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The brain contains vast numbers
of interconnected neurons that
constitute functional networks.
Structural descriptions of neuronal
network elements and connections
make up ‘the connectome’ of

the brain, and are important for
understanding normal brain
function and disease-related

Brain Connectivity Hairball visualization of connectivity dysfunction. A long-standing
nodes based on diffusion MRI data. See Gerhard et al. (2011).  ambition of the neuroscience
The connectome viewer toolkit: an open source framework community is to achieve complete

to manage, analyze, and visualize connectomes. Front.
Neuroinform. 5:3. doi: 10.3389/fninf.2011.00003 for further
details.

connectome maps for the human
brain as well as primate and rodent
brains. Currently, a wide repertoire
of experimental tools is available for neural connectivity mapping at multiple levels of scale,
from tracing of major pathways and trajectories, mapping of axonal distribution patterns, to
the identification of the molecular properties of individual synapses. But, despite numerous
connectivity studies through many decades, we are still far from achieving comprehensive
descriptions of the connectome. There is increasing awareness that new neuroinformatics
tools and strategies are needed to achieve the goal of compiling the brain’s connectome, and
that any such effort will require systematic, large-scale approaches. Initial attempts involving
systematic literature mining have yielded promising results, but more coordinated efforts

are needed to collect, organize and disseminate connectome data sets. To this end, there is an
urgent need to develop and identify neuroinformatics approaches that allow different levels
of connectivity data to be described, integrated, compared, and shared within the broader
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neuroscience community. With this Research Topic, we aim to bring together different levels
of connectivity analysis (from MRI-based methods, through axonal tracing techniques, to
detailed EM-level synapse reconstructions), to elucidate neuroinformatics-related challenges
at the level of data management, data comparison and analysis, and use of connectome

data for neurocomputational models. We invite contributions related to all aspects of brain
connectomics, with particular focus on state-of-the art tools for mapping connectivity, data
sharing and comparison, and integration across different levels of mapping.

This Research Topic of Frontiers in Neuroinformatics is dedicated to the memory of Rolf
Kotter, a pioneer in the field of brain connectomics.
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BACKGROUND AND SCOPE

The brain contains vast numbers of interconnected neurons that
constitute anatomical and functional networks. Structural descrip-
tions of neuronal network elements and connections make up the
“connectome” of the brain (Hagmann, 2005; Sporns et al., 2005;
Sporns, 2011),and are important for understanding normal brain
function and disease-related dysfunction. A long-standing ambi-
tion of the neuroscience community has been to achieve complete
connectome maps for the human brain as well as the brains of
non-human primates, rodents, and other species (Bohland et al.,
2009; Hagmann et al., 2010; Van Essen and Ugurbil, 2012). A wide
repertoire of experimental tools is currently available to map neu-
ral connectivity at multiple levels, from the tracing of mesoscopic
axonal connections and the delineation of white matter tracts
(Saleem et al., 2002; Van der Linden et al., 2002; Sporns et al.,
2005; Schmahmann et al., 2007; Hagmann et al., 2010), the map-
ping of neurons organized into functional circuits (Geerling and
Loewy, 2006; Ohara et al., 2009; Thompson and Swanson, 2010;
Ugolini, 2011), to the identification of cellular-level connections,
and the molecular properties of individual synapses (Harris et al.,
2003; Arellano etal., 2007; Staiger et al., 2009; Micheva et al., 2010;
Wouterlood et al., 2011). But despite the numerous connectivity
studies conducted through many decades we are still far from
achieving comprehensive descriptions of the connectome across all
these levels. There is increasing awareness that new neuroinformat-
ics tools and strategies are needed to achieve the goal of compil-
ing the brain’s connectome, and that any such effort will require
systematic, large-scale approaches (Bohland et al., 2009; Akil et al.,
2011; Zakiewicz et al., 2011; Van Essen and Ugurbil, 2012).

Systematic literature mining to compile and share complete
overview of known connections in the macaque brain was pio-
neered by Rolf Kotter and co-workers (Stephan et al., 2001, 2010).
While yielding promising results (Kotter, 2004; Bota et al., 2005;
van Strien et al., 2009), more coordinated efforts are needed to col-
lect, organize, and disseminate connectome data sets. To this end,
there is an urgent need to develop and identify neuroinformatics
approaches that allow different levels of connectivity data to be
described, integrated, compared, and shared within the broader
neuroscience community.

This Research Topic of Frontiers in Neuroinformatics, dedicated
to the memory of Rolf Kotter (1961-2010) and his pioneering
work in the field of brain connectomics, comprises contributions
that elucidate different levels of connectivity analysis (from MRI-
based methods, through axonal tracing techniques, to mapping of
functional connectivity in relation to detailed 3-D reconstructions

of individual neurons), and point to several recent methodological
advances and neuroinformatics-related challenges at the level of
data mining, management, and integration. In this Editorial, we
review the advances represented in these reports, and discuss some
of the grand challenges in this emerging field.

ADVANCES IN MULTI-LEVEL CONNECTIVITY MAPPING
Sophisticated neuroimaging techniques have opened up new pos-
sibilities to infer structural and functional connectivity at a mac-
roscopic scale. Through measurement of oriented water diffusion
restricted by cellular elements in the brain, non-invasive methods
based on diffusion magnetic resonance imaging (dMRI, Figures
1A,B) play a key role in current neuroanatomical efforts to explore
the human connectome (Hagmann et al., 2010; Van Essen and
Ugurbil, 2012). The different dMRI tractography methods pro-
posed so far still require time-consuming manual intervention
and supervision that may compromise reliability. To overcome
this problem, Yendiki et al. (2011)" present a method for auto-
mated probabilistic reconstruction of white matter pathways that
incorporates a priorianatomical knowledge, and demonstrate auto-
matic tractography analyses in schizophrenia patients and healthy
subjects (Figure 1B). The ability to perform dMRI tractography
without manual intervention will greatly facilitate studies with very
large populations, which will be essential for establishing a con-
nectome for the human brain (Marcus et al., 2011) as well as for
improving early diagnostic imaging in brain disease.

Estimates of “functional networks” described on the basis of
statistical associations derived from time series data (neuronal
recordings) represent another important category of approaches to
define the human brain connectome. The relationship of anatomi-
cal to functional networks is explored by Daffertshofer and van
Wijk (2011). Using computational modeling of large-scale neural
networks these authors argue that patterns of synchronization
should be analyzed in the context of changes in local amplitude to
improve prediction of brain dynamics from structure. In a related
paper, Segall et al. (2012) also employ statistical methods and inde-
pendent component analysis to describe spatial correspondences
between gray matter density measurements and resting state func-
tional MRI signal fluctuations recorded from a very large group of
healthy subjects. But while associations between several structural
and functional features can be observed (Segall et al., 2012), the
anatomical substrates underlying such indirect in vivo measure-
ments remain obscure and require further investigation.

'Research Topic references are indicated by underlined text.
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FIGURE 1 | From multi-modal connectivity data to integrated
connectomes. Image panels illustrating recent progress, selected and modified
from contributions to the Research Topic “Mapping the Connectome” as
specified below. (A-F) Connectivity mapping methods in the human brain span
from indirect in vivo assessment of fiber tracts from diffusion MRI data [(A,B)
Gorbach et al., 2011; Yendiki et al., 2011] to ex vivo mapping of detailed fiber
architectures [(C,E) Axer et al., 2011b; (E,F) Annese, 2012]. (G-H) Novel
experimental methods in animal models include combined optogenetic and
functional MRI mapping of specific connections (G) (Lee, 2011) and high-
resolution histological imaging [(H) Chung et al., 2011]. (I-J) Examples of recent
efforts to accumulate, integrate, and share connectivity data, represented by the

Multilevel connectivity mapping

] il .
A

j884¢

graphical user interface of the Human Connectome Project [(l) Marcus et al.
2011], and a data mining effort combining 3-D reconstructions of hippocampal
neurons to explore potential synaptic connections [(J) Ropireddy and Ascoli
2011]. (K-N) Recent sophisticated approaches to network analysis, based on
connectivity-based cortical parcelation [(K) Gorbach et al., 2011], different
connectivity visualizations using open-source tools [(L,M) Gerhard et al., 2011],
and identification of structural network motifs [(N) Echtermeyer et al., 2011].
(O-P) Updated connectome matrix representations from large-scale data mining
efforts for the whole rat brain [(O) Bota et al., 2012] and for the rat hippocampal
region [(P) Sugar et al., 2011]. (Q) Visualization of computational model of a
tadpole spinal cord connectome (Borisyuk et al., 2011).
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In this respect, novel methodologies for characterizing micro-
structural aspects of the human and primate brains may provide
new ways to bridge the gap between post mortem microscopic and
in vivo macroscopic and functional measures reflecting neural
connectivity. Polarized light imaging (PLI) of histological sections
allows quantitative analysis of fiber orientations with very-high
spatial resolution. Axer et al. (2011a) demonstrate automated 3-D
reconstruction of fiber orientations across multiple histological
sections in the human brain stem, yielding highly resolved datasets
that are useful complements for both conventional histological
stains and DTT data (Figures 1C,D). Using the same approach, Axer
etal. (2011b) show how 3-D PLI derived fiber orientation vectors
can subsequently be used as a basis for high-resolution tractogra-
phy of fiber tracts, potentially suitable for bridging microscopic
and macroscopic connectome representations. The importance
of correlating various non-invasive MRI derived measurements
to cellular-level morphological data is also emphasized by Annese

2012), presenting the perspective that whole-brain histological
maps (Figures 1E,F) created using large-scale digital microscopy
spanning several histological modalities will support the analysis
and interpretation of MRI-based connectivity studies. The potential
of high-throughput and very-high-resolution histological meth-
ods for creating multiscale representations of brain data is further
demonstrated by Chungetal. (2011), who use knife-edge scanning
microscopy to section and reconstruct microscopic brain data at
sub-micrometer resolution (Figure 1H), within volumes that can
span an entire mouse brain. The inherently multiscale nature of the
acquired data sets demand sophisticated visualization and analysis
tools for integrating cellular to systems scales, a challenge that is
addressed with the introduction of a web-based neuroinformat-
ics platform (Chung et al., 2011). It will be a further, substantial
challenge to extract actual connectivity information from these
histological representations.

Recent advances in optogenetic functional MRI (ofMRI) allow
non-invasive, selective mapping of brain circuit elements that are
triggered on the basis of genetic markers, anatomic location, or
axonal projection target. In a perspective article, Lee (2011) outlines
the potential of ofMRI to enhance system level mapping and our
understanding of neural circuits. The combination of the unique
ability of optogenetics to selectively control cellular activity and of
the mapping of hemodynamic responses with fMRI, opens exiting
new possibilities for in vivo functional circuit analysis in animals
(Figure 1G), as well as diverse models of neurological disease. The
approach potentially has considerable advantages over classical
axonal tracing methods, by allowing the investigation of network
dynamics and longitudinal investigations of development and
aging, as well as monitoring of neural network changes occurring
in disease models.

INTEGRATIVE EFFORTS: ASSEMBLING CONNECTOMES

The methodological diversity of current (functional and structural)
approaches to mapping connectomes represents a major challenge
to the field, and comparison of data across scales, modalities, and
species remains a formidable problem (Sporns, 2011). It is therefore
a long-standing ambition of the neuroinformatics community to
provide new tools and approaches for integrating neuroscience
data (Akil et al., 2011; Van Essen and Ugurbil, 2012). Several of

the contributions included in the “Mapping the Connectome”
Research Topic present novel ways to visualize and assemble con-
nectome data.

In their technology report, Marcus et al. (2011) of the Human
Connectome Project consortium centered at Washington University
and the University of Minnesota? present their plans to non-inva-
sively assess the long range connections of the human brain using
diffusion MRI data from large numbers of subjects, supplemented
by structural MRI, genetic, and behavioral data. An important first
step for this ambitious project is to develop an informatics plat-
form for storing, visualizing, and analyzing massive amounts of
data (Figure 1I). A key element will be to share the open-source
platform and associated tools with the community, to allow further
hypothesis-driven analysis and data mining in this multi-modal
pool of data. A particular challenge for future data integration and
knowledge synthesis will be to achieve interoperability with other
neuroinformatics tools and data collections.

The challenge of integrating and visualizing human connectome
data of different modalities has been addressed by Gerhard et al.
(2011). Their flexible open-source Connectome Viewer Toolkit’
allows integrated storage and viewing of different types of imaging
data and structured metadata. The toolkit is based on a container
file format, and linked to a suite of existing tools libraries allowing
data mining, viewing, and comparison. The authors present sev-
eral example analyses using diffusion MRI data that are integrated,
manipulated, and analyzed (Figures 1L,M). This freely available
open-source toolkit stands out as a powerful workbench platform
for future integration of human connectome data coming from
multi-modal neuroimaging.

Another approach to combine and integrate various neuroana-
tomical data is to use a common reference space (Bjaalie, 2002;
Hawrylycz et al.,, 2011). In their contribution to this Research
Topic, Ropireddy and Ascoli (2011) demonstrate how potential
connections (defined by close apposition of axonal and dendritic
segments) can be inferred from a collection of detailed 3-D recon-
structions of neuronal extensions that were accumulated in a com-
mon 3-D reconstruction of the rat hippocampus on the basis of
positional values (Figure 1J). The major innovation lies in estimat-
ing this aspect of neuronal connectivity at high-resolution not only
over a narrow field of view, but across a macroscopic brain region,
the rat hippocampus. The paper reports on anatomical differences
across different locations in the hippocampus and points to pos-
sible generalizations of the approach to other regions of the brain.

Axonal connections have been investigated experimentally in
animal models for many decades, yielding valuable data reported
in a huge number of publications. While the textual format of such
reports make it difficult to extract formal knowledge and compare
connectivity data, this pool of laboriously collected experimental
results remains important to utilize. Rolf Kotter’s pioneering work,
particularly the creation of the CoCoMac database?, is a major
milestone on the way to creating comprehensive and accessible
online repositories for connectome data (Stephan et al., 2001, 2010).
The availability of this repository of primate cortical connections

*http://www.humanconnectome.org/
*http://www.cmtk.org/

‘www.cocomac.org
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has spurred a large number of projects in the analysis of complex
brain connectivity (e.g., Modha and Singh, 2010) as well as the
computational modeling of associated brain dynamics (e.g., Cabral
et al., 2011; Deco and Jirsa, 2012).

Several groups have invested in further ambitious data mining
projects to aggregate connectome data from legacy data (Sugar etal.,
2011; Tallis et al., 2011; Bota et al., 2012). Over several years, Bota
and co-workers have developed a publicly available neuroinformatics
system, called the brain architecture knowledge management system
(BAMS), which currently contains >50,000 connectivity reports from
the rat brain (Figure 10). The BAMS system® provides a valuable
framework in which curated connectivity data can be stored and
retrieved. In their review article, Bota et al. (2012) provide an update
on recently added data and functionality, and discuss general meth-
odology and strategy for producing global connection matrices.

Building upon their earlier work in the hippocampus (van Strien
etal.,2009), Sugar et al. (2011) present an interactive connectome
of hippocampal and parahippocampal connections. The authors
have extracted ~2600 descriptions of hippocampal connections
from 226 published reports, and assembled them into a versatile,
searchable application providing a comprehensive description of all
known network elements in this region (Figure 1P). Overcoming
a range of challenges related to level of detail, incongruent and
incomplete reports, and diverse use of nomenclatures, Sugar et al.
provide the most comprehensive connectome description so far
for a specific rat brain region. The efforts of these hippocampal
experts present an excellent case study for how connectivity data
should be assembled for other brain regions.

The process of extracting integrated knowledge representations
from connectivity data requires a framework for standardized data
descriptions, such as a common atlas space and consistent termi-
nologies for neuroanatomical entities. Tallis et al. (2011) have com-
bined two pre-existing rat brain atlas systems (Dashti et al., 2001;
Burnsetal.,2006) with a data management system (Russ et al.,2011)
into a software system for synthesizing knowledge based on neural
connectivity data. This system provides access to experimental tract-
tracing data mapped onto atlas plates (Swanson, 2004) coupled to
a semantic framework, and permits analyses and interpretation of
connectivity patterns based on spatial and semantic views.

Taken together, these different attempts at assembling connec-
tomes from existing and new data illustrate novel possibilities of
gaining new knowledge through data systems that allow systematic
integration and comparison of data based on standard nomencla-
tures, semantics, and spatial frameworks. To fulfill the long-term
ambition of having reasonably complete connectomes we must
also address the challenge of data exchange and interoperability
across database systems of this kind.

APPLIED CONNECTOMICS: NETWORK ANALYSIS AND
MODELING

While new and sophisticated approaches to connectome mapping
and data integration will be essential for the further advancement
of this field, it is important to also investigate how accumulated
connectome data can be utilized to further our understanding of

*http://brancusi.usc.edu/bkms

relationships between brain structure and function. The ways in
which connectome data are used will to a large extent also dictate
priorities for data collection and assembly. In this Research Topic,
five contributions illustrate how connectomics can be applied for
network analysis and modeling.

A fundamental principle of brain organization is that func-
tional systems are formed by specific anatomical connections.
Knowledge about the specific hodological organization of different
brain regions may thus predict the various functional properties of
such regions. Gorbach et al. (2011) explore relationships between
the functional and connectional “fingerprints” of cerebrocortical
areas in the human brain, by using hierarchical information-based
clustering of MRI-based connectivity measures. They propose an
automated hierarchical parcelation approach to identify cortical
subunits that are consistent with cytoarchitectonic maps and previ-
ous connectivity-based parcelation schemes (Figure 1K).

Echtermeyeretal. (2011) examine changes in network structure
that appear when the same brain is mapped at different spatial
resolutions. Their emphasis is on network motifs and their compo-
sition and spatial distribution (Figure 1N). The study highlights the
important roles of spatial scale and resolution for drawing conclu-
sions based on network analysis.

Computational modeling represents an increasingly important
approach aiming at combining available data on anatomical connec-
tivity with a virtual exploration of functional properties that emerge
from the interaction of structural coupling and neural dynamics.
Using a model of a simple spinal cord system, the developing spinal
cord of the Xenopus, Borisyuk et al. (2011) introduce a new approach
toward characterizing connectomes by constructing the network on
the basis of known developmental processes of neuronal and axonal
growth. The resulting network (Figure 1Q) is then studied with a
number of visualization and topological analysis tools, revealing
relationships between sets of simple developmental rules and topo-
logical regularities. To meet the considerable computational chal-
lenges of simulating complex neural network models, Kunkel et al.
(2011) have developed strategies for adapting network representa-
tions to reduce the memory consumption for simulation software.
Such efforts are highly relevant for future up-scaling of compu-
tational modeling efforts, which will be necessary to incorporate
more comprehensive structural and functional connectome data.

Finally, French et al. (2011) utilize data sets on rodent brain
connectivity and gene expression patterns to explore possible
inter-relations, and identify several aspects of connectivity and
gene expression that are indeed correlated. This work highlights
an integrative aspect of connectomics that links connectivity data
with other non-connectomic data sources, e.g., from genomics and
proteomics. The confluence of connectomics and genomics will
likely be a major growth area in the not-too-distant future.

PROGRESS MADE AND MAIN CHALLENGES

The papers presented in this Research Topic demonstrate approaches
to mapping, integrating, and utilizing connectivity data through
structured neuroinformatics, in the spirit of the “Kotter School of
Neuroinformatics.” The multiple modalities and levels of investiga-
tion represented in this collection of Research Topic papers illustrate
the need for concerted and sustained efforts by several research com-
munities to arrive at reasonably comprehensive connectome maps
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linking brain regions and neurons. The complexity and multi-faceted
nature of brain connectivity clearly calls for cooperation, collabora-
tion, and mutual understanding of methods, problems, and results.

A fundamental challenge for the establishment of a common
description of brain connectivity will be to cross-validate the dif-
ferent methodologies. Some important efforts have already been
made at different scales (Schmahmann et al., 2007; Bock et al.,2011;
Briggman et al., 2011), but further work is needed to link methods
such as structural and functional MRI (Segall et al., 2012), 3-D-PLI
and tractography (Axer et al., 2011b), and optogenetics and fMRI
(Lee,2011). Since studies of the human connectome continue to rely
on indirect connectivity measures, such as DTT and related imag-
ing methods, we will need parallel experimental efforts in animal
models and robust statistical methods to demonstrate the validity
of connectivity data obtained by non-invasive means. This need for
validation also underlines the continuing value of conventional con-
nectivity data that are derived by tract-tracing in animal models and
are compiled in databases such as CoCoMac or BAMS. A number
of strategies may be imagined to further expand and enhance such
compilations. For example, computational text mining approaches

may develop to alevel where they can be employed for the automated
gathering of connectivity information from the published research
literature®. Further, curated databases may collaborate more closely
with field experts, in order to preserve the multi-faceted neuroana-
tomical knowledge acquired in many experimental labs over several
decades (where knowledge is currently threatened by the upcom-
ing retirement of many of the “traditional” anatomists), or new
experimental efforts may be started for the systematic, “industrial”
brain connectivity gathering in rodent models (Bohland et al., 2009;
Zakiewicz et al., 2011).

The papers collected in this Research Topic offer a snapshot
of diverse approaches pursued at the inception of a wide array of
connectome studies across scales and species. The end goal of a
comprehensive understanding of the network structure of complex
nervous systems will require the integration of data and methods
for mapping connectivity from neurons to systems. We have an
exciting time ahead of us.

Swww.textpresso.org/neuroscience/
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We have developed a method for automated probabilistic reconstruction of a set of major
white-matter pathways from diffusion-weighted MR images. Our method is called TRAC-
ULA (TRActs Constrained by UnderlLying Anatomy) and utilizes prior information on the
anatomy of the pathways from a set of training subjects. By incorporating this prior knowl-
edge in the reconstruction procedure, our method obviates the need for manual interaction
with the tract solutions at a later stage and thus facilitates the application of tractography
to large studies. In this paper we illustrate the application of the method on data from
a schizophrenia study and investigate whether the inclusion of both patients and healthy
subjects in the training set affects our ability to reconstruct the pathways reliably. We show
that, since our method does not constrain the exact spatial location or shape of the path-
ways but only their trajectory relative to the surrounding anatomical structures, a set a of
healthy training subjects can be used to reconstruct the pathways accurately in patients
as well as in controls.

Keywords: tractography, diffusion MRI, white matter

1. INTRODUCTION

Diffusion MRI has become an important tool in the study of a
wide range of diseases affecting the brain, as it allows us to probe
the shape and integrity of the white-matter pathways that connect
functionally related cortical and subcortical regions. Although it is
possible to compare diffusion measures between populations on
a voxel-by-voxel basis, more specific hypotheses on disease pro-
gression can be tested if aggregate measures can be computed for
specific pathways that are known or assumed to serve different
brain networks.

Several diffusion tractography methods have been proposed
over the years to reconstruct white-matter pathways. Most early
methods were deterministic and followed the streamline approach,
which modeled a path as a one-dimensional curve. The curve
was grown from a starting point by taking steps in directions
that were determined by the diffusion orientation in the under-
lying voxels (Conturo et al., 1999; Mori et al., 1999; Basser et al,,
2000; Poupon et al., 2000; Lazar et al., 2003). Other determin-
istic methods were volumetric, modeling the path as a volume,
and allowing it to grow in three dimensions (Jones et al., 1999;
O’Donnell et al., 2002; Parker et al., 2002; Jackowski et al., 2005;
Pichon et al., 2005). Both streamline and volumetric approaches
were local, in the sense that the algorithm considered the image
data at a single location to determine how to grow the path at each

step. Statistical extensions to local streamline tractography were
introduced to model uncertainty in the image data by drawing
samples from an assumed local distribution of diffusion directions
at each voxel (Behrens et al., 2003; Hagmann et al., 2003; Cook
et al., 2005; Parker and Alexander, 2005; Friman et al., 2006) or by
boot-strapping (Jones and Pierpaoli, 2005; Lazar and Alexander,
2005).

Local tractography algorithms, whether deterministic or prob-
abilistic, are best suited for exploring all possible connections from
one brain region, which is used as the tractography seed, to any
other region. However, if the goal is to isolate specific white-
matter pathways, the required post-processing of the streamlines
poses various challenges. Typically a user with substantial neu-
roanatomical expertise needs to interact manually with the data
on a pathway-by-pathway and subject-by-subject basis. For exam-
ple, thresholds on the curvature of each pathway need to be
adjusted by trial-and-error and regions that each pathway does
or does not intersect need to be defined. This makes tractogra-
phy studies time-consuming and compromises their robustness
and reliability. Even if an automated method is used to cluster the
streamlines into larger bundles a posteriori (O’Donnell and Westin,
2007; Maddah et al., 2008; Wassermann et al., 2010), the results are
largely dependent on the quality of the original streamlines. For
example streamline tractography might miss a sparser pathway if
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it is dominated by other, denser pathways that intersect it or that
originate in the same region.

Global tractography methods were suggested as an alternative
approach to address the problem of identifying specific white-
matter pathways (Fletcher et al., 2007; Jbabdi et al., 2007; Melon-
akos et al., 2007). The global approach defines both end regions
where the pathway is thought to terminate and searches the space
of all possible connections between these two regions for the con-
nection that best fits the data. Thus the entire pathway is estimated
at once, rather than step-by-step. The solution is symmetric with
respect to the two end regions, instead of treating one as the
“seed” and the other as the “target.” Since global optimization
integrates along the length of the pathway, it is less sensitive to
localized regions of high uncertainty (e.g., pathway crossings) than
the streamline approach. A challenge with global tractography is
the size of the solution space, which consists of all possible con-
nections between two regions. Although the pathway is typically
parameterized in some way to contain the size of this space, search-
ing through it remains cumbersome and sensitive to initialization,
especially for large end regions.

To address these issues, we have developed TRACULA (TRActs
Constrained by UnderLying Anatomy), a method for automated
reconstruction of major white-matter pathways that is based on
the global probabilistic approach of Jbabdi et al. (2007) and utilizes
prior information on the anatomy of the pathways from a set of
training subjects. Once the pathways have been labeled manually
in the training set, their trajectories are combined with an auto-
matic anatomical segmentation of the same subject (Dale et al.,
1999; Fischl et al., 1999a,b, 2002, 2004a,b; Fischl and Dale, 2000)
to derive a description of the pathways in terms of the structures
that they intersect and neighbor. The knowledge on path anatomy
that is extracted from the training set is then used to initialize a
global probabilistic tractography algorithm and also to constrain
its search space by penalizing connections that do not match our
prior anatomical knowledge. This allows the algorithm to recon-
struct the pathways reliably in a novel subject with no manual
intervention, facilitating the analysis of large data sets.

An important question regarding our method is whether a
training set consisting entirely of healthy subjects can be used
to reconstruct pathways in a diseased population. As a test case,
we applied our method to a schizophrenia study, using training
sets with different proportions of patients and healthy controls.
Several studies of schizophrenia using diffusion MRI have been
published to date (see, e.g., Kubicki et al., 2007 for a review).
Although several early region-based studies showed anisotropy
decreases in patients compared to controls (Lim et al., 1999; Foong
etal.,2000; Agartzetal.,2001; Ardekani et al., 2003), others did not
find such a decrease (Steel et al., 2001; Kubicki et al., 2002, 2003;
Begré et al., 2003). Studies of how white-matter integrity relates
to age in schizophrenia patients vs. controls have yielded contra-
dictory results (Jones et al., 2006; Mori et al., 2007; Rosenberger
et al., 2008; Voineskos et al., 2010). Although any discrepancies
between studies are likely partly due to differences in data acqui-
sition and variability in disease subtypes, part of the challenge
has also been defining the regions of interest in a manner that is
accurate and repeatable across subjects and studies. Thus inves-
tigators have been turning increasingly to tractography for better

localization of the effects of schizophrenia in specific pathways
(e.g., Buchsbaum et al., 2006; Price et al., 2008; Jeong et al., 2009;
Kubicki et al., 2009, 2011; Oh et al., 2009; Skudlarski et al., 2010;
Whitford et al., 2010). In this work we show that our automated
method for reconstructing white-matter fascicles can be applied
to data from schizophrenia patients, even if the training subjects
are healthy. This development should allow automatic tractogra-
phy analyses of even larger data sets to investigate subtle changes
in specific fascicles, not only in schizophrenia but in a wide
variety of neurological disorders, as well as brain development
and aging.

2. MATERIALS AND METHODS

2.1. IMAGE DATA

We used image data from 34 schizophrenia patients (ages 37 =+ 10,
9 female) and 33 healthy controls (ages 42 & 10, 14 female). The
data was all collected at MGH as part of a multi-site MIND Clini-
cal Imaging Consortium (Magnotta et al., 2008; Roffman et al,,
2008; Ehrlich et al., 2010; White et al., 2011). Patients had to
meet DSM-IV diagnostic criteria for schizophrenia. Information
on their average duration of illness, symptoms, and antipsychotic
medication history is given in Table 1. More details on the multi-
site patient population that this data set is part of can be found
in Ehrlich et al. (2010). Healthy controls had no history of psy-
chiatric diagnosis and were matched to the patient cohort for age,
gender, and parental education. Exclusion criteria for both patients
and controls were IQ lower than 70 based on a standardized IQ
test, history of a head injury resulting in prolonged loss of con-
sciousness, neurosurgical procedure, neurological disease, history
of skull fracture, severe or disabling medical conditions, or any
contraindication for MRI scanning. All subjects spoke English as
their native language. They provided informed consent to partici-
pate in the study in accordance with MGH Internal Review Board
regulations.

The subjects were scanned in a 1.5T Siemens scanner with
an 8-channel head coil. Diffusion-weighted images were acquired
with axial in-plane isotropic resolution 2mm, slice thickness
2mm, 128 x 128 x 60 image matrix, TR= 8900 ms, TE =80 ms,
NEX =1, BW = 1860 Hz/pixel, GRAPPA acceleration factor 2.
The series included images acquired with diffusion weight-
ing along 60 non-collinear directions (b=700sm~2), and 10
images acquired without diffusion weighting (b = 0). T'; -weighted
images were acquired in the same session with an oblique axial
GRE sequence, in-plane isotropic resolution 0.625mm, slice
thickness 1.5mm, 256 x 256 x 144 image matrix, TR=12ms,
TE =4.76 ms, FA =20, NEX = 3, BW = 110 Hz/pixel.

2.2. IMAGE PREPROCESSING

We used a standard method, available in FSL!, for mitigating dis-
tortions induced by eddy currents and motion by registering the
diffusion-weighted to the b= 0 images. For each subject, we reg-
istered the b=0 image to the T-weighted image by an affine
registration method that seeks to maximize the intensity contrast
of the b =0 image across the cortical gray/white boundary, which

http://www.fmrib.ox.ac.uk/fsl
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Table 1 | Details on symptoms and medication history of
schizophrenia patient population.

Mean and standard

deviation
Duration of illness [years] 144+12
Positive symptom composite score 4.82+3.29
Negative symptom composite score 703+4.48
Disorganized symptom composite score 1.26+1.68

78.80+180.16
539.563+49779

Lifetime antipsychotic exposure [CPZ dose years]
Current antipsychotic dose [CPZ units]

Positive symptom composite score: Sum of the global rating of severity of delu-
sions and the global rating of severity of hallucinations from the scale for the
assessment of positive symptoms SAPS; (Andreasen, 1984). Negative symptom
composite score: Sum of the values from the global rating of affective flattening,
the global rating of alogia, the global rating of avolition-apathy, and the global rating
of anhedonia-asociality from the scale for the assessment of negative symptoms
SANS; (Andreasen, 1983). Disorganized symptom composite score: Sum of the
values from the global rating of severity of bizarre behavior and the global rating
of positive formal thought disorder from the scale for the assessment of positive
symptoms SAPS; (Andreasen, 1984). Cumulative antipsychotic drug exposures:
Given in chlorpromazine dose years, where 1 dose year= 100 chlorpromazine
equivalents per day for 1year. Current antipsychotic drug dose: Given in chlor
promazine units. Antipsychotic history was collected as part of the psychiatric
assessment using the PSYCH instrument (Andreasen, 1987). Cumulative and
current antipsychotic exposure was calculated using the chlorpromazine (CPZ)
conversion factors of Andreasen et al. (2010).

is obtained from the T'; scan (Greve and Fischl, 2009). We regis-
tered each individual’s T'; -weighted image to the 1 mm-resolution
MNI-152 atlas (Talairach and Tournoux, 1988), using affine reg-
istration (Jenkinson et al., 2002). We used the automated tools in
FreeSurfer? to obtain a cortical parcellation and subcortical seg-
mentation for each subject from its T'; -weighted image (Dale et al.,
1999; Fischl et al., 1999a,b, 2002, 2004a,b; Fischl and Dale, 2000).

