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Editorial on the Research Topic

Advances in Time-Dependent Methods for Nuclear Structure and Dynamics

Among non-relativistic approaches to nuclear structure and reactions, the time-dependent
Schrödinger equation is the basic equation from which microscopic approaches derive.
Historically, stationary state methods which are not explicitly time-dependent have been
preferred for describing both structure and reactions. One motivation for not directly solving
time-dependent problems has been the computational difficulty, even if the physics case suggests
retaining a time-dependent approach. Over time, such computational barriers have been reduced,
and a general resurgence in time-dependent methods has occurred. In the last decade development of
time-dependent mean-field codes has been substantial. Unrestricted 3D calculations with full
effective interactions are now possible [1, 2], and full treatment of superfluidity at the mean-
field level has been included [3, 4]. These worldwide efforts were a strong motivation to curate this
Special Topic, which was conceived to draw together a snapshot of the current state of the wider field
of time-dependent methods and their application in a broad range of problems in nuclear physics.

The article collection includes reviews as well as original material. Some directly address problems
in the details of specific nuclei and in specific processes, while others deal with general problems, and
general solutions, touching on fields outside nuclear physics.

In their contribution, Tokeida and Hagino address how one deals with open quantum systems.
They start with a phenomenological description based on quantum friction and apply it to heavy-ion
fusion. They then develop a more microscopic approach, based on a system-plus-bath Hamiltonian,
appying it to the Caldeira-Legget model, with a discussion of how a future application to nuclear
collisions could be made. Dinh et al. give a review of applications of time-dependent DFTmethods to
atoms, molecules and atomic clusters, concentrating on issues that are different from typical nuclear
scenarios, but which could be relevant for future applications, such as direct laser-nucleus
interaction [5].

Tohyama presents a review of the time-dependent density matrix method. This goes beyond the
basic self-consistent microsopic approach of time-dependent Hartree-Fock (TDHF) by considering
explicitly higher order terms in the BBGKY hierarchy, and Tohyama shows applications to both
structure (excited vibrational states) and heavy-ion reactions. Also combining structure and reaction
applications is Ebata’s contribution, in which the details of the canonical-basis time-dependent
Hartree-Fock Bogoliubov approach are reviewed and applied to resonances and heavy-ion reactions.
Wang et al.’s review of semiclassical methods based on the time-evolution of the Wigner function
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show calculations of giant resonances, presenting results that
combine dynamics with excited state structures, demonstrating
the importance of nuclear collisions in determining excited state
widths.

The topic of fission is covered in a review by Bulgac et al.,
giving an historical overview of methods used to tackle fission,
details of the current state of the art, and a plan for the future.
Fission is very much a current focus of time-dependent methods,
and the review by Bulgac et al. complements a substantial review
published recently elsewhere [6]. A method for describing
spontaneous fission from a microscopic approach is given in a
review by Sadhukhan. It brings together a WKB-like theory with
Langevin dynamics in a framework suitable for making broad
predictions of fission observables. An original research paper
looking at details of fission is presented by Pancic et al., where the
effect of the choice of underlying nuclear interaction is explored.
A considerable part of the contribution from Verriere and
Regnier concerns fission as described in the time-dependent
generator coordinate method (TD-GCM), though they also
highlight other processes and extensively review the theories
behind different flavors of TD-GCM.

Studies of reaction mechanisms find a natural home in time-
dependent approaches, and several contributions are geared
toward a better understanding of nuclear reactions. The mini-
review of Bao gives a critical analysis of different approaches to
fusion reactions for production of superheavy nuclei; Godbey and
Umar review some of the detailed observables that can be

understood in quasifission reactions using TDHF-based
approaches; Jiang and Wang use a TDHF approach followed
by a statistical model for deexcitation to look at reactions leading
to new neutron rich isotopes.

Using time-dependent methods to link microscopic theories
with collective models is a theme of Wen and Nakatsukasa who
develop a new method to extract collective masses from
microscopic calculations, and also of Washiyama and Sekizawa,
who review the links between microscopic time-dependent
methods and nucleus-nucleus potentials and friction coefficients
in the Dissipation Dynamics-TDHF (DD-TDHF) method.

We mention finally the contribution of Iwata, which brings
ideas from the theory of solitons to throw new light on the
understanding of nuclear reactions making links to ideas perhaps
less familiar in the nuclear theory community.

The response to this special topic has more than matched our
expectations in terms of range and quality of contributions from the
research community. We think it shows amply the strength and
variety of developments and applications of time-dependentmethods
in nuclear physics, and beyond, and hope the resulting collection and
e-book provide a useful reference for future developments.
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Toward the microscopic theoretical description for large amplitude collective dynamics,

we calculate the coefficients of inertial masses for low-energy nuclear reactions. Under

the scheme of energy density functional, we apply the adiabatic self-consistent collective

coordinate (ASCC) method, as well as the Inglis’ cranking formula to calculate the inertias

for the translational and the relative motions, in addition to those for the rotational motion.

Taking the scattering between two α particles as an example, we investigate the impact

of the time-odd components of the mean-field potential on the collective inertial masses.

The ASCC method asymptotically reproduces the exact masses for both the relative and

translational motions. On the other hand, the cranking formula fails to do so when the

time-odd components exist.

Keywords: nuclear reaction, inertial mass, nuclear fusion, nuclear collective dynamics, mass parameter

1. INTRODUCTION

The time-dependent density functional theory (TDDFT) [1–5] is a general microscopic theoretical
framework to study low-energy nuclear reactions. Based on the TDDFT, the mechanisms of nuclear
collective dynamics have been extensively studied for decades. The linear approximation of TDDFT
leads to the random-phase approximation (RPA) [5–7], which is capable of calculating nuclear
response functions and providing us a unified description for both structural and dynamical
properties. Despite the detailed microscopic information revealed by TDDFT, it has a difficulty
in describing nuclear collective dynamics at low energy [5]. For instance, it cannot describe the
sub-barrier fusion and spontaneous fission, due to its semiclassical nature [1, 5, 6].

The description of nuclear dynamics in terms of collective degrees of freedom has been explored
in nuclear reaction theories. However, the derivation of the “macroscopic” reaction model based
on the microscopic nuclear dynamics has been rarely studied in the past. For the theoretical
description in terms of collective degrees of freedom, the collective inertial masses with respect to
the collective coordinates are of paramount importance. One of the most commonly used methods
to extract the collective mass coefficient is the Inglis’ cranking formula [8–10], which can be derived
based on the adiabatic perturbation theory.

It is well-known that the cranking formula has a problem that it fails to reproduce the total mass
for the translational motion of the center of mass of a nucleus Ring and Schuck [6]. Therefore, it is
highly desirable to replace the crankingmass by the one theoretically more advanced and justifiable.
We believe that the adiabatic self-consistent collective coordinate (ASCC) method [11–14] suites
for this purpose. The method, in the first place, aims at determining the canonical variables on
the optimal collective subspace for description of a low-energy collective motion. The masses with
respect to those collective coordinates can be extracted by solving a set of the ASCC equations.
This method has been applied to many nuclear structure problems with large-amplitude nuclear
dynamics with the Hamiltonian of the separable interactions [13–16]. Recently, by combining the
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imaginary-time evolution [17] and the finite amplitude method
[18–21], we proposed a numerical method to solve the ASCC
equations and to determine the optimal collective path for
nuclear reaction [22]. At the same time, we obtain the collective
inertial mass in a self-consistent manner. In this work, we
calculate the collective masses for three modes of collective
motion, the translational motion, the relative motion and
rotational motion. We compare the ASCC results with those of
the cranking formula.

Our calculations are under the scheme of energy density
functional theory. In order to guarantee the Galilean symmetry
during a collective motion, most of the energy density functionals
must include densities that are odd with respect to the time
reversal. Under the assumptions of the time-reversal symmetry,
these terms vanish and therefore do not contribute to the
time-even states, while they have non-zero values in situations
of dynamical reactions. It has been found that the time-odd
components play an important role in the inertia parameters
for nuclear rotations [23, 24]. To investigate this problem in the
context of reaction dynamics of light nuclei, we investigate the
effects of time-odd terms on the different inertial masses, taking
the α + α reaction as the simplest example.

This paper is organized as the following. In section 2, we
recapitulate the formulation of the basic ASCC equations in
the case of one-dimensional collective motion. We present
the method of constructing the collective path and the
coordinate transformation procedure to calculate the inertial
mass parameter with respect to the relative coordinate. In
section 3, we apply the method to the reaction system α+α↔8Be.
We focus on the influence of the time-odd terms on both
the relative and rotational inertias. Summary and concluding
remarks are give in section 4.

2. THEORETICAL FRAMEWORK

2.1. Formulation of ASCC Method
In this section, neglecting the paring correlation, we recapitulate
the basic ASCC formulation, and introduce the numerical
procedure of constructing the collective path and calculating
the inertial mass. The details can be found in Wen and
Nakatsukasa [22].

For simplicity, here we consider the collective motion
described by only one collective coordinate q(t), which has a
conjugate momentum p(t). We assume that the time-dependent
mean-field states are parameterized by Slater determinants
labeled as |ψ(p, q)〉. The energy of the system reads

H(p, q) = 〈ψ(p, q)|Ĥ|ψ(p, q)〉, (1)

which defines a classical collective Hamiltonian. In the ASCC
method, the resulting collective path |ψ(p, q)〉 is determined so
as to maximally be decoupled from other intrinsic degrees of
freedom. The evolution of q(t) and p(t) obeys the canonical
equations of motion with the classical Hamiltonian H(p, q).

In order to consider the adiabatic limit, we assume the
momentum p is small and the states are expanded in powers of
p about p = 0. The states |ψ(p, q)〉 are written as

|ψ(p, q)〉 = eipQ̂(q)|ψ(0, q)〉 = eipQ̂(q)|ψ(q)〉, (2)

where the generator Q̂(q) is defined as Q̂(q)|ψ(q)〉 = −i∂p|ψ(q)〉.
The conjugate P̂(q) is introduced as a generator for the
infinitesimal translation in q, P̂(q)|ψ(q)〉 = i∂q|ψ(q)〉. P̂(q) and
Q̂(q) can be expressed in the form of one-body operator as

P̂(q) = i
∑

n∈p,j∈h
Pnj(q)a

†
n(q)aj(q)+ h.c.,

Q̂(q) =
∑

n∈p,j∈h
Qnj(q)a

†
n(q)aj(q)+ h.c., (3)

where i in the expression of P̂(q) is simply for convenience. They
are locally defined at each coordinate q and will change their
structure along the collective path. The particle (n ∈ p) and
hole (j ∈ h) states are also defined with respect to the Slater
determinant |ψ(q)〉.

In the adiabatic limit, expanding Equation (2) with respect to p
up to second order, the invariance principle of the self-consistent
collective coordinate (SCC) method [11] leads to the equations
of the ASCC method [5, 12]. Neglecting the curvature terms, it
reduces to somewhat simpler equation set:

δ〈9(q)|Ĥmv|9(q)〉 = 0, (4)

δ〈9(q)|[Ĥmv,
1

i
P̂(q)]− ∂2V(q)

∂q2
Q̂(q)|9(q)〉 = 0, (5)

δ〈9(q)|[Ĥmv, iQ̂(q)]−
1

M(q)
P̂(q)|9(q)〉 = 0, (6)

with the inertial mass parameter M(q). The mass M(q) depends
on the scale of the coordinate q. Thus, we can choose it to
make M(q) = 1 without losing anything. The moving mean-
field Hamiltonian Ĥmv and the potential V(q) are, respectively,
defined as

Ĥmv = Ĥ − ∂V(q)

∂q
Q̂(q), V(q) = 〈ψ(q)|Ĥ|ψ(q)〉. (7)

Note that the collective path is given by |ψ(q), which represents
the state |ψ(q, p) with p = 0. Equation (4) is similar to
a constrained Hartee-Fock problem, however, the constraint
operator Q̂(q) depends on the coordinate q, which is self-
consistently determined by the RPA-like Equations (5) and (6),
called “moving RPA equations.” The conventional RPA forward
and backward amplitude Xni(q) and Yni(q) can be regarded as the
linear combination of P̂(q) and Q̂(q).

Xnj =
√

ω

2
Qnj +

1√
2ω

Pnj, Ynj =
√

ω

2
Qnj −

1√
2ω

Pnj, (8)

where the RPA eigenfrequency ω is related to the mass parameter
and the second derivative of the potential

ω2 = 1

M(q)

∂2V(q)

∂q2
. (9)
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As a pair of canonical variables, a weak canonicity condition
〈9(q)|[iP̂(q), Q̂(q)]|9(q)〉 = 1 should be satisfied. This
canonicity condition is automatically satisfied if the RPA
normalization condition

∑

n,j(X
2
nj − Y2

nj) = 1 holds.

It should be noted that the ASCC method is applicable
to systems with pairing correlations, in principle. However, in
this paper, we neglect the pairing correlation to reduce the
computational cost, and concentrate our discussion on effects
of mean fields of particle-hole channels for the inertial masses.
We present results for the α + α reaction in section 3, for which
no level crossing at the Fermi surface is involved. Therefore, the
pairing plays very little role in this particular case.

For superconducting systems, apart from the collective
coordinate and momentum, an additional pair of canonical
variables, the particle number and the conjugate gauge angle, are
needed to label the nuclear state. Details of the formulation are
give in Matsuo et al. [12] and Nakatsukasa et al. [5].

2.2. ASCC Collective Path and Inertial Mass
A change in the scale of the collective coordinate q results in a
change in the collective mass M(q). Thus, in order to discuss
the magnitude of the collective mass, we need to fix its scale.
This is normally done by adopting an intuitive choice of the
one-body time-even operator Ô. One of possible choices is the
mass quadrupole operator Q20 =

∫

drψ†(r)r2Y20(r̂)ψ(r). In
the present study of nuclear scattering (nuclear fission), it is
convenient to adopt the relative distance R̂ between two nuclei
with the projectile mass numberApro and the target mass number
Atar. Assuming that the center of mass of the two nuclei are on the
x axis (y = z = 0),

R̂ ≡
∫

drψ̂†(r)ψ̂(r)x

[

θ(x− xs)

Apro
− θ(xs − x)

Atar

]

, (10)

where θ(x) is the step function, and x = xs is the artificially
introduced section plane that divides the total space into two,
each of which contains the nucleon number of Apro and
Atar, respectively.

The operator R̂ has an evident physical meaning when the
projectile and the target are far away to each other. When they
touch each other, the distance between two nuclei is no longer
a well-defined quantity, thus loses its significance. However, this
is not a problem in the present microscopic formulation of the
reaction model. We have determined the reaction path and the
canonical variables (q, p), through the ASCCmethod. It is merely
a coordinate transformation from q to R with a function R(q).
The reaction dynamics do not depend on the choice of R, as far
as the one-to-one correspondence between q and R is valid.

The coordinate transformation naturally leads to the
transformation of the inertial mass fromM(q) toM(R);

M(R) = M(q)

(

dq

dR

)2

. (11)

The calculation of the derivative dq/dR is straitforward, because
the collective path |ψ(q) and the local generator P̂(q) of the

coordinate q are obtained by solving the ASCC Equations
(5) and (6).

(

dq

dR

)−1

= dR

dq
= d

dq
〈ψ(q)R̂|ψ(q)〉

= −i〈ψ(q)
[

R̂, P̂(q)
]

|ψ(q)〉. (12)

The inertia mass parameter with respect to R or any other
coordinate can be easily calculated with this formula.

We solve the moving RPA Equations (5) and (6) by taking
advantage of the finite amplitude method (FAM) [18–21],
especially the matrix FAM prescription [21]. To solve the ASCC
Equations (4), (5), and (6) self-consistently and construct the
collective path |ψ(q), we adopt the following procedures:
1. Prepare the Hartree-Fock ground state |ψ(q = 0) which can

be either the two separated nuclei before fusion, or the ground
state of the mother nucleus before fission.

2. Based on |ψ(q), solve the moving RPA Equations (5) and (6),
to obtain Q̂(q) and P̂(q). First, we start with an approximation
Q̂(q+ δq) = Q̂(q).

3. Solve the moving HF Equation (4) to calculate the state
|ψ(q+ δq) by imposing the condition

〈9(q+ δq)|Q̂(q)|9(q+ δq)〉 = δq, (13)

where we use the approximate relation, |ψ(q+ δq) ≃
e−iδqP̂(q)|ψ(q), to constrain the step size.

4. With this new state |ψ(q+ δq), update the generators Q̂(q +
δq) and P̂(q + δq) by solving the moving RPA equations
again. Then, with these updated generators, go back to the step
2.2. Repeat the steps 2.2 and 2.2 until the self-consistency is
achieved at q+ δq.

5. Then, regarding q + δq as q with an initial approximation
Q̂(q+ δq) = Q̂(q), go to the step 2.2.

Carrying on this iterative procedure, we determine a series of
states |ψ(0), |ψ(δq), |ψ(2δq), |ψ(3δq), · · · that form the ASCC
collective path. Changing the sign of the right hand side of
Equation (13), we can also construct the collective path toward
the opposite direction {|ψ(−δq), |ψ(−2δq), · · · }. In this way, the
collective path |ψ(q), the potential V(q), and the collective mass
M(q) are determined self-consistently and no a priori assumption
is used.

3. APPLICATIONS

3.1. Solutions for the Translational Motion
First, we calculate the inertial mass for the translational motion,
for which we know the exact value Am. The calculation is done in
the three-dimensional coordinate space discretized in the square
grid in a sphere with radius equal to 7 fm. The BKN energy
density functional [25] is adopted in the present calculation.

The HF ground state is a trivial solution of Equations (4)–(6),
on the collective path since it corresponds to the minimum of
the potential surface, ∂V/∂q = 0. We calculate the translational
inertia mass of the ground state of an alpha particle, and examine
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FIGURE 1 | (Left panel) Calculated RPA eigenfrequencies based on the ground state of the alpha particle, as a function of mesh size. The red closed circles indicate

the values for translational mode, while the green asterisks and purple open circles indicate those for monopole and quadrupole modes, respectively. (Right panel)

Calculated translational mass M of a single alpha particle in units of nucleon’s mass m, as a function of the mesh size. The calculated mass with respect to the y

direction, perpendicular to the symmetry (x) axis, is shown. The one with respect to the x direction is presented in Figure 1 of Wen and Nakatsukasa [22].

its grid size dependence. The left panel of Figure 1 shows the
eigenfrequency ω in Equation (9) of the lowest several RPA states
as a function of the mesh size of the grids. The three translational
modes along x, y, z axis are degenerated and shown by the red
dots, the absolute value of this eigenfrequency decreases and
approaches zero as the mesh size becomes smaller. The value
of the translational motion is significantly smaller than all the
other collective modes. In the ideal case where the mesh size
is sufficiently small, this value is expected to be zero. For other
collective modes, the eigenfrequencies stay almost constant as
functions of the mesh size. Due to the compact nature of alpha
particle, except for the translational zero-modes, the lowest
physical excitation mode is calculated to be about 20 MeV, which
represents the monopole vibration.

Using Equation (11) we calculate the translational inertia mass
of one alpha particle. The right panel of Figure 1 shows the result
as a function of mesh size. As the mesh size decreases, the results
approach to the value of 4 in the unit of nucleon mass, which is
the exact total mass of the alpha particle. With the simple BKN
energy density functional, this exact value for the translation is
also obtained with the cranking mass formula of Inglis. However,
it underestimates the exact total mass when the energy functional
has a effective mass m∗/m < 1. On the other hand, the ASCC
mass for the translational motion is invariant and exact even with
the effective mass. This is due to the Galilean symmetry of the
energy density functional which inevitably contains the time-odd
components. This will be discussed in section 3.4.

3.2. ASCC Reaction Path for α+α↔
8Be

The numerical application of the ASCC method to determine a
collective path for the nuclear fusion or fission reactions demands
a substantial computational cost. Here, we present the result for
the reaction path of α+α↔8Be, as the simplest example. It can
be regarded as either the fusion path of two alpha particles or the
fission path of 8Be. Themodel space is the three-dimensional grid
space of the rectangular box of size 10 × 10 × 18 fm3 with mesh

size equal to 1.0 fm. The standard BKN energy density functional
is adopted.

Starting from the two ground states of α particle and carrying
out the iterative procedure presented in section 2.2, we obtain a
fusion path that connects the two well separated alpha particles
to the ground state of 8Be. If we start the calculation from the
ground state of 8Be, the same reaction path, that represents
fission of 8Be, can be obtained. In the left four panels of Figure 2,
we show the calculated density distribution of four different
points on the obtained collective fusion path. The panel (a) shows
the density distribution of two alpha particles at R = 6.90 fm,
(d) shows that of the ground state of 8Be which corresponds to
R = 3.55 fm. Those of (b) and (c) show those at R = 5.40 fm
and 4.10 fm, respectively. The collective path smoothly evolves
the separated two alpha particles into the ground state of 8Be.

The right panel of Figure 2 shows the potential energy along
this collective path, as a function of R. The dashed cure shows
the point Coulomb potential, 4e/R + 2Eα , with the ground state
energy of a single alpha particle Eα . With the BKN energy density
functional, the 8Be is bound in the mean-field level. The ground
state of 8Be is located in the potential minimum at R = 3.55 fm,
while the Coulomb barrier top is at R = 6.50 fm. This ASCC
collective path is self-consistently generated by the iterative
procedure presented in section 2.2. The generators (Q̂(q), P̂(q))
for the relative motion are microscopically given. Since the
structure of the 8Be nucleus is very simple, this potential surface is
actually similar to that of the constraint Hartree-Fock calculation.

3.3. Inertial Mass for α+α↔
8Be

Upon the collective reaction path obtained, the inertial mass
with respect to the relative distance R, MASCC(R), is calculated
using Equation (11). In the asymptotic region, we expect the
inertial mass to be identical to the reduced mass, µred =
AproAtarm/(Apro + Atar), where m is the nucleon mass. For the
current system α+α↔8Be, the value ofµred is expected to be 2m.
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FIGURE 2 | (Left panel) Calculated density distributions of four points on the ASCC collective fusion path α+α→8Be. Inset (A) shows the density distribution of two

well separated alpha particles at R = 6.90 fm, inset (D) is the ground state of 8Be at R = 3.55 fm. Inset (B,C) show the density distributions at R = 4.10 fm, 5.40 fm,

respectively. Those on the y − z plane are plotted. (Right panel) Potential energy as a function of R shown by the red curve. The blue the dashed line is calculated as

4e2/R+ 2Eα for reference.

The reduced mass µred is justifiable when two alpha particles
are well separated. However, it loses its validity as two particles
approach each other. A widely used approach to calculate inertial
mass for nuclear collective motion is the “Constrained-Hartree-
Fock-plus-cranking” (CHF+cranking) approach [26]. In this
approach, the collective path is produced by the CHF calculation
with a constraining operator Ô given by hand, and the inertial
mass is calculated based on the cranking formula with respect
to these CHF states. The formula for the cranking mass can be
derived by the adiabatic perturbation [6]. In the present case of
the one-dimensional motion, based on the states constructed by
the CHF calculation with a given constraining operator Ô, the
cranking formula reads [26]

MNP
cr (R) = 2

∑

n∈p,j∈h

|〈ϕn(R)|∂/∂R|ϕj(R)〉|2
en(R)− ej(R)

, (14)

where the single-particle states ϕµ and their energies eµ are

defined with respect to hCHF(λ) = hHF[ρ]− λÔ,

hCHF(λ)|ϕµ(λ)〉 = eµ(λ))|ϕµ(λ)〉, µ ∈ p, h. (15)

We may use any operator Ô as a constraint, as far as
it can generate the states with all the necessary values of
R = 〈R̂〉. However, obviously the inertial mass M(R)
depends on this choice, which is one of drawbacks of the
CHF+cranking approach.

In most of the reaction models, the inertial mass with respect
to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
Ô; the mass quadrupole operator Q̂20 and the relative distance R̂
operator of Equation (10). The model space for both calculations
are the same. As we can see from Figure 3, at large distance,

FIGURE 3 | (Color online) Inertia masses MR for the reaction α+α↔8Be as a

function of relative distance R. The solid (red) curve indicates the result of

ASCC. The other curves show the cranking masses of Equation (14)

calculated based on CHF states. The dotted (green) and dash-dotted (blue)

lines indicate the results with constraints on R̂ and Q̂20, respectively.

both methods asymptotically reproduce the reduced mass of 2m,
which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
mass, especially at around R = 4.7 fm where all the three masses
develop a bump structure.

The difference between the ASCC and the cranking masses
attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
fluctuation. Another is that the constraining operators affect the
single-particle energies eµ(R). We also note that the cranking
masses obtained with different constraints give very different
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FIGURE 4 | Relative inertial masses in the presence of time-odd mean-field potential for the reaction α+α↔8Be as a function of relative distance R. The results of the

cranking masses are shown in the left panel and those of the ASCC method are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves

show the results calculated with B3 = 0, 25, and 75 MeV fm5, respectively.

values. This is true even at the HF ground state (R = 3.55
fm), in which the single-particle states |ϕµ(R) and their single-
particle energies eµ(R) are all identical to each other. This is
because the derivative ∂/∂R gives different values, since the
different constraint produces different states away from the HF
ground state. This ambiguity exposes another drawback of the
CHF+cranking approach, while the ASCCmass has an advantage
that the collective coordinate as well as the wave functions are
self-consistently calculated rather than artificially assumed.

3.4. Impact of Time-Odd Potential
All the results shown so far are obtained with the standard BKN
energy density functional that has no derivative terms. Therefore,
the nucleon’s effective mass is identical to the bare nucleon mass.
However, most of realistic effective interactions have effective
mass smaller than the bare mass, typically m∗/m ∼ 0.7. In such
cases, an improper treatment of the collective dynamics leads to a
wrong answer for the collective inertial mass [27]. This change in
the effectivemass typically comes from the term ρτ in the Skyrme
energy density functional, which should accompany the term−j2

to restore the Galilean symmetry [27, 28]. These terms are absent
in the standard BKN functional.

To investigate the effect of the time-odd mean-field potential
on the collective inertial mass, we add the term B3(ρτ − j2) to
the original BKN energy density functional. The modified BKN
energy density functional reads,

E[ρ] =
∫

1

2m
τ (r)dr+

∫

dr

{

3

8
t0ρ

2(r)+ 1

16
t3ρ

3(r)

}

+
∫ ∫

drdr′ρ(r)v(r− r′)ρ(r′)

+B3

∫

dr
{

ρ(r)τ (r)− j2(r)
}

(16)

where ρ(r), τ (r), and j(r) are the isoscalar density, the isoscalar
kinetic density, and the isoscalar current density, respectively. In
Equation (16), v(Er) is the sum of the Yukawa and the Coulomb

potentials [25]. The variation of the total energy with respect
to the density (or equivalently single-particle wave functions)
defines the single-particle (Hartree-Fock) Hamiltonian. In the
present case, the single-particle Hamiltonian turns out to be

h[ρ] = −∇ 1

2m∗(r)
∇ + 3

4
t0ρ(r)+

3

16
t3ρ

2(r)

+
∫

dr′v(r− r′)ρ(r′),

+B3(τ (r)+ i∇ · j(r))+ 2iB3j(r) · ∇ (17)

where the effective mass is now deviated from bare nucleon mass

h̄2

2m∗(r)
= h̄2

2m
+ B3ρ(r). (18)

For the time-even states, such as the ground state of even-even
nuclei, the current density disappears, j = 0. Even though, these
terms play an important role in the collective inertial mass. The
parameter B3 6= 0 provides the effective mass and the time-
odd effect. The rest of the parameters are the same as those in
reference [25].

To examine the impact of the time-odd terms on the inertial
mass, in Figure 4 we show M(R) calculated with and without
the B3 term. When the time-odd terms are absent, B3 = 0,
both the ASCC and the cranking formula reproduce the α + α

reduced mass in the asymptotic limit (R → ∞). However, the
cranking formula fails to do so with B3 6= 0. As the value of B3
increases, the asymptotic cranking mass decreases. This can be
naively expected from the reduction of the effective mass from
the bare mass. In contrast, the ASCC inertial mass converges to
the correct reduced mass, no matter what B3 values are. This
means that the ASCC method is capable of taking into account
the time-odd effect and recovering the exact Galilean symmetry.

Another inertial mass indispensable in the collective
Hamiltonian of nuclear reaction models is the rotational
moments of inertia. The rotational motion is a Nambu-
Goldstone (NG) mode. To calculate this, we utilize a method
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FIGURE 5 | Rotational moments of inertias in the presence of time-odd mean-field potential for the system α+α as a function of relative distance R. The results of

cranking formula are shown in the left panel and the results of ASCC are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves show the

results calculated with B3 = 0, 25, 75 MeV fm5, respectively, as labeled in the figure.

proposed in the reference [29], where the inertial masses of
the NG modes are calculated from the zero-frequency linear
response with the momentum operator of the NG modes. The
formulation has been tested in the cases of translational and
pairing rotational modes, showing high precision and efficiency.
Based on the collective path obtained, we apply this technique to
calculate the rotational moments of inertia.

In Figure 5, the calculated moments of inertias are presented.
With B3 = 0, the moments of inertia calculated with the ASCC
and with the cranking formula well agree with each other in the
asymptotic region of large R. The value is equal to the point-mass
approximation in which the point α particles are assumed at the
center of mass of each α particle. However, when non-zero B3
comes in, the cranking mass formula can no longer reproduce
this asymptotic value. Similar to the case of relative motion, as
the value of B3 increases, the asymptotic moments of inertia
decrease and deviate from the asymptotic value. In contrast, the
ASCC method provides the moments of inertia almost invariant
with respect to the B3 values. These results show again that,
compared with the cranking formula, the ASCC method gives
the collective inertial masses by properly taking into account the
time-odd effects.

4. SUMMARY AND DISCUSSION

Based on the ASCC theory, we presented a method to
determine the collective reaction path for the nuclear reaction
as the large amplitude collective motion. This method is
applied to the fusion/fission α+α↔8Be, using the BKN energy
density functional. In the three-dimensional coordinate-space
representation, the reaction path, the collective potential, as
well as the inertial masses are self-consistently calculated. We
compare the ASCC results with those of the CHF+cranking
method. Since the reaction system is very simple, there is no
significant difference between the calculated CHF reaction paths
with different constraint operators. Despite of this similarity in
the CHF states, the inertial masses calculated with the cranking

formula turn out to sensitively depend on the choice of the
constraint operator. The ASCC method is able to remove this
ambiguity in the inertial mass, by taking into account the residual
effects caused by the density fluctuation.

We add a term, which introduce the effective mass and time-
odd mean fields, to the standard BKN energy density functional,
to examine the effect of these terms on the inertial masses for
both the relative and rotational motions. In the presence of time-
odd term, the cranking formula fails to preserve the correct
asymptotic values, while the validity of ASCCmass is not affected
by the introduction of the effective mass. The time-odd mean-
fields properly recover the Galilean symmetry, leading to the
exact values of the asymptotic inertial mass. This is found to be
true in both relative and rotational motions. With this property,
we are quite confident that the ASCC method is promising to
be applied to the modern nuclear energy density functionals,
and make advanced microscopic theoretical analysis on various
nuclear reactionmodels. Another important issue is the inclusion
of the paring correlation, which may influence not only static
but also dynamical nuclear properties. In order to keep the
lowest-energy configuration during the collective motion, the
pairing interaction is known to play a key role [30]. Therefore,
we may expect significant impact on both the collective inertial
masses and the reaction paths. To study the above issues are our
future tasks.
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Couplings of a system to other degrees of freedom (that is, environmental degrees

of freedom) lead to energy dissipation when the number of environmental degrees

of freedom is large enough. Here, we discuss quantal treatments for such energy

dissipation. To this end, we discuss two different time-dependent methods. One is to

introduce an effective time-dependent Hamiltonian, which leads to a classical equation

of motion as a relationship among expectation values of quantum operators. We apply

this method to a heavy-ion fusion reaction and discuss the role of dissipation on the

penetrability of the Coulomb barrier. The other method is to start with a Hamiltonian with

environmental degrees of freedom and derive an equation that the system degree of

freedom obeys. For this, we present a new efficient method to solve coupled-channels

equations that can be easily applied even when the dimension of the coupled-channels

equations is huge.

Keywords: open quantum systems, quantum friction, Caldeira-Leggett model, barrier transmission, fusion

reactions

1. INTRODUCTION

Open quantum systems are ubiquitous in many branches of science. In general, a system is never
isolated but couples to other degrees of freedom, which are often referred to as the environment.
The couplings to the environmental degrees of freedom can strongly affect the dynamics of the
system. When the number of environmental degrees of freedom is huge, the couplings lead to
energy dissipation. It has been demonstrated by Caldeira and Leggett that such couplings suppress
the tunneling rate [1, 2], going into a transition from quantum to classical regimes. In nuclear
physics, it has been well known that a large amount of the relative energy and angular momentum
is dissipated during collisions of heavy nuclei at energies close to the Coulomb barrier, known as
deep inelastic collisions [3]. In this case, the dissipation occurs due to the couplings between the
relative motion of two colliding nuclei and nucleonic degrees of freedom in those nuclei. A classical
Langevin equation [4] has been successfully applied to describe such collisions [3]. The Langevin
approach has also been employed in order to discuss fusion reactions for syntheses of superheavy
elements [5–11].

The classical Langevin approach, by definition, is not applicable at energies around the Coulomb
barrier, at which quantum effects play an important role [12, 13]. One can then ask: what is a
quantum model that, in the classical Limit, is equivalent to a classical Langevin equation? There
are two approaches to address this question. One is to use a phenomenological quantum friction
model in which the expectation values of operators obey the classical equation of motion with
friction [14–17]. Recently, we solved such quantum friction Hamiltonians with a time-dependent
wave packet approach in order to discuss the effect of friction on quantum tunneling [18]. The
other approach to a quantum Langevin equation is to start from a system-plus-bath Hamiltonian,
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that is, a Hamiltonian that consists of the system and
the environmental degrees of freedom and eliminates the
environmental degrees of freedom. For instance, one can employ
the Caldeira-Leggett Hamiltonian [1] since the classical Langevin
equation can be derived from it [3, 4]. This approach is more
microscopic, and a computation would thus be more involved
than the quantum friction model. It has been known that, in
the Markovian limit, the time evolution for the reduced density
matrix for the system degree of freedom in general takes the
so-called Lindblad form [19, 20].

In this paper, we discuss both of these approaches for
open quantum systems from the point of view of the time-
dependent method. In the next section, we first discuss the
phenomenological quantum friction models using a time-
dependent wave packet approach. We apply them to heavy-ion
fusion reactions around the Coulomb barrier and discuss a role of
friction in fusion dynamics. In section III. we solve the Calderira-
Leggett Hamiltonian using a time-dependent coupled-channels
approach. Using a quantum damped harmonic oscillator, we
discuss how one can deal with a large number of degrees of
freedom. A summary of the paper is then given in section IV.

2. PHENOMENOLOGICAL QUANTUM
FRICTION MODELS

We first considered a phenomenological approach to quantum
friction. In this approach, one treats the environmental degrees
of freedom implicitly and introduce a phenomenological
Hamiltonian with which the classical equation of motion with
a frictional force is reproduced as expectation values. For this
purpose, several model Hamiltonians have been proposed so
far [14–17]. Among these, we focused in this paper on the one
introduced by Kostin [16].

Consider a particle of mass m moving in a one-dimensional
space q under the influence of a potential V(q). With a friction
coefficient γ , the phenomenological Schrödinger equation in the
Kostin model is given by [16]:

ih̄
∂

∂t
ψ(q, t) =

[

− h̄2

2m

∂2

∂q2
+ V(q)+ γ S(q, t)

]

ψ(q, t), (1)

where S(q, t) is the phase of the wave function, ψ(q, t) =
|ψ(q, t)| exp(iS(q, t)/h̄). From this equation, it is easy to confirm
that one can derive the equation of motion with a frictional force:

d

dt
〈p〉 = −γ 〈p〉 −

〈

dV

dq

〉

, (2)

as is desired. Here, the expectation value of an operator O

is denoted as 〈O〉 =
∫

dqψ∗(q, t)Oψ(q, t), and p is the
momentum operator.

When one simulates an energy dissipation in heavy-ion
collisions by means of friction, a frictional force should be active
only when the colliding nuclei are close to each other. In other
words, one needs to deal with a coordinate-dependent friction
coefficient, γ = γ (q). An extension of the Kostin model along

this line has been proposed in Immele et al. [21], Bargueno and
Miret-Artes [22], with which the modified Schrödinger equation
is given by:

ih̄
∂

∂t
ψ(q, t) =

[

− h̄2

2m

∂2

∂q2
+ V(q)

+
∫ q

dq1 γ (q1)
∂

∂q1
S(q1, t)

]

ψ(q, t). (3)

To apply the phenomenological model to realistic collision
problems, one further needs an extension to a three-dimensional
space, Eq = Eq(r, θ ,φ). To this end, we first must expand
the wave function with the Legendre polynomials Pl(x) as
ψ(Eq, t) = ∑∞

l=0 ul(r, t)Pl(cos θ)/r. One can then modify the
Schrödinger equation for ul(r, t) in the same way as Equation (3)
to incorporate a frictional force,

ih̄
∂

∂t
ul(r, t) =

[

− h̄2

2m

∂2

∂r2
+ h̄2

2m

l(l+ 1)

r2

+V(r)+
∫ r

dr1 γ (r1)
∂

∂r1
Sl(r1, t)

]

ul(r, t), (4)

where Sl(r, t) is the phase of the radial wave function ul(r, t) =
|ul(r, t)| exp(iSl(r, t)/h̄). We have here assumed a spherically
symmetric potential, V(Eq) = V(r). Notice that only the radial
friction is taken into account here, while the angular momentum
dissipation is neglected.

In applying Equation (4) to scattering problems, one needs
to use the time-dependent approach since the Hamiltonian
depends explicitly on time. To this end, we propagate a wave
packet and observe how it bifurcates after it crosses the potential
region. Since a wave packet is a superposition of various energy
waves, one has to choose the initial condition carefully to get
scattering quantities at certain initial energy. Notice that the
energy projection approach [23] is inapplicable for our purpose
since the energy is not conserved.

In the initial condition, the width of the energy distribution
must be small enough to get reasonable results. In this context,
the energy refers to the expectation value of the asymptotic
Hamiltonian,H0. If we restrict to the s-wave scattering, l = 0, and
ifV(r) rapidly vanishes as r → ∞, one can simply take the kinetic
energy operator as H0, that is, H0 = −h̄2/2m

(

∂2/∂r2
)

. The
minimumuncertainty wave packet in this case has been discussed
in Bracher [24], which reads:

umin
0 (r, t = 0) ∝ re−(r−r0)

2/4σ 2r eik0r , (5)

where r0 and σr are related to the mean position and the width of
the wave function in the coordinate space, respectively, and k0 is
related to the mean initial energy.

In heavy-ion collisions, on the other hand, the potential is
a sum of the nuclear potential VN and the Coulomb potential
VC(r) = ZPZTe

2/r with the projectile charge ZP and the
target charge ZT . Since the Coulomb potential is a long range
potential, the asymptotic HamiltonianH0 has to include it:H0 =
−h̄2/2m

(

∂2/∂r2
)

+ VC. Thus, the minimum uncertainty wave
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packet in the form of Equation (5) would not be efficient in this
case. Instead, one needs to construct a wave packet from the
energy distribution, fC(E), of H0 in the presence of the Coulomb
potential. In analogy to the spherical Bessel functions, we find
that this can be achieved as:

uC0 (r, t = 0) ∝
∫ ∞

0
dk F0(η, kr)e

ikr0
√

kfC(E), (6)

with E = h̄2k2/2m, where η = mZPZTe
2/h̄2k is the Sommerfeld

parameter and F0(η, kr) is the regular Coulomb wave function.
With the initial condition given by Equation (6), we compute

the penetrability of the Coulomb barrier for the 16O + 208Pb
system in the presence of friction. For the nuclear potential, we
employ the optical potential in Evers et al. [25]:

VN(r) =
V0

1+ exp ((r − Rv)/av)
+ i

W0

1+ exp((r − Rw)/aw)
, (7)

with V0 = −901.4 MeV, Rv = 8.44 fm, av = 0.664 fm, W0 =
−30 MeV, Rw = 6.76 fm, and aw = 0.4 fm. With this potential,
the Coulomb barrier height VB is 74.5 MeV.

For a friction coefficient γ (r), we employ the surface friction
model [3],

γ (r) = γ0

m

(

VB
dfWS

dr

)2

, (8)

with the Woods-Saxon from factor fWS = 1/(1 + exp ((r −
Rv)/av)). This is a general form of the friction coefficient obtained
perturbatively [26], and it has successfully been applied to the
above barrier fusion reactions and to deep inelastic scatterings
[3]. We arbitrarily set γ0 = 4.7 × 10−23 s/MeV, and this is used
in the classical calculations. We compute the phase of the wave
function in the same way as in Tokieda and Hagino [18].

For the initial energy distribution in Equation (6), we assume
the Gaussian form,

fC(E) =
1

√

2πσ 2
E

e−(E−E0)
2/2σ 2E . (9)

where E0 and σE are the mean and the width of the initial energy
distribution. We have confirmed that σE = 0.5 MeV is sufficient
in the present parameter set.

Figure 1 compares the penetrability obtained with and
without friction. One finds that the penetrability with friction
is shifted to higher energies around the barrier. That is, in
the presence of friction, a particle needs additional energy
to penetrate the barrier, which originates from the energy
dissipation. One can also see that the penetrability does not reach
unity at high energies, but it is almost saturated at around 0.9.
This means that the exit channel is in a quantum superposition
state of absorption and reflection even at sufficiently above-
barrier energies. Notice that, in classical mechanics without a
random force, the penetrability can be only 0 or 1. In this sense,
this is peculiar to the quantum friction model.

For a practical application to fusion reactions, one needs to
take into account explicitly low-lying collective excitations, as

FIGURE 1 | Energy dependence of the penetrability of the Coulomb barrier for

the 16O+208Pb reaction. The dashed line shows the result without friction,

while the solid line is for the result with friction.

they play a crucial role [27]. This can be achieved by extending
the above method to the coupled-channels formalism. In that
treatment, low-lying collective excitations are taken into account
explicitly, while other degrees of freedom, such as non-collective
excitations and nucleon transfers, are treated by means of a
frictional force.

In Tokieda and Hagino [28], we have applied the method
to the 16O+208Pb system. The nuclear potential is the Woods-
Saxon form as Equation (7). For low-lying collective states, the
first excited state of both 16O and 208Pb were taken into account.
The channel-coupling effect was treated in the same way as
the CCFULL code, and the iso-centrifugal approximation was
adopted [29]. The surface friction model was employed for a
friction coefficient [with a replacement ofVB withV0 in Equation
(8)], treating γ0 as an adjustable parameter. See Tokieda and
Hagino [28] and reference therein for details of the parameters.

To compute the penetrability at certain energy, we used the
same initial condition as Equation (9). It has turned out that
σE = 0.5 MeV was sufficient for the employed parameter set.
By taking a sum of the penetrability at each angular momentum,
one could calculate fusion cross sections, which could then be
compared with experimental data.

In Figure 2, we compare the energy dependence of fusion
cross sections. Notice that the present method is reduced to the
conventional coupled-channels method when friction is turned
off. Thus, the no-friction result is nothing but the result of
the conventional coupled-channels approach. To reproduce the
experimental data, we set γ0 = 0.6 × 10−23 s/MeV. In the
left panel of Figure 2, on one hand, one finds that the fusion
cross sections at above barrier energies are suppressed in the
friction model (the solid line) compared to that in the no-friction
model (the dashed line). In the right panel of Figure 2, on the
other hand, one sees that the sub-barrier fusion cross sections in
both the models give almost the same result. Considering overall
energies, the present friction model provided a more consistent
description of fusion reactions around the Coulomb barrier as
compared to the conventional coupled-channels approach. In
this calculation, the same behavior as in Figure 1 has been found,
and this may be a key to achieve a consistent description [28].

In comparison with the classical Langevin approach, the
present method did not contain a random force originating from
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FIGURE 2 | Energy dependence of fusion cross sections for the 16O + 208Pb system. The results with and without friction are shown by the solid and the dashed

lines, respectively, while the experimental data are shown by the circles. The left panel (A) is in the linear scale, while the right panel (B) is in the logarithmic scale. The

experimental data are taken from Morton et al. [30].

thermal fluctuation. For the 16O+208Pb system, the compound
nucleus was formed once the projectile and the target nuclei
touched each other, and the fluctuation played a much more
minor role compared to the massive systems. In that situation,
fusion cross sections were given as an averaged quantity, and it
was expected that the presence of a random force does not change
the result much. However, when one deals with phenomena
in which thermal fluctuation plays a crucial role, such as deep
inelastic scattering or a synthesis of superheavy elements, the
thermal fluctuation should be explicitly taken into account. One
could in fact directly add a random force to the Schrödinger
equation Equation (1) as was done in the original paper [16].
Alternatively, friction and fluctuation will naturally emerge by
explicitly treating environmental degrees of freedom, which we
have discussed in the next section.

3. SYSTEM-PLUS-BATH MODEL

We next considered a more microscopic model for quantum
friction, employing a system-plus-bath model. To be more
specific, we considered the Caldeira-Leggett model [1, 2], whose
Hamiltonian is given by,

Htot = HS +
∑

i

h̄ωia
†
i ai + h(q)

∑

i

di(a
†
i + ai), (10)

≡ HS +HB + Vcoup, (11)

where HS and HB are the Hamiltonians for the system and the
bath degrees of freedom, respectively, while Vcoup is the coupling
Hamiltonian between the system and the bath. Here, the bath
degree of freedom is assumed to be a set of harmonic oscillators,

whose creation and annihilation operators are denoted by an a†
i

and ai. The coupling Hamiltonian is assumed to be separable
between the system and the bath degrees of freedom. In there,
di is the coupling strength, and h(q) is the coupling form factor,
where q is the coordinate of the system.

There are several ways to solve the Calderira-Leggett
Hamiltonian. In Caldeira and Leggett [1, 2], the bath degrees
of freedom were integrated out using the path integral in order
to obtain an effective action for the system degree of freedom
[see also Takigawa and Bertsch [31]]. One can also introduce

the influence functional [32]. Here we discussed the coupled-
channels approach [33].

In the conventional coupled-channels approach [27], one
expands the total wave function in terms of the eigen-wave
functions of HB:

9tot(q, t) =
∑

{ni}
ψ{ni}(q, t) |{ni}〉, (12)

where the basis states |{ni}〉 are given by:

|{ni}〉 =
∏

i

1√
ni!

(

a†
i

)ni |0〉. (13)

Here, |0〉 is the vacuum state defined as ai|0〉 = 0. One can derive
the coupled equations for ψ{ni}(q, t) by evaluating the equation:

〈{ni}|ih̄
∂

∂t
|9tot〉 = 〈{ni}|Htot|9tot〉, (14)

that is,

ih̄
∂

∂t
ψ{ni}(q, t) =

(

HS +
∑

i

nih̄ωi

)

ψ{ni}(q, t)

+
∑

{n′i}
〈{ni}|Vcoup|{n′i}〉ψ{n′i}(q, t). (15)

The coupled-channels equations, Equation (15), can be
numerically solved when the number of the oscillator modes
is not large [27, 29]. However, in general, the number of
the oscillator modes can be huge, or the distribution of the
frequency of the oscillator may even be given as a continuous
function. In that situation, it is almost hopeless to solve the
coupled-channels equations directly. In order to overcome this
problem, we introduced a more efficient basis to expand the total
wave function [33]. To this end, we first expanded the function
exp(−iωt) with a finite basis set as:

e−iωt ∼
K
∑

k=1

ηk(ω)uk(t), (16)
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where uk(t) is a known function such as a Bessel function, and
ηk(ω) is the expansion coefficient. We then introduced a new
phonon creation operator as:

b†
k
=
∑

i

di

h̄
ηk(ωi)a

†
i . (17)

Notice that the number of k is finite, k running from 1 to K, even
though the number of i may be infinite. We then constructed

the basis states using the operators b†
k
and expanded the total

wave function with them. That is, instead of Equation (12), we
expanded the total wave function as:

9tot(q, t) =
∑

{ñk}
ψ̃{ñk}(q, t) |{ñk}〉, (18)

with,

|{ñk}〉 =
K
∏

k=1

1
√

ñk!

(

b†
k

)ñk |0〉. (19)

One can then obtain the coupled-channels equations similar to
Equation (15):

ih̄
∂

∂t
ψ̃{ñk}(q, t) = HS ψ̃{ñk}(q, t)

+
∑

{ñ′
k
}
〈{ñk}|HB + Vcoup|{ñ′k}〉 ψ̃{ñ′

k
}(q, t). (20)

We once again emphasize that the dimension of the coupled-
channels equations, Equation (20), is much smaller than that of
the original equations, Equation (15).

The structure of the coupled-channels equations, Equation
(20), becomes simple when the basis functions uk(t) satisfy the
following two conditions.

1. The matrix D defined as:

Dkk′ ≡
1

h̄2

∑

i

d2i ηk(ω)η
∗
k′ (ω), (21)

is diagonal with respect k and k′. That is,Dkk′ = λkδk,k′ . Notice
that the matrix D can be expressed also as:

Dkk′ ≡
1

h̄

∫ ∞

−∞
dω J(ω)ηk(ω)η

∗
k′ (ω), (22)

with the spectral density given by:

J(ω) = 1

h̄

∑

i

d2i δ(ω − ωi). (23)

2. The basis function uk(t) is closed under differentiation:

duk(t)

dt
=

K
∑

k′=1

Ckk′uk′ (t). (24)

Notice that Bessel functions satisfy this condition since the
following relation holds,

d

dx
Jk(x) = −1

2
Jk+1(x)+

1

2
Jk−1(x), (25)

(with J−k(x) = (−1)kJk(x) for an integer value of k).

See Equation (31) in Tokieda and Hagino [33] for the explicit
form of the coupled-channels equations, Equation (20). Tokieda
and Hagino [33] also provides an alternative derivation of the
coupled-channels equations, which used the influence functional
of the path integral method. This allows one to extend the present
formalism to finite temperatures.

Before the present method is applied to heavy-ion collisions,
we should make sure that it works in principle. To this end,
we considered a damped harmonic oscillator in which the exact
solution can be obtained easily [33]. The Hamiltonian for the
system, HS in Equation (10), is now given by:

HS =
p2

2M
+ 1

2
Mω2

Sq
2 + h2(q)

∑

i

d2i
h̄ωi

, (26)

where M and ωS are the mass and the frequency of the system,
respectively, and the last term represents the so-called counter
term. In the following, we measured the length of the system
in units of the oscillator length qS defined by qS ≡

√

h̄/MωS,
and took the coupling form factor, h(q), to be h(q) = q/qS. We
assumed that the bath oscillators are distributed according to the
spectral density (see Equation 23) as:

J(ω) = VI
ω

�

√

1−
(ω

�

)2
. (27)

In the numerical calculations shown below, we took h̄ωS = 2 eV,
VI = 1 eV and h̄� = 4 eV.

At t = 0, we assumed that ψ̃{ñk}(q, t = 0) = 0 for N ≡
∑K

k=1 ñk 6= 0. For N = 0, that is, for ñk = 0 for all k, we assumed
that the wave function is given by:

ψ̃N=0(q, t = 0) = 1

4

√

2πσ 2
0

e−(q−q0)
2/4σ 20 eip0q/h̄, (28)

with q0/qS = −1, σ0/qS = 1/
√
2, and p0qS/h̄ = 0.

Figures 3, 4 show the time evolution. The upper panel of
Figure 3 shows the norm for each phonon state N as a function
of ωSt. Here, the norm is defined as:

NN(t) ≡
∑

{ñk}

∫

dq |ψ̃{ñk}(q, t)|2δ∑k ñk ,N
. (29)

To draw this figure, we took Bessel functions, Jk(�t), for uk(t) in
Equation (16) with K = 20. A new basis was then constructed by
diagonalizing the matrix D in Equation (21). With this basis, we
solved the coupled-channels equations by including the phonon
states with N ≤ 5. The expectation value of the norm was also
shown in the lower panel. As is expected, the number of phonons
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FIGURE 3 | (A) The norm for each phonon number, N =∑K
k=1 ñk . The solid

line with squares, triangles, inverted triangles, diamonds, pentagons, and

circles are for N = 0, 1, 2, 3, 4, and 5, respectively. These are obtained by

solving the coupled-channels equations with the phonon states up to

Nmax = 5, for which the phonon operators are defined with the Bessel function

basis with K = 20. (B) The expectation value of the number of phonon.

in the bath gradually increases as a function of time. Notice that
the contribution of the 5-phonon states is small in the whole
time range shown in the figure. This justifies the truncation at
Nmax = 5 for the present parameter set. One can also see that the
contribution of each phonon reaches its equilibrium at around
ωSt = 6.

Figure 4 compares the results of the present method with
the exact solution for the quantum damped harmonic oscillator.
To this end, we evaluated the expectation values for the
following four quantities: ξq ≡ 〈q〉 /qS, ξp ≡ 〈p〉 qS/h̄, ξqq ≡
〈
(

q− 〈q〉
)2〉 /q2S, and ξpp ≡ 〈

(

p− 〈p〉
)2〉 q2S/h̄2. We carried out

the calculations with three different values of Nmax, that is, Nmax

= 3, 4, and 5, and compare them with the exact results shown
by the solid lines. One can see that all of the calculations with
Nmax = 3, 4, and 5 reproduce the exact results up to ωSt ∼ 5, for
which J20(�t) is negligibly small, and the expansion in Equation
(16) with Bessel functions up to K = 20 [that is, up to J19(�t)]
is therefore reasonable. The deviation from the exact results
becomes significant for larger values of ωSt, especially for the
second ordermoments, ξqq and ξpp. This is a natural consequence
of the fact that the larger number of phonon states are required
to describe the finer structures.

We would like to make a few comments on an application
of the present method to heavy-ion collisions. Unlike the
phenomenological quantum friction models discussed in the
previous section, the total energy conservation was assured
with the Hamiltonian given by Equation (10). Therefore, one
can utilize the energy projection method [23] to calculate
the penetrability for a given energy. In the present method,

FIGURE 4 | Comparison between the present method and the exact results for the expectation values of several quantities, that is, (A) ξq = 〈q〉/qS, (B) ξp = 〈p〉qS/h̄,
(C) ξqq = 〈(q−〈q〉)2〉/q2S, and (D) ξpp = 〈(p−〈p〉)2〉q2S/h̄2. The solid lines show the exact results, while the solid lines with squares, triangles, and circles are the

results of the present method with Nmax = 3, 4, and 5, respectively.

Frontiers in Physics | www.frontiersin.org 6 February 2020 | Volume 8 | Article 819

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tokieda and Hagino Time-Dependent Approaches to Open Quantum Systems

the number of Nmax required to achieve convergence was an
important parameter that controlled the numerical cost. We
expected that Nmax was small for collision problems since the
system-bath coupling was active only while a wave packet
overlapped with the potential region. Another issue in an
application to heavy-ion collisions was that one needs to model
properly the environmental degrees of freedom. Note that they
are described solely by the spectral density (see Equation 23) in
the Caldeira-Leggett model. That is, one needs tomodel a suitable
spectral density for heavy-ion collisions. A similar problem
has already been discussed in the linear response approach to
heavy-ion collisions [34] as well as to fission reactions [35]. We
anticipate that these approaches provide a useful means for our
future works of an application of the presentmethod to heavy-ion
reactions.

4. SUMMARY

We have discussed two time-dependent methods for quantum
friction. The first method was based on an effective Hamiltonian,
which was constructed so that expectation values of operators
obey a classical equation of motion with friction. Such
Hamiltonian is in general time-dependent, and we have solved it
with a time-dependent wave packet method. The other method
is to start with a total Hamiltonian with both the system and
the environmental degrees of freedom and then eliminate the
environmental degree of freedom to derive an equation that the
system degree of freedom obeys. For this approach, we have
presented a new efficient basis for coupled-channels equations.
These two methods were complimentary to each other. In the

first method, whereas several parameters had to be determined
phenomenologically, a required computational time was much
shorter than the second method. On the other hand, the second
method was based on a more microscopic Hamiltonian, and
fewer empirical inputs were thus required even though the
computational timemay have been large. By combining these two
approaches appropriately, one may be able to achieve a quantum
description of heavy-ion deep inelastic collisions as well as fusion
reactions to synthesize superheavy elements.
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This brief review illustrates on a few typical applications fully fledged dynamical

simulations of finite electronic systems (atoms, molecules, clusters) using time-

dependent density-functional theory (TDDFT). It concentrates on aspects which are

different from nuclear applications. These are: the correct handling of electron emission,

the self-interaction correction, the enormous versatility of laser excitation to probe

systems properties, and with it the exploitation of detailed observables of electron

emission as photo-electron angular distributions and photo-electron spectra (PES).

Finally, we demonstrate the impact of electronic dissipation putting question marks on

the reliability of TDDFT simulations over long times.

Keywords: time-dependent density-functional theory, molecules, electron emission, photo-electron distributions,

dissipation

1. INTRODUCTION

Far-off equilibrium dynamics in quantum many-body systems is since numerous decades a
challenging task much studied in experimental and theoretical investigations. In the realm of finite
electronic systems, the availability of versatile laser pulses has given way to detailed analysis of
the response of clusters and molecules [1–11]. In particular it allows one to explore the properties
of electrons emitted after irradiation in correlation with the laser pulse. This has led to detailed
analysis of angular- and energy-resolved electron spectra, e.g., their angular distributions and
photoelectron spectra (PES) or both simultaneously as angular resolved PES (ARPES) recorded
via Velocity Map Imaging techniques [12]. The theoretical description of such far-off equilibrium
situations is also demanding. It requires large phase spaces and must cover vastly different time
scales ranging from basic processes of excitation over collisional redistribution with subsequent
relaxation to ionic motion and possible coupling to environment. They thus require dedicated
fully time-dependent approaches, such as the widely used time-dependent density functional theory
(TDDFT), often combined with molecular dynamics for the description of ionic motion (see e.g.,
[13]). This approach is both versatile and robust and allows one to simulate numerous dynamical
scenarios with high degree of accuracy. The electronic part, TDDFT, is formally exactly the same
as time-dependent Hartree-Fock (TDHF) in the nuclear domain [14]. The difference lies mainly in
energy functionals which are constructed by very different strategies, see Dreizler and Gross [15]
for electronic systems and Bender et al. [16] for nuclei.

In a typical laser irradiation, electrons immediately react to the external electro-magnetic field
driving the system quickly far-off equilibrium long before ionic motion and thermal relaxation
processes set on [17]. Thus, the system fully remains in the quantum regime for quite a while,
as seen in recent experiments, exhibiting clear quantum and thermal pattern in photoelectron
spectra [18–20]. The crucial first stage, i.e., the doorway to any photo-reaction, is predominantly

22
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quantum-mechanical electron dynamics which is (as in nuclear
dynamics) well-described by TDDFT and we shall focus on this
domain below.

Actual implementations of TDDFT are often based on the
Time-Dependent Local Density Approximation (TDLDA) [8, 21,
22] which usually performs well at moderate excitation. However,
TDLDA is plagued by a self-interaction error [23] which
arises because the local approximation of Coulomb exchange
spoils the subtle balance with the direct Coulomb term (which
was still maintained in full Hartree-Fock calculations). This
is particularly disastrous for simulation of emission properties
because the ionization potentials in terms of the energy of the
highest occupied single-electron orbital are underestimated. The
problem is cured in ad hocmanner by augmenting TDLDA with
a self-interaction correction (SIC). As this is an aspect which is
less important in the nuclear domain and thus ignored, we will
address it below. Another aspect which is missing in TDLDA
and which becomes important in later stages of the dynamical
evolution are dynamical correlations and associated dissipative
features. Extensions beyond TDLDA which take dissipation into
account are presently under development. We shall address also
this question on one example.

The paper is organized as follows. Section 2 provides a brief
summary of the formalism, TDDFT in real time with SIC and
computation of observables, particularly ionization and PES.
Section 3 presents a few selected application examples starting
with the impact of SIC and basic features of optical responses
as the latter plays a crucial role as doorway to any dynamical
scenario. We then illustrate the capabilities of short laser pulses
and finally discuss the impact of dissipation.

2. THEORETICAL BACKGROUND

2.1. Electronic DFT
As in nuclear TDHF, the state of the electronic system is described
in terms of single-particle (s.p.) Kohn-Sham (KS) wave functions
ϕn(n = 1, . . . ,N) from which the key ingredient in DFT, the
total electronic density, is built as ̺(r, t) = ∑

n=1,...,N |ϕn(r, t)|2.
The total energy is composed as Etot = Ekin + EH + Exc +
Eion+Eext. The first three terms, namely kinetic energy, Coulomb
Hartree energy, and exchange-correlation energy, constitute the
purely electronic part and correspond to typical nuclear energy
expressions. The last two terms, the ionic energy with its coupling
to electrons and a possible external (laser) field, are specific to
atoms/molecules. Hartree and exchange-correlation energies are
approximated as functionals of ̺: EH + Exc ≃ ETDLDA[̺(r, t)].
This constitutes in the dynamic domain the Time-Dependent
Adiabatic Local Density Approximation (TDLDA) [15, 24, 25],
the electronic analog of nuclear TDHF. Variation with respect to
ϕ∗
n yields the KS equations:

ih̄∂tϕn =
{

− h̄2

2m
∇2 + vLDA[̺]+ vion + vext

}

ϕn . (1)

The LDA potential is obtained as a functional derivative with

respect to the local density : vLDA[̺](r, t) = δELDA
δ̺(r,t)

∣

∣

∣

[̺]
. The

ionic background vion is described by pseudopotentials [26].
We use the particularly simple and efficient soft local [27] or
Goedecker-type [28] pseudopotentials.

An external, coherent laser field is handled as a classical field in
the long wavelength limit, adding to the mean-field Hamiltonian
the potential

vext(r, t) = e2 r · ez E0 cos(h̄ωlast + φCEP)f (t) with

f (t) = cos2
(

π
t

Tpulse

)

θ(t)θ(Tpulse − t) , (2)

θ being the Heaviside function. The laser characteristics are:
linear polarization (here denoted by ez), peak field strength E0
related to laser intensity (I ∝ E20), photon frequency h̄ωlas,
and total pulse length Tpulse. The full width at half maximum
of intensity (FWHM) is given as FWHM ≃ Tpulse/3. The
parameter φCEP, the so-called carrier-envelop phase, is the phase
between the maximum of an oscillation at frequency h̄ωlas and
the maximum of the cos2 envelope which plays a role particularly
for short pulses [29].

2.2. Self-Interaction Correction
The KS equations introduce a self-interaction (SI) error because
KS mean field vLDA employs the total density which includes also
the electron on which vLDA acts. This is particularly disastrous
for the long-range Coulomb term which produces thus a shifted
single particle energy spectrum and, as a consequence, a wrong
ionization potential (IP). To overcome the SI error, the energy-
density functional is augmented by a SI correction (SIC) [30]

ELDA −→ ELDA[̺(r, t)]−
∑

n

ELDA[̺n(r, t)] . (3)

The price to pay is to deal with a Hamiltonian that is now non-
Hermitian and state-dependent, since the variation with respect
to ϕ∗

n of the SI-corrected energy explicitly produces a functional
of the s.p. density ̺n instead of the total electronic density (for
a broad overview of orbital-dependent functionals, see Kümmel
and Kronik [31]). This difficulty is particularly severe in the time
domain and requires elaborate strategies tomaintain unitary time
evolution [32, 33].

