Research Topic

Tunable and Reconfigurable Optical Metamaterials

  • Submission closed.

About this Research Topic

Metamaterials and 2D metasurfaces with few functional layers show promising and novel manipulations of optical waves in the terahertz, infrared and visible regimes. Their performance has been proven in high-resolution imaging, nonlinear optics, radiation control, holography and optical communications. ...

Metamaterials and 2D metasurfaces with few functional layers show promising and novel manipulations of optical waves in the terahertz, infrared and visible regimes. Their performance has been proven in high-resolution imaging, nonlinear optics, radiation control, holography and optical communications. However, their practical applications are rather limited by the narrow operation wavelength range resulting from the common resonant nature of the constitutive microstructures.

As a result, mediums with changeable mechanisms or reconfigurable structures are being incorporated to achieve tunable optical properties, i.e. to extend the operation bandwidth or parameter space of metamaterials. For example, graphene and related 2D materials, semiconductors, phase changing materials like VO2 and Ge2Sb2Te5, liquid crystals, and MEMS-structured metamaterials are emerging for advanced optics and photonics spanning from terahertz to visible frequencies. These developments are important for both the fundamental optical physics and possible real applications for example in nonlinear nanophotonics and super-resolution imaging.

This Research Topic will focus on metamaterials and metasurfaces incorporated with tunable or reconfigurable mechanisms for breaking the limitation of narrow-operation wavelengths. The Research Topic welcomes submissions in a list of themes including but not limited to:
1. Mechanical tunable metamaterials
2. Electrically/Magnetically tunable metamaterials
3. Plasmonic metamaterials based on the excitations of plasmons and polaritons in layered two-dimensional materials
4. Phase-change metamaterials
5. Liquid crystal metamaterials
6. Nonlinear metamaterials


Keywords: optical metamaterials, metasurfaces, dielectric metasurfaces, active photonics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..