23. MANUAL LABELING

Our automated tractography method relies on prior anatomical
information derived from a set of training subjects. We obtained
this training data by labeling a set of major white-matter pathways
manually in each subject from our cohort. The manual labeling
was performed on the eddy-current corrected diffusion images
in Trackvis>. Conventional deterministic streamline tractography
was performed on the whole brain using the FACT method (Mori
et al., 1999). Then an expert interacted with the streamlines in
Trackvis to isolate the ones belonging to specific white-matter
pathways. For each pathway the expert drew at least two regions of
interest (ROIs) in anatomical locations that the pathway is known
to traverse. We followed an established protocol for identifying
these locations and drawing the ROIs (Wakana et al., 2007). Addi-
tional ROIs were placed as needed to eliminate streamlines that
did not belong to the pathway of interest or to cut streamlines
where they merged erroneously with other pathways. Most ROIs

Zhttp://surfer.nmr.mgh.harvard.edu
3http://trackvis.org

were hand-drawn on single slices of the individual’s fractional
anisotropy (FA) map, except for the end ROIs for the CST, which
came from the FreeSurfer anatomical segmentation.

This was done for all the pathways listed in Wakana et al. (2007)
except for the inferior fronto-occipital fasciculus, which we chose
not to label due to the controversy surrounding its existence as a
separate fascicle (Schmahmann and Pandya, 2007). The pathways
that we did label were:

Corticospinal tract (CST)

Inferior longitudinal fasciculus (ILF)

Uncinate fasciculus (UNC)

Anterior thalamic radiation (ATR)

Cingulum - cingulate gyrus (supracallosal) bundle (CCG)
Cingulum — angular (infracallosal) bundle (CAB)
Superior longitudinal fasciculus — parietal bundle (SLFP)
Superior longitudinal fasciculus — temporal bundle (SLFT)
Corpus callosum — forceps major (FMA]J)

Corpus callosum — forceps minor (FMIN)

Based on the subdivision of the SLF that has been suggested in
the literature (Makris et al., 2005), the SLFP and SLFT above
correspond most closely to SLF III and the arcuate fasciculus,
respectively. Except for FMAJ and FMIN, which are interhemi-
spheric connections, all other pathways were labeled on the left and
right hemisphere. Thus we ended up with a total of 18 pathways
per subject. Figure 1 shows an example of a full set of manually
labeled pathways and all the ROIs that were drawn for the labeling.

We assessed the intra- and inter-rater reliability of the man-
ual labeling method in the left and right uncinate. The uncinate
was labeled twice by rater 1 and once each by raters 2 and 3 in
10 healthy subjects. Intra-rater reliability was quantified as the
modified Hausdorff distance between the two labels of the same
pathway produced by rater 1. Inter-rater reliability was quantified
as the modified Hausdorff distance between labels of the same
pathway produced by raters 1 and 2 or raters 1 and 3. We define the
modified Hausdorff distance between two labels as the minimum
distance of each point on one label from the other label, averaged
over all points on the two labels. The means and standard errors
of the distances over the 10 subjects are shown in Figure 2.

24. AUTOMATED TRACTOGRAPHY

Our method for automated reconstruction of white-matter path-
ways is based on the Bayesian framework for global tractography
proposed in Jbabdi et al. (2007). In this framework the unknown
pathway JF in any new test subject is estimated from the diffusion-
weighted images Y of that subject via the posterior probability
distribution of F given Y,

P(FIY) o p(Y|F)p(F). (1

We can think of the likelihood p(Y|JF) as the variability in
the measured data given the shape of the pathway in the specific
subject and the prior distribution p(JF) as the variability in the
pathway shape from subject to subject. Therefore the likelihood
represents uncertainty in the data due to measurement noise
and the prior represents uncertainty due to individual anatomical
variation.
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FIGURE 1 | Manual labeling of all 18 pathways in a single subject, shown in Trackvis with the disks and manually drawn ROIs that were used to define
the pathways. An axial (A) and sagittal (B) view is shown, with some ROls hidden in each case to provide an unobstructed view.
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FIGURE 2 | Intra- and inter-rater reliability of the manual labeling of the
left and right uncinate. Reliability is quantified as the modified Hausdorff
distance between two labels of the same pathway produced by the same
rater or by two different raters.

In our approach we use the same formulation for the likeli-
hood p(YIJF) as Jbabdi et al. (2007), which assumes Gaussian
noise and uses the “ball-and-stick” model of diffusion (Behrens
et al., 2003). This model allows for multiple compartments of
anisotropic diffusion and one compartment of isotropic diffusion
per voxel, expressing the diffusion image data at that voxel as a
function of the volumes and orientations of these compartments
(Behrens et al., 2007). We used the bedpostx tool in FSL to esti-
mate the distributions of the ball-and-stick model parameters at
each voxel from the diffusion data, assuming up to two anisotropic
compartments per voxel.

Our departure from Jbabdi et al. (2007) is that, instead of
assuming equal prior probability for all possible paths connecting
two regions of interest, we use a prior of the form:

pF) = p (FIAFDL, (ALY, @)

where A is the anatomical segmentation map of the test subject,
Fr k=1,..., Ny is the pathway of interest in each of the N; train-
ing subjects, and A, k=1,..., N; the anatomical segmentation
map of each training subject. Thus we allow our prior knowledge

on the anatomy of the pathway in the training subjects to inform
our belief on the anatomy of the pathway in the test subject.

Specifically, the information that we glean from the training set
is which anatomical regions the pathway intersects and neighbors
along its trajectory. For each training subject, the anatomical seg-
mentation map Ay, obtained from the T image using FreeSurfer,
and the pathway F, obtained from the manual labeling of stream-
lines in Trackvis, are coregistered using the intra- and inter-subject
registration methods described in section 2.2. Once they have been
mapped to the common space (here MNI space), the streamlines
from the manual labeling of the training subjects are divided into
N; segments along their arc length. The number of segments N;
is chosen separately for each of the 18 pathways so that every
training streamline has at least 3 voxels in each segment. For
each segment i =1,..., N; along the streamlines of F} we com-
pute histograms of how often each segmentation label a occurs
in the anatomical segmentation map Ay at the voxels that the
streamlines traverse, or at the nearest neighboring structures of
the streamlines in the left, right, anterior, posterior, superior, and
inferior directions. This yields estimates of the a priori probability
p?(a) that a voxel in the pathway’s i-th segment intersects a seg-
mentation label g, and of the a priori probabilities piL(a), le(a),
plA(a), pf (a), p,-I (a), p,-s (a) that the nearest neighboring segmen-
tation label to a voxel in the pathway’s i-th segment in the left,
right, anterior, posterior, superior, and inferior directions, respec-
tively, is label a. These probabilities form a statistical framework
for introducing into the tractography algorithm the same type
of anatomical knowledge that an expert would use to label the
pathways manually.

The prior probability p(F|A, {.’Fk}i\ll, {Ak}i\ll) of a path in
the test subject given the training data is computed by splitting the
path into the same number of segments N, as the training paths.
Let the test path FF go through N, voxels in the common space and
i(j),j =1, .., N, be the segment along the path that the j-th voxel
belongs to, where i€ {1,..., N}. From the test subject’s segmen-
tation map A we obtain the segmentation label a? that the j-th
voxel intersects and its nearest neighboring segmentation labels

L R A P I

ap,a;,a;,a;, a;, ajs in the left, right, anterior, posterior, superior,

and inferior directions, respectively. The prior probability of the
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path is assumed to be the product of the prior probabilities of each
voxel along the path:

P (FIAFI, (A, = ﬁp?o> (a) ok (af) £l ()
j=1

< ol (o) o (o) iy (af) ol (o) ®

We estimate the posterior distribution p(JF | Y) for the test subject
via a Markov Chain Monte Carlo (MCMC) algorithm. The path-
way JF is modeled as a cubic spline with a fixed number of control
points. For the results shown here we used 5 control points to
model all pathways. Further investigation is needed to determine
the optimal number of control points, as it is possible that increas-
ing it could yield better results for higher-curvature paths such as
the corpus callosum. In addition to the estimation of anatomical
priors, the training data is also used to derive the initialization of
the control points and the end ROIs that are used to constrain the
two end points of each pathway. The initialization is obtained by
fitting a spline to the median of the training set of streamlines. The
end ROIs are obtained by dilating the end points of the training
streamlines and finding their intersection with the cortex of the
test subject.

The MCMC algorithm generates samples from the posterior
distribution p(F | Y) of the path by perturbing the control points,
thus changing the shape of the spline, and computing the like-
lihood and prior probability of the new spline. The likelihood
expresses how well the spline fits the diffusion data, that is, how
closely the orientation of the spline at each voxel that the spline
goes through matches the orientation of the anisotropic diffusion
compartments of the ball-and-stick model at the same voxel. The
prior expresses how well the spline fits the training set, that is,
how well the anatomical regions that the spline goes through or
passes next to in the test subject match those found in the train-
ing subjects. In each iteration of the algorithm the control points
are perturbed in random order. If the perturbed control point is
one of the two end points of the path and the perturbation has
placed it outside the end ROI obtained from the training set, it is
rejected. Otherwise, every time a control point is perturbed, the
likelihood and prior distribution is computed for every voxel along
the spline. The control point perturbation and likelihood compu-
tation is performed in the native diffusion space, so that the DWI
data itself does not need to be mapped to another space. How-
ever, the anatomical prior computation requires that each voxel
on the spline is mapped to the common coordinate system where
all training subjects and the corresponding anatomical segmenta-
tions have been normalized (here MNI space). The likelihood and
prior are integrated over all voxels along the spline to compute
its posterior probability, which is then compared to the posterior
probability of the spline from the previous iteration to determine if
the new spline will be accepted or rejected. A number of “burn-in”
iterations (200 in this experiment) are performed in the begin-
ning of the algorithm. The splines sampled during the burn-in
period are discarded to ensure that the spline is initialized close
to the center of the distribution. Then the main set of iterations
(5000 in this experiment) are run. The splines that are sampled

and accepted during this set of iterations are summed to yield an
estimate of the posterior distribution of the pathway in the test
subject. The optimal number of burn-in and sampling iterations
that are needed to ensure convergence for each pathway is a topic
for future investigation.

For this paper we investigated how the inclusion of both
patients and healthy subjects in the training set affected our abil-
ity to reconstruct the pathways reliably in either population. We
tested our method by aleave-N-out approach, where we performed
automated tractography in each subject using the manual labels
from a set of the remaining subjects as training data. We repeated
this three times per subject, each time using a different combi-
nation of 30 training subjects: (i) all 30 healthy, (ii) 15 healthy
and 15 diseased, and (iii) all 30 diseased. Training subjects were
selected randomly from the healthy and diseased groups. We also
performed the reconstruction using the healthy training data only
to initialize the algorithm but not in the pathway prior. This was
equivalent to assuming a uniform prior probability and relying on
the likelihood term alone for estimating the pathway posterior. We
compared the results by computing the distance of an automat-
ically reconstructed pathway in the test subject to the respective
manually labeled pathway for the same subject, which had been
excluded from the training set.

3. RESULTS

Our method yields volumetric distributions of the pathways. As
an example, Figure 3 shows the estimated pathway distributions
in three healthy controls and three schizophrenia patients, dis-
played as isosurfaces at 20% of the maximum value of each
distribution.

Figure 4 shows plots of the distances between the manually
labeled pathways and automatically reconstructed pathways that
were estimated with different sets of training subjects. In each case
we computed a modified Hausdorff distance between the automat-
ically reconstructed pathway and the manually defined pathway.
Before computing the modified Hausdorff distance, the distribu-
tion estimates were thresholded by masking out all values below
20% of the maximum. Thus the comparison is based on the center
of the distribution and not its tails, as we expect the center and not
the tails to overlap with the manual labels. In all cases, the paths
reconstructed with the anatomical priors were closer to the man-
ual labels than the ones reconstructed without prior information.
The priors reduced both the mean distance and the variance of
the distance from the manual labels, thus improving accuracy and
robustness.

Changing the make-up of our training set did not affect this
result significantly. In particular our results indicate that it is pos-
sible to reconstruct the pathways accurately in the entire study
cohort using a training set consisting of healthy subjects only. We
computed uncorrected p-values from T-tests on the difference
in the modified Hausdorff distances between the case where a
healthy-only training set was used and the other three cases. The
differences between the cases using a healthy-only training set and
no anatomical priors were significant (p < 0.01) for all pathways
except for the left ILE. The differences between the cases using a
healthy-only and a mixed or patient-only training set were not
significant.
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each individual's FreeSurfer segmentation.

FIGURE 3 | Pathways reconstructed automatically with TRACULA in three healthy controls (A-C) and three schizophrenia patients (D-F). The posterior
distribution of each pathway, estimated using 30 healthy subjects as the training set and thresholded at 20% of its maximum, is displayed as an isosurface over
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subjects (red), 15 healthy and 15 patients (magenta), and 30 patients (blue).

FIGURE 4 | Modified Hausdorff distances (MHD) between the manually labeled pathways and automatically reconstructed pathways. Pathway
posteriors were estimated without an anatomical prior (green) and with anatomical priors derived from 3 different sets of training subjects: 30 healthy training

Figure 5 illustrates the amount of anatomical variability that
is captured by the priors for an example training set consisting of
30 healthy subjects. To quantify this variability we found the max-
imum fraction of training samples that corresponded to a single
label, i.e., the fraction of training samples corresponding to the
most commonly encountered label. The higher this fraction, the

lower the variability in the segmentation labels encountered across
the samples. We averaged the fraction over all segments along the
length of a pathway. We calculated this average maximum fraction
for the labels that intersect the pathway (fy) and for the nearest
neighboring labels in the left, right, anterior, posterior, superior,
and inferior directions (f1, fr, fa, fp> fs, and fr, respectively). The
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segmentation labels intersected by the pathways were the least vari-
able (fp was 0.8 on average), as these are most commonly white
matter. The fractions for the neighboring segmentation labels were
0.5 on average. The left and right CAB were the pathways with the
most anatomical variability.

As an illustration of the utility of the tract-based approach
in localizing white-matter degeneration in schizophrenia, and to
confirm that our data set is consistent with prior findings from
the literature, Figure 6 shows group averages and correspond-
ing standard errors of the average fractional anisotropy (FA) in
each pathway. Based on uncorrected p-values from a T-test on

the difference between groups, we found average FA to be signif-
icantly lower in patients compared to controls in the left UNC
(p =0.005), left ATR (p=0.019), left CCG (p=0.011), left CAB
(p=0.006), right SLFP (p=10.033), EMAJ (p=0.00005), and
FMIN (p = 0.034), with trend toward significance in the FA reduc-
tions that were observed in the right UNC (p =0.067), left ILF
(p=0.059), right ATR (p=0.061), and right CCG (p =0.088).
The average FA over the entire white matter (based on white-
matter masks obtained from the FreeSurfer segmentations) was
also significantly reduced in patients vs. controls (p = 0.006). We
performed similar tests on the average radial diffusivity (RD)
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FIGURE 5 | Anatomical variability captured by the priors in an example training set of 30 healthy subjects. The plots show the fraction of training samples
corresponding to the most commonly encountered label, averaged over all segments along the length of each pathway. This was computed for the labels that
intersect the pathway (f,) and for the nearest neighboring labels in the left, right, anterior, posterior, superior, and inferior directions (f,, fs, fa, fp, s, and f,,
respectively). The higher the fraction, the lower the variability of the labels across training samples.
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FIGURE 6 | Fractional anisotropy (A) and radial diffusivity (B), averaged over individual pathways in schizophrenia patients and healthy controls.
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and axial diffusivity (AD) in each pathway. Pathways with sig-
nificantly reduced FA also exhibited increased RD in the patients
compared to the controls. More specifically, significant increases
of RD in patients were found in the left UNC (p=0.010), left
CCG (p=0.042), left SLFP (p =0.044), and FMAJ (p = 0.0003),
with trend toward significance in the right UNC (p =0.080),
left ATR (p=0.057), and FMIN (p=0.054). The average RD
over the whole white matter was also higher in the patients
(p=0.014). In contrast we found no significant changes in the
average AD over individual pathways or over the entire white
matter.

4. DISCUSSION

We have evaluated TRACULA, a method for automated global
probabilistic tractography, on a population of schizophrenia
patients and healthy controls. Our method yields volumetric
distributions of major pathways in a novel subject without the
need for manual intervention, thus facilitating clinical studies
where large populations need to be analyzed to detect subtle
changes in white-matter integrity. Our experiments showed that
this approach produced results very close to those of conventional,
manually assisted tractography, but without the manual editing.
Further investigation is needed to determine the optimal number
of subjects that should be included in the training set.

Including patients in the training set did not improve the
accuracy of our results. That is, despite the relative clinical het-
erogeneity of our patients (Table 1), we were able to reconstruct
pathways in this population using only healthy training subjects
without a decrease in accuracy. This is not entirely surprising as
our method does not constrain the exact spatial location or shape
of the pathways and is thus impervious to changes in these fea-
tures between populations. Our priors use only the trajectory of
the training paths relative to the surrounding anatomical struc-
tures. As long as the disease that we are studying does not cause a
radical reorganization of the brain and rerouting of white-matter
connections, healthy training subjects could be used to reconstruct
the pathways accurately in patients as well as in controls.

Several aspects of the anatomical prior computation can have
an impact on the validity of our method. These include the accu-
racy of the automated segmentation of the T;-weighted images,
the registration of each individual’s T'-weighted and diffusion-
weighted images, and the registration across individuals. The
accuracy of the automated anatomical segmentation has been
addressed elsewhere (Fischl et al., 2002, 2004b). The intra-subject
registration method that we used here benefits from information
on the gray/white-matter boundary to improve the alignment of
the diffusion and T;-weighted image. However, this alignment
remains a difficult problem, most notably due to susceptibility
artifacts that cause distortions in the DWIs. Thus care should
be taken to minimize such distortions to improve the accuracy
of the reconstructed pathways. Nevertheless it is worth noting
that the range of misregistration between the T';-weighted and
DW images across the training subjects will be reflected in the
anatomical priors as blurring. If any potential misregistration
in the test subject is within the range present in the training
set, this misregistration should be less of a problem for pathway
reconstruction.

The inter-subject alignment for this study was performed by
registering the subjects’ T'; -weighted images to the MNI template.
However, recent work from our group has shown that aligning the
T -weighted images to each other by a combined volume- and
surface-based non-linear registration can lead to improved inter-
subject alignment of streamlines from deterministic tractography,
when compared to affine registration (Zollei et al., 2010). We are
currently investigating the incorporation of this common coordi-
nate system in our tractography framework to replace the MNI
template. We expect that improved spatial normalization will be
particularly beneficial for the initialization of the control points
and for the definition of the end ROIs, as these aspects of the algo-
rithm rely on good spatial correspondence between the training
subjects and the test subject. Beyond that, however, we expect that
our tractography method would be less sensitive to small mis-
registrations between subjects than, for example, a voxel-based
comparison, since our priors use information on the surround-
ing anatomical structures of the pathways and not on their exact
spatial location.

In the experiments presented here we evaluated the accuracy
of the automated tractography by comparing it to the respective
manual labels. Of course, the manual labels cannot be consid-
ered ground truth, as they are limited by the inability of the
deterministic streamline tractography to reach some parts of cer-
tain pathways. For example, the more lateral terminations of the
CST in the motor cortex, e.g., those corresponding to the hand
region, are more challenging to trace than the more medial ones
due to intersecting pathways. Similarly the frontal terminations of
the SLF are longer and thus more challenging to trace than the pre-
frontal and premotor ones. Using a high angular-resolution model
(Q-ball) instead of the tensor model to obtain the streamlines used
for labeling did not yield improvements, since our data acquisition
(b=700sm~2, 60 directions) was suboptimal for this purpose.

However, we expect the global probabilistic approach to
explore areas of lower anisotropy and tract crossings that are
unreachable by deterministic tensor tractography, as long as these
areas lie within the same anatomical neighborhood as the training
streamlines. One reason for this is that the multi-fiber ball-and-
stick model can model more than one tract orientation per voxel.
Another reason is that global tractography integrates along the
length of the path and would be less sensitive to a low-anisotropy
crossing somewhere on that trajectory that could cause stream-
line tractography to terminate prematurely. Ultimately the avail-
ability of high-quality training data will be very beneficial to
our method and each tractography approach, manually assisted
or automatic, should be validated further by comparing it to
tracer studies.

The data likelihood model that is used by our method assumes
a Gaussian distribution for the DWTI intensity values. This is a good
approximation for magnitude images when the SNR is sufficiently
high but breaks down at low SNR. To test the Gaussianity of the
noise in our data, we used the DWI values in each voxel in the
ventricles, where the intensity is independent of gradient direc-
tion due to isotropic diffusion. For each of these voxels we used
the 60 DWI values available from the 60-direction data to estimate
the SNR and test for Gaussianity using a Kolmogorov-Smirnov
test. A total of 147781 voxels were tested over all subjects. The null
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hypothesis of Gaussianity was rejected in only 0.1% of these tests.
The average SNR was 5.5.

The data set that we chose to both train and test our method
in this work was acquired with the standard DWI sequence that
is used routinely to collect data for research studies at MGH. This
included using the default choices for b-value, gradient direc-
tions, and spatial resolution. It will be important to evaluate
our method further on data acquired with different acquisition
parameters. Beyond the quality of the test data, the quality of
the training data is crucial to our method, since the accuracy of
the reconstructed pathways is strongly dependent on the accuracy
of the prior information used by the algorithm. In the future,
as improved acquisition methods and hardware become avail-
able, training data of higher quality can be collected and used to
increase automated reconstruction accuracy in data sets of routine
quality.

Tractography can be used to qualify white-matter differences
between populations in much greater detail than it is possible
with a voxel-based or ROI-based approach. Local tractography
can handle exploratory analyses, where the anatomy of a connec-
tion is not known or the connection may not be present in all
subjects. Global tractography is geared toward the reconstruction
of a known connection between two end regions. A feature of
the global approach is that, by constraining both end points of the
pathway, it provides us with a straightforward way to parameterize
the pathway by arc length. With such a parameterization one could
localize effects further by comparing diffusion measures, such as
FA, not only in terms of their averages over a pathway, but also as a
function of position along the length of the pathway. With global
tractography, in particular, we estimate the posterior distribution
of each pathway, from which it is straightforward to calculate the
posterior mean or maximum a posteriori pathway for each subject
and compare FA or other measures at different locations along the
arc length. Since differences may be more pronounced in a par-
ticular portion of a pathway, e.g., due to greater disorganization
of connections in that portion or more crossings with another
pathway, such analyses may be helpful for further interpretation
of population differences.

To illustrate the validity of the data set used here, we have also
presented results from a tract-based comparison of FA between
the schizophrenia patients and matched controls in our cohort. A
superset of this cohort, including data acquired at three additional
sites, was studied previously with an ROI-based approach. FA was
found to be lower in patients than controls when averaged over
large regions (whole brain, frontal, parietal, occipital, and tempo-
ral lobes) (White et al., 2011). We were able to replicate this result
in this much smaller data set and show significant FA reductions
localized in specific pathways, as seen in Figure 6. Our results are
consistent with prior studies on white-matter integrity in schiz-
ophrenia that have sought to localize effects in specific fascicles.
In agreement to what we have found, anterior thalamic radia-
tions (Buchsbaum et al., 2006; Oh et al., 2009), cingulum (Kubicki
et al., 2003, 2005; Manoach et al., 2007; Mori et al., 2007; Nestor
et al., 2007), corpus callosum (Foong et al., 2000; Agartz et al.,
2001; Hubl et al., 2004; Kubicki et al., 2005; Douaud et al., 2007a;
Whitford et al., 2010), inferior longitudinal fasciculus (Hubl et al.,
2004; Jeong et al., 2009), superior longitudinal fasciculus (Hubl

et al., 2004; Kubicki et al., 2005; Jones et al., 2006; Karlsgodt et al.,
2008; Jeong et al., 2009), and uncinate (Kubicki et al., 2002; Burns
et al., 2003; Mori et al., 2007; Price et al., 2008; Szeszko et al., 2008;
Voineskos et al., 2010) are major sites where alterations have been
reported.

Common limitations of diffusion MRI studies, including our
own, are our inability to determine the exact biological causes of
diffusion anisotropy changes, our difficulty in distinguishing the
effects of the disease from those of medication, and the potentially
increased subject motion in patients as compared to controls. His-
tological studies have shown several changes in the white matter of
schizophrenia patients when compared to healthy subjects, includ-
ing differences in myelination and neuronal arborization patterns
(Davis et al., 2003; Flynn et al., 2003). Distinguishing between
potential neurobiological causes based on FA changes alone is not
possible. However, in combination with other measures extracted
from DWIs, such as mean, radial, and axial diffusivity (Kubicki
et al., 2003; Douaud et al., 2007b; Whitford et al., 2010), length of
tractography streamlines (Buchsbaum et al., 2006), or even mea-
sures from magnetization transfer imaging (Kubicki et al., 2005),
these findings have been hypothesized to support either demyeli-
nation or geometric disorganization as their underlying etiology.
Similarly to Whitford et al. (2010), our results show increased
radial but unchanged axial diffusivity in the patients, which has
been interpreted as evidence of myelin abnormalities (Song et al.,
2002).

Whichever the biological cause of changes in white-matter
integrity measures derived from diffusion MRI, several studies
have found these changes to be associated with cognitive deficits
in schizophrenia patients. This includes associations with perfor-
mance in attention and memory tasks (Kubicki et al., 2002, 2003,
2009, 2011; Nestor et al., 2007; Karlsgodt et al., 2008; Szeszko
et al., 2008), with fMRI activation in working memory-related
areas (Schlosser et al., 2007), and with fMRI time course corre-
lations within the semantic network (Jeong et al., 2009). Such
findings illustrate the potential of diffusion MRI to improve our
understanding of the mechanisms of schizophrenia but they also
underline the need for extracting diffusion measures specific to
each affected network. Our tractography method allows the auto-
matic extraction of such measures and can thus facilitate pathway-
specific studies on larger populations than what has been possible
with manually assisted tractography.

CONCLUSION

We have developed TRACULA, a method for automated tractog-
raphy that uses prior information on the anatomy of white-matter
pathways from a set of training subjects. We have evaluated the
accuracy of the method on a population of schizophrenia patients
and healthy volunteers, to determine how it is affected by the inclu-
sion of patients in the training set. We have found that a training
set consisting entirely of healthy subjects could be used to recon-
struct white-matter pathways in both patients and healthy controls
without compromising accuracy. Of course this conclusion cannot
be generalized to every clinical population and further evaluation
on other populations is warranted to determine if the training set
should be tailored to specific studies.

TRACULA is available for download as part of FreeSurfer 5.1.

Frontiers in Neuroinformatics

www.frontiersin.org

October 2011 | Volume 5 | Article 23 | 20


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Yendiki et al.

Automated probabilistic reconstruction of white-matter pathways

ACKNOWLEDGMENTS

The authors would like to thank Dr. Gary Zhang of University
College London for valuable discussions on white-matter labeling
that have informed this work. Funding was provided in part by
NIH/NIBIB K99/R00 Pathway to Independence award EB008129.
Additional support was provided by the NIH Blueprint for Neuro-
science Research (U01-MH093765, part of the multi-institutional
Human Connectome Project), the National Center for Research
Resources (P41-RR14075, and the NCRR BIRN Morphomet-
ric Project BIRN002, U24-RR021382), the National Institute for
Biomedical Imaging and Bioengineering (R0O1-EB006758), the
National Institute on Aging (R01-AG022381), the National Center
for Alternative Medicine (RC1-AT005728), the National Insti-
tute for Neurological Disorders and Stroke (R01-NS052585, R21-
NS072652, R0O1-NS070963), and the Autism & Dyslexia Project

funded by the Ellison Medical Foundation. This work was made
possible by the resources provided by Shared Instrumentation
Grants 1S10RR023401, 1S10RR019307, and 1S10RR023043. The
imaging data and demographic information was collected and
shared by the MGH team of the MIND Clinical Imaging Con-
sortium, funded by the U.S. Department of Energy DE-FGO02-
99ER62764. Tim Behrens and Saad Jbabdi were supported by
the Wellcome Trust (WT088312AIA), the UK Medical Research
Council (G0800578), the EU CONNECT project, and the Human
Connectome Project (1U54MH091657-01) from the 16 NIH Insti-
tutes and Centers that support the NIH Blueprint for Neuroscience
Research. The project CONNECT acknowledges the financial sup-
port of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number: 238292.

REFERENCES

Agartz, 1., Andersson, J. L., and Skare, S.
(2001). Abnormal brain white mat-
ter in schizophrenia: a diffusion ten-
sor imaging study. Neuroreport 12,
2251-2254.

Andreasen, N. C. (1983). Scale for the
Assessment of Negative Symptoms
(SANS). Iowa City, IA: University of
Towa.

Andreasen, N. C. (1984). Scale for
the Assessment of Positive Symptoms
(SAPS). Towa City, IA: University of
Iowa.

Andreasen, N. C. (1987). Psychiatric
Symptoms You Currently Have —
Baseline (PSYCH-BASE). Towa City,
IA: University of Iowa.

Andreasen, N. C., Pressler, M., Nopou-
los, P, Miller, D., and Ho, B.-C.
(2010). Antipsychotic dose equiva-
lents and dose-years: a standardized
method for comparing exposure to
different drugs. Biol. Psychiatry 67,
255-262.

Ardekani, B. A., Nierenberg, J., Hopt-
man, M. J., Javitt, D. C., and Lim, K.
0. (2003). MRI study of white matter
diffusion anisotropy in schizophre-
nia. Neuroreport 14,2025-2029.

Basser, P. J., Pajevic, S., Pierpaoli, C.,
Duda, J., and Aldroubi, A. (2000).
In vivo fiber tractography using DT-
MRI data. Magn. Reson. Med. 44,
625-632.

Begré, S., Federspiel, A., Kiefer, C.,
Schroth, G., Dierks, T., and Strik,
W. K. (2003). Reduced hippocam-
pal anisotropy related to anterioriza-
tion of alpha EEG in schizophrenia.
Neuroreport 14, 739-742.

Behrens, T. E. J., Berg, H. J., Jbabdi, S.,
Rushworth, M. F. S., and Woolrich,
M. W. (2007). Probabilistic diffusion
tractography with multiple fibre ori-
entations: what can we gain? Neu-
roimage 34, 144-155.

Behrens, T. E. J., Woolrich, M. W,
Jenkinson, M., Johansen-Berg, H.,

Nunes, R. G., Clare, S., Matthews, P.
M., Brady, J. M., and Smith, S. M.
(2003). Characterization and prop-
agation of uncertainty in diffusion-
weighted MR imaging. Magn. Reson.
Med. 50, 1077-1088.

Buchsbaum, M. S., Schoenknecht, P.,
Torosjan, Y., Newmark, R., Chu, K.-
W., Mitelman, S., Brickman, A. M.,
Shihabuddin, L., Haznedar, M. M.,
Hazlett, E. A., Ahmed, S., and Tang,
C. (2006). Diffusion tensor imaging
of frontal lobe white matter tracts in
schizophrenia. Ann. Gen. Psychiatry
5, 19.

Burns, J., Job, D., Bastin, M. E., Whalley,
H., Macgillivray, T., Johnstone, E. C.,
and Lawrie, S. M. (2003). Structural
disconnectivity in schizophrenia: a
diffusion tensor magnetic resonance
imaging study. Br. J. Psychiatry 182,
439-443.

Conturo, T. E., Lori, N. E, Cull,
T. S., Akbudak, E., Snyder, A.
Z., Shimony, J. S., McKinstry, R.
C., Burton, H., and Raichle, M.
E. (1999). Tracking neuronal fiber
pathways in the living human brain.
Proc. Natl. Acad. Sci. US.A. 96,
10422-10427.

Cook, P. A., Zhang, H., Avants, B. B,,
Yushkevich, P., Alexander, D. C., Gee,
J. C., Ciccarelli, O., and Thompson,
A.]. (2005). An automated approach
to connectivity-based partitioning
of brain structures. Med. Image
Comput. Comput. Assist. Interv. 8(Pt
1), 164-171.