Still, a full solution of dynamical SIC is expensive. Fortunately,
there are many situations where one can employ a drastic
simplification, namely the average density SIC (ADSIC) which
was proposed already in the 1930s [34], and applied since then in
clusters [35]. The idea is to assume that all electrons fill about the
same region of space and thus contribute about equally to the SI
error. This amounts to replace Equation (3) by

ELDA −→ ELDA[̺↑ + ̺↓] −
∑

σ∈{↑,↓}
Nσ ELDA[̺σ /Nσ ] , (4)

where ̺σ and Nσ are the total electronic density and the
total number of particles of spin σ , respectively. This is, again,
a functional of the local spin-density only and thus can be
treated in the same manner as any LDA scheme. This works
nicely in a wide class of compact atomic/molecular systems [36]
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and particularly well for metal clusters. It is not applicable to
situations with fragmented electron density and to bulk systems
(the latter because the particle numbers Nσ grow infinite).

2.3. Observables
The KS equations are solved in real time on a 3D grid with
standard techniques [13, 17, 37]. The predominantly local
structure of the KS Hamiltonian allows one to use the very
efficient time-splitting scheme for time propagation [38]. The
Coulomb field is computed with successive over-relaxation [39]
or Fast Fourier Transform techniques [37, 40]. To describe
ionization dynamics, we use absorbing boundary conditions [17],
which, when properly optimized [41], gently remove outgoing
electron flow at the boundaries of the numerical grid. This
is a crucial ingredient which is so far not much used in
nuclear dynamics. But it is essential in atoms/molecules where
observables from electron emission (explained below) are
very important.

The analysis of electron dynamics is performed through a set
of well-established observables [10, 17, 42, 43] that we briefly
recall here. As the laser field couples to the electronic dipole,
dipole response is the most prominent observable in many
studies [10, 13, 42, 44]. We compute the dipole moment of
electrons (with respect to ionic background) from the electronic
density as:

D(t) =
∫

d3r r ̺(r, t) . (5)

Spectral properties are then obtained from the time-frequency
Fourier transform D(t) → ˜D(ω) after unfolding the spectrum
of the exciting pulse [44]. Spectral analysis becomes particularly
simple for excitation by an instantaneous dipole boost. The
dipole strength becomes then ℑ{˜D(ω)} and the dipole power
spectrum |˜D(ω)|2.

For sufficiently strong excitation, electron emission becomes
important. It can be analyzed at various levels of sophistication
thanks to the use of absorbing boundary conditions mentioned
above. Simplest is the global measure, the total ionization which
can be computed from the given density as

Nesc(t) = N −
∫

d3r ̺(r, t) (6)

where N is the initial electron number.
More detailed observables are Photo-Electron Spectra (PES),

obtained from measuring the distribution of kinetic energies of
the emitted electrons, or their angular distribution. Measuring
both simultaneously yields Angular-Resolved PES (ARPES) for
which often valuable experimental data exist to compare with
[43]. The strategy to compute PES consists in defining a set of
“measuring points” rM near the absorbing boundaries, and to
record the time evolution of s.p. wave functions ϕn(rM, t) at these
points. The information thus gathered can be post-processed
in two ways. Simple time integration of |ϕn(rM, t)|2 yields the
amount of ionization at this measuring point. This together with
properly accounting for the solid angle �rM associated with
the vicinity of the measuring point direction yields the angular

distribution of emitted electrons [42, 45]. The PES is obtained
by Fourier transforming the s.p. wave functions at the measuring
point from time to frequency ϕn(rM, t) −→ ϕ̃i(rM,Ekin) and
identifying the kinetic energy as Ekin = k2/(2m) = h̄ω. This
delivers the PES from s.p. state i for emission in direction of the
measuring point rM. The total PES is then obtained by summing
up the contributions from each s.p. state

Y�rM
(Ekin) ∝

N
∑

n=1

∣

∣ϕ̃i(rM,Ekin)
∣

∣

2
. (7)

This simple Fourier transform applies to weak and moderate
fields. For stronger field one still needs a phase correction which
is explained in detail in [46].

3. RESULTS

3.1. Impact of SIC
We illustrate the importance of SIC for TDDFT on the example
of the Na5 cluster irradiated by a femtosecond (fs) laser pulse
with FWHM of 10 fs, intensity I = 2.2 × 1011 W/cm2, and
frequency ωlas = 10.9 eV, well above ionization threshold
(ionization potential IP= 4.1 eV) and far away from dominant
eigenfrequencies of the system. We use the simple ADSIC
approximation (which is found to be appropriate for Na systems
[35, 36]) and compare it to LDA. Figure 1 collects the results. The
top right part of the figure shows the (planar) ionic configuration.
The lower right panel compares the sequence of s.p. energies
for LDA and ADSIC. The latter produces a global down-shift
of the s.p. levels as compared to those from LDA (by 1.2 eV
for the HOMO) due to the enhanced Coulomb attraction (self-
interaction neutralizes the asymptotic Coulomb field). The IP
can be checked independently by comparing with the difference
of energies of Na5 and Na+5 (Koopman’s theorem) and ADSIC
matches this energy difference perfectly while LDA fails badly. As
a consequence, the s.p. spectrum from ADSIC carries the correct
information on the ionization threshold.

The left panels show the dynamical response of the system to
the laser pulse. The left lower panel displays the time evolution
of the electronic dipole moment along laser polarization (x axis).
There is almost no difference between LDA and ADSIC for
the dipole signal. This is also found for the optical absorption
strength (not shown here) which is no surprise because the
optical absorption is another way to look at the dipole response.
There is no urgent need to employ SIC when computing these
quantities. This is plausible because the dipole signal is a global
signal deduced from the density and density is, by construction,
well-described in DFT.

The left upper panel shows the time evolution of the total
ionization Nesc (see Equation 6). This signal reveals a dramatic
difference between ADSIC and LDA. This is no surprise as
ADSIC provides a larger IP than LDA (and altogether, more
deeply bound levels, see bottom right panel). The reason is that,
in TDDFT, ionization is mediated via the actual s.p. energies such
that it is crucial to put the s.p. energies right within DFT.
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FIGURE 1 | Comparison of (TD)LDA and ADSIC for the Na5 cluster. (Top right) Sketch of ionic configuration of Na5. (Bottom right) Single particle (s.p.) energies for

spins up (full lines) and down (dashes). (Left) Time evolution of total ionization Nesc (top) and of the electronic dipole in the x direction (bottom) after irradiation by a

laser pulse polarized along x with ωlas = 10.9 eV, Tpulse = 24 fs, and I = 2.2× 1011 W/cm2.

3.2. Optical Response
Optical response is the most prominent observable for dynamical
properties of a system. Its role in nuclear physics and inmolecular
or cluster physics is similarly important. The conceptually
simplest way is to compute it by spectral analysis of a time-
dependent simulation (see section 2.3). Traditionally, it has
mostly been computed by linearized TDDFT which complicates
coding, but simplifies calculations, particularly if a system has
certain symmetries (see e.g., [47–49]). The pathway through
spectral analysis is competitive in fully 3D calculations and it is
more flexible as it also allows one to explore the transition to the
non-linear regime [50]. We use that here.

Figure 2 shows optical absorption strengths for a nucleus,
208Pb, and three different electronic systems of different bond
types, a metal cluster Na40, a covalent molecule H2O, and
the noble gas Ar atom. The three electronic systems have
significantly different spectra. For Ar and H2O, the strength is
heavily fragmented over many dipole states, most of them having
predominantly the structure of one-particle-one-hole excitations.
Quite different is the metallic Na40, with one dominating and
almost exhaustive peak, the highly collective Mie plasmon [54,
55]. The nuclear spectrum looks very similar to the cluster case.
It is dominated by the a strong collective mode, the giant dipole
resonance [56]. The similarity is not surprising as both, the
metallic electron cloud and the nucleons, have the same bulk
limit, namely a Fermi liquid [57].

The nuclear dipole resonance and the cluster’s plasmon
resonance both have some width. However, the mechanisms
producing these widths is different. The nuclear dipole resonance

lies in the nucleon continuum and a large part of the width
stems from limited lifetime due to nucleon emission. The
remaining part is due to dissipative processes from nucleon-
nucleon collisions. Both processes also play some role in metal
clusters. But here the dominant broadening mechanism is given
by thermal fluctuations of the underlying ionic configuration
[58, 59].

3.3. Laser Excitation
Laser pulses offer a unique and extremely versatile tool for
dedicated probing and switching of electronic systems. Coherent
pulses in keV and MeV regime, as required for nuclear
experiments, appear at the horizon [60–62], but deliver not yet
sufficient field strengths to attain the most interesting multi-
photon regime. This day will come and thus it is worth having
a look at electronic applications and see what experiments with
coherent pulses can reveal.

A great deal of information is gained when combining laser
excitations with detailed analysis of the emitted electrons. The top
panels of Figure 3 show as an example ARPES produced from
the Ar atom (left) and the Na+9 cluster (right) after irradiation
by a few-cycle laser pulse. Cuts along a fixed angle represent the
PES and cuts along a fixed kinetic energy the angular distribution.
The PES decrease with increasing Ekin because more photons
have to cooperate to supply the higher emitted energy. And yet,
one finds a plateau around 20 eV which is typical for above-
threshold ionization spectra [63, 64]. The two different systems
deliver different patterns, demonstrating that system properties
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FIGURE 2 | Optical absorption spectra for three electronic systems as indicated and the nucleus 208Pb. The electronic systems are computed with TDLDA + ADSIC

as explained in section 2. The nucleus is computed with nuclear TDHF using the code of [37] (for details see Reinhard et al. [50]) and three different Skyrme

parameterizations as indicated, SkI3 from [51], SLy6 from [52], and SV-bas from [53]. The vertical dashed lines indicate the particle continuum thresholds in each

system, the electronic ionization potential (IP) and the neutron threshold in the nuclear case.

form the signal which, in turn, can be used to analyze a system by
ARPES studies.

One of the interesting features in ARPES from very short
pulses is the asymmetry of the angular distributions which
appears in various energy bins for both systems. Indeed, in such
laser pulses, the carrier-envelop phase φCEP, see Equation (2),
becomes a decisive laser parameter because the CEP controls the
net momentum exerted on the electron cloud and so impacts
the pattern of the pulse dramatically which, in turn, can have a
strong impact on laser-induced electron dynamics. For example,
photo-electron emission induced by few-cycle laser fields can
be controlled by the CEP, leading to a pronounced forward-
backward (also called “right-left”) asymmetry in the PES. We can
quantify this asymmetry by a simple number as

η(Ekin) =
∫ 2

0 dθ Y(Ekin, θ)−
∫ 180◦
180◦−2

dθ Y(Ekin, θ)
∫ 2

0 dθ Y(Ekin, θ)+
∫ 180◦
180◦−2

dθ Y(Ekin, θ)
(8)

where Y(Ekin, θ) is the ARPES strength at given kinetic
energy and emission angle. For the opening angle in the
integration, we take 2 = 15◦ in accordance with many
experiments in that field (see e.g., [65]). A value of η =
+1 indicates prevailing forward emission and η = −1

backward dominance. Condensing the angular distribution into
one compact number η allows one to visualize trends with
laser parameter. The lower panel of Figure 3 shows an energy-
integrated asymmetry η as a function of φCEP. The effects are
impressive. Tuning φCEP allows one to switch emission from
forward to backward and vice versa. And we also see a significant
system dependence of the trend. The marked difference between
both systems can be explained by the difference in their optical
response displayed in Figure 2. The 1.8 eV laser frequency
lies far below any considerable dipole strength for Ar while
it comes close to the strong Mie plasmon resonance for the
Na cluster. For a detailed discussion with more material see
Reinhard et al. [29].

3.4. Impact of Dissipation
So far, we have demonstrated the use of TDDFT in electronic
systems on a few selected examples. TDDFT has shown to be
a robust and versatile tool for simulating dynamical processes.
However, the more energy comes into a system, the more
likely come dynamical correlations beyond TDDFT into play.
This is also well-known in nuclear physics and a variety of
methods has been developed to deal with those correlations.
They employ all semi-classical concepts and most of them
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FIGURE 3 | Ar atom and Na+9 cluster excited by a laser with ωlas = 1.8 eV, I = 6× 1013 W/cm2, pulse length Tpulse = 6 fs (corresponding to 2.5 optical cycles), and

φCEP = 270◦. Upper panels: ARPES yield Y in the plane of kinetic energy Ekin and emission angle θ , for Ar (left) and Na+9 (right). Lower panel: asymmetry parameter

η(Ekin) integrated on the Ekin interval [23eV : 31eV].

are based on the Vlasov-Ühling-Uhlenbeck collision term [66]
(for reviews see [67, 68]). This has also been applied to
clusters [10, 69, 70]. But laser excitation processes sail often
for a long initial time span through the quantum regime.
There is thus a need for a quantum description of dynamical
correlations from electron-electron collisions and associated
dissipation. Just recently, there were promising moves to
develop such approaches, one along the line of stochastic jumps
(comparable to the collisions in semi-classical methods) [71–
73] and another one with the more empirical relaxation-time
approximation (RTA) [74, 75]. Both approaches are based on
two-body collisions implying the in-medium electron-electron
interaction and take care of the available phase space of
final states. RTA, for which we will show an example here,
maps cross-section and phase space into a collision rate with
which the system relaxes toward local-instantaneous equilibrium,
the latter being evaluated at each relaxation step by density-
and current-constrained minimization of the free energy. By

construction, RTA maintains the continuity equation and
energy conservation.

Figure 4 exemplifies the consequences of the dissipation
thus introduced with an application of RTA to resonant laser
excitation of a Na40 cluster. The lower left panel shows the effect
on the dipole signal. The additional damping introduced by RTA
is clearly visible. It is interesting to note that the TDLDA signal
is also damped, although at lower rate. This damping stems from
electron emission which is the dominant cooling mechanism in
TDLDA. This is corroborated by the time evolution of ionization
shown in the lower right panel. The trends agree up to about
100 fs, the same span where the dipole signals agree. But then
the RTA curve levels off whereas TDLDA continues to emit.
That happens because RTA has meanwhile converted much of
the initial excitation energy into internal heat and so distracted it
from moving into direct electron emission.

A comparison of energy balances is detailed in the upper
panel of Figure 4. It shows the contributions from intrinsic
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FIGURE 4 | Time evolution of ionization (lower right), dipole moment (lower left), and the various contribution to the energy (upper panels) for the case of Na40 excited

by a laser with frequency ω = 2.7 eV, total pulse length Tpulse = 100 fs, and intensity I = 1.3× 1010 W/cm2. Left upper panels show results from RTA and right upper

panels from TDLDA.

energy and energy invested in electron emission for TDLDA and
RTA (for details of the definition see [75]). It confirms what
we have inferred from the ionization trends in the lower right
panel. Most interesting is the large difference in the total energy
absorbed from the laser pulse (black line). In pure TDLDA, the
entrance channel for energy absorption, the dipole channel, has
limited capacity as one can see from the onset of oscillations
in the absorption signal. Dissipation in RTA clears the entrance
channel and thus allows more energy to come in. Altogether,
we see that dissipation can make a difference. Note, however,
that this example deals with a considerable excitation energy and
that deviations from TDLDA develop only slowly. In turn, we
can conclude that TDDFT provides a pertinent description of
dynamical processes in its early stages. The time scale of validity
of TDDFT depends on excitation energy: the lower the excitation
is, the longer TDDFT holds.

4. CONCLUSIONS

We have presented a couple of typical applications of time-
dependent density functional theory (TDDFT) to electronic

dynamics in clusters and molecules, as triggered by laser pulses.
Basis of our description is TDDFT propagated in real time
which delivers a versatile and robust tool for a great variety of
dynamical situations. At the numerical side it is important to
implement absorbing boundary conditions which then allow a
detailed description of electron emission. We have addressed
in detail two known defects of TDDFT in the local density
approximation, namely the self-interaction error and the lack
of dynamical correlations. The first problem is less important
in nuclear physics, but highly relevant in electronic systems. It
is solved by a self-interaction correction (SIC) which still can
be formulated within a mean field theory (thus affordable) and
which is particularly crucial if electron emission plays a role. The
second problem, also important in nuclear dynamics, requires
extensions beyond TDDFT for which manageable quantum
mechanical approximations are presently being developed.

We have considered typical examples of applications in
clusters and molecules excited by a laser pulses of different
strengths. In all cases, the early response of the systems addresses
predominantly the electrons and remains fully in the quantum
mechanical regime (as properly described by TDDFT). In
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particular, we have focused on an analyzing tool which is
not yet available in nuclear dynamics, namely widely tunable
laser excitation in combination with detailed resolution of the
distributions of the emitted electrons with respect to angles and
kinetic energies. We have demonstrated that such a setup delivers
valuable information on the system and its dynamical response.

Finally, the inclusion of dissipative features is a key step to
address the long-time evolution of dynamics far off-equilibrium
in which one observes, in addition to ionization, a thermalization
of the electron cloud. Formerly, the problem was attacked
with semi-classical approaches much similar as done in nuclear
dynamics, particularly in heavy-ion collisions. This approach is
less justified in connection with laser excitations for which the
(electronic) system stays much longer in the quantum regime.
Promising and manageable solutions to deal with dissipation
in the quantum regime are just presently coming up. First
results from treating dynamical correlations in the relaxation-
time approximation (RTA) show that dissipation has a crucial
impact on the energy balance in the system (internal energy vs.
electron emission) and on the energy intake from the laser pulse.

Proper treatment of dynamical correlations is still in its infancy
and will attract much future development.
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Aiming to produce new neutron-rich nuclei at N = 126, the multi-nucleon transfer

reactions 136Xe+194Ir, 208Pb are investigated by using the GRAZING model and

the three-dimensional time-dependent Hartree-Fock (TDHF) approach. Deexcitation

processes of the primary fragments are taken into account in both models. Comparison

with the experimental data of 136Xe+208Pb at Ec.m. = 450 MeV indicates that the isotopic

production cross sections around the entrance channel can be well reproduced by both

models. The results of GRAZING indicate that 136Xe+194Ir is a promising candidate for

producing new neutron-rich isotones with N = 126. The limitation of using TDHF to

investigate multi-nucleon transfer reactions is also discussed.

Keywords: multi-nucleon transfer reactions, neutron-rich nuclei, GRAZING, TDHF, particle number projection

1. INTRODUCTION

Neutron-rich nuclei are of great importance for understanding the astrophysical r-process [1]. For
instance, those around the closed neutron shell N = 126 can provide information on the solar r-
abundance distribution [2]. The neutron-rich radioactive isotopes can also be used as projectiles for
synthesizing super-heavy nuclei which is one of the most interesting challenges in nuclear physics.
However, new heavy neutron-rich nuclei out of limits of the present nuclear chart are hardly to
be produced via traditional ways, such as fusion reactions with stable beams at low energies or
fragmentation of heavy projectile at relativistic energies.

In recent years, theoretical predictions indicate that multi-nucleon transfer (MNT) reactions
would be a possible route to produce heavy neutron-rich nuclei far away from the stability
line [3, 4]. The experimental results of 136Xe + 198Pt at the incident energy of 8 MeV/nucleon [2]
show that the production cross sections of neutron-rich nuclei with N = 126 are orders of
magnitude larger than those obtained in fragmentation reaction of 208Pb (1 AGeV) + Be [5]. But
in some other experiments of MNT reactions with stable beams such as 64Ni + 207Pb [6] and
136Xe + 208Pb [7, 8], no new neutron-rich nuclei is detected. Based on theN/Z equilibrium concept,
theoretical predictions show that using neutron-rich radioactive beams can remarkably improve
the production cross sections of neutron-rich isotopes along N = 126 [9, 10]. However, due to the
fact that the experimental intensities of radioactive beams are orders of magnitude lower than stable
beams, the advantage of using radioactive beams may be canceled. Opportunities will arise in the
near future on the second generation radioactive beam facilities like the European EURISOL [11].
At the present time, to find an optimum stable projectile-target combination are highly appealed.

To describe MNT reactions, many theoretical models are developed. For example, the
multidimensional Langevin model shows great success on predicting the isotopic production
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cross sections, even for those nuclei far away from projectile and
target [3, 4, 12]. Semi-classical GRAZING model [13, 14] and
the complex Wentzel-Kramers-Brillouin (CWKB) model [15]
can well describe transfer process in peripheral collisions. In
GRAZING model, the reactants move on classical trajectories in
the combined field of Coulomb repulsion and nuclear surface-
surface attraction. Surface modes of the colliding nuclei are
taken into account. Independent single nucleon transfer between
the projectile-like and target-like nuclei during the collision is
governed by the quantum coupled equations [13, 14]. Neutron
evaporation is considered for the excited primary fragments. The
mass, charge, energy, and angular momentum distributions of
the products produced in grazing collisions can be obtained. For
details of GRAZING model and its applications (see, e.g., [16–
19], and references therein). The dinuclear system model can
reproduce the experimental data related with quasi-fission or
deep-inelastic collisions [10, 20–23]. The improved quantum
molecular dynamics (ImQMD) model [24–26] is capable of
describing collisions from central to very peripheral regions on
a microscopic basis, the widths of isotopic distributions can be
reproduced in ImQMD since stochastic two-body collisions are
taken into account [27–29]. The time-dependent Hartree-Fock
(TDHF) theory shows success in describing few-nucleon transfer
process [30–34]. Recently, the stochastic mean-field (SMF)
approach beyond TDHF [35] has been proposed to investigate
the dampedMNT reaction 136Xe + 208Pb, the experimental broad
mass distribution can be reproduced.

In this work, the GRAZING model and TDHF theory
incorporating with GEMINI++1 [36] are adopted to investigate
the production of neutron-rich nuclei in MNT reactions. The
TDHF theory [37] is based on the independent particle picture
and is a good approximation to the nuclear many-body problem.
It is capable of describing low-energy heavy-ion reactions and
provides insight on the average behavior of the dynamics.
The state-of-art TDHF calculations are performed in a three-
dimensional (3D) framework without any symmetry constraints
due to the advances in computational power. It has been
applied for investigations on various subjects, for instance,
collective vibration [38, 39], fusion reaction [40, 41], fission
dynamics [42–44], dissipation mechanism [45–48]. Recently, 3D
TDHF is applied to MNT reactions [30–33, 49]. Fluctuation and
dissipation can not be properly described in TDHF since two-
body collisions and internucleon correlations are not included.
Thus, widths of the mass or isotopic distributions in MNT
reactions at incident energies above the Coulomb barrier are
underestimated in TDHF. To consider these effects in TDHF is
beyond the scope of this paper and further studied will be carried
out in the future.

This paper is outlined as follows. In section 2, the TDHF
approach and particle-number projection (PNP) method as
well as the numerical details are introduced. In section 3,
numerical results of the isotopic production cross sections in
both GRAZING and TDHF approach are shown. Dynamical
properties of the reactions are also discussed for TDHF. Finally,
a summary is drawn in section 4.

1https://bitbucket.org/arekfu/gemini

2. BRIEF INTRODUCTION TO TDHF
APPROACH

In this section, we briefly introduce TDHF formalism, PNP
method and the coupling to GEMINI++. Details of the TDHF
theory can be found in, e.g., [50, 51], and references therein. In
TDHF approach, time evolution for the single-particle states are
described by a set of coupled non-linear equations

ih̄∂tψα(r, t) = ĥ[ψν(r, t)]ψα(r, t), α, ν = 1, 2, · · · ,N, (1)

where ψα, ν(r, t) is the single-particle state and N is the total

number of states. ĥ is the self-consistent mean-field Hamiltonian
of single-particle motion and it is always related to Skyrme energy
density functional (EDF) which depends on local densities [52].
We underline that there are no adjustable parameters in the
TDHF approach. The uncertainty in TDHF calculations may
arise from the uncertainty of fundamental nuclear properties,
such as the distribution of shape deformation of the reactants in
their ground states. This can be obtained by preparing reactants
with deformation constraints. The above TDHF equations can be
derived from the variation of the action [53]

S =
∫

dt〈9|i∂t − Ĥ|9〉, (2)

where

9 = 1√
N!

det{ψα(r, t)}, α = 1, 2, · · · ,N, (3)

is the correlated many-body wave function of the system and is
given by a single Slater determinate.

In the present work, the 3D unrestricted TDHF code Sky3D
[51] with Skyrme SLy5 parametrization [54] is adopted for both
the static and dynamic calculations. The static HF calculations
are performed on 32 × 32 × 32 Cartesian grids with 1.0 fm
grid spacing in all three directions. In dynamical calculations, the
meshes are extended to 70× 32× 70 with the same grid spacing
in static HF. The projectile and target are initially placed at a
separation distance of 24 fm and then boosted with the associated
center-of-mass energy Ec.m. and the impact parameter b. The
time step △t is set to be 0.2 fm/c and six-order Taylor series
expansion is employed. The TDHF simulations are stopped when
the separation distance of the primary fragments after collision
reaches 30 fm. Since single-particle wave functions are partially
exchanged between the projectile-like and target-like nuclei in
the collision process, the outgoing states are not the eigenstates of

the particle-number operators (Ẑ for protons and N̂ for neutrons)
but superpositions of them. One can only get the expectation
(mean) values of the charge and mass numbers for each fragment
after collision. If one wants to get the distributions of proton
or neutron numbers in one of the primary fragments, one
should project the many-body states on good particle numbers
by introducing the PNP operator [50, 55]

P̂V (N
q) = 1

2π

∫ 2π

0
dφeiφ(N̂

q
V−Nq), (4)
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where q = n, p labels the nucleon species, and Nn means N
neutrons while Np means Z protons. The subscript V denotes
the region of coordinate space encompassing one of the primary

fragments, N̂
q
V = ∑Nq

α=12V (r) and 2V (r) = 1 if r ∈ subspace
V and 0 elsewhere. The integral is performed with an M−point
uniform discretion. For convergence,M is set to be 300.

The probability to find Nq particles in subspace V is then
obtained accordingly. The cross section of primary fragment with
neutron number N and charge number Z at a certain incident
energy is

σ (N,Z) = 2π

∫ bmax

0
P(N,Z; b)bdb, (5)

where P(N,Z; b) = P(N; b)P(Z; b) represents the probability to
find N neutrons and Z protons at the impact parameter b; bmax is
a cutoff impact parameter which depends on the incident energy
and should be large enough to guarantee that most of the transfer
cross sections are included. But it is not necessary to set bmax to be
too large, because the transfer probability is extremely small and
elastic collision dominates in very peripheral collisions. In this
work, we set it to be 10 fm for 136Xe+208Pb at Ec.m. = 450 MeV
and 13 fm for 136Xe+194Ir at Ec.m. = 720 MeV. b ranges from 0
to bmax with the interval1 b = 1 fm.

Deexcitation of the primary fragments are considered by using
the statistical code GEMINI++ with default parameters [36, 56].
All possible sequential binary decay modes, from emission of
nucleons and light particles through asymmetric to symmetric
fission as well as the γ -emission are included in GEMINI++.
The code needs information of a primary fragment including
charge andmass number as well as the excitation energies and the
angular momentum as the inputs. Detailed calculations of these
quantities can be found in Jiang andWang [34]. The deexcitation
of a certain projectile-like fragment (PLF) or target-like fragment
(TLF) should be repeatedMtrial times due to the statistical nature
of GEMINI++. Here Mtrial = 1, 000 is used. The number of
events in which final fragment with (Nfinal,Zfinal) is counted
and denoted as M(Nfinal,Zfinal). Then the final production cross
section is given as

σ (Nfinal,Zfinal) = 2π

∫ bmax

0

∑

N>Nfinal , Z>Zfinal

P(N,Z; b)

× M(Nfinal,Zfinal)

Mtrial
bdb. (6)

Owing to the intrinsic stochastic nature of the Monte Carlo
method employed in GEMINI++, Type A standard uncertainties
for the isotopic production cross sections are calculated in the
simplest case. The deexcitation process of a certain fragment is
performed ten times repeatedly with Mtrial = 1, 000 for each
time. Average values of σ (Nfinal,Zfinal) and the uncertainties can
be obtained straightforwardly. We find the uncertainties are very
small. For the sake of simplicity, the deexcitation process is
performed only once withMtrial = 1, 000 in this work.

3. RESULTS AND DISCUSSIONS

136Xe + 208Pb is a candidate reaction for the production of
neutron-rich nuclei at N = 126. The experiment at Ec.m. =
450 MeV was performed at Argonne in 2015 [8]. In Figure 1

we plot the calculated isotopic production cross sections of the
PLFs in this reaction. The results of GRAZING are shown as blue
solid lines while those of TDHF+GEMINI are presented as black
dashed lines. The experimental data are shown for comparison.
The production cross sections of the TLFs are also calculated but
have already been published in another paper [34]. One can find
that for Z = 51 − 53 and Z = 55 − 58, the magnitude of
the peak values can be reproduced by TDHF+GEMINI. Whilst
those for Z = 52, 53, 55, 56 can be reproduced by GRAZING. For
Z = 54, the peak values are overestimated in both models. This
is because the results of (quasi)elastic channels are not excluded
in our calculations. One can also find that better predictions are
obtained for proton pickup channels than stripping channels in
both models. As the number of transferred nucleons increases,
discrepancies between model predictions and the experimental
data get larger. These isotopes far away from the entrance channel
may be produced in strongly damped collisions. Such processes
can not be well estimated by the two models: two-body collisions
are not considered in TDHF [57, 58] while the GRAZING model
only takes grazing collisions into account.

However, no new neutron-rich nuclei were detected in
136Xe + 208Pb. The experiment results of 136Xe+198Pt at Ec.m. =
645 MeV [2] indicate that this reaction is a better candidate
to produce neutron-rich nuclei with N = 126. Calculations
of this reaction are performed by using both GRAZING and
TDHF+GEMINI. Unfortunately, no neutron-rich nuclei with
N = 126 is obtained in TDHF+GEMINI. The production
cross sections of those nuclei predicted by GRAZING are
given in Figure 2. Detailed discussions about the predictions
of TDHF on this reaction will be reported elsewhere. At the
end of this section, we will show some results of 136Xe + 194Ir
given by TDHF+GEMINI and discuss the limits of TDHF
approach on investigating MNT reactions when the incident
energy is much above the Coulomb barrier. In the following,
we concentrate on the predictions of GRAZING on neutron-rich
nuclei with N = 126.

In order to find another optimum projectile-target
combination for producing new exotic neutron-rich nuclei
with stable reactants, we carry out a systematic study on 15 MNT
reactions with projectile around 136Xe and target around 198Pt
at various incident energies by using GRAZING. The results
indicate that 136Xe + 194Ir is a surrogate reaction to produce
neutron-rich nuclei around N = 126. The production cross
sections of isotones with N = 126 in 136Xe + 194Ir are compared
with those of 136Xe + 208Pb and 136Xe + 198Pt. The center-of-
mass energy for all the three systems is set to be Ec.m. = 645 MeV
(this energy is the same as the experiment of 136Xe + 198Pt [2],
and we will show later that it is also an optimum energy for
136Xe + 194Ir). The simulation results are plotted in Figure 2

as open symbols. The experimental data of 136Xe + 198Pt taken
from [2] are shown as black solid squares for comparison. One
can first see that more N = 126 isotones with charge number

Frontiers in Physics | www.frontiersin.org 3 February 2020 | Volume 8 | Article 3833

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jiang and Wang Predictions of New Neutron-Rich Isotopes

FIGURE 1 | (Color online) Isotopic production cross sections of the PLFs for Z = 50–58 (A–I) in 136Xe + 208Pb at Ec.m. = 450 MeV. The results of GRAZING and

TDHF+GEMINI are shown as blue solid and black dashed lines, respectively. The experimental data are taken from Barrett et al. [8] and shown as red solid squares.

Z 6 78 can be produced in both 136Xe + 194Ir and 136Xe + 198Pt
rather than 136Xe + 208Pb. Particularly, the system 136Xe + 194Ir
has huge advantages for producing N = 126 isotones with
Z 6 74. Those nuclei are out of the limits of the present nuclear
landscape and are of great interest for nuclear and astro-nuclear
physics. One can also find that the experimental data are
underestimated by GRAZING. This can be understood since
only peripheral collisions are treated in GRAZING and those
nuclei with large number of nucleon transferred are produced in
damped collisions at small impact parameters.

To find an optimum incident energy to produce more
neutron-rich nuclei with N = 126 in 136Xe + 194Ir, the
production cross sections of N = 126 isotones with Z = 72− 77
at various incident energies from Ec.m. = 1.07VB to 1.85VB (VB is
the Bass barrier [59] and it is around 410 MeV for this reaction)
are calculated by using GRAZING. The results are presented in
Figure 3. It can be seen that very neutron-rich isotones with
Z 6 74 can not be produced if Elab/A 6 5.5 MeV. The cross
sections of all these isotones increase with the increasing incident
energy when Elab/A < 6.5 MeV. However, when Elab/A is in
the range of 7–9 MeV, plateau-like structures are observed for all
the curves. This phenomenon indicates that the production cross
sections of those nuclei are insensitive to the incident energy if
7 6 Elab/A 6 9 MeV.

In Figure 4 we show the isotopic production cross sections of
the TLFs with Z = 72 − 77 in 136Xe + 198Pt and 136Xe + 194Ir
at Ec.m. = 645 MeV (Elab/A ≈ 8 MeV) as black dashed
and red solid lines, respectively. It can be found that for nuclei
on the proton-rich side, larger production cross sections are
obtained in 136Xe + 194Ir. For isotopes with Z = 76 and
77, more neutron-rich ones are produced in 136Xe + 198Pt.
Whilst for Z = 75 the two systems give comparable results for
isotopes on the neutron-rich side. As Z decreases, the advantage
to produce more neutron-rich nuclei arises in 136Xe + 194Ir.
Note that the results of Z = 72 in 136Xe + 198Pt are not
given by GRAZING. The above results of the two reactions are
difficult to be understood through the N/Z equilibrium process
because N/Z is around 1.52 for 136Xe and 194Ir while it is about
1.54 for 198Pt and 208Pb, respectively. It might be related with
the Qgg value effect, where Qgg is the ground state-to-ground
state Q value. Other quantum effect like shell effect might also
play a role. Further studies should be carried out to check
these discussions.

Finally, in Figure 5 we show the density contour plots of
136Xe + 194Ir at some special reaction stages in TDHF for two
different initial configurations at Ec.m. = 720 MeV (Elab/A ≈ 9)
and b = 6 fm. Isodensities at half the saturation density (ρ0/2 =
0.08 fm−3) is plotted as black solid lines. We should mention
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FIGURE 2 | (Color online) Production cross sections of N = 126 isotones

predicted by GRAZING in three different systems at Ec.m. = 645 MeV. The

results of 136Xe + 208Pb, 198Pt, and 194 Ir are presented as blue open circles,

black open squares and red open triangles, respectively. The experimental

data of 136Xe + 198Pt are taken from Watanabe et al. [2] and shown as black

solid squares. The lines are drawn to guide the eye.

FIGURE 3 | (Color online) Production cross sections of neutron-rich N = 126

isotones with Z = 72− 77 in 136Xe + 194 Ir as a function of the incident energy.

The lines are drawn to guide the eye.

that in TDHF the projectile and target are both deformed in their
ground states with β2 = 0.064 and 0.154, respectively. Since the
deformation of 136Xe is very small, we only take into account the
orientation effect of the deformed 194Ir at the beginning of the
dynamical calculations. The two initial configurations are named
“tip collision” (the symmetry axis of 194Ir is set parallel to the
bombarding direction: z-axis) and “side collision” (the symmetry

FIGURE 4 | (Color online) Isotopic production cross sections of the TLFs with

Z = 72− 77 (A–F) in 136Xe + 198Pt and 136Xe + 194 Ir at Ec.m. = 645 MeV,

which are plotted as black dotted and red solid lines, respectively.

axis of 194Ir is set parallel to x-axis). It can be found that in both
configurations, the composite system is strongly elongated before
rupture of the neck. The primary fragments produced at the
end of the dynamical calculations also have large deformations.
Similar results are obtained for TDHF+GEMINI in 136Xe + 198Pt
at Ec.m. = 645 MeV. Such large deformation in the exit channel
makes the primary fragments have very large excitation energies.
This leads to strong evaporation of nucleons in the deexcitation
process. So no neutron-rich isotope with N = 126 is observed in
TDHF+GEMINI for 136Xe + 194Ir and 136Xe + 198Pt reactions
when the incident energy is much larger than the Coulomb
barrier. It is well-known that mean-field model such as TDHF is
suitable for low-energy reactions, however, the lack of two-body
collisions limits the predictive power of TDHF on estimating the
yields of MNT reactions when the incident energy is much above
the barrier.

4. SUMMARY

Employing the semi-classic GRAZING model and the
microscopic TDHF approach, we have investigated the MNT
reactions of 136Xe + 194Ir, 208Pb. Neutron evaporation is
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FIGURE 5 | (Color online) Density contour plots of 136Xe + 194 Ir for two different configurations (upper panels: “side collision” and lower panels: “tip collision”) at

Ec.m. = 720 MeV and b = 6 fm. Five different reaction stages are given: (A,F) the initial stage at t = 0 fm/c, (B,G) the reactants just contact with each other, (C,H) the

composite system has the most compact geometric shape, (D,I) the neck is going to rupture and (E,J) the end of the dynamical calculations. The isodensities of 0.08

fm−3 are shown as black solid lines.

considered in GRAZING while GEMINI++ is coupled with
TDHF to deal with the deexcitation process. The calculated
production cross sections of the PLFs for 136Xe + 208Pb
at Ec.m. = 450 MeV are compared with the experimental
data. The model predictions can well describe the yields of
nuclei near the projectile. The predictions of GRAZING on
136Xe + 194Ir show that this reaction has the advantage to
produce more neutron-rich nuclei with N = 126 compared
with 136Xe + 198Pt. The latter one has been carried out at
GANIL [2] and the results are inspiring. No new neutron-rich
isotope is observed for these two reactions at energies much
above the barrier in TDHF+GMINI which might be interpreted
as the lack of two-body collisions in the mean-field theory.
Further investigations on 136Xe + 194Ir by using other theoretical
models with two-body collisions included, such as ImQMD, are
in progress.
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In the search for superheavy elements quasifission reactions represent one of the reaction

pathways that curtail the formation of an evaporation residue. In addition to its importance

in these searches quasifission is also an interesting dynamic process that could assist

our understanding of many-body dynamical shell effects and energy dissipation thus

forming a gateway between deep-inelastic reactions and fission. This manuscript gives

a summary of recent progress in microscopic calculations of quasifission employing

time-dependent Hartree-Fock (TDHF) theory and its extensions.

Keywords: time-dependent Hartree-Fock, quasifission, superheavy elements, multi-nucleon transfer, time-

dependent random phase approximation

1. INTRODUCTION

The ongoing search for discovering new elements in the superheavy regime is perhaps the most
exciting but at the same time challenging tasks in low-energy nuclear physics [1]. These searches
were historically motivated by theoretical predictions of an island of stability, somewhat detached
from the far end of the chart-of-nuclides [2–5], due to quantum mechanical shell closures. The
experimental search for the so called superheavy elements (SHE) was initially done by using target
projectile combinations that minimized the excitation energy of compound nuclei that was formed
in reactions studied in the vicinity of the Coulomb barrier. For this reason these reactions are
commonly referred to as cold fusion reactions and primarily involved closed shell nuclei, such as
208Pb target and projectiles in the chromium to zinc region. The cold fusion experiments were
able to produce elements Z = 107–113 [6–8], but showed no indication that extending them to
heavier elements were feasible. The identification of a SHE is done through the decay properties of
a formed evaporation residue. In such reactions involving heavy elements the dominant reaction
processes are quasifission (QF) and fusion-fission (FF), which are expected to strongly suppress
the formation of an evaporation residue at higher excitation energies. For this reason it was a
major surprise to observe that the so called hot fusion reactions, despite of their higher excitation
energy, were able to synthesize elements Z = 113–118 [9, 10]. The hot fusion reactions utilized
actinide targets with 48Ca projectiles. To further pursue the hot fusion reactions with heavier
projectiles to reach elements Z > 120 requires a deeper understanding of the reaction pathways
leading to an evaporation residue, particularly QF and FF components. In all of these reactions
the evaporation residue cross-section is dramatically reduced due to the quasifission (QF) and
fusion-fission (FF) processes. These processes occur during the reactions of heavy systems and
correspond to excited fission channels in the classically allowed regime above the barrier and
require a combination of statistical and truly dynamical approaches which are not necessarily
confined to a collective subspace. Fusion-fission occurs after the formation of a composite system
which then fissions due to its excitation, ultimately resulting in a fragment distribution that is
peaked at equal mass breakup of the composite system. Quasifission occurs at a considerably
shorter time-scale than fusion-fission [11–13] and is characterized by reaction fragments that differ
significantly in mass from the original target/projectile nuclei. Quasifission for being one of the
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primary reaction mechanism that limits the formation of
superheavy nuclei [14–16] has been the subject of intense
experimental studies of [11–13, 17–24, 24–34]. Studies have also
shown a strong impact of the entrance channel characteristics,
including deformation [18, 19, 22, 23, 35–37] and shell
structure [28] of the reactants. The final phase of the dynamics is
also impacted by the fissility of the composite system [26, 29], its
neutron richness [32], and by shell effects in the exit channel [12,
13, 20, 23, 24, 31, 38–40]. A number of theoretical approaches
have been developed that describe the quasifission in terms
of multi-nucleon transfer (MNT) processes [41–47]. Recently,
time-dependent Hartree-Fock (TDHF) theory have proven to be
an excellent tool for studying QF dynamics, and in particular
mass-angle distributions and final fragment total kinetic energies
(TKE) [31, 32, 34, 37, 45, 48–56]. While the fragments produced
in TDHF studies are the excited primary fragments [57] a number
of extensions based on the use of Langevin dynamics have been
successfully applied to de-excite these fragments [55, 56, 58–
60]. Theoretical studies of quasifission dynamics have taught us
that dynamics themselves may be dominated by shell effects [47,
61]. Despite the apparent strong differences between fission and
quasifission, it is interesting to note that similar shell effects are
found in bothmechanisms [54]. Quasifission can then potentially
be used as an alternative mechanisms to probe fission mode
properties. For instance, this could provide a much cheaper way
than fusion-fission to test the influence of 208Pb shell effects in
super-asymmetric SHE fission.

2. MICROSCOPIC APPROACHES

The underlying approach to study quasifission on a microscopic
basis is the time-dependent Hartree-Fock (TDHF) theory [61–
64]. Alternative approaches employ Langevin dynamics [65–67].
Indeed, the TDHF calculations of the quasifission process have
yielded results that not only agree with the broad features of
the experimental measurements but also shed insight into the
relationship of the data to the properties of the participating
nuclei. Such features include static deformation that induces
dependence on the orientation of the nuclei with respect
to the beam axis, shell effects that can predict the primary
fragment charges, as well as the dependence of quasifission
on neutron-rich nuclei. TDHF calculations give us the most
probable reaction outcome for a given set of initial conditions
(e.g., energy, impact parameter, orientation). However, quantum
mechanically a collection of outcomes are possible for each of
these initial conditions. In order to compute such distributions,
one must go beyond TDHF and introduce methods to calculate
distribution widths or fluctuations for these reactions. Much
effort has been done to improve the standard mean-field
approximation by incorporating the fluctuation mechanism into
the description. At low energies, themean-field fluctuationsmake
the dominant contribution to the fluctuation mechanism of the
collective motion. Various extensions have been developed to
study the fluctuations of one-body observables. These include
the time-dependent random phase approximation (TDRPA)
approach of Balian and Vénéroni [68–72], the time-dependent

generator coordinate method [73], or the stochastic mean-field
(SMF) method [74, 75]. The effects of two-body dissipation on
reactions of heavy systems using the time-dependent density
matrix (TDDM) [76, 77] approach have also been recently
reported [78, 79]. It is also possible to compute the probability
to form a fragment with a given number of nucleons [80–83],
but the resulting fragment mass and charge distributions are
often underestimated in dissipative collisions [71, 84]. Recent
reviews [47, 61] succinctly summarize the current state of
TDHF (and its extensions) as it has been applied to various
MNT reactions.

3. INSIGHTS FROM TDHF AND BEYOND

Experiments to discover new elements are notoriously difficult,
with fusion evaporation residue (ER) cross-sections in pico-
barns (for a recent experimental review see [85]). This cross-
section is commonly expressed in the product form [86]

σER =
Jmax
∑

L=0

σcap(Ec.m., L)PCN(E
∗, L)Wsur(E

∗, L), (1)

where σcap(Ec.m., L) is the capture cross-section at center of
mass energy Ec.m. and orbital angular momentum L. PCN is the
probability that the composite system fuses into a compound
nucleus (CN) rather than breaking up via quasifission, and
Wsur is the survival probability of the fused system against
fission. It is thus clear that to have a good handle on the
evaporation residue cross-section estimates it is important to
understand each of these terms as well as possible. In this
endeavor both theory and experiment can have a complementary
role. Among these reaction mechanisms quasifission and fusion-
fission can be on the order of millibarns, making it easier to study
experimentally. However, the extraction of the PCN requires the
proper disentangling of quasifission from fusion-fission [87–89]
as it may be given by

PCN = σfusion

σcapture
= σcapture − σquasifission

σcapture
. (2)

Of these cross-sections fusion-fission arises from an excited
and equilibrated composite system and therefore peaked around
equal mass breakup as calculated in a statistical approach [14, 16,
90–92]. On the other hand, quasifission, which is a faster process
and thus not fully equilibrated, could also contribute to the equal
breakup regime. Consequently, experimental analysis could use
assistance from theory to discern between the two processes.
The capture cross-section, being the sum of quasifission, fusion-
fission, and evaporation residue is relatively easy to measure or
calculate and TDHF predictions using the density-constrained
TDHF (DC-TDHF) approach have shown to give a relatively
good results [52, 93]. Below, we discuss various aspects of
the progress done in studying quasifission using TDHF and
its extensions.

3.1. Mass Angle Distributions
Study of quasifission together with capture is intimately related
to understanding the process for forming a compound nucleus,
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the quantity named PCN in Equation (1) [87]. Figure 1 shows
the time-evolution of the 48Ca + 249Bk reaction at Ec.m. =
234 MeV and orbital angular momentum L/h̄ = 60 [54]
and the initial orientation of the 249Bk with respect to the
collision axis β = 135◦. For this orbital angular momentum
and energy TDHF theory predicts quasifission. As the nuclei
approach each other, a neck forms between the two fragments
which grows in size as the system begins to rotate. Due to
the Coulomb repulsion and centrifugal forces, the dinuclear
system elongates and forms a very long neck which eventually
ruptures leading to two separated fragments. In this case
the final fragments are 203Au and 94Sr. While the outcome
of such reactions in a single TDHF evolution vary greatly
depending on the initial conditions, analysis of the fragments’
properties can begin to suggest general behavior for systems
undergoing quasifission. For example, the composition of the
reaction products can be influenced by shell effects in the
outgoing fragments [54] which can be inferred by the slight pear
shape of the light outgoing fragment at the point of scission
in Figure 1.

However, the result from a single TDHF trajectory is
difficult to extrapolate to the system as a whole so systematic
investigations are often performed. As the reaction products
predicted by TDHF give only the most probable outcome
for any given collision geometry and energy, quantities like
mass angle distributions produced by direct TDHF calculations
result in collections of discrete points. By collecting data
from large numbers of TDHF evolutions one can reveal
deeper insights into the quasifission process. Recent studies
of the 48Ca+249Bk reaction at Ec.m. = 234 MeV with the
TDHF approach went beyond solely considering the extreme
orientations of the deformed 249Bk nucleus by undertaking
calculations spanning both a range of orientations and a range
of angular momenta. The orientation of the deformed 249Bk
was changed by 15◦ steps to cover the full range (0, π) with
orbital angular momentum L changing in units of 10h̄ from
0 to quasielastic collisions. A total of 150 TDHF collisions
were cataloged and analyzed. This allows for the study of

FIGURE 1 | Quasifission in the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV and

orbital angular momentum L/h̄ = 60 and the orientation of the 249Bk with

respect to the collision axis β = 135◦. The darkening of tones depict

increasing excitation.

correlations between, e.g., mass, angle, kinetic energy, as well as
to predict distributions of neutron and proton numbers at the
mean-field level.

In Figure 2A we plot the mass angle distribution (MAD)
for this reaction. Figure 2B shows the corresponding yield in
arbitrary units as a function of the mass ratio MR = M1/(M1 +
M2), whereM1 andM2 are the masses of the final fragments. We
note that the yields are strongly peaked at MR ∼ 0.33 and 0.67,
with a full width at half maximum FWHM ≃ 0.1 corresponding
to a standard deviation σMR ≃ 0.042. The purpose of this figure is
to compare quantitatively the relative contributions to the yields
when going from central to peripheral collisions. For instance, we
see that, because of the 2L + 1 weighting factor, the most central
collisions with L ≤ 20h̄, which are found at backward angles,
have the smallest contribution to the total yield. Despite the
discrete nature of the data, the tight grouping of points indicates
a peak in production probability in certain mass regions which
will be discussed further in the next section.

While nucleon transfer fluctuations can be calculated in
TDHF, the ability to compare with experiment is still limited
by the fact that TDHF vastly under predicts the widths of these
distributions. Ideally, calculations would account for fluctuations
in quantities, such as particle transfer, scattering angles, and
total kinetic energies in the exit channel to more closely
obtain what is observed experimentally. The simplest method
for calculating these widths is the particle-number projection
for the final fragments [81–83, 94]. However, these widths
are still seriously underestimated. This is where extensions,
such as TDRPA [68, 70–72] and SMF [74, 75] have proved
to be vital theoretical tools for studying deep inelastic and
quasifission reactions as both techniques provide methods to
calculate both fluctuations and correlations of neutron and
proton transfer based on a TDHF trajectory. Figure 3 shows
predicted mass angle and mass energy distributions for the
176Yb +176 Yb system from TDRPA. Production cross-sections
are obtained by integrating the probabilities calculated from
the predicted fluctuations over a range of impact parameters.
Such calculations further extend the insight offered by the base
TDHF theory and promise to be of great use for designing future
MNT experiments.

An alternate approach to TDRPA calculations for beyond the
mean-field approximation can be formulated by incorporating
the fluctuations in a manner that is consistent with the quantal
fluctuation-dissipation relation, namely the SMF method [75].
In a number of studies it has been demonstrated that the
SMF approach improves the description of nuclear collision
dynamics by including fluctuation mechanisms of the collective
motion. Most applications have been carried out in collisions
where a di-nuclear structure is maintained. In this case it
is possible to define macroscopic variables by a geometric
projection procedure with the help of the window dynamics.
The SMF approach gives rise to a Langevin description for the
evolution of macroscopic variables. A limited study for central
collisions was published in [95]. A general approach for non-
central collisions has been developed [96] and used to calculate
multi-nucleon transfer and heavy-isotope production in 136Xe+
208Pb collisions [97, 98].
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FIGURE 2 | (A) TDHF MADs for quasifission in the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV. (B) The yield (arb. units) as a function of mass ratio MR for the

same reaction.

FIGURE 3 | Mass angle (a) and mass energy (b) distributions predicted by TDRPA for the 176Yb+176 Yb collision in the side-side orientation at Ec.m. = 880 MeV. Units

are in millibarns per degree (a) and millibarns per MeV (b).

3.2. Deformed Shell Effects in Quasifission
Returning to the inference of shell effects influencing fragment
production, this phenomenon can also be seen through thorough
TDHF studies of a particular system and systematically analyzing
the fragments produced for different impact parameters
and deformation orientations. TDHF studies of quasifission
dynamics have taught us that the dynamics of a system may
be dominated by shell effects [47, 61]. An interesting finding
of these TDHF studies is the prediction of the role of shell
effects which favor the formation of magic fragments, in
particular in the Z = 82 region in reactions involving an
actinide collision partner [31]. This prediction has been later
confirmed experimentally by Morjean et al. [99]. In addition,
the calculations show that these shell effects strongly depend
on the orientation of deformed actinide. Deformed shell effects
in the region of 100Zr have also been invoked to interpret

the outcome of TDHF simulations of 40,48Ca+238U, 249Bk
collisions [37, 52].

Such results are shown in Figure 4 for the reaction 48Ca +
249Bk at Ec.m. = 234 MeV. Previous studies of the quasifission
dynamics have taught us that dynamics may be dominated by
shell effects [47, 54, 61]. These distributions are used to identify
potential shell gaps driving quasifission. In Figure 4A we plot
the charge yield obtained for this reaction. The right frame in
Figure 4B shows the expected neutron yield distributions. One
of the main driving features of this work was to show that shell
effects similar to those observed in fission affect the formation
of quasifission fragments. For this system the Z = 82 shell
effect does not seem to play a major role contrary to previous
TDHF observations for the Ca+U target projectile combinations.
We also point out that mass-angle correlations could be used
to experimentally isolate the fragments influenced by N = 56
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octupole shell gaps [54, 100, 101]. We also find that more
peripheral collisions are centered about the proton number Z =
40 confirming similar observations from past calculations [37]
that the 100Zr region plays an important role in determining the
lighter fragments due to the existence of strongly bound highly
deformed Zr isotopes in this region [102].

3.3. Mass Equilibration
Due to long reaction times, the quasifission process is also
suitable to study the time-scale of mass equilibration. Figure 5A
shows the mass ratio, MR, of fragment masses as a function of
contact time τ (1 zs = 10−21 s) at Ec.m. = 234 MeV for the
48Ca+249Bk reaction. We define the contact time as the time
interval between the time t1 when the two nuclear surfaces
(defined as isodensities with half the saturation density ρ0/2 =
0.07 fm−3) first merge into a single surface and the time t2
when the surface densities detach again. The dashed line shows
a characteristic fit of a function in the form of c0+ c1exp(−τ/τ0).
Based on the quality of the fit and whether we exclude some
extreme points from the fit or not, we obtain equilibration times

between 8 and 10 zs. In Figure 5B we plot the ratio of final and
initial mass difference between projectile-like fragment, APLF ,
and target-like fragment, ATLF , defined by,

1A(τ ) = ATLF(τ )− APLF(τ ), (3)

as a function of contact time τ for the 48Ca +249 Bk system
at Ec.m. = 234 MeV. The points correspond to the impact
parameters used, ranging from head-on collisions to more
peripheral collisions and the full range of orientations angles for
249Bk. The horizontal lines on the right side of the figure indicate
the net number of particles transferred between the target and
the projectile. We note that more mass transfer happens at
longer contact times as expected. From this figure we can also
observe similar time-scale for mass equilibration. From these
results (and others not shown here) we can conclude that mass
equilibration takes substantially longer in comparison to other
quantities, such as the equilibration of total kinetic energy (TKE)
or N/Z equilibration. It is also interesting to observe that there is
clustering of results around certain mass ratios. This is shown to

FIGURE 4 | (A) Fragment charge yield (histogram) and (B) Neutron yields for the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV. The smooth representations of the

histograms are obtained by using a kernel density estimation with bandwidth 0.012.

FIGURE 5 | (A) Mass ratio of fragment masses as a function of contact time at Ec.m. = 234 MeV for the reaction 48Ca+ 249Bk. The solid lines show possible fits.

(B) The ratio of the final and initial fragment masses as a function of contact time for the same reaction. The dashed line shows one possible fit.
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FIGURE 6 | Plotted are the PESs calculated, using the DC-TDHF method, for central collisions of 40,48Ca+238U, with the equatorial orientation of 238U. The PES on

the left is for the 40Ca+238U system at Ec.m. = 211 MeV, while the PES on the right is for the 48Ca+238U system at Ec.m. = 203 MeV.

be related to shell effects influencing the dynamical quasifission
process in reference [54].

3.4. Collective Landscape
Quasifission and fusion-fission could be used to help map
out the non-adiabatic collective landscape between the fusion
entrance channel and the fission exit channel. It has been
demonstrated that the TDHF theory is able to provide a good
simulation of the quasifission process. Calculated time-scales
of quasifission indicate that while fast quasifission events are
dominant, much slower events resulting in a split with equal
mass fragments have also been observed. One of the open
experimental questions is how to distinguish quasifission from
fusion-fission. This is important for the calculation of the
evaporation residue formation probability in superheavy element
searches. In Figure 6 we show two such PESs calculated for the
central collisions of the 40,48Ca+238U systems, with the equatorial
orientation of the 238U. The PES on the left of Figure 6 is for
the 40Ca+238U system at Ec.m. = 211 MeV, while the PES on the
right is for the 48Ca+238U system at Ec.m. = 203 MeV. Surfaces
in Figure 6 are obtained by plotting the scattered β2, β3, and
E data obtained from the DC-TDHF calculations for the time-
evolution of the nuclear density. Since the scattered plot uses an
extrapolation algorithm points far from the valleys may not be
precise. A number of observations can be made from the PESs
shown in Figure 6. First, we clearly see the valley corresponding
to the incoming trajectory of the two nuclei. As the system forms
a composite the energy rises to maximum, but most likely never
makes it to the saddle point. The system spends a lot of time
around this area undergoing complex rearrangements and finally
starts to proceed down the quasifission valley.

4. SUMMARY

Quasifission reactions have emerged as an interesting and
vibrant area of research in recent years as they teach us
about dynamical many-body effects at much longer time-scales

compared to other heavy-ion reactions. The persistence of shell
effects for these time-scales has opened the possibility to view
quasifission as a doorway process to fusion-fission and perhaps
even fission. This wide applicability positions quasifission as
a vital process in understanding nuclear reactions across the
board. In advancing toward this goal, the TDHF theory and
its extensions have emerged as an excellent theoretical tool to
study these reactions. The success of TDHF results in replicating
experiment is particularly impressive as the calculations contain
no free parameters. Through the efforts of both theoretical and
experimental study of quasifission, we have been able to identify
a number of underlying physical phenomena affecting nuclear
reactions, such as the dependence on mass-angle distributions
on the orientation of deformed targets and the strong influence
of shell effects in determination of reaction products. These
predictions take steps toward a more complete understanding
of dynamical processes in nuclear reactions and may be crucial
in determining such quantities as the PCN by calibrating
experimental angular distributions to that of the theory. To this
end methods and techniques to discern between quasifission and
fusion-fission may emerge, paving the way for future studies of
neutron-rich nuclei and superheavy elements.
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One of the major motivations for low-energy heavy-ion collision is the synthesis of

superheavy nuclei. Based on the following two main aspects, various theoretical and

experimental studies have been performed to explore the fusion dynamical process of

superheavy nuclei production. The first reason is to elucidate and analyze the synthesis

mechanism of superheavy nuclei; the other is to search the favorable incident energy and

the best combination of projectile and target to produce new superheavy elements and

isotopes of superheavy elements.

Keywords: low-energy heavy-ion collisions, superheavy nuclei production, fusion dynamics, transport theory,

TDHF model

1. INTRODUCTION

The maximum mass and charge of a nucleus is a long-standing fundamental problem in nuclear
physics [1, 2]. Pioneer studies have theoretically predicted the “island of stability” of superheavy
nuclei (SHN). Themacroscopic-microscopic models predicted 298Fl to be the double magic nucleus
[3–7]. However, results of the self-consistent models showed that the closed shell of Z = 114
becomes weaker, and Z = 114 is replaced by Z = 120 or 126 [8–13].

The production process of superheavy nuclei is a very complicated dynamical problem [14].
Many theoretical models have been developed to explain the experimental data. On one hand, the
synthesis mechanism of superheavy nuclei needs to be elucidated [15–21]. Different approaches
are devoted to calculate and analyze the fusion probability and the distribution of quasifission
fragments [15–41]. However, none of them has absolute advantage. On the other hand, in order to
produce the new superheavy elements, or isotopes of superheavy elements, the favorable incident
energy and the best combination of projectile and target should be evaluated.

The extended nuclear landscape allows us to investigate the nuclear structure of superheavy
nuclei and the nuclear reaction mechanism. To search for the optimal condition of synthesis, the
influence of the entrance channel [29, 42, 43] and the isospin of heavy colliding nuclei [44–46]
on the evaporation residual cross section have been studied systematically in many works. The
predictions of the possible way to synthesize the new superheavy elements Z = 119 and 120 have
also been carried out [17, 47–52].

2. EXPERIMENTAL PROGRESS

Producing superheavy nuclei in the laboratory is one of the major motivations of low-energy
heavy-ion physics [1, 2, 53–55]. Over the past 30 years, great progress has been achieved
for superheavy nuclei production in experimental studies [53–55]. The experimental trends
α decay half-lives, and the evaporation residue cross sections of the superheavy nuclei show
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that the stability of superheavy nuclei increases as the neutron
number approaches the closed neutron shell closure N = 184.
However, the location of the “island of stability” has not been
determined by experiment. Up until now, based on the fusion-
evaporation reaction, the superheavy nuclei with charge numbers
in the range of Z = 104118 have been synthesized successfully.

The superheavy elements Z = 107− 112 was first synthesized
by using the cold fusion reactions [1, 53, 54, 56, 57]. The
excitation energy range of the formed compound nucleus was
10–18 MeV. The measurement of the evaporation residue cross
section decreased dramatically from Z = 107 to Z = 113.
Moreover, the final evaporated residual nuclei were extremely
neutron deficient. Experiments of producing superheavy nuclei
by cold fusion have been repeated and verified by other
laboratories [54, 58, 59].

The 48Ca-induced hot-fusion reactions were used to
synthesize Z = 112 − 118 superheavy nuclei in experiment
[54, 55, 60]. From the measurement of evaporation residue cross
sections, we found that there was no significant difference from
Z = 112–118, and the values of the evaporation residual cross
sections were all in the order of picobarn. Experiments based on
hot fusion for synthesizing Z = 112 and 114–117 superheavy
nuclei have been verified by other laboratories [60].

To search for the optimal condition of the superheavy nuclei
production, various experiments have been performed to study
the entrance channel effect on the evaporation residual cross
section [61–65]. Recently, the isospin effect of the target nucleus
on the evaporation residue cross section has been explored [66–
68]. Some laboratories have also attempted to synthesize the Z =
119 and 120 superheavy elements by using hot fusion [69, 70].

Experimentally, the measurement of fusion probability is
required to distinguish quasifission between fusion-fission and
fast fission [71–76]. The experimental characteristics of the
quasifission process are different from the fusion-fission process
[77]. Therefore, it is important to distinguish the fusion
and quasifission fragments for a better understanding of the
fusion mechanism.

3. THEORETICAL DESCRIPTION OF
FUSION REACTIONS

Theoretically, the synthesis process of superheavy nuclei can be
divided into three stages [39]. A schematic diagram for this
process is shown in Figure 1. The first stage is the capture
process, which can be evaluated by the capture cross section.
The second stage is that the dinuclear system evolves from
the touching configuration to the formation of the compound
nucleus, which can be evaluated by the fusion probability. The
last stage is where the excited compound nucleus cools down
through emitting neutrons or fission, and this can be evaluated by
the survival probability. Finally, a very small evaporation residue
cross section is obtained for the superheavy nuclei production.
The evaporation residue cross section can be expressed as [39],

σER(Ec.m.) =
∑

J

σcap(Ec.m., J)PCN(Ec.m., J)Wsur(Ec.m., J), (1)

FIGURE 1 | (Color online) Schematic diagram of production of superheavy

nuclei.

where Ec.m. is the incident energy in the center-of-mass frame.

3.1. Capture Cross Sections
For the low-energy heavy-ion collision, the capture cross section
from the sub-barrier region to above the Coulomb barrier is an
important issue for theoretical and experimental studies [78–
83]. One of reasons is that the overall uncertainties in predicting
superheavy nuclei production are associated with the calculations
of capture cross sections [50, 84, 85].

The capture process is closely related to the nuclear structure
of the interacting nuclei [86–97]. This is because the nucleus-
nucleus potential contains nuclear structure information. To
precisely describe the measurements of capture cross sections,
the nucleus-nucleus interaction potential is the most important
input quantity. In addition, the heavy-ion capture process is
intimately linked to nuclear deformation [87, 88]. Thus, the
nuclear deformation must be reliable to some extent.

