead, the optimal
treatment made the system deviate from the desired goal
system but eventually get closer to the desired system than
other treatments that are initially effective but finally ineffective
(Figure 8E).

Simulation 5. Repetitive Treatment at a
Single Node With Flexible Timing
Most previous studies did not consider the timing of the
treatment under the dynamically responding brain. When a
treatment is applied, the brain gradually recovers and transitions
to an equilibrium state. Considering the restoration process,
one may apply the subsequent treatment at transient states
without waiting for the equilibrium state. We simulated
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FIGURE 6 | The recovery capacity at the edges of the subcortical-limbic system. (A,B) The model parameters (A) and the number of neighbors Rm as degrees of

freedom of the subcortical-limbic system (B) are presented. (C) Recovery capacities 1D are shown for all the edges. Larger self-restoration occurred in the edges with

high degrees of freedom (e.g., orange asterisk; edge between R CAU-L THL) than edges with lower degrees of freedom (e.g., red asterisk; edge between L PAL-L

NACC). Two representative examples of treatments on the two edges are presented to show their differences in the recovery processes. (D) The distance curves (the

partial KL-divergence) from the pretreated state are presented for the two representative edges; L PAL–L NACC (red asterisk) and R CAU–L THL (orange asterisk). (E)

Differences in the MEM parameters of the recovered states from the pre-treatment state and the schematic energy landscapes of the final states for the recovered two

edges are illustrated.

optimal repetitive treatment by optimizing the timing of
subsequent treatments. In this simulation, we used the same
simulation setting as simulation 3, except for the flexible timing
of the treatment. Compared to simulation 4, we explored
the best strength of the treatment and the best timing of
subsequent treatments for each node. As shown in Figure 9, the
treatment with the best timing increased the treatment effect
compared to treatment after full recovery for each treatment
(Figure 8).

Simulation 6. Optimal Removal of Edges
We simulated dissections of interhemispheric connections
to imitate a corpus callosotomy for epilepsy surgery. We
generated an abnormal brain that has stronger connections
between the left and right hemispheres (Figure 10A). This was

performed by increasing positive inter-hemispheric connectivity
and decreasing the negative interhemispheric connectivity of the
subcortical-limbic system by adding a Gaussian noise ∼ N(0,
0.1) according to the polarity of the initial connectivity. We
tested the optimal treatment strategy for different numbers and
targets of interhemispheric edges (one, two, and three) to be
dissected (Figures 10B,C). For each number of edges (49 single
interhemispheric edges, i.e., left 7 × right 7, 2,352 combinations
for two edges, and 110,544 combinations for three edges),
we evaluated the best edges to remove. For the source brain,
dissection of LAMYG-RCAU (one edge); LAMYG-RCAU and
LAMYG- RPAL (two edges); LAMYG-RCAU, LAMYG- RPAL,
and LHIPP- RCAU (three edges) were the best combinations
to decrease the functional distance from the goal system
(Figure 10D).
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FIGURE 7 | Treatments with and without considerations of the self-restoration. (A) Model parameters of a virtual (source) system and the subcortical-limbic system as

a goal system, and the difference between the goal and the source systems are displayed. The virtual system is generated by adding a noise (Ag
−As) to the

subcortical-limbic system. (B) The distance between the goal state and the predicted final state, D
(

Ag,Ar
)

, after treatment at each node without considering the

self-restoration, was minimal for the treatment on the L PUT. (C) The final results of treatments are displayed in (B), which show longer distances from the goal state

than predicted due to the restoration process. For example, the treatment on node L PUT with strength 0.45 results in distance 0.074, which was expected 0.055 in

the prediction without considering the self-restoration process. (D) The final distance for each node treated by considering self-restoration is displayed. In this case,

BSTEM was selected as an optimal treatment node with −0.5 strength. (E–H) The treatment and restoration curves in terms of the distance from the goal system (red)

and the pretreated state (blue) for the treatment on L PUT with strength of 0.45 (E) and for the treatment on BSTEM with strength of −0.5 (G) are displayed. MEM

parameters (and differences from the pretreated state) at the final state are displayed for the treatment on L PUT (F) and for the treatment on BSTEM (H).

