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Editorial on the Research Topic
 Somatosensory Integration in Human Movement: Perspectives for Neuromechanics, Modelling and Rehabilitation



Paraphrasing Sherrington (1924), humans interact and engage with their environment solely through movement. They move thanks to a series of coordinated muscles contractions ultimately driven by the firing of alpha motor neurons in the spinal cord. The activity of these neurons, emerges as the result of the interplay between the motor commands generated across the central nervous system (CNS) and the information about the state of the body and of the environment (Enoka, 2015). The latter, harvested by a multitude of different sensory organs. The integration of efferent and afferent information determines, at the level of the motor neuron, whether or not an action potential will be produced at any point in time (Kandel et al., 2000). Sensory information influences also the behavior of several other structures across the central nervous system. An alteration of the sensory organs (or neurons) themselves, or of the interpretation that the CNS makes of the information they provide, can have profound consequences on the aptness of an individual to carry out a motor task. This has obvious repercussions on their capability of interacting with the environment. Taken together, those considerations suggest that research on somatosensory integration should follow an interdisciplinary approach, whose methods range from experiments to modeling and whose topics span from basic physiology to rehabilitation, from prosthesis control to biologically-inspired robotics, from human-computer interaction to ergonomics.

When we first opened the Topic for submissions, in 2019, we could not imagine that 115 authors would enthusiastically respond to our call, contributing with 21 original manuscripts that tackled the sensorimotor integration problem from different, yet complementary, perspectives. The contributors proposed new experimental approaches for a selective and controlled alteration of sensory information, development of sensation-aware neuromusculoskeletal models, and the evaluation of sensory integration, substitution, or function replacement in the context of human-machine communication.

The manuscripts have been divided in four categories, the most populated concerning Embodiment/Proprioception and Locomotion, to provide an immediate overview of the Research Topic.


1. EMBODIMENT, PERCEPTION, FEEDBACK


1.1. Visual Information Integration

Vision is the primary sensory modality for movement, as reflected by the fact that the motor plan can be effectively and systematically perturbed by altering the relationship between the movement environment and the associated visual feedback. A clear example of this phenomenon, is the visuomotor rotation paradigm (Krakauer, 2009), where a visual rotation of the feedback of a movement generates a congruent rotation of the way in which the movement is generated. Here Severini and Zych showed that the rotation between visual feedback and motor output results in a congruent, but greedy, rotation of the activation of the muscle synergies associated with the task. They showed that the synergies activations are selectively rotated if the visual perturbation engages the workspace of a synergy at its boundaries and a rotation is needed for successfully reaching the target. This phenomenon could be behind the adaptation generalization behaviors previously observed at the muscle synergies level (De Marchis et al., 2018). Castronovo et al. have further shown the primacy of visual feedback over proprioceptive feedback in the same visuomotor rotation paradigm.

It has been long known that small currents applied to the muscles can improve motor performance, especially during challenging standing tasks (Severini and Delahunt, 2018). This is supposedly caused by the stochastic resonance phenomenon, where a small noise can improve detection of weak, undetectable, signals (in this case, small signals from proprioceptive afferents). Here, the authors show that this improvement in motor performance through sub-sensory stimulation is observable also during isometric reaching exercises—when visual feedback is not present—but disappears when visual feedback is available, suggesting a primacy of this latter sensory modality over proprioceptive information. This phenomenon is reflected also in the occurrence of cortical damages. As shown by Iosa et al. stroke patients heavily rely on visual information for the execution of hand movements. Visual feedback however, may not be sufficient to alter the internal model that the central nervous system builds of the environment. In fact, Lascaleia et al. simulated, through virtual reality, the fall or roll of a spherical object in different gravity conditions. They reported that only in earth-like gravity conditions the participants were able to correctly anticipate the position of the object at a specific point in time. They authors concluded that the CNS relies on an internal model of Earth gravity effects.



1.2. Proprioception and Vibrotactile Feedback

Proprioception is the sense of body position and motion, and is often referred to as “kinaesthesia.” It is useful to navigate environments and interact with objects, and represents a discrete and intuitive channel to foster neural plasticity and bi-directionally communicate with patients in the general context of human-machine interaction.

Movement emerges from the integration of efferent commands and afferent feedback. As shown here by Hu et al., it is possible to use the recorded neuromechanical output (i.e., high-density EMG and dynamometrics) to predict limb mechanics in unaffected individuals. However, if the quality of afferent feedback is altered—like in the blood flow restriction experimental protocol proposed by Gizzi et al.—the neural drive to the muscle is compensated to grant the desired mechanical output, and therefore needs to be estimated accordingly. It is worth noting, however, that an alteration of the neural pathways responsible for proprioception, can also take place far from the sensory areas themselves. With that regard, Pilkar et al. have shown that even when the lesion is central (cortical) and not peripheral, a diminished sensory acuity can be recorded, that has direct influence on the capability of the subjects to recover from a mechanical perturbation.

With the aim of eliciting neural plasticity, proprioceptive feedback was stimulated via skin vibration in the work of Asín-Prieto et al.. The authors, proposed a gamified, haptic, adaptive feedback loop, to promote motor learning during training with a robotic ankle exoskeleton. They reported an increased cortico-spinal excitability and improved game scores, in healthy individuals and one stroke patient after three sessions.

Ballardini et al. show here that vibrotactile feedback can be used as an additional sensory modality to the ones already available during a standing task, and that this additional feedback can improve task performance if made to encode task-relevant information.

Similarly, Ding et al. reported that mirror visual feedback combined with vibrotactile stimulation can facilitate the embodiment perception, compared to visual feedback alone. Embodiment perception is crucial for a successful recovery in stroke patients. The authors attributed this effect to an increased motor cortical activation.

A better understanding of somatosensory feedback is necessary to increase the efficiency of human-machine communication. In their work, Nataletti et al. explore the limits of electrotactile stimulation, concluding that temporal patterns are more relevant than the total energy or the duration in judging the numerosity of stimulation points.




2. LOCOMOTION

Somatosensory integration plays a central role during locomotion. Mileti et al. have shown, similarly to Oliveira et al. (2016), that subtle changes in sensory perception during locomotion, such as those happening when walking on a treadmill vs. when walking overground, can lead to more stereotypical recruitment of the muscle synergies involved in the task. This result suggests that small changes in sensory feedback during locomotion, although not affecting the muscular co-activation strategies, can lead to alterations in the neural strategies of task execution. Integrating then different feedback modalities during gait training of neurologically impaired individuals may prove crucial in improving therapy results. As a point in case, here Tan et al. show that robot-based gait training providing guidance and haptic feedback during walking to sub-acute stroke survivors, can lead to changes in synergies activations (as opposed to what found earlier on chronic patients, Gizzi et al., 2011) that reflect in more symmetrical activation patterns with respect to standard therapy.

Furthermore, exposing patients to carefully tailored perturbations and the consecutive observation of the motor adaptations emerging due to the inherent somatosensory integration, can be used to aid the rehabilitation process (Reisman et al., 2013). Essentially, altering specific gait parameters in patients with motor impairments, following a given rehabilitation intervention, can lead to more informed conclusions on individual long-term stability of locomotion (Cajigas et al., 2017). To further enhance this process, biofeedback can be used to deliver desired gait perturbations in a more targeted manner. In fact, Torricelli et al. have shown here that guided voluntary perturbation through EMG based visual biofeedback- results suggest that can lead to short-term learning in rhythmic tasks. This learning is built upon synergistic temporal commands that are robust to changes in the task demands.

The latter, develop from hard-wired networks that are shared across species with a common evolutionary ancestor (see, for example Dominici et al., 2011), and reach maturity (in humans), after a few years. Cappellini et al. reviewed the maturation of the locomotor circuitry in cerebral palsy (CP) children, suggesting that early training for central pattern generator-modulating therapies are necessary and indicating robotic aid-based therapy challenge of the discussed human-machine interfaces as an important player.



3. HUMAN-MACHINE INTERFACING

Enhancing efficacy of rehabilitation technologies through use of engaging human-machine interfaces, has been an ongoing research pursuit (Lagoda et al., 2012; Vujaklija, 2018). To that end, Electromyography (EMG) and Electroencephalography (EEG) have been the two most considered interfacing modalities, as they offer a chance for an intimate observation of the underlying neural activity while remaining non-invasive and minimally intrusive (Farina et al., 2021). However, establishing robust controllers of assistive devices based on these interfaces, is difficult and many of the proposed approaches have failed to meet their clinical promises. One reason for this, might lie in the discrepancy between the laboratory tests and the real-world conditions. In fact, it has been shown that commonly considered laboratory indicators of performance of the advanced prosthetic EMG interfaces are poor predictors of clinical outcomes (Vujaklija et al., 2017). This is likely since these offline metrics consider performance separately from the active user and thus do not account for any active and/or dynamic changes that occur during the online human-machine interaction.

To overcome these drawbacks, in addition to real-time experiments, inclusion of more descriptive data collection has been considered. For instance, real-time control of prosthetic hands has benefited from training data that accounts for biosignals gathered during multiple steady-state arm positions (Amsuess et al., 2015). Moreover, here Gigli et al. have taken this approach a step further, in order to make the procedure faster and less tiresome. Namely, they have collected the algorithm training data from users as they were moving their arm smoothly through multiple postures and have shown that the same improved results can be obtained in shorter time.

Another outstanding challenge of the discussed human-machine interfaces is the lack of bi-directionality. Namely, in the past two decades there has been a growing interest in using BCI technology for closing the loop between movement intent and the feedback provided by assistive devices. In this context, BCI technology can be used to trigger the assistive device based on the motor imagery of the target movement, and the device provides somatosensory feedback on the movement, thus reinforcing the afferent/efferent connection. Guggenberger, Raco et al. analyzed in depth the differences in workload (e.g., mental, temporal, effort-related) required by individuals while using two different assistive devices (robot vs. functional electrical stimulation) driven by a BCI system during finger extension movements. Guggenberger, Heringhaus et al. also investigated how feedback based on neuromuscular stimulation modulates the gain of the spinal motor output. This results highlight the necessity of considering the effect of both afferent and efferent information when designing BCI-based feedback systems.

Similarly, Ortiz et al. proposed a novel brain-machine interface based on gamma-band EEG and attention level that showed encouraging results for controlling a lower-limb exoskeleton in intact individuals.



4. MODELING

Computational models of the composite neuro-musculo-skeletal system, allow investigating the neuro-mechanical interplay underlying movement in the controlled and predictive environment of simulation (Klotz et al., 2020). This provides new tools to determine the relative weight of the different components in the neuromusculoskeletal system, that determine the final motor output (Sartori et al., 2017). As previously reported, sensory information is especially difficult to harvest in intact moving humans, and physiologically correct, person-specific neuro-mechanical simulations represent a viable contribution to advance toward more complete hypotheses on how the central nervous system control physical movement in a closed-loop fashion (Sartori and Sawicki, 2021).

With their in-silico experiments, Stollenmeier et al. showed that it is possible to use neuromusculoskeletal models to accurately predict the effects of static and dynamic perturbations on the motion of the human upper limb. The proposed approach integrated both short and long latency reflexes, to represent the spinal and supraspinal (reflex) contributions to movement. This underlay the importance of somatosensory integration in the resulting motor output, in an active environment.

Similarly, Koelewijn and Ijspeert have proposed a neuromusculoskeletal model to represent the sagittal reactions to ground perturbations during standing. Also in this case, the model comprised spinal reflexes. They reported that the model results were poorly to moderately correlated with experimental results, if the control optimization aimed at minimizing the subject's effort. This suggests that other factors (we hypothesize here proactive stabilization of the joints by mean of increased muscle stiffness), may play a more central role than energy efficiency.



5. CONCLUSION

Somatosensory (and, more in general, afferent) action potentials are elusive and difficult to harvest in humans, but may represent a key factor in understanding human neuromechanics as well as in creating more effective human-machine interaction and rehabilitation technologies. A paradigm shift in experimental procedures is necessary to generate more comprehensive theories of afferent integration in the motor system. The experimental and modeling efforts testified by this collection, show that the topic is very much alive and provide a solid and promising basis for future developments.
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Sub-sensory electrical noise stimulation has been shown to improve motor performance in tasks that mainly rely on proprioceptive feedback. During the execution of movements such as reaching, proprioceptive feedback combines dynamically with visual feedback. It is still unclear whether boosting proprioceptive information in tasks where proprioception mixes with vision can influence motor performance. To better understand this point, we tested the effect of electrical noise stimulation applied superficially to the muscle spindles during four different experiments consisting of isometric reaching tasks under different visual feedback conditions. The first experiment (n = 40) consisted of a reach-and-hold task where subjects had to hold a cursor on a target for 30 s and had visual feedback removed 10 s into the task. Subjects performed 30 repetitions of this task with different stimulation levels, including no stimulation. We observed that trials in which the stimulation was present displayed smaller movement variability. Moreover, we observed a positive correlation between the level of stimulation and task performance. The other three experiments consisted of three versions of an isometric visuomotor adaptation task where subjects were asked to reach to random targets in <1.5 s (otherwise incurring in negative feedback) while overcoming a 45° clockwise rotation in the mapping between the force exerted and the movement of the cursor. The three experiments differed in the visual feedback presented to the subjects, with one group (n = 20) performing the experiment with full visual feedback, one (n = 10) with visual feedback restricted only to the beginning of the trajectory, and one (n = 10) without visual feedback of the trajectory. All subjects performed their experiment twice, with and without stimulation. We did not observe substantial effects of the stimulation when visual feedback was present (either completely or partially). We observed a limited effect of the stimulation in the absence of visual feedback consisting in a significant smaller number of negative-feedback trials and a significant smaller movement time in the first block of the adaptation phase. Our results suggest that sub-sensory stimulation can be beneficial when proprioception is the main feedback modality but mostly ineffective in tasks where visual feedback is actively employed.
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INTRODUCTION

Mechanical and electrical noise stimulation targeting joints and muscles can alter the kinesthetic sense and lead to improved motor performances (Cordo et al., 1996; Gravelle et al., 2002; Priplata et al., 2002, 2006; Collins et al., 2003, 2014; Ross and Guskiewicz, 2006; Mendez-Balbuena et al., 2012; Iliopoulos et al., 2014; Miranda et al., 2016; Severini and Delahunt, 2018). Mechanical noise stimulation directly modifies the response of sensory receptors, while electrical noise stimulation alters the baseline transmembrane potential of the stimulated afferents making them more likely to fire in response to a weak stimulus (Gravelle et al., 2002; Miranda et al., 2016). Both effects are supposedly related to stochastic resonance (SR), a phenomenon for which noise can improve the reception of weak signals in threshold-based systems (Gammaitoni, 1995). By the SR phenomenon, noise added to the input of a threshold-based receiving system can improve the detection of a weak input signal by spuriously amplifying it. Values of noise that are too low may not bring the weak signal above the receiving threshold, while values of noise that are too high may mask the characteristics of the input signal and lead to erroneous detections. Therefore, the SR phenomenon predicts the presence of an optimal level of stimulation that maximizes the performance of the receiving system.

The SR phenomenon has been observed to occur in response to noise stimulation in biological systems in general (Collins et al., 1995), and in human sensory receptors in particular (Cordo et al., 1996; Mendez-Balbuena et al., 2012, 2015; Iliopoulos et al., 2014). Proprioception plays a crucial role during the execution and learning of voluntary movements (Fleishman and Rich, 1963; Sober and Sabes, 2003) and sensory deficits have been shown to affect motor re-learning after a neurological injury (Vidoni and Boyd, 2009). Several studies have shown that superficial electrical noise stimulation targeting sensory receptors at sub-sensorial current levels (intended as current levels that do not elicit conscious perception) can improve performance during different motor tasks in healthy subjects (Magalhaes and Kohn, 2012, 2014; Iliopoulos et al., 2014), elderlies (Gravelle et al., 2002), and individuals suffering from sensory loss (Collins et al., 2014). In all these experiments, the motor tasks selected (i.e., single leg stance) relied heavily on proprioception as sensory feedback modality. Recently, we were also able to show that, in opposition to the results obtained using sub-sensorial stimulation, supra-sensorial currents lead to a decrease in motor performance during mildly challenging balance tasks (Severini and Delahunt, 2018), although it is not clear whether this effect is caused by a reaction to the conscious sensation of the stimulation or by the degradation in performance expected by the SR model for levels of noise above the optimal one. It has been proposed that sub-sensory noise stimulation could be used to improve the quality and quantity of available proprioceptive information during rehabilitation of patients affected by proprioceptive deficits (Collins et al., 2003). In this scenario, since motor learning in rehabilitation is often associated with complex tasks (e.g., walking and reaching) where several sensory feedback modalities are integrated and employed at the same time, it is paramount to understand what could be the effect of boosting proprioception when several feedback modalities are available. This latter point is still unexplored in literature. In fact, while most studies employing sub-sensory stimulation have shown its benefits in tasks where proprioception is the main feedback modality, it is not clear what its effect would be in tasks where proprioception integrates (or competes) with other sensory modalities, such as vision. As a case in point, during reaching movements proprioceptive and visual feedback (VF) are weighted flexibly depending on the task and on the quality and availability of feedback (Sober and Sabes, 2003, 2005). In this perspective, externally altering the natural “gain” of proprioception through sub-sensorial stimulation could affect the sensory weighting that happens during the task and impact motor performance. It cannot be excluded also that the weighting process could completely “bypass” the artificial sensory boost.

In this work we aim at testing if enhancing proprioception through sub-sensorial electrical stimulation can alter motor performance during reach-and-hold and visuomotor adaptations (VMA) tasks under different VF conditions. The VMA task was selected over a standard reaching task to probe potential effects of enhancing proprioception during challenging exercises requiring a motor re-calibration.

Moreover, as motor adaptation is considered one of the processes constituting motor learning (Shadmehr and Wise, 2005; Krakauer, 2009), our experiments aim also at providing additional information on the usability of SR stimulation as an additional aid during rehabilitation therapy of reaching movements. In our experiments, we asked subjects to perform a reach-and-hold task where VF was removed during the hold part of the task. Subjects repeated the task several times with different levels of sub-sensorial stimulation applied to the muscles driving the movement. This experiment was designed for determining the subject-specific optimal stimulation level, defined as the current level minimizing movement variability during the hold phase of the movement when VF was not present (thus in the portion of the task that was only reliant on proprioceptive feedback). Subjects were then split in three groups and each group performed a version of a VMA experiment twice, once with optimal sub-sensory stimulation (Stim condition) and once with no stimulation (NoStim condition), in a random order. One group performed the experiment with the VF always present (Full VF), one with VF limited to the initial part of the reaching movement (Limited VF) and one with VF only of the starting positions and end results of each movement (No VF). These three VF conditions were selected to examine the impact of enhancing proprioception in both the planning and on-line adjustment phases of the movement. We report here a limited effect of sub-sensory stimulation on task performance only when the VF is not present. These findings have major implications for evaluating the use of sub-sensory electrical stimulation during the execution of complex tasks.



METHODS


Participants

A total of 40 healthy individuals (19 females, age 24.0 ± 4.3 years) volunteered for this study by signing an informed consent. All the experimental procedures were approved by the Ethical Committee of University College Dublin and have been conducted according to the WMA's declaration of Helsinki. No personal or sensitive data were collected for the study. The study consisted of four different experiments executed using the same experimental setup (Figure 1). Each subject participated to two of the four experiments. One of the two experiments, the Optimal Stimulation (OS) experiment was common to all subjects (see section Optimal Stimulation Experiment for details). The other experiment consisted, for all subjects, in one of three different versions of the VMA experiment (see section Visuomotor Adaptation Experiment for details). Subjects repeated each experiment two times during two different experimental sessions. During each experimental session subjects performed one repetition of each of the two experiments, always in the same order (OS first, VMA second). The different experimental sessions were held in different days, within the same week. Each experimental session lasted about 60–70 min, including setup.
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FIGURE 1. Experimental setup. Subjects maintained the same position (leftmost panel) through all the experiments. During the OS experiment subjects had visual feedback during the reaching part of the trial and the first 10 s of holding and no visual feedback for the remaining 20 s. In the VMA experiments, visual feedback (bold line marks when it is present, dashed line when it is absent) changed across the different versions of the experiment. In the Full VF version feedback was always present. In the Limited VF version feedback was present only in a 2 cm radius from the center. In the No VF version feedback was present only for distances longer than that of the target. In total, each subject experienced the OS experiment twice (once per experimental session, each time consisting of 60 30-s reach-and-hold trials) and one of the three versions of the VMA experiment twice (once per experimental session, the same VMA version both times). Each VMA experiment consisted of 9 (for the Full VF) or 12 (for the Limited and No VF) blocks each consisting of a minimum of 40 movements. In each block subjects repeated the reaching trials that took them more than 1.5 s to perform. Thus, in each experimental session subjects performed a minimum of 360–480 reaching movements.




Experimental Setup

All experiments were performed in the same laboratory at University College Dublin. The light in the laboratory was provided, during all experiments, artificially from overhead lamps, and lighting conditions were kept consistent during all experimental sessions of all subjects. The temperature in the laboratory was maintained at 20°C. During all experiments, subjects sat on a chair placed in front of a computer screen placed at a distance of 1 m (Figure 1). The elevation of the chair was controlled so to keep the shoulder abducted at 100°. Subjects had the right hand strapped to a manipulandum attached to a tri-axial load-cell (3A120, Interface, UK), while the wrist and the forearm were wrapped to the support plane and immobilized using self-adhesive tape. The elbow and shoulder flexion angles were fixed at 90° and 60°, respectively. All experiments consisted in the exertion of isometric forces against the manipulandum, as instructed by a virtual scene presented on the screen. The virtual scene consisted of a gray cursor, commanded in real time by the x and y components of the force exerted on the manipulandum, a filled circle indicating the center of the exercise space (0 N of force applied) and a target, represented by a hollow circle. The center and target circles had a radius of 0.7 or 1.2 cm, depending on the experiment (see sections Sensory Threshold Selection and Optimal Stimulation Experiment). In all experiments targets were placed at a distance from the center equal to 7.5 cm on the screen, equivalent to 12 N force exerted in the direction of the target. Data from the load-cell were sampled at 50 Hz. All the software constituting the virtual scene was custom developed in Labview.



Sensory Threshold Selection

At the beginning of each experimental session for each subject, a procedure for the identification of the subject- and session-specific sensory threshold (ST) was performed. Two electrodes for electrical stimulation (5 × 5 cm, Valutrode Lite, Axelgaard, US) were positioned on the lateral head of the triceps brachii (TLH) muscle, that is the muscle majorly involved in reaching the upper right part of the workspace in this setup (De Marchis et al., 2018).

The electrodes were placed at about 2/3 the length of the muscle belly in each direction. The ST was defined as the smallest noise-stimulation current (white Gaussian noise, bandwidth 0.1–1,000 Hz) that the subject could perceive and was calculated by iteratively increasing the root mean square value (RMS) of the stimulation noise by 10 μA (starting from 0) every 30 s until the subject started feeling a clear tingling sensation under the electrodes. Stimulation was administered using a voltage-driven current stimulator (Model 2200, A-M Systems, US), commanded using a custom software developed in Labview. The ST level was estimated for each subject during each experimental session.



Optimal Stimulation Experiment

The aim of the OS experiment was to determine the session-specific optimal stimulation level for each subject, defined as the level of sub-sensory stimulation that maximizes performance by decreasing task variability in the absence of VF. During the OS experiment subjects performed a series of reach-and-hold tasks, consisting of reaching for a target of 0.7 cm of diameter positioned in the upper right side of the screen (where the TLH is active) and then holding the cursor as close as possible to the center of the target for 30 s (Figure 1). The VF was projected on the screen only during the reaching phase and during the first 10 s of the hold phase and was then removed for the remaining 20 s of the hold phase.

During each task, subjects received sub-sensory noise stimulation on their TLH muscle at six different current levels, equal to 0% (no current), 50, 60, 70, 80, or 90% of their ST. Subjects experienced each level of sub-sensory stimulation five times in a random order, for a total of 30 repetitions (6 current levels × 5 times). The session-specific OS level was estimated at the end of each OS experiment as the percentage of ST (excluding 0% ST) yielding the smallest average (across the 5 repetitions for each percentage) standard deviation in the Cartesian distance between the cursor and the target during the 20 s of the hold phase of the task where the visual feedback was not present (stdDist). Additional analyses were performed in post processing. Specifically, we checked for statistically significant differences (Wilcoxon's signed rank test, α = 0.05) in the average stdDist between OS and 0% ST across all subjects. We then analyzed the distribution of the OS percentages across the different stimulation levels, for both OS experiments of all subjects. Finally, we analyzed the relationship between the stimulating current and the motor performance by fitting a first order polynomial, using a least square algorithm, on the average stdDist values relative to each stimulation intensity. The quality and significance of the fitting was evaluated by calculating Pearson's coefficient ρ.



Visuomotor Adaptation Experiment

All three versions of the VMA experiment consisted of isometric reaching movements where the subjects were asked to drive the cursor toward a random target (diameter 1.2 cm) presented at 7.5 cm (12 N) from the center. Targets were presented in 8 different directions covering the whole 360° of the workspace at angular intervals of 45° (Figure 1). Subjects performed their assigned version of the VMA experiment immediately after the OS one, in both experimental sessions. The versions of the VMA experiment differed only in the VF that was provided to the subject during the reaching tasks. Twenty subjects (9 females) performed the VMA experiment with continuous view of the movements of the cursor they were driving (Full VF). Ten subjects (2 females) performed the VMA experiment while receiving VF of the movement of the target only up to 2 cm (3.3 N) from the center of the virtual scene (Limited VF). Finally, 10 subjects (8 females) performed the experiment with no VF (No VF) on the movement of the cursor during the trajectory. In the No VF experiment subjects were shown the cursor only between 0 and 0.5 cm (0.7 N) from the center and after exceeding the distance to the center of the target (7.5 cm, 12 N). Thus, in the No VF experiment subjects were able to see the cursor only when its position exceeded the distance between the center of the workspace and the center of the target and therefore received feedback only on the result of their reaching trial. The VMA experiment consisted of 9 blocks during which the VF condition was applied. In the first 3 blocks (baseline, BL1–BL3) participants were asked to reach to the 8 targets positioned in a compass-like configuration for 5 times in a random order (Figure 1). During these and subsequent blocks, subjects were instructed to reach for the targets at a self-selected speed but in a time smaller than 1.5 s and they were given positive feedback (consisting in the target becoming green) if they were able to reach for the target in <1.5 s, and negative feedback (consisting in the target becoming red) otherwise. In all the trials the movement time was not restricted, and subjects were presented a new target only when the current target had been reached. As a result, subjects were forced to explore the space until they were able to reach the current target before being shown the following one. The feedback on the duration of each trial indicated by the change in color of the target was present in all three VF conditions. The targets for which a subject received negative feedback were appended and repeated at the end of the block, thus making each block consisting of 40 movements plus the repetition of all the negative-feedback movements. After the BL blocks, subjects performed three adaptation blocks (AD1–AD3) where they were asked to reach for the targets while adapting to a 45° clockwise rotation applied to the mapping between the force sensor and the virtual scene. As for the BL blocks, the only instruction that the subjects were given was to try to obtain positive feedbacks on their movements by reaching for the targets in <1.5 s. Also in this case, subjects performed 5 repetitions of all 8 targets in a randomized order (40 tasks), and repeated the targets for which they received negative feedback at the end of the trial. Thus, after the repeated trials, each subject would have effectively adapted to 40 movements in each adaptation block.

Finally, subjects performed three unperturbed post-adaptation blocks (PA1–PA3) that were used to washout the adapted motor plan. These blocks were identical to the BL ones. Subjects who performed the Limited VF and No VF VMA versions also experienced 3 additional blocks before the BL ones, that consisted of unperturbed baseline blocks with full VF (BL-VF). The aim of these blocks was to allow the subjects to practice and fully understand the task before the limitation to the VF was applied. Subjects performed their assigned VMA experiment in both experimental sessions, once while receiving sub-sensory stimulation (through all the 9 blocks of the experiment) at the OS level calculated in that same experimental session (Stim), and once without stimulation (NoStim), in a random order. Participants were blinded to the condition. For all three versions of the VMA experiment, half of the assigned subjects performed the Stim condition in the first experiment and the other half in the second experiment. For each reaching repetition, we analyzed the center-out portion of the movement, from the moment in which the cursor exited the origin target to the moment it reached the goal target. Each center-out movement was extracted and length-normalized over 100 data points. We analyzed the trajectory data by means of two metrics (Figure 2): the initial angular error (IAE) and the normalized curvilinearity (NC). The IAE was calculated as the angle between the straight line connecting the ideal path and the actual path of the movement at 2 cm from the origin. This distance was selected because subjects performing the Limited VF experiment had the VF removed after 2 cm, thus, for them, this metric represents the angular error before losing VF. The NC was defined as the ratio between the actual distance covered by the cursor between the center and the target and the length of the straight line connecting the center and the target. The IAE is intended to capture the error in movement planning before the onset of potential compensations, while the NC metric accounts for both the initial movement error and the changes in motor plan that the subject undergoes to compensate for the shooting error. The analysis of IAE and NC was performed on the first 40 movements of each block (thus excluding the repeated trials in each blocks). Moreover, the analysis were differentially performed on all targets together and by considering only the targets were the triceps are active (that are, using a compass notation, targets N, NE, and E, as estimated in De Marchis et al., 2018, using the same experimental setup) or the targets were the triceps are not involved (all targets excluding N, NE, and E). For all these three targets-group analyses (all targets, triceps-active targets, and remaining targets) a statistical analysis was used to compare the values of NC and IAE between the two stimulation conditions. This analysis was based on Wilcoxon's signed rank test with significance level α = 0.05 and Bonferroni–Holm's correction for multiple comparisons over the different blocks.
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FIGURE 2. Performance metrics for the VMA experiment. The initial angular error (left) was calculated, for each movement repetition, as the angle between the actual and optima trajectories at 2 cm from the center of the workspace. The normalized curvilinearity (right) was calculated, for each movement repetition, as the ratio between the actual movement path and the ideal one.


As an additional analysis on the effect of the stimulation on task performance we compared, for all three versions of the VMA experiment, the number of repeated trials (thus the number of errors) across subjects in the first block of adaptation (AD1, where negative-feedback trials were more expected due to the introduction of the perturbation) between the Stim and NoStim conditions. This comparison was based on a Wilcoxon's signed rank test with significance level α = 0.05.

Finally, we analyzed differences in movement time across the different VF and stimulation conditions for the BL3 and AD1 blocks. The analysis on BL3 was carried out mainly to assess baseline differences in movement time across the three VF conditions, while the analysis on AD1 was performed mainly to assess the effect of the stimulation on movement time during the early stages of adaptation. The analysis was performed, for both blocks, on the first 40 movements, without accounting for the repeated ones. We tested for statistically significant differences in movement time across VF conditions (regardless of the stimulation condition) using ANOVA. On the other hand, given that our hypothesis is that the stimulation will have different effects depending on the VF condition, we tested for statistically significant differences in movement time across stimulation conditions separately for each VF condition using Wilcoxon's signed rank test with significance level α = 0.05.




RESULTS


OS Experiment

The results of the OS experiments performed by the subjects in the two experimental sessions were pooled together in the analysis. Thus, the 80 instances (40 subjects × 2 experimental sessions) were treated as independent measures. As expected from similar experiments (Magalhaes and Kohn, 2012, 2014; Severini and Delahunt, 2018), we consistently observed a decrease in accuracy during the hold-phase of the OS task when the VF was removed (example for one trial of one subject in Figure 3A). From the analysis of the OS levels, considering also the trials where no current was applied (0%), we observed that in 7 instances out of 80, the average stdDist was lower for 0% stimulation than for a stimulation level above 0%. This accounts for 8.75% of the instances, against a value expected by chance of 13.33% (Figure 3B). For the instances in which the 0% level presented the lowest average value of stdDist across the task repetitions, the value of OS was selected as the value of actual stimulation (thus above 0%) which yielded the lowest average stdDist (Figure 3B). The OS levels were mostly distributed toward percentages close to the ST (Figure 3B) with 59 out of 80 OS levels observed for percentages of ST above 70%. We observed statistically significant lower values of stdDist for OS with respect to 0% stimulation (p < 0.01 using Wilcoxon's signed rank test), also considering the instances were 0% yielded the average lower stdDist results (Figure 3C). Finally, we analyzed the correlation between the RMS of the stimulation current and the stdDist metric.
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FIGURE 3. Results of the OS experiment. (A) Example of tracking error during a representative instance of the OS experiment. Movement variability around the target position increased as visual feedback was removed. (B) Distribution of the OS values, both including (light blue) and excluding (dark blue) the 0% level. (C) Violin plots of the tracking variability between OS values and 0% (no stimulation) values. **Indicates significant differences (Wilcoxon's signed rank test) with p < 0.01. (D) Correlation between the RMS of stimulation and the STD of the tracking distance during the OS experiment.


We observed a negative correlation (Figure 3D) between the average stdDist metric (averaged across all repetitions associated with a specific current level across subjects) and the relative RMS values of stimulation current, characterized by a significant (p < 0.001) linear fitting with ρ = −0.64. This fitting indicates that, in our dataset, the performance increases with the RMS of the stimulation.



VMA Experiments

The results for the Full VF version of the VMA experiment (Figure 4) were in line with what had been observed in literature (Krakauer et al., 1999) (Figure 4A). Subjects presented marked movement errors, reflected in both the IAE and NC metrics, in the first block of perturbation (AD1) that were compensated over time. After-effects opposite to the direction of the original perturbation (in the IED) were present at the beginning of the post-adaptation phase and quickly vanished by the end of the experiment. When comparing the Stim and NoStim conditions, we were not able to observe substantial differences in trends in both metrics, such as different values of IED or NC at the beginning of AD1 or at the end of AD3. These differences would have indicated a higher/lower initial error and a higher/lower level of compensation of the error, respectively. Instead, both conditions presented remarkably similar trends in both metrics when considering all targets (Figure 4B), only the targets where the triceps are active (Figure 4C), and the targets where the triceps were not active (Figure 4D). We did not observe statistically significant differences between the two conditions in any of the blocks of the different targets-group analyses. Similarly, we did not observe significant differences in the number of errors made by the subjects in AD1 between the two stimulation conditions for all the target groupings (rightmost panel, Figures 4B–D).
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FIGURE 4. Results of the VMA Full VF experiment. (A) Example of force traces to targets for representatives blocks of the experiment. (B) Average, across subjects, performance metrics. The first panel from the left presents the targets analyzed (in red). The second panel presents the initial angular error metric, both as mean ± standard deviation across the first 40 trials of each block (bars and whiskers) and as average (across subject) of the metric extracted for each single reaching movement for the first 40 trials of each block (dots). The third panel presents the normalized curvilinearity metric, in the same notation. The fourth panel presents the violin plots of the number of negative-feedback trials (that had to be repeated) during AD1. (C,D) Present the same results for only the upper right quadrant targets of the workspace (where the muscles stimulated are active) and for the remaining targets. In this case the metric plots are presented only as the mean ± standard deviation across the trials of those targets in each block. In all plots, blue indicates the NoStim condition, Orange the Stim condition.


In the Limited VF version of the VMA experiment (Figure 5), trajectories were characterized by initial shooting errors followed by abrupt deviations once the VF was removed (Figure 5A). As the AD blocks progressed, subject showed decreased shooting errors (also captured by a progressive decrease in IAE and NC) but still exhibited abrupt modifications in their trajectories once the feedback was removed. When comparing the Stim and NoStim conditions we observed a qualitative trend where Stim trials were characterized by higher initial values of IAE and NC at AD1 with respect to NoStim. The two conditions exhibited similar values on both metrics at AD3. The trends observed appeared to be present on all targets, regardless of groupings (Figures 5B–D). Nevertheless, we did not observe statistically significant differences between the two stimulation conditions in any of the blocks of the different targets-group analyses. Finally, we did not observe significant difference in the number of errors at AD1 between the two conditions.
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FIGURE 5. Results of the VMA Limited VF experiment. (A) Example of force traces to targets for representatives blocks of the experiment. (B) Average, across subjects, performance metrics. The first panel from the left presents the targets analyzed (in red). The second panel presents the initial angular error metric, both as mean ± standard deviation across the first 40 trials of each block (bars and whiskers) and as average (across subject) of the metric extracted for each single reaching movement for the first 40 trials of each block (dots). The third panel presents the normalized curvilinearity metric, in the same notation. The fourth panel presents the violin plots of the number of negative-feedback trials (that had to be repeated) during AD1. (C,D) Present the same results for only the upper right quadrant targets of the workspace (where the muscles stimulated are active) and for the remaining targets. In this case the metric plots are presented only as the mean ± standard deviation across the trials of those targets in each block. In all plots, blue indicates the NoStim condition, Orange the Stim condition.


In the No VF version of the VMA experiment (Figure 6), once again we observed initial changes in both metrics at AD1 due to the rotation. These changes were compensated over the trials even without VF (consistently with what shown in Scheidt et al., 2005) although to a smaller level with respect to the Full VF experiment (Figures 4A, 6A). Also in this case, the adaptation behaviors were reflected in both metrics. Subjects, in fact, were able to decrease their IAE and NC values over the various repetitions of the No VF task even without feedback on their actual trajectory.
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FIGURE 6. Results of the VMA No VF experiment. (A) Example of force traces to targets for representatives blocks of the experiment. (B) Average, across subjects, performance metrics. The first panel from the left presents the targets analyzed (in red). The second panel presents the initial angular error metric, both as mean ± standard deviation across the first 40 trials of each block (bars and whiskers) and as average (across subject) of the metric extracted for each single reaching movement for the first 40 trials of each block (dots). The third panel presents the normalized curvilinearity metric, in the same notation. The fourth panel presents the violin plots of the number of negative-feedback trials (that had to be repeated) during AD1. *Indicates significant differences (Wilcoxon's signed rank test) in the number of negative-feedback trials with p < 0.05 [p = 0.046 in (B) and p = 0.043 in (C)]. (C,D) Present the same results for only the upper right quadrant targets of the workspace (where the muscles stimulated are active) and for the remaining targets. In this case the metric plots are presented only as the mean ± standard deviation across the trials of those targets in each block. In all plots, blue indicates the NoStim condition, Orange the Stim condition.


We did not observe differences in the behavior of the IAE and NC metrics between the two stimulation conditions, either for all the targets or for the different groupings. This was reflected also in the absence of statistically significant differences between the two stimulation conditions in all the blocks for the different targets-group analyses.

However, the NoStim condition presented a significant higher number of reaching errors at AD1 with respect to the Stim condition that was observed for all the targets togethers (p = 0.046, Figure 6B) and for the grouping representing only the targets were the triceps were active (p = 0.043, Figure 6C).

The analysis of the movement time (Figure 7) at BL3 unraveled a difference in the strategy that the participants employed for reaching to the targets between the VF conditions. In fact, although in all VF conditions subjects were instructed to reach for the target at a comfortable speed while taking <1.5 s, subjects undergoing the Full VF condition took longer to reach for the target with respect to the Limited VF and No VF conditions, and this difference was found to be statistically significant (p < 0.001 based on ANOVA analysis). We did not find statistically significant differences between the two stimulation conditions at BL3 for any of the three VF conditions, based on individual Wilcoxon's signed rank tests. At AD1, all three groups increased their movement time while undergoing adaptation, in a way that was consistent across VF conditions, as reflected by the fact that we did not observe statistically significant differences for VF (p = 0.45). When comparing for the stimulation conditions, we only found statistically significant differences (p = 0.049) for the No VF condition, where subjects undergoing stimulation were able to reach for the targets in less time (1.28 s, median across subjects) with respect to their same performance while not stimulated (1.65 s, median across subjects). This latter result is in accordance with what observed in the analysis of the negative feedback trials.
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FIGURE 7. Analysis of movement time across VF and stimulation conditions. The left panel presents the results for BL3, the right panel for AD1. In each panel, each bar represents the median and standard error of the median movement time for each stimulation and VF condition. The dots represent the median values for each individual subject. The statistical analysis across VF conditions was based on ANOVA, while the statistical analysis between stimulation conditions was performed independently for each VF condition using Wilcoxon's signed rank test. *p < 0.05. The dotted black line in each panel represents the 1.5 s threshold that was set to mark negative-feedback trials.





DISCUSSION

In our results we observed that sub-sensory electrical stimulation was associated with smaller movement variability during the phase of the OS experiment where VF was not available and task performance depended solely on proprioceptive feedback. Moreover, we observed a correlation between stimulation current and movement variability whereas higher current levels were associated with better task performance across subjects. These results, taken together, further confirm that sub-sensory electrical stimulation can improve task performance in tasks were proprioception is the primary feedback modality (Gravelle et al., 2002; Ross and Guskiewicz, 2006; Collins et al., 2014; Severini and Delahunt, 2018).

On the other hand, we observed only small evidence of an effect of the stimulation during the VMA experiments, that was mainly characterized by a significant decrease in negative-feedback movements (that are movements that took more than 1.5 s for the subject to complete) and movement time between the two stimulation conditions during the first block of adaptation for the subjects that performed the No VF version of the experiment. When the VF of the trajectory was present, completely or partially, we did not observe substantial differences in task performance, as captured by two different metrics, between the Stim and NoStim conditions other than a qualitative (not statistically significant) slight decrease in task performance during AD1 for the Limited VF group. In the following, we will further discuss upon these results.

The results of the OS experiment provide, in this study, the strongest evidence of the effectiveness of sub-sensory stimulation in boosting proprioception and influence task performance. In the OS experiment we did not observe a clear SR behavior, characterized by a U-shaped relationship between the change in performance and the intensity of the stimulation (Collins et al., 1995). Such behavior is unlikely to appear in a group analysis (Bates, 1996; Severini and Delahunt, 2018), given the differences in ST across subjects and across different sessions for the same subjects that have been observed in this and previous studies (Magalhaes and Kohn, 2012, 2014). Nevertheless, we did observe a significant negative correlation between the stimulation intensity and the tracking error (Figure 3D), suggesting that sub-sensory stimulation is more effective as its intensity increases. This linear relationship does not rule out the presence of a SR-like behavior, but hints that such behavior may arise by considering stimulation intensities that are above the ST of subjects. On the other hand, stimulating currents above ST could lead to additional confounding factors affecting motor task performance related to the increase in attention or arousal, and the few studies that investigated the use of supra-sensory stimulation levels in humans found that it leads to an overall decrease in performance (Iliopoulos et al., 2014; Severini and Delahunt, 2018). The results of the OS experiment support the design choice of using sub-sensory stimulation levels close but below ST (frequently 90% of ST) that is often employed in similar studies (Gravelle et al., 2002; Magalhaes and Kohn, 2012, 2014).

In contrast with the results obtained in the OS experiment, we observed little evidence of an effect of the stimulation during the different VMA experiments. In the Full VF version of the experiment, the adaptation patterns were remarkably similar between the two stimulation conditions. We observed some small differences in performance between the two stimulation conditions in the first block of adaptation for both the Limited VF and the No VF versions of the experiment. In the Limited VF experiment we qualitatively observed higher values in both performance metrics during AD1 for the Stim condition, nevertheless these differences were not statistically significant. In the No VF experiment we did not observe differences in trends between the two metrics, but the Stim condition was characterized by a statistically significant smaller number of negative-feedback trials and a statistically significant smaller movement time, especially for the targets of the upper right quadrant, where the muscle undergoing stimulation was active. Both the trends that we observed in the Limited VF and No VF experiments could be potentially explained by the stimulation impacting the weighting process between proprioceptive and visual feedbacks that happens during reaching tasks in general, and motor adaptations in particular. Previous studies have shown that different feedback modalities mix flexibly during the execution of voluntary movements and during motor adaptations (Sober and Sabes, 2003, 2005; Scheidt et al., 2005; Shabbott and Sainburg, 2010). While visual feedback is responsible for estimating the limb position required in the planning of the movement trajectory, proprioception contributes in generating the necessary feedforward commands required for movement execution (van Beers et al., 2002; Sober and Sabes, 2003, 2005). Primary and secondary muscle spindles have been observed to increase their firing rates during isometric contractions (Edin and Vallbo, 1990), indicating that these afferents encode information on muscular state even if the muscles are not changing in length. A previous study on spindles behavior during visuomotor adaptations has shown that adaptation leads to a progressive decrease in the activity of the spindles (Jones et al., 2001). The authors linked this result to the fact that adaptation to visuomotor rotations is achieved by updating the internal models mapping the kinematics of the movement, a process relying mostly on visual and less on proprioceptive feedback (Krakauer et al., 1999; Krakauer, 2009), as confirmed also in a study involving individuals with proprioceptive deficits (Lajoie et al., 1992). Decreasing the weight of the spindles' information during visuomotor adaptation would then help resolving the conflict between the visual and proprioceptive maps that the perturbation induces (Jones et al., 2001). This re-weighting of proprioceptive information has been shown to happen centrally, at the level of the somatosensory cortex, rather than at the spinal level (Bernier et al., 2009), and to be more prominent at the beginning of the adaptation period and then alleviated as the adaptation converges.

Thus, a potential interpretation of our results could be that as the activity of the spindles is down-regulated at the beginning of adaptation, the supposed enhancement of such activity by the stimulation would effectively clash with the sensory re-weighting process. This clash, in the Limited VF experiment, where VF of the shooting error is provided but proprioceptive feedback is still necessary for successfully completing the task, could translate in bigger initial errors as the stimulation supposedly antagonizes the spindle down-regulation. The fact that a similar effect is not present if the Full VF experiment could be explained by the primacy of VF over proprioception during visuomotor adaptations that bypasses the potential effects of the stimulation. On the other hand, in the No VF experiment, where proprioception is the only available feedback modality, the supposed proprioceptive boost obtained through the stimulation may lead to increased feedback reliability that may translate in a smaller movement time and smaller number of negative-feedback trials. In fact, since the movement time is not restricted and the new target is only shown after reaching the available target, subjects, after the initial shooting error, must explore the movement space relying only on their proprioceptive feedback in order to advance in the trial. These explanations, although plausible, cannot be fully confirmed from our results due to: (i) the fact that we do not directly measure sensory re-weighting in our experiments; (ii) the small sample examined, that is the main limitation of the study herein presented. Another limitation of this study, that could also help explain the differences in stimulation effectiveness that we observed between the OS and VMA experiments, is represented by the fact that we selected the optimal stimulation level based on the performance during the holding phase of the OS experiment and then tested it during a reaching task in the VMA experiments. In a literature review recently published by Shadmehr (2017) the author observed that these two tasks (holding and reaching), similarly to what happens during ocular movements, employ different neural circuitries. In this interpretation, the discrepancy in stimulation effectiveness that we observe could be explained by an experimental design flaw where we used optimal currents derived from the holding task in a task that employs different neural circuits. Nevertheless, although there is evidence on the different nature of neural inputs during reaching and holding, no information is available on if and how proprioceptive feedback is processed differently between these two tasks.

To summarize, the results presented in this study further support the hypothesis that sub-sensory currents applied to the surface of the muscles affect proprioceptive feedback during movement, but this effect appears to be limitedly beneficial for task performance only in tasks where proprioception is the primary feedback modality.
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Virtual reality is used to manipulate sensorimotor interactions in a controlled manner. A critical issue is represented by the extent to which virtual scenarios must conform to physical realism to allow ecological human–machine interactions. Among the physical constraints, Earth gravity is one of the most pervasive and significant for sensorimotor coordination. However, it is still unclear whether visual perception is sensitive to the level of gravity acting on target motion displayed in virtual reality, given the poor visual discrimination of accelerations. To test gravity sensitivity, we asked participants to hit a virtual ball rolling down an incline and falling in air, and to report whether ball motion was perceived as natural or unnatural. We manipulated the gravity level independently for the motion on the incline and for the motion in air. The ball was always visible during rolling, whereas it was visible or occluded during falling before interception. The scene included several cues allowing metric calibration of visual space and motion. We found that the perception rate of natural motion was significantly higher and less variable when ball kinematics was congruent with Earth gravity during both rolling and falling. Moreover, the timing of target interception was accurate only in this condition. Neither naturalness perception nor interception timing depended significantly on whether the target was visible during free-fall. Even when occluded, free-fall under natural gravity was correctly extrapolated from the preceding, visible phase of rolling motion. Naturalness perception depended on motor performance, in addition to the gravity level. In sum, both motor and perceptual responses were guided by an internal model of Earth gravity effects. We suggest that, in order to enhance perceptual sensitivity to physical realism, virtual reality should involve visual backgrounds with metric cues and closed-loop sensorimotor interactions. This suggestion might be especially relevant for the design of rehabilitation protocols.

Keywords: internal models, visual perception, interceptive action, predictive processes, sensorimotor interactions


INTRODUCTION

When controlled manipulations of sensorimotor interactions are required, virtual reality tools are now a preferred choice in both basic research and rehabilitation (e.g., Sveistrup, 2004; Sanchez-Vives and Slater, 2005; Bohil et al., 2011; Cano Porras et al., 2018). An important concern for the design of virtual scenarios is represented by the physical realism of biological and non-biological animations, such as their obedience to the laws of dynamics. A preliminary question, however, is whether healthy observers are sensitive to potential deviations from physical realism. For instance, the sense of presence, i.e., the sense of being in the virtual environment rather than the place in which the participant’s body is actually located, does not seem to depend on visual realism greatly (Sanchez-Vives and Slater, 2005).

On the other hand, one would expect that observers should be specifically sensitive to physical invariants, which humans are exposed to since birth. One such constraint is given by Earth gravity. Given its ubiquitous presence, one would expect that human perceptual systems are exquisitely tuned to its effects. For instance, humans should be able to detect minimal departures from veridical gravitational acceleration in visual scenes. However, the evidence that this is the case remains controversial (Zago and Lacquaniti, 2005; Ceccarelli et al., 2018; Jörges et al., 2018; Vicovaro et al., 2019). The issue is especially relevant in rehabilitation applications requiring visuomotor interactions of the patients with the virtual reality setup. The benefits of rendering realistic effects of gravity in the visual stimuli are not obvious, considering that the resulting motions might be so fast as to be challenging for the visual system and taking into account the poor discrimination of accelerations. Therefore, it becomes critical to know whether or not human observers are able to detect the congruence or incongruence of the stimuli with physical gravity. Cybersickness might become an issue in the affirmative case (Rebenitsch and Owen, 2016). In the following, we first review evidence in favor and against the hypothesis that humans take gravity effects into account in sensorimotor interactions.

The evidence for motor actions is uncontroversial. Thus, it is well established that humans take gravity effects into account to control reaching movements optimally (Gaveau et al., 2011, 2016), to guide locomotion on an inclined plane (Cano Porras et al., 2019), and to interact effectively with objects moving under Earth gravity (Zago et al., 2009; Lacquaniti et al., 2013). For instance, healthy participants easily intercept a target dropped vertically from above or rolling down an inclined plane, even with sparse visual information (e.g., Lee et al., 1983; Lacquaniti and Maioli, 1989a; Michaels et al., 2001; Zago et al., 2004; La Scaleia et al., 2014a). This indicates the ability to predict the future position of the target, compensating for ambiguous or impoverished visual information as well as for sensorimotor delays (100–200 ms to process visual information and to transmit the resulting motor commands to the muscles and limbs, McLeod, 1987; Bootsma and Van Wieringen, 1990; Day and Lyon, 2000; Marinovic et al., 2009; Vishton et al., 2010).

Since the visual system is poor at discriminating arbitrary accelerations (Calderone and Kaiser, 1989; Werkhoven et al., 1992), it has been argued that predictive mechanisms for accelerating targets are based on a prior model of motion, integrated with sensory information (e.g., Mrotek and Soechting, 2007; van Soest et al., 2010; Franklin and Wolpert, 2011; de Rugy et al., 2012; Tramper et al., 2013; Mischiati et al., 2015). In particular, it has been shown that an internal model of the effects of Earth gravity is used to predict the motion of an object normally accelerated by gravity (Lacquaniti and Maioli, 1989b; Lacquaniti et al., 1993; Tresilian, 1997; McIntyre et al., 2001; Zago et al., 2004, 2009; Indovina et al., 2005; Senot et al., 2005, 2012; La Scaleia et al., 2015; Jörges and López-Moliner, 2017; Smith et al., 2018).

Interceptions can still be accurate even when the target is virtual and it moves vertically or on a parabolic path under simulated Earth gravity in a visual scene with sufficient context cues about the environmental reference and metric scale, whereas the timing errors (TEs) increase considerably when the background scene lacks context cues (Miller et al., 2008) or the target moves under simulated levels of gravity departing from Earth gravity (Miller et al., 2008; Zago et al., 2011; Bosco et al., 2012; Russo et al., 2017; Jörges et al., 2018). Likewise, ocular tracking of a virtual target that moves on a parabolic path accelerated by Earth gravity is more accurate than tracking a target that moves at constant speed, hypo- or hyper-gravity (Delle Monache et al., 2019; Jörges et al., 2018).

While there is abundant evidence that models of the physical properties and forces are used in motor tasks, a more controversial question is whether they are used also in cognitive and perceptual tasks (Hubbard, 2018). Indeed, several studies have shown that people often do not have a good intuitive understanding of the physics of gravitational motion (Shanon, 1976; Champagne et al., 1980), and perceptual judgments tend to be flawed (Kozhevnikov and Hegarty, 2001). For instance, people are generally poor at detecting motion anomalies of artificial animations of a target descending along an incline (Bozzi, 1959, 1961; Vicario and Bressan, 1990; Hecht, 1993). Moreover, most people believe that heavier objects fall faster than lighter ones (Shanon, 1976; Champagne et al., 1980; Vicovaro, 2014; Vicovaro et al., 2019), despite motor timing in a catching task is invariant under wide changes of mass of the falling ball (Lacquaniti and Maioli, 1989b). Smith et al. (2018) showed that the extrapolation of ballistic pendulum motion is idiosyncratic and erroneous when people draw the trajectories, but consistent with accurate physical inferences under uncertainty when people must process pendulum trajectories to catch a ball or they release a pendulum to hit a target. Also, when observers were asked to judge which of two visually presented parabolic motions of a virtual target presented against a blank background had the higher simulated gravity, they generally showed high discrimination thresholds, suggesting that a prior of Earth gravity does not give rise to a discriminability of different gravity accelerations better than that for other arbitrary accelerations (Jörges et al., 2018).

The dissociation between high accuracy and precision in motor interception and low accuracy and precision in perception of gravitational motion seems consistent with the idea that priors may differ between perceptual and sensorimotor tasks (Chambers et al., 2019). However, the reason why perceptual and motor responses should rely on different strategies is still unclear. It has been proposed that visual information for action and visual information for perception involve different processes possibly mediated by distinct cerebral networks (dual-system hypothesis, e.g., Goodale and Milner, 1992; Jeannerod et al., 1995; Tresilian, 1995; Zago and Lacquaniti, 2005), but we still do not know when each process is called into play.

On the other hand, some studies showed that perception of static or dynamic stimuli may be affected by the assumption of gravity effects (Hubbard, 2018). Thus, perceptual processing of a target moving in different directions is affected by an internal model of the direction of Earth gravity (Miwa et al., 2019), as does the interpretation of biological motion (Troje and Chang, 2013; Maffei et al., 2015) and the processing of static configurations of human bodies (Barra et al., 2017). Also, when viewing a target that oscillates back-and-forth along a circular arc, observers perceive as uniform only kinematic profiles close to harmonic motion, consistent with the assumption of a pendulum accelerated by gravity (La Scaleia et al., 2014b). Moreover, stimuli moving downward at constant speed are perceived as faster than stimuli moving upward or rightward, consistent with the hypothesis that observers combine sensory measurements with a prior assumption of approximate gravity effects (Moscatelli et al., 2019). In addition, if the visual scene is rich of contextual cues providing an environmental reference and scale, the discrimination of time duration of accelerated targets is more precise for downward motion than for upward or horizontal motion (Moscatelli and Lacquaniti, 2011). In a recent study also involving a visual scene rich of contextual cues, participants watched the rolling motion of a sphere along a sloped path, and they adjusted the slope angle until the resulting motion looked natural for a given ball acceleration or adjusted the acceleration until the motion on a given slope looked natural (Ceccarelli et al., 2018). On average, participants were rather accurate at finding the match between slope angle and ball acceleration that was most congruent with physics. Therefore, implicit knowledge of gravity effects seems to play a role also in perceptual tasks, but it is still unknown whether and how it contributes to predictive processes affording perceptual extrapolations of object motion.

Here, we extend the findings of Ceccarelli et al. (2018) by investigating how knowledge of the effects of gravity is integrated with visual information in experiments requiring both the interception and the perceptual judgment of naturalness for targets moving under different levels of simulated gravity. Specifically, participants had two different tasks to accomplish during each trial. First, they tried to hit a virtual ball rolling down an inclined plane and then falling in air with different laws of motion. Immediately afterward, they were asked to report whether ball motion had been perceived as natural or unnatural.

We employed targets obeying two different kinematic laws in the two successive phases of descent, in order to probe the predictive nature of motion extrapolation (La Scaleia et al., 2015). Thus, the ball first rolled down in rectilinear motion along a 7°-incline accelerating at about 9% of the imposed gravity level, and then fell along a parabolic path at 100% of the same or different gravity level. Target kinematics during the falling phase cannot be extrapolated simply from visual information obtained during the rolling phase, but requires an internal model of free-fall as derived from prior knowledge.

We manipulated the ball acceleration for the motion on the inclined plane and for the motion in air independently, providing five experimental conditions. There were three internally consistent conditions (G0, G1, G2), in which the rolling phase on the plane was consistent with the falling phase in air, based on one of three different levels of gravity: Earth gravitational acceleration (g = 9.81 m/s2 for G0), half of this value (g/2 = 4.91 m/s2 for G1), or twice this value (2g = 19.62 m/s2 for G2). In two inconsistent conditions (G3, G4), instead, the motion on the plane was compatible with g, while the falling phase in air was at g/2 or 2g for G3 and G4, respectively. Therefore, only the condition G0 in which the gravity level was g during the entire ball motion—on the plane and in air—was compatible with a natural gravitational motion. In addition, there were two conditions of visibility of ball motion during the falling phase in air just before the interception, a visible and an occluded condition.

We manipulated the ball acceleration in order to explore if participants were able to modulate their behavior (interception and perceptual judgment) as a function of different gravity levels. We manipulated the visibility of the target during the falling phase to investigate if knowledge of gravity contributes to predictive processes in both motor and perceptual tasks, and if this knowledge can be updated based on visual information obtained during the rolling phase.

One can expect different results according to different, plausible hypotheses. If the internal model of Earth gravity accounts for a downward accelerated motion only qualitatively, we would expect that perceptual judgments should not differ significantly at different simulated gravity levels, given that in all experimental conditions, ball motion was accelerated in the downward direction. Moreover, according to this hypothesis, motor timing should be more accurate at lower terminal speeds of the target since these are generally easier to intercept for accelerating motion (Port et al., 1997), the conditions G1 and G3 being those that involved lower accelerations and lower terminal speeds than the other conditions.

If instead the internal model of gravity accounts for Earth gravitational kinematics quantitatively, we would expect that the condition G0 should be perceived as natural in a significantly higher number of cases than the other conditions, since G0 is the only condition involving accelerations compatible with Earth gravity effects throughout. Moreover, according to this hypothesis, motor timing should be accurate in G0, late in G2 and G4 (when target acceleration prior to interception is higher than the expected value of Earth gravity), and early in G1 and G3 (when target acceleration is lower than the expected value). Critically, if the internal model of Earth gravity affords predictive, anticipatory estimates of target motion, one would expect that both the interception and the perceptual judgment of naturalness should be little affected by the visibility of the target during the falling phase just prior to interception, because kinematics of free-fall under Earth gravity during visual occlusion can be extrapolated by the internal model starting from the preceding, visible phase of rolling motion along the incline (La Scaleia et al., 2015).

A third possibility is that the prior model of ball motion is updated by using online visual information of the rolling phase on the incline. An updated model might then be used to predict the subsequent falling phase in air. If so, perception rate of naturalness and interception timing should be similar in all three internally consistent conditions (G0, G1, G2), in which the rolling phase obeyed the same gravity constraint as the subsequent falling phase, and the performance should be significantly better than in the two inconsistent conditions (G3, G4), at least in the occluded session.

These experiments also allowed addressing the question whether the interception performance affects the subsequent perceptual judgment. If it does, one expects that perceptual responses are modulated by the motor performance, in addition to a potential modulation by the gravity level.



MATERIALS AND METHODS


Participants

Sixteen subjects (seven females and nine males, 30.4 ± 6.4, years old, mean ± SD) were recruited to participate in the study. Sample size was determined a priori based on previous studies from our laboratory involving motor and perceptual protocols with an inclined plane (La Scaleia et al., 2014a, 2015; Ceccarelli et al., 2018), and on the effects observed in the participants (different from those of the present experiments) of a pilot study. Participant inclusion criteria were no past history of psychiatric or neurological diseases, normal or corrected-to-normal vision, right-handedness (as assessed by a short questionnaire based on the Edinburgh scale), height between 1.65 and 1.88 m, and correct responses in the preliminary tests carried out prior to the experiment (see section “Preliminary Tests”). The latter criteria had to be met to allow both an optimal view of the visual scene and the reachability of all targets in the workspace (see below). All participants were unaware of the experimental purpose and gave written informed consent to procedures approved by the Institutional Review Board of Santa Lucia Foundation, in conformity with the Declaration of Helsinki on the use of human subjects in research.



Apparatus and Visual Stimuli

The participants sat on a height-adjustable chair in front of a mini-CAVE (Cave Automatic Virtual Environment) in a dark room. They wore shutter glasses and held a green cylindrical plastic object (size: 12 cm × 3 cm [height × diameter]; weight: 60 g), in the following denoted as the “hitter,” in the right hand (see Figure 1, inset) and a Wand Sensor (IS-900 system, InterSense Inc., Bedford, MA, United States) in the left hand used for button-press. The hitter had been realized with Ultimaker 2 + Extended 3D printer starting from a custom design with Autodesk. The mini-CAVE (VRMedia S.r.l., Pisa, Italy) consisted of four projection screens: a frontal screen 1.05 m wide and 1.05 high, two lateral screens 1.40 m wide and 1.05 m high, which were tilted by 15°23’ relative to the sagittal plane (to the left or right for the left and right screen, respectively), and a horizontal screen of trapezoidal shape (isosceles trapezoid) with 0.99 m height and bases length of 1.05 and 1.57 m (for the near and far side relative to the observer, respectively). All mini-CAVE walls were front-projection screens and the optic paths were halved by means of mirrors. Position and height of the chair were adjusted so that the eyes of each participant were located at a horizontal distance of about 0.95 m from the frontal screen and roughly centered on the frontal screen midpoint. The horizontal and vertical field of view (FOV) was about 180° and 160°, respectively. 3D visual scenario and stimuli were generated with XVR (eXtreme Virtual Reality, VRMedia S.r.l., Pisa, Italy, Tecchia et al., 2010), and were rendered in quasi-real time by an HP workstation Z210 with an ATI Firepro 3D V7900 graphics card (master PC). Two slaves HP workstations Z210 drove synchronously the 3D rendered graphical output to four LCD front projectors for screen display (3 NEC U300XG for the left, right, and frontal screen, ACER S5301WM DLP 3D-ready for the horizontal screen; 60-Hz stereo frame rate; 768 × 768 pixels resolution for the frontal screen, and 1024 × 768 pixels for the other screens).


[image: image]

FIGURE 1. Schematic of the experimental setup and visual scenario. The white lines and the gray area indicate the position of the mini-CAVE and the participant, respectively. The x,y,z reference system on the blue cuboid is shown for illustrative purpose only (it was not present in the virtual scene). The right inset shows the hitter held by the participant.


Head position and orientation were tracked online by means of the Vicon system (10 Bonita cameras). A bar (length × width × height 7 cm × 1.5 cm × 1.2 cm) equipped with four reflective spherical markers was placed on top of the bridge of the stereo shutter glasses. Position and orientation of the rigid body created from these markers were acquired at 100 Hz by the Vicon system to update the virtual scene based on head position and orientation. In separate tests, we measured an average update latency of three stereo frames.

Position and orientation of the hitter were also acquired at 100 Hz by the Vicon system. Three plastic pins protruded from the cylindrical body of the hitter, one of them (4.3 cm length, 0.7 cm diameter) was orthogonal to the cylinder axis and the others (1 and 3 cm length, 0.3 cm diameter) were parallel to it. An additional pin (1 cm length, 0.3 cm diameter) protruded from a winged frame fixed to the lower base of the cylinder. A reflective spherical marker was embedded on each pin-tip. 3D position and orientation of the hitter was reconstructed in real time from the position and orientation of the virtual rigid body connected by these markers, and from the known geometry of the hitter and its protruding parts. The coordinates of the objects monitored by the Vicon system were transformed in real-time into those of the virtual environment (XVR) by means of the calibration parameters obtained before the experiment. The calibration involved placing the Vicon test bar at several different locations in the experimental workspace and computing the translation vector and rotation matrix representing the transformation between the two coordinate systems. After the calibration, its accuracy was assessed with repeated acquisitions (n = 11) of an array of markers distributed in the workspace. On average, target registration error was 0.925 mm (± 1.052 SD), 0.470 mm (± 0.869 SD), and 0.412 mm (± 0.264 SD), for x, y, and z coordinates, respectively.

The scene background depicted part of a furnished laboratory (10.4 m wide, 13.2 m long, 3.10 m high in world scale), as a realistic version of the actual laboratory where the experiments were performed (Figure 1). The scene was projected at a 1:1 scale, with truthful width-depth rendering. Perspective geometry and textures were included in the scene to augment 3D effects. An inclined plane (2.5 m long, 0.15 m wide) supported by two tripods was placed with the lower edge 0.30 m to the left of the center line of the background wall; its longitudinal axis was parallel to the background wall. The incline was shown tilted by 7° relative to the horizontal. A textured, wooden ball (diameter, 8 cm), initially at rest over the plane, was released and rolled down the incline with different accelerations depending on the protocol, without slipping or bouncing. One static character imported from Autodesk 3ds Max 2010 was placed near the incline in the virtual laboratory to provide an additional metric reference for the virtual environment.

The hitter held by the subject during the experiment was truthfully displayed in the 3D virtual scene, except for the color of one marker on a reference pin-tip (reflexive gray color of the marker was displayed as orange in the virtual environment). Hitter display was necessary because hand interceptive movements occurred below the horizontal screen, remaining invisible to the participant. Spatial registration of the real hitter and its virtual image was obtained during the calibration phase.



Ball Kinematics

Starting from rest, the ball rolled down the plane without slipping or bouncing. The simulated motion corresponded to that of a sphere with a homogenous mass distribution, accelerated by gravity and with negligible rolling resistance. Motion equation was:
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where s is the time-varying position of the center of mass of the ball along the plane axis, θ is the plane tilt relative to the horizontal (θ = 7°), and a is the gravity acceleration. During the experiment, a could take one of 3 different values g/2, g, or 2g (g = 9.81 m/s2).

Once the ball reached the lower end of the incline, it fell off the incline along a parabolic trajectory with acceleration a (we assumed negligible air drag and edge effects) and, once reached the floor, disappeared from the visual scene. The position of the ball center at the time the ball fell off the incline is denoted as the exit point. The height of the ball at the exit point was 1.05 m above the floor. The starting position of the ball on the incline and ball acceleration were randomized across trials. Notice that the inhomogeneous texture of the ball surface provided optical cues about the rotational component of the motion. The longitudinal axis of the inclined plane was parallel to the background wall, allowing the observer to see the entire trajectory of the ball. A hollow rectangular blue cuboid (1 m × 0.37 m × 0.085 m, length × height × width) contiguous to the lower edge of the incline was displayed on the visual scene. Its long axis, parallel to the background wall and to the floor, was placed in the frontal plane of motion of the ball center. The lower border of the cuboid was 32 cm below the center of the ball at the exit position from the incline, and the cuboid center was located 0.135 m below and 0.50 m to the right of ball exit point and it was at the same depth of ball exit point (see Figure 1). The cuboid had two open sides, the left side and the base, so that the ball could pass through the cuboid space without touching the walls. The first phase of parabolic motion of the ball was made either visible or occluded in separate sessions by making transparent or opaque the frontal side of the cuboid proximal to the participant.

The position of the observer in front of the scene was such that the midpoint between his/her eyes was 0.40 m above and 0.30 m to the right of the lower end of the incline, and 0.48 m in front of the incline longitudinal axis. The hitter held by the subject during the experiment was displayed in the 3D virtual scene as a cylindrical object very similar to the real one except for the color of the marker on the tip of the hitter (reflexive gray in the real, orange in the virtual one). This virtual object was rendered in real time and displayed in the same position as the hitter. The measured latency from the acquisition of 3D marker positions and video output ranged between 33 and 50 ms. The starting region of arm movements was rendered as a spherical volume in the 3D scene consisting of a white, partially transparent sphere (8 cm diameter) inscribed in a red cube 9 cm side, 0.60 m below, 0.60 m to the right, and 0.30 m in front of the ball exit point.



Tasks

In each trial, a ball appeared at rest over the incline at a given initial position. To begin a trial, the participant placed the tip (orange marker) of the virtual hitter inside the starting region, and then pressed the Start button of the Wand Sensor. After a pseudorandom delay between 300 and 600 ms (in 100 ms steps), the ball rolled down the incline, fell off to the floor and disappeared from the visual scene. Participants were asked to hit the ball as soon as it emerged from the cuboid, neither the position nor the time of emergence being specified in advance. After the interception attempt and ball disappearance, participants were asked to give a two-alternative forced-choice judgment about the naturalness of the observed motion. To this end, they pressed one of two virtual buttons as a function of the chosen answer. The virtual buttons were created in the following way. After ball disappearance, as soon as participants moved the hitter at a frontal distance of 0.14 m from the ball exit point along the direction from the interception position to the starting position, two cubic white selection boxes (8 cm sides) were displayed in the visual scene. The two boxes were centered 0.20 m to the left and right of the center of the starting region for the hitter, 0.15 m above, and at 0.30 m frontal distance from the center (toward the incline). Frontal faces of the left and right box were labeled with capital letter “N” and “I,” respectively. Participants were required to enter the hitter inside the “N” box if the observed motion appeared as a natural motion (N is the initial letter of the Italian word “naturale”), or inside the “I” box if the observed motion appeared as an unnatural motion (“I” is the initial letter of the Italian word “innaturale”). Subjects were instructed to provide a judgment about the entire ball trajectory, taking into account both the rolling phase and the parabolic phase of ball motion. Once the hitter was entered within one box, the box color changed from white to orange.


Preliminary Tests

Before the beginning of the first experimental session, adequate visual acuity in the 3D virtual environment and ability to reach specified targets were tested. Correct responses to the preliminary tests were required to include a subject in the experiment. Using these criteria, no subject was excluded from the study. Neither the inclined plane nor the blue cuboid displayed in the subsequent experiment was shown during the preliminary tests. Instead, different types of objects were shown.


Stereopsis and color vision

To assess whether participants could see the 3D objects projected on the screens, subjects were asked to wear shutter glasses and to watch a scene in the mini-CAVE in which three red and two green spheres (radius 7.5 mm) were displayed in front of them at 0.48 m distance from the midpoint between the eyes. The spheres were at 0.10 m horizontal and vertical distance between each other. Subjects were asked to count the number and indicate the color of the spheres displayed on the frontal screen.



Reachability of the workspace

Here, a cuboid grid of 20 yellow spheres (5 mm radius) was projected on the screens to the right of the position of the inclined plane in the actual experiment. The distance between the proximal spheres in the grid was 0.1 m horizontal, 0.04 m vertical, and 0.045 m in depth, along the axis x (see reference system in Figure 1). Size, position, and orientation of the cuboid grid were the same as those of the blue cuboid of the experiments, except that the vertical quote of the cuboid grid was centered on the starting spherical volume of the hitter, so as to test the reachability of the whole space covered by potential hitter movements in the subsequent experiment (starting region, interception space, judgment-task region). Participants were asked to hold the hitter and place its tip in the starting region as in the subsequent experiment. The test of reachability started once one of the spheres in the grid turned red and subjects were required to reach the red sphere with the hitter. After the reaching movement, the red sphere turned yellow again and another sphere in the grid turned red. Each of the 20 spheres was tested once for reachability. This task lasted about 1 min.



Familiarization Tasks

Three different tasks were carried out in the following sequence.


Ball hitting

Subjects were instructed to hit a static ball (same appearance and size as in the subsequent experiment) with the tip of the hitter. When the ball was hit, it turned red, a beep was emitted, and then the ball appeared in a different position. The ball could be placed at one of eight different positions, quasi-randomly selected, spaced so as to cover the interception region of the experiment. The spheres were positioned according to a grid (not showed in the scene), at a distance of 0.48 m from the midpoint between the eyes, along z axis, at a distance of 0.2 m from each other, along the axis x, centered on the starting position of the hand. The ball was placed once in each position.



Depth of ball trajectory

In the next task, a ball at the exit point of the inclined plane of the subsequent experiment and three different planes appeared in the virtual scene. One green plane (about 1.30 m × 0.08 m, height × wide) was perpendicular to the inclined plane. The other two planes (one red and the other blue, 1.23 m × 1 m, length × height) were parallel to the frontal plane, located at a distance of 0.08 m from each other, at a distance of 0.52 and 0.44 m, respectively, along z axis, from the midpoint between the eyes and centered on the plane of motion of the ball center during the subsequent experiment. Using the hitter, participants were instructed to explore visually and manually the space on the right side of the inclined plane. The green virtual object, depicting the hitter, turned gray when it entered the space between the two planes parallel to the frontal plane. This color change was used to give an indication of the depth of the virtual environment.



Interception and two-choice judgment task

In the last task, the ball was initially attached at the ceiling at about 0.38 m above, 0.21 m to the right and at a distance of 0.48 m along the z axis relative to the midpoint between the eyes of participant. When the subject pressed a button of the Wand Sensor, the ball fell vertically under gravity. The task was to hit the ball and then judge whether the motion appeared natural or unnatural, even though ball acceleration was always equal to g. Hitting and judgment were performed with a similar procedure as in the actual experiment (see above). After five such trials, the experiment began.

Overall, the familiarization phase lasted about 5 min and preceded each experimental session.



Protocol

Participants were tested in a counterbalanced order in two sessions, occluded and visible, 15 days apart. In each session, there were 15 test conditions: three different starting positions of the ball on the incline, corresponding to three traveled distances (TD), and five different gravity conditions (G). TD corresponds to the distance between the starting and the exit position on the incline. The conditions are detailed in Table 1. The starting position of the ball and traveled distance on the inclined plane were calculated from the law of motion of a ball rolling down the plane without slipping or friction according to Eq. 1. We used the following combinations of gravity level for the rolling phase and gravity level for the falling phase in air (see Table 1). G0: g ÷ g. G1: g/2 ÷ g/2. G2: 2g ÷ 2g. G3: g ÷ g/2. G4: g ÷ 2g.


TABLE 1. Ball motion parameters (inclined plane and air).

[image: Table 1]Each experimental session involved two identical blocks of 105 trials. In each block, there were 90 test trials and 15 catch trials (CTs), one for each test conditions, pseudo-randomly interleaved between the test trials, with unexpectedly altered visibility condition. For test trials, TD was assigned to one of three values, and G was assigned to one of five values. Each CT had the same TD and G as in the previous test trial, but a different visual condition (occluded if the test was visible or viceversa). In each block, targets were presented in consecutive sequences in which each test condition (3 TD × 5 G) was presented in random order, different from one sequence to the next. There were six such sequences (repetitions). In the first sequence of the block (first repetition) no test condition has a corresponding CT. In each of the other five sequences of block, there were three different test conditions with corresponding CTs (for a total of 15 CTs = 3 CTs × 5 sequences). Thus, each block had 105 trials [3 TD × 5 G × 1 R + (3 TD × 5 G + 3 CT) × 5 R], resulting in a total of 210 trials for each experimental session.

Figure 2 shows the last segment of the paths of the ball, while Figure 3 shows the time course of the center of mass. Notice that the internally consistent conditions (in blue) involved the same spatial trajectories of the ball but with a different time course.
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FIGURE 2. Spatial trajectories of the ball for all experimental conditions. The envelope of the path followed by the ball in the frontal plane is denoted by parallel lines. Black lines indicate the last segment of the rolling motion on the inclined plane. Blue, red, and green lines indicate the trajectories in air for the internally consistent conditions (G0, G1, G2), the inconsistent condition G3, and the inconsistent condition G4, respectively. The black box represents the frontal side of the cuboid. Each panel corresponds to a different traveled distance (TD) on the incline.



[image: image]

FIGURE 3. Time course of ball motion for all experimental conditions. Time-varying trajectories of the center of ball mass in the horizontal and vertical direction are plotted in the top and bottom rows, respectively, from the starting position on the incline to the arrival time of the ball on the virtual floor. Black lines indicate the motion on the incline. Blue, red, and green lines indicate the trajectories in air for the internally consistent conditions (G0 as continuous line, G1 asterisk-dashed, G2 dashed), the inconsistent condition G3, and the inconsistent condition G4, respectively. Each column corresponds to a different traveled distance (TD) on the incline.


A motivational score (10 points for each hit ball) was provided to the participants after each set of 15 trials, but subjects were unaware of the criterion used to score their performance.

Participants were allowed to pause any time they wished during an experimental session, which lasted about 32 min.



Data Analysis

We excluded a few trials (∼4% of all trials) from the analysis due to the presence of artifacts or lack of subject’s attention (as marked in the experiment notebook). The 3D coordinates (x, y, z) of the tip of the hitter recorded by Vicon were numerically low-pass filtered (bidirectional, 20-Hz cutoff, second-order Butterworth filter). These data, as well as the position of the ball center, were interpolated at 1 kHz using a spline cubic interpolation.


Perceptual Task


Naturalness judgments

Perception rate of natural motion (PR) was computed as the proportion of trials in which participants judged the ball motion as natural relative to the total number of trials for each experimental condition of each participant. Thus perceptual responses were cumulated over all repetitions of each condition.



Motor Task

For each trial, we computed the following parameters.


Endpoint analysis

The minimum distance point (IP) was defined as the position in which the tip of the hitter (in the following, simply the hitter) first arrived at the minimum distance from the ball surface during ball motion. We also computed the time sample in which the trajectory of the hitter crossed, for the first time, the frontal plane tangent to the ball surface facing the hitter (i.e., when the ball could be intercepted for the first time). The TE was defined as the difference between the time sample when the hitter crossed the frontal plane tangent to the ball surface and the time sample when the hitter reached IP. Accordingly, a positive (negative) value of TE corresponded to a response later (earlier) than that theoretically expected if the hitter arrived at a minimum distance from the ball when crossing the frontal plane tangent to the ball surface facing the hitter. The schematic of Figure 4 shows the top view of hypothetical hand trajectories, when the interception movement of the hitter is timed early relative to ball arrival (Figure 4A), when it is timed accurately (Figure 4B), or when it is timed late (Figure 4C).
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FIGURE 4. Top view of the relative position of the ball and hand in three hypothetical cases. Each panel is a snapshot representing the relative position of the ball and hitter in the horizontal plane at a given time. The gray region delimits the proximal and distal frontal planes tangent to ball surface. The blue lines depict the paths that led the hitter at the position depicted in the panel. The black cross denotes the position IP in which the hitter first arrived at the minimum distance from the ball surface during ball motion. The purple circle denotes the position of the hitter when it first crossed the proximal frontal plane tangent to the ball surface. (A) The hitter arrives early relative to the ball, and the timing error (TE) is negative. (B) The hitter arrives on time (TE = 0). (C) The hitter arrives late (TE > 0).




Comparison with natural gravitational free-fall in air

We computed the virtual ball parabolic trajectory in air under natural gravity (gravitational ball trajectory), independently of the previous ball acceleration during the rolling motion on the incline. We defined the gravitational timing error (GTE) as the difference between the time sample when the hitter crossed the frontal plane tangent to the ball surface and the time sample when the hitter reached the minimum instantaneous distance from the ball surface, assuming a free-fall under natural gravity (instead of the actual kinematics in the current trial). GIP was defined as the corresponding virtual minimum distance point. Accordingly, if participants predicted a free-fall of the ball in air under natural gravity, GTE should be zero and GIP should be independent of the previous ball acceleration during the rolling phase.



Hand kinematics

We considered the time-varying position of the hitter, which was time-differentiated to compute the tangential speed as vT = [image: image]. We computed the maximum tangential speed of the hitter during the entire hand movement and the interval between the time sample in which the hitter arrived in IP and the time sample of maximum speed. Onset time of hand movements was computed according to the following algorithm (La Scaleia et al., 2015). First, we normalized tangential speed to the maximum value v = vT/vmax. Then, going back from the time sample at which v = 1, we defined the first sample for which v ≤ 0.08 as the onset time. We defined movement duration (MD) as the interval between the onset time and the time of maximum speed.



Statistical Analysis

The main statistical analyses excluded the CTs, so we considered 12 repetitions (six repetitions per block) for each experimental condition. CTs were included in a separate analysis, as a control for the effect of visibility condition. Results are reported as mean and 95% confidence intervals (CIs) for data symmetrically distributed. Perception rate of natural motion (PR, binary responses) is reported as quartiles (median and interquartile range, IQR = q3 – q1 where q1 and q3 are the 25th and 75th percentiles). Perception rates higher than q3 + 1.5(q3 – q1) or smaller than q1 – 1.5 (q3 – q1) were considered as outliers.

For perception rate of natural motion, the statistical differences between conditions were assessed using a generalized linear mixed model (GLMM, see Moscatelli et al., 2012) with logit link function. GLMM separates the overall variability into a fixed component and a random component, and assumes that the response variable has a binomial distribution. The fixed component estimates the experimental effect, while the random component estimates the heterogeneity between participants. We considered the following model:
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In this model, the logit transformation of the probability that participant j judged natural the ball motion in trial i is equal to a linear combination of fixed and random effect predictors. Specifically, G is the categorical variable for the Gravity Condition (G = G0, G1, G2, G3, G4), TD is the categorical variable for the traveled distance on the incline (TD = TD0, TD1, and TD2 for starting position 0.546, 1.093, and 2.186 m, respectively), V is the dummy variable for the visual condition (V = 0 or 1 for the occluded or the visible condition, respectively), and O is the dummy variable for the session order (O = 0 or 1 if the first experimental session was visible or occluded, respectively). TD × G is the interaction between the traveled distance on the incline and gravity condition. δk are the fixed effects coefficients and ujk are the random effects coefficients.

To analyze the correlation between perceptual and motor responses, we included in the model (Eq. 2) the absolute value of the TE [continuous variable, δ6 abs(TE)] as predictor. The abs(TE) is related to the relative success of the interceptive action: the lower the value of abs(TE), the higher the relative success.

The significance of fixed effect parameters was assessed by means of Wald statistics. We selected each GLMM model from a pool of nested models based on the Akaike information criterion.

The TE and all other kinematic parameters were modeled using a linear mixed model (LMM), which is a special case of the GLMM assuming an identity link function. In LMM, the response variable is assumed to have a conditional Gaussian distribution. The response variable is modeled as a linear combination of the fixed-effect and random-effect parameters.

In the LMM model, we included the repetitions (R, continuous variable) as a predictor [(δ7 + uj7) R].

All analyses were performed in Matlab (Mathworks, Natick, MA, United States) and R environment (R Development Core Team, 2011; R Foundation for Statistical Computing, Vienna, Austria).



RESULTS


Perception Rate of Natural Motion

In each trial, the ball rolled down an incline and then fell off in air with different kinematics, depending on the test condition (Figures 1–3 and Table 1). After trying to intercept the ball exiting from the cuboid, participants provided a two-alternative forced-choice judgment about the perceived naturalness of the previous motion of the ball. We found that perception rate of natural motion (PR) was significantly higher and less variable (across participants, starting positions of the ball, and visual conditions, visible or occluded) in G0, the only condition in which ball kinematics was congruent with Earth gravity during both the rolling phase and the free-falling phase, than in all other conditions (Figure 5). Thus, PR for G0 was 83.3% (IQR = 26.14%, three traveled distances × two visual conditions × 16 subjects, n = 96), while it was 66.7% (IQR = 74.24%), 26.8% (IQR = 49.2%), 58.3% (IQR = 58.3), and 41.7% (IQR = 41.7%) for G1–G4, respectively.
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FIGURE 5. Perception rates of natural motion plotted separately for each gravity condition (three traveled distances × two visual conditions × 16 subjects, n = 96). The bottom and top of the box-and-whisker plots boxes correspond to the lower and upper quartile, respectively. The notch displays the 95% confidence interval of the median. The whiskers extend to the lowest and highest data points, without considering the outlier (cross).


To take into account the variability across participants, we used the GLMM with gravity condition G0, traveled distance on the incline TD1, visibility: Occluded, and session order: Occluded in the first block, as the baseline conditions in Eq. 2. This analysis showed that PR depended significantly on gravity conditions and on the interaction between gravity conditions and traveled distance (Figure 6 and Table 2). In particular, PR was significantly higher for G0 than for all other conditions (all coefficients for G1–G4 were negative, implying that their values were lower than the PR of the baseline, see Eq. 2). These differences were significant for all gravity conditions G1–G4 (all P < 0.024). Therefore, neither the internal consistency of the gravity level between the rolling phase and the falling phase in air (G1–G2) nor the congruence of the rolling phase with natural gravity g (G3–G4) was sufficient to judge the movement as natural in a systematic way. Furthermore, PR did not depend significantly on visibility (P = 0.261), but it was significantly lower when the first session was occluded than when it was visible (P < 0.0001).
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FIGURE 6. Perception rates of natural motion for each gravity condition, visual condition, and traveled distance on the incline (n = 16 subjects). Different gray levels denote different traveled distances: 0.546, 1.093, and 2.186 m, dark to light. Other conventions as in Figure 5.



TABLE 2. Natural perception rate.

[image: Table 2]To analyze the correlation between perceptual and motor responses, we included the absolute value of the TE of interception (TE, continuous variable, see next section) as a predictor in the model. The GLMM analysis showed that PR decreased significantly with increasing absolute value of TE (P = 0.012, Table 3). Furthermore, this analysis confirmed that PR was higher when ball kinematics was congruent with Earth gravity (G0) throughout descent than when it was not (all coefficients for G1–G4 were negative, and all P < 0.032).


TABLE 3. Correlation between perceptual and motor responses.

[image: Table 3]In sum, perceptual judgments of naturalness depended in part on the gravity conditions and in part on the relative success of the interceptive action.



Timing Error of Interception

The TE varied considerably as a function of the different gravity conditions (Figures 7, 8A). On average, TE was not significantly different from zero for G0 (TE = -0.014 ± 0.016 s, mean ± CI, n = 96, three traveled distances × two visual conditions × 16 subjects). Instead, mean TE was significantly negative, implying early responses, when the acceleration during fall in air was equal to g/2 (TE = -0.089 ± 0.020 s and TE = -0.085 ± 0.016 s, mean ± CI, n = 96, for G1 and G3, respectively). By contrast, mean TE was significantly positive, implying late responses, when the acceleration during fall in air was equal to 2 g (TE = 0.047 ± 0.014 s and TE = 0.059 ± 0.018 s, mean ± CI, n = 96, for G2 and G4, respectively).
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FIGURE 7. Timing errors for each gravity condition and traveled distance on the incline (mean ± 95% confidence interval, two visual conditions × sixteen subjects, n = 32). Different gray levels denote different traveled distances as in Figure 6.
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FIGURE 8. Timing errors and hand movement characteristics. (A) Timing errors (mean ± 95% confidence interval, three traveled distances × two visual conditions × 16 subjects, n = 96). (B) Intervals (mean ± 95% confidence interval, three traveled distances × two visual conditions × 16 subjects, n = 96) between the time at which the hitter arrived in IP and the time of maximum hitter speed. (C) Top view of hitter trajectories for all repetitions (n = 12) of a representative participant (#13) for each gravity condition and traveled distance (red 0.564 m, green 1.093 m, and blue 2.186 m) in the occluded session. The trajectories are plotted from the starting position to IP. Gray area represents the envelope of ball trajectory. (D) Speed profiles of hitter movements of the same subject of C. The 95% confidence interval over all repetitions and traveled distances in the occluded session are plotted for each gravity condition. Traces are aligned on the hitter arrival time in IP (vertical line).


A visual impression of these results with TE is provided by Figure 8C, showing the top view of hand trajectories for all repetitions of a representative participant for each gravity condition and traveled distance of the ball on the incline in the occluded session. The trajectories are plotted from the starting position to IP. A positive (negative) value of z-coordinate of IP indicates late (early) responses, whereas z-coordinates close to 0 (the z-coordinate of the frontal plane tangent to the ball surface facing the hitter) indicate correctly timed responses (see also Figure 4). It can be seen that most hand movements aimed at targets accelerating at g/2 during fall in air (G1 and G3) were early, those aimed at targets accelerating at 2 g (G2 and G4) were late, and those aimed at targets accelerating at g (G0) were mostly on time.

Linear mixed model (five gravity conditions, three traveled distances, twelve repetitions, two visual conditions, and two session orders) confirmed the results. TE depended significantly on gravity condition (all P < 10–19, Table 4). TE was not significantly different from zero (P = 0.150) for G0, whereas the coefficients for G1 and G3 (G2 and G4) were negative (positive), indicating early (late) responses relative to the responses in G0. TE did not depend significantly on visibility, repetitions, or session order (all P > 0.080). Similar results were obtained by including also CTs. In order to evaluate their potential effect, we compared the TE of consecutive trials with the same traveled distance and gravity condition but different visual condition. In particular, for each CT, we evaluated the difference between the TE of an occluded trial and the TE of the corresponding visible trial, independently of presentation order. Table 5 shows that in the occluded session the visibility did not change the TE (P = 0.989).


TABLE 4. Timing error.
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TABLE 5. Effect of “catch trials” on timing error.
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Hand Kinematics


Spatial Scatter of Endpoints

Figure 9 plots for all trials the position of the hitter when it crossed, for the first time, the proximal plane tangent to the ball surface (i.e., when the ball could be intercepted for the first time). From Figure 2, we recall that the three internally consistent conditions (g-g, g/2-g/2, 2g-2g) involved the same spatial trajectories of the ball. Figure 9 shows that the corresponding endpoints of hand movements tended to be closely scattered along the trajectory of the ball for both visual conditions, indicating that subjects were generally able to extrapolate the target trajectory even when this was occluded from view. Remarkably, the endpoints of the movements in the two inconsistent conditions (g-g/2, g-2g) tended to fall in roughly the same region as those of the consistent conditions, therefore deviating conspicuously from the actual path of the ball.


[image: image]

FIGURE 9. Spatial distributions of endpoint positions. Each panel plots the x–y positions (n = 192) of the hitter when it crossed, for the first time, the proximal, frontal plane tangent to the ball surface for all trials of all participants in the indicated gravity condition. Curved parallel lines represent the envelope of the path followed by the ball in the frontal plane.




Interval Between the Instant in Which Hitter Arrived in the Minimum Distance Point and the Maximum Speed Time

The mean maximum speed was equal to 1.733 ± 0.097, 1.622 ± 0.090, 1.814 ± 0.105, 1.700 ± 0.094, and 1.756 ± 0.110 m/s (mean ± CI, n = 96, three traveled distances × two visual conditions × sixteen subjects) for G0–G4, respectively. The maximum speed was significantly greater in G2 (G1 and G3) (smaller) than in G0 (P < 0.02).

The mean time interval between the instant in which the hitter arrived in IP and the instant of maximum speed (IT) depended significantly on gravity condition: this interval was equal to 0.057 ± 0.022, 0.137 ± 0.027, -0.008 ± 0.020, 0.127 ± 0.022, and -0.015 ± 0.024 s (mean ± CI, n = 96) for G0–G4, respectively. Figure 8B plots this time interval for G0–G4. Table 6 shows the results of LMM (five gravity conditions, three traveled distances, twelve repetitions, two visual conditions, and two session order). The hitter arrived in IP after the maximum speed time in G0 (P = 0.001). The interval time depended significantly on gravity condition (P < 10–21), in particular in G1 and G3 (G2 and G4) the interval was greater (smaller) than in G0. Figure 8D shows the speed profiles (95% CI over all repetitions and traveled distances) of the hand movements of a representative subject (same as in Figure 8C) for each gravity condition in the occluded session, aligned with the hand arrival time in IP. The interval time did not depend significantly on visibility (P = 0.113).


TABLE 6. Interval between the instant in which hitter arrived in intersection point and the maximum speed time.

[image: Table 6]


Movement Duration

The MD varied as a function of gravity conditions. On average, hand movements aimed at balls rolling down the incline with a higher acceleration lasted less than those aimed at balls with lower accelerations. On average, MD was 0.313 ± 0.014, 0.348 ± 0.017, 0.287 ± 0.012, 0.313 ± 0.015, 0.317 ± 0.016 s (mean ± CI, n = 96, three traveled distances × two visual conditions × 16 subjects) for G0–G4 respectively. LMM (five gravity conditions, three traveled distances, twelve repetitions, two visual conditions, and two session order) showed that MD depended significantly on gravity condition during the rolling phase on the incline (Table 7). In fact, the coefficients for G3 and G4 were not significantly different from zero (P > 0.686), indicating that, irrespectively of the gravity level during the falling phase in air, the hand movement had the same duration for gravity conditions G0, G3, and G4. By contrast, the hand movement lasted less (more) in G2 (G1) than that in G0. MD did not depend significantly on visibility (P = 0.235).


TABLE 7. Hand motion duration.

[image: Table 7]This was confirmed also by the analysis of CTs. For both the MD and IT, we evaluated the differences between the value in the occluded trial and the corresponding one in the visible trial, independently of presentation order. In both visible and occluded sessions, visibility did not affect significantly either IT (P = 0.823, Table 8) or MD (P = 0.088, Table 9).


TABLE 8. Effect of “catch trials” on interval between the instant in which hitter arrived in intersection point and the maximum speed time.
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TABLE 9. Effect of “catch trials” on hand motion duration.

[image: Table 9]The results showed that the movement temporization (e.g., both the TE and IT) did not depend on visibility while it depended on the gravity level. In particular, the movement was correctly timed only in G0. This is compatible with the hypothesis that participants timed the interception based on knowledge of the quantitative effects of Earth gravity during both the rolling and falling phases. In order to further test this hypothesis, we evaluated the TE and IT considering a hypothetical free-fall under natural gravity for all conditions.



Comparison With Free-Fall in Air Under Earth Gravity (After Natural or Unnatural Ball Rolling Motion on the Incline)

Consistent with the hypothesis that participants expected a free-fall in air at natural gravity irrespective of ball kinematics during the previous rolling phase, we found that the mean TE assuming a free-fall under natural gravity (GTE) was close to zero for all gravity conditions (Figure 10A). On average, GTE was -0.014 ± 0.016, -0.002 ± 0.021, -0.011 ± 0.012, -0.017 ± 0.017, and -0.014 ± 0.016 s (mean ± CI, n = 96, three traveled distances × two visual conditions × 16 subjects) for G0–G4. LMM (five gravity conditions, three traveled distances, twelve repetitions, two visual conditions, and two session order) showed that GTE did not depend significantly on gravity condition (all P > 0.083). Nor did GTE depend significantly on visibility, repetitions, and session order (Table 10).


[image: image]

FIGURE 10. Gravitational timing error and hand movement characteristics assuming a free-fall under natural gravity in air, instead of the actual kinematics. A–D in the same format as in Figure 8.



TABLE 10. Gravitational timing error.

[image: Table 10]Figure 10C shows the top view of hand trajectories for all repetitions of one participant (same as in Figures 8C,D) for each gravity condition and traveled distance in the occluded session, considering a free-fall in air under natural gravity. The trajectories are plotted from the starting position to GIP. Consistent with the results relative to GTE, the z-coordinates of GIP were generally close to 0 (the z-coordinate of the frontal plane tangent to the ball surface facing the hitter), indicating a correct hand movement temporization for a target in free-fall under natural gravity. Figure 10B and Table 11 show that the time interval between the instant in which the hitter arrived in GIP and the maximum speed time did not depend on gravity conditions (with the exception of G2, P = 0.016). Figure 10D shows that the speed profiles for one subject (same as in Figures 8C,D) are well aligned on the arrival time of the hitter in GIP for all gravity conditions.


TABLE 11. Interval between the instant in which hitter arrived at instantaneous minimum distance from the ball surface considering ball gravitational free-fall (GIP), and the maximum speed time.
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DISCUSSION

We designed the experiments to test whether naturalness perception and interception timing are sensitive to the level of simulated gravity affecting the visual motion of a falling target. We specifically wanted to distinguish between three different hypotheses. (1) The internal model of Earth gravity accounts for a downward accelerated motion qualitatively, but does not discriminate between different gravity levels. (2) The internal model of gravity accounts for Earth gravitational kinematics quantitatively. (3) The prior model of ball motion can be updated by using online visual information of the rolling phase on the incline to predict the subsequent falling phase in air even for artificial gravity levels.

The results were generally compatible with the second hypothesis. Thus, perception rate of natural motion was significantly higher and less variable in G0 than in the other tested conditions, G0 being the only condition in which ball kinematics was congruent with Earth gravity during both the rolling phase and the free-falling phase. Moreover, on average, the timing of target interception was accurate in G0, late in G2 and G4 (when target acceleration prior to interception was higher than the expected value of Earth gravity), and early in G1 and G3 (when target acceleration was lower than the expected value).

Critically, neither the perceptual judgment of naturalness nor the interception timing depended significantly on whether or not the target was visible during free-fall. This latter result indicated that, even when occluded, free-fall under natural gravity was correctly extrapolated from the preceding, visible phase of rolling motion along the incline.


Perceptual Judgments of Naturalness

The present results confirm and extend those of Ceccarelli et al. (2018). A visual scene including abundant static cues about the gravity reference and metric scale allows quantitative estimates of the effects of gravity on object motion, leading to perceptual judgments coherent with physics. This contrasts with the poor performance that is typically reported for perceptual estimates of naturalness of sloped motion in the absence of a structured visual context (Bozzi, 1959; Hecht, 1993; Rohrer, 2003). By the same token, discrimination of different gravity accelerations of parabolic motions presented against a blank background is low (Jörges et al., 2018). The present results, instead, are consistent with the suggestion put forth by Kaiser et al. (1985) that judgments of naturalness can be close to physical realism when the event to be judged is shown in motion. Smith et al. (2018) speculated that naturalness judgments require tracking and matching the precise position of an object over time, and therefore they might be well served by an analog simulation system (akin to an internal model of physics).

Here, naturalness perception depended on the motor performance, in addition to the gravity condition. Although motor performance by itself was related to the gravity condition, the absolute value of the TE of interception affected significantly the rate of naturalness judgments independently of the gravity condition: participants tended to judge more natural those target motions that they intercepted with smaller temporal errors. However, perceptual responses and motor responses were ranked in a slightly different order as a function of the gravity condition (compare Figures 5, 8A).

Motor performance could contribute to naturalness perception in different ways. First, since participants gave their judgments after performing the interception attempt, the mere action execution could have primed participants to be attuned to all available information about target kinematics, which, in turn, could have affected naturalness perception. Second, judgments of naturalness could be made with respect to the success of the interceptive action. In other words, the relative difficulty of interception and the corresponding error in motor timing could have prompted the participants to judge the event more or less natural.

Perceptual judgments cannot be disembodied from purposeful actions, implying that the manner with which a person interacts with a dynamic event provides a strong framework to judge critical features of the same event. In line of principle, motor actions might teach or shape perceptual skills. In particular, motor-perceptual interactions are to be expected when motor processes contribute to perception. For example, Ishimura and Shimojo (1994) reported a series of experiments where perceived motion was biased by concurrent hand movements. In another study, Wohlschläger (2000) showed that planned hand movements, which were performed only after the visual judgment, were sufficient to bias apparent motion perception. Likewise, Craighero et al. (1999) found that the mere preparation of reaching to grasp a bar in a certain orientation produced faster processing of stimuli congruent with bar orientation.



Motor Control

The present results agree with those of Jörges and López-Moliner (2019) showing a quantitative relationship between the gravity level of a target moving along a parabolic path and the timing of button press responses. Notice that, also in the study of Jörges and López-Moliner (2019), the targets were presented against a background including different objects that allowed the metric calibration of space. In both studies, interception responses were timed correctly when target kinematics was congruent with Earth gravity, while the responses were early for gravity values lower than Earth gravity and late for gravity values higher than Earth gravity. Here, we found that the mean TE assuming a free-fall under natural gravity (GTE) was close to zero for all gravity conditions, further corroborating the hypothesis that participants expected a free-fall in air at natural gravity irrespective of ball kinematics during the previous rolling phase. Moreover, both the TEs and the parameters of hand movements did not depend significantly on target visibility during free-fall, demonstrating that ball kinematics during this phase was not simply extrapolated from the previous visible phase.

These findings are incompatible with the idea that the extrapolation of target motion is based only on the online visual information about target kinematics. The findings are in agreement with the previous studies that have already demonstrated the use of the internal model of gravity effects in interceptive actions in the presence of partial occlusion (Zago et al., 2010; Bosco et al., 2012; La Scaleia et al., 2014a, 2015). In particular, La Scaleia et al. (2015) performed an experiment reminiscent of the present one: participants were asked to hit a real ball that first rolled down an inclined plane tilted by 20° and then fell in air under Earth gravity and air drag along a quasi-parabolic trajectory, which was either visible or occluded. The interceptive performance was strikingly similar in the visual and occluded sessions, indicating that the internal model of gravity was used to extrapolate ball motion correctly even when this was occluded. Here, instead, we took advantage of the virtual reality setup to manipulate the ball acceleration for the motion on the inclined plane and for the motion in air independently. We found that online visual information about ball rolling motion was not used to update the model of the free-fall phase, which remained the model of a target falling under Earth gravity.



CONCLUSION

The present results add to the growing evidence that, despite its poor sensitivity to generic visual accelerations, the brain is highly tuned to the specific kinematics associated with Earth gravity. Both perceptual and motor responses are guided by internal models of physics that allow the prediction of the forthcoming dynamics of events unfolding under gravity acceleration.

With regard to the issue of the design of virtual scenarios, we considered at the outset, one take-home message of the present study is that the rendering of animations should include realistic gravity effects along with contextual cues sufficient to calibrate the metrics of virtual space and motion. Instead, it does not seem necessary that visual information is complete and continuous, since human sensorimotor systems are capable of filling in huge gaps in the spatiotemporal unfolding of the stimuli (Bosco et al., 2015). Another take-home message of this study is that closing the sensorimotor loop, by asking the observer to interact with the target in the virtual scenario, enhances the perceptual sensitivity to physical realism. Therefore, vivid virtual environments should be as much interactive as possible, especially in view of designing physiologically inspired protocols for basic research and rehabilitation.
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Haptic Adaptive Feedback to Promote Motor Learning With a Robotic Ankle Exoskeleton Integrated With a Video Game
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Background: Robotic devices have been used to rehabilitate walking function after stroke. Although results suggest that post-stroke patients benefit from this non-conventional therapy, there is no agreement on the optimal robot-assisted approaches to promote neurorecovery. Here we present a new robotic therapy protocol using a grounded exoskeleton perturbing the ankle joint based on tacit learning control.