Theoretically, the capture cross section is one of the important
components in the synthesis of superheavy nuclei. The capture
cross section have been explored extensively [82–84] from light to
superheavy by averaging the penetration probability over barrier
heights. Most of them have tested a number of experimental
data of capture cross sections, however, these experimental data
do not contain the capture cross sections of superheavy nuclei
[84]. Therefore, it is very important to examine carefully the
capture process for the study of the synthesis mechanism of
superheavy nuclei.

Usually, the capture cross section σcap is mainly calculated
with an empirical coupled-channel approach for the superheavy
nuclei production [17, 44–52]. From a theoretical point of
view, one of the powerful methods is to solve coupled-channels
equations numerically. This may help us to understand the
influence of the couplings between nuclear intrinsic degrees of
freedom and the relative motion on capture cross sections.

Recently, the quantum diffusion approach [98–101] has also
been used to calculate capture cross sections. This model takes
into consideration the influence of fluctuations and dissipation
effects on capture cross sections. The nuclear deformation
effects and mutual orientations of the colliding nuclei are taken
into account through using a double folding potential, and
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the influence of two neutrons transfer onto the sub-barrier
capture through the change of the deformations of the colliding
nuclei [100].

Another powerful theoretical tool is to calculate the
capture cross section by the time-dependent Hartree Fock
(TDHF) method. Recently, the pioneering work of studying
capture cross section based on TDHF has been completed
for the 40Ca+238U reaction [102]. In addition, Umar
et al. found that the capture cross sections calculated by
TDHF method agreed with the experimental data within
20% [103].

3.2. Fusion Dynamics
In order to explain the fusion dynamics process (the second
stage), various theoretical approaches and models have been
developed. The simplification can be made in different ways, and,
as a result, we can obtain different theoretical pictures for the
same real nuclear process. Some of the models can be roughly
divided into two types. The first type is based on transport
equations to describe the fusion dynamics process [15–41]. The
second one is based on the time-dependent Hartree Fock method
to describe the mainly experimental features in the process of
fusion dynamics [104–115].

The first approach is that the multitude of degrees of freedom
are decomposed into a dominating collective degree of freedom
and other degrees (non-collective) of freedom. Therefore, the
dissipative processes are introduced to account for the coupling
between the collective motions and the intrinsic motions of
the freedom of the system. Many models based on transport
equations have been developed, and they assumed that the main
characteristics of fusion dynamics process can be described by
using the main collective degrees of freedom.

On the one hand, after eliminating the intrinsic motion, a
stochastic equation can be derived theoretically. Many models
adopted the Langevin forces (Langevin equation) to describe
stochastic characteristics of the coupling between collective
motions and intrinsic degrees of freedom. One can calculate a
bundle of trajectories by solving a stochastic equation [16, 17, 28,
31, 35, 36].

On the other hand, through eliminating the intrinsic degrees
of freedom, a diffusion equation can be derived theoretically to
describe the distribution of collective degrees of freedom in the
phase space [19–21, 27, 29, 29, 30, 32, 41–43, 46, 47, 49, 51, 116,
117]. Diffusion equations (the master equation, Smoluchowski
equation, etc.,) may be used to describe the transport process of
collective degrees of freedom in phase space.

The second approach is the time-dependent Hartree Fock
method. The basic idea of this method is that the mean field
produced by all nucleons not only determines the intrinsic
motion of a single particle but also describes the evolution
characteristics of collective degrees. TDHF calculations may be
used to compute the ratio of fusion cross sections to capture cross
sections. In addition, the TDHF method may be used to explore
the effect of the orientation of the projectile and the target at
the contact point, and the role of the nuclear shell structure and
tensor force [104–115].

3.3. Fusion Mechanism
For the real fusion dynamics process, a theoretical model may
be considered as a collection of theoretical assumptions. Up
to now, there have been proposed fusion mechanisms that
are incompatible with the compound nucleus formation. One
assumption is that all the nucleons are immediately collectivized
into one superdeformed mononucleus. Then, the dynamic
evolution behavior of the superdeformed mononucleus can be
described by the equation of motion or transport theory [15–17,
33, 34, 118]. The macroscopic dynamical model is the first model
to describe the fusion mechanism based on the idea of forming
one superdeformed mononucleus [15]. However, it encountered
serious difficulties in attempts to describe evaporation residue
cross sections for the synthesis of superheavy nuclei.

As the macroscopic dynamical models, the same
approximations are used in the fluctuation-dissipation model
[16, 118], the two-step model [17], and the fusion-by-diffusion
model [33, 34]. But two significant improvements are taken
into account for the description of the fusion-dynamics
mechanism: shell effects in the calculation of the potential energy
surface of the reaction system and statistical fluctuations in the
interaction of colliding nuclei. These improvements permit one
to describe the evaporation residue cross section of superheavy
nuclei, the mass distribution of quasifission, and fusion-fission
products [16, 17, 33, 34, 118, 119].

Another assumption is that two touching nuclei always
keeps its own identity with their ground state characteristics
and deformations (dinuclear system model) [19–21, 29], fusion
is achieved by means of nucleon transfer. However, the real
situation is due to strong Coulomb and nuclear interactions
between projectile and target; the dinuclear system should be
gradually deformed [30, 48]. This assumption has recently been
improved upon. The coupling of the deformations evolution of
project and target and the nucleon transfer has been studied
numerically [120, 121]. The calculated results for the cold and
hot fusion reactions by using the dinuclear system model match
well with the available experimental data [20, 27, 29, 29, 30,
32, 41–43, 46, 47, 49, 51, 116, 117]. The fusion probability and
the distribution of the quasifission fragments can be reasonably
described based on the dinuclear system model [120–122].

A new fusion mechanism on compound nucleus formation
was proposed by Zagrebaev [18]. The concept of a nucleon
collectivization model assumes that two nuclei gradually
lose their individualities through increasing the number of
collectivized nucleons [18]; the reliability of the theoretical
hypothesis needs further demonstration [123]. The nucleon
collectivization model allows us to describe reasonably the fusion
probability as well as the charge and mass distributions of the
quasifission products [124].

3.4. Selection of Collective Degree and
Calculation of Related Input Quantity in
Transport or Diffusion Equations
To theoretically describe fusion dynamics and the mechanism
based on transport equations as mentioned above, one needs
to assume that several important degrees of freedoms can be
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used to describe the main characteristics of fusion dynamics
process [15–21]. These important degrees of freedoms include
the distance between the nuclear centers, the neutron and
proton asymmetries of projectile-target combinations,
deformations, and corresponding orientation effects, which
influence the dynamics from touching the configuration to the
compound nucleus.

Because equations of motion contain time derivatives up to
the second order, there are three quantities in each equations
of motion. The first quantity is the conservative potential.
The second and third are the friction tensor (friction force)
and the inertia tensor (inertia parameter), respectively. For the
conservative potential, two different approaches have been taken
into account to calculate the potential energy surface. The two
assumptions of calculating potential energy surface are frozen
density or sudden approximation [19–21] and the adiabatic
approximation [15–18].

Recently, Diaz-Torres showed that the gradual transition
of potential energy surface from the diabatic to the adiabatic
should be more realistic for describing the fusion or quasifission
[125, 126]. In addition, one needs to consider how the shell
structure evolutes with excitation energy and deformation. The
excitation energy dissipated from kinetic energy of relative
motion makes the individual shell structure of nuclei become
damped [127–131], and deformation tends to be spherical
[132]. Thus, the dynamical potential energy surface has to
be further studied. However, a small amount of research
work has involved the shell correction energy employed in
the fusion process being temperature dependent [133] and
the potential energy surface from diabatic approximation
to adiabatic approximation to describe the whole dynamic
evolution process.

The dissipation tensor arises from the distinction between
collective motion and intrinsic motion. The dissipation
tensor accounts for the coupling between the collective
degrees of freedom and other degrees (non-collective) of
freedom. When equations of motion or stochastic equations
are used to describe the dynamic process, the friction
coefficients are mainly treated by the phenomenological
approaches for the description of the fusion dynamics
process [16, 124].

The inertial tensor describes the response of the system
to small changes in the collective degrees of freedom. The
macroscopic approach, macroscopic-microscopic approach,
and microscopic approach are used to calculate the inertia
tensor of the fission dynamics process [134–137]. However,
in the low-energy heavy-ion collisions process, it seems
that the proper calculation on inertial parameters has
not been paid enough attention compared to the fission
dynamics process. In the stochastic equation, the inertia
parameter is calculated by the Werner-Wheeler approach
[124, 127]. In the diffusion equation, the inertia parameter
is treated as a reduced mass of relative motion [138]. From
the theoretical point of view, the inertia parameters and
friction coefficient of theoretical calculations have to match
our understanding of the potential energy surface in the
transport equations.

3.5. Survival Probabilities
The last important factor is the survival probability of the
compound nucleus against fission in the deexcitation process.
For exciting compound nuclei, there are two methods to
describe the fission process: the statistical approach and the
dynamical approach. Based on the statistical model, two different
approaches are taken into account for the excitation energy
dependent shell structure. The first one is to introduce the
influence of excitation energy on the shell structure through the
energy level density parameter [139]. The second one is to ensure
the excitation energy-dependent shell effect is taken into account
by the effective potential energy surface [140].

The uncertainty of survival probability calculation based on
statistical model mainly comes from two aspects. On one hand,
a number of approximations are adapted in the calculation
of survival probability. One the other hand, the survival
probabilities for the xn evaporation channels are very sensitive
to the model input. The level densities, fission barriers, neutron-
separation energies, as well as the transmission coefficients
have to be known with sufficient accuracy. Only systematic
calculations based on the same assumptions and parameters can
help to confirm the validity and reliability of the theoretical
approximations and input quantities [28, 117].

4. THE OPTIMUM PROJECTILE-TARGET
COMBINATION AND BOMBARDING
ENERGY

4.1. Influence of Entrance Channel on
ERCSs
Systematic studies of the existing experimental ERCSs are helpful
to reveal reactionmechanisms. In addition, searching the optimal
combination of the projectile and target and the range of the
favorable beam energy is essential.

Some work systematically studies the influence of the neutron
number of a target or projectile on the evaporation residue cross
section [32, 36, 44–46]. Many researchers have found that the
fusion probability and survival probability are sensitive to the
neutron number of the target or projectile nuclei [32, 36, 44–
46]. For 48Ca-induced hot fusion, the excess neutron of target
nucleus is beneficial to the increase of the evaporation residue
cross section of the synthesized superheavy nuclei [32, 45, 46].

Using a different combination of projectile and target to
produce the same compound nucleus may help us to reveal the
effect of the ground-state deformations, the reaction Q value,
the asymmetry of charge and mass of target and projectile, and
the Coulomb barrier on the evaporation residual cross section
[33, 138, 141]. The results calculated by Liu et al. show that the
Q value of reaction has a significant effect on the capture cross
section and fusion probability [142].

4.2. The ERCS of Production Using
Radioactive Beams
In order to investigate the possibility of neutron-rich superheavy
nuclei production with radioactive beams, some calculations
have been made [25, 116, 143, 144]. The evaporation residue
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cross section by using radioactive beams are comparable with a
stable beam for some superheavy nuclei production [116, 143].
However, the choice of reaction channels is determined by
the product of beam intensity and evaporation residue cross
section [143].

The intensities of stable beams, in most of the cases, are
significantly larger than those of the radioactive beams [143],
and the results have shown that the calculated evaporation
residue cross section based on stable beam is more favorable
for the production of many superheavy nuclei [116, 143].
In addition, due to small evaporation residue cross sections
and low radioactive beam intensities, the synthesis of higher
charge number superheavy nuclei by using the neutron-
rich radioactive beams seems impossible based on today’s
experimental conditions [116, 143].

4.3. Prediction ERCS Z = 119 and 120
By comparing evaporation residue cross sections for production
Z = 119 and 120, we found that the calculations from different
models were obviously different [17, 47–52, 124]. On one hand,
the survival probability of the compound nucleus was very
sensitive to the fission barrier. However, the difference in fission
barriers of superheavy nuclei calculated by different models
was obvious not only due to the absolute values but also the
trends with charge number Z [2, 85]. On the other hand, due
to different assumptions, the fusion probability calculated by
different models was significantly different for synthesis Z = 119
and 120 [84].

According to our calculation and other theoretical
predictions, almost all the models that predicted evaporation
residue cross sections to produce superheavy new element
Z = 119 are generally greater than those in producing
Z = 120 [17, 47–52].

5. THE FUTURE

The synthesis of SHN in the laboratory has made great progress,
and all the elements up to Z=118 have been synthesized
successfully. However, the location of the island of stability has
not been confirmed in experiments. Although many theoretical
approaches were used to study the fusion mechanism, there
are still many problems that have not been solved properly.

In my opinion, the transport theory is the least developed
one due to three factors: (i) the neck formation itself and the
relationship between dynamic deformation and neck formation
should be included to improve the theoretical description of
fusion dynamic mechanism; (ii) the gradual transition of the
potential energy surface from the diabatic approximation to the
adiabatic approximation needs to be further explored; and (iii)
the further study of inertia and damping coefficients to match
our understanding of the potential energy surface in the transport
equations should be performed.

6. SUMMARY

The evaporation residue cross section of superheavy nuclei
depends on three factors: the capture cross section σcap, the fusion
probability PCN , and the survival probability Wsur . We found
that the reasonable description of the capture cross section near
the Coulomb barrier is very important. The coupled channel or
TDHF can be better approached to calculate the value, especially
for superheavy nuclei calculations.

I think the fusion probability PCN for producing superheavy
nuclei is still not well understood. Not only the magnitude of the
fusion probability PCN but also the dependence of PCN on the
excitation energy and the entrance channel are lacking in clarity.
The fusion mechanism must be further studied.

The uncertainty of survival probability calculation based on a
statistical model mainly comes from theoretical approximations
and input quantities. Systematic calculations based on the
same assumptions and parameters can help to confirm the
validity and reliability of the theoretical approximations and
input quantities.
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Significant progress in the understanding of the fission process within a microscopic

framework has been recently reported. Even though the complete description of

this important nuclear reaction remains a computationally demanding task, recent

developments in theoretical modeling and computational power have brought current

microscopic simulations to the point where they can provide guidance and constraints

to phenomenological models, without making recourse to parameters. An accurate

treatment compatible with our understanding of the inter-nucleon interactions should

be able to describe the real-time dynamics of the fissioning system and could justify or

rule out assumptions and approximations incompatible with the underlying universally

accepted quantum-mechanical framework. Of particular importance are applications

to observables that cannot be directly measured in experimental setups (such as the

angular momentum distribution of the fission fragments, or the excitation energy sharing

between the fission fragments, or fission of nuclei formed during the r-process), and their

dependence of the excitation energy in the fissioning system. Even if accurate predictions

are not within reach, being able to extract the trends with increasing excitation energy

is important in various applications. The most advanced microscopic simulations of the

fission process do not support the widely used assumption of adiabaticity of the large

amplitude collective motion in fission, in particular for trajectories from the outer saddle

toward the scission configuration. Hence, the collective potential energy surface and

inertia tensor, which are the essential elements of many simplified microscopic theoretical

approaches, become irrelevant. In reality, the dynamics of the fissioning system is slower

than in the case of pure adiabatic motion by a factor of three to four times and is strongly

overdamped. The fission fragment properties are defined only after the full separation,

while in most of the current approaches no full separation can be achieved, which

increases the uncertainties in describing fission-related observables in such methods.

Keywords: nuclear fission, total kinetic energy, total excitation energy, overdamped collective motion, adiabatic

collective motion, average neutron multiplicity

1. THE PAST

In a matter of days after Hahn and Strassmann [1] communicated their yet unpublished results to
Lise Meitner, she and her nephew Otto Frisch [2] understood that an unexpected and qualitatively
new type of nuclear reaction has been put in evidence and they dubbed it nuclear fission, in analogy
to cell divisions in biology. Until that moment in time nuclear fission was considered a totally
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unthinkable process [3, 4], “as excluded by the small penetrability
of the Coulomb barrier [5], indicated by the Gamov’s theory of
alpha-decay” [2]. Meitner and Frisch [2] also gave the correct
physical interpretation of the nuclear fission mechanism. They
understood that Bohr’s compound nucleus [6] is formed after
the absorption of a neutron, which eventually slowly evolves
in shape, while the volume remains constant, and that the
competition between the surface energy of a nucleus and its
Coulomb energy leads to the eventual scission. Meitner and
Frisch [2] also correctly estimated the total energy released in
this process to be about 200 MeV. A few months later Bohr and
Wheeler [7] filled in all the technical details and the long road to
developing a microscopic theory of nuclear fission ensued. In the
years since, a fewmore crucial theoretical results have been firmly
established: (i) the defining role of quantum shell effects [8, 9]
and in particular the special role played by the pairing type
of nucleon-nucleon interaction in shape evolution [10, 11]; (ii)
the fact that the subsequent emission of neutrons and gammas
can be described quite accurately using statistical methods [12,
13]; (iii) and that the non-relativistic Schrödinger equation
should be adequate as well, as no genuine relativistic effects,
such a retardation, are expected to play any noticeable role in
fission dynamics.

Whether a fissioning nucleus undergoes either spontaneous
fission or induced fission the time it takes the nucleus to
evolve from its ground state shape until outside the barrier
or past the outer saddle is very long in case of neutron
induced fission ≈ O(10−15) s. in comparison with the time
the nucleus slides downhill until scission, which is estimated
to be O(10−20) s. Therefore, the saddle-to-scission stage of
nuclear shape evolution is the fastest and arguably the most non-
equilibrium stage of the nucleus dynamics from the moment
a neutron has been captured and the stage which plays a
crucial role in in determining the FFs properties. The many
intricacies of the fission process, the multitude of aspects,
which required a deep theoretical understanding, ultimately
rooted in the quantum nature of this phenomenon defied the
efforts of many generations of theorists, and a huge plethora
of mostly phenomenological models have been put forward,
often based on contradictory assumptions between models. The
extensive range of assumptions, range from adiabatic evolution
on top of which one adds (relatively weak) dissipation and
fluctuations, to strongly overdamped motion, when the role
of the collective inertia becomes irrelevant, to full statistical
equilibrium near the scission configuration, and to mixing
quantum and classical descriptions.

Microscopically inspired models are typically based on
the (ill suited choice of words, as the our analysis shows)
adiabatic approximation, which is often conflated with slow
motion. The class of adiabatic transformations, during which
only mechanical work is performed and no heat transfer
or entropy production occurs, are only a subclass of slow
motion or quasistatic processes. Theorists believed that the
nuclear shape evolution until the moment of scission was so
slow that individual nucleons had a sufficient time to adapt
to avoided single-particle level crossings [14] and the entire
nucleus would follow the lowest “molecular term,” using the

FIGURE 1 | The schematic evolution of the single-particle nucleons levels

(Upper panel) and of the total nuclear energy (Lower panel) as a function of

deformation parameter q [10, 16, 17]. The thick line represents the Fermi level

and the up/down arrows depict the Cooper pairs of nucleons on the Fermi

level only, in time-reversed orbits (m,−m). This figure is reproduced from

Bulgac et al. [17] under the terms of the American Physical Society copyright

agreement.

Born-Oppenheimer chemical terminology [15] (see Figure 1).
Following this assumption at first the generator coordinate
method (GCM) has been introduced by Hill and Wheeler [14]
and Griffin and Wheeler [18] and later on a related alternative
approach, the adiabatic time-dependent Hartree-Fock (ATDHF)
method [19–22]. GCM is still one of the most popular tools
still in use in the microscopic theories of fission [22–29]. The
GCM and ATDHF method have been shown to be basically
equivalent [30], when GCM is defined with complex generator
coordinates [31]. As however Goeke and Reinhard [30] succinctly
state: “Usually the |q〉 is obtained by an educated guess using
the preconceived knowledge of the process.” (Typically |q〉
stands for a generalized Slater determinant, aka Hartree-Fock-
Bogoliubov many-nucleon wave function.) Even though many
efforts have been dedicated to find a better way to choose
the collective or generator coordinates the methods proved
to be too difficult to implement in practice and the quality
of the decoupling between collective and intrinsic degrees of
freedom either too not very good or difficult to assess [32].
An exact separation between collective and intrinsic degrees of
freedom (DoF) it is equivalent to an adiabatic evolution of the
set of collective DoF. Then the collective DoF would always
follow the lowest “molecular orbital” and only work would
be performed on the intrinsic DoF, and thus with no heat
transfer, and the intrinsic system would remain “cold” during the
entire evolution.
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2. THE PRESENT

Unfortunately until recently this crucial aspect of large amplitude
collective nuclear dynamics, whether the large amplitude
collective motion in fission is indeed adiabatic was never tested
and, as our results unequivocally show, the adiabatic assumption
is strongly violated. Surprisingly at first glance, we have recently
shown that the evolution of the nuclear shape is in reality
significantly slower that the adiabatic assumption would predict.
One would naively expect that if the motion is even slower then

at an avoided level crossing (see Figure 1), the probability that

the system would follow the lower “molecular term” is even
greater and thus the adiabatic assumption would be even more
likely be valid. An analogy with a classical system can help and
demonstrate just the opposite. If a railroad car is released on top
of a hill, it will convert basically all the gravitational potential
energy difference when reaching the bottom of the hill into
kinetic energy. Thus, only pure mechanical work on the intrinsic
DoF of the railroad car will occur with essentially no heat transfer
or entropy production. This is an adiabatic process. However,
if one were instead to block the wheels of the railroad car, the
friction will slow down the car and almost the entire gravitational

potential energy difference will be converted into heat, the wheels

will get red hot, thus increasing the “intrinsic energy” of the
car, and the speed of the car at the bottom of the hill would be
rather small.

The only practical theoretical framework to consider in
the treatment of the dynamics of large nuclei is the (Time-
Dependent) Density Function Theory [(TD)DFT], which has
been formulated a long time ago [33–38]. One of the main
difficulties consist in constructing the energy density functional,
for which no rigorous recipes exist, DFT and TDDFT arrive
at the mathematical conclusion that the stationary or time-
dependent solution of the many-body Schrödinger equation is in
a one-to-one-to-one correspondence with the number density,
an (arbitrary) applied one-body external potential, and that the
number density can be obtained by solving the much simpler
DFT or TDDFT equations. There is a continual debate in nuclear
physics that DFT is not applicable to nuclei, which are self-bound
isolated systems. At the same time however, no one would argue
that DFT cannot describe neutrons and protons in the neutron
star crust and deeper into the star. Neutrons are delocalized in
the neutron star crust and below it. In the rod, slab, and tube
phases in the neutron star crust and below both protons and
neutrons are delocalized and in this respect they are similar to
electrons in solids. One can imagine that in the future one might
produce a nuclear trap using some kind of γ -lasers, similarly to
what nowadays experiments are made with cold atoms. Until
then one can mentally imagine that one can put an isolated
nucleus in a spherical infinite square well-potential with a radius
about 3. . . 5× the nuclear radius (or even a harmonic potential)
and compare the results of such a DFT treatment of the nucleus
with the widely accepted DFT alter ego, the NEDF approach,
a tool of choice in theoretical nuclear calculations. The results
of the these two approaches are numerically indistinguishable
under these conditions, and therefore the debate alluded above is
merely pedantic. One deficiency of a pure DFT approach is that

the number density alone cannot disentangle between a normal
and a superfluid system, and one needs an order parameter, as
one does in the case of magnetization. The practical local density
approximation (LDA) [34], which is the local formulation of
DFT, has to be augmented with the anomalous density [39, 40],
and it was dubbed the superfluid LDA (SLDA). In Bulgac [39, 40]
one can find detailed reviews of the developments, verification,
and validation of TDSLDA for a variety of physical systems,
ranging from cold atoms, nuclei, and to neutron star crust.

A (TD)DFT framework for nuclear structure and dynamics
should satisfy several requirements (in this order of importance):
(i) the DFT and the Schrödinger description of observables
should be identical, as both in ultimate instance rely on the
same inter particle interactions; (ii) both DFT and Schrödinger
equations should describe correctly Nature, thus we need
accurate interactions between nucleons; (iii) the numerical
implementation of the (TD)DFT should faithfully reproduce
the theory. At present we definitely do not have acceptable
answers to the requirements (i) and (ii) and rely instead
to a significant amount of phenomenology. The numerical
implementation of DFT without any drastic physical restrictions
became possible only relatively recently, with the advent of
supercomputers [39, 40].

The TDSLDA is formulated in terms of Bogoliubov quasi-
particle wave functions (qpwfs). The evolution of the qpwfs is
governed by the equations:
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, (1)

where we have suppressed the spatial r and time coordinate t,
and k labels the qpwfs (including the isospin) [ukσ (r, t), vkσ (r, t)],
with σ =↑,↓ the z-projection of the nucleon spin. The
single-particle (sp) Hamiltonian hσσ ′ (r, t), and the pairing field
1(r, t) are functionals of various neutron and proton densities,
which are computed from the qpwfs, see Jin et al. [41] for
technical details. No proton-neutron pairing is assumed in the
present study, and the pairing field is singlet in character. A
TDSLDA extension to a more complex pairing mechanisms
is straightforward.

While a nuclear system evolves in time one can uniquely
separate the energy into collective kinetic energy and intrinsic
energy contributions [17] using the nuclear energy density
functional (NEDF) E

(

τ (r, t), n(r, t), ...
)

, in a similar manner as
in hydrodynamics:

Etot= Ecoll(t)+ Eint(t) ≡
∫

dr
mn(r, t)v2(r, t)

2

+
∫

dr E
(

τ (r, t)− n(r, t)m2v2(r, t), n(r, t), ...
)

. (2)

Above n(r, t) is the number density, τ (r, t) is the kinetic density
energy, and p(r, t) = mn(r, t)v(r, t) are linear momentum
and local collective/hydrodynamic velocity densities, and ellipses
stand for various other densities. p(r, t)/n(r, t) is the position of
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the center of the local Fermi sphere inmomentum space. The first
term in Equation (2) is the collective/hydrodynamic energy flow
Ecoll and the second term is the intrinsic energy Eint in the local
rest frame. For the sake of simplicity we have suppressed the spin
and isospin DoF, even though they are included in all the actual
calculations. The collective energy Ecoll(t) is not vanishing only
in the presence of currents and vanishes exactly for stationary
states. The inertia tensor in Ecoll(t) in the case of irrotational
collective motion is fully equivalent to the Werner-Wheeler
inertial tensor [23]. The intrinsic energy Eint(t) is determined
only by the fermionic matter distribution. The qualitative new
result established in Bulgac et al. [17] and also illustrated here
in Figure 2 is that in an fully unrestricted TDSLDA the collective
flow energy is almost negligible until scission, in total discrepancy
with what one would have naively expected if the adiabatic
assumptions would be satisfied.

Our simulations point to an unexpectedly small Ecoll from
saddle-to-scission, corresponding to a collective speed vcoll/c ≈
0.002 · · · 0.004, significantly smaller than the Fermi velocity
vF/c ≈ 0.25 (see Figure 2). Since in TDSLDA one simulates the
one-body dynamics exactly, it is natural to discuss adiabaticity
at the mean-field level. The transition rate between sp states
is suppressed if the time to cross an avoided level-crossing
configuration satisfies the restriction 1t ≪ h̄/1ǫ ≈ 400
fm/c, where 1ǫ = 1/ρsp(ǫF) is the average sp energy level
spacing at the Fermi level. Since on the way from saddle-to-
scission the time required is 1 . . . 3 × 103 fm/c and several
dozen of avoided level crossings occur [16, 43], this condition is
clearly violated. Somewhat surprisingly, the adiabatic assumption
is also violated even in the case of SLy4 NEDF (see Bulgac
et al. [42] and Figure 2), when the saddle-to-scission time is
O(104) fm/c as well. The collective motion is thus expected to
be strongly overdamped. From saddle-to-scission the nucleus
behaves as a very viscous fluid, the role of collective inertia is
strongly suppressed, and the trajectories follow predominantly
the direction of the steepest descent with the terminal velocity
determined by the balance between the friction and the driving
conservative forces (see Figure 2).

This result serves as the first microscopic justification for the
assumption of the overdamped Brownian motion model [44–
49] and partially to the scission-point model [50–53]. In both
these phenomenological models it is assumed that the preformed
FFs are in statistical equilibrium and that the collective energy
flow is either vanishing or very small. The main difference
is that in the scission-point model there is no mechanism to
ensure that all equilibrium scission configurations could be
reached dynamically, while the nucleus evolves from the saddle-
to-scission. Moreover, the relaxed FF properties are defined only
after the FFs become sufficiently well-separated, see below. It is
equally unexpected that in the case of enhanced pairing, when
the pairing condensates retain their long-range order throughout
the entire saddle-to-scission evolution, the collective dynamics
remains strongly overdamped.

While evolving from saddle-to-scission a nucleus encounters
a large number of avoided level crossings and instead of following
the lowest potential energy surface, as would happen in an
adiabatic evolution, many transitions to higher excited levels

FIGURE 2 | (Color online) the collective flow energy evaluated for NEDFs [42]

realistic pairing SLy4 (dash-dot line), enhanced pairing SLy4* (dash line), and

for SkM* (dotted and dash-dot lines with error bars), and SeaLL1 (solid and

dashed lines with errors bars) sets [17]. The error bars illustrate the size of the

variations due to different initial conditions in case of various SeaLL1-1,2 and

SkM*-1,2 NEDFs used. In the case of realistic pairing NEDF Sly4 (larger

pairing) the time has been scaled by a factor of 1/10. This figure is adapted

from the results published in Bulgac et al. [17] under the Creative Commons

CC BY license.

FIGURE 3 | In nuclei the level density increases with the excitation energy

quite fast, practically exponentially at energies of the order of the neutron

separation energy, when ρ(E∗) ∝ exp
(√

2aE∗
)

[57, 58], and it reaches values

of O(105) MeV−1 and various potential energy surfaces, corresponding to

different “molecular terms” display a large number of avoided level crossings.

Here we illustrate the generic behavior of the collective energy levels (y-axis) as

a function of a collective coordinate (x-axis), see Bulgac et al. [59] for details

and a similar figure.

occur. Similarly to what is known for decades in chemistry [54–
56], one should consider not only the lowest potential energy
surface, when initially the system could be found on the lowest
with unit probability, but all “molecular terms,” which become
populated during the evolution (see Figure 3). The separation
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FIGURE 4 | These are some selected snapshots of the neutron/proton

magnitudes (Left) and phases (Right) of pairing gaps (upper half/lower/half of

each frame) in the case of realistic pairing strengths (upper panels) and

enhanced pairing strength (lower panels), obtained in the case of SLy4 NEDF.

This figure is adapted from the results published in Bulgac et al. [17] under the

Creative Commons CC BY license.

between such potential energy surfaces reaches values of order
O(10) keV or even less, and only if the system traverses a level
crossing in a time much longer than ≈ h̄/10 keV ≈ 20, 000
fm/c or longer the nucleus will remain on the lowest potential
energy surface. On the other hand the saddle-to-scission time is
O(103) fm/c and this is why the adiabatic assumption is in the
final analysis strongly violated.

Why do pairing correlations play an important role in fission
dynamics? In a static nuclear configuration each single-particle
level is doubly-degenerate, due to the Kramers degeneracy.
At the level crossing both nucleons on the highest occupied
level (homo—highest occupied molecular orbital) would have
to transition simultaneously to the lowest down-sloping level
(lumo—lowest unoccupied molecular orbital) to ensure that the
local momentum distribution remains approximately spherical,
as otherwise it would acquire an oblate shape [10, 11, 14], while
the shape of the nucleus becomes more prolate. Nucleon-nucleon
interactions at low momentum transfer can be modeled with
a reasonable accuracy with a zero-range δ-interaction, which
favors the transitions between pairs of time-reversed orbitals,
exactly as the Kramers degenerate orbitals (see Figure 1). The
up-sloping levels are characterized by larger projections of the
angular momentum on the fission axis, |m| ≈ kFr0A

1/3, and
these levels should be depopulated, since in a FF the largest
angular momenta are smaller, ≈ kFr0(A/2)1/3. While evolving
from one level crossing to the next, the entire evolution is likely
rather well-reproduced by a simple one-body dynamics, as each
single-particle level occupation probability changes little. What
one-body dynamics lacks is the contributions arising from the
Boltzmann collision integral. However, at each level crossing the
two-correlated nucleon pairs will undergo a collision, and at
low energies transitions between pairs of time-reversed orbitals
expected to dominate the collision rate. One should take with

FIGURE 5 | The evolution of the quadrupole and octupole moments of the

FFs as a functions of their separation after scission [17]. Different lines

correspond to different initial conditions and different NEDFs, see Bulgac

et al. [17] more details. The solid/dashed lines are for the light/heavy FFs,

respectively. This figure is adapted from the results published in Bulgac

et al. [17] under the Creative Commons CC BY license.

a grain of salt this simplistic picture of “collisions” and jumps
between sp levels, as nothing happens instantaneously or at one
point in space in quantum mechanics. In the presence of a Bose-
Einstein condensate of nucleon Cooper pairs the nucleus has
a superfluid component and pair transfers are enhanced due
to the Bose enhancement factor. The dynamics of the nuclear
systems then approaches the evolution of classical inviscid (no
viscosity) or perfect fluid. An illustration of this behavior was
exemplified in Figure 4 in Bulgac [40] and in Figure 4. When the
magnitude of the pairing field was artificially increased from a
realistic value to a value 3. . . 4× larger the evolution time from
saddle-to-scission decreased by a factor of ≈ 10 and at the same
time the long range coherence of the pairing field across the entire
nucleus survived. For realistic values of pairing strengths during
the descent from the saddle-to-scission both proton and neutron
pairing fields fluctuate both in space and time, long range order
basically vanishes, but quite often it is revived.

Another important aspect which emerged from our TDSLDA
fission simulations [17, 42], which is of significant importance
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in the implementation of various phenomenological models,
concerns the shapes of FFs at scission and when they reach
their relaxed shapes (see Figure 5). This behavior is apparently
confirmed indirectly by experiments. In Langevin or Fokker-
Planck [60–65], TDGCM [26, 66], and scission-point [50–53]
models the calculation of the FFs yields consider only a very
limited range of nuclear shapes. In particular in such simulations
one never introduces the octupole FF moments. Our results,
as well recent analysis by Scamps and Simenel [67], clearly
demonstrate that the FFs emerge at scission octupole deformed
and also with a significantly larger quadrupole deformation
than the relaxed values. Moreover, even after scission the FFs
there is a significant Coulomb interaction between them, which
leads to the excitation of both low energy and giant resonances
in FF [68, 69]. This interaction enables additional excitation
energy exchange between the FFs after scission, and it also
affects their total kinetic energy, a behavior also seen in our
simulation, but yet not documented. In statistical scission-point
models there is no dynamics, and only the competition between
FFs configurations at the scission point are considered [50–53],
a model to which our results lend partial support. However,
the only shapes considered are quadrupole deformation of
the relaxed FFs, which clearly is not what our dynamical
simulation demonstrate.

Our simulations put in evidence another very important
aspect, the mechanism of the excitation energy sharing between
the FFs. As a rule the heavy FF emerges in the end cooler
than the light FF, even though they have been in contact for
quite a long time before scission. Moreover, when increasing
the initial energy excitation of the fissioning nucleus we have
established that only the heavy FF becomes hotter and that is
reflected in the average neutron multiplicity number of emitted,
and results which is in apparent agreement with experimental
findings (see Figure 6). Experimentally it is extremely difficult to
infer the excitation energies of the FFs, which are a crucial input
in various statistical codes [70, 72, 73]. Bertsch et al. [74] argue
that the FFs spin distribution, which determines the prompt
gamma angular distribution, can be used to infer information of
the excitation energy sharing between FFs. Randrup et al. [73]
point to a pronounced anti-correlation between ν̄(A) and mean
total kinetic energy ¯TKE, which can be used reduce uncertainties
in data analysis. Schmidt and Jurado [75, 76] suggested a
phenomenological model, the “energy-sorting”mechanism based
on the empirical constant temperature parametrization of the
nuclear level densities due to Gilbert and Cameron [77]. In this
“energy-sorting” model the FFs before scission have different
temperatures, with a lower temperature of the heavy fragment,
which would generate an energy flow from the light/hotter
to the heavy/cooler fragment. Our simulations demonstrate
however that the near scission the two FFs have properties quite
different (shape, excitation energy, pairing correlations) from the
properties of relaxed fragments. It is therefore problematic to
relate the properties of excited isolated nuclei with the properties
of FFs in contact before rupture.

As we have mentioned above, the number of collective DoF
and their character is a long standing problem in microscopic
inspired theoretical and phenomenological models. The choice

FIGURE 6 | We compare here the average neutron multiplicity ν̄(A) emitted by

FFs using a CGMF simulation [70], which assumes an En dependence for the

energy sharing extracted using the excitation energy sharing between the FFs

in our calculation with NEDF SeaLL1, as a function of the equivalent incident

neutron energy in 235U(n,f) reaction along with available experimental data [71].

Note that in this figure the parametrization was based on 240Pu calculations,

while 236U calculations are in progress.

FIGURE 7 | In the upper panel we show a typical scission configuration when

unlimited type of fluctuations are allowed as compared to a typical TDSLDA

scission configuration, in which axial symmetry is assumed in this case for

258Fm. This figure is reproduced form Bulgac et al. [81] under the terms of the

American Physical Society copyright agreement.

of collective DoF and their character is guided by the authors’
intuition, their computational and other abilities, educated guess,
imagination, and/or available resources [30]. It was never proven
or demonstrated that a GCM representation of the nuclear
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wave function is ever accurate. The wave function of a many-
fermion system in TDGCM is constructed according to the
following prescription

9GCM(x, t) =
∫

dqf (q, t)8(x|q), (3)

where 8(x|q) are (generalized) Slater determinants depending
on nucleon spatial coordinates, spin, and isospin x =
(x1, . . . , xA), xk = (rk, σk, τk) and parameterized by the collective
coordinates q = (q1, . . . , qn), and where f (q, t) is the collective
wave function. There is no criterion or small parameter which
controls the accuracy of such a representation, that is

1− |〈9GCM|9exact〉| ≪ ǫ. (4)

We have presented rather simple arguments that most likely such
an accurate representation does not exist in general, particularly
in fission large amplitude collective motion [17]. A rather simple
estimate of the possible number of different shapes, and therefore
of independent terms in Equation (3), shows that it is basically
infinitely small in comparison with the number of possible
terms in an exact multi-configurational Slater determinant
representation of 9exact. Can we check whether GCM is a good
approximation for the saddle-to-scission evolution? Now we
definitely can and we have the answer, and since

Etotal = Ecoll(t)+ Eint(t) ≈ Eint(q,T) ≈ V(q,T) ≈ const. (5)

where T is the temperature of the intrinsic system, we know
that the collective motion is strongly overdamped, that there is
an irreversible energy flow from the collective/shape DoF to the
intrinsic DoF, and that during the saddle-to-scission evolution
the temperature of the intrinsic system increases, as does its
(entanglement) entropy as well. We should also remember, that
the evolution of the fissioning nucleus from saddle-to-scission
is a truly non-equilibrium one, and the notion of a “slowly
evolving” nuclear temperature T might be questionable. This
suggest that in phenomenological calculations a more physically
motivated choice for the potential energy surface would be
one in which with increasing deformation one would increase
the “temperature T,” so as to keep the “collective potential”
energy V(q,T) essentially equal to the initial excitation energy
of the compound nucleus. Basically this is the prescription that
Randrup et al. [48, 49] have implemented lately.

There were indirect indication in microscopic approaches
that the number of collective DoF can vary along the fission
path. In the overwhelming majority of fission studies the only
deformation of the nucleus close to the ground state is the axial
symmetric quadrupole moment Q20, in spite of the fact that
the Bohr-Mottelson five-dimensional collective Hamiltonian is
one tool of choice to describe the low energy structure of open-
shell nuclei [58, 78, 79]. Ryssens et al. [80] have shown in a
beyond mean field calculation of the 1-dimensional fission path
the nucleus 240Pu is axially deformed around the ground state
configuration, it becomes triaxially deformed when it reaches
the fission isomer region, and before it reaches the outer fission
barrier it breaks the axial symmetry as well. We have recently

developed a framework into which one can include fluctuations
and dissipation in a quantum approach [81], which allows
for shape fluctuations of any kind. What we observed that
by allowing a bending mode to become active (see Figure 7),
the mass and TKE distributions acquire shapes in quite nice
agreement with observations. It was discussed quite some time
ago that such bending modes might be responsible for the
angular distributions of the FFs [82] and this type of distributions
can be also extracted from TDSLDA calculations in the near
future [74, 83]. Phenomenological or even TDGCM approaches
do not consider so far such bending modes, which are definitely
physically relevant for a large number of observables.

3. WHAT ARE THE NEEDS?

Nuclear fission is a complex process, in which a heavy nucleus
evolves from a compact shape to a configuration in which
two or more fragments are produced, and is accompanied by
emission of prompt neutrons and gamma rays (and, eventually,
electrons and antineutrinos). Most of the energy is released in
form of kinetic energy of the fragments, while prompt neutrons
emitted before beta decays play the main role in applications like
energy production.

The dynamics of the nuclear system from the formation
of compound nucleus until after the acceleration of FFs and
prompt particle emission is too rapid to be experimentally
resolved. On the other hand, the time scale of the weak
interaction, which governs the decay of FFs in experiments
toward stability ranges from seconds to minutes, and thus
the dynamics involving beta decay toward stability, including
delayed neutron and gamma emissions, can be decoupled
from the initial more rapid part that is only governed by
the strong interactions. Consequently, the fragment properties
directly influence the properties of prompt fission and gamma
rays, which have been the subject of comprehensive, albeit not
exhaustive, experimental investigations over the years. Thus, at
Los Alamos National Laboratory, experimental campaigns have
investigated the prompt fission neutron spectra for neutron-
induced fission of major actinides (235,238U, 239Pu) for a large
range of incident neutron energies using the ChiNu experimental
setup [84, 85]. On the other hand, experiments that measure
the average neutron multiplicity as a function of pre-fission
neutron mass [86–91], which can be used to guide energy
sharing in fission fragments, are more scarce, and for a limited
number of reactions (usually spontaneous fission or neutron-
induced fission with thermal neutrons). The surrogate reaction
technique is used by Lawrence Livermore National Lab and
Texas A&M to measure the 239Pu and 241Pu prompt fission
neutron multiplicity (average and distribution) as a function of
equivalent incident neutron energy [92, 93]. Complementary,
significant resources have been devoted toward measuring the
prompt fission gamma rays produced in the decay of fission
fragments, after the neutron emission, at Los Alamos, using the
DANCE calorimeter [94–97], and worldwide employing high-
resolution detectors [98–102]. Such measurements complement
existing measurements of prompt-gamma rays by Verbinski et al.
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[103], and many others [104–106]. Furthermore, data on total
gamma production can be useful in evaluating the prompt fission
gamma properties, if no other data exist, fission dominates,
and the other gamma-producing channels can be modeled with
reasonable accuracy [107].

In addition to detecting and measuring the products of
decay of FFs, a concerted effort has been directed toward the
direct measurement of the FF distributions. While simpler,
the “2E” measurements [108–111] have the shortcoming that
additional information is required to identify the mass of the
fragment, hence the poor 4-6 amu resolution. Reducing such
large uncertainties was the main argument for the construction
of the SPIDER “2E–2v” experimental setup [112, 113] at the
Los Alamos Neutron Science Center, which should start taking
data in the near future. In this setup the two fragment kinetic
energies and velocities are measured simultaneously and can
achieve one mass unit resolution, as also demonstrated by similar
setups, COSI FAN TUTTE at ILL, France and VERDI at JRC-
Geel, Belgium. The Sofia experiment [114] at GSI has produced
an extensive amount of experimental data with accuracies in
mass and charge <1 mass unit, but suffer from the fact that a
large range of excitation energies that cannot be disentangled is
produced in Coulomb excitations. LLNL and LANL activation
measurements at TUNL have provided invaluable data on the
incident energy dependence of cumulative fission product yields
[93, 115], and ongoing efforts are directed toward testing the
Bohr hypothesis of independence between entrance and outgoing
channels in a compound reaction by comparing fission yields
in the 239Pu(n,f) and 240Pu(γ ,f) reactions [116] that lead
to the same fissioning system, at least in mass and charge.
At CARIBOU, two projects are underway: (i) measurement
of fission product properties (isomeric yield ratios, gamma-
ray decay branching ratios, and β-delayed neutron emission
properties) and (ii) improvements of the antineutrino spectrum
simulations by performing measurements of the β-decay data
using GAMASPHERE [117]. Other experiments related to the
properties of FFs have concentrated on measuring the average
total kinetic energy (TKE) of the fission fragments at the LANSCE
WNR facility for energy from a few hundred keVs to 200 MeV
[111, 113]. The High Rigidity Spectrometer [118] at FRIB [119]
will allow to explore the fissioning of very neutron-rich nuclei,
study their shell structure, the presence of superheavy, the limits
of stability and the equation of state of neutron-rich nuclear
matter, the neutron skins, and shed light on the nature of the
r-process, so far an unknown territory.

Treating the evolution of a heavy nucleus from a compact
configuration until the start of beta decays in the FFs, including
prompt neutron and gamma emissions, is a complicated
task, computationally unfeasible within a unified microscopic
approach. Within this reality, one has to consider a mixture
of approaches, in which the initial part of the fission process
is treated within a microscopic framework that can inform
more phenomenological treatments that model the emission
of prompt neutrons and gamma rays, and whose results can
be directly compared against a large set of experimental data.
And the input from microscopic models does not necessarily
need to be restricted to the fission process. The systematics

of several physical quantities used in the phenomenological
models of neutron and gamma emission is based on data for
stable nuclei. Since the FFs are nuclei far from stability, it is
important to investigate within more microscopic models the
validity of various systematics far from stability, as prompt
neutron and gamma observables are sensitive to ingredients like
level densities, optical models, or gamma strength functions.

Several models have been proposed to describe the shape
dynamics, and to some extent many of them are able to
reproduce experimental quantities like the pre-neutron emission
mass distributions, irrespective of the approximations involved.
But, as noted above, the direct measurement of the FFs before
neutron emission is not possible. Therefore, even before one
goes into details regarding the validity of the approximations
involved in theoretical models, one needs to consider the
corrections involved in the analysis of the experimental data.
The post-neutron emission FF mass distributions are obtained
using information on average prompt neutron multiplicity as a
function of the fragment mass, ν̄(A), either from measurements,
where available, or from phenomenological models. Given the
scarcity of the data, and the fact that these phenomenological
models have been built in a systematics based on little data, the
uncertainties arising from ν̄(A) could be considerable. Another
assumption is that no neutrons are emitted during scission or
at neck rupture. It is conceivable that the number of neutrons
emitted during the scission dynamics is not necessarily large,
but how large is large? If the fraction of scission neutrons is
significant, as some phenomenological models predict, citing the
experimental prompt fission spectrum as evidence to support the
claim [120–125], what is the impact on the experimental analysis?
While these models are not universally accepted, a microscopic
approach should be able to answer such a question, and the
assumption of small numbers of neutrons emitted during scission
should not be implicitly included in the model. Moreover, it
would be rather impossible to asses the fraction of scission
neutrons if the model does not follow the dynamics of the process
until full separation.

All the codes that model the prompt neutron and gamma
emissions have been built in the assumption that the neutron
emission proceeds after the full acceleration of the fission
fragments [70, 126–130]. This assumption can have significant
consequences, as at full acceleration the neutrons are maximally
boosted. If the emission occurs instead during the acceleration,
then the prompt neutron spectrum in the lab frame can
noticeably be altered.

In addition to validating assumptions in phenomenological
codes, a reliable theoretical model should provide information
on observables that cannot be measured, but are essential in
modeling the neutron and gamma emission. Thus, while the total
excitation energy available in the fragments can be determined
from the Q-value and TKE, no additional constrains on how
this energy is shared between the FFs are available. As the
most efficient way to lower the energy in FFs is via neutron
emission, ν̄(A) can be used to parameterize the excitation energy
sharing. However, such data are scarcely available, usually for a
limited number of spontaneous and neutron-induced fission with
thermal neutrons, and thus guidance from microscopic models
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on how the excitation energy is shared with increasing incident
neutron energy is required not only for minor actinides, but
even for induced fission reaction of major actinides 235,238U and
239Pu isotopes.

Gamma emission competes with the neutron emission when
the excitation energy in the nucleus is around the neutron
separation energy. The spin of the fragments, which cannot be
directly measured experimentally, determines the exact strength
on the neutron-gamma competition. Only indirect information
can be extracted regarding the spin distribution of the FFs
from properties of prompt gamma rays, like average multiplicity,
prompt gamma fission spectra [131], or isomeric ratios [132].
The measurements of gamma rays are also scarce with increasing
the incident neutron energy. Experimentally, one observes an
increase of the total prompt fission gamma energy released
in fission [133], which has been interpreted as an increase of
the average spin with the incident energy. However, only little
experimental data exist and no microscopic model has been able
to reproduce such trends.

The main message of this section is that experimentally
one cannot isolate and measure properties of post-scission FFs,
and any full model will have to include simulations of prompt
neutron and gamma emission, in order to compare and validate
against experimental data. Given that many quantities used in
the modeling of prompt neutron and gamma emission are taken
from data systematics, which in general is available only for nuclei
close to stability, the reliability of the theoretical model near
scission and beyond, until full separation, is very important. Such
models should allow for a full separation of the fragments, and
employ approximations that are validated and under control, as
to reduce any uncertainties regarding the FF properties.

4. WHAT LESSONS HAVE WE LEARNED SO
FAR AND WHAT IS THE MOST LIKELY
PATH TO THE FUTURE?

While pairing is not the engine driving the fission dynamics,
pairing provides the essential lubricant, without which the
evolution may arrive rather quickly to a screeching halt [134–
136]. So far we have not considered whether proton-neutron
pairing might have a role in fission. It is very unlikely that
a condensate of proton-neutron pairs exists in heavy nuclei,
but as we have learned from our simulations, proton-neutron
transitions with L = 0 between single-particle orbitals could be
important as the neutron-neutron and proton-proton transitions
with (S,L,T) = (0,0,1) at low excitation energies, even in the
absence of a condensate of such pairs, see the discussion
concerning Figures 1, 4.

TDSLDA framework for fission dynamics, while it does
not incorporate fluctuations, has provided a lot of insight
into the real quantum dynamics, and it revealed extremely
valuable information into nuclear processes and quantities,
which are either not easy or impossible to obtain in laboratory
or observations: FFs excitation energies and angular momenta
distributions prior to neutron and gamma emission, element
formation in astrophysical environments, as well as other

nuclear reactions in a parameter free approach. In particular,
the excitation energy sharing mechanism between FFs and its
evolution with the initial excitation energy of the compound
nucleus was not accessible until now within a dynamic approach.
Fluctuations, which are essential in order to reproduce mass and
charge yields for example, can be now incorporated into a pure
quantum framework [81].

The quality of the agreement with experimental data is
surprisingly good, especially taking into account the fact that
no attempt was made to reproduce any fission data. Basically
all phenomenological NEDFs satisfy the most important
requirements to describe the gross properties of nuclear fission:
saturation, realistic surface tension and symmetry energy,
Coulomb energy, realistic pairing and shell corrections energy.
Nevertheless, the quality of existing NEDFs needs improving.
One can make a strong argument that we have now a clear path
from more phenomenology and adjusted parameters to more
fundamental theory and increased predictive power [137].

Perhaps the most important aspect we have observed in all our
simulations is the strong violation of the adiabatic assumption
in fission large amplitude collective motion. Basically since the
1950’s the adiabatic assumption was the main simplification
included in all microscopic frameworks, GCM, ATDHF and
a large majority of phenomenological models as well, such
as the Langevin and the Fokker-Planck equations, where one
needs to introduce a potential energy surface and an inertia
tensor in the space of the collective variables. If the collective
motion is overdamped, the inertia tensor becomes irrelevant, and
moreover, considering only the lowest potential energy surface is
physically unacceptable (see Figures 3, 2) and the corresponding
discussion in section 2. As we have established in Bulgac et al. [81]
the fluctuations, or equivalently the role of two-body collisions,
does not affect this conclusion.

A somewhat unexpected result was the character of the energy
sharing mechanism between the fission fragments, the fact that
the heavy fragment is cooler than the light fragment and it
has less excitation energy [17, 42]. And this conclusion is not
a result of the fact that the heavy FF is closer to the double
magic 132Sn nucleus. In the original experiment of Hahn and
Strassmann [1] the heavy fragment had a charge closer to Z ≈
52 − 56, a fact recognized also by Meitner and Frisch [2, 138],
and explained by Scamps and Simenel [67], this is due to a
stabilization of the octupole deformation in FFs, also observed
in our simulations [17, 42]. With increasing excitation energy
of the fissioning nucleus the heavy FF appears to be the only
one who absorb the increase and emits more neutrons (see
Figure 6) and the accompanying discussion. The character of the
excitation energy sharing mechanism has major consequences on
the predicted spectrum of emitted neutrons and gammas.

Another important outcome was the clear indications that
many more collective DoF appear to be relevant in fission
than have ever been considered in either phenomenological or
microscopically inspired models, such as GCM and ATDHF
frameworks. At scission, both FFs are octupolly deformed.
Moreover, the FFs attain their relaxed shapes only after the
separation between them is ≈ 5...6 fm. No phenomenological
or microscopically inspired approach on the market follow the
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FFs to such large separations. As we stressed in section 3 the
spectrum of emitted neutrons is affected by the number of
neutrons emitted before the full FFs acceleration. Another DoF,
which appears to be relevant as well is the bending mode (see
Figure 7 and Bulgac et al. [81]), the inclusion of which likely is
going to influence the angular momentum distributions of the
FFs [82].

We have pointed to several directions into which
phenomenological models and theoretical models, such as
GCM and ATDHF would have to be altered, in order to
describe nuclear fission in a manner more consistent with
theoretical expectations inferred from unrestricted quantum
mechanical simulations (see section 3). We did not cover
or mention all phenomenological models on the market
and not all microscopically inspired theoretical frameworks,
as this is not a review of such approaches, for which we
recommend [129, 139].
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The equations of motion for reduced density matrices form a coupled chain known as the

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. To close the coupled chain

at the two-body level, approximations for a three-body density matrix with one-body

and two-body density matrices are needed. The time-dependent density-matrix theory

(TDDM) assumes that the three-body density matrix is given by the antisymmetrized

products of the one-body and two-body density matrices. In this review the truncation

schemes of the BBGKY hierarchy beyond TDDM are discussed and a formulation for the

study of excited states which is derived from the time-dependent approach is explained.

The truncation schemes and the formulation for excited states are applied to the Lipkin

model and the Hubbard model to corroborate their validity. Two realistic applications of

the TDDM approaches are also presented. One is the dipole and quadrupole excitations

of 40Ca and 48Ca and the other the fusion reactions of 16O + 16O.

Keywords: extended TDHF, extended RPA, Lipkin model, Hubbard model, giant resonances, fusion

1. INTRODUCTION

The time-dependent Hartree-Fock theory (TDHF) is the basis of the mean-field theories such
as the Hartree-Fock theory (HF) and the random-phase approximation (RPA): The HF ground
state is given as a stationary solution of the TDHF equation and RPA can be formulated as the
small amplitude limit of the TDHF equation. HF and RPA have extensively been used as standard
theories to study nuclear structure problem [1]. Extensive TDHF simulations have also been
performed for heavy-ion collisions [2, 3]. However, most experimental data suggest that beyond-
mean field theories are required for a more realistic description of nuclear structure and reactions.
In this paper an approach to extend the mean-field theories based on the equations of motion
for reduced density matrices is reviewed. The equations of motion for reduced density matrices
form a coupled chain known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy
[4] where the time evolution of an n-body density matrix depends on n-body and n + 1-body
density matrices. The advantage of such a time-dependent density-matrix approach (TDDMA)
is that it is directly connected to TDHF in the lowest-level approximation: The truncation of
the BBGKY hierarchy at the level of the one-body density matrix by approximating the two-
body density matrix with the antisymmetrized product of the one-body density matrices gives
TDHF. A beyond TDHF is obtained by the truncation of the BBGKY hierarchy at the two-body
level and it needs approximations for the three-body density matrix. A few truncations schemes
have been proposed. The simplest truncation scheme is to replace the three-body density matrix
with the antisymmetrized products of the one-body and two-body density matrices, neglecting
the correlated part of the three-body density matrix [the three-body correlation matrix (C3)]
[5, 6]. This truncation scheme has been called the time-dependent density-matrix theory (TDDM).
TDDM has been applied to heavy-ion collisions [7–9] and collective excitations [6, 10–12]. A
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simplified TDDM called TDDMP [13] where two-body
correlations are consider only for a pair of time reversed
single-particle (s.p.) states have also been employed to simulate
heavy-ion collisions [13, 14]. It was found that TDDM sometimes
overestimates ground-state correlations in a solvable model [15],
gives unphysical s.p. occupation probabilities in dynamical
simulations [16, 17] and causes divergent dynamical behaviors
in highly excited and (or) strongly interacting cases [18, 19].
Obviously the problems originate in the neglect of C3 and are
related to the loss of N-representability [20] which refers to the
properties of reduced density matrices derived from an N-body
total wavefunction and is completely fulfilled only in the case of
the untruncated BBGKY hierarchy. To remedy the difficulties
of the naive truncation scheme in the description of ground
states, an approximation for C3 has been proposed based on
perturbative consideration [21], where C3 is given by the traced
products of the correlated part of the two-body density matrix
(C2). This truncation scheme is referred to as TDDM1 hereafter.
The correlation matrices C2 and C3 are also called the two-body
and three-body cumulants and the above approximation for C3

corresponds to taking the leading-order terms of the three-body
cumulant [22, 23]. It has been demonstrated that TDDM1
improves the TDDM results for the ground states of model
Hamiltonians [21, 23] and also 16O [24]. In the case of the Lipkin
model [25], however, TDDM1 was found to overestimate C3 in
strongly interacting regions. There, another truncation scheme
[26] where C3 in TDDM1 is divided by a reduction factor was
introduced. This truncation scheme is referred to as TDDM2.
In this paper three truncation schemes TDDM, TDDM1 and
TDDM2 are explained and their applications are presented.

The small amplitude limit of the TDDMA equations gives an
extended RPA (ERPA) which is used for the study of excited
states, as is the case of RPA which is formulated as the small
amplitude limit of TDHF. RPA and ERPA are also formulated by
using the equation of motion approach [27, 28]. ERPA consists of
the coupled equations for the one-body and two-body amplitudes
and include the effects of ground-state correlations through the
fractional occupation probability nα of a s.p. state α and C2.
ERPA is related to so far proposed beyond-RPA theories. When
the coupling to the two-body amplitude is omitted, the ERPA
equation for the one-body amplitude is the same as the self-
consistent RPA (SCRPA) [29, 30] equation which includes both
nα and C2. The neglect of C2 in the SCRPA equation corresponds
to the renormalized RPA (rRPA) [27, 28] which includes the
ground-state correlation effect via nα . When the HF ground
state is assumed, the equations in ERPA are reduced to those
in the second RPA (SRPA) [31]. If particle-hole correlations
included in the two-body amplitudes were expressed by phonons,
ERPA would be connected the particle-vibration coupling or
quasiparticle-phonon models [32]. ERPA has been applied to
solvable models [23, 33]. Realistic cases have also been studied
in ERPA [34–36]. Main results of the ERPA applications are
presented in this paper.

The TDDM truncation scheme has been used for simulations
of heavy-ion collisions [7–9] where the TDDM equations are
formulated by using the time-dependent s.p. states which
obey a TDHF-like equation. The application of such a

TDDM approach to the fusion reactions of 16O + 16O is
also presented.

The paper is organized as follows: The equations of motion
for the one-body and two-body density matrices formulated
by using a time-independent s.p. basis are given in section 2
and the truncation schemes of the BBGKY hierarchy and the
formulation of ERPA are discussed. The applications are made
to two model Hamiltonians, the Lipkin model [25] and the one-
dimensional Hubbard model [37] in section 2 and the obtained
results are compared with the exact solutions. The ERPA results
for the dipole and quadrupole excitations in 40Ca and 48Ca are
presented in section 2 as realistic applications of ERPA. The
TDDM formulation using a time-dependent s.p. basis and its
application to the fusion reactions of 16O + 16O are given in
section 3. Section 4 is devoted to summary and outlook.

2. FORMULATION IN TIME-INDEPENDENT
SINGLE-PARTICLE BASIS

The TDDMA equations are formulated for an N fermion system
described by the Hamiltonian H consisting of a one-body part t
(the kinetic energy term) and a two-body interaction v

H =
∑

αα′
〈α|t|α′〉a+α aα′ +

1

2

∑

αβα′β ′
〈αβ|v|α′β ′〉a+α a+β aβ ′aα′ ,

where a+α and aα are the creation and annihilation operators
of a particle at a s.p. state α and the s.p. states are assumed
time-independent.

2.1. Time-Dependent Density-Matrix
Theory and Truncation Schemes
The TDDMA equations given in Tohyama and Schuck [21] are
explained below. They consist of the coupled equations of motion
for the one-body density matrix (the occupationmatrix) nαα′ and
the correlated part of the two-body density matrix Cαβα′β ′ (C2).
These matrices are defined as

nαα′ (t) = 〈8(t)|a+
α′aα|8(t)〉, (1)

Cαβα′β ′ (t) = ραβα′β ′ (t)−A(nαα′ (t)nββ ′ (t)), (2)

where |8(t)〉 is the time-dependent total wavefunction |8(t)〉 =
exp[−iHt]|8(t = 0)〉, ραβα′β ′ is the two-body density matrix
(ραβα′β ′ (t) = 〈8(t)|a+

α′a
+
β ′aβaα|8(t)〉) and A is an operator

which properly antisymmetrizes nαα′nββ ′ under the exchange of
the s.p. indices such as α ↔ β and α′ ↔ β ′. Units h̄ = 1 are
used hereafter. The equations of motion for nαα′ and Cαβα′β ′ are
derived from

iṅαα′ = 〈8(t)|[a+
α′aα ,H]|8(t)〉 (3)

iρ̇αβα′β ′ = 〈8(t)|[a+
α′a

+
β ′aβaα ,H]|8(t)〉, (4)
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by evaluating the commutation relations. They are written as

iṅαα′ =
∑

λ

(ǫαλnλα′ − nαλǫλα′ ) (5)

+
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3α′λ1 − Cαλ1λ2λ3〈λ2λ3|v|α′λ1〉],

iĊαβα′β ′ =
∑

λ

(ǫαλCλβα′β ′ + ǫβλCαλα′β ′ − ǫλα′Cαβλβ ′ (6)

− ǫλβ ′Cαβα′λ)+ Bαβα′β ′ + Pαβα′β ′ +Hαβα′β ′ + Tαβα′β ′ ,

where ǫαα′ is the s.p. energy including the mean field and is given
by

ǫαα′ = 〈α|t|α′〉 +
∑

λ1λ2

〈αλ1|v|α′λ2〉Anλ2λ1 . (7)

Here the subscript A means that the corresponding matrix is
antisymmetrized. The term Bαβα′β ′ in Equation (6) consists of
only the occupation matrices and describes 2 particle (p) – 2
hole (h) and 2h–2p excitations, while Pαβα′β ′ andHαβα′β ′ contain
C2 and express p–p (and h–h) and p–h correlations to infinite
order, respectively [6]. The Tαβα′β ′ term gives the coupling to the
three-body correlation matrix (C3)

Tαβα′β ′=
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3βα′λ1β ′

+ 〈λ1β|v|λ2λ3〉Cλ2λ3αα′λ1β ′ (8)

− 〈λ1λ2|v|α′λ3〉Cαλ3βλ1λ2β ′ − 〈λ1λ2|v|λ3β ′〉Cαλ3βλ1λ2α′ ],

where Cαβγα′β ′γ ′ (C3) is given by

Cαβγα′β ′γ ′ = 〈8(t)|a+
α′a

+
β ′a

+
γ ′aγ aβaα|8(t)〉 −A(nαα′ρβγβ ′γ ′ ).(9)

Approximations for C3 are needed to close the equations of
motion within nαα′ and C2. Three truncation schemes TDDM,
TDDM1 and TDDM2 have been proposed. In TDDM, C3 is
simply omitted [5, 6]. In TDDM1, C3 is given by [21]

Cp1p2h1p3p4h2 =
∑

h

Chh1p3p4Cp1p2h2h, (10)

Cp1h1h2p2h3h4 =
∑

p

Ch1h2p2pCp1ph3h4 , (11)

where p and h refer to particle and hole states, respectively.
These expressions were derived from perturbative consideration
using the Coupled-Cluster-Doubles (CCD)-like ground state
wavefunction [38]. In a time-independent density-matrix
approach in quantum chemistry, known as the contracted
Schrödinger equation [20], Mazziotti [22] has proposed a
method for constructing the three-body cumulant (C3) with
nαα′ and C2. Equations (10) and (11) describe the leading-order
terms in the three-body cumulant [23]. TDDM2 [26] is the most

effective in the large N and strongly interacting limits of the
Lipkin model and gives

Cp1p2h1p3p4h2 = 1

N

∑

h

Chh1p3p4Cp1p2h2h, (12)

Cp1h1h2p2h3h4 = 1

N

∑

p

Ch1h2p2pCp1ph3h4 , (13)

whereN is

N = 1+ 1

4

∑

pp′hh′
Cpp′hh′Chh′pp′ . (14)

The factor N was introduced to simulate many-body effects
which reduce C3 in large N systems and (or) strongly interacting
regions of the Lipkin model. In the perturbative region where the
second term on the right-hand side of Equation (26) is smaller
than unity,N has the meaning of the normalization factor of the
total wavefunction.