Dale, A. M., Fischl, B., and Sereno,
M. 1. (1999). Cortical surface-based
analysis. I. segmentation and sur-
face reconstruction. Neuroimage 9,
179-194.

Davis, K. L., Stewart, D. G., Fried-
man, J. I, Buchsbaum, M., Har-
vey, P. D., Hof, P. R.,, Buxbaum,
J., and Haroutunian, V. (2003).
White matter changes in schizo-
phrenia: evidence for myelin-related

dysfunction. Arch. Gen. Psychiatry
60, 443—-456.

Douaud, G., Smith, S., Jenkinson,
M., Behrens, T., Johansen-Berg,
H., Vickers, J., James, S., Voets,
N., Watkins, K., Matthews, P. M.,
and James, A. (2007a). Anatomi-
cally related grey and white matter
abnormalities in adolescent-onset
schizophrenia. Brain 130(Pt 9),
2375-2386.

Douaud, G., Smith, S., Jenkinson, M.,
Behrens, T., Johansen-Berg, H., Vick-
ers, J., James, S., Voets, N., Watkins,
K., Matthews, P. M., and James,
A. (2007b). Anatomically related
grey and white matter abnormalities
in adolescent-onset schizophrenia.
Brain 130(Pt 9), 2375-2386.

Ehrlich, S., Morrow, E. M., Roffman, J.
L., Wallace, S. R., Naylor, M., Bock-
holt, H. J., Lundquist, A., Yendiki, A.,
Ho, B.-C., White, T., Manoach, D.
S., Clark, V. P, Calhoun, V. D., Gol-
lub, R. L., and Holt, D. J. (2010).
The COMT Vall08/158Met poly-
morphism and medial temporal lobe
volumetry in patients with schiz-
ophrenia and healthy adults. Neu-
roimage 53, 992-1000.

Fischl, B., and Dale, A. M. (2000). Mea-
suring the thickness of the human
cerebral cortex from magnetic
resonance images. Proc. Natl. Acad.
Sci. U.S.A. 97, 11050-11055.

Fischl, B., Salat, D. H., Busa, E., Albert,
M., Dieterich, M., Haselgrove, C,,
van der Kouwe, A., Killiany, R,
Kennedy, D., Klaveness, S., Mon-
tillo, A., Makris, N., Rosen, B., and
Dale, A. M. (2002). Whole brain
segmentation: automated labeling of
neuroanatomical structures in the
human brain. Neuron 33, 341-355.

Fischl, B., Salat, D. H., van der Kouwe,
A. J. W,, Makris, N., Ségonne, E,
Quinn, B. T., and Dale, A. M.
(2004a). Sequence-independent seg-
mentation of magnetic resonance

images. Neuroimage 23(Suppl. 1),
569-584.

Fischl, B., van der Kouwe, A., Destrieux,
C., Halgren, E., Ségonne, E,, Salat, D.
H., Busa, E., Seidman, L. J., Gold-
stein, J., Kennedy, D., Caviness, V.,
Makris, N., Rosen, B., and Dale, A.
M. (2004b). Automatically parcel-
lating the human cerebral cortex.
Cereb. Cortex 14, 11-22.

Fischl, B., Sereno, M. ., and Dale, A.
M. (1999a). Cortical surface-based
analysis. II: Inflation, flattening, and
a surface-based coordinate system.
Neuroimage 9, 195-207.

Fischl, B., Sereno, M. I, Tootell,
R. B, and Dale, A. M. (1999b).
High-resolution intersubject averag-
ing and a coordinate system for the
cortical surface. Hum. Brain Mapp.
8,272-284.

Fletcher, P. T., Tao, R., Jeong, W.-K., and
‘Whitaker, R. T. (2007). A volumetric
approach to quantifying region-to-
region white matter connectivity in
diffusion tensor MRI Inf. Process.
Med. Imaging 20, 346—358.

Flynn, S. W, Lang, D. J., Mackay, A. L.,
Goghari, V., Vavasour, I. M., Whit-
tall, K. P., Smith, G. N., Arango, V.,
Mann, J. J., Dwork, A. J., Falkai, P.,
and Honer, W. G. (2003). Abnormal-
ities of myelination in schizophrenia
detected in vivo with MRI, and post-
mortem with analysis of oligoden-
drocyte proteins. Mol. Psychiatry 8,
811-820.

Foong, J., Maier, M., Clark, C. A., Barker,
G. J., Miller, D. H.,, and Ron, M.
A.(2000). Neuropathological abnor-
malities of the corpus callosum in
schizophrenia: a diffusion tensor
imaging study. J. Neurol. Neurosurg.
Psychiatr. 68, 242-244.

Friman, O., Farnebick, G., and Westin,
C.-FE. (2006). A Bayesian approach
for stochastic white matter tractog-
raphy. IEEE Trans. Med. Imaging 25,
965-978.

Frontiers in Neuroinformatics

www.frontiersin.org

October 2011 | Volume 5 | Article 23 | 21


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Yendiki et al.

Automated probabilistic reconstruction of white-matter pathways

Greve, D. N., and Fischl, B. (2009).
Accurate and robust brain image
alignment using boundary-based
registration.  Neuroimage 48,
63-72.

Hagmann, P., Thiran, J.-P., Jonasson,
L., Vandergheynst, P., Clarke, S.,
Maeder, P, and Meuli, R. (2003).
DTI mapping of human brain con-
nectivity: statistical fibre tracking
and virtual dissection. Neuroimage
19, 545-554.

Hubl, D., Koenig, T., Strik, W., Fed-
erspiel, A., Kreis, R., Boesch, C,
Maier, S. E., Schroth, G., Lovblad, K.,
and Dierks, T. (2004). Pathways that
make voices: white matter changes in
auditory hallucinations. Arch. Gen.
Psychiatry 61, 658—668.

Jackowski, M., Kao, C. Y., Qiu, M.,
Constable, R. T., and Staib, L. H.
(2005). White matter tractography
by anisotropic wavefront evolution
and diffusion tensor imaging. Med.
Image Anal. 9, 427-440.

Jbabdi, S., Woolrich, M. W., Anders-
son, J. L. R., and Behrens, T. E. J.
(2007). A Bayesian framework for
global tractography. Neuroimage 37,
116-129.

Jenkinson, M., Bannister, P., Brady, M.,
and Smith, S. (2002). Improved opti-
mization for the robust and accurate
linear registration and motion cor-
rection of brain images. Neuroimage
17, 825-841.

Jeong, B., Wible, C. G., ichiro
Hashimoto, R., and Kubicki,
M. (2009). Functional and anatom-
ical abnormalities
in left inferior frontal gyrus in
schizophrenia. Hum. Brain Mapp.
30,4138-4151.

Jones, D. K., Catani, M., Pierpaoli,
C., Reeves, S. J., Shergill, S. S,
O’Sullivan, M., Golesworthy, P,
Mcguire, P., Horsfield, M. A., Sim-
mons, A., Williams, S. C., and
Howard, R. J. (2006). Age effects
on diffusion tensor magnetic res-
onance imaging tractography mea-
sures of frontal cortex connections
in schizophrenia. Hum. Brain Mapp.
27,230-238.

Jones, D. K., and Pierpaoli, C. (2005).
Confidence mapping in diffusion
tensor magnetic resonance imag-
ing tractography using a bootstrap
approach. Magn. Reson. Med. 53,
1143-1149.

Jones, D. K., Simmons, A., Williams,
S. C., and Horsfield, M. A. (1999).
Non-invasive assessment of axonal
fiber connectivity in the human
brain via diffusion tensor MRI.
Magn. Reson. Med. 42, 37-41.

Karlsgodt, K. H., van Erp, T. G. M,,
Poldrack, R. A., Bearden, C. E.,
Nuechterlein, K. H., and Cannon, T.
D. (2008). Diffusion tensor imaging

connectivity

of the superior longitudinal fascicu-
lus and working memory in recent-
onset schizophrenia. Biol. Psychiatry
63,512-518.

Kubicki, M., Alvarado, J. L., Westin, C.-
E, Tate, D. E, Markant, D., Terry, D.
P, Whitford, T. J., Siebenthal, J. D,,
Bouix, S., McCarley, R. W, Kikinis,
R., and Shenton, M. E. (2011). Sto-
chastic tractography study of infe-
rior frontal gyrus anatomical con-
nectivity in schizophrenia. Neuroim-
age 55, 1657-1664.

Kubicki, M., McCarley, R., Westin, C.-
F, Park, H.-J., Maier, S., Kikinis, R.,
Jolesz, F. A., and Shenton, M. E.
(2007). A review of diffusion tensor
imaging studies in schizophrenia. J.
Psychiatr. Res. 41, 15-30.

Kubicki, M., Niznikiewicz, M., Con-
nor, E., Nestor, P, Bouix, S., Dreu-
sicke, M., Kikinis, R., McCarley, R,
and Shenton, M. (2009). Relation-
ship between white matter integrity,
attention, and memory in schizo-
phrenia: a diffusion tensor imag-
ing study. Brain Imaging Behav. 3,
191-201.

Kubicki, M., Park, H., Westin, C. E,
Nestor, P. G., Mulkern, R. V., Maier,
S. E., Niznikiewicz, M., Connor,
E. E., Levitt, J. J., Frumin, M.,
Kikinis, R., Jolesz, E. A., McCar-
ley, R. W.,, and Shenton, M. E.
(2005). DTI and MTR abnormal-
ities in schizophrenia: analysis of
white matter integrity. Neuroimage
26,1109-1118.

Kubicki, M., Westin, C.-F,, Maier, S.
E., Frumin, M., Nestor, P. G., Sal-
isbury, D. E, Kikinis, R., Jolesz, E.
A., McCarley, R. W., and Shen-
ton, M. E. (2002). Uncinate fasci-
culus findings in schizophrenia: a
magnetic resonance diffusion tensor
imaging study. Am. J. Psychiatry 159,
813-820.

Kubicki, M., Westin, C.-F, Nestor, P. G.,
Wible, C. G., Frumin, M., Maier, S.
E., Kikinis, R., Jolesz, F. A., McCar-
ley,R. W., and Shenton, M. E. (2003).
Cingulate fasciculus integrity dis-
ruption in schizophrenia: a mag-
netic resonance diffusion tensor
imaging study. Biol. Psychiatry 54,
1171-1180.

Lazar, M., and Alexander, A. L. (2005).
Bootstrap white matter tractogra-
phy (BOOT-TRAC). Neuroimage 24,
524-532.

Lazar, M., Weinstein, D. M., Tsuruda,
J. S., Hasan, K. M., Arfanakis, K.,
Meyerand, M. E., Badie, B., Row-
ley, H. A., Haughton, V., Field, A,
and Alexander, A. L. (2003). White
matter tractography using diffusion
tensor deflection. Hum. Brain Mapp.
18, 306-321.

Lim, K. O., Hedehus, M., Moseley, M.,
de Crespigny, A., Sullivan, E. V., and

Pfefferbaum, A. (1999). Compro-
mised white matter tract integrity
in schizophrenia inferred from dif-
fusion tensor imaging. Arch. Gen.
Psychiatry 56, 367-374.

Maddah, M., Grimson, W. E. L,
Warfield, S. K., and Wells, W.
M. (2008). A unified framework
for clustering and quantitative

analysis of white matter fiber
tracts. Med. Image Anal. 12,
191-202.

Magnotta, V. A., Adix, M. L., Capra-
han, A., Lim, K., Gollub, R., and
Andreasen, N. C. (2008). Investigat-
ing connectivity between the cere-
bellum and thalamus in schizophre-
nia using diffusion tensor tractog-
raphy: a pilot study. Psychiatry Res.
163, 193-200.

Makris, N., Kennedy, D. N., Mclner-
ney, S., Sorensen, A. G., Wang, R,
Caviness, V. S., and Pandya, D. N.
(2005). Segmentation of subcompo-
nents within the superior longitudi-
nal fascicle in humans: a quantita-
tive, in vivo, DT-MRI study. Cereb.
Cortex 15, 854-869.

Manoach, D. S., Ketwaroo, G. A., Polli,
F. E., Thakkar, K. N., Barton, J.
J. S., Goft, D. C., Fischl, B., Van-
gel, M., and Tuch, D. S. (2007).
Reduced microstructural integrity
of the white matter underlying
anterior cingulate cortex is associ-
ated with increased saccadic latency
in schizophrenia. Neuroimage 37,
599-610.

Melonakos, J., Mohan, V., Niethammer,
M., Smith, K., Kubicki, M., and Tan-
nenbaum, A. (2007). Finsler tractog-
raphy for white matter connectiv-
ity analysis of the cingulum bundle.
Med. Image Comput. Comput. Assist.
Interv. 10(Pt 1), 36—43.

Mori, S., Crain, B. J., Chacko, V. P,
and van Zijl, P. C. (1999). Three-
dimensional tracking of axonal pro-
jections in the brain by magnetic
resonance imaging. Ann. Neurol. 45,
265-269.

Mori, T., Ohnishi, T., Hashimoto, R.,
Nemoto, K., Moriguchi, Y., Noguchi,
H., Nakabayashi, T., Hori, H.,
Harada, S., Saitoh, O., Matsuda, H.,
and Kunugi, H. (2007). Progressive
changes of white matter integrity in
schizophrenia revealed by diffusion
tensor imaging. Psychiatry Res. 154,
133-145.

Nestor, P. G., Kubicki, M., Spencer,
K. M., Niznikiewicz, M., McCarley,
R. W,, and Shenton, M. E. (2007).
Attentional networks and cingulum
bundle in chronic schizophrenia.
Schizophr. Res. 90, 308-315.

O’Donnell, L., Haker, S., and Westin, C.
F. (2002). New approaches to estima-
tion of white matter connectivity in
diffusion tensor MRI: Elliptic PDEs

and geodesics in a tensor-warped
space. Med. Image Comput. Comput.
Assist. Interv. 5, 459-466.

O’Donnell, L. J., and Westin, C.-E
(2007). Automatic tractography seg-
mentation using a high-dimensional
white matter atlas. IEEE Trans. Med.
Imaging 26, 1562-1575.

Oh, J. S., Kubicki, M., Rosenberger, G.,
Bouix, S., Levitt, J. J., McCarley, R.
W., Westin, C.-E, and Shenton, M. E.
(2009). Thalamo-frontal white mat-
ter alterations in chronic schizophre-
nia: a quantitative diffusion tractog-
raphy study. Hum. Brain Mapp. 30,
3812-3825.

Parker, G. J. M., and Alexander, D. C.
(2005). Probabilistic anatomical
connectivity ~derived from the
microscopic ~ persistent  angular
structure of cerebral tissue. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 360,
893-902.

Parker, G. J. M., Wheeler-Kingshott, C.
A. M., and Barker, G. J. (2002).
Estimating distributed anatomical
connectivity using fast marching
methods and diffusion tensor imag-
ing. IEEE Trans. Med. Imaging 21,
505-512.

Pichon, E., Westin, C.-F,, and Tannen-
baum, A. R. (2005). A Hamilton-
Jacobi-Bellman approach to high
angular resolution diffusion tractog-
raphy. Med. Image Comput. Comput.
Assist. Interv. 8(Pt 1), 180-187.

Poupon, C., Clark, C. A., Frouin, V.,
Régis, J., Bloch, 1., Bihan, D. L., and
Mangin, J. (2000). Regularization of
diffusion-based direction maps for
the tracking of brain white matter
fascicles. Neuroimage 12, 184-195.

Price, G., Cercignani, M., Parker, G. J.
M., Altmann, D. R., Barnes, T. R. E.,
Barker, G. J., Joyce, E. M., and Ron,
M. A. (2008). White matter tracts in
first-episode psychosis: a DTT trac-
tography study of the uncinate fasci-
culus. Neuroimage 39, 949-955.

Roffman, J. L., Gollub, R. L., Cal-
houn, V. D., Wassink, T. H., Weiss,
A. P, Ho, B. C., White, T., Clark,
V. P, Fries, J., Andreasen, N. C,,
Goff, D. C., and Manoach, D. S.
(2008). MTHFR 677C — T geno-
type disrupts prefrontal function in
schizophrenia through an interac-
tion with COMT 158Val — Met.
Proc. Natl. Acad. Sci. US.A. 105,
17573-17578.

Rosenberger, G., Kubicki, M., Nestor,
P. G., Connor, E., Bushell, G.
B., Markant, D., Niznikiewicz, M.,
Westin, C.-F, Kikinis, R., Saykin, A.
J., McCarley, R. W., and Shenton,
M. E. (2008). Age-related deficits
in fronto-temporal connections in
schizophrenia: a diffusion tensor
imaging study. Schizophr. Res. 102,
181-188.

Frontiers in Neuroinformatics

www.frontiersin.org

October 2011 | Volume 5 | Article 23| 22


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Yendiki et al.

Automated probabilistic reconstruction of white-matter pathways

Schlésser, R. G. M., Nenadic,
I, Wagner, G., Gillmar, D,
von Consbruch, K., Kohler,
S., Schultz, C. C., Koch, K,

Fitzek, C., Matthews, P. M., Reichen-
bach, J. R., and Sauer, H. (2007).
White matter abnormalities and
brain activation in schizophrenia:
a combined DTI and Fmri study.
Schizophr. Res. 89, 1-11.

Schmahmann, J. D., and Pandya, D. N.
(2007). The complex history of the
fronto-occipital fasciculus. J. Hist.
Neurosci. 16, 362-377.

Skudlarski, P., Jagannathan, K., Ander-
son, K., Stevens, M. C., Calhoun, V.
D., Skudlarska, B. A., and Pearlson,
G. (2010). Brain connectivity is not
only lower but different in schizo-
phrenia: a combined anatomical and
functional approach. Biol. Psychiatry
68,61-69.

Song, S.-K., Sun, S.-W., Ramsbottom,
M. J., Chang, C., Russell, J., and
Cross, A. H. (2002). Dysmyelination
revealed through MRI as increased
radial (but unchanged axial) dif-
fusion of water. Neuroimage 17,
1429-1436.

Steel, R. M., Bastin, M. E., McConnell, S.,
Marshall, I., Cunningham-Owens,
D. G., Lawrie, S. M., Johnstone, E.
C., and Best, J. J. (2001). Diffusion
tensor imaging (DTI) and proton

magnetic resonance spectroscopy
(IH MRS) in schizophrenic subjects
and normal controls. Psychiatry Res.
106, 161-170.

Szeszko, P. R., Robinson, D. G., Ashtari,
M., Vogel, J., Betensky, J., Sevy, S.,
Ardekani, B. A., Lencz, T., Malho-
tra, A. K., McCormack, J., Miller, R.,
Lim, K. O., Gunduz-Bruce, H., Kane,
J. M., and Bilder, R. M. (2008). Clin-
ical and neuropsychological corre-
lates of white matter abnormal-
ities in recent onset schizophre-
nia. Neuropsychopharmacology 33,
976-984.

Talairach, J., and Tournoux, P. (1988).
Co-Planar Stereotaxic Atlas of the
Human Brain. New York, NY:
Thieme Medical Publishers.

Voineskos, A. N., Lobaugh, N. J., Bouix,
S., Rajji, T. K., Miranda, D., Kennedy,
J. L., Mulsant, B. H., Pollock, B. G.,
and Shenton, M. E. (2010). Diffu-
sion tensor tractography findings in
schizophrenia across the adult lifes-
pan. Brain 133(Pt 5), 1494-1504.

Wakana, S., Caprihan, A., Panzenboeck,
M. M,, Fallon, J. H., Perry, M., Gol-
lub, R. L., Hua, K., Zhang, J., Jiang,
H., Dubey, P, Blitz, A., van Zijl, P,
and Mori, S. (2007). Reproducibility
of quantitative tractography meth-
ods applied to cerebral white matter.
Neuroimage 36, 630-644.

Wassermann, D., Bloy, L., Kanterakis,
E., Verma, R., and Deriche, R.
(2010). Unsupervised white matter
fiber clustering and tract probability
map generation: applications of
a gaussian process framework for
white matter fibers. Neuroimage 51,
228-241.

White, T., Magnotta, V. A., Bockholt, H.
J., Williams, S., Wallace, S., Ehrlich,
S., Mueller, B. A., Ho, B.-C., Jung,
R. E, Clark, V. P, Lauriello, J.,
Bustillo, J. R., Schulz, S. C., Gollub,
R. L., Andreasen, N. C., Calhoun, V.
D., and Lim, K. O. (2011). Global
white matter abnormalities in schiz-
ophrenia: a multisite diffusion ten-
sor imaging study. Schizophr. Bull.
37,222-232.

Whitford, T. J., Kubicki, M., Schnei-
derman, J. S., O’Donnell, L. J,
King, R., Alvarado, J. L., Khan,
U., Markant, D., Nestor, P. G,
Niznikiewicz, M., McCarley, R. W.,
Westin, C.-E, and Shenton, M. E.
(2010). Corpus callosum abnormal-
ities and their association with psy-
chotic symptoms in patients with
schizophrenia. Biol. Psychiatry 68,
70-77.

Zollei, L., Stevens, A., Huber, K,
Kakunoori, S., and Fischl, B. (2010).
Improved tractography alignment
using combined volumetric and

surface registration. Neuroimage 51,
206-213.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 19 March 2011; accepted: 23
September 2011; published online: 14
October 2011.

Citation: Yendiki A, Panneck P, Srini-
vasan P, Stevens A, Zollei L, Augustinack
J, Wang R, Salat D, Ehrlich S, Behrens T,
Jbabdi S, Gollub R and Fischl B (2011)
Automated probabilistic reconstruction of
white-matter pathways in health and dis-
ease using an atlas of the underlying
anatomy. Front. Neuroinform. 5:23. doi:
10.3389/fninf.2011.00023

Copyright © 2011 Yendiki, Panneck,
Srinivasan, Stevens, Zillei, Augustinack,
Wang, Salat, Ehrlich, Behrens, Jbabdi,
Gollub and Fischl. This is an open-access
article subject to a non-exclusive license
between the authors and Frontiers Media
SA, which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and other Frontiers conditions are
complied with.

Frontiers in Neuroinformatics

www.frontiersin.org

October 2011 | Volume 5 | Article 23 | 23


http://dx.doi.org/10.3389/fninf.2011.00023
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

{fromtiers im

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 15 July 2011
doi: 10.3389/fninf.2011.00006

=

On the influence of amplitude on the connectivity between

phases

Andreas Daffertshofer* and Bernadette C. M. van Wijk

Research Institute MOVE, VU University Amsterdam, Amsterdam, Netherlands

Edited by:
Olaf Sporns, Indiana University, USA

Reviewed by:

Joana R. B. Cabral, Universitat Pompeu
Fabra, Spain

Juergen Kurths, Humboldt Universitét,
Germany

*Correspondence:

Andreas Daffertshofer, Research
Institute MIOVE, VU University
Amsterdam, Van der Boechorststraat 9,
1081 BT Amsterdam, Netherlands.
e-mail: a.daffertshofer@vu.nl

In recent studies, functional connectivities have been reported to display characteristics of
complex networks that have been suggested to concur with those of the underlying structural,
i.e., anatomical, networks. Do functional networks always agree with structural ones? In all
generality, this question can be answered with “no”: for instance, a fully synchronized state
would imply isotropic homogeneous functional connections irrespective of the “real” underlying
structure. A proper inference of structure from function and vice versa requires more than a
sole focus on phase synchronization. We show that functional connectivity critically depends
on amplitude variations, which implies that, in general, phase patterns should be analyzed in
conjunction with the corresponding amplitude. We discuss this issue by comparing the phase
synchronization patterns of interconnected Wilson—-Cowan models vis-a-vis Kuramoto networks
of phase oscillators. For the interconnected Wilson—-Cowan models we derive analytically how
connectivity between phases explicitly depends on the generating oscillators’” amplitudes.
In consequence, the link between neurophysiological studies and computational models
always requires the incorporation of the amplitude dynamics. Supplementing synchronization
characteristics by amplitude patterns, as captured by, e.g., spectral power in M/EEG recordings,
will certainly aid our understanding of the relation between structural and functional organizations

in neural networks at large.

Keywords: connectivity, phase synchronization, Kuramoto network, Wilson-Cowan model, amplitude dependency

INTRODUCTION
The interplay between structural and functional brain networks has
become a popular topic of research in recent years. It is currently
believed that the topologies of structural and functional networks in
various empirical systems may disagree (Sporns and Kotter, 2004)
but systematic analyses tackling this issue are few and far between.
In a combined neural mass and graph theoretical model of electro-
encephalographic signals, it was found that patterns of functional
connectivity are influenced by — but not identical to — those of
the corresponding structural level (Ponten et al., 2010). In this
and many other studies, functional connectivity has been defined
through the synchronization between activities at different nodes.
Neurons synchronize their firing pattern in accordance with
different behavioral states. On a larger scale, synchronous activi-
ties are considered to stem from meso-scale neural populations
that oscillate at certain frequencies with certain amplitudes. That
is, oscillatory activity may yield synchronization characteristics
within a neural population or between populations (Salenius and
Hari, 2003). The amplitude of a single oscillatory neural popula-
tion reflects the degree of synchronization of its neurons, that is,
it measures local synchrony. By contrast, synchronization between
two or more oscillatory neural populations is typically defined by
their (relative) phase variance. Changes in instantaneous phase
locking or coherence reflect changes in more global, distributed
synchronization, i.e., between ensembles or between areas. In fact,
synchronized activity across neural networks is believed to offer
an effective mechanism for information transfer, especially when

discriminating between frequency and phase-locked activity (Baker
et al., 1999; Mima and Hallett, 1999; Salinas and Sejnowski, 2001;
Fries, 2005; Womelsdorf et al., 2007). It is usually assumed that
amplitude or power variations take place on long time scales when
compared to the phase dynamics and are therefore considered neg-
ligible. The coupling that does, or does not, yield synchrony between
oscillators hence exclusively depends on the phase. Here we ask
whether this assumption is valid, and by this, tackle if a sole focus
on phase really covers all functional characteristics of networks. In
the present study we describe the dynamics of neural populations
at every node as a neural mass model (Wilson and Cowan, 1972;
Lopes Da Silva et al., 1974, 1976; Freeman, 1975; Lopes Da Silva,
1991; Jansen and Rit, 1995; Deco et al., 2008) that can behave like
weakly coupled self-sustained non-linear oscillators. This descrip-
tion generally allows for deducing the corresponding phase dynam-
ics (Schuster and Wagner, 1990a,b; Aoyagi, 1995; Tass, 1999) and,
by this, to investigate how amplitude affects the phase dynamics
in neural networks. The phase dynamics is indeed influenced by
the amplitudes of the individual oscillators as we show analytically.

In a nutshell, we start off with a network of N Wilson—-Cowan
neural mass models (Wilson and Cowan, 1972) that are each located at
networknodes k=1,2, ..., Nand linked solely through excitatory con-
nections. Every model displays self-sustained oscillations with slightly
different natural frequencies. Given a certain structural connectivity
between the oscillators denoted by C,, we discuss how the connec-
tivity D, between phases explicitly depends on the oscillators ampli-
tudes R,. The expression D,<(R/R,)C, can be derived analytically
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by characterizing every oscillator via its amplitude and phase and
formulating for the latter the dynamics in terms of a Kuramoto net-
work (Kuramoto, 1984; Strogatz, 2000; Acebron et al., 2005).

The discussed structural connectivities differ qualitatively in
their topology. In detail, we consider the fully connected isotropic
network, a network with small-world topology generated by the
Watts—Strogatz model (Watts and Strogatz, 1998), and an anatomi-
cal network reported by Hagmann et al. (2008). Capitalizing on
the derived analytical expression for D,, we show how the ampli-
tude dependency can alter the topology of connectivity in the
network of Wilson—Cowan oscillators when reducing them to the
Kuramoto-like network of mere phase oscillators. The connectivity
at the level of phase dynamics, D,, largely prescribes the func-
tional connectivity as quantified by the resulting synchronization
patters. We illustrate this numerically using the aforementioned
network topologies that are known to influence synchronizability
(Watts and Strogatz, 1998; Barahona and Pecora, 2002; Achard and
Bullmore, 2007; Brede, 2008).

MATERIALS AND METHODS
NETWORK MODELS
To understand the qualitative relationship between macroscopically
defined functional networks and the (underlying) structural con-
nectivity, modeling local populations of neurons in terms of aver-
aged properties like their mean voltage and/or firing rates appears
very efficient. This mean-field-like approach has a long tradition
and is typically referred to as neural mass modeling (Wilson and
Cowan, 1972; Lopes Da Silva et al., 1974, 1976; Freeman, 1975;
Lopes Da Silva, 1991; Jansen and Rit, 1995; Deco et al., 2008). Neural
mass models have been used to study the origin of alpha rhythm,
evoked potentials, pathological brain rhythms, and the transition
between normal and epileptic activity (Lopes Da Silva et al., 1974;
Jansen and Rit, 1995; Stam et al., 1999a,b; Valdes et al., 1999; David
et al., 2005). Several studies considered small networks of two or
three interconnected neural mass models (Van Rotterdam et al.,
1982; Schuster and Wagner, 1990a,b; Wendling et al., 2001; David
and Friston, 2003; Ursino et al., 2007) as well as larger networks
of interconnected models (Sotero et al., 2007; Ponten et al., 2010).
Here we chose for Wilson—-Cowan as seminal neural mass model
because it can readily be derived from microscopic descriptions
like integrate-and-fire neurons, but also from more general models
like Haken (2002) pulse-coupled neurons. By the same token, the
Wilson—Cowan model provides a comprehensive link toward an
even more macroscopic description as its continuum limit resembles
by now well-established neural field equations (Jirsa and Haken,
1996). That is, Wilson—Cowan units may be viewed as an interme-
diate but in some sense generic description of densely connected
neural populations.

Network of Wilson-Cowan models

As said, we are going to put individual Wilson—Cowan models at
every node k of the network under study. Every model contains
distinct populations of excitatory and inhibitory neurons that are
described by their firing rates. If e denotes the firing rate of an
excitatory neuron and i, the firing rate of an inhibitory neuron,
then a neural mass description can be obtained by averaging over
the neural population in terms of E=-% " ¢, and, I = - X" 4,

n=1"n

where N and N, are the numbers of excitatory and inhibitory neu-
rons. By this averaging, E and I represent the mean firing rates of
all excitatory and inhibitory neurons, respectively, of the neural
population in question, i.e., that at node k.

Within that population, every neuron receives input from all
other neurons of the population. Furthermore, the excitatory units
individually receive constant external inputs p , whose average is
given by P=--3" p . The sum of all inputs is (instantaneously)
integrated in time when it exceeds some threshold 6. This thresh-
olding is realized by means of a sigmoid function S. Without loss of
generality we here chose S[x] = (1 + ¢*)™'; we note that, in general,
the thresholds may differ between excitatory and inhibitory units'.
In consequence, the mean firing rates of the neural populations can
be cast in the following dynamical system

4
dt

d
l=-I+ S[a,(cuE=c,I-6,)]

E=-E+S[a,(cyE—cl—0,+P)]

The characteristics of this dynamical system range from a mere
fixed-point relaxation to limit cycle oscillations (self-sustained
oscillations) depending on parameter settings (Wilson and Cowan,
1972), in particular on the choice of the external input P. That input
is usually chosen at random. In the current study, we restrict all
parameter values to the regime within which the dynamics displays
self-sustained oscillations; see Appendix.

To combine Wilson—Cowan models in a network, different pop-
ulations are now connected via their excitatory units by virtue of
the sum of all E,in the dynamics of E, (see Figure 1). The dynamics
at node k then becomes

d N
E, =-E +S|ag| cgE, —cply =0, + B + U ZCMEI
dt NS

d
=l S[a, (B, =yl —0,)] (1)

In words, all Wilson—Cowan oscillators, located at nodes /in the
network drive the change of the firing rate of the excitatory units
E,. The connectivity is given by the real-valued matrix C,, that has
vanishing diagonal elements, i.e., C,, = 0. That connectivity matrix
is scaled via the overall coupling strength 7. It is important to note
that the C,; connectivity matrix is here always identified as the
structural connectivity.