Method: Ten healthy individuals and a post-stroke patient participated in the study and were enrolled in a pilot intervention protocol that involved performance of ankle movements following different trajectories via video game visual feedback. The system autonomously modulated task difficulty according to the performance to increase the challenge. We hypothesized that motor learning throughout training sessions would lead to increased corticospinal excitability of dorsi-plantarflexor muscles. Transcranial Magnetic Stimulation was used to assess the effects on corticospinal excitability.

Results: Improvements have been observed on task performance and motor outcomes in both healthy individuals and post-stroke patient case study. Tibialis Anterior corticospinal excitability increased significantly after the training; however no significant changes were observed on Soleus corticospinal excitability. Clinical scales showed functional improvements in the stroke patient.

Discussion and Significance: Our findings both in neurophysiological and performance assessment suggest improved motor learning. Some limitations of the study include treatment duration and intensity, as well as the non-significant changes in corticospinal excitability obtained for Soleus. Nonetheless, results suggest that this robotic training framework is a potentially interesting approach that can be explored for gait rehabilitation in post-stroke patients.

Keywords: bioinspired, exoskeleton, video game, motor learning, corticospinal, plasticity, stroke, TMS


1. INTRODUCTION

Stroke affects each year around 13.7 million people worldwide, is the second leading cause of disability and may result in a series of motor impairments including gait abnormalities (Barroso et al., 2017; World Stroke Organization, 2018). Regarding walking rehabilitation after stroke, there has been considerable controversy and debate on the effectiveness of the various approaches used (Pollock et al., 2014). In the past 20 years, other rehabilitation modalities, such as robotic therapy have been introduced to motor rehabilitation practice aiming at promoting gait recovery in patients who suffered neural-impairments (Moreno et al., 2013), including post-stroke patients. So far, results suggest that robotic therapy may be beneficial to treat acute and chronic post-stroke patients (Van der Loos et al., 2016). Nonetheless, there is no agreement on the optimal robot-assisted approaches to promote neurorecovery through plasticity mechanisms following neural injury (Kim and You, 2017; Belas dos Santos et al., 2018; Gassert, 2018; Barroso et al., 2019).

One of the most widely tested approaches is robotic guidance, which supervises trajectories during motor tasks and prevents the user from performing undesired (and possibly unsafe) deviations from prescribed trajectories. This type of robotic assistance is frequently implemented as a “tunnel” of allowed deviation around the prescribed trajectory (Ren et al., 2011; Bortole et al., 2015). Robotic guidance can be combined with virtual environments or video games. Adding video games to the therapy turns the potential motor learning into a transparent process to the user. Moreover, engagement with the training and entertainment are very important psychological aspects of games (Patton and Mussa-Ivaldi, 2004). In fact, visual feedback has been shown to improve robotic guidance therapy scenarios (Liu et al., 2006; Tamburella et al., 2019) and video games seem to be effective to improve motor function and health after stroke (Swanson and Whittinghill, 2015). Thus, different combinations of robotic guidance and video games have been proposed. A possible shortcoming of robotic guidance is that this approach might as well reduce patients' effort, and thus, the possible benefits of the therapy (Rowe et al., 2017). In this vein, Goodman et al. (2014) designed a video game that decreased the level of assistance delivered to the ankle joint by the robot if the performance (assessed as a function of the smoothness of trajectories) increased. Other strategies involve adding resistance to make the task more challenging when the performance of the user improves, which can potentially increase engagement in the task (Ren et al., 2011). Interestingly, these two opposite strategies found evidence of enhanced motor learning markers, although there is still no consensus regarding the effects of using either type of robotic guidance.

As a counterpart of robotic guidance, error-augmentation based approaches have been also proposed to enhance motor learning. Emken and Reinkensmeyer (2005) used movement-perturbation approach with a robotic device while the user was performing the target task and concluded that motor learning can be accelerated by exploiting the error-based learning mechanism. Reinkensmeyer and Patton (2009) suggested that starting with guidance force and gradually removing it and increasing error-augmentation approaches may lead to motor learning. Marchal-Crespo et al. (2014) showed that adding random disturbances while executing a simple dorsi-plantarflexion task improved motor learning and suggested that the variability introduced to the task may increase recovery due to increased effort and attention needed to perform the task. Moreover, another study showed that “challenge-based” controllers (where guidance force is given on the first stages of the recovery and error-augmentation is given later on the rehabilitation) were more beneficial for the recovery, since this represents an adaptation of the therapy to the patients' motor learning process (Marchal-Crespo et al., 2017). These functional benefits observed in these studies suggest that the nervous system learns by forming the internal model of the dynamics of the environment via error reduction (Emken and Reinkensmeyer, 2005), leading to plastic changes presumably at the cortical level (Perez et al., 2004).

Given the aforementioned literature on different approaches tested in robotic therapy, there is evidence supporting the integration of video games in challenge-based therapies, that are able to adapt the difficulty of the task to the patient's skills, always trying to keep the user motivated and engaged. This might help promoting motor learning via activity-dependent neuroplasticity (Sweatt, 2016; Gassert, 2018). In this context, the present study proposes a novel therapy protocol that combines a grounded exoskeleton perturbing the ankle joint motion with a video game based visual feedback. Ankle joint is fundamental for gait and balance as plantarflexor passive stiffness causes reduced plantarflexion torque before starting the swing phase in gait, and may as well limit dorsiflexion, compromising foot clearance in post-stroke patients (Lamontagne et al., 2002). The major novelty that this therapy protocol introduces is the autonomous modulation of the perturbations provided to the user via haptic adaptive feedback approach based on the task performance. This protocol was first tested on a validation study with healthy subjects, and later on as an usability case study with a post-stroke patient.

We hypothesized that the use of the proposed ankle rehabilitation robot would promote motor learning and increase corticospinal excitability of the dorsi-plantarflexor muscles. Although there is not a clear relationship between motor learning and corticospinal excitability (Bestmann and Krakauer, 2015), several authors have established a relation between them (Perez et al., 2004; Kida et al., 2016; Naros et al., 2016; Mawase et al., 2017; Christiansen et al., 2018; Raffin and Siebner, 2018; Mrachacz-Kersting et al., 2019). Corticospinal excitability can be assessed with Transcranial Magnetic Stimulation (TMS), by eliciting Motor Evoked Potentials (MEPs) (Rotenberg et al., 2014). Validation of our hypotheses would provide preliminary evidence of the usefulness of this novel robotic therapy to promote motor learning in the context of a pre-gait mobilization task, i.e., mobilization before undergoing gait-centered rehabilitation.



2. MATERIALS AND METHODS


2.1. Participants

Ten healthy subjects (29.80 ± 6.32 years old) participated in the study. They signed an informed consent for the experiment. Experiments were conducted in accordance with the declaration of Helsinki. All experimental procedures were approved by the Bioethical subcommittee of the Ethical committee of CSIC (Spanish National Research Council), reference 008/2016.

We also performed an usability case study with one post-stroke patient (age 37). The patient suffered an haemorrhagic transformation of ischemic stroke, affecting the right middle cerebral artery, thus the most affected side of the body was the left. The experiment with the patient was performed in the facilities, and under the supervision of the professionals of Centro de Referencia Estatal de Atención Al Daño Cerebral (CEADAC). The patient was assessed by a physician using the most common scales: the Disability Rating Scale (DRS), Functional Independence Measure (FIM) and the Barthel Index (BI). For the DRS, the value was 2, corresponding with a partial level of disability. The BI score was 100, reflecting independence in the activities of daily living, while for the FIM it was 119 (85 for motor subscale and 34 for cognitive scale). The patient signed the Informed Consent, acknowledging the risks and the inclusion criteria (he was previously examined by a physician, who validated the suitability for the training). These experimental procedures were approved by the local scientific committee in CEADAC.



2.2. Experimental Platform

The Biomot ankle robot (Moltedo et al., 2016) was used in this study. Footedness preference for each subject was established according to the Waterloo footedness test (Elias et al., 1998).

This actuator is based on the MACCEPA (mechanically adjustable compliance and controllable equilibrium position actuator) concept (Bacek et al., 2015), which is driven by a joint torque control. MACCEPA concept is based on a torque-controlled rotational actuator with adjustable compliance (Figure 1). The motor is rigidly connected to the Lever Arm (LA), which is in turn connected to the Fixed Link (FL) via a spring (K). FL is attached to the wearer's foot and thus its angle represents the user's ankle angular position, and LA represents the robot position. Both LA and FL move with respect to the Output Link (OL), which is attached to the wearer's shank. Consequently, if the motor reference is set to a particular position, the wearer still has the possibility to pivot the ankle by compressing the spring. This permits to calculate the interaction torque between the wearer and the actuator by measuring the subsequent deflection of the spring (α angle = LA − FL).


[image: Figure 1]
FIGURE 1. MACCEPA actuator model schematics and actual actuator. (A) MACCEPA actuator schematics, with all its components. (B) MACCEPA attached to a cartoon foot, with the different components depicted.


MACCEPA actuator allows to provide controlled torque profiles by using a simple position controller without the need of a complex torque sensor, and with the reliability of position sensors.



2.3. Robot Control

The controller of this robotic platform comprises a zero torque controller (based on a classic Proportional/Integral/Derivative (PID) implementation) and the haptic adaptive feedback (HAF) component based on tacit adaptability—a symbiotic control strategy on exoskeletons inspired by biomimetic mechanisms, which, in turn, is based on the “tacit learning” approach for bipeds (Shimoda et al., 2015; Asín-Prieto, 2016), adapted by the performance of the user in the experimental task.

The HAF module is schematically introduced in the control architecture, depicted in Figure 2. The controller is described by Equation (1).

[image: image]

where u is the output of the controller (pulse width modulation), τPID corresponds to the output of the torque controller (Equation 2), and uHAF to the output of the haptic adaptive feedback module (Equation 3).

[image: image]

[image: image]

where Kp, Ki, and Kd are respectively the PID constants; KHAFi and KHAFp are respectively the integral and proportional constants of the HAF module; α angle is proportional to the interaction torque between human and robot; and error = LAref − LA. LA is the actual sensor information for the Lever Arm angle, whereas LAref is the calculated reference LA angle. This reference LA angle is calculated with the approximation of the MACCEPA actuator to a torsion spring actuator described by Equation (4).

[image: image]

where τref is the reference disturbance torque to the controller, Kts is the empirically obtained torsional stiffness constant, and FL is the Fixed Link angle, i.e., the user's ankle angle.


[image: Figure 2]
FIGURE 2. The controller of the robot comprises a zero torque Proportional/Integral/Derivative (PID) controller and the haptic adaptive feedback module (HAF constant—KHAF—multiplied by alpha, angle proportional to the interaction between the robot and the subject), tweaking KHAF with the performance. The subject controls the location of the character on the screen by means of the ankle joint angle. In the figure, u stands for the output of the controller, τref is the disturbance torque reference, τPID and uHAF are respectively the outputs from the PID torque and HAF controllers; and FL, LA, and LAref are respectively the angles for Fixed Link, Lever Arm, and reference for Lever Arm computed from the reference disturbance torque.


The objective of the controller is to apply higher disturbance torques when higher performance is reached (consequently adding more difficulty to the task), and vice versa (rendering the task easier with lower performances). To do this, KHAFi and KHAFp are empirically set to [image: image] and [image: image], where KHAF provides the modulation of the disturbance torque following this simple rule: KHAF = 100 − performance [%], thus, the value of the constant KHAF is updated based on task performance. Section 2.5.1 explains how this constant is modulated.



2.4. Protocol

The longitudinal intervention protocol applied on each participant is graphically described in Figure 3. The intervention lasted 4 days. Training sessions were performed in days 1–3. Four corticospinal assessments were performed in days 1, 3 (two assessments), and 4.


[image: Figure 3]
FIGURE 3. Experiment schematics. (A) Upper left figure shows the Transcranial Magnetic Stimulation (TMS) assessment setup. (B) Upper right figure shows the experimental setup together with the daily training structure: 40 training repetitions, and ten last repetitions to survey the execution after the training (at a settled disturbance torque, the maximum given by the robot: 15 N·m). And (C) Lower figure shows the longitudinal intervention structure: (1) TMS assessment (represented by the figure-of-8 coil) PRE-intervention; (2) first day training (represented by the visual paradigm); (3) second day training; (4) third day training; (5) TMS assessment POST-intervention; (6) POST30: TMS assessment 30 min after intervention; and (7) POST24h: TMS assessment 24 h after intervention. Adapted from Asín-Prieto et al. (2018), copyright 2019, Springer Nature Switzerland AG.


The training follows this daily structure: forty training repetitions (randomized trajectory profiles, as shown in Figure 4), disturbance torque modulated by the system; followed by ten evaluation repetitions [two types of disturbance torque profiles—Figure 5A, multiplied by the five possible trajectories—Figure 4] for the assessment of immediate effect. The disturbance torque provided in these assessment repetitions was set at the maximum given by the robot: 15 N·m. All repetitions had a duration of 10 s per trajectory. The resting position of the ankle was set at −2.5° (slightly plantarflexed) as the most comfortable position for the users.


[image: Figure 4]
FIGURE 4. Five possible trajectory profiles: (A) constant −2.5°; (B) straight increasing from −4 to 1°; (C) straight decreasing from −1 to −6°; (D) from −6 to −2.5 and back to −6 again; and (E) from 1 to −2.5 and back to 1. Modified from Asín-Prieto et al. (2019), copyright 2019, IEEE.



[image: Figure 5]
FIGURE 5. The behavior of the HAF module is depicted: (1) KHAF = 100 prompts zero-torque control; (2) KHAF = 0 normal torque control, no influence of HAF, so up to 15 N·m reference; and (3) KHAF between 0 and 100, nearer to a zero-torque control the higher the constant KHAF is, thus allowing to modulate the magnitude of the applied disturbance torque amplitude. Dashed line corresponds to an example of disturbance torque profile with KHAF between 0 and 100. (A) Possible disturbance torque profiles: torque to dorsiflexion (up) and torque to plantarflexion (down). (B) Possible disturbance torque to dorsiflexion (up) direction for the patient.


The task instruction was to follow the trajectories delineated in the visual paradigm by means of the sequence of onscreen items (gas bottles) following the shortest linear path in-between. The user had to move a character (gyrocopter) with the angular position of the ankle via dorsi-plantarflexion to collect the gas bottles: dorsiflexion implied moving the avatar upwards in the screen, whereas plantarflexion implied going downwards. Meanwhile, the robot disturbed the user motion by performing plantar and dorsiflexion alternated disturbance torque profiles (see Figure 5A). These disturbance torque profiles were developed with the aim of stimulating both agonist and antagonist muscle groups, both in dorsi- and plantarflexion movements.

For the patient, we focused only on dorsiflexion disturbance torque patterns, because he was unable to avoid the full drop of the foot. Besides, the disturbance torque was modified (as seen in Figure 5B) to remove abrupt changes in the direction of the force exerted by the robot. We empirically set a maximum disturbance torque of 5 N·m.

All healthy subjects were asked to train and find a strategy to actively compensate the disturbance torque by the ankle robot, to successfully follow the trajectory on the screen, along three sessions (one every day), of 50 repetitions. For the patient, the length of the protocol was modified to 5 days (replicating the protocol used in Asín-Prieto et al., 2018).



2.5. Metrics


2.5.1. Robot-Based

We used two different metrics to quantify the performance of the user: SCORE and root mean squared error (RMSE). SCORE was calculated for each trial as the percentage of collected onscreen items, whereas RMSE was calculated by subtracting the performed trajectory from an ideal linear path between onscreen items. Note that it could be possible to collect all the onscreen items by performing a high error trajectory between them (see Figure 6 for an example). The total SCORE for each trial was shown to encourage the user to improve it along the session. The value for KHAF was updated when the gyrocopter exceeded a (collected or uncollected) gas bottle, based on the instantaneous SCORE in the current trial, thus modulating the disturbance torque. Each trial consisted of 20 collectible bottles, thus rendering a KHAF refresh rate of 2 Hz (20 gas bottles per 10 s). Figure 7 depicts an example of the modulation of the disturbance torque based on the SCORE metric.


[image: Figure 6]
FIGURE 6. Trajectory example, with the best trajectory between items in continuous red line, and a high error trajectory between items (with 100% SCORE as all the items are collected) in dotted blue line.



[image: Figure 7]
FIGURE 7. Example of the modulation of KHAF. Dashed line in the upper panel depicts the actual trajectory followed by a subject, with the uncollected bottles remaining onscreen. The instantaneous SCORE is presented in the table, both in collected/total (#) and percentage (%), as well as the computed value for KHAF. Lower panel shows in blue the reference torque (corresponding to a SCORE of 100%), and in red the actual reference disturbance torque applied to the user's ankle modulated according to the SCORE.


SCORE and RMSE were used to quantify two different sets of data: (a) assessment post-training repetitions, i.e., the 10 last repetitions of each training day (see ROBOTIC TRAINING in Figure 3), in what we called POST-train values; (b) linear fit on the sequence of the 120 training repetitions (40 training repetitions per day, concatenated for the 3 days), and selected the values of the resulting linear fitting coinciding with the first (1) and last (120) repetitions, in what we called MOD (modulated) values, where PRE-MOD and POST-MOD were the first and last values of the linear fit, respectively (see Figure 8).


[image: Figure 8]
FIGURE 8. MOD metric calculation example, for RMSE.


In addition to RMSE and SCORE after each day training (POST-train), we used two other metrics for the patient: changes in range of motion (ROM) and velocity. Before and after the training from the second to the fifth day, the patient underwent a robotic evaluation of the possible ROM. This evaluation consisted on moving up and down a ball on the screen via dorsi-plantarflexion during 30 s. The patient was asked to alternatively reach two horizontal lines (one up and one down), and the position of these lines was changed to the maximum reached in order to make the task more difficult. Although the separation between lines meant a wider ROM, the absolute position of them remained the same onscreen in order to be unnoticeable for the patient. The maximum velocity was calculated by multiplying the maximum achieved angular amplitude by the fundamental frequency (calculated with Fast Fourier Transform). We computed the change in this metric by comparing the results before and after the intervention.



2.5.2. Clinical Assessment

In the rehabilitation process there are three main phases that need to be characterized: (1) initial assessment, to identify and measure the extent of the pathology; (2) planning, to assess the problem and establish the objectives; and (3) final assessment, after the treatment. In addition to the aforementioned metrics, the clinicians at CEADAC performed a functional clinical assessment at the beginning and the end of the week for the patient, before the first training session, and after the last one. In the functional assessment protocol developed in CEADAC, among the broad set of clinical functional scales that aim to provide an objective insight in the recovery process of patients, the clinicians focus on: Timed 10 m walk, as a measure of gait speed; 6 Min Walking Test (6MWT), as a measure of resistance; Step Test, as a measure of dynamic balance; Timed Up and Go (TUG) test, that demands several potentially destabilizing maneuvers for the subject.



2.5.3. Neurophysiological Assessment

Corticospinal excitability was assessed by recording the MEPs elicited by a Magstim 2002 TMS stimulator in single pulse modality in combination with a figure-of-eight double-coned coil. We followed the instructions by SENIAM (Hermens et al., 1999) to place the surface electromyography Ag/AgCl electrodes (22.225 × 34.925 mm, Vermed), recorded with a g.USBamp amplifier (g.tec), sampled at 24 KHz and highpass filtered with a 20 Hz first order Butterworth filter.

In order to map the hot spot [place where Tibialis Anterior (TAnt) MEPs peak-to-peak amplitude is higher] on the scalp, several supra-threshold pulses were delivered nearby the vertex. The hot spot, ineon, and vertex were drawn with a permanent marker on a swimming cap, in order to ensure repeatability between sessions. After locating the hot spot, the resting motor threshold (RMT), defined as the stimulation intensity that elicits MEPs of ~50 μV peak-to-peak amplitude in 5 out of 10 applied pulses (Temesi et al., 2014), was set for each participant. We recorded ipsilaterally (Kamibayashi et al., 2009) TAnt and Soleus (SO), as well as Rectus Femoris (RF, as a control muscle not involved in the robotic ankle task).

The assessment consisted in delivering 20 pulses to each of the volunteers at an intensity of 120 % of the RMT to elicit MEPs. The peak-to-peak amplitude of the MEPs was averaged. This assessment procedure was performed four times (see Figure 3): (1) before the training of the first day (PRE); immediately after the training of the third day (last training, POST); 30 min after to evaluate plastic effects (POST30); and finally 24 h after, in order to check lasting effects (POST24h).



2.5.4. Satisfaction Questionnaire

After the treatment, all subjects filled out a Likert scale (1–Very unsatisfied; 2–Unsatisfied; 3–Not satisfied nor unsatisfied; 4–Satisfied; 5–Very satisfied) questionnaire for assessing the satisfaction level with the experimental procedure.




2.6. Data Analysis

Data were analyzed with Matlab, IBM SPSS Statistics version 25, and R Studio. After examining with Shapiro-Wilk test, our data showed variables with normal distributions and variables violating the normality. Thus, for those without a normal distribution, we provide the results for non-parametric tests; and for those that present a normal distribution, we provide parametric analyses.

First of all, changes in RMSE POST-train metric, both for healthy subjects and the patient, were tested using a Friedman test of differences among repeated measures along the study, finally evaluating the size effect with Average Spearman rho ([image: image]), and performing a Pairwise post-hoc Test for Multiple Comparisons of Rank Sums for Unreplicated Blocked Data (Conover-test) with Bonferroni correction. For the SCORE POST-train, both for healthy subjects and the patient, we performed a One-way repeated measures ANOVA, with Huynh-Feldt correction due to lack of sphericity (Mauchly's test), with partial squared omega ([image: image]) for the size effect, and pairwise t-test post-hoc analysis, with Bonferroni correction.

Then, we tested the correlation between SCORE and RMSE with a Spearman bivariate analysis (p value of 0.05), for the evaluation ratings after each day training (POST-train), to check the relationship between metrics.

To assess changes in the PRE-MOD vs. POST-MOD of the SCORE and RMSE on the modulated repetitions, we conducted t-Student analyses, providing Cohen's d as the size effect.

Finally, changes in the corticospinal excitability were also tested using a Friedman test, and evaluating the size effect with Average Spearman rho, and performing Conover post-hoc Test with Bonferroni correction.




3. RESULTS

Data showed normal distribution for: SCORE POST-train both for healthy subjects and the patient, and MOD for SCORE and RMSE. All the other variables presented a non-normal distribution (see Table 1 for the descriptive statistics).


Table 1. Descriptive statistics for the variables analyzed for the group of healthy individuals.

[image: Table 1]


3.1. Study With Healthy Individuals

There was a significant change in SCORE POST-train metric [ANOVA, F(1.18, 10.60) = 6.84; p < 0.05; [image: image] = 0.35; large effect size according to Field, 2018] but not in RMSE POST-train (p > 0.05). Post-hoc tests revealed that the SCORE at the third training day was significantly increased (p = 0.03) as compared to the SCORE on the first training day (see Figure 9).


[image: Figure 9]
FIGURE 9. Results for the RMSE and SCORE after each day training (POST-train) for the group of healthy individuals. Statistical significance (post-hoc comparison) depicted by the asterisk (*). (A) Mean and standard error of POST-train for RMSE per day. (B) Mean and standard error of POST-train for SCORE per day.


We found significant (p < 0.05) strong correlations (ρ > 0.70) in the evaluation ratings after each day training (POST-train); both for SCORE 1st day and RMSE 1st day (ρ = −0.89), and SCORE 3rd day and RMSE 3rd day (ρ = −0.86).

t-Student indicated that the SCORE POST-MOD of the modulated training was significantly higher than the SCORE PRE-MOD [t(9) = −4.39; p < 0.05; Cohen's d = 1.39], and that the RMSE POST-MOD was significantly lower than the RMSE PRE-MOD [t(9) = 3.05; p < 0.05; Cohen's d = 0.96]. There was a large size effect for both metrics' t-tests according to Kotrlik and Williams (2003).

TAnt MEPs peak-to-peak amplitude was significantly changed [Friedman, χ2 = 9.12; p < 0.05; 3 DoF; [image: image] = 0.22; small effect size according to Kotrlik and Williams (2003)] across assessment sessions. Post-hoc tests revealed that TAnt MEPs peak-to-peak amplitude was significantly increased at the POST24h moment when compared to PRE (p < 0.01), POST (p = 0.03), and POST30 (p < 0.01) moments (see Figure 10). On the other hand, there was no significant change in SO nor in RF MEPs peak-to-peak amplitude across assessment moments (p > 0.05).


[image: Figure 10]
FIGURE 10. Results for the TMS assessment for the group of healthy individuals for the four evaluated moments, normalized to the mean of the evaluation before the intervention: before the full intervention (PRE), right after the full intervention (POST), 30 min after the POST (POST30), and 24 h after the end of the full intervention (POST24h); for the muscles TAnt (Tibialis Anterior), RF (Rectus Femoris) and SO (Soleus). Statistical significance (post-hoc comparison) depicted by the asterisk (*).


The satisfaction questionnaire rendered an average of 4.8 (being 5 Very satisfied), with a standard deviation of 0.42.



3.2. Usability Case Study With Post-stroke Patient

In the case study, we used the repetitions for each of the 5 training days to conduct the statistical analyses, as we had data from one individual. The results for the case study rendered significant changes in RMSE POST-train [Friedman, χ2 = 9.36; p = 0.05; 4 DoF; [image: image] = 0.14; medium effect size according to Kotrlik and Williams (2003)]. Post-hoc tests revealed that RMSE at training day 5 was significantly decreased when compared to day 1 (p < 0.01) and day 3 (p = 0.02) (see Figure 11). On the other hand, the SCORE did not show significant differences (ANOVA, p = 0.09) across training days (see Table 2 for the descriptive statistics).


[image: Figure 11]
FIGURE 11. Results for the RMSE and SCORE POST-train, after each day training for the patient. Statistical significance (post-hoc comparison) depicted by the asterisk (*). (A) Mean and standard error of POST-train for RMSE per day. (B) Mean and standard error of POST-train for SCORE per day.



Table 2. Descriptive statistics for the RMSE (°) and SCORE (%) POST-train for the patient.

[image: Table 2]

Figure 12 shows the results of the evaluation of ROM and velocity before and after each training session (from the second to the fifth day). There was a decreased ROM in days 2 and 3, and increased ROM in days 4 and 5, with a positive trend across days. A different trend was obtained in velocity (there was a decrease between the second and the third day, and between the forth and the fifth, although there was a net increase in velocity). The figure also shows the difference of the maximum and minimum values of achieved ROM per day, showing that the maximum increased across days.


[image: Figure 12]
FIGURE 12. Results for the change in ROM and velocity per day (comparing before and after each day training), for the second, third, fourth, and fifth days, for the patient. (A) ROM (continuous line), maximum angles (dashed line), and minimum angles (dotted line) difference (POST-PRE) per day. (B) Velocity change per day.


Table 3 presents the improvements on the functional scales, before and after the full treatment. Modified Ashworth scale was used to assess the level of spasticity of the patient, showing no changes in muscle tone.


Table 3. Clinical scales before the beginning and after the end of the full 5 days treatment.

[image: Table 3]

The satisfaction questionnaire for the patient showed that he was very satisfied with the intervention.




4. DISCUSSION

We aimed at exploring the validity of combining the robotic ankle exoskeleton with a video game designed to promote motor learning in a therapy protocol involving autonomously customized control. We have developed the video game to enhance adherence and engagement, by providing the control of the robot with the performance to modulate the task difficulty. We approached this objective by providing perturbations to the users' ankle while asking them to follow a trajectory depicted as a sequence of collectible onscreen items. The magnitude of the perturbations was modulated as function of the performance, i.e., the number of collected items, making the task more difficult if the performance increased, and vice versa.

This reward system, based on autonomously customized hardness of the task to the user, potentially promotes learning. We also computed the error as the difference between the most efficient trajectory between onscreen items and the actual performed trajectory. Moreover, we evaluated other metrics (MEPs for the corticospinal excitability for healthy individuals; clinical scales, range of motion and velocity for the patient; and satisfaction with the process of intervention for all participants) to support our novel approach to a clinical therapy.

Regarding TMS, although there are limitations and results are not consistent when extrapolating corticospinal excitability improvement to learning processes in rehabilitation (Carson et al., 2016), several recent studies point out that an increase in corticospinal excitability may be related to an improvement in motor learning (Kida et al., 2016; Naros et al., 2016; Mawase et al., 2017; Christiansen et al., 2018; Raffin and Siebner, 2018; Mrachacz-Kersting et al., 2019), and moreover, there is a relationship between the improvement in the metrics in the robotic therapy, motor learning, and corticospinal excitability enhancement in healthy subjects (Perez et al., 2004). For this reason, we decided to use TMS as a valid technique to assess the corticospinal excitability.

Regarding the validation study in healthy volunteers, we found significant improvement in the SCORE for the POST-train metrics, but not for the RMSE, although there was a strong significant negative correlation between SCORE and RMSE. would imply that similar results These results are in line to those already found by us with a single volunteer (Asín-Prieto et al., 2018), and suggested that participants would learn and master the robotic task across days.

We tested MOD metric as a customized modality for the assessment of the performance, as the controller (and thus the disturbance torque applied to the ankle) was autonomously modulated via HAF algorithm, rather than applying the maximum disturbance torque (15 N·m), as it was done for the POST-train metric. Thus, we considered the MOD metric as a more appropriate way to assess the personalized performance. In contrast to the POST-train metrics, we found significant improvements along the training in the MOD variable for both the SCORE and RMSE.

We also found a significant increase in TAnt MEPs peak-to-peak amplitude, supporting the hypothesis that an increase in performance has a relationship with corticospinal excitability. These corticospinal changes did not show muscle specificity, as our training involved only the ankle and we have not found statistical changes in RF (control muscle) neither in SO corticospinal excitability. Consequently, we can only conclude that our training lead to increased TAnt excitability. We can speculate that one of the reasons why SO had not significantly increased corticospinal excitability, may be the fact that the robot controller is in favor of gravity, and thus the force to move the robot downwards requires less muscle activation than the required TAnt activation to dorsiflex the ankle. Another possible explanation could be that TAnt, according to Brouwer and Ashby's findings (Brouwer and Ashby, 1992), presents higher corticospinal projections density than the rest of the lower-limb muscles, and thus it may be easier to assess its excitability. In this sense, corticospinal projections to TAnt in comparison to the rest of lower-limb distal muscles, are comparable to those at upper-limb level (Brouwer and Ashby, 1990), and thus we could say that our results are consistent to those in the literature for upper-limb robotic approaches (Ramos-Murguialday et al., 2014; Kraus et al., 2016). Finally, another reason for different changes in corticospinal excitability of TAnt and SO may be that TMS can possibly activate inhibitory projections (that present a lower threshold than excitatory projections) (Nielsen and Kagamihara, 1993) that are richer in plantarflexor muscles (SO) (Hudson et al., 2013). Therefore, even if corticospinal enhancement occurs for SO, this would probably not be easily observed (Fujio et al., 2019).

In the case study (with the post-stroke patient) results, we found significant improvements in the RMSE after each day training, but non-significant changes for the SCORE. The significant changes found on RMSE are consistent not only with the results of our healthy sample, but also with the results presented by others (Patton et al., 2001; Krakauer, 2006; Reinkensmeyer and Patton, 2009; Goodman et al., 2014), thus confirming our hypothesis of usability in the case study. Although we have provided some data on the performance for this patient, our main goal was to validate the usability of this robotic training framework for post-stroke rehabilitation.

When we compared the ROM and velocity before and after each day training, we found that there was a net increase both in velocity and ROM along the days, although in the velocity there was a sawtooth shape profile (third and fifth day presented a lower increase than second and fourth, respectively). Nonetheless, as higher ROMs would inevitably render lower velocities (as it depends on the maximum achieved angular amplitude and the fundamental frequency of the resulting signal, and thus a higher amplitude would decrease the speed and vice versa), the sawtooth-shaped behavior of the velocity could be explained by this phenomenon. Furthermore, the fact that the maximum dorsiflexion increased across days may indicate an improvement in dorsiflexor muscles. If these data imply a behavioral improvement in the control of the ankle, the variation occurs together with that of the clinical scales used to assess the improvement after the treatment. Consequently, we can consider that these changes in ROM and velocity tend to improve like the clinical scales.

As reported by the Likert satisfaction scale, both studies lead to full satisfaction of the participants. We found the viability of using this treatment in patients, as the patient ranged the intervention similarly to the range given by the healthy group.

Our objective was to validate our proposed therapy as a potential tool for increasing motor learning on healthy individuals. Thus, taking into consideration all these results, our hypothesis has been confirmed in the POST-train metric for the SCORE and for the TAnt excitability; and for the MOD variables. Regarding RMSE, our hypothesis has not been confirmed, probably due to the short duration of the treatment. On the other hand, for the case study with the post-stroke patient, both SCORE and RMSE have changed as hypothesized in the design of the study.

Finally, we conclude that combining a grounded exoskeleton that disturbs the ankle joint motion with a video game incorporating autonomously controlled difficulty can elicit improvements on performance, and also increased excitability of the target muscle(s). This conclusion renders our proposal as a potential rehabilitation tool. Furthermore, we have demonstrated the viability of applying this treatment approach in a usability case study with a post-stroke patient.

As future work, we aim at extending this study using more stroke patients. This rehabilitation approach may be also explored as a novel rehabilitation framework to be used in other pathologies like spinal-cord injury (Asín-Prieto et al., 2016), cerebral palsy (Lambrecht et al., 2014; Lefmann et al., 2017), or other lower limb movement disorders (Reinkensmeyer et al., 2004; Calabro et al., 2016).


4.1. Limitations

One limitation of the case study here presented is that we only enrolled a single stroke patient. Although improvements have been shown in task performance as observed in all assessed metrics, we cannot conclude that these improvements are only due to our treatment, as the patient was also enrolled on his daily therapy with physio and occupational therapists. Nonetheless, both clinical and robot-based metrics rendered a good prospective of the integrated therapy, which should be explored by us in a wider population of stroke patients, for longer therapy sessions.

To avoid very long daily sessions for the healthy controls, we discarded the option of assessing corticospinal excitability before and after each robotic-training session. Thus, we cannot isolate the daily effects of the robotic training.

Furthermore, due to the tight therapy schedule of the patient, and to avoid lengthy sessions, the professionals at CEADAC decided to remove the TMS assessment from the protocol.

Results obtained from TMS assessments partially demonstrate the effectiveness of the robotic-therapy in modulating the corticospinal excitability in the healthy group, since the MEPs were significantly increased only in TAnt but not in SOL muscle. Although TMS presents some limitations as a diagnostic tool, namely the inter-subject variability in simultaneous measurements on normal population (Choudhury et al., 2011), the intra-subject variability obtained in our study was relatively small. On the other hand, it is worth noting that our work adds more evidence to other studies showing that different tasks may lead to increased TA excitability but not to increased SOL or Gastrocnemius Medialis (MG) excitability. For instance, results presented by Fujio et al. (2019) suggest that TA excitability is susceptible to the prediction of a perturbation, whereas the SO and MG excitability presented no change for the same tasks. In any case, we plan to assess data from a control group that does not perform the robotic treatment done by the healthy subjects in this study.

We are also planning to improve the neurophysiological assessment by including other technologies, such as assessment of changes in spinal reflexes (e.g., reciprocal inhibition) (Pascual-Valdunciel et al., 2019) or paired-pulses TMS protocols. By combining these technologies, we should be able to have a better understanding on the level (spinal, supraspinal, or both) where of plastic changes occur due to the robotic therapy.
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Maintaining balance standing upright is an active process that complements the stabilizing properties of muscle stiffness with feedback control driven by independent sensory channels: proprioceptive, visual, and vestibular. Considering that the contribution of these channels is additive, we investigated to what extent providing an additional channel, based on vibrotactile stimulation, may improve balance control. This study focused only on healthy young participants for evaluating the effects of different encoding methods and the importance of the informational content. We built a device that provides a vibrotactile feedback using two vibration motors placed on the anterior and posterior part of the body, at the L5 level. The vibration was synchronized with an accelerometric measurement encoding a combination of the position and acceleration of the body center of mass in the anterior-posterior direction. The goal was to investigate the efficacy of the information encoded by this feedback in modifying postural patterns, comparing, in particular, two different encoding methods: vibration always on and vibration with a dead zone, i.e., silent in a region around the natural stance posture. We also studied if after the exposure, the participants modified their normal oscillation patterns, i.e., if there were after effects. Finally, we investigated if these effects depended on the informational content of the feedback, introducing trials with vibration unrelated to the actual postural oscillations (sham feedback). Twenty-four participants were asked to stand still with their eyes closed, alternating trials with and without vibrotactile feedback: nine were tested with vibration always on and sham feedback, fifteen with dead zone feedback. The results show that synchronized vibrotactile feedback reduces significantly the sway amplitude while increasing the frequency in anterior-posterior and medial-lateral directions. The two encoding methods had no different effects of reducing the amount of postural sway during exposure to vibration, however only the dead-zone feedback led to short-term after effects. The presence of sham vibration, instead, increased the sway amplitude, highlighting the importance of the encoded information.

Keywords: somatosensory integration, vibrotactile feedback, postural control, biofeedback, balance


INTRODUCTION

Postural control is a complex sensorimotor skill with two main functions: stabilizing balance and maintaining the relative position of body segments (Massion, 1994; Ivanenko and Gurfinkel, 2018). It requires the interaction of the sensory, muscular, and nervous systems (Horak and Macpherson, 1996). In particular, the central nervous system must process and integrate concurrent feedback from the vestibular, somatosensory, and visual sensory channels (Hirabayashi and Iwasaki, 1995; Horak and Macpherson, 1996). If those are impaired or absent, postural control and balance are compromised, increasing also the risk of falling (Maki, 1989; Brown et al., 1999; Melzer et al., 2004; Horak, 2006). These impairing sensory deficits could be caused by aging (Peterka and Black, 1989; Melzer et al., 2004), diabetes (Najafi et al., 2010), vestibular disorder or neurodegenerative diseases, such as Parkinson (Mancini et al., 2011, 2012; Marchesi et al., 2019).

Each sensory system contributes differently to postural control; thus the impairment of a specific sense has different impacts on balance. For example, during quiet standing, the postural sway increases more when somatosensory information is unavailable (Nashner et al., 1982) than in absence of the vestibular or visual information (Peterka and Black, 1989; Macpherson and Inglis, 1993; Dozza et al., 2007). In any case, the contribution of feedback from different modalities is known to be additive, thus it seems worth investigating to what extent providing an additional channel may further improve balance and/or compensate for balance deficits in pathological conditions. Several studies suggest indeed that, in presence of sensory deficits, providing a supplemental sensory information to the central nervous system might improve postural stability, decreasing the postural sway and even the risk of falling (Wall et al., 2001; Dozza et al., 2005; Danilov et al., 2007; Sienko et al., 2012). This supplemental information could play a crucial role for subjects using exoskeletons (Muijzer-Witteveen et al., 2017) or lower limb prosthetics (Lee et al., 2007), where the loss of somatosensation associated with the lesion or the amputation is an obstacle for achieving stable and efficient standing balance and walking patterns.

For those reasons, many research groups have developed devices able to provide supplemental information through biofeedback. Different sensory stimuli, such as vibrotactile (Alahakone and Senanayake, 2009; Sienko et al., 2012), electro-tactile (Tyler et al., 2003; Lee et al., 2007), visual (Alahakone and Senanayake, 2010; Nitz et al., 2010; Halická et al., 2014), auditory (Chiari et al., 2005; Dozza et al., 2005; Giansanti et al., 2009; Franco et al., 2012), or multimodal (Verhoeff et al., 2009; Bechly et al., 2013), have been used and investigated for improving postural control. In particular, vibrotactile feedback is widely used because it can provide additional information without interfering with basic functions like hearing or seeing (Haggerty et al., 2012). Usually, the vibrotactile devices use arrays of several vibration motors to convey postural sway information mainly on the torso (Van Erp, 2005; Verhoeff et al., 2009; Lee et al., 2012; Sienko et al., 2012; Xu et al., 2017). However, the feedback provided by the most common vibrotactile devices is difficult to interpret and integrate in the neural control (Culbertson et al., 2018). One reason is that the patterns of somatosensory stimuli are not intuitive or complex, due to either the number of vibration motors, thus forcing the user to process a redundant set of signals, or to the encoding methods that may require specific attention (Brewster and Brown, 2004).

While from the technological point of view there are several solutions for providing supplemental vibrotactile feedback, while which information is more effective to reduce the postural sway and how to encode it has received less attention. For example, there is evidence that humans modify their postural sway (Goodworth et al., 2009; Loughlin et al., 2011) in presence of vibrotactile feedback, encoding velocity and/or position of the body Center of Mass (CoM) or the Center of Pressure (CoP). However, other studies have shown that also a low level of vibrational noise, e.g., mechanical or electrical, is useful to improve postural stability, enhancing the sensitivity of the somatosensory system (Dhruv et al., 2002; Liu et al., 2002; Janssen et al., 2010; Magalhães and Kohn, 2011; Borel and Ribot-Ciscar, 2016; Kwak et al., 2016). This kind of stimulation (e.g., stochastic resonance) resulted in a reduction of the postural sway in elderly people (Gravelle et al., 2002; Priplata et al., 2002, 2003) and in people affected by vestibular impairments (Janssen et al., 2010). Therefore, it would be interesting to further investigate the role of the information encoded in the vibration, and the effects due to different encoding methods. In fact, for supplemental auditory or visual feedback (Dozza et al., 2006) has been demonstrated that linear and logarithmic mapping (Dozza et al., 2006) have different effects on the postural sway. Moreover, the feedback could be either continuously provided or silenced in a region around the natural stance posture, in order to avoid a sensory overload of the user (Alahakone and Senanayake, 2010).

In this framework, we designed and built a portable, low-weight and low-cost device to provide vibrotactile feedback to improve standing balance. Differently from the majority of current devices, based on arrays of vibration motors and often providing complex patterns of stimuli (Van Erp, 2005; Verhoeff et al., 2009; Lee et al., 2012; Xu et al., 2017), we used only two vibration motors placed on the opposite sides of the torso (abdomen and back) at the L5 level, namely in the CoM area. The idea was to activate them as function of the actual sway evaluated from the accelerometric signal. As explained in the Materials and Methods section the implemented system encoded in the vibrotactile feedback a combination of position and acceleration of the CoM in the sagittal plane. The main goal was to evaluate the extent such additional sensory feedback could reduce the sway amplitude. If the previous evaluation was positive, we also planned to test three related hypotheses about the improvements:

• the changes depend on the time profile of the vibrotactile stimulation, comparing a continuous stimulation paradigm with a paradigm that included a dead zone (with vibration silent) around the natural stance posture. If the continuous stimulation paradigm would not lead to better performance, the dead zone paradigm would be preferable for prolonged use of the vibrotactile feedback, because it reduces the exposure to the stimuli, avoiding the sensory overload of the user (Alahakone and Senanayake, 2010). To the best of our knowledge this hypothesis has never been tested for the vibrotactile feedback, but only for the auditory feedback. Since these two feedback channels are different, we could not assume a priori that the test would lead to similar results;

• the changes depend on the informational content of the feedback i.e., they are not a mere effect of the vibration. While there is a large amount of literature on the effects of vibration noise and about effect of arrays of vibrators, there is lack of knowledge about the mechanism of action underlying simple informative vibrotactile feedback. Specifically, in cases as the one discussed here, where feedback about postural oscillations is provided by only two vibrators, the fact that the informational content and not the vibration per se determines changes on the postural oscillations, was not extensively verified by previous studies.

• the proposed vibrotactile feedback do not induce after effects i.e., when the vibration is turned off the participants recovered their normal oscillations patterns, without any influence of the previously experienced vibration. In fact, after a short exposure to vibrotactile feedback, participants could immediately recover their normal oscillation patterns, or could exhibit either persistent or opposite effects with respect to the ones observed during the vibration trials. This is an important point that deserves extensive investigations, however it has received scarce attention in the literature and with this study we made a preliminary attempt to fill the gap.

To verify these hypotheses, we asked young healthy participants to stand upright with their eyes closed on a rigid horizontal surface wearing the device that included vibration motors and an accelerometer sensor. The acceleration profiles were analyzed, correlating them with the different stimulation modalities described in the Materials and Methods section.



MATERIALS AND METHODS


Device

We designed a portable device that provides supplemental vibrotactile feedback synchronized with an accelerometric signal encoding information about the CoM position and acceleration. The device weights 400 g and consists of three main components: (a) an input and recording unit, based on an Inertial Measurement Unit (IMU) sensor, (b) a processing unit, and (c) a vibrotactile output unit (Figure 1).


[image: Figure 1]
FIGURE 1. Experimental set-up. The participant was asked to stay still in the standing position, wearing headphones and our portable device composed by: (A) a sensor (IMU) placed on the back at L3 level; (B) the microprocessor unity connected to the PC via Wi-Fi; (C) two vibration motors attached to the skin of the participant: on the back and on the abdomen at L5 level. The IMU recorded the accelerometric signal and sent it to a microprocessor (WiPy) that saved them on a microSD card. The accelerometric measurements were used for controlling the vibration motors.


a) Input and recording unit

The acceleration vector of the CoM is measured by means of the three-axis IMU (BST-BNO055-DS000-12, Bosch Sensortec GmbH, Germany, sensitivity = 0.2 mV = 1.2 mm/s2; non-linearity = 0.5 % FS, bandwidth = 62.5 Hz), firmly attached to the participants' back at the L3 level, which approximately corresponds to the CoM position during quiet standing. The accelerometer gain was preset in such a way to have a measurement in the range of 2 g, appropriate for measuring the small acceleration caused by postural adjustments. The IMU was positioned as in Mancini et al. (2011, 2012), with one of the accelerometer's axes aligned in the Anterior-Posterior (AP) direction, a second axis in the Medial-Lateral (ML) direction, and the third in the vertical direction. Thus, in correspondence of the natural equilibrium posture of each participant, the measurement signal in the AP direction has a null mean value, unaffected by any gravity component. In contrast, this component is not negligible when the body sways forward or backward with respect to the reference position, with an additional gravity component related to the tilt angle. As a consequence, the measurement signal in the accelerometer's AP direction is a combination of the CoM acceleration and the CoM position in the AP direction. The raw signal measured along the AP axis of the IMU is used as input for controlling the vibration unit (see section c) and thus the control signal used in this study encodes a combination of:

1. the component of the CoM angular acceleration along the accelerometer's AP direction, characterized by high-frequency component;

2. the projection of the gravity vector along the accelerometer's AP direction, related to the CoM position; thus, characterized by a lower frequency component.

Notice that the AP direction is considered with respect to the participants' body, thus is not parallel to the floor.

b) The processing unit

This unit is based on a microprocessor (WiPy 2.0, Pycom, Guildford) which received as input the data provided by the IMU, computed the control parameters according to the control paradigms explained in the following section, and sent the command signals to the two vibration motors. A custom-made printed circuit board connected the WiPy with the IMU and the vibration motors. The WiPy had also an ESP32 expansion board, which provided the connection to the battery (lithium-ion battery: 1 S, 1,200 mAh) and a MicroSD where were stored the accelerometric signals along the three axes. All the components of the processing unity were enclosed in a 14.5 × 7.5 × 4.5 mm module. The microprocessor communicated via WiFi with a laptop. The software of the WiPy was developed with MicroPython (Pymakr plug-in provided by Pycom).

c) Vibrotactile output unit

The AP acceleration of the CoM modulated the amplitude and frequency of the vibration provided by two micro-motors with integrated eccentric rotating mass (Pico Vibe 10 mm vibration motors; Precision Microdrives Inc., Model # 310-117). Each vibration motor had an operational frequency range of 50 to 250 Hz and peak vibrational amplitude of 2.6 g. We attached the vibration motors on the back and the abdomen of the participant, at the L5 level, i.e., distant enough from the IMU (located back at the L3 level) in order to avoid interference (Shah et al., 2019).

The vibration frequency f (in Hz) of each motor was computed, as a function of the control variable a, through a second order polynomial rule:
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where the coefficients (c1 = −212.66, c2 = 293.34 and c3 = 150.21) were set based on:

• the minimum level of activation of these vibration motors (Krueger et al., 2017);

• the Just Noticeable Difference (JND) for this stimulus, computed according to Iandolo et al. (2019) and Shah et al. (2019).

The control variable “a” was related to the AP component of the accelerometric measurement (m/s2) as explained in the following section.

Equation 1 takes in account two components: (1) a linear relationship between the activation voltage and the acceleration signal and (2) a second order polynomial relationship between the activation voltage and the vibration frequency. The frequency and amplitude of the vibration are coupled: the frequency of vibration in Hz is roughly 100 times the amplitude in g and their relationship is linear in the range of activation (Krueger et al., 2017). Thus, controlling the frequency as in Equation 1 implies also a change of the vibration amplitude. For simplicity, in the following we refer to changes in intensity (its amplitude and frequency of the vibration) of the vibration and we express it only in terms of frequency. The reason for choosing this kind of coupled vibration motors was 2-fold: they are inexpensive and the vibration feedback is more effective when frequency and amplitude are coupled (Cipriani et al., 2012).



Vibrotactile Feedback Control

We investigated three different methods of synchronization between the vibrotactile feedback and the accelerometric signals, namely three different encoding methods of the body sway: Always On (AO), Dead Zone (DZ), and Sham (S).

In the AO and DZ feedback methods, the control variable a of the vibration frequency (Equation 1) encoded the actual amplitude of the accelerometric signal along the anterior-posterior direction (a = aAP; Figure 2): the vibration motor on the back (V1) was activated when the acceleration vector was directed backward, while vibration motor on the abdomen (V2) was activated when the acceleration vector was directed forward.


[image: Figure 2]
FIGURE 2. Relation between the Anterior-Posterior (AP) acceleration and the vibration frequency. The black line represents, for the always on method (V−T+AO), the relation between the amplitude of the acceleration signal measured by the IMU sensor on the AP direction in absolute unit (m/s2) and the vibration frequency (in Hz) applied to one motor or the other: the motor on the abdomen, for positive acceleration respect to the natural stance, and the motor on the back, for negative acceleration. The standard deviation of the acceleration measurement recorded during the initial trial with eyes open (stdV+) was used for defining the limit of the dead zone, i.e., the region where the vibration was silent for the DZ method (V−T+DZ): this region is represented in the figure by the two dotted lines. Outside that region the vibration was controlled in in the same way for both methods (AO and DZ).


More specifically, in the AO method the participants continuously felt the vibration, i.e., one of the two vibration motors was always active as explained by the following activation rule, where c1, c2, and c3 are the same coefficients of Equation 1:
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The DZ method is similar to the AO method, with the difference that vibrotactile feedback is turned off in a small region around the natural stance posture, namely if the accelerometric signal falls below a given threshold Thr. Thus, the activation rule is expressed by the following equation:
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The acceleration threshold was chosen to be equal to the standard deviation of the accelerometric signal recorded when the participants were standing with the eyes open during the baseline phase (see Experimental Set-Up and Protocol).

In the sham feedback, the vibration had the same intensity of the other two feedback methods, but did not encode any information about the actual sway of the participant. Specifically, the sham vibration encoded the direction and amplitude of the accelerometric signal in another trial. With this choice the vibration had the same intensity (i.e., range of frequency: 150 ÷ 235 Hz) already experienced during the other trials, but it did not encode any information about the CoM on the current trial.



Participants

The 24 participants enrolled in the experiment were healthy young adults, who were divided in two groups. The first one was composed of 15 participants (25.13 means ± 2.19 std years, 8 females) who were tested with the DZ feedback method. The second group was composed of 9 participants (25.78 ± 3.49 years, 5 females) who were tested with the AO feedback method. The latter group was tested also with the sham feedback at the end of the experiment.

For both groups the inclusion criteria were the same: no known history of disease or lower limb injury, normal cognitive abilities, no problems of visual integrity that could not be corrected with glasses or contact lenses.

All participants provided written consent to participate in this experiment. The study was conformed to the standard of the declaration of Helsinki and was approved by the institutional ethical committee (Comitato etico regione Liguria).



Experimental Set-Up and Protocol

Participants stood with their feet together, without shoes, and with their arms hanging at the sides of the body. They wore noise-mask headphones to avoid the influence of disturbances from the vibration sensors and/or environmental noise. The participants were instructed to stand as still as possible with their eyes open or close depending on the trial. They were aware whether or not the vibration was provided in a specific trial. No indication or clue about the informational content of the vibration or the encoding method was provided, but there was a familiarization phase where participants could explore the vibrotactile feedback and understand the encoded information. The experiment was divided in three phases: baseline, familiarization, and test (Figure 3).


[image: Figure 3]
FIGURE 3. Protocol adopted for group 1 (upper row) and group 2 (bottom row). Trials were either with the visual feedback (i.e., eyes open: V+), or without it (i.e., eyes close: V−). The vibrotactile feedback was either off (T−), or on (T+). There were three types of vibrotactile feedback: Dead Zone (DZ), Always On (AO), or Sham (S). Ti (where i goes from 1 to 9 for group 1 and to 11 for group 2) indicates the trial numbers.



Baseline

Participants performed a preliminary test, equal for both groups and composed of two trials with a duration of 50 s without the vibrotactile stimulation. In the first trial they had to maintain the standing position with the eyes open (i.e., with the visual feedback: V+T−; T1). During this trial they were placed in front of a white wall, at a distance of 1 m, and they had to look at a blue dot target (0.75 cm radius) on the wall. The second trial was performed with the eyes closed (i.e., without the visual feedback: V−T−; T2). Between the two trials there was a short pause (about 30 s).



Familiarization

The familiarization lasted 30 s. During this phase the participants were free to explore the vibrotactile feedback maintaining the standing position with eyes open or closed, as they preferred. Notice that this allowed the participants to understand that performing correctly the task corresponded to reduce the intensity of the vibration, till a complete silencing only in the DZ method.



Test

The first part of the test was composed by three repetitions of two trials with a duration of 50 s each. The first trial was performed without vibrotactile feedback (V− T−; T3-T5-T7), and the second with vibrotactile feedback (T4-T6-T8): dead zone method (V−T+DZ) for group 1 and always on method (V−T+AO) for the group 2.

Participants from group 2 performed also the sham test, i.e., they were asked to stand still for three additional 50 s trials where the first and the last trial were without any feedback (V−T−; T9-T11), and the second trial with the sham feedback (V−T+S; T10), i.e., a vibrotactile feedback where the vibration intensity was not related to the actual CoM oscillations (see Vibrotactile Feedback Control section). The rationale of testing the effect of sham feedback was to verify if measurable sway changes observed in our experiment were due (1) to the informational content of the supplemental vibrotactile feedback or (2) to a mere effect of vibration acting as noise and increasing the perceptive thresholds as in Dhruv et al. (2002), Liu et al. (2002), Janssen et al. (2010), Magalhães and Kohn (2011), Borel and Ribot-Ciscar (2016), and Kwak et al. (2016). In the latter case, we expected that changes—and specifically a reduction—of the postural sway during the exposure to the synchronized informative feedback, would have been maintained during the exposure to the unsynchronized sham feedback. This because the sham feedback had the same amplitude and frequency of the informative feedback, with the only difference that was unrelated to the actual CoM oscillations. Instead, in the former case, if participants used the information encoded in the vibration in the previous trials, since in the sham feedback the vibration would be not related to the actual CoM oscillations, the attempts to use the vibration content would decrease participants' stability, increasing the postural sway.




Data Analysis

We aimed at investigating the efficacy of synchronized vibrotactile feedback for the reduction of body sway and distinguishing the specific effects of the different encoding methods. The indicators for describing the postural oscillations were extracted from the acceleration signals recorded with the IMU (see Figure 4 for an example) located at L3 level. The accelerometric signal was sampled at a frequency of 50 Hz. During the experiment, for the on line computation of the vibrotactile feedback we used the raw data, while during the off line data analysis to evaluate the postural performance of the participants we took as reference for the signal pre-processing the studies of Mancini et al. (2011, 2012) and Marchesi et al. (2019) and filtered the data with a zero-phase fourth-order Butterworth low-pass (LP) filter with a cut-off frequency of 3.5 Hz. In fact, these studies demonstrated that in quiet standing we can extract reliable indicators of postural stability from the accelerometric signals in the horizontal plane and that these indicators are correlated with the ones extracted from the CoP, both for healthy participants and for people with Parkinson's disease. In other words, according to these studies the higher is the amplitude of these LP filtered signals extracted from the accelerometric signals the greater the postural sway measured by a force platform as shift in the center of pressure. Therefore, in the present study, we referred to an increase/decrease of these signals as an increase/decrease of the postural sway/oscillations.


[image: Figure 4]
FIGURE 4. Examples of the accelerometer signal (low-pass filtered, cut off frequency 3.5 Hz) in absence (V−T−) and presence (V−T+) of supplemental vibrotactile feedback. Each panel compares, for one typical participant, the accelerometric signal in the (V−T−) condition with the same signal measured in the three conditions with vibration on: the dead-zone method (V−T+DZ) in (A) (note that the dead zone is delimited by the threshold (Thr), i.e., the two dashed lines); the always on method (V−T+AO) in (B); the sham feedback (V−T+S) in (C).


To evaluate the participants' performance we computed two outcome measures from the acceleration signals (Mancini et al., 2011):

> the Root Mean Square acceleration (RMS), quantifying the magnitude of the acceleration in the spatial-temporal domain;

> the frequency at which the power spectral density reaches the 95th percentile (F95), describing the characteristic of signal in the frequency domain.

We computed both these indicators separately for acceleration components in the anterior-posterior and medial-lateral directions.


Statistical Analysis

The baseline data were used (i) to verify that there were no differences between groups before exposure to vibrotactile feedback and (ii) for defining the amplitude of the dead zone (only for the group 2). We also verified that the difference in performance between open and close eyes conditions, expecting a significant worsening in performance when the visual feedback was absent. To do so, we used a repeated measures ANOVA (rm-ANOVA) with one factor within subjects “Visual feedback” (open/close eyes) and one factor between subjects: “Groups” (group 1 vs. group 2).

After that, for verifying if the two methods of encoding the acceleration of the CoM induced changes in the postural sway and if these changes depended on the encoding methods we analyzed the data of the test phase by using a rm-ANOVA with two factors within subjects: “Vibration” (on/off) and “Repetition” (three trials with and three without vibrotactile feedback) and one factor between subjects: “Encoding method” (dead zone vs. always on). We further investigated significant main and interaction effects by performing a post-hoc analysis using Fisher's LSD.

Although we could expect a sizable variability among participants in their baseline performance, we did not normalize the data for the anthropometric parameters or the baseline performance. The reason for this was that in each group the same participant was tested multiple times under different conditions and the rm-ANOVA allowed for individual differences in the baseline, i.e., it allowed testing for the effect of the supplemental feedback (and more specifically for all the factors: vibration on/off, encoding method and repetition) while excluding the influence of different baseline performance across the participants.

Effects were related to repetition in order to highlight (i) learning effects in the vibration trials (ii) after effects in the no vibration trials. Therefore, when the repetition factor or its interactions were significant, we further investigated these results by comparing the first and the last trial on the same condition (presence/absence of vibration). Specifically, in the no vibration condition this was equivalent to test if there were any after effect recorded before exposure to vibrations.

For testing the importance of the informational content encoded in the vibrotactile feedback we compared (three planned comparisons—paired t-test), the performance in the sham trial with the performance (i) in the last trial with the always on method and (ii) in the two trials without vibration before and after the sham trial.

The normality of the data was checked with Lilliefors test. The assumption of sphericity necessary to perform rm-ANOVA was verified for all the parameters (Mauchly's test). In all tests the significance level was set at p < 0.05. Since we had more than one parameter extracted from the same dataset we verified that all the reported p-values—computed without corrections for multiple comparisons—were robust to the Bonferroni-Holm correction (Holm, 1979) and we reported when they were not.





RESULTS


Baseline

The first analysis that we performed was to check the performance during the baseline, where the participants had to perform two consecutive trials with (T1) and without (T2) the visual feedback. As expected, we found that all the participants worsened their performance during the closed eyes condition. Specifically, the amplitude of the acceleration signals in the AP and the ML directions significantly increased (RMS: AP: F(1, 22) = 36.20, p < 0.001; ML: F(1, 22) = 22.05, p < 0.001). For the F95 parameter there was a significant decrease in the AP direction (F(1, 22) = 7.57, p = 0.012), which was not found in the ML direction (F(1, 22) = 3.69, p = 0.068).

The second preliminary analysis was aimed to check that the two groups of participants were equivalent with regards to the baseline performance during unperturbed sway. In particular, we compared the performance in the first two trials, in absence of vibration, and we found no significant differences between the two groups for all the parameters (RMS: AP: p = 0.066, ML: p = 0.417; F95: AP: p = 0.793, ML: p = 0.471).



Supplemental Synchronized Vibrotactile Feedback Reduces the Postural Sway

For investigating the effects of the vibrotactile feedback encoding the CoM information, we analyzed the data collected during the test phase, where participants were required to stand as still as possible with eyes closed and they performed three repetitions of two trials without (T3-T5-T7) and with (T4-T6-T8) supplemental feedback.


Encoding Method Effect

We found that for all participants the vibrotactile feedback encoding the accelerometric measurement modified the postural sway, independently of the encoding method (encoding method effect: p > 0.42 for all the parameters).



AP Direction

When the vibration was applied, in the AP direction, i.e., the direction encoded in the supplemental feedback, there was a significant effect of the vibration on both the RMS and the F95 as displayed in Figure 4 for a typical participant of the group 1 (Figure 4A) and of group 2 (Figure 4B).

Specifically, the amplitude of the AP acceleration decreased (RMS: F(1, 22) = 22.34, p < 0.001, Figures 5A,C) and its frequency increased (F95: F(1, 22) = 72.02, p < 0.001, Figures 5B,D).


[image: Figure 5]
FIGURE 5. RMS and F95 parameters in the AP direction for group 1 (DZ method) in (A,B), and for group 2 (AO method) in (C,D), respectively. The error-bars represent the standard error of the mean obtained for all the participants. *significant differences of rm-ANOVA: ***p < 0.001.




ML Direction

In the ML direction, i.e., the direction not encoded in the supplemental feedback, the vibration produced only a significant increase of the frequency (F95: F(1, 22) = 14.17, p = 0.001, Figures 6B,D), not followed by a significant change of the amplitude of the accelerometric signal (RMS: F(1, 22) = 1.54, p = 0.228, Figures 6A,C).


[image: Figure 6]
FIGURE 6. RMS and F95 parameters in the ML direction for group 1 (DZ method) in (A,B), and for group 2 (AO method) in (C,D), respectively. The error-bars represent the standard error of the mean obtained for all the participants. *significant differences of rm-ANOVA: **p < 0.01.





The Sham Feedback Changes the Postural Sway Differently From the Synchronized Feedback

To verify that the reduction of the postural sway above described was effectively due to the information embedded in the feedback related to the accelerometric measurement, we compared the performance in the sham trial (T10) with the performance in the last trial with the always on feedback method (T8) and the two trials without vibration before (T9) and after (T11) it.

We found that the unsynchronized sham feedback determined different changes in the postural sway with respect to the feedback encoding a combination of the actual position and acceleration of the body center of mass in the anterior-posterior direction. The acceleration signals from a representative participant in a trial with the sham feedback is reported in Figure 4C.


AP Direction

Indeed, the sham feedback increased the amplitude of the accelerometric signal in the AP direction, with respect to all the tested conditions, i.e., both the no vibration trials (RMS: T9-T10: p = 0.011; T10-T11: p = 0.035, the latter was not robust to Bonferroni-Holm correction), and the last trial with AO method (RMS: T8-T10: p = 0.002; Figure 7A). For the F95 in the AP direction, the sham, differed from the trial with AO method (T8-T10: p < 0.001), while no significant differences were observed with respect to the no vibration trials (T9-T10 and T10-T11: p > 0.54; Figure 7B).


[image: Figure 7]
FIGURE 7. Effects of the sham feedback (V−T+S; T10) in comparison with the performance in the last trial V−T+AO (T8) and in the two no vibration trials before and after the sham trial (V−T−; T9, T11). RMS and F95 for the AP direction are reported in (A,B), respectively. RMS and F95 for the ML direction are reported in (C,D), respectively. The error-bars represent the standard error of the mean obtained for all the participants. *significant differences of rm-ANOVA: *p < 0.05, **p < 0.01.




ML Direction

Instead, the F95 of the ML component was higher with respect to the last no vibration trial before the exposure to vibration (T9-T10: p = 0.039, not robust to Bonferroni-Holm correction; Figure 7D). For all the other comparisons and the RMS in this direction (Figure 7C), no significant differences were observed (all p > 0.34).




Effects Related to Repetition: Both Synchronized Encoding Methods Determined No Learning Effect, but They Led to Different After Effects
 
Learning Effects in Trials With Vibration

Comparing the trials with the vibrotactile feedback during the test (T4-T6-T8), we found that for both parameters and both groups there were no significant differences among the three repetitions (Fisher's LSD test: all condition p > 0.25).



After Effects in Trials Without Vibration

In the trials without vibrotactile feedback (T3-T5-T7) the postural sway changed when comparing the performance before (T3) and after (T7) exposure to vibration (T7) and these changes depended on the encoding method.



Encoding Method Effect

The amplitude of the acceleration in the ML direction increased for the DZ method, but not for the AO method, which led to a not significant effect of the encoding method factor (interaction effect “Vibration*Repetition*Encoding method” F(2, 44) = 6.23, p = 0.004; post hoc analysis: V−T−DZ: T3-T7 p < 0.001; V−T−AO: T3-T7 p = 0.093).

In the AP direction, instead, there were no significant after effects for the sway amplitude (no significant interaction “Vibration*Repetition*Encoding method”: p = 0.854), although we observed that the RMS parameter decreased in 8 participants of group 1. We observed after effects also in the frequency domain, where the F95 parameter for the no vibration trials increased across repetitions in the AP direction for DZ method (“Vibration*Repetition”: F(2, 44) = 11.42, p < 0.001, post hoc analysis: V−T−DZ: T3-T7 p < 0.001), while the trend was less clear for the AO method, with changes that did not reach a threshold of significance (V−T−AO: T3-T7 p = 0.065).





DISCUSSION

To investigate the effects of vibrotactile feedback on standing balance, we built a device with two vibration motors, one placed on the back at the L5 level and the other on the correspondent location of the abdomen. The vibration was synchronized with an accelerometric signal encoding a combination of the position and acceleration of the body center of mass in the anterior-posterior direction. We expected that blindfolded healthy participants when exposed to this vibration (1) would modify their postural sway in dependence of the encoding method (AO vs. DZ); (2) the changes depended on the information encoded by the vibration method, i.e., they were not a mere effect of vibration; (3) the vibration did not induce after effects on the natural postural sway in absence of vibration. In short, the results partially matched the expectations: we found that independently from the encoding method, the presence of vibration synchronized with the accelerometric signal decreased the sway amplitude in the AP direction, while increasing its frequency in both directions. The participants accounted for the information encoded in the vibration since the sham vibration did not produce the same effects. Surprisingly, we found significant after effects of the vibration for the participants that were exposed to the DZ method.

In the following sections, we discuss in details the results.


When Exposed to Supplemental Vibrotactile Feedback Synchronized With an Accelerometric Signal Encoding a Combination of the Position and Acceleration of the Body Center of Mass in the Anterior-Posterior Direction, All Participants Modified Their Postural Sways, Independently From the Method Used to Provide This Information

Both encoding methods were able to modify the performance of all participants. Indeed, they reduced the amplitude and increased the frequency of the AP accelerometric signal. These changes can be interpreted as a reduction of the postural sway, i.e., smaller and more frequent postural corrections (Dozza et al., 2005). This effect is consistent with the previous studies, e.g., in Xu et al. (2017) where supplemental vibrotactile feedback was able to modify the postural sway in healthy young participants. The main novelty of these results were that:

(1) the changes were mainly on the direction of application of the stimuli, that was also the direction encoded in the supplemental feedback;

(2) the presence or absence of a zone without vibration around the natural stance posture had not a specific effect on the postural sway;

(3) these changes were obtained by using a simple and low cost device based only on two vibrator motors, while except (Alahakone and Senanayake, 2010), most studies use an array of several vibrator motors.

As for the first result, directional effects on the postural sway were described for the auditory (Dozza et al., 2005) or multimodal (e.g., vibrotactile, auditory and visual (Davis et al., 2010; Huffman et al., 2010) feedback, but to the best of our knowledge similar results were not reported for the vibration feedback with only two motors. Notice that this directional effect could be due to both the information encoded in the vibration or to the positions of the vibration motors that being on the front and the back of the participants could have influenced differently the AP and ML direction, as discussed in the following paragraph.

As for the second, the encoding methods with the idea that participants might attend to the supplemental feedback only outside a certain region of the natural postural sway (Alahakone and Senanayake, 2010) or above a certain threshold of the stimuli. If this is the case, the DZ method would have the advantage to drive the participants' attention to the stimuli only when it is needed could have beneficial effects. The findings that the participants did not have different responses during the exposure of the two encoding methods seems to support this hypothesis.

These results suggest that the proposed simple and low-cost device was able to influence significantly the postural sway, from the initial exposure. Thus independently of the encoding method, the use of the proposed device, were intuitive and effective, i.e., the central nervous system was able to incorporate the supplementary feedback (Janssen et al., 2009) without requiring a long adaptation process. If the informational content was important (see next paragraph), then the process could have been enhanced by the fact that in both cases, the vibrotactile feedback were designed to elicit a repulsive strategy i.e., participants should reduce or silence the vibration intensity for decreasing the postural sway and this method, provided with other more complex matrix of vibration motors, was found to be more effective than that of the attractive strategy (Lee et al., 2012; Kinnaird et al., 2016).

Although these results are interesting and promising, future studies are necessary to verify the effectiveness of this approach. Also in the presence of internal and external perturbations that challenge the balance ability and to verify if different results would be obtained changing the amplitude of the dead zone or how the information of the AP CoM oscillations are encoded in the vibration intensity.



The Sham Feedback Led to Different Sways Patterns Than the Vibrotactile Feedback Encoding a Combination of the Actual Position and Acceleration of the Body Center of Mass in the Anterior-Posterior Direction

The lack of effect on the postural sway of the two different encodings methods described above could be due to the exposure to vibration, with different directional effects because the vibrator motors being located on the front/back of the participants, i.e., the vibration was provided along the AP direction. In fact it is well-known that also a low-level noise vibrotactile stimulation increase the detection of the stimuli, leading to improvements in postural control (Gravelle et al., 2002; Priplata et al., 2002, 2003; Magalhães and Kohn, 2011; Borel and Ribot-Ciscar, 2016; Kwak et al., 2016). To verify whether or not the participants in this experiment integrated their neural control of the informational content encoded in the vibration, we added a trial where the participants of group 2 where exposed to sham feedback. In other words, we tested if the modification of the postural sway was the same with unsynchronized feedback with actual postural sway, but with similar amplitude and frequency content. The exposure to the sham feedback had different effects than the synchronized informative feedback, determining an increase of the amplitude of the AP direction associated with a decrease of the frequency of the ML direction, with respect to the signal recorded in absence of supplemental feedback. Therefore, our participants when exposed to synchronized informative feedback reduced the amplitude of the AP oscillations and increased their frequency content, by integrating the information encoded in the vibration.

These results are not in contrast with Janssen et al. (2010), where participants with bilateral vestibular loss improved equally with the informative and uninformative vibration. In fact, we specifically tested if our participants accounted for the informational content of vibration when exposed to informative feedback, and the experiment was not designed to verify whether or not informative feedback would lead to the same changes in postural control. In particular, the increased AP acceleration amplitude in presence of the uninformative vibration was probably due not to the mere effect of our sham feedback, but to the fact that the participants have learned to integrate in their postural control loop the vibration informational content experienced in the previous trials. Thus, when the feedback become uninformative, its integration on the control loop decreased the postural stability.

This result supports the hypothesis that participants were able to integrate the proposed supplemental feedback in their postural loop control, accounting for its informational content, after a short time from the initial exposure. Thus, this result encourages to further investigate and exploit the possibility of applying this technology and supplemental vibrotactile feedback in long-term training and rehabilitation of postural control abilities.



The Vibrotactile Feedback Determined Changes on the Natural Postural Sway, Depending on the Encoding Method: the Exposure to DZ Feedback Method Led Short Term After Effects

To investigate the after effects of the exposure to supplemental feedback is important: if present, they modify, either in a positive or negative way, the postural responses of the participants either in the short or in the long term (Goodworth et al., 2009). This could have relevant implications in the sensory substitution domain, e.g., for amputees (Lee et al., 2007), and is a central issue when the technology is used with applications with rehabilitation goals, e.g., in Lindeman et al. (2005) and Asseman et al. (2007). However, the study of after effects of exposure to the vibrotactile feedback has received limited attention (Winstein et al., 1989). Here we made a first step in the direction of investigating this problem, limiting the study to short term effects due to a short exposure to the vibrotactile stimuli. Surprisingly, we found that even a short exposure of few minutes (the entire experiment lasted about 15 min) can induce short term changes in the natural oscillation patterns of the CoM in absence of vibration and these changes depend on the encoding method. Indeed, only the DZ feedback method modified the natural oscillation pattern leading to an increased frequency in the AP direction and, most importantly, to an increased amplitude in of the acceleration component the ML direction. The increase in postural oscillations in the ML direction is usually a negative effect associated to instability. Therefore, this finding needs to be investigated further, extending the study to long-term exposure and to long term after effects of the vibrotactile feedback. As it is, this result seems to suggest that providing feedback method as always on instead of one as a dead zone is preferable since it allows avoiding undesired after effects.

Notice that based only on the observation of the effect during the exposure to the stimuli we would have concluded that DZ feedback method would be preferable because it reduces the exposure to the stimuli (Dozza et al., 2006). However, the observation of the after effect seems to suggest that the best choice is to keep the vibration always on to avoid undesirable effects when the stimuli is turned off. We acknowledge that these are only preliminary results related to the proposed device and protocol. They highlighted the importance to investigate also the after effects of the stimuli, and deeper and larger investigations are needed to drive general conclusions.



Vibrotactile Synchronized Feedback and Light Touch

In the early 90's it was discovered by Jeka and Lackner (1994) that “fingertip contact influences human postural control”. In particular, it was found that such additional tactile information allowed the subjects to significantly reduce the size of sway movements: very small contact forces, of the order of 1N, could elicit this phenomenon and, at such level of interaction, purely biomechanical explanations would not match the findings while suggesting a multi-sensory integration process, somehow related to the effect investigated in this study. The initial demonstrations mentioned above involved the tandem Romberg standing posture, which is particularly unstable in the frontal plane, however a following study (Clapp and Wing, 1999) obtained similar effects with normal bipedal stance: they also found a positive correlation between the contact force and the reduced oscillation of the CoP in support of the idea of synchronized feedback for the reduction of postural sway. Moreover, it was found that such reduction does not necessarily need to involve the hand but also occurs when different parts of the swaying body (e.g., leg or shoulder) experience a light contact with an environmental referent (Rogers et al., 2001). In any case, it is mandatory that tactile information is not inhibited by any means, such as anaesthetization of the hand (Kouzaki and Masani, 2008). By comparing the effect of different levels of light touch, namely the fact that the stronger the touch the better the sway reduction, it was suggested by Wing et al. (2011) that “heavier contact provides clearer sensory information about sway allowing faster and more accurate compensatory balance adjustments”. In other words, it seems plausible to postulate that the solution adopted by the brain for stabilizing standing upright, in the sense of minimizing as much as possible the unavoidable body sway, is to carry out a multi-sensory data fusion for obtaining the most accurate estimation of the oscillation of the CoM that is essential for closing the stabilization loop. We need to take into account that such critical information is not accessible directly through a specific sensory channel but indirectly through different noisy channels: visual, proprioceptive, and vestibular, in the natural situation. Light touch or synchronized vibrotactile stimulation are artificial channels that can complement the natural ones for improving the accurate evaluation of the CoM sway that is necessary for minimizing its amplitude. There are indeed reasons to believe that sway movements during quiet standing are not noise-driven around a point attractor (the nominal equilibrium posture) but are the results of an intermittent stabilization process attracted by a limit-cycle whose size depends on the inaccuracy of CoM estimation (Bottaro et al., 2005; Asai et al., 2009). From this point of view light touch and vibrotactile synchronized feedback are somehow equivalent. However, the latter one lends itself much more naturally to clinical applications that will be the target of a further development of this study.



Limitations

We found no difference due to the two encoding methods (AO and DZ) during exposure to the supplemental feedback, thus we added a test with sham feedback to verify if the participants took into account the informational content encoded in the vibration. If this were not the case, we would conclude that the lack of difference between the encoding methods were due simply to the fact that participants used the vibration without accounting for the informational content. The results of the test with sham feedback allowed us to reject this hypothesis highlighting that the participants previously exposed to the AO feedback method were indeed using the informational content of the vibration. We also expect a similar effect for the DZ method, but this specific test was not included in the present protocol and could be part of a future extension of the research line.

An additional potential effect that was not covered by the protocol used in this study is a “bias effect.” The fact that participants were exposed to sham feedback after being exposed to the informative feedback might create a bias: the increased oscillations observed in presence of sham feedback were due to the previous exposure to the informative feedback since participants were trying to use the vibration information also during exposure to the sham feedback. To verify the effects of this sham feedback per se, we should have added a group that would have being exposed only to sham feedback (or at least exposed first to the sham feedback). Pursuing this extension of the line of research performed by the current study we should also have taken into account that the relation between the body sway and the intensity of vibratory noise has a U-like shape, thus only specific levels of noise might induce a decrease of postural performance (Magalhães and Kohn, 2011; Borel and Ribot-Ciscar, 2016; Kwak et al., 2016). However, this was not our goal, but we just wanted to verify the mechanisms underlying the changes in the postural sway due to the vibration we provided encoding the CoM information, as in Krueger et al. for the upper limb supplemental feedback (Krueger et al., 2017).

Finally, with the proposed paradigm, alternating short trials with and without vibration, we specifically aimed at verifying if participants accounted for the vibrotactile feedback we provided in a short time frame (i.e., trial of 50 s) and if that short exposure could determine any modification of the natural oscillation patterns observed before the exposure. Notice that the participants were aware that in the “no vibration trials” the vibration was off. The short exposure to only one of our feedback modalities determined after effects and we believe that, while different protocols could lead to different after effects, their existence was not due to our protocol. However, this point should be further verified in future studies and we acknowledge that the paradigm we choose could have influenced the learning and the related after effects i.e., a different paradigm could have led to different results.




CONCLUSION

We developed an easy–to-use, low-cost and portable device that provides the user with supplemental vibrotactile feedback, encoding the position and the acceleration of the CoM in the AP direction. First, we investigated whether the vibrotactile feedback provided by this simple device was able to enhance postural steadiness, finding that the presence of vibrotactile feedback synchronized with the postural sway reduced the amplitude of the sway in the AP direction during the exposure to vibration. The results also highlighted that this reduction did not depend on the time profile of the vibrotactile stimulation, i.e., both a continuous stimulation (AO method) and a paradigm including a dead zone around the natural stance posture (DZ method) determined this effect. However, they had different after effects to the exposure to the vibration: only the DZ method produced short term after effects, increasing the amplitude in the ML and the frequency in the AP direction of recorded signals. Finally, we verified that the reduction during exposure to the supplemental feedback depended—at least for the AO method that was tested with sham feedback—on the informational content of the feedback i.e., it was not a mere effect of the vibration since an unsynchronized feedback led to different results.

In conclusion, these results provide new insights about the underling mechanism of the integration of supplemental vibrotactile feedback for balance control. Apart from the physiological interest per se about the efficacy of integrating an artificial feedback channel for improving balance, there might also be clinical and epidemiological application for our device and results: evaluating and decreasing the risk of falls in elderly and/or motor impaired participants, and supporting the balance of people wearing exoskeletons or lower limb prostheses.
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Human movement is generated by a dynamic interplay between the nervous system, the biomechanical structures, and the environment. To investigate this interaction, we propose a neuro-musculoskeletal model of human goal-directed arm movements. Using this model, we simulated static perturbations of the inertia and damping properties of the arm, as well as dynamic torque perturbations for one-degree-of freedom movements around the elbow joint. The controller consists of a feed-forward motor command and feedback based on muscle fiber length and contraction velocity representing short-latency (25 ms) or long-latency (50 ms) stretch reflexes as the first neuronal responses elicited by an external perturbation. To determine the open-loop control signal, we parameterized the control signal resulting in a piecewise constant stimulation over time for each muscle. Interestingly, such an intermittent open-loop signal results in a smooth movement that is close to experimental observations. So, our model can generate the unperturbed point-to-point movement solely by the feed-forward command. The feedback only contributed to the stimulation in perturbed movements. We found that the relative contribution of this feedback is small compared to the feed-forward control and that the characteristics of the musculoskeletal system create an immediate and beneficial reaction to the investigated perturbations. The novelty of these findings is (1) the reproduction of static as well as dynamic perturbation experiments in one neuro-musculoskeletal model with only one set of basic parameters. This allows to investigate the model's neuro-muscular response to the perturbations that—at least to some degree—represent stereotypical interactions with the environment; (2) the demonstration that in feed-forward driven movements the muscle characteristics generate a mechanical response with zero-time delay which helps to compensate for the perturbations; (3) that this model provides enough biomechanical detail to allow for the prediction of internal forces, including joint loads and muscle-bone contact forces which are relevant in ergonomics and for the development of assistive devices but cannot be observed in experiments.

Keywords: musculo-skeletal model, motor control, mechanical perturbations, computational model, stretch reflex, internal forces


1. INTRODUCTION

Humans generate goal-directed movement by an interplay between the nervous system, the biomechanical structures, and the environment, where high-level motor control is fine-tuned to the dynamics of the low-level muscular system and exploits its characteristics (Scott, 2004). Understanding and predicting this dynamic interplay by means of a computational model is relevant for two reasons: firstly, it allows gaining insight into the hierarchical structure of motor control and the sensorimotor integration of muscle-tendon dynamics and reflexes to control (Berniker et al., 2009; Campos and Calado, 2009; Latash, 2010; Kistemaker et al., 2013). Secondly, it provides the opportunity to study internal forces in the musculoskeletal system which are relevant in ergonomics and for the development of assistive devices and otherwise experimentally not accessible (Holzbaur et al., 2005; Pennestrì et al., 2007).

To this end, we here propose a model of human goal-directed arm movements which fulfills the following criteria: (a) it represents the biomechanical structures to a level of detail which allows the prediction of internal joint loads and muscle-bone contact forces; (b) it considers muscle-tendon based short- or long-latency reflexes as the first neuronal responses elicited by an external perturbation; (c) it reproduces experimentally observed responses to static as well as dynamic external perturbation forces which allow to investigate the model's neuro-muscular response and—at least to some degree—represent stereotypical interactions with the environment.

Individually, these criteria have been fulfilled in models before. For criterion (a), models typically consider muscle fiber characteristics (Hill-type muscle models, e.g., Millard et al., 2013; Haeufle et al., 2014b; Siebert and Rode, 2014), tendon non-linear elasticity, neuro-muscular activation dynamics (e.g., Hatze, 1977; Rockenfeller et al., 2015), antagonistic setup (e.g., Schmitt et al., 2019), and anatomical muscle routing (e.g., Holzbaur et al., 2005; Hammer et al., 2019). Such models are used for ergonomics or for the development of assistive devices, but, to our knowledge, do not fulfill at least one of the other two criteria (Holzbaur et al., 2005; Chadwick et al., 2009; Loeb, 2012; Glenday et al., 2019).

Musculoskeletal models which fulfill criterion (b) have also been developed (e.g., Gribble and Ostry, 2000; Kistemaker et al., 2006; Lan and Zhu, 2007; Bayer et al., 2017, review: Todorov, 2004). Two studies further employed perturbations to demonstrate the benefit of combining muscle spindle and Golgi tendon organ signals (Kistemaker et al., 2013) and the role of muscular characteristics in stabilization against different perturbations (Pinter et al., 2012). However, none of these models fulfills criterion (a) as they do not account for anatomical muscle routing. Furthermore, although the latter two studies investigate the reaction to perturbations, they do not fulfill criterion (c): they employ the perturbations to investigate their research questions, but they do not compare their perturbation response to experimental data (Pinter et al., 2012; Kistemaker et al., 2013).

Finally, many models successfully reproduce data from perturbation experiments [criterion (c), reviews see Wolpert and Ghahramani, 2000; Campos and Calado, 2009]. Examples are the predicted response to static perturbations mimicking changes in inertia or damping (Bhanpuri et al., 2014), or to dynamic torque perturbations (Kalveram et al., 2005). Both models incorporate feedback but have no representation of the muscles. Furthermore, they consider feedback on the joint level and not on the muscular level required to investigate sensorimotor integration. In addition to that, none of these models represent the muscular characteristics to fulfill criterion (a).

The purpose of this study was to develop a neuro-musculoskeletal model that fulfills all three criteria. The approach results in a neuro-musculoskeletal model that shows valid responses to both static and dynamic perturbations as reported in the literature (Kalveram and Seyfarth, 2009; Bhanpuri et al., 2014). These responses match those of previous motor control models but allow a novel interpretation of the relative contribution of feedback and biomechanical characteristics as well as the calculation of internal forces. This contribution is a step in the attempt to foster the dual use of musculoskeletal models as tools to study motor control models and as tools for the development of a virtual design and testbed for ergonomics or assistive devices.



2. METHODS

In order to simulate goal-directed arm movements, we combine a musculoskeletal model of the arm including two degrees of freedom and six muscles (based on Kistemaker et al., 2007; Suissa, 2017; Driess et al., 2018) with a neuronal control model (based on the concept of Bhanpuri et al., 2014). Both parts are described in more detail in the following. The structure of the neuro-musculoskeletal model is illustrated in Figure 1.


[image: Figure 1]
FIGURE 1. Schematic diagram of the neuro-musculoskeletal model. The desired trajectory φdes.(t) is a minimum jerk trajectory between a desired starting and an ending point. The command generator maps this trajectory to an open-loop motor command uopen and to desired muscle fiber lengths and contraction velocities (λ, [image: image]) that correspond to the desired trajectory. The total motor command u is fed into the model of the activation dynamics of muscles which relates the neuronal stimulation u to muscular activity a that drives the muscle model. The muscles produce forces F that act on the skeletal system resulting in a simulated movement φ(t) of the arm. In the time-delayed feedback loop, the sensory system which represents a simplified version of the muscle spindles measures the current lengths and contraction velocities of the muscle fibers ([image: image]). They are compared to the desired values (λ, [image: image]) and the resulting feedback error is multiplied by the feedback gains kp and kd (see Equation 4).


To investigate the model's interaction with the environment and compare it to experimental results, static perturbations of the inertia and viscosity properties of the arm (as reported in Bhanpuri et al., 2014) as well as dynamic torque perturbations (as reported in Kalveram et al., 2005) are applied. An overview over the applied perturbations is given in Figure 2.


[image: Figure 2]
FIGURE 2. Overview over the applied static and dynamic perturbations. [image: image] The static perturbations of the inertia and viscosity properties of the arm during a flexion movement in the horizontal plane (without gravity) are: a Increased damping (+0.30Nms rad−1) b Decreased damping (−0.31N m s rad−1) c Increased inertia (+0.039kg ms2) d Decreased inertia (−0.032kg ms2), in accordance with Bhanpuri et al. (2014). [image: image] During the dynamic torque perturbations a constant torque that mimics gravity (−1.5Nm) is applied. Hence, we visualized this movement as a movement in the vertical plane. The perturbation is a temporal torque impulse in or against the direction of movement: a Positive torque impulse (+5Nm) during a flexion movement b Negative torque impulse (−5Nm) during a flexion movement c Positive torque impulse (+5Nm) during an extension movement d Negative torque impulse (-5Nm) during an extension movement, in accordance with Kalveram et al. (2005).



2.1. Musculoskeletal Model of the Arm

The musculoskeletal model Arm26 (2 degrees of freedom, six muscles, see Bayer et al., 2017; Driess et al., 2018) of the human arm is described in detail in the Supplementary Material. The arm model consists of two rigid bodies (lower and upper arm) that are connected via two one-degree-of-freedom revolute joints that represent the shoulder (glenohumeral) and elbow joint (see Figure 1, within dashed box for schematics and Figure 2 for a visualization). Active forces are generated by six muscle-tendon units (MTUs, see Figure 2), four monoarticular (shoulder anteversion, shoulder retroversion, elbow flexor, elbow extensor) and two biarticular muscles (biarticular flexor, biarticular extensor). The muscles are stimulated by a neuronal control stimulation signal u. The model of the activation dynamics predicts the activity a of the muscle depending on the current muscle stimulation, considering the fiber length dependency (Hatze, 1977) (see Figure 1). Depending on the muscular activity, the force of each MTU is modeled using a Hill-type model accounting for force-length-velocity characteristics, tendon and parallel tissue elasticity, and damping in the tendon (Haeufle et al., 2014b). Muscle path geometry, i.e., origin, insertion and path deflection, is implemented to match experimental lever arm data. For the joint angle-dependent deflection geometry, we used the via-ellipse approach confining the path of the muscle to geometric ellipses attached to the rigid bones (Hammer et al., 2019). This algorithm allows to calculate muscle-bone contact forces and applies forces to the bones such that internal joint loadings can be predicted.

The parameters used in the models are not subject-specific but represent a generic man and are collected from different sources (among others: van Soest et al., 1993; Kistemaker et al., 2006; Mörl et al., 2012; Bhanpuri et al., 2014) that are listed in detail in the Supplementary Material. Due to the muscle-tendon model in combination with anatomical muscle routing, our model provides the necessary level of biomechanical detail to determine internal muscular and joint loads as well as muscle-bone contact forces. Hence, criterion (a) that we established in the introduction is fulfilled.

The experimental perturbations that we reproduce in this simulation study were confined to the elbow joint. Thus, we here fix the shoulder joint to 30° such that only one-degree-of-freedom movements are possible. Hence, the monoarticular shoulder muscles have no effect on the movement and are excluded from our investigations. To make the results comparable to experiments, the inertia properties of the forearm were changed according to an arm that is attached to an exoskeleton robot that was used by Bhanpuri et al. (2014).



2.2. Control Model

The neuronal control model is illustrated in Figure 1. It is based on the control model that was proposed by Bhanpuri et al. (2014) to reproduce static perturbations in a torque-driven model of the arm. The input to the controller is a desired trajectory φdes.(t) that is considered to be a result of the movement planning. The controller consists of an open-loop command uopen and a closed-loop signal uclosed that incorporates proprioceptive feedback. The total stimulation ui is the sum of those components and represents α-motor neuron activity. For each muscle i, it is calculated as

[image: image]

where the operation [image: image] sets values x < 0 to 0 and x > 1 to 1.

The total motor command [image: image] is fed into the musculoskeletal model resulting in a simulated movement φ(t) of the arm. This control approach can be classified as a modified hybrid equilibrium point (EP) controller where the open-loop signal is intermittent while the feedback signal is continuous (see Kistemaker et al., 2006).


2.2.1. Movement Planning

We assume that a higher-level structure conducts planning of the movement and provides a desired kinematic movement trajectory φdes.(t) as an input to the lower-level control structures that are modeled here. Therefore, the input to our controller is the desired trajectory which we determined by generating a minimum-jerk trajectory between desired starting and ending angles. To this end, a fifth-order polynomial approach for the desired angle trajectory φdes.(t) is chosen in accordance with Flash and Hogan (1985) who have shown that their mathematical model shows the typical bell-shaped velocity profile and predicts experimental observations of voluntary unconstrained point-to-point movements in a horizontal plane.



2.2.2. Open-Loop Control Generates Reference Trajectory

The command generator maps the desired trajectory φdes.(t) to an open-loop motor command uopen, and to desired contractile element lengths and velocities (λ, [image: image]) that correspond to the desired trajectory. Using a musculoskeletal model, the generation of these motor commands is non-trivial since the system is redundant (degree of freedom problem, see Bernstein, 1967; Shadmehr, 1991) and non-linear. In addition to that, the fact that the activation dynamics and the muscle model are described by first-order differential equations including time delays and the resulting time-dependency prohibits the straight-forward calculation of the inverse problem.

To simplify this process, instead of deriving a continuous set of stimulations over time, we introduce a triphasic stimulation pattern with a limited number of parameters (see Equation 2, illustrated in Figure 3). It is inspired by the three phases that have been observed in muscle surface electromyogram (EMG) patterns during fast point-to-point movements (see e.g., Wachholder and Altenburger, 1926; Wierzbicka et al., 1986; Kistemaker et al., 2006): an acceleration phase where mostly the agonist muscles are active which is followed by a braking phase and a final phase which keeps the arm in the desired final position. Hence, the muscles are divided into two groups: the agonists and the antagonists for a movement. We define the muscle stimulations over time for those muscle groups as

[image: image]

Following this approach, the control parameters that are required to follow the desired trajectory need to be determined.


[image: Figure 3]
FIGURE 3. Triphasic stimulation pattern for a flexion movement. Starting from the initial position at t = 0.1 s, during the acceleration phase, mainly the agonist muscles are active. In the second phase between t = t1 and t = t2, both muscle groups are active, braking the movement. In the last phase for t > t2, again both muscle groups are active in order to reach the final position and hold it with a desired level of co-contraction.


The initial and the final position are determined to be stable equilibrium positions, i.e.,

[image: image]

which leads to the condition that the net joint moment vanishes in these positions. This allows for the determination of the necessary muscle stimulations [image: image] and [image: image] to hold the initial and the final position by minimizing [image: image] subject to the constraint that the sum of all torques acting on a joint is zero, i.e., the system is in a stable equilibrium position. Herein, the desired level of stimulation udes. allows influencing the level of co-contraction. The condition that the system is supposed to be in equilibrium at t = 0 defines the initial conditions. The final phase starts at t2 = 0.7 s which is approximately the time when the final position is reached.

The dynamic movement between those equilibrium positions (0.1 s < t < t2) is parametrized such that it is close to the desired trajectory φdes.(t):

In the acceleration phase, the muscle stimulation uacc. and the switching time t1 are optimized using a Bayesian optimization approach (see e.g., Brochu et al., 2010) where the squared point-wise difference between the current trajectory and the desired trajectory is minimized. The minimal level of stimulation umin. is set to a fixed value (0.005) in order to reduce the search space for possible stimulations.

The muscle stimulation pattern [image: image] in the braking phase is determined analogously to the stimulations [image: image] but with a lower level of co-contraction to reach the final position following the desired pathway.

In the following, these optimized muscle stimulation patterns are used as open-loop signals [image: image]. If no external perturbation occurs, this stimulation pattern generates a trajectory that is close to the desired minimum jerk trajectory φdes.(t). This trajectory will be used as reference hereafter.



2.2.3. Closed-Loop Response to Perturbations

If a perturbation occurs, the movement trajectory changes. As a consequence, the actual fiber lengths and contraction velocities differ from the values from the reference trajectory. In this case, the feedback loop modifies the control signal (see Equation 1). This proprioceptive feedback is incorporated in the closed-loop signal [image: image] by comparing the actual lengths and contraction velocities ([image: image]) of the muscle fibers (contractile elements, CEs) of the muscles to desired values (λ(t), [image: image]). The desired CE lengths and velocities (λ, [image: image]) are set to the values ([image: image]) recorded during an unperturbed movement. So, as long as there is no external perturbation, the feedback error is zero and hence the closed-loop signal vanishes.

Since the information about the current state of the muscle only becomes available with a neuronal delay, a time lag δ is introduced. To investigate different hierarchy levels of feedback mechanisms, we tested both, a short-latency and a long-latency stretch reflex. For the short-latency response, the time delay is set to 25 ms in accordance with similar arm models (Gribble et al., 1998; Kistemaker et al., 2006; Bayer et al., 2017) which is in a physiologically plausible range [R1 response (Pruszynski et al., 2011; Kurtzer et al., 2014; Scott, 2016; Weiler et al., 2016)]. This short-latency feedback represents a simplified model of the spinal, mono-synaptic muscle spindle reflex (Pruszynski and Scott, 2012; Weiler et al., 2019), assuming that the muscle spindles provide accurate time-delayed information about the muscle fiber lengths and contraction velocities (Kistemaker et al., 2006). Since experimental findings indicate that the long-latency stretch reflex plays an important role in the reaction to mechanical perturbations in goal-directed reaching movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016), we also implemented a long-latency feedback loop by setting the time delay to 50 ms [R2 response (Pruszynski et al., 2011; Scott, 2016)]. Since both, short- and long-latency feedback are implemented with the same mathematical model (see below) and lead to similar results, we focus in the following on the long-latency response, while the short-latency responses to the perturbations can be found in the Supplementary Material. By considering these muscle-tendon based reflexes, our model fulfills criterion (b) that we suggested in the introduction.

The closed-loop signal [image: image] for each muscle i is calculated as

[image: image]

where kp and kd are the feedback gains and lCE,opt stands for the optimal length of the contractile element. The feedback gains kp and kd as well as the desired level of co-contraction in the braking phase udes.,dec. play an important role in the way how the system reacts to perturbations. Therefore, they are optimized in order to reproduce the answer to all four static perturbations seen in experiments.

In the objective function for this optimization, we incorporated the quantities early velocity and dysmetria (as used by Bhanpuri et al., 2014, illustrated in Figure 4) that we also use as evaluation criteria for the static perturbations below. Early velocity is defined as the joint angle velocity 155 ms after the first time the velocity exceeds 10 °/s. Dysmetria is defined as the difference between the final position (at t=1 s) and the position at the time of first correction. Herein, the time of first correction is the time when the absolute value of the angular velocity is smaller than 2 °/s or the absolute value of the angular acceleration falls below 2 °/s2. The objective function is minimized using the pattern search algorithm in Matlab® and is defined as

[image: image]

with [image: image]: early velocity, d: dysmetria, μ: mean, σ: standard deviation, Δ: difference that is calculated as the early velocity/dysmetria of the perturbed movement minus the early velocity/dysmetria of the reference movement.


[image: Figure 4]
FIGURE 4. Illustration of the determination of early velocity and dysmetria.


The whole set of resulting control parameters can be found in Table 2 in the Appendix. To quantify the influence of these control parameters on the resulting movements, we performed a sensitivity analysis (see Appendix).




2.3. Simulation Experiments

To test whether this model also fulfills criterion (c) from the introduction, we simulated its response to static and dynamic perturbations.


2.3.1. Static Perturbation of Inertia and Viscosity

Bhanpuri et al. (2014) performed experiments where healthy subjects carried out goal-directed single-joint arm movements while the arm was attached to an exoskeleton robot. Each subject performed two blocks with 40 trials each of which 36 trials were null trials (without perturbation). In the perturbation trials, the robot exerted a force to mimic changes in the dynamic properties of the arm, in particular inertia and viscosity. The movements were performed in a horizontal plane (Figure 2 [image: image]).

In our computer simulation, we adapted the moment of inertia of the modeled forearm to account for the influence of the robot arm to be able to compare our simulation results to their experiments. In accordance with Bhanpuri et al. (2014), the static perturbations were an increase in moment of inertia (+0.039kgms2), a decrease in inertia (−0.032kgms2), an increase in damping (+0.30Nms rad−1) or a decrease in damping (−0.31Nms rad−1) (Figure 2 [image: image]).

Evaluation criterion: In order to compare the simulation results to the experimental data, we introduced an evaluation criterion as used by Bhanpuri et al. (2014). They investigate the relation between early velocity and dysmetria, as defined above in section 2.2.3 and illustrated in Figure 4.



2.3.2. Dynamic Torque Perturbation

In analogy with the experiments described in Kalveram et al. (2005) and Kalveram and Seyfarth (2009), a dynamic torque perturbation was applied to the simulated pointing movement (Figure 2 [image: image]). A constant torque that mimics gravity (−1.5 N m) is applied. The perturbation is an additional temporal torque change in or against the direction of movement (±5 N m). The perturbation starts after 25% of the movement (corresponds to 7.5° of 30° in total) and lasts 37.5 ms. Hence, relative to the total movement, we apply the same perturbation as Kalveram et al. (2005). The starting and final position and all other biomechanical and control parameters are identical to the static perturbation simulations [image: image].

Evaluation criterion: For the dynamic torque perturbation, we chose the quotient of the angular velocity at the elbow joint at the beginning and at the end the perturbation as an evaluation criterion:

[image: image]

Setting Δt to the duration of the perturbation (37.5 ms), the velocity quotient relates the angular velocity at the beginning of the perturbation to the one at the end of the perturbation. This allows investigating the muscle-dominated response to the perturbations. In addition to that, we also evaluate the velocity quotient of the angular velocity at Δt = 100 ms after the beginning of the perturbation, which quantifies also the first neuronal response.



2.3.3. Implementation

The arm model and the optimization and analysis scripts are implemented using Matlab®/Simulink® version 2018a with the Simscape Multibody™environment. For all simulations, the variable-step Matlab ODE solver ode15s with relative solver tolerance 1 × 10−5 has been used. The absolute tolerance and the minimum/maximum/initial step size are set to be determined automatically.

For comparison, the experimental results were digitized from Kalveram and Seyfarth (2009) and Bhanpuri et al. (2014). For a smooth appearance and for the calculation of the angular velocity, we fitted a smoothing spline to the digitized discrete data (using the curve fitting toolbox in Matlab®).




2.4. Open-Loop and Torque-Driven Model as Comparison

To investigate the influence of the implemented feedback mechanism, we applied the same perturbations to an open-loop controlled version of our model, i.e., without the implemented feedback loop (kp = 0 and kd = 0).

In addition to that, we implemented an idealized torque-driven model to compare the reaction to external forces to those of the musculoskeletal model. This comparison allows investigating the contribution of the visco-elastic reaction forces which are generated by the muscle-tendon contraction dynamics (preflex forces). The torque-driven model uses the same mechanical parameters (segment lengths, masses, inertia) as the musculoskeletal model. To determine the torque that is necessary to reproduce the musculoskeletal model's movement, we recorded the net joint torque that is applied by the muscles during both the unperturbed movement. In accordance with the model of Bhanpuri et al. (2014), the feedback is based on the joint positions with a delay of 100 ms representing a long-latency reflex.




3. RESULTS

We here show the results for the long-latency feedback loop (50 ms delay). The short-latency responses (25 ms delay) to the perturbations is quite similar and can be found in the Supplementary Material.


3.1. Intermittent Open-Loop Signals Reproduce Unperturbed Movement

The simulation of the unperturbed movement is in good agreement with the desired minimum jerk trajectory and with the experimental data (see Figures 5, 7, orange curves). As mentioned above, without perturbations the feedback signal vanishes. So, the movement is solely controlled by the open-loop command which is a piecewise constant function over time. This unperturbed movement is the reference for the perturbed cases.