The conservation of the total energy and total particle
number is not affected by the truncation schemes for C3

as long as its symmetry and anti-symmetry properties under
the exchange of s.p. indices is respected. However, the trace
relation between the one-body and two-body density matrices
nαα′ = ∑

λ ραλα′λ/(N − 1) is not conserved when any
approximation is made for C3. This is an example of the loss
of N-representability [20]. It was pointed out [21] that the
fulfillment of the trace relation is drastically improved by going
from TDDM to TDDM1. In an attempt to conserve the trace
relation, Cassing and Pfitzner [39] proposed an approximation
for C3 which also contains quadratic terms of C2. However, C3

is not uniquely determined only by the requirement of the trace
relation conservation. In contrast to TDDM1 their quadratic
terms do not have the leading-order terms (Equations 10, 11) of
the three-body cumulant [22, 23] and the dynamical effect of C3

was found small in one-dimensional heavy-ion simulations [39].
C3 in Reference [39] is not anti-symmetric under the exchange
of s.p. indices, which may violate even the conservation of the
trace relation as was pointed out by Gherega et al. [17]. There
is another attempt [40] to conserve the trace relation, where the
equation motion for C3 was solved by truncating the BBGKY
hierarchy at the three-body level. However, the application of
such an approach was limited to model Hamiltonians [40].

2.2. Ground-State Calculation
The ground state in TDDMA is given as a stationary solution
of the time-dependent equations (Equations 5, 6) which satisfies
ṅαα′ = 0 and Ċ2 = 0. Two methods have been employed
to obtain the stationary solution. One is the adiabatic method:
Equations (5) and (6) are solved by starting from the HF
configuration and gradually increasing the strength of the

residual interaction such as v(Er − Er′) × t/T. This method
is based on the Gell-Mann-Low theorem [41] and has often
been used to obtain approximate ground states with various
time-dependent functionals [11, 13, 14, 42, 43]. To suppress
oscillating components which come from the mixing of excited
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states, T must be much larger than the longest period in the
system considered. The other method is a usual iterative gradient
method which is useful to obtain a rigorously stationary solution.
Since it involves matrix inversion, the application of the gradient
method is limited to small systems: The gradient method has
been employed to obtain the ground states of the Lipkin model
[15] and the oxygen, calcium and tin isotopes [34–36] using
several s.p. states around the Fermi level [34, 36] or the valence
neutron s.p. states [35].

2.3. Excited-States Calculation
The formulation for excited states can be derived by either taking
the small amplitude limit of the TDDM equations or using the
equation of motion approach [1, 27]. Here the formulation based
on the equation of motion approach is presented. Let us consider
a generalized RPA operator with one-body and two-body sectors

Q+
µ =

∑

λλ′
x
µ

λλ′a
+
λ aλ′ +

∑

λ1λ2λ
′
1λ

′
2

X
µ

λ1λ2λ
′
1λ

′
2
a+λ1a

+
λ2
aλ′2aλ

′
1
, (15)

where there is no restriction on the s.p. indices: They can be
both p and h. As usual with the equation of motion approach,
the properties of the excitation operator Q+

µ |80〉 = |8µ〉 and
Qµ|80〉 = 0 are assumed and the following equations of motion
satisfied by exact states are taken into account

〈80|[a+λ aλ′ ,H]|8µ〉 = ωµ80|a+λ aλ′ |8µ〉 (16)

〈80|[a+λ1a
+
λ2
aλ′2aλ

′
1
,H]|8µ〉 = ωµ〈80|a+λ1a

+
λ2
aλ′2aλ

′
1
|8µ〉, (17)

where ωµ is the excitation energy of an excited state |8µ〉.
The equations for x

µ

λλ′ and X
µ

λ1λ2λ
′
1λ

′
2
are obtained by inserting

Equation (15) into the above equations. They are written in
matrix form [15, 40]

(

A B
C D

) (

xµ

Xµ

)

= ωµ

(

S1 T1

T2 S2

) (

xµ

Xµ

)

. (18)

The Hamiltonian matrices A, B, C and D are given by

A(αα′ : λλ′) = 〈80|[[a+α′aα ,H], a+
λ
aλ′ ]|80〉, (19)

B(αα′ : λ1λ2λ′1λ
′
2) = C+

= 〈80|[[a+α′aα ,H], a+
λ1
a+
λ2
aλ′2

aλ′1
]|80〉, (20)

D(αβα′β ′ : λ1λ2λ′1λ
′
2) = 〈80|[[a+α′a

+
β′aβaα ,H], a+

λ1
a+
λ2
aλ′2

aλ′1
]|80〉.

(21)

The norm matrices S1, T1, T2, and S2 are given as

S1(αα
′
: λλ′) = 〈80|[a+α′aα , a+λ aλ′ ]|80〉, (22)

T1(αα
′
: λ1λ2λ

′
1λ

′
2) = T+

2 = 〈80|[a+α′aα , a+λ1a
+
λ2
aλ′2aλ

′
1
]|80〉,
(23)

S2(αβα
′β ′ : λ1λ2λ′1λ

′
2) = 〈80|[a+α′a+β ′aβaα , a+λ1a

+
λ2
aλ′2aλ

′
1
]|80〉.

(24)

These matrices are evaluated by assuming |80〉 to be the ground
state in TDDMA. This means that the effects of ground-state

correlations are included in the above matrices through nαα′ and
C2. All matrix elements in Equation (18) are given in Tohyama
and Schuck [40]. The one-body sector of Equation (18), Axµ =
ωµS1x

µ, is explicitly shown below to explain how nαα′ and C2 are
included. The matrix S1 is given by

S1(αα
′
: λλ′) = (nα′α′ − nαα)δαλδα′λ′ (25)

and A by

A(αα′ : λλ′) = (ǫα − ǫα′ )(nα′α′ − nαα)δαλδα′λ′

+ (nα′α′ − nαα)(nλ′λ′ − nλλ)〈αλ′|v|α′λ〉A
− δα′λ′

∑

γ γ ′γ ′′
〈αγ |v|γ ′γ ′′〉Cγ ′γ ′′λγ

− δαλ

∑

γ γ ′γ ′′
〈γ γ ′|v|α′γ ′′〉Cλ′γ ′′γ γ ′

+
∑

γ γ ′
(〈αγ |v|λγ ′〉ACλ′γ ′α′γ+〈λ′γ |v|α′γ ′〉ACαγ ′λγ )

−
∑

γ γ ′
(〈αλ′|v|γ γ ′〉Cγ γ ′α′λ + 〈γ γ ′|v|α′λ〉Cαλ′γ γ ′ ),

(26)

where ǫαα′ and nαα′ are assumed to be diagonal for simplicity.
The first two terms on the right-hand side of Equation (22)
are of the same form as the RPA and rRPA euqations, the
next two terms with C2 and the Kronecker delta δαα′ describe
the self-energies of the α–α′ configurations due to ground-state
correlations [29, 44], and the other terms with C2 are interpreted
as the vertex corrections [29, 44]. Equation (18) has the most
general form of beyond RPA theories: It is reduced to SRPA
when the ground-state correlations are neglected and the one-
body sector of Equation (18) Axµ = ωµS1x

µ is formally the
same as the equation in SCRPA. Equation (18) is referred to as
the extended RPA (ERPA) hereafter.

Although ERPAhas great advantages over other extended RPA
theories, it is worth pointing out its limitations. The numbers
of the matrix elements of C2 and X

µ

αβα′β ′ increase rapidly with

increasing number of the s.p. states. Therefore, truncation of
the s.p. space is required in realistic applications. As shown
below, basic effects of two-body correlations can be described
with rather small s.p. space, however. The other limitation is
concerned with hermiticity of D in Equation (18), which is
related to the truncation of the BBGKY hierarchy. Equation (21)
contains C3 and it is approximated depending on the truncation
scheme. Hermiticity of D which is guaranteed only when all the
matrix elements of C3 satisfy the stationary condition as those
of nαα′ and C2 do is not fulfilled [40] when any approximated
is made for C3. The non-hermiticity has not caused serious
problems in the applications thus far considered, though. In the
case of the Lipkin model, an attempt [40] to obtain Hermitian D
was carried out by solving the equation of motion for C3.

2.4. Applications
TDDMA’s in the time-independent s.p. basis have been applied
to model Hamiltonians [23, 33] to corroborate their validity:
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The Lipkin model [25] was used to compare three truncation
schemes TDDM, TDDM1 and TDDM2. Comparison of ERPA
with other beyond-RPA theories, rRPA, SCRPA and SRPA was
performed for the one-dimensional Hubbard model [37]. As
realistic applications of ERPA, the quadrupole excitations of
oxygen isotopes [34], the low-lying quadrupole states in tin
isotopes [35] and the dipole and quadrupole excitations of 40Ca
and 48Ca [36] have been studied. In the following some of the
results are presented.

2.4.1. Lipkin Model

The Lipkin model [25] has extensively been used to test
theoretical models. It describes an N-fermions system with two
N-fold degenerate levels. The upper (lower) levels have energies
ǫ/2 (−ǫ/2) and quantum number p (−p) with p = 1, 2, ...,N. The
Hamiltonian is given by

H = ǫJz +
V

2
(J2+ + J2−), (27)

where the operators are the followings

Jz = 1

2

N
∑

p=1

(c+p cp − c−p
+c−p), (28)

J+ = J+− =
N

∑

p=1

c+p c−p. (29)

For χ = |V|(N − 1)/ǫ ≤ 1 the HF ground state is given by
|HF〉 = ∏N

p=1 c
+
−p|0〉, where |0〉 is the true vacuum. For χ > 1

the lowest s.p. states are obtained by the transformation

(

a+−p

a+p

)

=
(

cosα sinα
− sinα cosα

) (

c+−p

c+p

)

,

(30)

where α satisfies cos 2α = 1/χ . The HF ground state in this case
is often called the “deformed” HF (DHF) state and is given by
|DHF(α)〉 = ∏N

p=1 a
+
−p|0〉.

The truncation schemes TDDM, TDDM1 and TDDM2 have
been applied to the Lipkin model and it was found that the
simplest scheme TDDM gives the exact solutions in the limits
of large N and χ [45]. This is due to the unique property of
the Lipkin model that the ground-state energy in DHF becomes
exact in such limits [1]. The relation between the density-matrices
in DHF and TDDM is discussed below. The occupation matrix
in DHF is given by n−p−p = cos2 α, npp = 1 − n−p−p =
sin2 α, and np−p = cosα sinα. The two-body and three-body
density matrices in DHF are given by the above elements of the
occupation matrix. For example the 2p–2h and ph–ph elements
of the two-body density matrix are expressed as

ρpp′−p−p′ = 〈DHF(α)|c+−pc
+
−p′cp′cp|DHF(α)〉

= cos2 α sin2 α = np−pnp′−p′ = ρp−p′−pp′ (p 6= p′).

(31)

Similarly, the three-body density matrix is given by

ρp−p′p′′pp′−p′′ = cos2 α sin4 α = nppρ−p′p′′p′−p′′ . (32)

This means that the correlated part (Cp−p′p′′pp′−p′′ ) of the three-
body density matrix vanishes in DHF. The “spherical” total
wavefunction |9〉 in DHF which does not have the mixing of the
p and−p states is given by the two DHF solutions as

|9〉 = 1√
2
(|DHF(α)〉 + |DHF(−α)〉). (33)

Since the overlap between |DHF(α)〉 and |DHF(−α)〉 is negligibly
in the large χ and N limits, the three-body density matrix
calculated with |9〉 has also no correlated part. This is the reason
why the results in TDDM approach the exact solutions in the
large χ and N limits.

The ground-state energy E0 calculated in TDDM (solid line)
for N = 12 and 50 is presented respectively in Figures 1, 2
as a function of χ . The dashed and green (gray) lines denote
the results in TDDM1 and TDDM2, respectively. In the case of
N = 50 the results in TDDM2 are not displayed because they lie
between the TDDM results and the exact values. The dotted and
dot-dashed lines depict the results in HF and DHF (χ > 1) and
the exact values, respectively. As seen in Figures 1, 2, the factor
N in Equations (12) and (13) plays a role in greatly reducing C3,
making TDDM2 almost equivalent to TDDM for N = 50. In the
limits of large N and χ both TDDM and DHF results become
close to the exact solutions. In the transitional region χ ≈ 1,
however, TDDM1 and TDDM2 were found better than TDDM
and DHF [45]. In the case of N = 12 this extends to χ ≈ 2 as
seen in Figure 1.

The excitation energies of the first and second excited states
calculated from the small oscillations of the TDDM solutions
(dots) are compared with the exact solutions (dot-dashed line)
in Figures 3, 4 for N = 200 where TDDM is supposed to give
the nearly exact ground state. The dotted lines in Figures 3, 4
depict the results in RPA and the “deformed” RPA (χ > 1) for
the first excited state. In contrast to RPA and the deformed RPA
TDDM reproduces the smoothly decreasing excitation energy of
the first excited state with increasing interaction strength beyond
χ = 1. Figure 4 shows that TDDM also gives good description
of the second excited state. As seen in Figure 4, the excitation
energies for the first excited state calculated in the deformed RPA
become close to the exact values for the second excited state [1]
with increasing χ . The excited states were also calculated for a
small system with N = 4 by using the ground states in TDDM
[15] and TDDM1 [23], and it was found that the TDDM1 ground
state gives much better results.

As was pointed out above, the fact that TDDM becomes
exact in large N and χ limits is due to the unique feature of
the Lipkin model that the mean-field theory DHF gives the
exact solutions in such limits. In the transitional region χ ≈
1 TDDM1 and TDDM2 give better description of the exact
solutions than TDDM, and the applications to the ground states
of other solvable models [23, 26] and 16O [24] also showed
that TDDM1 largely improves TDDMwhereas the improvement
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FIGURE 1 | Ground-state energy in TDDM (solid line) as a function of

χ = |V|(N− 1)/ǫ for N = 12. The results in TDDM1 where the three-body

correlation matrix is given by Equations (10) and (11) are shown with the

dashed line. The green (gray) line depicts the results in TDDM2 where the

three-body correlation matrix is given by Equations (12) and (13). The results in

HF and DHF(χ > 1) are depicted with the dotted line. The exact values are

given by the dot-dashed line. Adapted from Tohyama and Schuck [45] with

permission from Società Italiana di Fisica/Springer-Verlag GmbH Germany.

FIGURE 2 | Ground-state energy in TDDM (solid line) as a function of χ for

N = 50. The exact values are given with the dot-dashed line. The dashed line

depicts the results in TDDM1. The results in TDDM2 lie between the TDDM

results and the exact values and are not displayed here. The results in HF and

DHF(χ > 1) are shown with the dotted line but cannot be distinguished from

the exact values in the scale of the figure except for the region χ ≈ 1. Adapted

from Tohyama and Schuck [45] with permission from Società Italiana di

Fisica/Springer-Verlag GmbH Germany.

from TDDM1 to TDDM2 is not large [26]. Therefore, TDDM1
or TDDM2 may be a useful truncation scheme to be applied to
realistic cases except for strongly interacting regions.

FIGURE 3 | Excitation energy of the first excited state calculated in TDDM

(dots) as a function of χ for N = 200. The exact values are shown with the

dot-dashed line. The dotted line depicts the results in RPA. Adapted from

Tohyama and Schuck [45] with permission from Società Italiana di

Fisica/Springer-Verlag GmbH Germany.

FIGURE 4 | Same as Figure 3 but for the second excited state. The dotted

line depicts the RPA results for the first excited state. Adapted from Tohyama

and Schuck [45] with permission from Società Italiana di Fisica/Springer-Verlag

GmbH Germany.

2.4.2. One-Dimensional Hubbard Model

ERPA based on the TDDM1 ground state has been applied to
the one-dimensional (1-D) Hubbard model [37] to compare with
other beyond RPA theories [33]. The Hubbard model is one
of the most widespread models to investigate strong electron
correlations and has often been used to corroborate the validity of
beyond RPA theories [46]. In momentum space the Hamiltonian
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FIGURE 5 | Ground-state energy Etot calculated in TDDM1 (dots) as a function

of U/t for N = 6 with half-filling. The exact solutions are displayed with the solid

line. Adapted from Tohyama [33] under the Creative Commons CCBY license.

is given by [46]

H =
∑

k,σ

ǫka
+
k,σ

ak,σ + U

2N

∑

k,p,q,σ

a+
k,σ

ak+q,σ a
+
p,−σ ap−q,−σ , (34)

where U is the matrix element of the on-site repulsive Coulomb
interaction, σ spin projection and the s.p. energies are given by
ǫα = −2t cos kα with the nearest-neighbor hopping potential t.
In the case of the six sites at half filling considered here, there are
the following six wave numbers

k1 = 0, k2 =
π

3
, k3 = −π

3
,

k4 = 2π

3
, k5 = −2π

3
. k6 = −π . (35)

The s.p. energies are ǫ1 = −2t, ǫ2 = ǫ3 = −t, ǫ4 = ǫ5 = t,
and ǫ6 = 2t. In HF the lower states with ǫ1, ǫ2 and ǫ3 are fully
occupied by 6 particles.

The ground state energy calculated in TDDM1 (dots) with
the adiabatic method is displayed in Figure 5 as a function of
U/t. It was found [21] that TDDM1 gives much better ground
states of this model Hamiltonian than TDDM and that the
improvement from TDDM1 to TDDM2 is minor [26]. The exact
values obtained in exact diagonalization approach are depicted
with the solid line. The TDDM1 results agree well with the
exact values. The occupation probabilities of the four s.p. states
in TDDM1 (circles and squares) given in Figure 6 as functions
of U/t also have reasonable agreement with the exact solutions
(solid, dotted, dashed and dot-dashed lines). The deviation of
the occupation probabilities from the HF values (nαα = 1 or 0)
exceeds 10% at U/t = 4.

ERPA is compared with other beyond RPA theories for the
spin mode with the momentum transfer q = π/3 which is

FIGURE 6 | Occupation probability of each s.p. state calculated in TDDM1

(circles and squares) as a function of U/t. The exact solutions are depicted

with the solid, dotted, dashed and dot-dashed lines. Adapted from Tohyama

[33] under the Creative Commons CCBY license.

excited mainly by the one-body operator a+
k4↑ak2↑ − a+

k4↓ak2↓.
Since the s.p. states are partially occupied, the h–h and p–p
transitions such as k1 → k2 and k6 → k5 also contribute
in rRPA, SCRPA and ERPA. In Figure 7 the excitation energies
in ERPA (dots), RPA (open triangles), rRPA (filled triangles),
SCRPA (squares) and SRPA (crosses) are shown as functions of
U/t. The exact solutions are given with the solid line. The rRPA
and SCRPA results are calculated with nαα and Cαβα′β ′ which are
not self-consistently determined by the p–h and h–p amplitudes
[28, 29] but given by the TDDM1 calculations. In the case of a
repulsive interaction, the excitation energy of a spin mode where
the s.p. transitions between spin-up states and spin-down states
destructively interfere decreases with increasingU. The results in
RPA agree rather well with the exact solutions. In rRPA there are
two states below E/t < 2. The main components of the lower
state at E/t ≈ 1 are the p–p and h–h transitions and the higher
state consists of the p–h and h–p components. Thus in rRPA
the configurations consisting of the p–p and h–h components
appear as the lowest state as if it is a physical state. This indicates
that it is not appropriate to include the ground-state correlation
effects only through nα . In SCRPA the states originating from
the p–p and h–h transitions gain self energies and move to the
high energy region (E/t > 10). This is because the terms in
Equation (26) with C2 are divided by the small values npp − np′p′

or nhh − nh′h′ when Axµ = S1x
µ is solved. Thus in SCRPA the

states consisting of the p–p and h–h components are energetically
separated from the lowest state. The excitation energies of the
lowest state calculated in SCRPA, however, exceed significantly
the exact values. This is due to the neglect of the coupling to
the two-body amplitudes. SRPA includes the coupling to the two-
body amplitudes though the ground-state correlation effects are
neglected. As shown in Figure 7 with the crosses, the coupling to
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FIGURE 7 | Excitation energy of the spin mode with momentum transfer

q = π/3 as a function of U/t calculated in ERPA (dots). The results in RPA,

rRPA, SCRPA, and SRPA are denoted with the open triangles, filled triangles,

squares and crosses, respectively. The exact solutions are depicted with the

solid line. Adapted from Tohyama [33] under the Creative Commons CCBY

license.

the 2p–2h amplitudes considered in SRPA downwardly shift the
RPA results with increasing U and SRPA collapses at U/t = 3.9.
The results in ERPA have reasonable agreement with the exact
solutions. The coupling to the two-body amplitudes included in
ERPA plays a role in bringing down the results in SCRPA.

From the application to the 1-D Hubbard model it was
clarified that when the couping to the two-body amplitude
is considered, the effects of ground-state correlations should
also be included, and vice versa. Therefore, rRPA, SCRPA and
SRPA which only include either the ground-state correlations
effects or the coupling to the two-body amplitude cannot give
satisfactory results.

2.4.3. Dipole and Quadrupole Excitations of 40Ca and
48Ca

In this subsection the applications of ERPA to the dipole
excitation of 48Ca and the quadrupole excitation of 40Ca [36]
are presented. It is demonstrated that the effects of ground-state
correlations which are not fully incorporated in other beyond
RPA theories play a significant role in the fragmentation of
transition strengths.

Since the numbers of C2 and X
µ

αβα′β ′ increase rapidly with

the number of the s.p. states, rather sever truncation of the
s.p. space is required in realistic applications. The occupation
probability nαα and C2 were calculated within TDDM by using
the truncated s.p. basis consisting of the 2s–1d and 1f –2p states,
and only the 2p–2h and 2h–2p elements of C2 were included
to reduce the dimension size. It was pointed out in Reference
[24] that TDDM with this truncation of C2 gives as good results
for the ground state of 16O as TDDM1 with all components
of C2. The Skyrme III force [47] was used to obtain the s.p.

TABLE 1 | Single-particle energies ǫα and occupation probabilities nαα calculated

in TDDM for 40Ca.

ǫα [MeV] nαα

Orbit Proton Neutron Proton Neutron

1d5/2 −15.6 −22.9 0.923 0.924

1d3/2 −9.4 −16.5 0.884 0.884

(0.65 ± 0.05) (0.80 ± 0.11)

2s1/2 −8.5 −15.9 0.846 0.846

1f7/2 −3.4 −10.4 0.154 0.154

Observed occupation probabilities [48] are shown for the 1d3/2 states.

wavefunctions which satisfy a HF-like nαα-dependent equation.
In Pfitzner et al. [11] and Peter et al. [12] a fixed harmonic
oscillator basis was chosen to facilitate the calculations of two-
body matrix elements when the TDDM equations were applied
to the study of giant resonances. A simplified interaction which
contains only the t0 and t3 terms of the Skyrme III force was used
as the residual interaction. The ground states were calculated with
the iterative gradient method [15]. The one-body amplitudes x

µ

αα′
in Equation (18) were defined with a large number of s.p. states
including those in the continuum to satisfy the energy-weighted
sum rule: The continuum states were discretized by confining
the wavefunctions in a sphere with radius 15 fm and all the s.p.
states with ǫα ≤ 50 MeV and jα ≤ 11/2h̄ were included. The
residual interaction in Equation (18) was assumed to have the
same form as that used in the ground-state calculations. Since
the residual interaction differs from the effective interaction used
in the calculation of the s.p. states, it is necessary to reduce the
strength of the residual interaction. The reduction factors 0.66
and 0.69 for 40Ca and 48Ca, respectively, were determined so that
the spurious mode corresponding to the center-of-mass motion
has zero excitation energy in RPA. To reduce the number of the
two-body amplitudes, only the 2p–2h and 2h–2p components of
X
µ

αβα′β ′ were considered for the 2s–1d and 2p–1f states.

The occupation probabilities calculated in TDDM for 40Ca
and 48Ca are given in Tables 1, 2, respectively. They deviate more
than 10% from the HF values (nαα=1 or 0) in

40Ca. This indicates
that the ground state of 40Ca is highly correlated as an RPA study
[49] and perturbative calculations [31, 50] have already shown.
Since the occupation of the neutron 1f7/2 state in 48Ca blocks
some 2p–2h excitations, the ground-state correlations are weaker
in 48Ca than in 40Ca. As will be discussed below, the fractional
occupation of the 2p–1f states plays an important role in the
fragmentation of dipole and quadrupole transition strengths.
Occupation probabilities deduced from ground-state-to-ground-
state (p, d) and (e, e′p) reactions [48] are also shown for some
s.p. states in Tables 1, 2 (values in parentheses). These values
also strongly deviate from the HF value (nα = 1). The TDDM
results cannot be directly compared with these data, however.
A more appropriate formalism such as the odd-particle number
RPA [51] which deals with odd particle systems is needed to
compare with experiment.

The strength function for the isovector dipole excitation in
48Ca calculated in ERPA (solid line) is displayed in Figure 8.
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TABLE 2 | Same as Table 1 but for 48Ca.

ǫα [MeV] nαα

Orbit Proton Neutron Proton Neutron

1d5/2 −22.6 −22.4 0.963 0.965

1d3/2 −17.1 −17.0 0.952 0.940

2s1/2 −15.1 −16.4 0.905 0.932

(0.54 ± 0.04)

1f7/2 −10.6 −10.6 0.059 0.919

(0.73 ± 0.14)

2p3/2 −1.7 −3.8 – 0.103

2p1/2 0.1 −2.0 – 0.064

1f5/2 −2.2 −1.9 0.022 0.116

Observed occupation probabilities [48] are shown for the proton 2s1/2 and neutron 1f7/2

states.

The dotted and dot-dashed lines depict the results in RPA and
SRPA, respectively. An artificial width Ŵ = 0.5 MeV is used to
smooth the distributions. The strength distributions in Figure 8

exhaust about 90% of the energy-weighted-sum-rule (EWSR)
value including the enhancement term given by the t1 and t2
parameters of the Skyrme III force. A better treatment of the
residual interaction and the continuum states is required to fulfill
the EWSR value. The sharp peak in RPA corresponds to the
giant dipole resonance (GDR). GDR strongly couples to the
2p–2h states and it is damped both in SRPA and ERPA. The
occupation of the neutron 1f7/2 state in 48Ca allows the 2p–2h
states which include the neutron 1f7/2 state as a hole state. Since
these states have energies close to the energy of GDR, GDR is
strongly damped due to the coupling to the 2p–2h states. The
SRPA result in Figure 8 dose not show a strong downward shift of
the dipole strength which has been reported in large scale SRPA
calculations [53]. This is due to fact that a rather small number
of the s.p. states are used to define the 2p–2h amplitudes. The
peak position and width of GDR in ERPA are comparable with
the experimental photo absorption cross section [52] as shown in
the inset of Figure 8.

ERPA gives 7 states below 10 MeV, which are compared with
experiment [54] in Figure 9. These states involve the transitions
from the partially occupied neutron 2p1/2, 2p3/2 and 1f5/2 states
and the p–p transition components exhaust 15 − 39% of the
transition amplitude (xµ, Xµ). The summed strength below
10 MeV is 213 ×10−3e2fm2, which somewhat overestimates
the experimental value 61.5 ± 7.8 ×10−3e2fm2. SRPA gives
two dipole states at 9.2 MeV and 9.3 MeV with the summed
strength 21× 10−3e2fm2. The study of low-lying dipole strength
distribution has been attracting strong interests and various
theoretical approaches such as the large scale SRPA [55, 56] and
the quasi-particle phonon coupling models [57, 58] have been
successfully applied to calcium isotopes.

The strength function for the isoscalar quadrupole excitation
in 40Ca calculated in ERPA (solid line) is shown in Figure 10.
The dotted and dot-dashed lines depict the results in RPA and
SRPA, respectively. The distributions are smoothed with an
artificial width Ŵ = 0.5 MeV. The energy-weighted sums of

FIGURE 8 | Strength functions calculated in RPA (dotted line), SRPA

(dot-dashed line) and ERPA (solid line) for the isovector dipole excitation in
48Ca. The distributions are smoothed with an artificial width Ŵ = 0.5 MeV. In

the inset the photo absorption cross section in ERPA (solid line) is compared

with experimental data [52] (dots). Readapted from Tohyama [36] under the

Creative Commons CCBY license.

FIGURE 9 | Distribution of B(E1) strength below 10 MeV calculated in ERPA

for 48Ca. Experimental data (dashed line) are taken from Hartmann et al. [54].

Adapted from Tohyama [36] under the Creative Commons CCBY license.

the strength distributions in Figure 10 exceed the EWSR value
by about 10% due to the simple approximations for the residual
interaction and the continuum states. The main peak in RPA
corresponds to the giant quadrupole resonance (GQR). ERPA
brings much larger fragmentation of the quadrupole strength
than SRPA especially to the low energy region, indicating the
importance of the ground-state correlations effects included in
ERPA. The large fragmentation of the quadrupole strength is
consistent with experiment [59, 60]. The p–p transitions allowed
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FIGURE 10 | Strength functions calculated in RPA (dotted line), SRPA

(dot-dashed line) and ERPA (solid line) for the isoscalor quadrupole excitation

in 40Ca. The distributions are smoothed with an artificial width Ŵ = 0.5 MeV. In

the inset the ERPA strength distribution (lower part) is compared with the

experimental data from (p,p′) experiments at Ep = 200 MeV and θLab = 11◦

[59] (upper part). Redapted from Tohyama [36] under the Creative Commons

CCBY license.

by the fractional occupation of the 1f7/2 states and the coupling of
the 2p–2h amplitudes to the h–h or p–p amplitudes through C2

were found to play an important role in the large fragmentation
of the quadrupole strength [34, 36]. The importance of the
coupling of the one-body amplitude to C2 in the fragmentation
of GQR in 40Ca was also pointed out by the 1p–1h⊗phonon
configurationsmodel [61, 62]. A large scale SRPA calculation [63]
shows a downward shift of the quadrupole strength and larger
fragmentation of GQR than the SRPA result in Figure 10. This
difference again originates from the difference in the number of
the 2p–2h configurations used. In the inset the ERPA strength
distribution in the GQR region (lower part) is compared with
the experimental data from (p, p′) experiments [59] (upper
part). Although the peak position in ERPA corresponds to the
experimental data, ERPA cannot describe the large fragmentation
of GQR. The result of the large scale SRPA calculation [63]
suggests the importance of higher configurations.

There are 19 sates below 10 MeV in ERPA, which are
compared with experiment [54] in Figure 11. The first 2+ state
in 40Ca cannot be described in RPA and ERPA because it mainly
consists of 4p–4h states [64] as in the case of 16O [65]. The
summed strength below 10 MeV is 166 e2fm4 in ERPA, which is
about two thirds of the experimental value 263± 46 e2fm4 where
the first 2+ state is excluded.

From the applications of ERPA to the dipole and quadrupole
excitations of 48Ca and 40Ca it was clarified that the ground
state correlation effects should be included to explain the
large fragmentation of the dipole and quadrupole strengths
in doubly-magic nuclei. The ground-state correlation effects
in magic nuclei have extensively been studied for spin-isospin
modes [31, 50, 66–68].

FIGURE 11 | Distribution of B(E2) strength below 10 MeV for 40Ca.

Experimental data (dashed line) are taken from Hartmann et al. [54]. Adapted

from Tohyama [36] under the Creative Commons CCBY license.

3. FORMULATION IN TIME-DEPENDENT
SINGLE-PARTICLE BASIS

The first applications of the time-dependent density-matrix
approach were based on the TDDM truncation scheme and
the TDDM calculations [6, 7] were performed by using the
time-dependent s.p. wavefunctions obtained from the then
available TDHF code with axial symmetry and without spin-orbit
force [69]. More advanced TDHF codes with spin-orbit force,
unconstrained symmetry and improved effective interactions
have been used to solve the TDDM equations [8, 13]. Since the
calculation of the two-body matrix elements is time-consuming,
a simpler approximation called TDDMP [13, 14] has also been
employed in heavy-ion collisions, where two-body correlations
are considered only for a pair of time reversed s.p. states to reduce
the number of matrix elements of C2. The TDDM approaches
based on the time-dependent s.p. basis have been applied to
study the particle transfers in heavy-ion collisions [7], the fusion
reactions [8, 9] and the damping of giant resonances at zero
[6, 70, 71] and finite temperatures [10]. TDDMP has been applied
to the particle transfers in heavy-ion collisions [13] and the fusion
reactions [14]. In the following the TDDM formulation in the
time-dependent s.p. basis is given and the application to the
fusion reactions of 16O + 16O is presented in some detail as
an example.

3.1. TDDM Equations
The one-body density matrix ρ and the correlated part C2 of the
two-body density matrix ρ2 are expanded with a finite number of
time-dependent s.p. states ψα

ρ(11′, t) =
∑

αα′
nαα′ (t)ψα(1, t)ψ

∗
α′ (1

′, t), (36)
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C2(121
′2′, t) = ρ2 −A(ρρ)

=
∑

αβα′β ′
Cαβα′β ′ (t)ψα(1, t)ψβ (2, t)ψ

∗
α′ (1

′, t)ψ∗
β ′ (2

′, t),

(37)

where the numbers denote space, spin and isospin coordinates.
The equations of motion of TDDM in the time-dependent basis
consist of the following three coupled equations [6]:

i
∂

∂t
ψα(1, t) = h(1, t)ψα(1, t), (38)

iṅαα′ =
∑

βγ δ

[〈αβ|v|γ δ〉Cγ δα′β − Cαβγ δ〈γ δ|v|α′β〉], (39)

iĊαβα′β ′ = Bαβα′β ′ + Pαβα′β ′ +Hαβα′β ′ , (40)

where h is the mean-field Hamiltonian given by ρ. When the
time-dependent s.p. states are chosen, the terms with the s.p.
energies on the right-hand side of Equations (5) and (6) are
incorporated into the equation for the s.p. wavefunctions [6]. In
TDDMP [13, 14] Hαβα′β ′ is neglected and two-body correlations
are considered only for a pair of time reversed s.p. states.

3.2. Fusion Reactions of 16O + 16O
The fusion reactions of 16O + 16O studied in TDDM with
the time-dependent s.p. basis are explained below. This work
Tohyama and Umar [8] finally solved the longstanding problem
of fusion window anomaly. Early TDHF calculations showed that
the colliding heavy ions do not fuse in a small impact parameter
region when incident energy is higher than a certain relatively
low threshold value Eth [2]. This is known as the fusion window
anomaly. Experimental search for the fusion window anomaly
has found no evidence [72–75]. It was found that the inclusion
of spin-orbit force introduced enough one-body dissipation to
16O + 16O collisions [76] because the degeneracy of the 1p3/2
and 1p1/2 states is lifted. It was also found [77] that the effects
of two-body dissipation taken in TDDM resulted in the doubling
of Eth without incorporating spin-orbit force. This is due to
the inclusion of additional unoccupied s.p. states in TDDM. In
Tohyama and Umar [8] the combined effects of spin-orbit force
and two-body dissipation were studied for 16O + 16O. In this
study the Skyrme II force (SKII) [78] was chosen as an effective
interaction to calculate the s.p. wavefunctions since SKII has
often been used in TDHF calculations [69]. The s.p. states were
restricted to the 1s–1p and 2s–1d states and the simple force of

the δ function form v = v0δ
3(Er − Er′) with v0 = −350 MeV·fm3

was used as the residual interaction to facilitate the calculation of
the matrix elements. The threshold energy Eth was searched for
four different calculation schemes for the head-on collisions of
16O + 16O: TDHF with and without spin-orbit force, and TDDM
with and without spin-orbit force.

The obtained results for Eth in the center-of-mass (c.m.)
frame are summarized in Table 3. The inclusion of either spin-
orbit force or two-body dissipation dramatically increases Eth.

TABLE 3 | Threshold energy Eth in the center-of-mass frame for the head-on

collisions of 16O + 16O.

Method Eth [MeV]

TDHF without Eℓ · Es 30

TDDM without Eℓ · Es 66

TDHF with Eℓ · Es 69

TDDM with Eℓ · Es 80

Fusion occurs below Eth.

However, two-body dissipation increases Eth only about 10 MeV
when spin-orbit force is included. It was also found that the
translational motion damps faster in TDDM than in TDHF [8]
below Ec.m. = 69 MeV where the colliding system fuses both in
TDHF and TDDM. The fusion reactions of 16O + 16O below Eth
were also studied by Wen et al. [14] using the TDDMP approach
and a paring interaction as the residual interaction and it was
found that extracted friction coefficients are enhanced by about
20% due to two-body dissipation.

In the case of heavy-ion collisions the TDDM (and TDDMP)
equations ostensibly do not conserve the total energy because
of the truncation of the s.p. space [7, 14]. Wen et al. [14] has
proposed a method to recover the energy conservation within the
truncated s.p. space.

4. SUMMARY AND OUTLOOK

An approach which extends the time-dependent Hartree-Fock
theory (TDHF) based on the equations of motion for reduced
density matrices was presented. The equations of motions for
reduced density matrices form a coupled chain known as the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
In this time-dependent density-matrix approach (TDDMA) the
truncation of the BBGKY hierarchy is applied at the two-
body level by approximating the correlated part of the three-
body density matrix (C3). TDDMA has great advantages that a
correlated ground state is obtained as a stationary solution of
the TDDMA equations and that the small amplitude limit of
the TDDMA equations gives the most general form of beyond
the random-phase approximation (RPA). TDDMA was applied
to the Lipkin model to test the approximations for C3. It was
found that the simplest approximation where C3 is neglected
becomes exact in the limits of large number of particles and
strong interaction. The extended RPA (ERPA) derived from the
TDDMA equations was applied to the one-dimensional Hubbard
model to compare with other beyond RPA theories. It was
pointed out that when the effects of ground-state correlations
are included, the coupling to the two-body amplitudes should
also be considered, and vice versa. As the realistic applications
of ERPA, the dipole and quadrupole excitations of 40Ca and
48Ca were studied. It was found that the effects of ground-state
correlations play an important role in fragmenting the dipole
and quadrupole strengths. The TDDMA study for the fusion
reactions of 16O + 16O was also presented as an application of
the TDDMA formulation with a time-dependent singe-particle
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basis. It was pointed out that the two-body dissipation plays a
role in further damping the translational motion of 16O + 16O.

Although the obtained results indicate that TDDMA provides
a promising beyond mean-field framework to include two-body
correlation effects which are missing in TDHF, TDDMA has
limitations and issues to be resolved. One limitation is the fact
that the number of matrix elements of the two-body density
matrix rapidly increases with increasing number of the s.p.
states, which forces us to use small s.p. space around the Fermi
level in realistic applications, though the obtained results show
that basic effects of two-body correlations can be described
with rather small s.p. space. In the realistic applications, simple
residual interactions of the δ function form were used to facilitate
the calculations of two-body matrix elements whereas the s.p.
wavefunctions were obtained from the Skyrme interactions
included in TDHF codes. The consistent treatment of the
effective interactions is a subject to be addressed in TDDMA.

Another point is the truncation scheme of the BBGKY hierarchy
itself. In TDDMA the BBGKY hierarchy is truncated at the two-
body level by making approximations for C3. The truncation
violates the properties of reduced density matrices which should
be fulfilled if they are derived from anN-body total wavefunction.
It was pointed out that the TDDM1 truncation scheme where
C3 is given by the traced products of the 2p–2h elements of the
two-body correlation matrix largely improves the simple scheme
where C3 is neglected. However, the validity of TDDM1 cannot
be simply extended to highly excited cases such as heavy-ion
collisions. The study of the truncation schemes in such cases
remains a difficult but interesting subject to be investigated.
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Time-dependent Hartree–Fock (TDHF) method has been applied to various low-energy

nuclear reactions, such as fusion, fission, and multinucleon transfer reactions. In this

Mini Review, we summarize recent attempts to bridge a microscopic nuclear reaction

theory, TDHF, and a macroscopic aspect of nuclear reactions through nucleus–nucleus

potentials and energy dissipation from macroscopic degrees of freedom to microscopic

ones obtained from TDHF in various colliding systems from light to heavy mass regions.

Keywords: heavy-ion fusion reactions, TDHF, nucleus–nucleus potential, energy dissipation, fusion hindrance,

quasifission

1. INTRODUCTION

Time-dependent Hartree–Fock (TDHF) method has been widely used in analyzing low-energy
nuclear reactions since Bonche and his coworkers applied TDHF to collision of slabs in
one-dimensional space as the first application of TDHF to nuclear physics [1]. Since then TDHF
has been improved in several respects, e.g., including all terms in recent energy density functionals
(EDF) such as Skyrme [2] and Gogny [3] functionals and breaking symmetries such as space (from
one-dimensional to three-dimensional space).

It is well-known that the coupling between relative motions of colliding nuclei (macroscopic
degrees of freedom) and internal excitations of them (microscopic degrees of freedom) plays an
important role for describing low-energy nuclear reactions at energies around the Coulomb barrier.
To include such couplings, coupled-channel models [4–7] have been developed and widely used.
TDHF automatically includes couplings between relative motion and internal excitations since
TDHF describes the dynamics of single particles. Moreover, TDHF provides an intuitive picture
of nuclear dynamics through the time evolution of one-body densities constructed from single-
particle wave functions in nuclei. Recently, TDHF has been applied to nuclear collective excitations
[3, 8–15] and to nuclear reactions such as fusion [16–22], quasifission [23–25], fission [26–29], and
multinucleon transfer reactions [30–34], some of which include pairing correlations.

In this Mini Review, however, we do not discuss the development of TDHF itself (see recent
review articles on the development of TDHF in [35–40]). Instead, we focus on amacroscopic aspect
of low-energy nuclear reactions described by TDHF. To this end, we show various applications
of the method called “dissipative-dynamics TDHF” (DD-TDHF) developed in Washiyama and
Lacroix [19], Washiyama et al. [20], and Washiyama [41].

2. DISSIPATIVE-DYNAMICS TDHF

The basic idea of DD-TDHF is to combine microscopic dynamics of nuclear reactions described by
TDHF and a macroscopic aspect of nuclear reactions through a mapping from microscopic TDHF
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evolution to a set of macroscopic equations of motion. We briefly
summarize DD-TDHF by the following steps: (1) We first solve
the TDHF equation to obtain time evolution of single-particle
wave functions for nuclear reactions:

ih̄
∂φi(t)

∂t
= ĥ[ρ(t)]φi(t), (1)

where φi(t) is the single-particle wave functions with index i

(including spin and isospin degrees of freedom), and ĥ[ρ(t)]
is the single-particle Hamiltonian as a functional of one-body
density ρ(t), obtained from an EDF E[ρ] by an appropriate

functional derivative ĥ[ρ(t)] = δE/δρ. (2) The next step is
to define macroscopic two-body dynamics from microscopic
TDHF simulations. Macroscopic two-body dynamics can be
constructed once collective coordinate is defined from TDHF
simulations. To do so in TDHF, we introduce a separation plane
which divides the density ρ(r, t) of a colliding system to two
subsystems, ρ1(r, t) and ρ2(r, t), corresponding to projectile-like
and target-like densities. This separation plane is perpendicular
to the collision axis, and at the position where the two densities
ρP(r, t) and ρT(r, t) constructed from the single-particle wave
functions initially in the projectile and in the target, respectively,
cross (see Figure 1 of [19] for an illustrative example). We then
compute the coordinate Ri and its conjugated momentum Pi
for each subsystem i = 1, 2 from ρ1(r, t) and ρ2(r, t). Also,
we compute the masses of the two subsystems by mi = Pi/Ṙi.
From these, two-body dynamics for the relative distance R as
a collective coordinate and its conjugated momentum P, and
reduced mass µ that may depend on R is constructed. (3) For the
case of central collisions, we assume that the trajectory of the two-
body dynamics obtained from TDHF follows a one-dimensional
equation of motion for relative motions,

dR

dt
= P

µ
, (2)

dP

dt
= −dV

dR
− d

dR

(

P2

2µ

)

− γ
P

µ
, (3)

where V(R) and γ (R) denote the nucleus–nucleus potential and
friction coefficient expressing energy dissipation from the relative
motion of colliding nuclei to internal excitations in nuclei,
respectively. An important point is that these two quantities
V(R) and γ (R) are unknown in TDHF simulations. (4) To
obtain those two unknown quantities we prepare a system of
two equations from two trajectories at slightly different energies.
Then, we solve the system of two equations at each R to obtain
V(R) and γ (R). The details of numerical procedures for the
calculations described above can be found in Washiyama and
Lacroix [19], Washiyama et al. [20], and Washiyama [41]. In the
following results, we used the SLy4d Skyrme EDF [16] without
pairing interactions.

3. NUCLEUS–NUCLEUS POTENTIAL AND
ENERGY DISSIPATION

3.1. Light and Medium-Mass Systems
In light and medium-mass systems, whose charge product Z1Z2
is smaller than ≈ 1, 600, it is known that fusion occurs
once two nuclei contact each other after passing the Coulomb
barrier. Indeed, TDHF simulations for head-on collisions at
energies above the Coulomb barrier lead to fusion, keeping

a compound system compact for sufficiently long time. We

first provide selected results of nucleus–nucleus potential
and energy dissipation obtained from DD-TDHF and discuss
their properties.

In Figure 1A, we show obtained nucleus–nucleus potentials
as a function of relative distance R near the Coulomb barrier
radius for 40Ca + 40Ca. The lines show the nucleus–nucleus
potentials at different center-of-mass energies (Ec.m.) by DD-
TDHF, while the filled circles show the potential obtained by the
frozen-density approximation, where the energy of the system is
calculated with the same EDF except that the dynamical effect
during the collision is neglected and the density of each fragment
is fixed to be its ground-state one. Moreover, in the frozen-
density approximation, the Pauli principle is neglected between
nucleons in the projectile and in the target, leading to worse
approximation as the overlap of projectile and target nuclei
becomes significant. Important remarks from this figure are: (1)
Potentials obtained at higher energies (Ec.m. = 90, 100MeV)
agree with the frozen-density one, indicating the convergence of
the potentials obtained by DD-TDHF at higher energies. (2) DD-
TDHF potentials express an Ec.m. dependence at lower energies
Ec.m. = 55, 57MeV. (3) The height of DD-TDHF potential
decreases with decreasing Ec.m.. The Coulomb barrier height
decreases from ≈ 54.5MeV at Ec.m. = 90, 100MeV of DD-
TDHF and of the frozen-density approximation to ≈ 53.4MeV
at Ec.m. = 55MeV of DD-TDHF. The above remarks can
be understood by the dynamical reorganization of the TDHF
density profile of each TDHF trajectory. Figure 1B shows the
TDHF density ρ(x, y, z = 0, t) at each R for Ec.m. = 55 (top
panels) and 90MeV (bottom panels). At Ec.m. = 90MeV, the
shape of each 40Ca density keeps its shape spherical, while at
Ec.m. = 55MeV the shape of each 40Ca density deviates from
its ground-state spherical shape as R becomes smaller. This is
a dynamical reorganization of density during fusion reactions.
This dynamical reorganization changes the shape of each nucleus
when two nuclei approach sufficiently, then reduces the height
of the nucleus–nucleus potential obtained by DD-TDHF. This
dynamical reduction of the nucleus–nucleus potential is seen
in various light- and medium-mass systems in Washiyama and
Lacroix [19].

We would like to note that, in the density-constrained TDHF
(DC-TDHF) method [17], in which constrained Hartree–Fock
calculation is performed to obtain the nucleus–nucleus potential
under the condition that the density is constrained to the density
obtained from TDHF at each time, similar Ec.m. dependence of
nucleus–nucleus potentials is seen in various colliding systems
reported, e.g., in Umar and Oberacker [18], Umar et al. [42],
Oberacker et al. [43], and Umar et al. [44]. Moreover, in the
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FIGURE 1 | (A) Nucleus–nucleus potentials denoted by lines obtained by DD-TDHF at different energies and by the frozen-density approximation by filled circles with

the dotted line as a function of R in 40Ca + 40Ca. (B) Contour plots of density profile ρ(X,Y , 0) obtained from TDHF at Ec.m. = 55MeV (upper panels) and at

Ec.m. = 90MeV (lower panels), at R = 10.26 fm (left panels), 9.82 fm (middle), and 9.52 fm (right) in 40Ca + 40Ca. The isodensities (contour lines) are plotted at each

0.025 fm−3. (C) Same as (A) but for 96Zr + 124Sn. (D) Friction coefficient divided by reduced mass, γ /µ, from DD-TDHF. (E) Extra-push energy from experiments

(Eextra
expt. ) and from TDHF (Eextra

TDHF) together with potential increase 1V and dissipated energy Ediss for
90,92,94,96Zr + 124Sn (see text for detail). (A,B) adopted from

Washiyama and Lacroix [19], (C,D) adopted from Washiyama [41], and (E) adopted from Washiyama [41] with slight change with permission from APS and SciPris.

40Ca + 40Ca system, we find no significant difference in the
potential extracted by DD-TDHF and the one by DC-TDHF [44].

3.2. Heavy Systems
Contrary to light and medium-mass systems described in
section Light and Medium-Mass Systems, it was experimentally
observed that fusion probability at energies near the Coulomb
barrier is strongly hindered in heavy systems (Z1Z2 ≥ 1, 600)
[45, 46]. The main origin of this hindrance has been considered
as the presence of the quasifission process, where a composite
system of two colliding nuclei reseparates before forming an
equilibrated compound nucleus. This fusion hindrance indeed
has been observed in TDHF e.g., in Simenel [35], Washiyama
[41], Simenel et al. [47], and Guo and Nakatsukasa [48]. Namely,
TDHF simulations for head-on collisions at energies above the
Coulomb barrier lead to touching configuration of a composite
system, and then to reseparation after a while (several to tens
of zeptoseconds). In Washiyama [41], the extra-push energy
ETDHF
extra = ETDHF

thres
− VFD

B in TDHF was systematically obtained

in heavy systems, where ETDHF
thres

and VFD
B denote the fusion

threshold energy above which fusion occurs in TDHF and
the Coulomb barrier energy obtained in the frozen-density

approximation, respectively. We show in Figure 1E extra-push
energies in TDHF for 90,92,94,96Zr + 124Sn, compared with those
deduced from experimental data, Eextraexpt. , taken from Schmidt and
Morawek [49], where the Bass barrier VBass [50] was employed
as the Coulomb barrier height. We found that the difference
between VFD

B and VBass in 90,92,94,96Zr + 124Sn is at most ≈
1MeV. These obtained extra-push energies in TDHF reasonably
reproduce observations.

One may think why the fusion hindrance in heavy systems
appears in both experiments and TDHF simulations. In
Washiyama [41], we address this question and analyze where
finite extra-push energies arise. For the analysis, we first
derive the nucleus–nucleus potential and energy dissipation
by DD-TDHF because we think that these two quantities are
strongly related to the appearance of finite extra-push energy.
In Figure 1C, we show an example of nucleus–nucleus potentials
extracted in heavy systems, which is for the 96Zr + 124Sn system
for three different energies in DD-TDHF and the frozen-density
one. One can clearly see the difference between the potentials
in 40Ca + 40Ca (Figure 1A) and 96Zr + 124Sn (Figure 1C): the
potentials in 96Zr + 124Sn extracted by DD-TDHFmonotonically
increases as the relative distance decreases while the potentials in
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40Ca + 40Ca and by the frozen-density approximation in 96Zr +
124Sn show a barrier structure at a certain relative distance. We
have observed monotonic increase in potential in other heavy
systems [41]. We consider the increase in potential in heavy
systems as the transition from two-body dynamics of colliding
nuclei to one-body dynamics of a composite system with strong
overlap of the densities of colliding nuclei in TDHF and as the
appearance of the conditional saddle point inside the Coulomb
barrier in heavy systems [51–54].

We would like to note here that this is different property
from the one obtained from the DC-TDHF method in the
same colliding system in Oberacker et al. [43]. This difference
comes from a different interpretation of the nucleus–nucleus
potential between the two methods. In the DC-TDHF method
energy minimization is carried out at a given density of a system
obtained from TDHF to deduce a nucleus–nucleus potential
that eliminates internal excitations in this system. In the DD-
TDHF method the potential is deduced under the assumption
that TDHF evolution is reduced to a one-dimensional equation
of motion for relative motion. We consider that the DD-TDHF
potential can include a part of the DC-TDHF internal excitation
energy. We make a comment on the origin of the difference
between the two potentials in the following: In heavy systems
with larger Coulomb replusion, larger overlap of projectile
and target densities during a collsion in TDHF is achieved
at a short relative distance. In TDHF, diabatic level crossings
can occur more in larger overlap region, leading to a part of
internal excitations and to a transition from two-body to one-
body picture of a system. This part of internal excitations is
interpreted as potential energy in DD-TDHF, while this is treated
as excitation energy in DC-TDHF. In the DC-TDHFmethod, the
flattening of the potential at short distances inside the Coulomb
barrier radius is seen in heavier systems leading to the synthesis
of superheavy elements in Umar et al. [42].

In Figure 1D, reduced friction coefficient (γ /µ), the friction
coefficient divided by the reduced mass extracted from Equation
(2), are plotted for selected systems. The friction coefficient
increases as R decreases, and shows oscillations in heavy systems.
We consider that the fact that the friction coefficient becomes
negative indicates breakdown of the assumption that the TDHF
trajectory follows a macroscopic one-dimensional equation of
motion for relative motion of a two-body colliding system.

Finally, we consider the origin of the fusion hindrance
in heavy systems through the analysis with DD-TDHF.
As mentioned above, nucleus–nucleus potential and energy
dissipation are main contribution to the appearance of finite
extra-push energy. We evaluate the potential increase at short
distances and the accumulated dissipation energy from the
friction coefficient using the formula [41],

Ediss(t) =
∫ t

0
dt′γ [R(t′)]Ṙ(t′)2, (4)

up to time t when the kinetic energy of the relative motion of
the system is completely dissipated. In Figure 1E, we also show
the contribution of potential increase 1V and dissipated energy
Ediss to the extra-push energy in the 90,92,94,96Zr + 124Sn systems.

The result 1V > Ediss indicates that the potential increase is a
main origin for the appearance of the finite extra-push energy,
i.e., fusion hindrance. Though the energy dissipation is known to
play an important role in this fusion hindrance, it is not sufficient
to explain the amount of the extra-push energy in the analysis
with the DD-TDHF method.

3.3. Off-Central Collisions
So far, the applications of theDD-TDHFmethod has been limited
to central collisions. Here we discuss a possible extension of the
method to off-central collisions. Regarding (R, P) and (ϕ, L) as
sets of canonical coordinates, where ϕ represents a rotation angle
of the colliding system in the reaction plane and L = µR2ϕ̇ is
the angular momentum of the relative motion, we obtain a set of
macroscopic equations of motion:

dR

dt
= P

µ
, (5)

dϕ

dt
= L

µR2
, (6)

dP

dt
= −dV

dR
+ 1

2

(

P2

µ2
+ L2

µ2R2

)

dµ

dR
+ L2

µR3
− γR

P

µ
, (7)

dL

dt
= −γϕ

L

µ
. (8)

Here, γR(R) and γϕ(R) denote the radial and tangential (or
“sliding”) friction coefficients, respectively, where the former
already appeared in Equation (3), the case of central collisions,
and the latter governs the angular momentum dissipation (cf.
Equation 8).

At first sight, there are three unknown quantities: the nucleus–
nucleus potential V , the radial friction coefficient γR, and the
tangential friction coefficient γϕ . However, since time evolution
of ϕ(t) and L(t) can be obtained from TDHF, a single TDHF
simulation already provides the tangential friction coefficient by

γϕ(R) = −µ(t)
L̇(t)

L(t)
. (9)

Thus, there are only two unknown quantities in Equations (5)–
(8), i.e., V(R) and γR(R), and we can apply the same procedure
applied for central collisions.

In Figure 2, we show the results for the 16O+16O reaction at
E/VB = 1.4 including off-central collisions, as an illustrative
example. In Figure 2A, the nucleus–nucleus potential is shown
as a function of the relative distance, R. We also show the
potential in the frozen-density approximation by open circles, for
comparison. Figure 2A clearly shows that the method provides
almost identical nucleus–nucleus potentials V(R) irrespective
of the impact parameters. In Figure 2B, the effective potential
Veff(R), the sum of nuclear, Coulomb, and centrifugal potentials,
is shown. It can be seen that, for b = 6 fm, the closest distance
is achieved at around R = 10 fm, at which the effective potential
coincides with the incident relative energy. In Figures 2C,D, the
reduced radial and tangential friction coefficients, βR = γR/µ

and βϕ = γϕ/µ, are shown as a function of the relative distance.
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FIGURE 2 | Results of DD-TDHF calculations for the 16O+16O reaction at E/VB = 1.4 at various impact parameters. The nucleus–nucleus potentials and the effective

potential Veff (R) = V (R)+ L2/2µR2 are shown in (A,B), respectively, as a function of the relative distance, R. The reduced radial friction coefficients, βR = γR/µ, are

shown in (C), while the reduced tangential friction coefficients, βϕ = γϕ/µ, are shown in (D).

We found no significant dependence of the friction coefficients
on the impact parameters in this system. In this way, this
approach enables us to access the angular momentum dissipation
mechanism and a systematic calculation is in progress.

Note that non-central effects on nucleus–nucleus potentials
and effective mass parameters in fusion reactions have been
studied in TDHF and DC-TDHF in Jiang et al. [21]. It is
interesting to make detailed comparison between those and our
DD-TDHF in a future work.

4. SUMMARY

The macroscopic aspect of TDHF dynamics for low-energy
nuclear reactions at energies near the Coulomb barrier was
discussed within the DD-TDHF method. We showed that the
dynamical reorganization of single-particle wave functions inside
the colliding nuclei affects the macroscopic nucleus–nucleus
potential that leads to dynamical reduction of the potential
around the Coulomb barrier radius in light- and medium-mass
systems. In heavy systems, the dynamical reorganization leads
to the fusion hindrance, increase in potential compared with
the potential obtained from the frozen-density approximation
in which the dynamical reorganization effect is neglected. By
extending the DD-TDHF method to off-central collisions, the
tangential friction coefficient was extracted in the 16O+16O
reaction in addition to the nucleus–nucleus potential and the
radial friction. As expected, the nucleus–nucleus potentials
do not show a significant dependence of the initial angular
momentum. The strength of the tangential friction is in
the same order of magnitude as the radial one. From this
extension, one can access the mechanism of angular momentum

dissipation from microscopic reaction models. Possible future
extension would be a systematic study of angular momentum
dissipation mechanism in various systems, especially in heavy
systems to address the fusion hindrance problem. Another
possible extension would be a systematic study of collisions with
deformed nuclei. It is interesting to study an orientation effect,
a dependence of an angle between the collision axis and the
principle axis of a deformed nucleus, on the nucleus–nucleus
potential and the friction coefficient. It would be important to
investigate how orbital angular momentum dissipation couples
to a rotation of deformed nucleus during collision.
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Studies on Nuclear Structure and
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In this paper, we briefly review the studies on nuclear structure and nuclear dynamics

using the Canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory

which is one of the time-dependent mean-field models which deal with nuclear pairing

correlation. At first, after a brief introduction of the time-dependent mean-field models,

we explain the derivation and the properties of Cb-TDHFB equations. Next, we introduce

the methods to study the nuclear linear responses and to simulate the nuclear collision

in terms of the time-dependent mean-field models. Then, we display parts of the results

obtained by using the time-dependent methods; Strength functions of electric dipole (E1)

excitation mode of 172Yb, Systematic study of low-energy E1 mode, and Comparison of

the simulations of the fusion reactions using time-dependent mean-field models with and

without pairing correlation. Finally, we summarize the Cb-TDHFB activities and discuss

its perspectives.

Keywords: TDHF, TDHFB, Cb-TDHFB, nuclear structure, nuclear dynamics

1. INTRODUCTION

Our subject is the atomic nucleus which is a self-binding finite quantum many-body system
composed of two kinds of particles (nucleon: proton and neutron). The nuclear system in which the
nucleons are the primary degree of freedom has various aspects depending on its nucleon number
and its energy. To describe the structure and the dynamics of the finite quantummany-body system
from the degree of freedom of nucleon is the core aim of nuclear physics.

The existence of mean-field is a unique and essential property in the nucleus, which is supported
by the nuclear magic numbers. The independent-particle model, like the Hartree-Fock (HF)
approximation, is based on the mean-field aspect of the nucleus and expresses the many-body wave
function in terms of the single-particle states. The HF is a useful method in the Fermi particle
system, in which the anti-symmetrization of the single-particle wave functions are necessary to
satisfy the Pauli principle. Furthermore, the pairing correlation is also an important nuclear aspect
[1]. The ground-state properties of a nucleus with the pairing correlation is successfully described
by the well-known theory [2] proposed by Bardeen-Cooper-Schrieffer (BCS) in the condensed
matter physics.