DISCUSSION

Although brain control has garnered increasing interest, brain
control research has mainly been conducted based on theoretical
and computational models as the practical control of the brain
has many challenges due to the complexity of the brain and
ethical issues. Several computational models to control the brain
network have been proposed to characterize the graph-theoretic
properties of the system (Tang et al., 2017; Lee et al., 2019;
Stiso et al., 2019; Karrer et al., 2020) or a purpose of predicting
outcomes after treatment (Falcon et al., 2016; Jirsa et al., 2017;
Proix et al., 2017; An et al., 2019; Olmi et al., 2019). These
previous studies have assumed the brain as a dynamic system,
immediately responding to the incoming treatment. However,
the system’s self-restoration process after the cessation of the
treatment has not been fully considered, without which the brain
control may not be optimal. Compared to the brain circuit’s

various dynamic state equations, the formulation of the self-
restoration process has been rarely researched.

To account for the effect of the restoration process on
brain control, we propose a formulation of the brain’s recovery
process that drives the system to perform the function before
treatment. The driving force of this self-restoration process is
based on the free-energy principle (Friston et al., 2006; Friston,
2010) over a non-linear complex system, with degeneracy in
terms of generating the same behaviors from diverse network
configurations. According to the free-energy principle (Friston
et al., 2006; Friston, 2010), the network is configured to
respond or predict the environment’s statistical demands, making
the system energy-efficient. As long as the environment’s
statistics do not change, the treated or partially lesioned system
may well-adjust its remaining subnetwork (neighbors of the
treated node) to satisfy those demands. Since the altered
(treated) node cannot participate in the organized work of the
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FIGURE 8 | Multiple treatments for the nodes of a system. (A) MEM parameters of the virtual source and goal systems, and their differences are displayed. (B) The

distances (partial KL divergence) between the final states and the desired state are displayed for each treatment. The optimal treatment was chosen at the BSTEM.

Results of the treatment at L PUT (C–E) and BSTEM (F,G) are shown. (C) A treatment curve (distance between the transient state and the desired state) with a

treatment strength at each treatment (arrows) is displayed. (D) MEM model of the final state and its difference from the pre-treated state are shown. (E) Restoration

curves with potential strengths of the treatment are displayed for the first and second treatments. In the first treatment, the treatment strength that induces the black

line was chosen as the optimal strength since it finally becomes closest to the desired state after saturation. After a treatment, it gets close to the desired state and

then recedes slightly from it. In the second treatment, some treatment strengths make the system closer to the desired state at the early stage of the treatment (blue

lines in the circle). However, those curves eventually diverge from the goal system. The optimal treatment strength induced a curve colored in black, which initially

deviates from the goal system but eventually comes closer to the desired state than any other treatment strengths. For clarity, we scaled the restoration time for each

treatment. (F,G) A treatment curve at the BSTEM (F) and its final MEM parameter and its differences from the pre-treated state (G) are shown. (H) Energy landscapes

of the goal, the virtual source, and final systems after treatment at L PUT and BSTEM are displayed.

subnetwork at the same performance level as a pre-treatment
state, the system tries to compensate for the role of the
altered node by reorganizing interactions with its neighbors.
This restoration process in the brain can be called a type of
optimization process in that the system tries to adjust itself
and gradually approximates the desired functionality of the
pre-treatment state by interaction with the environment under
biological constraints.