[image: Figure 5]
FIGURE 5. Results for case [image: image]. (A) Evaluation criterion for the static perturbations: early velocity difference in relation to the dysmetria difference (both calculated as the early velocity/dysmetria of the perturbed movement minus the early velocity/dysmetria of the reference movement) shown for both, simulation and experiment. The experimental results are digitized from Bhanpuri et al. (2014), the control group averages (n = 11) are shown and the error bars indicate standard deviation. (B) Our simulation results and (C) experimental results digitized from Bhanpuri et al. (2014) for one typical control subject in null condition (reference) and with perturbations (shaded areas indicate standard deviation).




3.2. Static Perturbation of Inertia and Viscosity

In presence of the static perturbations, the simulation and experimental results show the same qualitative behavior in the relation between early velocity difference and dysmetria difference (Figure 5A). An increase in inertia leads to a lower early velocity which results in higher dysmetria. A decrease in inertia causes an increase in early velocity which leads to lower dysmetria. For the damping perturbations, it is the other way round. The comparison of the movement trajectory in the simulation (Figure 5B) and the experiments of Bhanpuri et al. (2014) (Figure 5C) shows a qualitatively and quantitatively similar behavior at the beginning of the movement. Toward the end of the movement, the subject in the experiment tends to take longer to reach the final position, especially for the damping perturbations. Note that we only compared our results with experimental trajectories of one typical control subject and with early velocity/dysmetria difference of a small control group, respectively, while we used generic, not subject-specific parameters for the mechanical description of the limb.

The open-loop controlled system shows a similar response to the static perturbations as the closed-loop version and also as the subjects in the experiment (Figure 6A). However, in three of four cases, the closed-loop controller leads to better results than the open-loop approach and also the sum of all cases is smaller (Figure 6A vs. Figure 6B and Table 1). The only case that does not profit from the feedback and leads to similar results is the decreasing of inertia.


[image: Figure 6]
FIGURE 6. Comparison to open-loop and torque-driven model for case [image: image]. (A) Resulting trajectories when controlling the musculoskeletal model open-loop, (B) trajectories when controlling the musculoskeletal model closed-loop, (C) trajectories when controlling a purely torque-driven model open-loop, and (D) trajectories when controlling a purely torque-driven model closed-loop.



Table 1. Quantification of the difference between simulation and experiment for case [image: image] by evaluating the cost function (Equation 5) that was used in the optimization of the closed-loop control parameters and splitting it into the contributions of the different perturbations.

[image: Table 1]

The trajectories generated by the torque-driven model do not reach the desired target position without feedback (Figure 6C). With feedback, the trajectories get closer to what has been observed in the experiments, but there are oscillations around the target position (Figure 6D).

An increase in arm inertia causes an overshoot of the movement using the musculoskeletal model with and without feedback while the forward-controlled torque model predicts an undershoot (Figure 6). The former counter-intuitive behavior was also observed in the experiments (Figure 5C).



3.3. Dynamic Torque Perturbation

The response to the dynamic perturbations in the simulation is qualitatively similar to what has been observed in the experiments (Figures 7B,C). Most relevant here is the reaction directly after the perturbation which reflects in a change in angular velocity. Therefore, we calculated the relation between the angular velocity in the elbow joint at the beginning and the end of the perturbation (Figure 7A, Δt= 37.5 ms). For a perturbation in the direction of the movement, the velocity is approximately doubled while it is halved for perturbations against the direction of movement. The velocity quotient between the velocity in the beginning and the one 100 ms after the beginning of the perturbation (Figure 7A, Δt= 100 ms) deviates more from the experiment than the one after 37.5 ms.


[image: Figure 7]
FIGURE 7. Results for case [image: image]. (A) Evaluation criterion for the dynamic perturbations: the quotient of the angular velocity at the beginning of the perturbation and after Δt (37.5 and 100 ms, see Equation 6) shown for both, the simulation results (filled bars) and the experimental results (empty bars) for all four perturbation types (experimental results are digitized from Kalveram and Seyfarth, 2009). (B) Joint angle trajectories for the four different perturbation types in our simulation and (C) in the experiment (digitized from Kalveram and Seyfarth, 2009). Note that the experimental results show the trajectory for one typical control subject. The upper curves show flexion movements, the lower curves show extension movements. The dashed lines visualize the applied torque perturbations.


Note that no parameters were tuned to match the perturbed trajectories. For all static and dynamic perturbation types, the same feedback gains, delays and desired levels of co-contraction are used. For case [image: image], some parameters need to be re-optimized in comparison to [image: image] to compensate for the constant torque that mimics gravity and to allow for an extension movement. The whole set of control parameters can be found in Table 2 in the Appendix.

The open-loop controlled system shows a similar response to the dynamic perturbations as the closed-loop version and also as the subjects in the experiment (Figures 8A,B).


[image: Figure 8]
FIGURE 8. Comparison to open-loop and torque-driven model for case [image: image]. (A) Resulting trajectories when controlling the musculoskeletal model open-loop, (B) trajectories when controlling the musculoskeletal model closed-loop, (C) trajectories when controlling a purely torque-driven model open-loop, and (D) trajectories when controlling a purely torque-driven model closed-loop with the same controller as described above.


The trajectories generated by the torque-driven model do not reach the desired target position without feedback (Figure 8C). With feedback, the trajectories get closer to what has been observed in the experiments, but there are oscillations around the target position (Figure 8D).



3.4. Internal Force Responses

Our model approach allows for analyses of internal muscular and joint force responses as well as the proprioceptive feedback signals that cannot be observed in experiments. To show the possibilities this method offers, we evaluated the joint angle, muscle stimulation and resulting activity, internal muscle and joint forces and active joint torque exemplary for one static and one dynamic perturbation case and for one muscle (Figure 9). The changes in the total muscle stimulation are due to the implemented feedback mechanism: For example in Figure 9B, the perturbation acts against the direction of movement, so the muscle stimulation is increased to compensate for it. Also the muscle force is increased as a consequence of the perturbation. In consequence, the contact force and the constraint force in the elbow joint are increased as well.


[image: Figure 9]
FIGURE 9. Selection of quantities that can be investigated using our model. Elbow joint angle, muscle stimulation and activity, muscle force, muscle-bone contact force, joint constraint force and active joint torque for the unperturbed trajectory (orange) and for a perturbed movement (blue). These results are exemplary shown for the elbow flexor muscle and (A) for an increase in inertia and (B) for a flexion movement with a negative torque impulse perturbation. Here, the gray area visualizes the length of the time delay in the controller (50ms), i.e., the time after the perturbation before the feedback mechanism is activated. Note that the total muscle stimulation in the unperturbed case is equal to the open-loop contribution in the perturbed case. For all forces, the resultant force is shown. The contact force is the force at the first deflection ellipse (positions of the ellipses see Supplementary Material). The active joint torque represents the torque acting on the joint that is a consequence of the muscle forces.





4. DISCUSSION

Our goal was to propose a model of human goal-directed arm movements which fulfills all three criteria that we formulated in the introduction: Our neuro-musculoskeletal model shows valid responses to both static and dynamic perturbations and therefore fulfills criterion (c). This alone is novel, as typically only one category of perturbations is studied and reproduced by previous models. The predicted response to both types of perturbations is an emerging behavior of the sensorimotor integration in the model which was achieved by fulfilling the other two criteria, both specifying the level of detail of the modeling. The high level of biomechanical detail allows predicting muscle-tendon based proprioceptive feedback signals, internal muscle forces, muscle-bone contact forces, and joint loads (Figure 9), all of which require the representation of muscle-tendon complexes and geometrical muscle routing in the model [criterion (a)]. In consequence, kinematic- or torque-based control concepts of human motor control are not applicable, as a control input is required on the muscular level for our model (one for each muscle). The proposed controller is a combination of an open-loop controller and a low-level muscle spindle signal based controller [criterion (b)]. The open-loop controller generates a (close-to) minimum jerk trajectory for the unperturbed movement. Only in the presence of a perturbation, the closed-loop control contributes to the muscle stimulations. Thus, this model allows for gaining insights into the sensorimotor integration in response to external forces.

The experimental data on the applied static (Bhanpuri et al., 2014) and dynamic perturbations (Kalveram and Seyfarth, 2009) that we used to validate our model response has been previously reported in the literature. The static perturbations represent changes in inertia and viscosity continuously affecting the dynamics of the lower arm (Bhanpuri et al., 2014). Such force fields have been a valuable tool to investigate motor control models (e.g., Pinter et al., 2012), and particularly, motor adaptation (e.g., Gribble and Ostry, 2000; Kistemaker et al., 2010, review: Franklin and Wolpert, 2011). Please note that in this contribution we focused on the non-adaptive neuro-muscular response in the sense of a sudden response to an unexpected perturbation in between a large set of null-trials, thus, neglecting motor learning (e.g., Burdet et al., 2006; Yang et al., 2007; Shadmehr et al., 2010). This is also the case for the dynamic perturbations, which represent a sudden and time-limited external torque. These perturbations represent a broad spectrum of systematic perturbations as they may occur in ergonomically relevant scenarios or in the interaction with assistive devices.

Individually, the response to these perturbations have been reproduced by motor control models before [static (Bhanpuri et al., 2014) and dynamic (Kalveram and Seyfarth, 2009)]. Both models reproduced the experimental kinematics by means of a torque in the elbow joint. Both have an inverse model which, due to the simple equations of the model, can analytically compute the required open-loop torque to achieve a desired joint trajectory. The model proposed by Bhanpuri et al. (2014) compensated for the static perturbations with a long-latency (100 ms) negative feedback control on the error between desired (minimum-jerk) and actual elbow joint angle trajectory. The model proposed by Kalveram and Seyfarth (2009) is quite similar. However, it proposes zero-time-delay negative feedback representing the tunable mechanical elasticity of the muscles. Both models did not consider muscle contraction dynamics and, therefore, do not allow to investigate the sensorimotor interplay in consequence of such perturbations. The model presented here transfers these control concepts to the more physiologically detailed musculoskeletal model. As a consequence, it validly reproduces the response to both static and dynamic perturbations and, in addition, allows for further insights into the neuromuscular interplay of arm movements and internal dynamics in response to such perturbations (Figure 9), as we will discuss in the following.


4.1. Unperturbed Movements: Intermittent Open-Loop Control

In our model, the unperturbed reference movement is solely generated by an open-loop command. Although other musculoskeletal models show that feedback signals may play a role in the generation of unperturbed arm movements (e.g., Bizzi et al., 1992; Desmurget and Grafton, 2000; Kistemaker et al., 2006; Kambara et al., 2009), we chose this approach to closely resemble the motor control models previously used to investigate these perturbations (Kalveram et al., 2005; Bhanpuri et al., 2014). To be able to determine an open-loop control signal in our neuro-muscular model, we parametrized the control signal resulting in a piecewise constant stimulation over time for each muscle (Figure 3). Hereby we exploit the advantage of neuro-musculoskeletal models that allow stable open-loop starting and target positions due to the passive visco-elastic characteristics of the muscles and the length dependence of the activation dynamics (Kistemaker et al., 2005, 2007). Such so-called equilibrium points (Feldman, 1986) can be found without and with gravity. Previously, complete equilibrium trajectories have been proposed as control concept for smooth movements, where each point on the kinematic trajectory is an equilibrium point (Flash and Hogan, 1985; Bizzi et al., 1992). Kistemaker et al. (2006) composed their open-loop signal from several intermittent equilibrium points resulting in a piecewise constant stimulation over time for every muscle. Also, our controller generates an intermittent purely open-loop stimulation to generate the desired movement.

This intermittent control has two characteristics worth mentioning. Firstly, it is interesting to see that it actually results in a smooth movement—without gravity (Figure 6A) and with gravity (Figure 8A). This is a result of the activation dynamics, the visco-elastic properties of the muscle-tendon units, and the inertia of the lower arm. Secondly, it can achieve the required velocity purely controlled by an open-loop signal. This is in contrast to previous intermittent equilibrium point control, where proprioceptive feedback was included to achieve fast movements (Kistemaker et al., 2006). While their intermittent control points all were equilibrium points taken directly from their desired trajectory, the intermittent control parameters in our optimization are free, allowing us to match the velocity of the experiments purely by open-loop control.



4.2. Perturbed Movements: Hierarchical Levels of Feedback

An external force applied to the arm during the movement generates a deviation from the planned/anticipated movement. With our model, we can study the response of the neuro-musculoskeletal system on several hierarchical levels.


4.2.1. Musculoskeletal Response

The evaluation of the stimulation signals (Figure 9) shows that the relative contribution of the feedback signal is small (always <16% for 25 ms delay, <34% for 50 ms delay, even less for the static perturbations), i.e., the stimulation comes predominantly from the open-loop controller. We therefore repeated the perturbation simulations with open-loop control. Interestingly, even when solely driven by an open-loop command, the system already shows a similar response to the perturbations as the healthy subjects in the experiments (Figures 6A, 8A). The reason for this is that the antagonistically arranged muscle models account for the non-linear force-length-velocity relationship of muscle fibers and the passive non-linear elasticities of tendons. This relationship basically acts as a zero-time-delay peripheral feedback (previously termed preflex, Brown et al., 1995). In consequence, the force produced by the muscles changes not only with changes in stimulation but also with changes in the length and contraction velocity of the muscle fibers—which change during the movement. Hence, our open-loop controlled system includes an internal feedback mechanism on the muscular level. The role of this effect becomes strikingly clear in comparison to a torque-based model that was able to reproduce the unperturbed movement but failed to adequately respond to the perturbations in the open-loop scenario. So, the difference between the open-loop controlled musculoskeletal model (Figures 6A, 8A) and the torque-driven model (Figures 6C, 8C) is the consequence of the immediate physical response due to the impedance of the muscular system. The relevance of this immediate response is also emphasized by the velocity quotient evaluated at 37.5 ms after the perturbation (Figure 7A) as it is independent of the feedback signal and thus reflects the musculoskeletal response. The resemblance of this velocity quotient to the experiment indicates that the system's state is adequately represented as it characterizes the initial response to perturbations. This means that the first zero-time-delay response is provided by the muscle-tendon units and it shows already correct qualitative responses to the perturbations. This indicates that the relative importance of feedback over feed-forward may be diminishing in the presence of muscular characteristics (Pinter et al., 2012), which is particularly interesting with respect to assistive devices for rehabilitation. Furthermore, the capability of the musculoskeletal system to stabilize against external perturbations (Brown et al., 1996; Wagner et al., 2007) may allow reducing the informational control effort (Haeufle et al., 2014a, 2020) by exploiting the capability of morphological computation of the biomechanical system (Ghazi-Zahedi et al., 2016).



4.2.2. First Neuronal Response

The next level of response to the perturbation is the short- or long-latency feedback mechanism that we implemented in our model. Both the short- and the long-latency feedback lead to the same qualitative behavior (see Supplementary Material for short-latency results). Depending on the type of perturbation, the feedback in our model helps to bring the simulated trajectory closer to the experiment (Table 1). For the damping perturbations, the closed-loop controlled system is less sensitive to the perturbations than the version without feedback, because the feedback works against the perturbations during the whole movement. Therefore, with feedback, the movement is closer to the unperturbed trajectory which is closer to the experiment than the open-loop version of the model. When perturbing the inertia properties, feedback enhances the effect of the perturbation which leads to a trajectory that is further away from the experiment. This becomes visible in the quantification criterion dysmetria, which evaluates the deviation in the target position due to the static perturbations. On the other hand, the quantification criterion early velocity for the static perturbations is only little affected by the feedback because it is measured in the early phase of the movement where feedback does not play a big role due to its delay. Also for the dynamic perturbation, feedback improves the response. However, this is only little reflected in the chosen quantification criterion (velocity quotient, Figure 7A) since it takes into account the velocity before the perturbation and 37.5 ms or 100 ms after the perturbation, respectively, while the feedback delay is 50 ms. Hence, the model prediction benefits from the sensorimotor integration on the lower-level reflex level in response to these perturbations.



4.2.3. More Complex Long-Latency Feedback and Higher-Level Adaptation

In addition to the musculoskeletal response and the simple short- and long-latency feedback, more complex long-latency feedback and higher-level control would be able to further handle the late consequences of perturbations. While data on dynamic perturbations in human arm movements indicate only a small response in the time-window of short-latency reflexes—as in our model—it shows well-tuned and adequate responses of long-latency reflexes (45 ms to 100 ms, Kurtzer et al., 2008). Such long-latency feedback (100 ms) has been used by Bhanpuri et al. (2014) to compensate for the static perturbations in their torque-driven model, an effect we can reproduce in our torque model as well (Figures 6D, 8D) where responses get closer to the experiment than without feedback but tend to oscillate around the final positions. Currently, our neuro-musculoskeletal model does only consider the muscle-fiber-length- and velocity-dependent aspects of long-latency reflexes. More complex or higher-level feedback strategies seem not necessary to reproduce the immediate perturbation response.



4.2.4. Relevance for Motor Control

We interpret these findings such that muscles generate an immediate zero-time-delay impedance response. Short-latency feedback and our simplified representation of long-latency feedback have little influence, and not necessarily beneficial for all types of unexpected interaction forces. More complex long-latency feedback could then consider an internal model of limb dynamics (Kurtzer et al., 2008, 2014) for an adequate complex response. However, this is not implemented in our model (4). Therefore, the detailed modeling of the low-level neuro-muscular control mechanism is suggested to be important to understand (i) higher-level control mechanisms, (ii) their disturbances in patients with movement disorders and (iii) to develop effective assistive devices to compensate for those disturbances.




4.3. Model Assumptions and Limitations

To derive control parameters, we made a few assumptions. The most prominent assumption was the triphasic pattern (2) which was our approach to tackle the inverse model problem: finding required control signals for the desired trajectory. Our approach was inspired by the observation of triphasic patterns in muscle surface electromyograms (EMG) (see e.g., Wachholder and Altenburger, 1926; Wierzbicka et al., 1986; Kistemaker et al., 2006) and has been discussed in detail above (4.1). Other approaches tackled this inverse problem by reducing the biomechanical complexity: Examples are ideal torque generators in the joints (e.g., Bhanpuri et al., 2014), linear or non-linear spring, and spring-damper models (e.g., Kalveram et al., 2005; Kalveram and Seyfarth, 2009), or simplified muscle models which contain no tendons, no activation dynamics and an entire model without any neuronal delays (Teka et al., 2017). Furthermore, inverse relations between a desired movement and control may also be resolved for musculoskeletal models by more elaborate optimizations (Todorov, 2004; Kistemaker et al., 2014; Driess et al., 2018), although it is not easy to determine a physiologically relevant cost function (Todorov, 2004; Berret et al., 2011; Loeb, 2012). A third option entirely circumvents the inverse problem by iterative motor learning (e.g., Gribble and Ostry, 2000; Kambara et al., 2009).

Some of the control parameters were chosen by hand while others were optimized to match the unperturbed or perturbed trajectories (see Table 2 in the Appendix). To investigate the influence of the control parameters on the resulting movement, we performed a sensitivity analysis (see Appendix). We quantified the sensitivity to small changes of the control parameters in two ways: (a) by measuring the effect on the trajectory (time-based measure) or (b) by measuring the effect on a scalar characteristic measure that describes the behavior [cost function used in the optimization (5); velocity quotient (6)]. Note that these sensitivity indicators need to be treated carefully as for example the relative sensitivity to a change of the time delay δ around the reference value of 50 ms is relatively high (Figure 11 in the Appendix) while a change of the time delay from 50 ms to 25 ms or 100 ms without re-optimizing the other control parameters has only little influence on the qualitative behavior in reaction to the perturbations (results not shown here). This is due to the fact that the chosen state variables are sums over several cases and non-linear functions of the input parameters. The influence is even smaller when re-optimizing the other control parameters after changing the time delay from 50 ms to 25 ms (see Supplementary Material) or 100 ms (not shown here). In doing so, the changes in the delay can be compensated for by adapting the other control parameters. We assume that the nervous system similarly adapts the motor control when for example the feedback delay changes. Overall, the sensitivity analysis shows that some control parameters do have a relevant influence on the results. However, the overall behavior is only little affected when the other control parameters are re-optimized to compensate for the change.

The second assumption for the control is further related to the biomechanical representation: the type of feedback. Torque models and other simplified models often use the joint angle as the control level to account for deviations between desired and actual trajectory (e.g., Kalveram et al., 2005; Bhanpuri et al., 2014). In our model, however, we use muscle spindle signal based feedback and assume that it provides direct feedback of the muscle fiber length and contraction velocity. We neglect other types of proprioceptive feedback, for example from Golgi tendon organs, which may provide a link to joint-based control (Kistemaker et al., 2013). Furthermore, more detailed representations of the proprioceptors (Loeb and Mileusnic, 2015) allow for a detailed analysis of, e.g., the role of alpha-gamma co-activation (Lan and Zhu, 2007; Lan and He, 2012).

Finally, one crucial assumption is the neuronal delay, as it strongly influences the interpretation of the location of the feedback in the neuronal hierarchy. By assuming zero time delay, Kalveram et al. (2005) located the negative feedback control at the biomechanical level—a common approach which is not always clearly separated from afferent signals (e.g., Teka et al., 2017). Experimental findings show that the short-latency reflex can produce more sophisticated responses to perturbations than previously thought (Weiler et al., 2019). This short-latency feedback occurs after a time delay of ~20 ms to 50 ms after a perturbation (Shemmell et al., 2010; Pruszynski and Scott, 2012; Kurtzer et al., 2014). Other delays in the order of 50 ms to 100 ms represent long-latency reflexes (Shemmell et al., 2010; Pruszynski and Scott, 2012; Kurtzer, 2015; Weiler et al., 2016), as used for example by Gribble and Ostry (2000), Bhanpuri et al. (2014). Several studies have shown that the long-latency stretch response plays an important role in the reaction to mechanical perturbations in goal-directed reaching movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016). In our model, using 25 ms delay, the implemented feedback mechanism represents a simplified model of the spinal, mono-synaptic muscle spindle reflex (Pruszynski and Scott, 2012; Weiler et al., 2019), assuming that the muscle spindles provide accurate time-delayed information about the muscle fiber lengths and contraction velocities (Kistemaker et al., 2006). However, this model of the afferent feedback does not accurately reflect the natural muscle spindle feedback which is only sensitive to the muscle's local stretch (Kurtzer et al., 2014, see Scott, 2016 for an overview) while our formulation reacts to stretch and shortening. Therefore, choosing a time delay of 50 ms and thus modeling a long-latency reflex seems more appropriate. However, this model considers only the muscle-fiber-length- and contraction-velocity-dependent part of the long-latency feedback and neglects other aspects. This becomes visible in the velocity quotient after 100 ms (Figure 7A) which characterizes the behavior at the end of the first neuronal response. It is further away from the experiments than the velocity quotient after 37.5 ms, suggesting that our long-latency feedback model does not include all relevant feedback mechanisms. Experimental findings indicate that long-latency feedback represents the net impact of spinal and cortical circuits and thus includes several independent processes (e.g., Pruszynski et al., 2011; Kurtzer et al., 2014) that for example account for limb biomechanics (Kurtzer, 2015) or evoke responses in muscles that were not stretched (Weiler et al., 2018). The reaction after more than 100 ms after the perturbation is influenced by more complex and higher-level feedback mechanisms and voluntary activities (Pruszynski and Scott, 2012; Kurtzer, 2015; Weiler et al., 2016) that are not represented in our model. Although the resulting reactions of our model to the perturbations seem quite sensitive to the chosen delay time (see Sensitivity Analysis in the Appendix), the results were quite similar for choosing 25, 50, or even 100 ms delay (the latter results are not shown in this contribution). Our model reproduces the response to the perturbation by using short-latency feedback (25 ms) which represents spinal control layers or long-latency feedback (50 ms) which has spinal and supraspinal influences. Once more this emphasizes the decentralized control. However, as the feedback contribution was rather small and did not improve the response in all cases, it is likely that more sophisticated models, which may, for example, include multiple layers of feedback including more complex long-latency feedback (Kurtzer et al., 2008) would improve the model prediction.

As with the control and feedback assumptions, also the level of detail of the musculoskeletal model has its limitations. Although our muscle model represents contraction dynamics quite well (Haeufle et al., 2014b), it does not consider recent findings on the behavior of muscles under eccentric loading conditions (Tomalka et al., 2017), on the possible role of short-range stiffness (Nichols and Houk, 1976; De Groote et al., 2017), or the effect of transversal loading (Siebert et al., 2014). As we see significant force changes in the dynamic perturbations originating from the muscle's passive characteristics (Figure 9), these new findings may also influence the response. Ultimately, for the study of internal contact forces, finite-element models may allow a more detailed analysis (Röhrle et al., 2016) but significantly increase the complexity of finding an adequate controller (Martynenko et al., 2017).



4.4. Conclusion

For our study, the focus was on the valid prediction of the response to static and dynamic external perturbations while providing the possibility to investigate the neuromuscular interplay at a level that allows predicting muscle-bone contact forces and joint loadings. As our model with its assumptions and limitations still fulfills the initially stated criteria, we consider it a starting point to further develop models with the integrated use: studying motor control and ergonomics with the same model for research questions where they overlap, e.g., for the development and ergonomic risk assessment of assistive devices.
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Natural myocontrol is the intuitive control of a prosthetic limb via the user's voluntary muscular activations. This type of control is usually implemented by means of pattern recognition, which uses a set of training data to create a model that can decipher these muscular activations. A consequence of this approach is that the reliability of a myocontrol system depends on how representative this training data is for all types of signal variability that may be encountered when the amputee puts the prosthesis into real use. Myoelectric signals are indeed known to vary according to the position and orientation of the limb, among other factors, which is why it has become common practice to take this variability into account by acquiring training data in multiple body postures. To shed further light on this problem, we compare two ways of collecting data: while the subjects hold their limb statically in several positions one at a time, which is the traditional way, or while they dynamically move their limb at a constant pace through those same positions. Since our interest is to investigate any differences when controlling an actual prosthetic device, we defined an evaluation protocol that consisted of a series of complex, bimanual daily-living tasks. Fourteen intact participants performed these tasks while wearing prosthetic hands mounted on splints, which were controlled via either a statically or dynamically built myocontrol model. In both cases all subjects managed to complete all tasks and participants without previous experience in myoelectric control manifested a significant learning effect; moreover, there was no significant difference in the task completion times achieved with either model. When evaluated in a simulated scenario with traditional offline performance evaluation, on the other hand, the dynamically-trained system showed significantly better accuracy. Regardless of the setting, the dynamic data acquisition was faster, less tiresome, and better accepted by the users. We conclude that dynamic data acquisition is advantageous and confirm the limited relevance of offline analyses for online myocontrol performance.

Keywords: myoelectric control, prosthetic hand, dynamic data acquisition, limb position effect, performance assessment


1. INTRODUCTION

Upper-limb prosthetics, as a branch of assistive robotics, poses a number of challenges both to robotics and control experts (Vujaklija et al., 2016). A prosthesis is the paradigmatic wearable device since it must be worn during most of the user's daily life. A symbiotic use of such a device, and eventually its embodiment, requires unobtrusive and seamless control (Beckerle et al., 2018a,b; Castellini, 2020). Despite decades of research, such control has not yet been achieved and a widely clinically accepted upper-limb prosthesis has yet to come (Castellini et al., 2014). De facto, the problem consists of several sub-problems—the socket, the sensors, the mechatronics, the appearance, etc.—each one of which must be solved at the same time. Academic solutions, not tested on end-users or at least in realistic conditions, will have little or no impact on the life of disabled users. Upper-limb prosthetics is a deeply holistic problem.

We hereby focus on the myocontrol problem, which is the smooth, multi-DoF control of an upper-limb prosthesis by a user through her voluntary muscle activity. Seamlessly providing the right control commands to a dexterous prosthetic device is an open problem: control based upon biological signals, such as surface electromyography (sEMG) (Merletti et al., 2011), still suffers from clumsiness and unreliability. Although seriously criticized (Schweitzer et al., 2018), the academic solution of choice nowadays is that of collecting labeled biological data from a user engaged in a series of exemplary tasks. This data is then utilized to build a model that maps signals to commands. By the very nature of the approach, it entails that the initial data acquisition phase (of necessarily short duration) must cover the space of all possible muscle configurations that the user will enact in the future (Castellini, 2016). Among other reasons, this is complicated by the so-called limb position effect (Fougner et al., 2011; Scheme et al., 2011; Peng et al., 2013), which refers to the change in signals depending on the position and orientation of the limb.

To alleviate this problem, incremental learning and tighter user/prosthesis interaction are generally being studied to improve and complete the initial dataset on demand, while users perform their activities of daily living (ADLs). On the other hand, whenever incremental learning is not used, the limb position effect has been countered by extending the initial data acquisition to include the same action (e.g., a power grasp) carried out in several different postures (Fougner et al., 2011; Geng et al., 2012; Peng et al., 2013; Betthauser et al., 2018). Although this strategy can be effective, it comes at the cost of a considerably longer and more tiresome data acquisition. There have been efforts to limit this increase in acquisition time by replacing a static posture in multiple positions with a single dynamic movement that passes through these positions. For instance, Scheme et al. (2011) have shown that a dynamic protocol not only sped up data acquisition but also improved offline recognition rates during simulated manipulation tasks (e.g., moving an object). An issue with this evaluation is that offline performance is only weakly related to online controllability (Lock et al., 2005; Jiang et al., 2014; Ortiz-Catalan et al., 2015; Hahne et al., 2017; Krasoulis et al., 2019). One of the reasons is that it fails to capture the natural corrections that prosthetic users undertake in response to myocontrol inaccuracies (Hahne et al., 2017).

Recent studies have shown increasing efforts into testing the effects of the data acquisition on realtime myocontrol. Batzianoulis et al. (2018) verified that dynamic training data collected during the reach-to-grasp phase of the prehension improved myocontrol stability during an online pick-and-place task. Similarly, Yang et al. (2017a) and Woodward and Hargrove (2019) acquired training sEMG data while moving the arm and tested the resulting myocontrol models by engaging the participants in online tests derived from, respectively, the target achievement control and the box-and-blocks tests. Both studies confirmed that the performance of myocontrol in online settings improves when the training data is acquired while changing the arm configuration rather than keeping the arm steady in one position. However, none of the studies clarified whether the improved performance was due to recording the dynamic movement of the arm or merely due to the inclusion of more arm poses. The latter study, moreover, also included multiple levels of muscle contractions in the data acquisition, making it impossible to determine the relative contribution of varying the arm position and muscular contraction. More importantly, none of the described performance assessment tests seems to reflect the complexity of everyday actions, since the target achievement control does not involve interactions with real objects, while the box-and-blocks requires performing only one stable grasp in a very limited portion of the user's reachable space. Therefore, it remains unclear if the claimed benefits materialize during complex and realistic ADLs.

In this work, we characterize the effects of the static and dynamic acquisition of training data on online myocontrol. In particular, we focus on the loss of controllability associated with variations of the limb position in realistic daily-living settings. We asked 14 able-bodied subjects to follow a static and a dynamic data acquisition protocol, while being fitted with two commercially available hand prostheses mounted on splints. With this equipment, and using a myocontrol model built with either statically or dynamically acquired data, they were required to perform a set of bimanual ADLs in a domestic-like laboratory setting. We intentionally employed a bilateral prosthetic setup and chose bimanual tasks to avoid the pitfall of subjects over-relying on their unaffected limb to execute the activities (Chadwell et al., 2018). Furthermore, this also ensures that our study applies equally to a teleoperation scenario.

This work extends the preliminary results we presented at a conference (Gigli et al., 2019) by including the results of a questionnaire, in which the participants evaluated the two data acquisition routines in terms of physical effort and achieved system controllability. Furthermore, we also characterize the learning effect that took place across the participants during the familiarization phase and contextualize the findings of our online experiments with those of previous studies conducted in offline settings. In the following, we thoroughly describe the experimental setup and protocol in 2. The results of our experiment are presented in 3. Further discussion and the conclusions are drawn in 4.



2. MATERIALS AND METHODS

This study emphasizes the importance of a realistic online evaluation of myocontrol. For this reason, we have designed an experiment that involved subjects performing ADLs in a domestic environment, while using a pair of commercially available prosthetic hands. To compare our methodology with that of previous offline studies, we also reused the collected training data for a standard offline grasp recognition experiment. In the remainder of this section, we detail the experimental setup and protocol, the evaluation measures of the online experiment, and the design of the offline analysis.


2.1. Participants

Fourteen able-bodied subjects (age 27.9 ± 5.8 years, 10 men and 4 women) were recruited to participate in the experiment. All of them were in good health and none of them had a previous history of disorders that might have influenced the experiment. Four of the participants had prior experience in myocontrol, gained during previous studies, while the others were completely naive to myocontrol. Before the experiment, the subjects received an oral and written description of the experiment and signed an informed consent form. The study was conducted at the German Aerospace Center (DLR) according to the WMA Declaration of Helsinki and approved by DLR's internal committee for personal data protection.



2.2. Experimental Setup

Each subject wore a Myo armband1 by Thalmic Labs on both forearms about 5 cm below the elbow. This bracelet contains 8 uniformly spaced sensors, each of which records an sEMG signal at a sampling rate of up to 200 Hz. An orthotic hand/wrist splint was used to hold an i-LIMB™ Revolution prosthetic hand2 by Touch Bionics at the extremity of either forearm. Figure 1A depicts the described hardware. The i-LIMB Revolution comprises six motors under direct independent current control, permitting flexion/extension of each of the five fingers plus abduction/adduction of the thumb. All devices communicated via a serial-port-over-Bluetooth with a laptop that ran the intent detection system. Software on this laptop also guided subjects during data collection, processed the data, trained and ran the controller of each prosthesis. In this manner, an unobtrusive, realistic bimanual prosthetic manipulation setup was implemented, which could be used by unimpaired subjects.
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FIGURE 1. Experimental setup. (A) The bimanual prosthetic system consisted of two Myo armbands for sEMG measurement and two Touch Bionics i-Limb Ultra prosthetic hands mounted on orthotic splints. (B) The experiment took place in a domestic-like laboratory setting. Tableware, clothes, and other common objects were laid on two tables, three shelves, or on the floor. A clothesline and a vertical support for clothespins were placed next to the shelves.


The experiment was conducted in a domestic-like environment, which included some common household objects, two tables, a clothesline, and a system of three shelves. The shelves were placed at a height of 40 cm, 100 cm, and 150 cm. The dining table and the clothesline were placed on the two sides of the shelves. The second table was 2 m away from the clothesline. Certain objects needed some minor modifications to be grasped by the prosthetic hands. The handles of some cutlery, a clothes hanger, and the extremities of small clothespins were padded to grasp them more easily. The study was videotaped for offline performance assessment. An overview of the setup and the environment is shown in Figure 1B.



2.3. Data Processing and Training

A custom software suite written in the C# and Python languages was used to acquire, process, and label the input data. The signal from each sEMG channel was rectified, computing its absolute value, and low-pass filtered with a second-order Butterworth filter with a cut-off frequency of 1 Hz. These signals and labels were passed to two instances of non-linear Ridge Regression, one per arm, which were trained with the data of the respective limb. The resulting models mapped sEMG signals onto torque commands for the motors of the prosthetic hands. In its canonical form, Ridge Regression (RR) predicts outputs via a linear model
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where w is a vector of scalar weights obtained by minimizing
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over a training set of labeled samples [image: image]. The term ‖w‖2 penalizes the complexity of the model and its importance relative to minimizing the squared residuals is controlled via the non-negative hyperparameter λ. In the present work, we use a variant of RR that achieves non-linearity by mapping the feature vectors into a high-dimensional representation using so-called Random Fourier Features (RFFs) (Rahimi and Recht, 2008). A detailed treatment of RFF-RR and its use in myocontrol is given in Gijsberts et al. (2014). The prediction function of RFF-RR is written as
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where ϕ is the finite D-dimensional RFF mapping, which consists of cosines weighted through randomly-sampled frequencies. Without going into details, an appealing property of this mapping is that it approximates a Gaussian kernel without incurring the typical computational overhead of actually using that kernel (Rahimi and Recht, 2008), provided that the chosen mapping dimensionality D is sufficiently high. The formulation of RFF-RR allows fast training of the model and computation of new predictions, can be made incremental, and is bounded in space (Gijsberts and Metta, 2011), which makes it suitable for realtime myocontrol. Strazzulla et al. (2017), in fact, already used an incremental version of RFF-RR for online bimanual manipulation.

The regularization parameter λ of each regressor was set to 1, while the bandwidth γ and the dimensionality D of the RFF mapping to 0.5 and 300, respectively. This regression setup allowed the simultaneous and proportional control of the degrees of freedom (DoFs) of each prosthesis.



2.4. Experimental Protocol

The participants donned the prosthetic system, i.e., the sEMG armbands and the prosthetic hands, at the beginning of the experiment, and no doffing or adjustment of the sensors was permitted afterward. This was necessary to isolate the effect of limb position variations from those of other confounding factors, such as the electrode shift.

All subjects in the study tested both the static and dynamic data acquisition protocols. After each data acquisition, the system was trained and the participants were asked to perform a sequence of bimanual activities. This sequence was repeated twice: the first time to let them familiarize themselves with the prosthetic control, the second time to measure their performance. These four segments of the experiment are reported in Table 1. To counterbalance any learning effects, we inverted the order of the acquisition types for half of the subjects: seven randomly selected subjects started with the static acquisition protocol, while the remaining subjects started with the dynamic acquisition protocol.


Table 1. Experiment organization.
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2.4.1. Data Acquisition

In each data acquisition routine, the participants performed some predefined combinations of grasps and arm postures. After receiving a detailed description of the routines, the participants tried them under the supervision of the experimenter. Then, the experimenter guided them throughout the acquisition procedure, supported by acoustic signals from the acquisition software. This helped to ensure that all subjects performed the same arm configurations and movements. We opted for such direct guidance because the participants did not manage to precisely follow a videotaped execution of the acquisition protocol in preliminary trials. The desired grasp types were chosen based on their relevance in ADLs according to the literature (Wang et al., 2018) and proved to be sufficient to execute our evaluation protocol during preliminary tests. We selected a resting posture, a power grasp, and a pointing posture with the index finger. Since our myocontrol approach was based on proportional control and thus regression, the model was not trained to distinguish these three grasp classes from one another, but rather to predict the corresponding hand configurations in terms of the degree of flexion of each finger. While the participants were performing the grasps during the acquisition phase, the laptop collected the related sEMG samples and labeled them based on whether or not a given DoF was activated in those configurations. In the case of index pointing, the system would record a 0 for the index finger (i.e., no flexion) and 1 for all other DoFs (i.e., flexion). The resting posture consisted of all 0 (all fingers extended), whereas the configuration for the power grasp contained all 1 (all fingers flexed). We intentionally avoided capturing intermediate activation values to avoid the inevitable delay introduced by the subjects' reaction time and to keep the procedure as straightforward as possible for the subjects, which is particularly relevant when considering a possible application with amputees (Sierra González and Castellini, 2013). Moreover, it has been shown that training on binary activation values yields usable proportional control (Gijsberts et al., 2014; Meattini et al., 2019).

We chose a set of limb positions that evenly covered the subject's reachable space, that is, the space they could reach with their hands while standing straight. Since it is uncommon for both hands to be crossed in bimanual activities, we excluded the intersection of the reachable spaces of the left and right hands. To speed up data acquisition, every grasp had to be done with both hands simultaneously, with the arms always symmetric to the sagittal plane. Without loss of generality, we describe the data acquisition routine for one arm only.



2.4.2. Static Protocol

During static data acquisition, each grasp was repeated once for a finite set of arm configurations. Previous studies indicated that the robustness of pattern recognition based myocontrol to the limb position effect relates to how well the training data cover the user's workspace in terms of reachable positions (Fougner et al., 2011; Radmand et al., 2014) and possible forearm rotations (Khushaba et al., 2016; Yang et al., 2017b). For this work, we selected 18 arm configurations that seemed to represent a good trade-off between a homogeneous sampling of the workspace and the duration of the resulting data acquisition. They corresponded to reaching nine positions with the hand, first with the palm facing down and then with the palm facing up (see Figure 2A). We defined these positions based on three height levels (waist, chest, head) and three relative distances from the trunk (close in front, far in front, far lateral). We believe that this definition favors the repeatability of the arm configuration across different subjects since it relates to one's own body rather than to external references. Each grasp was held in every position for 3 s, which was the lowest duration found in similar studies (Fougner et al., 2011; Radmand et al., 2014; Khushaba et al., 2016), and 4 s were allowed to move the arm from one configuration to the next. The acquisition of each grasp type took 126 s in total, 54 s to record data, and 72 s to reach the different arm configurations. In the case of fatigue, the participants were allowed to pause the routine and rest.
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FIGURE 2. Static and dynamic acquisition of training data. The positions occupied by the right and left hand during data acquisition are represented, respectively, by solid and transparent cubes. (A) Static data acquisition was performed repeating and holding the grasp in each position, first with the hand palm facing up, then facing down, for a total of 18 repetitions for each hand. (B) During dynamic data acquisition, the grasp was maintained while moving the hands in a trajectory that interpolated the static positions with uniform speed. The trajectory consisted of two halves, from the circle to the square and back; it was followed with the palms down in the first half, and up in the second half. Both data acquisition routines were performed while wearing the bimanual prosthetic system.




2.4.3. Dynamic Protocol

In the dynamic data acquisition, the subject performed the desired grasp type with both hands while moving the arms in a trajectory that interpolated the nine positions of static acquisition, as shown in Figure 2B. The movement started from the waist level with the palm down and proceeded upward, passing through all nine positions. Then the subject flipped the hand palm up and continued the movement backward until she returned to the starting position. This movement was repeated once for each grasp type, while the corresponding data was recorded. Its duration was chosen to be 27 s, exactly half the recording time of the static acquisition, and 4 s were allotted to prepare the following grasp. Even in this case, the participants could suspend the procedure to rest.



2.4.4. Activities of Daily Living

After processing the data and training the prosthesis controllers, we evaluated the system by having the subjects perform the bimanual ADLs that are described in Table 2. These activities were inspired by those found in assessment protocols for prosthetic users, such as ACMC (Hermansson et al., 2005) and SHAP (Kyberd et al., 2009), and for patients with motor impairments of the upper limbs, like CAHAI (Schuster et al., 2010) and the Clothespin relocation test (Hussaini and Kyberd, 2017). We preferred tasks that involved coordinated movements of the arms or walking and bending, as these were more susceptible to the limb position effect. The experimenter explained the tasks to the participants before the familiarization phase. Unless otherwise specified, participants could autonomously choose which grasp to use to carry out a certain task. For example, they could open the bottle cap by grabbing it or pushing its edge with the tip of their index finger. No constraint was imposed on task laterality, that is, which hand was to be used to perform a particular action. During pick and place tasks, the subjects could decide to move one or two objects at the same time depending on the amount of trust they had in the prostheses. The tasks proceeded without time limits and it was the subjects' responsibility to recover from errors, such as an accidental drop of an object. An exception was made for the last task where the experimenter replaced the clothespins anytime they were dropped on the floor.


Table 2. Detailed description of the bimanual tasks in the performance evaluation phase.
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2.5. Online Performance Evaluation

The effectiveness of the two data acquisition routines was evaluated quantitatively by measuring the completion time of the individual tasks during the performance test phase. Since we did not impose any time limits, the completion rate of the tasks was by definition 100%. At the end of the experiment, the participants were requested to fill in a questionnaire with two questions to qualitatively investigate potential differences between both acquisition types. The subjects were first asked to report how easy they found it to control the system on a visual analog scale ranging from “very difficult” to “very easy.” Secondly, they had to quantify how comfortable it was to complete either data acquisition, on a similar visual analog scale from “very tiring” to “very comfortable.” The effort made during data acquisition was also quantified indirectly by measuring the amount of time a subject requested to rest during data acquisition.

We expected to find differences in the task completion times and the perceived levels of fatigue associated with the two data acquisition routines. We used a two-tailed Wilcoxon signed-rank test to identify statistically significant differences between the average task completion times and the perceived fatigue of the two procedures. The choice of this test was based on the limited number of participants and the within-subject study design. The significance threshold was set to α = 0.05.



2.6. Offline Grasp Prediction

To compare our methodology with related literature, we also conducted an offline analysis that reflects the study by Scheme et al. (2011). For every combination of subject, arm, and acquisition method, we partitioned the data of the acquisition phase in training and test sets. In the static case, we assigned the data of the odd-numbered of the 18 arm positions to the training set and the even-numbered ones to the test set. For the static case, which consisted of a continuous motion rather than a set of discrete positions, we approximated the same split by first dividing the entire data sequence into 18 parts of equal length. This particular split was chosen to minimize leakage from the test set to the training set due to temporal dependencies, while at the same time limiting the distribution shift between both sets.

Distinct RFF-RR models were trained for all four datasets (static and dynamic, left and right arm) of thirteen subjects, where we note that one subject was excluded from the offline analysis because the data had not been stored correctly. These models were trained in the same manner and with the same hyperparameters as for the online experiment. Their performance was then evaluated on the test set of the same type (e.g., static to static) as well as across acquisition types (e.g., static to dynamic). How well a model performed was quantified by averaging the unadjusted coefficient of determination R2 obtained for the predicted activation levels of each DoF. The coefficient R2 for one DoF is defined as
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where [image: image] is a vector of N predictions, y is the corresponding ground truth, and ȳ is the average value of the ground truth.




3. EXPERIMENTAL RESULTS

We compared the two data acquisition procedures based on the physical effort of the participants, the time needed to complete the manipulation tasks using the resulting myocontrol models, and the perceived controllability of the prosthetic system. We then evaluated the effects of our methodology in offline settings to compare it with previous works in the field.

Figure 3 quantifies the physical effort needed to complete the data acquisition. The perceived level of fatigue was derived from how comfortable static and dynamic acquisition were evaluated in the questionnaire, by converting the answers into a percentage from 0% (“very comfortable”) to 100% (“very tiring”). Additionally, since the subjects could suspend the data acquisition in case of weariness, a complementary metric of fatigue was obtained by measuring the proportion of acquisition time spent while resting. The subjects showed no agreement on which strategy required the least physical effort. Although the reported fatigue was lower for dynamic training, this result was not statistically significant (average level of fatigue of 58.9% vs. 41.1%, p = 0.078, V = 81). It must be noted, however, that dynamic training required significantly shorter break times (43.3% vs. 17.6% of the overall data acquisition duration on average, p < 0.001, V = 105). Taken together, these results indicate that dynamic training was indeed less tiring. Furthermore, they suggest that the discomfort during static acquisition was compensated by taking longer breaks, which would also justify the mixed opinions found in the questionnaires. Remarkably, the shorter break times made dynamic acquisition significantly faster than static acquisition, especially considering that it was already shorter by design.
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FIGURE 3. Physical effort required by static and dynamic data acquisition. (A) Self-reported level of fatigue experienced during data acquisition. (B) Proportion of the data acquisition duration that was spent resting. The dynamic acquisition proved to be less tiring since it required significantly less break time (***p < 0.001). The outcome of the questionnaire seemed to confirm this result, but it was not supported by sufficient statistical evidence. The reduction of break time also allowed to collect dynamic data much faster than static data. In all the boxplots of this study, the rectangle indicates the range between the first and third quartiles, and the whiskers extend to the most extreme samples within the first and the third quartile ∓ 1.5 IQR. Samples outside this range are marked as outliers.


The real-time performance of the prosthetic system was assessed based on the time it took subjects to complete the tasks in the performance evaluation session that followed the data acquisition. Figure 4 reports the performance of all the subjects after static and dynamic training. The duration of the evaluation session was comparable after either acquisition procedure (mean task sequence duration of 333.8 s vs. 325.1 s, p = 0.855, V = 49). Particularly, also the completion times of the individual tasks were comparable (no statistically significant difference), regardless of their different requirements in terms of dexterity and movement coordination.
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FIGURE 4. Duration of the tasks during the performance evaluation session. Duration of (A) the task sequence and (B) of the individual tasks during the performance evaluation session, after static and dynamic training. No significant difference was found between the average duration of the performance evaluation session in the two conditions.


Figure 5A reports the average duration of the familiarization and the performance evaluation sessions that followed either data acquisition. The order for the static and dynamic training was randomized among subjects to counterbalance possible learning effects between the two strategies. The subjects demonstrated a strong learning effect, as they completed the evaluation session significantly faster than the familiarization session, both after static (average session duration of 438 s vs. 334 s, p = 0.0012, V = 100) and dynamic training (average session duration of 418 s vs. 325 s, p = 0.007, V = 94). The evaluation session also showed reduced variability in duration across the subjects compared to the familiarization session, both in the static (session duration range of 503 s vs. 284 s) and in the dynamic case (session duration range of 501 s vs. 280 s). Nonetheless, the two data collection procedures showed comparable task completion times during the respective familiarization and evaluation sessions (no statistically significant difference). In other terms, the subjects' performance improved rapidly over time due to practice, but this improvement occurred independently of the data acquisition procedure.
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FIGURE 5. Duration of the tasks sequence during the familiarization and the performance evaluation sessions, after static and dynamic data acquisition. (A) Performance of all the participants. Although the task completion time decreased significantly after the initial familiarization (**p < 0.01), the performance of static and dynamic data acquisition remained comparable both during the familiarization and the following evaluation session. This trend characterized the performance of (B) naive participants but not those of (C) experienced participants, for whom the average session duration did not change significantly across acquisition strategies and familiarization levels. The performance of the naive participants rapidly converged to those of the experienced ones, despite retaining a higher variance. (D,E) Chronological evolution of the performance of the naive subjects, divided between those who first tested the static and then the dynamic condition, and vice versa. The improvement of all the naive subjects was consistent, not only within the same training strategy but also across different strategies (*p < 0.05). For groups with fewer than five samples, we show the individual data points rather than a boxplot.


The analysis of the learning effect continued by separating the performance of naive and experienced subjects, and then by dividing the naive subjects based on who tested the static acquisition followed by the dynamic acquisition, defined as naive SD subjects, or vice versa, defined as naive DS subjects. Three of the four experienced subjects belonged to the SD group. Of the remaining ten naive subjects, six were SD and four DS. Naive participants, Figure 5B, confirmed the learning trend described before, showing comparable performance across training conditions while improving over time (average duration of the familiarization and the evaluation session after static training 505 s vs. 363 s, p = 0.002, V = 45, and after dynamic training 451 s vs. 337 s, p = 0.0098, V = 52). Experienced participants, instead, performed equivalently well regardless of the training condition and did not show a significant learning effect (average duration of the familiarization and the evaluation session after static training 269 s vs. 260 s, and after dynamic training 337 s vs. 296 s). The performance of naive subjects was characterized by a higher initial variance, but it seemed to converge rapidly to that of experienced participants over the course of the experiment. Figures 5D,E display the evolution over time of the performance of naive SD and naive DS participants. In both groups, the familiarization of the second tested condition was faster than that of the first condition (average familiarization time for naive SD subjects 570 s vs. 394 s, p = 0.031, V = 21; average familiarization time for naive DS subjects 537 s vs. 407 s, p = 0.12, V = 10). The lack of statistical evidence in the second case was probably due to the limited number of DS subjects. This result showed that learning did not just happen within the same training condition, but rather that the subjects transferred some of the skills acquired for the first training strategy to the second. This transfer effect could explain part of the variability of the counterbalanced results, especially during the familiarization phase.

Figure 6A describes how easy the subjects perceived the two prosthetic control variants during the online tasks. This information was reported in the questionnaire at the end of the experiment and converted in a percentage from 0% (“very difficult”) to 100% (“very easy”). The subjects' opinions were mixed, which overall resulted in a comparable perceived system controllability after either acquisition strategy. Nonetheless, the perceived controllability of the system was higher after static training, but this was not supported by the statistical evidence (average controllability of 70.8% vs. 57.0%, p = 0.059, V = 72.5). Furthermore, this trend seemed to characterize only a portion of the subjects. Those who tried the static training after the dynamic one, Figure 6B, consistently reported improvements in the usability of the system for the last tested condition (average controllability of 75.4% vs. 51.4%, p = 0.063, V = 20). Instead, the subjects that started with static training, Figure 6C, found that controlling the system was equally easy under both conditions (average controllability of 66.1% vs. 62.5%, p = 0.61, V = 17.5). In any case, none of the observed effects was statistically significant, perhaps because the opinions regarding the first tested condition were always characterized by greater variance.
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FIGURE 6. Perceived controllability of the system. (A) Controllability of the system, self-assessed in the questionnaire at the end of the experiment. Subjects reported mixed opinions about the controllability of the prosthetic system. No statistical evidence supported the modest improvement of the perceived controllability provided by the static training. (B) The subjects who started the experiment with dynamic training and continued with static training (D-S) reported improved system controllability for the second condition tested. (C) Those who tried the static training first (S-D) experienced equivalent controllability in both conditions.


Figure 7 summarizes the outcomes of the offline grasp recognition task performed on the training data collected during the online experiments. The prediction of desired hand configurations in the dynamic test set was significantly better after dynamic training as compared to static training (R2 of 0.53 vs. 0.80, p < 0.001, z = −4.46, see Figure 7A). In addition, the dynamic training provided better performance also when the training and the test data were acquired with different protocols, i.e., static training followed by dynamic testing, or dynamic training followed by static testing. Figure 7B shows that the estimation of the intended hand posture obtained by training on dynamic data and testing on static data was better than the estimation obtained by training on static and testing on dynamic data (R2 of 0.53 vs. 0.62, p = 0.004, z = −2.86).
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FIGURE 7. Offline prediction of the hand configuration using RFF-RR after static or dynamic training. (A) Dynamic training allowed better grasp prediction from dynamically acquired data samples (***p < 0.001). Besides, (B) the performance observed by training on dynamic and testing on static data were better than those obtained by training on static and testing on dynamic data (**p < 0.01).




4. DISCUSSION AND CONCLUSIONS


4.1. General Remarks

The limb position effect requires training data to be collected in several different body postures for each desired action to be learned; this is because body postures alter the muscle configuration of the forearm, thereby changing the sEMG patterns. The traditional solution to this problem, already appearing multiple times in literature (Fougner et al., 2011; Peng et al., 2013; Betthauser et al., 2018), consists of simply asking users to hold their arm statically in multiple postures and then collecting data one posture at a time. This makes the data collection procedure longer and potentially more tiring than usual, especially since this procedure must be repeated for each grasp type. A method to make it lighter and faster is highly desirable.

The aim of this work was that of assessing if a dynamic data-collection procedure would be better than a static one and, if so, in which respect and why. We wanted to test the models obtained using either data collection procedure in realistic conditions, i.e., using prosthetic hardware to perform real-time bimanual manipulation tasks inspired by daily living. Fourteen able-bodied subjects were engaged in a set of realistic bimanual activities (laying a table, serving food, hanging clothes, etc.), after having performed both a static and a dynamic data collection procedure to build appropriate myocontrol models.

The first result to be noted is that all users were able to complete all tasks, in both training modalities. Given the realism of the tasks they were requested to perform, this seems to indicate that the approach of using RR with RFFs is worth pursuing. Notice that in this specific work we intentionally refrained from using the incremental characteristics of RFF-RR, making it impossible to update and correct the models online; the observed performance, therefore, only depends on the data collected at the beginning of the experiment. Secondly, it is worth remarking that the time needed to acquire the training data is relatively short in either modality. Taking into account the breaks requested by the subjects, the average acquisition time is about 9 min for the static acquisition and just 2 min for the dynamic one. Also allowing for the adaptation that users naturally put in place while doing the tasks, this indicates that both approaches rapidly yield data with a quality sufficient to cover most of the actions required in the experiment.



4.2. Dynamic and Static Data Collection Provide Comparable Real-Time Performance

The experimental results show that, quite surprisingly, there is no difference in real-time performance (time required to complete each task) between the static and the dynamic data collection procedure. No statistically significant difference in the task execution times could be found, either considering the overall times, or the duration of the individual tasks (Figure 4).

Notice as well (Figure 5) that subjects without prior experience in myocontrol manifest a quite strong learning effect as they perform the tasks over and over again. However, the uniformity between the static and dynamic conditions persists, since there is no significant difference in performance between the familiarization phases, as well as between the evaluation phases. The results for the experienced participants suggest that long-term learning of myocontrol leads subjects to reach a consistent level of performance that is irrespective of the acquisition protocol. This reduction in variability among experienced subjects is in line with the findings of previous studies on the implications of long-term user training on myocontrol (Hargrove et al., 2017).

The equivalence between the myocontrol performance provided by static and dynamic training somehow contradicts the outcome of previous studies (Fougner et al., 2011; Scheme et al., 2011), which reported improved myocontrol in offline settings by using dynamic training data. To the best of our knowledge, however, this is the first time in which the comparison between the effects of static and dynamic training is carried out online, performing realistic and complex ADLs. In line with the results by Scheme et al. (2011), we observe that in the cross-comparison in Figure 7B the model trained on dynamic data has higher offline accuracy on static data than vice versa. All in all, this result suggests once more that non- or quasi-realistic testing of myocontrol systems is hardly a good indicator for the efficacy or reliability of the system once put to practice in real life (Jiang et al., 2014; Ortiz-Catalan et al., 2015). This might be due to many contingent reasons, such as wrong measures of performance or wrong tasks administered to the users, but eventually it probably has to do most of all with the excellent ability of human users to compensate for control inaccuracies by adapting their muscular signals. This is even more so for proportional control since users receive immediate visual feedback of the control response of the prosthesis (Hahne et al., 2017; Shehata et al., 2017, 2018).

Considering the capability of users to smoothen control inaccuracies, one may wonder if this also means that we can shorten the data acquisition even further, for instance by reducing the number of positions. A recent study on real-time myocontrol did not find a reduction in the online grasp recognition rate in different positions even when training data was acquired in just one position (Hwang et al., 2017). This study did not involve realistic tasks and considered only one wrist orientation and three positions; regardless, in future work, it would be interesting to continue along these lines and to investigate what is the minimal amount of position variability that still yields consistent online controllability during practical tasks.



4.3. Dynamic Data Collection Is Faster and Less Tiresome

As is clear from the objective and self-assessed indices of performance, acquiring data dynamically is faster, uses fewer sEMG data, and is less tiring. Net of the possible break times requested by the participants, the dynamic procedure only takes 27 s per grasp type instead of the 126 s needed by the static one; this is advantageous in terms of the stress and frustration imposed on the subjects. Moreover, from a computational point of view, dynamic training employs roughly half the sEMG samples needed by the static one. This could be important when miniaturization of the whole system is planned, for instance on a microcontroller to be embedded in the prosthetic socket. Interestingly, while providing fewer data samples, dynamic acquisition still results in equivalent real-time controllability to the static one. We argue that this depends on the information captured during the motion that joins one limb posture to the following one, which is ignored by performing static acquisition in multiple postures.

The subjective assessment of fatigue during either procedure represents one of the main results of this study. Although not statistically significant, the results in Figure 3A hint that the dynamic acquisition was perceived as less tiring. This observation is supported by the amount of rest the subjects requested during either type of acquisition, shown in Figure 3B, which was significantly less for the dynamic procedure. This indicates that dynamic training is easier and more acceptable than the static one. Taken together, the two results indicate that dynamic training should be preferred over static training.



4.4. Further Remarks

According to the visual inspection of the recordings of the experiments, and also according to the main experimenter's experience, the myocontrol system was not free from instabilities and failures. For example, the prosthetic hands would sometimes execute unwanted actions or open unexpectedly during grasps. Mainly, these problems arose when trying to grasp while in muscle-stressing body postures, probably akin but not exactly matching those during data collection. Since we did not allow subjects the possibility to update the models online, this indicates that there still is some incompleteness of the dataset collected at the beginning of the experiments. In other words, it cannot be assumed that an initial calibration will suffice (Castellini, 2016).

The solution we propose to address this issue is, once again, the exploitation of the incremental characteristics of RFF-RR (Strazzulla et al., 2017), leading to interactive learning (Nowak et al., 2018). Notice that there is no conflict in mixing up interactive learning as described in the literature and dynamic data collection. These two strategies are orthogonal and one can imagine updating the model online already during the dynamic data acquisition. This would provide the user with immediate feedback on the control response of the prosthesis; going even one step further, the user could then guide the acquisition and interactively acquire data exactly in those postural and dynamical conditions where the behavior is unsatisfactory.

A complementary avenue to attenuate the limb position effect consists of enriching the training set with sensory modalities that directly relate to the position of the arm. Fougner et al. (2011) showed that offline myocontrol accuracy can be improved by integrating sEMG and accelerometry data collected in multiple arm positions. Radmand et al. (2014) later found that the use of inertial measurements in combination with static data acquisition only improves myoelectric control if the training data is acquired across many arm positions, whilst it is likely to undermine the grasp recognition performance if a suboptimal set of training positions is selected. When the training data is acquired dynamically, instead, inertial measurements prove beneficial for myocontrol quality even if the user's workspace is not thoroughly sampled. Finally, more recent studies confirmed that the dynamic acquisition of myographic and inertial training data improves the myocontrol performance also in online settings (Krasoulis et al., 2017).

This experiment was conducted with able-bodied subjects only, although we put them in conditions that closely mimic the everyday life of prosthetic users. How much do our results apply to subjects with an amputation? Although the answer can only be found by testing our methodology on amputated users, it seems reasonable to argue that our main result, that dynamic acquisition is quicker and more comfortable than a static one, can directly transfer to amputees—less muscular stress is always good, as long as it does not hinder performance. The range of muscle movement after an amputation is generally limited, and the distribution of the weight of the limb across the muscular structure can be dramatically different between amputees and intact users; this is a further hurdle toward the translation of our results to amputees. Nevertheless, both acquisition strategies presented in this paper could as well be tailored to each individual, also for transhumeral or even lower-limb amputees. In principle, the advantage of dynamic over static training should hold also when a tailored training protocol is designed. Lastly, sensor-shift during limb motion can be problematic for amputees and may have been mitigated in our setup. In fact, while biosignal sensors are normally integrated into the prosthetic socket and may be slightly affected by its movement, we used a tight sEMG armband that is independent of the prosthetic splint. In our experience, however, sensor-shift can be reduced effectively with a well-designed, bespoke socket that would still make the two strategies equivalent.

Last but not least, the approach shown in this work can, and probably should, be applied in realms other than upper-limb prosthetics; for instance, to control rehabilitation devices for patients of musculoskeletal degenerative conditions. Stroke survivors, for instance, might benefit from a faster data collection procedure, when engaged in rehabilitation procedures involving complex robotic devices. Rehabilitation based upon Virtual Reality is also a target to this procedure (Nissler et al., 2019). Robotic control based upon muscle activity can be also transferred to teleoperated scenarios (Porges et al., 2019) and, probably, in space. In all these scenarios it is worth investigating the usefulness and feasibility of the procedure described in this paper.



4.5. Conclusions

To summarize, to try and solve the limb position effect in myocontrol we have investigated an alternative to the classic multi-body-posture data collection. Namely, we have compared it with a dynamic data acquisition procedure, which consists in collecting data while the user was moving the arm smoothly through all the postures. To test the true controllability resulting from either procedure, we have designed a realistic evaluation protocol that required the subjects to perform a set of bimanual activities of daily living. Our results show that the two procedures yield similar performance, but that dynamic training is faster and less tiresome. This seems to indicate that the dynamic acquisition procedure should be preferred over the static one.
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In this study, research was carried out on the end-effector force estimation of two representative multi-muscle contraction tasks: elbow flexion and palm-pressing. The aim was to ascertain whether an individual muscle or a combination of muscles is more suitable for the end-effector force estimation. High-density surface electromyography (HD-sEMG) signals were collected from four primary muscle areas of the upper arm and forearm: the biceps brachii (BB), brachialis (BR), triceps brachii (TB), brachioradialis (BRD), and extensor digitorum communis (EDC). The wrist pulling and palm-pressing forces were measured in elbow flexion and palm-pressing tasks, respectively. The deep belief network (DBN) was adopted to establish the relation between HD-sEMG and the measured force. The representative signals of the four primary areas, which were considered as the input signal of the force estimation model, were extracted by HD-sEMG using the principle component analysis (PCA) algorithm, and fed separately or together into the DBN. An index termed mean impact value (MIV) was proposed to describe the priority of different muscle groups for estimating the end-effector force. The experimental results demonstrated that, in multi-muscle isometric contraction tasks, the dominant muscles with the highest activation degree could track variations in the end-effector force more effectively, and are more suitable than a combination of muscles. The main contributions of this research are as follows: (1) To fuse the activation information from different muscles effectively, DBN was adopted to establish the relationship between HD-sEMG and the generated force, and achieved highly accurate force estimation. (2) Based on the well-trained DBN force estimation model, an index termed MIV was presented to evaluate the priority of muscles for estimating the generated force.

Keywords: multi-muscle isometric contraction, end-effector force estimation, high-density surface electromyography, deep belief network, mean impact value


INTRODUCTION

In general, it is challenging to measure the muscle force produced by skeletal muscle contraction accurately. The direct measurement method is commonly used for accurate determination of muscle force, wherein mechanical sensors are surgically placed in the tendons of skeletal muscles (Dennerlein et al., 1997; Finni et al., 1998; Huang and Gu, 2008). For example, Huang and Gu (2008) transplanted photoconductive devices into human muscle to measure muscle force directly. Finni et al. (1998) placed an optic fiber inside a volunteer’s tendon to collect the Achilles tendon force of gait. The disadvantage of direct measurement is that it is invasive, thereby limiting its scope of application. Therefore, indirect measurement methods, which are generally non-invasive, have been extensively employed to estimate the muscle force in related applications (Ayusawa et al., 2014; Martin et al., 2018). For example, in the work of Martin et al. (2018), a strain pressure sensor, which is implantable, extensible, and biodegradable, was presented to monitor patients’ mechanical force on tendons after a surgical repair period. Ayusawa et al. (2014) used a high-speed and high-precision video motion capture device to obtain human joint kinematic parameters. They then established a mechanical equilibrium equation between the joint and muscle forces based on inverse kinematics (Ayusawa et al., 2014).

Surface electromyography (sEMG), which is a non-invasive measurement method, has garnered particular interest for its advantages of safety, low cost, and convenient operation. In the research fields of biomechanics and kinesiology (Zajac et al., 2002; Christophy et al., 2012), physical rehabilitation, and myoelectric prostheses (Zheng et al., 1998; Heo et al., 2012), sEMG has been widely used to estimate muscle activation level and contraction force (Disselhorst-Klug et al., 2009; Li et al., 2014; Naik and Nguyen, 2015). The end-effector force estimation based on sEMG mainly includes two key procedures: muscle activation information extraction from raw sEMG signals, and establishment of a force estimation model. In early studies, the muscle activation information that was used to estimate the end-effector force was extracted from an individual channel or several channels of sEMG signals (Hayashibe and Guiraud, 2013; Cao et al., 2015). For example, Mobasser et al. (2007) placed two sEMG electrodes on the biceps brachii (BB) and triceps brachii (TB) to perform force estimation at the wrist during the elbow flexion–extension task. However, owing to the heterogeneity in the spatial distribution of muscle activation, the sEMG signals detected by the discrete electrodes could not effectively reflect the contraction characteristics of the whole muscle, thereby limiting the force estimation accuracy. In recent years, high-density surface electromyography (HD-sEMG), which is capable of collecting substantial amount of spatial muscle activation information, has demonstrated remarkable performance in related applications, particularly in improving force estimation precision (Staudenmann et al., 2005, 2006; Rojas-Martinez et al., 2012). In a series of related studies, Staudenmann et al. validated the good performance of HD-sEMG in the end-effector force estimation (Staudenmann et al., 2005, 2006, 2009). Huang et al. (2017) also realized highly accurate estimation of contraction force of the biceps brachii during elbow flexion task, by extracting the muscle activation information from HD-sEMG signals.

In most researches on sEMG-based force estimation, simple contraction tasks and individual skeletal muscles were involved. Taking the elbow flexion/extension task as an example, the BB was regarded as the main driving muscle in some studies (Huang et al., 2017; Xu et al., 2018), however, TB was regarded as the main driving muscle in some other researches (Staudenmann et al., 2005, 2006). It has been established that both complex and simple human motion tasks generally involve the contraction of multiple pieces of skeletal muscles, and the phenomenon of muscle co-contraction or muscle synergy patterns appears occasionally (Amarantini et al., 2010; Atoufi et al., 2013). Force estimation based on an individual muscle is conveniently realized, and is established as being practical for certain applications. However, there may be a few theoretical limitations when considering only an individual muscle. To improve the force estimation accuracy, a few researchers have attempted to explore force estimation frameworks based on multiple muscles (Luh et al., 1999; Hoozemans and van Dieen, 2005; Mobasser et al., 2007; Bai and Chew, 2013; Al Harrach et al., 2017; Chen X. et al., 2018). In the work of Harrach et al. (Al Harrach et al., 2017), three elbow flexor muscles, namely, BB, brachialis (BR), and brachioradialis (BRD) were considered for estimating the integrated force at the wrist. Considering the handgrip force as the prediction object, Hoozemans et al. compared the performance of a section of forearm muscle and the combinations of three, four, five, and six forearm muscles. They observed that all the combinations outperformed the application of an individual section of muscle (Hoozemans and van Dieen, 2005). Although certain progress has been achieved, the investigation of force estimation based on multiple muscles is relatively preliminary. It is necessary to investigate whether an individual muscle or a combination of muscles is appropriate for force estimation.

Various force estimation models have been developed in the literature. Specifically, the Hill Type model (Hill, 1938), polynomial model (Huang et al., 2017), fast orthogonal search (Mobasser et al., 2007; Chen X. et al., 2018), and simple artificial neural network (Luh et al., 1999; Bai and Chew, 2013; Wu et al., 2017) have been adopted successfully to establish the relation between EMG and the end-effector force. In recent years, deep learning algorithms have also been introduced to the field of force estimation. Xu et al. (2018) used convolutional neural network (CNN), long short-term memory (LSTM) network, and their combination (C-LSTM) to predict the end-effector force generated by static isometric elbow flexion. They achieved highly accurate, subject-independent force estimation (Xu et al., 2018). Choi et al. (2010) mapped sEMG signal to force by a deep artificial neural network and achieved good performance in real-time pinch force estimation. In above researches, only individual skeletal muscle was considered for force estimation. It is generally acknowledged that deep learning frameworks can extract features from raw data without handcrafted feature selection. In the deep architecture, the output of each layer, which contains all the information from the input data, can be considered as the deep fusion of the original data. For multi-muscle contraction task, a key problem is effectively fusing the activation information of different muscles for force estimation. Consequently, deep learning algorithms exhibit the potential for fusing the contraction characteristics of multiple muscles for realizing highly accurate force estimation.

To explore whether the individual muscle or the combination of muscles is more suitable for the end-effector force estimation during multi-muscle contraction tasks, this paper carried out a novel HD-sEMG-based force estimation research. The main features of this research are as follows: (1) To fuse the activation information from different muscles effectively, DBN was adopted to establish the relation between HD-sEMG and the generated force. (2) Based on the well-trained DBN force estimation model, an index was presented to evaluate the priority of muscles for estimating the generated force. (3) Taking elbow flexion task and palm-pressing task as examples, the priority of the BB, BR, TB, BRD, and extensor digitorum communis (EDC) for estimating the generated force were investigated.



MATERIALS AND METHODS

The block diagram in Figure 1 demonstrated the overall research route of this study. When the multi-muscle contraction tasks were performed, HD-sEMG signals were collected from four primary areas of the upper arm and forearm. These areas mainly included muscles of the BB, BR, TB, BRD, and EDC. The representative signals of the four primary areas, which were considered as the input signal of the force estimation model, were extracted from HD-sEMG by principal component analysis (PCA) algorithm. They were then fed separately or together into the DBN to estimate the generated force. Finally, the priority of individual muscle groups for estimating the generated force was analyzed with an index termed the mean impact value (MIV).


[image: image]

FIGURE 1. Block diagram of proposed force estimation framework.



Two Multi-Muscle Isometric Contraction Tasks and Data Collection

In this study, 13 right-handed male participants aged 22–27 years (and without neural or musculoskeletal diseases) voluntarily participated. Nine subjects participated Task 1, but part of them were not involved in Task 2 due to personal time arrangement, and some new subjects were recruited for sufficient experimental data in Task 2. Overall, the amount of total subjects is 13 and the subjects in two tasks were not same entirely. All the participants were informed of the experimental procedures and signed an informed consent approved by the Ethics Review Committee of First Affiliated Hospital of Anhui Medical University (No. PJ 2014-08-04).

The main feature of isometric contraction is that no contraction movement is occurred during the contraction and the length of muscle fiber is not changed. Because they are relatively simple to perform, isometric tasks are usually targeted as the research subject in related muscle force prediction researches. In this study, we also designed two specific isometric tasks as the research subjects. The two multi-muscle contraction tasks are described as follows: (1) Elbow Flexion Task: As shown in Figure 2A, during this task, the participants were seated upright on a chair. Their right forearm clung vertically to the front layer of an apparatus, whereas the elbow joint was placed at 90°. The wrist was connected tightly to the force sensor (LAS-B, Norson, China), which was fixed in the groove of the back layer of the apparatus. The participants were asked to perform elbow flexion with the wrist pulling force, following the guiding force displayed on the screen from a human–computer interaction interface. In total, 9 of the 13 participants conducted the elbow flexion task. (2) Palm-Pressing Task: As shown in Figure 2B, during this task also, the participants were seated upright on a chair. Their right forearm clung horizontally to the front layer of the apparatus, and the palm was placed closely above the force sensor. The participants were asked to perform a palm-pressing task with the press force following the guiding force. In total, 10 of the 13 participants conducted the palm-pressing task. Concretely, during the experiment, the participants were asked to perform the two contraction tasks by contracting BB, BR, TB, BRD, and EDC as much as possible. This setup guaranteed that other muscles (including shoulder muscles) were not basically involved in the contraction. In addition, based on our previous investigation on the muscle force estimation in dynamic random scenario (Hu et al., 2019), sinusoidal mode which have the potential to make the model generalized for any other force pattern, was selected as the target force mode in this study.
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FIGURE 2. Two multi-muscle contraction tasks and home-made HD-sEMG grids. (A) Elbow flexion task (B) Palm pressing task, and (C) Home-made HD-sEMG grids.


Custom-built apparatus (shown in Figure 2) was used to aid the participants in performing the two multi-muscle contraction tasks. Four pieces of in-house manufactured HD-EMG grids (E1, E2, E3, and E4; shown in Figure 2C) were used to collect HD-sEMG data. Each HD-EMG grid contains 32 electrodes (four rows and eight columns) with 3 mm diameter and 10 mm inter-electrode interval, covering a collection surface of 8 × 4.6 cm. The carrier material of the HD-EMG array is a polyimide flexible material, so that all the electrodes could fit well with the skin. Surface EMG signals were amplified by a factor of 1371.1, and then physically filtered using a 20–500 Hz band-pass (Huang et al., 2017). The skin of the front and back of both upper arm and forearm was wiped with alcohol to reduce skin–electrode impedance. As shown in Figure 2B, four arrays were placed to cover the muscles BB and BR (E1), TB (E2), BRD (E3), and EDC (E4) of the right arm. The mode of signal acquisition is monopolar, i.e., the signals are differences between the measured electrodes and reference electrode. The reference electrode was self-adhesive and attached to the back of the right hand. A ground electrode that could reduce the interference from a 50 Hz power line was attached to the back of the left hand. Both force and sEMG signals were sampled at 1 kHz using a 16 bit A/D converter (ADS1198) (Huang et al., 2017).

At the beginning of each data collection experiment, participants were first asked to perform maximal voluntary contraction (MVC) to produce the maximal wrist pulling force (elbow flexion task) or maximal palm-pressing force (palm-pressing task). Each participant repeated the MVC tasks three times, and the maximum one was selected as the MVC value. During the experiment, the participants were asked to perform a specific task in sinusoidal mode force using the right arm. Each task was carried out at three force levels with the amplitude of sinusoidal force ranging from 0–20%MVC, 0–40%MVC, and 0–60%MVC, respectively. The duration of the sinusoidal mode force was 6 s. The trail was repeated 10 times at each force level for each participant. The data used for training and testing of the model contained eight repetitions. The other two repetitions were adopted for validation. To aid the participants in better completing the contraction protocols in sinusoidal mode force, the real-time feedback of the force-tracking curve and the target force were displayed on a human–computer interaction interface. It is noteworthy that all the participants were asked to practice each muscle contraction protocol until they could perform the tasks according to the experimental requirements. All the data were saved to a disk for off-line analysis by Matlab R2016a.



Signal Pre-processing and Representative Activation Signal Extraction Based on PCA Algorithm

Raw HD-sEMG signal was preprocessed to promote the signal quality according to the following procedures. First, some channels whose signal amplitude was below or beyond the reasonable range, or the random noise interference exist would be discarded and replaced by the mean value of neighboring channels. Then, the signals were high-pass filtered (finite impulse response filter, cutoff frequency 20 Hz, Hanning window, 80th order) to remove the low frequency noise. The envelope of each channel was obtained by full-wave rectification and moving average filtering (window size 100 ms) (Popovic et al., 2016). In each contraction cycle, the measured force signals were normalized using the maximum value.

For reducing the number of input units of the force estimation model and saving computation cost, the mean-removed envelope matrix of each HD-sEMG grid was decomposed by the PCA algorithm for dimensionality reduction in this study. That is, the PCA algorithm was used to extract the representative activation signals from each HD-sEMG grid. The processing by PCA is to transform a mean-removed sEMG envelope matrix X = [X1, X2,., XM] (M represents the number of channels) into a matrix Y = [Y1,Y2,., YN] consisting of a series of uncorrelated principal components or modes by orthogonal transformation technique (Wold et al., 1987; Abdi and Williams, 2010). The first principal component Y1 accounting for the highest variance can be represented by the linear combination of X1, X2,., Xm as shown in Formula (1) (Wold et al., 1987; Abdi and Williams, 2010).
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The second principal component Y2, which accounts for the next highest variance, can be calculated similarly. The process continues until M principal components, whose amount equals to the number of channels, have been calculated. Consequently, the transformation of the original signal X to the principal component matrix Y can be described by Formula (2) (Wold et al., 1987; Abdi and Williams, 2010):
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The rows of the matrix A are the eigenvectors of the covariance matrix X. The elements of each eigenvector are the weights. The corresponding eigenvalues are the variance explained by each principal component, which decreased monotonically from the first principal component to the final one (Wold et al., 1987; Abdi and Williams, 2010). The principal component with larger eigenvalues is accompanied by larger energy. Therefore, it also includes substantial valid information of the original data. In many studies, the principal components whose cumulative variance explained contribution rate attains 0.85 were generally selected to reflect the information and characteristics of the original data (Jeffers, 1967; Chen et al., 2000; Webster, 2001). In this study as well, the threshold of variance explained was set to 0.85. The principal components, which were extracted from each HD-sEMG array and satisfied the criteria, were selected as the representative activation signal of the corresponding array.



sEMG-Force Relation Establishment Based on Deep Belief Network


Deep Belief Network

Deep belief network (DBN) is a layer-by-layer network constructed by stacking multiple layers of restricted Boltzmann machines (RBMs) (Hinton, 2002; Hinton et al., 2006). It exhibits higher generative modeling capability than other shallow architectures even for a marginal amount of sample data. As shown in Figure 3A, RBM is a two-layer, undirected, and energy-based model. The visible units in the bottom layer represent observations and are connected to the hidden units, which represent the abstract features. The detailed formula derivation of RBM was presented in Supplementary Appendix I.


[image: image]

FIGURE 3. Typical topological structure of RBM and DBN. (A) RBM and (B) DBN.


With the unsupervised learning algorithm for RBM, the training of a DBN can be implemented as two steps: layer-wise pre-training and fine-tuning. The first step is to train a stack of RBMs recursively and rapidly layer by layer. This produces a series of initial net parameters. After pre-training, the RBMs are unfolded to establish the DBN model with the initial parameters. Then, the gradient-based optimization algorithm is applied further to minimize differences between the input and output data (Hinton, 2002; Hinton et al., 2006; Xiong et al., 2015; Su et al., 2016; Chen J. C. et al., 2018).

In this study, a DBN that has four layers (including two hidden layers) was constructed (shown in Figure 3B) to establish the EMG–force relationship. The inputs of the DBN model were the principal components after min–max normalization extracted using the minimum and maximum absolute values among all the extracted principal components from four HD-sEMG arrays. Consequently, the number of input units was determined by the number of principal components. To ensure the consistency of the structure of neural network, for all the participants, the minimum amount of principal components that satisfied the threshold of variance explained was selected as the number of input units in the model training phase. In the testing phase, the threshold of variance explained was not considered. Moreover, the numbers of principal components and model input units were kept accordant with those in the training phase. The output layer contains one unit. The number of units in two hidden layers was optimized during the model establishment and parameter adjustment. Except for the training data and testing data, the validation data was set to prevent the model over fitting to the training data.



Evaluation Index of Significance of Individual Muscle Group to Integrated Force

In many studies, the MIVs of the artificial neural network were used to evaluate the importance of different inputs to the output of the model (Dombi et al., 1995). The significance of an individual muscle group for force estimation was explored in this study by evaluating the effect of different model inputs on the output. Specifically, based on a well-trained DBN model, each model input was marginally altered sequentially. In addition, the influence of different inputs was evaluated by comparing the variation in the model output. The procedures are provided in detail as follows.

Assume that the sample matrix Pm×n = [P1, P2, …, Pm]T represents the model input signals of a contraction cycle. Here, m is the number of principal components extracted from all the four arrays, and n is the number of samples. The DBN was trained with Pm×n and the corresponding measured force signal. After the model was established, the principal component P1 was increased and decreased each by 10% × P1 to obtain two new training vectors P′1 and P”1. The other principal components (from P2 to Pm) remained unaltered. The two new sample matrixes [P′1, P2, …, Pm]T and [P”1, P2, …, Pm] T were input to the well-trained DBN model to obtain two results R′1 and R”1. Then, the mean difference of R′1 and R”1, which is defined as the MIV of P1, was calculated using Formula (3) (Dombi et al., 1995; Liu et al., 2012; Qi et al., 2016):
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MIV2, …, MIVm was calculated similarly. All the principal components were sorted according to the absolute values of the MIVs to obtain the relative impact of each model input on the output. The one corresponding to the largest MIV exerted the most important influence on the output (Dombi et al., 1995; Liu et al., 2012; Qi et al., 2016). If over one input corresponds to a muscle group, the maximum MIV of these input units was considered as the final index for this muscle group. Consequently, the MIVs of model input signals extracted from each array can reflect the relative significance of individual muscle groups to the integrated force.



Evaluation Parameters of Muscle Activation Level

In each contraction cycle, HD-sEMG signals were normalized using the maximum absolute value of all the 128 channels. Moreover, the root mean square (RMS) value of each normalized HD-sEMG channel was calculated first. Then, the sum of square of RMS in a contraction cycle was defined as the activation level according to Formula (4). RMSj (j = 1, 2, 3, 4) represents the RMS of the jth array in a contraction cycle, i (i = 1, 2, …, 32) is the channel number, and k represents the force level (20, 40, and 60%MVC).
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Statistical Analysis

The root mean square difference (RMSD) (Huang et al., 2017) and goodness of fit (R2) (Zhang et al., 2018) between the normalized measured force and estimated force were selected to evaluate the performance of the proposed end-effector force estimation framework. In Formulas (5) and (6), y and ỹ are the normalized measured force and estimated force, respectively. N is the number of samples, and [image: image] is the mean of the measured force of the N samples.

The analysis of variance (ANOVA; SPSS 22, Chicago, IL, United States) was used for statistically analyzing the experimental results. The fixed factor “HD-sEMG grid” was tested. The dependent variables were RMSD, R2, and MIV. The null-hypothesis of the ANOVA test for RMSD and R2 was that there is no difference in the force estimation accuracy among different grids. The null-hypothesis for MIV was that there is no difference in the impact on end-effector force among different grids. The significance level was 5%.

[image: image]
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EXPERIMENTAL RESULTS AND ANALYSIS


Muscle Group Activation State Analysis

Figure 4 demonstrates the RMS maps of the four HD-sEMG grids in typical contraction cycles of two tasks at three target force levels, for a representative participant (Participant 1). In the two sub-figures, each row corresponds to an array, and each column corresponds to force level. The electrode arrangement is consistent with the actual HD-sEMG grid. It should be indicated that the normalization was implemented among the four HD-sEMG grids in each contraction cycle. Therefore, the RMS maps can reflect only the relative differences in muscle activation at each force level. Figure 4A reveals that the activation intensities of the BB and BR seem to be higher than those of the BRD, TB, and EDC at all the three force levels in Task 1. From the discrepancy of the activation intensity of each muscle group, the BB and BR are always in the dominant activation state at the three force levels. Moreover, the BRD is in the co-activation state at 20%MVC and 40%MVC. In Task 2, as shown in Figure 4B, the activation intensity of the TB is higher than that of the other muscles. Furthermore, certain scattered areas of the BRD and EDC are activated at the middle and low force levels. The activation level results of the four HD-sEMG grids of all the participants are illustrated in Figure 5. In Task1, for all the participants, the activation level of the BB and BR is higher than that of the other muscle groups. In Task 2, the TB is always in the state of high activation level. The experimental results reveal that the muscle synergy or muscle co-activation situation generally appears at the middle and low force levels and that the impact of the dominant muscle on the target task is remarkable at a high force level.
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FIGURE 4. RMS maps of four HD-sEMG grids in typical contraction cycles from Participant 1 (D, Distant; P, Proximal; L, Lateral; M, Medial). (A) Task 1. (B) Task 2.



[image: image]

FIGURE 5. Activation level I of four muscle groups of all participants. (9 participants for Task 1 and 10 participants for Task 2. Error bars represent the standard deviation.) (A) Task 1 and (B) Task 2.




Representative Activation Signal Extraction Results

When the PCA algorithm was applied to the normalized and mean-removed envelope matrix of each HD-sEMG grid, it was observed that for almost all the data at the three force levels of all the participants, the first principal component can attain the threshold standard of variance explained (0.85). Consequently, only the first principal components of each array were selected as the representative signals. These were then normalized by the minimum and maximum values among the four principal components as the input signals of the force estimation model.

Figure 6 shows the representative activation signals extracted from the four primary muscle groups and the corresponding measured force for Participant 1 in two tasks. The results of 10 typical contraction cycles at each force level (20, 40, and 60%MVC) are provided. Table 1 demonstrates the correlation coefficient (r) between the extracted activation signals and measured force. Figure 7 shows the results of the correlation coefficient (r) between the extracted activation signals and measured force for all the participants. For both the tasks and four muscle groups, r increases gradually when the force level increases. In Task 1, the correlation between the activation signal extracted from the BB and BR and the measured force is higher than that of the other muscle groups. In Task 2, the activation signal extracted from the TB is more related to the measured force compared with the other three muscle groups. Combining the results of the correlation analysis and the muscle activation state analysis, it is concluded that the muscles that are activated strongly in the task are more related to the generated force.
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FIGURE 6. Normalized activation signals extracted from four arrays and measured force of Participant 1 (10 typical contraction cycles are provided at each force level). (A) Task 1 and (B) Task 2.



TABLE 1. Correlation coefficients between extracted activation signals and measured force for Participant 1.
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FIGURE 7. Correlation coefficient between different activation signals and measured force. (9 participants for Task 1 and 10 participants for Task 2.) (A) Task 1 and (B) Task 2.




Force Estimation Results

For the two multi-muscle contraction tasks (elbow flexion task and palm-pressing task), two types of force estimation experiments were carried out with the leave-one-out cross validation method for verifying the feasibility of the proposed force estimation framework, and the statistical analysis was also based on the results of force estimation with cross validation. First, HD-sEMG signals from all the four muscle groups and an individual muscle group were used to estimate the respective integrated force. Then, based on the DBN model well-trained with signals from all the four muscle groups, the MIVs of the four muscles were calculated, and the impact of the different muscle groups on the target force was investigated. The number of hidden layer units of DBN was adjusted according to the training error and generalization error. When the training error was convergent and generalization error decreased to a relatively lower level, the number of hidden layer units was the optimal selection. We have tried one, two, and three hidden layers, and found that double hidden layers can well meet the needs of high recognition rate and low computation cost. For the number of neural units in each layer, we have tried 32–128 units, and found that 80 units for one-dimensional input and 100 units for four-dimensional input were the appropriate selection, which was easy to converge and has a higher recognition rate meanwhile. Finally, when individual muscle group was input, four layers of DBN were set to 1, 80, 80, 1 respectively; when four muscle groups were input, four layers were set to 4, 100, 100, 1 respectively. All following results were based on the test phase of the DBN analysis.

The measured force and estimated force in a contraction cycle (6 s trail) of Participant 1 are shown in Figure 8 as an example. It should be note that Participant 1 did not always perform best among all subjects, but in the top quarter among all participants. It is evident that using the signals from an individual muscle and from all the four muscles obtained different force estimation performances. In Task 1, the force estimation performance of E1 (BB and BR) was the highest (RMSD = 0.0918 for 20%MVC, 0.0765 for 40%MVC, and 0.0593 for 60%MVC) and that of the combination of all the four muscle was the second (RMSD = 0.1040 for 20%MVC, 0.0794 for 40%MVC, and 0.0740 for 60%MVC). In Task 2, the best estimation was from E2 (TB) (RMSD = 0.0836 for 20%MVC, 0.0699 for 40%MVC, and 0.0429 for 60%MVC), and the suboptimal estimation originates from the combination of the four muscles (0.0894 for 20%MVC, 0.0740 for 40%MVC, and 0.0731 for 60%MVC). In particular, at the high contraction force level of 60%MVC, the estimation performances using signals from the BB and BR or TB are superior.
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FIGURE 8. Illustration of force estimation results for Participant 1 in a contraction cycle. The statistical values shown in each sub-graph are presented in the form of RMSD (R2). (A) Task 1 and (B) Task 2.


A one-way ANOVA was performed for two tasks and the result was shown in Table 2. Across two tasks, a significant RMSD difference (p < 0.05) and R2 difference (p < 0.05) both occurred among different grids. As the fixed factor was significant, post hoc multiple comparisons were executed. The force estimation results and the pairwise post hoc tests of the two tasks for all the participants were presented in Figures 9, 10, respectively. With regard to Task 1, E2 and E4 exhibit low performance. Therefore, the statistical analysis results are marked among only “E1,” “E3,” and “All” for higher visibility. “All” represents all representative signals from E1 to E4 were fed into DBN together as the four-dimensional input. At 20 and 40%MVC, the force estimation performances (both RMSD and R2) do not exhibit significant discrepancy between E1, E3, and all arrays. However, E1 is significantly higher than the other scenarios at 60%MVC in the results of 0.0392–0.0641 RMSD and 0.8809–0.9817 R2 (p < 0.05). For Task 2, the performances of E1, E3, and E4 are inferior. Therefore, the statistical analysis results are marked only between “E2” and “All” for higher visibility. At 20 and 40%MVC, good force estimation performance was obtained for both E2 and all arrays. However, E2 is significantly higher than all arrays at 60%MVC (p < 0.05). At 60%MVC, the results of 0.0189–0.0925 RMSD and 0.9112–0.9918 R2 obtained from E2 were the best among those of the all the scenarios. Based on the above results, we can conclude that the highest force estimation performance was not always obtained by considering the HD-sEMG signals from all the four muscles involved. Dominant muscles can better describe the generated force characteristic in multi-muscle related contraction task.


TABLE 2. Results of the one-way ANOVA on RMSD, R2 with different HD-sEMG grids as fixed factors.
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FIGURE 9. Force estimation results for Task 1. (9 participants, 0p ≥ 0.05, *p < 0.05, the statistical analysis results are marked only among “E1,” “E3,” and “All” for higher visibility. Error bars represent the standard deviation.) (A) RMSD and (B) R2.
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FIGURE 10. The force estimation results for Task 2. (10 participants, 0p ≥ 0.05, *p < 0.05, the statistical analysis results are only marked between “E2” and “All” for better visibility. Error bars represent the standard deviation.) (A) RMSD and (B) R2.


To demonstrate the effects of the different muscles on the force estimation further, the MIVs from Participant 1, which were calculated based on the well-trained DBN, are presented in Table 3. The contraction cycles are in accordant with those in Figure 8. MIV1, MIV2, MIV3, and MIV4 correspond to E1, E2, E3, and E4, respectively. The MIVs across all the participants are shown in Figure 11. The one-way ANOVA was also implemented. Combining the results of force estimation using an individual muscle, it is observed that the MIV can reflect the influence of individual muscle groups on the generated force. In Task 1, the MIVs of the input units corresponding to E1 and E3 are higher than those of the other two arrays at the low and middle force levels. E1 has the largest value (p < 0.05) at all the three force levels. Therefore, the BB and BR can be considered to exert the largest effect on the generated force. In Task 2, the MIV of the input unit corresponding to E2 has the largest value (p < 0.05) at all the three force levels. Therefore, the TB is always the main contributing muscle, and the other three muscle groups exert less impact on the generated force compared to the TB. In summary, according to the ranking of the MIVs, in multi-muscle contraction tasks, the priority of different muscle groups suitable for force estimation can be obtained.


TABLE 3. MIV results in a typical contraction cycle of Participant 1.
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FIGURE 11. MIVs for all participants. (9 participants for Task 1 and 10 participants for Task 2, *p < 0.05, the statistical analysis mark represents that the value of this factor is significantly higher than all the others. Error bars represent the standard deviation.) (A) Task 1 and (B) Task 2.




DISCUSSION

In this study, a research on the end-effector force estimation in multi-muscle contraction task was carried out. In particular, two types of multi-muscle contraction tasks were considered as the research objects. In addition, whether a combination of muscles or an individual muscle is more suitable for the end-effector force estimation in a multi-muscle contraction task was explored. The main contribution, limitations, and future work are summarized and discussed as follows.


Performance of the Deep Learning Algorithm-Based Force Estimation Framework

To achieve highly accurate force estimation in multi-muscle contraction tasks, a framework based on HD-sEMG and DBN was proposed in this study. To our knowledge, although DBN is one of the mainstream architectures widely used in the artificial intelligence field, there are few researchers using it to undertake force estimation. The results of force estimation experiments using an individual muscle and those using multiple muscles verify the feasibility and effectiveness of the proposed framework. The minimum RMSD of 0.0189 (corresponding R2 of 0.9804) was achieved for the elbow-flexion force estimation. An average RMSD of 0.0724 was obtained among all the repetitions in the two tasks when using only the co-activated or dominant muscle. In a work of Staudenmann et al. (2006), the end-effector force was estimated by the sEMG of TB during the isometric elbow extension. PCA algorithm was used to discard redundant information and noise in the HD-sEMG signals, and a minimal RMSD of 0.0940 was obtained. In a work using sEMG obtained from several forearm muscles to estimate the palmar pinch force by an artificial neural network, the force estimation error was 0.081 ± 0.023 RMSD (Choi et al., 2010). Considering these results, the performance of the proposed force estimation framework is effective.

However, the proposed framework does not achieve the highest performance reported in the available literature. For example, in the work of Harrach et al. (Al Harrach et al., 2017), three elbow flexors including the BB, BR, and BRD were jointly considered to estimate the generated force at the wrist. A remarkably low RMSD (approximately 0.0121) was obtained at 90%MVC for a participant. Related research (Gandevia and Kilbreath, 1990; Staudenmann et al., 2006; Al Harrach et al., 2017; Huang et al., 2017) has demonstrated that because the relative signal-to-noise ratio increases with the muscle activation level, the higher is the muscle contraction level, the higher is the force estimation accuracy. In this study, the largest target force level is 60%MVC. We consider that the relatively low estimation performance may be related to the low muscle contraction level.

For force estimation in multi-muscle contraction tasks, the fusion of the activation information from multiple muscles and the establishment of the non-linear relationship between sEMG and the end-effector force are two critical issues. The frequently used force estimation model in the past decades consisted mainly of physiological models (e.g., Hill Type model; Hill, 1938) and mathematical models (e.g., polynomial model; Huang et al., 2017) and fast orthogonal search (Mobasser et al., 2007; Chen X. et al., 2018). Although these traditional models can address the simple regression fitting for force prediction under certain requirements of precision, they more or less exhibit limitations. The polynomial model and fast orthogonal search are both incapable of fusing multiple homologous sEMG signals effectively. With regard to the Hill type model, the physiological parameters need to be measured by ultrasound or other means for each participant. Moreover, it is challenging to determine the relationship among the muscle force, muscle length, and contraction velocity over time during a complex contraction task. Neural networks based on deep learning algorithm can theoretically approximate any non-linear function to fit the relationship between force and EMG to the extent feasible. That is, they have the potential to capture the overall outline and local details of the force profile for highly accurate force estimation. However, deep learning algorithm also has some limitations. For example, the demand of sample size for model training is large, the calculation and time cost of network training is high, and the interpretability of the hidden layer is poor.

Although two specific isometric tasks was targeted to verify the performance of the proposed framework. The DBN-based force estimation method is not only designed for the isometric contraction task, but also can be extended to other types of muscle contraction tasks. Because the neural network is effective for data fitting and has the good generalization ability, so as long as the contraction task does not change much (such as just changing the profile of the force, or adding some simple dynamic scenarios), only fine-tuning the parameters of the network using diverse training data is needed, rather than changing the structure. When the amount of muscles involved in the contraction task is changing, different model inputs would lead to different amount of input units and hidden layer units. In generally, up to five hidden layers would be tried, the one that can well meet the needs of high recognition rate and low computation cost would be considered as the final selection. The number of hidden layer units of DBN can be adjusted according to the training error and generalization error. When the training error is convergent and generalization error decreases to a relatively lower level, the number of hidden layer units is the optimal selection.

In addition, only sinusoidal shaped force profile was targeted in this study. Because no a priori information about the force profile was considered in the design of the network, the prediction of the model was only determined by the quality of training process. The reason for the selection of sinusoidal shaped force profile is that it has a good coverage for different force patterns. As shown in Supplementary Appendix II, taking the Task 1 as an example, force estimation experiments were supplemented on two new contraction tasks with force profiles termed ramp and hold (R&H) pattern and staircase (or piecewise constant) pattern respectively. The experimental results confirmed that the model trained with data of sinusoidal force pattern can be used for force estimation in a new force pattern that never occurred in the training data.

Finally, it is important to point out that the usage of HD-sEMG is beneficial for improving force estimation performance. In general, the attachment of the HD-sEMG grid does not need to be as precise as the discrete electrode, so a slight deviation will not affect the experimental results. However, we still checked the approximate position of each muscle via the knowledge of human anatomy to ensure that the target muscles could be covered as much as possible. In addition, the PCA algorithm was used to extract the main activation information of each muscle group, which will also reduce the impact of different electrode attachment positions.



Preference for Force Estimation in Multi-Muscle Contraction Tasks: Individual Muscle or Multiple Muscles?

For multi-muscle contraction tasks, the generated force is the result of the contraction of multiple muscles. In theory, the highest performance should be obtained when the force estimation is carried out using activation information from all the involved muscles. However, contradictory research results exist with regard to whether an individual muscle or a combination of muscles is more suitable for force estimation. Hoozemans and van Dieen (2005) carried out a study on handgrip force estimation using different forearm muscles and their combinations. They observed that the performance of force estimation using the combinations were better than that obtained using any individual muscle. Chen X. et al. (2018) estimated the elbow force during static isometric elbow flexion using the HD-sEMG signals collected from the upper arm muscles. Their experimental results demonstrated that compared with the combined use of agonist and antagonist, consideration of either the agonist or antagonist can improve the end-effector force estimation performance at different force levels (Chen X. et al., 2018). In the study of Gandevia and Kilbreath, they asked subjects to lift an object of standard weight; estimated the pulling force using the hand muscle (first dorsal interosseous), forearm muscle (flexor pollicis longus), upper limb muscle (elbow flexor), and a combination of them; and observed that the upper limb muscle (elbow flexor) is more suitable for force estimation (Gandevia and Kilbreath, 1990).

In this study, two representative multi-muscle tasks were used as experimental research trials, and the problem of whether individual muscle or multiple muscles are more suitable for force estimation was investigated. First, the muscle activation analysis shows that the BB and BR (E1) are always in the dominant activation state at the three force levels in Task 1. The BRD (E3) is in the co-activation state at 20 and 40%MVC. The TB (E2) is always in the dominant activation state at the three force levels in Task 2. Second, the correlation coefficient analysis shows that the activation signal extracted from the key muscle can well track the variations of the measured force. In Task 1 (Figure 7A), the correlation between the activation signal extracted from the BB and BR and the measured force is higher than that of other muscle groups. In Task 2 (Figure 7B), the activation signal extracted from the TB is more related to the measured force compared with other three muscle groups. Third, the force estimation results show that the estimation accuracy obtained using the key muscle is similar or even better than that obtained using all muscles. In other words, the best force estimation performance could not always be obtained by taking the HD-sEMG signals from all the involved muscles. In Task 1 (Figure 9), the force estimation performance of E1 (BB and BR) was the highest and that of the combination of all the four muscle was the second. BRD (E3) outperformed the combination of four muscle groups when it was in the co-activation state at 20 and 40%MVC. In Task 2 (Figure 10), the best estimation was from E2 (TB), and the suboptimal estimation originated from the combination of the four muscles. Based on above results, we conclude that the dominant muscles with the highest activation level are more suitable for highly accurate force estimation than the combination of muscles.

The MIV index is proposed to evaluate the effect of an individual muscle group on the end-effector force. It was verified that it is feasible to rank muscle priority for force estimation in multi-muscle contraction tasks. The concept of measuring the contribution of different muscles to the generated force with the MIV index is innovative, and has practical application value in the field of biomechanics.

We try to interpret the experimental results from the perspective of physiology. First, according to the principles of physiology, BB and TB are an agonist-antagonist pair and play a significant role in the process of elbow flexion (Nordin and Frankel, 2001). Both experimental tasks of this study were in the state of elbow flexion. Because there was a trend of concentric contraction in Task 1, BB and BR were the main agonist muscles. For Task 2, there was a trend of eccentric contraction, so TB was the main agonist muscle (Jaskolski et al., 2007). The results of muscle activation level analysis was consistent with physiological view. Second, it was pointed out that, in some literature, although multiple muscles are involved in one contraction task, some of them only play the role of assisting and maintaining the force, and some contribute to the subtle fluctuations of the force (Gandevia and Kilbreath, 1990; Oliver et al., 2010). Combining Figures 5, 7, it is observed that the muscle activation signals with high activation level exhibited high correlation with the force curve. Thus, they could track the variation in the force more effectively. This result supports the physiological view as well.

In addition, we attempt to explain the phenomenon that high force estimation performance could be obtained by using the sEMG signals from the highly activated muscle from the perspective of neural network. According to Figure 11, we could observe that when all the muscle activation signals were considered, inputs with higher force correlation exerted higher impact on the output of the DBN. This phenomena revealed that the DBN network could concentrate its attention on the inputs with high force correlation.