As the different Wilson—Cowan models display self-sustained
oscillations, it seems obvious to describe them using their ampli-
tude and phase dynamics. The required transforms and approxima-
tions are summarized in the Appendix and the outcomes reveal a
phase dynamics similar to the seminal Kuramoto network of phase

'At the individual neuron level, the dynamics reads:
d N, N
P Ly BT o R
LR IS SR ey
d . . LN LN . i
Tt S|a; v,zm:, W —V,zm:‘ Zi =0,

where u, v, w, and z are positive constants representing coupling matrices within
the local neural population — see, e.g., Schuster and Wagner (1990a,b) for details.
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FIGURE 1 | Network of Wilson-Cowan models. At each node k a neural
population containing excitatory and inhibitory units (£, and /,, respectively)
yields self-sustained oscillations. Other nodes are connected to the excitatory
unit by means of £C, E, Note that this (mean-field) coupling is scaled by a
scalar n—see Eq. 1 for details.

oscillators. The Kuramoto model and its link to the here-discussed
network of Wilson—Cowan models will be briefly sketched in the
following two sub-sections.

Kuramoto network of phase oscillators

The collective behavior of a network of oscillators, whose states are
captured by a single scalar phase ¢, each, can, in first approximation,
be represented by the set of N coupled differential Eq.

igo =w +1iD sin(@, — ;) (2)
dt k k N P kI 1 k

That is, the k-th oscillator, with natural frequency w,, adjusts its
phase according to input from other oscillators through a pair-wise
phase interaction function sin(¢, — ¢,). The connectivity matrix
D, is again scaled by an overall coupling strength, 7. As will be
sketched below, 7 serves as a bifurcation parameter in that small
values of 7 yield a network behavior that essentially agrees with
the entirely uncoupled case (i.e., the phases are not synchronized),
whereas 7 larger than a certain critical value 1 causes the phases
to synchronize. The frequencies w, are distributed according to
a specified probability density usually taken to be a symmetric,
unimodal distribution (e.g., Lorentzian or Gaussian distributions)
with mean w,. Although the sinusoidal interaction function is an
approximation, it still permits a variety of highly non-trivial solu-
tions. As such the model (2) can be viewed as the canonical form
for synchronization in extended, oscillatory media. We note that
the connectivity matrix D, represents also a structural connectiv-
ity that does not necessarily agree with that of the Wilson—-Cowan
model — see below.

Strictly speaking the system (2) does not represent the Kuramoto
model in its original form as there the coupling between nodes k
and ! was considered isotropic and homogeneous, i.e., D, = 1 for
all connections, by which the model reduces to

d &
Egok =w, +%1§'Sln(¢l —cpk)

For the sake of legibility, however, we here refer to (2) also as
the Kuramoto model.

As mentioned above, the effect of increasing 7 in the isotropic
case is to increase the phase synchrony amongst the oscillators.
Suppose the coupling is weak (i.e., smaller than the critical value,
or 1) < m,, then the oscillators’ phases disperse, whereas for strong
couplingn >>n_the oscillators become synchronous, i.e., the phases
are locked at fixed differences. In the intermediate case n =7 _, clus-
ters of synchronous oscillators may emerge. However, many other
oscillators, whose natural frequencies are at the tails of the distribu-
tion, are not locked into a cluster. In other words, as 7 increases, the
interaction functions overcome the dispersion of natural frequencies
o, resulting in a transition from incoherence, to partial and then
full synchronization (Acebron et al., 2005; Breakspear et al., 2010).

Linking neural mass models to phase oscillators

When deriving the Kuramoto network from the Wilson—Cowan oscil-
lator network, the major ingredient is to average every oscillator over
one cycle when assuming that its amplitude and phase change slowly
as compared to the oscillator’s frequency. That is, time-dependent
amplitude and phase are fixed, the system is integrated over one period
to remove all harmonic oscillations, and, subsequently, amplitude and
phase are again considered to be time-dependent (Guckenheimer and
Holmes, 1990) — this procedure is also referred to as a combination of
rotating wave approximation and slowly varying amplitude approxi-
mation (Haken, 1974). As shown in more detail in the Appendix, the
phase dynamics of the system (1) can in this way be approximated as

igo =w +iic a S'[X(O)]&sin(go - )
ar O T TN & ary 1~ P

N
+ 16iN Z‘ Cuaism [Xg)k :l RR, ((CéE + 3C§E )sin (gol B qok)

+2cg,c)p cOs (Qol — ¢ ))

with §" and S referring to the first Oand third derivative of the
sigmoid function S. The parameter X is given by

N
X(Eo,)k =dag (CEEEIEO) - CIEIIEO) -0, +F + %ZCMEI(O)]

I=1
with (E{”,I”") defining the unstable node within the limit cycle of
the Wilson—Cowan model (1) and at network node k. For more
details including the definition of the natural frequency we refer
to the Appendix. Considering the case that the amplitudes R, are
reasonably small, this phase dynamics can be further simplified to

al R
n zaEsfl:X(o) :I_lckZ sin(g, - ;)

T =t Ek
2N 5 R,

dt
which does resemble a Kuramoto network. In fact, by comparing
this form with the dynamics (2) we find

1 R,

Dy :EaES,I:XE-ZO,)k:lR_kCId 3)
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In sum, the phase dynamics can, in good approximation, be cast
into the form of a Kuramoto network provided the connectivity matrix
is corrected by means of (3). This correction yields a non-trivial ampli-
tude dependence of the connectivity at the level of the phase dynam-
ics. Since S is a sigmoid function, S’ becomes bell-shaped implying
a change in connectivity D, whenever the parameter X is altered,
e.g., by shifting the center of the Wilson—Cowan limit cycle at node
kand/or L This probably more global dependence is supplemented
by the here more important node-by-node dependence. When the
amplitudes R, differ per node, the ratio R/R, in (3) directly affects the
value of D,, which can, strictly speaking, be entirely independent on
the choice of the connectivity matrix C,. Put differently, the structural
connectivity at the neural mass level does not necessarily agree with
the structural connectivity at the phase dynamics level.

Given our interest in amplitude dependency, we finally add a
note about “large” amplitudes. In line with the Appendix Eq. A.7
including larger amplitudes yields a slight modification of the phase
dynamics that we here abbreviate as

d n < Bosi
it ¢ =, + N; kl Sm(ﬁaz P akl)

Interestingly, the presence of large amplitudes yields, apart from
slightly different coupling coefficients D,;, phase shifts a,, that
translate to finite transmission delays. Prior studies that incorporate
transmission delays into phase oscillators have revealed elaborate
synchronization behaviors (Zanette, 2000; Jeong et al., 2002). The
more complex dynamics due to « suggests the notion of frustra-
tion, whereby the interaction functions require some finite phase
offset in order to vanish (Acebron et al., 2005). For a more detailed
discussion we refer to a recent review by Breakspear et al. (2010).
Note that for our analytical estimates we always consider the case
in which Eq. (2) and (3) apply to good approximation.

SIMULATIONS
More recently, several research groups started investigating the
relationship between structural and functional connectivity, sug-
gesting that functional connectivity may indeed resemble aspects
of structural connectivity, at least to some extent (Lebeau and
Whittington, 2005; Ingram et al., 2006; Honey et al., 2007, 2009,
2010; Voss and Schiff, 2009; D’angelo et al., 2010). In most stud-
ies, a fixed structural architecture was implemented based on, for
instance, the cortical structure of the cat (Zhou et al., 2007), or
the macaque neo-cortex (Honey et al., 2007). Yet it is unclear how
variations in the network properties at the structural level or fixed
network properties with variations by means of (node-dependent)
amplitudes may affect the synchronization strength and more
global network characteristics at the functional level.
Synchronization was quantified via the phase locking index or
the phase uniformity p, defined as (Mardia and Jupp, 2000)

N
2 ei€0k
k=1
This index agrees with the so-called Kuramoto order parameter

and reflects the degree of divergence of the different phases in the
network (not the relative phases). By varying the overall coupling

!
pN

strength 1) we induced qualitative differences in synchronization as
the order parameter was expected to undergo well-defined bifurca-
tions from an unlocked state to in-phase locking. We simulated both
the network of Wilson—Cowan oscillators as well as the Kuramoto
network. For the Wilson—Cowan model, we defined the phase as the
quadrant-corrected inverse tangents of the ratio of excitatory and
inhibitory units at node k, i.e., ¢, = arctan(E,/I,) — this phase largely
agreed with the Hilbert-phase of E, because of the smoothness of
the Wilson—Cowan limit cycle. For the Kuramoto network, the phase
was, of course, the state variable under study, which did not require
any further definition. In all simulations the primary outcome vari-
able in all simulations was, hence, p(7) for different network types
and, in the case of the Wilson—Cowan network, distinct ranges of
input values P, as will be explained below in all detail. In addition,
we computed the phase locking index of the pair-wise relative phases
between nodes which served as definition of the functional networks.
The precise transform of the Kuramoto network dynamics to the
dynamics of relative phases is beyond the scope of the current paper.

To study potentially “erroneous” simulations of the phase
dynamics — and thus possible “misinterpretations” of structural
connectivity when solely looking at functional networks defined
via phase synchrony — we ignored for the Kuramoto network the
amplitude dependency (3) of the connectivity matrix and simply
identified D, by C,. We further accelerated numerical simulations
by adding some small dynamic noise (Stratonovich, 1963; Risken,
1989; Daffertshofer, 1998), so-called Langevin forces I'(f), in
the form of mean-centered Gaussian white noise. The simulated
dynamics hence looked like

d N
TE=-E+ s[aE (CEEEk —cpl,—0,+ P+ %ZCHEI + \/281})]
1=1

d

Elk =-I,+S[a,(cy B —cul, —0,)] ()

and

L. +1 3 Cysi - Vel 5
7 P = z k131n(¢’1 ¢k)+ L (5)
t N%&

Recall that the connectivity in (5) differs from (2) by means
of D,— C,

Throughout simulations we fixed parameter settings as: a, = 1.2,
a,=2,c,=50¢,=1,¢,=6,¢,=10,0,=2,6 = 3.5. The strength
of the dynamical noise was always considered very small (it only
served to accelerate numerics and not to discuss impact of stochas-
tic forces). It was set to &€ = 10~ for all simulations of the Wilson—
Cowan network (4) and to € = 1072 for the Kuramoto network (5).
Simulations were realized using a simple Euler-forward scheme
with step-size 1072 Per run a total number of 10° samples were
simulated. For each network, simulations were repeated with 10
different realizations of constant but random inputs P, (Wilson—
Cowan oscillators) or constant but random natural frequencies w
(Kuramoto oscillators). In addition, for the small-world network,
new C, matrices were generated with different rewiring pattern for
each realization. Each of these 10 realizations was again repeated
five times with different initial values of E, and I,or ¢,. The resulting
p(m) values were computed over the final 100 samples of every run
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and averaged over all simulations. Primary outcome variable was,
hence, p(n) for simulations of (4) and (5) using the three different
network types, and in the case of the Wilson—Cowan network (4),
using altered input-distributions to set P,.

For the Kuramoto model the natural frequencies w were ran-
domly drawn from a Cauchy-Lorentz distribution with width
v = 0.5 and initial ¢, values at time ¢ = 0 were drawn from a uni-
form distribution over the interval [0, 27t). The initial E_and I,
values for the Wilson—Cowan oscillators were uniformly chosen
from the interval [0, 1].

By default, the constant input values P were drawn from a uni-
form distribution with —0.25 < P, <0.25 for every node k. In order
to tackle amplitude effects, however, we looked also at the case in
which (selected) nodes displayed oscillations with clearly different
amplitudes than others. For this we selected four different intervals
from which P, was drawn: —0.25 < P, < -0.20; 0.20 < P, < 0.25;
-0.8 <P <-0.7;and 0.7 < P, < 0.8 Simulations were performed
using either a single interval or a combination of two intervals
for which the first 50% of the nodes were assigned a P, from the
first interval and the second 50% from the second interval. These
combinations of intervals were between similar ranges, hence:
~0.25 < P_ <, —0.20 with 0.20 < P, < 0.25 and 0.8 < P, < 0.7
with 0.7 < P_< 0.8. As shown in the final part of the Appendix
the stationary amplitude at network node k either vanishes, i.e.,
= 0 or it obeys the form

kstationary

2- aEcEES'[)(g)k:I + aIcHS'[Xf,)(]

8
ace (CEE + cfE)S”'[Xg)k] —akc, (C?I + CEI)SWI:XE(,)”

k,stationary

that by virtue of X o explicitly depends on the input P,. Given this
dependency, varying the input P, systematically could be used to
create different scenarios of amplitude effects, which — in particular
if selected nodes received significantly different input than others
— potentially caused pronounced, qualitative differences between
C, and D,. In these cases, the simulations of (4) and (5) were
expected to disagree.

The connectivity matrices C,, were chosen as either a fully con-
nected isotropic network, as a network with small-world topology
generated by the Watts—Strogatz model (Watts and Strogatz, 1998),
or via an anatomical network reported by Hagmann et al. (2008).
For all the connectivities we estimated the functional networks via
phase locking between nodes.

Fully connected homogeneous network
The original Kuramoto network comprises a fully connected homo-
geneous network — see above. C,;in this case consists of an N x N
matrix containing ones everywhere except for the diagonal, where
all values were set to zero, i.e., we did not allow for self-connections.
We note that discarding diagonal elements is, strictly speaking, not
necessary for the phase dynamics (2) or (6) as the coupling via the
sine of relative phase vanishes, i.e., by construction (or symmetry)
there are no self-connections. This argument, however, does not
apply for the network (1) or (5), hence we always set C, = 0.
Although the Kuramoto network is usually studied for large
size networks, we chose a network of 66 nodes in order to make a
better comparison with the Hagmann dataset.

Small-world network

The model for generating small-world networks employed here
was introduced by Watts and Strogatz (1998) to generate graphs
with high clustering and low path length (high efficiency).
Starting from an ordered network on a ring lattice where nodes
are only connected to a small number of direct neighbors, con-
nections are subsequently rewired to a random (distant) node
with certain probability. The introduction of a few random con-
nections in an ordered network drastically increases the synchro-
nizability of the network (Watts and Strogatz, 1998; Barahona
and Pecora, 2002; Motter et al., 2005; Zhou and Kurths, 2006;
Stam and Reijneveld, 2007; Wu et al., 2008; Chen et al., 2009).
We used a network with an average degree of 10 and a rewir-
ing probability of 0.2. An example of a C, matrix is given in
Figure 5 below.

Hagmann network

Empirical networks are unlikely to have an organization that can
be exactly described by one of the theoretical network models.
To study a network that more realistically represents anatomical
connections in the human brain we repeated our simulations on
a network that was based on axonal pathways obtained by dif-
fusion spectrum imaging. This dataset has been used to identify
the so-called “structural core” of anatomical connections in the
human cerebral cortex as described by Hagmann et al. (2008),
which is accessible via http://www.connectomeviewer.org/viewer/
datasets. To reduce the size of the network and, by this, acceler-
ate simulation time, the original 998 regions were assigned to a
66-node parcellation scheme and averaged over all five subjects as
was also done in the original study (Hagmann et al., 2008). The
resulting weighted, undirected network was subsequently thresh-
olded to obtain a binary network with an average degree of 10.
This network served as our connectivity matrix C; see Figure 2
and also Figure 6 below.

RESULTS

The changes in synchronization p as a function of overall coupling
strength 1 are summarized in Figure 3. First thing to notice is that,
for a critical 7, the Wilson—Cowan model shows a brisk increase
in p after which maximal synchronization is reached. Increasing n
again after a critical value breaks down the synchronization as the
individual Wilson—Cowan oscillators leave the stable limit cycle
regime when their inputs exceed a certain value (Schuster and
Wagner, 1990a). That means, the neural masses at the different
nodes stop oscillating altogether if coupling is too strong. Of course,
this does not apply for the Kuramoto model since, by construction,
the phases keep oscillating. In consequence, p keeps increasing with
1 and reaches asymptotically maximum synchronization (see bot-
tom row’s panels in Figure 3).

The different choices of P, intervals result in altered synchro-
nization curves. This was most apparent for the [-0.8,...,—0.7]
and [0.7,...,0.8] intervals (blue solid lines in Figure 3, third row’s
panels) when amplitudes lie furthest apart. In general, different
P intervals caused a shift in critical n, with networks with larger
amplitudes reaching maximum synchronization for lower coupling
strength than oscillators with smaller amplitude. Interestingly, the
cases with bimodal amplitude distributions (dashed lines) were
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FIGURE 2 | Plot of the Hagmann network (Hagmann et al., 2008). The original 998 regions were assigned to a 66-node parcellation scheme. For the sake of
visualization, all 66 nodes are located on the circle; see text for more details.

Fully Connected Small-World Hagmann
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FIGURE 3 | The synchronization p as a function of overall coupling strength 5 for the network of Wilson-Cowan oscillators [Eq. 4; three upper rows] and for
the Kuramoto network [Eq. 5; bottom row]. For the upper row, P, values were drawn from the interval [-0.25,...,0.25], for the second and third row from the
indicated intervals (see right-hand side).

less synchronizable than their unimodal counterparts. An exam-  synchronize for a combination of the two. A closer look at the func-
ple of this phenomenon is the case of a fully connected network  tional synchronization patterns between individual nodes of this
that reaches global synchronization for each of the [-0.8,...,-0.7]  network revealed that two distinct clusters emerged corresponding
and [0.7,...,0.8] P, intervals separately but appears unable to fully  to the bimodal inputs and thus amplitude distribution (Figure 4).
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If the structural connectivity is isotropic, then amplitude
distribution largely (if not fully) prescribes the functional connectivity
pattern that thus clearly disagrees with the structural connectivity. In
consequence, the current example revealed two strongly synchronized

n=55 p=0.95

1.2 1
20
1 0.5
40
60
20 40 60 08 20 40 60 0

FIGURE 4 | Functional connectivity between the nodes of the fully
connected (isotropic and homogeneous) network. C, = 1 except for its
diagonal elements, C,, = 0. Input values P, for the first 33 nodes were drawn
from the interval [-0.8,...,-0.7] and the second 33 nodes from the interval
[0.7...,0.8]. Due to this bimodal input distribution, the amplitudes at the nodes
and hence their ratios /R, differ between pairs of nodes (left panel), which
yields — by virtue of Eq. (3) —a change in the functional connectivity (right
panel). Here it can be seen that the phases of nodes within the same P, range
are fully synchronized but fail to synchronize between clusters; coupling
strength was set to = 5.5 resulting in a global phase synchrony of p = 0.95.

local clusters but the large difference between the input intervals pre-
vented them from synchronizing with one another. It is important
to note that, if amplitude effects were not taken into account, a full
synchronization of the network would have been found.

With the current parameter settings no full global synchroniza-
tion could be achieved in both the small-world and the Hagmann
network. However, partial synchronization patterns could be observed
that did not correspond with the structural connectivity but also not
with the distribution of amplitudes (Figures 5 and 6). These patterns
rapidly emerged and disappeared with varying 1. Although the match
with the amplitude distribution was not as clear-cut as in the case of
the fully connected network (Figure 4), a similar clustering could be
observed, by which the functional connectivities turned out to dif-
fer not only quantitatively but also qualitatively from the underlying
structural connectivity — a fact that would be missed if relying on a
description of sole phase oscillators that show such partial synchroni-
zation patterns only in close vicinity of the critical coupling strength.

DISCUSSION AND CONCLUSION

The introduction of network analysis to neuroscience has paved new
ways for the study of neural network organizations. Particular focus
has been on the search for complex networks since many of these
networks — especially in the neuroinformatics context — are known

FIGURE 5 | Amplitude ratio distribution [log(R/R,); upper row] and
functional connectivity (lower row) of the small-world network that differs
from the underlying structural connectivity (C,, most left panel). As in
Figure 4 we here chose the inputs from a bimodal distribution, here the intervals
[-0.8,...,—0.7]and [0.7....,0.8], which causes the amplitudes to differ between
the first and second half of the nodes and, consequently, the functional
connectivity matrix to disagree with C,. Similar to the homogeneous case in

S0

n=237
p=0.59

n=41
p=0.46

n=45
p=0.59

n=49
p=0.07

Figure 4 the ratios /R, largely prescribe the functional connectivity, here,
however, mixed with the small-world structure C, - see, e.g., the pronounced
synchrony along the diagonal that is absent in the patterns of amplitude ratios. In
addition, dependent on the overall coupling strength m, pronounced clusters of
synchronized nodes appear — the corresponding coupling values, n = 25-45,
agree with the synchronization regime of this small-world network displayed in
Figure 3, middle column, third row, blue dashed line.

n=22
p=0.62

n=24
p=0.66

n=26
p=0.82

60

20 40 60

FIGURE 6 | Amplitude ratios [upper row; log(R /R,)] and functional
connectivity (lower row) of the Hagmann network using again a bimodal
distribution of P,. The left most panel is again the structural network C,; we here
used P, € [-0.25,...,-0.20] and [0.20,...,0.25]. As in the small-world case, localized

clusters of synchronized nodes emerge dependent on the overall coupling
strength n. These clustered patterns apparently disagree with the underlying
anatomical network (most left panel); cf. Figure 3, right column, second row,
green dashed lines.
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for their efficiency when transferring and integrating information
from local, specialized brain areas, even when they are distant (Sporns
and Zwi, 2004). Over the years, small-world structural networks have
been found for C. Elegans (Watts and Strogatz, 1998), cat cortex,
and macaque (visual) cortex (Sporns and Zwi, 2004). In humans,
anatomical connectivity can be estimated in vivo indirectly via cross-
correlation analysis of cortical thickness in structural MRI (He et al.,
2007; Chen et al., 2008) and more directly using tractography based
on diffusion tensor imaging and diffusion spectrum imaging (Iturria-
Medina et al.,2007; Hagmann et al., 2008; Gong et al., 2009). Similar
to the structural, i.e. anatomical connections, functional connections
have also been found to display characteristics of complex networks,
especially by looking at human functional networks in resting state,
using either fMRI (Salvador et al., 2005; Achard et al., 2006; Van
den Heuvel et al., 2008; Ferrarini et al., 2009) or M/EEG (Stam,
2004; Bassett et al., 2006; Stam and Reijneveld 2007; Bullmore and
Sporns, 2009). Changes in these resting state networks appear to relate
to neurological and psychiatric diseases like Alzheimer’s disease (Stam
etal.,2007,2009; He et al., 2008; Supekar et al., 2008; de Haan et al.,
2009), schizophrenia (Bassett et al., 2008; Liu et al., 2008; Rubinov
et al., 2009), ADHD in children (Wang et al., 2009), (removal of)
brain tumors (Bartolomei et al., 2006; Bosma et al., 2009), and dur-
ing epileptic seizures (Kramer et al., 2008; Schindler et al., 2008;
Ponten et al., 2009), but also to aging (Achard and Bullmore, 2007;
Meunier et al., 2009; Micheloyannis et al., 2009) or to different sleep
stages (Ferri et al., 2008; Dimitriadis et al., 2009), as well as during
foot movements (De Vico Fallani et al., 2008) and finger tapping
(Bassett et al., 2006).

Do these functional networks precisely match their underlying
structural counterparts? In general, networks do not agree, espe-
cially when the functional networks are solely defined via (phase)
synchronization patterns, which is common practice when studying

electrophysiological signals, for instance, M/EEG. We have shown
that, even if the local dynamics at every node of a network can be
described as phase dynamics in the form of a Kuramoto network,
the connectivity matrix at this level of phases does not necessar-
ily agree with the connectivity at the level of neural mass models
describing firing rates of local neural populations. The connectivity
at the phase dynamics level has to be corrected by its amplitude
dependency. This phase level is indeed closely related to the empiri-
cally assessed functional connectivity matrix as this, as said, is com-
monly defined through locking patterns of phases. If relying on
Kuramoto-like approximations, the connectivity matrix has to be
corrected via the relation (3) that may include non-trivial ampli-
tude dependency. Especially, when the amplitudes differ from node
to node, the connectivity at the level of phases can qualitatively
differ from the structural connectivity at the level of neural mass
or mean firing rates. That is, structural and functional connectivity
may differ simply because of the latter’s amplitude dependency.

In consequence, phase dynamics and, hence, synchrony patterns
should always be analyzed in conjunction with the correspond-
ing amplitude changes. Patterns of global synchrony (phase) may
depend on local synchrony (amplitude). This may have profound
impacts when linking, for instance, M/EEG studies to neural
modeling. Amplitude there translates to (spectral) power, which
typically differs between distinct behavioral states or due to pathol-
ogy. Incorporating these amplitude changes will certainly help to
understand how structural and functional network organizations
in the cortex, in particular, and in the central nervous system, in
general, may relate to one another.
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APPENDIX
To show the link between the network of Wilson—Cowan models
(1) and the Kuramoto network of phase oscillators (2) we adopt
Schuster and Wagner’s derivation (Schuster and Wagner, 1990). In
contrast to their description of two coupled oscillators, however,
we explicitly account for a network structure containing N nodes.

When deriving the Kuramoto network, the strategy is to consider
the Wilson—Cowan model in the oscillatory regime, i.e., in the pres-
ence of a stable limit cycle (Figure A1), which is first “mean”-centered
simplifying the expansion of the sigmoid function S. Then, the oscil-
lator is averaged over one cycle when assuming that its amplitude
and phase change slowly as compared to the oscillator’s frequency.
That is, time-dependent amplitude and phase are fixed, the system
is integrated over one period to remove all harmonic oscillations,
and, subsequently, amplitude and phase are again considered to
be time-dependent (Guckenheimer and Holmes, 1990) — we note
that this procedure is also referred to as a combination of rotating
wave approximation and slowly varying amplitude approximation
(Haken, 1974). The averaging immediately results in the oscillator
network that, when assuming weak coupling and small amplitudes,
resembles the Kuramoto network.

More explicitly, let (E\”,I{"’) be a known solution, for which

1 4
\‘
\
0.8 4 !
i
|
0.6 4
/
044!
|
\
0-2 | ~ -
i
O-l = "; T T T T T
0 0.2 0.4 0.6 0.8 1

FIGURE A1 | Limit cycle oscillations of a single Wilson-Cowan oscillator,

d
dt
d
dt

E:7E+S[ag (CeeE — el — 6 +P)]
/= —/+S[a/ (CE/E_CH/_OI)]

i.e., Eq. 1 with N= 1; the sigmoid function was set to SIx] = (1 + ™).
Dot-dashed lines represent the nullclines (temporal derivatives of Eand /
vanish). At the intersection of the nullclines is an unstable node.
Parameter values:
a.=12,8=21c,=¢,=1,¢,=6,¢,=1,6.=2,6=35 P=05.

d N
EE’(CO) = _E](CO) + S|:aE (CEEEIEO) - CIEII(CO) —0;+F+ %ZCHEI(O))}
=1

d
Efl(fo) = —I;((O) + S[a, (cE,Ef(O) - c"I,({O) —0 )] (A.1)

holds. In principle this can be any solution but here we identify
(E;O),I ](<0>) with the unstable fixed-point (unstable node to be pre-
cise) within the stable limit cycle (see the intersection point of
the nullclines in Figure A1). We investigate the deviation of this
solution by means of

%(E;f’ +8E,)=—(E” +8E,)

N
+ s[ X +a, (CEE(SEk —c,8I, + %2 C,SE, H (A.2)
I=1

%(I;‘” +81,)=—(1" +81,)+S[ X\ +a, (c,,0E, — ¢, 81,) ]

where we abbreviated

N
n
X?L =dag (CEEEIEO) - CIEIIEO) -0, +B + NZCMEI(O)]
1=1 (A.3)

0) _ (0) (0)
Xix =4 (CEIEk —cyly _01)

As said, this “mean”-centering allows for expanding the sigmoid
function to the M-th order, S[x, + 8x] = S[x,]+ 2, L. 8" [x,16x";

here §" denotes the n-th derivative of S; see also Figure A2. Inserting
this expansion into (A.2) yields the following system differential Eq.
d

~-OE, = ~bF,

+iis(n> [X(n)
n' E.k

n=1 1t

N n
(aE (CEE(SEk —c, 0l + ;ZCMSEID
I=1
d

M
1 n
Eélk =8I, + Z;ESW [ ](ag (8, —c,01,)) (A.4)

Here the zero-th order S cancels because of (A.1). The sys-
tem (A.4) is weakly non-linear presuming M is small implying
the presence of only low-order polynomial terms. Put differ-
ently, the sigmoid function Sis evaluated close to its threshold.
For the sake of simplicity we here use M = 3. Furthermore we
set overall coupling strength 7 to be small, i.e., we drop all
terms containing 1* or higher orders in 1. By this (A.4) can
be reduced to

4 55, = s,

dt
M 1 n "7 .
+(2;S<”) [Xgl](a,; (CEESEk — 81, )) )(1 + NZCHSEI)
n=1 N =t
d

M
1 n
Eﬁlk =-8I, + ZES(") [Xﬁ (aE (cuOE, - CHSIk)) (A.5)
n=1 .
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FIGURE A2 | Shape of the sigmoid function S[x] = 1/(1 + e*) and its first and third derivatives. In the vicinity of the threshold x = 0, the third derivative (right
as given in (A.14) dependent on parameter settings.

which represents a network of weakly non-linear, self-sustained
oscillators. Conventionally its characteristics are studied after trans-

forming the system into polar coordinates
8E, =R, cos(Q2t +¢,)and 81, = R, sin(2t + ¢, ) (A.6)

where R,_and ¢, are the time-dependent amplitude and phase,
respectively, of the network node k, and (2 is a yet unknown (mean)
frequency. As said, we assume that amplitude and phase change
slowly with respect to (2, and average the system (A.5) over a cycle
t=[0...2n/L2). This averaging yields the phase dynamics as

i C.a, S| x© —sm
dt z 3 [X ]

N
CklaES”’[XEL]R R ((CEE +3(:IZE)sin(gol -¢)

J) (A7)

with §" and S” referring to the first and third derivative of the sigmoid
function S, respectively (see Figure A.2),and the frequency being given by

w, =—0+— (tl S [X(O)]"'a cyS’ [Xlk])

€Dk)

L
16N =

+2CpC cos(go, -

# (e (¢ )5 T ]  afen (et +3)S (XL D)RE (a8

As alast approximation, we consider the case in which all ampli-
tudes R, are sufficiently small so that their quadratic and higher
orders can be ignored. We note that R_are the amplitudes of the
limit cycles describing (§E,,61,) which do not agree with the mean
“activities” of the Wilson—Cowan oscillators as they are shifted by
(E,1\”). Discarding these higher order terms finally leads to

= _Q+%(QECIES, [XEEOL ] +acyS [X(zoi ])

(A9)
and
d .
Ego,( o, + 2N;1 S[ ]—Cklsm( -¢,) (A.10)

which is equivalent to (2).

For the sake of completeness we also list the natural frequen-
cies (2, of the uncoupled and linearized Wilson—Cowan oscillators:

“kaz ii(aECEES’[X?,;(] + alcﬂs,[x(l(’)’z ])2

_aECIES’ [XE:"O,L ] (aECEES, [X(Emk ] - 1)

with which 2 in (A.9) can be defined via averaging over nodes,
ie, O=N"X} € Furthermore the amplitude dynamics cor-
responding to the phase Eq. (A.7) reads

(A.11)

%R ;(aECIES [xEk] a,c,S [ X0 T- ) R,
* 116 (apcw (cte + i)™ [ X
—ae, (¢ +¢4)S” [ XY )RZ
_n ZCklaES'[ X R cos(¢, - ¢,)

1 6N 4 zckl ;SW[X(FO;c]R;RJ ((3625 + C?E)COS(QDI - ‘Pk)

+2€50pp 80 (‘Pz ~ ¢

)) (A12)
When ignoring all coupling terms (i.e., setting 1 = 0), this ampli-
tude dynamics of such isolated Wilson—Cowan oscillators reduces to

i 2

+ 116 (aECEE (CEE + CIE) ”,[X(O) :| ajcy (CH + CEI) ”’[XIOIZ]) k(A.13)

Which has the stationary solutions R

R, = 2(a €S [X“”] a,c,S [,\/(0)

=0and

k, stationary

k,stationary

2—agcy,S [ng]"‘ a.c,S [X(O)
aECEE (CEE + CIE) ml:)(m ] ach (CII + CEI) ”,[X(O)

(A.14)

=% (8

provided the square-root exists; cf. Figure A2.
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INTRODUCTION

To further understanding of basic and complex cognitive functions, previous connectome
research has identified functional and structural connections of the human brain. Func-
tional connectivity is often measured by using resting-state functional magnetic resonance
imaging (rs-fMRI) and is generally interpreted as an indirect measure of neuronal activ-
ity. Gray matter (GM) primarily consists of neuronal and glia cell bodies; therefore, it is
surprising that the majority of connectome research has excluded GM measures. There-
fore, we propose that by exploring where GM corresponds to function would aid in the
understanding of both structural and functional connectivity and in turn the human connec-
tome. A cohort of 603 healthy participants underwent structural and functional scanning
on the same 3T scanner at the Mind Research Network. To investigate the spatial corre-
spondence between structure and function, spatial independent component analysis (ICA)
was applied separately to both GM density (GMD) maps and to rs-fMRI data. ICA of GM
delineates structural components based on the covariation of GMD regions among sub-
jects. For the rs-fMRI data, ICA identified spatial patterns with common temporal features.
These decomposed structural and functional components were then compared by spatial
correlation. Basal ganglia components exhibited the highest structural to resting-state func-
tional spatial correlation (r = 0.59). Cortical components generally show correspondence
between a single structural component and several resting-state functional components.
We also studied relationships between the weights of different structural components and
identified the precuneus as a hub in GMD structural network correlations. In addition, we
analyzed relationships between component weights, age, and gender; concluding that age
has a significant effect on structural components.