The time-dependent (TD) mean-filed models, such as TD Hartree-Fock-Bogoliubov (TDHFB)
theory [3], have been proposed with the aim at describing the nuclear structure and dynamics,
taking account of the mean-field property as well as including the pairing correlations. However,
the number of TDHFB applications is not so large. It is because huge computational costs are
required in the TDHFB calculations. Hence, several methods have been proposed to solve the
TDHFB equation, not in its full size but some approximate ways. The canonical-basis TDHFB
(Cb-TDHFB) is one of such approximation methods [4] of solving the TDHFB equation. In
this mini-review, we introduce the framework of the Cb-TDHFB, which is a feasible TD model
dealing with nuclear pairing correlation, together with the results obtained by the Cb-TDHFB to
demonstrate its possibilities.
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2. TIME-DEPENDENT MEAN-FIELD
MODELS

In order to obtain to the Cb-TDHFB equations, we will
briefly follow the naive derivation of TD Hartree-Fock (TDHF)
and TDHFB equations, from time-dependent many-body
Schrödinger equation (1). When a time-dependent many-body
wave function is written as |8(t)〉, the time evolution of |8(t)〉
which obeys the many-body Schrödinger equation, is given by,

|8(t)〉 = e−iHt/h̄|8(0)〉. (1)

Here the Hamiltonian H is assumed as the sum of a kinetic and
a two-body interaction terms for the Fermion system, which is
described by a Fermion creation and annihilation operators (c†,
c). The time-dependent density matrix ρ(t) and pairing tensor

κ(t) are defined with the |8(t)〉 as ρij(t) ≡ 〈8(t)|c†j ci|8(t)〉 and
κij(t) ≡ 〈8(t)|cjci|8(t)〉. The subscripts i, j mean the label of the
particle states. The equations to describe the time-dependence of
ρ(t) and κ(t) are written as follows, using Equation (1):

ih̄
∂

∂t
ρij(t) = 〈8(t)|[c†j ci,H]|8(t)〉,

ih̄
∂

∂t
κij(t) = 〈8(t)|[cjci,H]|8(t)〉. (2)

The TDHF (TDHFB) equation is derived by replacing |8(t)〉
in the Equation (2) with the HF state |8HF(t)〉 (the HFB state
|8HFB(t)〉), respectively. The |8HF(t)〉 is written as a single Slater-
determinant composed of single-particle states φl. The number of
the single-particle states in the HF state is usually the same as the
particle number of the system. The |8HFB(t)〉 is the vacuum of the
quasi-particles whose creation and annihilation operators (β†,
β) are composed of particle operators (c†, c) and the coefficient

matricesU and V ; β†
k
≡ ∑

α Uαkc
†
α +Vαkck. The matrices U and

V are the general form of the BCS factors and are defined under
the normalization and the unitary condition. The number of the
quasi-particle basis is infinite in principle.

2.1. Cb-TDHFB Equation
There was an attempt to develop a time-dependent method
that incorporates the nuclear pair correlation without directly
solving the TDHFB equation [6]. Blocki and Flocard [6] proposed
the equation of motion for the canonical basis φl and their
BCS factors ul and vl with a simple effective interaction and a
very schematic pairing functional. In Cusson et al. [7], Scamps
et al. [8], and Magierski et al. [9], the equation of motion is
called TDHF+BCS which is essentially equivalent to the Cb-
TDHFB. The difference between their formulation and the Cb-
TDHFB is in the derivation of the basic set of equations.
The equations in Blocki and Flocard [6] were derived from
the time-dependent variational principle with constraint terms
for the norm conservation of particle wave functions and the
number conservation. The constraint for the norm conservation
finally induces the phase term in the equation of motion of the
canonical basis, which is written as εl in Blocki and Flocard
[6]. The Cb-TDHFB equation is derived from the TDHFB

equation with the canonical basis representation, in which the
density matrix is diagonal. This is equivalent to replacing the
HFB state by a state with the ordinary BCS form under an
assumption for the functional form of the pair potential. In
the Cb-TDHFB derivation, the phase term is naturally induced
from the orthonormal property of the canonical basis. The
phase term is essential to connect the canonical basis with pair
probability κl [4] and to keep the total energy conservation in
the time evolution. The Cb-TDHFB equations are composed of
three types of differential equations with respect to the time of
the canonical basis, the occupation provability ρl and the pair
probability κl.

The BCS state can always be derived from the HFB state as
a special solution, which is guaranteed by the Bloch-Messiah
theorem. On the other hand, in the dynamical cases, the time
dependence of the unitary transformation from HFB to BCS
state is unclear on the way of time evolution. This leads to
the fact that the canonical basis can not be guaranteed to keep
their property in general. This is the most crucial key point in
the formulation of the Cb-TDHFB derivation. The major factor
that disturbs the canonical basis is the non-diagonal elements of
pair potential 1. Therefore, the assumption is introduced in the
formulation of the Cb-TDHFB that the pair potential should be of
the diagonal form: 1lk̄ ≡ −1kδkl, which is equal to the ordinary
BCS approximation.

The number of canonical basis in the Cb-TDHFB equation
is about twice the particle number at most, although it depends
on the nucleus and the energy cutoff for the pairing channel.
On the other hand, the TDHFB needs an infinite number of
quasi-particle orbitals in principle. This property that the number
of dynamical variables in the Cb-TDHFB is much smaller is a
significant advantage of the Cb-TDHFB compared with the other
time-dependent method which deals with pairing correlation.
Therefore, the computational costs of the Cb-TDHFB and the
TDHF applications are comparable, and it is computationally
feasible to employ the three-dimensional (3D) representation of
the orbitals: e.g., φl(r, t) = 〈r|φl(t)〉.

Here, let us mention two major concerns for the particle
“gas” problem and the continuity equation in the Cb-TDHFB
application. The gas problem is famous in the BCS treatment for
the finite nuclear system, which is reported in previous studies
[10, 11]. The problem is caused by the expression of the many-
body wave function in the BCS approximation, which is well-
checked and summarized by a recent study in Anguiano et al. [12]
from the practical point of view. The single-particle states with
the positive energy near the Fermi surface cause the unphysical
particle gas. Because the initial state of the Cb-TDHFB is also
HF+BCS state, we should avoid the nuclei near the drip-line.

In Scamps et al. [8], the problem of the continuity equation
in the Cb-TDHFB calculation is studied relating with the particle
transport phenomena. The Cb-TDHFB satisfies the conservation
laws for the orthonormality of the canonical states, the average
particle number, and the average total energy. The local density
of HF+BCS and Cb-TDHFB is given by sum of |vl(t)|2|φl(r, t)|2
in which the coefficients depend on time only. The separable
expression of the density and the lack of the spatial degree
of freedom in the occupation probability cause the unphysical
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density oscillation, which is the same reason as the particle
gas problem and is unavoidable as long as the BCS expression
is adopted. And the expression also causes the difficulty in
describing the relative gauge angle between the superfluid
nuclei in the collision reaction, which is well-explained in the
supplemental material of Magierski et al. [9]. However, we know
the source of the unphysical results, and we can find a method to
address it. The frozen occupation approximation is suggested in
Scamps et al. [8]. We should use the Cb-TDHFB as a feasible and
beneficial tool while knowing the matters stated above.

2.2. Linear Response Calculation Using TD
Mean-Field Model
There are many models to study nuclear excitation modes, such
as the random phase approximation (RPA) or quasi-particle RPA
(QRPA) formalism, which are the most used mean-field methods
for nuclear excitation. The (Q)RPA formalism can be derived
as the small-amplitude limit of the TDHF(B) method, which is
the so-called linear response theory [3, 5]. The strength function
calculated with the (Q)RPA can be reproduced by the TDHF(B)
calculations of the small-amplitude oscillation.

The procedure to calculate the strength function is as follows
[13–17]. (A) We prepare the initial states of the TD method
and add a weak and instantaneous external field Vext(t) =
−ηF̂δ(t) to them. The η stands for a strength of the external
filed, and F̂ is an operator to excite the oscillations with a set of
quantum numbers like multipolarity L, projection K, parity π ,
etc. The η should be small to guarantee the linearity throughout
the numerical iteration, since we consider the linear response.
In practice, the size of the η depends on the operator F̂. (B)
We calculate the time-evolution of |8(t)〉 by using the time-
dependent method and calculate the time-dependent expectation
value of F̂: f (t) ≡ 〈8(t)|F̂|8(t)〉. After the calculation of |8(t)〉,
the strength function S(E; F̂) can be obtained from the Fourier
transformation of f (t).

Here, it is to be noted that some operators F̂ are related
with the spurious mode of excitation. For instance, the operators
isoscalar-compressional dipole and the quadrupole mode Q21,
induce the spurious modes of translational and rotational
modes, respectively.

2.3. Collision Simulation by Means of TD
Mean-Field Model
There have been many studies for the low-energy heavy-ion
collisions by means of several types of TD mean-field models
[18–25]. In the procedure to apply the TD mean-field models to
the nuclear collision simulations, however, there is no essential
difference among the models. The typical procedure for the
collision simulation is as follows; (A) Set the wave functions
of the target and the projectile to the positions with an
impact parameter b, (B) Boost the wave functions with the
incident energy Ein, (C) Calculate the time-evolution of the wave
functions which are within the common mean-field.

The b and Ein are values when the relative distance between
the two nuclei is infinite. Then, they must be changed due to
the Coulomb field in the calculation space, which obeys the

Rutherford’s trajectory. This is realized by setting the initial
wave functions at the positions where the interaction between
projectile and target can be regarded as Coulomb force only. The
frozen density approximation is well reasonable to indicate the
initial positions. Indeed it is applied to the simple estimation of
the Coulomb barrier [26–28]. When setting the wave functions
for projectile and target to the initial positions, it is safe in practice
to avoid the overlaps of them because the duplications cause
complex interference in the phase of each other state.

3. APPLICATIONS

3.1. Electric Dipole Excitation in the Linear
Response Theory
In this and the next subsection, we show examples of the
linear response calculations using the Cb-TDHFB. Following the
procedure described in section 2.2, we investigate the strength
functions for the electric dipole (E1) excitation of ytterbium-
172 (172Yb, Z=70). 172Yb is an open-shell nucleus with the
nuclear pairing correlation and has a prolate deformed shape
in its ground state, which is calculated with SkM∗ Skyrme
parameter set.

The characteristic structure of the quadrupole deformed
nucleus appears in the shape of the E1 strength function of 172Yb
in Figure 1I, in which two peaks corresponding to the K=0 and 1
modes appear. The photo-absorption cross-section of 172Yb can
be deduced from the strength function. The experimental data
[29, 30] were well-reproduced by the cross section.

Furthermore, the strength function can be compared with the
HFB+QRPA results shown in Figure 7 of Terasaki and Engel [31].
The peak positions of the strength functions are almost the same,
although the small difference in the shapes of the peaks appears
in the width and height of K = 0 mode. The results illustrate that
the Cb-TDHFB works well in dealing with the pairing correlation
at the small-amplitude limit.

The Cb-TDHFB calculations can be performed in the 3D
Cartesian coordinate space, with a single-core computer and
several hundred hours. The HFB+QRPA calculations had been
performed in axial symmetric space using the many-core parallel
computer (about 10,000 cores), which could be estimated
from the proposal [32]. If we restrict ourselves only to the
strength functions, the Cb-TDHFB can significantly reduce the
computational cost compared with the other TDHFB methods,
which is one of the practical benefits of using the Cb-TDHFB.
Taking advantage of the benefit of the Cb-TDHFB, we can carry
out the systematic study of the linear responses of a large number
of nuclei on the nuclear chart. Here we note that the finite
amplitude method (FAM) is also an effective method to calculate
the excitation energies [33–36] within the (Q)RPA theory.

3.2. Systematic Study of E1 Excitation
Modes
We have performed a systematic investigation of the E1 strength
functions using the Cb-TDHFB represented in the 3D Cartesian
coordinate [37]. The purpose of the systematic study was to
clarify the excitation mechanism of low-energy dipole (LED)
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resonances, which have been called the pygmy dipole resonance
(PDR). The PDR has been considered as the excited modes
which is deeply connected with the characteristic structure of
the neutron-rich nucleus [38, 39]. However, the systematic study
showed that the PDR is not a unique excitation mode of the
unstable nucleus, but can also be found in a stable nucleus, which
suggests the PDR has a composite mechanism [37].

The comparison between the results of unstable heavy nuclei
with and without a self-consistent residual interaction indicates
that the PDR has the composite mechanism. The residual
interaction can be excluded from the real-time calculation by

using the single-particle Hamiltonian with the fixed density at
the ground state. In the mechanism, there are the pure single-
particle excitation mode and the decoupling modes from the
giant dipole resonance. The decoupling modes might have a
collective isoscalar character [37].

Figure 1II shows the neutron number dependence of the LED
ratio fLED of nickel, zirconium, and tin isotopes. The fLED is
defined as m1(Elow)/m1 where m1(Elow) is the energy weighted
sum of the E1 strength function up to the energy Elow=10 MeV,
and m1 is the value of the energy weighted sum rule of E1
mode. The panel shows the characteristic behavior of fLED at

FIGURE 1 | Example for linear response calculations: (I) E1 strength function of 172Yb calculated by Cb-TDHFB with SkM*, (II) Systematics of the LED ratio in the

energy weighted sum rule for E1 of (circle) Ni, (triangle) Zr, and (square) Sn isotopes with respect to neutron number.

FIGURE 2 | Time-evolution of nucleon density for the 22O+52Ca collision reactions which are calculated by (Upper panels) Cb-TDHFB and (Lower panels) TDHF.

The calculations are performed with the parameters b=4.1 fm and Ein=35.6 MeV.
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the neutron numbers which correspond to the magic numbers
(N = 28, 50, 82) of the spherical nuclei as well as those of the
deformed nuclei (N = 60− 74).

The systematic application of the Cb-TDHFB is carried out
also for the quadrupole type excitations [40, 41], including
modes with K = 0, 1, and 2. As mentioned in section 2.2, the
quadrupole excitation with K = 1 induces the spurious mode.
The authors in Scamps and Lacroix [41] employ an excellent
practical method to avoid the spurious mode. The systematic
study of the nuclear linear responses performed by using the TD
method is significantly useful to prospect for understanding the
nuclear structure of the broad range of nuclear mass number,
although several techniques are necessary to extract physical
quantities from the calculated data.

3.3. Fusion Reaction
The pairing effect on the large amplitude collective motion is
one of the most exciting topics in nuclear physics. Many studies
for nuclear collision and fission by using the mean-field models,
including the pairing correlation, have been performed [7, 9,
42–50]. We performed the Cb-TDHFB and TDHF calculations
for symmetric and asymmetric collisions; 22O+22O, 52Ca+52Ca,
and 22O+52Ca, in Ebata and Nakatsukasa [46]. In Figure 2,
we show examples of the simulations of the fusion reactions.
Upper and lower panels show the snapshots of the time-
evolutions of nucleon densities calculated by Cb-TDHFB and
TDHF, respectively.

The Cb-TDHFB results indicate the repulsive effects of pairing
correlation in the fusion reaction. The nuclear pairing correlation
attractively acts in the ground state basically, although the
discussions of the pairing role for the anti-halo effect have
not yet converged [51–53]. The strength dependence of pairing
correlation is reported for the fission reaction using full TDHFB
calculations [50]. The pairing correlation might not be wholly
clarified yet in the static and the dynamic processes.

4. SUMMARY AND PERSPECTIVES

We have introduced the studies using Cb-TDHFB [4] and the
points to note for its applications. The problems due to the BCS
treatment are pointed out: the particle gas and the continuity
equation. The linear response study for E1 excitation of 172Yb

is simply explained, in which the comparisons between the
strength functions obtained by HFB+QRPA and by Cb-TDHFB
are mentioned, including the computational cost. The systematic
studies with the strength function and the collision simulation
for fusion reaction have also been shown to introduce the future
possibilities of the Cb-TDHFB.

The TD mean-field study might be extended more and more
in the future because there are large amounts of relevant regions
that will be studied by using the TD mean-field model. The
research for the large amplitude collective motion, such as
fusion or fission, will especially increase, due to the continuous
developments of nuclear theory and the numerical resource. The
fusion and fission reactions are significantly important topics
not only in nuclear physics but also in other fields: nuclear
engineering, nuclear astrophysics.

Furthermore, the wave function in the TD mean-field
model might be extended to the superposition of several wave
functions such as the multi-Slater determinants, with the aim
at expressing the stochastic phenomena [54–56]. There are
upcoming trends of practical applications of the extended
framework of mean-field among the recent researchers. At
the same time, new effective interaction is demanded, just
as the Skyrme interaction has been refined in the nuclear
dynamics. Some new effective interactions have been suggested
in Reinhard and Nazarewicz [57] and Bulgac et al. [58]. The
feedback from many applications is necessary for the refinement
and improvement of the effective interactions. The Cb-TDHFB
application will be increasing to construct a next-generation
mean-field model as one of the methods to treat nuclear
pairing correlation.
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The soliton existence in sub-atomic many-nucleon systems will be discussed. In

many nucleon dynamics represented by the nuclear time-dependent density functional

formalism, much attention is paid to energy and mass dependence of the soliton

existence. In conclusion, the existence of nuclear soliton is clarified if the temperature

of nuclear system ranges from 10 to 30 MeV. With respect to the mass dependence
4He and 16O are suggested to be the candidates for the self-bound states exhibiting the

property of nuclear soliton.

Keywords: TDDFT, multi-dimensional solition, full skyrme interaction, many-nucleon system, ion collisions

1. INTRODUCTION

The concept of nuclear soliton is proposed by its existence in the three-dimensional nuclear
time-dependent density functional formalism. The solitons in this article are the waves stably
traveling without changing shape and velocity even after collisions between waves (Figure 1). In
this sense, as for the terminologies of classical and quantum field theory, what we study in this
article is not similar to the topological soliton [1, 2], but rather corresponds to the non-topological
soliton [3]. From here on, we refer simply to “soliton” for a kind of non-topological soliton. The
mathematically common property of a soliton (for example, see Ablowitz [4]) has been clarified as

• Non-linearity
• Dispersive property

being independent of the size andmedium of wave. The common properties of solitons are essential
to the solitons existence, and several uncommon properties specific to nuclear solitons such as

• Quantum effect with the fermi statistics
• Many-body effect leading to the collectivity

canmodify the conditions of soliton existence, where a competition between them possibly appears.
In most soliton research mentioned here, the size and model dependent additional properties are
not seriously considered. Here we employ the nuclear time-dependent density functional theory
(TDDFT) in which all the above four properties are included in a self-consistent manner. In
particular the collectivity of many-nucleon systems has been successfully treated by the nuclear
DFT with and without time-dependence (for example, see Greiner and Maruhn [5]).

The solitons are observed in any scale, if the mathematically common property is held by the
master equation. This fact has something to do with the size and model dependence of the two
common properties. The nuclear soliton is found in sub-atomic femto-meter scales whose energy
is at the order of MeV (mega electron volt). Such a specific scale arises from the effective unit of
motion: the nucleon degree of freedom in the case of a nuclear soliton. For example, the effective
unit of motion for the optical soliton is the photon. In other words, as is known in nuclear physics,
the motion of the nucleus at the energy order of MeV is governed by the independent nucleon
motion (for example, see Ring and Schuck [6]).
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FIGURE 1 | Two soliton solution of KdV equation (α = 1). Although the

momentum and shape are exactly conserved, time delay appears due to the

collision (around (t, x) = (0, 0)).

The soliton is a wave with both individuality and stability.
On the other hand, the nuclear soliton is also regarded as
bringing about a nuclear matter state with perfect fluidity. It is
worth mentioning here that perfect fluidity can be rephrased
as inertness in the context of reaction theory. Accordingly, the
nuclear soliton is expected to be associated with some important
physics if its existence is established. Indeed, perfect fluidity leads
to the conservation of the number of vortexes. Since celestial
bodies consist of nuclear matter, the quantitative understandings
of the nuclear soliton are able to show a new aspect of
the matter/heat transportation inside the (compact) stars.
Furthermore, perfect fluidity is associated with the dissipation
property of low-energy heavy-ion collisions that has been a
long standing open problem in microscopic nuclear reaction
theory. Perfect fluidity is also associated with the conservation of
nuclearmatter without the loss of any information: i.e., isentropic
property arising from the time-reversal symmetry [7]. As the
conservation property of the soliton has already been utilized in
the optical fiber, the preservation property of nuclear matter is
expected to be utilized in the nuclear engineering for preserving
and condensing a certain projectile nucleus. In particular, the
well-preserved nuclear matter is expected to be used for the
reduction of nuclear waste by the nuclear transmutation, with
the extremely high intensity/density projectile of reactions, which
is not only to make a high intensity/density beam but also high
projectile-density matter in the nuclear reactor.

This article is organized as follows. The basic concepts of wave
propagation are introduced in section 2. The general definition
of solitary wave and soliton is shown in section 3. The existence
of nuclear soliton is discussed in section 4. The summary and
perspectives are presented in section 5.

2. EQUATION OF WAVES

This section is devoted to introducing the basic concepts for
wave propagation, which provides a working area of the soliton
research. For the purpose of introducing the concept of dispersive
property, we begin with the linear wave:

u(t, x) = A exp(i(kx− ωt + α)), (1)

in one-dimensional space, where kmeans the wave number,ω the
angular frequency, and α the phase. This wave is also referred to
as the plane wave in themulti-dimensional case, and to a traveling
wave in more general fields. The first order linear hyperbolic
equation (advection equation) is written by

∂tu+ c∂xu = 0 (2)

in one-dimensional space R, where c is a real constant, meaning
the propagation speed. It is well-known that this equation holds
the solution represented by the d’Alembert’s formula, so that
the plane wave (1) satisfies this equation. The linear dispersion
relation ω = ck is satisfied by the plane wave solution. The
plane wave solution can also be associated with the second order
linear wave equations, more closely to the present interest, the
Klein-Gordon equation:

∂2t u− c2∂2xu+
(

mc2

h̄

)2

u = 0 (3)

describing a quantum scalar or pseudoscalar fields [8]. By
considering the same plane wave solution, another relation ω2 =
c2(k2 + m2c2/h̄2) is obtained, which is asymptotically equal to
ω = ±ck (Figure 2). Note that the dispersion relation in the
massless case (m = 0) also becomes ω = ±ck.

The Schrödinger equation is known to describe the non-
relativistic quantum physics. The linear dispersion relation ω =
ck is violated in case of Schrödinger type waves. On the other
hand, it is readily confirmed that the plane-wave solution is also
the solution of the linear Schrödinger equation:

i∂tu+ c∂2xu = 0 (4)

in one-dimensional space R, where c is a real constant being
represented by c = −h̄/2m using the Dirac constant h̄ and
the mass m. In this case another dispersion relation ω = ck2

is satisfied instead. Such waves, without satisfying the linear
dispersion relation ω = ck, are called the dispersive wave.
It is worth noting here that the non-relativistic approximation
of Klein-Gordon equation corresponds to the Schrödinger
equation. As a result, the Schrödinger equation is a typical
example of dispersive wave equations.

3. NON-LINEAR DISPERSIVE WAVES

3.1. Korteweg-de Vries Equation
The concepts of solitary wave and soliton are introduced. For
verifying the soliton existence in sub-atomic quantum equations,
we focus on two relevant equations: the Korteweg-de Vries
equation and non-linear Schrödinger equation. These equations
are not only dispersive wave equations but also non-linear
evolution equations.

First, in the flow of shallow water, the concept of a solitary
wave was introduced by Scott-Russel [9] in 1844. Indeed, they
observe that

• A single wave moves stably on the flat surface without
changing the shape and velocity.
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FIGURE 2 | Dispersion relation associated with Equations (2) and (3).

This is the essential property of the solitary wave. Here the single
wave means the wave without undergoing any collisions with
the other waves. Although such a property is common in linear
cases, this should not be true in non-linear cases. If solitary waves
preserve their shape and speed after a collision, the solitary waves
holding a transparency is called the soliton. In particular, the
terminology “soliton” is introduced by Zabusky and Kruskal [10].
Indeed, for the initially given sine waves, they are split into several
solitary waves, and

• The Solitary wave moves stably by preserving momentum and
shape even after the collisions.

• The Solitary wave possibly experiences a phase shift and time
delay during the collision.

These are the properties to be satisfied by the soliton wave.
That is, the solitary wave is called soliton if it satisfies the
above properties. The transparency leading to the individuality
is often called the particle-like property in the soliton theory. In
particular, by comparing soliton waves before and after collision,
there are no changes in the momentum and shape, but there is
for the phase.

The equations holding the soliton as a solution are called
the soliton equation, and the Korteweg-de-Vries equation (KdV
equation, for short) is known as a soliton equation. In a
mathematical sense the concept of a solitary wave was initially
studied by the KdV equation [11]

∂tu+ αu∂xu+ ∂3xu = 0, x ∈ R, (5)

where α is a real constant. In the second term αu plays a role
of propagation speed (cf. Equation 2), so that the propagation
speed depends on the state of the wave. This non-linear equation
models the shallow water waves including both the non-linearity
and the dispersive property, but not the dissipation leading to
the non-unitary time evolution. It is worth noting here that the
KdV equation is obtained by approximating the incompressible
Navier-Stokes equation (for example, see Lamb [12]).

The plane wave (1) can be the solution at small amplitude
oscillation limit, and then ω = ck− k3 is approximately satisfied.
On the other hand, KdV equation admits some exact traveling
wave solutions:

u = 3c

α
sech2

[√
c

2
(x− ct)

]

(6)

where c means the speed of wave propagation. It is remarkable
that Equation (6) holds the form of d’Alembert’s solution for the
wave equation. This solution corresponds to the solitary wave
solution (one-soliton solution) whose amplitude depends on the
propagation speed c. The solitary wave solution can hold the
soliton property that has been examined by obtaining the exact
two-soliton solution (Figure 1).

u = 72

α

3+ 4cosh(2x− 8t)+ cosh(4x− 64t)

{3cosh(x− 28t)+ cosh(3x− 36t)}2 (7)

asymptotically equal to the superposition of two solitons for
large t

u = 12κi

α
sech2

[

κi(x− 4κ2i t)+ δi
]

, (8)

where i = 1, 2, κ1 = 1, κ2 = 2, and δi are constants. The existence
of the two-soliton solution ensures the existence of soliton in a
given theoretical framework. In several equations the two-soliton
solutions are extended to N-soliton solutions (for example, see
Scott et al. [13]).

3.2. Non-linear Schrödinger Equation
A typical soliton equation for non-relativistic quantum dynamics
is the non-linear Schrödinger equation (NLS equation, for short).
It reads

i∂tu+ ∂2xu+ k|u|2u = 0, (9)

where a real number k means the interaction constant, and also
the height/depth of potential hill/well. Indeed, in the case of
positive k, V(u) = −k|u|2 provides a potential well. Indeed, it
holds a solution

u(t, x) =
√

u2e − 2ueuc

2k
sech

[
√

u2e − 2ueuc

4
(x− uct)

]

exp
[

i(u0/2)(x− uct)
]

,

where the amplitude of u depends on the constant k, which is a
specific feature arising from the angular speed uc and the wave
propagation speed ue. Contrary to the previous KdV equation,
the amplitude is proportional to k−1/2 and ue. Consequently, the
two factors have been considered to be essential to the soliton
propagation: the dispersive property and the non-linearity.

3.3. Sturm-Liouville Formalism
Following Lax [14], the relation between the KdV and the
Schrödinger type equations are understood by a simplified Sturm
Liouville equation:

Ly : = ∂2x y− U(x, t)y = λy, (10)
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where the periodic boundary condition is imposed, for
instance. This equation can be regarded as the Schrödinger
equation with the potential −λ + U(x, t). It is readily
seen that

∂t(Ly) = (∂tL)y+ L(∂ty) = (∂tλ)y+ λ(∂ty) = −(∂tU(x, t))y

+ (∂2x − U(x, t))(∂ty) (11)

leads to

(∂tL)y = −(∂tU(x, t))y. (12)

If t-independence of parameter λ: ∂tλ = 0 is further assumed,

(∂tλ)y = −(∂tU(x, t))y+ L(∂ty)− (∂tλy)
= −(∂tU(x, t))y+ L(∂ty)− (∂tLy)
= −(∂tU(x, t))y+ [L, ∂t]y

(13)

is obtained, where [·, ·] denotes the commutator product. After
generalizing this equation as

(∂tλ)y = −(∂tU(x, t))y+ [L,D]y, (14)

the KdV equation with the potential U and α = −6
is obtained by −(∂tU(x, t)) + [L,D] = 0 with D =
f ∂3x + g∂x + h, g = −3Uf /2 and h = −3(∂xu)f /4.
Consequently, KdV and Schrödinger equations are associated
not only with having a soliton solution, but with holding a
common mathematical structure. An interesting reminder here
is the relation between Schrödinger, Heisenberg, and interaction
pictures in quantum field theory (for a textbook, see Fetter and
Warecka [15]).

4. SOLITONS IN NUCLEAR TDDFT

4.1. Many-Nucleon System
Atomic nucleus is a finite-body many-nucleon system consisting
of nucleons: protons and neutrons. Proton numbers range from
1 to 120 (at the present), and neutron numbers from 1, roughly,
to 200. It is thought that almost 300 stable nuclei exist in
nature, and the theoretical calculations such as nuclear density
functional calculations simulate those nuclei as being sufficiently
comparable to the experiments.

We are interested in the soliton propagation at the scale of
atomic nuclei. The size of one nucleus ranges from 10−15 to 10−13

m, and the corresponding energy is below several 10s of MeV per
nucleon. One of the unique features of the many-nucleon system
is found in their finite-body property, which is quite different
from most of many-electron systems being treated as infinite
matter. This feature brings about the fact that the self-bound
state (the localized wave) is naturally realized in both nature and
theory of many-nucleon systems. Following the general usage of
low-energy nuclear physics, the terminology “low-energy” is used
for energy below 30MeV per nucleon. The relativistic effect plays
a considerable role, only if the relative velocity of the collision is
over 30% of the speed of light, and it roughly corresponds to the
collision energy 30 MeV per nucleon.

Ground states and some excited states of stable nuclei (in the
following, self-bound nuclei) are classified to the localized self-
bound system. Each self-bound system is the solitary wave in the
soliton theory because it is satisfied that

• A self-bound nucleusmoves stably without changing the shape

if there is no collision with the other nuclei/particles. Therefore,
the existence of a solitary wave is trivially true for many-nucleon
systems, where this issue should be examined by the non-linear
framework with the ultimately determined density functional. In
other words, all the self-bound nuclei are candidates of soliton.
All we have to do to verify the soliton existence is to check that

• [Conditional] a nucleus moves stably by preserving
momentum and shape even after the collisions.

• The nucleus possibly experiences the phase shift and the
time delay.

The first condition is expected to be satisfied conditionally. On
the other hand, the second condition is trivially satisfied in
case of atomic nuclei, as phase shifts have been observed and
theoretically calculated in nuclear reactions, as well as the time
delay. One of the general motivations is to find a valid condition
for the existence of the nuclear soliton.

4.2. Theoretical Framework
Among several theoretical models in nuclear physics, nuclear
time-dependent density functional theory [16, 17] (TDDFT, for
short), which describes the nuclear collision dynamics with
the nucleon degree of freedom, is a unique theory including
time dependence, non-linearity, and the dispersive property
simultaneously. The solution of the TDDFT shows the unitary
time evolution, which is preferable because of exact conservation
of the total energy. The dispersive property is satisfied by
the non-relativistic theory, while it is violated in the massless
relativistic theories. In this context, we remind that the sine-
Gordon equation is known as a soliton equation. Furthermore,
it is worth noting here that, among sub-atomic theories except
for the TDDFT, it is not easy to find a calculationally-feasible
theoretical framework including the time-dependence. Note that
the TDDFT is also called nuclear time-dependent Hartree-Fock
theory, and nuclear reaction is often referred to as heavy-ion
collision or ion collision. The theory with nucleon degree of
freedom is called the microscopic treatment, because a nucleus
is a smaller component that builds up a nucleus. The TDDFT is
usually calculated in three-dimensional space, and the TDDFT
have many stable localized stationary solutions corresponding
to the self-bound nuclei. Non-linearity, dispersive property,
and the unitary time-dependence realized in the TDDFT are
preferable for examining the soliton existence. Furthermore,
nuclear saturation property brings about rather universal shallow
potential well with a depth of 50 MeV at the deepest, whose
environmental setting is ideal for the existence of certain kinds
of shallow water waves.

Before moving on to the nuclear theoretical models, a few
remarks are made on the multi-dimensional treatment. There
is limited knowledge on the multi-dimensional soliton, where
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the shape of colliding waves plays more roles. In the multi-
dimensional case, the soliton existence depends on whether the
waves are spatially finite or not, and whether the waves are
spherical or deformed. As a multi-dimensional version of KdV
equation, Kadomtsev-Petviashvili equation (KP equation, for
short) is known. In particular the multi-dimensional version of
NLS equation (2) cannot have the self-bound solution, while the
multi-dimensional NLS type equation

i∂tu+ ∂2xu+ ∂2y u+ k|u|2u = u∂xv,

∂2x v− ∂2y v = −2∂x(|u|2) (15)

is known to have the soliton (or dromion) solution instead [18–
20], where v means the velocity potential. Roughly speaking, the
addition of a non-linear term contributes to keeping the soliton
property in this case.

4.2.1. One-Dimensional Soliton Model

Let us begin with reviewing the preceding work on soliton
propagation in nuclear physics. In one-dimensional space, the
Hamiltonian of N bosons interacting through a δ-force is
represented by

H = −1

2

N
∑

i=1

∂2xi − v

N
∑

i<j=1

δ(xi − xj). (16)

The corresponding stationary and non-stationary problems are
known to be exactly solvable for bound states and for scattering
states [21–26]. Application of the variational principle to

< 9|∂t −H|9 >= N
∫

dx

(

ψ∗i∂tψ + 1
2ψ

∗∂2xψ

+ v
2 (N − 1)ψ∗ψ∗ψψ

) (17)

leads to

i∂tψ + 1
2∂

2
xψ + v

2 (N − 1)|ψ |2ψ = 0, (18)

where 9 means the many-nucleon wave function and ψ denotes
single-nucleon wave function. The similarity to the NLS equation
(2) is clear, so that the soliton solution follows. The static solution
is

ψi(x) =
√
(N−1)v

2cosh((N−1)vx/2)
(19)

with the energy

EH = −N(N−1)2v2

24
(20)

and the density

ρ(x) = N(N−1)v

4cosh2((N−1)vx/2)
. (21)

For the 2N particle case, a two-soliton solution is obtained. The
two-soliton solution is represented by

ψ(t, x) =
√
2(N−1)v

2 e−(i/2)(K2−a2)t

eiKx{e−a(x−Kt)+(K2/(K−ia)2)e−a(3x+Kt)}+(K↔−K)
1+2e−2axcosh(2aKt)−2a2e−2axRe(e2iKx/(K+ia)2)+(K4/(K2+a2)2)e−4ax .

(22)

The existence of the two-soliton solution ensures the existence
soliton in a given theoretical framework.

4.2.2. Three-Dimensional Model

A two-dimensional model is realized as the axial symmetric
model in nuclear density functional theory dealing with finite
quantum systems, and the axis of symmetry is taken as the
collision axis in the time-dependent collision calculations. In this
sense two dimensional calculation computes one-dimensional
colliding motion along the center axis. One and two-dimensional
models are toy models for simulating the collision, because
the effect described by the outer product (vector product)
cannot be rigorously incorporated. Consequently spin effect
on the dynamics such as spin-orbit force effect cannot be
rigorously treated in one and two dimensional models (cf. the
representation of spin current J(r) in Equation (24)). Note that
spin-orbit force in the non-relativistic framework arises from the
special relativity theory. In particular the spin orbit force is well-
known to play a decisive role in the structure of nuclei (cf. magic
numbers of nuclear structure [6]).

Let us consider the three-dimensional case. It is remarkable
that the nuclear medium as a nucleon degree of freedom consists
of two different kinds of fermions: protons and neutrons. In
the following, the formalism of TDDFT [11, 16] for low-energy
nuclear reactions are introduced based on [27], where the Skyrme
interaction [28] is utilized as the effective nuclear force in most
of the TDDFT calculations. The Skyrme interaction is a zero-
range formalism of effective nucleon-nucleon interaction. The
TDDFT with Skyrme type zero-range interaction is represented
by several densities

ρ(r) = ∑

i,σ (ψ
∗
i (r, σ )ψi(r, σ )),

τ (r) = ∑

i,σ (∇ψ∗
i (r, σ ) · ∇ψi(r, σ )),

j(r) = 1
2i

∑

i,σ (ψ
∗
i ∇ψi(r, σ )− ψi∇ψ∗

i (r, σ )),

(23)

and

s(r) = ∑

i,σ ,σ ′ (ψ
∗
i (r, σ )ψi(r, σ

′)〈σ |σ̂ |σ ′〉),
T(r) = ∑

i,σ (∇ψ∗
i (r, σ ) · ∇ψi(r, σ

′)〈σ |σ̂ |σ ′〉),
J(r) = 1

2i

∑

i,σ (ψ
∗
i ∇ψi(r, σ )− ψi∇ψ∗

i (r, σ ))× 〈σ |σ̂ |σ ′〉),
(24)

where ψi(r, σ ) and ψ
∗
i (r, σ ) are i-th single wave functions and its

complex conjugate, respectively, ρ(r), τ (r), and j(r) denote the
density, the kinetic energy density, and the momentum density,
respectively, and s(r),T(r), and J(r) stand for the spin density, the
spin kinetic density, and the spin current density, respectively.
Single wave functions depend on both spatial variable r ∈ R3

and the spin σ , while the spin dependence is summed up in each
density. By assuming wave functions and densities as depending
also on the time variable t ∈ R, each single-nucleon satisfies the
equation of the form.

ih̄∂tψi(t, r, σ ) = hψi(t, r, σ ) (25)
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with

hψi(t, r, σ ) = ∑

σ ′

[

−∇ · h̄2

2m∗
q
∇δσ ,σ ′ + Uq(r)δσ ,σ ′

+Vq(r) · 〈σ |σ̂ |σ ′〉 + iCq(r) · ∇δσ ,σ ′

+iWq(r) · (〈σ |σ̂ |σ ′〉 × ∇)

]

ψi(t, r, σ
′),

(26)

where h is the single-particle Hamiltonian, m∗
q denotes the

effective mass, and Uq, Vq, Cq, and Wq mean the spin scalar
potential, the spin vector potential, the current potential, and
the spin orbit potential, respectively. The isospin index q
distinguishes protons (q = p) from neutrons (q = n).
For realizing the fermionic statistical property, single wave
functions are assumed to form the single Slater determinant,
where this assumption is necessary to derive Equation (26).
First, the nucleon-nucleon interaction is fully represented by
the densities. Here the reason this formalism is called the
nuclear TDDFT. Second, this formalism tells us that each single
nucleon does not interact directly with the other nucleon,
but with the force field described by the collectively summed-
up densities (23) and (24). This is the reason the nuclear
TDDFT is claimed to be the theory, based on the mean-
field description of the many-body interaction (in the same
context, the nuclear TDDFT is also called the nuclear TDHF).
Furthermore one-body dissipation with the unitarity appears
mainly due to the internal excitation of nucleus. Note that the
concept of one-body dissipation is a kind of dissipation, but it
does not violate the unitarity of time evolution. The details are
given by

h̄2

2m∗
q
= h̄2

2mq
+ B3ρ + B4ρq,

Uq(r) = 2B1ρ + 2B2ρq + B3(τ + i∇ · j)+ B4(τq + i∇ · jq)
+2B5△ρ + 2B2△ρq + (2+ α)B7ρα+1

+B8

{

αρα−1(ρ2n + ρ2p )+ 2ραρq + B9(∇ · J +∇ · Jq)
}

+αρα−1{B12s2 + B13s
2
n(s

2
n + s

2
p)}

+
[

e2
∫ ρp(r

′)
|r−r′|dr

′ − e2
(

3ρp
π

)1/3
]

δq,p,

Vq(r) = B9(∇ × j+∇ × jq)+ 2B10s+ 3B11sq

+2ρα(2B12s+ 2B13sq)+ B9(∇ × J +∇ × Jq),

Cq(r) = 2B3j+ 2B4jq − B9(∇ × s+∇ × sq),

Wq(r) = −B9(∇ρ +∇ρq),
(27)

where a part shown inside the parenthesis [·] in Uq(r) shows the
Coulomb interaction acting only on protons. Thirteen different
coefficients (B1,B2, · · · ,B13) must be determined, while they
are reduced to only 10 parameters (t0, t1, · · · , x3,α). For the
derivation of the above effective nuclear interaction, see [27,
29].

Although more than 100 parameter sets are proposed for
the Skyrme-type effective nuclear interaction (the values for
{t0, t1, t2, t3,W0, x0, x1, x2, x3,α}), the ultimate parameter set is

TABLE 1 | Parameter setting in the TDDFT.

(a) Reduced coefficients (b) Skyrme parameter set (SV-bas) [30]

B1 = t0(1+ x0/2)/2 t0 = −1879.640018 [MeV · fm3]

B2 = −t0 (x0 + 1/2)/2 t1 = 313.7493427 [MeV · fm5]

B3 = (t1 + t2)/4+ (t1x1 + t2x2)/8 t2 = 112.6762700 [MeV · fm5]

B4 = (t2 − t1)/8− (t2x2 − t1x1)/4 t3 = 12527.38921 [MeV · fm3+3α ]

B5 = (t2 − 3t1)/16+ (t2x2 − 3t1x1)/32 W0 = 124.6333000 [rmMeV · fm5]

B6 = (3t1 + t2 )/32+ (t1x1 + t2x2)/16 x0 = 0.2585452462

B7 = t3(1+ x3/2)/12 x1 = −0.3816889952

B8 = −t3 (x3 + 1/2)/12 x2 = −2.823640993

B9 = −W0/2 x3 = 0.1232283530

B10 = −t0x0/4 α = 0.3

B11 = −t0/4
B12 = −t3x3/24
B13 = −t3/24

The reduced coefficients (a) and a Skyrme parameter set (b) are shown. Among many

parameter sets (models for the effective nuclear force), the SV-bas model is taken in this

paper.

not known to include such an existence. Here we take SV-bas
parameter set (Table 1). The SV-bas parameter set is known
well for reproducing the neutron skin thickness of heavy
nuclei such as 208Pb (for a compilation of experimental and
theoretical results, see von Neumann-Cosel [31]). The quality
of SV-bas in some relevant heavy nuclei can be found in
Iwata and Stevenson [7]. On the other hand, the description
of light ions (helium isotopes) using SV-bas is also confirmed
to be sufficiently good [32]. The pairing interaction is not
introduced in the present density functional, as the collision
energy of the present study is sufficiently high for pairing
interaction not to play a significant role. Indeed, from an
energetic point of view, the nuclear pairing is the effect of
less than a few 100s of keV per nucleon. A set of equations
(25), (26), and (27) are called the nuclear TDDFT or the
nuclear TDHF equations. The nuclear TDDFT is known to
reproduce the result rather sufficiently nowadays (for recent
reviews, see [33–35]).

4.3. Solitons in Many-Nucleon Systems
4.3.1. Similarity of Master Equations

To verify the soliton existence, we begin by finding similarities
between NLS (4) and the nuclear TDDFT. For one-dimensional
cases, as the soliton solution has been obtained, Equation (18) is
essentially identical to Equation (9). For three-dimensional cases,
a term with h̄2/2m∗

q in the TDDFT corresponds to the second
term of the left hand side of Equation (9). Here we see that
the TDDFT is a Schrödinger type equation. Meanwhile the non-
linear term |u|2u in Equation (9) corresponds to terms with the
coefficients B1 and B2 (depending essentially on the parameter
t0). The terms with the coefficients B7 and B8 (depending
essentially on the parameter t3), which are known to be
indispensable to reproduce the nuclear saturation properties [29],
are also relevant, because they introduce additional fractional
power contributions (cf. α in the Skyrme parameter set: the
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fractional power). The dominance of t0 and t3 terms has been
confirmed for the binding energies of 4He and 8He [32], where
the experimental binding energy is 28.30 MeV and 31.40 for 4He
and 8He respectively. No self-bound states of 4He and 8He are
obtained if the t0 term is turned off, and even in the presence
of the t0 term the calculated binding energies are at the order of
1,000 MeV which are far from the realistic binding energy. More
quantitatively, with respect to the bindings of 4He, a large binding
(due to the attractive force property of t0 term) at the order of
1,000 MeV is obtained only by the t0 term, it is substantially
modified by the t3 term (due to the repulsive force property of
t3 term) as 63.80 MeV, and the momentum density contribution
(t1 term) reduces it to a realistic value of 27.71 MeV, where the
binding energy calculated by including all the terms is 27.73MeV.
Note that the spin-orbit contribution is known to be important in
the nuclear structure, but it does not play a prominent role in this
case because 4He is a spin-saturated system. A rough estimation
tells us that the interaction part of the TDDFT with the SV-
bas model (the inhomogeneous term of non-linear Schrödinger
type equation) is dominated by the t0 and t3 terms with
the percentage:

|63.80|
|63.80| + |63.80− 27.71| + |27.71− 27.73| × 100 = 63.9%,

where the amplitudes of the t0 and t3 terms, t1 term and the
other terms are estimated as |63.80|, |63.80−27.71|, and |27.71−
27.73|, respectively. Dominance of those terms in the nuclear
density functional implies the validity of an energy-dependent
soliton existence in which the t0 and t3 terms are responsible
for the soliton existence and energy dependence, respectively.
This similarity between NLS and the nuclear TDDFT provides
a sound motivation to investigate the soliton propagation in
nuclear TDDFT.

4.3.2. Mechanism of Soliton Propagation in the

TDDFT

Some specific physics associated with many-nucleon systems
are presented with respect to the soliton propagation. In three-
dimensional nuclear TDDFT, the existence of a solitary wave
corresponds to the existence of self-bound stationary states. For
low-energy nuclear reactions, fusion, deep inelastic collision,
and collision-fission such as fusion-fission and quasi-fission may
appear. Particularly, in case of fusion, the solitary waves are
totally destroyed. It implies that a solitary wave cannot necessarily
be the soliton, and the soliton existence is inevitably conditional.
Let us begin with the collision between 4He and 8He. Following
the usage of nuclear reaction representation, the fusion reaction
realized by collision between two self-bound nucleus 4He (helium
4: 2 protons and 2 neutrons) and 8He (helium 8: 2 protons and 6
neutrons) is represented by

8He+4 He → 12Be, (28)

where 12Be (beryllium 12: 4 protons and 8 neutrons) is produced
as a result of fusion reaction. Fusion reaction is generally
an exothermic or endothermic reaction according to the total

binding energy difference between reactants and products, where
a chemical element iron (Z = 26) is the most stable element.
On the other hand, if self-bound states 4He and 8He hold the
soliton property,

8He+4 He ⇋
4He+8 He (29)

takes place in which the total energy is conserved before and
after the collision. In the context of reaction theory, the soliton
property is included in a class of reactions with the time-reversal
symmetry. The goal is to find the condition for the appearance
of soliton events shown by Equation (29). The time reversal
symmetry arises from the energy conservation, according to
Noether’s theorem, and the total energy is strictly conserved
by the nuclear TDDFT framework. For each collision there are
two controllable parameters: the relative velocity of collision
(i.e., the collision energy) and the impact parameter of collision
(usually denoted by b fm). The condition for soliton existence is
expected to be written by these two control parameters (i.e., the
initial condition).

The soliton existence is confirmed by systematically
calculating collision events. The fast charge equilibration
mechanism, which is the generalized concept of fusion reaction,
has been suggested to govern themixing of protons and neutrons,
including fusion and deep inelastic collisions [36]. Under the
appearance of fast charge equilibration, the mixing between
protons and neutrons is known to take place quite rapidly within
the order of 10−22 s [36] that should be compared to the typical
duration time of low-energy nuclear reactions (∼10−20 s). The
charge equilibrating wave propagates at around 90% of the fermi
velocity of many-nucleon systems (corresponding to the speed of
zero sound propagation [37]), so that the propagation speed of
the charge equilibrating wave is roughly equal to a quarter of the
speed of light. Soliton existence is false if we observe the charge
equilibration. Consequently, the soliton propagation is realized
by the competition between the fast charge equilibration and the
transparency, originally due to a certain non-linearity (t0 and
t3 terms) of the TDDFT. The fast charge equilibrating wave has
been confirmed to play a role only if the collision energy is below
the charge equilibration upper-limit energy [36].

In the lower energies less than a fewMeV per nucleon, nuclear
fusion appears, and soliton cannot survive. In higher energies
larger than 50MeV per nucleon, the nucleus breaks up into small
pieces. On the other hand, the fast charge equilibration wave
can exist only below the upper-limit energy, where the upper
energy is almost 80% of the fermi energy which is in accordance
with the fact that the propagation speed is almost 90% of the
fermi velocity. In case of nuclear collisions, this energy is roughly
equal to 10 MeV per nucleon. This fact may contain a hint for
finding the soliton existence condition, i.e., it is reasonable to
search for the energy just above the fast charge equilibration
upper-limit energy.

4.3.3. Numerical Experiment

The heuristic aspect of the numerical experiment plays important
roles in the past and present soliton theory (e.g., Fermi-Pasta-
Ulam [38]). In this section systematic large-scale calculation
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TABLE 2 | Self-binding energies of the ground states [7] are calculated using the

SV-bas effective nuclear force.

(A,Z) B(AZ) B(A+4Z) B(2A+42Z)

(4,2) 6.93(7.08) 4.48(3.93) 6.07(7.06)

(16,8) 8.21(7.98) 7.84(7.57) 8.75(8.58)

Binding energy per nucleon (MeV) of the initial nuclei are compared to those of the

intermediate fused system, and the corresponding experimental values are shown in

parenthesis [40].

of the nuclear collision dynamics is carried out based on the
TDDFT. Three-dimensional nuclear TDDFT calculations with
the fully-introduced Skyrme-type interaction (10 parameters,
as in the present calculations) were initiated in the 1990’s
[39]. On the other hand, many self-bound stationary states
have already been calculated (theoretically found) by static
calculations (∂ψi(t, r, σ ) = 0 in the TDDFT) in the 1980’s, and
they are compared to the experiments. The impact parameter
dependence of the soliton existence is systematically considered
in three-dimensional calculations.

Before moving on to the main discussion, we briefly
review the preceding results [7, 32]. According to the
calculations dealing with 8He+4He, 20O+16O, 44Ca+40Ca,
52Ca+48Ca, 104Sn+100Sn, 124Sn+120Sn reactions, the energy-
dependence of soliton emergence has been clarified only for
lighter cases: 8He+4He, and 20O+16O (cf. Figure 4 of Iwata
and Stevenson [7]). For those lighter cases, a rough sketch
of the energy-dependence is as follows: the soliton property
is not so active for low energies less than a few MeV per
nucleon; soliton property becomes active around 10 MeV per
nucleon, it achieves almost the perfect transparency around
10–30 MeV per nucleon, and the transparency again decreases
for much higher energies (Figures 2, 3 of Iwata and Stevenson
[7]). For a mass dependence, the most decisive factor for the
soliton propagation in heavier collisions has been clarified to
be the appearance of the fragmentation including the nucleon
emissions (mostly neutron emission). On the other hand,massive
momentum equilibration leading to the momentum equilibrium
of each spatial point are activated around 80–100 MeV per
nucleon, and those energies are too high to be relevant to the
suppression of nuclear soliton propagation. In this article, by
focusing on the stability of N = Z nucleus of the two colliding
nuclei, we clarify the energy-dependent soliton property of 4He
and 16O.

The initial state of the non-stationary problem is prepared by
the two stationary solutions. Let A and Z be mass number and
the proton number of a colliding nucleus AZ. We consider a set
of collisions:

AZ + A+4Z (30)

as a generalization of Equation (28), where (A,Z) = (4, 2),
(16, 8), (40, 20), (48, 20), (100, 50), and (120, 50) are considered.
Numerical solutions are obtained based on the finite difference
method (for the details, see Maruhn et al. [41]). Three-
dimensional space is incremented by 1.0 fm, and the unit time
step is set to one-third of 10−23 s. Vacuum boxes are prepared

as 24 × 24 × 24 fm3 for the stationary problems, and as 64 ×
32 × 32 fm3 for the non-stationary problems. The center-of-
mass of AZ and A+4Z are set to (10, b/2, 0) and (−10, b/2, 0),
respectively, and the initial momentum of AZ and A+4Z
to (−√

2MAEK , 0, 0) and (
√
2MA+4EK , 0, 0), respectively. The

parameter b fm imitates the impact parameter. The quantities
MA andMA+4 denote the mass of AZ and A+4Z, respectively. The
periodic boundary condition is imposed in the three-dimensional
Cartesian grid.

In Table 2 the binding energies of initial states are shown
to confirm the quality of the present calculations. The binding
energy is not precisely the same as the experiment on the whole,
but the difference is less than 15% for the lighter nuclei, and less
than 5% is achieved for heavier nuclei. It simply shows the quality
of the SV-bas parameter set. By changingA, Z and the two control
parameters, we can examine the mass and energy dependence of
the final products. In particular, if the soliton wave is dominant,
no nucleon transfer takes place between AZ and A+4Z. If charge
equilibrating wave is dominant, two neutron transfer from A+4Z
to AZ is expected to be the most frequent reaction process. For
an astrophysical comparison it is practical to define the typical
temperature of collision using the kinetic energy per nucleon or
the relative velocity of the collision. Based on the Bethe formula
[42], the temperature of nuclear collision [7, 43] is defined by

EK =
{

κTCT (T < TC),
κT2 (T ≥ TC),

(31)

where EK is the total kinetic energy per nucleon, and TC =
κ−1 = 7.2 MeV is associated with the translation of the fermi
energy of the many-nucleon system to the relativistic center-of-
mass kinetic energy [44]. It shows that EK behaves linearly in low
temperature and quadratically in high temperature. In this article
the results are shown by the kinetic energy EK = 1, 2, 3, · · · ,
10 MeV.

According to the previous study [7], helium (Z = 2) and
oxygen (Z = 8) isotopes have been proposed as candidates
of nuclear soliton. This issue is examined from a stationary
aspect. For nuclei with Z ≤ 20, heavier nuclei become more
stable than lighter nuclei, so that lighter nuclei tend to capture
a neutron or proton easily. If this is also true for 4He and 16O,
they cannot hold the soliton property. For the verification of the
proposed mechanism, the single neutron addition energy and
single proton addition energy are approximately calculated using
the energies of even-even nuclei. From an energetic point of view,
the following quantities are calculated.

En(A,Z) = E(A+2,Z)−E(A,Z)
2 ,

Ep(A,Z) = E(A+2,Z+2)−E(A,Z)
2 ,

(32)

where E(A,Z) means the binding energy for the ground state
of a nucleus consisting of Z protons and A − Z neutrons.
These quantities show the stability against adding one neutron
(En(A,Z)) or one proton (Ep(A,Z)), respectively. Neutron
capture or proton capture is not preferred if the value is positive.
The upper panel of Figure 3 shows that the formation of the
density-functional field (a kind of mean-field) is not enough
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for Z ≤ 8 cases, and the directly-interacting few-body features
are more important instead, where doubly-magic nuclei (helium
and oxygen cases) show relatively good results comparable to
experiments. The stability of 4He and 16O can be found in the
lower panel of Figure 3. A nucleus is stable against the addition
of nucleons, if both En(A,Z) and Ep(A,Z) are positive.

4He and
16O show the stability (lower panel of Figure 3), although heavier

FIGURE 3 | Single particle energy and the corresponding energy differences

are compared to experiments [40]. (Upper) For Z ≤ 20 nuclei with (A,Z)=(4,2),

(8,4), · · · (40,20), the binding energies E(A,Z), E(A+ 2,Z), E(A+ 2,Z + 2) are

shown by the connected lines in this order in each column. (Lower) The

corresponding energy difference En(A,Z) and Ep (A,Z) for each nucleus ZA is

shown by the connected lines in this order.

cases with Z ≥ 10 will find a more stable bound system by adding
neutrons. From an experimental point of view, 4He, 12C, and
16O are candidates of soliton, where 8Be itself is known to be an
unbound system even before comparing it to its neighbor nuclei.
From a theoretical and experimental point of view, 4He and 16O
are the candidates of soliton in which Eq(A,Z) values are positive.
Consequently, the stability of soliton candidates 4He and 16O are
confirmed with respect to the stability of the stationary state in
comparison to the neighbors.

A time evolution of 8He + 4He collision is shown in Figure 4.
8He is coming from the left hand side, and 4He is moving
from the right hand side. It forms a rotating merged system
around t = 28/3 × 10−22 s, and it is separated into two
fragments as a result of collision. As for Figure 4, the collision
energy is selected as the lowest energy at which the soliton wave
component starts to appear. That is, taking this energy as the
standard energy, for lower energies soliton cannot exist, and

fusion reaction takes place; for higher energies almost perfect
transparency with respect to both mass and momentum is

realized. It is a non-central collision (b 6= 0) in which the axial
symmetry along the collision axis is essentially violated. The
shape (more precisely, non-spherical property of the density and

momentum distribution) is an important factor in the multi-
dimensional case, where a less-symmetric shape of the merged
system is introduced by the parameter b. In addition to the
internal excitation, a part of the total energy is delivered to the

angular momentum of each nucleus in case of multi-dimensional

and b 6= 0 cases. To a certain degree, the appearance of rotational

motion of the merged nucleus is a specific factor for the multi-
dimensional soliton existence.

The detail of the nucleon transfer depends on the impact

parameter, therefore on the shape and geometry. For 8He + 4He

collision transferred nucleon numbers are shown in Figure 5,
where the impact parameter dependence is shown in an energy-
dependent manner. By increasing the energy, nucleon transfer
starts to disappear after EK =7.50 MeV. Indeed, for cases with

FIGURE 4 | Imperfect soliton including the spin degree of freedom, fermionic statistical property, the multi-dimensionality, and the effect due to the non-central

collision. Time evolution of 8He + 4He for EK = 7.50 MeV and b = 3.0 fm are shown. The collision energy is around the upper-limit energy of fast charge equilibration

[36]. That is, by increasing the energy, the transparent component becomes dominant. For better sights, time evolution of total density is depicted by projecting them

on the reaction plane (z = 0). The density is plotted on the vertical axis taken from 0 to 0.6 fm−1, where the horizontal area is fixed to (x, y) = 24× 20 fm2. In this

situation, 0.29 protons are transferred from 4He to 8He, and 0.26 neutrons are transferred from 8He to 4He, where we can find a weak effect of dual-way type charge

equilibration [45] leading to the contamination of pure soliton. The self-bound property of 8He and 4He contributes to recovering the original shape if the

transparencies of both mass and momentum is sufficiently high (kinetic energy loss is less than 5 MeV, see Figure 3).
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FIGURE 5 | For collisions 8He + 4He, transferred nucleon from 8He to 4He are shown depending on the relative velocity of the collisions. The impact parameter

dependence with six different energies EK are shown. Red circles show the amounts of neutron transfer, and the blue squares show those of proton transfer. In a low

energy case with EK = 2.50 MeV and b= 2, 3, 4, 5 fm, fusion appears.

EK =7.50, 10.0, 25.0, 50.0 MeV, the expectation value for the
number of nucleon transfers are always less than 0.50, so that the
soliton wave is concluded to be dominant in those cases.

With respect to the quantum mechanical observation, the
calculated results are statistically summed up for a given

collision energy (a given relative velocity). Indeed, we cannot
divide possible events by the impact parameter. Using the
concept of geometric cross section [46], the numbers of
total cross sections of all the inelastic events (events with
touching between two nuclei) for a given collision energy EK is
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TABLE 3 | The observation probability [%] of soliton state of 4He calculated by

Pm(EK ) and Pp(EK ) for given collision energies EK .

Pm(EK ) Pp(EK )

EK [MeV] Proton Neutron EK [MeV] Proton Neutron

2.50 68.3 61.4 2.50 74.5 72.5

5.00 75.2 69.4 5.00 60.2 56.2

7.50 86.5 82.1 7.50 64.6 62.4

10.0 90.7 95.0 10.0 76.9 73.7

25.0 98.5 98.2 25.0 95.0 93.5

Since the positions of center-of-mass are not so different for protons and neutrons in

the present cases, the momentum transfer is shown as the total momentum transfer of

all nucleons. According to the preceding study, the soliton is suggested to exist around

EK =25.0 MeV [7].

calculated by

π(1.50)2T(b0,EK) +
10

∑

bi=1

(π(bi + 0.50)2

−π(bi − 0.50)2)T(bi,EK))

(33)

where bi fm imitates the impact parameter; T(bi,EK) = 1
for touched cases, and T(bi,EK) = 0 for untouched cases. As
readily understood by the definition, events with a large impact
parameter hold a larger cross section. The rate of transparent
events measured by the particle transparency for a given collision
energy is calculated by

Pm(EK) = 1−

π(1.50)2|N(b0 ,EK ))|+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)|N(bi ,EK ))|

π(1.50)2T(b0 ,EK )+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)T(bi ,EK ))

(34)

where N(bi) is the transferred nucleon numbers. This definition
can be regarded as the probability, in which |N(bi,EK)| is taken
as 1 for |N(bi,EK)| > 1. According to this treatment, Pm(EK) can
be regarded as the probability for the particle transparency. Using
the same definition in the geometric cross section, the transferred
momentum rate is calculated. The rate of transparent events
measured by the momentum transparency for a given collision
energy is calculated by

Pp(EK) = 1−

π(1.50)2|M(b0 ,EK ))|+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)|M(bi ,EK ))|

π(1.50)2T(b0 ,EK )+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)T(bi ,EK ))

(35)

where−1 ≤ M(bi) ≤ 1 is the transferred momentum divided by
the initial momentum.

The soliton probability for all the possible collisions at given
energies is summarized in Table 3. To find the soliton events
at the energy just above the charge equilibration upper limit
energy, it is reasonable to focus on EK = 7.5 MeV and EK =
10.0 MeV cases. Indeed, for the reference case EK = 25 MeV,
single nucleon emission (neutron emission in most cases) took
place during and after the collision, and the shapes are not
well-conserved.

In case of helium collisions, almost 90% of the reaction is
mass transparent for EK = 10.0 MeV, and almost 80% is for
EK = 7.5 MeV. The corresponding momentum transparency
rate is 89.6 % for EK =10.0 MeV, and 92.1 % for EK =7.5
MeV. Consequently, the probability for finding the soliton events
calculated by the product

Pp(EK)Pp(EK)

are 81 % for EK =10.0 MeV, and 76 % for EK =7.5 MeV.
In case of oxygen collisions, almost 70 % of the reaction is
mass transparent for EK = 10.0 MeV, and almost 60 % is for
EK = 7.5 MeV. The corresponding momentum transparency
rate is 92.4 % for EK =10.0 MeV, and 87.8 % for EK =7.5
MeV. Consequently, the probability for finding the soliton events
are 65 % for EK =10.0 MeV, and 53 % for EK =7.5 MeV.
In both cases with helium and oxygen collisions, the cross
section for soliton events is at the order of 1,000 mb (milli-
barn). The soliton observation probabilities are larger than 50
%, so that those collisions tend to be observed as the soliton
time-reversible events.

5. SUMMARY

The soliton existence is nothing but the existence of perfect
transparency, therefore the existence of perfect fluidity. The
theoretical evidence for the imperfect nuclear soliton existence
has been presented for the first time in a realistic setting. As a
result, 4He is concluded to be a candidate of nuclear soliton. 16O
also behaves like a soliton to a lesser degree. As the fermi energy
can be different for different fermions, the present study brings
about new insights on the validity of the different physics in
different scales. Through the competition relation, the existence
of nuclear soliton has been shown to depend essentially on
the fermi energy of many-nucleon systems. An essential role
of non-linearity in the formation of our material world is
understood by the soliton propagation, since nucleon degree of
freedom is related to the synthesis of chemical elements (H, He,
Li, Be, · · · ). In conclusion, 4He and 16O are suggested to be
candidates for nuclear soliton. From an applicational point of
view, the soliton property of these nuclei will be utilized for the
preservation of 4He matter, the condensation of 4He matter, and
the production/synthesis of certain nucleus (by adding several
4He intentionally).

As seen in the competition mechanism between soliton wave
propagation and charge equilibrating wave propagation, the
conditions for the soliton propagation depend essentially on the
fermi energy of the fermionic quantum system. Accordingly,
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there are some conjectures that need to be confirmed in the near
future. In quantum systems,

1. The fermionic soliton exists in different scales in different
ways, as the fermi energy is determined by fixing effective
degrees of freedom.