Limitations and Future Work

The main shortcoming of this study is that only two simple multi-muscle contraction tasks were investigated. The conclusions that dominant muscles can track variations in the generated force more effectively, and that the MIV index could be used to rank the muscles suitable for force estimation, need to be validated in more complex multi-muscle contraction tasks. Moreover, the ideal experimental condition in this study is uneasy to guarantee. Specifically, the shoulder muscles may participate in the contraction task more or less during the experiment. Furthermore, the utilization of a deep learning algorithm is still highly preliminary, and certain neural nets with an optimal net structure would be explored in the future for implementation of real-time and highly accurate force estimation. The sequential neural network, which can link the activation information at front and rear time-points, can be adopted to improve the force estimation accuracy in certain regular or periodic contraction tasks.



CONCLUSION

To investigate whether an individual muscle or a combination of muscles is more suitable for the end-effector force estimation, a multi-muscle contraction force estimation framework is proposed. It was implemented on elbow flexion and palm-pressing tasks in this study. In the proposed framework, the relation between HD-sEMG and elbow flexion force/palm-pressing force was established using DBN. HD-sEMG was collected from four primary areas of the upper arm and forearm, mainly including muscles of the biceps brachii, brachialis, triceps brachii, brachioradialis, and EDC. The experimental results demonstrated that the dominant muscles with the highest activation degree could better track the variation in the generated force in a multi-muscle contraction task, and were more suitable for highly accurate force estimation than the combination of muscles. In addition, the proposed MIV index was effective for ranking muscle priority for force estimation in multi-muscle contraction tasks.
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Stroke patients suffer from impairments of both motor and somatosensory functions. The functional recovery of upper extremities is one of the primary goals of rehabilitation programs. Additional somatosensory deficits limit sensorimotor function and significantly affect its recovery after the neuromotor injury. Sensory substitution systems, providing tactile feedback, might facilitate manipulation capability, and improve patient's dexterity during grasping movements. As a first step toward this aim, we evaluated the ability of healthy subjects in exploiting electrotactile feedback on the shoulder to determine the number of perceived stimuli in numerosity judgment tasks. During the experiment, we compared four different stimulation patterns (two simultaneous: short and long, intermittent and sequential) differing in total duration, total energy, or temporal synchrony. The experiment confirmed that the subject ability to enumerate electrotactile stimuli decreased with increasing the number of active electrodes. Furthermore, we found that, in electrotactile stimulation, the temporal coding schemes, and not total energy or duration modulated the accuracy in numerosity judgment. More precisely, the sequential condition resulted in significantly better numerosity discrimination than intermittent and simultaneous stimulation. These findings, together with the fact that the shoulder appeared to be a feasible stimulation site to communicate tactile information via electrotactile feedback, can serve as a guide to deliver tactile feedback to proximal areas in stroke survivors who lack sensory integrity in distal areas of their affected arm, but retain motor skills.

Keywords: sensory substitution, numerosity judgment, electrotactile stimulation, stimulation timing, tactile feedback, upper extremity, somatosensory integration, touch


INTRODUCTION

The sense of touch is the basis of interaction with other human beings and with the environment around us. The tactile sensation provides information about contact with objects, which is essential to grasp and to manipulate them. Unfortunately, neurological diseases such as stroke can interrupt or damage sensory feedback pathways that normally play a key role in the coordination and accuracy of movements. Depending on stroke severity, from 11 up to 85% of post-stroke patients reported sensory impairments of the upper limb related to the affected area of the brain (Carey et al., 1993; Kim and Choi-Kwon, 1996; Yekutiel, 2000). An impaired somatosensory function has severe negative implications on the quality of daily living. For instance, it can lead to deficits in tactile recognition and fine manipulation of objects as well as to impairments in motor control of the affected limb and problems in adjusting the level of force during grasping (Sullivan and Hedman, 2008; Doyle et al., 2011, 2014; Connell et al., 2014; Hill et al., 2014). As a result, even when the patients have good residual motor functions, the lack of sensory feedback in 40% of the cases leads to a significant decrease in the spontaneous use of the affected limb that contributes to the phenomenon known as learned non-use (Dannenbaum and Dykes, 1988; Rand et al., 2001). Consequently, although people suffering from the loss of touch sensation are able to move their limbs, they must rely mainly on visual feedback during daily living activities. Therefore, due to the impaired motor control and the long processing delays of the visual system, even the simplest movements require great concentration and can become nearly impossible (Cameron et al., 2014). Hence, this condition limits the independence of patients, their safety and often prolongs hospital stay (Carey, 1995; Sommerfeld and von Arbin, 2004; Tyson et al., 2008). Therefore, the functional recovery of the upper extremity is one of the primary goals of rehabilitation programs and the additional somatosensory deficits significantly affect the likelihood of achieving higher levels of motor restoration (Patel et al., 2000; Lee et al., 2010). Feedback of tactile information has the potential to improve hand function in patients with sensory loss since it provides additional information that would otherwise be unavailable, thus countering the learned non-use phenomenon and favoring functional recovery.

One way to provide feedback of sensory information in patients with sensory loss is through sensory substitution. The substitution can be implemented by exploiting a sensory channel different from the one that is normally used (e.g., substitute vision with touch) or through the same channel but in a different modality (e.g., substitute pressure with vibration or electrotactile stimulation) or involving a different part of the body (e.g., substitute digit with forearm) (Bach-y-Rita and Kercel, 2003). Many approaches have been proposed to elicit tactile sensations, including invasive or non-invasive methods, and they have been widely applied to restore sensory feedback in prosthetic limbs (Antfolk et al., 2013b; Svensson et al., 2017). Providing somatosensory feedback in prosthetics has been shown to improve the utility as well as facilitate the embodiment of the assistive systems (D'Alonzo et al., 2014a; Clemente et al., 2016; Markovic et al., 2018). The feedback can be provided invasively, by interfacing directly the nerves or non-invasively, by applying stimulation to the skin. Prevalent non-invasive techniques are vibrotactile and electrotactile stimulation that deliver mechanical vibration or low-intensity current pulses to the skin in order to provide information about the grasp force (artificial exteroception) and/or joint position (artificial proprioception) (Kaczmarek et al., 1991). For example, the prosthesis grasping force can be communicated by modulating stimulation intensity and/or frequency, i.e., the higher the grasping force, the stronger/faster is the stimulation (Antfolk et al., 2013a). Alternatively, when multiple stimulation channels are available (Štrbac et al., 2016; Dosen et al., 2017), the feedback can be transmitted by changing stimulation location (active channel), which is known as spatial coding. Electrotactile stimulation, as compared to vibrotactile, is particularly suitable for this kind of application since it has low latency, it is energy efficient, it can be delivered in an unobtrusive way and the electrodes are small enough to be worn under clothing. Recent research presented flexible matrix of electrodes to provide spatially distributed electrotactile stimulation to mimic the distributed nature of biological tactile feedback (Štrbac et al., 2016; Franceschi et al., 2017). On the other hand, the large variability in perceived sensation intensity leads to the necessity of a careful and time-consuming calibration.

Although stroke incidence is much higher compared to amputation (e.g., in Italy 200,000 new stroke cases and 3,600 upper limb amputations occur each year), the use of sensory substitution technologies in stroke survivors is far less explored (Kita et al., 2011, 2013; Malešević et al., 2012; Tzorakoleftherakis et al., 2015; Béjot et al., 2016; Imbinto et al., 2016). One of the reasons is the inhomogeneity characterizing the post-stroke status that inevitably complicates the implementation of the substitution feedback. The somatosensory deficits in fact change depending on the size and extent of the injury and clinical cases where the sensory deficits are such as to be disabling for a patient with a good residual limb strength are rather rare (Martin et al., 2002; Hatem et al., 2016). On the other hand, the electrostimulation technique might be even more effective in stroke survivors with a view to plastically reactivate brain areas compromised after the injury. Hence, it becomes essential to investigate which features in the stimulation encode the most relevant output to induce beneficial plasticity.

Furthermore, the amount of information that can be encoded by electrotactile stimulation will depend on the user's ability to discriminate different stimuli. Therefore, exploring the ability to discriminate the number of tactile stimuli delivered over the body surface and the factors that can successfully improve this discrimination is of paramount importance. Several studies have demonstrated that subject's ability to process multiple tactile stimuli delivered over the body surface, or even across the fingertips, is limited. That is, people are simply unable to enumerate accurately more than two or three tactile stimuli applied simultaneously (Gallace et al., 2006, 2008; Riggs et al., 2006; Wang et al., 2018). The human accuracy in tactile enumeration tasks decreased as the number of tactors activated increased. Gallace and coauthors also observed that when the tactile stimuli were presented simultaneously and repeatedly (the stimuli were intermittently turned on and off for a few seconds), the accuracy of the numerosity judgment improved compared to the simple, simultaneous, presentation of the tactile stimuli (Gallace et al., 2006). However, the authors used longer durations in intermittent compared to simultaneous stimulation which makes it difficult to understand the nature of the advantage of the intermittent stimulation. The comparison between simultaneous and sequential presentation of the stimuli was investigated in two recent studies (i.e., Wentink et al., 2011; Boldt et al., 2014). The results showed an advantage of sequential stimulation when estimating the number of active channels. However, the authors applied the stimuli at a different body location than ours (i.e., upper leg or hand). More importantly, they only tested up to three sequential or simultaneous stimuli which is a low upper bound in numerosity judgment tasks (Gallace et al., 2006). Finally, they did not include an intermittent stimulation condition in their protocol.

In the present study, we investigated whether the judgment of numerosity of electrotactile stimuli administered on the shoulder and back is influenced by the tactile code used (simultaneous-intermittent - sequential). By implementing four tactile codes in which total duration, temporal synchrony, and energy of stimulation covaried, we performed a series of enumeration tasks that quantified the subjects' ability to discriminate electrotactile stimuli. To the best of our knowledge, this is the first study in which these three parameters (total duration, synchrony, and energy) have been modulated and compared in a systematic manner. The final goal was to identify an intuitive tactile code which boosts the accuracy of identifying the number of perceived stimuli. Two main hypotheses have been tested in the present study. First, we hypothesized that the tactile numerosity judgment is modulated by the stimulation synchrony. We expected that sequential electrotactile stimulation might lead to better performance. Second, based on the contributions of working memory and attention on perceptual decision-making, we hypothesized that the tactile numerosity judgment would be modulated by the total duration of the electrotactile stimulation (Curtis and D'Esposito, 2003; Wu and Liu, 2008).

Furthermore, in the present study we delivered the feedback on the shoulder and back whereas in prosthetics the feedback is usually administered to the residual limb in order to have a self-contained system (stimulation in the socket). As explained above, the ultimate application of this interface is in stroke patients, in whom the proximal areas are less affected by the sensory deficits. In addition, this arrangement meets several needs: for instance, it provides enough space to distribute the electrodes to achieve anatomically congruent representation of the fingers and palm. Furthermore, the successful integration of wearable systems in daily activities must also meet practical and social issues. The body region selected in the present study is readily accessible, does not obstruct any important function and can be easily hidden under clothing. Finally, the shoulder positioning also enables mimicking some social gestures such as tapping on the shoulder for guiding or alerting. To the best of our knowledge, the perception and discrimination of electrotactile stimuli applied to these areas have been rarely investigated compared to other more distal arm segments. For example, previous studies investigated electrotactile spatial acuity on the shoulder and on the back of the neck (Solomonow et al., 1977; Marcus and Fuglevand, 2009) but without focusing on enumeration task.

In summary, the aim of the present study was to determine how to manipulate temporal electrotactile stimulation parameters, such as Inter-Stimulus Interval (ISI) of sequential stimuli and/or duration of the stimulus application to the skin, to improve the numerosity judgment capability.



MATERIALS AND METHODS


Participants

Ten healthy participants (five males and five females) with no known cognitive or tactile deficits took part in the experiment as volunteers. Participants age ranged from 25 to 31 (mean age: 27 ± 2 years). All participants were naïve to the purpose of the study. The experiments were approved by the Region Liguria Ethical Committee (approval ID 172REG2016, approval date September 13, 2016).



Electrodes Placement

The electrotactile configuration included six electrodes placed on the right (dominant) shoulder and back as shown in Figure 1. In particular, four electrodes were distributed equidistantly (5 cm in between) on the backside of the shoulder along a horizontal line from the base of the neck to the end of the shoulder and two on the front side (one above and one below the collarbone). The inter-pad distance is well above the two-point discrimination threshold for electrical stimulation on the shoulder (Solomonow et al., 1977).


[image: Figure 1]
FIGURE 1. Electrotactile configuration showing the intuitive mapping between the fingers/palm and the electrodes' sites on the shoulder and back (A). Placement of the electrodes on the participants' body (B). Experimental set-up comprising a standard desktop computer (host PC) equipped with a Bluetooth Low Energy (BLE) module and a current-controlled multichannel electrotactile stimulator equipped with sixself-adhesive concentric electrodes (C).


Pulse width, frequency and amplitude were kept constant for the entire duration of the experiment. Specifically, the pulse width was set to 300 μs and the frequency to 100 Hz. This frequency was selected since previous studies demonstrated that it elicited a well-localized, continuous sensation (i.e., responses to individual pulses fused together) resembling constant pressure on the surface of the skin (Wang et al., 2013; D'Alonzo et al., 2014b, 2018; Xu et al., 2015; Štrbac et al., 2016).



Experimental Setup

The experiment was conducted in a normally illuminated and quiet room. Participants were comfortably seated on a chair in front of a table for the duration of the experiment. The experimental setup (Figure 1C) comprised the following components: (1) current-controlled multichannel electrotactile stimulator prototype WESP (produced by Global Electronics), which incorporates technology for time and space distribution of stimuli introduced by Tecnalia with the IntFES system (Malešević et al., 2012) and previously adapted for tactile feedback applications with MaxSens (Štrbac et al., 2016); (2) a set of six electrodes (CoDe 2.0 C, Spes Medica, Genoa, Italy, http://www.spesmedica.com); and (3) a standard desktop computer (host PC) equipped with a Bluetooth Low Energy (BLE) module for communication with the WESP prototype. The stimulation system generated current-controlled biphasic stimulation pulses with pulse intensity in the range of 0–100 mA (0.1 mA increments), pulse width from 50 to 500 μs and pulse rate between 1 and 400 Hz. The unit integrated 12 stimulation channels with individually and independently adjustable pulse width and amplitude, whereas the pulse rate was a global parameter common to all channels. In addition, the delay between a positive and negative pulse is fixed by the construction of the stimulator, and therefore it cannot be adjusted. The parameters could be set online by sending simple text commands to the stimulator. The stimulator was interfaced via Bluetooth to a portable laptop computer running a custom script within the MATLAB R2018a computing environment (MathWorks Inc., Natick MA). Six self-adhesive disposable electrodes were used to deliver the stimulation. Each electrode consisted of an inner circle and an outer ring arranged in a concentric configuration. The diameter of the inner circle was 10 mm while the outer diameter of the external ring was 30 mm with 5 mm of separation between the two; the thickness was about 1.5 mm (conductive pad: 1 mm, adhesive material: 0.5 mm). During the experiments, the participants were comfortably seated in an adjustable-height chair in front of a table and the stimulator unit was positioned on the arm fixed by an adhesive strip.



Temporal Encoding Schemes

In each trial, a predefined number of electrotactile stimuli (from 1 to 6) was presented to the subject by activating the selected number of electrodes, as described in the protocol (see Experimental Procedure). Four different electrotactile codes (Figure 2) were used to define the timing of electrode activation:


[image: Figure 2]
FIGURE 2. Temporal activation of electrodes in the four electrotactile codes with the time on the x-axis (ts = stimulation time) and the electrode state (0 – non-active, 1 – active) on the y-axis. In this example, six electrodes were activated.


Short Simultaneous Stimulation (SHS). The selected electrodes were activated concurrently for 60 ms.

Long Simultaneous Stimulation (LOS). The selected electrodes were activated concurrently for 660 ms.

Intermittent Stimulation (INT). The selected electrodes were activated concurrently three times for 20 ms with a fixed pause of 300 ms between successive activations.

Sequential Stimulation (SEQ). The selected electrodes were activated sequentially (one after the other) for 60 ms with a variable ISI that depended on the total number of electrodes to be activated (N).

[image: image]

The SEQ, INT, and SHS codes delivered the same amount of energy to each stimulation site. In this context, same energy means that in each trial the subject has received a tactile stimulus at the same level of perceived intensity (as explained in sections Threshold Estimation Phase and Equalization Phase) for the same amount of time (60 ms in SEQ and SHS, 3 × 20 ms in INT). SEQ, INT, and LOS had the same duration per single trial. LOS, INT, and SHS shared the same type of temporal activation (all the electrodes were activated at the same time) (see Figure 3).


[image: Figure 3]
FIGURE 3. Venn diagram showing differences and similarities (total duration, energy, and temporal synchrony) between the electrotactile codes. For example, the SEQ and the INT code differed only in temporal synchrony, while they have in common the total duration and the energy.




Experimental Procedure

The flow chart of the experimental procedure is shown in Figure 4. Each participant took part in four experimental sessions, one for each electrotactile code (SHS, LOS, INT, and SEQ), separated for at least 1 day and scheduled within 7 days. The order of the electrotactile codes was counter balanced across subjects to minimize training effects. Each session lasted about 40 min and comprised three phases: threshold estimation, equalization and tactile numerosity judgment task.


[image: Figure 4]
FIGURE 4. Flow chart of the experimental procedure. Subjects performed a set of four randomized sessions (one for each electrotactile code: SEQ -SHS-INT-LOS). Each session included three phases: a threshold estimation phase, an equalization phase and a tactile numerosity judgment task.


After positioning the electrodes, the goal of the threshold estimation and equalization phases was to adjust the stimulation intensity for each electrode across electrotactile codes in order to provide a well-perceivable and balanced localized sensation, below the discomfort threshold.


Threshold Estimation Phase

First, we estimated the detection threshold (DT) for the electrode 1 (see Figure 1) using a 1-up and 1-down staircase procedure, where the current amplitude is changed trial by trial according to the subject's response. Starting from a subthreshold current amplitude (0.5 mA), we automatically increased the amplitude, with a step-size of 0.1 mA, until the subject reported that he/she felt the stimulus. Each time the stimulus was detected, the current's intensity decreased by the same step-size. Response reversals, i.e., the points at which the subject response changed direction, were recorded. We stopped the procedure when we reached six response reversal, and the detection threshold was determined as the average of the amplitude values corresponding to the last four reversals. Finally, the amplitude for the electrode 1 was set to 3 × DT and kept constant during the experiments. This amplitude was selected based on a pilot study showing that it elicits a clear, comfortable and well-localized sensation. This amplitude was also adopted as the reference stimulus (RS) for electrode 1 (see next section).



Equalization Phase

The purpose of this phase was to adjust the stimulation amplitude across the other five electrodes so that the subject perceived similar intensity across all electrodes. To do so, participants performed five 2-intervals forced-choice (2IFC) tasks, one for each electrode from 2 to 6 considering that the amplitude of electrode 1 was determined in the previous phase. In the 2IFC discrimination task, two stimuli - the RS at one electrode (RSk, where k = 1,…,5 indicates the electrode number) and the test stimulus at a neighboring electrode - were presented one at a time in two successive intervals with an ISI of 1 second, and with the order of presentation varying randomly from trial to trial. The RS number k changed as a function of the number k of the 2IFC task (k from 1 to 5). The corresponding neighboring electrode for each 2IFC task was the electrode k + 1. In the first 2IFC, the RS was the electrode number 1 while the neighboring pad was the electrode number 2 (to be determined); in the second 2IFC, the RS was the electrode number 2 (whose amplitude was just been determined) and the neighboring pad was the electrode number 3 (to be determined) and so on. In each trial, participants had to report which interval contained the stronger stimulus. The current amplitude of the RS was kept constant, while the amplitude of the neighboring stimulus varied from trial to trial. The neighboring stimulus was initially set equal to a third of the reference one, and was increased or decreased in steps of 0.1 mA depending on participants' response. As in the threshold estimation phase, we stopped the procedure when six reversals were reached. After that, the experimenter activated the pads in sequence and, whenever necessary, small adjustments in current amplitudes were made.



Tactile Numerosity Judgment Phase

After the equalization phase, participants performed a tactile numerosity judgment task. In each trial, a random number of electrodes (from 1 to 6) was activated. For each number of electrodes, different activation patterns were chosen randomly among all the possible combinations. For instance, when 2 electrodes were activated, 15 combinations were possible (e.g., 2 and 5 or 1 and 3, and so on). Participants were asked to report how many tactile stimuli they felt (from 1 to 6) in each trial. Response accuracy rather than speediness was stressed. This phase comprised two blocks of 60 trials each with a 5-min break between the blocks. Each number of active electrodes (i.e., 1–6) was presented for 20 trials giving rise to a total of 120 trials. This phase lasted about 20/30 min. In each session, we have tested one of the proposed encoding schemes (SHS, INT, LOS, and SEQ).




Data Analysis

The three outcome measures were electrotactile intensity threshold, accuracy and deviation. The electrotactile intensity thresholds represent the current amplitudes that were perceived as equal across electrodes and electrotactile codes. The accuracy was defined as the percent success rate in identifying the number of presented stimuli. The deviation was defined as the difference, in terms of the number of electrodes, between the participant's response and the correct answer. The deviation allows identifying potential bias in estimating the number of electrodes (e.g., over/underestimation).

We used the Shapiro-Wilk test to assess the normality of the data distributions. Most outcomes' distributions violated the assumption of normality. Hence, we used non–parametric tests, namely Friedman tests as alternative to the repeated measures ANOVA and, when required, Wilcoxon signed-rank tests for post-hoc pairwise comparison (with false discovery rate correction).

Firstly, we measured the electrotactile intensity thresholds for each electrode and then we analyzed the extent to which this variable varies across the shoulder and back based on the electrode position and the electrotactile code. We applied two separate Friedman tests with stimulation code and electrode position as within subjects' factor, respectively.

Mean response accuracy and mean deviation were calculated for each number of active electrodes and each coding scheme. To test our first hypothesis that the subject ability to determine the number of tactile stimuli depends on the number of delivered stimuli, we used Friedman tests applied separately to accuracy and deviation with the number of active electrodes as within subjects' factor. Furthermore, to investigate whether the distance between electrodes might affect the performance, we also compared the accuracy across all the possible electrodes pairs. For instance, we could expect that closer electrodes (e.g., 1 and 2) might lead to a lower accuracy than farther electrodes (e.g., 1 and 4). Similarly, electrodes on the same side of the body (e.g., 1 and 4) might result in lower accuracy than electrodes on the opposite sides of the body (e.g., 1 and 6). Specifically, we ran a Friedman test with all the possible pairs as factor.

To test the second hypothesis that the tactile numerosity judgment is modulated by the coding scheme, we applied Friedman tests to accuracy and deviation with stimulation code as within subjects' factor. Moreover, to evaluate the strength of the obtained results in terms of the magnitude of the difference in the means scores of the groups, we estimated the effect size r for each Wilcoxon signed-rank test using the formula r = [image: image]. As for the interpretation of the effect sizes, we followed Cohen (Cohen, 1988). According to his guidelines, small, medium, and large effects correspond to r > 0.1, r > 0.3, and r > 0.5, respectively.

To investigate the interaction between the two factors, number of active electrodes and type of tactile code, we ran a Friedman test for each number of electrodes activated with the electrotactile code as within factor.

Results were also presented in the form of confusion matrices so that we could evaluate the overall performance and identify prevalent mistakes.

Statistical analysis was conducted in Python (Python Software Foundation). The threshold for the statistical significance was set to p < 0.05.




RESULTS


Current Amplitudes Across Electrodes and Codes

The distribution of electrotactile intensity thresholds was submitted to two Friedman Tests with electrodes location and electrotactile code as factors.

The first analysis revealed the main effect of the electrodes location on the current intensity (χ2 = 45.8, p < 0.001). Particularly, the distribution of current intensities indicated a progressive decrease when moving toward the shoulder. The intensity decreased even more on the frontal side (electrodes 5 and 6) suggesting that this side is significantly more sensitive compared to the back. Post-hoc analyses showed that the current intensity at each location differed significantly from all the others (p < 0.05, r > 0.7), except for the comparison 1–2 and 5–6 (see left panel of Figure 5).


[image: Figure 5]
FIGURE 5. Distribution of current intensities. The data is grouped by the electrodes location (left panel) and tactile code (right panel). The current intensities is visualized using boxplots, depicting the overall median (horizontal red line), interquartile range (box), maximal/minimal values (whiskers), and outliers (red crosses). The data is grouped by the electrodes location (left panel) and tactile code (right panel). Asterisks indicate statistical differences. *p < 0.05; **p < 0.01.


The results of the second Friedman test showed a main effect of the tactile code on the current intensity (χ2 = 15.3, p < 0.01). Post-hoc analyses revealed that the average current amplitude was significantly lower in LOS (2.14 ± 0.18 mA) compared to SHS (2.5 ± 0.21 mA), SEQ (2.5 ± 0.20 mA), and INT (2.76 ± 0.23; p < 0.05 and r > 0.75 in all cases). This means that lower intensities were required in LOS than in other codes. This result was expected since the effective duration of stimulation was 660 ms, which was much higher than that used in SHS, SEQ (60 ms), and INT (20 ms). No significant differences emerged between the other electrotactile codes (see right panel of Figure 5).



Numerosity Judgment Across Number of Active Electrodes

Accuracy data were submitted to a Friedman Test with the numerosity (six levels: from 1 to 6) as a factor and the analyses revealed a significant effect (χ2 = 48.21 p < 0.001). Particularly, accuracy decreased as the number of active electrodes increased. Post-hoc analyses showed that the accuracy at each level of numerosity differed significantly from all the others (p < 0.05 and r > 0.7 in all cases) (see Figure 6). When the number of active electrodes was 5 or 6, participants' responses were compatible with a chance performance (accuracy around 16%).


[image: Figure 6]
FIGURE 6. Distribution of accuracy (left panel) and deviation (right panel). The data is grouped by the number of active electrodes (from 1 to 6). Both the outcome parameters are visualized using boxplots, depicting the overall median (horizontal red line), interquartile range (box), maximal/minimal values (whiskers), and outliers (red crosses). The dotted red line in the accuracy's plot represent the chance level (16%). Asterisks indicate statistical differences. *p < 0.05; **p < 0.01.


Similarly, the deviation measures were submitted to a Friedman Test with the numerosity as a factor, and we found a significant main effect (χ2 = 50, p < 0.001). The underestimation increased with the number of active electrodes. Post-hoc analyses showed that the deviation at each level of numerosity differed significantly from all the others (p < 0.01 and r > 0.9 in all cases) (see Figure 6).

In addition, accuracy data were submitted to a Friedman test with all the possible pairs as factor and the analysis revealed that performance was uniform across all possible electrodes pairs (χ2 = 14.1 p = 0.44). This finding showed that the distance between electrodes was appropriate and that the configuration did not favor the recognition of a specific electrode pair.



Numerosity Judgment Across Electrotactile Codes

The Friedman test showed the main effect of the electrotactile code on the accuracy (χ2 = 22.72 p < 0.001). Post-hoc analyses revealed that the average accuracy was significantly higher in SEQ (57 ± 12%) compared to SHS (29 ± 5%), LOS (33 ± 7%), and INT (28 ± 7%; p < 0.05 and r > 0.97 in all cases). No significant differences emerged between the other electrotactile codes. However, we observed a trend toward higher accuracy in LOS compared to SHS (p = 0.063; see Figure 7).


[image: Figure 7]
FIGURE 7. Distribution of accuracy (left panel) and deviation (right panel). The data is grouped by the four feedback codes (SHS, SEQ, LOS, and INT). Both the outcome parameters are visualized using boxplots, depicting the overall median (horizontal red line), interquartile range (box), maximal/minimal values (whiskers), and outliers (red crosses). The dotted red line in the accuracy's plot represent the chance level (16%). Asterisks indicate statistical differences. *p < 0.05.


For the deviation, we observed a similar trend. Specifically, the electrotactile code significantly affected the deviation (χ2 = 21.36 p < 0.001). The average underestimation in SEQ (−0.389 ± 0.37) was significantly closer to zero compared to SHS (−1.28 ± 0.22), LOS (−1.03 ± 0.32) and INT (−1.25 ± 0.39; p < 0.05 and r > 0.91 in all cases). No significant differences emerged between the other electrotactile codes. However, the underestimation tended to be lower in LOS than in SHS (p = 0.055; see Figure 7).



Interaction Between Number of Electrodes and Electrotactile Codes

The four confusion matrices reported in Figure 8 describe the distribution of mistakes for each electrotactile code. A closer examination of the SEQ confusion matrix reveals that the entries just next to the main diagonal cells are generally the highest compared to those in the cells further from the main diagonal, suggesting a gradual accuracy degradation. This means that the participants were more inclined to misjudge the number of active electrodes by one at most. In other words, when the subjects were wrong the answers were not given randomly but they were generally close to the correct answer. This trend is less evident in the other three electrotactile codes, where participants reported they felt 2 or 3 stimuli even if the number of stimuli presented exceeded three. By comparing the sum of all entries in the triangle above the main diagonal and the one below the main diagonal, we confirmed that, in general, participants made more underestimation than overestimation mistakes. Furthermore, the correct answer was the most likely when 1–4 electrodes were activated sequentially. Instead, an underestimation of 1 electrode is most likely to happen when 5 and 6 electrodes are sequentially activated.


[image: Figure 8]
FIGURE 8. Confusion matrices for recognition of number of active electrodes for each electrotactile code (SHS, SEQ, LOS, and INT), the number inside the cells represent the sum of the ten subjects' results. The entries in the main diagonal cells represent the number of trials in which participants correctly enumerated the number of active electrodes. The entries off the main diagonal represent instead trials in which a wrong response was done. The cells in the triangle above the main diagonal represent the number of trials in which the subjects overestimated the number of active electrodes, while the cells in the triangle below the main diagonal represent the number of trials in which participants underestimated the number of active electrodes. The darker the blue color, the more likely it is the answer.


Results on the interaction between electrotactile code and electrodes number showed higher accuracy when using SEQ compared to SHS, LOS, and INT whenever 2–5 electrodes were activated. Similarly, the deviation in SEQ was lower compared to SHS, LOS, and INT whenever 3–6 electrodes were activated. Furthermore, we observed a significant difference between LOS, INT, and SHS when six electrodes were activated (described in detail in the Supplementary Materials).




DISCUSSION

This is the first study comparing three different tactile codes, i.e., simultaneous, intermittent, and sequential in a numerosity judgment task. The main finding of our study is that the sequential stimulation elicited a significantly higher accuracy in judging the number of activated electrodes compared to the simultaneous and intermittent condition. The general trend in all conditions was toward an underestimation of the number of activated channels, i.e., the perceived number of active channels was mostly three when more than three channels were actually active in the simultaneous and intermittent conditions, confirming the results of previous studies (Gallace et al., 2006; Riggs et al., 2006; Wang et al., 2018). However, this underestimation was significantly lower in the sequential condition. In fact, when the channels were sequentially activated the participants were able to perceive up to four stimuli with a good level of accuracy and they also made less mistakes when perceiving five and six stimuli. Importantly, the underestimation in our task cannot be due to a sensory funneling effect since the channels in our setup were farther apart than 2–3 cm (Von Spsycho-Acoustic, 1959). Therefore, our first hypothesis about the modulation effect of the stimulus synchronicity confirmed to be correct.

This result extends what is already known about the comparison between simultaneous and sequential stimulation in tactile discrimination tasks (Wentink et al., 2011; Boldt et al., 2014). Wentink and co-authors applied up to three simultaneous or sequential vibrotactile stimuli on the leg and asked participants to estimate number and location of stimuli. They found an advantage for the sequential condition. However, they used a different type of stimulus (i.e., vibration), a different body location and they imposed a lower maximum number of activated stimuli (i.e., 3). The last point seems to be a major limitation in numerosity judgment tasks because the previous studies have shown good estimation ability when up to three simultaneous stimuli were delivered (e.g., Gallace et al., 2006). Furthermore, there are also evidences that subjects can subitize up to three tactile stimuli administered on the hand (Riggs et al., 2006) suggesting that the numerosity judgment task starts to be more challenging when four or more stimuli are delivered. Notably, a similar behavior has been observed in the visual modality in which increasing the number of items above four produced larger response latencies and error rates (Atkinson et al., 1976). The fact that the sequential stimulation led to a better numerosity discrimination is consistent with the high temporal discrimination of tactile perception which might prefer serial information (Bach-y-Rita et al., 1969; Lechelt, 1975; Gallace et al., 2006), at least when compared to vision (Lechelt, 1975), also because few locations can be simultaneously processed by touch without strongly affecting the performance (Craig, 1985). Several theories have been suggested to explain this effect. Since the underestimation is evident also when stimulating very far body locations it might not be due to cutaneous masking (von Békésy, 1959; Alluisi et al., 1965) but to other phenomena such as central masking, limitations of spatial attention, or short-term memory (e.g., Miller, 1956; Alluisi et al., 1965; Fisher, 1984; Cowan, 2001; Hillstrom et al., 2002). In support of this hypothesis, we found no significant differences in performance considering different electrode pairs. In fact, if the cutaneous masking explanation was true, we would have expected a lower numerosity judgment accuracy when closer and/or same-side electrodes were activated. This was not the case and electrodes separated up to 18 cm were not discriminated better than electrodes separated by only 5 cm. Additionally, we remind that the minimum distance we used between channels was well above the two point discrimination threshold (Solomonow et al., 1977). Therefore, based on these data, as well as the observation from previous studies (e.g., Gallace et al., 2006), the underestimation in numerosity judgment seems to be due to an higher level phenomenon such as central masking or limitation of spatial attention. Hence, the accuracy improvement we observed in the sequential code might be due to the enhanced capacity in shifting the attention toward the sequentially activated spatial locations.

Interestingly, the two continuous and intermittent codes did not differ significantly. This result seems to be in contrast with a previous finding showing an advantage of the intermittent over the simultaneous stimulation (Gallace et al., 2006). However, Gallace et al. in their study compared a single burst of 200 ms to an intermittent stimulation composed of several 200 ms bursts in a 5 s time window. Therefore, their effect might be due to the perceptual facilitation in discriminating the number of tactile stimuli when judging a much longer temporal sequence of stimulation rather than to an intrinsic difference between tactile code used (e.g., simultaneous vs. intermittent). However, as compared to Gallace et al. we could not find an effect of stimulus duration in our numerosity judgment task. For instance, the performance in discriminating the number of active stimuli was not different in the short and long simultaneous codes. This might be simply due to the different temporal range in our studies. Our longest sequence is indeed much shorter than the longest sequence in Gallace's study (0.66 vs. 5 s). By contrast, in our study the stimulus duration significantly affected the electrotactile intensity thresholds, in fact, a lower current amplitude was necessary to provide the same tactile sensation when using the long simultaneous compared to the other codes. We have selected the duration in the present study considering the envisioned future applications of electrotactile feedback in sensory substitution. In this case, it is of interest to transmit a tactile message with a short delay so that the subject can react to the perceived feedback information with an appropriate control action. This seems to suggest that part of the mistakes in judgment might be due to the difficulty in counting the number of stimuli when brief sequences of stimulation are delivered. Therefore, our second hypothesis about the effect of total duration revealed to be false.

Another result of our study is that the energy per stimulation does not have an effect in numerosity judgment. In fact, we did not find a difference between long simultaneous and intermittent code which shared the same total duration and temporal synchrony but only differed in the energy per stimulation site. Similarly, the difference between sequential and intermittent codes which shared the same total duration and energy reinforces the idea that the relevant dimension explaining the effect is the synchrony/asynchrony of the stimulation.

Furthermore, the distribution of accuracy and deviation graph by varying the number of active electrodes showed the strong homogeneity among the subjects (highlighted by a very low variance). This result might allow us to predict the performance of a healthy subject during a numerosity judgment task depending on the number of active electrodes and, consequently, to define a baseline for the clinical campaign. There are several potential limitations in this study. One limitation might arise from the limited size of our sample. Nevertheless, to overcome this issue, further analysis relative to the effect size of the results were carried out. The main effects we found were ranging between “large” and “very large,” suggesting a high reliability of these findings. Thus, we believe that our results should not be strongly affected by the small sample size. Another limitation might arise from our choice to include only healthy and young participants in this study. The narrow age range of the participants was chosen to obtain results comparable with the previous literature. However, aging has been already proved to be a key factor in the perception of tactile stimuli (Cholewiak and Collins, 2003; Wickremaratchi and Llewelyn, 2006; Lin et al., 2015) and, for this reason, when repeating the same experiment in older people the results could be different. The performance could change even more in post-stroke patients considering their neurological and somatosensory deficits. Hence, future studies might want to validate our findings with stroke survivors. In this sense, the initial investigation in the present work was meant to define the necessary baseline to compare future results and to pave the way for more practical and clinically oriented experiments. Another limitation is the absence of training. An appropriate training may lead to better performance for a higher number of electrodes (Cohen et al., 2018) and reduce the gap of sequential vs. simultaneous codes. Furthermore, such training could be very useful in the clinical campaign with post-stroke patients because it could greatly improve the effectiveness of the re-mapping of the hand over the shoulder. Other limitations might arise from the fact that during the experiments the subjects did not know that it was a re-mapping of their hand over the shoulder and therefore we actually had not activated a real sensory substitution process. Therefore, in order to obtain more indicative results on the practical use of our approach, the association of the single electrode with a single finger should be specified during the experiments. Moreover, it could be interesting to investigate the intuitiveness of this sensory substitution interface analyzing the reaction time and ability in localizing the electrodes. These results will allow us to identify the locations of electrodes associated with a lower localization performance and will allow a subsequent adjustment of the position of the electrodes.

The ultimate objective of this research was to find out the best way to provide touch information using the electrotactile stimulation in order to facilitate the closed-loop control of goal-directed tasks in post-stroke patients. This feedback interface - encoding the hand shape - would be able to deliver information relative to the number of fingers involved in a grasping or pinching task. In particular, we investigated the ability of subjects to interpret the number of tactile stimuli delivered. The results allowed us to identify a tactile code, i.e., sequential stimulation, which could be used as a sensory substitution replacement of the hand over the shoulder in post-stroke patients. Each electrode can indeed represent a finger of a hand plus one more electrode for the palm. As demonstrated in the present study, this stimulation paradigm facilitates the subjects' ability to identify the number of active electrodes, which can improve the effectiveness of sensory substitution feedback.
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The adaptation to visuomotor rotations is one of the most studied paradigms of motor learning. Previous literature has presented evidence of a dependency between the process of adaptation to visuomotor rotations and the constrains dictated by the workspace of the biological actuators, the muscles, and their co-activation strategies, modeled using muscle synergies analysis. To better understand this relationship, we asked a sample of healthy individuals (N = 7) to perform two experiments aiming at characterizing the adaptation to visuomotor rotations in terms of rotations of the activation space of the muscle synergies during isometric reaching tasks. In both experiments, subjects were asked to adapt to visual rotations altering the position mapping between the force exerted on a fixed manipulandum and the movement of a cursor on a screen. In the first experiment subjects adapted to three different visuomotor rotation angles (30°, 40°, and 50° clockwise) applied to the whole experimental workspace. In the second experiment subjects adapted to a single visuomotor rotation angle (45° clockwise) applied to eight different sub-spaces of the whole workspace, while also performing movements in the rest of the unperturbed workspace. The results from the first experiment confirmed the hypothesis that visuomotor rotations induce rotations in the synergies activation workspace that are proportional to the visuomotor rotation angle. The results from the second experiment showed that rotations affecting limited sub-spaces of the whole workspace are adapted for by rotating only the synergies involved in the movement, with an angle proportional to the distance between the preferred angle of the synergy and the sub-space covered by the rotation. Moreover, we show that the activation of a synergy is only rotated when the sub-space covered by the visual perturbation is applied at the boundaries of the workspace of the synergy. We found these results to be consistent across subjects, synergies and sub-spaces. Moreover, we found a correlation between synergies and muscle rotations further confirming that the adaptation process can be well described, at the neuromuscular level, using the muscle synergies model. These results provide information on how visuomotor rotations can be used to induce a desired neuromuscular response.

Keywords: visuomotor rotations, motor adaptation, motor learning, muscle synergies, isometric reaching


INTRODUCTION

Adaptation to visuomotor rotations is one of the most widely studied paradigms of motor learning (Krakauer et al., 2000, 2019), and has been extensively discussed in the past three decades. Correlates of the processes contributing to visuomotor adaptations have been observed, directly or indirectly, in the primary motor cortex (Wise et al., 1998), the supplementary motor cortex (Mandelblat-Cerf et al., 2009), the premotor cortex (Perich et al., 2018), and the cerebellum (Della-Maggiore et al., 2009; Schlerf et al., 2012; Block and Celnik, 2013), in both humans and animal models.

Despite these neurophysiological insights, most of what we know regarding the functional processes contributing to visuomotor adaptation has been obtained through behavioral experiments (Krakauer et al., 1999, 2000, 2006; Bock et al., 2001; Hinder et al., 2007; Brayanov et al., 2012; De Marchis et al., 2018). These experiments have allowed to characterize adaptations, and, consequently, the control of voluntary movements, from several different points of view. Some studies have characterized how adaptations generalize (Shadmehr, 2004), either by transferring to similar untrained scenarios (Krakauer et al., 2006), or even to another limb (Sainburg and Wang, 2002) or by interfering with incompatible adaptations (Bock et al., 2001; Woolley et al., 2007). Other studies have been able to discern between the implicit and explicit components of the learning associated with the adaptation process (Taylor et al., 2014; Bond and Taylor, 2015). Moreover, the visuomotor adaptation paradigm has often been used to investigate which frame of reference, implicit (joint-based) or explicit (world-based) is employed when planning, executing and adapting movements (Krakauer et al., 2000; Brayanov et al., 2012; Carroll et al., 2014; Rotella et al., 2015). Most of these studies have investigated adaptations in terms of task performance or through their unraveling in the intrinsic space of joint coordinates or in the extrinsic space specific to the experimental set-up that was employed in the study.

A few studies have also investigated how motor adaptations are achieved in the space of the body actuators, the muscles. In these studies, visuomotor and force-field adaptations have been linked to the “tuning” of muscular activity (Thoroughman and Shadmehr, 1999; Gentner et al., 2013), consisting in perturbation-dependent rotations of the activation workspace of the muscles involved in the movement. Following the observation that complex movements can be described, at the neuromuscular level, by the combination of a limited number of muscular co-activation modules, generally referred-to as muscle synergies (D’Avella et al., 2003, 2006; Delis et al., 2014), a number of studies have also attempted to characterize motor adaptations in relationship to the muscle synergies structure (de Rugy et al., 2009; Berger et al., 2013; Gentner et al., 2013; De Marchis et al., 2018). Such studies presented mounting evidence that the underlying structure of neuromechanical control directly constraints the adaptation process (de Rugy et al., 2009), correlates with phenomena such as generalization (De Marchis et al., 2018), and even appears to dictate what kind of perturbations can be adapted for Berger et al. (2013).

Nevertheless, the functional link between the spatial characteristics of visuomotor rotations and the resultant adaptative tuning of the muscle synergies is still unclear. Therefore, the aim of this study is to systematically characterize the adaptation to visuomotor rotations in the muscle synergies space in order to identify exploitable relationships between the spatial characteristics of a perturbing visuomotor rotation and the resultant rotation in synergies activity during isometric reaching tasks.

To achieve these aims, we first investigated how different visuomotor rotation angles applied to the whole workspace during isometric reaching movements affect the rotation of all the synergies characterizing the neuromuscular control. The aim of this experiment was to confirm an untested hypothesis, derived from previous studies that employed only one perturbation angle (Gentner et al., 2013; De Marchis et al., 2018), that the tuning of synergies and muscles during adaptation is proportional to the angle of the perturbing visuomotor rotation. Then, in a second experiment we systematically tested the hypothesis that visuomotor rotations applied to sub-spaces of the whole movement workspace lead to differential rotations of the synergies, with synergy-specific rotation angles proportional to the spatial relationship between the workspace of each synergy and the sub-space affected by the perturbation.

The hypothesis behind this experiment was derived from our previous observation that the same visuomotor rotation angles applied to different subspaces lead to different rotation of the muscle synergies involved (De Marchis et al., 2018).

The results of the two experiments herein presented unraveled a selective tuning of the muscle synergies that is constrained, as expected, only to the synergies directly acting in the perturbed sub-space and that is proportional to the distance between the perturbed workspace and the workspace covered by each synergy. This proportionality allowed us to derive some generalizable observations on how synergies and muscles are tuned in response to specific visuomotor rotations. The results of this study can provide useful information on how visuomotor rotations can be used to design a desired neuromuscular output, by exploiting fixed relationships between the representation of movement in the neuromuscular space and the visual perturbations, with potential applications in adaptation-based movement training paradigms.



MATERIALS AND METHODS


Experimental Setup and Protocol

Seven healthy individuals (two females, age 26.7 ± 2.6) participated in this study. Each individual participated in two experimental sessions, performed in different days within the same week, each consisting of a series of isometric reaching tasks performed with their right arm. All the experimental procedures describe in the following have been approved by the Ethical Committee of University College Dublin and have been conducted according to the WMA’s declaration of Helsinki. All subjects gave written informed consent before participating to this study. Each experimental session was performed using the setup previously used in De Marchis et al. (2018). During all experimental procedures, the subjects sat in a chair with their back straight and their right hand strapped to a fixed manipulandum. Their right forearm was put on a support plan, their elbow was kept flexed at 90° and their shoulder horizontally abducted at 45° (Figure 1A), so that the manipulandum would be exactly in front of the center of rotation of their shoulder. The wrist and forearm were wrapped to the support plan and immobilized using self-adhesive tape. This was done to block wrist movements so that forces could be applied to the manipulandum only from the muscles acting on the shoulder and elbow, as in our previous experiment (De Marchis et al., 2018). The elevation of the chair was controlled so to keep the shoulder abducted at 100°. The manipulandum consisted of a metal cylinder of 4 cm of diameter attached to a tri-axial load cell (3A120, Interface, United Kingdom). Data from the load cell were sampled at 50 Hz. Subjects sat in front of a screen displaying a virtual scene at a distance of 1 m. The virtual scene consisted of a cursor, whose position was commanded in real-time by the x and y components of the force exerted on the load cell through the manipulandum, a filled circle indicating the center of the exercise space and, depending on the phase of the exercise, a target, represented by a hollow circle. Both the central and target circles had a radius of 1.3 cm, while the cursor had a radius of 0.25 cm.
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FIGURE 1. Experimental setup and procedures. (A) Graphical representation of the task that was employed in both experiments. Subjects kept their position consistent across all trials. The forearm was strapped to a support surface (not shown in the picture) and the hand was strapped to the manipulandum to avoid the use of the hand muscles during the task. Subjects were presented a virtual scene on a screen in front of them (1 m distance). The virtual scene consisted of a cursor, controlled in position by the force exerted on the manipulandum, and 16 targets, spaced 22.5° apart. (B) Protocol for Experiment 1. Subjects experienced a total of 19 blocks consisting of a normalization block (24 movements) and 3 macro-blocks of 6 block each, divided in baseline (BL, 1 block, unperturbed), adaptation (AD, 3 blocks, perturbed) and post-adaptation (PA, 2 blocks, unperturbed). Each block consisted of 48 movements. Each macro-block was characterized by a different clockwise (CW) rotation angle applied during the AD blocks (30°, 40° or 50°). In the AD blocks subjects experienced three repetitions of each target in a random order. The rotation was applied to all targets. (C) Protocol for Experiment 2. Subjects experienced a total of 25 blocks consisting of a normalization block (28 movements) and 8 macro-blocks of 3 block each, divided in baseline (BL, 1 block, unperturbed), adaptation (AD, 1 block, perturbed), and post-adaptation (PA, 1 block, unperturbed). The BL and PA block consisted of 48 movement. The AD block consisted of 106 movements. During the AD block the perturbation was applied to one target only (perturbed target, PT), while the mapping between force and cursor position was unperturbed for the other targets (unperturbed targets, UT). Each macro-block was characterized by a different perturbed target (among 8 different random targets, spaced 45° apart). Subjects first experienced the PT five times, then alternated between the PT and all the UTs in a random order for three times (for a total of 96 movements) and then concluded the block with five consecutive repetitions of the PT. (D) Graphical representation of the target order experienced during the AD phase of Experiment 2. In blue is presented the perturbed target (in this case N), in red the unperturbed ones.


Across all the blocks of the experiment subjects experienced a total of 16 different targets, positioned in a compass-like configuration at angular distances of 22.5° (Figure 1A) and at a distance of 9.5 cm from the center of the screen, equivalent to 15 N of force exerted on the fixed manipulandum (with the center of the virtual scene corresponding to 0 N).

The virtual scene and the exercise protocol were controlled using a custom Labview software. In both experiments, the subjects were asked to perform both unperturbed and perturbed movements, where the perturbation consisted of a clockwise visuomotor rotation affecting the mapping between the force exerted on the manipulandum and the position of the cursor shown on the virtual scene. The angle of the visuomotor rotation varied across the different experiments (see below). At the beginning of each experimental session subjects underwent a practice trial with the setup. In this trial (identical to the unperturbed baseline and post-adaptation trials present in both Experiment 1 and 2), subjects were asked to reach to the 16 targets in a randomized order three times, for a total of 48 movements. In all the trials the movement time was not restricted, and subjects were presented a new target only when the current target had been reached. However, subjects were instructed to reach the targets at a comfortable speed in a time not exceeding 1.5 s and were given negative feedback (consisting in the target turning red) if they took more than the expected time to reach for a target and positive feedback (consisting in the target turning green) if they reached the target in less than 1.5 s. A target was marked as reached as soon as the cursor hit the target, and subjects were not asked to maintain the cursor on the target after reaching it. Subjects were asked to bring the cursor back to the center of the screen as soon as they reached a target. These instructions were used for all perturbed and unperturbed reaching trials performed during both experiments, with the exclusion of the normalization blocks (see below). The design of both experiments, intended as the number of blocks and the number of movements subjects experienced in each block, was based on our previous results (De Marchis et al., 2018) and on unreported preliminary experiments.

Experiment 1 consisted of 19 blocks (Figure 1B). The first block consisted of a normalization block that was used to determine the average electromyographic (EMG) activity relative to eight reaching directions covering the whole workspace at angular intervals of 45°. During the normalization block subjects were asked to reach for each one of the eight targets (presented in a random order) and hold the cursor on the target for 5 s. Subjects repeated the reach-and-hold task three times for each target, for a total of 24 movements. The following 18 blocks were divided in 3 macro-blocks each constituted by 6 blocks. In each macro-block, subjects experienced 1 baseline block (BL), where they were asked to reach for all the 16 targets three times (48 total movements) without the visual perturbation. Subjects then experienced 3 adaptation blocks (AD1, AD2, and AD3) where they reached for all the 16 targets three times (48 total movements) while the visual perturbation was applied to the whole workspace. Finally, subjects experienced 2 post-adaptation blocks (PA1 and PA2), where they were asked to reach for all the 16 targets three times (48 total movements) without the visual perturbation. Each macro-block was characterized by a different visual perturbation angle during the AD blocks, equal to 30°, 40°, or 50°, in a random order. All 3 AD blocks of a macro-block were characterized by the same visual perturbation angle.

Experiment 2 consisted of 25 blocks (Figure 1C). The first block of Experiment 2 consisted of a normalization block, identical to the one experienced in Experiment 1. The following 24 blocks were divided in 8 macro-blocks each constituted by 3 blocks. During each macro-block subjects experienced a BL identical to the one experienced during Experiment 1 (48 unperturbed movements, 3 per target in a random order). Then subjects experience an adaptation block AD, consisting of 106 reaching movements, where a 45° visual perturbation was applied only to one target, while the virtual scene was unperturbed for the other 15 targets (Figures 1C,D). Subjects were first asked to reach for the perturbed target five times, then they were asked to reach for all the 16 targets (including the perturbed one) three times, each repetition interspersed by a single repetition of the perturbed target. Thus, each reaching movement to one of the 16 targets, presented in a random order, was followed by a movement to the perturbed target. Subjects in this phase alternated perturbed and unperturbed movements except for when the perturbed target was interspersed with itself, where they experienced 3 consecutive perturbed targets. Subjects concluded the block by experiencing the perturbed target five consecutive times. In total, during the AD block, subjects performed 45 unperturbed and 61 perturbed movements (an example of the order of perturbed and unperturbed targets in the AD block is presented in Figure 1D). The design of this block allowed for evaluating how adapting for a perturbation acting on one single target affected also the reaching to the unperturbed targets. At the same time, this experimental design counteracted the forgetting effect that reaching for unperturbed targets has on the adaptation process. Each of the 8 macro-blocks was characterized by a different perturbed target during the AD block. After the AD block, subjects experienced a single PA block, identical to the ones experienced during Experiment 1. The perturbation was applied to 8 targets covering the whole workspace at angular intervals of 45° (Figure 1C). The order of the perturbed target, and thus of the macro-blocks, was randomized.



Analysis of Reaching Movements

Data from the load cell were filtered using a low-pass filter (Butterworth, 3rd order) with cut-off frequency set at 10 Hz. Changes in the force trajectories during the different phases of both experiments were characterized using the initial angular error (IAE) metric. The IAE was calculated (Figure 2) as the angle between the straight line connecting the center of the workspace with the intended target and the straight line connecting the center of the workspace with the actual position of the cursor at 2.6 cm from the center (equivalent to 4 N of force exerted) during each movement. This distance was selected based on the data-driven observation (Figures 3A–C, 4A) that subjects started compensating for the IAEs only after about half of the movement trajectory (equivalent to 7.5 N), thus the metric allows to capture a point in time where the subject is “committed” to the movement but has not yet started compensating for the initial shooting error. In the analysis of Experiment 2, we analyzed the IAE metric as a function of the distance between the target analyzed and the perturbed target. In this analysis, we pooled together the data relative to the AD phase of each macro-block and we calculated the average (across macro-blocks and subjects) IAE for each target as a function of their angular distance from the perturbed target. Moreover, we analyzed the behavior of the IAE metric both for the repetitions of the perturbed target only and for the repetitions of its 4 (two clockwise, two counterclockwise) closest targets.
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FIGURE 2. Performance metrics for reaching in both experiments. The initial angular error was calculated, for each movement repetition, as the angle between the optimal, shortest, straight trajectory and the actual trajectory at 2.6 cm from the center of the workspace.
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FIGURE 3. Force trajectories and initial angular error (IAE) results for Experiment 1. Each panel presents the results for a different perturbation angle [(A) for 30°, (B) for 40°, and (C) for 50°]. Each panel presents, on the top plot, the average (across subjects and repetitions) force trajectories for the last five movements of BL, the first five movements of the first block of AD (AD1), the last five movements of the last block of AD (AD3), and the first five movements of the first block of PA (PA1). The bottom plot presents the average (across subjects) values of IAE for each movement across all blocks. The two vertical gray lines represent the onset and offset of the visual rotation. Horizontal red dotted lines represent the angle of the perturbation.
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FIGURE 4. Force trajectories and initial angular error (IAE) results for Experiment 2. (A) Force trajectories for the last five movements of each target during AD, for each perturbed target. Trajectories for the perturbed target are in red. (B) Average values of IAE for the last five movements of each target during AD, for each perturbed target (indicated by a red circle). Each pie chart presents the average across all subjects. (C) Distribution of average (across subjects and targets) IAE values for the last five repetitions of each target grouped with respect to the distance between the target and the perturbed one (were 0 indicates the perturbed target itself). (D) Average (across subjects) IAE values for all the perturbed targets across all the repetitions of the AD block. During the first and last five repetitions the perturbed target is presented continuously, while in the middle section of the experiment (denoted by the two vertical gray dashed lines) the perturbed targets are presented interspersed with all the other targets. (E) Average (across subjects) IAE values of the 4 targets between –45° and 45° of the perturbed one, in order of occurrence (12 total occurrences).




EMG Signal Recording and Processing

EMG signals were recorded, during both experiments, from the following 13 upper limb muscles: Brachioradialis (BRD), Biceps brachii short head (BSH), Biceps brachii long head (BLH), Triceps brachii lateral head (TLT), Triceps brachii long head (TLN), Deltoid Anterior (DANT), Medial (DMED) and Posterior (DPOST) heads, Pectoralis Major (PM), Inferior head of the Trapezius (TRAP), Teres Major (TMAJ), and Latissimus Dorsi (LD). EMG signals were recorded through a Delsys Trigno system (Delsys, United States), sampled at 2000 Hz and synchronized with the load cell. EMG signals were first filtered in the 20 –400 Hz band by using a 3rd order digital Butterworth filter. The envelopes were then obtained by rectifying the signals and applying a low pass filter (3rd order Butterworth) with a cut-off frequency of 10 Hz. Before muscle synergies extraction, all the envelopes were amplitude normalized. The normalization was done with respect to the subject- and session-specific reference values calculated from the normalization block. During the normalization block, subjects reached three times to 8 targets spaced at 45°. The target associated with the maximal activation of each muscle was identified. The reference normalization value for each muscle was calculated as the average peak envelope value across the three repetitions of the target maximizing the muscle’s activity.



Semi-Fixed Synergies Model and Synergy Extraction

In the muscle synergies model, a matrix M containing s samples of the envelopes obtained from the EMGs recorded from m muscles is decomposed, using the non-negative matrix factorization (NMF) algorithm (Lee and Seung, 2000), as the combination of n muscle synergies M ≈ W ⋅ H, where W represent a matrix of m ⋅ n synergy weights and H represents a matrix of n ⋅ s synergy activation patterns.

We and others have shown (Gentner et al., 2013; De Marchis et al., 2018; Zych et al., 2019; Severini et al., 2020) that adaptations to perturbations in several different tasks are well represented by the changes in the activation patterns H of fixed sets of muscle weights W extracted by applying the NMF algorithm to sets of EMG signals recorded during unperturbed versions of the tasks under analysis. This analysis is usually performed by altering the NMF algorithm by fixing the values of W while allowing the update rule of the NMF algorithm to modify only the values of H. The validity of the fixed-synergies model is often evaluated by showing that the EMG reconstructed using the fixed set of W and the new H can capture the variance of the data up to an arbitrary satisfactory level of a performance metric (e.g., 90% of the variance accounted for).

There are some conceptual and technical limitations to the fixed-synergies approach. In first instance, this model requires that the muscle synergies are fully represented, at the neurophysiological levels, by the matrix W, which hard codes the relative activations of the different muscles relative to each synergy module. Even if the neurophysiological muscle synergies were consistent with this spatially fixed synergistic model [rather than, e.g., a dynamic synergy model such as the ones described in D’Avella et al. (2003) and (Delis et al., 2014)], it is unlikely that the relative activation of the different muscles would be hard-fixed, but rather “stabilized” by the neurophysiological substrates encoding the synergies. We found, in fact, that single muscular activations can be altered, within the synergies, depending on task demands (Zych et al., 2019).

Moreover, a technical limitation of the standard fixed-synergies approach lies in the fact that EMG recordings can undergo changes in conditions during a recording session (e.g., sweat during long tasks can alter the signal-to-noise ratio of a channel) and between recording sessions, thus by fixing the relative weights between the muscles we may lose variance in the reconstructed data caused by exogenous, rather than endogenous, changes in the EMGs. For these reasons we here employed a semi-fixed synergies model. In this model, the synergy weights WBL extracted during an unperturbed baseline task are used to determine the range over which the single muscle contributions to the synergy weights extracted during adaptation can vary. Specifically, given:
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With [image: image] and [image: image], respectively, the synergy weights and activation patterns extracted by applying, for each subject, the NMF algorithm on a reference (unperturbed) dataset, with the matrices [image: image] and [image: image] appropriately scaled so that 0<  [image: image]<1, and given a weight tolerance δ, indicating the variability allowed around the values of [image: image] during the extraction of the muscle synergies for the adaptation/post-adaptation conditions, the semi-fixed synergies model bounds the results of the standard multiplicative update rule of the NMF on the weights so that:
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Thus, in the semi-fixed synergies model, the weights of the muscle synergies extracted during the different experimental phases are not fixed but bounded around the values of the weights extracted during the reference part of the dataset. The values of [image: image] are left completely free to change, as in the fixed-synergies model. In the semi-fixed model most of the variability of the data between a baseline and an adaptation/post-adaptation condition is described by changes in the synergy activation patterns, while a smaller part of such variability is ascribed to changes in the weights.

In all our subsequent analyses, the value of δ was fixed to 0.1, meaning that the weights of the individual muscles in a synergy were allowed a 10% variability in the positive and negative directions with respect to their values in the reference synergy weights. This value was chosen to capture the variability of the muscular weights in a context (isometric movements in a fixed posture) where small variability is expected. In the analysis of Experiment 1, the reference WRef was calculated from the data pooled from the BL blocks relative to the 3 macro-blocks. The EMG envelopes calculated from each BL block were concatenated in temporal order and then smoothed using a 4-points average filter, in order to avoid hard transitions between the data of the different BL blocks. Similarly, in the analysis of Experiment 2 the reference WRef was calculated from the data pooled from all the 8 BL blocks relative to the 8 different macro-blocks, following the same procedure as for Experiment 1.

After the extraction of the reference synergies, the semi-fixed W and H were extracted from all the experimental blocks of both experiments (including the BL ones) using the procedure previously described. In all our analyses, the number of muscle synergies extracted was fixed to 4. This number of synergies was found by us and others (Berger et al., 2013; Gentner et al., 2013; De Marchis et al., 2018) to well represent the variability of the upper limb muscular activations during planar isomeric reaching movements. Moreover, the four synergies have been shown to have distinct activation sub-spaces [as determined by the root mean square (RMS) of the activation of each synergy relative to each target, see later] that heterogeneously cover the whole planar workspace, with each synergy spanning approximately 90° (De Marchis et al., 2018).

We evaluated the quality of the envelope reconstruction obtained in each block by calculating the R2 between the original envelopes and the envelopes obtained by multiplying WExp and HExp. To assess for statistically significant differences in R2 across the different blocks we employed ANOVA for comparing the average (across macro-blocks) R2 obtained in each block, for both experiments. Finally, in order to justify subsequent group analyses on the synergy activations, we evaluated the similarity between the WRef extracted from each subject using the normalized dot product. In order to do so, we calculated, for each subject, the similarity between the WRef matrix of the subject and the WRef matrices of all the other subjects and then averaged it, so to obtain a subject-specific similarity measure.



Synergy and Muscle Rotation Analysis

Previous works have shown that adaptations to visuomotor rotations during planar isometric movements are well described by rotations of the sub-spaces where the different synergies and muscles are active in the overall workspace (Gentner et al., 2013; De Marchis et al., 2018). Here we employed the same analysis in both experiments in order to characterize how adapting to different perturbation angles (Experiment 1) and in different sub-spaces (Experiment 2) modifies the activation patterns of the muscle synergies. In order to do so we first estimated the workspace covered by each of the synergies in each experimental block.

This was done by: (i) segmenting the H matrix calculated for each block by extracting the sub-portion of H relative to the center-out phase of each reaching movement, from the instant when the target appeared on screen to the instant when the target was reached; (ii) calculating the RMS of the H for each reaching movement; (iii) averaging the values of RMS across the different repetitions of each target in a block. For all blocks (BL, AD, and PA of each macro-block) in Experiment 1 and for the BL and PA blocks in Experiment 2 the average was calculated across all three repetitions of each target. For the AD block of Experiment 2, the RMS values relative to the unperturbed targets were also averaged across all three target repetitions in the block, while those relative to the perturbed target (which the subjects experienced 61 times in the training block) were averaged across the last three interspersed repetitions that they experienced in the block before the final five continuous ones. This choice was suggested by the results obtained while analyzing the biomechanical characteristics of adaptation in Experiment 2 (Figure 4D), that showed that subjects had reached adaptation during the final part of the interspersed trials, while still showing the influence of the presence of the non-perturbed trials.

We then calculated the preferred angle spanned by the activation pattern of each single synergy in the workspace (D’Avella et al., 2006). Preferred angles were calculated from the parameters of a cosine fit between the average RMS of each synergy activation and the corresponding target position. RMS values were fitted using a linear regression in the form: RMS(θ)=β0 + β1cos⁡(θ) + β2sin⁡(θ). The preferred angle of the fit was then calculated from the fitting parameters as θ=tan−1(β2/β1). Only preferred angles calculated from significant (p < 0.05) fittings were used in subsequent analyses. In both experiments we evaluated the difference in preferred angles between the BL blocks and the different AD and PA blocks. We refer to these differences as the rotations in preferred angles, or tunings, due to the adaptation process.

In Experiment 1, we analyzed the rotation of each synergy for each subject during all the AD and PA blocks of each macro-block. Moreover, we also evaluated the rotation of the average (across subjects) RMS(θ) of each synergy at AD3 for all three perturbation angles.

In Experiment 2, in each macro-block, we analyzed the rotation of each synergy of each subject for each perturbed target during AD. We grouped the rotations relative to the adaptations to the different perturbed targets depending on the angular distance between the perturbed target and the preferred angle of each synergy. We did this both across all perturbed targets and synergies and for each perturbed target singularly by ranking the synergies from the closest to the furthest to the perturbed target in terms of absolute angular distance with the synergy preferred angle.

Finally, as a validation of our approach, we calculated the preferred angles also for each of the 13 muscles and then calculated the rotations that these preferred angles incurred between BL and AD3 in Experiment 1 and between BL and AD for Experiment 2, using the same procedures we employed for the synergies activation patterns (see earlier in this paragraph). We then assessed if the rotation of the single muscles correlated with the rotation of the synergies to which they contribute. A muscle was considered as contributing to a synergy if its weight in the synergy was above 0.25 (De Marchis et al., 2015) where, in our model, the maximum value that a muscle can have in a synergy is 1. We evaluated the correlation using Pearson’s coefficient, applied to the data pooled across subjects, synergies and experiments.



RESULTS


Force Trajectories

The results on the analysis of the force trajectories and the IAE metric for Experiment 1 followed closely the results obtained in literature in similar experiments (Krakauer et al., 1999, 2000; Wigmore et al., 2002; Gentner et al., 2013). Across the three perturbation angles, we found that subjects, on average, presented increasing values of IAE with increasing perturbation angles in the first movement of the first AD block (26.9 ± 15.3°, 33.0 ± 14.0°, and 55.4 ± 9.7° for the 30°, 40°, and 50° perturbations, respectively) and they were subsequently able to adapt and come back to a smaller IAE (<7° on average in the last five movements of each AD3 block for all three perturbations) through the repetitions of the different movements in the three AD blocks (Figures 3A–C). The adaptation exhibited an exponential behavior.

In Experiment 2 we found that subjects were able to adapt their force trajectories to perturbations applied to a single target (Figure 4A). Subjects were able to minimize the IAE metric for the trained target, and this was mirrored by an IAE opposite to that induced by the perturbation in the adjacent, unperturbed, targets (Figure 4B). We found that targets positioned both clockwise and counterclockwise with respect to the perturbed target were affected by the adaptation and presented rotations opposite in direction with respect to the angle of the visual perturbation (Figure 4C). Targets positioned clockwise with respect to the perturbed target presented substantial counter-rotations up to about 120° of angular distance to the perturbed target, while the same effect was present counterclockwise only up to about 70° of angular distance (Figure 4C).

At the temporal level, the perturbed targets first exhibited a decrease in IAE metric during the five continuous movements at the beginning of the AD trial (Figure 4D). The average values of IAE increased as subjects began to experience the unperturbed targets interspersed with the perturbed one. Nevertheless, they were able to compensate for the presence of the unperturbed targets and reached an average value of IAE < 10° by the end of the interspersed phase. They were finally able to reach an IAE value close to 0° during the last five continuous perturbed movements. On the other hand, the 4 45°-adjacent targets (two clockwise and two counterclockwise) presented a constant average IAE value (about 25° of counterclockwise rotation) across their 12 repetitions (3 per target), indicating that the effect of the adaptation for the perturbed target over the unperturbed ones was maintained constant over the AD block (Figure 4E).



Synergy Extraction

Consistently with what we previously showed (De Marchis et al., 2018), we found that four synergies can well represent the activity of all the muscles during both experiments. The four synergies were distinctly distributed in the different quadrants of the workspace and presented consistent preferred angles across the different subjects. In the following the preferred angles will be indicated using the W target (in a compass rotation) as 0° and increasing angles following a clockwise direction (thus, e.g., target N is equal to 90°, E to 180°, and S to 270°). The workspace will be referenced to by using the terms far and close for the upper and lower parts and medial and lateral for the left and right parts of the workspace, using the right arm as reference (Figures 5A,D).
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FIGURE 5. Muscle synergies extracted using the semi-fixed algorithm for both experiments. (A,D) Baseline synergy weights (average and standard deviations across subjects) and activation workspaces (represented by the irregular polygons, where each vertex of each polygon represents the RMS of the synergy for a given target, each represented by the hollow black circle). The preferred angles are also shown for each synergy as lines spanning from the center of the space (bold line represents the average across subjects, shaded areas represent the standard deviation). (B,E) R2 of reconstruction for the synergies extracted from each block using the semi-fixed algorithm. Blue dots indicate the values of each individual subjects (averaged across macro-blocks), bars and whiskers indicate the average across subjects and the standard deviation. (C,F) Similarity of baseline synergies across subjects. Each dot represents the average similarity between one subject and all the other subjects. Bar and whiskers indicate the average across subjects and the standard deviation.


The synergies will be referenced-to using the color-coding of Figure 5. The red synergy was characterized by the activation of the elbow flexors and was active in the close-medial quadrant of the workspace. This synergy presented a preferred angle of 305.1 ± 17.3° for Experiment 1 and 307.1 ± 12.9°for Experiment 2. The green synergy was characterized by the activation of the deltoids (medial and anterior), pectoralis and trapezius and was mostly active in the far-medial quadrant of the workspace. This synergy presented a preferred angle of 26.9 ± 15.0° for Experiment 1 and 31.7 ± 7.1° for Experiment 2. The azure synergy was characterized by the activation of the triceps, deltoid posterior and infraspinatus and was mostly active in the far-lateral quadrant of the workspace. This synergy presented a preferred angle of 130.4 ± 12.4° for Experiment 1 and 131.6 ± 14.1° for Experiment 2. The yellow synergy was characterized by the activation of the LD and TMAJ and was mostly active in the close-lateral quadrant of the workspace. This synergy presented a preferred angle of 217.3 ± 14.4° for Experiment 1 and 206.8 ± 15.1° for Experiment 2 (Figures 5A,D).

The four synergies were able to well describe the variability of the data for the reference datasets (obtained, in both experiments, by pooling together the data of the BL blocks). We observed an average (across subjects) R2 of 0.86 ± 0.04 for the reference synergies extracted during Experiment 1 and an average R2 of 0.84 ± 0.05 for the reference synergies extracted during Experiment 2. When analyzing the average (across subjects and macro-blocks) R2 for the different experimental blocks as reconstructed using the semi-fixed synergies algorithm from the reference synergies, we found that the R2 values were above 0.8 for all blocks in Experiment 1 (Figure 5B). Moreover, we did not observe statistically significant differences in the R2 values among the different blocks (p = 0.98, ANOVA 1-way). The same results were observed also for Experiment 2 (Figure 5E), were the data reconstructed using the synergies extracted using the semi-fixed approach maintained an average (across subjects and macro-blocks) R2 > 0.8, with no statistically significant differences across the different blocks (p = 0.99, ANOVA 1-way).

Finally, we analyzed the across-subjects similarity between the reference baseline synergies calculated for each subject. We found an average similarity of 0.77 ± 0.04 for Experiment 1 and of 0.81 ± 0.04 for Experiment 2, indicating that subjects have similar synergies among them in both experiments.



Synergies Rotations

In this analysis, we evaluated how the workspace spanned by the activation patterns of each synergy changed during the different adaptation exercises. In Experiment 1 we found that, for all three perturbation angles, the synergies rotate almost solitarily (Figure 6A) by angles close to the one of the visual perturbations (Figures 6B–D). These results are in line with what presented in Gentner et al. (2013), where the author showed that a 45° visual rotation induces a rotation of the activation pattern of the synergies close to 45°.
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FIGURE 6. Synergies rotations for Experiment 1. (A) Average (across subjects) RMS(O) of synergies activations for each target for BL (solid lines) and AD3 (dashed lines) for all three perturbation angles. (B) Average synergies rotation, with respect to their preferred angles at BL, for each block in each macro-block. Individual dots represent the data for each subject, as average rotations of all the four synergies. Bars and whiskers represent the average and standard deviation across subjects. The dashed gray lines represent the angle of the visual rotation. (C) Rotations at AD3 for each synergy in each macro-block, calculated from the average (across subjects) intensity of synergy activation (A). (D) Rotations at AD3 for each synergy in each macro-block calculated for each single subject (dots). The horizontal lines indicate the median rotation across subjects.


We analyzed the average (across synergies) rotation of the synergy workspace for each subject in each block (Figure 6B). Here we observed that subjects, across the three perturbations, appear to increase their average synergy rotation after the first block and achieve maximal rotation in the 3rd (30° perturbation) or 2nd (40° and 50° perturbations) block of adaptation. Subjects do not appear to show an after-effect in the synergies, but rather a small residual rotation. This result is expected and was previously observed in another adaptation study (Zych et al., 2019) and indicates that biomechanical after-effects such as the ones observed in Figure 3 arise from the utilization of the adapted synergies in the unperturbed space.

For the rotations calculated from the average (across subjects) synergy RMS(θ) at AD3 (Figure 6C), we found rotations spanning from 24.6° (yellow synergy) to 32.5° (red synergy) for the 30° perturbation, 31.4° (azure synergy) to 40.4° (green synergy) for the 40° perturbation and 41.3° (azure synergy) to 43.4° (red synergy) for the 50° perturbation. We found similar results for the rotations calculated from the data of each single subject (Figure 6D), although subjects exhibited high variability among them for each combination synergy/perturbation-angle. We observed a range of median rotations spanning from 21.9° (yellow synergy) to 26.6° (red synergy) for the 30° perturbation, 35.5° (yellow synergy) to 36.8° (green synergy) for the 40° perturbation and 43.3° (green synergy) to 46.6° (red synergy) for the 50° perturbation.

In Experiment 2 we tried to characterize how the different synergies rotate when only a sub-space of the workspace is perturbed. An initial visual analysis of the average (across subjects) synergies RMS(θ) at BL and AD (Figure 7) sparked two initial observations: (i) only the synergies involved in the reaching to the perturbed target are rotated in the adaptation process; (ii) synergies whose preferred angle is close to the angle of the target being perturbed are not rotated. These two observations are equivalent to the observation that synergies are rotated only if engaged at the boundaries of their activation workspace.
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FIGURE 7. Synergies rotations for Experiment 1. Average (across subjects) RMS(6) of synergies activations for each target for BL (solid lines) and AD (dashed lines) for all perturbed targets. In the AD block, for the unperturbed targets the values are calculated from all three repetitions of each target, while the values for the perturbed targets are calculated from the last three repetitions during the interspersed phase of the block (see Figures 1D, 4D).


The analyses of the synergy rotations of the single subjects confirm this observation. We observed that each synergy is maximally rotated during the adaptation to the perturbed target that is approximatively 90° clockwise with respect to the preferred angle of the synergy at baseline (Figure 8A). This observation is true for all four synergies, although they seem to exhibit different degrees of “sensitivity” to the adaptation process. In this regard, the azure synergy is only rotated for perturbed targets that are 45°–120° clockwise with respect to the synergy preferred angle and the yellow synergy exhibits small values of rotation during almost all adaptation blocks. The analysis of the rotations for the four synergies pooled together further confirms the original observation (Figure 8B) and shows that the rotation of the synergies is close to 0° when the preferred angle of the synergy is very close (<20°) to the perturbation angle. The rotation then increases in the clockwise direction reaching a maximum of about 20° at about 90° of distance between the perturbation angle and the synergy preferred angle and decreasing afterward. In the counterclockwise direction, we observed an increase in rotation up to about a distance of 60° and inconsistent results afterward.
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FIGURE 8. Synergies rotations for Experiment 2. (A) Average (across subjects) rotation for each synergy (color-coded) and for each perturbed target. Each shaded segment of each polar plot represents the average rotation relative to a perturbed target, while the lines represent the standard deviation. The darker circle represents the direction of the preferred angle for each synergy at BL. (B) Distribution of average (across subjects, targets, and synergies) synergy rotation values as a function of the distance between the synergy preferred angle and the perturbed target. Bars represent averages, whiskers standard deviations. (C) Synergies rotations for each macro-block after ordering the synergies from the closest to the perturbed target to the furthest. Individual dots represent the rotation of each single synergy (56 total dots, 8 targets times 7 subjects). Horizontal lines represent the median across all the individual values.


As an additional analysis we ranked, for each perturbation angle, the synergies from closest to furthest in absolute angular distance to the perturbed target (Figure 8C). We observed, once again, that synergies closer to the perturbation angle exhibit the smallest rotation, while higher rotations are observed in the second and third closest synergies. In this analysis, it is also possible to notice the high variability exhibited by the rotations. This variability may be inherent to the phenomenon observed or derived from the methodology employed, where raw data are first factorized, then segmented and then fitted to a cosine fit, with each passage potentially introducing additional variability.

In order to validate our approach of analyzing adaptations in the synergies, rather than muscular, space, we analyzed how the single muscles rotate, on average, in both experiments. In Experiment 1, we found (Figure 9A) that the average rotation of the muscles increased with the perturbation angle, with average values across subjects equal to 24.6 ± 4.6, 29.6 ± 3.8, and 41.3 ± 3.5 for the 30°, 40°, and 50° perturbations, respectively. In Experiment 2, we once again analyzed the relationship between the muscle rotation and the distance between the baseline preferred angle (of the muscles in this case) and the angle of the perturbation, in a homolog of the analysis presented in Figure 8B. We found (Figure 9B) that muscular rotations held a behavior consistent with that observed in the synergies (Figure 8B) by which muscles with preferred angles close to the perturbed targets are not rotated during the adaptation, while rotations increase in the clockwise direction up to a maximum distance of about 90°–110°. Counterclockwise we observed rotations only for angular distances between the preferred angle and the perturbation that are smaller than 60°, as in the synergies analysis. Finally, we compared the rotations of the single muscles with the rotation of the synergies to which those muscles contribute to. In this analysis (Figure 9C). we observed a moderate significant linear correlation between the rotation of the synergies and of the muscles, characterized by a value ρ = 0.57. We found that the angular coefficient of the line better fitting the data was equal to 0.59, indicating an overall underestimation of the rotation in the synergy-based analysis, that appears to depend mostly from an underestimation of negative rotations.
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FIGURE 9. Comparison between synergies and muscle rotations. (A) Average (across muscles) rotation of the muscles at AD3 for all three macro-blocks of Experiment 1. Individual dots represent the average value for each subject in each experiment. Bars and whiskers represent the average and standard deviations across subjects. Muscle rotation was calculated using the same procedure employed for the calculation of the synergy rotation. (B) Distribution of average (across subjects, targets and muscles) muscles rotations values as a function of the distance between the preferred angles of the muscles and the perturbed targets for Experiment 2. Bars represent average values, whiskers standard deviations. (C) Synergies rotations over the rotations of the muscles contributing to each synergy (data of both experiments pooled together). A muscle was considered to contribute to a synergy if its weight in the synergy was above >0.4. The solid black line represents the linear fit between synergies and muscles rotations (values of the fit are presented in the plot, together with the p coefficient). The dotted line represents the fit relative to a perfect correspondence between muscles and synergies rotations.




DISCUSSION

In this study, we sought to investigate how adaptations to visuomotor rotations are achieved in the neuromuscular space. We studied how muscular co-activations, modeled using muscle synergy analysis, are modified when different angular rotations are used to perturb the mapping between the force exerted and the visual feedback provided to the individuals during isometric contractions.

Specifically, we investigated how different rotations angles applied to the whole workspace and the same rotation applied to small sub-spaces modify the activations of the synergies. In our analysis we were particularly interested in identifying generalizable behaviors that could be potentially used to model the effect of a given visual perturbation on the neuromuscular control.

We found strong evidences supporting the observations that muscular activations and their synergistic homologs are tuned proportionally to the perturbation angle (Figures 6, 9A) and only when engaged at the boundaries of their workspace (Figure 7), and with an angle proportional to the distance between the perturbed sub-space and the preferred direction of the muscle/synergy (Figures 8, 9B). Our analysis shows that such behaviors are consistent whether analyzing muscular or synergies activations (Figures 9B,C), further strengthening the argument that synergies analysis can simplify the description of adaptations to visuomotor rotations (Berger et al., 2013; Gentner et al., 2013; De Marchis et al., 2018).

In a previous work (De Marchis et al., 2018) we showed that adapting to perturbations affecting two sub-spaces of the whole workspace leads to different synergies rotations depending on the order in which the two perturbed sub-spaces are experienced. One of the aims of the work we present here was to investigate whether these differential neuromuscular paths to adaptation may depend on the relationship between the workspace covered by each single synergy and the spatial characteristics of the sub-space being trained.

Here we found evidences of such relationship that may help explain our previous results. In fact, we observed that the presence and extent of tuning in the synergies depend on the distance between the synergy preferred angle and the direction of the perturbed target.

Our results show that adapting for a 45° rotation applied to a sub-space does not lead to a precise 45° rotation of all the synergies, but leads to different rotations of the subset of synergies that are active in the sub-space, with the amount of rotation depending, for each synergy, on the spatial characteristics of the perturbed sub-space. In a scenario like the one we tested in our previous work (De Marchis et al., 2018), where two groups of subjects adapted for a 45° rotation applied to two sub-spaces experienced in opposite order, each group, after the first adaptation bout, achieved a different adapted neuromuscular state, as characterized by different tunings in the synergies. Therefore, each group had a different “starting” set of synergies preferred angles before the second adaptation bout and this could have led to the different “final” adapted states that we observed after adapting for the rotation applied on the second sub-space.

This interpretation of our previous results implies that the functional relationship that we identified between the preferred angles of the synergies and the workspace spanned by a visuomotor rotation could help to better understand some phenomena observed during visuomotor adaptations such as interference and transfer between adaptation processes. The first term refers to interference of prior adaptation to a subsequent adaptation process (Krakauer et al., 2005), while the second one refers to the generalization of a previously adapted behavior to a non-experienced scenario (Shadmehr, 2004). These two processes can be seen, at least functionally, as different aspects of the generalization of motor adaptations (Krakauer et al., 2006).

Visuomotor adaptation is a process involving the CNS at different levels starting from motor planning (Wong et al., 2015; Krakauer et al., 2019), and similarly, the processes driving generalization can also be traced at the motor planning level (Krakauer et al., 2006; Lerner et al., 2019), as exemplified also by studies that investigated the presence and extent of inter-limb generalization (Sainburg and Wang, 2002; Criscimagna-Hemminger et al., 2003; Wang and Sainburg, 2003). Nevertheless, several studies found that interference is task- and workspace-dependent (Bock et al., 2001; Woolley et al., 2007) and that generalization is constrained spatially to small sub-spaces of about 60°–90° degrees around the perturbed sub-space (Krakauer et al., 2000; Donchin et al., 2003; Brayanov et al., 2012). Thus, it appears that some aspects of the adaptation and generalization processes are dictated by biomechanical aspects, such as the workspace that the different actuators or actuating modules span in the movement space (de Rugy et al., 2009), up to the point where adaptations are only possible if they are compatible with the muscular activation space (Berger et al., 2013).

As an example, Woolley et al. (2007) showed that dual adaptation to opposing visuomotor rotations happens only when the workspaces associated with the two perturbations are different. When the opposing rotations are applied to the same workspace, the two adaptation processes interfere with each other. On the other hand, they showed dual adaptations to opposed rotations happening for targets that are 180 degrees apart. Interpreting their results in light of the ones that we show here suggests that the dual adaptation on disjointed workspaces can happen because different, non-overlapping synergies are involved in the process, while the dual adaptation on the same workspace is not attainable because it would require opposite rotations and counter-rotations of the same set of muscular modules.

An adaptation process constrained by neuromuscular coordination could perhaps also help explain the reference frame that is employed during visuomotor adaptation. It was generally assumed that visuomotor adaptation is performed in an extrinsic (world-based) reference frame (Krakauer et al., 2000), as also confirmed by studies on inter-limb generalization (Wang and Sainburg, 2004). Nevertheless, more recent studies suggested a mixed effect of adaptation in extrinsic and intrinsic (joint-based) coordinates (Brayanov et al., 2012; Carroll et al., 2014) and showed that adaptation to isometric tasks presents greater transfer in intrinsic coordinates (Rotella et al., 2015). The possibility that adaptation is biomechanically constrained by the muscle synergies (de Rugy et al., 2009) may explain this uncertainty of reference frame. In the muscle synergies space, intended in this case as the muscular coactivation maps that are semi-fixed in intrinsic coordinates [with variable individual muscular gains in each synergy that depend on task requirements (Zych et al., 2019)], an extrinsic adaptation at the motor planning level could generalize to an intrinsic reference frame by a magnitude proportional to the resultant of the synergies “tuning” (Gentner et al., 2013) in the intrinsic space (and vice-versa). This hypothesis, nevertheless, cannot be tested from our current dataset and requires a specifically designed experiment to confirm it.

Our results once again show the solidity of the synergy model in describing upper limb motor control and motor adaptations. This is relevant given the simplified biomechanical interpretational approach that the dimensionally smaller synergistic model allows with respect to the more redundant muscular space. Previous studies have shown that adaptation is obtained by tuning single muscles (Thoroughman and Shadmehr, 1999) and that this behavior is reflected (Gentner et al., 2013; De Marchis et al., 2018) in a spatially fixed synergy model. It is not the aim of this paper to investigate whether the synergistic model, and in particular the static spatially fixed synergy model [as compared with other, more complex models (Delis et al., 2014)] well represents the neurophysiological structures that demultiplexes the cortical motor signals in the spinal cord. Our aim is rather that of understanding whether this relatively simple model can be used to describe visuomotor adaptations in a functional way, with potential applications aiming at the purposeful use of adaptations for obtaining desired kinematics and neuromuscular outputs. As a case in point, adaptations to specifically designed sequences of perturbed sub-spaces of the whole movement workspace could be used to modify the relative alignment between the different synergies during training of persons with neurological injuries. Such application would constitute a training-by-adaptation scenario that could possibly extend the potential of the Error Augmentation paradigm (Sharp et al., 2011; Abdollahi et al., 2014). However, such applications should consider also how the functional relationship herein identified at the neuromuscular level contribute to implicit and explicit processes of adaptation and learning (Taylor et al., 2014), given their differential effect on long term retention of adapted behaviors (Bond and Taylor, 2015).

As a final remark, our observation that adaptation is bounded by the synergistic space and that muscles and synergies are rotated only if engaged at their boundaries suggests a “greedy” adaptation process aiming at maximizing local efficiency (Emken et al., 2007; Ganesh et al., 2010), by which the association between muscular effort and workspace is modified only when necessary to the adaptation process, and left constant otherwise.
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Many studies have investigated the bilateral upper limb coordination during movements under different motor and visual conditions. Bilateral training has also been proposed as an effective rehabilitative protocol for patients with stroke. However, the factors influencing in-phase vs. anti-phase coupling have not yet been fully explored. In this study, we used a motion capture device based on two infrared distance sensors to assess whether the up and down oscillation of the less functional hand (the non-dominant one in healthy younger and older subjects and the paretic one in patients with stroke) could be influenced by in-phase or anti-phase coupling of the more functional hand and by visual feedback. Similar patterns were found between single hand movements and in-phase coupled movements, whereas anti-phase coupled movements were less ample, less sinusoidal, but more frequent. These features were particularly evident for patients with stroke who showed a reduced waveform similarity of bilateral movements in all conditions but especially for anti-phase movements under visual control. These results indicate that visuomotor integration in patients with stroke could be less effective than in healthy subjects, probably because of the attentional overload required when moving the two limbs in an alternating fashion.

Keywords: motor control, biomechanics, sensorimotor integration, stroke, rehabilitation


INTRODUCTION

In the 1970s, Luria proposed the concept of “kinetic melody” to describe the orchestration of single motor impulses in a harmonic and fluid unique movement (Luria, 1973). This concept can easily be enlarged to bilateral movements, when the movement of a limb should be synchronized, in phase, or in anti-phase with the contralateral limb. Different neural processes seem to govern these two types of synchronization, with the movements of both limbs elicited by a common neural generator in bilateral in-phase movements and limbs controlled more independently during anti-phase movements (Shih et al., 2019). This could explain the higher variability of movements observed during anti-phase compared to in-phase movements (Shih et al., 2019). In-phase hand movements coupled with the contralateral hand can also be favored by the same biomechanical characteristics of the synchronous muscular patterns of the two upper extremities. Furthermore, kinesthetic afferences from one limb can influence the motor pathways to the other one (Baldissera et al., 1998, 2002; Cerri et al., 2003; Borroni et al., 2004).

Another system playing a key role is the visual system that contributes to control hand movements by comparing the intended with the actual position (Saunders and Knill, 2004). The sign and size of the detected position error would, in turn, determine the agonist vs. antagonist direction and amount of compensatory motor activation. By this position controller, each limb may overcome the mechanical contingencies by a continuous adjustment of the movement to the central motor command (Baldissera et al., 2006).

The visuomotor control in bilateral movements should occur in correspondence within the spatial domain (same amplitudes), the temporal domain (same frequencies), and the kinetic one (same forces), but it may also occur just in one or two of these domains and not in all of them. A study on repetitive bimanual circle-drawing task showed that somatosensory feedback was critical for spatial consistency but not for temporal coupling (Spencer et al., 2005). Another study highlighted that the orchestration of simultaneous reaching movements is based on the control of isomorphic movements of two limbs obtained by one single motor program, in which the temporal aspects are specified by common parameters, while force is coded by other, segment-specific, parameters (Schmidt et al., 1979).

In addition, the age of subjects may influence the visuomotor integration: older adults use visual information less effectively than younger adults to reduce force control error in bimanual pinch tasks (Critchley et al., 2014).

To couple the movements of both hands is even more complex when one is impaired, such as in patients with hemiparesis due to stroke; indeed, in these cases, the synchronization should take into account the functional asymmetry due to hemiparesis. Interestingly, in these patients, coupled bimanual training proved as a more effective intervention than unilateral training of the impaired hand (Rose and Winstein, 2004; Hung et al., 2019). Other studies reported a positive training effect of the not-affected hand on the affected one, thanks to the so-called “bilateral transfer” effect, id est the ability to transfer the skill acquired with a hand to the other one (Ausenda and Carnovali, 2011; Iosa et al., 2013).

The aim of the present study was to investigate how visual feedback (present vs. absent) and motor condition (in-phase vs. anti-phase) may influence the oscillatory movements of the less functional upper limb in healthy subjects (non-dominant limb) and in patients with stroke (affected limb). According to previous studies on visuomotor control (Saunders and Knill, 2004) and bilateral control (Ausenda and Carnovali, 2011; Iosa et al., 2013), our hypothesis was that in-phase condition performed under visual control could be helpful for patients to perform the task more similarly to how healthy subjects do it.



MATERIALS AND METHODS


Participants

Seventy-six participants (40 females: 53%) were enrolled and divided into three groups: a young adult group (YG) of 48 healthy subjects (YG, mean age: 27 ± 5 years, providing reference physiological values), a patients' group (PG) of 10 subjects with stroke (mean age: 63 ± 11 years, time from stroke: 105 ± 82 days), and an adult group (AG) of 18 healthy subjects age-matched (p = 0.278) with patients (mean age: 58 ± 11 years). Inclusion criteria for healthy subjects were age (18–39 for YG and 40–80 for AG), absence of any motor or cognitive pathology, and normal, or corrected to normal with glasses vision. The inclusion criteria for patients were established clinical diagnosis of stroke confirmed by neuroimaging, age between 40 and 80 years of age, time from acute event lower than 9 months, and presence of residual movements of the paretic hand allowing performing the task. According to these criteria, we enrolled only patients with a Modified Ashworth Spasticity Scale score equal to 1, 1+, or 2. Exclusion criteria were comorbidities such as parkinsonisms or orthopedic pathologies of the upper limb, moderate to severe cognitive deficits (highlighted by a Mini-Mental State test score <24), and presence of unilateral spatial neglect.



Experimental Task

The subject sat in front of a table on which the sensor platform was placed (Figure 1). He/she was asked to keep the trunk maintaining it firm on the back of the chair. The subject was asked to oscillate his/her hand by moving it up and down along a vertical imaginary axis over the distance sensor, until a maximum height marked by a horizontal sign on a vertical bar posed in front of him/her (Figure 1). Subjects were asked to not overcome that sign on the bar, keeping them free to select the preferred amplitude of their movements within this limit. The movement had to be performed keeping the hand in prone position, with the palms downward, leaving the subject free to comfortably move the upper limb at the self-selected pace. The subject was required to perform the task in three different conditions: (1) movement performed by the less functional hand alone, (2) coupled in-phase movement, or (3) movement in anti-phase with the other hand. Two visual conditions were also tested: (1) open eyes and (2) closed eyes. Hence, six different conditions were tested, presented in a random sequence. The less functional hand was the paretic one for patients and the non-dominant hand for healthy subjects, as established by means of the Edinburgh Handedness Inventory (Oldfield, 1971).


[image: Figure 1]
FIGURE 1. Experimental set-up. Left: a subject during the experiment. Top right: sinusoidal fit (blue line) computed for the distance between the hand and the sensor (black dots), normalized with respect to its mean value during an anti-phase movement performed under visual control by a young subject; bottom: application of the Linear Fit Method. The distance between less functional hand and sensor is plotted vs. the distance between the more functional hand and the other sensor (blue empty dots) for an in-phase coupled movement trial. The red line represents the linear regression fit from which the angular coefficient, the offset, and the coefficient of determination are extracted.




Instrumented Movement Analysis

To avoid applying sensors on the hand, as they could alter the ecological performance of subjects, we used a platform for range-distance measurements, the accuracy of which has already been validated in human movement analysis (Bertuletti et al., 2017, 2019). The Distance-MultiSensing platform integrates a magnetic and inertial measurement unit with a couple of Infrared Time-of-Flight (IR-ToF) proximity sensors. This latter technology provides an estimate of the distance between the sensor and the target (the hand) based on the time that an electromagnetic wave takes to travel that distance estimated by measuring the phase shift between the emitted and the reflected signals (Hansard et al., 2012). The two IR-ToF sensors were used to evaluate the distances of the two hands from the sensors with a sampling frequency of 25 Hz. The duration of each trial was 30 s, but the first and last parts of the trial were not analyzed for excluding accelerating and decelerating parts of the signal. For each trial, at least 15 s of steady state of the signal in the central part of the trial was analyzed. Then, the obtained data were filtered at 5 Hz using a fourth-order Butterworth filter. As shown in the top plot of Figure 1, the filtered signal was fitted with a sinusoidal curve, and the amplitude and frequency of this sinusoid were computed. The corresponding R2 was taken as an indicator of how much the movement was represented by its first sinusoidal harmonic (oscillation harmony). This method allowed to estimate the main amplitude of oscillations and preferred the peak-to-peak amplitude obtained by raw data that could be affected by only one wide oscillation, with results not representative of the whole task. For coupled movements, the linear fit method (LFM) was also applied for assessing the pattern similarity of the two hands as shown in the bottom plot of Figure 1 (Iosa et al., 2014, 2019). LFM is based on application of a linear fit to the set of data points obtained when a set of data (that of the less functional hand) is plotted on the y-axis vs. a reference set of data (the more functional hand) plotted on the x-axis. The former was the dependent variable and the latter the independent variable. The LFM minimizes, in a least square sense, the vertical distances between the points and the fitting line characterized by an angular coefficient representing the ratio among the amplitude of the two patterns. The intercept represents the eventual offset between the two patterns. The coefficient of determination represents the strength of the relationship between the two patterns. Altogether, these three parameters provide an in-depth assessment of waveform similarity.



Statistical Analysis

Data were reported in terms of mean and standard deviation. A mixed analysis of variance (ANOVA) was used for assessing the effects of the group as between-subjects factor and of motor and visual conditions as within subjects' factors. Separate analyses of variance were carried out on amplitude, frequency, and R2-values. Effect sizes (ES) were evaluated as partial eta squared, representing the proportion of variance attributed to each effect. Where statistically significant, ANOVA was followed by post-hoc tests between groups. For the analyses of variance, the alpha level of significance was set at 5%, reduced in post-hoc tests by the application of Bonferroni correction.




RESULTS

Relevant means for amplitude, frequency, and R2-values are presented in Figure 2 and analyses of variance on these values in Table 1. As for amplitude measures, the main effects of group, visual condition, and motor condition were all statistically significant; none of the interactions were significant. The ANOVA on the frequency of movements showed the main effects of the visual and motor conditions, but not of the group factor (p = 0.119); the interaction between group and visual conditions was reliable (p = 0.008). As for R2-values (indicating the regularity of sinusoidal oscillations), the ANOVA indicated the main effects of the motor condition and group factors as well as their interaction. The main effect of the visual condition was not significant (p = 0.283).


[image: Figure 2]
FIGURE 2. Main Results. Means and standard deviations of the oscillation amplitude (top), oscillation frequency (middle), and oscillation harmony (R2, bottom) of the less functional hand in the younger group (YG), in the age-matched adult group (AG), and in the patient group (PG). Open and closed eyes conditions and movement performed with a single hand (blue bars), with in-phase (green bars), and anti-phase (yellow bars) coupled movements with the more functional hand separately presented.



Table 1. Results of the analysis of variance: F-values, probability p, and effect size ES.

[image: Table 1]

In the open-eye condition, the movements were wider, and there were more frequent and faster oscillations than in closed eyes condition. As for frequency, the effect of visual condition showed a significant interaction with group (p = 0.008).

With respect to movements performed with a single hand and with in-phase coupled hands, the anti-phase coupled movements were less wide and less regular, but more frequent. This last finding also depended upon the worst performance of patients in anti-phase coupled oscillations, as indicated by the significant motor*group (p = 0.020) interaction.

Patients had less wide and less regular oscillations of the affected hand with respect to the non-dominant hand of healthy subjects. The analysis of interactions also revealed that patients' performance in terms of frequency of oscillations depended on visual condition, whereas the regularity of oscillations was affected by motor condition.

The LFM analysis of synchronization (Table 2) of the two hands during coupled movements showed a reduction of waveform similarity in anti-phase coupled movements with respect to the in-phase ones. Patients were significantly different from YG in the regularity of oscillations (coefficient of determination) for all four visuomotor conditions (p < 0.004), as well as in terms of amplitude (p = 0.01) and offset (p = 0.003) in anti-phase coupled movements, but only under visual control. These last two parameters, in closed eyes condition, resulted more similar to AG and, especially, not significantly different from YG. Significant differences were also noted between PG and AG in the open eyes condition, for in-phase R2 (p = 0.013) and anti-phase offset (p = 0.014).


Table 2. Means ± standard deviations of the Linear Fit Method parameters for young group (YG), age-matched adult group (AG) and patients group (PG).
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DISCUSSION

The aim of this study was to investigate how different visuomotor conditions may alter the movements of the non-dominant hand in healthy subjects and the affected hand in patients with stroke during up and down oscillations performed at a self-selected pace. For patients, in-phase condition resulted a motor facilitator as hypothesized, but the effect of visuomotor control depended on motor condition, in fact the performance surprisingly worsened in anti-phase movements. Sensory-motor integration is necessary during this task, and our results clearly showed an effect of visual feedback on the amplitude and frequency of movements and an effect of coupling movements with the other hand on amplitude, frequency and waveform of movements. Visual feedback had a positive effect increasing amplitude of movements and their frequency, but not changing the sinusoidal regularity of movements. As expected, this last parameter was highly reduced in patients, and just dependent on motor conditions: slightly increased in in-phase coupled oscillations in all groups, but drastically reduced in anti-phase oscillations only in patients. The only positive effect of the anti-phase oscillations was an increase in the frequency of movements, but this may be due to the reduced amplitude (the ampler is the movement, the longer is the time needed to perform it, and the smaller is the frequency). This could also be the reason why AG showed a slightly higher frequency than YG (Figure 1), despite the effect of group not being statistically significant.

The LFM analysis indicated that the values of young adults were close to the theoretical ones (Table 2), confirming the goodness of the applied method for assessing the synchronization of bilateral movements. In fact, YG had a slight deviation from theoretical values only for anti-phase coupled movements performed with closed eyes, confirming the efficacy of visual control in young adults for managing bimanual tasks (Critchley et al., 2014). Interestingly, the anti-phase coupled movements of patients were more similar between the two hands when performed with closed than with open eyes. This trend was opposite to that shown by younger and older healthy subjects, for whom visual control allowed obtaining values closed to those expected for perfectly synchronized movements.

A substantial overlap between the neural processes underlying bilateral and unilateral upper limb movements was found as to the possible basis of generalizing bilateral training to unilateral performance, but the extent of this generalization could depend on the breadth of visual experience obtained during bilateral training (Wang et al., 2013). In our study, visual control of two hands moving in anti-phase could be cognitively difficult for patients with stroke, leading to more synchronous anti-phase movements when eyes were closed. In fact, when bimanual movements are performed, the visuomotor integration might be easier if both limbs perform the same movement at the same time, with respect to anti-phase movements. An alternative hypothesis could be that our group of patients had some still undiagnosed visual or visuomotor integration deficits. However, this hypothesis seems to be less convincing as, in that case, also the in-phase coupled oscillations should had benefitted by closing the eyes, whereas this did not happen. Also, proprioception could play a key role. In our study, neither proprioception was tested nor the hand absolute position analyzed. Recently, position control related to proprioception was suggested to be preferred to amplitude kinesthetic control (Marini et al., 2018). Task-dependent asymmetries in proprioception were also reported between preferred and non-preferred limb (Goble and Brown, 2007). Vision could interfere with the proprioception in patients with stroke because the elaboration of both these signals could be altered, worsening the performance (Herter et al., 2019). This hypothesis is in line with the recent finding that integration does not always occur at the sensory information processing level, but it may happen at the motor execution level (Hayashi et al., 2020). An altered integration may also affect the motor memory for each sensory modality in bimanual and unimanual movements, especially in subjects post stroke. Despite the absence of a proprioception assessment was a limit of our study, in a further study, the Distance-MultiSensing platform, with properly developed protocols, could be used to assess proprioception in patients with stroke or other asymmetrical pathologies. A quantitative assessment of proprioception could also be integrated in a proprioceptive rehabilitative training for patients (Squeri et al., 2011).