Keywords: structural, functional, networks, source-based morphometry, independent component analysis, resting-
state, gray matter density

and dorsolateral frontal regions as well, as increased GM concen-

A central assumption of systems neuroscience is that the structure
of the brain can predict and/or is related to functional connectivity.
This belief is derived from basic human anatomy and biomechan-
ics where the structure and form of body parts are directly related
to their function. The structure—function relationship is found
at different scales in nature, from the molecular composition
of enzymes, the morphology of organometallics, to the collec-
tive behavior of ant colonies. For the past 20 years, the field of
neuroimaging has demonstrated that function and behavior arise
from specific regions in the brain. Structural adaptations in the
cortex have been found in plasticity studies. For example, peo-
ple who recently acquired the ability to juggle exhibit changes in
gray matter (GM) volumes of the mid-temporal area (MT/V5)
and intraparietal sulcus (Draganski etal., 2004), in professional
female ballet dancers there are distinct differences in white and
gray matter compared to controls (Hanggi etal., 2010), and in
musicians, greater cortical thickness is found in superior temporal

tration (GMC) in aspects of the Heschl’s gyrus (Bermudez etal,,
2009) when compared to non-musicians. These structural alter-
ations reflect subjects’ specialized, and, in some cases, exceptional,
functional abilities. However, recent developments in neuroimag-
ing have shifted the structural-functional relationship away from
distinct brain regions and toward distributed function, with the
view that cognition is the result of the “dynamic interactions of dis-
tributed brain areas operating in a large-scale network” (Bressler
and Menon, 2010). The concept that the human brain is a complex
network of neurons linking physical structure to function (Power
etal., 2010) is not new to cognitive science.

In his seminal paper, Sporns coined the term the human con-
nectome, which is, “a comprehensive structural description of the
network of elements and connections forming the human brain
(Sporns etal., 2005).” Theoretically, by mapping the networks of
the human brain, we will strengthen our understanding of how
functional brain activity emerges from anatomical structure. This
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knowledge will provide a more comprehensive model of cognition
and produce new insights into how brain functions are affected if
there are structural irregularities (Hagmann et al., 2010). Multiple
studies of schizophrenia have already identified both structural
network abnormalities (Bassett etal., 2008) and functional net-
work connectivity differences (Lynall et al., 2010) when compared
to health controls. The majority of current brain network studies
tend to focus on one connectome modality, either structural or
functional.

A large-scale functional network is defined as a “collection of
interconnected brain areas that interact to perform circumscribed
functions (Bressler and Menon, 2010).” Functional networks
can be identified using electroencephalography (EEG), magne-
toencephalography (MEG), and functional magnetic resonance
imaging (fMRI). Recent functional network studies have used
resting-state fMRI (rs-fMRI), which measures spontaneous, high-
amplitude, (mostly) low-frequency (<0.1 Hz) blood-oxygen-
level-dependent (BOLD) signal fluctuations in subjects who are
at rest. Several different analysis approaches, including seed-based
correlation maps (Biswal et al., 1995; Fox et al., 2005) and indepen-
dent component analysis (ICA; Damoiseaux etal., 2006; Biswal
etal., 2010; Allen etal., 2011) have identified from rs-fMRI a large
number of functional networks. These networks appear to provide
robust measures of the intrinsic functional activity of the brain
(Miller etal., 2009) and have been identified both in resting data
and data collected during a task (Calhoun etal., 2008). Because
these intrinsic networks (INs) exhibit moderately high reliability
(Shehzad et al.,2009; Zuo et al., 2010a), interrater and intermethod
reliability (Franco etal., 2009; Zuo etal., 2010b), and consistency
(Damoiseaux etal., 2006), they provide a framework for study-
ing the functional architecture of the human connectome (Biswal
etal., 2010; Allen etal.,, 2011) and are a key focus of this study.

Structural networks of the human brain have typically been
constructed directly using various white matter (WM) connec-
tivity measurements obtained from diffusion weighted imaging
(DWTI; Bassett and Bullmore, 2009) and constructed using graph
theoretical techniques. Indeed, in much of the literature struc-
tural connectivity is obtained from diffusion imaging (Honey
etal., 2010). DWI can quantify and identify structural connectiv-
ity by tracking WM bundle pathways that link to cortical regions
(Guye etal., 2008). Structural networks have also been inferred
indirectly from the inter-regional covariation of GM volume or
cortical thickness and usually measured at the group level (Sporns,
2011). Using covariance measures for specific ROIs, Mechelli
etal. (2005a) reported that the “gray matter densities (GMD) of
different regions of the human cortex is coordinated within an
individual.” Inter-regional covariation of GM volume has also
shown differences in network organization between healthy par-
ticipants and those with schizophrenia (Bassett and Bullmore,
2009). Other studies have examined cortical thickness to con-
struct GM structural networks, for example He etal. (2007) used
the inter-regional correlation of cortical thickness measurements
to construct structural networks. Additionally, modularity analysis
of the relationships between structural cortical networks identified
modules similar to known functional domains, such as sensorimo-
tor, visual, auditory/language, strategic/executive, and mnemonic
processing (Chen etal., 2008).

These prior studies highlight efforts to separately explore the
connections in structural networks or in functional networks. The
majority of studies that incorporate both structural and func-
tional imaging to investigate the human brain connectome tend
to use rs-fMRI and WM analysis. Several papers have recently
reviewed these studies (Rykhlevskaia et al., 2008; Bassett and Bull-
more, 2009; Damoiseaux and Greicius, 2009; Honey etal., 2010;
Sporns, 2011) and in general, concluded that when structural con-
nectivity is high, functional connectivity tends to be high as well
(Koch etal., 2002).

When comparing the relationship between anatomic structure
and functional connectivity only a few studies have used GM
(Calhoun etal., 2006; Seeley etal., 2009; Michael etal., 2010;
Supekar etal., 2010). This is somewhat surprising considering
that fMRI is generally interpreted as an indirect measure of neu-
ronal activity and GM primarily consists of neuronal and glia cell
bodies (Logothetis, 2002). We propose that exploring where GM
corresponds to function would aid in the understanding of both
structural and functional connectivity and in turn the human con-
nectome. We will not discuss the current debate about the exact
origins of the BOLD response measured through fMRI; however,
the relationship between the BOLD signal and the underlying
neuronal activation is an area of active debate and should be inter-
preted carefully when making direct inferences between neuronal
activity (Ekstrom, 2010).

This study has three primary aims, centered on the use of GM
to assess structural-functional spatial relationships of the human
brain. The first aim is to identify GM structural components using
GMD measurements and its variation among a large cohort of
healthy individuals (n = 603). This will be ascertained with source-
based morphometry (SBM; Xu et al., 2009), which applies spatial
ICA to find patterns of GMD with common covariation among
subjects. In this paper, the term structural components will refer
to the components revealed by SBM. Association between age,
gender, and the structural components sources will be further
assessed. We expect to see a general reduction in GMD as age
increases, particularly in regions, such as the parietal and frontal
cortex, where reductions in GMD with age have been reported to
previously (Sowell etal., 2003).

The second aim is to compare structural components with
previously determined rs-functional components and determine
their spatial similarity. This will be done by spatially correlat-
ing structural components from the SBM analysis with functional
components from a group ICA (GICA) of rs-fMRI previously
reported by Allen etal. (2011). Both of the structural and func-
tional components were obtained from the same set of subjects.
Our hypothesis is that there will be correspondence between
structural and functional components, particularly in the pre-
cuneus and posterior cingulate cortex (PCC) regions of the
default mode network (DMN) given that the linkage between
structure and function is particularly strong in these regions
(Hagmann etal., 2008; Skudlarski etal., 2008; Honey etal., 2009;
van den Heuvel etal.,, 2009). We also assume that there will
not be a complete direct correspondence between structure and
function; consequently, we expect to find fewer structural com-
ponents than functional networks. This is because the presence
of functional connectivity has been observed when there are no
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supportive structural connections, at least as reflected in DTI
(Greicius et al., 2009).

The third and final aim is an exploratory investigation of the
relationships between the different structural components and for
the purpose of this paper, is referred to as structural network corre-
lations (SNC). Specifically, SNC will be performed by investigating
the correlations among the structural component loading param-
eters. Networks and components are often used interchangeably
in the literature, although the definitions of networks and com-
ponents are not always consistent. Therefore, Erhardt etal. (2011)
suggested to always define the term network when it is used. Conse-
quently, our usage of networks (SNC) and components are defined
in the Section “Materials and Methods.”

Our results, using a novel approach that utilizes regions of
covariation, generally show correspondence between structure and
function and further elucidate the relationship between function
atrest and GM. Additionally, our results corroborate with previous
findings on the effects of age on GMD. Lastly, from our findings
we suggest structural and functional regions that warrant further
investigations.

MATERIALS AND METHODS

Full details on participants, data collection, and image processing
can be found in Allen etal. (2011). For completeness, we briefly
provide pertinent information here.

PARTICIPANTS

This analysis combined existing data from 603 healthy participants
scanned on the same scanner and spread across 34 studies and
18 principal investigators at the Mind Research Network (MRN).
Informed consent was obtained from all subjects according to
institutional guidelines at the University of New Mexico (UNM)
and all data were anonymized prior to group analysis. The cohort
is nearly balanced on gender (305 females) with similar age dis-
tributions across genders. Because the sample is overwhelmingly
right-handed (46 ambidextrous or left-handed individuals), hand-
edness will not be considered in this study. The age range is 12-71
with a strong right skew (mean = 23.4; SD = 9.2), thus as in Allen
etal. (2011) we use the normalizing transformation, log (age), to
reduce the leverage of older subjects in correlation and regression
analyses.

DATA COLLECTION

All MR images were collected on a 3-Tesla Siemens Trio scan-
ner. High-resolution T1-weighted structural images were acquired
with a 5-echo multi-echo MPRAGE sequence with TE = 1.64, 3.5,
5.36, 7.22, and 9.08 ms, TR = 2.53 s, TI = 1.2 s, flip angle = 7°,
number of excitations = 1, slice thickness = 1 mm, field of
view = 256 mm, resolution = 256 x 256. T2*-weighted functional
images were acquired using a gradient-echo EPI sequence with
TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm,
slice gap = 1.05 mm, field of view 240 mm, matrix size = 64 x 64,
voxel size = 3.75 mm X 3.75 mm X 4.55 mm. Resting-state scans
were a minimum of 5 min, 4 s in duration (truncated to 152 vol-
umes for all subjects). Participants were instructed to keep their
eyes open during the scan and stare passively at a presented fixation
Cross.

IMAGE PREPROCESSING

The structural data the T1 images were preprocessed through an
automated pipeline developed at MRN (Bockholt etal., 2010).
First the images were resliced to 2 mm x 2 mm X 2 mm vox-
els. Tissue classification, bias correction, image registration, and
spatial normalization were automatically performed using voxel-
based morphometry (VBM) in SPM5!, wherein the above steps
are integrated into a unified model (Ashburner and Friston, 2005).
Unmodulated GM segmentations, which produce an estimation
of local GMD, were smoothed using a Gaussian kernel with a full-
width at half-maximum (FWHM) of 10 mm (Figure 1; step 1,
left side). The smoothed GMD images were then correlated to
an a priori GM template to access segmentation outliers. Those
GMD images that were not highly correlated to the Montreal
Neurological Institute (MNI) template in SPM5 where manually
adjusted to the AC-PC line and rerun through our automated
pipeline, where they were segmented and smoothed again. GMD
is the probability distribution of the GM proportion of a voxel
and the term is synonymous with GMC, whereby concentration
and density are used interchangeably in neuroimaging literature.
The relative density or concentration of GM, from non-modulated
VBM, is the proportion of GM relative to other tissue types (WM,
cerebrospinal fluid) within a region (Mechelli etal., 2005b). As

Thttp://www.fil.ion.ucl.ac.uk/spm/software/spm5

STRUCTURAL DATA FuncTioNAL DATA

STEP 1

PREPROCESSING

VBM in SPM 5
unmodulated GMD
smoothing (10 mm FWHM)

motion/slice-time correction
spatial normalization
smoothing (10 mm FWHM)

STEP 2
ICA

subject concatenation
InfoMax, 75 components

SUBJECT
WEIGHTS

temporal concatenation

InfoMax, 75 components
TIME

COURSES

SPATIAL MAPS

SPATIAL MAPS
STEP 3
VISUAL

INSPECTION

gray matter clusters gray matter clusters
low-frequency power

30 FUNCTIONAL
COMPONENTS

--==77""1 10 STRUCTURAL
COMPONENTS

STEP 5

ASSOCIATIONS

-with age/gender
-between components

STEP 4
SPATIAL
CORRELATION

Pearson’s correlation
threshold at | »| > 0.2

FIGURE 1 | Schematic of preprocessing and analyses for both
structural GMD images and rs-functional images.

Frontiers in Neuroinformatics

www.frontiersin.org

March 2012 | Volume 6 | Article 10 | 38


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive

Segall etal.

Correspondence between structure and function

a caveat, GMD is sensitive in detecting some local GM struc-
tural properties, but lacks some specificity for particular structural
properties.

The fMRI data underwent typical preprocessing of realign-
ment, slice-timing correction, spatial normalization to a template
in standard MNI space, reslicing (3 mm x 3 mm X 3 mm
voxels) and spatial smoothing (FWHM = 10 mm; Figure 1;
step 1, right side). The spatial maps were evaluated for out-
liers and if possible were corrected using the same realignment
procedure that was used for the GM segmentations. Subsequent
to automated preprocessing, the data were intensity normalized
to improve the accuracy and test-retest reliability of the ICA
output.

SOURCE-BASED MORPHOMETRY

Source-based morphometry is a multivariate analysis, similar to
VBM, used to examine the relationships between GMD regions
(see Xu etal., 2009 for further details). GMD images from each
subject were flattened into row vectors and stacked to form the
subjects-by-voxel matrix upon which spatial ICA was applied
(Calhoun etal., 2001). ICA linearly decomposed the GMD matrix
into a mixing matrix (subjects-by-components) that represents the
relative strength (weight) of components for each subject and the
source matrix (voxels-by-components) that represents the max-
imally spatially independent GMD sources. ICA was performed
with the GIFT toolbox? using the infomax algorithm (Figure 1;
step 2, left side). We evaluated GM maps decomposed at sev-
eral different model orders (number of components). The model
orders investigated were 20, 40, 60, 75, 80, and 100. We found
similar components at the different model orders and ultimately
used the high model order of 75 components to match the num-
ber of components used in the rs-fMRI analysis, as discussed in
the next section. Briefly, model orders 60 and 80 yielded compa-
rable components as the model order of 75, which was validated
by correlational analyses and visual inspection. For the purpose
of this paper, sources of GM covariation obtained from this
the SBM analysis will be referred to in this paper as structural
components.

GROUP INDEPENDENT COMPONENT ANALYSIS OF fMRI DATA
Resting-state data were decomposed into components using spa-
tial ICA to identify temporally coherent networks and their
associated time courses by estimating maximally independent spa-
tial sources from their linearly mixed fMRI signals. For this study,
spatial sources obtained from the resting-state data will be referred
to as rs-functional components. GICA was also performed using
the GIFT toolbox with a model order ICA of 75 components
(Figure 1; step 2, right side). This model order has been noted
in the literature to yield refined components that correspond to
known anatomical and functional segmentations (Kiviniemi et al.,
2009; Smith etal., 2009; Abou-Elseoud etal., 2010; Ystad etal.,
2010). See Allen etal. (2011) for a complete treatment of the GICA
implementation. For the purpose of this study the functional com-
ponents were resliced to 2 x 2 x 2 to match the dimensions of the
structural components.

2http://mialab.mrn.org/software

FEATURE IDENTIFICATION

All 75 structural components were visually inspected by three
reviewers and the GM composition of each component was
evaluated (Figure 1; step 3, left side). We excluded structural
components that had significant spatial overlap with ventricles,
WM, large vasculature, and the brainstem, or were located at the
boundaries between these regions and GM. These criteria were
designed to exclude any component that were of possible mixed
tissue sources, such that structural components for subsequent
analysis only included GM. Of the 10 structural components that
met the inclusion criteria, eight comparable components were
identified in each of the model orders mentioned previously. The
two remaining components were only not observed in the lower
model orders of 20 and 40, but were found in the other model
orders. For the rs-functional components, we followed guidelines
similar to those used by Allen etal. (2011) to select a subset of
functional components; however, we were slightly less stringent
and included two additional subcortical and cerebellar compo-
nents that were excluded from prior analyses (for further details
onrs-functional component selection, please see Allen et al., 2011).

STATISTICAL ANALYSIS
To assess spatial correspondence between structural and rs-
functional components, we calculated all pair-wise Pearson corre-
lations between the selected structural and functional component
spatial maps, yielding a n-by-m correlation matrix, where  is the
number of selected structural components and 1 is the number
of selected rs-functional components (Figure 1; step 4).
Structural component loading parameters, representing the
contribution of each component to a given subject, were also
used in additional association analyses (Figure 1; step 5). Pear-
son correlations were computed between the structural loading
parameters and the log-transformed (age). Finally, all pair-wise
correlations between the structural loading parameters of the
selected structural components were computed (SNC). Here, we
also used partial correlations to remove the possible effect of age
on between-component associations.

RESULTS

STRUCTURAL-FUNCTIONAL COMPONENT CORRELATIONS

Of 75 structural components, n = 10 met the inclusion criteria; for
rs-functional components, m = 30 were selected for analysis. Out
of the 10-by-30 structural and rs-functional component compar-
isons, 24 structural-functional component pairs were above the
determined correlation coefficient threshold of 17l > 0.20. Note
that this threshold also conservatively represents a significance
level of p < 0.005, corrected. Accounting for spatial smoothness in
the spatial maps and assuming, as in Smith etal. (2009), roughly
500 degrees of freedom, a correlation of r = 0.2 has a p-value of
6 x 10—, which when Bonferroni correcting for 300 tests is 0.002.
The 24 structural-functional component pairs are presented in
order of decreasing correlation coefficient magnitude and divided
into groups with similar spatial topography (see Figures 2—4).

BASAL GANGLIA COMPONENTS
Subcortical structures comprising the basal ganglia had the highest
structural-rs-functional component correlations (0.59 and 053).
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FIGURE 2 | The structural (sMRI) components (red) and corresponding
rs-fMRI components (blue). The spatial correlation between component
pairs is indicated adjacent to the functional component number. Both sMRI
and fMRI aggregate components were converted to z-scores and
thresholded at Z > 2. Structural components are displayed at the slices with

POSTERIOR COMPONENTS

rs-IC
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peak activation, indicated as (x, y, z) coordinates in MNI space. When
structural components are paired with a single functional component, the
functional component is displayed at the same slices. If a structural
component corresponds to several fMRI components, functional components
may be displayed at different coordinates that best represent their activation.

Structural components, s-IC51 and s-IC72, were respectively com-
prised of the bilateral putamen and the bilateral caudate. They
corresponded to rs-functional components, rs-IC21 and rs-1C27,
which were primarily composed of the left and right putamen and
the bilateral caudate, respectively (see Figure 2; Table 1). In both
the structural and rs-functional components, there was only one
component meeting the correlation threshold for each of these
respective structures, i.e., the pairings were distinct and unique.

POSTERIOR COMPONENTS
Posterior components showed the second highest set of corre-
lations (see Figure 2; Table 1). Component s-IC43, primarily

comprised of the PCC, is correlated to rs-IC53, which is com-
prised of the PCC, the L/R angular gyri and the medial frontal
gyrus (MFG). Component s-IC55, which contains voxels spanning
much of the occipital cortex, is correlated to three rs-functional
components. In order of correlation magnitude they are rs-1C46,
rs-1C64, and rs-1C45, which represent aspects of the medial and
lateral visual cortex. Component s-IC17, which peaks at the
precuneus and extends laterally, is also correlated to three rs-
functional components. In order of correlation magnitude these
are rs-IC72 and rs-IC50 which also largely cover the precuneus,
and rs-IC59, which represents more posterior activation over the
bilateral cuneus.
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FIGURE 3 | The structural (sMRI) components (red) and corresponding
rs-fMRI components (blue). The spatial correlation between component
pairs is indicated adjacent to the functional component number. Both sMRI
and fMRI aggregate components were converted to z-scores and
thresholded at Z > 2. Structural components are displayed at the slices with
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structural components are paired with a single functional component, the
functional component is displayed at the same slices. If a structural
component corresponds to several fMRI components, functional components
may be displayed at different coordinates that best represent their activation.

MOTOR AND MEDIAL COMPONENTS

Notably, structural components determined to be motor and
medial components are related to multiple functional components
(Figure 3; Table 2). A large component, s-IC73, spanning the
supplementary motor areas (SMA) and bilateral pre- and post-
central gyri correlates to four rs-functional components. These
are rs-1C29, with peaks at the bilateral paracentral lobule and left
insula, rs-1C24 and rs-1C23, which represent lateralized aspects
of the motor system, and rs-1C56, which is centered at the SMA.
A second structural component, s-IC74, is also quite large and

extends over much of the medial surface, particularly in the MFG.
Component s-IC74 is correlated to three rs-functional compo-
nents, two of which are also correlated to s-IC73 and one of
which is correlated to s-IC17. In order of correlation magnitude
these are rs-1C29, rs-IC56, rs-IC72, and rs-IC55, which repre-
sents the bilateral cingulate gyrus, the left and right insula, and
the bilateral MFG. A third structural component, s-IC5, largely
comprised of the bilateral supramarginal gyrus (SMG), is weakly
correlated to rs-IC38, which represents activations over similar
regions.
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FIGURE 4 | The structural (sMRI) components (red) and corresponding
rs-fMRI components (blue). The spatial correlation between component
pairs is indicated adjacent to the functional component number. Both sMRI
and fMRI aggregate components were converted to z-scores and
thresholded at Z > 2. Structural components are displayed at the slices with
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peak activation, indicated as (x, y, z) coordinates in MNI space. When
structural components are paired with a single functional component, the
functional component is displayed at the same slices. If a structural
component corresponds to several fMRI components, functional components
may be displayed at different coordinates that best represent their activation.

FRONTAL AND CEREBELLAR COMPONENTS

The frontal component, s-IC75, which is primarily comprised of
the left MFG and the right SFG is correlated to four rs-functional
components. These rs-functional components in order of cor-
relation magnitude are rs-1C68, rs-IC55, and rs-IC2, which are
primarily comprised of the MFG, the cingulate gyrus, the insula,
and the anterior cingulate cortex. Lastly, s-IC71 is correlated
with functional component, rs-IC58. Both components largely
represent cerebellar cortex (Figure 4; Table 3).

STRUCTURAL COMPONENTS AGE AND GENDER CORRELATIONS
Pearson correlations between log(age) and the structural com-
ponent loading parameters are uniformly negative (Figure 5A).
Figure 5B shows an example of this negative correlation, with
a scatter-plot of the loading parameters for component 17 (pre-
cuneus) as a function of age for all 603 subjects. The trend predicts
almost a 50% decrease in component weights from adolescence
(~12 years age) to the age of retirement (~65-70 years). We found
no significant correlations between gender and the structural
loading parameters.

STRUCTURAL NETWORK CORRELATIONS

The cross-correlation matrix between the structural loading
parameters is shown in the top half of the correlation matrix in
Figure 6A, wherein the majority of correlation coefficients are
above values of r = 0.2. Because we found associations between
age and loading parameters for all components, we also performed
a correlation analysis after adjusting for age (bottom half of cor-
relation matrix; Figure 6A). Partialling out variance due to age
weakened all the correlations; however, a few structural compo-
nent loading parameter pairs stayed significantly correlated after
age adjustment. An example of this is in Figure 6B, which shows
the relationship between loading parameters of s-IC17 and s-1C73
before (r = 0.68) and after (r = 0.48) adjusting for age. Figure 6C
shows an example of the relationship between components

largely due to age: the correlation between s-IC5 and s-IC73
loading parameters falls from r = 0.58 to 0.24 after adjusting
for age.

We can also create a graph of the correlations to elucidate the
more complex relationships (beyond pair-wise) between struc-
tural components. Here, we used a conservative threshold of
r > 0.4 to create a graph, as shown in Figure 7. Based on the origi-
nal correlation values, this yields 13 “edges” between 6 component
“nodes.” Using the age-corrected correlations, we find a graph
with four “edges” between four “nodes.” In both the original and
age-corrected correlations, component s-IC17 (the precuneus) is
identified as a “hub,” for it was the component with the greatest
number of correlations.

DISCUSSION

Investigating GM structural networks is a crucial next step in map-
ping the correspondence between structure and function in the
human brain. To our knowledge, this is the first study to link
GM structure and function using spatial components, obtained
from high model order spatial ICA, and from GM structural
and rs-fMRI. We have also developed a framework for process-
ing and analyzing GM structure and function in the same large
cohort of healthy individuals. Our overall goal was to assess
structural-functional relationships of the human brain and we
found several GM structural components that spatially corre-
sponded to rs-functional components. We used spatial component
correspondence as our framework for investing how structure
relates to function, but if we had a single functional parameter
instead of group obtained functional components then we could
have delved deeper into the covariation of structural—functional
correspondence across individual subjects. An example of a single
functional parameter for future investigation is the amplitude of
low-frequency fluctuation (ALFF) of the rs-fMRI signal, because
the literature suggests that ALFFs reflect the intensity of regional
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FIGURE 5 | (A) Structural components correlated to the log(age) for the 10
selected s-IC. Dark gray bar corresponds to s-IC17 In general, structural
components are negatively correlated with age. Ninety-five percent
confidence intervals are reported. (B) Correlation of the age (years) and
loading parameter for all 603 subjects using s-IC17, which is primarily
comprised of the precuneus, as an example. Where r = —0.56.

spontaneous brain activity (Yang et al., 2007). Using ALFFs, GMD,
and parallel ICA (Calhoun etal., 2009) would be a good next
direction for future studies.

The basal ganglia components are the most spatially corre-
lated structural-functional components. Additionally, it is one of
only a few structural components in which the component was
comprised of only one source, which indicates how different the
GMD is in the basal ganglia compared to other regions in the
brain. As seen in Tables 1-3, the majority of the components are
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FIGURE 6 | (A) Structural network correlations (SNC) of the 10 selected
structural components. The top half of the matrix is without age adjustment
(original) and the bottom half is after age adjustment. (B) An example of the
effect of adjusting for age, where the adjustment does not remove the
significant correlation between the components for s-IC73 and s-IC17. (C)
An example of the effect of adjusting for age, where the adjustment does
remove the significant correlation between the components for s-IC73 and
s-IC5.

composed of several GM sources. This component could have also
been so clearly identified because the GMD of the basal ganglia
is so different compared to the surround WM. This structure—
function pairing is also unique because it is one of only four
pairs (out of the 24 structural-functional pairs) that has a direct
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age adjustment. The correlation coefficient values are adjacent to the edges.

FIGURE 7 | Structural network correlations. The SNC results for component pairs that are r < 0.4. The edges in red refer to components pairs that survived

_ ORIGINAL
—— ADJUSTED FOR AGE

one-to-one correspondence to a rs-functional component.
Another structural-functional component pair where this is seen
in the cerebellar component; however, the cerebellar correlation
value, though significant, is the weakest of the entire structure—
function analysis — nearly half the strength as in the basal ganglia
components. In similar structural network studies the focus tends
to be on the cortex, consequently, paying less attention to sub-
cortical regions, such as the basal ganglia (Robinson etal., 2009;
Bressler and Menon, 2010). Our finding further promotes the basal
ganglia as a viable and interesting region that should be addressed
in further structure—function studies.

Another directly correlated structure—functional pair is found
in the components that are primarily comprised of the SMG.
Results from lesion studies of aphasic stroke patients have found
that the left SMG plays a role in acoustic-phonetic processing,
which is an example of how structural abnormalities directly relate
to functional processing (Caplan etal., 1995).

The remaining structural-functional pair with direct corre-
spondence is found in the posterior component, specifically
comprised of the PCC. This PCC is commonly seen at rest and
is considered part of the DMN (Buckner et al., 2008). The DMN is

a particular grouping of brain regions that are consistently found
to be active during the resting-state (Raichle etal., 2001; Raichle
and Snyder, 2007; Buckner etal., 2008). The precuneus, also con-
sidered part of the DMN, is seen in our structural—functional
component correlations. Although, unlike the PCC, it is corre-
lated to several functional components, which is consistent with
the precuneus having many functional roles in addition to its role
in the DMN. The precuneus exhibits functional connectivity in
several highly integrated tasks, such as episodic memory retrieval,
self-referential processing and visuo-spatial imagery (Cavanna and
Trimble, 2006). The precuneus along with the PCC have also been
identified as part of structural core in a graph study of diffusion
imaging data (Hagmann etal., 2008). Prior structural connectiv-
ity studies have reflected the functional connectivity of the DMN
(Greicius etal., 2009; Skudlarski etal., 2010) and as hypothesized,
our study is another example of how structure corresponds to
function in the DMN. Additionally, the DMN regions have shown
a high degree of heritability (Glahn etal., 2010) and alterations in
the DMN have been found in many neurological and psychiatric
disorders (Garrity etal., 2007; Greicius, 2008; Paakki et al., 2010;
Weng et al., 2010).
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The remaining structural-functional component correlations
are comprised of one structural components that corresponds to
several functional components. Typically, the structural compo-
nent is a broad region of GM, while the functional components
are broken up into smaller and sometimes lateralized compo-
nents. This type of structural-functional correspondence is found
in the frontal, SMA, and visual regions. The structural com-
ponents comprised of the frontal and SMA are correlated to
some of the same functional components. These frontal networks
are associated with strategic and executive functions (Duncan
and Owen, 2000) and the SMA networks are primarily asso-
ciated with sensorimotor/spatial functions. Unlike, the frontal
and SMA components, the functional components comprising a
visual network do not correspond to any other structural compo-
nents, besides s-IC55, which is mainly composed of the calcarine
gyrus.

Interestingly, we found similar spatial overlap between function
and structure as Chen etal. (2008) which found that the cortex
was organized into six topological modules. The lack of more
direct correspondence between structure and function was not
surprising to us. Recent studies have shown that structural changes
in cortical thickness believed to be induced by activity are not
found in the same regions where there are functional connectivity
changes (Haier etal., 2009).

The field of human connectome research could benefit from
examining the similarities that exist between patterns of GM
covariation and functional connectivity in healthy individuals,
for these patterns may be a foundation for future research on
both healthy connectivity and changes associated with neurode-
generative disorders. A previous study found using GM volume
measures and ICA on rs-fMRI that, “normal intrinsic connec-
tivity and structural covariance patterns mirrored each other and
reflected, with high fidelity, those regions that codegenerate in dis-
tinct human neurodegenerative syndromes (Seeley etal., 2009).”
This study differed from ours in several ways, mainly that the
GM regions selected were those associated with neurodegenera-
tive syndromes. Indeed, both in Seeley etal. (2009) and in our
study, GM structure is directly observed to be associated with
function; however, the exact mechanism is still unclear. A study
on the developing brain demonstrated that different GM structural
covariance networks exist at various developmental stages and as
children aged their GM covariance topology eventually resembled
an adults intrinsic connectivity network (Zielinski etal., 2010).
Zielinski etal. (2010) findings suggest that GM structural covari-
ance networks may mature after functional coactivation. Perhaps
aging and the effects of neurodegenerative syndromes are possi-
ble mechanisms as to how structural GM covariation occurs. The
normal aging process in healthy controls could also explain our
results of structure—function correlations.