2. The solitons between fermionic and bosonic systems are
essentially different.

3. The general and special relativity effects change the soliton
existence.

4. Another type of the soliton appears in the event
when fermions and bosons are tightly correlated (e.g.,
supersymmetric systems).

5. Another type of the soliton exists in anionic systems.

Where the first, second, and third conjectures are partly
studied in this article. The third and fifth conjectures are
also associated with clarifying the difference compared to the
Maxwellian systems or anionic systems. That is, as in the present
research, the soliton propagation in quantum systems should be
examined by considering the spin degree of freedom and multi-
dimensional spatial-degree of freedom. The fourth conjecture is
expected to play a role in clarifying and identifying the theory
of everything.

As a closing remark some related open problems should be
pointed out. Although there are several unknown and interesting
topics in nuclear physics, we focus on the soliton propagation in
many-nucleon systems.

• Show the similarity/difference between the soliton “perfect
fluidity” and the bosonic “superfluidity.”

• Show quantitatively that the soliton propagation is
suppressed/enhanced by the interaction terms other than t0-
and t3-terms.

• Show the soliton existence probability under the influence
of many-body dissipation (cf. one-body dissipation in the
main text).

• Find the charge-parity symmetry breaking reaction in
terms of the conditional/unconditional soliton existence
(conditional/unconditional time-reversal symmetry).

These things will clarify the role of the imperfect soliton in many-
nucleon systems. This kind of soliton should be different from the
solitons in many-quark systems.
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The emergence of collective behaviors and the existence of large amplitude motions are

both central features in the fields of nuclear structure and reactions. From a theoretical

point of view, describing such phenomena requires increasing the complexity of the

many-body wavefunction of the system to account for long-range correlations. One

of the challenges, when going in this direction, is to keep the approach tractable

within our current computational resources while gaining a maximum of predictive

power for the phenomenon under study. In the Generator Coordinate Method (GCM),

the many-body wave function is a linear superposition of (generally non-orthogonal)

many-body states (the generator states) labeled by a few collective coordinates. Such

a method has been widely used in structure studies to restore the symmetries broken

by single-reference approaches. In the domain of reactions, its time-dependent version

(TDGCM) has been developed and applied to predict the dynamics of heavy-ion collisions

or fission where the collective fluctuations play an essential role. In this review, we

present the recent developments and applications of the TDGCM in nuclear reactions.

We recall the formal derivations of the TDGCM and its most common approximate

treatment, the Gaussian Overlap Approximation. We also emphasize the Schrödinger

Collective-Intrinsic Model (SCIM) variant focused on the inclusion of quasiparticle

excitations into the description. Finally, we highlight several exploratory studies related

to a TDGCM built on time-dependent generator states.

Keywords: nuclear reactions, energy density functional, configuration mixing, TDGCM, time-dependent, fission

1. INTRODUCTION

Since the early days of nuclear physics, the variety of shapes that atomic nuclei can take is a core
notion of our interpretation of nuclear processes. The fission reaction provides a typical example
since it was quickly interpreted as the elongation of a charged liquid drop of nuclear matter, leading
to a scission point [1]. Descriptions in terms of vibrations and rotations of the nuclear shape also
lead to quantitative reproductions of the low energy spectra [2] of atomic nuclei. These successes
of the theory suggest that the shape of the nuclear density is somehow a relevant degree of freedom
(DoF) to describe several phenomena. In addition to the classical picture of the time evolution of a
well defined nuclear shape, taking into account its associated quantum fluctuation is of particular
importance. For instance, these fluctuations directly drive the width of the probability distribution
of particles transferred during low energy heavy-ion collisions, as well as the modal characteristics
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of the fragment distribution produced by fission. The
incorporation of these fluctuations into a quantum description
leads to a many-body wave function describing the system that
is a mixture of states with different shapes. With this intuition,
one may attempt a direct description of nuclei in terms of shape
DoFs. However, transforming the 3A positions and A spins of
the nucleons into a new system of coordinates involving a set
of deformations parameters is both cumbersome and problem-
dependent [3, 4]. Another possibility consists in keeping the
nucleons coordinates and build an ad-hoc quantum mixture of
many-body states with different relevant shapes. This is precisely
the starting point of the Generator Coordinate Method (GCM).

The GCM method was first developed in the seminal papers
of Hill and Wheeler in the context of nuclear fission in 1953 [5],
and later on generalized in [6]. The global philosophy is (i) to
generate a set of many-body states parameterized by a set of
shape variables (the generator states), (ii) to derive an equation
of motion for the many-body wave function of the system in
the restricted Hilbert space spanned by the generator states. The
first applications of this method focused in introducing shape
degrees of freedom, such as the multipole moments of the one-
body density. It turns out to be very versatile and has been applied
since with different families of generator states. The static GCM
has demonstrated over the years its ability to describe the low
excitation spectrum of nuclei [7, 8]. For this kind of application,
the generator states are, in general, parameterized by some
gauge variables associated with the breaking and restoration of
symmetry groups (Euler angles for rotational symmetry, gauge
angle for the particle-number symmetry) . Similar approaches
based on generator states labeled by a few multipole moments
of the one-body density also provided predictions of the giant
monopole, dipole, and quadrupole resonances [9–14].

Studies based on the time-dependent flavor of the GCM
are less abundant in the literature than the ones using its
stationary counterpart. Therefore, the goal of this review is to
recall the formal developments related to the Time-Dependent
Generator Coordinate Method (TDGCM) and highlight their
current applications in the field of nuclear physics. In section 2,
we present some general aspects of the time-dependent
generator coordinate method in its standard and full-fledged
implementation. In section 3, we focus on the Gaussian overlap
approximation framework that is commonly used in most of the
state of the art applications of the TDGCM. In particular, we
discuss the fact that such an approach has difficulties accounting
for the diabatic aspects of nuclear collective motions. We then
devote the two last sections to two possible extensions of the
TDGCM that aim to overcome this issue. The section 4 highlights
the Schrödinger Collective Intrinsic Model (SCIM), a framework
based on the symmetric moment approximation of the TDGCM.
Finally, section 5.1 reports alternative methods involving a
TDGCM-like ansatz built on time-dependent generator states.

2. GENERAL FORMALISM OF THE TDGCM

2.1. Generator States
Predicting the structure and dynamics of medium to heavy nuclei
starting from the nucleons degrees of freedom is a challenging

task. The difficulty arises from a large number of correlations
present in the many-body wave function of nuclear systems. A
feature that helps us tackle this problem is the existence of two
nearly separable time scales in nuclear processes. On the one
hand, we have the typical time for the motion of individual
nucleons inside the nucleus, which is roughly 10−22 s. On the
other hand, the time scales associated with the system’s collective
deformations are roughly ten times bigger than the former (1
zs = 10−21 s). Such separation in time scale motivated attempts
to describe the dynamics in terms of shape coordinates only. As
mentioned in the introduction, one possibility is to transform the
3A positions of the nucleons into a set of collective coordinates
plus some residual intrinsic DoFs. Such an approach could
then be combined with an adiabatic approximation similar to
the Born-Oppenheimer approximation in electronic systems to
reduce the dynamics to the collective DoFs only. The GCM
proceeds with an alternative approach that introduces collective
deformations DoFs without relying on a transformation of the set
of nucleons DoFs.

The first step of the method consists in building a family of
many-body states {

∣

∣φ(q)
〉

} parameterized by a vector of labels
q = q0 · · · qm−1. We can summarize the essence of such a
construction in the following few points:

• The labels qi are referred to as the generator coordinates
or collective coordinates. They are continuous real numbers
that can, for instance, characterize the shape of the nuclear
density. The vector q takes arbitrary values in am-dimensional
subspace E ⊂ ℜm.

• The states {
∣

∣φ(q)
〉

} are the generator states. They are many-
body states associated with the system of A nucleons under
study. In the standard TDGCM framework, these states are
time-independent.

• The function q →
∣

∣φ(q)
〉

should be continuous. In other
words, for any sequence of collective coordinates {qk} that
converges to q, the corresponding sequence

∣

∣φ(qk)
〉

must
converge to

∣

∣φ(q)
〉

. This property is required for a sound
mathematical construction of the GCM framework as detailed
in [15].

The choice of a family of generator states fulfilling these
properties is then arbitrary, which gives great versatility to the
GCM method1. The generator states should span a sub-Hilbert
space that contains each stage of the exact dynamics to describe a
physical process optimally. Therefore, building a pertinent family
of generator states requires a good a priori knowledge of the
dynamics of the system.

A standard procedure to handle nuclear deformations consists
in the definition of the generator states as the solutions
of a constrained Hartree-Fock-Bogoliubov equation. In this
approach, each collective coordinate is typically associated with
a multipole moment observable (i.e., the quadrupole moment of

1For some applications, it may be convenient to add one or several discrete

generator coordinates. We will then note the generator states as
∣

∣φk(q)
〉

where k

is a vector of discrete labels. A typical example of a discrete label could be the K

quantum number associated with the projection of the total spin onto a symmetry

axis of the nucleus. Another example is provided in section 4.
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the one-body density). The generator state
∣

∣φ(q)
〉

is then obtained
by minimizing the Routhian

R[φ(q)] = EHFB[φ(q)]−
∑

i

λi

(

〈

φ(q)
∣

∣Q̂i

∣

∣φ(q)
〉

− qi

)2
, (1)

where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣

∣φ(q)
〉

.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle θ [16] and the generator states

∣

∣φ(θ)
〉

read

∣

∣φ(θ)
〉

= exp
(

iθ(Â− A)
)

|φ〉 . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣9(t)
〉

=
∫

q∈E
dq
∣

∣φ(q)
〉

f (q, t). (3)

The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
∫∫

dq dq′f ⋆(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by

O(q, q′) =
〈

φ(q)
∣

∣Ô
∣

∣φ(q′)
〉

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

H(q, q′) =
〈

φ(q)
∣

∣Ĥ
∣

∣φ(q′)
〉

(Hamiltonian), (6)

N (q, q′) =
〈

φ(q)
∣

∣1̂

∣

∣φ(q′)
〉

(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed

generator states
∣

∣

∣
φ̃(a)

〉

=
∣

∣φ(ϕ−1(a))
〉

∣

∣

∣
ψ̃(t)

〉

=
∫

a∈ϕ(E)
da
∣

∣

∣
φ̃(a)

〉

f̃ (a, t). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ ⋆(a, t)O(a, a′)f̃ (a′, t), (11)

with

O(a, a′) =
〈

φ̃(a)
∣

∣

∣
Ô
∣

∣

∣
φ̃(a′)

〉

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣9(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣9(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),

Frontiers in Physics | www.frontiersin.org 3 July 2020 | Volume 8 | Article 233113

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Verriere and Regnier The TDGCM in Nuclear Physics

2. the equality

〈8|
(

Ĥ − ih̄
d

dt

)

∣

∣9(t)
〉

= 0 (14)

is satisfied for every GHW state |8〉.
In other words, we impose that the residual (Ĥ − ih̄d/dt)

∣

∣9(t)
〉

is orthogonal to the space of GHW states. This last assumption
is equivalent to a Frenkel’s variational principle whose link to
other time-dependent variational principles is discussed in [17].
By injecting the GHW ansatz (3) into (14), we obtain

∫ ∫

dq dq′f ⋆8(q
′)
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (15)

Here f8 is the mixing function defining the GHW state |8〉.
Solving Equation (15) for any state |8〉 is equivalent to look for a
function f verifying the so-called Griffin-Hill-Wheeler equation
in its time-dependent form

∀q′
:

∫

dq
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (16)

The time-evolution of the norm and the energy reads

d

dt

〈

9(t)
∣

∣9(t)
〉

= i

h̄

〈

9(t)
∣

∣(Ĥ† − Ĥ)
∣

∣9(t)
〉

, (17)

d

dt
E(t) = i

h̄

〈

9(t)
∣

∣(Ĥ† − Ĥ)Ĥ
∣

∣9(t)
〉

. (18)

Thus, this equation of motion preserves the norm of the wave
function and the total energy of the system if the many-
body Hamiltonian is Hermitian. However, it is not always the
case. To simulate open systems, for instance in the context
of nuclear reactions, a common practice consists in adding
an imaginary absorption term to the Hamiltonian that acts
in the neighborhood of the finite simulation box. Finally,
the time-dependent GHW equation is a continuous system
of integrodifferential equations. Its non-local nature in the q

representation brings a serious hurdle to its numerical solving.

2.4. Mapping to the Collective Wave
Functions
The equation of motion (15) and an initial condition for
the system is sufficient to determine the dynamics in the
TDGCM framework. It is possible to numerically integrate in
time this equation with an implicit scheme such as Crank-
Nicolson [18]. However, the TDGCM framework offers another
natural approach that turns out to be both enlightening from
the mathematical perspective and more stable from a numerical
point of view. This method resorts on a mapping between the
GHW states and some functions of the collective coordinate q.
The rigorous mathematical construction of this mapping in a
general case is detailed in [15]. Here we will only build this
mapping in the case where the norm kernel N is of Hilbert-
Schmidt type [19]. It is the case as long as the domain E of the
collective coordinates is bounded, which is valid for a wide range
of applications.

To start with, we recall that any kernel O(q, q′) also defines a
linear operator acting on the space of functions L2(E)

(Of )(q) =
∫

q′∈E
dq′

O(q, q′)f (q′), (19)

as long as this integral is mathematically defined. The Hilbert-
Schmidt property of the norm operator implies the existence of a
complete, discrete and orthonormal family of functions {ui(q)}i
of L2(E) that diagonalizes the linear operator associated with the
norm kernel

∀i > 0 : Nui = λiui. (20)

Since N is a Hermitian positive semidefinite operator, its
eigenvalues are real and positives. We adopt here the convention
where they are sorted by decreasing order and assume that only
the first r eigenvalues are not zero. From this diagonalization, we
can split the space of functions f into two orthogonal subspaces:
the one associated with the vanishing eigenvalues and the one
associated with the strictly positive eigenvalues. Formally, we
write down the two projectors

Q(q, q′) =
∑

i≤r

ui(q)u
⋆
i (q

′) (21)

P(q, q′) =
∑

i>r

ui(q)u
⋆
i (q

′) (22)

with

Q+ P = 1L2(E). (23)

The projected space PL2(E) is associated with the null
eigenvalues of the norm operator N . Any GHW state built from
a weight function belonging to this space gives the null many-
body state. Its orthogonal complement is the subspace Q(E) =
QL2(E). We call collective wave functions, the functions living in
this subspace.

We can define uniquely the positive hermitian square-root of
N (which is also Hermitian) with

N (q, q′) =
∫

a∈E
N

1/2(q, a)N 1/2(a, q′) da. (24)

We can, therefore, associate to any GHW state its collective wave
function g(q) ∈ Q(E) by the equation

g = N
1/2f . (25)

Conversely, the operator N 1/2 is invertible in Q(E). Therefore,
for any collective wave function g ∈ Q(E), one can build its
corresponding GHW state with the weight function

f = N
−1/2g. (26)

Finally, this mapping between Q(E) and the GHW states is
isometric as we may show that for any pair of GHW states9 and
8 we have the property

〈9|8〉 =
〈

g9
∣

∣g8
〉

=
∫

q∈E
g⋆9 (q)g8(q) dq. (27)
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Going further, any many-body observable Ô can be mapped into
a collective operator Õ acting on the space Q(E). This operator is
defined by 2

Õ = N
−1/2

ON
−1/2. (28)

The isometry of the mapping gives a simple mean to compute
matrix elements of observables.

〈

9
∣

∣Ô
∣

∣8
〉

=
〈

g9
∣

∣Õ
∣

∣g8
〉

(29)

Finally, we can reduce the TDGCM equation of motion
(Equation 16) in this language. It becomes a time-dependent
Schrödinger equation for the collective wave function

ih̄ġ = H̃g. (30)

This equation of motion presents several practical advantages
compared to Equation (16). The collective Hamiltonian H̃ is,
in general, still non-local, but the time derivative of g has an
explicit expression. It opens the possibility of using faster time
integration schemes at the cost of computing first the collective
Hamiltonian through Equation (28). Also, the collective wave
function is expected to have a smoother behavior compared to the
weight function f . This comes directly from Equation (26) where
we see that eigenvalues of the norm kernel approaching zero add
diverging components to f . The Equation (30) may be directly
solved by discretizing the collective wave function g(q). In many
cases, it is appropriate to solve it directly in the representation
given by the basis {ui(q)}i≤r . The collective Hamiltonian H̃, as
well as other collective observables, are indeed easier to compute
in this particular basis.

2.5. Difficulties Related to the Energy
Kernel
We discussed general features of the TDGCM approach valid
for any family of generator states. In nuclear physics, most
applications of the GCM rely on families of Bogoliubov vacua.
A crux of the GCM approach is then the determination of
the norm and Hamiltonian kernels between such many-body
states. The [20] provides a general and now-standard approach
to fully determine the norm kernel between Bogoliubov vacua
based on the calculation of a matrix Pfaffian. However, the
evaluation of the energy kernel in nuclear physics applications
suffers from several major difficulties. The origin of these
flaws stems from the fact that our practical applications
do not rely on a linear many-body Hamiltonian but some
effective Hamiltonians or energy density functionals. This topic
was extensively discussed in the context of static GCM for
nuclear structure [21–25]. We briefly list here the pitfalls
raised by the determinations of the energy kernel in practical
nuclear applications.

2Note that such a definition is possible for any observable Ô due to the property

QO = O.

2.5.1. Neglecting Some Exchange Terms
A common practice to avoid unbearable numerical costs is the
neglection or the approximation of parts of the many-body
Hamiltonian. For instance, it is widespread to use the Slater
approximation of the Coulomb exchange term or to neglect
the exchange part of the pairing force between nucleons [26].
Although convenient from a numerical point of view, it was
shown in [27] that such approximations may introduce poles
in the expression of the energy kernel. These poles lead to a
divergence when calculated between some Bogoliubov vacua.
The [28, 29] illustrate this behavior in a case of particle number
symmetry restoration.

2.5.2. Violation of Symmetries by Energy Density

Functionals
In many practical applications, the nucleon-nucleon interaction
is encoded in an energy density functional (EDF). Using
such a formalism in combination with a GCM mixture of
states requires a sound definition of a multireference energy
density functional [22]. Such a definition is often provided
and implemented in the form of the reduced energy kernel
h(q, q′) = H(q, q′)/N (q, q′) between two non-orthogonal
Bogoliubov vacua. For a two-body Hamiltonian case, the
reduced energy kernels may be expressed from the generalized
Wick theorem

h(q, q′) =
∑

ij

tijρ
qq′

ji + 1

2

∑

ijkl

v̄ijklρ
qq′

ki
ρ
qq′

lj
+ 1

4

∑

ijkl

v̄ijklκ
qq′∗
ij κ

qq′

kl
.

(31)
It involves the matrix elements of the one- and two-body parts of
the interaction t and v̄ as well as transition densities such as

ρ
qq′

ij =
〈

φ(q)
∣

∣â†
j âi
∣

∣φ(q′)
〉

〈

φ(q)
∣

∣φ(q′)
〉 . (32)

In the practical implementations of the multireference EDF
approach, such a kernel is defined by analogy as the same bilinear
form whose coefficients come from a fit procedure. The main
differences compared to the EDF case are:

1. the coefficients defining the EDF may depend on some
densities of the system,

2. the coefficients in the particle-particle channels may differ
from the ones in the particle-hole channels,

3. the matrix v̄may not be antisymmetric.

As detailed in [22, 30], the violation of these properties leads
in some cases to a divergence of the reduced energy kernel that
biases or prevents practical applications.

2.5.3. Density Dependent Terms of Energy Density

Functionals
In an EDF framework, the coefficients of Equation (31) depend
on the density of the system. The exact formulation of this
dependency is yet subject to an arbitrary choice, especially for
the non-diagonal part of the kernel. Several prescriptions have
been developed and tested during the last two decades [31,
32]. A prescription that fulfills many important conditions
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expected from a Hamiltonian is the transition density defined
by Equation (32) (see [33]). However, this prescription yields
to complex-valued densities. It is then incompatible with most
of the EDFs developed at the mean-field level with terms that
contain a non-integer power of the density. Finding a satisfying
pair of density prescription and EDF valid for GCM calculations
is still an open problem.

In conclusion, the current usage of the GCM formalism with
effective Hamiltonian or energy density functionals suffers from
several formal and practical flows when it comes to determining
the energy kernel. This situation has been a major obstacle to the
development of GCM applications in nuclear physics in the last
years. Several ongoing efforts attempt to overcome this difficulty
by building new energy functionals valid for multireference
calculations [34] or going toward ab initio treatments [35].

2.6. Fission Dynamics With the Exact
TDGCM
The exact solving of the time-dependent GHW equation in a
realistic case has rarely been carried out. To our knowledge, the
only published work tackling this task is presented in [36, 37] in
the context of fission. It shows the challenges raised by an exact
TDGCMcalculation, especially when dealing with large collective
coordinate domains.

In [36], the authors used the TDGCM to describe the
reaction 239Pu(n,f). This study relies on two common collective
coordinates for fission, namely q20 and q30, that are associated
with the expectation value of the quadrupole and the octupole
moments of the one-body density. The dynamics in this
collective space accounts for the evolution from a compound
to a fragmented system with, also, information on the mass
asymmetry between the two fragments produced. It is well
suited to determine the mass yields of the fragments. The set
of constrained HFB solutions (a total of 20,212) obtained for
a wide range of these collective coordinates forms the family
of generator states. Each generator state is practically obtained
with a finite-range Gogny interaction in its D1S parametrization.
A two-center axial harmonic oscillator basis with 12 shells has
been used where the parameters defining the basis have been
optimized for each value of the collective coordinates.

The norm kernel has been calculated for each couple of
generator states. The upper-left panel of Figure 1 presents its
values between the mean-field ground-state and the surrounding
points, whereas the lower-left panel of the figure shows its values
obtained for a more elongated configuration in the potential
energy surface (PES). We see that the overlaps are above ǫthresh =
1.0 × 10−4 only in a neighborhood of q0 in both cases. As noted
in [16], it is due to the large number of nucleons in the system.

This behavior is at the heart of the Gaussian Overlap
Approximation, discussed in more detail in section 3. The
reduced Hamiltonian h(q0, q), defined as the ratio between the
collective Hamiltonian and the norm kernel

h(q0, q) =
〈

φ(q0)
∣

∣Ĥ
∣

∣φ(q)
〉

〈

φ(q0)
∣

∣φ(q)
〉 , (33)

has also been calculated for all overlaps greater than ǫthresh. In this
work, only the kinetic and central terms of the interaction were
included. The right panels of Figure 1 presents the slices of the
reduced Hamiltonian for the same cases as in its left panels. The
relative variation of the reduced Hamiltonian (where the norm
kernel above the threshold) is almost constant, being only 2%
around the ground state and 1% for the elongated configuration.
In addition to the overlaps rapid decrease discussed above,
it numerically justifies the standard second-degree polynomial
approximation of this quantity (a further study with all the terms
of the interaction is, however, required). The bottom panels
highlight a discontinuous behavior around q20 ≈ 130 b. This
specific discontinuity is due to the existence of two competing
valleys in the three-dimensional PES obtained by adding the
hexadecapole moment q40 = 〈Q̂40〉 as a collective DoF [38]. Such
a discontinuity gives a similar label in the collective space to two
HFB states that are far in the full many-body space. The Figure 2
is an illustration of such a discontinuity in a two-dimensional
PES embedded in a three-dimensional collective space. It is not
possible to reduce the loop C to a point: the discontinuity is a
hole whose edges are highlighted by the red line of Figure 2.
Such a discontinuity may add spurious boundary effects in the
description of the reaction of interest. It is especially the case
when the discontinuity appears in an area of the collective space
that gives important contributions to the targeted observables.
Note that in approximate treatments such as the ones based on
the Gaussian Overlap Approximation, discontinuities are always
neglected, leading to a spurious connection between distant
regions of the full many-body space.

It is possible to determine the time evolution of the weight
function f (q, t) of the GHW ansatz (3). In cases where the
size of the discretized space of the collective coordinate
is still tractable, this task has been achieved through a
direct diagonalization of the collective Hamiltonian [37].
For this two-dimensional application, the straightforward
diagonalization involves a prohibitive numerical cost. It is
still possible to use a Crank-Nicolson method to integrate
in time the GHW equation (16). Figure 3 presents a
snapshot at time t = 0.55 zs of the quantity P(q, t)
defined as

P(q, t) ≡
〈

9(t)
∣

∣

(∣

∣φ(q)
〉 〈

φ(q)
∣

∣

) ∣

∣9(t)
〉

. (34)

This corresponds to the probability to measure the system
in the state

∣

∣φ(q)
〉

3. Even though the simulation was a
proof-of-concept, we see that the bottom of the asymmetric
valley is slightly more populated than the other parts of the
PES near scission. This leads mostly to asymmetric fission
fragments, which is in agreement with experimental data [39,
40]. The GCM wavefunction evolves in a slightly non-local
way in the collective space (in the range of the width of
the overlaps along q − q′), leading to non-zero probability

3 Note that due to the non-orthogonality of the generator states its sum over all the

points q is not equal to 1.
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FIGURE 1 | (Left) Overlaps N (q0, q) as a function of q and where q0 = (30, 3), in barn units, corresponds to the ground state (upper panel) or q0 = (127, 1), in barn

units, which corresponds to a point at higher elongation (lower panel). This was obtained for a 240Pu nucleus. The white parts correspond to values below a threshold

of 1.0× 10−4. The yellow crosses correspond to q0. (Right) Same as the corresponding left panels for the reduced energy kernel h(q0, q).

FIGURE 2 | Schematic representation of a discontinuity in two-dimensional calculations with constraints on q20 = 〈Q̂20〉 (x-axis) and q30 = 〈Q̂30〉 (y-axis). The z-axis

and the color scale are associated with the average values of the unconstrained hexadecapole moment 〈Q̂40〉.

“drops” appearing and disappearing along the time-evolution of
the system.

The most time-consuming part was the calculation of the
norm and Hamiltonian kernels that required the use of 512 cpus
for two weeks (∼ 170, 000 cpu.h). The calculation of the time-
evolution of the weight function f (q, t) for times up to 0.55zs was
done using 64 cpus for one week (∼ 10, 000 cpu.h). The short

length of time for which the weight function was determined is
not enough for the calculation of mass and charge probability
distributions. A more realistic calculation would require at least
200, 000 cpu.h, for the determination of the weight function up
to 10zs only.

The principal difficulty of such an application stems from
the big size of the discretized space of the collective coordinates
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FIGURE 3 | The gray surface represents the generator states’ HFB energy as a function of q20 and q30. On top of this, the color map gives the quantity

P(q, t = 0.550 zs) in the same conditions than those of Figure 1.

(substantially bigger, for example, than in the case of the
static GCM calculations for nuclear structure). This makes the
computation of the norm and Hamiltonian kernel intensive
but still embarrassingly parallel. Besides, in the case of fission,
techniques to determine the post-scission observables of the
fragments still need to be developed for the exact TDGCM. For
instance, some simplifying hypotheses on the way to treat open
domains of collective coordinates are commonly used under the
Gaussian Overlap Approximation [41] but are no longer valid in
the exact TDGCM framework.

3. GAUSSIAN OVERLAP APPROXIMATION
(GOA)

In its straightforward application, the TDGCM leads to a
non-local equation of motion that must be solved in a high-
dimensional space in most of the practical calculations. As
mentioned in Sec. 2, solving this equation involves a high
numerical cost that strongly hurdles its applications in nuclear
physics. Several approximate treatments of the TDGCM have
been developed with the aim to build a local equation of
motion for the collective wave function g(q, t) (cf. Equation 30).
The Gaussian overlap approximation (GOA) is one of these
approximations, which leverages the fact that the overlap and
Hamiltonian kernels can, in some cases, be parameterized
in terms of Gaussians of the variable q. In its static form,
the GOA has been largely used and applied for nuclear
structure. Especially, it provides a nice bridge between the Bohr
Hamiltonian equation that was first formulated in [42] and a
quantum treatment based on the 3A + A nucleons degrees of
freedom [43–47]. Extensive reviews of the static version of the

GOA can be found in [16, 48]. We focus here on its time-
dependent flavor.

3.1. TDGCM+GOA With Time Even
Generator States
3.1.1. Main Assumptions
In its most standard form, the GOA framework assumes the
following situation:

1. we have a family of normed generator states {
∣

∣φ(q)
〉

}
parameterized by a vector of real coordinates q ∈ ℜm;

2. all the states of the set are time-even, i.e., they are their own
symmetric by the time-reversal operation;

3. the function q →
∣

∣φ(q)
〉

is continuous and twice derivable;
4. the overlap between two arbitrary generator states can be

approximated by a Gaussian shape

N (q, q′) ≃ exp

[

−1

2
(q− q′)tG(q̄)(q− q′)

]

, (35)

with q̄ = (q+ q′)/2 and G(q̄) a real positive definite matrix;
5. the Hamiltonian kernel can be approximated by

H(q, q′) ≃ N (q, q′)h(q, q′), (36)

where h(q, q′), a polynomial of degree two in the collective
variables q and q′, is the reduced Hamiltonian.

In most applications of the TDGCM+GOA, the generator states
are built as constrained Hartree-Fock-Bogoliubov states of even-
even nuclei which ensures the time even property. The question
is then: what are the situations where the Gaussian shape
approximation is verified within a small error? Already from the
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time-reversal symmetry, we can infer that the overlaps are real
and symmetric in (q − q′). Therefore, the following relation is
satisfied in the vicinity of q

〈

φ(q+ s

2
)
∣

∣

∣
φ(q− s

2
)
〉

= exp
[

ln
(〈

q+ s

2

∣

∣

∣
q− s

2

〉)]

. (37)

A Taylor development of this expression up to order two
in s already yields locally a Gaussian shape without any
additional assumption

〈

φ(q+ s

2
)
∣

∣

∣
φ(q− s

2
)
〉

= exp

[

−1

2
stG(q)s+ o(s2)

]

(38)

with

Gij(q) =
〈

∂iφ(q)
∣

∣∂jφ(q)
〉

, (39)

∣

∣∂iφ(q)
〉

= ∂
∣

∣φ(a)
〉

∂ai

∣

∣

∣

∣

∣

q

. (40)

We used here some identities coming from the fact that generator
states are normalized. In situations where the coordinates
correspond to some collective deformations of the nucleus, it
turns out that the Gaussian shape holds for larger values of s.
This is justified from the central limit theorem in [48] for Slater
determinants or in [16] for Bogoliubov vacua. It especially holds
for heavy nuclei.

Finally, note that although we limit here our description to
the case of time-even generator states, it is possible to build
a GOA framework without assuming this symmetry. Such a
generalization can be found, for instance, in [48].

3.1.2. Equation of Motion
Starting from the GOA hypothesis, one can reduce the equation
of motion (30) to a local equation involving the first and second-
order derivatives of the collective wave function. In this section,
we give only themain ideas to derive this local equation. Formore
exhaustive demonstrations, we refer the reader to [16, 48, 49].

In its historical version, the GOA framework assumes that
the width of the Gaussian shape is constant. However, in most
of the practical cases, this assumption is too restrictive. To
overcome this issue, a series of papers published in the 70–
80’s generalized the GOA framework to account for a varying
Gaussian width [49–51]. The idea is to perform a change of
collective variables to recover the constant width case. The
mapping between the new collective coordinates α and the
original ones q reads

α(q) =
∫

a∈Cq
0

G
1
2 (a) da (41)

where C
q
0 is a path from the origin to q. With this new labeling of

the generator states, we get 4

〈

φ(α)
∣

∣φ(α′)
〉

≃ exp

[

−1

2
(α − α

′)2
]

. (42)

4 Note that this assumes (i) that the integrals of G1/2(a) are independent of the

integration path (ii) that its evaluation properly approximates the average of G1/2

on the path at the central point of the path [51].

We can therefore perform all the derivations with the α

coordinates and make the inverse transformation on the final
expressions only.

Starting with this simple form of the overlap, we seek an
equation of motion involving a local collective Hamiltonian in
the collective coordinate representation. The Gaussian shape of
the norm kernel allows expressing its positive Hermitian square
root analytically as

N
1/2(α,α′) = C · exp

[

−(α − α
′)2
]

, (43)

where the constant C only depends on the dimension of the
coordinate α. Additionally, there is a simple link, involving
Hermite polynomials, between the successive derivatives of
a Gaussian shape and its multiplication by polynomials. For
instance, we have for the two first derivatives in α

∂N 1/2

∂αk
= −2(αk − α

′

k)N
1/2, (44)

∂2N 1/2

∂αk∂αl
= [−2δkl + 4(αk − α

′
k)(αl − α

′
l)]N

1/2. (45)

In the following, we build a local collective Hamiltonian. After
the change of variable (41), the Hamiltonian kernel between two
arbitrary GHW states reads

〈

9
∣

∣Ĥ
∣

∣8
〉

(46)

=
∫

αα
′
ξ

f ⋆9 (α)N
1/2(α, ξ )h(α,α′)N 1/2(ξ ,α′)f8(α′) dα dα′ dξ .

By assuming that the reduced Hamiltonian is a second-degree
polynomial, we can write down for any point ξ

h(α,α′) = h(ξ , ξ )+ hα(α − ξ )+ hα
′ (α′ − ξ )

+ 1

2

[

hαα(α − ξ )2 + 2hαα
′ (α − ξ )(α′ − ξ )+ h

α
′
α

′ (α′ − ξ )2
]

,

(47)

where hα is a shorthand notation for the vector of the first
derivatives of the reduced Hamiltonian estimated at ξ

hα ≡
(

∂h(α,α′)
∂α1

∣

∣

∣

∣

α=α
′=ξ

, . . . ,
∂h(α,α′)
∂αm

∣

∣

∣

∣

α=α
′=ξ

)

. (48)

Similarly hαα , hαα
′ , and hα

′
α
′ are the tensors of second derivatives

with respect to the collective coordinates and evaluated at
point ξ . The idea is then to inject this local development into
equation (46). Using the relation (44), we express the reduced
kernel as a local operator containing derivatives acting on the
right-hand side N 1/2. Finally, after rearranging all the terms
and performing some integrations by parts, we obtain the
expected result

〈

9
∣

∣Ĥ
∣

∣8
〉

=
∫

αα
′
g⋆9 (α)H̃(α)δ(α − α

′)g8(α′) dα dα′. (49)
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The identification of this expression with (29) shows that the
collective Hamiltonian is local. It reduces to a standard kinetic-
plus-potential Hamiltonian acting on the collective wave function

H̃(α) = − h̄2

2
∇αB(α)∇α + V(α). (50)

The potential and inertia matrices in this coordinate
representation are 5

V(α) = h(α,α)− 1

2
Tr(hαα

′ )

B(α) = 1

2h̄2
(hαα

′ − hαα).

(51)

Injecting this expression of the collective Hamiltonian into (30)
and solving the resulting equation gives the time-evolution of the
unknown function g(α). The ultimate step is to transform back
this equation of motion to another one acting on the original
set of coordinates q. Doing so, we get the same equation with a
transformed local collective Hamiltonian

H̃(q) = − h̄2

2
√

γ (q)
∇q

[

√

γ (q)B(q)
]

∇q + V(q). (52)

The new collective Hamiltonian involves ametric γ (q) defined by

γ (q) = det
(

G(q)
)

. (53)

The inertia tensor takes the more involved form

B(q) = 1

2h̄2
G−1(q)

[

hqq′ − hqq +
∑

n

Ŵn(q)hqn

]

G−1(q). (54)

The notation Ŵn(q) stands for the Christoffel symbol. It is a
matrix related to G(q) through the relation

Ŵn
kl(q) =

1

2

∑

i

G−1
ni

(

∂Gki

∂ql
+ ∂Gil

∂qk
− ∂Glk

∂qi

)

. (55)

Finally, the potential becomes in this set of coordinate

V(q) = h(q, q)− 1

2
Tr
(

G−1(q)hqq′
)

. (56)

The first term is the HFB energy of the generator state
∣

∣φ(q)
〉

.
The second term is a zero-point correction that contains second
derivatives of the reduced Hamiltonian. With some additional
work, it is possible to express this zero-point correction ǫZPE in
a slightly more practical form that involves the inertia tensor and
second derivatives of the energy h(q, q) only

ǫZPE(q) = − h̄2

2
Tr(BG)− 1

8
Tr

(

G−1 ∂
2h(q, q)

∂q2

)

+ 1

8
Tr

(

G−1
∑

n

Ŵn ∂h(q, q)

∂an

)

. (57)

5 Note that some higher-order correction terms in the potential are neglected here

[see [48] for more details].

The equation of evolution (30) along with the expression
of the collective Hamiltonian (52) and its components (53),
(56), and (54) define the dynamics of the system in the
TDGCM+GOA framework.

3.1.3. Inertia and Metric
The inertia tensor and the metric are quantities that depend
on the derivatives of the generator states and the reduced
Hamiltonian. One possibility could be to determine these
derivatives numerically, for instance, with a finite difference
method. In the standard situation where the generator states are
constrained HFB solutions, one can find an analytical expression
of the inertia and the metric. We recall here this result at any
point q

G = 1

2
[M(1)]−1M(2)[M(1)]−1. (58)

B = M(1)[M(2)]−1M̃
(1)
[M(2)]−1M(1). (59)

The moments M(K) and M̃
(K)

involve the QRPA matrix M

of the state
∣

∣φ(q)
〉

and are defined in Appendix 7.1. For the
complete derivation of these results, we refer the reader to [52]
and references therein. Note that this result neglects the term
involving the Christoffel symbol in the inertia. The argument
for this approximation relies on the slow variation of the metric
according to the collective coordinates. We are not aware of
the systematic verification of the validity of this assumption in
applications.

In all TDGCM+GOA practical applications, the so-called
perturbative cranking approximation is used to avoid a costly
inversion of the QRPA matrix required to compute the metric
and inertia. It consists in approximating the QRPA matrix by a
diagonal part only, in the quasiparticle basis that diagonalizes the
generalized density matrix of

∣

∣φ(q)
〉

. This gives a simple and well

known form for the momentsM(K)

M
(K)
ij = M̃

(K)
ij = Re

∑

µν

〈

µν
∣

∣Q̂i

∣

∣φ(q)
〉〈

φ(q)
∣

∣Q̂j

∣

∣µν
〉

(Eµ + Eν)K
, (60)

where |µν〉 is a two quasiparticles excitation built on top of
the generator state, and Eµ and Eν are the corresponding
quasiparticle energies.

The GCM+GOA framework unambiguously defines the
metric and inertia as functions of the successive derivatives
of the generator states and reduced Hamiltonian. However, it
is known that this inertia and its approximate perturbative
cranking estimation is too low to describe several situations
correctly. One example is the case of a translation motion [48].
Several studies compare the GOA inertia with inertia provided
by other theories yielding an equivalent collective equation of
motion, such as quantized ATDHFB [53–55]. In [56], the authors
extend the TDGCM+GOA framework by introducing conjugate
coordinates that bring time odd components into the generator
states. In particular, they show that the resulting collective
Hamiltonian takes the same form as Equation (52) but where
the ATDHFB inertia replaces the GOA inertia. This justifies the
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FIGURE 4 | Reflection coefficients as a function of the center of mass energy

(in MeV) of a 12C+12C head-on collision. The position of the resonances

estimated from a GCM+GOA framework are compared to a set of

experimental data. Figure taken from [57].

common practice of using the ATDHFB inertia when solving the
collective equation of motion.

3.2. Applications in Nuclear Reactions
3.2.1. Low Energy Ion Collisions
The force of TDGCM+GOA is its versatility in the choice
of collective coordinates and its ability to treat in the same
framework the nucleons DoFs as well as more collective DoFs.
It seems an appropriate way to tackle the dynamics of low
energy ion collisions where the principal degree of freedom is the
relative distance between the two reaction partners and where
the collision affects the internal organization of the nucleons.
It is possible to build a family of generator states along this
line, describing the two reaction partners and parameterizing
them by their relative distance. Several papers followed this idea
during the 1980s. In particular, Berger and Gogny [57] treated the
frontal collision of 12C+12Cwithin a GCM+GOA approach. This
kind of study focuses on the determination of the cross-section
resonances for some specific output channels of the reaction.
Figure 4 shows a typical result where the resulting positions
of the resonances are compared to available experimental data.
The predictions give a rough estimation of the position of the
0+ resonances, but they mostly fail to reproduce the presence
of other resonances and their energy spacing. Many lacunae
of the theory could explain such discrepancy, including the
rough treatment of angular momentum, the breaking of some
symmetries, or the mostly adiabatic characteristic of the GCM
built on constrained HFB solutions.

Other similar studies have been performed on the base of
the GCM (without the GOA) and have made the connection
to the resonating group method. Baye and Salmon looked
at the 16O+40Ca back angles scattering [58] along with the
work of Friedrich et al. [59]. Also, Goeke et al. studied the
16O+16O collision in the framework of the quantized adiabatic

time-dependent Hartree-Fock approach which yields a collective
equation of motion identical to the one of TDGCM+GOA [60].

After this series of applications, treating collisions with the
TDGCM+GOA framework was progressively abandoned to the
profit of other methods such as the time-dependent Hartree-Fock
plus pairing [61]. One difficulty that could explain this transition
is the numerical cost required to build the generator states at the
self-consistent mean-field level (note that this cost is nowadays
completely acceptable). Beyond this, deeper problems raised, for
instance, by the conservation of the total angular momentum
of the collision or the generation of a continuous manifold of
generator states appear with this method. Overall, the resulting
cross-sections give only rough and qualitative estimations of the
experimental data. The position of resonances, as well as the
absolute value of cross-sections, are both observables that are
very challenging to predict due to their extreme sensitivity to
the kinematics of the reaction as well as the internal structure of
the nuclei.

3.2.2. Fission Dynamics
The prediction of the fission fragments characteristics from a
dynamical description is a domain where the TDGCM+GOA
performs successfully. Fission involves heavy nuclei and begins
with large collective motions that are mostly adiabatic. These two
factors make the TDGCM+GOA framework built on constrained
HFB solutions a suitable candidate. Moreover, the important
width of the measured fission yields is the fingerprint of large
quantum fluctuations of the one-body density of the compound
system. Handling these fluctuations is precisely the purpose of
the GCM.

The quest to predict fission yields from a dynamical
TDGCM+GOA calculation began in the 1980s with the work
of Berger et al. exploring the rupture of the neck between
prefragments in terms of different collective coordinates [62,
63]. The first calculation of the mass distribution of fission
fragments was later on performed among the same group for
238U [41]. The authors have described the fissioning system’s
dynamics using the two collective coordinates: q20 and q30
associated with the quadrupole and octupole moments of the
compound nucleus. The [64] reports the same technique applied
to a few other actinides with a qualitative reproduction of
the experimental values. Younes and Gogny further proposed
an alternative set of collective variables in [65]. Still, an
impediment to this approach was its numerical cost, from the
determination of the generator states (up to 40, 000 states in
a 2-dimensional description) to the time integration of the
collective Schrödinger equation. The development of new tools
based on state-of-the-art numerical methods enables today’s
continuation of this work. For instance, the code FELIX [66,
67] solves the collective GOA dynamics efficiently based on a
spectral element method. Also, the use of Bayesian processes to
determine the best-suited parameters of a harmonic oscillator
basis induced a significant speedup of some Hartree-Fock-
Bogoliubov solvers.

In the last couple of years, we have seen a fast increase
in the number of fission studies relying on this technique.
All papers focused on the actinide region emphasize similar
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results. In this region, the potential energy landscape presents
mostly one asymmetric fission valley. The exact topology
of this surface reflects the internal organization of the
nucleons that would correspond to the shell effects in a
microscopic-macroscopic picture. By starting from a collective
state localized in the low deformation first potential well,
the dynamics mostly populates the configurations of the
asymmetric channel. The left panel of Figure 5 shows the
resulting yields obtained on an experimentally well-known
nucleus, namely 240Pu.

The TDGCM+GOA captures within a few mass units the
position of the asymmetric peaks that are, in fact, mostly
determined by the position of the asymmetric valley in the
collective space. A similar quality of results has been obtained
with the same method for other actinides, such as 236U or
252Cf. Finally, this framework seems to be able to describe
the transitions between symmetric and asymmetric fissions that
are measured outside of the actinide region. The left panel of
Figure 6 shows the prediction versus experiment comparison of
such a transition in the neutron-rich Fermium isotopes [70].
In this chain of isotopes, the addition of a few neutrons to
254Fm changes the dominant fragmentation mode completely.
This can be interpreted as different shell effects occurring
because of the new neutrons, that change the potential energy
of the intermediate configurations leading to fission. This
perturbation favors the population of the symmetric mode
for 258Fm.

Several ingredients of the TDGCM+GOA framework for
fission are still not adequately controlled and bring significant
uncertainties on its predictions. Zdeb et al. [71] investigated
in detail the impact of the choice of the initial state of the
dynamics on the fission observables. They showed in particular
that the global features of the fission yields (mostly the position
and width of the peaks) are quite resilient to changes in the
energy or the parity of the initial state. Furthermore, Tao
et al. computed the fission yields from a relativistic mean-
field approach [69] and looked at the sensitivity of the results
to the pairing strength. The right panel of Figure 5 gives
a clue of their results, showing the variation of the charge
yields induced by a 10% variation of their nominal pairing
strength in the case of the multimodal fission of 226Th. For this
nucleus, we see that the pairing strength is an essential factor
that drives the ratio between the yields of the symmetric and
asymmetric modes. Finally, the same team explored the inclusion
of temperature into the generator states as a way to better
account for the diabatic aspects of the dynamics [72, 73]. The
Figure 6 (right panel) shows that warming up the generator states
changes slightly the topology of the potential energy surface.
Increasing the temperature generally tends to smear out the
shell effects and the structures in the potential energy surface.
In the case of 226Th, it favors the symmetric fission and reduces
the height of the asymmetric peaks of the mass yields by a
factor≃1.4.

Other components or approximations of the TDGCM+GOA,
such as the perturbative cranking approximation for the
collective inertia, may also bring their source of bias and
uncertainty on the prediction.

3.3. Main Limitations
Despite its success in determining the fission fragment
distribution, the TDGCM+GOA framework suffers from
several shortcomings.

First, on the same ground as the exact TDGCM, its derivation
relies on the knowledge of a many-body Hamiltonian. However,
in all practical applications, it is used with an energy density
functional (cf. section 2.5). Indeed, the GOA method does not
require an explicit calculation of the off-diagonal elements of
the energy kernel responsible for divergent behavior in GCM.
However, the GOA’s formal construction still depends on the
existence and sound mathematical definition of these matrix
elements to be a valid framework. In that sense, the GOA suffers
from the same flaws as the exact TDGCM concerning the use of
energy density functionals.

A second issue comes from the requirement that the function
q →

∣

∣φ(q)
〉

is continuous and twice differentiable. The latter is a
necessary condition to develop the formalism and, in particular,
to compute the GOA metric and inertia. However, the standard
construction of the family of generator states from constrained
HFB solutions does not guaranty this property [38]. Different
studies highlight discontinuities of this function in the treatment
of fission, similar to the one visible in Figure 1. In the common
(q20, q30) space of collective coordinates, a line of discontinuity
is present in the vicinity of scission configurations. This feature
limits the domain of validity of the collective dynamics and
ultimately prevents the determination of the fission fragments
characteristics after their complete separation.

Finally, we have seen that most of the current applications
of TDGCM+GOA rely on constrained HFB solutions for the
generator states. Certain diabatic aspects of the nuclear dynamics
are then difficult to grasp with the corresponding GHW many-
body wave function. This is the case of the dissipation as
well as the viscosity of the shape dynamics predicted with
Langevin methods [74, 75] or time-dependent Hartree-Fock-
Bogoliubov calculations. Past and ongoing studies to improve
the description of these effects include efforts to quantize the
Langevin equation [76, 77], to couple the Langevin dynamics
with the GCM [78] or to couple TDHFB trajectories with
TDGCM [79]. Other techniques, such as the SCIM and TDGCM
based on time-dependent generator states, are also promising
avenues that we discuss in this review.

4. SCHRÖDINGER
COLLECTIVE-INTRINSIC MODEL (SCIM)

Intrinsic degrees of freedom are often neglected in the
microscopic modeling of the dynamics of reactions. However,
including intrinsic degrees of freedom in a static GCM
framework has already been performed, for instance, in [80, 81].
These studies show that taking into account two-quasiparticle
excitations significantly improves the prediction of high spin
levels, such as the 6+ states in medium mass isotopes as well
as the prediction for β excitation bands and its transition
probabilities to other rotational bands in heavier systems. On
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FIGURE 5 | (Left) Fragment mass distribution for the low energy neutron induced fission 239Pu(n,f). Two TDGCM results obtained with the Gogny D1S and Skyrme

SkM∗ effective interactions are compared to two sets of experimental data. Reprinted figure with permission from [68]. Copyright 2016 by the American Physical

Society. (Right) Fragment charge distribution obtained for a low energy fission of 226Th. The TDGCM+GOA results based on the relativistic mean field PC-PK1 with

different pairing strengths are compared to experimental data (black line with points). Reprinted figure with permission from [69]. Copyright 2017 by the American

Physical Society.

FIGURE 6 | (Left) Primary fragment mass yields of Fermium isotopes obtained with the Gogny D1S effective interaction and compared with various experimental data

sets after neutron evaporation. The open symbols stand for experimental data associated with spontaneous fission, whereas full symbols are related to thermal

neutron-induced fission. Reprinted figure with permission from [70]. Copyright 2019 by the American Physical Society. (Right) Effect of temperature on the free energy

surface of 228Th in the plane of deformation (β20,β30). Reprinted figure with permission from [73]. Copyright 2019 by the American Physical Society.
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another topic, the TDHFB/SLDA methods [82, 83] and semi-
classical approaches to the description of fission [84, 85] clue
that dissipation (and therefore intrinsic degrees of freedom) are
necessary to describe the fission fragments properties correctly.
Therefore, a few collective degrees of freedom are not enough to
adequately model such a reaction. Several paths can be taken to
overcome this limitation without resorting to the determination
of an exact solution of the GHW Equation (16). A strategy in
development consists in using the TDGCM+GOA with finite-
temperature inertia tensors and collective potential. However,
the inclusion of statistical mechanics on top of the TDGCM
framework still lacks a solid formalization. The idea of the
Schrödinger Collective-Intrinsic Model (SCIM) [86–88] is to
derive a local Schrodinger-like equation from a generalization
of the GHW ansatz (3) that contains individual quasiparticle
degrees of freedom. The transformation to a local equation relies
on the symmetric moment expansion method [89, 90]. The full
SCIM formalism can be found in [86–88] in the stationary case.
However, we would like to present here a derivation of the time-
dependent SCIM equations consistent with the ones given for the
TDGCM and the TDGCM+GOA equations.

4.1. Main Assumptions
The SCIM involves four main assumptions. The first one is the
expression of the state

∣

∣9(t)
〉

that describes the evolution of
the many-body wavefunction associated with the reaction. This
expression is assumed to be a generalization of the GHW ansatz

∣

∣9(t)
〉

=
∑

k

∫

dq
∣

∣φk(q)
〉

fk(q, t). (61)

In [87], the authors consider a family of generator states
associated with one collective coordinate q defined as the
quadrupole moment of the system. The index k iterates over
the labels of the sheets of collective space which correspond, in
this case, to two quasiparticle excitations. Figure 7 shows the
evolution of the excitation energies of the non-adiabatic points
of the potential energy surface of 236U.

Note that the scope of expression (61) is broader than the
only explicit inclusion of intrinsic DoF in the formalism. For
example, it is used for K-mixing in the context of stationary
angular-momentum-projected GCM on a triaxial configuration
basis. In this case, the index k iterates over the values of K. The
second assumption is the analyticity of the weight function f of
the GCM ansatz (61) that allows the symmetrization of the GHW
equations. The third assumption is the vanishing of the weight
function and its derivatives at the boundaries of the integration
domain. An implicit corollary of this property is the continuity
of the functions q →

∣

∣φk(q)
〉

. It turns out that this assumption
is in practice not verified for a broad range of applications, for
example, in the actinide region, as emphasized in section 3.3.
These three assumptions lead to the symmetrized GHW equation

∑

k

∫

ds eisP/2
[

H[s]lk(q)− iN [s]lk(q)
d

dt

]

eisP/2fk(q, t) = 0,

(62)

where the following notations are introduced

H[s]lk(q) = Hlk(q+ s/2, q− s/2) (63)

N [s]lk(q) = Nlk(q+ s/2, q− s/2), (64)

and where the Hermitian operator

P = i
∂

∂q
(65)

corresponds to the conjugate moment associated with the
collective variables. The symmetrized GHW equation can be
written in a more compact operator format as

∫

ds eisP/2
[

H[s]− iN [s]
d

dt

]

eisP/2f(t) = 0, (66)

where f(t) denotes the function q 7→ fk(q, t). The fourth and
last assumption of the SCIM is the validity of the truncation
of the symmetric moment expansion (SME) of the norm and
Hamiltonian kernels of (66) up to order two. It was, for instance,
verified numerically in the context of the study [87]. The SME of
K = N ,H, in the case of one collective variable,

K =
∑

n

1

n!

{

K
(n),P

}(n)
, (67)

is obtained through the properties of the so-called Symmetric

Ordered Product of Operators (SOPO)
{

K(n),P
}(n)

presented in

Appendix 8 where K(n) is the moment of order n of K[s] in the
variable s

K
(n) ≡ in

∫

dssnK[s]. (68)

The properties of the SOPO used to obtain these expressions are
listed in Appendix 8.

The expression (67) can be generalized to the case of m
collective variables,

K =
∑

n

1

n!

{

K
(n),P

}(n)
, (69)

where the index n iterates over all the m-tuples of positive
integers and where we have introduced the following notations

n! ≡ n0!n1! · · · nm−1! (70)

{K,P}(n) ≡
{

· · ·
{

{K,P0}(n0),P1

}(n1) · · ·,Pm−1

}(nm−1)

(71)

K
(n) ≡

∫

ds

[

∏

k

(isk)
nk

]

K[s]. (72)

Their second-order approximation in their SME development is
then given by

N ≈
∑

n̄≤2

1

n!

{

N
(n),P

}(n)
(73)

H ≈
∑

n̄≤2

1

n!

{

H
(n),P

}(n)
, (74)
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FIGURE 7 | (Color online) Excitation energies as a function of the quadrupole moment constraint q and associated with 2-qp excitations of HFB states. The system

under study is 236U around 〈Q̂20〉 = 70 b (A) and 〈Q̂20〉 = 325 b (B). The figures are taken from [86].

where n̄ is the sum of the elements of n. In the one-dimensional
case, the expressions reduce to.

N ≈
2
∑

n=0

1

n!

{

N
(n),P

}(n)
, (75)

H ≈
2
∑

n=0

1

n!

{

H
(n),P

}(n)
. (76)

4.2. Schrodinger Collective-Intrinsic
Equation
The Schrödinger-like expression of the SCIM equations is given
by

[

H
CI − i

d

dt

]

g(t) = 0, (77)

where g(t) is defined according to

g(t) = N
1/2f(t) (78)

and normalized as

g†(t)g(t) =
∫

dqg⋆(q, t)g(q, t) = 1. (79)

The operatorN 1/2 is the only positive-definite hermitian square-
root ofN 1/2 andN−1/2 is the inverse of the latter. Finally, using
the hermicity ofN−1/2, the collective-intrinsic HamiltonianHCI

has the expression

H
CI = N

−1/2
HN

−1/2. (80)

An explicit form forHCI(q) is given by

H
CI = 1

2
{B,P}(2) + {T ,P}(1) + V , (81)

where the expressions of U = B/2, T and V are given in [86–88].
By analogy with the TDGCM+GOA collective Hamiltonian (52),
the first term of (81) can be interpreted as a kinetic term and
B as the inertia tensor, related to the mass tensor M through
the relation

B = M
−1. (82)

Similarly, the third term of (81) is comparable to the potential
term of the TDGCM+GOA. However, the last term

{T ,P}(1) = 1

2

[

T
∂

∂q
+ ∂

∂q
T

]

, (83)

contains first-order derivatives according to the collective
variable, at the opposite of the TDGCM+GOA. In the Langevin
equations, such a term corresponds to viscosity and arises in the
SCIM from the coupling between intrinsic and collective degrees
of freedom.

4.3. Choice of Quasiparticle Excitations
In [86–88], the generator states consist in

• constrained HFB states
∣

∣

∣
φk=0(q = 〈Q̂20〉)

〉

describing the

compound system at different elongations,
• intrinsic excitations of these HFB states

∣

∣φk>0(q)
〉

= X̂(q)k
∣

∣φ0(q)
〉

. (84)

Note that the specific expression of X̂(q)k is never used in
the derivations of the Schrodinger-like equation, and it is only
assumed that all the states in the collective space are time-reversal
to avoid complex-valued overlaps. In practice, the intrinsic
excitations taken into account in the existing developments of
SCIM are considering 2-qp excitations. The included HFB states
are breaking the rotational and particle number symmetries.
In order to avoid restoring these symmetries, the quasiparticle
excitations are chosen according to the following rules
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1. the operators X̂k are two quasiparticles operators,
2. all the states in the collective space have to be time-

reversal invariant,
3. the chosen excitations have to preserve “as much as possible”

the number of particles and K, the projection of the total
angular moment on the symmetry axis,

4. and they must be associated with an excitation energy below
10 MeV.

The time-reversal condition limits the possible excitation
operators to be

X̂(q)k = αkη̂
(q)†
k1
η̂
(q)†

k̄2
− η̂(q)†

k̄1
η̂
(q)†
k2

(85)

αk =
1√
2

(

1+ δk1 ,k2
(

1− 1√
2

))

, (86)

where η̂
(q)†
k1

is the creation operator of the quasiparticle k1
associated with the HFB state

∣

∣φ0(q)
〉

=
∏

l

η̂
(q)

l
|0〉 . (87)

Additionally, the selected quasiparticles in X̂(q)k are assumed to
have the same projection on the total angular moment on the
symmetry axis Kk1 = Kk2 so that the K of the total system is
unchanged. In case the HFB states are obtained with preserved
parity, the same condition on π is added.

Couplings between collective and intrinsic excitations play a
major role in many reactions. For instance, it is known to play
a crucial role in the distribution of excitation energy between
the nascent fragments produced by fission. The TDGCM+GOA
enables a microscopic description of nuclear reactions without
internal degrees of freedom, while Langevin-based methods
allow the semi-classical description of the reaction with the
inclusion of thermal effects. The SCIM leads to a local
Schrodinger-like equation, much simpler to solve than the exact,
non-local, Griffin-Hill-Wheeler equation while being based on
fewer assumptions than the TDGCM+GOA or Langevin. The
collective-intrinsic Hamiltonian includes a viscosity term that is
known to be relevant to the description of nuclear reaction from
Langevin’s calculations. However, the method still involves the
full calculation of the norm and Hamiltonian kernels, which is
extremely time-consuming. Furthermore, the formalism is rather
complex compared to other methods such as the TDGCM+GOA.
At present, this method did not lead to any application beyond
the works presented in [86–88], and still needs to be tested
thoroughly against experimental data.

5. QUANTUM MIXTURE OF
TIME-DEPENDENT STATES

In its standard form, the TDGCM relies on the ansatz (3)
that expands the many-body wave function on a family of
time-independent generator states. The dynamics of the system
is, therefore, entirely carried out by the time evolution of
the collective wave function g(q) driven by Equation 30.

Although successful in describing some nuclear phenomena
like collective vibrations, such an expansion suffers from two
significant drawbacks.

The first one resides in the large dimension of the
ensemble of generator states required to describe processes
like nuclear reactions correctly. Despite the efforts reported in
sections 3 and 4 to reduce the collective Hamiltonian to a
local approximation, this high dimension quickly becomes a
hindrance to the numerical applications of TDGCM. An origin
of this difficulty is the fact that all the many-body configurations
populated at any time of the reaction must be represented in
the set of generator states. In many situations, this expansion
is not optimal in the sense that most of the associated weights
are close to zero at a given time. To give an example, we may
consider the translation motion of a localized particle. While
the translated states at any positions are to be incorporated in
a TDGCM description of its motion, the collective wave function
at a given time only has a small spatial expansion. A natural idea
is then to express the wave function as a linear superposition of
a few time-dependent states that follow the expected particle’s
translation motion. It may even happen that one well-chosen
time-dependent basis state is enough to describe the dynamics of
the system very accurately. The time-dependent energy density
functional treatment of the giant resonances in nuclear physics
provides such an example [91, 92].

The second drawback of the TDGCM is the construction
of a family of generator states before the determination of the
system evolution. The equation of motion provides only the
probability of the system to populate parts of this predefined
space. For this approach to work, the physicist must rely on an
a priori knowledge of the relevant states for the dynamics. For
nuclear reactions, it typically means that one should correctly
guess what will be the reaction’s output channels and include an
ensemble of states representative of these channels in the working
space. Beyond the difficulty to generate states representative of
the systems far from the initial state, the typical risks of this
method are

• to miss important channels/states in the construction of the set
of generator states,

• to include states that will not be populated at all but will still
increase the numerical cost.

A solution to overcome these difficulties is the expansion of
the ansatz (3) on a set of time-dependent states, as shown
schematically in Figure 8. In this case, the many-body wave
function of the system reads

∣

∣9(t)
〉

=
∫

q∈E
f (q, t)

∣

∣φ(q, t)
〉

. (88)

This very general ansatz brings more flexibility as the
configuration basis can vary in time. However, this flexibility
comes with additional complexity in the equation of motion
for the collective wavefunction g(q, t) and the generator states
∣

∣φ(q, t)
〉

. Studies in both chemistry and nuclear physics are
exploring different strategies in the choice of generator states and
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FIGURE 8 | Schematic dynamics of a localized collective wave packet. With

the TDGCM strategy (static set of generator states), most of the working

space does not contribute, and part of the final state is not captured. In

contrast, a small, well-chosen set of time-dependent states is sufficient to

capture the system’s dynamics entirely.

the determination of the equation of motion of the system. We
review these recent efforts in this section.

5.1. The Multiconfiguration
Time-Dependent Hartree-Fock Approach
In 1990, Meyer et al. introduced the multiconfiguration time-
dependentHartree (MCTDH) approach to tackle the dynamics of
molecules [93]. Contrary to the fermionic many-body problem,
the system’s degrees of freedom are distinct from each other
and correspond typically to distances between some atoms of a
molecule. Their associated wave function is assumed to be at any
time a mixture of product states

∣

∣9(x1, · · · , xn, t)
〉

=
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

ci1···in ×
∣

∣

∣
ϕ
(1)
i1
(t)
〉

· · ·
∣

∣

∣
ϕ
(n)
in

(t)
〉

,

(89)

where at any time, the {|ϕ(k)ik
(t)} form a basis of the space

associated with the kth degree of freedom, and the ci1···in are the
mixing coefficients between all the product states. The equation
ofmotion of both the individual states and themixing coefficients
can then be obtained from applying the Dirac-Frenkel variational
principle. This method was since applied to different dynamical
processes in chemistry [94–96] and up to five degrees of freedom
in the treatment of the inelastic cross-section of H2O + H2 [97].
Note that in 2003, Wang et al. proposed an extension of this
method referred to as multilayers MCTDHF to tackle more
degrees of freedom (up to a few thousand) [98].