Our results seem in line with those of the literature reporting that simultaneous and symmetrical recruitment of muscle groups occurring during in-phase movements may lead to more accurate and effortless movements than anti-phase ones, in which homologous muscle groups are activated in an alternating fashion (Wuyts et al., 1996; Serrien and Brown, 2002; Pollok et al., 2007). This effortlessness of in-phase movements is conceivably supported by our finding of the reduced synchronicity of the two hands in patients for anti-phase movements performed under visual control. This condition was probably inflated by higher attentional load required for controlling the two hands moving in opposition of phase. This interpretation is in line with previous findings showing that in-phase movements can be performed accurately without practice, while anti-phase movements often require training to be accurately performed (Lee et al., 1995). Furthermore, when subjects are required to increase the frequency of anti-phase movements, they unintentionally tend to change them into in-phase movements (Franz et al., 1991). It is also likely that in-phase movements are more easily managed by a common neural generator, probably guided by the dominant hemisphere, resulting in highly synchronous movements, while anti-phase movements are controlled by both hemispheres more independently leading to less synchronicity. Furthermore, we should take into account the possibility that different motor strategies were adopted in the different tasks of our study. During in-phase button press tasks, bimanual motor synergy was shown to be at the basis of bimanual isometric force control in healthy subjects (Jin et al., 2019). However, Zenzeri et al. (2014) showed that some motor behaviors cannot be easily explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms, switching among motor strategies under different conditions.

So, despite the evidence supporting bilateral arm training in patients with stroke (Cauraugh et al., 2010), further studies are required to investigate whether it is more effective to train patients using in-phase well-coordinated movements or the less effective anti-phase bilateral movements. Our study may contribute to this debate showing that visual control may reduce the synchronicity of anti-phase movements in patients, probably because of the higher cognitive load. In this scenario, further investigations on the potential effects of external visual or auditory cues in training patients with stroke during unilateral and bilateral hand movements would be needed.

Our study has some limitations, which suggest caution in data interpretation. First of all, the sample size was higher for YG than for PG: we needed to enroll a large sample of adults to obtain reference physiological data, but further studies should also use a larger sample of patients. A wider patient group together with a more detailed clinical assessment could provide more consistent data, clarifying the influence of motor and cognitive deficits, and allowing to test correlations between clinical features and task performances. Then, we also recorded the data of the more functional hand during coupling movements, but used them in LFM for evaluating the similarity with the less functional hand: for the sake of brevity, we did not report in this study the raw data of the functional hand. Finally, as stated above, the absence of proprioception assessment is another limit of our study.

In conclusion, our study confirmed previous results showing that in-phase coupled movements were more synchronized than anti-phase movements in all subjects. Furthermore, visual feedback actually worsened the performance of patients with stroke in anti-phase movements, conceivably because of the attentional overload required in this condition.
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Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17–21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = −0.027 to −0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.

Keywords: neuromuscular electrical stimulation, brain-robot interface, brain-computer interface, state-dependent stimulation, closed-loop stimulation, robotic rehabilitation


INTRODUCTION

About half of all severely affected stroke survivors remain with persistent motor deficits in the chronic disease stage despite therapeutic interventions on the basis of the current standard of care (Winters et al., 2015). Since these patients cannot use the affected hand for activities of daily living, novel interventions investigate different neurotechnological devices to facilitate upper limb motor rehabilitation, such as brain-machine interfaces (BMI), robotic orthoses, neuromuscular functional electrical stimulation (FES), and brain stimulation (Coscia et al., 2019). BMI approaches, for example, aim at closing the impaired sensorimotor loop in severe chronic stroke patients. They use robotic orthoses (Ang et al., 2015; Kasashima-Shindo et al., 2015; Belardinelli et al., 2017), FES devices (Kim et al., 2016; Biasiucci et al., 2018), and their combination (Grimm et al., 2016c; Resquín et al., 2017) to provide natural sensory and proprioceptive neurofeedback during movement intention or imagery. It is hypothesized that this approach will lead to reorganization of the corticospinal network through repetitive practice, and might ultimately restore the lost motor function (Naros and Gharabaghi, 2015, 2017; Belardinelli et al., 2017; Guggenberger et al., 2018).

However, these novel approaches often result in no relevant clinical improvements in severe chronic stroke patients yet (Coscia et al., 2019). Therefore, recent research has taken a refined and rather mechanistic approach, e.g., by targeting physiologically grounded and clinically relevant biomarkers with BMI neurofeedback; this has led to the conceptional differentiation between restorative therapeutic BMIs on the one side (as those applied in this study) and classical assistive BMIs on the other side like those applied to control devices such as wheel-chairs (Gharabaghi, 2016): While assistive BMIs intend to maximize the decoding accuracy, restorative BMIs want to enhance behaviorally relevant biomarkers. Specifically, brain oscillations in the beta frequency band have been suggested as potential candidate markers and therapeutic targets for technology-assisted stroke rehabilitation with restorative BMIs (Naros and Gharabaghi, 2015, 2017; Belardinelli et al., 2017), since they are known to enhance signal propagation in the motor system and to determine the input-output ratio of corticospinal excitability in a frequency- and phase-specific way (Raco et al., 2016; Khademi et al., 2018, 2019; Naros et al., 2019).

However, these restorative BMI devices differ from their predecessors, i.e., assistive BMIs, by an intentionally regularized and restricted feature space, e.g., by using the beta frequency band as a feedback signal for BMI control (Gharabaghi, 2016; Bauer and Gharabaghi, 2017). Such a more specific approach is inherently different from previous more flexible algorithms that select and weight brain signal features to maximize the decoding accuracy of the applied technology; restorative BMIs like the those applied in this study have, therefore, relevantly less classification accuracy than classical assistive BMIs (Vidaurre et al., 2011; Bryan et al., 2013). As the regularized and restricted feature space of such restorative BMI devices leads to a lower classification accuracy in comparison to more flexible approaches, it may be frustrating even for healthy participants (Fels et al., 2015). IN the context of the present study, we conjectured that such challenging tasks will increase the relevance of extraneous load aspects like the workload (Schnotz and Kürschner, 2007). Furthermore, the modulation range of the oscillatory beta frequency band is compromised in stroke patients, proportionally to their motor impairment level (Rossiter et al., 2014; Shiner et al., 2015). That means that more severely affected patients show less oscillatory event-related desynchronization (ERD) and synchronization (ERS) during motor execution or imagery (Pfurtscheller and Lopes da Silva, 1999). To our understanding, this underlines the relevance of beta oscillations as a therapeutic target for post-stroke rehabilitation. At the same time, however, this poses a major challenge for the affected patients and may, thereby, compromise their therapeutic benefit (Gomez-Rodriguez et al., 2011a,b; Brauchle et al., 2015).

To overcome these hurdles that are inherent to restorative BMI devices, we have investigated different approaches in the past: (i) Reducing the brain signal attenuation by the skull via the application of epidural interfaces (Gharabaghi et al., 2014b,c; Spüler et al., 2014), (ii) Augmenting the afferent feedback of the robotic orthosis by providing concurrent virtual reality input (Grimm et al., 2016a,b), (iii) combining the orthosis-assisted movements with neuromuscular (Grimm and Gharabaghi, 2016; Grimm et al., 2016c) or transcranial electrical stimulation (Naros et al., 2016a) to enhance the cortical modulation range (Reynolds et al., 2015), and (iv) optimizing the mental workload related to the use of BMI devices.

In this study, we focus on the latter approach, i.e., optimizing the mental workload related to the use of BMI devices. For the latter approach it would be necessary to better understand the workloads related to different technologies applied in the context of BMI feedback (robotics vs. FES). We, therefore, investigated the mental demand, physical demand, temporal demand, performance, effort, and frustration of healthy subjects controlling a BMI by motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the beta frequency-band was turned into passive opening of the contralateral hand by a robotic exoskeleton or FES in a randomized, cross-over block design. The respective workloads were compared to the task-related aspects of active hand movement with EMG feedback. We conjectured a feedback-specific workload profile that would be informative for more personalized future BMI approaches.



METHODS


Subjects

We recruited 20 healthy subjects (age = 23.5 ± 1.08 yeas [mean ± SD], range 19–27, 15 female) for this study. Subjects were not naive to the tasks. All were right-handed and reached a score equal or above 60 in the Edinburgh Handedness Inventory (Oldfield, 1971). The subjects gave their written informed consent before participation and the study protocol was approved by the Ethics Committee of the Medical Faculty of the University of Tübingen. They received monetary compensation.



Subject Preparation

We used Ag/AgCl electrodes in a 32 channel setup according to the international 10-20 system (Fp1, Fp2, F3, Fz, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, TP9, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz, P4, O1, O2 with TP10 as Reference and AFz as Ground) to examine the cortical activation pattern during the training session. Electrode impedances were set below 10 kΩ. All signals are digitalized at a sampling frequency of 1,000 Hz (robotic block) or 5,000 Hz (FES block) using Brain Products Amplifiers and transmitted online to BCI2000 software. BCI2000 controlled in combination with a custom-made software the respective feedback device, i.e., either the robotic orthosis or the functional electrical stimulation. Depending on the task, one of the following preparations was performed. Either the robotic hand orthosis (Amadeo, Tyromotion) was attached to the subject's left hand (Figure 1A), fixated with Velcro strips across the forearm and with magnetic pads on the fingertips (Gharabaghi et al., 2014a; Naros et al., 2016b); or functional electrical stimulation (FES, Figure 1B) was applied to the M. extensor digitorum communis (EDC) by the RehaMove2 (Hasomed GmbH, Magdeburg) with two self-adhering electrodes (50 mm, HAN-SEN Trading & Consulting GmbH, Hamburg). First an electrode was fixed to the distal end of the EDC's muscle belly serving as ground. Then a rectangular electrode prepared with contact gel was used to find the optimal place for the second electrode where maximal extension of the left hand could be achieved. Here a custom written Matlab script was executed to detect the current threshold needed for the extension. Starting at 1 mA, the current was increased in steps of 0.5–1 mA. During each trial, FES was applied for 3 s with a pulse width of 1,000 μs and a frequency of 100 Hz. At the beginning of stimulation, a ramping protocol was implemented for 500 ms. Once, the correct position and threshold of stimulation were found, the temporary electrode was replaced by the second stimulation electrode and both were fixed with tape. A mean stimulation intensity of 6.5 mA (SD = 2.27) was required to cause the desired contraction in this study.


[image: Figure 1]
FIGURE 1. Experimental set-up. (Left) Robotic hand orthosis as feedback device (Amadeo, Tyromotion GmbH, Graz). (Middle) Neuromuscular forearm stimulation as feedback device (RehaMove 2, Hasomed GmbH, Magdeburg). In both cases, a brain-machine interface (BMI) detected motor imagery-related oscillations in the beta frequency band by an electroencephalogram (EEG) and provided via a BCI2000-system contingent feedback by moving the hand with either the robot or the electrical stimulation. (Right) The EEG montage used in this study.




Experimental Setup

In the beginning and end of the experiment, we recorded 3 min of resting state EEG measurements with the subjects having the eyes open. They were instructed to look straight ahead and focus on a white cross some 1.5 m in front of them on a screen. The study consisted of a motor imagery task with robotic feedback in one session and FES in the other. After each session the subjects completed a NASA Task Load Index (NASA-TLX) questionnaire (NASA Human Performance Research Group, 1986). The evaluation consisted of two parts. At first, the source of workload was identified: 15 cards were shown to the subject; each with two of the six categories mental demand, physical demand, temporal demand, performance, effort and frustration. The subject had to decide which of the respective two categories described the actual task demands better. Afterwards, scales from 0 to 100 were provided for all six categories, and the subjects were asked to rate each of them with regard to the respective task. The experimental structure is depicted in Figure 2A.


[image: Figure 2]
FIGURE 2. (A) Task structure. Functional electrical stimulation (FES) and robotic feedback were applied in a cross-over block design. The FES and robotic session consisted of 9 runs with 20 trials each. Each trial included a 2-s preparation phase, a 6-s motor imagery phase and a 6-s resting phase. One session lasted until at least 120 feedback onsets were reached. After each block subjects completed a NASA-TLX questionnaire. Before and after the intervention a resting state EEG was recorded. The study lasted ~3 h. (B) Correct classification rate (CCR). Exemplary single subject data of the CCR of brain-machine interface control with robotic feedback (a) or functional electrical stimulation (b). Time on the x-axis is relative to the go-cue for motor imagery at 0 s and the relax-cue at 6 s. The CCR on the y-axis indicates the probability of classifying the sample correctly as motor imagery after the go-cue or as rest after the relax-cue. It is calculated on the basis of a smoothened time course averaged over 30 trials with 95% confidence intervals estimated by bootstrapping.




Block and Trial Structure

Each session consisted of 9 runs of motor imagery-based feedback (either robotic or FES), with each run consisting of 20 trials. One session lasted until at least 120 feedback onsets (but no more than 139 onsets) were reached. A trial began with a preparation phase which was indicated by the auditory signal “left hand.” After 2 s, the subjects received a “go” cue. During the following 6 s, the hand robot or FES extended the fingers of the left hand if the classifier of the brain-machine interface (BMI) detected sufficient sensorimotor desynchronization in the contralateral sensorimotor cortex. Otherwise, the passive finger extension was stopped. Following this feedback period, the subject received an auditory cue to “relax,” after which the robot closed the subject's hand again. The relax period lasted 6 s, until the next trial commenced. Subjects were instructed to perform kinesthetic motor imagery of opening their left hands during the feedback period. They were instructed to keep calm and relaxed, and to refrain from performing any motor imagery during the relaxation period. For all trial periods, subjects were instructed not to perform any active movement.



Classification Algorithm

As in our earlier studies, the classification algorithm was based on the average power in the beta-range (17–21 Hz) over sensorimotor electrodes (FC4, C4, and CP4), and has been described in detail before (Vukelić et al., 2014; Bauer et al., 2015, 2016b; Vukelić and Gharabaghi, 2015a): For online-analysis, we used BCI2000 (Schalk et al., 2004), implementing an autoregressive model based on the Burg Algorithm with a model order of 32 and a window size of 500 ms to update the beta-power value every 40 ms. The feature values were accumulated for the last 15 s of the resting period in a first-in-first-out manner. We calculated the standard deviation and mean of these buffered values to transform all estimates by subtraction of the mean and division with the standard-deviation into a z-scored distribution. Application of a threshold θ then enabled us to distinguish between sufficient and insufficient desynchronization relative to the average of the relaxation period. A classification of desynchronization as sufficient during the feedback period was considered a true-positive and caused extension of the fingers, while a classification as sufficient during the relaxation or preparation period was considered a false positive (Vukelić and Gharabaghi, 2015a,b; Bauer et al., 2016a,b). The desynchronization threshold that controlled the feedback was kept fixed at 0.6 for both the robotic movement and the FES.



Offline Signal Processing

The data in the FES task was recorded with 5,000 Hz and then down-sampled to 1,000 Hz. Offline analysis was performed using an algorithm that was identical to the one described for online-analysis; therefore, no additional pre-processing was performed. For both tasks, the true positive rate (TP) and false positive rate (FP) were extracted from the three electrodes FC4, C4, and CP4, and the classification accuracy (CA) was calculated by the formula:

[image: image]

The first 2 s of the resting phase were excluded from analysis due to the closing of the robotic orthosis during this time period. Close attention was paid that there were no differences in the offline signal processing between the conditions and that equal time windows were used for the calculations.

This CA represents the mean performance of both the motor imagery and relax periods. To capture the instantaneous performance during each time-point of the tasks, the correct classification rate (CCR) needs to be estimated. The CCR indicates the true positive rate during the motor imagery period and the true negative rate during the rest period. Exemplary data for the CCR during the robotic and FES tasks is presented in Figure 2B.



Statistical Analysis

One subject asked to quit the FES session after the first run, as the stimulation was painful even after repositioning of the electrodes and applying the lowest stimulation intensity. This subject was, therefore, excluded from the statistical analysis.

The analysis was divided into two steps.

First, the results of the NASA-TLX were investigated. The weights of each workload component were multiplied with the respective rating from 0 to 100. This resulted in the adjusted workload for each component. These adjusted workloads of the different categories were, finally, added up and divided by 6.

Afterwards, the means of total workloads, weights, ratings and adjusted workloads over all subjects were compared between the two feedback conditions. If the values were normally distributed on the basis of a Kolmogorov-Smirnov test, a bilateral t-test was applied; otherwise non-parametric methods, namely a sign test and a Wilcoxon sign-rank-test were used. All confidence intervals were calculated with a probability of 95%.

Furthermore, the weighted components of the NASA-TLX questionnaire of a previous study of our group by Fels et al. (2015) with actual hand opening and EMG feedback were included and compared to the two conditions of the present study in terms of likelihood relations between the workload weights.

Finally, the BMI performance of the two conditions (robotics vs. FES) was calculated and compared by estimating the CA, the TPR and the FPR, and recalculating them for thresholds between −5 and 5.




RESULTS

The weights of the different workload components were quite similar between both robotic (brain-robot interfaces, BRI) and functional electrical stimulation (FES) feedback (see Table 1 and Figure 3). In both conditions, mental demand, performance and effort were considered as more relevant than frustration, physical demand, and temporal demand. Physical demand (p = 0.125) and temporal demand (p = 0.21) showed a trend to differ between conditions, whereas the other components did not (p > 0.79).


Table 1. Results for the task-load measures.
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FIGURE 3. Weights of workload categories. The work load categories mental demand (MD), physical demand (PD), temporal demand (TD), performance (P), effort (E) and frustration (F) of the NASA-TLX for BMI control of passive movement with different feedback modalities (Robotic vs. FES) in comparison to active movement with EMG feedback (data form Fels et al., 2015). Confidence intervals are given with a probability of 95%.


When comparing the workload weights of the BMI tasks with the EMG task of the study of Fels et al. (2015), the mental demand of the latter was less (mean = 3.05; CI = 2.28 to 3.82) reaching levels similar to performance (mean = 3.1; CI = 2.49 to 3.70) and effort (mean = 3.24; CI = 2.55 to 3.93). The temporal demand (mean = 2.14; CI = 1.51 to 2.78), frustration (mean = 1.81; CI = 1.08 to 2.54), and physical demand (mean = 1.67; CI = 0.94 to 2.39) were similar between conditions.

Notably, it was 6.79 times more likely that the FES condition showed a mental demand like the robotic condition than the EMG task. Furthermore, the likelihood was at least 2.67 times greater for the FES than the robotic task to show a physical demand like the EMG task. All other components, showed no evident differences between conditions, i.e., values between 0.9 and 1.2.

The magnitude of workload for the different components (see Table 1 and Figure 4) was normally distributed with values greater than 0.24 in the Kolmogorov-Smirnov tests, and was similar to the weights. However, the physical demand of the FES task was significantly higher (p < 0.05) than of the robotic task. In contrast, the temporal demand was estimated significantly higher (p < 0.05) during the robotic task. On average, subjects stated that both tasks were mentally demanding and made the experience that they had to work hard to accomplish the performance level reflected in the effort value. Furthermore, most of them rated their performance as successful. Also, frustration was balanced in both conditions (p = 0.42).


[image: Figure 4]
FIGURE 4. Magnitude of workload. Subjects rated the mental demand (MD), physical demand (PD), temporal demand (TD), performance (P), effort (E) and frustration (F) of the NASA-TLX for BMI control of passive movement with different feedback modalities (Robotic vs. FES) on a scale from 0 to 100. Data is averaged over all subjects. Confidence intervals are given with a probability of 95%.


Finally, two components were particularly relevant in the adjusted workload ratings (see Table 1 and Figure 5), which were normally distributed according to a Kolmogorov-Smirnov test with values greater than 0.23; namely mental demand and effort.


[image: Figure 5]
FIGURE 5. Weighted workload scores. The importance weight (Figure 3) of each workload component was multiplied with the respective magnitude (Figure 4) and averaged over all subjects. Confidence intervals are given with a probability of 95%.


The remaining four components reached values only below 200. The differences between conditions with regard to the physical demand and temporal demand were significant in the adjusted ratings as well, similar to the findings for weight and rating. FES was estimated as significantly more physically demanding (p = 0.0368) than the robotic task. On the other hand, the temporal demand was indicated as significantly higher (p = 0.0403) when feedback was provided by the robotic hand orthosis. Performance and frustration did not show notable differences between conditions.

We calculated for each subjects the individual maximal classification accuracy at the optimal threshold. This maximal CA for BRI (61.579, CI = 54.05 to 69.11) and FES (mean = 58.112; CI = 50.37 to 65.85) was significantly above chance level, indicating that the subjects were able to control the respective orthosis. Notably, this maximal CA is different from the CA that is shown in Figure 6, which shows the CA averaged for each threshold. Specifically, a Gaussian fit of these classification accuracies across thresholds can be used to estimate the capacity for cognitive load while considering the instructional design of the task (see Bauer and Gharabaghi, 2015a). This analysis confirmed that there were no significant differences in this measure between conditions (p = 0.806; CI = −0.027 to −0.034); furthermore, i.e., neither the width (p = 0.553; CI = −0.280 to 0.155) nor the spatial location (p = 0.773; CI = −0.442 to 0.334) changed between conditions (Figure 6). However, while maximal CA did not differ, subjects could on average initiate orthosis movements in more trials with BRI (17.22/20, SD = 3.02) than with FES feedback (16.46/20, SD = 2.94). This difference was significant (p = 0.016). This indicates the following complementary findings: The performance in both tasks was different, i.e., subjects could to start the robotic orthosis slightly more often than the electrical one. However, the maximal attainable performance and cognitive load capacity was similar between the tasks.


[image: Figure 6]
FIGURE 6. Classification accuracy of the feedback modalities. We recalculated the classification accuracy (CA) offline for various thresholds to estimate capacities for cognitive load (see also Bauer and Gharabaghi, 2015a). The subfigures show the average CA as solid trace, on top of boxplots indicating the distribution of CA within the group. Boxplots are characterized by the red dotted line indicating the median, the blue boxes indicating interquartile ranges (IQR) and the whiskers indicating 1.5 IQR. Red crosses mark extreme values outside the whiskers. The upper subplot shows the CA for the BRI task, the lower subplot for FES.




DISCUSSION

This study showed that using a brain-machine interface with motor imagery and neurofeedback on the basis of a restricted and regularized feature space (i.e., sensorimotor beta frequency band) was a cognitively demanding task. It required relevant mental effort independent of the applied feedback modality even from young healthy subjects.

This observation may at least partially explain previous findings of limited added benefit, when applying robotics and FES during the neurorehabilitation of severely affected chronic stroke patients (McCabe et al., 2015). Specifically, when comparing the therapy outcome of standard physiotherapy on the basis of motor learning to that observed with additional robotics or FES, no differences were observed. The current mental demands of these neurotechnology-assisted interventions may be beyond the residual cognitive capacities of many stroke survivors, particularly of those with severe impairments. Along these lines, a recent meta-analysis revealed an association between cognitive deficits, particularly with regard to executive functions and attention, and arm motor recovery after stroke (Mullick et al., 2015).

Presumably, due to the actual activation of muscles, physical demand was experienced significantly higher in FES that in robotics task, and thereby, more similar to the active movement condition with EMG feedback (Fels et al., 2015). This observation matches with studies showing muscular fatigue as a consequence of FES application (Doucet et al., 2012). We may only speculate about the significantly higher temporal demands of the robotics feedback. Since the device had to move back to the starting position in the resting phase of each trial, which took about 2 s, this may have been perceived as less intuitive that the instantaneous halt of the FES. In any case, these differences seem not to have impacted the BMI interaction during this single session intervention. Specifically, there were no differences in the classification accuracy between feedback conditions (see Figure 7) and only minor (even though significant) differences in the number of movement onsets (on average 17 robotic vs. 16 FES from 20 trials).


[image: Figure 7]
FIGURE 7. Comparing the classification accuracy (CA) between tasks. When the graph exceeds the dotted line at 1.3 (log10(p) after Wilcoxon signed rank test), the CA of the two tasks would differ at a significance level of p < 0.05. The values were calculated from the average over subjects and trials.


This indicates that the ability to perform the task remained unchanged during both conditions (Bauer and Gharabaghi, 2015a), and also that the opportunity to learn did not differ between the tasks (De Jong, 2010). This may be explained along the following lines. Even though robotics and FES led to rather “passive” and “active” movements, respectively, both were related to similar proprioception, i.e., perception of the current state of the limbs, which is mediated by muscle spindles (Naito et al., 2016). Therefore, passive movements have been shown to closely resemble actual motor execution with regard to the neuronal activation patterns (Szameitat et al., 2012; Bauer et al., 2015). This may have also caused the similar BMI performances with the two feedback modalities. However, the classification accuracies showed a large variability between subjects (Figure 6), a finding that suggests relevant differences between the participants with regard to the preference for one or the other feedback modality. This finding suggests, furthermore, that these preferences may be considered, when planning BMI interventions for patients.


Future Research Directions

This work shows that the feedback modality (robotic vs. FES) seems not to be the major hurdle for translating BMI technology to effective clinical application, even though the role of different feedback modalities is still underexplored (Vukelić and Gharabaghi, 2015a; Kraus et al., 2016b, 2018; Royter and Gharabaghi, 2016; Darvishi et al., 2017). To overcome the inherent cognitive demands of this restorative neurotechnology, without sub-challenging the participants, physiologically-informed, online adaptations of task difficulty in the course of the training may be necessary.

It has previously been shown that cognitively demanding BMI tasks activated a distributed oscillatory network beyond the sensorimotor cortex that was trained by the neurofeedback (Vukelić et al., 2014; Bauer et al., 2015; Vukelić and Gharabaghi, 2015a,b). Addressing more specifically distinct parts of this network that mediate corticospinal gain modulation (Khademi et al., 2018) and subserve motor or cognitive control (Wagner et al., 2016) may overcome some of the current limitations. Importantly, future studies will need to evaluate in particular the learning process in subsequent training sessions (Naros et al., 2016b).

Moreover, the large variability of classification accuracies that we observed in this study indicates the need to detect the individually optimal task difficulty for each BMI user. This has already inspired approaches to adapt the classification threshold in the course of an intervention to overcome cognitive load issues, maintain motivation and improve reinforcement learning (Bauer and Gharabaghi, 2015a,b; Bauer et al., 2016a,b). However, classical BMI metrics like the classification accuracy may be suboptimal for such adaptations. A Bayesian simulation, for example, indicated that the difficulty threshold with the highest classification accuracy allowed for fast initial learning, but was suboptimal for retention (Bauer and Gharabaghi, 2015b). Accordingly, the optimal difficulty threshold from a motor learning perspective was defined as the result of an interaction with the individual's ability (Guadagnoli and Lee, 2004) and needed, therefore, to be sufficiently challenging, i.e., allowing for a fixed failure (Wilson et al., 2019).

Along these lines, we have previously shown that adaptation on the basis of self-rated mental effort improved the performance of BMI neurofeedback on the basis of beta oscillations (Bauer et al., 2016a). In this work, a linear relationship between the difficulty threshold and the self-rated mental effort was observed, and the threshold for optimal effort was significantly higher than the threshold for optimal classification accuracy. This, in turn, indicates that neurofeedback training at difficulty thresholds with higher mental efforts may improve learning, and that the mental demands related to BMI training may in fact be even beneficial if the participants are not overstrained. In this context, an online-adaptation strategy based on biomarkers of cognitive demand may be particularly important (Bauer et al., 2016a).



Limitations

The single session, cross-over design of our study revealed instantaneous work load profiles related to BMI neurofeedback with different feedback modalities, but did not permit us to investigate the cumulative effects during subsequent interventions, which will have a relevant impact on cognitive load, motivation and learning. Beyond BMI performance metrics we did not evaluate other behavioral or physiological parameters, which may have helped to further differentiate between the feedback modalities. Cortical motor mapping with refined transcranial magnetic stimulation protocols (Kraus and Gharabaghi, 2015, 2016; Mathew et al., 2016), for example, may overcome this limitation and provide further insight into the differential modulation of sensorimotor areas by these neurotechnologies (Kraus et al., 2016a). The findings were, furthermore, acquired in healthy young participants, who may relevantly differ in their cognitive capacities and neurophysiological status (Mary et al., 2015) from the target population of these interventions. Future studies will therefore need to investigate BMI-related workload profiles in stroke patients and age-matched controls, and consider gender differences (Catrambone et al., 2019).




CONCLUSION

Brain-machine interfaces are cognitively demanding independent of the applied feedback technology. Work load profiles help to design more personalized neurorehabilitation interfaces tailored to the individual needs of BMI users. This may facilitate human-centered rehabilitation hardware for a more natural bidirectional interaction and acceptance by the user.
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The hypothesis of modular control, which stands on the existence of muscle synergies as building blocks of muscle coordination, has been investigated in a great variety of motor tasks and species. Yet, its role during learning processes is still largely unexplored. To what extent is such modular control flexible, in terms of spatial structure and temporal activation, to externally or internally induced adaptations, is a debated issue. To address this question, we designed a biofeedback experiment to induce changes in the timing of muscle activations during leg cycling movements. The protocol consisted in delaying the peak of activation of one target muscle and using its electromyography (EMG) envelope as visual biofeedback. For each of the 10 healthy participants, the protocol was repeated for three different target muscles: Tibialis Anterioris (TA), Gastrocnemius Medialis (GM), and Vastus Lateralis (VL). To explore the effects of the conditioning protocol, we analyzed changes in the activity of eight lower limb muscles by applying different models of modular motor control [i.e., fixed spatial components (FSC) and fixed temporal components (FTC)]. Our results confirm the hypothesis that visual EMG biofeedback is able to induce changes in muscle coordination. Subjects were able to shift the peak of activation of the target muscle, with a delay of (49 ± 27°) across subjects and conditions. This time shift generated a reorganization of all the other muscles in terms of timing and amplitude. By using different models of modular motor control, we demonstrated that neither spatially invariant nor temporally invariant muscle synergies alone were able to account for these changes in muscle coordination after learning, while temporally invariant muscle synergies with adjustments in timing could capture most of muscle activity adaptations observed after the conditioning protocol. These results suggest that short-term learning in rhythmic tasks is built upon synergistic temporal commands that are robust to changes in the task demands.

Keywords: muscle synergies, pedaling, adaptation, modular control, EMG biofeedback


INTRODUCTION

Understanding how the central nervous system (CNS) orchestrates muscle coordination is a fundamental step to deepen our knowledge in the mechanisms underlying movement generation, motor skill acquisition, and motor adaptation to externally induced perturbation. According to the hypothesis of muscle synergies, the CNS manages muscle redundancy by means of functional units, namely, muscle synergies or modules, which are recruited in time by a reduced set of activation signals (Torricelli et al., 2016). In the last 20 years, increasing experimental evidence has been supporting this hypothesis for a great variety of motor tasks (Ivanenko et al., 2004; Clark et al., 2010; Gonzalez-Vargas et al., 2015).

Motor adaptation and learning have been widely studied in humans by means of computational models, with the aim of describing the modification of the internal models to new or changing environments (Krakauer and Mazzoni, 2011; Wolpert et al., 2011). The muscle synergies framework has been recently proposed as a general model for describing these processes under the muscle coordination point of view. Berger et al. (2013) provided evidence for the modular organization of motor control using a virtual upper limb reaching task paradigm, showing that adaptation to rotations in the force fields that are incompatible with previously acquired modular structures led to significantly lower learning rates. This study highlighted the existence of a flexible structure upon which fast adaptation was achieved by tuning the recruitment of fixed modules. Sawers et al. (2015) have explored the acquisition of new motor behaviors, showing that more complex skills are typically associated with a higher number of modules. De Marchis et al. (2013b) have explored the short-term learning mechanisms in a novel pedaling paradigm using visual biofeedback of pedal force. They showed that short-term motor learning could be accounted for by the use of baseline synergies plus a few additional ones. Jacobs et al. (2018) analyzed the re-organization of muscle coordination during adaptation to walking in a powered ankle exoskeleton. They showed that subjects adapted the temporal activation patterns during the adaptation phase, keeping unaltered the pre-existing synergies both in number and spatial composition. Modular motor control models have also been explored during visuomotor adaptation tasks, highlighting that a complete adaptation to visuo-motor distortions can be achieved by tuning the recruitment of a set of fixed spatial synergies. Gentner et al. (2013) proved that adaptation to a 45° visuo-motor rotation, applied during upper limb isometric virtual reaching tasks, was reached after few trials through a rotation of the recruitment of a set of fixed baseline spatial muscle synergies. A similar experiment by De Marchis et al. (2018) explored whether the same adaptation mechanism was present when the visuo-motor perturbation was applied to only a portion of the workspace, highlighting that a different recruitment of the same baseline spatial synergies led to the same full biomechanical adaptation when the order of the perturbations was changed.

Most of these studies hypothesized a unique control model based on the temporal tuning of a set of spatially fixed muscle synergies within the synchronous muscle synergies model. To our knowledge, no study has explored the possibility of using alternative models to explain the neuromotor reorganization, e.g., assuming invariant temporal activation patterns, time-varying muscle synergies, and space-by-time synergies (d’Avella et al., 2003; Ivanenko et al., 2005; Cappellini et al., 2006; Delis et al., 2018). In our opinion, exploring these models is a necessary step to identify those which can better describe the effects of learning/adaptation processes on muscle coordination in both subject- and task-specific way (Safavynia and Ting, 2012).

In this work, we investigated the effects on muscle coordination when learning new pedaling tasks. We asked subjects to accomplish one functional goal: changing the activation timing of one target muscle. To do so it is necessary to alter the usual muscle activation pattern for pedaling, therefore requiring a learning/adaptation mechanism to generate muscle patterns with the novel activation timing yet still capable of accomplishing the task in a functional way. Subjects were provided with a visual feedback of the sEMG envelope of one target muscle at the end of each pedaling cycle. This was used as a visual representation of an internal variable that is directly related to the motor output and indirectly representative of the underlying motor control strategies. The experiment was designed to test two main hypotheses (see Figure 1):
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FIGURE 1. Schematic representation of the experimental setup, protocol, and data analysis.



(1)Task feasibility hypothesis: The paradigm based on electromyography (EMG) timing biofeedback can successfully lead to the desired changes in the target muscle timing. This hypothesis stands on the assumption that the required changes in muscle activation are biomechanically compatible with the execution of the highly constrained pedaling task, and we here test the hypothesis that this kind of visual feedback can be used by the subject for changing the EMG timing in real time.

(2)Modular control hypothesis: The changes produced on the target muscle are propagated to the other muscles, but this change in muscle coordination does not imply a change of the underlying modular structures. This hypothesis stands on the assumption that short-term learning/adaptation processes do not affect the existing modular control schemes, as supported by previous studies. We tested the following two complementary models:


(a)Fixed spatial components (FSC) model: The changes in muscle coordination result from time invariant and spatially fixed synergy vectors (spatial synergies, WFSC) with flexible temporal activation coefficients [HFSC(t)].

(b)Fixed temporal components (FTC) model: The changes in muscle coordination result from invariant temporal components (temporal synergies, HFTC) with flexible synergy vectors varying cycle-by-cycle [WFTC(t)].







MATERIALS AND METHODS


Experimental Protocol

Ten healthy subjects (two females and eight males), without any known motor or neurological lesions, participated in the experiment. Subject’s age was 25.1 ± 4.4 years (mean ± SD). The experiment was done in the facilities of the Neural Rehabilitation Group of the Cajal Institute (Madrid, Spain), Spanish National Research Council (CSIC). The experimental procedures were approved by the Bioethical subcommittee of the Ethical committee of CSIC (Spanish National Research Council, reference 008/2016). The whole study was in accordance with the principles of the Declaration of Helsinki.

Prior to the experiment, surface Ag/AgCl EMG electrodes (TenderTrodeTM, Vermed, United States) were placed on eight muscles of the subject’s dominant leg: Tibialis Anterioris (TA), Soleus (SOL), Gastrocnemius Medialis (GM), Semitendinous (ST), Biceps Femoris (BF), Vastus Lateralis (VL), Rectus Femoris (RF), and Gluteus Medius (GluM). A reference electrode was located on the wrist, in the same side of the dominant leg. Such location was selected due to the lack of muscle activity and no observable movement of the joint or cables during the experiment. The electrodes were placed according to SENIAM recommendations (Hermens, 2000). Adhesive tape was used to fix the cables to the skin to minimize movement-induced artifacts. The EMG activity was recorded at a sample frequency of 1000 Hz using the wireless EMG amplifier “Trentadue” (OT Bioelettronica, Torino, Italy). The appropriate placement of the electrodes was verified by visually checking the resulting EMG signals through the software interface.

Participants were sat on a chair and asked to pedal on a recumbent cycling ergometer (MOTOmed VIVA2, Reck, Germany) while looking at a computer screen displaying the muscle activity of one muscle of the subject. Prior to the experiment, both feet were fastened to the pedals of the ergometer by means of straps provided by the system for this purpose. The resistive load of the bicycle was adjusted to ensure visible muscle activity during pedaling. The subject sat on a chair in a comfortable position, with the trunk approximately vertical and leaning on the backrest, while the hands were placed on the handle of the ergometer.

The experiment consisted on three consecutive sessions, each composed of seven cycling trials of 60 cycles each (see Figure 1, lower panel). The first trial, named “PRE,” was used to obtain a reference of muscle activity during self-selected speed to be used afterward, during the biofeedback trials. After the PRE trial, the subjects performed four consecutive trials in which they received visual feedback on the EMG envelope of one muscle, called target muscle. In these conditioning trials, labeled with the prefix “COND,” the subjects were asked to delay as much as possible the peak of muscle activity with respect to the reference muscle activity recorded during the PRE trial. The visual feedback was provided at the end of each pedaling cycle. No specific indications on how to achieve the task goal were given, allowing the subjects to freely find their own neuromuscular strategy. After the four conditioning trials, we tested the after-effects of the conditioning experiment by means of two “POST” trials. In the POST-1 trial, the subjects were asked to maintain the new strategy learned during the four conditioning trials, but in the absence of visual feedback. This trial has been designed to test whether the subjects actually learned the conditioning process induced by the visual feedback. In the POST-2 trial, also without visual feedback, the participants were asked to perform a normal pedaling movement, as done in the PRE trial. This trial has been conceived to test the permanence of involuntary after-effects. A final trial (WASH) was executed to ensure the elimination of any residual effect of the trial on muscle activation, and to prepare for the next experimental session. In this trial the subject was asked to return to baseline (PRE) muscle patterns, with the help of visual feedback.

The aforementioned protocol was executed three times, each with a different target muscle. We chose the three target muscles TA, VL, and GM, being them the dominant muscles for the three muscle synergies found during pedaling tasks (Barroso et al., 2014), i.e., presenting higher weight in one synergy and very low weight in the other two synergies. A 2-min rest between trials and a 5-min rest between sessions were used to avoid muscle fatigue. The experiment lasted approximately 2 h per participant, including donning and doffing. To measure the pedaling angle, we integrated a custom-made magnetic encoder in the crank of the ergometer, synchronized with the EMG amplifier and the processing software. The encoder was calibrated in such a way to obtain a 0° angle when the crank was in the bottom dead center. The synchronized acquisition of EMG from the Trentadue Amplifier, as well as the post processing was implemented in Matlab® 2010a.



Data Analysis


EMG Pre-processing

The raw EMG signal from all muscles was pre-processed online at the end of each pedaling cycle, defined as the crank positioned in the bottom dead center, pointing toward the ground (see Figure 1). We used a second-order Butterworth bandpass filter at 20–400 Hz to filter low-frequency motion artifacts and high-frequency electromagnetic noise (Raez et al., 2006). We applied a full-wave rectification and a low-pass filtering at 4 Hz to obtain the basic set of EMG envelopes from each cycle. The corresponding raw EMG data were stored for subsequent offline processing. At the same time, the EMG envelope of the target muscle was normalized in amplitude and displayed immediately after each cycle to the user. To prepare for offline processing, the set of non-normalized EMG envelopes obtained from each cycle were amplitude-normalized to the median peak value across the 60 cycles of the PRE trial, then time-normalized on a 1-by-360 vector, and finally concatenated to obtain a 8-by-21,600 matrix (M) of muscle envelopes (Hug et al., 2011).



Individual EMG Analysis

To test the first hypothesis (i.e., task feasibility), we analyzed the individual changes in activation timing, shape, and amplitude of the target muscles independently (see Figure 1, top panel). The timing analysis was performed using circular statistics (Batschelet, 1981; Fisher, 1996) on the population of the peaks of the EMG envelopes of each trial. We computed the mean direction for circular data for each population of 60-peak timings, according to the following equations:
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where θi represents the timing of the peak of a single cycle, expressed in radians, and [image: image] is the resulting mean direction. Delay was calculated as the difference between the mean direction of each trial and the mean direction of the PRE trial.

The shape similarity (SS) was computed by applying a circular cross correlation Cxy, as described by the following equation:
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where Cxy is the non-normalized circular cross-correlation at lag zero, x denotes the EMG envelope of the current cycle, and y denotes the mean EMG envelope of the PRE trial.

The amplitude analysis was performed by calculating the difference in amplitude between each peak and the PRE trial, according to the following equation:
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where x is the EMG envelope of the current cycle and y is the mean envelope of the PRE trial.



Muscle Synergy Analysis

To test the second hypothesis (i.e., modular control), we assessed the ability of the FSC and FTC models to explain the variance of the measured EMG. The FSC model had fixed synergy vectors (W) and variable activation coefficients (H). The activation of the kth muscle at time t can be defined according to the following formulation:
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where S is the number of synergies and T is the number of time points. In this model, the fixed structure is constituted by the spatial synergies W, a K times S matrix named WFSC from now on, while H is continuously varying in time.

The FTC model had fixed H and variable W, and the activation of the kth muscle, at the nth sample of the cth pedaling cycle, can be described as in the following:

[image: image]

in this latter model the fixed component is constituted by the temporal synergies H, an S times N matrix named HFTC from now on, while W varies from cycle to cycle.

For both models (see Figure 2) the 60 pedaling cycles of each trial were split into a 30-cycle training set, and a 30-cycle testing set. The 30 cycles were randomly selected from the 60-cycle pool. For each trial of each subject, the training set was used to extract the muscle synergy vectors WFSC (FSC model) or the temporal components HFTC (FTC model) using the standard non-negative matrix factorization (NNMF) algorithm (Lee and Seung, 1999). The testing set was used to obtain the matrix of reconstructed EMG (MREC) using non-negative reconstruction (NNR). NNR consists in the application of the standard NNMF algorithm, either by fixing spatial component (W) extracted from the training set and varying the matrix of activation coefficients (H), or vice versa, according to the following multiplicative update rule (the equation below considers the case of fixed W and varying H):
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FIGURE 2. (A) Calculation of the muscle synergy vector (W) and activation coefficients (H) from the PRE training set. (B) Reconstruction of the EMG envelopes (M) from the PRE trial, considering the cycles excluded from the training set. (C) Reconstruction of the EMG envelopes (M) from the POST-1 testing set, using fixed W (FSC model) or fixed H (FTC model). An extended version of the FTC model consisted in shifting the H vectors until the best VAF is obtained.
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where r (row) and c (column) denote the single components of the matrices taken into account, T denotes the transposed matrix, and H is the reconstructed activation coefficients matrix (HREC).

For both FSC and FTC models, the number of synergies S was chosen as the smallest number able to exceed the 90% of variance accounted for (VAF) (Clark et al., 2010) on synergies extracted from the training set. In order to partially compensate for potential effects of the different number of degrees of freedom between the two models, we performed the whole analysis by down-sampling the original data so to obtain H and W data matrices with dimension N-by-S, being N = 8 the number of muscles in the FSC model and N = 18 the number of time points in the FTC model (chosen as the minimum number of points able to preserve the shape of the temporal commands). In this way, we obtained a comparable number of degrees of freedom in the sub-dimensional structures in the two models.


Fixed spatial components (FSC) model

To test the FSC model (see Figure 2), we applied NNR using the fixed set of muscle synergies extracted from the PRE training set (WFSC_PRE, see Figure 2A) and updated H at every algorithm iteration to obtain the reconstructed muscle activations from the testing sets of both PRE (MPRE_FSC, see Figure 2B) and POST-1 (MPOST_FSC, see Figure 2C) trials. The goodness of the reconstruction with WFSC_PRE was assessed with the VAF resulting from the application of NNR.



Fixed temporal components (FTC) model

To test the FTC model, we applied NNR using the set of temporal components HFTC_PRE extracted from the PRE training set (Figure 2A) to reconstruct the testing set of the PRE and POST-1 trial, respectively (Figures 2B,C). We applied NNR as done for the FSC model, but maintaining H fixed and updating W at every algorithm iteration, obtaining the reconstructed muscle activations MPRE_FTC and MPOST_FTC, respectively. An extended version of the FTC model (MPOST_FTC_DELAY) was further tested by reconstructing MPOST with all the possible time shifted versions of the components of HFSC_PRE (FTCDELAY) independently. This approach allowed us to test whether the muscle coordination in POST-1 was explained by a simple time shift of the original components (i.e., without alterations in the shape of the temporal commands). In this latter model, an optimal set of delays of the temporal components was found as the one leading to the higher reconstruction VAF of the POST-1 trial.



FSC and FTC models validation

In order to validate the consistency of the tested models (FSC, FTC, and FTCDELAY), we built a surrogate dataset to define the statistical level of chance when fitting the EMG data. For the FSC model, for each subject and trial, we applied NNR to a surrogate version of the extracted WFSC_PRE, constructed by randomly shuffling the muscle components of each synergy vector of WFSC_PRE. This surrogate version of the synergy matrix corresponds to an anatomical disruptor, leading to synergy vectors that only maintain their Euclidean norm with respect to the original ones. For each subject, trial, and biofeedback condition, 100 reconstructions of MPOST via NNR were applied with 100 different surrogate versions of WFSC_PRE (WSURR), leading to 100 VAF values expected from unstructured synergy vectors.

The surrogate data analysis for the FTC model was performed by constructing a Fourier based surrogate version of the temporal commands HFTC_PRE. A Fourier transform was applied to each HFTC_PRE component (Matlab “fft” function), and a surrogate version in the frequency domain was built by randomly shuffling the phase components of the Fourier transform, while keeping its modulus unaltered (Faes et al., 2004). The surrogate version of the temporal-component matrix was then calculated by applying the inverse Fourier transform, in order to obtain a temporal command with the same modulus of the Fourier transform, but shuffled phases. This led to temporal components with an altered morphology and main peak position in the time domain, induced by the phase shuffling. For each subject, trial and biofeedback condition, 100 reconstructions of MPOST via NNR were applied with 100 different surrogate versions of HFTC_PRE (HSURR) leading to 100 VAF values expected from phase distorted temporal commands.

The surrogate data analysis for the FTCDELAY model was carried out in the same way as for the FTC model, with the only difference that, for each subject, biofeedback condition and synergy, each of the 100 surrogate versions of HFTC_PRE was time shifted by all the possible time-shifts along the pedaling cycle (HSURR_DELAY). In this way, we checked whether a potential good reconstruction of MPOST via the FTCDELAY model could derive from a probable shape matching of a quantity with the same frequency content with respect to the original one (i.e., there is a high probability that among all the possible shifts of the surrogate temporal commands, some of them lead to a good reconstruction of MPOST).

For the previously described approaches to build surrogate data WSURR and HSURR for each subject, trial and biofeedback condition, the significance threshold VAFTH_SURR level was set as the 95th percentile of all the obtained surrogate VAF values. For the FTCDELAY model, this significance threshold was calculated over the set of the best performing HSURR_DELAY for each subject and biofeedback condition, corresponding to the delay leading to the highest reconstruction VAF.




Statistical Analysis

A PRE-POST comparison was carried out in terms of pedaling cadence (PC) for the three biofeedback conditions (TA, VL, and GM), by using a paired Wilcoxon signed rank test, in order to check whether any difference in muscle activation and timing could be ascribed to a mismatch in PC.

For each subject, the significance of time delays with respect to the PRE trial has been tested applying the Watson–Williams test for circular data (Fisher, 1996). The same test was used to verify the similarity of time delays across all subjects, for each muscle and feedback session. Circular statistics were performed using the Circular Statistics Matlab Toolbox (Berens, 2009). To test the significance of the difference in amplitude of the EMG peaks between each trial and the PRE trial, we used a paired-sample t-test. The circular cross correlation with respect to the PRE trial was tested with the Mann–Whitney–Wilcoxon test (Matlab function “ranksum”). This test was applied after checking the non-normality of these distributions. To assess the significance of the VAF values obtained via NNR on the PRE and POST-1 trials and those obtained using the surrogate data, a Wilcoxon signed rank test was applied. The test was used to compare the obtained VAFREC_PRE, VAFREC_POST, and VAFTH_SURR values for each subject, biofeedback condition, and trial. The significance level of the p-value has been set to 0.05 in all aforementioned tests.

Moreover, for each biofeedback condition (TA, VL, and GM), VAF reconstruction values emerging from the different models were compared among trials using ANOVA test with models (FSCPRE, FTCPRE, FSCPOST, FTCPOST, and FTCPOST_DELAY) as factors. In case of significant effect, post hoc analysis was carried out with Bonferroni correction.

We performed an additional PRE–POST-1 comparison of the modular structures emerging from the FSC and FTC models (i.e., time varying cycle-by-cycle H for the FSC and cycle-by-cycle varying W for the FTC). The H emerging from the FSC models were compared in terms of circular cross-correlation, as explained in Section “Individual EMG Analysis” for the single EMG data, so as to obtain an SS index and a delay. The W emerging from the FTC model were compared between PRE and POST-1 in terms of normalized scalar product to check their similarity. A further comparison between the FSC and the FTC models was conducted on the emerging synergy matrices W (fixed in the FSC model and varying in the FTC model), in order to check whether similar spatial muscle synergies act as a base for the different modular control models. This comparison was carried out in terms of cosine similarity between homologous pairs of synergies.





RESULTS

No statistically significant difference in PC was observed between the PRE and POST-1 trials for all the analyzed biofeedback conditions (PCPRE_TA = 66.1 ± 5.9 r/min, PCPOST_TA = 67.1 ± 8.4 r/min, PCPRE_VL = 68.7 ± 5.3 r/min, PCPOST_VL = 66.1 ± 8.6 r/min, PCPRE_ GM = 65.9 ± 10.3 r/min, PCPOST_GM = 66.3 ± 10.7 r/min), so that any PRE–POST-1 difference in muscle activation and timing is not a cadence-driven effect.


Effect of Biofeedback on Target Muscles

The delay between the POST-1 and PRE trial for TA, VL, and GM muscles across all subjects were 56.3 ± 27.0, 48.6 ± 27.2, and 42.2 ± 30.4 (mean ± SD) respectively, as shown in Table 1. Eight out of 10 subjects showed statistically significant changes in all target muscles. Two subjects (highlighted in light gray in Table 1) failed to significantly change the timing on at least one target muscle.


TABLE 1. Effectiveness of the biofeedback on the target muscles, expressed as the delay of the EMG envelopes between the POST-1 trial and PRE trial.
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Most of the subjects preserved the shape of EMG envelopes across the experiment. This is demonstrated by the high values of cross correlation between POST-1 and PRE trials, with mean values between 0.89 (TA) and 0.95 (VL) and standard deviation below 0.09. In some isolated cases, we observed lower similarities due to a change from a typical Gaussian-like shape to a double-peak waveform. This happened either in the PRE or POST-1 trial, but was never present on both trials. Figure 3 shows results on one representative subject (Subject 3) in terms of mean EMG envelopes, difference in delays (orange shaded area), and changes in amplitude (gray shaded area).


[image: image]

FIGURE 3. EMG envelopes from one representative subject (Subject 3) across trials. Rows represent the three muscles TA, VL, and GM. Columns represent the three different experimental sessions, each considering a different muscle for visual biofeedback (target muscle). Each curve represents the mean profile of the 60 normalized EMG envelopes of one trial. Trials correspond to the following color code. Bold black: PRE trial. Thin gray: COND 1–4 trials. Orange: POST-1. Dotted black: POST-2. Black and orange circles represent the mean peaks of the envelopes of the PRE and POST-1 trials, respectively. The width of the shaded orange area represents the mean delay between PRE and POST-1 trials (whose values are presented in Table 1). The height of the gray area represents the mean value of the amplitude difference (whose values are presented in Table 2).


The analysis of the amplitudes (see Table 2) reveals that in the great majority of cases, the amplitude of EMG envelopes increased. The normalized amplitude difference for the target muscles TA, VL, and GM was 2.86 ± 1.15, 0.87 ± 0.47, and 2.40 ± 1.10, respectively. Figure 4 provides a compact representation of the mean delays and amplitude gains across all subjects. In this figure, it is also visible how the WASH trial (indicated as “W”) were in general effective to wash out the learning effects and make the EMG envelopes return to their initial conditions.


TABLE 2. Effect of the conditioning biofeedback on the amplitude of the EMG envelopes.
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FIGURE 4. Delays and amplitude difference of the peak of EMG envelopes with respect to the PRE trial, across the 10 subjects. Rows represent the three muscles TA, VL, and GM. Columns represent the three different experimental sessions, each considering a different muscle for visual biofeedback. Bars represent the mean delays across subjects in degrees (scale shown on the right side). Solid lines represent the gain of the amplitude difference (scale shown on the left side). The vertical lines represent the standard deviation across subjects.


The scatter diagrams of Figure 5 show the relation between time delays and changes in amplitude for the 10 subjects. Results show a positive correlation between significant changes in amplitude and in time in the target muscles (diagonal subplots).


[image: image]

FIGURE 5. Scatter diagrams of time delays vs. difference in amplitude. Dots represent mean values from individual subjects. The orange circle indicates the mean value across subjects. Vertical and horizontal lines indicate the standard deviations of amplitude and delay, respectively. Lines in orange indicate means significantly different form zero (t-test, p = 0.05).




Interaction Between Target and Non-target Muscles

Table 3 shows the comparison between the behavior of the target and the non-target muscles, for each subject and feedback session. We observed a general trend across subjects. When TA is the target muscle (session 1, first column for each subject), VL shows a similar positive delay with respect to the PRE trial, whereas GM shows an opposite, i.e., anticipated, activation. When VL is the target muscle (session 2, second column), TA shows a slight (not significant) positive relationship with VL. GM shows a more independent behavior, reporting both positive and negative delays across subjects. During the feedback of GM (session 3, third column), TA shows a positive correlation with GM, whereas VL appears to behave independently, showing very heterogeneous trends.


TABLE 3. Comparisons between target and non-target muscles of PRE-POST1 delays.
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Synergy Analysis

By extracting muscle synergies from the training set for each subject, the dimensionality of the PRE and the POST-1 trials was three for all subjects, biofeedback conditions, and models (FSC and FTC), according to the VAF > 90% criterion, as shown in Figure 6. The grand average muscle activation across subjects for all the recorded muscles is shown in Figure 7, for each biofeedback condition.


[image: image]

FIGURE 6. Variance explained by the extraction of a number of synergies from 1 to 8 (mean ± std across subjects), for different modular motor control models (FSC and FTC) and trials (PRE and POST). Three modules lead to the VAF > 0.9 criterion for all the analyzed conditions. All the reported VAF values have been calculated from synergies extracted from the training set.



[image: image]

FIGURE 7. sEMG envelopes of all the recorded muscles for the each of the three biofeedback conditions, during the PRE and POST-1 trials. Data are represented as (mean ± standard error) across subjects.



Trial by Trial Extraction of Temporal and Spatial Synergies

Before testing the FSC and FTC models, we extracted synergies from all the trials (PRE, COND1-4, POST1-2, WASH) via NMF application, in order to characterize learning during the conditioning trials or the presence of any after-effects in the POST-2 and WASH trials. This was measured in terms of similarity between the W extracted at each trial and the corresponding one extracted at the PRE trial, for each subject and biofeedback condition. Figure 8 reports the evolution of this parameter along the trials. No clear monotonic learning curve is present. An abrupt change in the synergy structure is visible, especially W2 in the TA and GM feedback condition, starting from the first conditioning trial. No clear after-effect is present, as in POST-2 and WASH trials the similarity with the synergies extracted at the PRE trials is consistently higher than 0.8.


[image: image]

FIGURE 8. Cosine similarity between the synergies extracted from all the trials (COND1-4, POST1-2, WASH) and the homologous synergies extracted from the PRE trial for each biofeedback condition (median ± MAD across subjects).




Comparison Among Modular Control Models

When testing the FSC model, we found that all the PRE trials were successfully reconstructed using WFSC_PRE obtained from the training set (Figure 9, FSCPRE), with a VAF value higher than 90%. However, POST-1 trials reconstructed with WFSC_PRE lead to VAF values lower than those obtained with FSCPRE (p > 0.05) and even not different from the value expected from unstructured spatial components WFIX_SURR (p > 0.05), meaning that the FSC model is not valid to describe this learning task.
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FIGURE 9. Performance of the different models, i.e., FSC (fixed W), FTC (fixed H), and FTCDELAY (with the best performing surrogate), quantified in terms of variance accounted for (VAF) on the PRE and POST-1 testing sets. All models have been created using the 30 cycles of the MPRE training set. Significance level was set according to post hoc analysis (**p < 0.002, *p < 0.02) and Wilcoxon signed rank test (#p < 0.05).


When testing the FTC model (see Figure 9), the reconstruction of the M testing set of the PRE trial by using HFTC_PRE led to VAF values typically higher than 90%, and with a value significantly higher than that expected from unstructured temporal commands HFIX_SURR (p < 0.05). However, for the reconstruction of the POST-1 trial, HFTC_PRE led to a significantly lower VAF as compared to the PRE trial, indicating that an unchanged temporal structure was not able to represent the observed changes in muscle coordination between PRE and POST-1. However, a significantly higher reconstruction VAF, comparable with that of the PRE trials of both FSC and FTC models, was obtained when using the FTCDELAY model (see Figure 9, FTCDELAY).

For each biofeedback condition, the ANOVA test highlighted a significant effect of the model used to reconstruct the testing dataset. Post hoc analysis revealed that the VAF reconstruction value obtained via the FTCDELAY model in the POST-1 trial is significantly higher than the one obtained with the FCTPOST and FSCPOST, and it is not different from the VAF reconstruction values obtained on the PRE testing set via the FTCPRE and FSCPRE models for all the biofeedback conditions. Overall, the FTC model with optimal delay reached significantly higher reconstruction quality values when compared to the FSC and FTC models (see Figure 9, right panel).



Validation of the FTCDELAY Model

The FTCDELAY model properly captured the changes in muscle coordination observed in the POST-1 trial. This reconstruction was higher than that obtained by the surrogate data for the FTCDELAY model, obtained by applying all the possible time shifts to the surrogate version of the temporal commands HFTC_PRE (Figure 9). This makes the FTCDELAY model the only one able to explain the changes in muscle coordination for all the biofeedback conditions.

The synergy vectors shown in Figure 10 (lower panel) obtained from HFTC_PRE show substantial adjustments in the POST-1 trial (FTCDELAY model), with cosine values among homologous pairs of synergy vectors reported in Table 4. In particular, the GM and TA biofeedback with the FTCDELAY model determine a significant change in the structure of one synergy vector (W2), while few differences are present under VL feedback, indicating a tendency toward the preservation of the spatial components for this specific biofeedback condition.


TABLE 4. Average cosine of the angle between W related to the FTC (A) and FSC (B) model in the PRE trial and the corresponding homologous W emerging from the FTCDELAY model in the POST-1 trial.

[image: Table 4]

[image: image]

FIGURE 10. Upper panel: Optimal shift of the activation coefficients obtained by FTCDELAY model (orange line) to reconstruct the POST-1 trial, compared to the original set of activation coefficients extracted by the PRE trial (black line). Lower panel: Synergy vectors obtained from the FTCDELAY model on the POST-1 training set (orange bars), compared to those extracted on the PRE trial from the FTC model (black bars) and FSC model (blue bars).






DISCUSSION


Effectiveness of EMG Biofeedback

Results confirm our first hypothesis (task feasibility), demonstrating that conditioning exercises based on EMG biofeedback can promote changes in muscle timing during cycling. Most of the subjects (eight out of 10) were able to adjust the timing of muscle activation of all target muscles by means of a simple visual representation of the EMG envelope presented at the end of each pedaling cycle (Table 1 and Figure 3). In contrast, subjects showed a very heterogeneous behavior in terms of magnitude of the delays, suggesting that the adaptation strategy is strongly subject-specific (Figures 4, 5). However, as shown in Figure 5, we found that a significant change in delays is, in most subjects, accompanied by a significant increase in the amplitude of EMG envelope. It is unclear whether this is due to a physical (i.e., biomechanical) or a neural mechanism. Given the nature of the task, in which subjects were required to focus only on the timing while performing the cycling task, a change in the amplitude could be simply explained by the adoption of a different strategy. The shape of the EMG envelope in the target muscles did not change, with a Gaussian-like waveform in most cases, with some exceptions, in which the waveform presented double-peaks; this behavior could be due to compensation strategies, either related to the previously mentioned sub-optimal strategy or to a change in the biomechanical requirements during the pedaling cycle. When analyzing the behavior of non-target muscles, we observed significant time shifts in most cases. These results partly support our second hypothesis (modular control), showing that a change in one muscle activity is not limited to the target muscles, but involves the other muscles not used in the biofeedback loop. The direction of changes, either positive or negative, shows also some general trends (see Table 3). We observed a clear positive correlation between TA and VL, meaning that a positive delay in one of these two muscles is accompanied by a similar change in the other one. In contrast, GM seems to have a more independent behavior, in particular with respect to VL. Instead, VL and TA show a contradictory relationship depending on the muscle used for the biofeedback. These adjustments in timing in the non-target muscles are likely due to biomechanical constraints for the proper accomplishment of the pedaling task, in order to maintain an adequate stiffness at the lower limb joints in different parts of the pedaling cycle. However, this aspect needs to be further explored through the measurement of pedal forces and the calculation of the joint torque profiles with inverse dynamics.



Spatial vs. Temporal Muscle Synergies

When testing the “modular control” hypothesis under the muscle synergy perspective, we observed that the modification in the individual muscle timing can be explained by some invariant modular control structures. Spatially fixed muscle synergies (FSC model) extracted during the PRE trial cannot account for the variability of the muscle activity from all the conditioning trials, indicating that learning a new strategy within the same task implies some reorganization of the spatial structure. In particular, changing the timing of a single muscle through biofeedback does not lead to coherent modification of the timing or amplitude of the original synergist muscles. Nevertheless, this learning task can be well explained by a modular control model with FTC shifted by an optimal delay (FTCDELAY model). Under this hypothesis, a set of fixed temporal commands represents the variables that the CNS keeps fixed during a learning process, by adjusting only their timing and by differently weighting the contribution of each muscle to the overall coordination event-by-event. This latter model explains the learning task explored in this study, suggesting that an overall temporal invariance underlies a learning process. Preserving such a structure implies that the full-time course of the temporal recruitment throughout the cycle is maintained during the whole learning process. From a control point of view, this preservation of the temporal components is in line with existing theories of neural control of rhythmic tasks organized around a set of central pattern generators, shared across different tasks and adjusted in time to reflect different biomechanical requirements (Ivanenko et al., 2003, 2004; Cappellini et al., 2006). In general, the FTC models leads to a spatially variable structure, different from the one obtained through the FSC model. In particular, these adjustments are not general and appear to be dependent on the target muscle provided as biofeedback. However, this spatial alteration is strongly evident only for the synergy W2 under TA and GM feedback conditions, while W1 and W3 seem to preserve their original spatial composition under all biofeedback conditions. On the contrary, even though the FSC model does not account for the changes in muscle coordination under VL feedback, this condition has the tendency to preserve the spatial composition, as indicated by the higher similarity among the emerging spatial components.

When describing motor adaptation and motor learning within the muscle synergies framework, the modification in the module composition is in line with the hypothesis that the spatial (W) and temporal (H) parts of the modular organization sub-serve different neural mechanisms. Modifications to the temporal commands (H) can be used by the CNS for quick adjustments and corrections to already existing motor programs to adapt to external perturbation or to face different biomechanical demands. Instead, synergies (W) show a more slowly varying structure, whose change would imply a kind of permanent modification to the motor programs. This observation is in line with (Kargo and Nitz, 2003), showing that the tuning to already existing synergies allows for faster skill learning and with (Berger et al., 2013) showing that adaption to virtual surgeries is slower when new synergies are required. However, in our study, we found that after four conditioning trials, the subjects adjusted the timing of the target feedback muscle, but in order to do this they disrupted part of the spatial composition of muscle synergies, while keeping unchanged the shape of the temporal commands and adjusting their timing.

From the point of view of muscle coordination, the change in muscle activation timing might reflect both mechanical and neural constraints. Applying delayed muscle activation with respect to the pedaling cycle (phase shift) could be a pure biomechanical effect linked to changes in PC. This mechanism, known as activation dynamics, delays muscle activation when PC decreases in order to develop a constant force profile along the pedaling cycle, thus compensating for the fixed electromechanical delay of muscles (Neptune et al., 1997). In this study, we did not measure pedal force profiles, but the observed changes in cadence were not likely able to explain a pure effect of the activation dynamics mechanism. We thus assume that a neural component in the adjustment of timings was present during the learning process. From this point of view, the use of factorization algorithms for identifying adaptation strategies during this learning process could shed light on some basic neural mechanisms used by the CNS to face new biomechanical requirements; as a matter of fact, preserving a part of the original modular control scheme during a short-term learning process (either the spatial or the temporal part) could reflect the existence of habitual coordination patterns that leave aside any optimal control strategy (De Rugy et al., 2012). The adoption of such a habitual rather than optimal control scheme is further supported by the observed changes in amplitude during the POST-1 trials, indicating a tendency to find a solution which is good enough to face the current change in biomechanical requirements. Despite the habituality or optimality of the adopted motor control scheme, our task can be considered as quasi-constrained from a kinematic point of view, and the present experiment likely explores an extended (even though not complete) set of possible force outputs; in this scenario, the preserved modular control schemes are likely to be of neural origin (Kutch and Valero-Cuevas, 2012).



Potential Applications in Neurorehabilitation and Limitations

One of the main functional consequences of a neurological injury is the reduced coordination complexity due to an incorrect timing of muscle activation. Cycling training is a technique used in neurorehabilitation to promote recovery of mobility-related functions, such as muscle strength, spasticity, cardiopulmonary function, and symmetry of movement (Katz-Leurer et al., 2006; Lee et al., 2008; Tang et al., 2009). Recent studies have shown that the combination of cycling exercises with visual and/or afferent stimulation improved walking and postural functions in neurological subjects (Ambrosini et al., 2011; Yang et al., 2014; Barbosa et al., 2015). Previous studies have also shown that a typical modular organization of cycling is present in healthy and neurological subjects (Raasch and Zajac, 1999; Hug et al., 2011; De Marchis et al., 2013a; Ambrosini et al., 2016; Barroso et al., 2016) with mechanisms similar to those underlying walking (Zehr et al., 2007; Barroso et al., 2014). These results provide preliminary evidence on the ability of cycling-based treatments to enhance the plasticity of the CNS, supporting its feasibility as a possible substitute of gait training after a neurological injury. Nevertheless, the effects of cycling-based training approaches on muscle coordination are still largely unexplored.

In the proposed experimentation, we limited our study to healthy people. Participants were asked to deviate from the normal pattern of muscle activation and execute movement in such a non-natural way, meaning that the resulting biomechanics might have not been functional. Whether a similar approach can be applied in a reverse fashion to restore coordination in people with neurological lesions should be investigated. The results obtained in this work let us hypothesize that, when disrupted muscle coordination is present, changing the timing of activation of a single muscle can have a functional result. This aspect has yet to be extensively explored, but it could lead to cycling-based rehabilitation programs based on feedback of small subset of internal variables.

A possible limitation of our study is the choice of visual biofeedback modality. There are multiple ways in which the feedback can be provided through visual indicators. These span from minimal visual cues based on binary states (Thompson and Wolpaw, 2015), to more complex feedback modalities based on multiple biological signals (Barbosa et al., 2015). We consider the EMG envelope a simple and sufficiently meaningful descriptor on the user’s physiological activity, which includes both time and shape information. To avoid the concomitant representation of the amplitude information, we decided to normalize the amplitude for each cycle, so that the user always saw a peak with unitary value. In pilot trials, this modality demonstrated to be more effective than including absolute amplitude information. We did not test whether the shape of the waveform was perceived as a distracting element. We nevertheless decided to leave such information, because it provided a qualitative indication of the correct execution of the task. In the future, we should investigate new forms of feedback such as those based on synergy analysis. For instance, substituting the EMG envelope with the activation coefficient from one synergy may be a feasible next step. One of the questions that we want to answer with this approach is whether “synergistic” feedback can produce better learning effects with respect to single muscle activity feedback. A negative response to this question will support the feasibility of this technique in clinical based context, where minimal experimental setups (one muscle instead of multiple muscle recording) can make the difference. Conversely, the eventual demonstration of a better effectiveness of the synergistic feedback will support the inclusion of muscle coordination as a valuable biomarker during re-learning approaches. These aspects are in our opinion relevant and worth being investigated.

In our experiment, the task goal was to postpone the peak of activation of the target muscle. Other task goals such as anticipating the peak timing, the amplitude, or accelerating/decelerating the movement in specific sub-phases of cycling are other options that can be considered in future studies. A main objective in this respect would be to develop look-up tables able to match each learning strategy with the resulting functional effects. The successful definition of these look-up tables will enable the definition of subject-specific rehabilitation programs. In this respect, it may be also interesting to establish which are the functional boundaries of each task goal, i.e., establishing to what extent can a subject change the target variable according to the musculoskeletal (e.g., leg-pedal kinematic chain, muscle dynamics) or neural (e.g., reaction time) constraints.

Even though different models of muscle coordination have been tested, additional insights onto this pedaling learning task could be provided by recording muscle activity from the non-dominant leg, in order to highlight potential compensation mechanisms adopted by the subjects. This can also be done by recording pedal forces, in order to gather information on the symmetry in task execution.

Future studies should possibly include the measurement of the most relevant joint kinematics of the subjects, e.g., ankle, knee and hip, together with the crank and pedal angle to have complete information on the biomechanical effects induced by this task. This may shed some light on the biomechanically vs. neural implications of muscle synergy adjustments during learning, which have not been specifically addressed by our work.




CONCLUSION

In this study, we showed that muscle coordination during pedaling can be voluntarily changed through a conditioning procedure based on EMG visual feedback on one single muscle. We observed that changes in the target muscle timing are consistently accompanied by changes in other muscles not involved in the biofeedback loop. While changes in time and amplitude are in general subject-specific, they appeared to be correlated to each other, meaning that a shift in time is in general associated with a change in amplitude. Under the muscle synergy perspective, we showed that among the tested models, i.e., spatially and temporally invariant components, the one based on FTC (shifted in time) can better explain changes in muscle coordination. These results demonstrate that some underlying modular structures may be preserved even in the presence of significant changes in individual muscles. Our results also suggest that testing the effectiveness of only one of model (e.g., spatially fixed as typically done in literature) over surrogate data is not sufficient. Testing and compare alternative models may be key to identify the biomechanical or neural implications of the obtained results, especially for the applicability of synergy-based strategies in neurorehabilitation.
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Understanding the reorganization of the central nervous system after stroke is an important endeavor in order to design new therapies in gait training for stroke patients. Current clinical evaluation scores and gait velocity are insufficient to describe the state of the nervous system, and one aspect where this is lacking is in the quantification of gait symmetry. Previous studies have pointed out that spatiotemporal gait asymmetries are commonly observed in stroke patients with hemiparesis. Such asymmetries are known to cause long-term complications like joint pain and deformation. Recent studies also indicate that spatiotemporal measures showed that gait symmetry worsens after discharge from therapy. This study shows that muscle synergy analysis can be used to quantify gait symmetry and compliment clinical measures. Surface EMG was collected from lower limb muscles of subacute post-stroke patients (with an onset of around 14 days) from two groups, one undergoing robotic-assisted therapy (known as HAL group) and the other undergoing conventional therapy (known as Control group). Muscle synergies from the paretic and non-paretic limb were extracted with Non-Negative Matrix Factorization (NNMF) and compared with each other to obtain a gait symmetry index over therapy sessions. Gait events were tracked with motion tracking (for the HAL group) or foot pressure sensors (for the conventional therapy group). Patients from both groups were assessed over a 3-weeks long gait training program. Results indicated that there were no differences in muscle synergy symmetry for both groups of patients. However, the timing of muscle synergies were observed to be symmetrical in the HAL group, but not for the Control group. Intergroup comparisons of symmetry in muscle synergies and their timings were not significantly different. This could be due to a large variability in recovery in the Control group. Finally, stance time ratio was not observed to improve in both groups after their respective therapies. Interestingly, FIM and FMA scores of both groups were observed to improve after their respective therapies. Analysis of muscle coordination could reveal mechanisms of gait symmetry which could otherwise be difficult to observe with clinical scores.

Keywords: muscle synergy, stroke, gait symmetry, robotic therapy, hybrid assistive limb (HALⓇ)


1. INTRODUCTION

Gait impairment is traditionally associated with stroke, and hemiparesis is a common observance (Olney and Richards, 1996). As a result of weakness in one side of the body, gait asymmetries are notable features in the locomotion of such patients. Gait asymmetries are known to cause long-term complications, like inefficient energy expenditure, together with joint pain and deformation (Verma et al., 2012). Recently, studies indicated that gait asymmetries, like stance and swing symmetry are not adequately captured with conventional clinical measures, like gait velocity, motor deficit levels and impairment scores. Such clinical measures are uncorrelated with spatiotemporal measures of gait symmetry (e.g., step length, stance duration) (Patterson et al., 2010a; Rozanski et al., 2019). Although the earlier study (Patterson et al., 2010a) tracked patients up to 6 years post-stroke and reported that gait symmetry worsens, the more recent study by Rozanski et al. (2019) did not find the worsening of gait symmetry to be as severe. However, Rozanski et al. (2019) noted that since the monitoring was only performed for 6 months, they hypothesized that the possibility of gait symmetry worsening is high. They also pointed out that the number of patients who improved their gait symmetry after therapy was lower than expected, which is an indication that asymmetry of gait is difficult to correct (Rozanski et al., 2019).

Evidence of the neurological basis of gait symmetry can be observed in studies evaluating the symmetry of cortical connectivity in both hemispheres of the brain. Through the use of transcranial magnetic stimulation and magnetic resonance imaging, Madhavan et al. (2010) observed that patients with strong connectivity of the non-lesioned motor cortex to the paretic limb performed worse with the non-paretic ankle in a task to match a target with their ankle dorsiflexion and plantarflexion. Another similar study assessed side symmetry in the upper limbs by utilizing electroencephalogram and surface electromyography (EMG) (Graziadio et al., 2012). They provided evidence that neural activity in the non-lesioned side drives asymmetry and only measures of symmetry were correlated with global recovery scores (Graziadio et al., 2012). Taken together with clinical observations, there appear to be a correlation between gait symmetry and the symmetry of the nervous system, in terms of neural connections and strength of these connections. This suggests that improving gait symmetry could help improve this symmetry in connections. The rehabilitation approach of this study can be categorized as a “bottom-up” approach, where physical training or exercise is used as an intervention to influence the brain. Specifically in this study, we intend to evaluate the bottom-up effect of a biologically controlled exoskeleton which intervenes in the peripheral system, through which positive changes in the neural control of gait is expected. This is opposed to the “top-down” approach, where interventions are designed based on the state of the brain or to directly influence the brain with brain-computer interfaces (Belda-Lois et al., 2011). Further discussion on these two categories can be found in Belda-Lois et al. (2011).

Recently, exoskeletons have been developed for gait training and therapy for patients with neurological diseases (Jezernik et al., 2003; Hayashi et al., 2005; Veneman et al., 2007; Zeilig et al., 2012). These robots provide assistance to the lower limbs of patients for generating stepping motions in gait training. Studies evaluating the effects of such exoskeletons tend to focus on classic clinical outcomes, like gait velocity and functional recovery scores (Aach et al., 2014; Watanabe et al., 2014, 2017). However, despite the success of such exoskeletons, recent reviews noted that the benefits for therapy were still unclear and require further controlled studies to verify the effectiveness (Díaz et al., 2011; Louie and Eng, 2016). Therefore, there is a need to develop tools to understand the asymmetrical activity of the nervous system influencing gait recovery, as clinical evaluation scores are insufficient to provide insight about the state of the nervous system. In this case, muscle synergies could be one method worth considering as a clinical evaluation tool and for rehabilitation (Safavynia et al., 2011).

Muscle synergy analysis is a method that can be used to characterize muscle activation patterns in humans (Ivanenko et al., 2007; Torres-Oviedo and Ting, 2007). The hypothesis is that a small number of spatially grouped muscles (known as muscle synergies), and their corresponding timing coefficients, are sufficient to describe various locomotion tasks in gait and posture studies. This method also serves as a dimension reduction method for further analysis. Muscle synergies have been proposed as a manner the central nervous system reduces the complexity of controlling muscles to generate movement (Tresch and Jarc, 2009), and in recent years, have also been proposed to be related to motor primitives (Giszter, 2015).

As for its applications, muscle synergies has also been shown to be robust between subjects (Chvatal and Ting, 2012) and even between days (Shuman et al., 2016). Muscle synergy analysis has also been successfully applied on assessing gait performance in stroke patients (Clark et al., 2010; Gizzi et al., 2011; Routson et al., 2013; Barroso et al., 2017). Hence, to allow better characterization of gait symmetry change, the use of muscle synergy analysis is proposed to analyze muscle coordination changes that occur over the course of different types of therapy, specifically in this study, the difference between robotic-assisted and conventional gait training.

A related study (Patterson et al., 2015), evaluated changes in spatiotemporal gait asymmetry during in-patient rehabilitation. This study was motivated by the lack of information about how patients change their spatiotemporal gait symmetry over the course of therapy. Their main findings was that a majority of patients did not significantly improve their gait symmetry during the course of therapy and after discharge. The use of muscle synergy analysis would be beneficial in such situations, where spatiotemporal gait measures are unable to differentiate changes in gait of stroke patients over therapy. A previous study (Tan et al., 2018) showed that a course of robotic therapy with a bioelectrically-controlled exoskeleton was effective in restoring gait symmetry, as quantified by muscle synergies. However, that study was limited to accessing the outcome of patients after robotic therapy, and no comparison was performed with patients that did not undergo robotic therapy. Another similar study also used muscle synergy analysis to examine differences between lower limbs of spinal cord injury patients (Pérez-Nombela et al., 2017). They found that there were differences in the composition and activation of muscle synergies between lower limbs, suggesting that spinal cord injury patients suffer from a similar problem in stroke patients, where one limb is more affected that the other limb.

This current study aims to address the limitations of the previous study by evaluating the short-term changes in spatial and temporal muscle coordination symmetry, as quantified by the spatial organization of muscles used (muscle synergies) with their corresponding activation times (timing coefficients), in patients undergoing a course of robotic-assisted gait training and compare them with patients undergoing a course of conventional gait training.



2. METHODS

To evaluate the effects of robotic gait therapy on muscle coordination symmetry, subacute post-stroke patients were recruited and divided into two groups, with one group undergoing robotic gait training, while the other group underwent conventional gait training. Muscle coordination differences between groups were evaluated before, after and during the course of therapy. Clinical test scores, stance duration and stance time ratio changes were also reported.


2.1. Participants

This study was carried out in accordance with the recommendations of the University Guidelines for Clinical Trials, Institutional Review Board of University of Tsukuba Hospital, with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the Institutional Review Board of University of Tsukuba Hospital.

Patients were recruited in a decentralized manner from the University of Tsukuba Hospital, Ibaraki Kennan Hospital, Kobari Sogo Clinic, Tsukuba Memorial Hospital, and the Ibaraki Seinan Iryo Center Hospital. They were assigned without randomization based on the hospitals they were admitted to.

Patients recruited from the University of Tsukuba Hospital were assigned to the robotic gait therapy group (known as HAL group thereafter), while patients from the other hospitals were assigned to the conventional therapy group (known as Control group thereafter). Patients exhibiting hemiparesis after unilateral ischemic or hemorrhagic stroke, aged between 40 and 80, were examined by the Functional Ambulation Categories (FAC) criteria for inclusion (FAC score of either 1 or 2). Patients who had consciousness issues, cardiac disease (defined as myocardial infarction, severe heart failure, arrhythmia, or cardiomyopathy presenting abnormal blood pressure, heart rate or SpO2) or musculoskeletal problems were excluded. All patients arriving in the participating hospitals due to acute stroke were examined by the above criteria and recruited into the study if they fulfill the conditions. Numbers of patients recorded were only for those that fulfilled the criteria. Due to the difficulty in recruiting patients and matching intervention schedules between the groups across different hospitals, sample sizes were determined based on convenience, where at least 10 patients per group was set to be the target size.

Data of patients in the HAL group from the previous study (Tan et al., 2018) (Table 1 R1–R8) were used for analysis in this current study. Data of new patients (Table 1 R9–R11) that recently completed their course of therapy were included as well, making a total of four males and seven females patients. HAL group patients were aged between 43 and 80 (60.3 ± 11) years old. They were included in the study about 10–18 (13.9 ± 3.2) days after the onset of stroke.


Table 1. Participants characteristics.
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Initially, the Control group comprised of seven males and four females subacute stroke patients. However, two patients dropped out of the study in the first session, citing discomfort with removing their clothing for the attachment of EMG electrodes, especially for the gluteus maximus electrode. Subjects that dropped out continued with their therapies at their respective hospitals, but no additional data was collected from them as they left the study. The remaining six males and three females stroke patients (Table 1 C1–C9) underwent conventional gait training, with training schedules matched to the HAL group. Patients were aged between 49 and 76 (64.9 ± 8.9) years old. The control group were included in the study about 12–18 (15.7 ± 2.1) days after the onset of stroke.

Robotic gait training and all evaluations for the HAL group were performed in the University of Tsukuba Hospital, while conventional gait training and all evaluations for the Control group were performed at the following hospitals and clinics : Ibaraki Kennan Hospital, Kobari Sogo Clinic, Tsukuba Memorial Hospital, Ibaraki Seinan Iryo Center Hospital. Attachment of sensors and operation of the measurement equipment were performed by the same staff member who performed data capture for the HAL group. The staff member traveled to participating hospitals and clinics during the measurement of the patients in the Control group.



2.2. Gait Training Methods

In addition to gait training described here, both groups of patients (HAL group and Control group) received a total of 160 min per week of conventional regular physiotherapy as part of their rehabilitation during their subacute phase, in their respective hospitals.


2.2.1. HAL Group

The single leg version of Robot Suit HAL (Hybrid Assistive Limb) (Hayashi et al., 2005) was used for patients in the HAL group on their paretic limb. The robot was composed of four rigid segments (lumbar, thigh, shank and shoe), actuated with motors in the hip and knee joints. The robot is able to function in two modes, the CVC (Cybernic Voluntary Control) and CAC (Cybernic Autonomous Control) modes. Details of the control modes are as follows:

• CVC mode: EMG signals were detected from the surface of the skin over the hip flexor (Illiopsoas) and extensor muscles (Gluteus Maximus), as well as, the knee flexors (Hamstring) and extensor muscles (Vastus Lateralis). The ratio between the flexor and extensor muscles determines the direction and amount of assistive torque that is to be generated in real time. Gain parameters can be set individually for each flexor or extensor muscle by the therapist until the patient is comfortable with controlling the robot.

• CAC mode: Assistance is generated based on a reference gait pattern from healthy subjects. The robot generates a pre-planned joint trajectory according to the gait phase detected by the joint angle and foot pressure sensors embedded in the shoe segment of the robot.

Patients followed the protocol detailed in Tan et al. (2018). Briefly, HAL therapy was started during the participants' subacute period (Table 1). For each patient in the HAL group, overground gait training were performed three times per week for 3 weeks (9 sessions), with the exoskeleton. Each training session lasted for 20 min, where patients walked in a 25 m course, composed of two straight lines and two semicircles. Breaks were provided as needed. No specific instructions were provided to the patients, other than the encouragement to walk, since the robot exoskeleton intervenes by providing assistance based on the remaining EMG signals from their lower limb muscles or the gait phase, depending on the control mode used. For safety and fall prevention, a walking device (All-in-One Walking Trainer, Ropox A/S, Naestved, Denmark) with a harness was used, but no body weight support was provided. Only 1 patient in this group started the program with CAC and progressed to CVC. The rest of the patients were able to utilize the CVC mode from the beginning of the program.



2.2.2. Control Group

For each patient in the Control group, the same amount of overground gait training as the HAL group was performed (three sessions each week for a total of nine sessions). Each training session for patients in this group also lasted for 20 min and breaks were provided as needed.




2.3. Data Measurement
 
2.3.1. Data Collection Protocol

Lower limb movement of patients in the HAL group was measured with a motion capture system (detailed in section 2.3.3). Lower limb muscle activity were measured with wireless EMG electrodes (detailed in section 2.3.2). Measurement was conducted during straight-line walking, at a self-selected speed without wearing HAL. Measurement schedule are as follows: before the 1st session, before the 4th session, before the 7th session, and after the 9th session. The All-In-One Walking Trainer (Ropox A/S, Denmark), with a harness, was used during the walking test to prevent falls. The harness was adjusted such that it did not provide any weight support. The patients walked for 6 m several times in order to maximize the number of strides for collection. Also, the initiation and termination of walking during each 6 m walking trial were discarded as well.

Gait of patients in the conventional gait training group was measured with the same protocol as the HAL group (self-selected walking speed, 6m walking distance, All-in-One Walking training with harness for fall prevention, harness did not provide weight support, and 6m walking test was conducted several times to maximize the number of gait cycles collected). Measurement schedule was matched with the HAL group (before course of therapy, before 4th session, before 7th session, after 9th session). Lower limb muscle activity were measured with the same EMG system defined in section 2.3.2. However, due to the lack of a motion tracking system for this group, gait events (heel strike and toe off) were determined with foot pressure sensors, detailed in section 2.3.4.



2.3.2. Electromyography (EMG)

Skin preparation included wiping down the muscle bellies with alcohol swabs. Twelve wireless, surface EMG electrodes were placed bilaterally over the muscle bellies of Vastus Medialis (VM), Hamstrings [Semitendinosus] (HAM), Tibialis Anterior (TA), Gastrocnemius [Medial Head] (GAS), Adductor Longus (ADD), Gluteus Maximus (Gmax), using a TrignoTM Lab Wireless EMG system (Delsys Inc., Boston, MA, USA). EMG data was sampled at 2,000 Hz. This data measurement protocol was applied on both groups of patients.



2.3.3. Motion Tracking

For the HAL group, motion tracking of subjects was achieved with a motion capture system (VICON MX System with 16 T20S Cameras, Vicon, Oxford, UK), in synchronization with EMG and sampled at 100 Hz. Sixteen autoreflective markers were placed bilaterally on the anterior superior iliac spine, posterior superior iliac spine, lower lateral 1/3 surface of the thigh, flexion-extension axis of the knee, lower lateral 1/3 surface of shank, lateral malleolus for the ankle, posterior peak of the calcaneus for the heel and the lateral second metatarsal bone of the toe. These marker positions were used to determine gait phase during locomotion.



2.3.4. Foot Pressure Sensor

For the Control group, gait phase was determined with foot pressure sensors, TrignoTM 4-channel FSR (Force Sensitive Resistor) (Delsys Inc., Boston, MA, USA), sampled at 100 Hz. Two FSRs were used, with a FSR pasted below the big toe and the other pasted below the heel of patients. Shoes from the same manufacturer were provided for the patients to ensure that FSR values were not affected by different shoe types. Gait phase detection was based on the pressure sensor values.



2.3.5. Verification Between Vicon and Foot Pressure Sensors

A small verification test was conducted to check the differences in measurement values between the motion tracking system and foot pressure sensors. Data from 3 healthy subjects were collected for overground walking. Similar to the Control group, foot pressure sensors (Delsys, TrignoTM 4-channel FSR (Force Sensitive Resistor), sampled at 100 Hz) were used, with 1 FSR pasted below the big toe and the other pasted below the heel. Shoes, which have the same manufacturer as the Control group, were provided. The same motion capture system (VICON MX System with 16 T20S Cameras, Vicon, Oxford, UK, sampled at 100 Hz), was also used. 6 reflective markers were placed bilaterally on the lateral malleolus for the ankle, posterior peak of the calcaneus for the heel, and the lateral second metatarsal bone of the toe. Subjects walked for five trials of 10 m each, at a self-selected speed. Heel-strike and toe-off events were recorded for both legs in order to calculate stance duration for both legs. The absolute error between the values from both measurement systems were calculated.




2.4. Clinical Assessments

Clinical evaluation were conducted at the 1st session and after the 9th session with the Functional Independence Measure (FIM) and Fugl-Meyer Assessment (FMA) as listed below:

1. FIM—Locomotion

2. FIM—Motor (General)

3. FMA—LE (Lower Extremity)

The temporal gait parameter, stance duration, was captured as it has been shown to be a relatively good indication of symmetry in other studies (Patterson et al., 2010a). The measure used here is the stance duration ratio, which was defined in Patterson et al. (2010b) as:
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where Tparetic and Tnon−paretic are the stance duration of both the paretic and non-paretic side, respectively, expressed in percentages of the gait cycle.



2.5. Data Analysis
 
2.5.1. Pre-processing

The extracted EMG data was first band-passed with a 4th order, zero-lag Butterworth filter at 30–400 Hz. The bandpassed EMG was then filtered with a Hampel filter (parameters : time window—win = 200, threshold—σ = 4) to remove artifacts in EMG data. Finally, the EMG data was fully rectified and low-passed at 6 Hz, with a 4th order, zero-lag Butterworth filter.



2.5.2. Extraction of Gait Events

For the HAL group the elevation of the heel markers were used to identify gait events. A heel strike is determined to be the point where elevation of the heel reflective marker is at the lowest point. A toe-off is determined to be at the point right before a steep increase in elevation of the toe reflective marker.

From all the gait events collected, gait cycles (strides) from each lower limb were extracted from the gait event recordings of each trial. Data indices between two consecutive heel strikes were considered as a stride. Strides were separated into “Paretic” and “Non-Paretic” categories, based on the paretic side of the patients as assessed by medical personnel. A selection criteria was imposed to select consistent gait cycles. This criterion is to filter out steps where patients stumble, which is a common occurrence during the early stages of the course of therapy (1st and 4th session). The selection criteria is as follows:

• Stride times for each lower limb, per session, was calculated from the indices of heel strikes (Paretic stride time, Non-Paretic stride time). Stride times were combined from multiple walk tests.

• A histogram of stride times were calculated for both the paretic limb and non-paretic limb.

• The bin width was determined with the Freedman-Diaconis rule. This was achieved with Matlab's histcount function.

• The strides that belong to the bin with the highest count were selected for further analysis.

The process for extraction of gait events was the similar for the Control group, except that instead of motion tracking, foot pressure sensors were used. The process of extracting heel strikes from the control group is illustrated in Figure 1. A heel strike is determined to be the start of the rising edge of heel pressure sensor values, while a toe off is determined to be the end of the falling edge of the toe pressure sensor value (Figure 1).


[image: Figure 1]
FIGURE 1. Gait cycle extraction method. Extraction of windows of consecutive steps for control group.




2.5.3. Extraction of EMG

Preprocessed EMG data (section 2.5.1) of selected strides were separated into Paretic and Non-paretic windows (Paretic side, Non-paretic side), using the best heel strike indices obtained from section 2.5.2. EMG envelopes from each gait cycle was then normalized by dividing each EMG channel with its standard deviation, following the definition of “UnitPer” described in Banks et al. (2017). The normalized EMG envelopes of each stride were then interpolated to 100 time points and concatenated together (Oliveira et al., 2014), giving a matrix of 6 by (100·N) (6 EMG channels of 100 time points multiplied by the number of strides selected by the selection criteria), for each lower limb.



2.5.4. Muscle Synergy Extraction With NNMF

Non-negative Matrix Factorization (NNMF) (Lee and Seung, 1999) was used to extract muscle synergies from concatenated EMG data. This was performed with Matlab's NNMF function, using the multiplicative update algorithm. Parameters for the tolerance for the residual (TolFun) was set to 10−6 and the tolerance for the relative change in elements (TolX) was set to 10−4. The algorithm was repeated 300 times and results with the lowest root mean square residual were taken to be the best. Synergies were allowed to vary per condition.

The choice of number of synergies was determined with the criteria of when the overall variance-accounted-for (VAFtotal) between the reconstructed and original EMG envelope was above 90%. A local criteria imposed was that the reconstruction VAF for each muscle (VAFmuscle) was above 75% and that and subsequent increase of the number of synergies did not give more than a 5% increase in the mean VAF of all muscle channels. The VAF is defined as 100*(uncentered Pearson correlation coefficient), which requires the total sum of squares to be taken with respect to zero (Torres-Oviedo and Ting, 2007). This is given as:

[image: image]

where n is the number of data points for each channel, and m is the number of channels. XnmandYnm are the matrices containing the reconstructed and original signal, respectively.



2.5.5. Synergy Analysis

Prior to comparison, muscle synergies on the paretic side were matched according to the muscle synergies on the non-paretic side. The similarities of muscle synergies on the paretic side to the non-paretic side were calculated with the scalar dot product (Cheung et al., 2012). The pair with the highest similarity score was removed from the pool and the process continues until all muscle synergies were matched. This matching process was repeated for all sessions and subjects. After the matching process, synergies and timing coefficients were compared to obtain a value to denote the symmetry between them. These values will be referred to as the “synergy symmetry” (for synergy weight symmetry) and “timing symmetry” (for timing coefficient symmetry). An infograph of the matching process is provided in Figure 2.


[image: Figure 2]
FIGURE 2. Muscle synergy matching Infograph. Graphical representation of matching muscle synergies on the paretic side to the non-paretic side. Similarity between each synergy is quantified with the scalar dot product(or known as cosine similarity) and similarity between timing coefficients is quantified with the Pearson correlation coefficient. Timing coefficients used for full gait cycle calculations were extracted from the concatenated results and averaged, giving 100 time points for comparison. Timing coefficients used for stance phase was extracted with the stance percent, interpolated to 60 time points and averaged before comparison.


Typically, the number of synergies were chosen based on a threshold value of the VAF (Torres-Oviedo and Ting, 2007; Clark et al., 2010). However, this would mean the paretic and non-paretic side will have different number of synergies, with the paretic side usually having a smaller number of synergies due to merging of synergies (Cheung et al., 2012). This makes direct comparison between the synergies difficult. Hence, by imposing the same number of synergies on both the paretic and non-paretic side, direct comparison becomes possible. However, to prevent information loss with such a method, all possible number of synergies will have to be considered during analysis. From the example shown in Figure 2 (Blue arrows and synergies in blue), synergies were matched by assuming that the same number of synergies were present on the paretic side, using the number of synergies from the non-paretic side (Figure 2, “Assume number of synergies on non-paretic side for both sides”). This process was then repeated until all synergies for all possible conditions and sessions were matched. Labels for the results section will be shortened using the labels shown below:

• AssumeNon−paretic: Assume number of synergies on non-paretic side for both sides

• AssumeParetic: Assume number of synergies on paretic side for both sides.

After the matching process, synergies on both sides of the body were compared with the scalar dot product and the mean of each comparison was recorded. Additionally, the similarity of the corresponding timing coefficients for the muscle synergies were evaluated with the Pearson correlation coefficient, R. Evaluation was done with the mean of the timing coefficients of 3 steps. This is to account for step-to-step variability.



2.5.6. Software

Data extraction from the Motion capture and EMG systems was done using custom scripts on MATLAB 8.4 (Mathworks, Natick, MA, USA). NNMF and the rest of the processing were performed with custom scripts on MATLAB 9.3 (Mathworks, Natick, MA, USA). Statistical tests were performed with custom scripts on R (version 3.5.3).




2.6. Statistical Analysis

Statistical analysis of the data was performed with the Paired Wilcoxon Signed-rank Test for comparison of clinical scores, muscle synergy symmetry and stance duration within groups. Due to unequal group sizes, intergroup comparisons of muscle synergy symmetry and stance duration were evaluated with the Mann-Whitney U-Test. Significance was considered in comparisons with p < 0.05 with 95% confidence intervals (CI) reported. Statistical analysis was performed with non-parametric tests as normality of the distribution cannot be assumed.

A preliminary two-way ANOVA was used on the obtained symmetry values to check for interaction between the choice of number of synergies with muscle synergy and timing symmetry values (pre-therapy or post-therapy). This is to check if selecting different number of synergies would cause gait symmetry to be estimated differently. There was no significant interaction between the different choices of number of synergies and muscle synergy symmetry (p = 0.6079), timing symmetry for the full gait cycle (p = 0.3079), and timing symmetry for the stance phase (p = 0.3688). This indicates that there is no interaction between choosing different number of synergies and symmetry values.




3. RESULTS

Patients labeled R5 and R9 were excluded from analysis as their FAC values during the 1st session were at 3. This is to ensure that the inclusion criteria was adhered to during analysis. However, since the patients participated in the study, results of these two patients were presented individually.


3.1. Patient Characteristics

The age of patients between groups did not significantly differ [HAL group (60.78 ± 12.16) vs. Control group (64.88 ± 8.79)] (p = 0.5961, CI = [−17.0000, 7.0000]). The duration from the onset of stroke to the first session of gait training did not differ as well [HAL group (13.9 ± 3.4) vs. Control group (15.7 ± 2.1)] (p = 0.3046, CI = [−6.0000, 2.0000]) (Table 1). Group comparisons of FIM-Locomotion, FIM-Motor, and FMA-LE scores at the 1st session were only significantly different for FIM-locomotion, but not for FIM-Motor and FMA-LE (FIM-Locomotion: p = 0.0395, CI = [−2.0001, 0.0000]) (FIM-Motor: p = 0.8944, CI = [−13.0000, 16.0000]) (FMA-LE: p = 0.9295, CI = [−9.9999, 10.0000]) (Table 2).


Table 2. Clinical evaluation scores at the 1st session (Pre) and after the 9th session (Post).

[image: Table 2]



3.2. Clinical Scores

The FIM-Locomotion score (p = 0.0213, CI = [−4.5000, −2.5000]), FIM-Motor (General) score (p = 0.0091, CI = [−28.5000, −12.9999]), FMA-LE scores (p = 0.0090, CI = [−7.5000, −3.5000]) increased in the HAL group (Table 2 R1–R11). Patients in the Control group (Table 2 C1–C9) had significantly increased clinical scores in all categories, pre- and post-therapy [FIM-locomotion (p = 0.0206, CI = [−3.5000, −1.0000]), FIM-Motor (General) (p = 0.0091, CI = [−27.5001, −9.0000]) and FMA-LE (p = 0.0090, CI = [−9.0001, −3.4999])].



3.3. Overview of EMG

Figure 3 below provides a graphical overview relating the change in the EMG and stance duration in percentage. The first two subfigures (Figures 3A,B) illustrate the mean changes in the HAL group, while the following two (Figures 3C,D) illustrate mean changes in the Control group.


[image: Figure 3]
FIGURE 3. Overview of EMG envelopes and stance percentage. Overview of changes in stance percentage and EMG waveform for both HAL (A,B) and Control group (C,D). Dark green shaded areas represent the mean stance percentage for all patients in their respective groups, while the lighter green areas represent the standard deviation. Red lines indicate the mean EMG amplitudes for the all patients in their respective groups, while the gray lines represents mean EMG waveform from each patient.




3.4. Stance Duration and Stance Time Ratio

Stance duration, expressed as a percentage of the gait cycle (heel strike to heel strike), was evaluated and shown in Figure 4 (Left). A significant decrease in stance duration was observed in the HAL group for the non-paretic limb after therapy [78.6 ± 8.7% -> 69.6 ± 4.8% (p = 0.0078, CI = [0.0353, 0.1619])], marked with an asterisk in Figure 4 (Left—Red horizontal line with asterisk). However, the stance duration of the paretic leg was not significantly decreased [68.9 ± 10.5% -> 64.0± 6.2% (p = 0.1289, CI = [−0.0745, 0.1528]) (Paretic leg)]. For the Control group, a significant decrease in stance duration was observed in the both legs [74.2 ± 8.8% -> 66.8 ± 11.3% (p = 0.0391, CI = [0.0009, 0.1454]) (Paretic), [86.5 ± 6% -> 75.9 ± 12.8% (p = 0.0078, CI = [0.0396, 0.2088]) (Non-Paretic)], Figure 4 (Left—Blue horizontal lines with circle and star symbols)]. Marginal significant differences was observed for non-paretic stance duration between the HAL group and Control group in the 1st session (p = 0.0503, CI = [−0.1880, 0.0023]) [indicated with a vertical line and diamond in Figure 4 (Left)], but differences were significant in the 9th session (p = 0.0315, CI = [−0.1995, −0.0021]) (indicated with a vertical line and asterisk in Figure 4 Left). However, no significant differences were observed in the paretic stance duration between groups before and after their respective therapies.


[image: Figure 4]
FIGURE 4. Stance percentage and Stance Ratio. Stance duration in percentages was significantly lower for the Non-Paretic limb in the HAL group after therapy (Red horizontal line, Red asterisk), but not in the Paretic limb. Stance duration in both limbs of the Control group were significantly lower after therapy (Blue horizontal lines, blue circle, and star). Stance asymmetry in both groups were present at the beginning (Red vertical line, blue vertical line, 1st session) but only the Control group became more symmetric after therapy, while the HAL group remains asymmetric (Red vertical line, 9th session). Stance Time ratios were not significantly different within groups and between groups.


Stance time ratio for both groups were not significantly different before and after the course of therapy for both groups. Statistical comparison of the stance time ratio between both groups were also not significant.



3.5. Number of Muscle Synergies

The number of synergies that are able to fulfill the VAF criteria (>90% VAF overall, >75% VAF per muscle channel and increase in 1 number of synergy does not results in a 5% increase in mean VAF from every muscle channel), are listed in Table 3. Changes in the number of synergies after the 9th session, for both the paretic and non-paretic limbs, are listed in brackets. Five patients in the HAL group had an increase in the number of synergies in the paretic limb (R1, R2, R6, R8, R11), as compared to 3 in the Control group (C1, C3, C7). For the non-paretic limb, three patients in the HAL group showed changes (R4, R7, R11), while it was four patients in the Control group (C1, C3, C7, C8). More patients in the HAL group showed no difference in the number of synergies between the paretic and non-paretic limbs after the 9th session, as compared to the Control group (5 in HAL group against 1 in Control group).


Table 3. Table listing number of synergies in limbs of patients.

[image: Table 3]



3.6. Muscle Synergy Symmetry

The figure below provides an example how would muscle synergies extracted with the comparison conditions described in section 2.5.5 look like (Figure 5). A representative subject, R2, was selected from the HAL group because the patient has the most number of muscle synergy change throughout therapy.


[image: Figure 5]
FIGURE 5. Representative subject (R2) with all synergy extraction parameters. Figures are arranged as (A) Pre-therapy, Paretic Side (Left column), Non-Paretic Side (Right column). (B) Post-therapy, Paretic Side (Left column), Non-Paretic Side (Right column). Rows for both pre- and post-therapy conditions show the synergies extracted with the assumptions in number of synergies. Synergies and timing coefficients are scaled to have values between 0 and 1.


Comparison of muscle synergy modules between all sessions (1st session against 4th, 7th, and 9th sessions) did not reveal any significant differences between session in both the HAL group and Control group (Figure 6 Left and Right).