As predicted age had a strong affect on the structural com-
ponents, for decreases in GM volume are thought to be both
from maturational and degenerative changes (Takietal.,2011) and
this study age range spanned from adolescence to later adulthood
(12-71 years). After adjusting for age, the strength of our between-
component correlations was not significantly mitigated for all of
the structural component pairs. Future studies should evaluate
structural components for distinct age groups to determine age

specific structural covariance patterns. Surprisingly, we did not
find significant associations with gender and structural loading
parameters. There are inconsistencies in the literature regard-
ing sex differences and GM (Sowell etal., 2007), which could be
attributed to the differences in methods used to obtain GM mea-
surements. Our study was comprised of a large age rage of males
and females and that may be why we did not find a main effect
of gender.

The SNC analysis revealed several structural components that
were highly covariant and similar to regions that were found
in other structural-functional correspondence studies. Specifi-
cally, the precuneus was linked to frontal, cerebral, parietal, and
motor areas. This relationship with the precuneus and the other
structural components survives after adjusting for age, which is
a possible indicator that the precuneus might play a role of a
structural “hub” in the SNC. The finding of a precuneus “hub” is
consistent with a previous study, which through mapping struc-
tural cortico-cortical pathways identified the precuneus as one
of the hubs of the structural core of the human cortex (Hagmann
etal.,2008). The subcortical components were not as strongly cor-
related to the other cortical components, which could be caused
by differences in types of GM.

The findings from our structural-functional analysis are rel-
evant to human connectome research, for the correspondence
between structural and functional covariations provides us with
information about brain connectivity. A meta-analysis by Smith
etal. (2009) demonstrated that covariation of functional networks,
from over 1,600 functional neuroimaging studies, are similar to
the functional networks found at rest. Therefore, INs can be iden-
tified from inter-subject covariation. Additionally, a recent ICA
paper showed that estimates of functional activity can be accu-
rately predicted from covariation analysis, which again provides
us with information that functional covariation is directly related
to connectivity (Calhoun and Allen, in press). This current paper is
extending this work further, by identifying both structural covari-
ation components and components where structural-functional
covariations correspond. Regions where we have identified corre-
spondence are perhaps highly dependent on structure. The regions
where we have not shown structural-functional correspondence
are also of interest. For instance, we did not find any structural
or functional covariations in regions such as the prefrontal cortex,
which are associated with higher cognitive functions (Jung and
Haier, 2007).

There are several limitations to this study, the first being the
investigation of structural networks using GMD. GMD only pro-
vides indirect measurements of structural networks; therefore,
since we do not use DWT and directly evaluate WM tract involve-
ment we are unable to make direct statements about anatomical
connectivity (Stam, 2010). Yet, as identified in a primate study,
the number of neurons differ depending if the GM is gyral or
not (Hilgetag and Barbas, 2005). Therefore, it is no longer as
straightforward to infer that the underlying anatomical connec-
tivity corresponds to GM measures, such as cortical thickness.
Future work should incorporate all three measures (fMRI, struc-
tural MRI, and DWI). The methods we used were to describe
the relationship between structure and function at the group
level, consequently the next step would be to investigate this
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relationship at the individual level. To further substantiate our
findings of structural-functional correspondence, future stud-
ies should also investigate structural and functional covariations
between structural-functional pairs at the subject level to ensure
the findings are replicable and reliable.

Additionally, we conducted a very constrained analysis that
investigated a limited number of components. We decided to use
a strict feature selection criteria to limit our analysis and results to
components that were explicitly within GM. We do not find it sur-
prising that we eliminated 65 components, for SBM is most likely
demonstrating that the brain is comprised of complex morphom-
etry that cannot be easily characterized by a voxel-wise map. The
observed SBM findings of the separate components identified for
the basal ganglia and in the cerebellum are interesting, for those
regions have well known stereotypical anatomical architectures.
These findings provide additional evidence that GMD covaria-
tion detects regions of the brain that share similar anatomical
architectures. Our study was also comprised from healthy individ-
uals over a wide age range and future studies could explore how
these structural-functional relationship manifest at different age

CONCLUSION

The use of non-invasive neuroimaging provides the ability to
describe and find structural and functional networks, foster-
ing opportunities to further understand the complexity of the
human brain. Using the multivariate approach, SBM, we found
GM structural relationship patterns and several areas in the brain
where structure and function correspond. More importantly, we
also demonstrated that GM structural components are directly
associated with functional components.
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INTRODUCTION

To date, there are several methods for mapping connectivity, ranging from the macroscopic
to molecular scales. However, it is difficult to integrate this multiply-scaled data into one
concept. Polarized light imaging (PLI) is a method to quantify fiber orientation in gross
histological brain sections based on the birefringent properties of the myelin sheaths.
The method is capable of imaging fiber orientation of largerscale architectural patterns
with higher detail than diffusion MRI of the human brain. PLI analyses light transmission
through a gross histological section of a human brain under rotation of a polarization filter
combination. Estimates of the angle of fiber direction and the angle of fiber inclination are
automatically calculated at every point of the imaged section. Multiple sections can be
assembled into a 3D volume. We describe the principles of PLI and present several stud-
ies of fiber anatomy as a synopsis of PLI: six brainstems were serially sectioned, imaged
with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented
in the PLI datasets. PLI data from the internal capsule was related to results from confocal
laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber
architecture of the extreme capsule was compared to macroscopical dissection, which
represents a method of larger-scale anatomy. The microstructure of the anterior human
cingulum bundle was analyzed in serial sections of six human brains. PLI can generate
highly resolved 3D datasets of fiber orientation of the human brain and has high compa-
rability to diffusion MR. To get additional information regarding axon structure and density,
PLI can also be combined with classical histological stains. It brings the directional aspects
of diffusion MRI into the range of histology and may represent a promising tool to close
the gap between largerscale diffusion orientation and microstructural histological analysis
of connectivity.

Keywords: polarized light imaging, brainstem, pyramidal tract, internal capsule, cingulum, extreme capsule

these multiply-scaled data into a single concept. This difficulty

Of late, the discussion relating to exploring the human connec-
tome to attain a comprehensive structural description of the
overall connectivity in the human brain has gained increas-
ing attention (Sporns et al., 2005; Sporns, 2011). Mapping the
anatomical fiber pathways connecting the various regions of the
human brain is the basis for comprehending its complex func-
tion. In this context the advance of MRI methods for mapping
the human connectome has recently been discussed (Hagmann
et al., 2010). The method is non-invasive and allows the in vivo
study of the human brain with regard to anatomical connectivity
(diffusion MRI) as well as functional interrelationships [func-
tional neuroimaging, e.g., functional magnetic resonance imaging
(fMRI), but also PET, etc.]. Although, several methods for map-
ping anatomical connectivity extending from the macroscopic to
molecular scale levels are established it is difficult to integrate

arises since different imaging methods use different coordinate
systems. The assembly of microscopical slices into a 3D dataset is
possible but the projection of these data into a 3D reference coor-
dinate system of the human brain is not generally done. There
is a need for a reference coordinate system which is applicable
to a wide range of different imaging modalities. Moreover, each
method only shows a selective view on the object, such as connec-
tivity, nerve fiber architecture at a specific location in the brain,
diameter of fibers, fiber density, as well as fiber orientation, and
many more. The method used depends of the hypothesis to be
proven. A further difficulty arises from the fact that the large
living human brain generally cannot be studied using different
methods in parallel and diffusion MRI and fMRI is not possible
to be done or at least is hindered in the formalin fixed cadaver
brain.
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To talk about scales and structure it is indispensable to consider
the dimensions of the anatomical structures to be imaged. A nerve
fiber is composed of the axon plus its myelin sheath. As viewed
under the electron microscope, the size of myelinated fibers in the
human corpus callosum range from 0.2 to more than 10 um in
diameter, whilst the diameters of unmyelinated fibers span 0.1-
1 wm (Aboitiz et al., 1992). Fiber density in the corpus callosum
is between 300,000 and 400,000 per mm?. The number of fibers
in the corpus callosum is in the order of 108, whereas the number
of cortico-cortical projections in one hemisphere is at least one
magnitude higher (Schiiz and Preifl], 1996). In the human pyra-
midal tract, 87.9% of fibers are below 4 um, 10.7% range from
4 to 10 um, and 1.4% of fibers are larger than 10 pm (Graf von
Keyserlingk and Schramm, 1984). Fiber density in the pyramid of
the medulla oblongata is about 11,000 fibers per mm?.

Single nerve fibers are mostly collected in fiber bundles. For
example, in the anterior limb of the internal capsule, the fiber
bundles of the frontopontine tract are arranged in sheaths with a
diameter of about 100-150 wm that intermingle with fibers from
the anterior thalamic peduncle (Axer et al., 1999a). At this scale
the detection of a single axon may not be critical. On the contrary,
a lower resolution might be better suited to visualize the structure
of larger fiber bundles. Classical fiber tracts, e.g., the pyrami-
dal tract, or fasciculi, e.g., the arcuate fasciculus, are collections
of fibers which have been anatomically defined mainly inspired
from macroscopical dissection (Ludwig and Klingler, 1956). Terms
like “pathway” or “stream” are not anatomical descriptions but
are mainly used in the context of functional considerations of
connectivity.

In the CNS, compact fiber bundles such as the pyramidal tracts
at the level of the medulla oblongata are the exception. Gener-
ally, different fiber bundles intermingle with each other in the
white matter. A very critical region is the subcortical white mat-
ter directly adjacent to the gray matter, where single nerve fibers
intermingle diffusely. Nerve fibers are generally not arranged in
bundles at this location and these regions are therefore difficult to
be imaged with diffusion MRI, due to its limited resolution power.

Obviously, the resolution of the imaging system strongly influ-
ences the level of architectural scale to be visualized. In Figure 1,
examples of the scale of various anatomical structures together
with the resolution of different imaging modalities can be seen. For
instance, electron microscopy, confocal laser scanning microscopy
(CLSM), and classical light microscopy are used for visualization of
every single axon, while MR will focus on larger architectural pat-
tern, e.g., larger fiber tracts. Ex vivo MRI in mice (9.4 T) achieves a
resolution in the range of 100 wm or less (Zhangetal.,2011), while
in vivo diffusion MRI of the whole human brain will maximally
reach a resolution of 0.5 mm (Finsterbusch, 2009). Diffusion MR
allows the inference of 3D fiber orientation data in the human
brain and, therefore, enables the tracking of fiber pathways in the
brain based on various methods such as streamline tractography,
probabilistic fiber tracking, and several others (Hagmann et al.,
2010). Overall, the relatively low magnification of in vivo diffusion
MRI of the human brain solely allows the analysis of larger-scale
architectural patterns.

In contrast, using high resolution anatomical methods, e.g.,
electron microscopy, it is possible to visualize single axons,
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FIGURE 1 | Scales of anatomical structure and image modality. The
image shows the different scales of anatomical structures of interest and
the magnification of different image modalities, which can be used to study
white matter architecture. Abbreviations: CLSM, confocal laser scanning
microscopy; MOST, micro-optical sectioning tomography (Li et al., 2010).

dendrites, dendritic spines, and synapses at the highest resolution
(nm-range), even in 3D (Briggman and Denk, 2006). The recently
described micro-optical sectioning tomography (MOST) is able to
collect highly resolved 3D data of a complete Golgi-stained mouse
brain with a voxel size of 0.33 um x 0.33 um x 1 pm (Li et al.,
2010). Such methods, however, only cater for visualization of vol-
umes that are smaller in size than the human brain due to the
enormous amount of data they accumulate. In future, high per-
formance computing might provide analysis tools and procedures
to study specimen such as the human brain reasonably. Difficul-
ties arise, therefore, in the transfer from human connectivity data
from high-scaled anatomical investigations. The higher the mag-
nification of the method is, the smaller is the field of view or the
volume of view. Thus, there is a gap between analyzing methods
of the human brain and highly resolved anatomical methods.

Polarized light imaging (PLI), a method based on the birefrin-
gent properties of the myelin sheaths, is used to quantify fiber
orientation in gross histological brain sections. We developed PLI
more than a decade ago during the late 1990s (Axer et al., 2000,
2001). The idea was inspired from studies of electrical imped-
ance measurements using impedance measurements in the human
brain as an online verification of the position of the electrode
during stereotaxic procedures. Impedance in the white matter is
mainly influenced by the orientation of the nerve fibers in rela-
tion to the electrode (Axer et al., 1999b). Hence, an anatomical
method was needed to construct a highly detailed map of the fiber
orientation in the human brain in order to create a 3D atlas of
fiber orientation as an anatomical correlate of impedance mea-
surements (Axer et al., 2002a). Although the impedance principle
for white matter was not followed up, the introduction of diffusion
imaging to visualize fiber orientation in the living human brain
has led to a growing interest in connectivity studies of the human
brain (Catani et al., 2002; Jones, 2011).

This paper aims to describe PLI for imaging the human brain
to investigate anatomical connectivity under the aspect of macro-
scopic and microscopic scales together with its relation to other
methods. Herein, we present four different circumscript PLI stud-
ies, which show the relation of this new method to other imaging
procedures such as diffusion tensor imaging (DTI), macroscopical
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dissection, and CLSM. The following four studies have not been
designed to determine the problem of scale in connectivity, rather
each study demonstrates specific anatomical aspects relevant for
PLI with respect to other imaging apertures and also enables the
interpretation of the results in the context of functionality of fiber
tracts:

1. Study of the cingulum bundle, a fiber bundle mainly involved
in performing complex cognitive and neuropsychological tasks,
is an example of the use of PLI and macroscopical dissection to
obtain an anatomical description of an association fiber tract
in the human brain.

2. Polarized light imaging analysis of the human brainstem shows
the use of PLI in imaging compact fiber tracts in this study. PLI
is applied for detection and segmentation as well as for mor-
phometric analysis of these fiber tracts. Although, the analysis
of the pyramidal tract is also undertaken with diffusion MRI
such as for Wallerian degeneration after stroke (Grissel et al.,
2010), smaller fiber tracts such as the lemniscus medialis and
many others are difficult to be reliably imaged using MRI.

3. The internal capsule is a structure of white matter composed
of diverse fiber bundles of varying orientation and differing
dimensions. Thus, the internal capsule is a bottleneck of fibers
trafficking signals from the cortex to the thalamus and the
brainstem, and vice versa. Since it represents a clinically essen-
tial and complex structure, an imaging system with a larger
magnification, such as PLI may be of benefit for investigat-
ing the internal capsule. Therefore, the use of CLSM is used
for comparison to analyze very highly resolved nerve fiber
architecture at different points of the internal capsule.

4. The extreme capsule constitutes a collection of diversely asso-
ciated fiber pathways located between the claustrum and the
insular cortex. Recently, interest has been sparked in the struc-
ture as fMRI and DTT studies revealed a functional involvement
of these fiber pathways in language tasks (Saur et al., 2008).
Thus, PLI was used to analyze fiber orientation in relation to
macroscopical dissection of this brain region.

MATERIALS AND METHODS

PRINCIPLES OF PLI

Currently polarized light has a broad range of technological appli-
cations that cover diverse industrial and scientific fields, including
optical communication, display technology, solid state physics,and
biomedical optics (Brosseau, 1998). In many of these applications,
polarized light is used to visualize the birefringence and, conse-
quently, to demonstrate the spatial structure of the material under
study. Generally speaking, a material is referred to as being bire-
fringent if its molecular structure has anisotropic properties, i.e.,
when shape and orientation of individual molecules introduce
directional dependencies. Such directional dependencies become
detectable when linearly polarized light passes through a sample.
For anisotropic media, the velocity of light v will vary depend-
ing on the direction of the advancing light wave and its state of
polarization. This observation can be described by an elliptically
shaped oblate surface, the refractive index ellipsoid or the indi-
catrix, characterizing the structural composition of the material
by means of direction-dependent refractive indices #n (= the ratio

of light velocities in vacuum and in the material). The indicatrix
is defined by three principal refractive indices along the principal
axes of the medium. If two of these principal refractive indices are
equal due to symmetry reasons, the medium is said to be uniaxial.
It has been well known for some time that the white matter
of the brain has a distinct anisotropy and, thus, exhibits opti-
cal birefringence (Brodmann, 1903; Gothlin, 1913; Schmidt, 1924;
Schmitt and Bear, 1935; Kretschmann, 1967; Wolman, 1970, 1975;
Miklossy and Van der Loos, 1991). White matter basically consists
of closely packed myelinated fibers. The myelin sheaths are multi-
layer membranes that are wrapped around the axons (Martenson,
1992). About 70-85% of the myelin sheaths are composed of radi-
ally ordered lipids (cholesterol, sphingolipids, and phospholipids)
whilst only 15-30% consist of proteins [proteolipidprotein (PLP)
and myelin basic protein (MBP)] arranged tangentially to the
axon. Vidal et al. (1979) were able to attribute the birefringence
of the white matter mainly to the radially arranged lipids of the
myelin sheaths and observed an overall negative uniaxial birefrin-
gence. As a consequence, a myelinated fiber can be described by
two principal refractive indices, parallel (n¢) and orthogonal (#.)
to the physical fiber axis. Given that the difference of n.. and ng
is small and the fiber is inclined by the angle o with respect to the
front of the advancing light wave (Scheuner and Hutschenreuter,
1972; Larsen et al., 2007), the optical birefringence An of the fiber
can be approximately expressed by:
An =~ (nee — 1) cos® a. (1)
A beam of linearly polarized light will, on passing through a
thin section of white matter, split up into two perpendicular com-
ponents, the ordinary and the extraordinary ray. Due to different
propagation velocities of the two rays, the beam in general becomes
elliptically polarized with a phase shift § and a difference in ampli-
tude depending on the local fiber orientation. If the light travels
along the fiber axes, the light polarization will remain unaltered.
The induced phase shift is a function of the wavelength of the light
source A, the section thickness d, and the optical birefringence An:

d =2mndAn/\. (2)

An apparatus that enables the measurement of the described
birefringence effects is referred to as polarimeter. The simplest
setup of a polarimeter consists of two crossed linear polarizers
with an object stage in between, a CCD camera, and a light source.
The polarizers are rotatable (by discrete angles p) around the fixed
sample. Since the optical system is exclusively composed of linear
optical elements and the light beam that enters the sample can be
considered to be fully polarized after passing the first polarizer, the
application of Jones calculus (Jones, 1941) is permitted to describe
the light transmittance I through the polarimeter:

I = Iysin®(2p — 2¢) sin®(3/2). (3)

I describes the intensity of the incident light, p is the azimuth
of the transmission axis of the first linear polarizer, ¢ is the pro-
jection of the fiber into the polarizer’s plane relative to the null
position of the polarimeter (p=0°), and 3 is the phase shift as
specified in Egs 1 and 2.
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A more advanced polarimeter system houses an additional
rotating quarter-wave retarder above the object stage, which leads
to the following formula for the light transmittance I

I=1)/2(1 4+ sin(2p — 2¢) sin(3)). (4)

In conclusion, these types of polarimeter systems sense both the
fiber inclination a and the fiber direction ¢. Therefore, by mea-
suring the transmitted light intensity per image pixel at discrete
rotation angles p and subsequent data analysis, the system pro-
vides direct access to the locally prevailing 3D fiber orientations.
This imaging procedure is known as PLI.

PLI SYSTEM AND PREPARATION OF THE SAMPLES

The polarimeter system used herein (cf. Larsen etal.,2007) consists
of a filter combination of a pair of horizontally mounted crossed
polars and a removable quarter-wave plate (B&W Filter, Schneider,
Bad Kreuznach, Germany). Diffuse light of five fluorescent tubes
behind a diffusing screen (Osram GmbH, Miinchen, Germany,
Universal White) is passed through the system from below. The
transmitted light is imaged by a downward pointing CCD camera
(Axiocam HR, Carl Zeiss, Gottingen, Germany, basic resolution
of 1388 x 1040 pixel). This system allows the filters to be rotated
while maintaining their relative orientation constant, and keeping
the sample fixed on a stage. The images were acquired using the
AxioVision software (Carl Zeiss, Géttingen, Germany). The mag-
nification of the system was such as to result in pixels of dimension
64 wm X 64 wm over a thickness of 100 pm.

For each brain section, nine images separated by 10° rotations of
the filters using the crossed polars only and nine images separated
by 20° rotations of the filters using an introduced quarter-wave
plate were acquired (Figure 2). Sinusoids were fitted to the two
sequences of nine intensity values at each pixel to recover direction
¢ (in-plane orientation) and inclination o (out-of-plane orien-
tation) information by means of Eqs 3 and 4. The relationship
between inclination and maximum intensity of transmitted light
is not linear (cf. Eqs 1-4), and it is clear that the accuracy with
which the inclination can be estimated will be best for inclinations
between 30° and 60°.

Sections of human cadaver brains fixed in 4% aqueous for-
malin solution for at least 3 weeks were used for PLI. The brains
were taken from persons (without history of neurologic or psy-
chiatric disease) who donated their body for anatomical study
before death. All brains were collected from the body donor
program of the Institute of Anatomy at the Technical Univer-
sity Aachen (RWTH). After cryoprotection, brain slabs of the
region of interest were serially sectioned with a cryostat micro-
tome (CM3050 S, Leica Microsystems, Bensheim, Germany) at a
thickness of 100 pum. The sections were mounted with the aqueous
mounting medium Aquatex™(Merck, Darmstadt, Germany) and
coverslipped without staining.

Image processing was realized with scripts written in MATLAB
7.7.0 (MathWorks Inc., Natick, MA, USA) including the Image
Processing Toolbox. The method used for 3D reconstruction has
been described elsewhere in detail (Axer et al., 2002b) In short,
rigid (isomorphic) transformations were computed on the serial
sections of the brain. Maximum intensity maps (which represent

inclination

z fiber orientation maps

FIGURE 2 | Image acquisition and image processing of PLI. Equipment
of the PLI system (A) consists of two rotatable perpendicularly oriented
polarization filters and an insertable quarterwave plate. For each section,
nine images separated by 10° rotations of the filters using two crossed
polars are acquired (B), which are used to calculate angles of fiber
inclination (C). In addition, nine images separated by 20° rotations of the
filters using an additionally introduced quarterwave plate (D) are used to
calculate angles of direction (E). Angles of inclination and angles of
direction in every pixel of the section define a vector representing the major
3D fiber orientation at that point. Fiber orientation maps (FOMs) can be
visualized using different color schemes (FG).

the brightest intensity of transmitted light in each pixel derived
from each polarization sequence using the crossed polars only)
were used for this purpose because of their good anatomical con-
trast. Each image was translated and rotated with respect to its
predecessor. In case of rotations, the angles of direction have to
be adjusted according to the degree of rotation. The minimized
Euclidean distance was used as criterion for the best fit between
the succeeding slices (Axer et al., 2002b).

Three dimensional Slicer 2.6 (www.slicer.org) was used for visu-
alization of the 3D datasets and for segmentation of fiber tracts. It
is an open-source, cross-platform application for visualizing and
analyzing medical image data (Gering et al., 2001). SPSS 11.5.1
(SPSS Inc., Chicago, IL, USA) was used for statistical analysis.

RESULTS
CINGULUM BUNDLE
Six formalin fixed human cadaver brains were macroscopically
dissected (four males, two females, median 79 years, range 72—
88 years). A 1.5-cm thick slabs of the mediofrontal brain including
the anterior cingulum bundle were cut in four separate pieces,
serially sliced and analyzed using PLI. The target of this analysis
was a parcellation of the anterior cingulum bundle according to
fiber orientation (Figure 3). The anterior part of the cingulum is
defined as the fiber bundles located above the corpus callosum and
running into the frontal lobe.

The anterior cingulum bundle can topographically be sub-
divided into a supracallosal, pregenual, and subgenual part for
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FIGURE 3 | Architectural parcellation of the anterior cingulum bundle.
The cingulum bundle is marked by the white arrows in the Fiber Orientation
Maps [FOMs (A)]. (E) Shows the cingulum bundle in a dissected human
brain for comparison (black arrows). The anterior supracallosal and the
pregenual part of the cingulum bundle is a single compact fiber bundle
[white arrows in (A)]. In its midcingulate posterior part, the supracallosal
cingulum bundle gets several inputs from fiber bundles coming from the
adjacent white matter. This part is magnified in (B) and shows intermingling
fiber bundles running into the cingulum bundle visualized in green and blue
color (arrows). In the subgenual part, the fibers of the cingulum bundle
curve and spread into the orbitofrontal regions [(C,D) arrows].

purposes of systematic anatomical description. The anterior part
of the supracallosal cingulum bundle is a single compact fiber
bundle without intermingling fiber bundles and without signifi-
cant inputs. In its posterior part (midcingulate), the supracallosal
cingulum bundle receives several inputs from fiber bundles origi-
nating from the adjacent white matter. Therefore, the midcingular
segment gets inputs from fiber bundles oriented to motor and
premotor cortices and parietal cortex.

In the pregenual part, the cingulum bundle is rather compact
and curves around the genu of the corpus callosum. The fibers of
the cingulum bundle in the subgenual part curve and spread into
the orbitofrontal white matter. These fibers are diffusely intermin-
gled with fibers deriving from the medial forebrain bundle and
the forceps minor of the corpus callosum. A part of the cingulum
further proceeds in the direction of the limen insulae.

HUMAN BRAINSTEM

Six human brainstems (three males and three female, median
81.5years, range 65-92years) were serially sectioned axially to
the brainstem axis and every second slice was imaged using PLI.
Figure 4 shows sections through the medulla oblongata, pons, and
mesencephalon. The major fiber tracts in the brainstem could be
identified by means of PLI data, i.e., pyramidal tracts, lemniscus
medialis, medial longitudinal fascicle, cerebellar peduncles, and
others. Although PLI data of the larger fiber tracts show similar-
ities to DTT results (Figures 4A,B), the advantage of PLI lies in
the greater resolution which additionally allows for localization of
smaller fiber bundles.

The serial fiber orientation maps were registered three-
dimensionally and the volumes were imported into the Slicer
software. Pyramidal tract and lemniscus medialis were manually
segmented according to the fiber orientation maps (Figure 5).
The volumes of these fiber tracts were estimated and related to
the volume of the whole white matter of the brainstem in order to
normalize according to individual brain size. Figure 6A shows the
normalized measurements of the six brains.

The volumes of the pyramidal tracts showed a negative corre-
lation to age (Figure 6B, left pyramidal tracts: Pearson correlation
coefficient —0.930, p = 0.007, right pyramidal tracts: Pearson cor-
relation coefficient —0.882, p=0.02). In contrast, no such rela-
tionship could be found for the volumes of the medial lemniscus
(Figure 6C) or the volume of the whole brainstem white matter.

INTERNAL CAPSULE

The internal capsule is a collection of intermingling fiber bundles
of different fiber systems, i.e., the pyramidal tract, thalamic radia-
tions, corticopontine fiber systems, and others. Using CLSM, it was
demonstrated that the individual orientation of distinct fiber bun-
dles could be used to describe a parcellation of the internal capsule
(Axer and Keyserlingk, 2000). Right-left comparison of morpho-
metric parameters of these bundles demonstrated that more and
smaller bundles of the frontopontine fiber tract were located on
the left-hand side than on the right-hand side of the anterior limb
of the internal capsule (Axer et al., 1999a).

Confocal laser scanning microscopy allows information to be
collected from well-defined optical sections through a fluorescent
sample. This is done through sequential illumination focusing on
one volume element of the specimen at a time (Wright et al., 1993).
Stacks of serial optical sections allow a 3D reconstruction of the
fiber architecture and provide good quality information regard-
ing the orientation of the fibers at a high resolution. The myelin
sheaths of the nerve fibers can be labeled with the fluorescent dye
Dil and has been used to analyze fiber architecture in the internal
capsule systematically (Axer and Keyserlingk, 2000).

At the level of the internal capsule, the different tracts do not
consist of individual, separate tracts of fibers. In comparison to
these earlier CLSM fiber studies of the internal capsule, we gen-
erated PLI sections through the internal capsule in the horizontal
and the sagittal plane (Figure 7). The heterogeneity in fiber ori-
entation is clearly visible in the fiber orientation maps. However,
single fibers running perpendicular to the majority of fibers in the
anterior limb could not be detected with PLI (Figure 7E). Nev-
ertheless, there is a good correlation between confocal images of
fiber architecture and the larger-scale architectural pattern of PLI.

EXTREME CAPSULE

Recently, Saur et al. (2008) identified anatomical pathways con-
necting brain regions activated during two prototypical language
tasks by combining fMRI with a DTI-based tractography. Tractog-
raphy showed that language networks interact by distinct ventral
(via the extreme capsule) and dorsal (via the superior longitudinal
fasciculus) association tracts as well as commissural fibers (Saur
etal, 2010). In order to validate the ventral stream anatomically, a
human brain was macroscopically dissected using the method of
Klingler (1935), i.e., the brain is frozen down to —5 to —10°C and
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FIGURE 4 | Fiber Orientation Maps of the human brainstem. the absolute of the Y component in green, and the absolute of the Z
(A) DTI color maps (1.5T MRI with a voxel resolution of component in blue (B). Another color scheme (C) is more beneficial for PLI
2mm x 2mm x 2 mm) of comparable sections through the brainstem data and codes in-plane orientation in color and out-of-plane rotation in
are able to show the larger fiber tracts which at least are at the scale intensity (inset key). Maximum intensity maps (D) show the highest
of one voxel. However, the resolution is too low to distinguish smaller intensities of each polarization sequence and give relative good anatomical
structures as seen in the medulla oblongata. Corresponding fibers are contrast similar to histological myelin stains. Angles of direction (in-plane) and
marked by the arrows. The advantage of PLI is its greater resolution, angles of inclination (out-of-plane) generate direction (E) and inclination maps
which also allows for visualization of smaller fiber bundles. Fiber (F). Note that the angle of inclination can be estimated between 0° and 90°
orientation maps (FOMs) can be visualized using a color scheme similar only, not distinguishable from angles between 0° and (—90° (inclination
to the DTl slices with the absolute X component of the vector shown in red, ambiguity).
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FIGURE 5 | Three dimension reconstruction of the brainstem. Serial FOMs
are three-dimensionally reconstructed and a 3D data set is produced with a
vector in each voxel representing the 3D fiber orientation. The example shows
one original axial (A) section, and a calculated sagittal (B), and horizontal (C)
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section through the 3D data set (D) shown as maximum intensity data.
Pyramidal tract and lemniscus medialis were manually segmented, based on
the orientation data. Volume models of the whole brainstem [(E) yellow],
pyramidal tracts (G), and lemnisci mediales (F) were computed.
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FIGURE 6 | Volumes of pyramidal tract and lemniscus medialis. The
volumes of the pyramidal tracts and the lemnisci mediales were normalized
to the whole white matter volume of the individual brainstem. The
measurements of the analyzed six brainstems are shown in (A). The
normalized volumes (y-axis) of the pyramidal tracts revealed a negative
correlation (B) to age (x-axis), while the normalized volumes of the medial
lemniscus were not correlated to age (C). Abbreviations: PT, pyramidal
tract; LM, lemniscus medialis.

allowed to return to room temperature several times. The grow-
ing ice crystals lead to a slight separation of the nerve fibers from
each other, allowing the fibers to be carefully dissected using fine
forceps or blunt spatulas.

Macroscopically, distinct fiber systems could be differentiated
which all channel in the depths of the limen insulae and proceed

from the temporal to the frontal lobe: fibers from the extreme
capsule to the frontal operculum, from the extreme capsule to the
orbitofrontal cortex, and from the amygdala to the orbitofrontal
cortex (the uncinate fasciculus; Figure 8). The uncinate fasciculus
which is localized more deeply can be clearly distinguished from
the other two fiber systems.

An additional brain (female, 85 years) was analyzed using PLL
For the investigation, a sagittal slab containing the limen insu-
lae and the underlying white matter was dissected and serially
sliced. Fiber orientation maps of these regions clearly reproduced
the aforementioned fiber systems (Figure 8) as different fiber bun-
dles. Therefore, we were able to anatomically reproduce the ventral
stream system in the human brain using fiber dissection and PLI.

DISCUSSION

Studying the fiber anatomy of the human brainstem will not pro-
vide new insights into new fiber tracts or connectivity, but an
analysis of these fiber tracts may be helpful for describing side-
dependent asymmetries, and gender- or age-related differences.
However, the low magnification of DTT (see also Figures 4A,B) in
this region only allows evaluation of large fiber tracts, such as the
pyramidal tract (Grissel et al., 2010).