The other central concept of the current study is the
redundant nature of the non-linear brain (Glassman, 1987;
Edelman and Gally, 2001). A complex system has degeneracy,
i.e., the same or similar functions (behavior) can be achieved

using different configurations of networks (or connectivity).
Since it is complicated to restore all connectivity after damage,
optimal control utilizes non-linearity between networks and
behaviors by reconfiguring networks among neighbors within
limited ranges to approximate the goal system dynamics.
In this non-linear relationship, the closeness in the system
parameters (e.g., connectivity) does not necessarily indicate
closeness in behaviors. Instead of matching network connectivity,
the current framework fits behaviors (i.e., microstate dynamics)
by modulating a smaller number of network parameters. This is
possible as the brain is a complex non-linear system from which
non-linear microstate dynamics emerge.
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FIGURE 9 | Repetitive treatments with flexible treatment timing. (A) The same model in Figure 8 is used for the current simulation. (B) The distance between the goal

and final states, D
(

Ag,Ar
)

, from multiple treatments with flexible timing of treatment is evaluated for each node. The best node for the multiple treatments was the L

PUT. (C–F) Results of the treatments at L PUT (C,D) and at BSTEM (E,F) are displayed. (C,E) Treatment curves (the distance between the transient states and the

goal system) are displayed for L PUT and BSTEM. The arrows indicate the timing of each treatment, and the values are the strengths of the treatment. (D,F) MEM

parameters of the final system and its difference from the initial system are shown. (G) Energy landscapes of the goal system, the virtual source system, and final

systems after treatment at the L PUT and BSTEM are displayed.

The non-linearmicrostate dynamics of a brain are represented
in the microstate’s energy landscape, the microstate of which
is often defined by a distributed activity pattern over the
temporal scale of a second. Energy landscape analysis has
been applied to explore dynamics in large-scale functional
brain networks, such as the default mode and pre-frontal
networks, on resting-state fMRI (Watanabe et al., 2013, 2014a;
Kang et al., 2017, 2019) and in sleep (Watanabe et al.,
2014b). In our previous study (Kang et al., 2017), the energy
landscape analysis revealed that the subcortical brain at rest
exhibits the maximal number of stable states and small sets
of stable states account for most of the occupation time.
Furthermore, a graph theory analysis of the energy landscape
revealed a hub-like state transition organization embedded
in the resting-state human brain (Kang et al., 2019). The
energy landscape of brain states is governed by a set of
network parameters in the pairwise MEM, upon which treatment
is imposed.

The brain control extends the energy landscape concept at the
temporal scale of a second (microstates) to the energy landscape
over a more extended period. Over a longer period of years, a

brain can be considered in a network state of the macroscopic
energy landscape. For example, the brain develops from one
network state (a set of network parameters) to another (another
set of network parameters). A network state in the macroscopic
energy landscape is defined by a network parameter, which differs
from the definition of a microstate in the microscopic energy
landscape by a distributed activity pattern. In this respect, the
brain control problem is to choose an optimal way to guide
a brain network to a desired network along the macroscopic
energy landscape.

We assumed that the restoration process is conducted by
the cooperative activity among neural populations within the
brain network, which tries to generate similar functionality
established before treatment. In this process, the brain network’s
modularity, an essential property to protect against damage to
a complex brain (Park and Friston, 2013; Sporns and Betzel,
2016), would be crucial for the recovery. By rearranging resources
within a module (e.g., altering connectivity within a biological
range), the modularity actuates the system’s reorganization
to construct a similar behavior. There is plentiful evidence
of modular-based reorganization in brain diseases (Balenzuela
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FIGURE 10 | Optimal dissection of edges, simulating a corpus callosotomy for epilepsy surgery. (A) MEM parameters of the virtual (abnormal source) system and the

goal system (subcortical-limbic system), and their differences are displayed. The virtual source system was generated by increasing the strengths of the connectivity

between the left and right hemispheres. (B) The box graph shows the final distance between the goal and the treated system, D
(

Ag,Ar
)

for all the combinations of

dissected edges by dissecting one, two, and three inter-hemispheric edges. Optimally treated results for each number of edges are denoted with circles. (C)

Treatment curves (the distance between the transient state and the goal system) are displayed for the optimally chosen edges among the one (blue line), two (red line),

and three (yellow line) edge combinations of dissection. (D) MEM parameters of the final systems after optimal treatments with different numbers of dissected edges

are displayed with their differences from the initial source system.

et al., 2010; Chen et al., 2013; Siegel et al., 2018). In this
study, nodes with more (stronger) connections (functional
neighbors) play a more efficient role in restoration than
nodes with fewer connections. Since the current test system
has a relatively small network size (nodes = 15), we did
not restrict the neighbors within a module but functionally
close regions (Figure 6). Even though not strictly the same
as the modularity concept in systems science, the functional
neighbors work as a functional module in terms of cooperation
within the module. Consideration of neighbors restricted within
a functional module and within an anatomical limit of a
larger network would be more realistic in modeling the
recovery process.