[image: Figure 6]
FIGURE 6. Muscle synergy symmetry comparison. No initial change in muscle synergy symmetry was observed in the HAL group, with an observed increase in symmetry values in the last session. For the Control group, a decrease in muscle synergy symmetry was observed initially, followed by an increase, which brings it back to pre-therapy levels.


For the symmetry in the corresponding timing coefficients of the matched synergies, increasing symmetry was only observed in the HAL group (Figure 7 Left) between the 1st and 9th session [0.45 ± 0.16 -> 0.6 ± 0.14 (p = 0.0391CI = [−0.2746, −0.0002])]. However, no significant differences in timing symmetry was observed in the Control group (Figure 7 Right).


[image: Figure 7]
FIGURE 7. Timing symmetry comparison. Significant differences in timing coefficients were observed between the 1st and 9th session in the HAL group (Left). However, no significant differences in timing coefficients were observed for the Control group. Black asterisks denote significant increases in symmetry when comparing the 1st session to all other sessions. Lines with symbols denote the mean, while errorbars denote standard deviations.


When comparing only the timing symmetry during the stance phase, a significant increase can be observed for the HAL group (Figure 8 Left) between the 1st and 4th session [0.44 ± 0.19 -> 0.60 ± 0.22 (p = 0.0391CI = [−0.2803, −0.0178])], 1st and 9th session [0.44 ± 0.19 -> 0.65 ± 0.12 (p = 0.0039CI = [−0.3111, −0.0923])]. However, no significant differences in timing symmetry during stance phase was observed in the Control group. (Figure 8 Right).


[image: Figure 8]
FIGURE 8. Timing symmetry comparison in stance phase. Significant differences in timing coefficients were observed between the 1st session, with the 4th and 9th session in the HAL group (Left). However, no significant differences were observed in the Control group. Black asterisks denote significant increases in symmetry when comparing the 1st session to all other sessions. Lines with symbols denote the mean, while errorbars denote standard deviations.


Comparisons between the two patient groups (HAL and Control) did not show any significant differences in muscle synergy symmetry (Figure 9 Left) and timing symmetry (Figure 9 Center and Right).


[image: Figure 9]
FIGURE 9. Intergroup comparison of muscle synergy and timing, pre- and post-therapy. No significant differences in muscle synergy symmetry and timing symmetry was observed between groups in all the sessions.




3.7. Verification of Between Sensor Detection

Figure 10 depicts the mean and standard deviation stance duration values of the 3 healthy subjects, from both measurement systems. Stance duration values were similar (Figure 10 Left) between both systems and the differences (Figure 10 Right) were within 2%.


[image: Figure 10]
FIGURE 10. Comparison of calculated stance duration between different measurement systems. Results of the stance duration from three subjects, measured with different gait tracking systems. Left plot depicts the mean and standard deviation of the values recorded from the two measurement systems, while the Right plot depicts the difference between the values from both systems.




3.8. Excluded Patients

Two patients from the HAL group (R5, and R9) were excluded because their FAC was evaluated to be 3 during the first session. Their results are presented individually below in Table 4.


Table 4. Results of excluded patients.

[image: Table 4]

Both patients were evaluated to have higher motor function scores (FIM-Loco, FIM-Motor, FMA-LE) after the course of therapy.

In terms of muscle synergy symmetry, R5 was around the group average symmetry (0.78 against 0.79), while R9 was above it (0.944 against 0.79) at the start of the therapy program (Figure 6 Left). Only R5 had a change in muscle synergy symmetry over the course of therapy, while for R9, it remained stable. Both patients were above the group average symmetry value at the end of therapy [0.90 (R5) and 0.95 (R9) against 0.83].

Timing symmetry of the full gait cycle for R5 were around the group average at the 1st session (0.47 compared to 0.45 ± 0.16) (Figure 7 Left). Changes in timing symmetry was observed to fluctuate over the course of therapy, but the general trend points to an increase in timing symmetry (from 0.47 to 0.74, R5, Table 4). The timing symmetry value at the 9th session was at the edge of the group average (0.74 compared to 0.6 ± 0.14). A similar trend of increase in the timing symmetry during the stance was also observed for R5 (from 0.55 to 0.80, R5, Table 4). However, in this case, timing symmetry during stance was within the group average at the 1st session (0.55 compared to 0.44 ± 0.19), but it was above the group average at the 9th session (0.80 compared to 0.65 ± 0.12) (Figure 8 Left).

For patient R9, timing symmetry of the full gait cycle was above the group average at both 1st and 9th sessions [0.91 as compared to 0.45 ± 0.16 (1st)] and [0.88 as compared to 0.6 ± 0.14 (1st)] (Table 4 and Figure 7 Left). The general trend observed is a slight decrease in timing symmetry. In the case of timing symmetry during stance phase, the pattern and trend holds (i.e., R9's timing symmetry during stance above group average, but showing a slight decrease) (1st: 0.91 compared to 0.45 ± 0.16) (9th: 0.84 compared to 0.65 ± 0.12) (Table 4 and Figure 8 Left).

Stance time ratios of both patients were similar to the group average (0.86 and 0.98 as compared to 0.93 ± 0.18) (Figure 4 Right) at the 1st session, however there were differences in trends between patients. Stance time ratio for R5 was observed to decrease, while in R9, only minor fluctuations were observed. Stance time ratios of R5 and R9 at the 9th session were within group average (0.91 and 0.97 against 0.94 ± 0.11) (Figure 4 Right).

At the 1st session, stance percentages for both limbs of both subjects were within the group averages (Paretic: 68.9 ± 9%, Non-paretic: 78.5 ± 9) (Figure 4 Left). Stance percentages were observed to steadily decrease in R5, while in R9, values tend to fluctuate. Similar to the 1st session, the stance percentages for both limbs were within the group average at 9th session, with a net decrease in stance percentages.




4. DISCUSSIONS AND CONCLUSIONS

Our study aims to quantify gait symmetry changes with muscle synergies and evaluate differences in muscle coordination between patients undergoing robotic gait training and conventional gait training (HAL group vs. Control group). Our results showed that this method is a good complement to clinical scores and reveal some key differences between patients in different groups.


4.1. Comparison With Multiple Number of Synergies

Muscle synergies and their corresponding timings were compared using multiple number of synergies extracted from different conditions (section 2.5.5). The key reason behind this comparison is to allow direct comparison between the paretic and non-paretic limbs, which typically have different number of synergies (Clark et al., 2010). However, imposing the same number of synergies on both the paretic and non-paretic limb would make estimation of the contents of muscle synergies difficult, since either too many or too few synergies were used. Our method attempts to resolve this by taking the mean of multiple comparisons with different number of synergies. The results obtained from such comparisons (Figures 6, 7) allowed us to quantify the trend in muscle coordination change through in-patient rehabilitation. We believe that quantifying trends in muscle usage symmetry would provide a way to quantify trends in recovery, thereby facilitating the transfer of this analysis method to the clinical domain. While there is a possibility that each measurement condition might either overestimate or underestimate the number of synergies for the individual limbs, taking the average from each measurement condition would reduce the impact of overestimation or underestimation. Furthermore, since patients were only compared with themselves, they were their own control, which also helps to reduce estimation errors.



4.2. Number of Muscle Synergies and Symmetrical Control

The number of muscle synergies that can be extracted was suggested to be an indication of the motor complexity in patients, with a higher number of synergies correlating to better control of the limb (Clark et al., 2010; Cheung et al., 2012). This would suggest that more patients in the HAL group had better motor complexity after therapy, as compared to the Control group (Paretic Limb column, Table 3). However, relating the number of synergies to motor complexity would not account for some cases, where patients had a reduction in the number of synergies (R10, Paretic Limb column, Table 3). Cheung et al. (2012) noted that merging (decrease in muscle synergy) and fractionation (increase in muscle synergy) can occur in stroke patients as a response to cortical damage. For example, R10 was shown to do quite well in clinical evaluation tests (Table 2). Hence, a decrease in the number of synergies does not necessarily indicate patients get worse. Although the general trend indicates having more number of synergies would be better (Clark et al., 2010), there might be other factors that can contribute to the change in the number of muscle synergies. In another related work, Hashiguchi et al. (2016) noted that muscle synergies in the lower limbs of patients can exhibit both merging and fractionation over the course of therapy.

Instead of examining whether patients increase or decrease their number of muscle synergies, we would like to point out that the number of synergies could possibly be related to gait symmetry. With the naive assumption that when both limbs have the same number of synergies, muscle activation in both limbs are symmetrical, it is suggested that more patients in the HAL group had better symmetry after therapy, as compared to those in the Control group (Table 3). However, what is interesting to note that R10 decrease the number of synergies in the paretic limb to match the number in the non-paretic limb after the course of therapy (9th session, Table 3). This is suggested in Madhavan et al. (2010) where the brain tries to balance control such that both limbs would have the same level of control.



4.3. Lack of Correlation Between Clinical Scores and Muscle Synergy Symmetry

In our study, a lack of correlation between stance symmetry (stance time ratio, Figure 4 Right) and scores from clinical evaluation tests (FIM and FMA scores, Table 2) was observed, as was also noted in a previous study (Patterson et al., 2010a). There was significant improvement in clinical scores of patients in the both groups, however, this improvement does not seem to be reflected in the improvement of the stance time ratio. This could be because the FIM and FMA evaluations were meant to evaluate patients in terms of ability in daily living and gross neurological health, not in terms of specific gait parameters.



4.4. Effects of Therapy Type on Stance Percent Symmetry and Stance Time Ratio

Our results in stance percentage comparison suggest that the Control group were less asymmetric after conventional therapy, however, the large standard deviation in stance duration in the 9th session (Figure 4 Left) could indicate variable individual differences in recovery. In contrast, although the HAL group was still asymmetric after robotic therapy, the standard deviation of stance percentage for both limbs were small, which could be due to the support from the robotic exoskeleton used during training. From a stance time ratio perspective, both groups did not improve their gait symmetry over the course of their respective therapies, but mean values of stance time for the HAL group could be said to be sufficiently high ranging from 0.93 to 0.94, while the Control group stance time mean values were ranging from 0.83 to 0.87. The lack of change in stance time ratio could be that the patients might already be “symmetric” enough, given that the stance time ratios were close to the perfect symmetry of 1.

Our results seem to be similar to the results of Patterson et al. (2015), found that patients did not significantly improve spatiotemporal gait symmetry over a course of conventional therapy. However, this result disagrees with results from an earlier study by Routson et al. (2013). In the earlier study (Routson et al., 2013), it was found that body weight support and manual training, combined with overground walking, was able to improve gait symmetry over a course of therapy. This suggests that gait symmetry could be highly dependent on the type of therapy the patients are receiving. Patterson et al. (2015) did point out their study was retrospective and one of the limitations in their study was that the detailed records of the treatment was not available. Since it was suggested that certain therapy methods could help patients regain gait symmetry (Routson et al., 2013), one future consideration could be to determine the factors contributing to the improvement of gait symmetry and translate these factors into control paradigms for robotic exoskeletons.



4.5. Improvement in Temporal Muscle Coordination in the HAL Group

The improvement of synergy timing symmetry shown in the HAL group may characterize the effect of HAL sessions on the neural gait control, in comparison with conventional gait training. Routson et al. (2013) showed that both timing and composition of some of the synergy modules became closer to healthy group after a treadmill based gait training in stroke patients. In this regard, HAL's effect of gait improvement may resort more to alterations of activation timings rather than the composition of synergies, compared to conventional gait training.

The activation of muscle synergies was suggested to be cortically-controlled, based on results from primate studies with implanted electrodes in the brain and upper limbs of monkeys (Overduin et al., 2015). Studies of reaching humans in stroke patients also support this notion, where it was observed that muscle synergy compositions of stroke patients were consistent with healthy subjects (Cheung et al., 2009). Improvement of timing symmetry observed in our HAL group may be considered as an indication of improvement of cortical control of gait after the HAL sessions, which was not observed in the control group. In fact, Routson et al. (2014) showed that spontaneous adaptability of synergy timing is limited during gait of stroke patients in comparison to healthy controls. Hence, HAL's ability to assist cortical function in control of synergy activation was considered. In contrast, Gizzi et al. (2011) showed that the synergy modules are altered but not the synergy activation timings in stroke patients. However, the main difference is that the group of patients analyzed in Gizzi et al. were late sub-acute phase patients (8–20 weeks after stroke onset), while the patients in our study were in the early sub-acute phase (2–4 weeks after stroke onset). The difference in stroke onset duration might contribute to a difference in results. Definition of the phases of stroke were based on the latest consensus defined in Bernhardt et al. (2017). Early training with a course of HAL can help achieve earlier recovery of synergy timings which could otherwise occur later, as this recovery is not observed in the Control group. A methodological difference should be noted here; while Gizzi et al. (2011) did their comparison between groups, we first compared synergy timings within each individual patient, then compared all the obtained symmetry indices between groups.



4.6. Relation Between Muscle Coordination and Stance Symmetry

Another point of note is that despite muscle synergy and timing symmetry improved significantly, stance time ratios are relatively unchanged after the course of therapy. This was observed for both groups of patients (Figure 4 Right). This is interesting because if patients were able to improve symmetrical muscle coordination, improvement in stance ratio symmetry would be expected. We hypothesize that the stance time symmetry would be related to timing symmetry of the muscle synergies during stance phase and analyzed timing symmetry during stance phase for the patient groups. However, results showed the opposite, where timing symmetry during the stance phase improved consistently in the HAL group (Figure 8 Left), but stance time ratios were relatively unchanged (Figure 4 Right, HAL group). This observation should be studied further to clarify the relations between stance ratio symmetry and muscle synergy timing symmetry. Perhaps study with a longer duration could examine in greater detail how gait symmetry changes as the patients progresses from subacute therapy to chronic therapy.



4.7. Muscle Usage and Body Weight Bearing on Limbs

Patterson et al. (2015) proposed that improvement in swing symmetry could be correlated with increased body weight bearing on the paretic limb. Further support for this correlation comes from a study by Hendrickson et al. (2014). They found a correlation between balance in quiet standing and gait, that is, patients that walked asymmetrically had similar patterns of asymmetry during balance. Similarly, Yavuzer et al. (2006) found that balance training that compelled patients to bear more weight on their paretic side also improved gait symmetry. In such a context, we expect improvements in the symmetry of muscle synergy activations (i.e., timing symmetry) to increase during the stance phase. We think it could be that paretic limb weight loading was facilitated by the HAL exoskeleton during gait training, as the exoskeleton compensates for weakness in the paretic limb by providing compensatory torque around the knee and hip joints during walking in post-stroke patients. Although body weight loading on the paretic leg was not measured in our study, it is hypothesized that the symmetrical activation of muscles are correlated with symmetrical body weight loading in both limbs. Hence, if the muscle coordination in the paretic limb is similar to the non-paretic limb, then increased usage of the paretic leg is assumed. The increased symmetry of muscle timing coordination in the HAL group (Figures 7, 8 Left) appears to support this hypothesis. The lack of symmetry improvement in muscle coordination in the Control group (Figures 7, 8 Right) gives further support to this hypothesis. There were indications that the amount load the limb bears would change EMG activity from a study with varying body weight support (Ivanenko et al., 2002). Measuring ground contact forces over the course of therapy could be a good future consideration.



4.8. Limitations of Study

One limitation of this study is the number of muscles analyzed was small (six muscles per limb). However, the six muscles chosen were major muscle groups contributing to lower limb movement in the sagittal plane, which would be sufficient as part of the clinical evaluation process.

The other limitation could be that the Control group was recruited from hospitals that do not have access to motion tracking facilities, hence the use foot pressure sensors. There might be differences in tracking accuracy in the data collected. However, a small verification test comparing the data captured with motion tracking and the foot pressure sensor showed that the accuracy did not differ much (about 2% difference, Figure 10). Hence, the use of different methods of tracking stance duration would not affect our results much. However, future considerations should include capturing spatiotemporal gait parameters using the same type of sensors, for example, using wearable technology to expand data capture in community hospitals interested in participating in such studies.

Another limitation could be that stance percentage and stance time ratio of patients during recruitment were not considered. In general, the Control group were more asymmetric, in terms of stance time ratio, as compared to the HAL group (Figure 4 Right), and were having a higher stance percentage, as compared to the HAL group (Figure 4 Left). This difference may cause differences in the rate of recovery between groups.

A final limitation could be that the exact details of the exercises performed by the patients during conventional regular physiotherapy sessions were not tracked. Tracking every exercise for each patient requires tremendous effort by each individual therapist and therapy center, which is currently difficult to implement. Future studies should consider designing tools to ease data entry.




5. CONCLUSIONS

In conclusion, one main contribution of this study is that muscle synergy analysis is able to differentiate between patients undergoing different types of therapy, in terms of gait symmetry. However, clinical scores were unable to do so. This is an important result because functional clinical tests manually evaluate abilities in daily living, not the neurological state of patients. From our results, robotic therapy appear to be able to help patients regain temporal symmetry (muscle synergy timings) over a period of 3 weeks. However, the lack of kinematics, coupled with the high variability of recovery in the Control group contributed to mixed results. Muscle coordination symmetry appear to be quantifying a different aspect of gait symmetry, as compared to spatiotemporal measures, however, this is still unclear and future works should consider clarifying the differences and underlying mechanisms influencing gait symmetry to provide targeted therapies.
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There is limited research on sensory acuity i.e., ability to perceive external perturbations via body-sway during standing in individuals with a traumatic brain injury (TBI). It is unclear whether sensory acuity diminishes after a TBI and if it is a contributing factor to balance dysfunction. The objective of this investigation is to first objectively quantify the sensory acuity in terms of perturbation perception threshold (PPT) and determine if it is related to functional outcomes of static and dynamic balance. Ten individuals with chronic TBI and 11 age-matched healthy controls (HC) performed PPT assessments at 0.33, 0.5, and 1 Hz horizontal perturbations to the base of support in the anterior-posterior direction, and a battery of functional assessments of static and dynamic balance and mobility [Berg balance scale (BBS), timed-up and go (TUG) and 5-m (5MWT) and 10-m walk test (10MWT)]. A psychophysical approach based on Single Interval Adjustment Matrix Protocol (SIAM), i.e., a yes-no task, was used to quantify the multi-sensory thresholds of perceived external perturbations to calculate PPT. A mixed-design analysis of variance (ANOVA) and post-hoc analyses were performed using independent and paired t-tests to evaluate within and between-group differences. Pearson correlation was computed to determine the relationship between the PPT and functional measures. The PPT values were significantly higher for the TBI group (0.33 Hz: 2.97 ± 1.0, 0.5 Hz: 2.39 ± 0.7, 1 Hz: 1.22 ± 0.4) compared to the HC group (0.33 Hz: 1.03 ± 0.6, 0.5 Hz: 0.89 ± 0.4, 1 Hz: 0.42 ± 0.2) for all three perturbation frequencies (p < 0.006 post Bonferroni correction). For the TBI group, the PPT for 1 Hz perturbations showed significant correlation with the functional measures of balance (BBS: r = −0.66, p = 0.037; TUG: r = 0.78, p = 0.008; 5MWT: r = 0.67, p = 0.034, 10MWT: r = 0.76, p = 0.012). These findings demonstrate that individuals with TBI have diminished sensory acuity during standing which may be linked to impaired balance function after TBI.
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INTRODUCTION

Balance control is regulated within the central nervous system by the complex integration of visual, vestibular, and somatosensory pathways and motor control (Hillier et al., 1997; Greenwald et al., 2001). Traumatic brain injury (TBI) often damages the areas of the brain that regulate balance (Allison, 1999). Although the peripheral system may or may not be impaired as a secondary consequence of the same event, damage to the brain could result in impaired central motor processes such as intention to act, motor planning, and automatic postural response mechanisms (Allison, 1999). Further, impaired sensory integration, a central process, is postulated as one of the sources for imbalance after TBI (Sosnoff et al., 2011; Fino et al., 2017; Peterka et al., 2018). The body-position awareness, i.e., the detection of body-sway, is a fundamental necessity to maintain static and dynamic balance during activities of daily living (Fitzpatrick and McCloskey, 1994) and it is achieved by an accurate perception of the body’s interaction with the surrounding environment. TBI can impair the integration of the visual, vestibular, and somatosensory (proprioceptive) inputs (Allison, 1999; Sarno et al., 2003) that permits body position awareness with respect to self and the environment. Therefore, impairments to sensory pathways (Fino et al., 2017) and their integration (Peterka et al., 2018) to facilitate perception of body-environment interaction can lead to poor understanding of the surroundings, impaired balance and a greater risk of falls after TBI. Falls occur when the center of mass (CoM) is displaced beyond the base of support and when the central nervous system fails to “detect and correct” this displacement in time (Institute of Medicine (US), and Division of Health Promotion and Disease Prevention, 1992). Therefore, accurate perception is even more critical in a dynamic setting which demands attention, adaptation to external stimuli and adequate reactive motor responses for achieving balance control and avoiding falls. Further, in the domain of perception and balance, sensory acuity, i.e., the ability to detect body-sway during external perturbations (Fitzpatrick and McCloskey, 1994; Richerson et al., 2003), could stem from impaired sensory integration. Limited research specifically reports objective quantification of impairments to sensory integration after TBI (Peterka et al., 2018) and no research thus far has investigated sensory acuity in the individuals with TBI. An objective assessment of the sensory acuity, i.e., the ability to perceive external perturbations, is necessary to accurately detect, quantify, and treat sensory integration deficits that could lead to poor detection of body sway and imbalance in dynamic environment. Additionally, the outcome measure of sensory acuity can serve as a novel marker of balance function which goes beyond biomechanical and functional outcomes and may provide added information to develop rehabilitation programs aimed at improving balance and reducing falls in individuals with TBI.

Psychophysics provides a way to evaluate and quantify an individual’s sensory acuity to external stimuli (Han et al., 2016). In the realm of standing balance, psychophysical studies related to the perception of whole-body perturbations are commonly used to measure sensory acuity in terms of detection thresholds (Fitzpatrick and McCloskey, 1994; Richerson et al., 2003; Pilkar, 2011; Puntkattalee et al., 2016). Most of the research on assessing balance deficits after a TBI is restricted to biomechanical [CoM, center of pressure (CoP)] and functional outcome measures (Lehmann et al., 1990; Kaufman et al., 2006) and no research has reported psychophysical outcomes such as detection thresholds in individuals with TBI. The detection threshold quantifies the level of the external perturbation (magnitude, frequency, velocity, direction) below which the perception of the perturbation becomes unlikely (Pilkar, 2011; Pilkar et al., 2016).

The purpose of this investigation is to objectively evaluate and quantify the multi-sensory acuity to external mechanical perturbations to the base of support during standing for individuals with TBI. This multi-sensory acuity will be quantified in terms of perturbation perception threshold (PPT) using a psychophysical approach when visual, vestibular and somatosensory systems are available. The secondary objective is to determine if our novel outcome measure, PPT, is related to the functional outcomes of static and dynamic balance. Our central hypothesis is that the balance dysfunction will be characterized by an impaired PPT in addition to deficits in functional outcomes after a TBI. More specifically, individuals with TBI will exhibit elevated PPTs compared to healthy controls when experiencing external perturbations. Our secondary hypothesis is that the PPT will be correlated to the functional outcome measures, as the diminished ability to perceive changes in the body position will affect the ability of individuals with TBI to perform static and dynamic balance tasks.



MATERIALS AND METHODS


Participants

Eleven age-matched healthy controls (HC) with no neurological, orthopedic, or visual impairments and 10 individuals diagnosed with a TBI were recruited (see Table 1). The Kessler Foundation Institutional Review Board approved all procedures and informed consent was obtained prior to study participation. Inclusion criteria for the TBI group were: (1) age between 18 and 60; (2) diagnosed with a non-penetrating TBI (≥6 months); (3) ability to stand unsupported for at least 5 min; (4) willing and able to give informed consent. Exclusion criteria for the TBI group were: (1) history of injury to the lower limbs in the past 90 days; (2) cardiac disease; (3) a previous history of balance impairments prior to TBI.


TABLE 1. Demographics for the study participants with data reported in terms of mean ± standard deviations.
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Procedures


Clinical Assessments of Static and Dynamic Balance Function

Participants from both the HC and TBI groups completed clinical assessments of static and dynamic balance function including: the Berg Balance Scale (BBS); the Timed-up and Go (TUG); 5-m walk test (5MWT); and 10-m walk test (10MWT). The BBS is a 14-item assessment scale that quantitatively assesses balance during static and dynamic functional movements in adults. Each item is scored from 0 to 4, with a score of 0 representing the inability to complete the task and a score of 4 representing independent completion of the task. The maximum possible score is 56 points. The 5MWT and 10MWT are assessments of how quickly and safely an individual traverses standard distances, and the TUG evaluates a participant’s ability to transition from sitting to brief locomotor tasks and then return to a seated position.



PPT Assessments

PPT assessments for the HC and TBI groups were completed after completing clinical assessments of static and dynamic balance function. The NeuroCom Smart Equitest Clinical Research System (CRS) (Natus Medical Inc., Pleasanton, CA), was used to provide precise perturbations to the base of support in anterior-posterior (AP) direction (Figure 1). Perturbations were applied to the base of support at three different frequencies- 0.3, 0.5, and 1 Hz, which were selected in order to keep the perturbations within the range of natural healthy sway (<2 Hz) (Soames and Atha, 1982). For each perturbation frequency, a total of 21 trials consisting of a randomized configuration of 14 perturbation trials and 7 non-perturbation trials (2:1) were performed. Each trial lasted 15-s which included 5 s of quiet standing (QS), followed by sinusoidal translations of the platform in the AP direction at the selected perturbation frequency and programmed amplitude for 5 s (or no movement for a non-perturbation trial), followed by 5 more seconds of QS (Figure 1). At the end of each trial, the participant was verbally asked if they felt the platform move. Depending on the correctness of their yes or no response (HIT: correctly detected perturbation, MISS: non-detected perturbation, Correct Rejection: correctly reported no perturbation and False Alarm: perturbation reported for a non-perturbation trial), the amplitude of the next trial was adjusted using the Single Interval Adjustment Matrix (SIAM) algorithm with parameter estimation by sequential testing (PEST) (Taylor, 1967; Kaernbach, 1990; Pilkar, 2011; Pilkar et al., 2016). The process is shown in Figure 1 using the numbered sequences from 1 to 6. The PPT value for each frequency was computed using the psychometric curve (Algom, 1992; Puntkattalee et al., 2016) by plotting the percentage of accuracy (HIT, correct rejections) as a function of perturbation amplitude (Figure 2). A sigmoid function was used to fit the data for each frequency, and the perturbation amplitude (x-axis) where the curve achieves a 75% probability of correct detection (y-axis) was chosen as the PPT value (Figure 2B; Algom, 1992; Puntkattalee et al., 2016). This procedure was performed for all three frequencies for each participant. To familiarize the participants with perturbations and minimize the learning effect, five perturbation trials at suprathreshold amplitudes (≥4 mm peak-to-peak) were performed at each of the perturbation frequencies before the PPT assessments. No verbal response was recorded during these trials.
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FIGURE 1. The experimental set up and procedures are demonstrated for the PPT assessments of 0.5 Hz perturbations. (1) the assessment starts with the default perturbation amplitude of 4 mm, (2) perturbation amplitude is fed to the Neurocom computer which (3) sends out the command to the on-board controller for execution of the platform movement, (4) platform moves precisely at the desired amplitudes in the anterior-posterior direction, (5) the subject reports if he/she felt the platform movement, and (6) based on the correctness of subject’s response, SIAM algorithm computes the next perturbation amplitude and the steps 1–6 are repeated for the remaining 20 trials.
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FIGURE 2. (A) Perturbation amplitude iterations based on a representative subject’s response for a set of PPT assessments and (B) corresponding psychometric curve with PPT shown by the green circle. Points d1 and d2 represent the median of perturbation amplitudes that were successfully detected (p = 1) and not detected (p = 0), respectively. HIT, perturbation presented and correctly reported; MISS, perturbation presented but not reported; Correct Rejection (CR), perturbation not presented and not reported; False Alarm (FA), perturbation not presented but reported.





Statistical Analyses

The normality of the PPT outcome was evaluated using Shapiro-Wilk test of normality. It was found that the assumption of normality was valid for the PPT data for both groups for 0.33 (HC: p = 0.06; TBI: 0.21) and 1 Hz (HC: p = 0.56; TBI: 0.2) perturbations. For 0.5 Hz perturbations, PPT data was normally distributed for the HC group (p = 0.1). The TBI group showed approximately normal distribution (p = 0.01) which was also supported by the Q-Q plots showing approximately linear data fit. Hence, the PPT data were analyzed using a mixed-design Analysis of Variance (ANOVA) with a within-subjects factor of perturbation frequency (0.33, 0.5, and 1 Hz) and a between-subject factor of condition (healthy, TBI). Mauchly’s test for sphericity indicated that the assumption of sphericity was valid [χ2(2) = 1.36, p = 0.51] for the PPT measure, hence sphericity was assumed.

For the ANOVA tests, the significance level was set to 0.05. Based on the significance of the main effects, post-hoc tests were performed to compute a between-subjects comparison and a within-subject comparison. A Bonferroni correction was applied to avoid type-I errors and the new significance level was corrected to 0.006. The functional outcome measures of static and dynamic balance (BBS, TUG, 5MWT, 10MWT) were compared using independent sample t-tests. In addition, the functional outcome measures were correlated with PPT using a Pearson product-moment correlation (p ≤ 0.05). The results are reported in terms of mean ± standard deviations (sd) including the PPT outcome reported in Table 2 and the functional outcomes reported in Table 3.


TABLE 2. Results of post-hoc analysis for between-group and within-group comparison of the PPT outcome (mean ± sd).
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TABLE 3. Between-group comparison of the functional outcome measures (mean ± sd) of static and dynamic balance.
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RESULTS


Perception of Perturbation Threshold (PPT)

The SIAM algorithm successfully converged to the threshold amplitudes for each participant in both groups. The PPTs computed using a classical psychometric approach showed a decreasing trend with increasing perturbation frequency for both groups (Figure 3). For both groups, PPTs computed for 0.33 Hz showed the highest variability while 1 Hz perturbations showed the lowest variability based on the standard deviations. A mixed-design ANOVA showed significant main effects of perturbation frequency [F(2, 38) = 42.14. p < 0.005], and condition [F(1, 19) = 44.35, p < 0.005] on PPT, and interactions between perturbation frequency and condition [F(2, 38) = 9.65, p < 0.005].
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FIGURE 3. Box plot representation of PPT values computed using SIAM for three sets of perturbation frequencies (x-axis) for HC (n = 11) and TBI (n = 10). Horizontal lines in each box represent the median values. Data points shown with red circles are the outliers. ∗p < 0.006 (significance level post Bonferroni correction).


Post-hoc analysis showed that there was a significant difference in PPT values between the HC group and the TBI group for all three frequency sets (p < 0.006) (see Table 2). Furthermore, post-hoc analysis showed no significant difference between frequencies of 0.33 Hz and 0.5 Hz for the within-group comparison for the HC group (p = 0.298) and the TBI group (p = 0.047). The PPT values obtained for 0.5 Hz were significantly different than those obtained for 1 Hz for both the HC group (p = 0.002) and the TBI group (p < 0.006) (Table 2). Similarly, the PPT values for 0.33 Hz were significantly higher than 1 Hz for both groups (HC: p = 0.003; TBI: p < 0.006) (Table 2).



Correlation Between the Functional Outcomes and the PPT

The TBI group showed significantly lower scores on functional assessments compared to the HC group (Table 3). The BBS was significantly lower for the TBI group (48.8 ± 6.43) than the HC group (55.91 ± 0.3) (p = 0.007). The time required to complete the 5MWT was significantly higher for the TBI group (4.61 ± 1.18 s) compared to the HC (2.96 ± 0.58 s) group (p = 0.001) and similar group differences were observed for the 10MWT (p < 0.005) and TUG test (p < 0.005) (Table 3).

A Pearson product-moment correlation was run to determine the relationship between the PPT and functional measures of static and dynamic balance (Figure 4 and Table 4). For individuals with TBI, there was a significant positive correlation between the PPT (1 Hz) and the time required to complete 5MWT (p = 0.034), 10MWT (p = 0.012), and TUG (p = 0.008). For the TBI group, no significant correlation was found between 0.33 Hz PPT and time to complete 5MWT (p = 0.34), 10MWT (p = 0.13), and TUG (p = 0.29). Similarly, no significant correlation was found between 0.5 Hz PPT and 5MWT (p = 0.28), 10MWT (p = 0.18), and TUG (p = 0.14). For the HC group, no significant correlation was found between the PPT (all frequencies) and the time required to complete 5MWT, 10MWT, and TUG (see Table 4 and Figure 4). Furthermore, a significant negative correlation was found between the 1 Hz PPT and the BBS for the TBI group (p = 0.037), while no correlation was found for 0.33 Hz (p = 0.09) and 0.5 Hz PPT data (p = 0.17) (Table 4 and Figure 4). For the HC group, PPT data (all frequencies) showed no correlation with the BBS (Table 4 and Figure 4).
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FIGURE 4. Demonstration of a linear relationship between the PPT (1 Hz) and time required to complete (A) 5MWT, (B) 10MWT, (C) TUG, and (D) scores for the BBS for the TBI group. No significant correlations were found for the HC group PPT data for all three frequencies. Also, no correlations were found for the 0.33 Hz and 0.5 Hz PPT data for the TBI group as reported in Table 4.



TABLE 4. Results of Pearson’s r correlation analysis between PPT and functional outcomes for both groups.
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DISCUSSION

The primary objective of this investigation was to quantify the sensory acuity to perturbations to the base of support during standing in individuals with TBI. Accurate perception of body-sway is critical in a dynamic setting to adapt to external stimuli and generate adequate motor responses for achieving balance control. Sensory acuity directly relates to perceptual mechanisms and impairment to sensory afferents as well as their integration after TBI could significantly contribute to impaired sensory acuity and balance dysfunction. Limited research specifically reports objective quantification of impairments to sensory integration after TBI (Peterka et al., 2018) and no research thus far has investigated sensory acuity in the individuals with TBI. This investigation presents an objective measure of sensory acuity in terms of PPT which goes beyond the biomechanical and functional markers of balance dysfunction and it is related to the process of sensory integration. The sensory organization test (SOT) has been widely used to assess contributions of visual and somatosensory inputs in maintaining balance during standing (Nashner and Peters, 1990). More recently, Peterka et al. proposed a novel central sensorimotor integration (CSMI) tests to quantify sensory integration by measuring the relative contributions of different sensory systems to balance control (Peterka et al., 2018). Though these tests provide an objective way to quantify sensory integration, the sensory acuity to external perturbations and its relation to balance function still remains to be studied in individuals with TBI. Further, sensory acuity in terms of detection threshold assessments to the whole-body stimuli have been reported (Fitzpatrick and McCloskey, 1994; Richerson et al., 2003, 2006; Puntkattalee et al., 2016), however limited data exists for individuals with TBI (Pilkar et al., 2016; Tanis et al., 2018). For the first time, a classical psychophysical approach was used to determine sensory acuity in terms of PPT in a sample of individuals with impaired balance. A lower PPT for a set of perturbations at a given frequency suggests a better perceptual ability to detect base of support perturbations during standing. The TBI group showed significantly elevated PPT values compared to the HC group for all three perturbation frequencies suggesting their diminished ability to perceive and report changes in their support surface during standing. Multi-sensory deficits are common due to brain lesions after TBI (Allison, 1999), and these deficits can lead to impaired sensory integration, reduced ability to use the optimal sensory system in different environmental contexts or over-reliance on a single sensory system, which is usually the visual system (Allison, 1999). However, Fitzpatrick and McCloskey (1994) showed that the visual thresholds for perceiving movement are higher than the proprioceptive thresholds at slower velocities of base of support movements in healthy individuals. In the context of PPT assessments, the perturbation frequencies are within the natural sway and amplitudes are kept small (<4 mm) by the algorithm as perturbations are confined by the sensory-threshold boundaries. Therefore, such perturbations may be difficult to perceive if only the visual system is used. As a result, sole reliance on the visual system while vestibular and somatosensory systems are impaired could significantly impact one’s ability to perceive the altered posture in relation to itself and the environment. In situations where multiple sensory modalities are available (e.g., PPT assessments), participants will yield thresholds that are equivalent to the sensory modality with the greatest acuity (Fitzpatrick and McCloskey, 1994). The vestibular system is only known to be engaged at much greater postural disturbances (Fitzpatrick and McCloskey, 1994) and visual system requires larger threshold amplitude (Fitzpatrick and McCloskey, 1994; Richerson et al., 2003). Hence, the majority of the contributions toward PPT where the perturbation frequencies and amplitudes are kept within the natural sway, could stem from the proprioceptive afferents. It is postulated that contributions from the tactile afferents to be minimal as all participants wore shoes on the platform and presence of footwear has shown to attenuate the tactile information compared to the barefoot condition (Robbins et al., 1995).

The PPT assessments were performed for three sets of perturbation frequencies. Similar to previously reported studies (Richerson et al., 2006), our selection of frequencies is based on the rationale that the our primary objective was to quantify the sensory acuity and not study the reactive postural strategies to the external stimuli. Therefore, frequencies ≤1 Hz kept the perturbations within the natural sway (Soames and Atha, 1982) which were appropriate for our assessments. Of the three perturbation frequencies, 1 Hz perturbations are curious based on two results −- (1) PPT for 1 Hz were significantly lower than 0.33 and 0.5 Hz with no significant difference between 0.33 and 0.5 Hz perturbations; and (2) a significant negative correlation was found between 1 Hz PPT and functional measures of balance (Figure 4) while no such relationship was observed for 0.33 and 0.5 Hz data for the TBI. These results may suggest that 0.33 and 0.5 Hz perturbations might not be differentiable by the sensory systems resulting in no significant perceptual differences for both groups. Further, these slow perturbations may not be sufficient enough to engage the sensory mechanisms that are relevant to influence the functional tasks hence showed no correlation with functional outcomes. On the other hand, 1 Hz perturbations could be sufficient enough to tap into impaired sensory mechanisms of TBI group (but still not large enough to tap into intact sensory system of the HC group) that are also relevant to functional balance tasks. This may have led to the linear relationships between the PPT at 1 Hz and functional measures suggesting that a lower PPT (i.e., the enhanced sensory acuity) could be critical for achieving adequate postural and functional control after TBI. For future investigations, 1 Hz may serve as guidance for selecting perturbation frequencies for similar experiments. Perturbations between 0.5 and 1 Hz could be explored to further confirm the dependency of sensory acuity on perturbation frequency as seen in Figure 2. The PPT assessments for perturbations faster than 1 Hz may induce additional postural strategies (hip) and may require extremely small and precise amplitudes to reach to threshold detection, however such perturbations may not be practically deliverable using the existing Neurocom CRS system or in fact, may not yield the PPT.

Enhanced perception (i.e., lower PPT) requires integration and interpretation of the multi-sensory afferents as well as the capability to handle attentional demands. Therefore, in addition to impaired sensory integration, an elevated PPT could also stem from the deficits in attention that occur in 39–62% of TBI survivors (Marsh et al., 2016). Selective attention is essential for dynamic aspects of activities of daily living (Straudi et al., 2017) and individuals with balance impairments due to deficits in their automatic postural responses (APRs) (Woollacott and Shumway-Cook, 2002) rely more heavily on attentional mechanisms during standing. Attentional deficits post TBI and potentially impaired APRs due to impaired sensory integration could interfere with a TBI survivor’s ability to safely complete motor tasks (Ponsford and Kinsella, 1992). Our novel PPT outcome therefore not only reflects the perceptual and attentional indicators of balance deficit but also presents a potentially quantifiable link between the sensory acuity and functional tasks. The absence of significant correlations between the PPT and functional measures for the HC group could potentially imply less reliance on attentional mechanisms and more on their unaffected APRs (Puntkattalee et al., 2016) as well as intact attentional mechanisms.

The literature on TBI balance suggests that the level and characteristics of balance impairments are related to the severity and location of the brain damage (Allison, 1999). The PPT outcome reported in this investigation as a measure of sensory acuity is a manifestation of cognitive (attention) and sensory components. Therefore, the results reported could be influenced by injury characteristics such as time since injury (TSI), severity, location of lesions, etc. Injury characteristics that directly affect cognition (attention), sensory and motor components are expected to show impaired sensory acuity (elevated PPT values). It is expected that the individuals with TBI in the acute stage with the severe symptoms will most likely show elevated PPT values and with the recovery of sensorimotor function over time due to neuroplasticity or rehabilitation, PPT would decrease. Moreover, the individuals with damages to the spinocerebellar tract and the anterior lobe of the cerebellum could show elevated values of PPT as legions to these areas are known to affect the transmission and perception of somatosensation needed to detect the location of body segments in relation to each other and the location of the body in relation to the base of support (Allison, 1999).


Limitations and Future Considerations

The limitations of the current work are its small sample size and heterogeneity within the TBI group in terms of the severity of the injury as well as sex. Heterogeneity within the population is a common challenge in characterizing the balance after TBI due to the complexity of injury and deficits (Allison, 1999). A larger homogeneous sample of TBI (based on the severity of injury, TSI, legions, and functional capability) with equal distribution of male and female participants needs to be assessed at multiple time-points to comprehensively understand the PPT as an outcome measure. Furthermore, the current unidirectional (applying perturbations only in AP direction) approach of the posturography assessment limits the understanding of the role sensory acuity plays in maintaining balance. It has been suggested that the keys to improving balance after a TBI include training methods that are specific and require multiple adaptive responses (Horak et al., 1997; Huang et al., 2006), and as a result, a multidirectional approach for perturbation-based assessment and training is recommended. Finally, the presented method to evaluate sensory acuity employs multi-sensory approach which may not be able to isolate the impairments specific to individual sensory system. However, this investigation focuses on objective evaluation of sensory acuity and its potential connection to the balance dysfunction after TBI. Therefore, use of multi-sensory approach is applicable as most of the functional balance tasks employ a multi-sensory approach. The PPT outcome presented in this investigation can serve as an additional marker of balance dyfunction in addition to the functional and biomechanical (CoP, CoM) outcomes after TBI. The interventions that specifically target the sensory mechanisms have shown to be effective in improving standing balance. E.g., Charkhar et al. (2020) showed that the enhanced perception of the plantar pressures under the prosthetic feet achieved using artificial sensory feedback can significantly improve the postural stability of lower limb amputees. Similarly, Petrini et al. (2019) showed that real-time tactile and proprioceptive feedback provided by sensory neuroprosthetic promoted improved mobility, fall prevention, and agility during active tasks in transfemoral (above-knee) amutees. These investigations show that the manipulation and augmentation of sensory feedback is critical to enhance balance and mobility. Our novel outcome, PPT, can be integrated into balance training paradigms to provide perturbations that engage and enhance proprioception and somatosensation and improve balance after TBI.




CONCLUSION

The current work presented the PPT as a new metric for the objective assessment of the sensory acuity to perceive external horizontal perturbations to the base of support during standing in individuals with a TBI. The TBI group showed significantly elevated PPTs compared to the HC group, suggesting their diminished ability to perceive changes to perturbation-induced sway. A significant correlation between the PPTs and functional outcomes was found for the TBI group, demonstrating the critical role perceptual ability may play in achieving improved balance function after injury. Therefore, sub-threshold perturbations that engage perceptual mechanisms could be important to include along with the supra-threshold perturbations that engage the compensatory mechanisms during balance rehabilitation after TBI.
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The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
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INTRODUCTION

The first years of life represent an extremely important phase of maturation and learning and the acquisition of bipedal locomotion is a celebrated milestone in infant development. Early injuries to developing brain may significantly affect this period of maturation and evoke impairments in the locomotor function and its delay (Rosenbaum et al., 2014). Cerebral palsy (CP) is the most common form of motor disability in childhood. It is often characterized by muscle weakness, impaired coordination of muscles and spasticity characterized by hypertonia, hyperreflexia, clonus, spasms and co-contraction (Poon and Hui-Chan, 2009). People with CP have a diversity of symptoms and severity and CP is sometimes accompanied by other disorders such as cognitive dysfunction, epilepsy, deficits in vision, speech (Christensen et al., 2014; Rosenbaum et al., 2014). Gait abnormalities represent essential concern. Indeed, about seventy percent of children with CP are able to walk though they experience problems with walking (from minimal disability to the need of walking aids), while the others require a wheelchair (Hutton and Pharoah, 2002), and life expectancy is related to the degree of impairments. This topic has broad appeal due to the general interest in the evolution of locomotion, interaction between developing spinal and supraspinal pattern generation circuitries, potential broad impact of early sensorimotor disorders, as well as its implications for understanding the basic physiological mechanisms involved.

Understanding mechanisms of early development and learning are also the basis for designing rehabilitation strategies and interventions for infants at risk for locomotor delays. We will not discuss here all aspects of impairments in the function due to CP. Instead, we will focus on motor disability in CP and gait dysfunction in particular. While the spinal pattern generation circuitry and stepping-like movements are present at birth, the locomotor behavior and the spatiotemporal structure of the motor patterns in infants undergo substantial maturation (Forssberg, 1985; Thelen and Cooke, 1987; Lacquaniti et al., 2012a; Yang et al., 2015). In the first sections, we will consider the functional and structural consequences of early injuries to developing motor regions of the brain, including pattern generation circuitry, forms of early locomotor behavior, the critical role of balance demands and sensorimotor integration, with a particular emphasis on the first years of life. We will also argue that interventions may be more efficacious if they promote quadrupedal locomotion and posture in the early months of life, and training to enhance stepping. Finally, we will consider physical therapy interventions, recent advances in biotechnology and neuromodulation of the locomotor circuitry that might promote early motor recovery in children with CP.



GAIT IMPAIRMENTS IN CP

Detailed descriptions of gait impairments in cerebral palsy have been reported in numerous studies (Rethlefsen et al., 2017). Despite heterogeneity of symptoms and brain damage, there are typical gait abnormalities and frequent clinical problems, such as foot drop and toe walking in children with cerebral palsy. They show difficulties in developing the major features of adult gait, ankle plantarflexion with hip extension at the end of stance, increased co-activation of the leg muscles, low activation of the calf muscles, impaired ability of tibialis anterior to dorsiflex the ankle, maturation of the spinal locomotor output, and enhanced short latency proprioceptive reflexes (Berger et al., 1982, 1984; Leonard et al., 1991; Berger and Adolph, 2007; Cappellini et al., 2016).

Some characteristic features of gait are illustrated in Figure 1. In line with the general hypothesis of delayed maturation (Forssberg, 1999), many idiosyncratic features of gait in older children with CP resemble those in typically developing (TD) children at the onset of independent walking (Cappellini et al., 2016), for instance, the prominent single-peak foot lift during swing and disordered vertical hip displacements. Indeed, in addition to gait instability and slower speeds (Figure 1A), the adult-like stereotyped, two-peaked trajectory of the foot with minimal toe clearance at mid-swing representing the result of a safe, accurate endpoint control (Bernstein, 1967; Winter, 1992; Ivanenko et al., 2002) is lacking in children with CP (Figure 1B). Instead, a single-peaked foot lift is observed across all sampled ages in children with bilateral CP and on the most affected (MA) side in children with unilateral CP, typical for TD toddlers (Figure 1B). The vertical ground reaction forces often showed a decreased second peak in late stance in CP (Figure 1B), consistent with weak plantarflexion at the end of stance (Williams et al., 2011; Cappellini et al., 2016). Disordered vertical hip displacements and a lack of the gravity-related pendulum mechanism of walking in both TD toddlers (Ivanenko et al., 2004) and children with CP (Cappellini et al., 2016; Zollinger et al., 2016) are consistent with a reduced capacity in absorbing and decelerating the speed of the center of mass and in decreasing the walking energy cost.


[image: image]

FIGURE 1. Distinctive features of ground reaction forces and foot trajectory control during walking in children with cerebral palsy. (A) Stick diagrams (both 3D and sagittal) of 1 stride in one TD child (5.7 years) and one child with bilateral CP (5.4 years). Note typical two peaked profile of vertical hip position during one stride in TD child (pendulum mechanism of walking) and variable pattern in child with CP. (B) Ensemble-averaged (across subjects, ±SD) vertical foot movements (normalized by the limb length L). MA, most affected; LA, least affected side. (C) Examples of vertical ground reaction forces in one TD (11.8 years) child and one representative child with bilateral CP (6.1 years). The data from several strides were superimposed (adapted from Cappellini et al., 2016).


Children with CP may develop other motor dysfunctions due to impaired corticospinal interactions, including dystonia, muscle contractures, lack of coordination (Crenna, 1998; Gormley, 2001), weak and often atrophic muscles, increased passive musculotendinous stiffness, changes in the structure of muscle fibers and connective tissue (Willerslev-Olsen et al., 2013; Mathewson and Lieber, 2015; Lieber and Fridén, 2019), so that biomechanical and histopathological changes are also contributing factors to gait abnormalities in CP (Hanson and Jones, 1989; Sutherland and Davids, 1993).

Finally, in children with disorders of the central nervous system, upper limb function is often impaired, which affects interlimb coordination and coordinative stability of limb pairs during gait. Children with CP may rely on “guard” arm postures, especially on the least affected side, as a compensation strategy to maintain balance comparable to newly walking toddlers (Meyns et al., 2012, 2016). Both less affected and more affected sides demonstrate substantially altered arm postures and movements in children with unilateral CP, associated with spasticity, balance control and other contributing factors. Given that human bipedal walking shares many features with that in quadrupeds, including similar regulation and coordination of upper and lower limb movements by central pattern generators and sensory feedback (Zehr and Duysens, 2004; Sylos-Labini et al., 2014; Solopova et al., 2016), lost or compromised arm movements in children with CP support the idea of including appropriate arm activity as a component of gait training after neurotrauma (Zehr et al., 2016; Bleyenheuft et al., 2017; Sidiropoulos et al., 2019). Thus, assessing upper limb function comprehensively is also important for planning and evaluating neurorehabilitative interventions.



IMPAIRED CORTICOSPINAL PATHWAYS IN CP

The control of human locomotion involves multiple neural networks including sensory, supraspinal (motor cortex, basal ganglia, thalamus, cerebellum), and spinal pattern generators signals (Grillner and El Manira, 2020). Furthermore, in contrast with many mammals, humans start to walk relatively late (Garwicz et al., 2009), and a prolonged developmental timescale can be related to postural challenges of bipedal gait, a large brain and its high rate of growth (Leigh, 2004; Kaas, 2005; Dehorter et al., 2012), and more intensive cortical participation in human locomotion than in animals (Capaday, 2002; Yang and Gorassini, 2006). Biomechanical factors, such as very slow muscle fibers at birth and even in older children (Denny-Brown, 1929; Buller et al., 1960; Dayanidhi et al., 2013), shape and soft tissues of the child’s foot sole (Maier, 1961; Gould et al., 1989; Bertsch et al., 2004), lack of extensor strength due to immature muscle cells, etc., also play a role in locomotor development and the reasons human infants do not walk sooner and do not express mature patterns (Thelen, 1995; Adolph et al., 2018; Dewolf et al., 2020). Motor problems in CP are associated with damage to motor pathways from the brain, including the corticospinal tract (CST). Importantly, the formation of specific circuits or the excitatory-inhibitory balance within them are more susceptible to damage at certain times in development in both humans and animal models of developmental motor disorders (Cavarsan et al., 2019). In particular, while reticulospinal projections from the brainstem are the first to arrive in the spinal cord followed by other tracts (Kudo et al., 1993; Sundström et al., 1993; Perreault and Glover, 2013), the CST is the last to arrive in the spinal cord (at ∼30 post-gestational week) and estimated critical period for its maturation is between few months and 2 years based on a period of CST myelination (Yakovlev and Lecours, 1967; Martin, 2005; Yeo et al., 2014). Neuroimaging methods can confirm and quantify impairments in the CST (Nemanich et al., 2019; Papadelis et al., 2019). Given that CST projection activities significantly shape the spinal cord motor function (Eyre et al., 2001), neuronal activity appear to be essential during the critical period for the normal development of the motor circuits (Yang et al., 2013).

One way to probe the development of functional corticospinal connectivity is to estimate the oscillatory drive of the motor cortex to the spinal cord using coherence analysis of MEG/EEG and EMG signals (Ritterband-Rosenbaum et al., 2017). For instance, beta and gamma frequency drive to the motor pool can be accessed through the surface EMG by evaluating coherence and synchronization of motor units within and between muscles. Beta frequency oscillations (15–35 Hz), which are coherent with similar frequencies in corticomuscular coherence in healthy adults (Salenius et al., 1996; Mima and Hallett, 1999), have been shown to be impaired in CNS lesions (Hansen et al., 2005; Nielsen et al., 2008). Thus, coherence and synchrony between EMGs are dependent on intact central motor pathways and these features may serve as physiological markers of impaired supraspinal control of gait (Hansen et al., 2005).

This method has also been used to evaluate developmental changes of functional corticospinal connectivity. For instance, recent data suggest that the corticospinal drive to muscles shows significant developmental changes with an increase in functional coupling in infants aged 9–25 weeks (Figure 2A; Ritterband-Rosenbaum et al., 2017), a sensitive period which coincides with the developmental period of normal fidgety movements in TD infants, noticeable manifestation of muscle reactions and self-organization of neural circuits (Blankenship and Feller, 2010; Hadders-Algra, 2018; Solopova et al., 2019). The coherence and synchrony between EMGs undergo developmental increases in late childhood (Figure 2B, TD children). In children with CP, there is a frequent problem of foot drop during gait associated with impaired control of the ankle dorsiflexors and reflected also in impaired tibialis anterior EMG-EMG coherence in the beta and gamma frequency bands on the most affected side, as well as lack of age-related increase of coherence (Figure 2; Petersen et al., 2013). Furthermore, toe walking in children with CP appears to be controlled differently from voluntary toe walking in typically developing children and is accompanied by differences in motor unit synchronization and coherence between antagonist EMGs (Lorentzen et al., 2019). Interestingly, 4 weeks of daily intensive treadmill training with an incline in children with CP may improve the control of the ankle joint (number and amplitude of toe lifts in the swing phase) and evoke plastic changes in the corticospinal tract associated with increased beta and gamma oscillatory drive to motoneurons (Willerslev-Olsen et al., 2015).
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FIGURE 2. Development of central common drive to a leg muscle. EMG traces were obtained from electrodes placed at the proximal and distal part of the tibialis anterior muscle. Coherence estimates provide a measure of the fraction of the activity in one surface EMG signal at any given frequency that can be predicted by the activity in the second surface EMG signal, reflecting the strength of common rhythmic synaptic inputs distributed across the motoneuron pool. (A) EMG–EMG pooled coherence at different frequencies for the three age groups given by the corrected age: 1–8, 9–25, and 25–66 weeks. The dashed lines indicate the 95% confidence levels for the pooled data (adapted from Ritterband-Rosenbaum et al., 2017 with permission). (B) Pooled estimates of coherence from all subjects with unilateral CP for the most and least affected sides for three different age groups: 4–7, 8–11, and 12–15 years. (C) Peak beta-band and gamma-band coherences in CP (MA, most affected; LA, least affected side) and TD children across the three different age groups. Error bars denote 95% confidence intervals [panels (B,C) adapted from Petersen et al., 2013 with permission].




NEUROMUSCULAR GENERATION AND MATURATION OF LOCOMOTOR CIRCUITRY IN EARLY INFANCY

While the above-mentioned assessments of the functional corticospinal connectivity provide important information about output of the motor cortex and its transmission to the spinal cord, one should keep in mind that these measurements are nevertheless limited in their ability to assess the actual state of the spinal locomotor circuitry and its impairment in CP. Indeed, whereas subcortical and cortical structures coordinate locomotor responses, especially when gait is made more difficult by demanding external conditions or postural instability, the basic neural control mechanism is largely governed by spinal pattern generators (Kiehn, 2016; Minassian et al., 2017; Gill et al., 2018; Grillner and El Manira, 2020). Using electrophysiological, pharmacological, or neuroanatomical approaches in invertebrates and vertebrates, the identification of the spinal interneurons and investigation of the locomotor circuitry provided important insights into how these functional circuits are formed during development. In particular, such studies showed considerable reorganization of spinal circuitry and the involvement of new circuitry during early development of locomotion (Vinay et al., 2002; Rauscent et al., 2006; Chakrabarty et al., 2009; Fetcho and McLean, 2010; Currie and Sillar, 2018). Therefore, even though the primary deficit in children with CP originates from the damage to the brain, a large part of the locomotor dysfunction might be attributable to the impaired state of the developing spinal circuitry, which has been somewhat overlooked.

An essential aspect of damage to developing brain is a risk of substantial or even irreversible changes in the state of the locomotor network during early development and critical developmental windows in particular. Moreover, if the state of the spinal circuitry is impaired, it should be controlled differently by descending motor pathways, which in turn would enhance the reorganization and involvement of the supraspinal structures to compensate for these abnormalities. These reciprocal spinal-supraspinal compensatory mechanisms create a risk of irreversible changes in the state of locomotor circuitry during early development, especially during critical developmental windows (Hadders-Algra, 2004; Yang et al., 2013; Friel et al., 2014; Cappellini et al., 2016).

What are indicators of the spinal cord involvement in CP? First, although it has been argued that the proximity of the spinal circuitry to the outer world may demand a more rigid organization compared to the highly flexible cortical circuits (Christiansen et al., 2017), this statement is valid only to some extent and unlikely for the developing spinal cord. Definitely, the spinal cord is not a simple relay structure for communication between central structures and skeletal musculature but is flexible (Heng and de Leon, 2007), capable of performing coordinate transformations (Fukson et al., 1980; Windhorst, 1996a; Poppele and Bosco, 2003), synapse daily turnover, cell death and atrophy after a spinal cord injury (Dietz and Müller, 2004; Gazula et al., 2004) or after brain damage (Drobyshevsky and Quinlan, 2017). In humans, examination of spinal neuronal circuitries is difficult to perform by non-invasive methods though some structural changes were documented. For instance, postmortem examination of children with CP showed abnormalities in the rostral segments of the spinal cord (Levchenkova and Semenova, 2012), while magnetic resonance imaging of the spinal cord in the subjects with spastic bilateral CP showed a reduced white matter crosssectional area at C6/C7 and T10/T11 segments (Noble, 2014). Early corticospinal lesion at the spinal level in humans also affects the immature spinal cord and gait maturation (Dan et al., 2004). As far as it concerns the mechanisms of early motor dysfunctions in CP, animal studies convincingly show that injury to the supraspinal systems or removing descending input severely disrupts spinal cord neuromodulation and the postnatal development of spinal circuits (Clowry, 2007; Friel et al., 2014; Smith et al., 2017; Jiang et al., 2018). The spinal interneurons mature in common with the CST connections (Chakrabarty et al., 2009) and extensively in the early period (possibly equivalent to ages 3–5 months in human infants), suggesting that if that window closes, full recovery is not possible (Friel et al., 2014). Furthermore, unilateral CST inactivation produces not only contralateral but also ipsilateral effects on the developing spinal circuitry, due to both sparse ipsilateral terminations and indirect ipsilateral influences at multiple levels of the CNS, reflecting the balanced contributions from the motor cortex on each side, rather than overwhelmingly from the contralateral side (Friel and Martin, 2007). Descending pathways also regulate spontaneous activity, which is likely a major trigger for early maturation of lumbar locomotor networks (Vinay et al., 2002).

Second, most synapses in the spinal cord are inhibitory (Levine et al., 2014) and contribute to network stability, preparation of an appropriate state of spinal circuitries to accommodate a specific supraspinal command (since the same interneurons and motoneurons participate in a wide range of movements and synergistic actions) and avoiding an excessive motor reaction (Windhorst, 1996b). However, in individuals with CP, damaging cortico-, rubro-, reticulo-, and vestibulo-spinal glutamatergic projections to the spinal cord through spinal inhibitory interneurons (Jankowska et al., 1976) can reduce inhibitory tone in the spinal cord and contribute to hypertonia (Sanger, 2003; Deon and Gaebler-Spira, 2010). The excitatory-inhibitory misbalance in the spinal circuitry in persons with CP is manifested by enhanced segmental reflexes with abnormal radiation of stretch reflexes to other muscles including the lack of the development of reciprocal inhibition of antagonist muscles (Berger et al., 1982, 1984; Myklebust et al., 1982; Myklebust, 1990), and the greater the imbalance the more severe the motor disorders (Condliffe et al., 2016).

Third, neuromodulation of the physiological state of the spinal cord is known to affect locomotor performance (Ivanenko et al., 2017; Gill et al., 2018). For instance, the locomotor function can be improved in children with CP using transcutaneous spinal cord stimulation during gait training (Solopova et al., 2017). It is also worth mentioning that these promising findings have been obtained in relatively older children (7–11 years), when substantial spinal abnormality induced by perinatal brain damage was already developed, and they need to be explored further to assess more comprehensively the more responsive neuromechanical characteristics and age-effect of such locomotor improvements. In addition to influences on locomotor function (Solopova et al., 2017), high-frequency spinal cord stimulation may reduce spasticity in children with CP (Shabalov et al., 2006; Dekopov et al., 2015).

To end with, the final neural output of spinal locomotor circuitry is represented by the spatiotemporal modulation of alpha-motoneuron (MN) activity, which can be assessed by mapping the activity patterns from a large number of simultaneously recorded muscles onto the anatomical rostrocaudal location of the MN pools in the spinal cord (Yakovenko et al., 2002; Ivanenko et al., 2013; Wenger et al., 2016), and by decomposing the coordinated muscle activation profiles into a small set of common factors as a means to look backward from the periphery to the CNS (Davis and Vaughan, 1993; Lacquaniti et al., 2012b). There are now several studies that evaluated the spatiotemporal organization of the spinal locomotor output in CP (Steele et al., 2015, 2019; Tang et al., 2015; Cappellini et al., 2016; Shuman et al., 2016, 2017, 2018, 2019a,b; Hashiguchi et al., 2018; Kim et al., 2018; Booth et al., 2019; Yu et al., 2019; Falisse et al., 2020; Pitto et al., 2020; Short et al., 2020).

Figures 3, 4 illustrate typical features of spinal locomotor output impairments in CP. TD children show a progressive reduction of EMG burst durations with increasing age (Figure 3A) likely reflecting an essential developmental aspect of muscular control optimization. This might be important for coordination of locomotion with voluntary movements, which requires a precise coordination of activation timings of the locomotor and voluntary motor programs (Ivanenko et al., 2005), and for optimization of the energetic cost of walking. For the assessment of motor coordination, one may test a modular approach for neuromuscular control providing information about temporal patterns of muscle activation shared by different muscles along with corresponding muscle synergies (Davis and Vaughan, 1993; Lacquaniti et al., 2012b). Such factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants (Figure 3B; Cappellini et al., 2016). Reduction of dimensionality (the smaller number of muscle synergies) found in some previous studies (e.g., Steele et al., 2015; Tang et al., 2015; Shuman et al., 2016) may depend on the criterion used to define the minimum number of synergies (Hug et al., 2012; Russo et al., 2014) and/or the limited number of recorded muscles (Steele et al., 2013; Zelik et al., 2014; Damiano, 2015). Nevertheless, the observed phenomenon of widening (Figure 3B) does not depend on the exact number of modules retained by the specific non-negative matrix factorization procedure (Martino et al., 2015), was confirmed in other studies as well, and seems to be a characteristic feature of CP gait. Furthermore, wider basic muscle activity patterns in CP were observed independent of the GMFCS level (Figure 3C; Yu et al., 2019). Thus, locomotor patterns of older children with cerebral palsy show lack of maturation and similarity of the early stages of gait development in healthy children.


[image: image]

FIGURE 3. Spatiotemporal organization of muscle activity patterns during walking. (A) Developmental trend for the duration of muscle (MG, medial gastrocnemius) activity. From left to right: examples of MG activity in one TD child and one child with bilateral CP, duration of MG activity (FWHM, full width at half maximum, see right panel) as a function of age (continuous lines represent exponential fittings), and averaged across children [horizontal lines denote significant differences compared with older TD children (2–12 years)]. (B) Statistical analysis of EMG patterns: basic activation patterns P1–P4 (each curve represents the pattern for an individual child) and corresponding weights W1–W4 (muscle synergies). Right panel – mean (+SD) FWHM of consistent basic activation patterns (P1–P4). Adapted from Cappellini et al. (2016). (C) Basic activation patterns (for the right and left sides) in TD children and children with bilateral CP at Gross Motor Function Classification System (GMFCS) levels I and II (adapted from Yu et al., 2019 with permission). Note significantly wider patterns in CP, independent of GMFCS level.
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FIGURE 4. Spatiotemporal maps of motoneuron activity of the lumbosacral enlargement in TD children and children with CP. (A) Examples of segmental output in one TD toddler (1.2 years), one TD older child (4.3 years) and one child with CP (4.2 years) (adapted from Cappellini et al., 2016). (B) Timing (+SD) of maximum activation of lumbar (L3 + L4) and sacral (S1 + S2) segments. Lines over bars denote significant differences compared with older TD children.


A similar picture emerges when considering the spatiotemporal maps of alpha-motoneuron activation (Figure 4). The spinal maps of motor pool activation can be estimated by mapping EMG activity of a large number of simultaneously recorded muscles onto the anatomical rostrocaudal location of the MN pools under the assumption that the rectified EMG provides an indirect measure of the net firing of MNs of that muscle in the spinal cord (Yakovenko et al., 2002; Ivanenko et al., 2013). TD children show a gradual reorganization of the spatiotemporal MN output with increasing age (Ivanenko et al., 2013; Dewolf et al., 2020), consisting in more narrow loci of MN activity and a progressive shift of the timing of maximum activation of sacral segments toward later stance (Figure 4B, right panel). By contrast, this developmental trend in children with CP is lacking (on both sides for children with bilateral CP and the affected side for children with unilateral CP). Therefore, children with CP show very limited age-related changes of muscle activity pattern durations and motoneuron output (Cappellini et al., 2016), consistent with the idea that early injuries to developing brain substantially affect the maturation of the spinal locomotor output.

In sum, how intrinsic spinal locomotor circuits are remodeled after a perinatal brain injury needs to be better understood since they play a key role in locomotor dysfunction in CP and in developing locomotor neuromuscular pattern generation in general, taking into consideration a substantial ongoing reorganization of the locomotor output in TD infants during the first year of life (Dominici et al., 2011; Ivanenko et al., 2013; Sylos-Labini et al., 2020). Also, the efficacy to repair supraspinal (CST) connections to the spinal cord is strongly reduced after the critical period and is insufficient to restore significant function unless promoted (Friel et al., 2014). This suggests the necessity for early central pattern generator-modulating therapies and early gait rehabilitation in children with CP to assist in the normal development of the spinal motor circuits and enhancing walking (Yang et al., 2013; Cappellini et al., 2016; Hurd et al., 2017).



ADAPTIVE GAIT CONTROL IN CP

Locomotor movements must be accommodated to different environments and directions of progression. The ability to adapt is of particular interest in the context of cerebral dysfunction, since the control of adaptive locomotion may involve accurate foot placements, their visual guidance, changes in the coordination, greater balance control, anticipatory locomotor adjustments, and thus require larger cortical involvement. Whereas the impairments of standard forward ‘steady state’ gait on a flat surface have been extensively investigated in children with CP, the neural mechanisms of the adaptive locomotor behavior have been studied to a lesser extent, even though difficulties in performing complex locomotor movements (walking on inclines, uneven terrain, in crowded area, climbing stairs) are included in the GMFM (Gross Motor Function Measure) assessment in persons with CP. Below we consider some examples of such movements supporting the idea that complex locomotor movements can be used for more comprehensive diagnosis of CP as well as for gait rehabilitation.

Locomotion rarely occurs on a flat surface and we often encounter obstacles in our pathway. In general, children with CP have difficulties in clearing an obstacle, being slower in approach and crossing speed along with unsteadiness of gait and balance adaptations of the trunk control (Law and Webb, 2005; Malone et al., 2016). For instance, in a recent study (Cappellini et al., 2020) we showed that about 30% of children with bilateral CP failed to perform the task (they stopped before the obstacle, performed lateral obstacle avoidance, stumbled or stepped onto the obstacle). Interestingly, they had mostly posterior lesions of the brain (Cappellini et al., 2020), in relation to their deficits in the anticipatory visuomotor control and important role of parietal lobe activity in visually planning gait adaptations (Drew et al., 2008; Lajoie et al., 2010; Drew and Marigold, 2015). Remaining children with CP (∼70%), who succeeded with obstacle clearance, performed the task significantly slower than age-matched TD children, demonstrating a high foot lift of the trailing (unseen) limb, smaller range of motion and muscle moments of the distal (ankle) joint (Figure 5A, left panels), and limited adaptation of task-relevant activity of hamstring muscles timed to the voluntary task of foot lift over the obstacle (Cappellini et al., 2020). Thus, impaired task performance in children with CP may reflect basic developmental deficits in the adaptable control of gait when the locomotor task is superimposed with the voluntary movement, suggesting that gait rehabilitation strategies should involve tasks performed in challenging environments to enhance the functional capacity of gait controllers.
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FIGURE 5. Adaptive locomotion in children with CP. (A) Obstacle task performance in children with bilateral CP. From left to right: pie chart showing the percentage of trials for children with succeeded and failed obstacle clearance, mean (+SD) walking speed for successful trials, foot lift and flexor peak hip and ankle muscle moments during trailing limb elevation. Asterisks denote significant side differences. Adapted from Cappellini et al. (2020). (B) Kinematics of forward and backward walking in TD and children with bilateral CP. Left panels: examples of forward gait kinematics in one TD child (5.7 years) and one child with CP (6.1 years) during forward and backward walking. From top to bottom: stick diagrams of the swing phase of a single step for both legs (relative to the instantaneous hip position), and ensemble-averaged (across all strides, ±SD) hip, knee, and ankle joint angles (red corresponds to the most affected side in CP). Dashed lines in stick diagrams correspond to the orientation of the left (in TD) and least affected (in CP) limb during touchdown. Right panels: comparison of gait parameters and ranges of angular motion (+SD) for both legs in TD and children with bilateral CP during forward (FW) and backward (BW) walking. MA, most affected; LA, least affected side. Adapted from Cappellini et al. (2018).


Backward walking (BW) is another example of adaptive locomotor behavior. It has been argued that BW uses the same rhythm circuitry as forward walking (FW) but involves additional specialized control circuits (Hoogkamer et al., 2014). BW is also a beneficial physical activity used in the rehabilitation of children with CP to improve walking abilities, strengthen RF and TA muscles, as well as augmenting hip extension and knee flexion with ankle dorsiflexion (Kim et al., 2016; Abdel-Aziem and El-Basatiny, 2017; Hösl et al., 2018; Elnahhas et al., 2019). Furthermore, BW highlights prominent gait asymmetries in children with CP and thus may give a more comprehensive assessment of the gait pathology (Cappellini et al., 2018). In particular, gait asymmetries, which were not evident during FW in children with bilateral CP, became evident during BW (Figure 5B). Accordingly, the most affected side in bilateral cerebral palsy can be defined based on the limb that show shorter stance duration during BW. The definition of unilateral cerebral palsy is usually not etiologic but functional (Bax et al., 2005; Rosenbaum et al., 2014), as a neuromuscular disorder that involves one half of the body (most affected side). The reason for the lack of asymmetry during FW in children with bilateral CP might be explained by the fact that the diagnosis of asymmetry is determined by clinical observation (e.g., the side on which the leg has the highest spasticity measure), and to our knowledge there is no valid criterion based on instrumented gait analysis to distinguish between asymmetric and symmetric children with bilateral CP. BW may also be more asymmetric because it is a less practiced form of gait than FW. Walking asymmetry can be problematic for many reasons and is increasingly measured and used as an important marker of gait recovery after stroke (Patterson et al., 2010; Wonsetler and Bowden, 2017). Spatiotemporal asymmetry assessments during BW in CP might reflect an impaired state and/or descending control of the spinal locomotor circuitry and can be used to help the diagnosis of the most affected side and as complementary markers of gait recovery.

To sum up, early injuries to developing brain affect both normal walking and other forms of locomotor behavior: complex locomotor movements (Law and Webb, 2005; Dixon et al., 2016; Mawase et al., 2016; Lewerenz et al., 2019; Cappellini et al., 2020), running (Böhm and Döderlein, 2012), weighting of legs (Bulea et al., 2017), backward walking (Cappellini et al., 2018), and even earlier locomotor movements such as crawling in infants with developmental delay (Xiong et al., 2018; Li et al., 2019). Current interventions are being developed that emphasize including more complex and voluntary locomotion in gait rehabilitation of children with CP. For instance, intensive training of walking on the inclined surface represents a promising protocol aimed at improving the control of the ankle joint and foot drop in CP (Willerslev-Olsen et al., 2015), while the standardized walking obstacle course was included as a part of movement therapy (Malone et al., 2016). Given that the support surface and external objects are included in the locomotor body scheme and its development (Dominici et al., 2010; Pearson and Gramlich, 2010; Ivanenko et al., 2011), navigating complex terrain, e.g., using the “magic carpet,” can further enhance spatial representation and generation of locomotor trajectories in CP (Berthoz and Zaoui, 2015; Belmonti et al., 2016). Thus, the best possible understanding of the impaired control of compound locomotor movements and their development is relevant for the ongoing work on improvement of the locomotor function in early childhood in persons with CP.



EARLY INTERVENTIONS TO PROMOTE THE LOCOMOTOR FUNCTION IN INFANTS WITH CP

The development of efficient and independent walking is an important therapeutic goal for children with CP (Willoughby et al., 2009; Smania et al., 2011; Degelean et al., 2012; Drużbicki et al., 2013; Willerslev-Olsen et al., 2015; Graham et al., 2016; Lerner et al., 2017). This may include advances in biotechnology to unveil new information about the impaired locomotor output or infant general movements for the early diagnosis of CP (Zhu et al., 2015; Redd et al., 2019; Airaksinen et al., 2020; Sylos-Labini et al., 2020), to develop central pattern generator-modulating therapies (Solopova et al., 2017) and to enhance walking. For example, initially shown to be effective for mammalian gait retraining (e.g., Barbeau and Rossignol, 1987; van den Brand et al., 2015; von Zitzewitz et al., 2016), a therapeutic intervention for gait retraining with partial body weight support using a harness system (McNevin et al., 2000) or water immersion (Oliveira et al., 2014) may improve walking capacity in children with CP (Day et al., 2004; Azizi et al., 2017). Given a positive effect of repetitive locomotor exercise on gait characteristics in CP (Smania et al., 2011; Willerslev-Olsen et al., 2015), also with the use of wearable exoskeleton (Lerner et al., 2017), the rehabilitative protocol may further focus on improving the locomotor output, e.g., by providing a feedback on specific features of the spinal locomotor output (Figures 3, 4) or implementing gait training program with real-time feedback of the body’s center-of-mass vertical displacement to restore the pendulum mechanism and decrease the walking energy cost (Massaad et al., 2010). Such approaches may be complementary to current concepts in rehabilitation of gait in children with CP. In addition, combining gait training with spinal cord neuromodulation may also improve locomotor function (Solopova et al., 2017). In addition, given that the muscles are weak and often quite atrophic in children with CP, resulting in significantly reduced volumes in leg muscles and in bone changes (Barrett and Lichtwark, 2010; Moreau et al., 2010; Oberhofer et al., 2010; Willerslev-Olsen et al., 2013; Noble et al., 2014; Handsfield et al., 2016), interventions increasing muscle length or strength can also improve gait. Early recognition of progressive deformity in the muscles and joints of the lower extremity and the spine in children with CP may allow timely treatment and prevention of irreversible changes (Morrell et al., 2002; Barber et al., 2011; Handsfield et al., 2016). Nevertheless, the reported gait recovery or power to find significant results still remains often limited (Valentín-Gudiol et al., 2017). Furthermore, in the great majority of studies, the CP participants benefited from locomotor training after the age of 3–5 years, keeping also in mind the delayed onset of independent walking in many infants with CP.

Frequent treatment for the lower limbs in young children with CP is more passive, typically including stretching, an ankle-foot orthosis for the affected leg (Wingstrand et al., 2014), and botulinum toxin A injections to reduce the abnormal muscle tone (Koman et al., 2003). Given critical developmental periods for maturation of the locomotor networks and corticospinal connectivity (see above section “Neuromuscular Generation and Maturation of Locomotor Circuitry in Early Infancy”), the key missing element in the majority of studies focusing on neurodevelopmental treatment - intensive child-initiated motor activity (Hurd et al., 2017). However, investigations focusing on early therapy of the lower limbs and the locomotor function are sparse (Richards et al., 1997; Campbell et al., 2012; Prosser et al., 2012; Hurd et al., 2017; Kolobe and Fagg, 2019).

Based on knowledge of neuroplasticity and the idea of critical developmental windows (Yang et al., 2013; Friel et al., 2014; Hadders-Algra, 2014; Reid et al., 2015; Cappellini et al., 2016; Hurd et al., 2017; Williams et al., 2017), the potential impact of initiating training at an earlier age is also an important consideration for clinicians working with children with CP. It is also worth noting available evidence for early accurate diagnosis of cerebral palsy that now can be made before 6 months’ corrected age (Novak et al., 2017). Taking advantage of newly available biotechnology for pediatric rehabilitation, training in the sensitive period for maturation would help to optimize infant motor and cognitive plasticity and enhance more effectively their locomotor function, that we briefly consider below.

Figure 6 illustrates some recent technological assistive solutions for implementing early locomotor behavior therapy in children with CP younger than 2 years of age. For instance, Forma et al. (2019) argued that a quadrupedal organization underlying locomotor movements in humans is manifested rather early (see also La Scaleia et al., 2018), particularly apparent on the skateboard (Figure 6A), and thus early quadrupedal training may enhance interventions designed to hasten the onset of independent walking in infants with cerebral palsy and developmental delays. In the same vein, the SIPPC (self-initiated prone progression crawler) system represents an integration of robotics and sensor technologies designed to capture (recognize one of 20 different crawling-like gestures of the arms and feet) and influence movement effort as infants learn prone locomotion (Kolobe and Fagg, 2019). With this idea of early crawling, it is worth stressing the fact that upper limb retraining may induce modification of locomotor function (Delabastita et al., 2016; Meyns et al., 2017).
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FIGURE 6. Physical therapy interventions that may promote early locomotor movements and enhance stepping for infants at risk for locomotor delays. (A) Pediatric skateboard for entraining quadrupedal locomotion (crawling) in infants in early months of life [reproduced from Forma et al. (2019) with permission]. (B) Self-initiated prone progression crawler containing active components enabling the infant to push harder to produce the intended movement [reproduced from Kolobe and Fagg (2019) with permission]. (C) Dynamic weight assistance system allowing practice of motor skills that infants are not yet able to perform on their own (crawling, knee walking, walking, climbing, attempts to jump and falling) [reproduced from Prosser et al. (2012) with permission]. (D) Passive non-actuated exoskeleton (“Moonwalker” used to facilitate upright posture and stepping in young children with cerebral palsy (courtesy of Hilenia Catania). (E) Powered exoskeleton (“ExoAtlet Bambini”) for assisting stepping in children suffering from early neurological gait impairment (courtesy of Elena Pismennaya).


The potential for infants to learn new behaviors and the acquisition of early locomotor function is also important for shaping and normal maturation of sensorimotor integration and psychological development (Anderson et al., 2013, 2016, 2019). Therapy utilizing novel dynamic weight assistance technology (Prosser et al., 2012; Figure 6C) may allow practice of motor skills that children are not yet able to perform on their own (crawling, knee walking, walking, climbing, attempts to jump and falling). A passive non-actuated exoskeleton provides further opportunity to develop the child’s potential for independent movement (“Moonwalker” and “NF-Walker®” available in the market, Figure 6D). It can also be modified using the actuated robotic aid by means of artificial muscles (Smania et al., 2012) and represents an individually adjustable device with a high amount of postural control, which assists children with severe gait impairment to attain independent mobility in standing position (Kuenzle and Brunner, 2009). Finally, a recently developed powered exoskeleton (“ExoAtlet Bambini,” Figure 6E)1 is able to provide assistance for stepping and help young children (∼2 years) to learn how to walk. Stimulation or early training of the locomotor function may have a greater impact on the onset of independent walking for children with development disorders and have the potential to alter the trajectory of motor development in CP (Prosser et al., 2012).

Research is also required to explore neural changes in response to training, especially given the capacity for change in developing nervous systems. In this respect, better understanding of early remodeling of intrinsic locomotor circuits after a perinatal brain injury is warranted to evaluate and develop successful strategies for early interventions in infants at risk of developmental delays. Studies using animal models of cerebral palsy could further advance our ability to treat and cure a variety of conditions (e.g., using medication and neuromodulation of neuronal circuits, Cavarsan et al., 2019), ameliorate motor symptoms, facilitate a more basic mechanistic understanding of the neurobiological underpinnings of neuroplasticity of cerebral palsy and develop early central pattern generator-modulating therapies.
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Humans control balance using different feedback loops involving the vestibular system, the visual system, and proprioception. In this article, we focus on proprioception and explore the contribution of reflexes based on force and length feedback to standing balance. In particular, we address the questions of how much proprioception alone could explain balance control, and whether one modality, force or length feedback, is more important than the other. A sagittal plane neuro-musculoskeletal model was developed with six degrees of freedom and nine muscles in each leg. A controller was designed using proprioceptive reflexes and a dead zone. No feedback control was applied inside the dead zone. Reflexes were active once the center of mass moved outside the dead zone. Controller parameters were found by solving an optimization problem, where effort was minimized while the neuro-musculoskeletal model should remain standing upright on a perturbed platform. The ground was perturbed with random square pulses in the sagittal plane with different amplitudes and durations. The optimization was solved for three controllers: using force and length feedback (base model), using only force feedback, and using only length feedback. Simulations were compared to human data from previous work, where an experiment with the same perturbation signal was performed. The optimized controller yielded a similar posture, since average joint angles were within 5 degrees of the experimental average joint angles. The joint angles of the base model, the length only model, and the force only model correlated weakly (ankle) to moderately with the experimental joint angles. The ankle moment correlated weakly to moderately with the experimental ankle moment, while the hip and knee moment were only weakly correlated, or not at all. The time series of the joint angles showed that the length feedback model was better able to explain the experimental joint angles than the force feedback model. Changes in time delay affected the correlation of the joint angles and joint moments. The objective of effort minimization yielded lower joint moments than in the experiment, suggesting that other objectives are also important in balance control, which cause an increase in effort and thus larger joint moments.

Keywords: balance control, reflexes, perturbed standing, neuromusculoskeletal simulation, proprioception


1. INTRODUCTION

Balancing is a complex task, where the aim is to avoid deviations from an upright and unstable position, since these deviations could lead to falls. Despite most falls occurring during walking, balance has often been studied in standing (Winter, 1995). A control system should be studied via an indirect approach, with perturbations, to identify the sensitivity of the controller and plant to noise, because a direct approach incorrectly assumes the control and state to be independent and is only appropriate for open-loop systems (Van der Kooij et al., 2005). Balance control has been identified through perturbed standing data for different scientific, robotic, and clinical applications (Wang and van den Bogert, 2020a), e.g., to provide insight into the different sensors used to balance, or to implement the identified controller into a robot.

The human is generally modeled as an inverted pendulum to study standing balance (e.g., Van der Kooij et al., 1999; Mergner et al., 2003), since inverted pendulum motion correlates with human motion in standing (Gage et al., 2004). This approach allows for the application of classical control theories to humans (Winter, 1995). A one-link inverted pendulum can be used to study the ankle strategy (Runge et al., 1999), which is active during slower perturbations. A two-link pendulum can be used to study the hip strategy, which is used for faster perturbations (Runge et al., 1999). The dynamics are typically linearized and feedback is applied to the pendulum's state, with the underlying assumption that the central nervous system is able to recover this information based on the available sensors (Van der Kooij et al., 1999).

However, these simple inverted pendulum models might not capture all aspects of standing balance. A principal component analysis of quiet standing showed that the motion in the ankle, knee and hip are similarly important, indicating that standing balance should be studied with a pendulum with more than one segment (Pinter et al., 2008). Another study also found that when the knee was not modeled, the center of mass (COM) acceleration was greatly overestimated (Yamamoto et al., 2015). Furthermore, previous work identified event-based intermittent control in tasks similar to standing, meaning that feedback is applied only after a trigger event (Loram et al., 2011, 2012), while an inverted pendulum reduces the base of support from the foot to a single point.

Therefore, we would like to investigate standing balance with a neuro-musculoskeletal model including the knee and a foot. Such a model allows us to investigate the contribution of reflexes to balance and also investigate similarities between control of walking and standing. Common muscle synergies exist between walking and standing (Chvatal and Ting, 2013), meaning that one neural control model could potentially be applied to walking and standing. Previously, a reflex controller was shown to replicate normal human walking (Geyer and Herr, 2010; Song and Geyer, 2015), which has since been applied to control exoskeletons (Wu et al., 2017), prostheses (Eilenberg et al., 2010), and a humanoid robot (Van der Noot et al., 2015), and was extended, for example to include frontal muscles as well (Song and Geyer, 2015).

We would like to investigate to what extent a similar reflex model can replicate behaviors observed in experiments of perturbed standing. The sensor fusion of, and interaction between the different proprioceptive, vestibular, visual, and other sensors has been studied extensively (Van der Kooij et al., 1999; Mergner et al., 2003; Jeka et al., 2004; Jiang et al., 2017), but the individual contributions of different sensor systems less so. Recently, perturbed standing balance was studied using a reflex controller, which was extended with a model of the supra-spinal system. This control was shown to be representative of human balance (Suzuki and Geyer, 2018a). However, Suzuki and Geyer used time delays of up to 20 ms, while reflexes have a time delay of at least 35 ms (De Groote et al., 2017). Furthermore, the resulting motions were not directly compared to experimental motions with the same perturbations, as was done by Van der Kooij and De Vlugt (2007).

Therefore, in this paper, we aim to investigate how well a proprioceptive control system with realistic time delay can explain kinetics and kinematics of perturbed standing. We replicated a perturbed standing experiment, where a person stood on a platform that was randomly displaced in the sagittal plane. This perturbed standing experiment was recreated in simulation to be able to compare against the same disturbances that were applied in the experiment. The simulation was controlled using length and force feedback. We address the questions of how much proprioception alone could explain balance control, and whether one modality, force or length feedback, is more important than the other.



2. METHODS


2.1. Musculoskeletal Model

We investigate the system shown in Figure 1. The musculoskeletal model was modeled with a floating base approach. The model has nine degrees of freedom and nine muscles in each leg. The model consists of seven segments (trunk including head, two thighs, two shanks, and two feet) connected by revolute joints. Note that the control is the same in both legs, meaning that effectively there are only six degrees of freedom: the position and orientation of the trunk, the hip angle, the knee angle, and the ankle angle.


[image: Figure 1]
FIGURE 1. Overview of the system with the reflex controller and the plant, the musculoskeletal model. The musculoskeletal model is standing on a platform, that is perturbed in the sagittal plane by a random square wave signal. The musculoskeletal model has nine degrees of freedom, but effectively six are used because the control is the same in the left and right leg. Each leg is operated by nine muscles. Each muscle is controlled by feedforward activation and reflex loops based on force and length information. These reflex loops are only active when the center of mass (COM) is outside of a dead zone inside the base of support. Three different controllers are created: the base model with length and force feedback, a length feedback model, and a force feedback model. The control outputs nine different signals, one for each muscle in both legs.


The rigid body model was modeled in Webots (Cyberbotics Ltd., Lausanne, Switzerland) (Michel, 2004) and used previously to investigate the effect of central pattern generators (Dzeladini et al., 2014). Now, a platform was added to the environment, between the ground and the human model. This platform moved in the sagittal plane to replicate a perturbed standing experiment. The platform mass was high (1,000 kg) to prevent any inertial effects from the human model.

The model was controlled with nine muscles in each leg, which were derived from (Geyer and Herr, 2010). These muscles were four element Hill-type muscles with a contractile element, a parallel elastic element with damping, a series elastic element, and a base elastic element to avoid collapsing of the series elastic element (Geyer and Herr, 2010). We added the rectus femoris and short head of the biceps femoris such that all mono- and bi-articular muscles of the human leg were modeled. The importance of the rectus femoris on balance has also been highlighted previously (Clark, 2012). Table 1 shows the muscle parameters of these muscles, which were based on Koelewijn and Van den Bogert (2016) and Delp et al. (2007). Parameters of all muscles can be found in the Tables S1, S2. Note that the maximum isometric force in the tibialis anterior was increased to Fmax = 4, 000 N, since preliminary work showed that the muscle was too weak to withstand the perturbations with the maximum isometric force used by Geyer and Herr (2010). This number is high, but will be scaled by the activation. The muscle dynamics and control were coded in Python 2.7.


Table 1. Muscle parameters of the two added muscles.

[image: Table 1]



2.2. Control Design

Each muscle was controlled using three components: a feedforward signal, a force feedback signal, and a length feedback signal. The length feedback represented the signals from the muscle spindles, while the force feedback represented the signal from the Golgi tendon organ. Different models have been suggested for muscle spindles, but we chose the simplest model, similar to the model used by Geyer and Herr (2010), to limit the search space of the optimization. Feedback was only applied once the COM of the full body was outside the dead zone inside the base of support. The COM location was shown to be very important in balance control (Welch and Ting, 2008).


2.2.1. Feedback Control

The muscle stimulation from force feedback was determined as follows:

[image: image]

where GFFB is the gain of the force feedback, and FSEE(t − Δt) the force in the series elastic element with a delay of Δt.

The muscle stimulation from length feedback was determined as follows:

[image: image]

where GLFB is the gain of the length feedback, lCE(t − Δt) the time-delayed contractile element length, and lCE(off) the offset length.

The time delays are given in Table 2. The third column provides the reference(s) that were used to define the time delay. These references measured the time between a muscle sensor stimulus and a response seen at an electromyography (EMG) sensor. No clear reference was found for the hip muscles. Carpenter et al. (1999) mention that in lateral direction, hip responses can be as quick as 25 ms, but it is unsure if responses are as fast in the sagittal plane. Therefore, a time delay of 40 ms was chosen, which is the fastest of all muscles, but not as fast as the lateral time delay.


Table 2. Time delays used in the controller.

[image: Table 2]



2.2.2. Dead Zone Without Feedback Control

Feedback control was only active once the model's COM moved outside the dead zone. The dead zone is an area inside the base of support. When the COM is inside this area, the model is considered to be balanced and no corrections are required. Preliminary results showed that without the dead zone, the control was very jerky and not smooth. Humans stand stably whenever their COM is inside the base of support, meaning that there is more than one stable stance configuration. The COM location inside the base of support is adapted depending on the task (Le Mouel and Brette, 2017). Therefore, the feedback control was activated only when the COM was close to or past the edges of the base of support. This means that an event-based, intermittent control was designed. Intermittent control is observed in humans in tracking tasks (Loram et al., 2012) and was suggested as a possible control approach in standing as well (Collins and De Luca, 1993; Van der Kooij and De Vlugt, 2007).

We defined the dead zone using distance and transition parameters. The distance parameters, xtoe and xheel defined the size of the dead zone from the heel side to the toe side. The transition parameters, zheel and ztoe, smoothed the transition between no feedback and feedback to make the control less jerky. It defined the area where the feedback gain increased linearly from zero to its maximum value of GFBB or GLFB (see also Figure S1). The sign of the gain was dependent was reversed between the heel and toe side. The COM was extracted from Webots in real time.

[image: image]




2.3. Optimization and Simulation Approach

Each simulation was run as follows. First, a joint angle control was applied in Webots for 1 s. This allowed the muscles to find an equilibrium position. Preliminary work showed that it was very hard to control the model if it was controlled by muscles from the start of the simulation. Then, the model would stand still using muscle-control for another second, after which a perturbation signal was applied until the full simulation lasted 110 s.

Controller parameters were found by solving an optimization problem using the perturbed simulations. The following parameters were optimized: the feedforward muscle input, the parameters of the dead zone, [image: image], the gains of the force and length feedback (Equations 1 and 2) and the length offset of the length feedback (Equation 2). The parameters in the left and right leg were equal. To reduce the size of the search space, the gains were equal and opposite between the situation when the COM was location on the heel- or the toe-side.

An optimization was solved to find the controller parameters such that the muscular effort was minimized, while several constraints were used to enforce the model to stand upright for the required time period. Effort minimization was used since this objective is also used in the central nervous system to create movements (Selinger et al., 2015), and is known to predict walking gaits (Ackermann and Van den Bogert, 2010). An effort objective also predicted responses in perturbed standing to measured EMG signals (Lockhart and Ting, 2007). All simulations were stopped if the time was exceeded or if height of the chest fell below 0.7 m. Therefore, a constraint was added that the simulation lasted at least T = 100 s. Secondly, a constraint was added that the height of the chest, ychest, was at least 1.3 m at the final time of the simulation. Thirdly, to avoid slipping, the horizontal ankle position, xankle, was constrained throughout the simulation. This yielded the following optimization problem:

[image: image]
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where u0 is the feedforward input and ai the activation of muscle i.

This problem was solved using single shooting and a particle swarm optimization (PSO). A lexicographic extension of PSO (Dzeladini et al., 2014) was used to ensure that the constraints were met. Each optimization was seeded from a good initial guess. This initial guess was found in preliminary work from a random initial guess. The population size was varied depending on the controller architecture. The open-loop input, u0 was bound between 0.001 and 1. All feedback gains were bound between −3 and 3 and the length offset lCE(off) was bound between 0.2 and 1.1. The dead zone parameters, zdeadzone, were bound to be within 10 cm of the contact point at the heel and toe for xheel and xtoe, respectively. The transition parameter was bound between 0 and 1.

The perturbation signal was taken from Wang and van den Bogert (2020a), where a 5 min perturbation signal was applied to human participants. This signal was designed using random square pulses with different amplitudes, [−5, −2.5, 0, 2.5, 5] cm, and different pulse durations, [0.25, 0.5, 0.75, 1.0, 1.25, 1.5] s (Wang and van den Bogert, 2020a). However, the optimization platform limited the simulations to be around 100 s due to technical limitations, so only part of this signal was used. The platform that was modeled in Webots was controlled to move exactly as the platform motion recorded in the experiment (Wang and van den Bogert, 2020a). The simulation modeled the perturbation signal starting at a randomly chosen start time, 53.73 s.

Three different control architectures were designed with monosynaptic feedback pathways. The base model had both force and length feedback. The length feedback model only used length feedback, while the force feedback model only used force feedback.



2.4. Comparison to Human Experimental Data

The resulting joint angles and joint moments were compared to experimental data provided by Wang and van den Bogert (2020b), where the same perturbation signal was applied in an experiment. One participant of this study was selected with the height and weight most similar to the height and weight of the musculoskeletal model. Ground reaction force and marker data were filtered with a second order Butterworth filter with a cut-off frequency of 16 Hz. Ground reaction force data was inertially compensated to account for belt acceleration (Hnat and Van den Bogert, 2014). Joint angles and joint moments were determined using marker orientation and a link-segment model, as described by Koelewijn et al. (2019).

The experimental data was resampled to match the sampling rate and time points of the simulation, after which the correlation between the simulation and experiment was determined using Pearson's linear correlation coefficient. The correlation coefficient and the p-value of the hypothesis that there is no correlation between the data were determined in MATLAB (Mathworks, Natick, MA, USA). The correlation was determined for the data used in the optimization, and repeated for a second random 100 s signal sample from the experimental data.




3. RESULTS


3.1. Controller Parameters

Table 3 shows the optimized controller parameters for each of the controllers. The parameters xheel and xtoe define the distance between the edge of the dead zone and the contact point at the heel and toe, respectively. Figure S1 shows how the gain varied depending on the COM position. The open-loop inputs are very similar between the different solutions, with a maximum difference of 0.12 in the soleus and gastrocnemius. Furthermore, the feedback gains are generally highest for the monoarticular hip muscles, and the ankle muscles. In the force feedback model, all reflex gains are positive, except for the tibialis anterior, while in the length feedback model positive and negative gains were found.


Table 3. Optimized controller parameters for each of the controllers that were found.

[image: Table 3]



3.2. Correlations Between Experiment and Simulation

Table 4 reports the correlation between the simulated and experimental joint angles and joint moments for each of the control models that was used. For the base model, the hip and knee angle correlated moderately between experiment and simulation, while the ankle angle, ankle moment, and knee moment correlated weakly (see also Figure 2). The correlation in the hip moment was barely significant when correcting for multiple comparisons (p = 0.001). Similarly, for the length feedback model, there was a moderate correlation for the hip and knee joint angle, and a weak correlation for the ankle angle, ankle moment, and knee moment, while there was a weak negative correlation for the hip moment (p = 0.0001). For the force feedback model, the knee and hip joint angle correlated moderately between the simulation and experiment, while the ankle correlated weakly. Again, the coefficients of all joint angles were significant with p ≤ 0.0001. The simulated ankle (positive) and hip moment (negative) correlated weakly with the experiment, with a significant coefficient, while the correlation for the knee was not significant (p = 0.91). The correlations are also shown in Figures S2, S3.


Table 4. Correlation between simulated and experimental joint angles and joint moments for the experimental data used in the optimization.

[image: Table 4]


[image: Figure 2]
FIGURE 2. Correlation between the simulation controlled with length and force feedback and the experiment for the joint angles (Left) and joint moments (Right) for all three joints.


Table 5 reports the correlation between a second, randomly chosen, 100 s sample of the experimental data. The starting times of these samples were 17.57 s for the base model, 97.20 s for the length feedback model, and 44.55 for the force feedback model. The correlations are similar to the correlations shown in Table 4, where the analysis was done with the sample used in the optimization. The correlations are lower for the joint angles, but higher for the ankle in the base model and the hip in the force feedback model. The correlations are higher for the joint moments, except the hip in the force feedback model (lower) and the knee in the length feedback model (the same).


Table 5. Correlation between simulated and experimental joint angles and joint moments for a random sample of the experimental data.

[image: Table 5]


3.2.1. Base Model

Figure 3 shows the joint angles as a function of time for the simulation (red) and the experiment (black). The platform motion is also plotted for reference. The average joint angle of all joints is similar between the experiment and the simulation. The largest difference was five degrees for the hip, while the difference was one degree for the knee and three degrees for the ankle. Figure 4 shows the joint angles only for 60–80 s, where it is clear that the responses look similar between the experiment and simulation. In the knee, the simulated responses generally have a larger amplitude than the experiment, while the opposite is true for the hip and the amplitudes seem similar in the ankle.


[image: Figure 3]
FIGURE 3. Joint angles as a function of time for the simulation controlled with length and force feedback (red) and experiment (black). The platform motion is shown in gray for reference.



[image: Figure 4]
FIGURE 4. A zoom-in on the joint angles between 60 and 80 s for the simulation controlled with the base model (red) and experiment (black). The platform motion is shown in gray for reference.


Figure 5 shows the joint moments as a function of time for the simulation controlled with length and force feedback (red) and the experiment (black). The range of moments is smaller for the simulation than for the experiment, with smaller extremes in positive and negative direction.


[image: Figure 5]
FIGURE 5. Joint moments as a function of time for the simulation controlled with length and force feedback (red) and experiment (black). The platform motion is shown in gray for reference.




3.2.2. Single Feedback Models

Figure 6 shows the joint angles of the simulation with the force feedback model (red), the length feedback model (blue) and the experiment (black) as a function of time. The average joint angle is very similar for the length and force feedback model, and also similar to the experiment for both. The largest difference is about 3 degrees for the ankle. Figure 7 shows the same results, zoomed in on 60–80 s. This shows that the responses of the length feedback model are more similar to the experimental responses than the force feedback model. The force feedback models shows larger periods of inactivity, whereas there are responses visible in both the experiment and the length feedback model.


[image: Figure 6]
FIGURE 6. Joint angles as a function of time for the simulation controlled with the force feedback model (red), length feedback model (blue), and experiment (black). The platform motion is shown in gray for reference.



[image: Figure 7]
FIGURE 7. A zoom-in on the joint angles between 60 and 80 s for the simulation controlled with the force feedback model (red), length feedback model (blue), and experiment (black). The platform motion is shown in gray for reference.


Figure 8 shows the joint moments of the simulation with the force feedback model (red), the length feedback model (blue), and the experiment (black) as a function of time. These results are very similar to the results of the base model. The range of the moments is again smaller for the simulation than for the experiment. Similar to the joint angles, the joint moments are constant for longer periods in time for the force feedback model, while for the length feedback model, there seem to be some damped oscillations (e.g., in the knee and ankle between 80 and 90 s).


[image: Figure 8]
FIGURE 8. Joint moments as a function of time for the simulation controlled with length feedback (red) and experiment (black). The platform motion is shown in gray for reference.






4. DISCUSSION

We aimed to understand the contribution of the proprioceptive system to behavior during perturbed standing. A reflex model with both force and length reflex showed significant moderate correlation for the joint angles in all joints, and weak correlations for the knee and ankle moments. This suggests that a controller with proprioceptive reflexes can explain perturbed standing behavior. Furthermore, controllers with only force or length feedback also correlated weakly to moderately with the experiment. Analysis of the time series of the joint angles showed that the length feedback model was better able to replicate the reactions observed in the experiment than the force feedback model.

We modeled muscle spindles as pure length feedback loops to limit the search space of the optimization, while evidence exist that the spindle activity depends on both the length and velocity of the contractile element (Hasan, 1983). Recently, experiments and simulations even showed that the spindle activity is more related to force than length and velocity (Blum et al., 2017; Falisse et al., 2018). Falisse et al. (2018) showed that reflex activity during gait and passive stretches in patients with cerebral palsy was better modeled based on the contractile element force than the contractile element length. We compared contractile element length feedback to tendon force feedback, and showed the opposite in perturbed standing, since the length feedback better explained the experimental joint angles than the tendon force feedback. We expect the correlation to increase further if velocity was included into the muscle spindle model.

An important parameter in the human control system is the time delay between the sensors and the resulting corrections. We chose the time delays as much as possible according to literature on time delays (Carpenter et al., 1999; Shultz et al., 2001; Hedayatpour and Falla, 2014). We repeated the optimizations with different time delays (see Supplementary File). Again, correlations were found between the joint angles and joint moments. However, the numbers could increase or decrease up to 0.2. This indicates that the time delay of the muscles could possibly be found via a data-tracking optimization, to find the time delay where the responses of the simulation occur at the same time as the responses of the experiment.

We identified balance control by minimizing effort, whereas balance control is usually identified by minimizing the error between simulated and experimental data (e.g., Van der Kooij et al., 2005). Humans minimize some objective when walking (Bertram and Ruina, 2001), which is related to energy or effort (Ackermann and Van den Bogert, 2010; Dzeladini et al., 2014; Falisse et al., 2019). Furthermore, this energy-related objective is used by the central nervous system to continuously optimize gait patterns (Selinger et al., 2015). An effort-related objective also predicted responses to balance perturbation during standing similar to EMG signals (Lockhart and Ting, 2007). The correlation of the joint angles and moments between the simulation and experiment further indicates that this objective is important in standing balance as well. However, the resulting joint moments (Figures 5, 8) were smaller than in the experiment. This indicates that the optimal solution of the simulation might have been more energy efficient than the human behavior in the experiment. Future studies could identify additional objectives used internally by humans in perturbed standing.