Significantly, a negative relationship between age and the vol-
umes of the pyramidal tracts (normalized to the whole white
matter volume of the brainstem) was found in the current study.
The result points to an age-related atrophy of the pyramidal tract
system. In contrast, we found no age-related changes in the volume
of the lemniscus medialis. Although, because of the small number
of subjects analyzed in this study it is difficult to form reliable con-
clusions. Since it is obvious from Figures 6A,B that the three male
subjects had larger pyramidal tract volumes and were younger than
the female subjects, one might argue that these differences could
be due to sex, age, both, or none of the above. Once again, the small
sample size of three male and three female subjects, within a fairly
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FIGURE 7 | Internal capsule. Maximum intensity map (A) and FOM
(B) of a horizontal section through the internal capsule. (C,D) Show
FOMs of sagittal sections through the internal capsule. Confocal
images of different regions of the internal capsule demonstrate the
fiber architecture at these points in high detail: (E) lateral anterior limb
with parallel fibers and single nerve fiber crossing the internal capsule,
(F) medial anterior limb with intermingling fiber bundles from the

anterior thalamic radiation and the frontopontine fiber bundles (3D
reconstruction), (G) posterior limb with intermingling fiber bundles from the
pyramidal tract and superior thalamic radiation, (H) sublentiform part with
larger intermingling compact bundles of fibers. Abbreviations: pl, posterior
limb; g, genu; and al, anterior limb of the internal capsule; ca, anterior
commissure; fo, fornix; gp, globus pallidus; pt, putamen; cn, caudate nucleus;
tha, thalamus.

limited age-range is not enough for a proper comparison, such as
for laterality. Therefore, one can only form inspired hypotheses on
this subject.

Currently, studies of age-related changes of distinct fiber tracts
are sparse, although the numbers will certainly increase with a rise
in the systematic use of MRI in this field (Wozniak and Lim, 2006).
Typical DTI changes of white matter architecture over age are a
decline of fractional anisotropy (FA) and an increase of diffusivity
in normal healthy adults with an anterior—posterior gradient (Sul-
livan and Pfefferbaum, 2006; Yoon et al., 2008). In a voxel-based
morphometric study of 465 healthy subjects, Good et al. (2001)
found that the global white matter did not decline with age, but
local areas of relative accelerated loss and preservation were seen
primarily in the posterior limb of the internal capsule. Kawaguchi
etal. (2010) recently found a decrease of FA in DTI datasets in the
posterior limb of the internal capsule, which was interpreted as an
atrophy of pyramidal tract fibers over age.

Most studies show a decline in FA and increase in diffusivity
of white matter with age, which is typically interpreted as atrophy.
However, to date these alterations can not be interpreted, since they
could be due to changes in a number of factors including the num-
ber or density of myelinated axons, the spacing between axons, the
branching patterns or crossing of axons, or the thickness of the

axons and their myelin sheaths, to name only a few. PLI can pro-
vide information regarding fiber orientation only, although, data
with respect to the number, density, and thickness is not available,
while the grade of myelination of nerve fibers may be estimated
from PLI data.

The internal capsule is an anatomical location where different
projection fiber systems are closely packed in a small volume, in
particular, the pyramidal tract, but also the thalamo-cortical, and
the corticopontine fiber systems (Axer and Keyserlingk, 2000).
Hence, this structure is the target of many studies using DTI
(Kawaguchi et al., 2010). In this context, it is of significance to
keep the complexity of this structure in mind in order to draw
reliable conclusions from the results of DTT studies.

Connectivity and integrity of association pathways such as
the cingulum and the extreme capsule have, for instance, a high
impact on cognitive functioning (Rudrauf et al., 2008). The classi-
cal concept of language circuitry has been the connection between
the temporal sensory region (Wernicke’s area) and the frontal
motor region (Broca’s area) via the arcuate fasciculus (e.g., see
Geschwind, 1970). However, modern concepts describe the clas-
sical dorsal pathway along the arcuate fasciculus/superior longi-
tudinal fasciculus that is activated during repetition and a sec-
ond ventral pathway via the extreme capsule which is activated
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FIGURE 8 | Extreme capsule. Macroscopical fiber dissection and PLI of
the white matter in the deep of the limen insulae show comparable results.
Different nerve fibers can be distinguished running from the temporal to
the frontal lobe: fibers from the extreme capsule to the frontal operculum
(a), fibers from the extreme capsule to the orbitofrontal cortex (b), and
fibers from the amygdala to the orbitofrontal cortex (c, the uncinate
fasciculus). The uncinate fasciculus is localized more deeply than the other
two fiber systems and can be clearly distinguished from these. The figures
at the bottom show fiber orientation maps through putamen (put) and
claustrum (cl), where external (d) and extreme capsule (e) can clearly be
distinguished from each other.

during auditory comprehension (Saur et al., 2008). The extreme
capsule seems to be part of a long association fiber pathway
coursing between the inferior frontal region, the superior tem-
poral gyrus, and the inferior parietal lobe (Makris and Pandya,
2009), which could be verified using DTI tractography of the
human brain. In the monkey, these ventral and dorsal streams
could also be demonstrated by means of tract tracing using
radioactively labeled amino acids (Petrides and Pandya, 2009)
as well as diffusion spectrum imaging (DSI; Schmahmann et al.,
2007).

Anatomically, the white matter bridge between temporal and
frontal lobes deep under the limen insulae is called the tempo-
ral stem (Kier et al., 2004). In this anatomical fiber channel, the
extreme capsule fiber system can be clearly distinguished from the
uncinate fasciculus, which is located deeper in the white matter.
The uncinate fasciculus is a ventral limbic pathway (Schmahmann
etal.,2007) connecting the rostral temporal region (including the
amygdala) and the medial prefrontal cortex (especially the cingu-
late gyrus). The PLI results of the case study presented here could
verify the anatomy of these fiber systems with respect to macro-
scopic dissection. Moreover, this topic is an example of chang-
ing concepts in the understanding of connectivity (of language

circuits for instance), which was initially inspired by functional
considerations.

The human cingulum bundle is another example of an asso-
ciation fiber pathway of the limbic system. Anatomically, the
cingulum bundle is a collection of short and long association fibers
which surround the corpus callosum (Nieuwenhuys et al., 1988).
It is located above the corpus callosum and beneath the cingulate
gyrus. The fiber bundle curves around the rostrum and genu of
the corpus callosum spreading into the frontal lobe. Caudally, the
bundle curves around the splenium of the corpus callosum and
runs within the white matter of the parahippocampal gyrus.

In the monkey (Schmahmann et al., 2007), the fibers arise from
the orbital surface (area 11 and 14) and areas 24 and 32 in the
medial frontal cortex. Other fibers come from from SMA and
areas 8,9, and 46 in the dorsolateral prefrontal cortex. In addition,
caudal connections also exist with the inferior parietal lobule and
parahippocampal regions.

The cingulate gyrus may be subdivided into the anterior, mid,
posterior, and retrosplenial cortices (ACC, MCC, PCC, and RSC;
Vogt, 2005; Palomero-Gallagher et al., 2009). The midcingulate
cortex (MCC) receives more input from the inferior parietal cortex
and less from the amygdala compared to the perigenual cin-
gulate cortex (Vogt and Pandya, 1987; Vogt et al., 2003). MCC
contains the cingulate motor area (CMA), which has similar con-
nections like the premotor areas with reciprocal connections with
primary motor cortex and supplementary motor area (Devin-
sky et al., 1995). The anterior cingulate gyrus is believed to be
primarily involved in executive functions especially of emotion,
visceromotor and skeletomotor control, vocalization, and pain.

The anterior executive anterior cingular cortex (Devinsky et al.,
1995; Allman et al., 2001) may further be subdivided into a ventral
affect-dominated division, mainly connected to the amygdala and
the periaqueductal gray as well as a dorsal cognition-dominated
division characterized by its contribution to nociception and skele-
tomotor control. This region has projections to all parts of the
striatum.

The PLI data regarding fiber architecture of the anterior cin-
gulum bundle suggests a homologous parcellation. The posterior
part of the supracallosal cingulum bundle receives various inputs
from the adjacent white matter that apparently comes from the
motor- and premotor areas and parietal cortex. In contrast, the
subgenual part shows manifold connections to the orbitofrontal
areas as well as with fibers directed to the amygdala. In this region,
the cingulum bundle has a high variability (Biirgel et al., 2006).
Our data demonstrate that these fibers are diffusely intermingled
with fibers of the medial forebrain bundle and laterally with the
forceps minor of the corpus callosum.

Generally, PLI is a method which supplies information relat-
ing to fiber orientation. Therefore, it provides similar information
as attained from diffusion MRI, although both methods estimate
fiber orientation based on different physical principles (diffusion
vs. optical birefringence). The advantage of PLI is that it can
provide higher resolution in comparison to diffusion MRI. For
instance, a problem with diffusion-based methods is that those
cannot differentiate between external and extreme capsules. PLI
is able to resolve these fibers (see Figure 8). The resolution as
used in the studies presented here was 64 pm x 64 pm x 100 pm
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per voxel. However, resolution of the method can be enhanced by
using a microscope for imaging (Larsen et al., 2007). Nevertheless,
to maximize resolution, it is necessary to use sections that are as
thin as possible, so that section thickness may the major limiting
factor of resolution.

Inclination ambiguity is a second limiting aspect of PLI, as
fiber inclination (out-of-plane orientation) can be estimated only
between 0°and 90° (e.g.,an inclination of 45° and —45° will give the
same signal and cannot be distinguished from each other). How-
ever, physical improvements of the imaging system may overcome
this problem in the near future. The progress in computational
methods allows for elastic 3D reconstruction and finally for 3D
tractography in PLI datasets (Axer et al., 2011). Although, PLIis a
method which is actually still in a state of development, histologi-
cal processing of the specimens is time-consuming and elaborate
and as such the use of the method will be restricted to a limited
number of laboratories and to a limited number of samples.

On a clinical MRI scanner, the order of a voxel size is in the
mm range. Thus, one voxel can contain hundreds of thousand
axons with a total length of 1 km (Alexander and Seunarine, 2011).
These axons will probably have different orientations in all pos-
sible variations. Very problematic configurations involve crossing
fibers or kissing fibers. Further, the classic diffusion tensor only
represents one major fiber orientation. In contrast, fiber orienta-
tion distribution function (fODF) quantifies the fraction of fibers
in the voxel pointing in each direction. This, therefore, represents
a more differentiated estimate of the complex voxel composition.
In diffusion MRI, estimations of the fODF may be achieved by
the use of DSI on high-end magnets or single shell high angular
resolution diffusion imaging (HARDI) without major hardware
requirements or others (Hagmann et al., 2010). These methods
have been specifically developed to solve the crossing fiber prob-
lem in MR. It can be used to perform fiber tracking in a much
more robust and reliable manner (Tournier, 2011).

Polarized light imaging provides information regarding a single
direction in each voxel. The difference to diffusion MRI, however,
is the smaller voxel size, so that about 1000 PLI voxels are contained
in one voxel of diffusion MRI. Therefore, the higher magnifica-
tion of PLI allows for the imaging of smaller bundles of fibers
and, therefore, will reduce problems of crossing and kissing fibers
since inhomogeneous composition of the voxels is consequently
reduced. However, PLI does not provide information about fiber
number or fiber density, while the degree of myelination may be a
parameter which can be estimated from the measurements. PLI as
an estimate of fiber orientation is, therefore, very similar to DTI,
which represents a dataset of principal diffusion directions.

MR-based methods, such as DTI, DSI, and also fMRI together
with other examples, have the clear advantage that they allow for
investigations of the living human brain over time in healthy or
diseased conditions. However, an established gold standard for
reference purposes is not yet available (Hagmann et al., 2010). To
perform a multi-methodological validation, the combination of
different anatomical methods has to be undertaken on the same,
or at least on comparable objects. Postmortem studies are indis-
pensable for this purpose. Several anatomical methods exist to
study fiber architecture (Axer, 2011), e.g., macroscopic dissection
or confocal microscopy as seen in our examples. Recently, a very

promising tool to generate a highly resolved 3D data set of a whole
Golgi-stained mouse brain has been published (Li et al., 2010).
This system is able to generate comprehensive 3D data of a com-
plete mouse brain, but is to date not applicable to entire human
brains.

Each method only shows a selective view of the object, for exam-
ple connectivity, number of fibers, myelo- and cytoarchitectural
histology, or fiber orientation. The analysis of the extreme capsule
system as presented here shows that the combination of differ-
ent methods (e.g., DTI tractography and fMRI (Saur et al., 2010))
generates new concepts, which, in turn, may be evaluated using
other neuroanatomic methods. Moreover, it represents a para-
digm of the interpretation of the functional meaning of fiber tracts
and connectivity, but has to be proven using different anatomical
methodological approaches — since at the end, the basis of these
functions is the structure of white and gray matter.

CONCLUSION

In the recent past, the discussion regarding the exploration of the
human connectome as a compilation of the overall connectivity in
human brain has gained increasing attention (Sporns, 2011). To
date, several methods for connectivity mapping are available rang-
ing from macroscopic to molecular scales. However, it is difficult
to integrate all these multiple scaled data into one concept. It is
not yet clear what the optimal scale is for efficient characterization
of brain connectivity (Hagmann et al., 2010). Perhaps a courser to
finer approach may be a solution achieved by using MR methods
to generate “larger-scale” hypotheses which could create specified
studies using “micro-scale” methods (see also DeFelipe, 2010).

However, connectivity is not only a matter of scale, but also a
matter of modality and function. This is largely influenced by the
scientific method which is used and the conditions under which
scientific interest the study has been performed, i.e., the hypoth-
esis that has to be proven. Challenging targets in connectivity
may be variability, age-, and gender-dependent differences, asym-
metry, development, degeneration, plasticity, and disease-specific
changes of nerve fiber architecture.

Polarized light imaging — in this context — is a method, which
can estimate fiber orientation in gross histological sections of
the human brain in great detail. Although, it provides a dataset
of principal fiber directions, it has the appealing advantage of
a much higher resolution than MR-based methods. Therefore,
PLI can generate high-resolved 3D datasets of fiber orientation
of the human brain and it has, therefore, a high comparability to
diffusion MR. To obtain additional information regarding axon
structure and density, PLI can also be combined with classical his-
tological stains. It brings the directional aspects of diffusion MRI
into the range of histology and may represent a promising tool
to close the gap between larger-scale diffusion orientation and
microstructural histological analysis of connectivity.
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INTRODUCTION

Functional interactions between different brain regions require connecting fiber tracts, the
structural basis of the human connectome. To assemble a comprehensive structural under
standing of neural network elements from the microscopic to the macroscopic dimensions,
a multimodal and multiscale approach has to be envisaged. However, the integration of
results from complementary neuroimaging techniques poses a particular challenge. In
this paper, we describe a steadily evolving neuroimaging technique referred to as three-
dimensional polarized light imaging (3D-PLI). It is based on the birefringence of the myelin
sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons
constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the
postmortem human brain at a sub-millimeter resolution, i.e., at the mesoscale. The funda-
mental data structure gained by 3D-PLI is a comprehensive 3D vector field description of
fibers and fiber tract orientations — the basis for subsequent tractography. To demonstrate
how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale
approach with the same technology was pursued. Two complementary state-of-the-art
polarimeters providing different sampling grids (pixel sizes of 100 and 1.6 wm) were used.
To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber
models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Inter
nal capsule, Pons). The results demonstrate that 3D-PLI is an ideal tool to serve as an
interface between the microscopic and macroscopic levels of organization of the human
connectome.

Keywords: connectome, human brain, method, polarized light imaging, PLI, U-fiber, systems biology, white matter

data at the meso- and microscale, however, is still a challenging

Structure and function of the human brain are intricately linked
across multiple levels of brain connectivity. It is the brain’s intrinsic
multiscale architecture that allows different morphological entities
to be defined at different scales, essentially depending on the spatial
resolution provided by the available neuroimaging techniques and
the scientific objectives. A natural description of neuronal con-
nections might therefore be organized in three levels that cover
the macro-, meso-, and microscale (Sporns et al., 2005; Kotter,
2007). Various approaches for mapping the human connectome
at the level of macroscopic anatomical connectivity, i.e., at mil-
limeter scales, such as MR-based diffusion imaging (Basser et al.,
1994; Pierpaoli and Basser, 1996; Conturo et al., 1999; Beaulieu,
2002; Tuch et al., 2002, 2003; Hagmann et al., 2003; Tuch, 2004;
Mori and Zhang, 2006; Schmahmann et al., 2007; Naidich et al,,
2008; Johansen-Berg and Rushworth, 2009) or dissection tech-
niques (Klingler, 1935; Tiire et al., 2000) were established over the
past years and enriched our knowledge about fiber pathways in the
human brain. To obtain and interpret experimental connectivity

task in terms of methodology, data handling and analysis, as well
as exchange of information.

THREE-DIMENSIONAL POLARIZED LIGHT IMAGING

Axer et al. (2011) represents a novel neuroimaging technique to
map nerve fibers, i.e., myelinated axons, and their pathways in
human postmortem brains with are solution at the sub-millimeter
scale, i.e., at the mesoscale. Polarized light imaging (Scheuner and
Hutschenreiter, 1972; Brosseau, 1998; Larsen et al., 2007) utilizes
an optical property of the myelin sheaths of nerve fibers known
as birefringence (Gothlin, 1913; Schmidt, 1923; Schmitt and Bear,
1937). Biological samples exhibit essentially two types of birefrin-
gence referred to as intrinsic and form birefringence. The latter
type reflects the textural feature of the material and the mutual
birefringence of all its components (e.g., tissue and embedding),
while the intrinsic birefringence is caused by individual proper-
ties of the constituting molecules (Wiener, 1912). In case of nerve
fibers, birefringence is induced by the regular arrangement of lipids
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and proteins in the myelin sheath (Norton and Cammer, 1984;
Martenson, 1992), thus resulting in distinct optical anisotropy.
The net birefringence of the neurofilaments inside the axon and the
radially oriented lipid chains of the myelin sheath can be described
by a single axis of optical anisotropy giving rise to uniaxial nega-
tive birefringence and, therefore, reflecting the spatial orientation
of the fiber (Vidal et al., 1979).

The birefringence of brain tissue is measured by passing linearly
polarized light through histological brain sections and by detect-
ing local changes in the polarization state of light by a camera.
Such principle of measurement is referred to as polarimetry and
has been used in anatomical studies of the central nervous system
already a century ago (Brodmann, 1903). However, in the recent
past, significant advances in the 3D reconstruction of microtome
sections (Dauguet et al., 2007; Singh et al., 2008; Capek et al., 2009;
Palm et al., 2010), image analysis, computational techniques, and
progress in understanding the interaction of polarized light with
birefringent tissue (Schnabel, 1966; Fraher and MacConnaill, 1970;
Oldenbourg and Mei, 1995;0ldenbourg, 1996; Oldenbourg et al.,
1998; Massoumian et al., 2003; Farrell et al., 2005; Larsen et al.,
2007; Axer et al.,, 2011) have opened up new avenues to study
brain regions with complex fiber architecture at the highest level
of detail. We took advantage of this progress to gain a vector field
description of fiber tract orientations in histological brain sections
and to reconstruct 3D fiber tract models in selected brain regions
across a series of aligned sections.

This paper focuses on basic data structures gained with the
latest advances in Three-dimensional polarized light imaging
(3D-PLIL based on a novel tilting object stage and a polarizing
microscope) and their utilization in terms of mapping the human
connectome at the mesoscale. The idea is to apply basic princi-
ples of polarized light imaging in different optical setups, thus
providing complementary scales of resolution to bridge the gap
between structural descriptions at single fiber dimensions and at
macroscopic fiber pathway levels.

MATERIALS AND METHODS

PREPARATION OF HUMAN BRAIN TISSUE

The study is based on adult postmortem human brains obtained
from body donor programs at the medical departments of the
Heinrich-Heine-University in Diisseldorf (Germany) and the
Rheinisch-Westfilische Technische Hochschule in Aachen (Ger-
many) in accordance with legal requirements. The clinical records
were free of signs of neurological or psychiatric diseases. The brains
were removed from the skull, fixed in 4% buffered formalin for at
least 6 months, embedded in luxol fast blue-stained gelatine, and
sectioned completely with a thickness of 100 p.m thickness using a
cryostat microtome (Polycut CM 3500, Leica, Germany). The max-
imum deviation of the section thickness from 100 um amounts to
£5 wm. The integrity of the myelin sheaths in the brain tissue was
not affected. In addition, one optic tract was prepared bilateral
and sectioned parallel to the main fiber direction with thicknesses
of 20, 25, 50, 70, and 100 jum.

The blockface of the frozen, gelatine-embedded brain was
imaged during sectioning in order to obtain an undistorted ref-
erence image, i.e., the blockface image (Zilles et al., 2002; Amunts
and Zilles, 2006; Toga et al., 2006). Hence, a CCD camera (Oscar

F510, Allied Vision Technologies, Germany) with an endocentric
lens (APO Rodagon N 2.8/50 mm, Linos, Germany) was mounted
vertically above the blockface at a distance of 1.2 m. It provided
an image dimension of 2588 x 1958 pixels. In addition, the precise
distance of each blockface to the camera system was determined
with an opto-electronic distance sensor (LDM 42A, Astech, Ger-
many). The distance measurement is required to correct for per-
spective distortions in the images, since an endocentric lens was
used and the distance between the block surface and the camera
increased while the sectioning proceeded. This is due to the fact,
that the microtome owns an automatized height adjustable knife.
Taking the distance information into account, the set of blockface
images was subjected to a single-modality 2D affine registration
for the 3D (blockface) brain reconstruction (Eiben et al., 2010;
Palm et al., 2010).

LARGE-AREA ROTATING POLARIMETER WITH TILTING STAGE

A fully automatized rotating polarimeter has been constructed and
optimized for high-resolution PLI (Axer et al., 2011). The setup
is sensitive to small local changes of the polarization state of light
induced by the interaction with the anisotropic brain tissue, i.e.,
the myelin. Since it provides single-shot imaging of whole human
brain sections (with a sensitive area of 24 cm in diameter), it is
referred to as large-area polarimeter.

The polarimeter is equipped with a pair of crossed polariz-
ers (XP38, ITOS, Germany), a specimen stage and a quarter-wave
retarder (WP140, ITOS, Germany) positioned between the two
polarizers. A customized LED light source (FZJ-SSQ300-ALK-G,
iiM, Germany) illuminates the brain section with a narrow-band
green wavelength spectrum (525 =+ 25 nm; Figure 1A). By rotat-
ing all optical devices simultaneously around the stationary tissue
sample, the principal axes of birefringent structures, i.e., the fiber
axes, are systematically imaged by a CCD camera (AxioCam HRc,
Zeiss, Germany) at discrete rotation angles p. The birefringence
causes the measured light intensity I to vary in a sinusoidal man-
ner with respect to the rotation angles p, depending on the local
3D fiber orientation (¢, o; cf. Figure 1C). The sinusoidal variation
of light intensity as a function of the rotation angle is referred to a
slight intensity profile.

I
I= EO -[1 4 sin(2p — 2¢) - sin 3], (1)
Where
d-A
S~ 27 - , . cos’a. (2)

Each image pixel is therefore characterized by an individual
light intensity profile that can be described with the Jones calcu-
lus (Jones, 1941) and the basic principles of optics (Snell’s law,
Huygens—Fresnel principle; cf. Saleh and Teich, 1991; Figure 1D).
In Eq 1 the phase of the profile encodes the angle ¢, which rep-
resents the individual fiber direction, i.e., the projection of the
fiber axis into the section plane with respect to the null position
of the polarimeter (p=0°). The amplitude of the profile quan-
tifies the phase retardation § induced to the light wave by the
myelin (Figure 1C). This phase retardation is a function of the
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FIGURE 1 | Three-dimensional-polarimetry at a glance. (A) Scheme of
the large-area rotating polarimeter with tilting stage (N-North, W-West,
E-East, S-South). (B) Optical scheme of the polarizing microscope LMP1-1.
(C) Scheme of the optical fiber model. The refractive index of a negative
uniaxially birefringent medium, such as a myelinated axon, is described by
an elliptically shaped oblate surface, the refractive index ellipsoid or
indicatrix (gray mesh). A beam of linearly polarized light (blue trace) interacts
locally with the myelin sheath of a single axon (black line), which induces a
phase shift to the light beam. The light becomes elliptically polarized and
serves as a direct measure of the orientation of the indicatrix or the
prevailing local fiber orientation, respectively. In the frame coordinate
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system this orientation is determined by the in-plane direction angle ¢ and
the out-of-section inclination angle a. (D) A typical PLI raw image data set
consists of 18 images corresponding to equidistant rotation angles between
0" and 170°. Here, a selection of four images of a coronal section is shown,
while the sketched arrow indicates one representative pixel. To obtain the
fiber orientation, the measured light intensities are studied pixel-wise as a
function of discrete rotation angles. The derived physical model provides a
precise mathematical description of the measurement (continuous black
line) and relates the sine phase to the direction angle ¢ and the amplitude to
the inclination angle a. The highlighted data points correspond to the
selected images.

light wavelength X, the section thickness d, the birefringence An
of the myelin, and the inclination anglea of the fiber’s princi-
pal axis (cf. Eq 2). The birefringence depends on the wavelength
of light and the temperature of the tissue. In order to keep the
variations of both parameters small, the light source was water-
cooled and all measurements were carried out at controlled envi-
ronment temperatures (22 + 1°C). The transmittance Iy denotes
the intensity of the incident light modified by local extinction
effects.

As a fundamental technical innovation in comparison to the
planar setup as specified in Axer et al. (2011) a novel specimen
stage has been introduced. This stage is tiltable with respect to two
perpendicular axes precisely aligned to the camera image axes. By
slightly tilting the brain section around these two axes, fiber tracts
can be imaged stereoscopically from four different views (within a
tilt angle range of Itl < 4° in east, west, north, and south direction),
in addition to the standard planar view (Figure 1A). This inno-
vation was driven by the known limitation of a standard planar
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polarimeter where the extracted inclination angles o are naturally
restricted to absolute values between 0° and 90°, and are therefore
afflicted with a sign ambiguity. The tilting modifies the inclination
angles of the fiber axes with respect to the planar projection plane
and enables to disambiguate the inclination measurement.

Image acquisition and image processing using the large-area
polarimeter
Each section was imaged at five tilts (planar with Tt = 0°; east, west,
north, and south with T =4°) at 18 equidistant rotation angles of
the polarimeter covering an angular range between 0° and 170°.
Le., in total, 90 images were acquired for each section. The camera
setup yielded RGB images with image sizes of 1388 x 1040 pixels
and a pixel dimension of 100 pm x 100pm. The sampling inter-
val can be increased up to 33 pm x 33pum using the same setup.
However, for the presented studies we aimed for isotropic voxel
sizes. The light intensities were sampled with a dynamic range of
14 bits per color channel.

Raw image processing, signal analysis and image registration
were performed according to Axer et al. (2011). As a result, the
following parameter maps were obtained:

e The transmittance map (Iy): it represents the pixel-wise (dou-
bled) average map of all PLI raw images (cf. Figure 1D) and is
a measure for the extinction of light after passing through the
polarimeter and the brain tissue.

e The retardation map (Isin 8): it equates to the normalized ampli-
tudes of the light intensity profiles (AI/Iy, cf. Figure 1D) and
describes the magnitude of the phase shift (retardation) induced
to the light wave due to the interaction with the birefringent
tissue.

e The fiber direction map (¢): it describes the in-section direction
angle, i.e., the x—y orientation of each fiber (cf. Figure 1C).

e The fiber inclination map (a): it describes the out-of-section
angle, i.e., the vertical component of each fiber (cf. Figure 1C).

Image calibration, independent component analysis (ICA), dis-
crete harmonic Fourier analysis, and image registration were
fundamental prerequisites in this processing chain aiming for con-
sistent data sets of local fiber orientations. To ensure comparability
among different sections and brains, image calibration is applied to
all raw images aiming for homogeneous and constant background
intensities, i.e., measured light intensities without brain tissue in
the optical path. In addition, the application of ICA to PLI raw
images enables the effective separation of birefringence signals
from interfering signal sources, such as electronics noise, light
scatter, dust particles, or filter inhomogeneity. The reproducibility
of the results gained with the combination of image calibration
and ICA has been demonstrated in Dammers et al. (2010, 2011).
Pixel-wise fitting of the ICA-enhanced light intensity profiles by
means of discrete harmonic Fourier analysis (Glazer et al., 1996)
provides fast and automatized extraction of the parameter maps
listed above.

To utilize the additional information gained with the tilting
stage, a precise rectification of the raw images had to be done
prior to any analysis. This is due to the fact, that the tilts geo-
metrically distort the raw images with respect to each other. To

overcome this distortion, projective transformations (2D homog-
raphy, cf. Fischler and Bolles, 1981; Hartley and Zisserman, 2004)
between mutually tilted image pairs is recovered based on a robust
matching of SIFT keypoints (scale-invariant feature transform; cf.
Lowe, 2004). Since the tilting takes effect on the amplitudes of the
intensity profiles, i.e., on the retardation Isin 81, the change of the
retardation with the tilting condition was evaluated pixel-wise to
determine the sign of the fiber inclination. The sign describes the
slope of the fiber course (uphill or downhill). By this means an
inclination sign map(s) was created for each section.

Fiber tractography

To reconstruct fiber models in a volume of fiber orientation maps
(FOM), the data were subjected to a standard streamline algorithm
based on the Euler method (Mori, 2007) as implemented in the
basic toolbox of the Matlab® framework (Mathworks Inc.). A tract
is propagated from a seed point by following the local vector ori-
entation using interpolation methods. Seed points were densely
placed on the surfaces of a box confining the volume of interest
(VOI). The VOIs shown here were placed primarily in areas of
white matter with a heterogeneous fiber direction (e.g., the Pons).
The line propagator step size was chosen to be 30% of the vector
grid unit throughout the propagation process in order to minimize
aberration due to coarse quantization. The resulting streamlines
are defined by a sequence of vertices in 3D space.

POLARIZING MICROSCOPE

Basic principles of polarized imaging enable also to utilize micro-
scopic devices in order to study neuroanatomical structures at the
highest level of detail in 3D on small sample and tissue sizes. There-
fore, a polarizing microscope (LMP-1, Taorad, Germany) with a
pixel size of 1.6 um X 1.6 um in-plane has been employed (Glazer
et al., 1996). In contrast to the large-area polarimeter, only one
linear polarizer in the optical path is rotatable (Figure 1B) and a
brain section has to be scanned tile-wise with overlapping fields of
view using a motorized microscope stage (Marzhduser, Germany).
Pursuant to theoretical optics (Jones, 1941), Eqs 1 and 2 also apply
to this type of polarimeter.

Image acquisition and image processing using the polarizing
microscope

Each brain region was imaged at 18 equidistant rotation angles
of the polarizer covering an angular range between 0° and 170°.A
single microscope (grayscale) image comprises an area of about
3.3 mm X 3.3 mm (2048 x 2048 pixels), i.e., a whole brain section
is built up of about 2500 single tiles, for example. The images were
sampled with a dynamic range of 12 bits.

To produce ultra high-resolution images of large brain areas,
multiple images were combined (stitched) with a Matlab® appli-
cation developed in our lab. Raw image processing and signal
analyses were performed as already described for the large-area
polarimeter (cf. Axer et al., 2011).

RESULTS

REFERENCE DATA SET

The aligned series of blockface images represents a three-
dimensional data set that serves as an undistorted high-resolution
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reference. It was used to retrieve the spatial coherence within adja-
cent sections and to correct for tissue distortions inevitably intro-
duced by sectioning and further steps of histological processing.
In particular, the luxol fast blue-stained gelatine (cf. Figure 2A)
turned out to be beneficial for automatized discrimination of the
brain tissue from the background, i.e., the surrounding gelatine.
The hue representation of the hue-saturation-value (HSV) color
space provided a clear separation of the predominantly red and yel-
low colored fixed brain tissue from the blue color of the gelatine
(Figure 2). The perspective error correction integrated into the
rigid registration process finally led to an accurately aligned and
scaled high-resolution 3D representation of the blockface brain
(Figure 2D).