Clinical treatment is generally exerted on the brain multiple
times. After treatment, e.g., antipsychotic medication, clinicians
wait to stabilize the brain to avoid transient states. However, one
may consider applying subsequent treatment before stabilization.
Until fully stabilized, the system has multiple transient states
for network parameters. Some transient states may be more
efficient in achieving a desired goal than the stabilized state.
However, the transient state may be unstable, and finding an
optimal strategy may be unpredictable. In the current study,
we showed a possibility to optimize the right timing without
waiting for complete stabilization when we have a model for
self-restorative process.

The current framework as computational modeling takes
advantage of prediction capacity by simulation. It is theoretically

possible that some treatment parameters may lead the treated
system unstable, generating abnormal functionality. The self-
restoration process may also cause the malformation of the
function. By evaluating treatment outcomes for all possible
ranges of parameters, we may check unstable points before
deciding the treatment. The model-based prediction could also
be used in evaluating the treatment effect due to noise in the
restoration process as a type of Monte-Carlo simulation (See
the Supplementary Material). As the noise effects differ across
brain regions, one may choose a reliable target that is less
sensitive to noise in the restoration process. The treatment could
benefit from evaluating the treatment outcomes with noise in
any parameters or any updating rules besides the restoration
process. This Monte-Carlo simulation may complement the
limitation of the current deterministic approach. We used a
simple deterministic model and its solver for the control problem
to explain the basic framework of brain control and show
the current framework’s construct validity. More sophisticated
models based on more advanced control theory methods, such
as a stochastic model proposed by Todorov (2009), could be
further researched.

In this study, we showed the construct validity of the proposed
framework using various simulations to consider the clinical
environment. A simulation suggests that the optimal brain
control should include the system’s self-restoration process,
without which a (so called optimal) treatment is not optimal.
Using simulation, we also proposed how to control the

Frontiers in Computational Neuroscience | www.frontiersin.org 15 April 2021 | Volume 15 | Article 590019248

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Park and Kang Optimal Control of Self-Restorative Brain

self-restoration process by choosing the optimal target region
and treatment strength. We then presented simulations for
optimizing repetitive treatments and the optimal timing of
treatment. We found that some treatment choices led to a
degraded performance at an early stage but eventually showed
a better treatment effect (Figure 8). This is a typical example
of the non-linear property of the self-restoration system that
should be considered in optimal control. All of these simulations
suggest the plausibility and rationale of the proposed brain
control framework.

The current study is theoretical, and we acknowledge all
possible limitations of the theoretical framework. The current
brain control framework will be more practical when we know
more about the system’s reorganization mechanisms. Empirical
experiments and validation are most demanding. Determining
the means of achieving the desired treatment level at the right
target for each treatment is one of the fundamental challenges.
The details of the restoration process require extensive research
and experiments. There exist many challenges before brain
control can be applied to actual experiments. However, the
current conceptual framework with the self-restorative process
in the treatment is highly needed in clinical practices, which
calls for personalized treatments based on individualized self-
restoration systems and basic neuroscience to understand how
the brain works.

In summary, we propose an optimal brain control framework
by introducing self-restoration processes in the brain after
treatment. Simulation results showing the responses and
movement of a source system toward the desired system
in diverse testing sets suggest the framework’s plausibility in

optimal brain control within a restricted treatment environment.
Although further research with experimental data should be
conducted, we believe the proposed computational framework
would help attain optimal brain control of the dynamic self-
restorative brain after treatment.
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