A natural extension of this work to the fermionic many-
body problem is the replacement of the product states by
Slater determinants in the trial wavefunction. This extension was

introduced in [99] and the new ansatz reads

∣

∣9(r1, · · · , rn, t)
〉

=
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

ci1···in
∣

∣φi1···in (t)
〉

, (90)

with the time-dependent Slater determinants

∣

∣φi1···in (t)
〉

= â†
i1
(t) · · · â†

in
(t) |0〉 . (91)

In this expression, â†
ik
(t) stands for the fermionic creation

operator of a particle in a single-particle state
∣

∣ϕik (r, t)
〉

. This
many-body wave function can then be injected into a time-
dependent variational principle whose parameters are both the
mixing coefficients ci1···in and the single-particle wave functions
∣

∣ϕik

〉

. Note that there is no one-to-one mapping between the
many-body state

∣

∣ψ(t)
〉

and the parameters of the right-hand
side. In practical applications, the set of single-particle wave
functions is assumed to be orthonormal at any time

〈

ϕi(t)
∣

∣ϕj(t)
〉

= δij. (92)

This criterion lets some freedom in the choice of the cik and
∣

∣ϕik

〉

for a given many-body wave function, leading to an additional
degree of freedom in their associated equation of motion. A
usual convention to fix this freedom consists in imposing the
additional constraint

〈

ϕi(t)
∣

∣

∂

∂t

∣

∣ϕj(t)
〉

= 0. (93)

This choice stabilizes the single-particle states against rotations
among the occupied states. If such rotation has to be described,
only the mixing coefficients will be affected while the single-
particle states will stay constant. This convention yields to
equations of motion that are often more suited for the numerical
time integration.

With this criterion, the Dirac-Frenkel variational principle
applied to a two-body Hamiltonian system leads to the equation
of motion for both the coefficients and the single-particle states

ih̄ ċi1···in (t) =
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

〈

φi1···in (t)
∣

∣Ĥ
∣

∣φi1···in (t)
〉

ci1···im (t) (94)

ih̄
∣

∣ϕ̇n(t)
〉

= P̂







t̂
∣

∣ϕn(t)
〉

+
∑

pqrs

(ρ−1)np ρ
(2)
qspr ĥrs

∣

∣ϕq(t)
〉







(95)

where t̂ is the one-body part of the Hamiltonian, ĥ is the mean-
field potential that implicitly depends on the one-body density,
ρ and ρ(2) are the one- and two-body density matrices and
P̂ is a projection operator on the orthogonal complement of
the occupied single-particle states. Such equation of motions
have then been numerically solved for chemical systems with six
valence electrons [99], to study the two photons ionization of
helium [100] or the dynamics of di-molecular molecules [101,
102]. In nuclear physics, the multiconfiguration Hartree-Fock
approach has been applied in its static version to determine
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the structure of light nuclei mostly in the s-d shell [103, 104].
Such an expansion of the many-body state enables a good
description of the low lying excitation spectrum with typically
the first 2+ excitation reproduced within a few 100 keV. For
the ground-state binding energy, this work still emphasizes a
significant overestimation of the theory by 8.3 MeV in average
in the s-d shell nuclei. This discrepancy would mostly come
from (i) double-counting coming from the usage of energy
functional that have been fitted at the mean-field level, (ii)
the truncation of the configuration space that still cuts too
early the population of single-particle states with the largest
spatial expansion. Even though it would be interesting to study
photoabsorption phenomena in light nuclei or diffusion between
light nuclei, this method has not yet been applied in its dynamics
version for nuclear physics. A generalization of the ansatz (90)
to a superposition of Bogoliubov vacua and its corresponding
equation of motion is yet to be formalized and tested.

5.2. Multiconfiguration With
Time-Dependent Non Orthogonal States
The trial state of Equation (90) at the core of the MCTDHF
method expands the wave function on a set of orthonormal Slater
determinants. The orthonormality between such generator states
simplifies the equation of motion as typically the norm kernel
defined in Equation (6) is the identity at any time. In contrast,
it may be more efficient in some situations to expand the many-
body wave function on a set of non-orthogonal generator states
(i.e., time-dependent Bogoliubov vacua with time-dependent
deformations). Such a strategy was explored, for instance, in
chemistry by mixing TDDFT trajectories with a shift in time to
include memory effect [105] into the dynamics. This approach
was proven to correctly include the description of dissipation in
the two electrons dynamics of a Hooke’s atom.

In nuclear physics, the idea of mixing time-dependent TDHF
trajectories was already proposed in 1983 in the pioneering work
of Reinhard et al. [106] to treat nuclear collisions. Starting back
from the ansatz (90), the authors proposed to take as the time-
dependent generator states a set of TDHF trajectories starting
from different initial conditions. A time-dependent variational
principle is then applied to obtain the equation of motion only
for the mixing function f (q, t) (or the collective wave function
g(q, t)). Such a principle is schematically pictured in Figure 9

(left panel).
The idea behind this scheme is that the TDHF trajectories will

carry most of the one-body dynamics of the system, whereas the
weight function will encompass part of the two-body collisional
dynamics, in such importance as to account for additional
dissipation and fluctuation. In this paper, a GOA approximation
was performed to determine the evolution of the collective
wave function in a one-dimensional nuclear collision model.
The results showed in particular that the widths of the internal
excitation energy of the collision partners after the collision were
increased by a factor of seven compared to a TDHF trajectory
alone. This additional fluctuation is directly coming from the
additional correlations tackled by the enriched ansatz for the
many-body wave function.

Even though promising, applications of this method to
realistic systems were not carried out. One possible explanation is
the numerical cost associated with TDHF trajectories. However,
the advances in numerical methods and the recent development
of supercomputers induced a surge of interest for such studies. In
particular, the inclusion of superfluidity in our time-dependent
mean-field codes [82, 108] opened the possibility to predict
collisions between open-shell nuclei. Along this line, Scamps et al.
attempted to predict the transfer of pairs of fermions in the
contact between two superfluids based on a statistical mixing
of TDHFB trajectories [109–111]. The idea is that the one-
body dynamics of the nuclear processes would be already well
accounted for by TDHFB like trajectories, while a statistical
ensemble of such trajectories would account for the additional
fluctuation induced by the residual two-body collisions terms of
the dynamics. Up to now, these methods were only tested on toy-
model cases and collisions between a few light systems such as
20O+20O. Experimental data on such collisions still lack, which
prevents a rigorous theory versus experiment comparison.

Nevertheless, the tests on exactly solvable models show that
these semiclassical approaches manage to recover some crucial
fluctuation related to the relative gauge angle between the
reaction partners. In particular, they can predict the probability
of one pair transfer with the proper order of magnitude in the
perturbative regime where the nuclear interaction during the
collision is weak compared to the pairing forces acting in each
subsystem. Still, they partially miss the quantum interference
between the TDHFB trajectories. Depending on the method’s
details, this may either lead to underestimating fluctuations of
one-body observables or, in the worse case, predicting unphysical
behavior such as particle transfer after the re-separation of the
two reaction partners.

Coming back to a full quantum treatment of the problem,
Regnier et al. recently attempted the full-fledged mixing of
TDHFB trajectories in [107]. In this context, the time-dependent
variational principle on the ansatz 90 leads to the equation of
motion of the collective wave function g(q, t)

ih̄ġ =
(

H̃− D̃ + ih̄Ṅ 1/2N−1/2
)

g. (96)

This equation involves the collective operators H̃ and D̃ defined
by the application of Equation (28) on the kernels

H(q, q′) =
〈

φ(q, t)
∣

∣ Ĥ
∣

∣φ(q′, t)
〉

, (97)

D(q, q′) =
〈

φ(q, t)
∣

∣ ih̄
∂

∂t

∣

∣φ(q′, t)
〉

. (98)

All the kernels and collective operators involved now depend
on time. Compared to the TDGCM on static generator states
(Equation 30), this equation contains two additional terms. The
first one contains the time derivative of the generator states,
whereas the second one is linked to the time derivative of the
norm kernel. These equations were numerically solved only
in a simple case modeling the contact between two superfluid
systems. The main results are summarized in the right panel
of Figure 9. The full black line represents the system’s exact
many-body dynamics, and it is compared with a prediction
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FIGURE 9 | (Left) Schematic picture of a GCM mixing of TDHF(B) trajectories. (Right) Evolution of several observables during the dynamics of a simple model of

collision between two superfluids. The total energy (a), the number of particles in the left subsystem (b), and its dispersion (c) as well as the probability to transfer one

pair of fermions during the collision (d) are plotted against the time of the collision for the exact many-body solution (black line), a statistical mixture of TDHFB

trajectories (blue circles) and a quantum mixture of the same TDHFB trajectories (red squares). Reprinted figure with permission from [107]. Copyright 2019 by the

American Physical Society.

obtained from a statistical mixture of TDHFB trajectories (the
PSC method, dashed blue line) as well as the quantum mixing
of the same TDHFB trajectories. While the statistical method
recovers the good order of magnitude for most predictions,
the inclusion of interference between the TDHFB trajectories
significantly improves these results. In particular, a factor of
two is highlighted between each method’s predictions of the
probability P2n to transfer a pair of fermions during the collision.

At a time where performing series of independent time-
dependent mean-field calculations in nuclear physics becomes
possible, such a method could be a suitable candidate to tackle
nuclear reactions with a complex interplay between one-body
and many-body degrees of freedom. The caveat to its direct
application on a realistic nuclear collision would still be the
difficulty that current implementations of the nuclear mean-field
dynamics formalisms rely on energy density functionals instead
of a linear Hamiltonian (cf. section 2.5).

6. CONCLUSION

This review presents four variants of the Time-Dependent
Generator Coordinates Method that is rooted in a configuration-
mixing principle. This class of methods is of particular
interest to microscopically describe heavy-fermion systems.

It allows the physicist to focus the description on the
correlations of interest through the choice of the collective
coordinates. Most of the time, the collective coordinates
are related to some of the first multipole moments of the
intrinsic one-body density or some groups of symmetry
operators. Such freedom makes the TDGCM extremely
versatile. Still, its practical applications in nuclear physics
are plagued by the usage of effective Hamiltonians or
energy density functionals that lead to misbehaviors of
the energy kernel, an essential ingredient shared by all the
TDGCM approaches.

The Time-Dependent Generator Coordinate Method is
the most direct implementation of the configuration-mixing
principle. In this case, the only approximations are the
expression of the nuclear Hamiltonian, and the restriction of
the total Fock space to the one spanned by the configuration
basis. The Griffin-Hill-Wheeler (GHW) Equation (3) is the
corresponding equation of motion. The main limitation of this
method arises from the non-locality of the GHW equation in
the collective coordinates representation, leading to intensive
parallel computation. By resorting to some approximations,
it is possible to rewrite the GHW equations into local
equations, reducing hereafter substantially the calculation
needs. The Gaussian Overlap Approximation (GOA) transforms
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the GHW equations to a local Schrodinger-like equation
essentially under the condition that the norm kernel is of
Gaussian character. The TDGCM+GOA is the most widely
used implementation of the TDGCM for the description of
nuclear reactions and especially for fission. The Schrodinger
Collective-Intrinsic Method is based on the truncation of
the GHW equation in the second-order to obtain a local
Schrodinger-like equation. In its current form, it still requires
to calculate the full norm and Hamiltonian kernels. Finally,
it is possible to generalize the standard TDGCM approach by
expanding the many-body wave function on a set of time-
dependent generator states. The recent progress of TDHFB
solvers opens new possibilities for practical applications along
this line.

Overall, most of these methods were first developed in the
1980s, at a time when they were quickly facing intractable
numerical costs. The computational power at our disposal
nowadays is an incentive to revisit the TDGCM approaches
and look for new opportunities in the description of nuclear
reactions. One of the most significant challenges in this path
is the determination of energy density functionals or effective
Hamiltonians, which are compatible with the GCM formalism
and yield quantitative predictions of nuclear observables.
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7. APPENDIX

7.1. Expression of the GOA Moments
The expression (58) involves some moments M(K) and M̃(K)

that we define here. We recall that we consider generator states
that are Bogoliubov vacua. Any generator state is then fully
characterized by its generalized density matrixR(q)

R =
[

ρ κ

−κ∗ 1− ρ∗
]

. (99)

Additionally, each collective coordinate qi is associated to a one-

body observable Q̂i that is used as a constraint. Expressed in the
basis of quasiparticles that diagonalizesR(q), this operator takes
the matrix form

Qi =
[

Q11
i Q12

i
Q21
i Q22

i

]

. (100)

One can define the standard QRPA matrix M in this same basis
as detailed in [16]. With these notations, the moments M(K)

involved in the determination of the GOA inertia and metric
tensors are

M
(K)
ij = 1

2
(Q12 ∗

i , Q12
i )M−K

(

Q12
j

Q12 ∗
j

)

. (101)

We also define the modified moments M̃(K) by,

M̃(K) =
[

1 0
0 −1

]

M(K)

[

1 0
0 −1

]

. (102)

8. BESTIARY OF SOPO PROPERTIES

The Symmetric Ordered Product of Operators (SOPO) are
defined, for any two operatorsA and B, as

{A,B}(n) = 1

2n

n
∑

k=0

(

n

k

)

B
k
AB

n−k. (103)

They can be equivalently defined recursively through their
relation with the anti-commutator

{A,B}(1) = 1

2
{A,B} (104)

{A,B}(n+1) = 1

2

{

{A,B}(n) ,B
}

. (105)

The SOPO are used to obtain the Symmetric Moment
Expansion (SME) of the symmetrized GHW Equation (66),
based on

eαB/2AeαB/2 =
∞
∑

p=0

αp

p!
{A,B}(p) , (106)

For any operators A, B, and C, the following relation
is satisfied

A {B,P}(n) C =
n
∑

k=0

{

B
A,C
(n,k)

,P
}(k)

, (107)

where the operators BA,C
(n,k)

are given by

B
A,C
(n,k)

= in−k

2n−k

n−k
∑

r=0

{

(−1)r
(

n

k+ r

)(

k+ r

r

)

A
[r]

B C
[n−k−r]

}

,

(108)
and where A[r] the short-hand notation for the local operator
associated with the kernel

A
[r](q) = ∂rA

∂qr
(q). (109)
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We studied the nuclear shape evolutions in fission process of 240Pu by the

time-dependent Hartree-Fock approach with various Skyrme forces. Calculations are

performed for the later phase of the fission with large initial deformations toward the

scission. We show that calculations with Skyrme forces with large surface energies

and large symmetry energies can have extremely long fission evolution time. The

symmetry energy plays a role in the evolution of neutron-rich necks. In addition, we also

demonstrated the shape oscillations of fission fragments after the fission. We see that

particularly the heavy near-spherical fragments have remarkable octupole oscillations.

Keywords: nuclear fission, TDHF method, Skyrme force, fission fragments, surface energy, symmetry energy

1. INTRODUCTION

Nuclear fission is a very complex and large amplitude collective motion of many-body quantum
systems. Although fission was discovered in 1939, the development of a fully self-consistent and
predictive microscopic fission theory is still very challenging [1, 2]. The earlier studies [3, 4] of
nuclear fission are mainly based on macro-microscopic models, which have gained many insights
about the fission mechanism. Thanks to the developments of supercomputing capabilities in
recent years, microscopic fission theory has achieved remarkable progresses. The time-dependent
Generator-Coordinate Method [5–7] as an adiabatic dynamical fission theory can describe
reasonably well the mass distributions of fission yields, based on parallel calculations of complex
potential energy surfaces. On the other hand, the time-dependent Hartree-Fock (TDHF) or time-
dependent density functional theory [8–16] as a non-adiabatic dynamical theory is helpful for
understanding fission mechanisms, particularly in the part of the trajectory close to scission.

There are extensive studies of real-time nuclear dynamics based on the time-dependent Hartree-
Fock approach. Indeed, fusion and fission involving transitions between one-body and two-
body quantum system are unique non-equilibrium processes. Nuclear dynamics in the TDHF
framework provide an opportunity to probe effective nuclear interactions, many-body correlations
and transport properties. TDHF has been extended to TDHF+BCS and TD-HFB approaches by
including dynamical pairing [9, 17]. The pairing interactions has been demonstrated to increase
the fission lifetime by allowing orbital exchanges [9]. On the other hand, the pairing can facilitate
the fission at some initial deformations where fission doesn’t occur within TDHF [17]. The effective
nuclear forces have also been demonstrated to be important in heavy-ion collision reactions [18].
For example, the tensor force is expected to be crucial in nuclear dynamics [19, 20] and in the
reproduction of fission barriers [21].
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The effective forces are usually obtained by reproducing static
nuclear properties. The SkM* force has been widely used for
fission studies with good surface properties [22]. However, SkM*
is not good at descriptions of global binding energies [23]. The
static fission barriers due to different Skyrme forces can lead to
significant differences in fission tunneling lifetimes [24–26]. In
addition, the symmetry energy has been extensively studied in
nuclear collision reactions for transport properties and equation
of state [27–29]. It would be interesting to study the role of
effective nuclear forces in the evolution of fission dynamics while
static fission barriers are not observables in TDHF.

The real-time nuclear fission dynamics can be directly
demonstrated by the evolution of nuclear density distributions.
The fourier analysis of time-dependent deformations are
connected to collective vibrations and damping effects. The non-
adiabatic fission studies can only be performed after the saddle of
the fission barrier. The nuclear shapes at the scission deformation
and after scission are of particular interest. The octupole
deformations and shell effects of fission fragments are essential
for descriptions of fission yields [13]. The collective oscillations
of fission fragments are also an interesting topic [10, 30]. The aim
of the present work is to study the role of different Skyrme force
in nuclear fission dynamics, as well as the oscillations of fission
fragments based on the TDHF framework, which can capture
the major features of real-time fission dynamics, at least close to
scission. In this work, the studies are about the later phase of the
fission with large initial deformations after the tunneling.

2. THE TDHF THEORY

The TDHF equations can be formally derived from the time-
dependent variational method. In the formalism of density
matrices, TDHF is the approximation in which the two-body
interaction term is approximated by a product of one-body
terms [8, 18]. The TDHF equation is written as:

ih̄
∂ϕk(r, t)

∂t
= h(r, t)ϕk(r, t) (1)

where ϕk are the time-dependent single-particle wave functions
in coordinate spaces. The single-particle hamiltonian h is
also time dependent. The wave functions is always a Slater
determinant during the evolution.

We utilize the 3D Skyrme-TDHF solver Sky3D [31, 32] and
calculations are performed in the 3D uniform coordinate space.
There are no symmetry restrictions on the wavefunctions. For
the effective interactions, we adopted the series of SLy5sX [33]
forces to study the influences of surface energies. In addition, we
adopted the series of SV-sym forces [34] to study the influences
of symmetry energies. The pairing has not been included in
this work. The grid spacing is set to be 1 fm and the time
step of dynamical evolution takes 0.2 fm/c. In Sky3D, the
time propagator is evaluated by the Taylor series expansion
up to the sixth order [31]. Computations with these settings
have been demonstrated to be good enough for descriptions
of dynamical properties. The static constrained calculations of
240Pu are firstly carried out to obtain the wave functions by

FIGURE 1 | The fission barriers of 240Pu calculated by Skyrme

Hartree-Fock+BCS with SLy5sX and SV-sym forces, respectively. Calculations

are performed with octupole deformations but without triaxial deformations.

the axial-symmetric Skyrme-Hartree-Fock solver SKYAX [35],
which are inputs for time-evolution calculations. The 3D box
size in static and dynamical calculations is taken as 50×50×70
fm, along x, y, z-axis respectively. Note that the static wave
functions are obtained by the SKYAX solver [35] in axial-
symmetric cylindrical coordinate spaces and are transformed
into 3D coordinate spaces by interpolations. The interpolation
from a 2D grid to a 3D grid can result in small numerical errors,
which are around 100 keV in binding energies. In this case,
the initial wave functions at any constrained quadrupole and
octupole deformations (β2, β3) can be obtained efficiently. The
energies and density distributions as a function of time are the
main outputs of the time-dependent solver.

3. RESULTS AND DISCUSSIONS

3.1. Influences of Surface Energies in
Fission Dynamics
The surface energy coefficients of effective nuclear forces are
critical properties as the fission is mainly determined by the
competition between surface energies and Coulomb energies.
To study the influences of surface energies in fission dynamics,
we adopted the series of SLy5sX forces [33]. These Skyrme
forces are obtained based on the SLy5 force but with varying
surface energies in the fit protocol. The properties of equation
of state (EoS) of SLy5sX forces are listed in the Table 1. The

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 351136

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pancic et al. Shape Evolutions in Fission Dynamics

FIGURE 2 | The evolutions of quadrupole deformations in TDHF calculations

with the SLy5s1, SLy5s3, SLy5s5, SLy5s8 forces.

calculated potential energy curves of SLy5sX forces as a function
of quadrupole deformations β2 are shown in Figure 1. The two-
dimensional potential energy surfaces of 240Pu from different
calculations can be found in [5, 36, 37]. The SLy5s8 has the
largest surface energy and SLy5s1 has the smallest surface energy.
Consequently SLy5s8 has the highest fission barriers.

The TDHF calculations of the fission process of 240Pu
are performed at the same initial deformations with SLy5s1,
SLy5s3, SLy5s5, SLy5s8 forces. Figure 2 shows that the evolutions
of quadrupole deformations, in which initial deformations
are β2=2.4 and β3=0.9 in four calculations. The multipole
deformation βl is defined as [38],

βl =
4π

3ARl0
< rlYl0 > (2)

where R0 = 1.2A1/3 fm. The quadrupole moment shown
in Figure 2 is defined as < r2Y20 >. We can see that in
calculations with SLy5s1, SLy5s3, and SLy5s5, 240Pu goes to
fission very quickly at time around 700 fm/c. With increasing
surface energies, the fission lifetime increase slightly. However,
in calculations with SLy5s8, the fission lifetime is extremely
long. We see very slow and large-amplitude oscillations in the
quadrupole deformation toward the fission. The results indicate
that the fission would be strongly over-damped above a critical
surface energy coefficient. This is understandable since the large
surface tension would prohibit the fission movement.

3.2. Influences of Symmetry Energies in
Fission Dynamics
The symmetry energy is expected to be crucial in the equation
of state (EoS) of neutron stars and in exotic neutron-rich
nuclei [39]. In Skyrme forces, the symmetry energy is density-
dependent and is usually determined according to EoS properties
at the saturated density. The larger symmetry energy coefficient
indicates that neutron-rich systems are less stable. In the
transport model, the large symmetry energy could lead to rapid

TABLE 1 | The relevant EoS properties of SLy5sX [33] and SV-sym [34] forces are

listed, including the incompressibility K (MeV), the symmetry energy asym (MeV),

the effective mass m∗/m, the slope of the symmetry energy L (MeV), the surface

energy coefficient asurf (MeV).

Forces K asym m*/m L asurf

SLy5s1 222.1 31.43 0.739 48.1 17.16

SLy5s3 224.3 31.77 0.731 48.4 17.55

SLy5s5 226.4 32.11 0.724 48.6 17.93

SLy5s8 229.1 32.64 0.718 49.0 18.52

SV-sym28 234 28 0.9 7 17.06

SV-bas 234 30 0.9 32 17.24

SV-sym32 234 32 0.9 57 17.38

SV-sym34 234 34 0.9 81 17.49

For SV-sym forces, L and asurf are taken from [27] and [33], respectively.

isospin balance [28]. To study the role of symmetry energy in
fission dynamics, we calculate the fission evolutions with Skyrme
forces SV-sym28, SV-bas, SV-sym32, SV-sym34 [34], which differ
in symmetry energy coefficients, but are otherwise similar. The
calculated potential energy curves of SV-sym forces as a function
of quadrupole deformations β2 are shown in Figure 1. The EoS
properties of SV-sym forces are listed in the Table 1. The fission
barrier of SV-sym34 is slightly lower than that of SV-sym28,
although the surface energy coefficient of SV-sym34 is slightly
larger than that of SV-sym28. This is consistent with the results
of fission barriers in [34]. Note that the surface symmetry energy
is important for descriptions of fission barriers [40]. We also
noticed that the slopes L of symmetry energies of SV-sym forces
are very different, which are difficult to be constrained. The
series of SV-sym forces have been used to study the influences
of symmetry energies in nuclear fusion processes [27].

Figure 3 shows that the quadrupole deformation evolutions
with initial deformations of β2=2.25 and β3=0.9 in our
calculations. The initial deformation β2=2.25 used for SV-sym
forces is slightly smaller than β2=2.4 used for SLy5sX forces. This
is because 240Pu doesn’t fission in calculations with SLy5s8 if the
initial deformation is β2=2.25. We can see that in calculations
with SV-sym28, SV-bas, SV-sym32, 240Pu goes to fission quickly.
The fission time is longer than that with SLy5s1-3-5 forces (see
Figure 2), since the initial deformation used for SLy5sX is slightly
larger. The evolutions of SV-sym34 results are similar to three
other cases at the beginning. However, just before the scission,
the fission with SV-sym34 feels a strong restoring force that
delays its fission. Such a restoring force has also subtle influences
in SV-sym32 evolutions. The origin of such a restoring force
can be understood that the formation of neutron-rich neck is
not favored due to a large symmetry energy. Both symmetry
energy and surface energy are positive contributions to total
binding energies. During the fission process, the kinetic energy
and Coulomb energy would decrease while total energies are
conserved. Once the kinetic energies are strongly dissipated after
several oscillations, the fission would finally occur. This is similar
with the case of SLy5s8 with a large surface energy. The fission
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FIGURE 3 | The evolutions of quadrupole deformations in TDHF calculations

with the SV-sym28, SV-bas, SV-sym30, SV-sym34 forces.

life times of SV-sym28, SV-bas, SV-sym32 are 1260, 1320, 1530
fm/c respectively. We see that with increased symmetry energies,
the fission lifetimes increase non-linearly. This could be related
the quantum critical point in dissipation dynamics [41]. Note
that the over-damped fission phenomena with SV-sym34 would
not appear if the initial deformation is very close to the scission
point. The very different slopes of symmetry energies of SV-
sym forces could also play a role in fission dynamics. In all
cases, the octupole deformations increases very rapidly before
100 fm/c, then varies moderately before scission. At the scission,
the octupole deformations increase more rapidly than quadruple
deformations. The evolutions of hexadecapole deformations are
similar to that of quadruple deformations before the scission.

3.3. The Collective Oscillations of Fission
Fragments
The shapes of fission fragments at the scission point are far
away from the equilibrium shapes. The octupole deformations
of the fragments would strongly impact the fission yields [13].
For example, 144Ba with favorable octupole shell effects would
play a significant role in asymmetric fission yields [13]. In fission
dynamics, the oscillations of fission fragments can be connected
to the low-lying multipole excitations [30].

Figure 4 shows the multipole deformation oscillations of
the heavy fission fragment after the 240Pu fission. The heavy
fragment is around 132Sn and is nearly spherical at ground
state which is resistant to octupole deformation. However, it
can be seen that the oscillation amplitudes of octupole shapes
are most significant compared to quadrupole and hexadecapole
deformation oscillations. This is understandable since the initial
octupole deformation is far from equilibrium. The hexadecapole
oscillations are also significant compared to quadrupole
oscillations since the initial hexadecapole deformation is
very large. It is interesting to see that the large fragments
have significant octupole oscillations. The dependence of the

FIGURE 4 | The TDHF evolutions of quadrupole, octupole, and hexadecapole

deformations of the heavy fragment after the 240Pu fission with the SV-sym32

force.

FIGURE 5 | The evolutions of octupole deformations in TDHF calculations of

two fission fragments with the SV-sym34 force. The fragment-A is the heavy

fragment and fragment-B is the light fragment.

octupole oscillation frequencies on different Skyrme forces is
not significant.

Figure 5 shows the octupole oscillations of both fragments
of the 240Pu fission. The corresponding density evolutions are
shown in Figure 6. Figure 6 also shows that evolution of fission
neck before scission in calculations with SV-sym34. We see that
the neck is thin at 1000 fm/c and becomes thick at 1,900 fm/c. The
main differences in nuclear shapes are the evolutions of neutron-
rich necks, in which the symmetry energy can play a role. The
shapes of fragments before scission don’t changemuch. The small
fragment around 107Mo has a significant octupole deformation
before scission. The heavy fragment around 133Te which is
close to 132Sn is nearly spherical but with an initial octupole
deformation before scission. The sizes of the fragments can vary
slightly with different Skyrme forces and initial deformations.
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FIGURE 6 | The density evolutions of the 240Pu fission in TDHF calculations with the SV-sym34 force.

The amplitudes and frequencies of octupole oscillations of both
fragments are comparable. The two fragments are oscillating
with opposite octupole deformations. As shown in Figure 6,
the small fragment has a significant quadrupole deformation
at equilibrium. The heavy fragment has a spherical shape at
equilibrium so that the octupole oscillation is very significant.
The oscillation frequencies h̄ω obtained by Fourier analysis
are about 1.3 MeV, which is much lower than the typical
experimental energies of the octupole vibration states of the
fragments. For descriptions of vibrations of fragments, the
finite-temperature QRPA [42] would be appropriate since the
fragments are actually thermal excited.

4. CONCLUSION

In summary, we studied the shape evolutions in fission process
of 240Pu with the TDHF approach. Firstly, the dependence of
Skyrme forces in fission dynamics has been investigated. We
found that Skyrme forces with large surface energy coefficients
and large symmetry energy coefficients can result in extremely
long fission times. Before the final scission, in these cases, the
fission process would be over-damped with slow and small-
amplitude shape oscillations. The symmetry energy can play a
role in the evolution of neutron-rich necks before the scission.
The evolutions of octupole deformations don’t follow that of
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quadrupole deformations. In addition, we also studied the
shape oscillations of the fragments of the 240Pu fission. It is
interesting to see that the heavy fragment which is close to
spherical at equilibrium has significant octupole oscillations.
Both fragments have comparable octupole oscillation amplitudes
and frequencies. On the other hand, the quadrupole and
hexadecapole oscillations of the fragments are less significant.
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We review recent progress in studying nuclear collective dynamics by solving the

Boltzmann-Uehling-Uhlenbeck (BUU) equation with the lattice Hamiltonian method,

treating the collision term with the full-ensemble stochastic collision approach. This lattice

BUU (LBUU) method has recently been developed and implemented with a GPU parallel

computing technique, and achieves rather stable nuclear ground-state evolution and

high accuracy in evaluating the nucleon-nucleon (NN) collision term. This new LBUU

method has been applied to investigate nuclear isoscalar giant monopole resonances

and isovector giant dipole resonances. While calculations using the LBUU method

without the NN collision term (i.e., the lattice Hamiltonian Vlasov method) provide a

reasonable description of the excitation energies of nuclear giant resonances, the full

LBUU calculations can well reproduce the width of the giant dipole resonance of 208Pb

by including a collisional damping from NN scattering. The observed strong correlation

between the width of the nuclear giant dipole resonance and the NN elastic cross-section

suggests that the NN elastic scattering plays an important role in nuclear collective

dynamics, and the width of the nuclear giant dipole resonance provides a good probe of

the in-medium NN elastic cross-section.

Keywords: Boltzmann-Uehling-Uhlenbeck equation, lattice Hamiltonian method, nuclear giant resonances,

Thomas-Fermi initialization, stochastic collision approach

1. INTRODUCTION

Transport models deal with the time evolution of the Wigner function or phase-space distribution
function f (Er, Ep, t) that arises from the Wigner representation of the Schrödinger equation [1, 2],
and provide a successful semi-classical time-dependent approach to studying nuclear dynamics,
especially with regard to heavy-ion collisions (HICs). One of the main ingredients of transport
models is the mean-field potential, which embodies information on the nuclear equation of
state (EOS) or the in-medium effective nuclear interaction. Therefore, transport models serve
as an important theoretical tool for investigating the EOS of asymmetric nuclear matter from
observables in HICs. A good deal of information on the nuclear EOS, from sub-saturation [3–5]
to supra-saturation densities of about 3–5 times saturation density [6–18], has been obtained from
transport model analyses of various observables, such as collective flows and particle production,
in intermediate- and high-energy HICs. Exact information about the nuclear EOS is crucial for
describing reaction dynamics of exotic nuclei [19, 20], various properties of both finite nuclei
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(e.g., neutron skin thickness [21–23] and drip lines [24, 25]) and
neutron stars (e.g., masses and coolingmechanisms [26–30]), and
astrophysical processes, such as supernova explosion scenarios
[31–33]. In particular, it should be mentioned that the first
gravitational wave signal GW170817 [34] of a binary neutron star
merger has recently been observed and localized by the LIGO and
Virgo observatories, inaugurating a new era of multimessenger
astronomy and supplying important constraints on the dense
nuclear matter EOS [35–39]. Moreover, very recently, using
X-ray data from NASA’s Neutron Star Interior Composition
Explorer (NICER), the mass and radius of the millisecond pulsar
PSR J0030+0451 have been simultaneously estimated [40, 41] and
the implications for the dense nuclear matter EOS analyzed [42].
In addition, a new record for themaximummass of neutron stars,
namely a millisecond pulsar J0740+6620 with mass 2.14+0.10

−0.09M⊙
(68.3% credibility interval), has been reported recently [43]; this
heaviest neutron star observed so far can rule out many soft
nuclear matter equations of state, and in particular, the supersoft
high-density symmetry energy [44].

The time-dependent Hartree-Fock (TDHF) theory provides
a very successful quantum many-body framework at the mean-
field level for describing low-energy nuclear reaction dynamics,
including the nuclear collective dynamics (see e.g., references [45,
46] for a review of recent work). Given that the Vlasov equation,
i.e., the Boltzmann-Uehling-Uhlenbeck (BUU) equation without
the nucleon-nucleon (NN) collision term, corresponds to the
semi-classical limit of the TDHF equation, transport models can
thus be seen as an efficient semi-classical approach to studying
nuclear collective dynamics. In particular, the two-particle-two-
hole (2p-2h) correlation beyond the mean-field approximation,
which dominates the collisional damping of nuclear giant
resonances, can be effectively taken into account in transport
models via binary collisions. The literature contains many works
that study nuclear giant resonances based on the pure Vlasov
equation [47–49], the Vlasov equation with a collision relaxation
time [50], and the full transport model with both the mean-
field and the NN scatterings [51–53]. For example, based on
simulations of transport models, the excitation energies of
nuclear giant resonances have been used to extract information
on the nuclear EOS and neutron-proton effective mass splitting
[54], while the width of nuclear giant dipole resonance (GDR)
has been proposed as an effective probe of the in-medium NN
elastic cross-section [55]. The width of the nuclear GDR can also
serve as a fingerprint of α-particle clustering configurations in
nuclei [56].

Although transport models have been extensively used in the
study of nuclear giant resonances, the accurate description of
giant resonances within transport models is still a challenge. In
transport models, unlike in simulations of HICs at intermediate
and high energies, the calculation of nuclear giant resonances,
which are the collective excitation states with an excitation energy
of about 20 MeV, requires a more proper description of nuclear
ground states and an accurate implementation of Pauli blocking.
In particular, Pauli blocking is intimately related to the collisional
damping and hence the width of nuclear giant resonances in the
transport model calculations. In this sense, studying the nuclear
collective motion provides an ideal way to examine and improve

transport models, since the effects of several deficiencies, such as
the inaccurate treatment of Pauli blocking, are more pronounced
in nuclear collective dynamics with small-amplitude oscillations.
Transport models for HICs can be roughly divided into two
categories, the BUU equation (see e.g., reference [2]) and the
quantum molecular dynamics (QMD) model (see e.g., reference
[57]). From the viewpoint of transport models, the essential
difference between these two types is that the BUU-type models
mimic f (Er, Ep, t) by having a large number of ensembles or test
particles for each nucleon, while the QMD-type models use a
Gaussian wave packet for each nucleon. Recently, the transport
model community started a code comparison project [58–60]
to try to understand the source of the discrepancies between
various transport model codes and thus eventually reduce the
uncertainties in transport models. For the issue of Pauli blocking,
the QMD-type transport models seem not to be as good as the
BUU-type models [59]; therefore the BUU-type transport models
are more suitable for the study of nuclear collective motions,
especially for the calculation of the spreading width, in which the
accurate treatment of Pauli blocking is essential.

In order to study (near-)equilibrium nuclear dynamics within
the framework of transport models, a BUU-type transport model,
namely the lattice BUU (LBUU) method [55, 61], has recently
been developed, which can achieve good stability for the ground-
state evolution [61] and treat Pauli blocking with very high
accuracy [55]. The resulting LBUU framework has the following
features: (1) a smearing of the local density, which is commonly
used in transport models to obtain a smooth mean field, is
included self-consistently in the equations of motion through
the lattice Hamiltonian (LH) method; (2) the ground state of a
nucleus is obtained by varying the total energy with respect to
the nucleon density distribution based on the same Hamiltonian
that governs the system evolution; (3) the NN collision term
in the BUU equation is implemented through a full-ensemble
stochastic collision approach. The above features, as well as a
sufficiently large number of ensembles, make it possible to solve
the BUU equation almost exactly, and thus one can obtain very
accurate results for the nuclear collective motions within the
BUU equation. We note that the high accuracy of the LBUU
method relies on a large amount of computational resources;
therefore, high-performance GPU parallel computing [62] has
been employed in the LBUU implementation to improve the
computational efficiency.

This paper is organized as follows. In section 2, we first
introduce the LBUU method for solving the BUU equation,
including the mean field, the collision integral, and the
initialization for the nuclear ground state, and then describe
how to deal with the nuclear giant resonances within transport
models. In section 3, we present results on the peak energies of
the nuclear giant resonances obtained from lattice Hamiltonian
Vlasov (LHV) calculations, i.e., LBUU calculations without
the NN collision term, and then compare these with results
from the random-phase approximation (RPA). In section 4,
we give results on the strength function and the width of
the GDR from the full LBUU calculations, and compare these
with experimental data from the 208Pb(Ep, Ep ′) reaction carried
out at the Research Center for Nuclear Physics (RCNP) in
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Osaka, Japan [63]. Finally we give a brief summary and outlook
in section 5.

2. MODEL DESCRIPTION

The starting point for calculating the nuclear collective motion
is the BUU equation with a momentum-dependent mean-field
potential U(Er, Ep):

∂f

∂t
+ Ep

E
· ∇Erf +∇EpU(Er, Ep) · ∇Erf −∇ErU(Er, Ep) · ∇Epf = Ic, (1)

where f (the Wigner function) is the Fourier transform of the
one-body density matrix ρ(Er +Es/2, Er −Es/2), i.e.,

f (Er, Ep) = 1

(2π h̄)3

∫

exp
(

−i
Ep
h̄
· Es

)

ρ(Er +Es/2, Er −Es/2) d3s. (2)

In the local density approximation, f (Er, Ep) is reduced to
the classical one-body phase-space distribution function. The
collision term Ic, which takes into account the Pauli principle due
to nucleons’ Fermi statistics, reads

Ic = −g

∫

d2p2

(2π h̄)3
d3p3

(2π h̄)3
d3p4

(2π h̄)3
|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4) × [f1f2(1− f3)(1− f4) − f3f4(1− f1)(1− f2)],

(3)

where g = 2 is the spin degeneracy factor andM12→34 is the in-
medium transitionmatrix element. Note that we have ignored the
isospin index in the above three equations, but it can be restored
easily. The BUU equation without the collision term Ic is referred
to as the Vlasov equation, which is the semi-classical limit of
the quantum transport theory with the system described by the
one-body phase-space distribution function [1, 2], whereas the
quantum corrections can be included perturbatively [64, 65].

We use the LH method, originally proposed by Lenk and
Pandharipande [66] in 1989, to solve the BUU equation. The
LH method has been successfully employed in the study of HICs
[67, 68]. It improves the sample smoothing technique of the usual
test particle approach [69] and conserves the total energy almost
exactly. In the LH method, the phase-space distribution function
fτ (Er, Ep, t) is mimicked by A×NE test nucleons with a form factor
S in the coordinate space to modify the relation between the test
nucleons and the Wigner function, i.e.,

fτ (Er, Ep, t) =
1

g

(2π h̄)3

NE

ANE ,τ
∑

i

S
[

Eri(t)− Er
]

δ
[Epi(t)− Ep

]

, (4)

where A is the mass number of the system and NE is the number
of ensembles or number of test particles, usually a very large
number, used in the calculation. The sum in the above expression
runs over all test nucleons with isospin τ . The form factor S
can take a Gaussian form, or a certain form with a finite range
that ensures the particle number conservation. By giving each
test nucleon a form factor, the movement of a test nucleon
leads to a continuous variation of the local nucleon density of

nearby lattice sites, which is useful for smoothing the nucleon
distribution functions in phase space. A similar form factor in
momentum space [here the δ-function is used in Equation (4)]
could be introduced and might help to reduce fluctuations if
a momentum-dependent mean-field potential is employed, and
in the future it would be interesting to carry out a systematic
investigation of the effects of a form factor in momentum space.
The equations of motion of the test nucleons are governed by the
total Hamiltonian, and we approximate the latter by the lattice
Hamiltonian, i.e.,

H =
∫

H(Er) dEr ≈ lxlylz
∑

α

H(Erα) ≡ HL, (5)

where Erα denotes the coordinates of lattice site α, and lx, ly, and
lz are the lattice spacings. Therefore, in the LH method only
the values of the phase-space distribution function at lattice sites
fτ (Erα , Ep, t) need to be calculated.

By solving the BUU equation or Vlasov equation using
the LH method, one obtains the time evolution of f (Er, Ep, t),
or the test nucleons’ coordinates Eri and momenta Epi, and
then the time evolution of other physical quantities can be
calculated accordingly.

2.1. Mean Fields
We employ the Skyrme pseudopotential to calculate the lattice
Hamiltonian in Equation (5). The next-to-next-to-next leading
order (N3LO) Skyrme pseudopotential [70], which is a mapping
of the N3LO local energy density functional [71], generalizes
the standard Skyrme interaction [72] and can reproduce the
empirical nuclear optical potential up to about 1 GeV in kinetic
energy [73], which the standard Skyrme interactions fail to
describe. The Hamiltonian density from the N3LO Skyrme
pseudopotential contains the kinetic termHkin(Er), the local term
Hloc(Er), the momentum-dependent term HMD(Er), the density-
dependent term HDD(Er), and the gradient term Hgrad(Er). The
kinetic term

H
kin(Er) =

∑

τ=n,p

∫

d3p
p2

2mτ

fτ (Er, Ep) (6)

and the local term

H
loc(Er) = t0

4

[

(2+ x0)ρ
2 − (2x0 + 1)

∑

τ=n,p

ρ2
τ

]

(7)

are the same as those from the standard Skyrme interaction. The
momentum-dependent term is written in the form

H
MD(Er) =

∫

d3p d3p′ Ks(Ep, Ep′)f (Er, Ep)f (Er, Ep′)

+
∑

τ=n,p

∫

d3p d3p′ Kv(Ep, Ep′)fτ (Er, Ep)fτ (Er, Ep′), (8)

with f (Er, Ep) = fn(Er, Ep) + fp(Er, Ep). The quantities Ks(Ep, Ep′) and
Kv(Ep, Ep′) in Equation (8) represent the isoscalar and isovector
kernels of the momentum-dependent part of the mean-field
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potential, respectively; Ks(Ep, Ep′) and Kv(Ep, Ep′) for the N3LO
Skyrme pseudopotential are expressed as

Ks(Ep, Ep′) =
C[2]

16h̄2
(Ep− Ep′)2 + C[4]

32h̄2
(Ep− Ep′)4 + C[6]

16h̄2
(Ep− Ep′)6,

(9)

Kv(Ep, Ep′) =
D[2]

16h̄2
(Ep− Ep′)2 + D[4]

32h̄2
(Ep− Ep′)4 + D[6]

16h̄2
(Ep− Ep′)6.

(10)

If we keep only the C[2] and D[2] terms, the N3LO Skyrme
pseudopotential reduces to the standard Skyrme effective
interaction. For the sake of simplicity in performing numerical
derivatives, we truncate at the second order of the spatial gradient
of ρ(Er),

H
grad(Er) = 1

8
E[2]

{

ρ(Er)∇2ρ(Er)−
[

∇ρ(Er)
]2

}

+ 1

8
F[2]

∑

τ=n,p

{

ρτ (Er)∇2ρτ (Er)−
[

∇ρτ (Er)
]2

}

= 1

8
g[2]

{

ρ(Er)∇2ρ(Er)−
[

∇ρ(Er)
]2

}

+ 1

8
g
[2]
iso

{

ρδ(Er)∇2ρδ(Er)−
[

∇ρδ(Er)
]2

}

. (11)

In the second line we have introduced g[2] = E[2] + 1
2F

[2],

g
[2]
iso = 1

2F
[2], and ρδ = ρn − ρp. We neglect the second term

in Equation (11) since it is much smaller than the first term; in
other words, we keep only the second-order spatial derivative of
the total nucleon density ρ(Er). The density-dependent term for
the N3LO Skyrme pseudopotential takes its form in the standard
Skyrme interaction,

H
DD(Er) = t3

24

[

(2+ x3)ρ
2 − (2x3 + 1)

∑

τ=n,p

ρ2
τ

]

ρα . (12)

One can see that the Hamiltonian density H(Er), expressed as the
sum of Equations (6)–(8), (11), and (12), is explicitly dependent
on fτ (Er, Ep) as well as on the densities ρτ (Er) and their derivatives.

In the above expressions, the parameters C[n], D[n], E[n], and

F[n] are recombinations of the Skyrme parameters t
[n]
1 , t

[n]
2 , x

[n]
1

and x
[n]
2 , which are related to the derivative terms of the Skyrme

two-body potential vSk(Er1, Er2), i.e.,

C[n] = t
[n]
1 (2+ x

[n]
1 )+ t

[n]
2 (2+ x

[n]
2 ), (13)

D[n] = −t
[n]
1 (2x

[n]
1 + 1)+ t

[n]
2 (2x

[n]
2 + 1), (14)

E[n] = in

2n

[

t
[n]
1 (2+ x

[n]
1 )− t

[n]
2 (2+ x

[n]
2 )

]

, (15)

F[n] = − in

2n

[

t
[n]
1 (2x

[n]
1 + 1)+ t

[n]
2 (2x

[n]
2 + 1)

]

. (16)

Specifically, we obtain the coefficient of the gradient term,

g[2] = E[2] + 1

2
F[2] = −1

8

[

3t
[2]
1 − t

[2]
2 (5+ 4x

[2]
2 )

]

. (17)

Substituting f (Er, Ep, t) as expressed in Equation (4) into
Equations (6)–(12) and noting that the local nucleon density
ρτ (Er) is given by the integral of fτ (Er, Ep, t) with respect to
momentum,

ρτ (Er, t) = g

∫

fτ (Er, Ep, t)
d3p

(2π h̄)3
= 1

NE

α,τ
∑

i

S
[

Eri(t)− Er
]

, (18)

we can express the lattice Hamiltonian HL in Equation (5) in
terms of the coordinates and momenta of the test nucleons. Since
the coordinates and momenta of the test nucleons Eri and Epi can
be regarded as the canonical variables of the lattice Hamiltonian,
their time evolution is then governed by the Hamilton equation
for all ensembles,

dEri
dt

= NE
∂HL

[

Er1(t), . . . , ErA×NE (t); Ep1(t), . . . , EpA×NE (t)
]

∂Epi

= Epi(t)
m

+ NElxlylz
∑

α∈Vi

∂HMD
α

∂Epi
, (19)

dEpi
dt

= − NE
∂HL

[

Er1(t), . . . , ErA×NE (t); Ep1(t), . . . , EpA×NE (t)
]

∂Eri
= −NElxlylz

×
∑

α∈Vi

{ n,p
∑

τ

[

∂(Hloc
α +HCou

α +HDD
α )

∂ρτ ,α

+
∑

n=0

(−1)n∇n ∂H
grad
α

∂∇nρτ ,α

]

∂ρτ ,α

∂Eri
+ ∂HMD

α

∂Eri

}

. (20)

In the above two equations, the subscript α refers to values at
lattice site α. The Vi under the summation sign represents the
volume that the form factor of the ith test nucleon covers, and the
sums run over all lattice sites inside Vi. The Coulomb interaction
contributes to the Hamiltonian density through the term

H
Cou(Erα) = e2ρp(Erα)

{

1

2

∫

ρp(Er ′)
|Erα − Er ′| dEr

′ − 3

4

[3ρp(Erα)
π

]1/3
}

≈ e2ρp(Erα)
{

1

2

∑

α′ 6=α

ρp(Erα′ )lxlylz

|Erα − Erα′ | − 3

4

[3ρp(Erα)
π

]1/3
}

,

(21)

where the second term represents the contribution from the
Coulomb exchange energy. Further tests show that the Coulomb
energyHCou(Erα) converges at the lattice spacing of lx = ly = lz =
0.5 fm used in the present LBUU simulations. The gradient term

H
grad
α in Equation (20) is obtained by considering

δ

∫

H
grad(Er) d3r =

n,p
∑

τ

∫ [

∂Hgrad(Er)
∂ρτ (Er)

δρτ (Er)

+ ∂Hgrad(Er)
∂∇ρτ (Er)

δ∇ρτ (Er)+
∂Hgrad(Er)
∂∇2ρτ (Er)

δ∇2ρτ (Er)+ · · ·
]

d3r

=
n,p
∑

τ

∫

∑

n=0

(−1)n∇n ∂Hgrad(Er)
∂∇nρτ (Er)

δρτ (Er) d3r, (22)
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where we have integrated by parts to obtain the second line. The
spatial derivative of ρτ ,α in Equation (20) is related to the spatial
derivative of S through

∂ρτ ,α

∂Eri
= ∂

∂Eri

τj=τ
∑

Erj∈Vα

S(Erj − Erα) =
{

∂S(Eri−Erα)
∂Eri , τi = τ ,

0, τi 6= τ .
(23)

Substituting the fτ (Er, Ep) from Equation (4) into Equation (8),
we obtain the momentum-dependent parts of the equation of
motion for the test nucleons, and these are expressed in terms
of the sums over the test nucleons as

∂HMD(Erα)
∂Eri

= 2
∂S

[

Eri(t)− Erα
]

∂Eri
×

{

∑

j∈Vα

S
[

Erj(t)− Erα
]

Ks

[Epi(t), Epj(t)
]

+
τj=τi
∑

j∈Vα

S
[

Erj(t)− Erα
]

Kv

[Epi(t), Epj(t)
]

}

, (24)

∂HMD(Erα)
∂Epi

= 2S
[

Eri(t)− Erα
]

×
{

∑

j∈Vα

S
[

Erj(t)− Erα
]∂Ks

[Epi(t), Epj(t)
]

∂Epi

+
τj=τi
∑

j∈Vα

S
[

Erj(t)− Erα
]∂Kv

[Epi(t), Epj(t)
]

∂Epi

}

. (25)

Using Equations (19)–(25), one can evaluate the time evolution of
the coordinates Eri(t) and momenta Epi(t) of the test nucleons, and
then obtain f (Er, Ep, t) from Equation (4), based on which physical
observables can be calculated.

The choice of the form factor S(Eri − Er) should ensure particle
number conservation,

∑

α

ρ(Erα)lxlylz =
1

NE

∑

α

∑

i

S(Eri − Erα) lxlylz = A. (26)

In the present LBUU framework, we use a triangular form

S(Eri − Er) = 1

(nl/2)6
g(1x)g(1y)g(1z),

g(q) =
(nl

2
− |q|

)

θ

(nl

2
− |q|

)

, (27)

where θ is the Heaviside function and n is an integer that
determines the range of S. Generally speaking, calculations
on lattices violate momentum conservation since they break
Galilean invariance. Early studies have shown that the total
momentum can be conserved to a high degree of accuracy if
n ≥ 4 [66].

It should be mentioned that compared with the conventional
test particle method, in which the equations of motion for the
test nucleons are derived from single-particle Hamiltonians, the
equations of motion for the test nucleons in the LH method,

Equations (19) and (20), are derived from the total Hamiltonian
of the system. In the former approach it is difficult to conserve
energy exactly [2, 66], while the latter approach can ensure exact
energy conservation in the dynamic process [66].

2.2. Collision Integral
In the present LBUU method, the stochastic collision method
[74], instead of the commonly used geometric method, is
implemented for the NN collision term in the BUU equation.
In the stochastic collision approach, the collision probability of
two test nucleons can be derived directly from the NN collision
term, Ic in Equation (3), as follows. Considering nucleons around
lattice site Erα from twomomentum space volume elementsVEp1 =
Ep1 ± 1

21
3Ep1 and VEp2 = Ep2 ± 1

21
3Ep2, one can average over

momentum space volume VEpi to obtain the distribution function
f (Erα , Epi) according to Equation (4):

f (Erα , Epi) ≈
1

13Epi
(2π h̄)3

gNE

Epj∈VEpi
∑

j

S(Erj − Erα). (28)

The number of collisions between nucleons from these two
momentum space volumes that happen in a time interval 1t is

1Ncoll(Erα , Ep1, Ep2) = g
13Ep1
(2π h̄)3

∣

∣

∣

df (Erα , Ep1)
dt

∣

∣

∣

coll

Ep2
lxlylz1t

= g
13Ep2
(2π h̄)3

∣

∣

∣

df (Erα , Ep2)
dt

∣

∣

∣

coll

Ep1
lxlylz1t. (29)

The quantities
∣

∣

df (Erα ,Ep1)
dt

∣

∣

coll
Ep2 and

∣

∣

df (Erα ,Ep2)
dt

∣

∣

coll
Ep1 are the changing

rates of f (Erα , Ep1) and f (Erα , Ep2), respectively, caused by two-body
scatterings between the nucleons inVEp1 andVEp2 . These terms can
be obtained directly from Equation (3), i.e., the NN collision term
in the BUU equation, as

∣

∣

∣

df (Erα , Ep1)
dt

∣

∣

∣

coll

Ep2
= g

13Ep2
(2π h̄)3

f (Erα , Ep1)f (Erα , Ep2)
∫

d3p3

(2π h̄)3
d3p4

(2π h̄)3
|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4)

= g
13Ep2
(2π h̄)3

f (Erα , Ep1)f (Erα , Ep2)vrelσ ∗
NN, (30)

where we have substituted in the definition of the cross-section,

σ ∗
NN = 1

vrel

∫ d3p3
(2π h̄)3

d3p4
(2π h̄)3

|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4), (31)

with vrel being the relative velocity of the test nucleons in the
two momentum space volumes and σ ∗

NN the scattering cross-
section in the two-nuclei center-of-mass frame. Here, we obtain
the in-medium NN cross-section σ ∗

NN by multiplying the free

NN cross-section σ free
NN by a medium-correction factor. The

NN elastic scattering cross-section in free space, σ free
NN , is taken

from the parameterization in reference [75] with a cutoff of
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σ free
NN (plab ≤ 0.1 GeV/c) = σ free

NN (plab = 0.1 GeV/c) for
neutron-neutron (nn) or proton-proton (pp) scatterings and a
cutoff of σ free

NN (plab ≤ 0.05 GeV/c) = σ free
NN (plab = 0.05 GeV/c)

for neutron-proton (np) scatterings, since the parameterization
is shown to be valid for nucleon momentum plab down to
the corresponding cutoff [75]. We note that the plab cutoff
actually corresponds to only a few MeV of incident kinetic
energy (i.e., 1.3 MeV for plab = 0.05 GeV/c and 5.3 MeV for
plab = 0.1 GeV/c), and these very low-energy scatterings are not
important in the present transport model calculations. Since this
parameterization of σ ∗

NN is given in the two-nucleon center-of-
mass frame, its value in the two-nuclei center-of-mass frame can
be obtained through the Lorentz invariant quantity E1E2vrelσ

∗
NN.

From Equations (28)–(30) one obtains

1Ncoll(Erα , Ep1, Ep2) =

Epi∈VEp1
Epj∈VEp2
∑

i,j

1Ncoll
ij

=

Epi∈VEp1
Epj∈VEp2
∑

i,j

1

N2
E

vrelσ
∗
NNS(Eri − Erα)S(Erj − Erα)lxlylZ1t, (32)

where 1Ncoll
ij denotes the number of physical collisions from the

scattering of the ith and jth test nucleons. Given that every test
nucleon is 1/NE of a physical nucleon, one obtains the collision
probability of the ith and jth test nucleons as

Pij =
1Ncoll

ij

(1/NE)2
= vrelσ

∗
NNS(Eri − Erα)S(Erj − Erα)lxlylz1t. (33)

One can reduce statistical fluctuations of the collision events
by allowing collisions of test nucleons that come from different
ensembles. In this case the collision probability is reduced, Pij →
Pij/NE, via the scaling σ ∗

NN → σ ∗
NN/NE. In our case, the NN

scattering probabilities are very small within one time step, so
instead of evaluating the probabilities of all possible collisions
of test nucleons, we randomly divide the test nucleons that
are available for scattering around the lattice site α into many
pairs for scattering, and amplify the corresponding scattering
probabilities accordingly, which is a common practice when one
allows the scattering of test nucleons from different ensembles
[74, 76]. The amplified scattering probabilities are given by

P′ij = Pij
Nα(Nα − 1)/2

N′
α/2

, (34)

where Nα is the number of test nucleons that contribute to
lattice site Erα and N′

α is the number of test nucleons available
for scattering. Since we choose a finite-range form factor for
coordinates in the LBUU framework, one test nucleon can be
involved in different collision events at different lattice sites.
Those test nucleons that have already collided at another lattice
site are excluded from the scattering at the present lattice site,
so N′

α is not necessarily equal to Nα . The time step 1t needs to
be sufficiently small to pin down the effect of such an exclusion

by suppressing the chance of multi-scattering attempts, as well as
to keep P′ij less than unity. In the present LBUU framework, we

choose 1t = 0.2 fm/c for the full LBUU calculations and 1t =
0.4 fm/c for the Vlasov calculations (i.e., the LBUU calculations
without the NN scatterings).

To verify the accuracy of the stochastic collision treatment
within the present LBUU framework, we simulate collisions of
nucleons confined in a cubic box of volume V = 10 × 10 ×
10 fm3 with periodic boundary conditions. In this simulation, we
ignore the nuclear mean-field potential and the quantum nature
of nucleons. Initially, 80 neutrons and 80 protons are uniformly
distributed over the box, corresponding to a nucleon density of
ρ = 0.16 fm3. Their momenta are generated according to the
relativistic Boltzmann distribution,

P(p) ∝ p2 exp

[

√

m2 + p2

T

]

, (35)

where m = 939 MeV is the free nucleon mass. Here, the
temperature T is taken to be 14.24 MeV so that the system
has the same kinetic energy density as the zero-temperature
isospin-symmetric Fermi gas of nucleons.

Using the NN elastic scattering cross-section in free space
[75], we simulate the time evolution of this system up to 1 fm/c
with a time step of 0.2 fm/c and NE = 1, 000. It is constructive
to see the collision rate as a function of the center-of-mass
energy

√
s of the colliding nucleon pair. The

√
s distributions

of the collision rates for np and for nn plus pp are plotted as
red circles in the left and right panels of Figure 1, respectively.
Theoretically, considering two species of particles following
relativistic Boltzmann distributions, the

√
s distributions of their

collision rates can be derived as

dNcoll

dt ds1/2
= 1

1+ δij

NiNj

V

s(s− 4m2)K1(s
1/2/T)σ (s1/2)

4m4TBK
2
2 (m/T)

, (36)

where Kn is the nth order modified Bessel function, Ni (Nj) is the
number of particles i (j) in the volumeV , and σ is their scattering
cross-section. The expected distributions are shown as black
solid lines in Figure 1 for comparison. It is seen that the LBUU
calculations are in excellent agreement with the expected results.

Given the quantum nature of nucleons, we handle Pauli
blocking in the LBUU method as follows. If the NN scattering
between the ith and jth test nucleons happens at the lattice site
Erα according to Pij or P

′
ij, the directions of their final momenta Ep3

and Ep4 are determined by the differential cross-section given in
reference [75], and then the Pauli blocking factor [1− f (Erα , Ep3)]×
[1 − f (Erα , Ep4)] is used to determine whether the collision is
blocked by the Pauli principle. The distribution function fτ (Erα , Ep)
is calculated according to Equation (28). For the momentum
space volume 13Epi, we take a sphere with radius R

p
τ (Erα , Ep)

centered at Epi. In typical BUU transport models, R
p
τ (Erα , Ep) is a

constant of about a hundred MeV. For the calculation of small-
amplitude nuclear collective dynamics near the ground state, a
specifically proposed R

p
τ (Erα , Ep) is more suitable [51], i.e.,

R
p
τ (Erα , Ep) = max[1p, pFτ (Erα)− |Ep|], (37)
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FIGURE 1 | The
√
s distribution of (A) np and (B) nn+ pp elastic

collision rates for the Boltzmann distribution at T = 14.24 MeV, with

80 neutrons and 80 protons in a cube of volume

V = 10× 10× 10 fm3, for theoretical predictions (black solid line)

and LBUU calculations (red circles). In both calculations, we choose

free NN cross-sections as parameterized in reference [75].

where 1p is a constant that should be sufficiently small and
pFτ = h̄(3π2ρτ )

1/3 is the nucleon Fermi momentum.