Our control approach was based not only on proprioceptive reflexes, but also on the COM location. The dependency on the COM allowed for an implementation of intermittent control, which has been shown to be the approach that is used in human control (Loram et al., 2012). Previous work has shown that the COM is important for control of standing balance (Welch and Ting, 2008). However, the exact architecture of the intermittent control has not been investigated so far. We used a real time measurement of the COM, which is unrealistic, since the human body requires around 100 ms to estimate the COM position (Peterka, 2002). However, optimizing controller parameters for the base model with a 100 ms time delay on the COM position was not successful. The model was not able to withstand the full perturbation signal. Therefore, the intermittent control threshold is likely not defined by the COM. Instead, it could be defined by pressure distribution in the feet. However, we could not use the ground reaction force measurements due to measurement noise in Webots. Therefore, we used the COM as a proxy and optimized controller parameters of the base model with a 20 ms time delay on the COM position, to represent the time delay normally present between the cutaneous sensors and the spinal cord (Jenner and Stephens, 1982). The resulting control parameters, including those for the dead zone, were similar, though the length feedback gains were higher except for the biceps femoris (see Supplementary Files). Correlations were also similar, the knee and ankle angle correlated weaker (0.37 and 0.17 vs. 0.44 and 0.26 in Table 4, respectively), while the knee and ankle moment correlated stronger (0.20 and 0.41 vs. 0.082 and 0.31 in Table 4, respectively). These result suggest that the intermittent control threshold is more likely based on the foot pressure than the COM.

However, the intermittent control might have caused some differences in the joint angles between the simulations and the experiment. The joint angles (Figures 3, 6) of the simulations showed less variability when the platform was not moving than the joint angles in the experiment (e.g., around 70 s in Figure 6). This indicates that there are some corrections happening during this time, while in the simulation the COM was inside the dead zone and therefore no corrections were applied. The lack of motion when the COM was inside the dead zone is likely related to the relatively high ankle stiffness resulting from the Achilles tendon stiffness. We used the tendon stiffness from (Geyer and Herr, 2010), which is in the order of magnitude expected for the Achilles tendon (Gerus et al., 2015). However, this tendon stiffness yields an ankle stiffness that is two orders of magnitude larger than the ankle stiffness observed in quiet standing (Loram and Lakie, 2002). This observed ankle stiffness is too low to stabilize the body (Loram and Lakie, 2002), which causes random motion, whereas our much larger stiffness does stabilize the body.

We did not extend the muscle models with a short range stiffness. The muscle short range stiffness is a short term stiffness increase after a length change, faster than any neural response (De Vlugt et al., 2011). Addition of a short-range stiffness model has improved similarity between perturbed standing experiments and simulations (De Groote et al., 2017). Inspection of the time series of the joint angles showed that in general the response of the simulation was smoother and less steep than in the experiment. The short-range stiffness would allow for faster response time in the muscles, and could further improve the similarity between the simulation and experiments. We chose not to include the short-range stiffness, since our aim was to investigate the effect of the proprioceptive system. By not including this stiffness, we ensured that the observed results were due to the reflex control, and not the short-range stiffness. Future research should investigate the interaction between short-range stiffness and reflexes.

We limited the search space of the optimization by using a simple spindle model and by using an equal and opposite sign for the gain parameters if the COM was outside of the dead zone on the heel-side, compared to the toe-side. The parameter space would have more than doubled otherwise, meaning that the population size should have increased even more. With the current set-up, optimizations took about a week to run on a high performance computer with multiple clusters. Therefore, it was decided not to investigate a controller with different gains, instead of gains with an equal and opposite sign. It is likely that a better fit could be found with more controller parameters. Different numerical approaches should be investigated to allow for a larger search space, and thus more realistic models for e.g., the muscle spindles, such that our approach can also be used to investigate human control on a physiological level.

The open-loop inputs were very similar between the different controllers. The largest difference was found between the gastrocnemius and the soleus. These muscles have similar functions, meaning that there are likely multiple solutions for the open-loop input with a similar effect on the control. For the same reason, a larger variation was found in the length feedback parameters than in the force feedback parameters. The length feedback was based on two parameters, the offset and the gain. Therefore, different combinations of gains and offset could yield to similar results, while the force feedback was only based on one parameter. A different choice for the bounds of the length offset could reduce this redundancy.

The controllers were mainly evaluated on the perturbation signal used in the optimization only (100 s), while data for the complete 5 min experiment was available. We also evaluated on a second 100 s sample, with a randomly chosen start time. Correlations for both samples were similar, indicating that the evaluation using the perturbation signal from the optimization is fair. This was expected, because the optimization objective did not have a tracking term. However, the base model and force feedback model were not able to withstand the complete perturbation signal. It is expected that it is possible to find a controller for the full duration by optimizing over the full trajectory, but this was not possible due to technical limitations. The simulation time is related to the number of different perturbations that the system encounters. If this number is higher, it means that more data is available to train the controller, and the human control will be replicated more accurately. We do not expect that the conclusions of this work would be different with a larger simulation time, since we found that the reported correlations were the same for two samples of the experimental data. Future work should investigate the minimum amount of data required to find an accurate controller.

Two limitations of the current study should be mentioned. Firstly, we did not account for modulation of reflexes in different environments (Perreault et al., 2008). The controller was fitted to data of perturbed standing of a specific magnitude, and its validity in other environments with different perturbations, or quiet standing, was not tested. In quiet standing, the length of the calf muscles changes differently than expected in reflex control, since these muscles shorten during small forward motions and lengthen during backward motions (Loram et al., 2005), which is related to the fact that the ankle stiffness, as mentioned before, is lower than necessary to stabilize the body (Loram and Lakie, 2002).

Secondly, the maximum force of the tibialis anterior was relatively high, since it was not possible to find a controller with the original value used by Geyer and Herr (2010). However, the actual force is scaled by activation, which was equal to about 30% for the tibialis anterior, meaning that the maximum force in this muscle was about 1200N, which is realistic for the tibialis anterior. One consequence of the large force is that the optimization weighted the force in the tibialis anterior to a lesser extent, since a small activation already led to a large force. However, this should have only a small effect, because the tibialis anterior was the only ankle dorsiflexor muscle.

In conclusion, we investigated how well proprioceptive reflexes explain perturbed standing. A perturbed standing experiment was replicated in a simulation controlled by force and length reflexes, and only force or length reflexes. We showed a weak to moderate correlation between the joint angles and moments between the experiment and a controller optimized to minimize effort, which suggests that force and length reflexes are important for standing, but other motor control systems should be included to capture the full behavior. Correlations were similar between the length and force feedback model, but the length feedback model was slightly better able to replicate experimental motions, suggesting that length feedback is more important than force feedback in perturbed standing. Furthermore, these results were found by minimizing effort, which suggests that similar to walking, an effort-related objective is likely used in perturbed standing. The correlation was dependent on the time delay that was used, meaning that time delay should be chosen carefully in a neural control model.
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Brain-machine interfaces (BMIs) can improve the control of assistance mobility devices making its use more intuitive and natural. In the case of an exoskeleton, they can also help rehabilitation therapies due to the reinforcement of neuro-plasticity through repetitive motor actions and cognitive engagement of the subject. Therefore, the cognitive implication of the user is a key aspect in BMI applications, and it is important to assure that the mental task correlates with the actual motor action. However, the process of walking is usually an autonomous mental task that requires a minimal conscious effort. Consequently, a brain-machine interface focused on the attention to gait could facilitate sensory integration in individuals with neurological impairment through the analysis of voluntary gait will and its repetitive use. This way the combined use of BMI+exoskeleton turns from assistance to restoration. This paper presents a new brain-machine interface based on the decoding of gamma band activity and attention level during motor imagery mental tasks. This work also shows a case study tested in able-bodied subjects prior to a future clinical study, demonstrating that a BMI based on gamma band and attention-level paradigm allows real-time closed-loop control of a Rex exoskeleton.

Keywords: brain-machine interface, EEG, gamma band, lower-limb exoskeleton, motor imagery, human movement, sensory integration, Stockwell Transform


1. INTRODUCTION

Stroke, spinal cord injury (SCI), and limb loss are some of the most common causes of acquired motor disabilities in adults, being the restoration of motor function often incomplete. Normally, therapists try to recover some residual ability for movement when possible, acting over the distal physical level, trying to influence the neural system through mechanisms of neural plasticity (Ang and Guan, 2013). Traditional therapies focus on improving the functional ambulation for patients in the sub-acute phase, using overground training. This requires the design of preparatory exercises, the observation by a physical therapist and the direct manipulation of the limbs during gait over a regular surface, followed by supervised walking. Orthesis and prosthesis devices have been developed in the last years in order to assist people with motor limitations (Contreras-Vidal et al., 2016). The introduction of these robotic devices into rehabilitation therapies can further improve them (Bortole et al., 2015). Regarding the control, EMG-based interfaces can be used to control prosthesis (Villarejo Mayor et al., 2017), but a Brain-Machine Interface (BMI) offers a more suitable option to control a mechanical device, such as a speller or a wheelchair (Li et al., 2014), and exoskeletons or robotic orthesis (Do et al., 2013; Kilicarslan et al., 2013; López-Larraz et al., 2016; Liu et al., 2017). In addition, a BMI can improve neuroplasticity during rehabilitation therapies through the cognitive engagement of the subject (Cramer, 2008; Gharabaghi, 2016; Barrios et al., 2017), a fact that has been proved in clinical studies (Donati et al., 2016).

One of the most common paradigms used for BMIs to decode the brain activity is motor imagery (MI). It has been demonstrated that the mental task of imaging a movement produces similar brain patterns to the actual motion (Stippich et al., 2002; Bakker et al., 2007; Batula et al., 2017). Feature extraction of MI is usually based on the frequency analysis of the subject's electroencephalographic signals (EEG) in alpha (8 − 12 Hz) and beta bands (12 − 32 Hz) (Pfurtscheller et al., 2006), or delta bands (0.1 − 4 Hz) (Bradberry et al., 2010; Presacco et al., 2011). However, there are not many studies that focus on gamma bands (32 − 100 Hz). Recently, the gamma band has been related to gait attention (Costa et al., 2016; Costa-García et al., 2019). However, the actual action of walking does not demand high attention from the individual, as it is usually involving a subconscious mental task. Besides, the subject can be affected by external sensory distractions that can reduce the level of cognitive engagement associated with the MI task. For this reason, it is important to assess the attention level that the subject keeps during the mental task of controlling the robotic device. This way, it can be assured that the cognitive engagement of the subject is high during the therapy, and that the control outputs are accurate and associated with the mental process of rehabilitation. This allows to turn assistive BMIs into restorative BMIs (Gharabaghi, 2016).

The present research combines two different paradigms in order to propose a new BMI for controlling a lower-limb exoskeleton. First, a new BMI based on MI for gamma band is presented. The current work expands the initial research developed in Ortiz et al. (2019), studying the real-time feasibility of the new MI paradigm in an opened-loop and closed-loop control scenario. Second, the BMI proposed in Costa-García et al. (2019) is adapted to the current research in order to evaluate the attention to gait based on a dual task paradigm. The attention level provides this way, a measurement of the cognitive engagement of the subject during the use of an exoskeleton, fact that has not been studied previously in literature. This information could be provided during rehabilitation therapies to the subject and clinical staff to assess the degree of engagement during the MI mental task. Finally, the viability of the combination of the attention level to gait as a modifier for the initial MI paradigm is studied. The objective is to see if the combination of both paradigms allows to operate the exoskeleton with a higher accuracy. This new approach has been tested with several able-bodied volunteers, as a preliminary study before its employment with patients in a second stage of the research. The results show that the proposed BMI can be used for real-time closed-loop operation of a Rex exoskeleton.



2. MATERIALS AND METHODS

This section describes the experimental setup, the equipment used, the data processing methods and the indices used for assessment.


2.1. Equipment

Data acquisition was accomplished by two non-invasive bundles of 32 wet scalp electrodes over an easyCap unit (Brain Products GmbH, Germany). The cap followed the 10–10 distribution of the international system. Four of the electrodes of the first bundle (see Figure 1) were placed around the eyes in a bipolar setup to assess the contribution of blinking to artifacts. Reference and ground electrodes were positioned on both ears. Data were transferred by wireless communication using a Move transmitter (Brain Products GmbH, Germany) for their posterior amplification by two brainAmp units (Brain Products GmbH, Germany) and their processing and recording in a laptop.


[image: Figure 1]
FIGURE 1. Electrode configuration for the experiments. Sixty of the electrodes were used for EEG recording. Four of the electrodes of the first bundle were used for assessing eye artifacts. Ground and reference were positioned on left and right ear, respectively.


The exoskeleton used was the Rex (Rex Bionics, New Zealand). The exoskeleton was controlled by wireless communication. The feedback information of the current status of the Rex was acquired by the computer through a wire serial port communication with a custom developed software. Rex exoskeleton has several characteristics which make it different from other lower-limb exoskeletons. First, it is a self-standing exoskeleton that does not require any crutches and that allows a full standing walking without any vertical inclination. In addition, its walking pattern is very peculiar and far from the anthropomorphic usual gait. The choice of this exoskeleton was made based on the movement limitations it provides. In a Rex exoskeleton, the limbs of the subject are tightly attached to the robotic prosthesis by several straps, avoiding any lower limb movement. This way, the subject can only move their legs when the exoskeleton does, avoiding any lower-limb movement not commanded by the BMI.



2.2. Experimental Setup
 
2.2.1. Subjects

Four able-bodied subjects (S1–S4) took part in the experiments. The subjects did not report any known disease and participated voluntarily in the research, giving written and informed consent. All the procedures were approved by the Institutional Review Board of the University of Houston, TX (USA). The research included two different experiments. S1 and S2 participated in the initial opened-loop experiments, which were used to set up the initial algorithms of both BMIs (only MI and MI+attention). Additionally, subjects S2–S4 participated in the sessions which were designed with the objective to test the initial results in a closed-loop control scenario. S1 could not participate in the closed-loop experiments due to malfunctioning of the electrodes.



2.2.2. Subject Preparation

Preparation of the subject included two different steps. First the limb length of the exoskeleton was adjusted to the subject. After that, the electrodes were gelled to a value lower than 30kΩ. Electrode's impedance was checked before starting the trials and after finishing to be sure no electrodes were marginally over the 30kΩ value. Full process for both tasks could take around an hour. Before starting data collection, a medical mesh was positioned over the cap to avoid any wire movement and mitigate motion artifacts. Before starting, several runs of walking by manual control were accomplished in order to get the subject used to the Rex movement.



2.2.3. Protocols

Figures 2, 3 show the structure of both kind of sessions (only opened-loop control and with closed-loop control). First sessions of the research included only training trials that were controlled in opened-loop. Once the paradigms were set-up based on the first sessions data, experimental sessions included test trials which were controlled in closed-loop. Following paragraphs detail the characteristic of both kind of trials.


[image: Figure 2]
FIGURE 2. Structure of a session with only opened-loop control per paradigm of control. The trials were registered and computed for a determined paradigm of control (MI or MI+att) in groups of five trials. Each session consisted of 10 training trials, which were recalculated for the other paradigm of control in a pseudo-analysis (1 − 5 and 6 − 10). The model used for testing each trial in opened-loop included the previous n-1 trials up to a maximum of four trials.



[image: Figure 3]
FIGURE 3. Structure of a session with closed-loop control per paradigm of control. The subject performed the whole diagram once per each paradigm of control (MI and MI+att). Each paradigm consisted of five training and five tests trials, so each session consisted of 20 trials. The test trials were tested with the specific trained model.



2.2.3.1. Training trials

Training trials were the ones used for creating the classifier model of each paradigm control (MI or MI+attention). As the developed tool always works in real time, first training trial needs a generic model 0 (randomized data) in order to be processed. The output results of the first training trial were not considered for this reason, as the trial was classified with a model which contains data that was not related to the subject. Subsequent training trials were tested in opened-loop control with the model of the previous n-1 trials of the subject. As real-time analysis can be done for only a specific algorithm of control (MI or MI+attention), trials were run with an specific kind of model paradigm. However, a pseudo-online analysis for the other control paradigm was run to compare the performance of both paradigms, as it will be seen in results section.

The protocol of a training trial included three different mental tasks (see Figure 4). First, 15 s were not used for classification as they were needed for the convergence of the H∞ eye blinking artifact removal algorithm (Kilicarslan et al., 2016). In addition, these seconds helped the subject to feel relaxed before the start of the trial. After that, an acoustic cue marked the start of a rest/standing event, which ended by another acoustic cue for starting the MI event and the Rex activation. After at least 20 s of normal exoskeleton walking, a new acoustic cue indicated the start of a reverse mental count. This mathematical task substituted the original mathematical operations used in Costa-García et al. (2019) for the assessment of the low attention to gait, as it was difficult to attach a tablet to the Rex exoskeleton without disturbing the subject. The mental operation consisted of an accumulative counting of 1, 000 ± 7. The ± was changed randomly between trials to avoid the repetition of the numbers and any memorization of the operations by the subject. The counting event was used as a distracting mental task to assure that the focus of the subject was not on the gait during the Rex walking. This counting also worked as a control class to detect if the output differences in the MI class were related to motion artifacts. As the Rex is moving in the same way during MI and counting periods, the output differences were just related to the mental processes. In addition, to take into account the time that the exoskeleton needs to perform the transition step to start or to stop, additional windows of time of 5 s for the start (2 s for the cue influence +3 s for the transition step) and 4 s for the stop were considered. Status of the Rex can be seen in Figure 5 operating in an opened-loop control. As it can be seen in the image, there is some inherent lag since the real command is issued, which in training trials is coincidental with difference between the acoustic cue (start or stop) and the moment the Rex initiates the transition step or achieves the reference status (normal walking or standing position).


[image: Figure 4]
FIGURE 4. Times of the mental events during the experimental trials. Both trials included a previous time of 15 s followed by a 10 s rest period. In the case of training trials, this period was followed by walk/mathematical count/stop events. Test trials for testing did not include the mathematical count event and had an extended final stop event to allow the Rex to stop. As first and last steps of the exoskeleton had a variable time, extra windows of time of 5 s for the start and 4 s for the stop were considered.



[image: Figure 5]
FIGURE 5. Experimental protocol for the training trials. Each event started/finished with an acoustic cue (red/blue/green arrows for start, stop, counting events). The figure also shows the Rex status during the trial (Standing/transition step to walk or stop/Normal walking). First 15 s were not considered for analysis and were used to allow the artifact removal algorithm to converge. As it can be seen there is a hardware lag in the status of the Rex since a start or stop cue is issued and the Rex changes its status.




2.2.3.2. Test trials

Test trials were run in real-time closed-loop control in order to assess the BMI behavior. The model that used the test trials consisted of the previous five training trials acquired.

The trials used for testing the BMIs were similar to the training ones, but without the count event, see lower part of Figure 4. In order to give enough time for the Rex to stop, the final rest event was expanded to 20 s, as the lag introduced by the Rex between the issue of a stop command and an actual stop can last over 7 s depending on the position of the mechanical limbs. This is because final standing position must leave both limbs in parallel, requiring sometimes to fulfill a full last step plus the transition step before stopping. The command to start or to stop the Rex was issued only when a decision command output was created by the BMI based on the output of the classifier.




2.3. Signal Processing

The whole signal processing scheme can be seen in Figure 6. The following paragraphs will describe it for the different processing paradigms.


[image: Figure 6]
FIGURE 6. Scheme of the full processing of an epoch since it is acquired and an output command decision is interpreted. The processing is carried out in the same way for the pseudo and the online analysis in real time. The only difference is that during pseudo-online analysis the command decision is not sent to the exoskeleton. Attention paradigm part is in green while MI paradigm is in beige.



2.3.1. Initial Pre-processing

One of the most difficult problems a BMI based on non-invasive EEG must confront is the presence of artifacts which could spoil the information contained in the EEG signal. This is especially difficult in the case of real-time algorithms, as no offline analysis mitigation is possible. The movement of the Rex is slow enough to not have important motion artifacts. Nevertheless, the electrode's wires were carefully attached using plastic clamps and a medical mesh was placed over the cap in order to avoid any fluctuation of the wires. In addition, subjects were advised to avoid any swallowing or chewing during the experiment. In order to mitigate the artifacts associated with eye blinking, H∞ (Kilicarslan et al., 2016) algorithm was applied (see Figure 1 for detail of the electrodes used for H∞). As the algorithm needed to work in a real-time scenario, the sampling frequency of the original data was resampled from 1 kHz to 200 Hz, applying each sample for a variable state function for an anti-aliasing low-pass filter. The filter was designed to maintain the Shannon sampling theorem requirements, with cut-off frequency equal to the new Nyquist frequency (Vaidyanathan, 1993). The 200 Hz frequency was chosen as a compromise between frequency resolution (allowing the extraction of γ band) and the processing speed of an epoch of 1 s length. This value was based on the preliminary analysis of former Rex data by the lab and the first of the opened-loop sessions. Time processing was an important issue as each epoch shifted every 0.5 s. Therefore, the whole processing time since an epoch was collected and a command decision was taken (see Figure 6) should be below 0.5 s for all the epochs in a trial. This was accomplished for the pseudo-online and online analyses requiring and optimization of the code not usually needed in an offline analysis.

After the signal was resampled and free of ocular artifacts, a standardization process was accomplished. This step is important to give the same weight to different electrodes for the MI and attention paradigms and to avoid that the changes in the EEG voltages of the subject between training and test trials can affect the classification. The standardization process was similar to the one presented in Costa et al. (2016) using the maximum visual threshold (MV). For each electrode i, it is computed based on its voltage V, and updated for each epoch m = 1 : N of the trial, with a length of L samples as:

[image: image]

Being the standardized voltage of the electrode i per each sample at time t:

[image: image]

For the first epoch of the first training trial, the BMI takes the MV thresholds of the generic model 0 file, based on the data of a former subject. This information is updated for each epoch, converging to a stable value after several seconds, so it does not affect the epochs in the events under analysis. Following trials use the updated thresholds of previous trials, so model 0 is just used for the initial seconds of the first training trial as a way to accelerate the MV convergence.




2.3.2. Attention Level Paradigm

The attention level BMI is based on the previous research published in Costa-García et al. (2019). However, it is particularized for the 60 EEG channels of the proposed setup instead of the original 31 channels, and the mental tasks of this research, as it is not possible for the Rex to follow ground stamps.

The first step is to detect the presence of any residual noise in the signal. An epoch of electrode i is considered as noisy if the instant MV threshold is over 150 μV, its instant kurtosis is over 15 μV, and its spectral power obtained by the maximum entropy method is not over 14 μV2.

Regarding the data processing, first a notch filter at 60 Hz and a fourth order Butterworth band-pass filter (5−90 Hz) is applied to the epoch, followed by a spatial Common Average Reference filter (McFarland et al., 1997). After that, the power spectral density of the channel is computed by the maximum entropy method (Rainford and Daniell, 1994) for the bands between 30–55 and 65–90 Hz. Bands were changed from the original research due to the different line frequency in the USA.

In order to consider an epoch as valid for attention level assessment, at least 21 channels must be not noisy. If this is not the case, the attention level is considered as the one of the previous epoch (please check Costa-García et al., 2019 for further information of the method). This means that the feature data vector can range between 21 and 60 data. Nevertheless, due to the extended number of channels in this research, and the preliminary artifact filters, this was not needed in practice, as the noise content was below the original research.

For the classification, three different classes were considered: rest, count and walk. Rest class contains the epochs of the standing rest periods of the Rex (standing blue parts in Figure 5, about 20 s); count data consists of the 20 s of walking mathematical operations (green part in Figure 5 neglecting the 2 s after the count cue); and walk class is based on the normal step walking periods (upper red part in Figure 5, about 20 s). Due to the uncertain time needed to do the transition steps, rest and walk periods can have slightly different number of epochs. However, the difference is not high enough to unbalance the classes.

The classifier uses a Linear Discriminant Analysis (LDA) algorithm, which is a generalization of Fishers Discriminant classifier (Izenman, 2013). For the opened-loop analysis, the model is created using the data-set of the previous training trials. This means that trial i is classified with the information of training trials 1 : i − 1. In the case of the closed-loop testing, the model is created with the five associated training trials (see Figures 2, 3). The first training trial needs a generalized model 0 to be processed as there is not previous model data and the tool works always in real-time for all the registers. This output can not be used for assessment as it is not relevant. This is the reason why opened-loop analysis shows only the information of training trials 2 − 5.

After each epoch is classified, a weight is assigned depending on the output label. If the output corresponds to a rest or count label, an attention value of 0 is assigned and if it is a walk a 1. This value is then averaged for the last 10 epochs. This means that for obtaining a maximum attention value of 1, 10 consecutive epochs must be classified (5 s due to the shifting). Considering the data acquisition lag (+0.5 s) means that at least 5.5 s are needed to achieve a perfect attention level. This is important to understand that certain lag is inherent to the assessment method. This way, a medium level attention is considered when it is over 0.25 and a high level over 0.5 (around 3 s of consecutive walk detection). An example of the attention level can be seen in Figure 7 as the bars of the attention paradigm image (down). Each of the classifications can be seen in the image as a •.


[image: Figure 7]
FIGURE 7. Output information of the fifth opened-loop training trial of subject S1. Up image shows the output of the MI paradigm features for electrode Cz. Center image shows the MI classifier output. Down image shows the attention classifier output. Mental tasks are color coded (Blue for rest, red for walk and green for count). MI and attention levels are shown for each paradigm in bars ranged from 0 to 1. A high level is considered when the bars are above 0.5 (green dotted) and a medium level when it is above 0.25 (golden dotted). Classifier outputs are shown as •, and exoskeleton commands as •. Rex command status is represented as a thicked black line, which would represent the status of the exoskeleton in the case the commands could be issued instantaneously without any hardware lag. The exoskeleton was commanded for this example using the MI+att paradigm based on the periods of high and medium MI and attention.




2.3.3. Motor Imagery Paradigm

The MI BMI is based on the preliminary study developed in Ortiz et al. (2019). In that research, a BMI based on γ band was presented and the conclusion extracted was that γ band could be used for commanding an exoskeleton with a low false positive ratio. However, the study was limited to one subject and tested in an offline scenario. In the present research some changes have been done to the former BMI to allow its use in real time and in coordination with the attention level BMI for commanding the Rex exoskeleton in closed-loop control.

As it can be seen in Figure 5, data is first notch filtered at 60 Hz. The rest of the processing is applied to the central electrodes associated with MI tasks: Fz, FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2.

Regarding the feature extraction, this is done using Stockwell Transform (ST) for each epoch (Stockwell et al., 1996). Although ST is applied to the whole epoch (1 s), in order to avoid border effects the information considered is extracted from 0.25 to 0.75 s of each epoch. This means, that each epoch overlaps information for a quarter of second, as epochs are shifted at a 0.5 s pace. Once ST is computed, the instantaneous power of the voices from 30 to 55 Hz lower γ band is added. This changes from the original research that used the maximum peaks of the low and high γ bands. Preliminary studies using the S1, and S2 training data revealed that high γ band did not produce a significant improvement of accuracy, while its no consideration kept the processing times below the shifting time. Besides, the addition of power, instead of the computation of the maximum peak, produced slightly better results without affecting the computation times.

The buffer for smoothing the output was extended to 4 s in this research (this contains data since 4.5 s due to +0.5 s needed for acquisition). This is a compromise between 3 s needed for a medium attention level and the 5.5 s for a high attention level. An example for the smoothed value of electrode Cz can be seen as standardized power in the upper image of Figure 7.

This smoothed value is averaged afterwards for each epoch to obtain the associated feature of each electrode. This is another difference in comparison with the former research, as the calculation of the features is done by each individual electrode and epoch and its value is not averaged for the 10 electrodes (Ortiz et al., 2019). This allows to use the 10 features per epoch as a vector data for the LDA classifier.

Regarding the classifier, only two classes are considered, walk and rest, instead of the three classes of the attention model. Similarly to the attention BMI, depending on the output label of the classifier, a 0 is assigned to each epoch for a rest detection and a 1 for walk. This way, the MI level is computed in an analog way to the attention paradigm, see MI paradigm (center) image of Figure 7. In the same way than the attention paradigm, the MI level is shown as bars and the classifier output as a •.



2.3.4. Command Decision

Once the MI and attention levels are assessed, they are used to create a decision for the output command of the BMI. In the case of the opened-loop trials, the information is recorded for its evaluation, while in the case of closed-loop trials it is sent to the exoskeleton providing feedback to the subject. Two different command rules were tested depending on the paradigms used: MI and MI+att.

First control method (MI) only uses the information of the MI levels, creating an output command when its value is over 0.5. To simulate the time needed for the exoskeleton to finish a step, it is not possible to send two different commands in a timelapse of 3 s. This does not affect the behavior of the control in a closed-loop scenario, as the hardware cannot process opposite commands during a step. However, it provides a more realistic output of the commands and indices for opened-loop trials. An example of a closed-loop control using just the MI control can be see in Figure 8.


[image: Figure 8]
FIGURE 8. Output information of the first closed-loop test trial of subject S2. Information is presented in a similar way to Figure 7. In the upper image it is also included the actual movement status of the exoskeleton caused by the EXO commands. As it can be seen, there is a certain lag between the EXO command status and the actual movement due to the hardware (difference between the thicked black line and the thin black line in the upper image). The exoskeleton was commanded for this example using just the MI paradigm, neglecting the information provided by the attention paradigm. The combination of both paradigms would have result in a shorter movement following the rules in subsection 2.3.4 issuing the activation command in the 33 s approximately instead of the 30.5 s.


Second control method (MI+att) combines both paradigms to make a command decision. The requisite of no-different commands within a 3 s period is also present. The rules are more complex and can be summed as:

• If no command was issued since 3 s.

– If MI>0.5 and att> 0.5, walk (high MI and att).

– If MI <0.5 and att< 0.5, stop (medium or less MI and att, can be accounted while in standing position).

– if EXO command = 1 and MI< 0.5 and att< 0.25, stop (during walking, medium or low MI with low att).

• else

– If EXO command = 1 and MIepochi > 0.25 and MIepochi−1 > 0.25 or att> 0.25, reinforcing walk (during walking, at least medium MI for current and previous epoch or medium att for current one).

Reinforcing commands are needed to assure that the exoskeleton goes on walking, as the absence of a walking command makes the Rex to stop.




2.4. Indices for Assessment the BMI Performance

One of the most important aspects to evaluate the performance of a BMI is to correctly define the indices considered for its evaluation. Literature is not always precise in the definition of them, which can cause difficulties to compare the results. This subsection tries to overcome this difficulty clearly defining all the indices that are going to be used for the BMI assessment in a quantitative and qualitative way.


2.4.1. True Positive Ratio (TPR)

It indicates the percentage of walking events that are executed during a walking event. As the trials have only a walking event, this value can be only 0% or 100% per trial, indicating the average value the percentage of trials with true activations. The qualitative scale would be: poor < 50%, average ≥ 50%, good ≥ 65%, very good ≥ 75%, and excellent ≥ 85%.



2.4.2. Accuracy (Acc)

It indicates the number of correct commands issued with respect to the total number of commands. A correct command is when a walk or stop command is computed in a walk or stop event, respectively. The qualitative scale is the same of TPR.



2.4.3. False Positives (FP) and False Positives per Minute (FP/min)

This is one of the most important indices, as it quantifies the number of walking commands issued during rest or count periods. One of the objectives of the research is to kept this number as low as possible, even if it limits the accuracy of the BMI. For the real-time control of an exoskeleton, it is an important problem if the exoskeleton is activated when it is not desired, as it could be frustrating for the patient during therapies or make the control unusable for assistance. This index is usually computed per minute, which is also included for comparison of the different performances. The qualitative scale for the FP is: poor >2, average ≤ 2, good ≤ 1.5, very good ≤ 1, and excellent ≤ 0.5.



2.4.4. Percentage per Epoch and Paradigm

There are three different indices: %MI, %att, and %Command. The first two indicate the accuracy of each classifier paradigm, as the number of correct detections divided by the number of total detections. Detections can be seen in Figures 7–9 as •. A correct detection value would be 1 for walk events and 0 for the other events. The third one is based on the percentage of epochs with correct EXO command status. It is important to notice that due to the way the algorithms work (averaging previous epochs and outputs in the case of the MI and attention levels), it is not possible to have a 100% accuracy as it would need at least several seconds of perfect features to compute a change of event. The qualitative scale would be: poor < 50%, average ≥ 50%, good ≥ 60%, very good ≥ 70%, and excellent ≥ 80%.


[image: Figure 9]
FIGURE 9. Example of an erroneous classification in an opened-loop trial. The image corresponds to the training trial 5 of subject S4. The poor %MI classification (52.8%) produced three FP and an Acc of 37.5%. If the attention paradigm had been considered, the three FP marked by the arrows would not have been computed. However, the exoskeleton would have been activated for a shorter period of time (between 33 and 38 s), stopping before the count event starts. This would have had a 50% Acc as the stop would have been commanded before the MI period ended. Compare Table 1 results for both paradigms of training trial 5 of S4.




2.4.5. Lags in Command

It can be computed for the commands (opened-loop) and for the exoskeleton (closed-loop). As the second one is hardware dependent, it does not provide any information of the BMI performance. They are a quantitative value of the time needed to change the status since a cue is established. For instance, the time needed to walk or to send the walk command since the walking acoustic cue is issued. There is not a qualitative scale, but a good value would be <10 s for the EXO command having in consideration the lag of the algorithms and the exoskeleton.


Table 1. Results of the analysis of the training trials.

[image: Table 1]





3. RESULTS

As previously stated, all the trials (training and test) were processed in a real-time (online) scenario. Training trials were executed in opened-loop control while test trials were executed in closed-loop control. Each trial was performed following a determined method of control (MI or MI+att). In the case of closed-loop control tests, the method of control corresponds to the one used when registered. However, in the case of training trials, they were simulated again using a pseudo-online analysis. For this reason, training trials show the results of both methods of control and test trials only the method that was actually executed in real time.


3.1. Opened-Loop Results

Table 1 shows the results obtained for the training trials. When there was not an activation of the exoskeleton, there is a “-” under Acc index. The results by subject and algorithm of control can be seen in Tables 2, 3 based on the section 2.4 indices.


Table 2. Results of the training trials averaged per method of control.
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Table 3. Results of the training trials averaged per subject.

[image: Table 3]

Regarding the method of control (Table 2), the main differences appear for the TPR and FP. The fact that MI+Att requires to keep a level of attention makes harder to activate the exoskeleton, but provides less FP. For the same reason, when both paradigms are used, the lags for starting are longer and for stopping shorter, as the time the exoskeleton is going to be moving is shorter. Nevertheless, there is not a significant difference between the %Command of both control methods, because a shorter walking time provides less time walking during walking periods, but less time walking during the last rest period, compensating the %Command value between both events. Therefore, it could be said that MI+Att makes the control safer, but less responsive.

Regarding the subject performance (Table 3), the Acc results vary depending on the subject (p < 0.05), with S1 and S2 having values for the classifiers over 75% in average. The subject with lower results is S4, which shows a high TPR 75% with a an Acc around 53.1%, which indicates that the BMI is activating the exoskeleton during the walking events (TPR), but for a short time (low Acc). This irregularity, specifically in the %MI, causes a higher value of FP when the attention paradigm is not considered (see Figure 9). Another fact to take into account is that the last trial uses more information for its model than the second trial, which uses just the first trial. This does not have to be negative in all the cases, since the consideration of an spoiled training trial in the model could be more negative for its use in the classification.



3.2. Closed-Loop Results

Once the five training trials were done for each control option, the test trials were registered. They were carried out after the training in sequence. This means five training sessions for MI followed by five tests for MI and then five training sessions for MI+att followed by five tests for MI+att. Table 4 shows the closed-loop results obtained.


Table 4. Results of the analysis of the test trials.

[image: Table 4]

Looking at Table 4, some facts can be extracted. The most obvious one is that S3 was not able to make the BMI work in closed-loop control. Rex was hardly activated during the tests. This contrasts with the results obtained by the subject in the opened-loop trials. However, S2 and S4 obtained a good performance for the MI control with a high number of activations of the exoskeleton during walking periods (TPR) and a proper activation of the commands (Acc). Nevertheless, classifier accuracies were a bit lower than in the opened-loop scenario.

In the case of the %EXO index, i.e., the time that the Rex is standing or walking during the correct events, achieved a value of 56.3 and 51.2 for subjects S2 and S4. This, a priori low value, is caused by two causes. First the algorithms need several seconds of correct features in order to achieve a command decision (sections 2.3.2 and 2.3.3). Second, Rex has an inherent lag for responding to the commands which is very variable, especially in the case of a stop, as it depends on the limbs position when the command is issued. This information can be calculated by the difference between Start exo and Lag start, and between Stop exo and Lag stop from the data in Table 4. Rex lags were in average 2.8 s for the start and 5.4 s for the stop, times which are added to the command lag decision. For instance, looking at Figure 8, which corresponds to the 1st MI test trial of S2, it lags 8 s for the start and 12.5 s for the stop. This makes a %EXO of only 67.0%, for a excellent classifier trial (89.8%MI and 77.1%Att). Another consequence that can be extracted from the results is that the MI control performs better than the MI+att for S2 and S4. In the same way than in the opened-loop trials, the combination of the paradigms makes the BMI more conservative, avoiding the activation of the Rex in two of the five test trials for both subjects.




4. DISCUSSION

The MI paradigm is based on gamma band. This is not a band that it is usually considered in literature and only a few studies prior to our previous research (Ortiz et al., 2019) have considered it (Seeber et al., 2015). Two were the main reasons to focus on this band instead of θ, α, or β bands. First, γ band is less affected by low frequency noise. In the research, an active filter was applied to mitigate eye blinking (H∞) and passive mitigation (mesh, clamps) to avoid wire oscillations or muscle noise (no swallowing or chewing). However, as the whole tool works in real time, no other offline mitigation techniques can be applied, such as independent component analysis (ICA) (Delorme and Makeig, 2004), so this band can be less affected by motion noise. Second, γ band is associated with attentive focus (Rao, 2013) and gait attention (Costa et al., 2016; Costa-García et al., 2019). For this reason, the attention level paradigm reinforces the MI paradigm by requiring a high focus of the subject during the walk events. This produces that the proposed BMI obtains sometimes a lower accuracy than other MI paradigms in the literature, but with a lower value in FP/min, which was one of the priority objectives of the research. This can be seen comparing the results of this research with the ones presented in the review of lower-limb exoskeletons by He et al. (2018). FP/min is only provided in the study by Do et al. (2013) achieving a 7.42±2.85 FP/min. This is substantially higher than the FP/min presented in this article, which rarely go beyond 2 FP/min and are in most cases below 1 FP/min. The comparison with accuracy can be hard, as the way it is accounted can vary from different researches. Table 2 of He et al. (2018) varies from 68 to 99% depending on the study. This value can be confronted with the Acc index for the whole BMI or with %MI or %Att for the individual paradigms. Accuracy is in the range of the literature studies except for S4 and the closed-loop trials of S3.

Results by subject also indicate one of the most common problems of BMI studies, which it is the high dependency of the results on the individual. The fact that the tool provides performance indices since the second trial could help to detect subjects that are having troubles with the BMI. This is especially important in the case of ACV or stroke patients, which could also have cognitive difficulties which could make them unable to use the BMI, even if they have been selected as suitable in the previous clinical selection stage. A quick detection of these problems could help clinicians to adapt the therapy in these cases, for instance only applying an opened-loop control to the exoskeleton. In addition, the degree of expertise of the subject with a BMI is a factor that improves the performance. In this study, only one session per subject (except for S2) was carried out, which does not allow to study the evolution of each individual with the different sessions.

Another important factor to consider is the use of erroneous trials to create the model, as it affects the classifier output. One BMI based on attention is more subject to distractions which could cause erroneous training trials, but MI or rest events are also affected by mental distractions. Even as environment conditions can up to a certain point be controlled, mental distractions are hard to detect beyond the subject's feedback. In this research, each training trial is checked in real time with the model created with previous training data which allows to discharge bad training trials to avoid spoiling the posterior performance of the BMI. For instance, the fourth training trial of S4 should have been neglected for model creation due to achieving just a %MI of 28.2% (Table 1). This trial filtering for the model creation was not considered in this research to limit the length of the sessions and to compare all the subjects in the same conditions. However, it will be something to apply in future researches avoiding any trial with %MI or %Att below 70% to improve model output when used in the closed-loop trials.

The proposed BMI has been designed to serve as a tool for rehabilitation therapies helping the subject to keep a high cognitive engagement during a trial. The attention level paradigm helps to improve the FP/min index, but makes the BMI less responsive with lower Acc and TPR, and less activation time of the exoskeleton (%Command). A revision of the command decision rules explained in subsection 2.3.4 could help to improve the results. Another option would be to offer the attention level as a feedback that could enhance the mental engagement of the subject during the walk events, or reduce it during the rest events. Additionally, the order of the application of the control methods could have affected the subjects due to fatigue. A high fatigue produces a low attention to the mental task of MI. Looking at Table 1, this is sustained by the classifier percentages. The training trials value for 7 − 10 trials (MI+att opened-loop trials) were in almost all the cases lower than for 2 − 5 trials which were the ones used for the model of the MI+att closed-loop trials. The length of the experiments is another key factor to consider. As two different methods of control were tested, closed-loop sessions extended to 3 h, indicating the subjects that fatigue was clearly present in the last test trials. This could be the reason of the lower test results of S3 and the MI+att of S2 (Table 4). Protocols must be improved in order to avoid sessions over an hour and a half since the beginning of the preparation of the subject, even if the actual active time of the session is below an hour, all the preparation times must be reduced.



5. CONCLUSIONS

During this research, a new BMI based on MI in γ band has been tested with a Rex exoskeleton in real time, not only in opened-loop control, but also in closed-loop control. In addition, an innovative BMI to assess the level of attention to gait has been implemented and combined with the former BMI. Two of the experimental subjects were able to control the exoskeleton in closed-loop control with very low FP, which was one of the main objectives to achieve.

Regarding the combination of the attention level with the MI paradigm, it provided similar results in opened-loop trials, but activating the exoskeleton in a more conservative way with slightly fewer FP and times of activation. However, the length of the proposed protocols was so long that the induced fatigue affected the results of the closed-loop test trials. Independently of its use in the closed-loop control, the attention level can be used as a way to give feedback to the subject and to inform the clinical supervisor of the cognitive engagement of the subject.

The experimental sessions fulfilled, show a case of study for the validation of the proposal, which has been validated as a promising technique to operate an exoskeleton in rehabilitation therapies which imply the cognitive engagement of the subject. Future research, will explore how the expertise of the subject can affect both paradigms during several sessions. In addition, the flaws detected in the current proposal will be corrected in future implementations of the BMI, such as limiting the fatigue of the subject with shorter sessions and assuring that the model training trials are not inducing errors in the classifier. All of this, in order to allow its future implementation with non able-bodied subjects in a clinical study.
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Afferent somatosensory information plays a crucial role in modulating efferent motor output. A better understanding of this sensorimotor interplay may inform the design of neurorehabilitation interfaces. Current neurotechnological approaches that address motor restoration after trauma or stroke combine motor imagery (MI) and contingent somatosensory feedback, e.g., via peripheral stimulation, to induce corticospinal reorganization. These interventions may, however, change the motor output already at the spinal level dependent on alterations of the afferent input. Neuromuscular electrical stimulation (NMES) was combined with measurements of wrist deflection using a kinematic glove during either MI or rest. We investigated 360 NMES bursts to the right forearm of 12 healthy subjects at two frequencies (30 and 100 Hz) in random order. For each frequency, stimulation was assessed at nine intensities. Measuring the induced wrist deflection across different intensities allowed us to estimate the input-output curve (IOC) of the spinal motor output. MI decreased the slope of the IOC independent of the stimulation frequency. NMES with 100 Hz vs. 30 Hz decreased the threshold of the IOC. Human-machine interfaces for neurorehabilitation that combine MI and NMES need to consider bidirectional communication and may utilize the gain modulation of spinal circuitries by applying low-intensity, high-frequency stimulation.
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INTRODUCTION

In patients with severe and persistent motor deficits after trauma or stroke, motor imagery (MI) and feedback technology are being investigated as a potential therapeutic intervention to activate the motor system, enhance corticospinal excitability and restore function (Stevens and Stoykov, 2003). The concept of these interventions is to achieve plasticity and functional recovery on the basis of contingent activation of natural efferent and afferent pathways (Biasiucci et al., 2018). The underlying neurophysiological mechanisms of these interventions are, however, still under investigation. One potential mechanism is the increase of corticospinal gain modulation (Khademi et al., 2018, 2019; Naros et al., 2019). The focus of previous studies has been on the induced changes at the cortical level (Gharabaghi, 2016), although there is some research on spinal changes following intervention at the lower limb (Takahashi et al., 2019).

MI engages motor cortical areas similar to those engaged in actual motor practice, via, for example, sensorimotor event-related desynchronization (ERD; Pfurtscheller and Neuper, 1997; Lotze et al., 1999; Neuper et al., 2005; Miller et al., 2007, 2010; Kaiser et al., 2011). MI has been shown to enhance ERD (Reynolds et al., 2015) and increase corticospinal excitability (CSE) to a greater extent in combination with neuromuscular electrical stimulation (NMES) than without NMES, thereby, reaching levels similar to those occurring during voluntary muscular contraction (Kaneko et al., 2014). These CSE increases were related to intracortical processes mediated via GABAAergic (Abbruzzese et al., 1999; Stinear and Byblow, 2004; Takemi et al., 2013) and GABABergic disinhibition (Chong and Stinear, 2017) and may thus serve as the pre-synaptic input for an excitatory drive via proprioceptive input (Kraus et al., 2016a).

In addition, MI may fulfill the requirements of associative stimulation (Hebb, 1949; Harel and Carmel, 2016) by modulating an extended cortical motor network and its susceptibility to additional stimulation (Vukelić et al., 2014; Bauer et al., 2015; Vukelić and Gharabaghi, 2015a,b). Accordingly, previous studies have shown that pairing specific brain states with peripheral (Mrachacz-Kersting et al., 2012, 2016), cortical (Kraus et al., 2016b) or combined stimulation (Gharabaghi et al., 2014a; Royter and Gharabaghi, 2016; Kraus et al., 2018) increased corticospinal excitability and achieved motor gains (Naros and Gharabaghi, 2015; Naros et al., 2016; Belardinelli et al., 2017). Cortical motor mapping with refined transcranial magnetic stimulation protocols (Kraus and Gharabaghi, 2015, 2016; Mathew et al., 2016) provided further insight into the differential modulation of sensorimotor areas by these neurofeedback interventions (Kraus et al., 2016a; Guggenberger et al., 2018).

Self-regulation and neurofeedback of cortical beta-band oscillations are therefore being investigated as novel methods for facilitating associative plasticity and motor restoration in stroke patients with persistent motor deficits (Naros and Gharabaghi, 2015; Belardinelli et al., 2017). Specifically, motor imagery with contingent proprioceptive feedback via passive movement by a robotic orthosis is applied to activate the motor system (Bauer et al., 2015) and enhance the oscillatory beta modulation range in the absence of overt movement (Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a) with a proportional increase of corticospinal connectivity (Gharabaghi et al., 2014b; Kraus et al., 2016a) and motor gains (Naros and Gharabaghi, 2015; Naros et al., 2016).

Knowledge on the effects of MI on spinal excitability is less detailed and still a matter of some debate. Some studies have demonstrated a facilitatory effect of motor imagery on spinal excitability (Rossini et al., 1999; Taniguchi et al., 2008; Ichikawa et al., 2009; Hara et al., 2010; Fujisawa et al., 2011; Takemi et al., 2015), whereas others have not (Abbruzzese et al., 1996; Kasai et al., 1997; Hashimoto and Rothwell, 1999; Facchini et al., 2002; Patuzzo et al., 2003; Sohn et al., 2003; Stinear et al., 2006). For the lower limb, there is evidence that MI combined with peripheral stimulation may modulate reciprocal inhibition, while the H-reflex was not affected (Takahashi et al., 2019). This discrepancy may be partly related to methodological differences such as the number of stimuli or the probing technique applied, i.e., direct and indirect stimulation of the spinal motor neuron via the F-waves and the H-reflex, respectively (Takemi et al., 2015).

In the present study, we took a different approach of measuring the impact of afferent input by applying NMES and probing the stimulation effects with kinematic recordings of the induced wrist deflection to capture the overall spinal motor output. We hypothesized that the state-dependent (MI vs. REST) increase of spinal excitability is sensitive to the intensity and frequency of neuromuscular stimulation. We explored two different frequencies of stimulation (30 vs. 100 Hz). The rationale underlying the use of 30 vs. 100 Hz stimulation was that the higher frequency would induce more afferent input due to indirect and mechanically driven excitation of the Golgi tendon organ (Aguiar and Baker, 2018). Furthermore, central contributions are believed to recruit primarily slow-twitch fibers (Dean et al., 2007), which are already recruited directly by 30 Hz stimulation (Wyndaele, 2016; Vromans and Faghri, 2018). Therefore, we expected to see stronger deflection effects for 100 vs. 30 Hz stimulation.



MATERIALS AND METHODS


Participants

Twelve healthy volunteer subjects (6 females, age: 23–33 years, all right-handed), participated in the study. The subjects reported no previous history of surgery involving the upper limb. All subjects had normal or corrected-to-normal vision. After being instructed about the experimental procedure, the subjects provided written informed consent. The study was approved by the local ethics committee and carried out in accordance with the principles of the Declaration of Helsinki.



Experimental Set Up

Electromyographic (EMG) recordings were obtained from BrainAmp system (Brain Products GmbH). Bipolar EMG recordings were performed on the extensor carpi radialis (ECR) of the right hand, using Ag/AgCl adhesive electrodes (Ambu GmbH). All signals were sampled at 5,000 Hz and digitized with 16 bits. A kinematic glove (VHAND 3.0, DGTech Engineering Solutions), equipped with an inertial measurement unit (IMU) on the dorsal side of the hand was used for kinematic recordings. Kinematics were acquired with a sampling frequency of 30 Hz and digitized with 12 bits, providing a resolution of 0.01°. Right wrist extension was measured as the roll angle provided by the IMU. NMES was applied using a Rehamove2+ stimulator (Hasomed GmbH) on the right forearm of the subjects. Stimulation was applied using a pair of round self-adhesive electrodes (diameter 50 mm, Zen-Qui) positioned over the muscle belly and tendon of the ECR.



Experimental Protocol

The experimental procedure was preceded by a preparation phase where individual hotspots and stimulation intensities were determined for each subject.


Preparation Phase

During this phase, the subjects sat on a chair placed in front of a screen with their right arm resting on a surface and their hand hanging completely relaxed. A pillow was positioned under the forearm to ensure that the subject was comfortable for the whole duration of the experiment. The room was kept quiet and dimly illuminated to reduce the effect of any auditory or visual stimuli other from those delivered as instructions during the experiment. Prior to the beginning of the experimental session, the subjects were verbally instructed about the task. The instruction entailed the experimental procedure, the task, and the stimulation effects. The participants were specifically instructed to keep their right arm relaxed throughout the experiment. The difference between kinesthetic and visual MI was explained to them and they were requested to perform the former (Darvishi et al., 2017). Subjects were instructed to perform MI of wrist extension only during the imagery phase and to continue even when stimulation was applied. A short familiarization session was performed before starting the actual experiment. This enabled the subjects to experience the trial structure and imagery tasks. While the subjects were receiving instructions about the task, a second experimenter prepared the skin prior to electrode placement using abrasive gel and alcohol. The stimulation electrodes were placed on the arm to induce a functional extension of the wrist, minimizing the finger contribution. EMG electrodes were positioned above the ECR muscle close to the muscle tendon and belly without touching the stimulation electrodes.

After the kinematic glove had been set up, a preliminary range of stimulation intensities was screened to detect (a) the current intensity required to obtain a visible deflection of the wrist from the resting position and (b) the current intensity required to produce a maximum extension, given the mechanical constraints of the wrist. Subjects were asked to provide feedback about noxious sensations during this screening. One subject reported discomfort at intensities below the plateau intensity and had to be excluded from the study. The preliminary screening was followed by a complete screening in steps of 0.5 mA starting at the intensity that was found to produce a functional movement of the wrist. Each intensity was delivered in bursts of 3 s stimulation with 1 s breaks and repeated five times for each frequency. Biphasic pulses (pulse width 800 μs) were applied under constant-current control. The pulse-width was selected to maximize the contribution of the spinal reflexes to the evoked muscle contraction. The recorded displacement of the wrist during the stimulation train was used to draw kinematic IO curves of the two frequencies. We calculated the 5th and 95th percentile of the curve to estimate the upper and lower plateau. Furthermore, we fitted a three parameters sigmoidal function to the IO curves:
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where i represents the stimulation intensity, A represents the range of the curve and resembles the upper plateau, θ the threshold and β the slope of the curve. For each frequency, nine amplitudes were selected to allow us to sample the shape of the IO curve during the experiment. By default, the stimulation intensities were set at the threshold θ as determined by this initial assessment, and ±4 steps of 0.5 mA. In cases where the resulting stimulation interval would not cover the whole IO curve, the nine stimulation intensities were set at three intervals of ±0.5 mA centered at threshold and at intensities achieving the two plateaus.



Experimental Phase

The experiment consisted of 5 sessions, each composed of 18 runs (Figure 1). A pause of 5 min was taken between consecutive sessions to avoid muscular fatigue due to the electrical stimulation. Each run was characterized by one of the two task instructions, either rest (REST) or motor imagery (MI), and began with a 4 s rest period, at the beginning of which an auditory cue instructed the subject about the task to be performed (TASK cue). The rest period was followed by four trials, composed of a 2-s preparation epoch (PREP) and a 4-s execution epoch, separated by auditory cues (START and END cue). After the 1st second of the execution phase, a 3-s stimulation train was delivered to the subject.
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FIGURE 1. Time-course of the experiment. The upper figure shows the time-course of each single run, with the lower right figure showing the course of a single trial. As can be seen from the upper plot, a 24 s execution period with one specific instruction (either rest or motor imagery) started after a 4 s rest period, and consisted of 4 trials. In each trial, stimulation started 1 s after the start cue, and stopped 3 s later concurrently with the end cue with 2 s between trials.


The stimulation was composed of a high frequency (30 or 100 Hz) square biphasic pulse at one of the nine intensities established during the preparation phase for each stimulation frequency. Task instruction (REST or MI), frequency (30 or 100 Hz) and intensity of stimulation (one out of nine predefined intensities) were randomized across the entire session. Randomization allowed us to reduce a possible bias due to order effects, e.g., caused by muscular fatigue or improvement of motor imagery in the course of the intervention. The whole procedure consisted of 360 stimulation bursts, where each condition of frequency and task was repeated 10 times for every intensity in a 2 by 2 factorial design. Every participant took part in all conditions, i.e., stimulation at 30 and 100 Hz, and motor imagery vs. no imagery. The duration of the experimental phase was less than 50 min, and total duration of stimulation was 18 min.



Data Analysis


Volitional Contractions

To ensure that there was no voluntary movement before the stimulation, a t-test between the conditions REST and MI was conducted on the initial value of the joint angle. Additionally, we analyzed EMG data acquired pre-stimulation and during stimulation periods to ensure that there was no voluntary movement. During the pre-stimulation period, the EMG signal was zero-phase filtered using a band-pass third order Butterworth digital filter with 10 Hz and 500 Hz as lower and upper cut-off frequencies, respectively. A notch third order Butterworth filter was used to remove the power supply frequency, i.e., 50 Hz, and the second and third harmonic frequencies (i.e., 100 and 150 Hz). Subsequently, the mean absolute value (MAV) of the pre-processed signal was calculated. During the stimulation period, only the artifact-free periods between stimulation pulses were analyzed. The volitional EMG activity was extracted by estimating the electrically induced potential (M-wave) and its removal through an adaptive filtering procedure on the basis of the repeatability of the M-wave and on the Gaussian amplitude distribution of the volitional EMG signal as described in Sennels et al. (1997) and Ambrosini et al. (2014). The MAV of the estimated volitional EMG signals was then calculated.

A t-test was conducted for each subject and each stimulation amplitude to assess whether there was any significant difference between the rest and motor imagery condition. The statistical analysis was performed for each stimulation intensity to assess whether the amplitude of stimulation influenced the potential presence of voluntary contraction. Subjects who presented voluntary contraction were excluded from further analyses.



Kinematic Analysis

The range of the angular wrist positions was recorded by the kinematic glove during the task and served as a measure of wrist displacement. To evaluate the effect of MI on the NMES induced wrist deflection, a sigmoidal function identical to the one used during the screening (see section “Preparation Phase”) was fitted to the data. We estimated the three parameters slope β, threshold θ, and saturation level A for the IO curve of each subject, for each task and frequency. A three-way analysis of variance (ANOVA) was run for each of these parameters with the categorical factors FREQUENCY and TASK, the random factor SUBJECT, as well as for the interaction between TASK and FREQUENCY. We repeated the ANOVA with a permutation test with 1,000 repetitions, to ensure that our results were not affected by non-normality. Additionally, we performed post-hoc t-tests following the analysis of variance.



RESULTS


Volitional Contraction

One participant reported discomfort at intensities below the plateau intensity and was excluded from the study. Another participant showed a significant increase in MAV prior to MI and was excluded from analysis. Therefore, this data analysis was performed in 10 out of 12 participants. For these participants, the measured wrist angular displacements were not caused by voluntary contraction, and could reliably and specifically be attributed to the NMES-induced contraction with and without MI.



Kinematic Results

The IOC exhibits a clear sigmoidal shape for both stimulation frequencies, during both rest and MI (Figures 2A,B). Having fitted the sigmoidal model to the IOC, the ANOVA of the IOC parameters shows that A, the maximal deflection (M = 76.9°, SD = 20.45°) was not influenced by TASK or FREQUENCY (all p > 0.24, permutation test all p > 0.23). Yet, the threshold θ (M = 9.66 mA, SD = 1.75 mA) was affected by FREQUENCY [F(1, 27) = 30.56, p < 0.001, permutation test p < 0.001], with a higher threshold for 30 Hz (M = 9.85 mA) compared to 100 Hz (M = 9.47 mA) (Figure 2D), while no such effect was found for MI versus REST (Figure 2E). Moreover, the slope [β (M = 2.96°/mA, SD = 1.3°/mA)] was influenced by TASK [F(1, 27) = 9.03, p = 0.0057, permutation test p = 0.005], disclosing a lower slope for MI (M = 2.58°/mA) compared to REST (3.25°/mA) (Figure 2F), while no such effect was found for 100 vs 30 Hz. We found no evidence for interactions on any IOC parameter (all p > 0.66, permutation test all p > 0.63), suggesting independence of TASK and FREQUENCY effects. Qualitative inspection of the effect of MI on the IOC for both stimulation frequencies suggested that the deflection was enhanced at subthreshold intensities (Figure 2C). Post-hoc t-test analysis disclosed a significant increase of wrist deflection during MI at subthreshold intensities, but only when stimulation was delivered at 100 Hz [t(9) = 2.76, p = 0.022].
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FIGURE 2. Influence of stimulation intensity and motor imagery on curve parameters. The normalized input-output curves based on the sigmoidal model fit and averaged across all subjects are shown for 30 Hz (A) and 100 Hz (B) highlighting the kinematic deflection when NMES was applied during REST (blue trace) vs. MI (red trace). (C) Modulation of the input-output curves induced by MI for 30 Hz (blue trace) and 100 Hz (orange trace) stimulation; most pronounced wrist deflection occurs at subthreshold intensities for 100 Hz stimulation. Significant differences between the two frequencies are marked by thick lines. The threshold is significantly reduced (D) when stimulation is performed at 100 vs. 30 Hz, but not for MI vs. REST (E). The slope of the IOC (F) is significantly reduced when stimulation is performed during MI vs. REST, but not for 100 vs. 30 Hz (G). In all four lower plots (D–G), each dot indicates a single subject, with the red error bars showing the 95% confidence interval of the mean difference.




DISCUSSION

This work showed that motor imagery increased spinal motor output at low NMES intensities, while the responsiveness of spinal motorneurons was differently modulated by the frequency of the afferent input (100 vs. 30 Hz).

Unlike in previous studies, which applied nerve stimulation to probe MI-related spinal excitability by the corresponding reflexes (Abbruzzese et al., 1996; Kasai et al., 1997; Hashimoto and Rothwell, 1999; Rossini et al., 1999; Facchini et al., 2002; Patuzzo et al., 2003; Sohn et al., 2003; Stinear et al., 2006; Taniguchi et al., 2008; Ichikawa et al., 2009; Hara et al., 2010; Fujisawa et al., 2011; Takemi et al., 2015), we used NMES to acquire an input-output (IO) curve of the induced muscle contraction and probed two distinct frequencies.

Application of this technique enabled us to disentangle the influence of MI on different mechanisms that generate spinal motor output: Muscle contraction can be induced by direct excitation of the muscle, and by indirect, central mechanisms. The latter may comprise (i) antidromic activation of motor axons, (ii) activation of sensory axons providing excitatory synaptic input to spinal neurons that recruit motor units (Collins et al., 2001, 2002; Dean et al., 2007), and (iii) mechanic excitation of proprioceptors, e.g., the Golgi tendon organs (Aguiar and Baker, 2018).

Previously, the central mechanism was maximized by applying high-frequency NMES (100 HZ) while avoiding antidromic block by stimulating at a relatively low intensity (Collins et al., 2002; Dean et al., 2007). The present work extended this line of research by demonstrating that this central mechanism may be amplified by MI and supraspinal contributions: MI reduced the IO slope, i.e., increased the responsiveness of spinal motorneurons to low intensity NMES. High-frequency (100 vs. 30 Hz) stimulation contributed to this mechanism by decreasing the stimulation intensity at which the inflection point of the IO curve occurred, so that the combination of MI and low-intensity 100 Hz increased the overall NMES-induced spinal motor output.

We speculate that the reduced threshold during 100 Hz stimulation is caused by increased afferent input, likely via the Golgi tendon organs (Aguiar and Baker, 2018). Furthermore, it is plausible that the reduced slope that occurs during stimulation with both frequencies is caused by supraspinal priming.

This might explain why a considerable number of previous studies did not find a facilitatory effect of motor imagery on spinal excitability. They either probed the peripheral contribution (Facchini et al., 2002; Patuzzo et al., 2003; Sohn et al., 2003; Stinear et al., 2006) or applied different stimulation parameters (Abbruzzese et al., 1996; Kasai et al., 1997; Hashimoto and Rothwell, 1999; Patuzzo et al., 2003). The present work could not determine whether MI activated higher threshold motoneurons and/or motoneuron plateau potentials (Bennett et al., 1998; Dean et al., 2007); a question that needs to be answered in future studies. Moreover, the additional effect sizes induced by MI were significant but rather small, which is probably related to the already strong spinal activation by NMES. Future research needs therefore to clarify whether repetitive pairing of MI and NMES, as specified here, will result in relevant increases of excitability and even plastic modulation on the spinal level as well. Future work may also research whether MI may be replaced by motor attempts to prime spinal motoneurons. Such attempts may, however, be difficult to perform by healthy subjects when they are simultaneously asked to avoid overt movements.

In any case peripheral input such as NMES may be paired with different paradigms of oscillatory cortical stimulation to achieve lasting effects on corticospinal excitability via associative plasticity (McNickle and Carson, 2015; Guerra et al., 2016; Nakazono et al., 2016; Raco et al., 2016, 2017; Naros and Gharabaghi, 2017). The present work is, however, limited when it comes to disentangling direct (monosynaptic) and indirect (oligosynaptic) contributions of cortical activity on spinal excitability with the methods applied here. Future work will need to include additional measures such as the latencies of evoked potentials in response to stimulation to answer this question. Moreover, the ability to perform motor imagery is known to be variable across subjects (Bauer et al., 2015). Future studies might, therefore, consider measuring it as well, e.g., by applying questionnaires like the KVIQ (Malouin et al., 2007).

The findings of this study indicate that—in neurorehabilitation approaches on the basis of motor imagery and NMES—the stimulation parameters applied to maximize synaptic input to spinal circuitries should be carefully considered; in this context submaximal stimulation may improve the intended neurorehabilitation effects.
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The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.

Keywords: locomotion, muscle synergies, motor control, treadmill locomotion, overground locomotion, fractal analysis


INTRODUCTION

Amongst the various behaviors that can be used to investigate the neural control of movement, locomotion is an ideal choice: automatized, synergistic, general, cyclic, and phylogenetically old, it embodies many scientifically convenient characteristics (Bernstein, 1967). However, the study of overground locomotion in free, open spaces is often unfeasible due to logistical, technological, and other limitations. Motorized treadmills are an intuitive solution to simplify the analysis of locomotion and are nowadays of widespread use in research, clinical practice, and sports-related training (Miller et al., 2019; Van Hooren et al., 2019). Nevertheless, despite their broad use, a full consensus as to whether treadmills are a valid means to generalize findings on the neural control of free locomotion is yet to be found (Rozumalski et al., 2015; Oliveira et al., 2016; Miller et al., 2019; Van Hooren et al., 2019).

Treadmill locomotion is often considered an invalid alternative to overground locomotion due to the mechanical advantage introduced by the moving belt. However, already in 1980, the Dutch biomechanist van Ingen Schenau showed that there are no mechanical differences between treadmill and overground locomotion as long as the belt's speed remains constant (van Ingen Schenau, 1980). Yet, other factors might affect the physiological determinants of treadmill walking and running: the compliance of the surface, the lack of air resistance, the fixed rather than moving visual feedback, the degree of habituation, among others (Jones and Doust, 1996; Parvataneni et al., 2009; Mooses et al., 2014; Miller et al., 2019; Van Hooren et al., 2019). For instance, when comparing the energetics and performance outcomes of treadmill and overground running in humans, a great variability across studies arises, some of which is related to the different speeds used for the investigation (Miller et al., 2019). The kinematics and kinetics of running seem to be largely independent on the chosen locomotion environment (Van Hooren et al., 2019). As for walking, kinematics and kinetics can vary between treadmill and overground (Hollman et al., 2016; Yang and King, 2016), but studies on the behavior of the triceps surae muscle fascicles and electromyographic (EMG) activity of the lower limbs did not find significant differences (Cronin and Finni, 2013; Ibala et al., 2019). Generally speaking, there is widespread scientific proof that the kinematics, kinetics, and EMG activity recorded during treadmill and overground locomotion are similar enough to allow the use of treadmill for scientific purposes (Lee and Hidler, 2008; Riley et al., 2008; Parvataneni et al., 2009; Chia et al., 2014).

In this study, we set out to investigate the modular organization of muscle activity during overground and treadmill walking and running. We started from the general hypothesis that previously found similarities in kinematics, kinetics, and EMG activity do not necessarily imply that locomotion in different environments is controlled with similar neuromotor strategies. Since it is known that when movement is constrained by internal or external factors the neuromotor control is affected (Martino et al., 2015; Santuz et al., 2019, 2020a), we sought to put together a new set of analysis tools designed to be more sensitive to such variations. Thus, to better understand the neural control processes underlying locomotion in different environments, we adopted a novel framework based on both linear and non-linear approaches for extracting information from EMG data. First, we used non-negative matrix factorization (NMF) as a linear decomposition tool to extract muscle synergies from the EMG activity recorded from the lower limb during walking and running (Bernstein, 1967; Bizzi et al., 1991, 2008; Lee and Seung, 1999; Santuz et al., 2017a). Then, we analyzed the motor modules, or the weighted contributions of each muscle activity, and the timing characteristics of motor primitives, which are the time-dependent components of muscle synergies (Santuz et al., 2018a). Lastly, we used fractal analysis to compute the Hurst exponent of motor primitives, in order to gain deeper insight into their temporal structure (Santuz and Akay, 2020). By using these tools, we recently found that both internal and external perturbations applied to human and murine locomotion affect the timing of motor primitives, despite minor changes in the number and composition of motor modules (Santuz et al., 2018a, 2019, 2020a; Santuz and Akay, 2020). Specifically, we could systematically associate a relatively longer duration of motor primitives (i.e., increased width of the signal) in genetically modified mice lacking proprioceptive feedback from muscle spindles (Santuz et al., 2019), in aging humans as compared to young (Santuz et al., 2020a), and in young adults walking and running on uneven terrain (Santuz et al., 2018a), on unstable ground (Santuz et al., 2020a), or running at extremely high speeds (Santuz et al., 2020b).

Here, we aimed at uncovering some neuromotor control features of overground and treadmill locomotion using a novel combination of machine learning and fractal analysis. Based on our previous findings on perturbed and unperturbed locomotion (Akay et al., 2018; Santuz et al., 2019, 2020a; Santuz and Akay, 2020), we hypothesized that: (a) treadmill, as compared to overground, would perturb more the locomotor system due to the increased sensory and spatial constraints; and (b) the neural control of treadmill locomotion would be forced to be more regular by the aforementioned constraints, thus resulting in motor primitives having a Hurst exponent lower in treadmill than in overground.



MATERIALS AND METHODS

This study was reviewed and approved by the Ethics Committee of the Humboldt-Universität zu Berlin. All the participants gave written informed consent for the experimental procedure, in accordance with the Declaration of Helsinki.


Experimental Protocol

For the experimental protocol we recruited 30 healthy and regularly active young adults (15 females, height 173 ± 10 cm, body mass 68 ± 12 kg, age 28 ± 5 years, means ± standard deviation). None of them was using orthotic insoles, had any history of neuromuscular or musculoskeletal impairments, or any head or spine injury at the time of the measurements or in the previous 6 months. All the volunteers completed a self-selected warm-up running on a treadmill, typically lasting 3–5 min (Santuz et al., 2016, 2018b). After being instructed about the protocol, they completed the measurements described in detail below.

The experimental protocol consisted of walking at 1.4 m/s and running at 2.8 m/s overground and on a single-belt treadmill (mercury, H-p-cosmos Sports & Medical GmbH, Nussdorf, Germany) equipped with a pressure plate recording the plantar pressure distribution at 120 Hz (FDM- THM-S, zebris Medical GmbH, Isny im Allgäu, Germany). The speeds were chosen since walking at 1.4 m/s and running at 2.8 m/s are close to the average comfortable locomotion speeds commonly reported in the scientific literature (Santuz et al., 2016, 2017a). Three pairs of photocells installed at 300 cm from each other were used to control the overground locomotion speed. After an accommodation period which usually involved 10–20 attempts to meet the requested speed, we recorded those trials that presented an error in matching the speed lower than ±0.05 m/s in walking and ±0.10 m/s in running.



EMG Recordings

The muscle activity of the following 13 ipsilateral (right side) muscles was recorded: gluteus medius (ME), gluteus maximus (MA), tensor fasciæ latæ (FL), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), semitendinosus (ST), biceps femoris (long head, BF), tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO). The electrodes were positioned as previously reported (Santuz et al., 2018b, 2019). For the treadmill recordings, after the warm-up the participants were allowed to at least 60 s habituation (Santuz et al., 2018a). We recorded 10 overground and one treadmill trials (60 s) per locomotion type, per participant by means of a 16-channel wireless bipolar EMG system (Wave Plus wireless EMG with PicoEMG transmitters including 3D accelerometers, Cometa srl, Bareggio, Italy) with an acquisition frequency of 2 kHz. For the recordings, we used foam-hydrogel electrodes with snap connector (H124SG, Medtronic plc, Dublin, Ireland). The overground trials were then concatenated (i.e., joined together) in a single one, so that for each participant four total trials were used for subsequent analysis: (1) concatenated overground walking; (2) concatenated overground running; (3) treadmill walking; and (4) treadmill running. The first 30 gait cycles of each trial were considered for subsequent analysis (Santuz et al., 2018b). All the recordings can be downloaded from the supplementary data set, which is accessible at Zenodo (doi: 10.5281/zenodo.3932767).



Gait Parameters

The gait cycle breakdown (foot touchdown and lift-off timing) was obtained by processing 3D acceleration data for the overground and plantar pressure distribution for the treadmill trials. For the segmentation of the overground attempts, we positioned one of the PicoEMG sensors with 3D accelerometer (142 Hz) over the second-last pair of shoe eyelets, tightening the sensor using Velcro straps. We processed the obtained data using validated algorithms previously reported (Santuz et al., 2018a, 2020a). Treadmill recordings were segmented applying a previously published algorithm (Santuz et al., 2016) to the plantar pressure distribution data, recorded through the plate integrated in the treadmill. Other calculated gait spatiotemporal parameters were stance and swing times, cadence (i.e., number of steps per minute), and the strike index, calculated as the distance from the heel to the center of pressure at impact normalized with respect to total foot length (Santuz et al., 2016). For stance, swing, and cadence, we calculated the step-to-step percent coefficient of variation as the ratio between the standard deviation and the mean of each trial (Erra et al., 2019).

While for the treadmill trials the strike index was calculated by processing plantar pressure distribution data (Santuz et al., 2016), for the overground trials we made use of kinetics and kinematics data. In order to locate the center of pressure at touchdown, an infrared motion capture system (Vicon Nexus, version 1.7.1, Vicon Motion Systems, Oxford, UK) and a 900 × 600-mm force plate (AMTI BP600, Advanced Mechanical Technology, Inc., Watertown, MA, USA) were used. The plate was positioned in the middle of the 18-m long pathway and colored with the same tint as the floor, to avoid the recognition by the participants. Nine infrared cameras operating at 250 Hz recorded the position of two spherical reflective markers (14 mm) placed on the heel and toe cap of the right shoe, approximately over the Achilles tendon insertion on the calcaneus and the first toe tip, respectively. The ground reaction forces were recorded at 1 kHz, and the center of pressure location during the stance phase was calculated using the recorded data. The participants were asked to walk or run on the straight pathway, always starting with the same foot from the same line chosen after the habituation trials as the ideal one to let them meet the plate always with the same foot, and were not told about the existence of the force plate. It was the operator's task to check whether the plate was met by the right foot. If not, the trial was repeated. Strike index values range from 0 to 1, denoting the most posterior and the most anterior point of the shoe, respectively (Santuz et al., 2017b). Values from 0.000 to 0.333 are indication of a rearfoot strike pattern, while values from 0.334 to 1.000 represent a mid/forefoot strike pattern (Santuz et al., 2016).



Muscle Synergy Extraction

Muscle synergies were extracted from the recorded EMG activity through a custom script (R v3.6.3, R Core Team, 2020, R Foundation for Statistical Computing, Vienna, Austria) using the classical Gaussian NMF algorithm (Lee and Seung, 1999; Santuz et al., 2017a, 2018a,b). The raw EMG signals were band-pass filtered within the acquisition device (cut-off frequencies 10 and 500 Hz). Then the signals were high-pass filtered, full-wave rectified, and lastly low-pass filtered using a 4th order IIR Butterworth zero-phase filter with cut-off frequencies 50 Hz (high-pass) and 20 Hz (low-pass for creating the linear envelope of the signal), as previously described (Santuz et al., 2018a).

After subtracting the minimum, the amplitude of the EMG recordings obtained from the single trials were normalized to the maximum activation recorded for every individual muscle. In other words, every EMG channel was normalized to its maximum for every trial (Santuz et al., 2018b, 2019, 2020a). Each gait cycle was then time-normalized to 200 points, assigning 100 points to the stance and 100 points to the swing phase (Santuz et al., 2017b, 2018a,b, 2019, 2020a). The reason for this choice is 2-fold (Santuz et al., 2018b). First, dividing the gait cycle into two macro-phases helps the reader understanding the temporal contribution of the different synergies, diversifying between stance and swing. Second, normalizing the duration of stance and swing to the same number of points for all participants (and for all the recorded gait cycles of each participant) makes the interpretation of the results independent from the absolute duration of the gait events.

Synergies were then extracted through NMF as follows (Santuz et al., 2018a,b). The 13 muscles listed above were considered for the analysis (ME, MA, FL, RF, VM, VL, ST, BF, TA, PL, GM, GL, and SO). The m = 13 time-dependent muscle activity vectors were grouped in a matrix V with dimensions m × n (m rows and n columns). The dimension n represented the number of normalized time points (i.e., 200*number of gait cycles). The matrix V was factorized using NMF so that V ≈ VR = MP. The new matrix VR, reconstructed by multiplying the two matrices M and P, approximates the original matrix V. The motor modules (Gizzi et al., 2011; Santuz et al., 2017a) matrix M, with dimensions m × r, contained the time-invariant muscle weightings, which describe the relative contribution of muscles within a specific synergy (a weight was assigned to each muscle for every synergy). The motor primitives (Dominici et al., 2011; Santuz et al., 2017a) matrix P contained the time-dependent coefficients of the factorization with dimensions r × n, where the number of rows r represents the minimum number of synergies necessary to satisfactorily reconstruct the original set of signals V. M and P described the synergies necessary to accomplish the required task (i.e., walking or running, overground or on a treadmill). The update rules for M and P are presented in Equations (1) and (2).
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The quality of reconstruction was assessed by measuring the coefficient of determination R2 between the original and the reconstructed data (V and VR, respectively). The limit of convergence for each synergy was reached when a change in the calculated R2 was smaller than the 0.01% in the last 20 iterations (Santuz et al., 2017a), meaning that, with that amount of synergies, the signal could not be reconstructed any better. This operation was first completed by setting the number of synergies to one. Then, it was repeated by increasing the number of synergies each time, until a maximum of 10 synergies. The number 10 was chosen to be lower than the number of muscles, since extracting a number of synergies equal to the number of measured EMG activities would not reduce the dimensionality of the data. Specifically, 10 is the rounded 75% of 13, which was the number of considered muscles (Santuz et al., 2019). For each synergy, the factorization was repeated 10 times, each time creating new randomized initial matrices M and P, in order to avoid local minima (D'Avella and Bizzi, 2005). The solution with the highest R2 was then selected for each of the 10 synergies. To choose the minimum number of synergies required to represent the original signals, the curve of R2 values vs. synergies was fitted using a simple linear regression model, using all 10 synergies. The mean squared error (Cheung et al., 2005) between the curve and the linear interpolation was then calculated. Afterwards, the first point in the R2-vs.-synergies curve was removed and the error between this new curve and its new linear interpolation was calculated. The operation was repeated until only two points were left on the curve or until the mean squared error fell below 10−4. This was done to search for the most linear part of the R2-vs.-synergies curve, assuming that in this section the reconstruction quality could not increase considerably when adding more synergies to the model.



Motor Primitive Geometrics and Functional Classification of Synergies

We compared motor primitives by evaluating the one-dimensional statistical parametric mapping (SPM), center of activity (CoA), and the full width at half maximum (FWHM) (Cappellini et al., 2006, 2016; Pataky, 2010, 2012; Martino et al., 2014; Santuz et al., 2018a, 2019). The CoA was defined cycle by cycle as the angle of the vector (in polar coordinates) that points to the center of mass of that circular distribution (Cappellini et al., 2016), and then averaged. The polar direction represented the gait cycle's phase, with angle 0 ≤ θt ≤ 2π. The following equations define the CoA:
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where p is the number of points of each gait cycle (p = 200). The FWHM was calculated cycle by cycle after subtracting the cycle's minimum as the number of points exceeding each cycle's half maximum, and then averaged (Martino et al., 2014). As a tool for visualizing differences in FWHM, we created heat maps (Figure 6) by counting cycle by cycle how many points of the relevant motor primitive exceeded half maximum and then averaging the obtained values over the 30 gait cycles per trial. The CoA and FWHM calculations and the subsequent SPM analysis were conducted only for the motor primitives relative to fundamental synergies. A fundamental synergy can be defined as an activation pattern whose motor primitive shows a single main peak of activation (Santuz et al., 2018a). When two or more fundamental synergies are blended into one (or when one synergy is split into one or more synergies), a combined synergy appears.

Combined synergies usually constitute, in our locomotion data, 10–30% of the total extracted synergies. While fundamental synergies can be compared given their similar function (i.e., motor primitives and motor modules are comparable since they serve a specific task within the gait cycle), combined synergies are often so different one from another that their classification is not possible. Due to the lack of consensus in the literature on how to interpret them, we excluded the combined synergies from the FWHM analysis. The recognition of fundamental synergies was carried out by clustering similar motor primitives through NMF, using the same algorithm employed for synergy extraction with the maximum number of synergies set to the maximum factorization rank plus one. The obtained “principal shapes” for each of the four locomotion conditions were then compared to the motor primitives in order to cluster similar shapes. A primitive was considered similar to one of the principal shapes if the NMF weight was equal at least to the average of all weights. We then calculated the R2 of all the primitives that satisfied this condition, with the relevant principal shape. If the R2 was at least the 25% (or four times if the R2 was negative) of the average R2 obtained by comparing all the remaining primitives with their own principal shape, we confirmed the synergy as fundamental and classified it based on function. Primitives that were not clustered were labeled as combined.



Fractal Analysis of Motor Primitives

To estimate the long-range dependence of motor primitives, we conducted a fractal analysis and calculated the Hurst exponent (H) following the rescaled range (R/S) approach (Hurst, 1951; Mandelbrot and Wallis, 1969). We proceeded as follows: (1) calculated the mean of the considered motor primitive of length n; (2) subtracted the mean to the original primitive; (3) calculated the cumulative sum of the obtained time series; (4) found the range R of this series (the range is the difference between the maximum and minimum values of a series); (5) calculated the standard deviation S; (6) computed the rescaled range R/S; (7) repeated the previous for N = n/2, n/4, n/8… and until a minimum of N = 200, which is the normalized period of each motor primitive (Santuz and Akay, 2020); and (8) calculated H as the slope of the log(N) vs. log(R/S) curve.

H can vary between 0 and 1. For 0.5 < H < 1; in the long term, high values in the series will be probably followed by other high values (i.e., positive autocorrelation); in other words, the series is persistent or has long-term memory (Mandelbrot, 1983; Gneiting and Schlather, 2004; Tarnopolski, 2016). For 0 < H < 0.5, in the long term high values in the series will be probably followed by low values, with a frequent switch between high and low values (i.e., negative autocorrelation); in other words, the series is anti-persistent or has short-term memory (Mandelbrot, 1983; Gneiting and Schlather, 2004; Tarnopolski, 2016). A Hurst exponent of 0.5 indicates a completely random series without any persistence (Mandelbrot, 1983; Qian and Rasheed, 2004; Tarnopolski, 2016).



Statistics

To investigate the effect of locomotion environment and type on the factorization rank, gait parameters, CoA, FWHM, and H of motor primitives and motor modules, we fitted the data using a generalized linear model with Gaussian error distribution. The homogeneity of variances was tested using the Levene's test. If the residuals were normally distributed, we carried out a two-way repeated measures ANOVA with type II sum of squares for the dependent variables factorization rank, cadence, stance and swing time, CoA, FWHM, H, and muscle, the independent variables being the locomotion type (i.e., walking or running) and environment (i.e., overground or treadmill). If the normality assumptions on the residuals were not met, we used the function “raov,” a robust (rank-based) ANOVA from the R package Rfit (Kloke and McKean, 2012; McKean and Kloke, 2014). We then performed a least significant difference post-hoc analysis with false discovery rate adjustment of the α level. Moreover, differences in motor primitives were tested using a two-way repeated-measures ANOVA based on the one-dimensional SPM analysis (Pataky, 2010, 2012), with independent variables locomotion environment (i.e., overground or treadmill) and gait cycle (30 levels, each being one of the 30 recorded gait cycles per trial, per participant). To account for the bias related to the order of gait cycles, we performed the repeated-measures ANOVA SPM 10,000 times, randomizing at each repetition the gait cycle order for each participant. Results are reported as mean of the 10,000 resamples.

All the significance levels were set to α = 0.05, and the statistical analyses were conducted using custom R v3.6.3 or Python (v3.8.2, Python Software Foundation, 2020, Wilmington, Delaware, United States) scripts. The spm1d (Pataky, 2012) open-source Python package v0.4.3 (spm1d.org) was used to generate F-values maps, F* limit, and areas for the SPM analysis.



Data Availability

In the supplementary data set accessible at Zenodo (doi: 10.5281/zenodo.3932767) we made available: (a) the metadata with anonymized participant information; (b) the raw EMG, already concatenated for the overground trials; (c) the touchdown and lift-off timings of the recorded limb, (d) the filtered and time-normalized EMG; (e) the muscle synergies extracted via NMF; and (f) the code to process the data. In total, 120 trials from 30 participants are included in the supplementary data set.

The file “metadata.dat” is available in ASCII and RData format and contains:

• Code: the participant's code

• Sex: the participant's sex (M or F)

• Locomotion: the type of locomotion (W = walking, R = running)

• Environment: to distinguish between overground (O) and treadmill (T)

• Speed: the speed at which the recordings were conducted in [m/s] (1.4 m/s for walking, 2.8 m/s for running)

• Age: the participant's age in years

• Height: the participant's height in [cm]

• Mass: the participant's body mass in [kg].

The files containing the gait cycle breakdown are available in RData format, in the file named “CYCLE_TIMES.RData.” The files are structured as data frames with 30 rows (one for each gait cycle) and two columns. The first column contains the touchdown incremental times in seconds. The second column contains the duration of each stance phase in seconds. Each trial is saved as an element of a single R list. Trials are named like “CYCLE_TIMES_P0020_TW_01,” where the characters “CYCLE_TIMES” indicate that the trial contains the gait cycle breakdown times, the characters “P0020” indicate the participant number (in this example the 20th), the characters “TW” indicate the locomotion type and environment (O = overground, T = treadmill, W = walking, R = running), and the number “01” indicate the trial number. Please note that the running overground trials of participants P0001, P0007, P0008, and P0009 only contain 21, 29, 29, and 26 cycles, respectively.

The files containing the raw, filtered, and the normalized EMG data are available in RData format, in the files named “RAW_EMG.RData” and “FILT_EMG.RData.” The raw EMG files are structured as data frames with 30,000 rows (one for each recorded data point) and 14 columns. The first column contains the incremental time in seconds. The remaining 13 columns contain the raw EMG data, named with muscle abbreviations that follow those reported above. Each trial is saved as an element of a single R list. Trials are named like “RAW_EMG_P0003_OR_01,” where the characters “RAW_EMG” indicate that the trial contains raw emg data, the characters “P0003” indicate the participant number (in this example the 3rd), the characters “OR” indicate the locomotion type and environment (see above), and the numbers “01” indicate the trial number. The filtered and time-normalized emg data is named, following the same rules, like “FILT_EMG_P0003_OR_01.”

The muscle synergies extracted from the filtered and normalized EMG data are available in RData format, in the file named “SYNS.RData.” Each element of this R list represents one trial and contains the factorization rank (list element named “synsR2”), the motor modules (list element named “M”), the motor primitives (list element named “P”), the reconstructed EMG (list element named “Vr”), the number of iterations needed by the NMF algorithm to converge (list element named “iterations”), and the reconstruction quality measured as the coefficient of determination (list element named “R2”). The motor modules and motor primitives are presented as direct output of the factorization and not in any functional order. Motor modules are data frames with 13 rows (number of recorded muscles) and a number of columns equal to the number of synergies (which might differ from trial to trial). The rows, named with muscle abbreviations that follow those reported above, contain the time-independent coefficients (motor modules M), one for each synergy and for each muscle. Motor primitives are data frames with 6,000 rows and a number of columns equal to the number of synergies (which might differ from trial to trial) plus one. The rows contain the time-dependent coefficients (motor primitives P), one column for each synergy plus the time points (columns are named e.g., “time, Syn1, Syn2, Syn3,” where “Syn” is the abbreviation for “synergy”). Each gait cycle contains 200 data points, 100 for the stance and 100 for the swing phase which, multiplied by the 30 recorded cycles, result in 6,000 data points distributed in as many rows. This output is transposed as compared to the one discussed in the methods section to improve user readability. Trials are named like “SYNS_ P0012_OW_01,” where the characters “SYNS” indicate that the trial contains muscle synergy data, the characters “P0012” indicate the participant number (in this example the 12th), the characters “OW” indicate the locomotion type and environment (see above), and the numbers “01” indicate the trial number. Given the nature of the NMF algorithm for the extraction of muscle synergies, the supplementary data set might show non-significant differences as compared to the one used for obtaining the results of this paper.

All the code used for the pre-processing of EMG data and the extraction of muscle synergies is available in R format. Explanatory comments are profusely present throughout the script “muscle_synergies.R.”




RESULTS


Gait Parameters

The stance and swing times and the cadence are reported in Figure 1. The coefficient of variation of stance, swing, and cadence, together with the strike index are reported in Table 1. A main effect of locomotion type (walking compared to running) was found for stance, swing, and cadence (p < 0.001). Stance and swing phase duration were significantly lower and cadence higher in running (p < 0.001). Treadmill, compared to overground locomotion, made swing times decrease (p = 0.032). No environment by type interaction (p > 0.05) was observed for any of the gait parameters. All the other comparisons were statistically (p > 0.05) not significant.


[image: Figure 1]
FIGURE 1. Gait parameters. Boxplots depicting stance, swing, and cadence for the four locomotion conditions.



Table 1. The step-to-step percent coefficient of variation (CV) of stance, swing and cadence is reported as the ratio between mean and standard deviation.
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Muscle Synergies

The minimum number of synergies necessary to reconstruct the EMG data (i.e., the NMF factorization rank) was 4.6 ± 0.5 for overground walking, 4.5 ± 0.6 for treadmill walking, 4.2 ± 0.6 for overground running and 4.6 ± 0.7 for treadmill running, with no significant differences (overground vs. treadmill p = 0.077; walking vs. running p = 0.239). The average reconstruction quality (i.e., the R2 or the EMG variability accounted for by the factorization) was 0.829 ± 0.028 for overground walking, 0.843 ± 0.027 for treadmill walking, 0.850 ± 0.025 for overground running and 0.869 ± 0.026 for treadmill running. An effect of locomotion environment (overground vs. treadmill, p = 0.001) and type (walking vs. running, p < 0.001) was found for the reconstruction quality, but no environment by type interactions (p = 0.567). The percentage of combined synergies was 16.1% for overground walking, 19.1% for treadmill walking, 19.0% for overground running, and 23.0% for treadmill running.

Four fundamental synergies were clustered in all gait conditions. In both walking (Figure 2) and running (Figure 3), the first synergy functionally referred to the body weight acceptance, with a major involvement of knee extensors and hip extensors and abductors. The second synergy described the propulsion phase, to which the plantarflexors mainly contributed. The third synergy identified the early swing, showing the involvement of foot dorsiflexors. The fourth and last synergy reflected the late swing and the landing preparation, highlighting the relevant influence of knee flexors (in both walking and running), and foot dorsiflexors (mostly in running). No main effect of the locomotion environment was found for any of the motor modules in walking or running. In walking, the SPM analysis detected significant differences in the descending part of the late swing primitive (between the 179th and 185th normalized time points, p = 0.001), as shown in Figure 2. In running (Figure 3), the SPM highlighted differences in both the ascending (points 34–44, p < 0.001) and descending (points 63–82, p < 0.001) portion of the propulsion primitive.


[image: Figure 2]
FIGURE 2. Motor modules and motor primitives of the four fundamental synergies for overground and treamill walking. The motor modules are presented on a normalized y-axis base: each muscle contribution within one synergy can range from 0 to 1 and each point represents individual trials. For the mean motor primitives (shaded standard deviation), the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided by a vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between overground and treadmill found by statistical parametric mapping are shown as vertical shaded areas with relevant p-value. Muscle abbreviations: ME, gluteus medius; MA, gluteus maximus; FL, tensor fasciæ latæ; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; ST, semitendinosus; BF, biceps femoris; TA, tibialis anterior; PL, peroneus longus; GM, gastrocnemius medialis; GL, gastrocnemius lateralis; SO, soleus.



[image: Figure 3]
FIGURE 3. Motor modules and motor primitives of the four fundamental synergies for overground and treamill running. The motor modules are presented on a normalized y-axis base: each muscle contribution within one synergy can range from 0 to 1 and each point represents individual trials. For the mean motor primitives (shaded standard deviation), the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided by a vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between overground and treadmill found by statistical parametric mapping are shown as vertical shaded areas with relevant p-value. Muscle abbreviations: ME, gluteus medius; MA, gluteus maximus; FL, tensor fasciæ latæ; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; ST, semitendinosus; BF, biceps femoris; TA, tibialis anterior; PL, peroneus longus; GM, gastrocnemius medialis; GL, gastrocnemius lateralis; SO, soleus.




Motor Primitive Geometrics

The CoA of the propulsion primitive shifted earlier in time when switching from overground to treadmill locomotion in both walking and running (Figure 4). Moreover, the CoA of motor primitives was different between walking and running in all synergies: higher in weight acceptance and early swing; lower in propulsion and late swing (Figure 4). The weight acceptance and propulsion primitives were wider (i.e., higher FWHM) relative to the stance phase in running than in walking, but the locomotion environment did not show an effect on FWHM. The widening is visible in both the box plots of Figure 5 and the heat maps of Figure 6.


[image: Figure 4]
FIGURE 4. Box plots representing the center of activity (CoA) values for the motor primitives of the four fundamental muscle synergies. Individual trial values are presented as points.



[image: Figure 5]
FIGURE 5. Box plots representing the full width at half maximum (FWHM) values for the motor primitives of the four fundamental muscle synergies. Individual trial values are presented as points.



[image: Figure 6]
FIGURE 6. Heat maps representing the average occurrence of values bigger than half maximum for each trial (rows of the maps). We calculated trial by trial, for each of the 200 time points (columns of the maps) and gait cycle, the number of times a motor primitive was exceeding half maximum and reported the mean results in a color-coded fashion: from white (the primitive never exceeded half maximum) to blue or red (the primitive exceeded half maximum in all the 30 gait cycles of that trial). Missing primitives are reported as fully white rows.




Fractal Analysis of Motor Primitives

The H values and the rescaled range vs. window length log–log plots are shown in Figure 7. H values of motor primitives were lower in treadmill compared to overground in both walking and running. Moreover, the mean H values were lower than 0.5 in all four conditions, indicating anti-persistent behavior of motor primitives (Mandelbrot, 1983; Gneiting and Schlather, 2004). Anti-persistence means that, in the motor primitives of treadmill locomotion, short-term oscillations between high and low values were less random than in overground. In other words, the power-like decay of motor primitive's autocorrelation was faster in treadmill than in overground locomotion (Tarnopolski, 2016).


[image: Figure 7]
FIGURE 7. Left: box plots representing the Hurst exponent (H) values, calculated as the average exponent of all primitives per trial. Individual trial values are presented as points. Right (same color code as the left panel): log–log plot of the rescaled range (R/S) vs. window size (n, in number of normalized time points) for the four locomotion conditions. The slope of each regression line is H. Standard deviations are presented as shaded areas around each relevant regression line.





DISCUSSION

Fractal analysis revealed that motor primitives were more regular in treadmill than in overground locomotion, as hypothesized. This novel finding suggests that the spatial and sensory constraints imposed by the treadmill environment might have forced the CNS to adopt a different neural control strategy. While no difference was found in the FWHM of motor primitives for overground and treadmill locomotion, we could show that the CoA of the propulsion primitive was shifted earlier in time when our participants walked and ran on a treadmill. This partially confirmed our hypothesis that treadmills induce perturbations to locomotion.

Gait spatiotemporal parameters were in general scarcely affected by the locomotion environment. We found only a decreased swing duration in treadmill compared to overground running. This is in agreement with most of the relevant literature reports (Lee and Hidler, 2008; Parvataneni et al., 2009; Oliveira et al., 2016; Van Hooren et al., 2019; Santuz et al., 2020a). Moreover, the coefficient of variability of the cadence, measured in steps per minute, was significantly lower in treadmill for both walking and running, suggesting a higher degree of regularity of treadmill locomotion imposed by the less variable speed (Dingwell and Cusumano, 2000).

We and others showed in previous studies that both the number and function of muscle synergies are largely shared across locomotion types and settings. For instance, in mice the number of synergies for walking and swimming is identical (Santuz et al., 2019) as it is in humans for walking and running (Cappellini et al., 2006; Lacquaniti et al., 2012; Santuz et al., 2017a) or in locomotion at different speeds (Ivanenko et al., 2004; Santuz et al., 2020b). When adding external (e.g., mechanical) or internal (e.g., aging or pathology) perturbations to locomotion, the number of synergies is not affected in both mice (Santuz et al., 2019) and humans (Maclellan et al., 2014; Santuz et al., 2018a, 2020a; Holubarsch et al., 2019; Janshen et al., 2020). Several studies have attempted in the past to highlight potential discrepancies between overground and treadmill locomotion from many perspectives concluding that spatiotemporal, kinematic, kinetic, and muscle-tendon interaction measures are scarcely influenced by the locomotion environment (Van Hooren et al., 2019). One study also examined muscle synergies, finding that motor primitives underwent “minimal temporal adjustments” (Oliveira et al., 2016). Here, we extended that investigation by adding walking to the analysis, unmistakably confirming that the number of muscle synergies was conserved across locomotion types (i.e., walking and running) and environments (i.e., overground and treadmill). The four extracted synergies described the two macro phases of the gait cycle: the stance (weight acceptance and propulsion synergies) and the swing (early and late swing synergies), similar to what was found in other studies (Santuz et al., 2018a,b, 2020a,b). These observations indicate that overground and treadmill locomotion share largely similar modular organization of muscle activations, despite small temporal adjustments of motor primitives, a fact, however, that does not exclude further alterations of the neuromotor control that are invisible to the naked eye.

Fractal analysis can expose local or global properties of a time series that would be otherwise hardly visible to the naked eye and/or simply too difficult to quantify (Santuz and Akay, 2020). In a recent study where we used the Higuchi's fractal dimension, we found similar local complexity of motor primitives for overground and treadmill locomotion (Gneiting and Schlather, 2004; Santuz et al., 2020a). Here however, we set out to analyze the global, rather than local, fractal properties of motor primitives by estimating the parameter H. There is no specific advantage in analyzing the local or global fractal properties of motor primitives: both characteristics are informative, even though on a different level. While the Higuchi's fractal dimension tells us what happens in the short term by “zooming in” on the signal, H helps us depict a general picture of what happens in the long term (Gneiting and Schlather, 2004; Santuz and Akay, 2020). H can vary between 0 and 1, with H = 0.5 indicating a random series (Mandelbrot, 1983; Qian and Rasheed, 2004). For 0.5 < H < 1, in the long term, a positive or negative trend is visible, making the time series persistent or with “long memory” (Mandelbrot, 1983; Gneiting and Schlather, 2004). For 0 < H < 0.5, the series is anti-persistent: in the long term, high values in the series will be probably followed by low values, with a frequent switch between high and low values as in motor primitives extracted from locomotion (Mandelbrot, 1983; Gneiting and Schlather, 2004). We found that H values were (i) lower than 0.5 in all the analyzed conditions, (ii) independent on the locomotion type, and (iii) lower in treadmill than in overground locomotion.

First, H < 0.5 is an indication of anti-persistence, meaning that our motor primitives did not show a trend. To make an example of a persistent (i.e., with trend) time series, one can think at the space vs. time graph of a person walking overground at self-paced comfortable speed. Such a curve would be close to a line with slope equal to the speed of the person. As the person walks with almost constant speed, the distance traveled increases as well, showing a positive trend: the distance from the starting point is more likely to increase as time passes rather than to oscillate around a certain value. This example is intuitively dissimilar from the behavior of motor primitives, which are time series that oscillate around a mean value (i.e., they are anti-persistent), due to the fact that locomotion is quasi-periodic (Santuz and Akay, 2020). Thus, it is possible to explain from a physiological perspective why we obtained H < 0.5 for all the analyzed locomotion conditions.

Second, the fact that H is independent on the locomotion type (i.e., walking or running) suggests that speed does not have an influence on the global fractal properties of motor primitives. While at increasing locomotion speeds the local complexity of motor primitives decreases (Santuz et al., 2020b), the global regularity (as measured by H) is not affected. From a neurophysiological point of view, this behavior has no easy explanation. Neural circuits for the control of locomotor type and speed have been found in several regions of the vertebrate CNS: from the diversified populations of inhibitory V1 and excitatory V2a spinal interneurons in the zebrafish spinal cord (Ampatzis et al., 2014; Kimura and Higashijima, 2019), to the human prefrontal cortex (Suzuki et al., 2004; Bulea et al., 2015) and the murine and human brainstem (Al-Yahya et al., 2011; Capelli et al., 2017), passing through the feline cerebellum (Armstrong, 1988) and the V0 and V3 commissural interneurons for left-right alternation and synchronization in the mouse system (Danner et al., 2016). All these circuits have one important thing in common: they implement a flexible modular organization of neuronal excitation and inhibition for smoothly controlling the type and speed of locomotion. Following our results, we speculate that the modular activation of muscles, the final effectors for motion creation and control, might be constantly tuned to maintain similar patterns, despite the profound changes happening in the underlying neural circuits.

Third, the found lower H values in treadmill compared to overground suggest that motor primitives for treadmill locomotion are more regular than those for overground walking or running. If primitives were all perfect sinusoidal time series with period equal to the gait cycle, H would be zero. Conversely, if primitives were oscillating around their mean value in a random way, H would be 0.5. It follows that if H decreases from 0.5 to 0, the level of randomness in the time series decreases as well, while regularity increases. A reason for the increased regularity of motor primitives might be the intrinsic regularity of the treadmill belt's speed (Dingwell and Cusumano, 2000; Riley et al., 2008). Even though it has been shown that treadmill belts slightly decelerate at touchdown only to recover the set speed later in the stance phase and accelerate at lift-off (Van Hooren et al., 2019), the oscillations are likely small and, most importantly, systematic as shown by the lower CV of cadence in both walking and running. The enforced average speed (Dingwell and Cusumano, 2000) and other parameters such as the limited belt dimensions (Van Hooren et al., 2019), could have contributed to make treadmill a more restricted locomotion environment than overground. Physiologically speaking, this could suggest that a more regular neural control strategy was needed to overcome the sensory constraints imposed by the treadmill environment, showing that treadmills might be influencing motor coordination more than previously thought.

Recently, we used the FWHM of motor primitives as a measure of robustness, concluding that wider (i.e., active for a longer time) primitives indicate more robust motor control in perturbed locomotion settings (Santuz et al., 2018a, 2020a; Janshen et al., 2020). Our idea of robust control is based on the optimal feedback control theory, which postulates that motor systems selectively combine sensory feedback and motor commands to optimize performance (Todorov and Jordan, 2002; Scott, 2004; Tuthill and Azim, 2018). It is known that the treadmill environment, as compared to free locomotion over solid and even ground, can reweight the sensory feedback due to many factors, such as the level of familiarity with the device, the dimensions of the belt or the stationarity of visual feedback (Van Hooren et al., 2019). The constraints imposed by the limited space and necessity of matching the belt's speed (Dingwell and Cusumano, 2000), can act as external perturbations. However, our current results exclude that the CNS coped with those potential perturbations by widening the motor primitives.