2.3. Ground State Initialization and
Evolution Stability
In the present LBUU method, we obtain the ground state of
nuclei at zero temperature by varying the Hamiltonian with
respect to the nuclear radial density, which is sometimes called
Thomas-Fermi (TF) initialization [51, 66, 77, 78] in the one-body
transport model. We assume that for a ground-state nucleus at
zero temperature, its Wigner function satisfies

fτ (Er, Ep) =
2

(2π h̄)3
θ
[

|Ep| − pFτ (Er)
]

, (38)

where pFτ (Er) is the local Fermi momentum given by

pFτ (Er) = h̄
[

3π2ρτ (Er)
]1/3

. (39)

It should be noted that, in principle, with the inclusion of
NN scatterings, which goes beyond mean-field correlations, the
nucleon momentum distribution in the ground state may differ
slightly from the zero-temperature Fermi distribution. If we
assume for simplicity that the nucleus is spherical, the total
energy of a ground-state nucleus at zero temperature can be
regarded as a functional of the radial density ρτ (r) and its
spatial gradients,

E =
∫

H
[

r, ρτ (r),∇ρτ (r),∇2ρτ (r), . . .
]

dr. (40)

The neutron (proton) radial density in a ground-state nucleus
can be obtained, by varying the total energy with respect to
ρτ (r) [note that for protons the contribution from the Coulomb
interaction in Equation (21) should also be included in the
Hamiltonian density], as

1

2m

{

pFτ
[

ρτ (r)
]}2 + Uτ

{

pFτ
[

ρτ (r)
]

, r
}

= µτ , (41)

where µτ is the chemical potential of a proton or neutron inside
the nucleus, with value determined by the given proton number
Z or neutron number N. The quantity Uτ

{

pFτ
[

ρτ (r)
]

, r
}

refers
to the single nucleon potential of the nucleon with local Fermi
momentum. The single nucleon potential is derived by varying
the Hamiltonian density in Equations (6)–(12) with respect to
the phase-space distribution function and density gradients, and
its detailed expression for the N3LO Skyrme pseudopotential is
given in reference [73]. The physical significance of Equation (41)
is very intuitive: in a classical picture, in a ground-state nucleus at
zero temperature, the nucleons in the Fermi surface at different
radial positions have the same chemical potential. The local
density ρτ (Er) for a ground-state spherical nucleus is obtained
by solving Equation (41) subject to the following boundary
conditions on the total local density ρ(r) = ρn(r)+ ρp(r):

∂ρ(r)

∂r

∣

∣

∣

∣

r=0

= ∂ρ(r)

∂r

∣

∣

∣

∣

r=rB

= 0. (42)

Here, rB is the boundary of the nucleus and it satisfies ρ(rB) = 0.
In the present LBUU framework, the initial coordinates

of test nucleons are generated according to the obtained
ρτ (Er), while their initial momenta are generated from a zero-
temperature Fermi distribution with the Fermi momentum
given in Equation (39). Owing to the presence of the form
factor S(Er − Er ′) introduced in Equation (4), the density is
smeared slightly in the LBUU calculations compared with
the realistic local density. Thus the initial ground-state radial
density distribution is slightly different from the solution of
Equation (41). Unlike the Gaussian wave packet that is used to
mimic the Wigner function in QMD model [57], the form factor
S(Er − Er ′) does not have any physical meaning; it can be regarded
as a numerical technique introduced in the test-particle approach
so that one can obtain well-defined densities and mean fields. As
shown in the following, an additional gradient term in the local
density can compensate for the effects caused by the smearing of
the local density due to the form factor. In this subsection, we
will denote by ρ̃(Er) the local density in the LBUU calculation and
by ρ(Er) the realistic local density. The local density ρ̃(Er) can be
regarded as a convolution of the realistic local density with the
form factor,

ρ̃(Er) =
∫

ρ(Er ′)S(Er − Er ′) d3r′. (43)

To express ρ(Er) in terms of ρ̃(Er), we have formally

ρ(Er) =
∫

ρ̃(Er ′)S−1(Er ′ − Er) d3r′

=
∫

[

∞
∑

n=0

1

n!
∇nρ̃(Er)(Er ′ − Er)n

]

S−1(Er ′ − Er) d3r′

≈ ρ̃(Er)+ c∇2ρ̃(Er), (44)

where we have truncated at next-to-leading order [the ∇ρ̃(Er)
term vanishes because of the symmetry of the integral] and
S−1(Er − Er ′) is the inverse of S(Er − Er ′), which satisfies

∫

S(Er − Er ′′)S−1(Er ′′ − Er ′) d3r′′ = δ(Er − Er ′). (45)
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The parameter c, defined by

c ≡
∫

1

2
(Er ′ − Er)2S−1(Er ′ − Er) d3r′, (46)

is a small constant that depends only on the form of S. In the
LBUU framework, to obtain ρ(Er) by direct correction of ρ̃(Er)
is not feasible since numerically the density in Equation (44) is
not always positive. If we substitute Equation (44) into the total
Hamiltonian, with several necessary approximations, we obtain
an additional term that is proportional to cρ̃(Er)∇2ρ̃(Er). This term
leads to an additional gradient term Ẽ[2]∇2ρ̃ in the equations of
motion (20). Therefore, in practice we can add the extra gradient
terms Ẽ[2]∇2ρ̃ to the equations of motion, to compensate for
the smearing of density due to the form factor. In principle,
the parameter Ẽ[2] should contain higher-order effects, so we
adjust it to roughly obtain the ground-state root-mean-square
(rms) radius evolution with the smallest oscillation, since the rms
radius in the exact ground state should not change with time.
Normally Ẽ[2] is a small parameter, around 15 MeV for various
(N3LO) Skyrme parameter sets. It should be mentioned that this
correction of the density gradient term improves the stability
of the ground-state evolution (rms radius and radial density
profile) only slightly, and does not lead to much difference in
the results for collective motions. In ideal cases with NE → ∞
and lx, ly, lz → 0, the local density in the LBUU calculation will

approach the physical local density, and Ẽ[2] will become zero.
Since all the LBUU calculations are based on ρ̃(Er), we do not
distinguish between ρ̃(Er) and ρ(Er), and ρ(Er) should be interpreted
as ρ̃(Er) in the rest of the article.

We first examine the ground-state evolution stability of the
LHV calculation, i.e., the LBUU calculation without the collision
term, since in principle all NN scatterings should be blocked in
the ground state. We show in Figure 2 the time evolution of the
radial density profile from the LHV calculation for the nucleus
208Pb in ground state up to 1, 000 fm/c, obtained with NE =
10, 000 and a time step of 1t = 0.4 fm/c by using the N3LO
Skyrme pseudopotential SP6m.We notice from Figure 2 that the
profile of the radial density exhibits only very small variations
with time, which indicates the success of the above initialization
method. It also shows that the smearing of the local density
caused by the inclusion of the form factor S does not affect the
dynamic evolution significantly. Such features indicate that the
present LBUU method of solving the BUU equation can be used
to study long-time nuclear processes, such as nuclear spallation
and heavy-ion fusion reactions.

Apart from the radial density profile, other properties of the
ground-state evolution stability are also examined. In Figure 3

we present the time evolution of the rms radius, the fraction
of bound nucleons, and the binding energy of the LHV
calculation (i.e., the LBUU calculation without NN scatterings).
The calculations are performed with time step1t = 0.4 fm/c and
with NE = 5, 000 and 10, 000. The test nucleons for which the
form factor does not overlap with that of others are considered
free test nucleons, and they are excluded when calculating the
fraction of bound nucleons and the rms radius. We notice from
Figure 3A that although in the NE = 5, 000 case the rms radius

FIGURE 2 | Time evolution of the radial density profile of the ground state of
208Pb based on the LHV calculation (i.e., the LBUU calculation without NN

scatterings) with the N3LO Skyrme pseudopotential SP6m up to 1, 000 fm/c.

Reproduced from reference [61] with permission from the American Physical

Society.

starts to decrease after about 800 fm/c, the LHV calculation gives
a fairly stable time evolution of the rms radius. The observed
decrease is due to the evaporation of test nucleons from the
bound nuclei, which is illustrated in Figure 3B. Such evaporation
of test nucleons is inevitable in transport model calculations
because of the limited precision of the numerical realization, but
it can be suppressed by increasing NE, as seen in Figure 3B,
though the result with EE = 5, 000 is already satisfactory
[61]. As Figure 3C shows, the LH method ensures the energy
conservation to a very high degree. The difference between the
cases of NE = 5, 000 and NE = 10, 000 is mainly due to the
numerical precision of the gradient term in the Hamiltonian.
It is seen from Figure 3 that the present LBUU framework can
give a fairly stable ground-state time evolution. Owing to the
high efficiency of GPU parallel computing, it becomes possible to
include more ensembles or test particles in the LBUU calculation.
As one will see in the following, to obtain the correct GDR
width, as many as 30, 000 ensembles are needed in the full LBUU
calculation with NN scatterings.

For the stability of the ground-state evolution in the full LBUU
calculation, we note that for σ free

NN with NE = 30, 000, the rms
radius and the ground-state energy of 208Pb vary <3.6% (0.2 fm)
and 3.2% (50 MeV), respectively, during the time evolution of 0–
500 fm/c [55]. The stability of the rms radius in the full LBUU
calculation is not as good as in the LHV case, and this may
be due to the fact that with the inclusion of NN scatterings,
i.e., beyond mean-field correlations, the nucleon momentum
distribution in the ground state may differ slightly from the zero-
temperature Fermi distribution. Apart from this, although the
LHmethod can conserve the energy almost exactly for the mean-
field evolution without NN collisions, the non-perfect energy
conservation in the LBUU calculation could be caused by the NN
scattering processes, which usually violate energy conservation
when the momentum-dependent mean-field potentials are used.
Both problems require further investigation of transport model
calculations in the future.
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FIGURE 3 | Time evolution of (A) rms radius, (B) fraction of bound nucleons, and (C) binding energy of the 208Pb ground state from the LHV calculation (i.e., the

LBUU calculation without NN scatterings) with the N3LO Skyrme pseudopotential SP6m up to 1, 000 fm/c. Calculations are performed with a time step of

1t = 0.4 fm/c and with NE = 5, 000 and 10, 000. Reproduced from reference [61] with permission from the American Physical Society.

2.4. Nuclear Giant Resonances Within
Transport Models
We consider a small excitation of the Hamiltonian,

Ĥex(t) = λQ̂δ(t − t0), (47)

where Q̂ is the excitation operator for a given mode and λ is
the initial excitation parameter, which is assumed to be small.
In linear response theory [79], the response of the excitation
operator Q̂ as a function of time is given by

1〈Q̂〉(t) = 〈0′|Q̂|0′〉(t)− 〈0|Q̂|0〉(t)

= −2λθ(t)

h̄

∑

F

|〈F|Q̂|0〉|2 sin (EF − E0)t

h̄
, (48)

where |0〉 is the unperturbed nuclear ground state with energy
E0, |0′〉 is the nuclear state after the perturbation, and |F〉 is the
energy eigenstate of the excited nucleus with eigen-energy EF .
The strength function, which is defined as

S(E) =
∑

F

|〈F|Q̂|0〉|2 δ(E− EF + E0), (49)

can be expressed as a Fourier integral of 1〈Q̂〉(t) in
Equation (48):

S(E) = − 1

πλ

∫ ∞

0
dt1〈Q̂〉(t) sin Et

h̄
. (50)

By evaluating the time evolution of 1〈Q̂〉(t) within the transport
model, we can obtain the strength function and, subsequently,
other quantities, such as the peak energy, width, and energy-
weighted sum rules. The time evolution of 1〈Q̂〉(t) can be
expressed in terms of the Wigner function f (Er, Ep) as follows.

If we assume that Q̂ is a one-body operator, then it can be
written as the sum of single-particle operators q̂ acting on each
nucleon, Q̂ = ∑A

i q̂, and the expectation value of Q̂ for a given
state is evaluated as

〈Q̂〉 = 〈8|Q̂|8〉 =
∫

〈8|Er1 · · · ErN〉〈Er1 · · · ErN |Q̂|Er′1 · · · Er′N〉

〈Er′1 · · · Er′N |8〉 d3r1 · · · d3rN d3r′1 · · · d3r′N , (51)

where we have added two identity operators. Considering the
definition of the one-body density matrix,

ρ(Er1, Er′1) = A

∫

〈Er1Er2 · · · ErN |8〉〈8|Er′1Er2 · · · ErN〉 d3r2 · · · d3rN ,

and combining it with the one-body operator condition
Q̂ = ∑A

i q̂, we can rewrite Equation (51) as

〈Q̂〉 =
∫

ρ(Er′1, Er1)〈Er1|q̂|Er′1〉 d3r1 d3r′1. (52)

The density matrix can be expressed in coordinate space as the
inverse Fourier transform of f (Er, Ep),

ρ

(

Er − Es
2
, Er + Es

2

)

=
∫

f (Er, Ep) exp
(

i
Ep
h̄
Es
)

d3p. (53)

In the above equation we have changed the integration variables:
Er1 = Er + Es

2 and Er′1 = Er − Es
2 . We define the Wigner transform of q̂

in coordinate space,

q(Er, Ep) ≡
∫

exp
(

−i
Ep
h̄
· Es

)

q
(

Er + Es
2
, Er − Es

2

)

d3s, (54)

where q
(

Er + Es
2 , Er − Es

2

)

=
〈

Er + Es
2 |q̂|Er − Es

2

〉

represents the matrix
element of q̂ in coordinate space. By substituting Equation (53)
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and the inverse transform of Equation (54) into Equation (52),
the expectation of Q̂ can be written in the form

〈Q̂〉 =
∫

f (Er, Ep)q(Er, Ep) d3r d3p, (55)

which means that the time evolution of 〈Q̂〉 can be calculated
through the time evolution of f (Er, Ep).

In the transport model, different external excitations
λQ̂δ(t − t0) can be generated by changing the positions and
momenta of the test nucleons as follows [47]:

Eri → Eri + λ
∂q(Eri, Epi)

∂Epi
, Epi → Epi − λ

∂q(Eri, Epi)
∂Eri

. (56)

The detailed forms of q(Eri, Epi) for different collective modes and
their corresponding initializations in the transport model will be
given later.

3. LATTICE HAMILTONIAN VLASOV
CALCULATIONS

In this section we compare the peak energy of nuclear giant
resonances obtained from LBUU calculations without the NN
scatterings, i.e., LHV calculations, with that obtained from the
RPA, since the 2p-2h correlation is absent in both cases. Both
the isoscalar monopole and isovector dipole modes of 208Pb
are examined.

3.1. Isoscalar Monopole Mode
Since the isoscalar giant monopole resonance (ISGMR) provides
information about the nuclear matter incompressibility [80–85],
which is a fundamental quantity that characterizes the EOS of
symmetric nuclear matter, it is interesting to study the ISGMR
within the transport model to make a cross-check with the
incompressibility extracted from the HICs.

From the point of view of the one-body transport model,
the isoscalar monopole mode is regarded as a compressional
breathing of the nuclear fluid. The excitation operator Q̂ISM for
the isoscalarmonopolemode and its one-body operator q̂ISM take
the forms

Q̂ISM = 1

A

A
∑

i

r̂2i , q̂ISM = r̂2

A
. (57)

From Equation (54) we obtain the Wigner transform of q̂ISM as

qISM(Er, Ep) = Er2
A
. (58)

According to Equation (56), we can generate in the transport
model the initial isoscalar monopole excitation by changing the
initial phase-space information of test nucleons with respect to
that of the ground state:

Epi → Epi − 2λ
Eri
A
. (59)

FIGURE 4 | Time evolution of 1〈Q̂ISM〉 of 208Pb after a perturbation by

Ĥex(t) = λQ̂ISMδ(t− t0 ) with λ = 100 MeV · fm−1/c in the LHV calculations. The

results correspond to three N3LO Skyrme pseudopotentials, SP6s, SP6m,

and SP6h, and one conventional Skyrme interaction MSL1. Reproduced from

reference [61] with permission from the American Physical Society.

The spatial coordinates of the test nucleons remain unchanged
since qISM in Equation (58) is independent of momentum. Note
that the rms radius of a nucleus, shown in Figure 3, is given by
the square root of the expectation value of Q̂ISM.

We show in Figure 4 the time evolution of 1〈Q̂ISM〉, i.e.,
the difference between the expectation values of 〈Q̂ISM〉 for the
excited state and the ground state from the LHV calculations.
The results are from one conventional Skyrme interaction MSL1
and three N3LO Skyrme pseudopotentials, SP6s, SP6m, and
SP6h. In the calculation, we set the number of ensembles NE

to 5, 000, and the initial excitation parameter λ is taken to
be 100 MeV · fm−1/c. One sees from the figure that the time
evolution of 1〈Q̂ISM〉, or equivalently the rms radius, displays
a very regular oscillation, and the rapid increase of the radius
with time that is generally seen in most BUU calculations using
the conventional test particle method does not show up here.
Besides that, since the only damping mechanism in the LHV
calculation is Landau damping, the amplitude of the oscillation
only decreases slightly. Landau damping is caused by one-
body dissipation, which is governed by a coupling of single-
particle and collective motions. It should be mentioned that in
the RPA framework, the damping also comes only from one-
body dissipation, since the coupling to more complex states,
such as 2p-2h states, is missing in RPA [86]. We obtain the
peak energy of the giant monopole resonance through Fourier
transform of the time evolution of 1〈Q̂ISM〉 shown in Figure 4.
The obtained peak energy is 13.8 MeV for SP6s, 13.6 MeV for
SP6m, 13.9 MeV for SP6h, and 13.5 MeV for MSL1. In order
to compare the result from the LHV calculation with that from
RPA, we calculate the strength function of the giant monopole
resonance using the Skyrme-RPA code of Colo et al. [87] with
the MSL1 interaction. The obtained peak energy of 14.1 MeV is
comparable to that from the LHV calculation with MSL1, and
the small discrepancy may reflect the difference between their
semi-classical and quantum natures.

3.2. Isovector Dipole Mode
The isovector giant dipole resonance (IVGDR) of finite nuclei
is the earliest observed nuclear collective excitation. Systematic
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FIGURE 5 | Same as Figure 4 but for the isovector dipole mode with

λ = 25 MeV/c. Reproduced from reference [61] with permission from the

American Physical Society.

experimental investigation of the IVGDR with photon-nuclear
reactions was conducted decades ago [88]. Recent precise
measurements of the isovector dipole response have been
performed at the RCNP for 48Ca [89], 120Sn [90], and 208Pb
[63] with inelastic proton scattering, as well as at GSI for 68Ni
[91] by using Coulomb excitation in inverse kinematics. Recently,
a low-lying mode called pygmy dipole resonance (PDR) has
been observed experimentally [92–95], and this effect has already
been studied based on the Vlasov equation [47]. The IVGDR
[54, 96, 97], PDR [98, 99], and electric dipole polarizability αD

[100–103], which are dominated by these isovector dipole modes,
provide sensitive probes to constrain the density dependence of
the nuclear symmetry energy.

For the isovector dipole mode, the external perturbation can
be written in the form

Q̂IVD = N

A

Z
∑

i

ẑi −
Z

A

N
∑

i

ẑi. (60)

The coefficients in front of the single-particle position operator
are chosen so as to keep the center of mass of the nucleus at
rest. According to Equation (56), in transport models the excited
nucleus can be obtained by changing the initial phase-space
coordinates of test nucleons:

pz →
{

pz − λN
A for protons,

pz + λ Z
A for neutrons.

(61)

We show in Figure 5 the time evolution of 1〈Q̂IVD〉 for
208Pb with the interactions SP6s, SP6m, SP6h, and MSL1 of
the LHV calculations. The number of ensembles NE and the
initial excitation parameter λ are set to 5, 000 and 25 MeV/c,
respectively. Based on the time evolution of 1〈Q̂IVD〉 shown
in Figure 5, the obtained peak energies for SP6s, SP6m, SP6h,
and MSL1 are 13.4 MeV, 13.5 MeV, 13.7 MeV, and 13.1 MeV,
respectively. The peak energy of MSL1 from the RPA calculation
is 13.3 MeV, which is comparable to that obtained from the
LBUU calculation without the NN collision term.

4. SPREADING WIDTH OF THE GIANT
DIPOLE RESONANCE AND COLLISIONAL
DAMPING

It is generally thought that in low-energy HICs with incident
energies of only a few MeV/nucleon, the NN scatterings can
be safely neglected since they are mostly blocked by the
Pauli principle. However, when it comes to the width of the
GDR, the collisional damping caused by NN scatterings is
an essential mechanism for enhancing the insufficient GDR
width obtained through the pure Vlasov calculation [55].
Nevertheless, to properly implement the damping mechanism
caused by NN scatterings in transport models requires a rather
accurate treatment of the Pauli blocking, which is a challenge
in transport model calculations. The main difficulty lies in
accurately calculating local momentum distributions fτ (Erα , Ep) in
transport models. Inaccuracy of fτ (Erα , Ep) negatively affects the
accuracy of the Pauli blocking and leads to spurious collisions,
which enhance the collisional damping and thus overestimate the
width of nuclear giant resonances. There are threemain origins of
the inaccuracy of the calculated fτ (Erα , Ep) and hence the spurious
collisions in transport models:

(1) fluctuations in calculating fτ (Erα , Ep) through Equation (28)
caused by too-small NE;

(2) a spurious temperature caused by a finite 1p in calculating
fτ (Erα , Ep) (also see reference [51]);

(3) the finite lattice spacing l causing diffusion in local
momentum space due to the averaging of different local
lattice densities in the nuclear surface region.

In order to obtain the spreading width with high accuracy from
the BUU equation, one should choose a large NE together with
sufficiently small l and1p. After a careful test, it is found [55] that
to get a convergent GDR width, l should be smaller than 0.5 fm,
1p smaller than 0.05 GeV, and NE larger than 30, 000. Further
reducing 1p and l or increasing NE leads to only a negligible
decrease of the calculated GDRwidth. Therefore, in the following
full LBUU calculations of the GDR width, we take l = 0.5 fm,
1p = 0.05 GeV, and NE = 30, 000.

The collisional damping or NN scattering can have a

significant effect on the width of nuclear giant resonances.

Figure 6 shows the time evolution of the isovector dipole

response 1〈Q̂IVD〉 of 208Pb and its strength function obtained

from the LHV calculation and the full LBUU calculation with the
free NN elastic scattering cross-section [55]. In both cases, the
N3LO Skyrme pseudopotential SP6h is adopted, and the same
initial excitation with λ = 15 MeV/c is employed (we note
that varying λ by 2/3 leads to almost the same value of the
GDR width). The dotted line in the left panel of Figure 6 is the
time evolution of the expectation value 〈0|Q̂IVD|0〉 in the ground
state of 208Pb as obtained from the LBUU calculation with the
free-space NN cross-section. The expectation value 〈0|Q̂IVD|0〉
in the ground state of 208Pb is negligible compared with that
in the GDR cases with and without NN scatterings. It is seen
that including NN scatterings significantly increases the damping
of the oscillations and leads to a much larger width. From the
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FIGURE 6 | Time evolution of 1〈Q̂IVD〉 (left) and its strength function (right) for 208Pb after a perturbation Ĥex = λQ̂IVDδ(t− t0) with λ = 15 MeV/c obtained from the

LHV (Vlasov) calculation and the LBUU calculation with the free NN cross-section σ free
NN . The dotted line in the left panel is the expectation value of Q̂IVD in the ground

state from the LBUU calculation with σ free
NN . Reproduced from reference [55] under the Creative Commons CCBY license.

FIGURE 7 | Strength function of the GDR in 208Pb after a perturbation

Ĥex = λQ̂IVDδ(t− t0) with λ = 15 MeV/c obtained from the LBUU calculation

using the FU4FP6 parameterization [107] for the in-medium NN scattering

cross-section. The strength function measured in the RCNP experiment [63] is

also shown for comparison.

strength functions, the obtained GDR width of 208Pb is 1.5 MeV
in the Vlasov calculation and 6.5 MeV in the LBUU calculation
with NN scatterings. We also notice from the right panel of
Figure 6 that the peak shifts to a higher energy when the NN
scatterings are included. The impact that the NN scatterings have
on the width indicates that they may also affect some particular
observables in low-energy HICs, such as the nuclear stopping of
HICs in the Fermi energy region, which merit further study.

Recent experiments performed at the RCNP on the
208Pb(Ep, Ep′) reaction [63] have measured the GDR width of
208Pb accurately, giving a value of 4.0 MeV. Therefore, the
LBUU calculation with the free NN elastic cross-section (which
predicts a GDR width of 6.5 MeV) significantly overestimates
the GDR width of 208Pb. It is well-known that the NN elastic

cross-section is suppressed in the nuclear medium, so the
overestimation of the GDR width with σ free

NN is understandable
since the medium effects on the NN elastic cross-section will
weaken the collisional damping and thus result in smaller GDR
width. As shown in reference [55], in order to reproduce the
experimental GDR width of 208Pb obtained at the RCNP, a
strong medium reduction of the NN cross-section is needed.
There are many parameterizations for the medium reduction
of the NN cross-section [104–107], which could be dependent
on density, collision energy, or isospin. As an example, we
choose the FU4FP6 parameterization [107] for the medium
reduction of the cross-section to calculate the strength function
and width of the GDR in 208Pb. The FU4FP6 parameterization
of the medium reduction is density-, momentum-, and isospin-
dependent; it is preferred by the nucleon induced nuclear
reaction cross-section data [107] and predicts a very strong in-
medium reduction of NN scattering cross-sections. The strength
function of the GDR in 208Pb from the LBUU calculation is
shown in Figure 7 and compared with the RCNP data [63]. The
GDR width obtained from the LBUU calculation through the
full width at half maximum (FWHM) of the strength function is
4.32 MeV, which is consistent with the value of 4.0 MeV found
in the RCNP experiment. However, the Skyrme pseudopotential
SP6h used in the calculation overestimates the peak energy by
about 1.5 MeV. Using effective interactions with a different
symmetry energy slope parameter L or different nuclear effective
masses can easily reproduce the correct peak energy [54]. In
order to compare the shape of the strength function and the
value of the width of the GDR in 208Pb, we shift the strength
function from the LBUU calculation to match the experimental
peak energy. We conclude from Figure 7 that the present LBUU
method with the FU4FP6 parameterization [107] for the medium
reduction of the NN scattering cross-section can well reproduce
the measured shape of the strength function and the width
of the GDR in 208Pb. It should be stressed that the FU4FP6
parameterization suggests a very strong in-medium reduction
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of NN scattering cross-sections, consistent with the conclusions
obtained in reference [55].

5. SUMMARY AND OUTLOOK

We have reviewed recent progress in calculating nuclear
collective motions by solving the BUU equation with the LH
method. In order to calculate the nuclear collective motions
accurately with the BUU equation, the present LBUU framework
includes the following features: (1) the smearing of the local
density is incorporated in the equations of motion self-
consistently through the lattice Hamiltonian method; (2) the
initialization of a ground state nucleus is carried out according
to a nucleon radial density distribution obtained by varying
the same Hamiltonian that governs the evolution; (3) the
NN collision term in the BUU equation is implemented
through a full-ensemble stochastic collision approach; (4) high-
performance GPU parallel computing is employed to increase
the computational efficiency. The present LBUU framework with
these features affords a new level of precision in solving the
BUU equation.

Within the LBUU framework, it has been shown that the
peak energies of the ISGMR and IVGDR obtained from the
pure Vlasov calculation are consistent with those from the RPA
calculation, and the full LBUU calculation can yield a reasonable
GDR strength function compared with the experimental data.
The peak energies can be used to extract information about the
nuclear EOS, while the width of the GDR can constrain the
medium reduction of the elastic NN scattering cross-section.

The success of the present LBUU framework in describing the
nuclear collective motions has demonstrated its capability in
treating the stability of ground-state nuclei and the nuclear
dynamics near equilibrium. Thus the present LBUU framework
provides a solid foundation for studying long-time processes of
heavy-ion reactions at low energies, such as heavy-ion fusion
and multi-nucleon transfer reactions at near-barrier energies,
based on solving the BUU equation. The significant effects of the
collisional damping on the width of the nuclear GDR indicate

that NN scatterings should play a crucial role in nuclear collective
dynamics with small-amplitude oscillations.

The present LBUU framework has been shown to significantly
reduce the uncertainties in transport model simulations of HICs
in various respects, especially with regard to the stability of the
nuclear ground-state evolution and the accurate treatment of NN
scatterings as well as the Pauli blocking. This is very important for
various studies of HICs based on transport model calculations,
such as the extraction of the nuclear EOS and the in-medium
NN scattering cross-sections. Further studies of HICs from low
to intermediate energies within the present LBUU framework are
in progress, and it is expected that more reliable information
on the nuclear EOS, the in-medium NN scattering cross-
sections, and the effective nuclear interactions will be gained in
near future.
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Nuclear fission is a fascinating field of research that involves large-amplitude

collective dynamics of a microscopic many-body system. Specifically, the process

of spontaneous-fission decay can only be explained within the quantum tunneling

phenomenon. The present review discusses recent advancements in the theoretical

understanding of spontaneous fission. These concern precise prediction of the

spontaneous fission observables like fission lifetime and distribution of fragment yields.

The theoretical developments presented here are based on a coherent coupling between

the adiabatic collective dynamics and the static inputs obtained from the nuclear energy

density functional formalism.

Keywords: spontaneous fission, density functional theory, heavy and superheavy nuclei, fission fragment mass

distribution, quantum tunneling

1. INTRODUCTION

Nuclear spontaneous fission (SF) is a unique decay mechanism that has crucial applications in both
basic and applied sciences [1–3]. Particularly, the stability of very heavy and superheavy nuclei
strongly depends on the SF probability [4–6]. Although superheavy nuclei predominantly decay
via α-emission at the beginning of a decay chain, SF leads to terminate the chain. This type of decay
sequences are experimentally observed for isotopes of Fl and Ts [7, 8]. Moreover, in comparison
to α-emission, SF is predicted to be the preferred decay mode for neutron-rich superheavy nuclei
[5, 9, 10]. In the case of nuclear astrophysics, SF strongly impacts the abundances of heavy elements
in stars by participating in the r-process recycling mechanism [11–13]. Specifically, distributions
of fission-fragment yields from different fission modes (SF, beta-delayed fission, and neutron-
induced fission) are essential components of the r-process abundances [9, 14–19] and, therefore,
very accurate prediction of these yields is required to improve the r-process network calculations.
Further, as suggested in a recent study [20], the precise estimation of fission yields is indispensable
for a better understanding of the chemical evolution of r-process elements produced in binary
neutron-star mergers. In the application frontier, SF data are important to calibrate the nuclear
material counting techniques relevant to power generation and international safeguards [21, 22].
However, measurements in actinide nuclei are restricted due to safety issues. Therefore, for both
basic science and applications, predictive modeling of SF observables is of utmost interest. The
present scenario and the prospects of fission theory are described in a recent review [23].

In the SF process, a fissioning nucleus undergoes quantum tunneling through a single or
multiple potential barriers generated by the coherent motion of strongly interacting nucleons.
Ideally, the time-dependent density functional theory (TDDFT) provides the most realistic
microscopic framework to deal with such large amplitude collective dynamics [24–27]. Specifically,
in the characterization of fission yields, nuclear dissipation plays a crucial role near the scission
configuration and would be best accounted for by TDDFT. Albeit very promising, TDDFT poses
several limitations in its application to SF. Primarily, the quantum tunneling is energetically
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forbidden within this semiclassical approach. Besides, current
implementations of TDDFT simulate only a single fission path
for a given initial condition; reconstruction of a full yield
distribution requires large-scale Monte Carlo sampling, which
is beyond the current computational capabilities. The exascale
computing platforms may open up the avenues to overcome such
restrictions [23].

In general, the collective dynamics of a nucleus is believed
to be a much slower process than the random motion of
the constituent nucleons. Consequently, majority of the fission
models are implemented within the adiabatic approximation that
segregates the collective degrees of freedom from the intrinsic
coordinates. The same approach is adopted in a static nuclear
density functional theory (DFT) based model [28], where the
collective motion is simulated by incorporating the DFT inputs
within an appropriate equation of motion. Specifically, in case of
SF, the dynamics of a fissioning system can be divided into two
successive steps as depicted in Figure 1 [29]. In the first step, the
system tunnels through a multidimensional space of collective
coordinates. This process is mainly governed by the potential
energy profile and the collective inertia, which is often calculated
within the adiabatic time-dependent Hartree-Fock-Bogoliubov
(ATDHFB) formalism [30, 31]. The region beyond the outer
turning point (“out” in Figure 1) is energetically accessible
and the time-evolution in this space can be followed with a
simple classical prescription, e.g., the Langevin dynamical model.
Finally, the system breaks into two fragments at the scission
configuration. The dynamics in the second phase involves the
collective inertia and the dissipative forces as well. The SF half-
life is primarily decided by the tunneling phase as, for most of
the relevant nuclei, it is significantly slower than the subsequent
propagation outside the barrier. The second dynamical phase
controls the fission fragment properties like yield and total kinetic
energy (TKE) distributions.

FIGURE 1 | Variation in potential energy calculated along the most-probable

fission path of 240Pu. The region marked as WKB is classically forbidden as the

fission excitation energy E0 is less than the potential energy. Shape evolution:

the collective action is minimized between the turning points “in” and “out” by

using the WKB method and, from “out” to scission, dynamics is governed by

Langevin dynamics. The figure is adapted from Sadhukhan et al. [29].

Apart from the standard inputs discussed in the previous
paragraph, paring correlations play a critical role in controlling
the SF lifetime and the connected fission pathway. The individual
nucleonic motion leads to shell structures that guide both the
nuclear shape and the potential energy along a fission path.
Moreover, crossings of single-particle levels can modify the
collective inertia through associated changes in the single-particle
configurations [32–34]. The residual interaction among these
crossing configurations is strongly influenced by the pairing
force. Precisely, a larger pairing gap1 helps the collective motion
to be more adiabatic [35–40]. The enhancement of pairing
fluctuations along the fission path was first postulated in Moretto
and Babinet [41] by using a simple parabolic potential. In fact,
the collective inertia and potential energy show opposite trends
as 1 changes. The potential energy increases as 1 deviates
from the static value 1s, obtained from the self-consistent
energy minimization procedure. In contrast, the collective inertia
varies as 1−2 [35, 42–45] and, therefore, the dynamic 1,
corresponding to the minimum collective action, may differ from
1s. This suggests that the parameter 1 should be implemented
as an independent dynamical variable to determine the least
action trajectory. Indeed, a reduction in the collective action
due to pairing fluctuations is observed in many macroscopic-
microscopic studies [46–49]. In addition, the pairing fluctuations
are recently treated as dynamical variables in microscopic models
based on the DFT formalism [50, 51].

2. A MODEL FOR SPONTANEOUS FISSION
HALF-LIFE

2.1. Fission Half-Life
The SF mechanism involves a very wide range of timescales
depending on the choice of the fissioning nucleus. For example,
the observed SF half-life for actinides varies from a fewms to 1020

yrs. Therefore, it is impractical to develop a SF model based on
the real-time quantum dynamics. The most common approach
for the calculation of SF half-life is rooted in the one-dimensional
WKB approximation to the quantum tunneling process. The
corresponding half-life can be expressed as [52, 53], T1/2 =
ln 2/(nP), where n is the rate of collision on the fission barrier
and P is the barrier penetration probability given by

P =
(

1+ exp [2S(L)]
)−1

. (1)

In the above equation, S(L) is the action integral calculated along
a predefined fission path L(s) in the multidimensional collective
space. The expression for S(L) is given by,

S(L) =
∫ sout

sin

1

h̄

√

2Meff(s)
(

V(s)− E0
)

ds, (2)

where V(s) and Meff(s) are the potential energy and collective
inertia, respectively, along the path L(s). Here, sin and sout
indicate the classical turning points defined by V(s) = E0; E0
being the zero-point energy at the ground state configuration.
We can define different fission paths [L(s)] by choosing different
values of qi(s) along the path’s length s. The minimum of S(L)
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corresponds to the most probable fission path [35, 54]. TheMeff

can be expressed in terms of the multidimensional collective
inertia tensorMij(q1, q2, ...) as [52, 53, 55]:

Meff(s) =
∑

ij

Mij(q1, q2, ...)
dqi

ds

dqj

ds
. (3)

Generalization of the WKB method to several dimensions is
recently recommended as a future goal [23].

The potential energy V is obtained by subtracting the
vibrational zero-point energy EZPE [56] from the Hartree-
Fock-Bogoliubov (HFB) energy EHFB(= 〈ĤHFB〉). In the DFT
formalism, EHFB can be computed self-consistently by solving the
constrained HFB equations for the Routhian:

Ĥ′ = ĤHFB −
∑

ij

λijQ̂ij −
∑

τ=n,p

(

λτ N̂τ − λ2τ1N̂2
τ

)

, (4)

where ĤHFB, Q̂ij, and N̂τ represent the HFB hamiltonian,
the mass multipole moment operators, and particle-number
operators for neutrons (τ = n) and protons (τ = p), respectively.
The Lagrange multipliers λ2τ can be used to control the particle-
number fluctuation terms: 1N̂2

τ = N̂2
τ − 〈N̂τ 〉2. Pairing

correlations in nucleons are interconnected to the particle-
number fluctuations [57, 58] and, hence, expected to be stronger
for λ2τ > 0, compared to its static value obtained with λ2τ = 0.
Further, the overall magnitude of pairing correlations is linked to
the average pairing gap [31, 59]. Therefore, λ2n and λ2p can be
utilized as dynamical coordinates [50] to scan the configuration
space over a wide range of 1. It is indeed more physical to select
the isoscalar (λ2n + λ2p) and the isovector (λ2n − λ2p) variations
as independent coordinates. Consequently, a one-dimensional
path L(s) can be identified with the collective variables {qi} ≡
{Q20,Q22,Q30, ..., λ2n + λ2p, λ2n − λ2p} as functions of path’s
length s. In a recent study [50], the role of dynamical isovector
pairing is found to be negligible and, therefore, the associated
coordinate λ2n − λ2p can be set to zero. I denote λ2n + λ2p as
λ2 in the subsequent discussions. Also, I should mention that an
appropriate normalization scheme for all the coordinates must be
adopted to make ds dimensionless in Equation (2) [50].

Minimum-action paths can be simulated by using two
different techniques named as the dynamic-programming
method (DPM) [52, 56] and the Ritz method (RM) [53, 56].
In DPM, the dynamical space is first discretized into a multi-
dimensional mesh. Then, at any intermediate step, minimum
action paths are calculated for all the mesh points on a
hypersurface perpendicular to the elongation coordinate (Q20).
Calculation is propagated along the Q20 direction and finally the
hypersurface of the desired outer-turning point is reached. In this
method, path lengths are further divided into smaller segments
whenever the distance between two adjacent mesh points is large.
This is essential to ensure numerical accuracy as the collective
inertia may vary quite sharply in certain regions of the collective
space. In the case of RM, trial paths are defined in terms of
Fourier series of dynamical coordinates and the coefficients
of different Fourier components are obtained by minimizing

the action. Although RM is easier to implement numerically,
efficiency of this method depends on the number of Fourier
components needed to reproduce the actual fission path. On the
other hand, DPM is free of such limitations.

The HFB energy EHFB can be calculated by employing either
covariant or non-relativistic energy density functionals (EDFs).
In the case of non-relativistic EDFs, the SkM* parametrization
[60] of the zero range Skyrme functionals is commonly used in
fission studies together with the density-dependentmixed pairing
interaction [61], where the pairing strengths are calculated locally
by reproducing the odd-even mass differences around 240Pu [62].
The parameters of this parametrization are benchmarked for
large deformations relevant to fission. Recent optimizations of
the Skyrme functionals are performed within the UNEDF project
[63] and one of its variants, UNEDF1HFB, Schunck et al. [64]
is successfully applied to fission works [65–67]. Apart from
these, other microscopic interactions like the finite-range Gogny
interaction [68–70] and the Barcelona-Catania-Paris-Madrid
EDFs [9, 69, 71, 72] are widely used in the SF calculations. Despite
different groups of EDFs exist, appropriate benchmarking with
the experimental data are performed to ensure the consistency
of model predictions. For example, it is recently shown that the
SF yields of the superheavy 294Og nucleus are robust against
different choices of EDFs [66]. Covariant EDFs [51, 73–78]
based frameworks for large-amplitude collective dynamics are
becoming more accessible with the increasing computational
resources. Interestingly, SF pathways, calculated within covariant
EDFs [51, 74], are found to be in close agreement with the
non-relativistic results.

2.2. Calculation of Fission-Fragment Yields
It is desirable to use the TDDFT framework to study the
evolution of a fissioning system in the collective space beyond
the outer-turning point (Figure 1: region in-between “out” and
“scission”). However, as pointed out in a recent study [79],
the dynamics near scission is strongly dissipative and existing
versions of TDDFT are not adequate since they are lacking
fluctuations in collective coordinates. Also, an advanced TDDFT
framework is recently proposed that incorporates fluctuations
to generate TKE and yield distributions of fission fragments. In
this approach, density fluctuations are assumed to prepare an
ensemble of different configurations outside the barrier region
and the subsequent propagation is followed with the standard
TDDFT [80]. However, the fluctuations are considered in a
somewhat restricted configuration space and a more exhaustive
calculationmay require huge computations. A feasible alternative
to TDDFT is the time-dependent generator coordinate method
(TDGCM) [77, 81–84]. However, in this approach, the Gaussian
overlap approximation [81, 85] is additionally assumed to
derive simple expressions for the parameters of the collective
Hamiltonian. As a result, structural details like large fluctuations
in the collective inertia are diluted [86]. It is also pointed out
in the recent proposal [23] by Bender et al. that a stochastic
mean-field approach with large fluctuations is more suitable for
calculating fragment yields. Furthermore, the requirement of
strongly dissipative dynamics for yield distributions of excited
nuclei is well-established [87].
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The stochastic Langevin dynamical model is a plausible
option to avoid all the above-mentioned difficulties. It is quite
straightforward to implement this model even in a complicated
multidimensional collective space. In Langevin dynamics, the
intrinsic motion of the nucleons is assumed to form a heat bath.
The collective coordinates interact with the heat bath through
random and dissipative forces. This decoupling of the collective
coordinates from the internal degrees of freedom is performed
under the adiabatic approximation. Fluctuations (random forces)
introduce stochasticity in the collective dynamics and dissipation
hinders the motion by transferring collective energy to the
heat bath. Also, the collective motion experiences the standard
conservative force exerted by potential energy. First, a family
of SF probabilities P(sout) is obtained on the hypersurface of
outer turning points sout. The hypersurface should contain mass
octupolemomentQ30 as one of the coordinates since this variable
defines different realizations of the fragment mass and charge.
Subsequently, fission paths are computed for all the souts by
solving the Langevin equations [88, 89]:

dpi

dt
= −pjpk

2

∂

∂qi
(M−1)jk −

∂V

∂qi
− ηij(M

−1)jkpk + gijŴj(t),

(5)

dqi

dt
= (M−1)ijpj,

where pi is the momentum conjugate to qi. ηij and gij represent
the dissipation tensor and the strength of the random force,
respectively, and these two quantities are connected through
Einstein’s fluctuation-dissipation theorem:

∑

k gikgjk = ηijkBT.
Here, T is the temperature of the nucleus. It is calculated at each
instant of the Langevin evolution by assuming the nucleus as
a non-interacting Fermi gas and the resulting formula is T =√
E∗/a (T in MeV); a being the level density parameter and

E∗ = V(sout) − V(s) − 1
2

∑

(M−1)ijpipj. In the case of SF
studies, a can be approximated as a shape independent constant
given by a = A/10 MeV−1 [29, 66]. The stochastic variable
Ŵj(t) signifies the Markovian nature of the random force with
the time correlation property: 〈Ŵk(t)Ŵl(t

′)〉 = 2δklδ(t − t′). The
excitation energy E∗ increase as the system slides down to lower
potential resulting stronger effects from fluctuations. The scission
configuration is defined with the condition that the number of
neck-particles (Nq) in the fissioning system is less than a critical
value [28]. Each point on the scission hypersurface uniquely
identifies the particle numbers of two fission fragments and these
numbers can be calculated by integrating the nucleonic density
distributions [62]. Owing to the random force, an ensemble of
Langevin events with the same initial configuration (i.e., same
sout) yields different fission pathways. Finally, the charge and
mass distributions of the yields can be extracted by counting
the number of events terminating at a given fragmentation. The
numbers are weighted with P(sout) to account for the tunneling
phase. Further, to incorporate the uncertainties in Nq, Langevin
yields are convoluted with Gaussian functions [90].

Although the Langevin model does not explicitly simulate the
time evolution of nucleonic degrees of freedom, it incorporates
all the essential microscopic effects through the input quantities

like PES and collective inertia which are obtained from effective
nucleon-nucleon interactions. A special characteristic of the
Langevin formalism is the presence of fluctuating and dissipative
forces. In the case of induced fission, the importance of
fluctuations and dissipation is well-established [87, 91] as the
compound system is produced at least with a reasonable amount
of excitation energy. In SF, the ground-state zero-point vibration
is the initial source of excitation energy and it is inadequate
to trigger any noticeable randomness in the collective motion.
However, for all the relevant nuclei, potential energy drops
rapidly below its ground state value as the deformation grows
beyond the tunneling region. Consequently, nuclei acquire
sufficient excitation energy that enhances fluctuations to a
considerable level. In the following section, I have demonstrated
the impact of the random force in Equation (5) on SF pathways.

2.3. Nucleonic Localization Function and
Pre-fragments
For a better understanding of the structural evolution in a
fissioning nucleus, nucleonic localization functions (NLF) are
calculated [25, 92, 93]. NLF measures the probability of finding
two nucleons with the same spin σ and isospin q at the same
spatial localization. It is computed as described in references
[93, 94]:

Cqσ =



1+
(

τqσ ρqσ − 1
4 |∇ρqσ |2 − j2qσ

ρqσ τTFqσ

)2




−1

, (6)

where ρqσ , τqσ , jqσ and ∇ρqσ are the particle density,
kinetic energy density, current density, and density gradient,
respectively. The Thomas-Fermi kinetic energy density τTFqσ =
3
5 (6π

2)2/3ρ
5/3
qσ is introduced as a normalization parameter. A

value of C ∼ 1 indicates a large nucleon’s localization, i.e., a
low probability of finding two nucleons with the same quantum
numbers at the same spatial location. On the other hand,
C = 1/2 corresponds to the limit of a homogeneous Fermi
gas. The concept of NLF was originally applied to characterize
chemical bonds in electronic systems. In nuclear physics, it is
first used to visualize the cluster structures in light nuclei [94].
As illustrated in references [93, 94], the clustering of nucleons
inside a nucleus can be predicted more precisely by NLFs in
comparison to the scalar density distributions given by ρqσ .
This is because the spatial distributions of NLFs exhibit pattern
of concentric rings that reflect the underlying shell structure,
but such patterns are averaged out in the density distributions.
Recent studies [66, 67, 92, 93] suggest that NLFs can be utilized
to identify prefragments in a fissioning nucleus. The method is
described in Sadhukhan et al. [92] for a typical case of elongated
240Pu. The corresponding NLFs are shown in Figure 2. Evidently,
the parts of NLFs for z ≥ zL and z ≤ zH contain ring-like
patterns delineating the presence of localized nucleons inside
the deformed 240Pu. This finding is further extended to define
prefragments by integrating the densities of the localized portions
and doubling the result to account for reflection symmetry.
As replicated in Figure 2, the compound nuclear NLFs were
found to be in remarkable agreement with the ground-state
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FIGURE 2 | Right of each panel: neutron (a) and proton (b) localization

functions in a deformed configuration on the fission path of 240Pu. Left of each

panel: NLFs of the localized prefragments, 80Ge and 128Sn, as indicated.

Vertical lines are symmetry axes. Maximum extensions of the NLFs along the

radial coordinate r⊥(z) are marked with horizontal dotted lines: z = zL and

z = zH. The figure is adapted from Sadhukhan et al. [92].

NLFs of the predicted prefragments (128Sn and 80Ge) [92].
Similarly, prefragments are predicted successfully by comparing
the scalar densities [95, 96]. Here, I should mention that the
notion of prefragments is a purely theoretical concept as it
cannot be measured experimentally. Moreover, other definitions
of pre-fragment exist [25, 97]. Therefore, the validity of a pre-
fragment based description depends on its ability to reproduce
the experimental observables.

3. RESULTS ON DIFFERENT ASPECTS OF
SPONTANEOUS FISSION

Calculation of SF observables is a very active field of research
as the theoretical capability is increasing. In parallel, appropriate
sets of fission observables are required to benchmark theoretical
models [98]. In the rest of this review, I will discuss selected
results from the recent theoretical achievements pertinent to both
of these aspects.

3.1. Effect of Collective Inertia in Fission
Pathway
In recent studies [56, 74], it is demonstrated that the SF
pathways are strongly influenced by the characteristics of the
collective inertia. The microscopic collective inertia is usually
calculated within the ATDHFB formalism [30, 31] and it is
commonly known as the cranking inertia MC [86]. An exact
calculation ofMC requires derivatives of the particle and pairing
densities with respect to the dynamical coordinates. These can
be achieved by employing the three-point or a higher-order
Lagrange formula [99, 100]. On the other hand, in case of the
commonly used perturbative cranking inertia MCp

[86], these

FIGURE 3 | Square-root-determinant of inertia tensors (A) |MC|1/2 and (B)

|MCp |1/2 (both in h̄2 MeV−1 b−2/1,000) calculated for 264Fm. The figure is

modified from Sadhukhan et al. [56].

derivatives are reduced to matrix elements of mass multipole
moments (Qij). Figure 3 demonstrates the variations of square-

root-determinants of bothMC andMCp
calculated for 264Fm in

a two-dimensional collective space of (Q20, Q22). As discussed in

1,
∣

∣MC
∣

∣

1/2
shows large fluctuations as an outcome of crossings

in single-particle levels at the Fermi energy [39]. To affirm this,
single-particle energies for 264Fm are displayed in Figure 4 along
two straight lines defined by Q22 = 0 and Q20 = 61 b.
Multiple level crossings near the Fermi energy are clearly visible
at deformations where MC changes sharply. Similar features
of the inertia tensor are observed within the covariant EDF
formalism [74].

The dynamical minimum-action paths (or equivalently most
probable paths), obtained with MC and MCp

, are drawn
in Figure 5. The same figure also shows the static path
that traverses the minimized collective potential [56]. Due
to strong dynamical hindrance by the perturbative inertia
the corresponding minimum-action path avoids large triaxial
shapes. MCp

varies rather smoothly along both the deformation
coordinates and, therefore, the minimum in the action integral
in Equation (2) is achieved by minimizing the path-length.
This weaker dependency on the triaxial shapes, imposed by
collective inertia, is also observed in older fission studies [101–
105]. On the other hand, due to localized large variations in
MC, the non-perturbative path passes through the triaxial shapes
that are fairly close to the static pathway. Apparently, both
the non-perturbative and static trajectories always adhere to
a configuration that tries to minimize the density of single-
particle levels on the Fermi energy by avoiding level crossings.
In short, the underestimation of structural details in MCp

results in an artificial restoration of axial symmetry, which
is broken in both static and non-perturbative approaches.
This conclusion is also verified within the relativistic mean-field
formalism [74]. Although the inertia strongly influences the
topology of the minimum action path near the first fission barrier
in actinides, it is rather simple in the space outside the fission
isomer. Here, the SF path usually follows the minimum distance
from a mass-symmetric configuration to the nearest outer
turning point [29] (shown in the following figure, Figure 8).
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FIGURE 4 | Variation in single-particle energies of neutron (top) and proton

(bottom) calculated for 264Fm along Q20 (left, at Q22 = 0) and Q22 (right, at

Q20 = 61b). The Fermi energies are marked with thick dash-dotted lines. The

arrows indicate regions of level-crossings near Fermi energy. The figure is

adapted from Sadhukhan et al. [56].

FIGURE 5 | Minimum-action (or most-probable) fission paths of 264Fm [56],

calculated for MC (solid line) and MCp
(dashed line) using the DPM

technique. cranking inertia using DMP technique. The static pathway is shown

by the dash-dotted line. The loci of turning points are marked by thick solid

lines. The PES (in MeV) is plotted for reference. The figure is modified from

Sadhukhan et al. [56].

Most importantly, apart from modifying the fission pathways,
collective inertia strongly impacts the fission lifetime. The SF
half-life changes by orders of magnitude depending on the choice
of collective inertia, even for the same fission trajectory [56].
For example, values of T1/2 and S(L) corresponding to different
selections of the fission path and inertia are given in Table 1.

3.2. Role of Pairing Correlations
In the previous subsection, I demonstrated that a fissioning
system tries to always follow single-particle configurations
with comparatively lower level density. This can be fulfilled
by avoiding the regions of level-crossing. In contrast, pairing
correlations increases with the single-particle level density and, as
I have discussed in 1, it affects the potential and collective inertia

TABLE 1 | Values of the action integral (2) and half-lives for different spontaneous

fission pathways shown in Figure 5.

Path S(L) log(T1/2/yr)

Static + MC 23.4 −7.7

Static + MCp
20.8 −10.0

Dynamic + MC 19.1 −11.4

Dynamic + MCp
16.8 −13.4

FIGURE 6 | Projections of (A) potential energy (in MeV) after subtracting the

ground state value, and (B) |MC|1/3 (in h̄2 MeV−1/1,000). Both are calculated

for 264Fm in the three-dimensional space of (Q20,Q22, λ2) and then projected

on the Q22 = 0 plane. The figure is modified from Sadhukhan et al. [50].

in the opposite way. The potential energy use to increase with
pairing fluctuations, while the collective inertia diminishes as the
pairing correlations become stronger than self-consistent values.
The least-action path is determined dynamically by the interplay
between these two inverse effects. Typical nature of a PES and
MC along the pairing coordinate is shown in Figure 6 [50].
It portrays clear evidence of the opposite tendencies discussed
above. Minimum action paths for two different nuclei are
calculated in Sadhukhan et al. [50] by including the pairing
degrees of freedom. Corresponding projections onto the
(Q20,Q22) and (Q20, λ2) planes are shown in Figure 7. Also,
two-dimensional (2D) fission paths calculated without pairing
fluctuations are compared in this figure. In the case of
264Fm, the three-dimensional (3D) pathway, calculated with
pairing fluctuations, closely follows triaxial configurations of
the corresponding 2D path. However, this scenario changes
for 240Pu, where the difference between the axial and triaxial
barrier-heights is small and, as a result, pairing correlations could
enforce the axial symmetry of the path in the region between
the ground state configuration and superdeformed fission
isomer. Nevertheless, irrespective of this system dependence,
the pairing fluctuations are substantially enhanced in both the
cases. Therefore, the dynamic coupling between pairing and
deformation coordinates can produce dramatic changes in the SF
process. Relativistic mean-field calculation [51] for Fm isotopes
also shows a similar behavior of the fission pathway under the
influence of dynamic paring fluctuations. Moreover, owing to
the associated reduction in the action integral, the calculated SF
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half-life decreases by as much as three decades. These strong
dynamical effects, predicted for SF, are however expected to
disappear at higher excitation energies of the compound system.
The subsection is concluded by demonstrating the average
pairing gaps (1n and1p), in Figure 8, along the SF path of 240Pu
[29]. Although the dynamic (3D) path overlaps with the static
pathway in the (Q20,Q30) space, average pairing gaps are always
higher in case of the 3D path except near the outer turning line
where pairing correlations are quenched.

3.3. Fission-Fragment Yield Distributions
Stochastic Langevin dynamics is widely used to study fission
fragment yield distributions of excited compound systems [89,
91, 106, 107]. Only recently, it is successfully applied to calculate
SF yields [29]. The detailed formalism is described in 1. Since
the dynamics is stochastic in nature, it is difficult to understand

FIGURE 7 | Thick solid lines: projections of the three-dimensional (3D)

minimum-action paths for 264Fm (left) and 240Pu (right) on the

(Q20, λ2;Q22 = 0) (top) and (Q20,Q22; λ2 = 0) (bottom) planes. Thick dashed

lines: two-dimensional (2D) paths computed without pairing fluctuations. The

PES corresponding to Q22 = 0 (top) and static pairing, i.e., λ2 = 0, (bottom)

are shown for reference. The figure is modified from Sadhukhan et al. [50].

the time evolution from a single fission event. Therefore, the
concept of effective fission path (EFP) is devised in Sadhukhan
et al. [92] for a better realization of the post-tunneling dynamics.
First, for a given initial configuration, the local density of
Langevin trajectories [108] is computed by counting the number
of tracks in a small volume element of the collective space.
Such distributions for two initial configurations are presented in
Figure 9. Evidently, these two distributions are quite distinct in
nature. The spreading of distribution is mainly governed by the
interplay between the conservative and fluctuating forces. As I
explained in 1, fluctuations become dominant near the scission
and it leads to broader trajectory distributions.

Next, the EFP is calculated by tracing the maxima in a
trajectory-density distribution. Effectively, an EFP guides to
the most probable fragmentation for the associated initial
configuration. Eleven distinct EFPs are calculated in Sadhukhan
et al. [92] for the representative system 240Pu, and these
are further shown in Figure 9. Also, the partial contribution

FIGURE 9 | (A) The density of Langevin trajectories for two different initial

configurations and the corresponding EFPs in the (Q20,Q30) plane. The loci of

outer turning-points land scission configurations are shown by dashed and

dash-dotted lines, respectively. (B) Eleven EFPs marked according to their

initial coordinates. The figure is adapted from Sadhukhan et al. [92].

FIGURE 8 | (A) The 3D dynamic path (solid line), projected on the λ2 = 0 surface, and the 2D static path (dashed line) in the two considered regions (Reg1:

(Q20,Q22, λ2), Reg2: (Q20,Q30, λ2)) of the collective space. The reason for this choice of 3D-3D configuration space is explained in Sadhukhan et al. [29]. The contours

of inner and outer turning points are shown by dash-dotted lines. (B) Average pairing gaps, for neutrons (n) and protons (p), along the 3D dynamic (with pairing

fluctuations) and 2D static (λ2 = 0) pathways shown in (A). The figure is modified from Sadhukhan et al. [29].
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of each EFP to the total mass distribution is extracted by
weighing the corresponding distribution with the appropriate
tunneling probability. All the eleven partial mass distributions are
plotted in Figure 10 along with the overall distribution. Due to
higher tunneling probability, the peak region of the cumulative
distribution is mostly contributed by EFPs close to the most
probable path (EFP 5). On the other hand, contributions are
negligible from those EFPs which originate far away from the
most-probable outer turning point. For example, EFP 1 and EFP
11 hardly alters the total mass distribution. Most interestingly,
certain EFPs (e.g., EFP 3 and EFP 4), associated with high
tunneling probability, end up at large mass asymmetries and
these constitute the tail part of the yield distribution. Such fission
trajectories can only appear due to the presence of the random
force in the Langevin dynamics.

In addition to the isolated yield distributions corresponding
to either mass or charge of the fission fragments, DFT inputs
enable the Langevin model to predict the correlation between
mass and charge numbers of the fragments. In a recent study
[66], it is calculated for the heaviest discovered element 294

118Og.
Three different EDFs are used for this purpose and, as shown in
Figure 11, all of them predict a strongly asymmetric fission, or
cluster emission, to be the dominant decay mode for this nucleus.

3.4. Uncertainties in Yield Distributions
It is necessary to estimate the uncertainties due to different model
parameters [112]. In case of SF yield distributions, predicted
within the hybrid WKB + Langevin method, uncertainties are
primarily associated to the three input quantities: ground state
zero-point energy E0, dissipation tensor ηij in Equation (5), and
scission configuration which is defined with the neck-particle

FIGURE 10 | (A) Partial mass distributions for different EFPs of Figure 9B as

indicated. The distribution corresponding to the most-probable fission path,

i.e., EFP 5, is shown by a thick line. (B) The mass distribution for the SF of
240Pu obtained by counting contributions from all the Langevin trajectories, in

addition to the eleven selected EFPs. The experimental data [109, 110] are

shown by circles that include mirror points (open circles). Only the

heavy-fragment parts are plotted in both (A,B). The figure is partially adapted

from Sadhukhan et al. [92].

number Nq. Moreover, the use of a particular EDF may induce
additional bias in the results. In practice, the SF half-life is
reproduced by tuning the free parameter E0 [5, 29] that effectively
shifts the location of the inner and outer turning-points. As a
result, both P(sout) and fission paths are modified. Secondly,
the fragment properties are expected to strongly depend on the
scission configuration. However, no method exists that defines
the scission configuration uniquely within the static adiabatic
description of fission. Usually, different values of Nq are used to
identify the scission hypersurface in a multidimensional space.
In the case of ηij, a microscopic theory is still missing and it is
considered as an adjustable parameter in the SF model [29, 66].
Considering all these limitations, a sensitivity analysis of the
yield distributions with respect to all the model parameters is
essential. Calculations are performed in Sadhukhan et al. [29]
to illustrate the uncertainties in the yield distributions produced
by E0, Nq, and ηij. As demonstrated in Figure 12, the mass and
charge distributions of 240Pu are found to be robust against
wide variations of all these input quantities. A similar response
to the dissipation tensor is observed for the yield distributions
of 294

118Og [66]. Further, as plotted in Figure 13, both mass and
charge distributions show weak dependency on the choice of the
EDF and also on the dimensionality of the configuration space.

FIGURE 11 | Fission fragment distributions for 294
118Og176 obtained in

UNEDF1HFB (A), D1S (B), and SkM* (C) EDFs using the non-perturbative

cranking ATDHFB inertia and a standard value of dissipation strength [66].

Known isotopes are marked in gray [111]. Dotted lines indicate the magic

numbers: 50, 82, and 126. The figure is adapted from Matheson et al. [66].
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FIGURE 12 | Mass (left) and charge (right) distributions of heavier fragment in

the SF of 240Pu. The symbols are experimental values as shown in Figure 10.

The shaded regions describe uncertainties in the yield distributions

corresponding to different values of the model parameters: E0 (narrow red

band), dissipation tensor (wider cyan band), and scission configuration (linear

hatch pattern). See Sadhukhan et al. [29] for details. The figure is adapted

from Sadhukhan et al. [29].

FIGURE 13 | Predicted heavy-fragment mass and charge yields of 294Og

obtained by employing UNEDF1HFB functional in the 4D (Q20,Q22,Q30, λ2) and

the 2D (Q20,Q30) spaces, and in the 2D (Q20,Q30) space for other functionals

(SkM∗ and D1S). The figure is adapted from Matheson et al. [66].

Therefore, the hybrid model, with reasonable values of the input
parameters, can be used for a reliable prediction of the SF
yields. Of course, theoretical progresses toward a more precise
calculation of input parameters is required [23].

3.5. Prediction of Fragments From
Localized Pre-fragment
I have already argued how a pre-fragment can be defined from
NLFs (see section 1). Properties of such prefragments are needed
to be scrutinized very carefully to validate their applicability
in predicting the fission fragments. To this end, the particle
numbers of the prefragments are extracted along the EFPs shown
in Figure 9 [92]. The results are reiterated here in Figure 14

and it displays that the pre-fragment particle-numbers remain
remarkably stable as the deformation increases toward scission.
Moreover, variations in these numbers, indicated by the bands
in Figure 14, become fairly narrow (< ±2 particles) at large
deformations. This suggests that the prefragments formed in

FIGURE 14 | The ranges for the number of localized neutrons (A) and protons

(B) for heavier (NH, ZH ) and lighter (NL, ZL) prefragments as a function of the

configurations along the EFPs marked in Figure 9B by circles. The magic

numbers are marked by horizontal dotted lines.

an initial configuration of the fissioning nucleus hardly change.
This early development of the prefragments is a manifestation
of the freeze-out of single-particle energies along the fission
pathway [25, 39, 56, 113], since the system tries to retain its
microscopic configuration by escaping the level crossings. The
concept is further extended to predict the particle numbers
of the fission fragments. This is accomplished by distributing
the neck nucleons to each pre-fragments following a statistical
prescription. The predicted yield distributions are found to agree
well with the experimental data [67].

This fast and efficient method of fission-fragment
identification will be very useful in the r-process network
calculations that predict the astrophysical abundances of more
than half of the elements heavier than iron. In a very neutron-rich
environment, such at those exists in the ejecta of neutron-star
mergers, neutron-induced and β-delayed fission are highly
probable. It is speculated that nuclear fission terminates the
r-process paths near A ∼ 300. The location of the r-process
endpoint can significantly influence the final yield distribution
[114]. Since these superheavy nuclei can not be studied with a
standard laboratory procedure, reliable theoretical predictions
are of utmost interest. Hence, the density functional formalism,
which is deeply rooted in the underlying nucleon-nucleon
interactions, provides an ideal platform. Moreover, there can
be multiple fission cycles along the r-process path and these
cycles involve a wide variety of fissioning nuclei. Therefore, the
theoretical method needs to be very time-efficient. The model
prescribed in Sadhukhan et al. [67] fulfills both the requirements.
In parallel, precise measurements of fission fragment yield
distributions of neutron rich actinides and heavier elements may
help to minimize the theoretical uncertainties associated with
model parameters.
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4. CONCLUSION

In this review, I have elaborated on a successful theoretical
model for the spontaneous fission yields and lifetime. It
is developed in a hybrid manner by combining the WKB
approximation for quantum tunneling with the stochastic
Langevin dynamics. Several recent advancements to enhance
the predictive capabilities of this hybrid model are presented.
In particular, I elucidated the intricate role of collective inertia
and pairing correlations in guiding the dynamics during the
tunneling phase. The inevitable presence of fluctuation and
dissipation in the final stage of the fission dynamics is explained
in connection with the calculation of fragment yields. This
approach could be a prospective candidate for large-scale
applications to a wide range of fissioning nuclei. In parallel,
further improvements in different aspects of the model are in
queue [23].

Although an accurate prediction of the fission observables is
the foremost priority for a fission model, global calculations of
fragment properties related to stellar nucleosynthesis processes

additionally demand a faster and more reliable technique
compared to existing models. This is because such calculations
involve a large variety of fissioning nuclei most of which
are outside the valley of nuclear stability. For this purpose,
a quicker method [67] is recently proposed that utilizes
the idea of shell-stabilized/localized prefragments. This model
enables the identification of fragments by performing self-
consistent calculations within a very localized domain of
the configuration space. Clearly, theoretical investigation of
the fission process is a diverse field of research with a
broad perspective.
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