Yet, when looking into the timing of main activation as described by the CoA, we found that motor primitives for treadmill locomotion were shifted earlier in time in both walking and running. This happened in one synergy out of four: the one for propulsion. The coordinated activity of foot plantarflexors characterize this synergy providing the main support and forward acceleration of the body mass (Arampatzis et al., 1999; Liu et al., 2008; Hamner and Delp, 2013; Santuz et al., 2018a; Bohm et al., 2019). It has been shown in humans that proprioceptive feedback from group II (muscle spindles) and/or group Ib (Golgi tendon organs) afferents is of paramount importance for the activation of plantarflexors (Dietz et al., 1994; Sinkjaer et al., 2000). Additionally, mouse studies reported a crucial role of the proprioceptive feedback from plantarflexors in regulating the amplitude of muscle activity at different speeds (Mayer et al., 2018). We reinforced those observations showing that genetically modified mice lacking muscle spindles undergo a redistribution of the motor modules for propulsion when compared to wild type (Santuz et al., 2019). Moreover, we found that mutants could not manage to modulate the timing of motor primitives when external perturbations were added to locomotion (Santuz et al., 2019). Thus, the shifted CoA of the propulsion motor primitive might indicate that treadmill locomotion likely induced alterations in the proprioceptive sensory feedback from foot plantarflexors (i.e., PL, GM, GL, and SO). Additionally, we and others found similar shifts of the propulsion primitive's CoA in both wild type mice (Santuz et al., 2019) and healthy humans (Maclellan et al., 2014; Santuz et al., 2018a) undergoing external perturbations, suggesting from yet another perspective that treadmills might perturb locomotion in ways that were never discussed before.

We acknowledge that some of the found differences between treadmill and overground locomotion were of small entity and originated from an unconventional blend of linear and nonlinear analysis approaches. To what extent the found outcomes stemmed from functionally significant alterations in the CNS's neuromotor strategies cannot be unquestionably clarified at this point.



CONCLUSION

In this study, we used a novel combination of machine learning and fractal analysis in an effort to understand those neuromotor control features of overground and treadmill locomotion that were not grasped by previous literature. Specifically, we found time-related alterations of motor primitives, the basic activation patterns common to functionally-related muscle groups. First, the primitives for the propulsion phase of both walking and running showed their main activation earlier in treadmill than in overground. This is similar to what previously reported for perturbed locomotion as compared to unperturbed. Second, motor primitives were on average more regular in treadmill than in overground locomotion, a data-driven suggestion that treadmills might constrain the muscle activation patterns for the control of human locomotion.
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As one determinant of the efficacy of mirror visual feedback (MVF) in neurorehabilitation, the embodiment perception needs to be sustainable and enhanced. This study explored integrating vibrotactile stimulation into MVF to promote the embodiment perception and provide evidence of the potential mechanism of MVF. In the experiment, the participants were instructed to keep their dominant hand still (static side), while open and close their non-dominant hand (active side) and concentrate on the image of the hand movement in the mirror. They were asked to tap the pedal with the foot of the active side once the embodiment perception is generated. A vibrotactile stimulator was attached on the hand of the active side, and three conditions were investigated: no vibration (NV), continuous vibration (CV), and intermittent vibration (IV). The effects were analyzed on both objective data, including latency time (LT) and electroencephalogram (EEG) signals, and subjective data, including embodiment questionnaire (EQ). Results of LT and EQ suggested a stronger subjective sense of embodiment under the condition of CV and IV, comparing with NV. No significant difference was found between CV and IV. EEG analysis showed that in the hemisphere of the static side, the desynchronization of CV and IV around the central-frontal region (C3 and F3) in the alpha band (8–13 Hz) was significantly prominent compared to NV, and in the hemisphere of the active side, the desynchronization of three conditions was similar. The network analysis of EEG data indicated that there was no significant difference in the efficiency of neural communication under the three conditions. These results demonstrated that MVF combined with vibrotactile stimulation could strengthen the embodiment perception with increases in motor cortical activation, which indicated an evidence-based protocol of MVF to facilitate the recovery of patients with stroke.

Keywords: mirror visual feedback, embodiment perception, electroencephalogram (EEG), vibrotactile stimulation, neurorehabilitation


INTRODUCTION

Mirror visual feedback (MVF) is widely used in the field of upper limb and hand rehabilitation as a low labor-intensive, affordable, and convenient method (Wu et al., 2013; Samuelkamaleshkumar et al., 2014; Hebert et al., 2016). Recent studies reported that MVF was an evidence-based effective treatment to promote the recovery of motor functions, especially for upper limbs, and enhance the abilities of daily life in stroke patients (Pollock et al., 2014; Ding et al., 2018, 2019b; Thieme et al., 2018) from the reflection of the unaffected hand movements. MVF could prompt the multisensory integration of patients and contribute to balance the conflict between motor output and visual/proprioceptive feedback, whereby it makes patients embody the reflection, especially through experiencing the kinesthesia illusion (Ramachandran and Rodgers-Ramachandran, 1996; Altschuler et al., 1999). As a visual input dependent treatment, the sense of embodiment arising from MVF is recognized as one of the determinants for the efficacy of this treatment (Longo et al., 2008; Brunetti et al., 2015; Chancel et al., 2017). However, recent studies have taken little consideration of the influence of the subject's variability in embodiment and effective strategies to enhance the experience of embodiment, which might result in various findings and hinder the development of MVF.

Embodiment, which is also called bodily self-consciousness, is a type of experience, comprising a perception of body ownership, location, agency, and deafference (Longo et al., 2008; Blanke et al., 2015). It plays a critical role in mental life, closely relating to the sense of self (Longo et al., 2008). Studies suggested that embodiment has the potential to alter patients' sensorimotor activity and multisensory integration (Michielsen et al., 2011; Saleh et al., 2014; Medina et al., 2015; Ding et al., 2019a). Wainer et al. reported that embodiment could affect patients' engagement of robot-supported training and suggested a positive correlation between the experience of embodiment and effectiveness of treatment (Wainer et al., 2007). The perception of embodiment relies upon multisensory feedbacks (Medina et al., 2015; Azanõn et al., 2016). Visual input is recognized as the origin of embodiment (Pavani and Zampini, 2007; Ramachandran and Altschuler, 2009; Deconinck et al., 2015). In MVF, visual feedback could generate illusions, such as kinesthesia illusion and referred sensation, and induce the perception of the embodiment. Proprioceptive information plays a critical role in motor execution and control. Studies demonstrated that bimanual movements in MVF, where visual and proprioceptive feedbacks were involved, could enhance the perception of embodiment (Medina et al., 2015; Wittkopf et al., 2017). Furthermore, our previous study found that the combination of auditory and visual-proprioceptive feedback could facilitate facial embodiment in patients with Bell's palsy, which was parallel to Radziun's finding while using auditory cues in rubber hand illusion (Radziun and Ehrsson, 2018; Ding et al., 2020). These above studies indicated a positive correlation between sensory inputs and perception of embodiment, which suggested potential strategies enhancing embodiment.

In our previous study, a vibrotactile stimulation was employed to induce kinesthesia illusion for better motor imagery BCI control (Yao et al., 2015). Kinesthesia illusion is a kind of illusory proprioceptive experience without actual joint movement. Mechanical vibration and tactile stimulation of muscle tendon could evoke kinesthesia illusion, which could strengthen proprioceptive feedback in MVF. Therefore, we speculated that the combination of motor task with vibrotactile stimulation in MVF would strengthen proprioceptive inputs, promote kinesthesia illusion of the static hand, and enhance the perception of embodiment. Furthermore, study demonstrated that combining MVF and tactile sensory inputs could strengthen amputees' awareness of phantom limb (Hunter et al., 2003; Wittkopf et al., 2017). It reported that dual percepts evoked when a light touch was applied to one limb in MVF and referred to the missing limb. According to graded motor imagery, MVF is recognized as a visual induced motor imagery, which may contain components of motor and sensory experiences (Moseley, 2006; Voisin et al., 2011). As a type of visual induced imagery, MVF could generate referred sensations, where sensory stimulus evoked from one hand is referred to as the contralateral one behind the mirror (Ramachandran et al., 1995; Takasugi et al., 2011; Katsuyama et al., 2018). Therefore, we speculated that the vibrotactile sensory stimulus itself and the strengthened proprioceptive feedback could be referred to the dominant side via MVF and contribute to enhance embodiment. However, there are few studies investigating the influence of vibrotactile stimulation on embodiment in MVF, and to the best of our knowledge, no studies have explored its effect on the activation of the cortical area.

In this study, the tendon vibrotactile stimulation was combined with MVF to investigate its effects on the perception of embodiment in healthy subjects and to explore the alterations of cortical activities from the perspective of embodiment, which would provide scientific evidence for therapeutic protocol developments in the future, especially for sensorimotor rehabilitation.



METHODS


Study Design and Participants

Twelve healthy subjects participated in the experiment (20–33 years with an average age of 25 years; 4 females and 8 males; 10 right-handed and 2 left-handed). None of the subjects had previously participated in studies or experiments on MVF. All subjects signed informed consent forms prior to the experiment. This study was in accordance with the Declaration of Helsinki and approved by the Research Ethics Committee of the University of Waterloo (ORE# 22900).



MVF and Vibrotactile Stimulation

In this experiment, a customized mirror holder was employed to mount a 40 cm by 50 cm acrylic mirror. The mirror was positioned over the chest area of a supine subject and could be adjusted at various angles (−90 to +90 degrees) in the sagittal plane (Figure 1). This device enabled an appropriate positioning of the mirror over a subject, who was required to place both upper limbs same position with the dominant arm behind the mirror and the other one on the reflecting side.


[image: Figure 1]
FIGURE 1. Experimental apparatus included a hanging acrylic mirror to provide mirror visual feedback, a wireless EEG cap, an actuator to present vibrotactile stimulation, and a foot pedal placed under the non-dominant foot.


Vibrotactile stimulation was applied around the first interosseous dorsal muscle tendon of the non-dominant side. A liner resonance actuator (type C10-100, Precision Microdrivers Ltd.) sewn inside an elastic band was employed to provide vibrotactile stimulation. The actuator produced a 27 Hz sine wave modulated with a 175 Hz sine carrier wave, which can stimulate Pacinian corpuscles and Meissner corpuscles for the rich tactile experience (Yao et al., 2014). The amplitude of vibration was individually adjusted within the range of 0.5 times to maximum amplitude (11.3 μm) at the resonant frequency. The optimal amplitude was adjusted based on the feedback of the subjects, such that they could feel the vibration clearly and concentrate on performing the experimental tasks. In this experiment, there were three conditions corresponding to three types of stimulation, including no vibration (NV) as the control condition, continuous vibration (CV), and intermittent vibration (IV, alternated between 1-s stimulation with and 1-s rest).



Experiment Paradigm

Subjects were instructed to lie down on a bed, place their non-dominant hand on the reflecting side of the mirror, and concentrate on the reflected hand in the mirror. In the experiment, they were required to keep their dominant hand still, perform non-dominant hand closing and opening (four fingers touching thumb and opening) at an approximate pace of 1 Hz, and keep all movements and facial expressions to a minimum. The setting was for the scenario of the dominant hand rehabilitation for its dysfunction affecting the lives of the patients more severely. A foot pedal was placed under the non-dominant foot. Pedaling was required as soon as subjects successfully perceived the sense of embodiment. Auditory cues (lasting 0.5 s) were provided to guide subjects to complete the task.

The experimental session comprised six runs of continuous EEG recording. In each run, subjects performed 30 trials for a total of 180 trials and rested between two runs. In each trial, subjects were prompted to perform non-dominant hand motor tasks following the cue while NV, CV, and IV stimulations were randomly applied. The sequence of events in each trial was illustrated in Figure 2. At −5 s (the start of each trial), auditory cue (“ready”) was provided to indicate the ready phase, during which subjects needed to concentrate and prepare to conduct the subsequent motor task. At 0 s, auditory cue (“go”) appeared, which indicated the beginning of the motor task. Subjects performed the motor task for 10 s and pedaled if the sense of embodiment was experienced. Each run contained 10 trials of NV, CV, and IV, respectively, and in random order. Each type of vibration stimulation lasted for 10 s. At 10 s, auditory cue (“rest”) appeared indicating the 5-s rest phase.


[image: Figure 2]
FIGURE 2. Experimental paradigm and sequence of events in each trial.




Behavioral Measurements

Latency time (LT), which was defined as the period between the beginning of each trial of a motor task and when the pedal was tapped during that trial, was calculated to evaluate the ability of the investigated three experiment conditions to induce the embodiment perception. All the trials would be included in the computation of LT except for those where the subject did not pedal. For each subject, there were 24.2 out of 180 trials (13.4%) without pedaling, of which 10.1 trials were in NV, 7 trials were in CV and 7.1 trials were in IV.

Moreover, to assess the experience of mirror illusion and to evaluate the effects of three conditions on the perception of embodiment, the embodiment questionnaire (EQ) was completed by each participant after the experiment. The experience of embodying the mirror reflection, as one type of perception of altered ownership, was evaluated using a modified EQ based on previous studies (Botvinick et al., 1998; Longo et al., 2008; Wittkopf et al., 2017). EQ contained the location of a body part (L-1 “It feels as if my hand is in the same location as the reflection of the hand,” L-2 “It seems like the reflection of the hand is in the location where my hand is”), ownership of the reflection (O-1 “It feels like I am looking directly at my hand rather than at a reflection of the hand,” 0–2 “It feels as if the reflection of the hand is part of my body”), agency of the reflection (A-1 “It feels as if I could move the reflection of the hand without having to move my dominant hand,” A-2 “It seems that if I move my dominant hand, the reflection of the hand will move too”), and deafference (D-1 “It feels like I cannot tell where my dominant hand is,” D-2 “My dominant hand feels unusual”). Subjects were required to rate each statement for three different types of stimulation in random order using an 11-item Likert scale. “−5” represented “strongly disagree” with the statement, and “+5” indicated “strongly agree.”



EEG Recording and Preprocessing

EEG signals were recorded using a 32-channel wireless EEG system (g.Nautilus, g.tec, Austria). Electrodes were placed according to the extended 10/20 system. The reference electrode was located on the right earlobe, and the ground electrode was located on the forehead. A hardware notch filter at 60 Hz was used, and signals were digitally sampled at 250 Hz. EEG signals of all subjects were fully checked to confirm the stability before and during the experiment.

EEG data were corrected before the analysis of event-related spectral perturbations (ERSP) or event-related desynchronization/synchronization (ERD/ERS). The signals were first inspected visually and the trials with the artifacts such as large drifts and electrode spikes were removed. After that, independent component analysis (ICA) was employed on the remaining trials to remove the artifacts from eye movements, blinks, muscle activities, etc. The average number of trials removed for artifacts was 20.1 out of 180 trials (11.1%), and the average independent components (ICs) removed per subject was 6.6.

The affected side of the patients in the clinic is possible for both the left and right sides. As such, both left-handed and right-handed subjects were recruited in this study for the potential clinical application in the future. For the consistency of the analysis, the EEG data from the subjects who were left-handed were flipped, such that channel C4 was defined as the non-dominant side (active), and channel C3 was defined as the dominant side (static). The first 4 s data of embodiment elicited was analyzed. The average number of trials where the embodiment perception was induced but <4 s after artifacts removal was 28.7 out of 180 trials (15.9%) per subject, of which NV, CV, and IV were 11.9, 8.4, and 8.3, respectively. The remaining number of trials was 110.9 per subject, of which NV, CV, and IV were 33.1, 39.2, and 38.6, respectively.


Event-Related Spectral Perturbations (ERSP)

ERSP visualizes the change of spectral power relative to the baseline. In this study, the resulting ERSP visualized the cortical responses of the left and right hemispheres to the embodiment of reflected hand in the mirror. The baseline interval was taken from −0.9 to −0.1 s, which was prior to the onset of the motor task lasting for 0.8 s. Before the spectral transformation, the small-Laplacian filter was applied to the preprocessed EEG data to accentuate the localized activities and increase the signal-noise ratio. A 0.8-s long sliding window was applied to segment the first 4 s data of embodiment during MVF. The step was 0.004 s. Fourier transform was conducted on each segment, and the spectra were normalized by dividing by their respective mean baseline spectra. The normalized spectral amplitude was log transformed (20log10) to represent power decreasing with negative values and increasing with positive values compared to the baseline. In this study, the ERSP at Channels of C3 and C4 were calculated, respectively.



Event-Related Desynchronization/Synchronization (ERD/ERS)

ERD/ERS displayed the cortical rhythm amplitude suppression or enhancement of brain regions with respect to a baseline reference. In this study, both the alpha (8–13 Hz) and beta (13–26 Hz) frequency bands were investigated. Same as the ERSP calculation, the small-Laplacian filter was applied to the preprocessed EEG data. The baseline reference interval was from −0.9 to −0.1 s. For the calculation of ERD/ERS, the data was first bandpass filtered, i.e., 8–13 and 13–26 Hz for the alpha and beta frequency band, respectively. A 0.8 s sliding window was used to segment the data. The step was 0.004 s. The amplitude of the samples within the window was squared and averaged. The ERD/ERS value was obtained by dividing by their baseline value after subtracting the baseline. In order to investigate the alterations of hand area activities, we calculated the ERD/ERS of Channel C3 and C4 over the embodiment period, respectively. Moreover, the ERD/ERS topography was also displayed to explore the underlying neural alterations among the three conditions.



Network Analysis

Network analysis reflected the efficiency of neural communication (Rubinov and Sporns, 2010). For the construction of an EEG network, in this study, the nodes of the network were the recording electrodes of EEG data and the weight of the connection between two nodes was the phase lag index (PLI) of the two EEG signals (Stam et al., 2007). The network sparsity was the ratio of the number of existing connections to all possible connections. The sparsity from 0.1 to 0.2 with an interval of 0.02 was studied to decrease the false positives from the uncertainty of the weak link. Two commonly used metrics, weighted clustering coefficient (wCC), and weighted shortest path length (wsPL), were employed to quantify the properties of an EEG network in this study. Same as ERD/ERS analysis, the alpha-beta frequency band (8–26 Hz) was studied. The wCC measured the local efficiency of network communication, and the wsPL measured the global efficiency of a network. The details of calculating the two metrics were described in Wang et al. (2010) and Holmes et al. (2004).




Statistical Analysis

The underlying model assumptions were thoroughly checked by the Shapiro-Wilk's test for normality of distribution, and the Levene's test for the homogeneity of variances. Separate one-way analysis of variance (ANOVA) was conducted with LT, ERSP, and ERD/ERS value as response variables, respectively. The three conditions (NV, CV, and IV) were the three levels of the single factor (stimulation methods), and the subject was regarded as a random factor. The null hypothesis was these three conditions did not have a significant effect on the values of the LT, as well as the change of brain regions (ERSP and ERD/ERS). Post-hoc comparisons were performed with a Bonferroni correction. The Friedman test was used to test the effects of three different conditions on embodiment perception from EQ results. The data of EQ were then further analyzed post-hoc using the Wilcoxon signed-rank test with Bonferroni adjustment. The significant level was set at 0.05 with a two-sided test.




RESULTS

All the subjects experienced a moderate to a strong sense of embodiment and most of them preferred IV and demonstrated stronger embodiment within IV than the other two conditions.


Latency Time

The LT under the three conditions was 4.4 ± 2.0, 3.7 ± 2.0, and 3.6 ± 2.1 s for NV, CV, and IV, respectively. Statistical analysis showed that the LT of NV was significantly longer than that of CV and IV (CV vs. NV, p < 0.01; IV vs. NV, p < 0.01). However, there was no significant difference in LT between CV and IV (p > 0.05).



Event-Related Spectral Perturbation (ERSP)

The ERSP of the three conditions at C3 and C4 channels is shown in Figure 3. The desynchronization was observed in the alpha-beta frequency band (8–26 Hz) over the entire embodiment period. At channel C4, which corresponded to the non-dominant hand (active), the desynchronization was observed centering in the high-alpha (10–15 Hz) for all the three conditions, as expected. Interestingly, at channel C3, which corresponded to the dominant hand (static), the desynchronization was centered in two frequency bands, the high-alpha and high-beta (22–26 Hz) for the condition of CV and IV. Moreover, the desynchronization was more pronounced in high-alpha than in high-beta. For the condition of NV, the prominent desynchronization at C3 was only observed in the high-alpha frequency band. The statistical test showed that there were significant differences among the three conditions (p < 0.001) at C3. Post-hoc comparisons indicated that under the condition of CV and IV, the power of C3 in the high-alpha and high-beta frequency band was significantly lower than NV. Moreover, this tendency existed over the entire embodiment period. No consistent difference was found between CV and IV. For channel C4, there was no consistent significant difference among three conditions.


[image: Figure 3]
FIGURE 3. Changes of ERSP over embodiment experience for corrected channel C3 and C4 under the three conditions. The ERSP values were averaged across subjects. The bottom row showed the map for the statistical tests (p-value for the post-hoc comparisons). There were two discriminative power patterns at C3 in the range from around 10–15 Hz and 22–26 Hz in C3 under CV and IV conditions. C3 represented the dominant hand area and C4 represented the non-dominant hand area. NV, no vibration; CV, continuous vibration; IV, intermittent vibration.




Event-Related Desynchronization/Synchronization (ERD/ERS)

Figure 4 showed the ERD/ERS in alpha (8–13 Hz) and beta (13–26 Hz) frequency band over the embodiment period under the three conditions. ERD (power decrease with respect to baseline) was observed at channel C3 and C4 for both frequency bands of all the three conditions. For the alpha band, at C3, there was an ~30% power reduction compared to baseline under the NV condition, while the reduction was ~40% under the condition of CV and IV. At C4, the power reduction of all the three conditions was similar, around 40%. For the beta band, at C3, the power reduction of NV was ~22%, which was slightly higher than that of CV and IV. At C4, the power reduction of the three conditions was around 25%. Statistical analysis showed that the consistent significant difference between the experimental condition (CV and IV) and the control condition (NV) was only observed in the alpha band of C3, where the ERD of CV and IV was significantly stronger than that of NV over a large portion of the embodiment period (p < 0.05), approximately from the beginning to 2 s. In the beta band of C3, there were short periods lasting around 0.2 s when the ERD of CV and IV was significantly stronger than that of NV. For the comparison between CV and IV, no significant difference was observed in either frequency bands and channels.


[image: Figure 4]
FIGURE 4. Changes of ERD/ERS in alpha (8–13 Hz) and beta (13–26 Hz) band over embodiment experience for corrected channel C3 and C4 under three conditions. The shading area around the dashed line indicated the averaged ERS/ERS ± SD. The values were averaged across subjects. The second and fourth row demonstrated the post-hoc comparison for the statistical tests (p-value). The value of NV in the alpha band was significantly higher than the values of CV and IV at C3. C3 represented the dominant hand area and C4 represented the non-dominant hand area. NV, no vibration; CV, continuous vibration; IV, intermittent vibration.


In order to investigate the space-varying power alterations in different brain areas, the distribution of ERD/ERS value among the 32 electrodes were displayed in Figure 5 for both alpha and beta frequency bands. In the alpha band, ERD centering around the region at C3 and C4 was observed for all conditions. The desynchronization in the central-frontal region (C3 and F3) of the left hemisphere under the condition of CV and IV was more prominent than NV, where the difference was significant (p < 0.05). ERD around the parietal-occipital region (PO4, OZ) was also observed under the condition of NV and CV, while the desynchronization of IV in this area was slightly weak. In the beta band, the ERD was observed in similar regions, but weak compared to the alpha band. The desynchronization of CV and IV around the central region (C3) of the left hemisphere was significantly pronounced compared to that of NV (p<0.05). In addition, the desynchronization of IV was significantly pronounced around the right central (C4) and frontal-central region (FC2) compared to NV and CV, respectively (p < 0.05). In the parietal-occipital region, the ERD was not strong compared to that of the alpha band. The desynchronization was relatively strong under the condition of NV and CV compared to IV, especially at Pz.


[image: Figure 5]
FIGURE 5. ERD/ERS topography in alpha (8–13 Hz) and beta (13–26 Hz) band averaged over embodiment experience for three conditions. The values were averaged across subjects. The second and fourth row showed the post hoc comparisons for the statistical test (p-value). NV, no vibration; CV, continuous vibration; IV, intermittent vibration.




Network Analysis

The wCC and wsPL with different sparsities were displayed in Figure 6. The difference among the three conditions was small. The wCC and wsPL values of CV were slightly higher and lower than that of the other two at the same sparsity, respectively. However, they were not significant in statistics. The instant effect of MVF and the transient embodiment perception alteration might be one possible reason.


[image: Figure 6]
FIGURE 6. Comparison of the weighted clustering coefficient (wCC) and weighted shortest path length (wsPL) under three conditions: no vibration (NV), continuous vibration (CV), intermittent vibration (IV).




Embodiment Questionnaire

The results of EQ were displayed in Figure 7. Friedman test among the three conditions showed that there were significant differences in statements on location, ownership, and the first statement of agency (p < 0.05: L-1, L-2, O-1, O-2, and A-1; p < 0.001: O-1). Post-hoc analyses suggested that significantly higher scores of statements for IV compared to NV were found on L-1, L-2, O-1, O-2, and A-1. Higher scores of statements for CV compared to NV were found on L-2, O-1, and O-2. However, no significant difference in the scores of EQ was obtained between CV and IV.


[image: Figure 7]
FIGURE 7. Results of Friedman test on the experience of embodiment among the three conditions. L-1, L-2: the two statements related to the location of a body part; O-1, O-2: the two statements related to ownership; A-1, A-2: the two statements related to agency; D-1, D-2: the two statements related to difference. NV, no vibration; CV, continuous vibration; IV, intermittent vibration. *p < 0.05.





DISCUSSION

This study provides tentative evidence that MVF, when combined with vibrotactile stimulation (both continuous and intermittent stimulation), could enhance the perception of embodiment in healthy subjects. Moreover, according to the best knowledge of the authors, this study is the first to investigate the relating alterations of cortical activities. The results indicated that the integration of these two sensory inputs could strengthen embodiment experience with motor cortical activation increasing.


Enhancement of Embodiment

Mirror visual feedback could make subjects embody the reflected hand in the mirror via visual inputs only or combining with proprioceptive feedback to promote the sense of embodiment (Ramachandran et al., 1995; Altschuler et al., 1999; Holmes et al., 2004; Wittkopf et al., 2017). Tendon vibrotactile stimulation could evoke kinesthesia illusion and was employed in our previous study to strengthen proprioceptive feedback (Yao et al., 2015). In the present study, we found that combining MVF with vibrotactile stimulation could better reduce the induction time of embodiment and strengthen the degree of subjective experience, comparing with pure MVF. According to our previous study, vibrotactile stimulation could strengthen proprioceptive feedback and provide tactile input. Thus, one possible interpretation might be the combination of motor task and tendon vibrotactile stimulation induced kinesthesia illusion strengthens proprioceptive feedback and contributes to enhance the sense of embodiment, comparing to pure motor task in MVF.

Another potential interpretation might be the interactions of referred sensations evoked by MVF. Medina et al. suggested that multisensory integration using MVF could promote the subjective embodiment experience (Medina et al., 2015). Our previous study also showed facial MVF with enunciation task, where three sensory modalities interacted, could facilitate facial embodiment (Ding et al., 2020). Besides, EEG and fMRI studies reported that referred sensations could activate the somatosensory cortex (Taylor-Clarke et al., 2002; Schaefer et al., 2009). Thus, the interaction of referred vibrotactile and proprioceptive stimuluses, and visual feedback might be another potential interpretation for the enhancement of embodiment with the combination of MVF and vibration. Embodiment is recognized as one determinant of the efficacy of mirror therapy, which might influence the treatment outcomes [33]. Our findings, which showed the enhancement of embodiment by combining MVF and vibrotactile stimulation, might contribute to developing a more effective MVF training protocol in the future. This inference is supported by the results of Lin et al., a similar study (Lin et al., 2014). They reported that the combination of afferent stimulation of hand and MVF could reduce motor impairment of the upper limb and improve daily function, especially for manual dexterity in patients with stroke. Moreover, referred sensations induced by MVF and tactile stimulation involve the activities of the somatosensory cortex, which might also facilitate rehabilitation (Schaefer et al., 2006).

Our study demonstrated that both continuous and intermittent vibration could enhance embodiment experience and there was no significant difference in the effect between these two stimulations. However, higher scores of EQ were obtained when subjects received IV rather than NV, which suggested a trend of enhancement in the embodiment under the condition of IV. According to the feedbacks from subjects, IV provided tactile stimulation and acted as a metronome in the experiment providing vibratory cue, which might prolong the sensory perception and strengthen subjective embodiment experience.



Alterations of Brain Activities

The alpha band rhythms demonstrated ERD in memory and movement tasks (Pfurtscheller and Lopes Da Silva, 1999). High alpha desynchronization, also named mu-rhythm suppression, occurred in the sensorimotor related regions when performing goal-oriented exercise or observation (Bae et al., 2012). In our present study, ERD, as well as ERSP, revealed the desynchronization of the high alpha band in the dominant hand area under MVF. The desynchronization was significantly strengthened when combined with vibration. These findings provided electrophysiological evidence for the capability of vibrotactile stimulation in facilitating motor cortical activity, which might contribute to motor recovery in patients with stroke. In the beta band, the ERD of the two vibration conditions was stronger than the pure MVF in some short periods. It is reported that a beta ERD localized close to hand areas occurred when there was motor imagery of hand movement (Pfurtscheller et al., 1997). Moreover, Dockstader et al. demonstrated that selective attention to somatosensory stimulation could strengthen beta ERD in the primary somatosensory cortex (Dockstader et al., 2010). This might be one possible interpretation of our findings in the study, where subjects received vibration stimulation and were required to imagine their dominant hand moving while watching the reflected non-dominant hand.

Comparing to pure MVF, a stronger sense of embodiment was obtained when the subjects received vibrotactile stimulation in our study, and meanwhile more prominent motor cortex activation was observed. As a visual input based priming technique, MVF presented the ability to upregulate the activity of the motor system, visual cortex, and intercortical circuitries, which revealed the benefits for motor recovery (Wasaka and Kakigi, 2012; Mehnert et al., 2013; Franz et al., 2016; Inagaki et al., 2019). Moreover, some studies on MVF demonstrate increased activity in the posterior parietal cortex (especially for precuneus), dorsolateral prefrontal cortex, and insula (Fink et al., 1999; Dohle et al., 2011; Wasaka and Kakigi, 2012). Those brain regions play a prominent role in the sense of body ownership and bodily self-awareness (Tsakiris et al., 2007; Farrer et al., 2008; Karnath and Baier, 2010). Besides, the activities of the posterior insula and frontal operculum were thought to be related to body ownership in RHI (Tsakiris et al., 2007). In the present study, the ERD/ERS topography showed significantly pronounced desynchronization around the central-frontal region in the alpha band under the condition of IV and CV. We inferred that the enhancement of embodiment with increases in the activities of the motor region might be the result of the mediation of ownership related brain regions. However, as a limitation of the present channel-based EEG study, each node was assumed to represent the underlying brain region activation (Rubinov and Sporns, 2010). Thus, in the future study, other methods, such as fMRI, should be adopted to justify the relationship between cortical activation and embodiment experience and to show the potential mechanism of neural modulation.

The ERD/ERS topography also indicated an ERD localized around the parietal-occipital region when the subjects received NV and CV, especially in the alpha band. According to an fMRI study, supplementary activation was found in visual areas during MVF (Matthys et al., 2009). Our previous study also showed that after the intervention of MVF, an increase in communication efficiency was found in the visual area in stroke patients (Ding et al., 2019a). These might suggest visual inputs as a crucial basis for this approach. However, under the condition of IV, the ERD around parietal-occipital areas was not comparable with NV and CV, which was similar to the investigation of Yao et al. (2018). As suggested by Yao's finding, we inferred that the IV played a role as a vibratory cue in our study, which induced the somatosensory attentional orientation and influenced the desynchronization over the parietal-occipital region (Yao et al., 2018). Thus, we speculated there was another neural modulation pattern during IV which cognition accounted for.



Limitation

As a pilot study, we focused on the period after inducing the embodiment, proving the effectiveness of the vibrotactile stimulation on enhancing the embodiment perception. The cortical activities from the beginning of the motor task to the acquirement of embodiment was not analyzed here due to a small number of subjects and the difference of latency time in subjects. A long-term follow-up study with a large sample size might contribute to explore the cortical alterations from the perspective of network connectivity. Moreover, the transition period will be investigated in future studies through subgrouping subjects with latency time.




CONCLUSION

This study investigated the effect of combining MVF and vibrotactile stimulation on the perception of embodiment in healthy subjects. Moreover, we firstly used EEG to explore the related alterations of cortical activities. Our results revealed that MVF combined with vibrotactile stimulation had the ability to strengthen the perception of embodiment and promote motor cortical activities. Besides, this study provided an evidence-based protocol of MVF training, which might be applied to facilitate the recovery of patients with stroke.
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Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure—AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure—LP) or 1.3 times the systolic pressure (higher pressure—HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction—MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography—HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain—for the torque, and average RMS, median frequency and average muscle fibres conduction velocity—for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5–15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.

Keywords: blood flow restriction, temporary ischaemia, HDEMG, motor control, somatosensory integration


1. INTRODUCTION

The term blood flow restriction (BFR) refers to the practice of (temporarily) decreasing or interrupting the blood flow by the application of tight bandages or wrapping devices (Abe et al., 2012). The lack of blood circulation has profound metabolic and neural consequences. They are often exploited for training purposes (Loenneke et al., 2012b) and represent an elegant model to study of human neuromechanics. BFR causes alterations in different afferent channels (Mauritz and Dietz, 1980), it can be used for investigating human somatosensory integration mechanisms in healthy individuals, by means of transitory and reversible perturbations.

BFR has been used to train strength and induce hypertrophy, showing that loads as low as 30% of the maximal 1-repetition maximum (1RM) weight (Abe et al., 2012; Loenneke et al., 2012a; Yanagisawa and Sanomura, 2017), were as effective as 70% 1RM loads without BFR. While maintaining the training effect, blood flow restriction also showed reduced signs of exercise-induced tissue damage (Thiebaud et al., 2013). In force of its high effectiveness and general safety, BFR has been used to train cohorts of healthy individuals and stroke survivors (Murphy et al., 2019), as well as elderly populations suffering from muscle atrophy (Hughes et al., 2017). The chronic effects on force and muscle hypertophy of BFR-based training are relatively well-understood, as a conspicuous body of literature is present. In brief, it has been reported that BFR causes a quick depletion and a slow replacement of the locally available energy resources (e.g., phosphocreatine) and oxygen, together with an increase of catabolites and H+ ions (Yanagisawa and Sanomura, 2017). Metabolic stress and cell swelling are among the most prominent growth factors during BFR exercise (Loenneke et al., 2012b). It has been shown that this can trigger an increase in muscle protein synthesis as early as 3 h after a single bout of exercise (Fujita et al., 2007; Fry et al., 2010; Gundermann et al., 2012).

Despite the abundance of studies on chronic effects of BFR, its acute neural consequences have received relatively little attention. Yasuda et al. (2013) and Yasuda et al. (2014) reported that BFR causes an immediate increase in muscular activation, and that the effects tend to cumulate with either continuous or intermittent restriction. Other authors (Manini and Clark, 2009; Loenneke et al., 2012b) reported that the alteration of the peripheral environment during BFR may cause type I muscle fibres to fatigue faster than in control conditions and that, with the aim of maintaining the mechanical output unaltered, type II muscle fibres are preferentially recruited. The latter aspect, however, was never explicitly tested during BFR. Other authors report that the reduced force production of the muscle fibres during BFR-induced hypoxic conditions, may be linked to an increase in type III and IV (Manini and Clark, 2009) and a decrease in type I and II (Grey et al., 2001) afferent volley.

High-density Electromyography (HDEMG) and torque measurements allow to investigate the electrical and mechanical activity of a given anatomical district. From EMG, it is possible to estimate the overall activity of the motor neuron (MN) pool of a muscle, both in the temporal (root mean square, RMS) and spectral domains, as well as infer the average muscle fibre conduction velocity (MFCV). The information contained in the spectrum of the EMG is traditionally represented by its mean or median value (MDF) (Merletti et al., 2004). An increase in RMS, MDF or MFCV is traditionally associated to an increase in recruitment and firing rate of the motor neurons. MFCV is specifically associated to the recruitment of larger, fast-twitch muscle fibres. A decrease in median frequency and conduction velocity is reported in case of peripheral fatigue (Merletti et al., 2004). On the other hand, the spectral components of the torque signal are associated with the effective neural drive, e.g., the δ-band, (<5 Hz, De Luca et al., 1982), and e.g., the α-band (5–15 Hz, Halliday and Redfearn, 1958; Lippold, 1970; Laine et al., 2013, 2014) to the somatosensory feedback to the muscle.

In this study, we evaluate the acute effects of (partial or complete) ischaemia on the neuromechanical output of young, healthy volunteers by determining the alterations in specific EMG features and torque output, caused by temporary BFR. In particular, classical multichannel surface EMG parameters will be sided by the analysis of the spectral components of the torque and by the estimation of the average muscle fibres conduction velocity.



2. MATERIALS AND METHODS


2.1. Participants

Healthy men and women aged 18–45 years were recruited based on a self-reported general state of good health, with no history of orthopaedic, cardiovascular or neurological conditions. Exclusion criteria were: recent (i.e., less than 6 months) injuries in the upper limb, presence of neurological diseases, hypertension, capillary frailty, deep veins thrombosis, haemophilia, or any disease correlated with altered (i.e., either reduced or increased) blood coagulation or in presence of pregnancy or suspicion of. Subjects using antidepressant, blood thinning/thickening or pain drugs were also excluded. In total, 12 healthy young individuals (29.83±4.15 years, 171.83±7.23 cm, 68.83±8.19 kg) were admitted to the study after signing an informed consent form. All the procedures complied with the Declaration of Helsinki and were authorized by the local Ethical Committee. The detailed anthropometrics of the subjects participating in this study are reported in Table 1.


Table 1. Participants anthropometrics table.
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2.2. Data Recording


2.2.1. Recorded Variables

Blood pressure (systolic and diastolic), elbow torque, and high-density electromyographic activity from the biceps brachii were recorded. Further, ratings of discomfort were quantified via a numerical scale rating (NSR, Williamson and Hoggart, 2005) ranging between 1 and 10. The subjects were instructed to associate 1 with “no discomfort at all” and 10 with “the worst imaginable discomfort”; data was reported verbally and recorded for each trial and condition immediately after the end of the contraction and prior to the deflation of the cuff. Data were then manually transferred to comma-separated files and electronically stored for further analyses.



2.2.2. Experimental Apparatus and Subject Positioning

Subjects were seated with a straight back on a chair and were instructed not to touch the back rest. Their right arm was placed in a custom-made aluminium rig (ALF, IMSB, University of Stuttgart, Stuttgart, Germany) whose sensing element was a 500 Nm flange-to-flange torque sensor (TR12, cct transducers, Turin, Italy). The height of the chair was adjusted so that a 90° angle for the elbow and for the abduction and flexion of the shoulder were obtained (see Figure 1). Finally, for the duration of the task, the wrist was restrained with inextensible belts (separated from the skin by a small foam cushion for comfort) to maintain it between pronation and supination. The length of the lever arm was noted down and checked for consistency at the beginning of each task. After the subject was positioned and restrained and prior to the beginning of each recording, a gravity compensation was performed by resetting the offset of the force amplifier.


[image: Figure 1]
FIGURE 1. Experimental setup. The subject placed their right arm in the ALF apparatus (A) and were secured with an inextensible strap, softened by a foam cushion (B). On the left it is possible to observe the visual feedback screen (C). The HDEMG array was placed underneath the blood pressure cuff (only the pre-amplifier is visible in the picture, (D).




2.2.3. Recording Hardware and Software

Torque data was amplified (FORZA, OTBioelettronica, Turin, Italy; gain : 1,000 V/V). Torque and electromygraphic data were recorded by means of an EMG amplifier (QUATTROCENTO, OTBioelettronica, Turin, Italy; gain: 150 V/V, A/D depth: 16 bits per sample, sampling frequency: 2,048 samples per second, analog inputs: DC coupled, EMG: band-pass filter: 10–900 Hz, 8th-order Bessel filter) (Hermens et al., 2000). Data were recorded via a proprietary recording software (OTBiolab V.2.06, OTBioelettronica, Turin, Italy) and post-processed via custom written software in Matlab (2016b, the Mathworks, Natick, Massachusetts). Normalized torque values were displayed to the subject (visual feedback) on a computer screen (13 inches, 60 Hz refresh rate) which was placed roughly 1.2 m away from the subjects, in their line of sight.



2.2.4. Subject Preparation

Subjects' skin was gently abraded (Everi Skin Preparation Gel, Spes Medica, Genova, Italy) and cleaned with alcohol (Kodan Tinktur forte, Schülke & Mayr, Norderstedt, Germany). A 64-channels square-shaped EMG matrix (ELSCH064NM3, OTBioelettronica, Turin, Italy) with 10mm inter-electrode distance was placed such that the center of the array would fall approximately at 1/3 of the distance between the acromion and the fossa cubit. The rows of channels were aligned with the estimated direction of the muscle fibres, following SENIAM recommendations (Hermens et al., 2000). The array was fixed with surgical tape (Fixomull Stretch, BSN Medical GmbH, Hamburg, Germany). Prior to placement, the holes of the array foam were filled with dense electro-conductive gel (AC CREAM250V-3, Spes Medica, Genova, Italy). Reference electrodes were placed on the medial epicondyle of the right elbow (local reference for the EMG preamplifier) and on the right acromion (reference for main amplifier). HDEMG data was recorded in referenced monopolar mode.




2.3. Experimental Tasks


2.3.1. Experimental Protocol

Prior to the beginning of the measurements, the subjects were instructed about the scopes and procedures of the experiment. After a first blood pressure measurement the scientists prepared the subject for HDEMG and adjusted the apparatus. At this point a second blood pressure measurement was taken, the values retained, and the LP and HP levels computed. After a visual assessment of EMG signal quality, the subjects were given a few minutes to familiarize with the experimental apparatus and the visual feedback, then the measurements started.



2.3.2. Blood Pressure Measurement

The blood pressure measurement was performed via an analog sphygmomanometer and cuff (boso classic, Bosch + Sohn, Jungingen, Germany) and a stethoscope (bososcope cardio, Bosch + Sohn, Jungingen, Germany) by an experienced operator. The measurement was always performed by the same researcher for one subject and was repeated twice: the first time after the signature of the informed consent, the second prior to the beginning of the tasks. During the blood pressure measurement, the subjects sat on the experimental chair, with their arm in the same position as in the experiment. The first measurement served the purpose of familiarizing the subjects with the blood pressure measurement procedure, and to avoid “white coat syndrome” phenomena (Pickering et al., 1988). The second measurement was used to determine the levels of pressure for the experiment.



2.3.3. Torque Measurement

The maximal voluntary contraction (MVC) was recorded three times; repetitions were separated by at least 3 min, when the subjects were allowed to rest. During this time, they were disengaged from the experimental apparatus. Subjects were requested to reach their maximal force in around 3 s and to maintain it for 2–4 s, under verbal encouragement. Out of the three trials the global maximum value of the low-pass filtered force (4th-order Butterworth filter, 30 Hz cut-off frequency) was retained and used for normalization.



2.3.4. Experimental Conditions

Three levels of force and three levels of cuff pressure were investigated, the variables were randomly picked to define the 9 experimental test cases for the subject. The force levels investigated were 15, 30 and 50% of the MVC, and the pressure levels determined as: atmospheric (AP—cuff deflated and valve open), low (LP—the average value between systolic and diastolic pressure) and high pressure (HP—1.3 times the systolic pressure).



2.3.5. Execution of the Experimental Protocol

For each of the 9 investigated cases, the desired level of pressure was applied and maintained, then the recording started. During the AP condition the sphygmomanometer was inflated while the valve was left open in pretence, for blinding. After 30 s of baseline, the subjects flexed their elbow with the prescribed level of torque while following a straight ramp (lasting 15 s) being presented on the visual feedback monitor. After the ramp, they were asked to hold the same torque for another 15 s. Then, they rested for 120 s with the cuff inflated. The contraction was repeated three times (reported, from now on, as “trials”—T1, T2, and T3). At the end of the hold phase, the subjects were asked to report their level of discomfort. Throughout the resting phases, the external pressure was constantly adjusted to maintain the desired level. After the end of T3, the cuff was deflated and the subjects released from the constrains. Each condition was separated by a resting period of 10 min or more, to wash out the effects of BFR. During the recovery phase, the arm of the subjects was released from the constrains, and the subjects allowed to rest, while seated. The experimental sequence is summarized in Figure 2.


[image: Figure 2]
FIGURE 2. Experimental protocol: the tasks consisted of 3 repetitions of a ramp and hold exercise. Each ramp lasted for 15 s, followed by a 15 s hold. Three levels of pressure and torque were randomized leading to a total of 9 experimental test cases.





2.4. Data Analysis


2.4.1. Data Segmentation

The central 13 seconds of the steady-state contraction were considered for further analysis. The torque and EMG data were processed in non-overlapping windows of 512 samples (250ms). Where appropriate, for each window one value per variable was computed.



2.4.2. Torque Data Processing

Torque data was low-pass filtered (10th-order Butterworth filter, with a 3 dB frequency of 30 Hz) and normalized with respect to the MVC value. The coefficient of variation (CoV) was computed to estimate the variability in the stationary segment of torque signal. The root mean square (RMS) of the torque was calculated for each window and stored for further analyses.

The low-pass filtered torque data was de-trended by removing its mean and transferred to the frequency domain, the latter being needed to carry out the spectral analyses. The p-Welch's power density spectrum (Welch, 1967) was estimated over non-overlapping windows. To improve spectral resolution, 20480 discrete Fourier transform points were obtained by zero-padding. Finally, a Hamming window of length 2048 (equal to the sampling frequency) was applied. The spectrum was estimated separately for each trial, condition (pressure and level of torque) and subject. A confidence interval of 95 percent was chosen (Rosenberg et al., 1989; Yavuz et al., 2015). The normalized power of the spectrum—calculated as power/sum(power)—was also computed.

Additionally, each spectrum was divided into two frequency bands (1–5 Hz, and 5–15 Hz, respectively). The first one (δ-band) is considered to reflect the common drive, the second (α-band) is associated with physiological tremor and somatosensory information (Myers et al., 2004; Dai et al., 2017). For both bands, the area under the curve (AUCδ and AUCα) was calculated with a numerical integration using a trapezoidal method with a uniform spacing. Lastly, for a direct comparison, the difference of both bands was calculated for each condition as in Equation (1).

[image: image]

Thereby, a and b are the limiting frequencies 1–5 and 5–15 Hz, respectively, and N is the number of discretization intervals (50 for the first, and 100 for the second band, respectively). The total AUC (AUCt) from 1 to 20 Hz was computed to estimate variability in torque within the frequency domain.



2.4.3. EMG Data Processing

For each trial and each subject a visual inspection of the EMG signal was performed and (a) remarkable spikes (compared with the surrounding samples), (b) strong power-line interference, (c) remarkably lower signal-to-noise ratio compared to their neighbors, (d) considerable offset (e) anomalous spectrum or e) clipping were marked and excluded from the analysis. EMG Data was then band-pass filtered (4th order Butterworth band-pass filter between 20 and 450 Hz, see Hermens et al., 2000) and a single differential was obtained along the muscle fibres. Finally, the RMS and median frequency (MDF) (see Merletti et al., 2004) values for each channel and one value (see below) of the average muscle fibres conduction velocity were computed. To estimate the average MFCV, double differential signals were obtained from single differential along the fibres, they were interpolated 16 times and, for each pair of signals the time delay value was estimated by means of a cross-correlation based algorithm (Farina and Merletti, 2004; Sbriccoli et al., 2009; Klotz et al., 2019). The final value of MFCV was chosen as the lowest value across those, whose normalized cross-correlation exceeded a threshold of 0.8. Torque and EMG RMS data were normalized with respect to the value obtained during MVC. MDF and MFCV data were not normalized.

To infer the adjustments of the central nervous system to the perturbation over time, each computed variable was fitted with a linear function whose intercept and slope were retained for further analysis (Falla et al., 2003). Finally, to test for changes in the variability of neuromechanical output, the coefficient of variation was calculated.



2.4.4. Statistical Analysis

For each variable and condition, data from all the subjects were pooled together and Shapiro–Wilk tests were applied to test for normality. As data were not normally distributed, a non-parametric test was used. Data were summarized using mean and standard deviation.

The influence of condition on the dependent variables was analyzed separately for each torque level using a Kruskal–Wallis rank-sum test. Post-hoc comparisons were performed by means of Dunn's test, with a Benjamini–Hochberg correction (alpha level set to 0.05/2). Despite the repeated nature of acquisitions, we considered the independent variables as inter-subject factors since they put subjects in different conditions. In particular, the 3 levels of the variable “trial” were considered diverse as the desired pressure level was maintained across T1, T2, and T3. The results were expected to produce differences between trials for each pressure level.





3. RESULTS


3.0.5. Subjects' Discomfort

Subjects reported an increasing level of discomfort at increasing pressure levels, torque, and time. Discomfort ranged, on average, from 1.5 ± 0.67 to 6.38 ± 2.2 (for 15% MVC at AP1, and 50% MVC at HP3, respectively); the results are detailed in Figure 3 and Table 2.


[image: Figure 3]
FIGURE 3. Subjects' reported discomfort. NSR is displayed as average and standard deviation across all the subjects for each condition and trial. It is possible to notice that the torque level had a relatively smaller effect on discomfort compared to the continuous application of blood flow restriction either partial (LP) or complete (HP). HP was responsible for the highest discomfort scores over time. It is important to notice that 4 subjects did not complete the last trial at 50%MVC HP, and they were asked to rate their discomfort at failure. Green asterisks ([image: image]) indicate statistical significance against AP1 for the same level of torque, green tilde ([image: image]) indicates significance against AP3, red section sign ([image: image]) against HP1, and the blue hash sign ([image: image]) against LP1 for and alpha level of 0.025).



Table 2. Reported discomfort.

[image: Table 2]

The reported levels of discomfort at the end of T1, for the same level of torque, did not increase with external pressure levels. They also did not change significantly across different levels of torque, although the trend shows higher values for LP and HP, compared to AP (NSR at T1, 15% MVC: AP 1.5 ± 0.67, LP 2.04 ± 1.32, HP 2.3 ± 1.71; 30% MVC: AP 1.98 ± 0.97, LP 2.41 ± 1.68, HP 2.61 ± 1.81; 50% MVC: AP 1.87 ± 1.17 LP 2.63 ± 1.74, HP 3.03 ± 1.54).

Over time, the discomfort increased significantly with the interaction of torque and pressure level. At 15% MVC, the discomfort was significantly greater than the baseline only for HP3, which differed from both AP1 and AP31. At 30% MVC, the effect was significant at T3 for both LP and HP2. At this level of torque, the NSR significantly increased between T1 and T3 at the highest level of pressure3. At 50% MVC, the discomfort was greater than the AP1 for both LP and HP, at both T2 and T3, but not at T14. At T3, the difference was also significant between AP and both LP and HP5, and for T1 and T3 for both LP and HP6.

One subject reported dizziness and light-headedness after the third trial at 50% MVC HP, however, they could continue with the experiment. No subjects reported pain or discomfort in the days following the procedures two subjects reported the appearance of petechiae.



3.0.6. Torque Output

The level of torque increased linearly according to the prescribed values (average and standard deviations across all subjects, trials and pressure levels: 14.7 ± 1.2%; 29.9 ± 1.6%; 49.1 ± 1.8% MVC). It is worth noting that 4 subjects failed at completing the last trial at 50% MVC; nevertheless, they were able to complete the experiment after the recovery. Torque output did not show any significant change in the time domain across different levels of pressure and trials for slope, intercept or CoV for any given level of torque. The only exception was the CoV at 15% MVC HP3, which was significantly greater than AP2 and AP37. For the same amount of torque, the CoV also increased between HP1 and HP38.

The power spectral density (PSD) of the torque at 15, 30, and 50% MVC, showed sensitivity to the level of external pressure over time (see Figure 4).


[image: Figure 4]
FIGURE 4. Normalized power spectral density for each condition. The third trial of the high pressure (HP) and torque level 50% is distinguishable decreased compared to the other conditions and trials. Furthermore, the error decreased clearly. Shaded areas showing the individual bandwidths from which the AUCα (dark) and AUCδ (light) were computed. The rows of the grid represent the pressure levels, whereas the columns are assigned to the different torque levels. The data is represented as average (solid line) and standard error (shade) across all the subjects for the three repetitions of the task. Trial 1 is represented in green, trial 2, in blue, and trial 3, in red. The dashed horizontal line depicts the 95% confidence level as a threshold indicating significance.


At 15% MVC, AUCα was in general below the confidence level for all the conditions. The AUCα and AUCδ did not change through the trials at 15% and 30% MVC . At 50% MVC, they also did not change for AP and LP conditions . Despite a tendency of decreasing in AUCα and increase AUCδ values at 50% MVC, no significant differences were observed throughout the trials. When the AUC values were compared across conditions (AP, LP and HP), we found that the power in the α-band for T1 was significantly higher in HP than for AP at 15% MVC9. Furthermore, in the last trial (T3), AUCα significantly decreased with increasing pressure at 50% MVC10. The power at δ-band, however, did not change under any conditions or trials. The mean AUC values and their standard error for each bandwidth are shown in Figure 5.


[image: Figure 5]
FIGURE 5. Area under the curve (AUC) the δ- (asterisks, dotted line) and α-band (diamonds, solid line). The columns represent the different torque levels. Within each level, the AUC for all three trials was calculated as the average with standard error. The power spectrum for the AUC has been normalized, previously. Whereas, the δ-band is decreasing for increasing torque levels, the α-band is increasing.


The AUCt increased gradually through HP trials at 15 and 30% MVC11. Analysis between conditions showed that the total computed area from the last trial was significantly lower in AP than in LP and HP12 conditions for 50% MVC. The results can be interpreted on the basis of strong correlation between the total power density area underneath the α- and δ- bands and by the variation in torque.



3.0.7. EMG

The energy associated to the EMG signal (RMS) increased over different levels of torque (about 2.5–3 times for 30% MVC and up to 6 times for 50% MVC) (Figure 6). The intercepts of the RMS showed significant differences at 15% MVC for both LP and HP, but did not change at the other levels of torque (AP 0.09 ± 0.03, LP 0.14 ± 0.04, HP 0.15 ± 0.04, average across T1, T2, and T3). At 15% MVC, all the AP levels were always lower than those at LP , except for AP1 (which only differed from LP313). Similarly, RMS intercept values in AP2 and AP3 trials were lower then those at HP ; AP1 value at 15% MVC, however, was not significantly smaller than HP1, but only than HP2 and HP314.


[image: Figure 6]
FIGURE 6. Normalized root mean square value for each condition. Rows represent different levels of pressure, columns, different levels of torque. The data is represented as average and standard error across all the subjects for the three repetitions of the task. Trial 1 is represented in green, trial 2, in blue, and trial 3, in red. Data is normalized with respect to the MVC value.


For the same level of torque, the RMS was relatively constant at 15 and 30% MVC and increased over time at 50% MVC (but only for AP). In particular the RMS showed a relatively more positive slope for AP, which was significantly greater than during HP for T2 and T315.

For all the investigated conditions, except for 15% MVC HP, the median frequency globally showed a (non-significant) increment of about 10% at the beginning of T1. The slope was negative for all the conditions and its inclination was proportional to the exerted level of torque. The median frequency showed similar levels of decay over time for each torque level and independent of the external pressure (Figure 7). The MDF intercept, however, changed over time for the most demanding condition (at 50% MVC HP1 = 59.3 ± 6.65 Hz, HP3 = 44.3 ± 10.78 Hz16). At T3, it also differed significantly between AP and HP (AP3 = 59.73 ± 6.3 Hz17).


[image: Figure 7]
FIGURE 7. EMG median frequency for each condition. The values represent the average of all included channels across the matrix. It is worth noting the decrement of the variable at 30% MVC for LP3 and at 50% MVC for both LP and HP respectively, starting from Trial 2. Rows represent different levels of pressure, columns, different levels of torque. The data is represented as average and standard error across all the subjects for the three repetitions of the task. Trial 1 is represented in green, trial 2, in blue, and trial 3, in red.


The average MFCV did not change significantly over different levels of pressure and torque (Figure 8). At T1, the intercept value increased with torque for 15, 30, and 50% MVC (3.78 ± 1.49 m/s, 4.27 ± 1.12 and 4.41 ± 0.87 m/s, respectively; average across all pressure levels); values decreased—although not significantly—at T3 for 30 and 50% MVC (3.9 ± 1.47, 3.84 ± 1.52 m/s, respectively). The slope of the MFCV curve was negative and showed a trend inversely proportional to the exerted torque, but did not change over time (i.e., the MFCV showed always comparable slopes for T1 to T3).


[image: Figure 8]
FIGURE 8. Average muscle fibres conduction velocity for each condition. It is possible to notice a decrease in the MFCV, which is most remarkable at trial 3 for 30 and 50% MVC for LP and for both LP and HP, respectively. Rows represent different levels of pressure, columns, different levels of torque. The data is represented as average and standard error across all the subjects for the three repetitions of the task. Trial 1 is represented in green, trial 2, in blue, and trial 3, in red.





4. DISCUSSION

In this study we administered temporary blood flow restriction to 12 young healthy adults during isometric elbow flexions at different torque levels. To our knowledge, this was the first study investigating the immediate and time-dependent effects of BFR on neuromechanical variables, measured during the occlusion, by using HDEMG. This was also the first study investigating the BFR-induced changes in muscle fibres conduction velocity over time.

We report that despite the discomfort effect of BFR being exacerbated by the level of exerted torque and cumulated over a period of about 8 min, the majority of the subjects complete the entire protocol and none of them reported short or long term consequences. Torque amplitude parameters did not show changes, although spectral parameters did. The EMG analyses results are generally comparable across pressure conditions with expected differences across levels of torque. Taken together, the results show a strong fatiguing effect due to BFR, and allow for some interesting speculations about the mechanisms that the central nervous system uses to cope with the perturbation. In particular, our experiments suggest that a compensation of the central drive may be necessary to maintain the mechanical output unchanged despite disturbances in the afferent volley to the motor neuron pool.

For each level of torque, at T1 the reported discomfort and all the other parameters investigated were similar across all the conditions. This result suggests that the administered recovery time (>10 min) was sufficient to wash out the metabolic and neural effects of BFR perturbation. BFR is considered a highly-tolerable and quickly reversible exercise protocol (Husmann et al., 2018), which at the same time show remarkable immediate and long-term effects (Loenneke et al., 2015). The level of discomfort during partial or complete ischaemic block increased over time and its development was dramatically exacerbated at higher levels of exerted torque. This finding is compatible with an increase in hypoxia and acidosis and a depletion of available anaerobic substrates (e.g., phosphocreatine), an expected effect of BFR previously shown by the direct measurements of pH and lactate (see, for example Loenneke et al., 2012b; Yanagisawa and Sanomura, 2017).

Despite the discomfort, the required torque output was maintained in all the conditions by almost all the participants. Although the temporal parameters of torque did not change, during the most challenging conditions, their spectra showed a non-statistically significant reduction in the magnitude of the α- (5 Hz to 15Hz) and an increase in the magnitude of the δ- (<5Hz) bands. While the α-band is normally associated with physiological tremor oscillation and is considered to be highly dependent on proprioceptive sensory feedback (Halliday and Redfearn, 1958; Lippold, 1970; Laine et al., 2013, 2014), the δ-band is associated with the effective neural drive to the muscles (see De Luca et al., 1982). The results on the torque spectra allow a two-fold speculation: first, that the reduction in the α-band may be linked with an increase in type III and IV afferent volley, whilst type I and II may be decreased and, second, that the increase in the δ-band may reflect an increased overall descending drive to the motor neuron pool. An increment in type III and IV afference during BFR is supported by a large body of literature (e.g., Amann et al., 2009; Manini and Clark, 2009; Blain and Hureau, 2017) and reinforced by the discomfort sensation reported by our subjects. The role of the mechanosensitive type III and IV muscle afferents has been identified as a neural link between the CNS-mediated decrease in motoneuronal output and the degree of peripheral fatigue (Amann et al., 2009; Blain and Hureau, 2017). Similarly, a decreased type I (and especially type Ia) and II afferent volley is acknowledged during BFR (e.g., Grey et al., 2001; Christakos et al., 2006; Erimaki and Christakos, 2008) and anecdotally confirmed by our subjects (some of which reported a “decrease in the muscle tremor” after a few minutes). It should be noted, however, that although a complete ischaemia of over 15 min is considered to be necessary to fully block large axons afferents, it is reasonable to hypothesize that type I and II afferent volley may have already started decreasing earlier. The increase in the δ-band is ultimately suggestive of a necessity, for the central nervous system, to supply a stronger descending volley -driven by the visual feedback- to contrast the reduced excitability of the motor neuron pool caused by the ischaemic block. High variability of the low-frequency component suggests an inaccurate neural control of force due to pain and discomfort (Farina et al., 2012), most likely induced by long-time HP accommodation.

The median frequency of the EMG signal showed an increment at lower levels of torque for the higher pressure levels. For all the conditions, the slope of the MDF was negative and inversely proportional to the exerted torque. The decay of MDF did not change with different levels of pressure, but its intercept was lower over trials at HP. Spectral compression is traditionally considered as a manifestation of fatigue (Merletti et al., 2004) since it is linked to changes, at least, in the shape of the motor unit action potential (MUAP).

Whether the changes in the MDF are to be addressed entirely to peripheral effects of the muscle fibres fatigue, or if an influence of the motor neuron activity would also be present, cannot be discerned directly with the present study. Previous works on motor unit decomposition in similar settings (Hyngstrom et al., 2018; Fatela et al., 2019), however, agree on a reduction of the recruitment threshold and an increase in firing rate of individual motor units after the administration of BFR, suggesting that at least some effect on the motor neuron pool is present.

The energy associated to the EMG signal (RMS) increased at lower levels of torque for the higher pressure conditions, but did not increase for the higher levels of torque. This phenomenon was already observed in literature: some authors report that the increase in muscular activation is more prominent for low (down to 10–30%MVC) contraction levels and lower level of restriction (Takarada et al., 2000; Loenneke et al., 2015; Ishizaka et al., 2019), and others that, for higher levels of contraction, the EMG amplitude either remained the same (Dankel et al., 2018) or even decreased (Teixeira et al., 2018).

Finally, the muscle fibres conduction velocity showed signs of decay with slopes inversely proportional to the exerted torque and an intercept that decreased (although not significantly) at T3 for 30% MVC LP, and at 30 and 50% MVC at HP. This result is in line with the EMG spectral parameters during BFR exercises and is suggestive of fatigue phenomena.

The reported results over EMG activity (i.e., RMS, and MDF) are in line with previous studies, indicating an increase of the EMG amplitude for lower but not for higher levels of exerted force. A widely accepted explanation for this phenomenon is the preferential recruitment of type II muscle fibres when the lack of oxygen and the acidification of the muscle tissue prevents slow-twitch fibres from contracting (Manini and Clark, 2009; Loenneke et al., 2012b). Our study, however, challenges this explanation by directly estimating the changes in muscle fibre conduction velocity over time and conditions. A reduction of active type I muscle fibres in favor of type II, for the same amount of exerted torque, would have resulted in an overall increase of the MFCV or, at least, in a relatively less negative coefficient of its slope. The latter, instead, always showed comparable values across levels of external pressure and over time. This result is compatible with peripheral manifestations of fatigue, and is corroborated by the negative slope of the spectral parameters. This result taken together with the aforementioned motor units studies, suggests that the main contributor in the increase of the EMG amplitude may be the increase in the motor units firing rate.

An increase in the descending neural drive is likely to cause plastic effects whose longer-term consequence (an increased excitability of the MN pool) translates in the well-documented increase in the voluntary muscle force, as well as in the reported effects at the motor unit level in healthy individuals and stroke patients (e.g., Hyngstrom et al., 2018). In support of this hypothesis, Merletti et al. (1984) reported that the instantaneous median frequency showed signs of supercompensation after ischaemic blocks, for times varying between 20 and 40 min. Those results, taken together, foster the idea that an increase of type III and IV afferences (Manini and Clark, 2009), together with a reduction of type I and II, causes a general inhibition of the motor neuron pool excitability, that is centrally compensated. This phenomenon is believed to be correlated with the release of neuromodulators (e.g., serotonin, norepinephrine) (Sharma et al., 2015) that increase the overall excitability of the MN pool (Taylor et al., 2016) over time. This systemic effect could explain the benefit of BFR on muscle groups that are not reached by the ischaemic block and is compatible with the absence of changes in agonist-antagonist coactivation reported during temporary ischaemia (Sousa et al., 2017).


4.0.8. Limitations

It should be noted that it is not possible, with the current setup, to conclusively determine the proportion between peripheral (muscle fibre) and more central (motor neuron) effects of BFR on the neuromechanical output. Both EMG and torque outputs depend—to the very least- on the activity of the lower motor neurons of the spinal cord, and that of muscle fibres. In absence of a punctual description of the muscle anatomy and/or an at least partial decomposition of the motor output, the results should be considered carefully.



4.0.9. Outlook

Further measurements are necessary to determine (a) the effects of BFR on the MUAP shape (which could shed a light on the local changes to the muscle fibres during this type of perturbations) and (b) the changes it causes to the MN pool excitability, on the target limb and other anatomical districts. The first could be explained by either an increase in the excitability of the MN pool and/or by a chemically-mediated neuromodulation, the latter by the neuromodulation theory only. Those studies may explain the neural mechanisms linked to the adaptation that follows chronic exposure.

A structured and systematic approach to further investigate and test some of the hypotheses postulated herein are the use of detailed, biophysical neuromuscular models (Röhrle et al., 2019). For this purpose, existing models of the sensory, motor, and support structures (e.g., Heidlauf et al., 2016; Klotz et al., 2019; Schmid et al., 2019) need to be extended by blood perfusion (e.g., Koch et al., 2020) and metabolic models. However, once extended, they can be utilized with continuum-mechanical multi-muscle musculoskeletal system frameworks, (e.g., Röhrle et al., 2017; Valentin et al., 2018), to provide powerful ways to study the mechanisms of organ- and organism-wide somatosensory integration. This way, one can systematically investigate which of small-scale processes affect the musculoskeletal system in which way, i.e., testing the proposed hypotheses—something that is hardly possible in this detailed fashion employing experiments. Nevertheless, experiments are necessary for parameter estimation and validation.

Finally, although more rigorous measurements and simulations may be required, it is tempting to speculate that torque spectral analysis may represent an intriguing metric for an objective (i.e., independent on subject perception) measurement of discomfort.




5. CONCLUSIONS

BFR causes an immediate depression of the spinal MN pool excitability (likely caused by a decrease of type I and II, and an increase of type III and IV afferences), as a response to metabolic perturbation.

The results suggest that (a) an increase in the corticospinal (common) drive is necessary to reach similar levels of mechanical output during the administration of BFR and, as a consequence, (b) that the repeated exposure to BFR training may decrease the recruitment threshold of the whole MN pool, providing a neural facilitation for the production of force.

Conclusive proof of the effects of BFR on the motor neuron pool activity, however, still requires further investigation.
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FOOTNOTES

1(AP1 vs. HP3, P = 0.017; AP3 vs. HP3, P = 0.009).

2(AP1 vs. LP3, P = 0.019; AP1 vs. HP3, P = 0.005).

3(HP1 vs. HP3, P = 0.002).

4(AP1 vs. LP2, P = 0.018; AP1 vs. LP3; P = 0.002; AP1 vs. HP2, P = 0.001; AP1 vs. HP3, P < 0.001, respectively).

5(AP3 vs. LP3, P = 0.008; AP3 vs. HP3, P < 0.001).

6(LP1 vs. LP3, P = 0.002; HP1 vs. HP3, P = 0.002).

7(P = 0.008 and P = 0.004, respectively).

8(P = 0.006).

9(P = 0.017).

10(HP3-AP3: P = 0.047, LP3-AP3: P = 0.009).

11(at 15% MVC, T1-T2: P = 0.048, T1-T3: P = 0.009; at 30% MVC, T1-T3: P = 0.048).

12(P = 0.009 and P = 0.047, respectively).

13(P = 0.015).

14(AP1 vs. HP2, P = 0.017; AP1 vs. HP3, P = 0.007).

15(AP2 vs. HP2, P = 0.006, AP3 vs. HP2, P = 0.02).

16P = 0.022.

17P = 0.021.
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Subject # TA (mean (SD) VL (mean(SD) GM (mean ( SD)

1 12.09 + 28.6 12.6 £19.0* —2.2+£39.0
2 78.1 £22.8* 65.3 + 32.5* 88.8" + 41.3"
3 48.1 £21.4* 40.2 £ 26.1* 64.3" + 17.2*
4 1465 + 44.5* 43.9 + 33.6* —158.0 + 34.5*
5 48.1 £ 23.4* 688+ 185" 61.4 +£10.6*
6 8234178 71.4 £18.4* 66.6 + 30.1*
7 —1.6+46.0 —22.5 +36.7 80.5 + 66.5*
8 14.4 £ 25.7* 43.3 + 33.0* 4784 154"
9 29.6 + 18.7* 36.0 +£20.8* 7754241
10 110.2 £ 21.3* 127.1 £ 38.7* 94.9 £+ 25.0*
Mean + SD across 56.3 £27.0 48.6 £27.2 42.2 £ 304
all subjects

Values are expressed in degrees (°) and report circular mean =+ circular
standard deviation. Statistically significant values are indicated with an asterisk
(p-value < 0.05 in the Watson-William parametric test). Only values from target
muscles are reported.
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NSR

Condition Trial 1 Trial 2 Trial 3

AP 15% MVC 1.5+ 0.67 1.46 £ 0.66 1.5+£048
AP 30% MVC 1.98 +0.97 223+1.48 237+1.71
AP 50% MVC 1.88£1.17 193091 214 £ 004
LP 15% MVC 204 £1.32 281+£2 3.16+226
LP 30% MVC 242 £1.69 3.11£204 3.96 £2.03
LP 50% MVC 263+1.75 3.69+2.05 45+2.13
HP 15% MVC 231 £1.72 3.08+23 3.64+225
HP 30% MVC 262 +1.81 358421 491+208
HP 50% MVC 2.87 £1.58 46211 6.38 2.2

Overview of the discomfort levels for different conditions. Data is represented as
average and standard deviation of the reported Numeric Scale Rating (range 1-10).
Rows, conditions; columns, trial number; AP, atmospheric pressure; LF, low pressure;
HP high pressure.
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Subj ID Sex Age (yrs) Weight (kg) Height (cm) Systolic pr. (nmHg) Diastolic pr. (nmHg) BMI (kg/m?)

S001 M 29 70 180 18 70 216
S002 F 25 58 166 130 0 21.05
S003 M 34 62 167 120 78 22.23
S004 F 28 72 160 118 78 28.13
S005 M 30 80 185 120 70 28.37
S006 M 34 5 168 126 86 26.57
S007 F 24 58 167 110 80 20.80
S008 B 27 60 168 120 80 21.26
S009 M 29 68 178 122 70 21.46
$010 M 27 74 176 122 74 23.89
So11 F 33 67 170 105 65 23.18
S012 M 38 82 177 120 80 26.17
Average 20.83 68.83 171.83 119.25 76.75 23.31
St. dev. 4.15 8.19 728 6.54 7.25 234

The values are reported for each participant and summarized as average and standard deviation. Columns: Subject identification code (Subj ID), sex (Male, Female), age (vears), weight
(kg), height (cm), systolic and Diastolic pressure (mmHg), body mass index (BM), kg/m?).
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D 1st
Parameters
FIM-Loco 2
FIM-Motor 78
FMA-LE 20
Muscle synergy symmetry 0.7847

RS Timing symmetry (full gait cycle) 0.4675
Timing symmetry (stance) 05462
Stance time ratio 0.8647
Number of synergies (paretic) 3
Number of synergies (non-paretic) 2
Stance percentage (%) (paretic) 7453

Stance percentage (%) (non-paretic)  74.35

FIM-Loco 2
FIM-Motor 68
FMA-LE 29
Muscle synergy symmetry 09444

RO Timing symmetry (full gait cycle) 09145
Timing symmetry (stance) 0.9190
Stance time ratio 0.9806
Number of synergies (paretic) 3
Number of synergies (non-paretic) 3
Stance percentage (%) (paretic) 7328

Stance percentage (%) (non-paretic)  73.93

4th

0.9184
0.6846
0.8110
09574

69.33
7268

0.9632
08172
0.8022
0.9843

3

3
71.26
72.42

Tth

0.8693
05643
0.7749
0.9408

64.91
69.15

0.9063
0.8277
0.8453
1.0272

3

3
72.56
71.90

9th

90
27
0.9043
0.7361
0.8013
09101

64.66
7023

82
30
0.9544
0.8788
0.8375
0.9667
3
3
68.36
7052

This table lists the results of patients who were excluded from analysis due to their FAC
improving to 3, between recruitment and the Tst therapy session.
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Changes in the number of synergies in the same limb after therapy are listed in brackets.
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D FIM- FIM-  FIM-Motor FIM-Motor FMA-LE FMA-LE
Locomotion Locomotion (General)  (General)  (Pre)  (Post)

(Pre) (Post) (Pre) (Post)
R1 1 3 a6 73 13 18
R2 1 5 0 82 19 26
R3 1 2 0 55 18 28
R4 2 7 52 77 2 29
R6 1 6 £ 8 21 2
R7 1 1 5 62 14 22
R8 1 5 50 65 17 20
R10 1 5 62 8 2 30
R11 1 1 60 72 14 20
Mean+SD 11203  39£22 521493 724£10 187£49242:44
ct 2 3 29 35 3 10
c2 3 5 E3 [ 12 24
c3 1 2 18 4 9 16
c4 1 1 54 76 2 25
cs 1 1 46 [ 9 18
c6 5 3 62 8 27 33
c7 3 5 67 7 29 33
cs 3 B 65 & 25 27
cs 1 6 50 87 25 34

Mean+SD 2214 88+20 495+165 682+ 17.7 181+09724.4+84

Patients with the “R" prefix belong to the HAL group, while patients with the “C" prefix
belong to the Control group.
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D Age (years)  Gender Diagnosis Affected Onset- eval for Onset-1st FAC at FAC at 1st

(side) eligibility (days)  session (days) recruit session
R1 67 F al L 8 10 1 1
R2 52 F ICH R 13 17 1 2
R3 ! F Cl L 7 11 1 1
R4 55 M al L 8 10 2 2
RS 55 F <] L 14 16 2 3
R6 43 M Cl R 8 1 1 2
R7 51 F cl R 15 18 2 2
R8 80 M Cl R 14 16 2 2
RO 61 F ICH L 8 12 2 3
R10 72 F ICH R 12 14 1 1
Ri1 56 M ICH R 15 18 1 1
Mean  SD 60.3%13.9 11.1£33 13932 15£05 18£08
Cc1 76 M ICH R 15 17 1 1
c2 69 F ICH L 9 14 1 2
c3 64 M ICH L 14 15 1 1
C4 49 M ICH R 16 18 1 -4
cs 69 F al L 10 17 1 2
C6 66 {2 Cl L 14 12 2 2
cr 73 M ICH R 10 16 2 2
cg 65 M a R 15 18 2 2
co 53 M al L 15 14 2 2
Mean  SD 649+88 184 £27 15.7 £2.1 1.4£05 18£04

Diagnosis was classified into Cerebral Infarction (Cl) and Intracerebral Hemorrhage (ICH). HAL patients were labeled with the “R" prefix in their IDs (R1-R11), while conventional therapy
patients were given the “C” prefix (C1-C9). Note that there is a difference of a few days between the evaluation for study eligibility and start of actual gait training.
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(A) TA VL GM

WA gre, W1 Fre_peLay 0.86 £+ 0.09 0.82 £0.13 0.77 £ 0.17
W2rrc,W2Frc_peLay 0.61 £0.24 0.77 £0.23 0.54 £0.22
W3rrc,W3rrc_peLay 0.85 +0.15 0.85 +0.13 0.78 £ 0.19
(B) TA VL GM

W ese/ W1 Fre_peray 0.88 + 0.08 0.86 +£0.14 0794017
W2rsc/W2rrc_pELAY 0.61 £0.26 0.73 £0.26 0.38 +£0.18
W3rsc/W3rrc_peLay 0.85 £0.16 0.84 £0.12 0.78 £ 0.19
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Subject 1 2 3 4 5 6 € 8 9 10 ALL

Feedback session TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM TA VL GM

Muscles TA + 0 + + 0 + 4+ + + + + 4+ + 4+ + 4+ + + 0 0 + 4+ + + + + + + - + + 0 +
VL + + 0 + 4+ 0 + + + + + 4+ + + - 4+ 4+ + 0 - 0 4+ 4+ 0O + + + + + + + + O
GM - 0 0 - 4+ 4+ 0 + + - + 4+ - - 4+ 4+ - + 0 -0 - - 4+ - 4+ + - - - - 0 +

For each subject, each column represents a specific feedback session, with the target muscles in the principal diagonal (in bold). The three symbols +, — or O indicate whether a specific muscle presents a positive,

negative or non-significant delay between POST-1 and PRE trial. The last column represents the result across subjects, in which subjects not achieving significant values (“0” mark in the individual subject box) were
excluded from the computation.
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Subject # TA (mean (SD) VL (mean(SD) GM (mean (SD)

1 1.74 + 1.03* 0.10 £0.31 0.22 + 0.31*
2 4.94 + 3.06" 0.16 +0.34* 0.82 +£ 0.61*
3 0.57 £+ 0.29* 1.81 £0.66* 2,15+ 0.83*
4 1.26 +0.76* 0.87 £0.38* s t2 4150
5 4.10 +£1.04* 1.10 £ 0.50* 3.86 + 0.95*
6 3.78 £ 1.18* 0.98 £ 0.47* 2864 1.21%
7 3.49 + 1.40* 0.30 + 0.25* 0.14 +0.80
8 2.29 +£0.97* 1.87 +£:0.52* 210 £ 0.91*
9 3.48 +1.03* 1.38 £0.67* 3.81 + 2.39*
10 2.95 + 0.75* 0.64 +£0.70* 2.89 + 1.54*
Mean + SD across 286 +1.15 0.87 £0.47 240+ 1.10
all subjects

Values indicate the difference in peak amplitude between the POST and PRE
trial, normalized with respect to the PRE trial mean amplitude (e.g., a value of
1 corresponds to a change in amplitude of 100%, meaning that the amplitude
of POST peaks populations was two times the mean amplitude of the PRE trial).
Statistically significant values are indicated with an asterisk (p-value < 0.05 in the
t-test). Only values from target muscles are reported.
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Task

Name

Napkin

Table

Water

Food

Description

A napkin is placed on the middle shef,
unfolded. Take it, bring it to the dining table,
and fold it twice.

A plate and a glass are laid out next to each
other on the top shelf. Bring them to the
dining table, put the plate on the folded
napkin and the glass next to it. A fork and a
knife are on the middle shelf. Bring them to
the dining table and place them on the two
sides of the plate. Move two objects at the
same time if the prostheses seem reliable.

A bottle containing some fine gravel is on the
dinner table. Pick it up with one hand,
unscrew the cap with the other hand, pour
the gravel into the glass, put the bottle back
on the table with the cap next to it.

A spoon and two small balls with diameters
of 3 and 6.5cm are contained in a bowl that
is placed on the dining table. Take the plate
with one hand and the spoon with the other,
then use the spoon to bring the balls from the
bowl to the plate.

A cordiess phone is connected to its base
station on the middle shelf. Take it with one
hand, dial 9-1-1 with the index finger of the
other hand, and then put the phone back in
place.

Ahand broom and a dustpan are positioned
on the lower shelf, while some clothespins lie
on the floor next to a trash bin. Take the
broom with one hand and the dustpan with
the other, walk to the clothespins, bend, and
sweep the clothespins off the floor. Then
empty the dustpan into the trash bin and
bring the broom and dustpan back to their
original location.

A dress shirt and a hanger are placed on the
table. Use both hands to put the shirt on the
hanger, then hang the hanger on the
clothesiine.

At-shirt is positioned on a table and two
clothespins are pinned to a vertical rod in
front of the clothesiine. Pick the t-shirt up
with two hands, bring it to the clothesline, put
it on the wire, and pin it with the clothespins.
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Phase#

Description

Collect training data using the first acquisition procedure
Familfarize on bimanual ADLs

Measure performance on bimanual ADLs

Collect training data using the other acquisition procedure
Familiarize on bimanual ADLs

Measure performance on bimanual ADLs
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BMI, Body Mass Index; TSI, Time since injury at the time of testing. TBI severity was diagnosed at the time of injury.
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4 0 - 0 000 515 559 576 576 - - - -
5 10 50 1 130 627 542 57.6 61.0 50 65 44 6.4
Avg 60 66.7  0.40 0.52 56.2 58.0 58.6 529 13.0 149 26 6.6

All the tests were done in closed-loop control. Averaged results considered very good using the qualitative scale are in bold, while poor in red.
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Subjec TPR Acc Fp Fp/min %Mi %At %Command  Lagstart Lag stop
st 1000400  766£232  019£040 0224060 84347  754%57 T79%77 90£40  56+34
s2 75.0 £+ 44.0 80.0 +£21.8 0.31 £0.78 0.55+ 1.38 724 £9.0 716+69 701 £8.0 1.9+48 76+69
3 8754342  644+205  081£098 143173 70298  71.5%74 718112 10353  34£23
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No poor results were achieved for the averaged indices per subject. Averaged very good results using the qualitative scale are in bold.
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Mean Median Standard deviation Min  Max

1stday 1.37 1.21 0.49 065 246
2ndday 1.32 1.29 0.58 012 236
RMSE
3rdday 1.47 1.19 0.50 105 243
POST-train
4thday 125 1.08 0.42 097 231
Sthday 1.09 1.00 0.63 031 222
istday 7200 72.50 21.24 36.00 100.00
2ndday 74.00 75.00 14.87 50.00 100.00
SCORE
3rdday 77.50 77.50 14.77 56.00 100.00
POST-train
4thday 8200 85.00 12.95 55.00 100.00

Sthday 87.50 90.00 9.79 75.00 100.00
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Control TPR Acc FP FP/min %MI %At %Command Lag start Lag Stop
Mi+Att 75.0 + 43.9 709+348  030+0.65  0.49+1.13 71.2+133 T11£70 70.0 +10.3 11.8+6.8 56+41
M 90.0 £ 30.4 69.5 £ 26.8 0.85 + 1.00 1.50 £1.77 71.2£133 69.1£132 9.6 +55 6.8:5.6
Averaged very good results using the qualitative scale are in bold. No poor results were achieved for the averaged indices per method of control.






OPS/images/fbioe-08-00555/fbioe-08-00555-g008.gif
Active Electrodes.

2 E o s | 2 [ os

5 o1 [ms s ws [

T SubjectResponse " SubjectResponse
;

Subject Response

Subject Response.

[LOTP





OPS/images/fbioe-08-00735/fbioe-08-00735-t001.jpg
Subject  Control Tral TPR Acc FP FP/min %Ml %Att %Command Lag Lag |Subject | Control Trial TPR Acc FP FP/min %Ml %Att %Command Lag Lag
start stop start stop
2 100 60 1 0 81 747 132 13 - 2 100 10 ©0 0 796 634 754 160 35
3 100 75 0 0 8 &4 704 14 5 3 0 - 0 0 7.1 669 648 - -
Mi+att Mi+att
4 100 50 O 0 768 761 704 65 - 4 0 - 0 o 761 676 648 - -
pseudo pseudo
5 100 50 0 0 873 789 859 o - 5 100 50 O 0 711 747 704 15 19
Avg 100 563 0.25 00 820 78.0 75.0 106 5.0 Avg 500 750 000 00 745 68.1 68.8 150 113
2 100 60 1 18 831 81 65 - 2 100 10 0 0 796 796 150 05
"y 3 100 100 0 0 810 747 140 50 i 3 10 s 0 o0 711 704 165 -
4 100 50 1 18 768 04 65 - 4 100 50 0 0 761 B9 105 -
opened-loop opened-ioop
5 10 5 0 0 873 804 65 - 5 100 50 0 0 711 704 150 190
- Aig 100 625 050 0.0 820 74 81 80| Ag 100 625 000 00 745 748 143 08
7 10 100 0 0 887 776 916 60 10 7 0 - 0 0 648 648 648 [
wivatt 8 100 75 0 0 82 725 718 90 40 fissesson | & 100 100 O 00 60 669 602 285 15
i 9 100 100 O 0 810 782 662 190 60 » 9 100 625 1 18 613 60 676 180 25
pseudo pseudo
10 100 100 0 0 916 634 775 80 90 0 0 - 0 0 648 725 648 _r
Avg 100 938 0.00 0.0 866 729 76.8 105 5.0 Avg 500 813 025 04 650 683 65.8 183 20
7 10 100 0 0 887 85 60 60 7 10 5 3 53 648 592 65 40
" 8 100 75 0 0 82 89 65 40 - 8 100 667 1 18 690 669 135 30
9 100 10 0 0 810 79 95 100 9 100 10 0 0 613 500 75 220
lopened-loop opened-ioop
10 100 100 0 0 916 82 55 60 0 0 - 0 0 648 648 - -
Aig 100 938 000 00 866 806 66 65 Ag 75 722 100 18 650 627 o2 o1
2 100 100 0 0 8.1 80 8.0 85 60 2 00 - 0 00 613 718 648 [
3 100 100 O 00 873 86 841 70 60 3 100 50 O 00 620 60 739 90 -
Mi+att Mi+att
4 100 100 (] 00 852 817 76.1 10 7.0 4 100 100 0 0.0 909 775 923 6.5 0.5
pseudo psoudo
5 100 75 0 00 89 775 803 90 80 5 100 75 0 00 711 704 718 130 25
Avg 1000 938 0.00 00 854 817 80.1 89 6.8 Avg 750 750 0.00 00 713 722 75.7 95 15
2 100 75 1 18 831 79 85 45 2 0 6 1 18 613 585 [
" 3 100 10 0 00 873 81 70 60 ” 3 100 50 1 18 620 648 85 -
4 100 100 0 00 852 796 110 45 4 100 100 0 00 909 @3 40 25
lopened-loop opened-ioop
5 100 100 0 00 859 85 90 30 5 100 50 3 53 711 747 - 25
o Ag 1000 938 025 04 854 85 89 45| Ag 750 625 125 22 T3 725 63 25
7 0 - 0 00 648 648 648 - 7 100 76 1 18 634 56 620 210 40
2nd 8 100 100 O 00 690 669 641 235 30 8 100 50 O 00 634 796 600 110 -
Mi+att Mi+att
session
penedloop 400 75 0 00 613 690 634 180 110 openedloop g 400 50 2 35 718 7TI4 662 65 -
10 0 - 0 00 648 725 648 - - 10 100 50 O 00 775 768 880 70 -
Ag 500 875 000 00 650 683 643 183 70 Avg 1000 663 075 13 690 708 713 114 40
7 100 60 3 53 648 592 65 - 7 100 667 2 35 634 578 210 40
" 8 100 667 1 18 690 669 185 30 M‘ 8 100 5 1 18 634 64 110 -
9 100 100 O 00 613 509 75 220 9 10 s 2 35 718 607 80 -
bseudo pseudo
0 0 - 0 00 648 648 - - 10 100 100 00 775 803 70 80
Ag 750 722 100 18 650 627 92 125 Ag 1000 667 125 22 690 678 118 60
2 0 60 1 18 451 69 663 I
3 100 50 1 18 542 613 620 50 -
Mi+att
4 100 571 3 53 282 59 366 185 70
pseudo
5 100 50 0 00 528 607 725 80 -
Ag 750 518 125 22 451 627 569 105 70
2 100 75 1 18 451 38.7 205 55
" 3 100 50 2 35 642 585 50 -
4 100 60 2 35 282 247 185 45
pened-loop
5 100 375 3 53 528 585 80 -
o Ag 100 556 200 85 451 1 180 50
7 0 - 0 00 718 662 648 =
8 100 50 1 18 718 662 599 140 -
Mi+att
9 0 50 1 18 53 662 692 - -
lopened-ioop
10 100 50 0 00 739 747 76.1 11.0 -
Mg 500 600 050 09 685 683 660 125 -
7 100 60 2 85 718 613 130 -
" 8 100 667 1 18 718 662 15 60
9 0 5 1 18 53 50.2 [
bseudo
10 100 50 1 18 739 04 45 -
Ag 750 542 125 22 685 63 63 60

The trials were also tested in a pseudo-online analysis for the type of control not used during the opened-loop session. Averaged very good results using the qualitative scale are in bold, while poor in red.
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Mental demand
Physical demand
Terporal demand
Performance
Effort
Frustration

BRI

426 £0.42
121£0.71
2.16 £0.49
2.95+0.79
284 £061
1.68+0.77

Weights

FES

4.11£059
184 £0.71
1.68 +0.59
2.68+0.67
3.21+£0.63
1.47 £0.75

BRI

7632 £7.74
27.63+11.65
53.68 + 11.04
39.74+ 116
68.95+9.76
4290+ 116

Magnitude

FES

70.79 £ 8.08
35.79 + 12.08
4484 +£11.27
4158+ 11.19
67.90 +7.92
37.37 £ 11.65

BRI
3289517
58.7 £44.6
126.0 £ 409
108.4 +42.0
2111 £57.1
96.6 +59.0

Score

FES

296.6 + 57.5
91.8+ 489
78.0+36.8
98.7 +£30.3
2253 +53.9
81.3+50.9

Numbers show in the columns the weights, the magnitude and the weighted score for the six different categories of the the NASA-TLX. For each task [ie., brain-robot interface (BRI)
vs. functional electrical stimulation (FES)], the table reports the mean and the width of the symmetric 95% confidence interval.
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Intercept
TDO

TD2

Gy

Gz

Gs

Gg
Visibility (V)
Session order (O)
TDO x Gy
TD2 x Gy
TDO x Go
TD2 x Go
TDO x Gg
TD2 x Gg
TDO x Gy
TD2 x Gy

Coeff

0.16
—7.50
0.20
0.97
—-10.76
6.54
-3.27
16.22
11.44
0.42
—2.02
26.06
—5.52
—4.97
5.72
—12.46
6.41

P-value

0.989
0.631
0.990
0.956
0.466
0.668
0.838
0.054
0.102
0.984
0.923
0.206
0.797
0.810
0.787
0.545
0.759

All coefficients in milliseconds of the LMM for the fixed factors in the model used to
fit the timing error and the relative P-value values are shown (gravity condition Gy,
traveled distance TD1, visibility: occluded, and session order: occluded in the first

block are the baseline).
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Coeff P-value

Intercept 90.68 0.001**

TDO —5.64 0.472

TD2 4.34 0.561

Gy 75.78 1.120E—-21"*
Ga —-81.77 7.35E—23"**
Gs 63.83 2. 2329
Gy —74.07 1.42E—-29**
Visibility (V) —28.74 0.113
Session order (O) —64.87 0.004**
Repetition 1.87 0.110

TDO x G4 22.64 0.008**

TD2 x Gy —10.52 0.220

TDO x Go 2.52 0.767

TD2 x Gg 47.57 5.02E—-08"**
TDO x Gg 20.82 0.014*

TD2 x G3 —-3.71 0.666

TDO x Gy —10.58 0.214

TD2 x Gy 16.70 0.052

All coefficients, in milliseconds, of the LMM for the fixed factors in the model
used to fit the gravitational timing error and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseling). *P < 0.05, *P < 0.01, **P < 0.001.
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Gravity Inclined plane Air
Condition

Gravity acceleration Traveled distance Motion duration Speed Gravity acceleration Motion duration Speed
# [m/s?] [m] [s] [m/s] [m/s?] [s] [m/s]
Go g 0.546 113 0.96 g 0.244 2.69
Go g 1.093 1.60 1.36 g 0.240 2.85
Go g 2.186 2.26 1.93 g 0.233 3.16
G g/2 0.546 1.60 0.68 g/2 0.345 1.90
Gt g/2 1.093 2.26 0.96 g/2 0.339 2.02
Gt g/2 2.186 3.20 1.36 g/2 0.329 2.24
Go 29 0.546 0.80 1.36 29 0.173 3.80
Go 29 1.093 1.13 1.93 29 0.170 4.03
Go 29 2.186 1.60 2.73 29 0.165 4.47
Gs g 0.546 1.13 0.96 g/2 0.339 2.02
Gs g 1.093 1.60 1.36 g/2 0.329 2.24
Gs g 2.186 2.26 1.98 /2 0.317 2.62
Gy g 0.546 113 0.96 29 0.175 3.68
Gy g 1.093 1.60 1.36 29 0.173 3.79
Gy g 2.186 2.26 1.93 29 0.170 4.03

The motion duration and the traveled distance on the inclined plane are from the starting position until the end of the inclined plane. Speed is referred at the end of the
inclined plane. The motion duration in the air is until the lower border of the box. Speed is at the exit of the box. For each gravity condition (Go—G4) is indicated the gravity
acceleration acting on ball during the rolling phase on the inclined plane and the falling phase in the air.
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Coeff P-value

Intercept 1.26 4.13E-06™*
TDO 0.30 0.188

TD2 —-0.12 0.594

G —0.99 0.024*

Go —2.48 2.28E—-10"*
Gs —-1.27 3.561E-05™*
Gy —1.76 4 .48E-07**
Visibility (V) —0.18 0.261
Session order (O) 0.89 5.28E—-05"*
TDO x Gy —0.05 0.849

TD2 x Gy —0.46 0.087

TDO x Go —0.48 0.077

TD2 x Go 0.46 0.087

TDO x Gg 0.43 0.108

TD2 x Gg —2.00 2.84E—13**
TDO x Gy —-0.97 0.0002***
TD2 x Gy 0.48 0.052

All coefficients of the GLMM for the fixed factors in the model used to fit the natural
perception rate reached by participants and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseling). **P < 0.001.
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Coeff P-value

Intercept 1.37 8.18E—-07**
abs(TE) —1.22 0.012*

TDO 0.30 0.188

TD2 —-0.13 0.569

Gy —0.95 0.032*

Go —2.48 1.61E-10"*
Gs —1.25 4 .50E—05"**
Gy —1.74 6.06E—07***
Visibility (V) -0.19 0.240
Session order (O) 0.89 6.22E—-05"**
TDO x G4 —0.05 0.861

TD1 x Gy —0.45 0.098

TDO x Gg —0.47 0.083

TD2 x Gg 0.45 0.094

TDO x Gg 0.44 0.095

TD2 x G3 —2.00 3.65E—13**
TDO x Gy —0.95 0.0003***
TD2 x Gy 0.46 0.060

All coefficients of the GLMM for the fixed factors in the model used to fit the natural
perception rate reached by participants and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseling). **P < 0.001.
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Coeff P-value

Intercept —31.38 0.150

TDO 15.34 0.016*

TD2 —11.60 0.065

Gy —72.34 1.42E—19
Ga 74.40 4. 45E—-26**
G3 —68.04 1.78E-31**
Gy 786.97 2.88E—39"*
Visibility (V) 28.50 0.080
Session order (O) 26.18 0.162
Repetition —1.61 0.257

TDO x Gy —9.94 0.183

TD2 x Gy 3.07 0.684

TDO x Go —1.18 0.875

TD2 x Gg —37.12 1.29E—-06***
TDO x Gg —14.25 0.056

TD2 x G3 8.32 0.271

TDO x Gy 8.43 0.258

TD2 x Gy —19.28 0.011*

All coefficients in milliseconds of the LMM for the fixed factors in the model used to
fit the timing error and the relative P-value values are shown (gravity condition Gy,
traveled distance TD1, visibility: occluded, and session order: occluded in the first
block are the baseline). *P < 0.05, **P < 0.001.
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LFM parameters Visual condition
Amplitude (angular coefficient) Open eyes
Closed eyes
Offset (intercept) Open eyes
Closed eyes
Similarity (coefficient of determination) ~ Open eyes
Closed eyes

Motor condition

In-phase
Anti-phase
In-phase
Anti-phase
In-phase
Anti-phase
In-phase
Anti-phase
In-phase
Anti-phase
In-phase
Anti-phase

Theoretical value

YG

1.02 +0.06
-099£0.14
1.01 £0.07
-0.91+£0.30
-2+ 11
356 + 97
-1+18
306 + 99
097 £0.01
084 £0.11
0.95 +0.06
0.78 £0.16

AG

1.056 +0.09
-1.05+0.15
1.01+0.10
—0.87 £0.53
—-6x21
360 + 98
—4£20
278+ 79
0.96 4 0.03
0.83 £ 0.08
0.94 +0.06
0.76 £0.13

Values significantly different in AG and PG with respect to YG are marked in bold, whereas the stars show significant differences between PG and AG.

PG

098 +0.19
-0.72 £ 0.67
0.96 +0.27
—0.85 + 0.45
7Tx24
249 £ 121*
—2438
2711 £ 116
0.88 +0.14*
0.70 £0.21
0.84 £0.17
0.60 £ 0.26
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ANOVA Factors
Meain effects Vision
Motor
Group
Second-level interactions Vision*Group
Motor*Group
Vision*Motor
Third-level interaction Vision*MotorGroup

Statistically significant (p < 0.05) are marked in bold.

Amplitude

8.073
0.006
0.100
4.883
0.009
0.083
3.526
0.035
0.088
2351
0.102
0.061
1.136
0.342
0.030
0994
0.373
0.013
0.301
0.877
0.008

Frequency

6.528
0.013
0.082
6877
0.001
0.086
2191
0.119
0.067
5.128
0.008
0.123
0.584
0.675
0.016
1.409
0.248
0.019
0931
0.448
0.025

1.169
0.283
0.016
7.875
0.001
0.097
20.858
<0.001
0.364
0.452
0.638
0.012
3.011
0.020
0.076
0207
0813
0.003
0.697
0.595
0.019
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Locomotion type Environment Stance CV

Walking Overground 38:+£35%
Treadmill 25+ 18%
Running Overground 7.4£84%
Treadmill 7.4 £ 15.9%

Swing CV

44£42%
4.0+ 3.0%
43+17%
4.5+ 8.6%

Cadence CV

21+21%
12+04%
26+ 1.4%
1.9+23%

The strike index is the distance of the center of pressure at touchdown from the most posterior part of the heel, normalized to foot length.

Strike index

0.083 + 0.030
0.047 £ 0.018
0.086 + 0.029
0.073 £ 0.051
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Coeff P-value

Intercept 3.05 0.823
TDO 3.86 0.827
TD2 —2.74 0.877
G —1.08 0.955
Go 11.91 0.490
Gs 1.56 0.934
Gy 3.88 0.824
Visibility (V) —6.82 0.522
Session order (O) —15.66 0.049*
TDO x Gy —7.46 0.762
TD2 x Gy 30.95 0.206
TDO x Go —29.92 0.216
TD2 x Go 3.94 0.876
TDO x Gg 9.47 0.697
TD2 x G3 —14.42 0.562
TDO x Gy 10.18 0.673
TD2 x Gy —14.75 0.547

All coefficients, in milliseconds, of the LMM for the fixed factors in the model
used to fit the gravitational timing error and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseline). *P < 0.05.
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Coeff P-value

Intercept 25.50 0.088
TDO 2.40 0.909
TD2 —26.24 0.193
G —14.91 0.455
Go —34.22 0.094
G3 —29.66 0.204
Gy —23.59 0.248
Visibility (V) 4.69 0.560
Session order (O) 2.57 0.732
TDO x Gy —17.71 0.532
TD2 x Gy —7.26 0.797
TDO x Go 26.99 0.333
TD2 x Go 41.09 0.157
TDO x Gg 4.08 0.884
TD2 x Gg 58.39 0.042*
TDO x Gy 10.96 0.694
TD2 x Gy 32.20 0.254

All coefficients in milliseconds of the LMM for the fixed factors in the model used to
fit the timing error and the relative P-value values are shown (gravity condition Gy,
traveled distance TD1, visibility: occluded, and session order: occluded in the first
block are the baseline). *P < 0.05.
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Intercept
TDO

TD2

Gy

Go

Gs

Gg
Visibility (V)
Session order (O)
Repetition
TDO x G4
TD2 x Gy
TDO x Gg
TD2 x Gg
TDO x Gg
TD2 x G3
TDO x Ga
TD2 x Gy

Coeff

—19.34
156.45
—-11.75
14.42
12.69
2.39
3.63
28.16
6.03
—1.83
0.11
—7.22
—10.47
—18.55
—-0.19
—-13.22
—-0.74
—8.90

P-value

0.377
0.018*
0.061
0.083
0.086
0.659
0.503
0.079
0.704
0.201
0.998
0.339
0.162
0.016*
0.980
0.081
0.921
0.240

All coefficients, in milliseconds, of the LMM for the fixed factors in the model
used to fit the gravitational timing error and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:

occluded in the first block are the baseling). *P < 0.05.
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Coeff P-value

Intercept 12,25 0.013*
TDO —5.74 0.467
TD2 4.46 0.546
G —10.99 0.185
Go —20.09 0.016*
Gs —6.61 0.288
Gy —0.67 0.913
Visibility (V) —28.38 0.110
Session order (O) —32.01 0.100
Repetition 2.09 0.077
TDO x Gy 12.59 0.137
TD2 x Gy —0.21 0.981
TDO x Go 11.87 0.161
TD2 x Gg 29.02 8.37—-04***
TDO x Gg 6.74 0.425
TD2 x G3 17.89 0.037*
TDO x Gy —1.43 0.866
TD2 x Gy 6.29 0.463

All coefficients, in milliseconds, of the LMM for the fixed factors in the model
used to fit the gravitational timing error and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseling). *P < 0.05, **P < 0.001.
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Coeff P-value

Intercept 305.43 2.69E—64**
TDO 16.97 0.047*

TD2 —10.70 0.198

Gy 35.44 1.75E—-06***
Go —25.82 0.0005***
G3 3.12 0.686

Gy 2.52 0.726
Visibility (V) —-12.10 0.235
Session order (O) —1.09 0.952
Repetition 1.62 0.126

TDO x Gy —1.23 0.891

TD2 x Gy 1.40 0.877

TDO x Go —10.05 0.264

TD2 x Go 7.80 0.398

TDO x Gg —3.03 0.736

TD2 x Gg —5.29 0.561

TDO x Gy 3.71 0.681

TD2 x Gg 0.01 0.999

All coefficients, in milliseconds, of the LMM for the fixed factors in the model
used to fit the gravitational timing error and the relative P-value values are shown
(gravity condiition G, traveled distance TD1, visibility: occluded, and session order:
occluded in the first block are the baseling). *P < 0.05, **P < 0.001.