PARAMETER MAPS AND DATA STRUCTURES

The image processing chain of 3D-PLI results in a set of compre-
hensive parameter maps in 2D (grayscale) and 3D (colorscale),
each of them highlighting distinct tissue properties and anatom-
ical structures. One of the basic 2D parameter maps obtained
by analyzing the light intensity profiles is the transmittance map
(Io; Figure 3A). This type of map provides a general separation
of gray and white matter, but it also shows intensity gradients
within the cortical and the subcortical gray matter as well as in
the white matter (cf. arrow heads in Figure 3B). Comparison
of transmittance maps of coronal sections with myelin stained
sections based on the Heidenhain—Woelcke technique (Biirgel
et al., 1997) revealed a striking correspondence between both
modalities (Figure 3). However, the transmittance maps yielded
more contrast across the white matter than the myelin stained

FIGURE 2 | Segmentation and 3D reconstruction of the blockface
image data set. (A) Blockface image of a horizontally cut postmortem
human brain represented in RGB (red-green-blue) color space. The brain is
embedded in stained (luxol fast blue) gelatine. The checkerboard in the
background was used for subsequent alignment of the blockface images
obtained during sectioning. (B) Transformation of the RGB image into the
HSV-color space enables an accurate segmentation of the image into tissue
and background. The hue-channel of the blockface is shown here. (C)
Segmented brain section. (D) 3D representations of the reconstructed
blockface brain.

sections, in particular in U-fiber regions (cf. white arrow heads in
Figures 3A,B).

The fundamental entity of 3D-PLI to characterize the locally
prevailing fiber tract orientation in a single voxel is a unit vec-
tor. The integration of all vectors for an entire brain section
leads to a comprehensive 3D vector field description, i.e., a FOM.
This is another, fundamental difference from the myelin stained
sections, which do not enable to extract the third dimension, i.e.,
the inclination.

Due to the tilting stage, we were able to assign a definite
preference to the out-of-section inclination angle (i.e., the sign
relative to the section plane) in the FOM for the first time. Analy-
sis of the tilted raw images approved that the tilting of 4° takes
effect on the amplitudes of the intensity profiles, i.e., the retar-
dation Isin 8l (cf. Figure 4A as an example). As intended, the
data revealed correlations between the tilting condition (east,
west, north, and south), the retardation, and the fiber direction.
The largest changes of retardation values caused by the tilting
were observed in brain regions with prevailing intermediate fiber
inclinations (i.e., & & 45°), while fibers running within or perpen-
dicular to the section plane showed much smaller changes. The
benefit of tilting becomes obvious in Figures 4B,C. In general, we
observed that inclination sign maps were characterized by distinct
clusters dominated by the same inclination sign distributed all over
the brain section (cf. Figure 5A). However, the tilting method also

FIGURE 3 | Comparison of (A) a transmittance map of a coronal whole
human brain section (100 um thickness, gelatine embedding) and (B) a
coronal section from another human brain stained with the
Heidenhain-Woelcke technique for myelin (20 wm thickness, paraffin
embedding). The images were scaled to the same gray value range and
show global similarities in their gray level distributions. However, the
enlarged regions of interest from the frontal lobe (right images) document
that the transmittance map yields more contrast across the white matter
regions (e.g., in U-fiber regions as indicated by the white arrow heads) than
the classical histological myelin staining. For cortical regions the measured
intensity gradients are similar (cf. red arrow heads). Legend: Cc, corpus
callosum; Cr, corona radiata; Th, thalamus; Pu, putamen; Gp, globus
pallidus; Po, pons.
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FIGURE 4 | Determination of the ambiguous inclination sign by tilting.
(A) In addition to images acquired in the standard planar position, further
information can be derived from images that are tilted in north and south
direction, for example. After optical rectification, the light intensity in a
single pixel is plotted for the series of polar filter rotation angles. The north,
south and planar tilting positions have different amplitudes. The change in
the amplitude of the signal demonstrates the change in the absolute
inclination angle as a result of tilting. In this case, the south tilt yields a
larger amplitude and hence a higher absolute inclination angle than the north
tilt. This indicates a negative inclination sign. (B) The overview of the
transversal section through the Pons on the left shows the cutting plane
(dotted yellow line) of the coronal view on the right. The HSV-color coding

r\) camera QP camera
/

south tilt

7000

6000

L L e

5000

light intensity (a.u.)

4000

Il | I S W T N
0 50 100
rotation angle p (°)

L

L |
150

shows both possible inclination signs in the same color (Hue: transversal
direction, Saturation: coronal inclination, Value: constantly 0.5). The
magnified regions show the two possible fiber orientations mirrored to each
other, if the inclination sign is still ambiguous. (C) After determination of the
inclination sign, a decision is made for every pixel, which is color-coded by
different brightness values (>0.5: positive sign, <0.5: negative sign). The
magnified regions show the resulting fiber orientations. The inclination sign
was determined as negative in the left region, while a positive inclination
sign was derived in the right region. The orientations agree with the course
of the pontocerebellar fiber bundles running toward each other from lateral
to medial. Legend: cst, cortico-spinal tract; pcf, pontocerebellar fibers; mcp,
middle cerebellar peduncle.

proved to be sensitive to heterogeneous structures within regions
of intense fiber intermingling such as the Corona radiata.

Two representations of a FOM turned out to be beneficial in
terms of visualization and fiber tractography: (i) utilizing the HSV-
color space provided an informative way to encode the determined
fiber orientations based on the direction angle (¢), the inclination
angle (o), and the inclination sign (s) for each image pixel. Brain
regions with a rich variety of fiber orientations (e.g., the Corona
radiata), but also regions with homogenous fiber courses (e.g.,

the Corpus callosum) become evident in an HSV-colored FOM
(cf. Figure 5A). (ii) Transforming the angle-based description of
fiber orientations into unit vectors (Figure 5B) resulted in a data
structure that is best suited for fiber tractography using stream-
line algorithms. The visualization of vector data utilizes the RGB
color space, where the vector components are encoded in the basic
colors red, green, and blue. Though this color code is an estab-
lished approach in MR diffusion imaging, it actually reduces the
full spatial information of symmetrical fiber courses (compare
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FIGURE 5 | Two ways to render a fiber orientation map (FOM): (A)
Transformation of a direction map, inclination sign map, and inclination
map into a FOM using the HSV-color space (encoding: H =2¢,

S=1 —u/90°, V =1 for S>0; H=2(p, S=1, V=1 —o{/90°) for Sﬁo). (B)
Transformation of the extracted fiber orientations into unit vectors

(x = cos(sa)-cos(¢), y = cos(sa)-sin(y), z=sin(sa)) and visualization in the
RGB color space (encoding: R=|x|, G=|y|, B=|z|). Legend: Cc, corpus
callosum; Cr, corona radiata; Ci, internal capsule; Th, thalamus; Po, pons.

the transversally symmetric courses of the Internal capsule in the
FOM:s shown in Figure 5). However, the RGB representation is
preferred for direct comparison between 3D-PLI and results from
diffusion weighted MRI (cf. Oishi et al., 2011).

3D FIBER TRACT MODELS
The 3D data set for high-resolution structural fiber mapping is
composed of adjusted and stacked sectional FOMs. This 3D-FOM
already provides novel insights into complex local fiber architec-
tures, even without further computational processing such as fiber
tractography.

Fiber tract models finally demonstrate the feasibility of the
applied imaging technique. Therefore, fiber tractography was per-
formed in small subsamples of a stack of 10 coronal whole brain

FOMs to build continuous fiber tract models. Five regions of
interest with dimensions of 2mm x 2mm x 1 mm distributed
over the entire volume of sections were subjected to the stream-
line algorithm. Five selected regions are shown in Figure 6, where
fiber models were reconstructed from 3D-FOMs in the Corpus
callosum, the Capsula interna, and the Pons. Intense fiber cross-
ings also affect 3D-PLI due to partial volume effects, however, on
a much smaller scale than it is the case in diffusion weighted MRI.
Some transversal fiber tracts (red) crossing the internal capsule
between Putamen and Thalamus (C) are confused (blue) by the
cortico-spinal mainstream (green) and do not survive the crossing.

In addition to fiber tract models in white matter regions recon-
structed from 3D-FOMs obtained with the large-area polarimeter,
3D-PLI applied to the polarizing microscope images provides fur-
ther, even more detailed insights into regions close to or within
the cortex. To give an example, association fibers at the circular
sulcus of the insula were 3D reconstructed and studied (Figure 7).
The fiber tract models in a volume of 0.5 mm x 0.5 mm x 0.1 mm
(obtained with the large-area polarimeter) follow a clear sub-
cortical U-shape with indications of changeover into the cortex
(Figure 7B). Two microscopic 2D-FOMs (Figures 7C,D) covering
2D sub-regions at the white/gray matter border of a section from
the center of the stack prove the fiber crossover into the cortex.
Single fibers can clearly be observed at the provided pixel size of
1.6 wm. There seems to be a gap (blue) between the white and the
gray matter. This is due to the fact that the contributions of per-
pendicularly crossing fibers in the same voxel tend to average out
thus lowering the amplitude of the measured intensity profile, i.e.,
partial volume effects due to the section thickness can be observed.

To demonstrate the influence of section thickness d on the
retardation as well as the impacts on the polarimeter setup in
terms of sensitivity, a study of an optic tract was carried out. Since
the optic tract was sectioned along its main fiber direction (i.e.,
a=0"), the determined retardation maps of the different section
thicknesses reveal the largest signals to be expected in 3D-PLI.
According to Axer et al. (2011), the histogram of a retardation
map with resident in-plane fibers can be used to determine the
correlation between the measured retardation value Isin 3l and
the inclination angle o (Figure 8). The mean values |sin §|q=gc of
the histogram tails were extracted by fitting and used as reference
measures for in-plane fibers of the different section thicknesses
(Figures 8A,B). A significant increase of |sin 8|q=ge from 0.201
at d=20 pum to 0.728 at d =100 um was observed, while scatter-
ing and absorption effects become more influential at thicknesses
above 100 um thus leading to a decrease of the maximum sig-
nal (Figure 8B). This behavior was described by a fit function
based on Egs 1 and 2 multiplied by an exponential term. Hundred
micrometer represents the maximum suitable section thickness
and the highest dynamic range to separate fiber inclination angles
(Figure 8C).

DISCUSSION

In order to create a comprehensive structural description of
the neural network and its intricate fiber connections, i.e.,
to assemble an important part of the human connectome, a
multimodal approach is certainly indispensable. Depending on
data provided by complementary neuroimaging techniques, an
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FIGURE 6 | Reconstructed fiber tract models in five regions of interest
(volumes of 2mm x 2mm x 1 mm) sampled with an isotropic resolution
of 100 um. The individual color spheres (legend: A, anterior; P, posterior; |,
inferior; S, superior; R, right; L, left) indicate the orientations of the fiber tract
models. Fiber models were generated in (A) the Corpus callosum, (B) the
Corona radiata, (C,D) the internal capsule (green), perforated by small
fascicles (red and magenta) connecting the cerebral cortex with the Thalamus

[y

(C), Red nucleus and Substantia nigra (D), and (E) the Pons

(green = cortico-spinal tract, red = transversal branches). Superimposed
retardation maps (gray values) serve as anatomical references. (F) The RGB
fiber orientation map is a representative of the stacked whole brain sections
used for the study. The black rectangles highlight the magnified regions of
interest (A-E) and the arrows indicate the individual observer’s perspective.
Legend: Cc, corpus callosum; Ci, internal capsule; Po, pons; R, right; L, left.

anatomical connectivity map could target three levels of organiza-
tion (microscale, mesoscale, and macroscale) requiring reasonable
cross-level integration.

MR-based diffusion imaging is the most frequently used
method to visualize fiber pathways in both the living (Basser et al.,
1994; Pierpaoli and Basser, 1996; Conturo et al., 1999; Beaulieu,
2002; Tuch et al., 2002, 2003; Hagmann et al., 2003; Tuch, 2004;
Mori and Zhang, 2006; Schmahmann et al., 2007; Naidich et al,,
2008; Johansen-Berg and Rushworth, 2009) and the postmortem
(Englund et al., 2004; Larsson et al., 2004) human brain. With a
spatial resolution at the millimeter scale, diffusion imaging con-
tributes nearly exclusively to the construction of data sets at the
level of macroscopic structural connectivity. However, restricted
by the resolution, complex fiber networks and small fiber tracts
cannot be discovered reliably at present. Furthermore, the ter-
minal parts of fiber tracts within the cerebral cortex cannot be
demonstrated.

Conversely, microscopic techniques generate data sets of
impressing neuroanatomical detail, but they are limited to small
sample sizes (i.e., small areas of interest in a small number of
subjects). This substantially restricts their predictive power. In the
recent years, anatomical connections in the human postmortem
brains were studied with dissection techniques (Klingler, 1935;
Tiire etal., 2000), in myelin stained sections of adult human brains
(Biirgel et al., 1997, 2006), or of immature brains taking advan-
tage of heterochronic myelination of different fiber tracts during
pre- and early postnatal development (Flechsig, 1901), in lesioned
brains using various techniques for staining degenerating fibers
(Funk and Heimer, 1967; Clarke and Miklossy, 1990), and using
tract-tracing methods for discovering local connections (Burkhal-
ter et al., 1993; Lanciego and Wouterlood, 2000). These studies
have contributed to our knowledge about human brain fiber tracts,
but all of these approaches suffer from severe restrictions, if fiber
tracts are to be mapped in the adult human brain including their
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pixel size: 1.6 um

FIGURE 7 | Association fibers. (A) FOM of a coronal section with the
indicated region of interest in the upper part of the circular sulcus of the
insula. (B) Reconstructed U-fiber models (volume of 5mm x 5mm x 1 mm,
pixel size of 100 um) based on a stack of aligned FOMs obtained with the
large-area polarimeter, covering the insular cortex and the underlying
extreme capsule turning into the stem of the parietal operculum. Superficial
layers of U-fibers turn into the insular cortex and into the cortex of the

pixel size: 100 um

pixel size: 1.6 um

post-central gyrus. (C,D) Show the gray/white matter borders in the two
regions of interest shown in (B), analyzed with the polarizing microscope.
Note, the two 2D-FOMs reflect the fiber orientations in a single section
from the center of the stack. White matter (WM) and gray matter (GM)
regions are characterized by significantly different fiber tract densities and
fiber orientations. Color code of the fiber orientations: red = transversal,
green = axial, blue = sagittal.
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FIGURE 8 | Influence of the section thickness on the fiber inclination
estimation. An optic tract was sectioned parallel to the main fiber
direction with thicknesses of 20, 25, 50, 70, and 100 um, and measured
with the large-area polarimeter. (A) Histogram of the retardation map

(| sin8| > 0.55) of a 100 um section and the resulting fit function (with fit
parameter [p2] = |sind]._o- Used as a reference measure). (B)

|sin 8|._o-as a function of the section thickness. The error bars indicate

O O O L i !
0 20 40 60 80 100 120 140 160 180
section thickness d (um)

inclination & (°)

the maximum deviation of the section thickness (£5wm) and the
maximum variance across the fitted histogram tail. (C) The relationship
between the fiber inclination angle « and a measured retardation value is
given by |sind] = |sin(arcsin([sin 3l,_e) - cos?a)|.(cf. Axer et al., 2011).
Since |sin 8|,_¢- depends on the section thickness, the usable dynamic
range to separate different fiber inclinations decreases for decreasing
thicknesses.

3D courses. In contrast to studies in animals, the tight packing of
different fiber tracts in the white substance, and the lack of specific
tracers for in vitro tracking of long-distance fibers made compre-
hensive fiber tract mapping impossible in the adult human brain
(Schmahmann and Pandya, 2009).

Obviously, there is still need for an operational link between
both, the high-resolution micro-connectome and the averaged

macro-connectome. In this paper, we propose to utilize 3D-PLI
based on two polarimeter setups providing complementary scales
of resolution, in order to close the gap between macroscopic fiber
pathways revealed by diffusion weighted MRI and their real ter-
minals located in the cortex: the polarizing microscope and the
large-area polarimeter with tilting stage. The latter device has been
optimized to one-shot whole brain imaging, while the polarizing
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microscope is an ideal tool to disentangle complex fiber constel-
lations in small brain areas and to follow fiber tracts to their
terminals into gray matter regions. With an in-plane sampling
between 33 and 100 um, the large-area polarimeter enables the
3D modeling of long and short distance white matter tracts as
shown in this paper (cf. Figures 6 and 7). The polarizing micro-
scope features an in-plane pixel size down to axonal diameters
(1.6 pm) together with a high sensitivity to small birefringent sig-
nals (cf. Figure 7). This multiscale approach utilizing the same
technology provides data sets of importance to several branches
of neuroscience, however, limited to a small number of subjects.

To successfully apply 3D-PLI to thin brain sections, a valid
bio-physical model is required to describe the light transmittance
through the polarimeter and the birefringent brain tissue. It has
been shown in previous studies (Axer et al., 2000, 2011; Larsen
et al., 2007) that basic principles of theoretical optics provide a
sound base to estimate the light transmission, which is a mea-
sure of the locally prevailing spatial fiber orientation. Data fitting
by means of discrete Fourier analysis based on the mathematical
expression of this bio-physical model (cf. Eqs 1 and 2) enabled the
analysis of light intensity profiles obtained for each tissue (image)
pixel. This holds true for the large-area polarimeter as well as the
polarizing microscope.

The used fiber model yields the local in-plane fiber direction ¢
with very high accuracy (£2°), while the most challenging para-
meter to be extracted is the inclination angle a.. The interpretation
of a light intensity profile is quite challenging in terms of fiber
inclination, due to its complex dependencies on section thickness,
birefringence, and light wavelength. In addition, the inclination
angle cannot be extracted unambiguously from the theoretical
model solely. The introduction of a tilting object stage into the
large-area polarimeter represents a milestone for 3D-PLI, since
the out-of-section fiber inclination (o) could be determined with-
out ambiguity, for the first time. This enhances the reliability of the
extracted fiber orientation significantly. Note, with a standard pla-
nar polarimeter the fiber orientation was intrinsically afflicted with
an inclination sign ambiguity, which was formerly tackled with a
simulated annealing approach as proposed by Larsen and Griffin
(2004). However, it was demonstrated that the purely computer-
aided application of the continuity heuristic could not entirely
eliminate the ambiguity (Axer et al., 2011). Uncertainties evoked
by this ambiguity were maximal (£90°), for fibers with interme-
diate inclinations (i.e., @ & £45°), while fibers running within or
perpendicular to the section plane were not affected. We found
that the tilting method is most sensitive where a sign flip of the
inclination has the greatest impact on the spatial fiber orientation,
which are fibers with intermediate inclinations. This observation
matches the expectation based on the theoretical model (cf. Eq 2)
used to determine the fiber orientations.

The results presented here were mainly derived from brain
sections with a thickness of 100 wm as this thickness was found to
be well suited for the large-area polarimeter (Axer et al.,2001). Our
study of an optic tract confirmed this result (cf. Figure 8). How-
ever, PLI inherently permits the reduction of section thicknesses
to values considerably below 100 pm, even down to single fiber
dimensions, but at the expense of the sampled dynamic range.
We demonstrated this by investigating sections of the optic tract

of different thicknesses (between 20 and 150 wm; cf. Figure 8).
It is clear that the discrimination of different fiber orientations
becomes more challenging and the demands on the imaging
system are tightened when the section thickness decreases. In
addition, the handling of whole brain cryo-sections also becomes
difficult. However, investigating thin brain sections still represents
an attractive approach to enhance the sampling resolution of 3D-
PLI in the third dimension and to further reduce partial volume
effects impairing the signal interpretation, e.g., in transition zones
between fiber tracts with different orientations (Figure 7 and Axer
et al,, 2011) or in regions with myelination gradients. The polar-
izing microscope with its high sensitivity is certainly a promising
tool in terms of fiber inclination determination in thin sections
(below 50 jum).

Although the tissue properties (myelination, section thickness,
fiber orientation) are well integrated into the bio-physical model,
to date, the 3D-PLI-based analysis does not take local variations in
the axon myelination into account. As a consequence, regions char-
acterized by significant myelination gradients (e.g., the transition
domains between gray and white matter) are likely to be misin-
terpreted as changing fiber inclinations, if the local myelination is
not considered. The misinterpretation becomes obvious in RGB
FOM:s (Figure 5), where cortical areas appear to be dominated by
steep fiber orientations (blue color). Brain areas where the den-
sity of fibers diminishes significantly (e.g., subcortical nuclei) are
quite challenging, since the detected amplitudes of the light inten-
sity profiles are small, thus faking steep fibers. Therefore, fiber
models were primarily reconstructed in white matter domains
so far. However, in the current study we demonstrated that the
extracted transmittance value Iy is sensitive to local myelination
and is, therefore, an ideal candidate to quantify the myelination in
the same term as used for the determination of fiber inclinations.
Cortical and subcortical gray matter could be distinguished from
regions of strong myelination in the white matter, in accordance
with results gained from myelin stained histological sections (cf.
Figure 3). As a matter of fact, the transmittance basically reflects
the attenuation of light when passing through the brain tissue. The
observed discriminative absorption and scattering effects in the
white matter are mainly due to the local shape and orientation of
the refractive index ellipsoid determined by the myelination. This
means that the transmittance is an indirect measure of the myeli-
nation slightly modified by the fiber orientation (which explains
the intensity gradients in the white matter, Hebeda et al., 1994).
Ongoing studies are currently dealing with the extension of the
3D-PLI analyses using the transmittance information.

The 3D reconstruction of gross histological brain sections poses
particular challenges to the alignment techniques. Clearly, nerve
fiber models of the human brain also depend on an accurate 3D
volume data set of vectors derived from a registered stack of 2D-
FOMs, which are individually taken from distorted histological
brain sections. In order to preserve the reliability of the vector data
on a sub-millimeter scale, the registration procedure needs to meet
high-resolution requirements. A successful strategy to retrieve the
3D coherence among serial sections and correction for histological
distortion was realized by using state-of-the-art image (affine and
non-linear) registration techniques applied to blockface images
(Figure 2) and to corresponding parameter maps (Palm et al.,
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2010). By means of these instruments large global and local section
deformations, unavoidably introduced during histological pro-
cessing, were corrected with high quality, i.e., with a maximum
displacement of 300 wm. The registration preserves the initial in-
plane image resolution by using high-resolution blockface images
as spatial references. In addition, the registration yields transfor-
mations related to rotation, shearing or non-uniform scaling. This
information is used to re-orientate the fiber courses accordingly,
finally providing an aligned stack of corrected FOMs — the 3D-
FOM. High-quality image registration of large microscopic PLI
data sets remains a task for future studies.

Promising approaches to reconstruct fiber tracts from 3D-
FOMs are based on deterministic streamline region-to-region
tractography (cf. Figures 6 and 7). Due to the complexity of the
3D-PLI data sets, the reconstruction is currently limited to small
regions of interest (about 300 mm?). To deal with crossing and
kissing fiber constellations, partial volume effects in transitional
domains between adjacent major fiber tracts, or gray/white matter
borders, investigations beyond the standard streamline tractog-
raphy are certainly needed. Therefore, dedicated utilization of
high-performance computing and state-of-the-art tools for fiber
tractography will be of importance to exploit the great potential
of 3D-PLI in the near future.

CONCLUSION

Three-dimensional polarized light imaging enables the uniform
high-resolution scanning of whole human brain sections, which
allows for the investigation of both short-range axonal projections
and long-distance links at the sub-millimeter scale. Depending on
the employed optical system (large-area polarimeter or polariz-
ing microscope), PLI is able to establish an interface between the
microscopic and the macroscopic characterization of the anatom-
ical connectivity by employing different polarimeter setups. Since
the method is capable of detecting even small fiber tracts with
myelination within the cerebral cortex, it is an ideal candidate
to demonstrate the anatomical connections by means of direct
measurements at complementary scales in the same object. Such
multiscale data sets are valuable as they provide in 2D and 3D
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(i) where and to what extent fibers change orientation, (ii) to study
specific tracts through regions of crossing and kissing fibers, and
(iii) to tackle partial volume effects. Accurately following fibers
through the complexity of white matter bundles has always been
a crucial issue in MRI-based fiber tractography. 3D-PLI FOMs
comprise vector fields that are comparable to the principal Eigen-
vectors extracted from a field of MR diffusion tensors, and are
therefore best suited to be integrated in a multimodal approach
to map connectional anatomy. This is extremely useful for the
independent calibration and validation of next generation track-
ing software and the interpretation of the results derived from
diffusion weighted MRI. Cross-validation of diffusion imaging
and 3D-PLI in the same species is particularly desirable and will
therefore be addressed in future studies.

Cross-linking of multiscale data sets from complementary neu-
roimaging techniques is a real challenge and requires precise
definition of data structures, robust alignment tools, and interfac-
ing modalities. In case of 3D-PLI, the blockface-based reference
brain represents an operational link between the macroscopic MRI
world and the high-resolution 3D-PLI modality. By means of
3D-3D registration, the reference brain can be transformed into
the MR space, while the correspondence of the single blockface
sections to the PLI parameter maps are still maintained. Once
the interface is established, our multiscale approach for the same
object is a most versatile tool to derive anatomical information
(e.g., fiber orientations, myelination) at different measured scales
of resolution (as exemplified in the reconstructed U-fiber region).
In this way 3D-PLI provides the key technology and fundamen-
tal data structures to bridge the gap between the macro- and the
micro-connectome.
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One of the major issues hindering a comprehensive connectivity model for the human
brain is the difficulty in linking Magnetic Resonance Imaging (MRI) measurements
to anatomical evidence produced by histological methods. /n vivo and postmortem
neuroimaging methodologies are still largely incompatible in terms of sample size,
scale, and resolution. To help bridge the hiatus between different approaches we have
established a program that characterizes the brain of individual subjects, combining MRI
with postmortem neuroanatomy. The direct correlation of MRI and histological features is
possible, because registered images from different modalities represent the same regions
in the same brain. Comparisons are also facilitated by large-scale, digital microscopy
technigues that afford images of the whole-brain sections at cellular resolution. The goal
is to create a neuroimaging catalog representative of discrete age groups and specific
neurological conditions. Individually, the datasets allow for investigating the relationship
between different modalities; combined, they provide sufficient predictive power to
inform analyses and interpretations made in the context of non-invasive studies of brain
connectivity and disease.

Keywords: histology, MRI, DTI, fibers, pathology, connectivity, human, brain

INTRODUCTION
For centuries, the human brain remained impervious to direct
observation and experimentation (Penfield, 1958), but with the
advent of Magnetic Resonance Imaging (MRI) this situation
changed very quickly. The technique supported the fastest and
most significant progress toward understanding the functional
architecture of the human brain; after three decades of MRI,
thousands of individuals of all ages, conditions, and denomina-
tions have been scanned, leading to the emergence of comprehen-
sive models of brain structure and function. Functional imaging
studies recently broadened their focus from measuring local phe-
nomena associated with specific perceptual and cognitive tasks, to
identifying long-range networks involved in the orchestration of
neural activity (Sporns et al., 2005). These networks are revealed
statistically using resting-state functional MRI (R-fMRI) based on
the time course of slow fluctuations in the BOLD signal when the
subject is not engaged in any particular task and when the brain is
at “rest” (De Luca et al., 2006). Whether R-fMRI-derived models
depend on hard-wired anatomical connectivity is an open ques-
tion, so this technique is often combined with diffusion tensor
imaging (DTI) to show major fiber tracts in the deep white mat-
ter (Pierpaoli et al., 1996; Bandettini, 2009). These non-invasive
neuroimaging modalities are the most widely utilized methodolo-
gies for mapping brain circuitry at the system level, and thus also
the primary tools of the Human Connectome Project (HCP; Akil
etal., 2011).

The problem with images of the brain acquired in vivo with
MRI and DTI is that they are limited in both resolution and
contrast. The data needs be averaged across many subjects who

represent broad demographic or clinical groups in order to
extract significant measures. In fact, even the quantification of
biomarkers that are crucial clinically for the individual patient
is contingent on population-based atlases that only contain very
rudimentary anatomical information. In practice, it is not pos-
sible with MRI to localize the exact borders of neighboring
neuroanatomical structures and identify the underlying histolog-
ical features on which radiologic images depend. The latter can
only be determined postmortem.

Given the undeniable importance of validating MRI, why
have neuroanatomical and histological studies have only played
a small, tangential role in human brain mapping and why does
the HCP, despite the large investment by the National Institute
for Health (NIH), not formally include a parallel histological
program? The constraints are not conceptual; everyone agrees
it would be very useful to corroborate non-invasive measures
with baseline information on the actual properties of brain tis-
sue. However, DTI-based models of fiber tract orientation in the
human brain are currently validated only on the basis of classic
atlases (Dejerine, 1895; Flechsig, 1901; Ludwig and Klinger, 1956;
Yakovlev and Lecours, 1967). These contain anachronistically
zealous, yet subjectively construed illustrations and were derived
from the dissection of a few undocumented brain specimens, so
the level of comparison is severely limited.

The challenges in creating a comprehensive histological model
of the human brain that matches the scope and usability
of MRI population-based templates, including the proposed
Connectome, are primarily logistical. To begin with, any study
that aims at examining cellular-level features in a brain depends
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on the expiration of the subject, and consequently neuroanatom-
ical studies have been confined to those few cases where autopsies
were prescribed because of clinical or legal concerns or to indi-
viduals who enrolled in tissue donation programs. Because in the
first scenario the rate of autopsy has universally been decreas-
ing (Kretzschmar, 2009), the enhancement of brain donation
programs (via incentives, outreach, and education) represents
the only realistic future opportunity of supporting a large-scale,
neuro-histological mapping effort.

Assuming that the necessity of enrolling a large enough num-
ber of brain donors has been addressed, noting that the benefits
of such donor program cannot be expected to roll out in the
short-term, what pre-mortem information should characterize
the specimen and how should the brain be processed in order
to create images that can complement and validate MRI stud-
ies? Because the main goal is to bridge the gap between non-
invasive neuroimaging and histology it would be useful to have
access to radiologic images acquired in vivo for each case that
comes to autopsy. When comparisons are made between images
from different modalities in the context of the same subject all
the information necessary to localize and quantify microscopic
features underlying the patterns revealed in MRI images is avail-
able. Furthermore, the correspondence between images acquired
in vivo and those from histopathology is enormously improved if
the latter cover the whole brain, just like MRI. These methodolog-
ical prerogatives are the basis for a novel neuroimaging resource
that will be used to cross-reference different modalities and
establish fundamental properties of brain structure at multiple
scales.

The approach is exemplified by the multimodal examination
of the brain of H.T., one of our program participants who passed
away in May 2009. Her neuroimaging profile was created using
a palette of multiple modalities that provided correlated images
of the brain at different levels of resolution. The study that is
described in this communication was approved by the University
of California’s Institutional Review Board.

CASE DESCRIPTION

H.T. was a woman of Caucasian descent born in Rochester, NY in
1920. She had 15 years of education which included two years of
college. A smoker for 50 years, her only major medical concern
was hypertension and she took medication to lower her blood
pressure. She died of heart failure. During the last year of her life
she experienced a slight decline in memory and cognitive profi-
ciency (it should be noted that these phenomena were observed
by her closest relatives; H.T. never recognized or admitted to hav-
ing any impairment). The examination of the clinical scans by
a trained neuroradiologist did not report major abnormalities
in the brain of H.T. with the exception of several small lacunar
infarcts.

MULTI-SCALE NEUROIMAGING

H.T. died of cardiac arrest at the age of 88. Because she wore
a pacemaker at the time of her enrollment in our study (thus
precluding her from undergoing MRI scanning while she was
living), multiple scans of the brain in situ were acquired post-
mortem. Images of the brain were acquired on an “HDX”

Twinspeed EXCITE 1.5T scanner (Milwaukee, WI.) using an
eight-channel phased-array head coil. Scan parameters were
selected to allow robust reconstruction of the brain’s cortical
surface using FreeSurfer Software and automated segmentation
of cortex and subcortical structures (Fischl et al., 2002, 2004;
Figure 1A). DTI imaging consisted in the collection of 51 diffu-
sion gradient directions (Figure 2A).

After the scans of the brain in situ were completed the brain
was extracted at autopsy and suspended by the basilar artery in
fixative solution (4% paraformaldehyde phosphate-buffered solu-
tion) at 4°C. After six weeks of fixation in formaldehyde, a second
series of scans were performed ex situ (Figure 1B). The protocol
lasted approximately 36 h, using the same sequences that were run
in the previous session but with multiple acquisitions (4-32 NEX)
in order to improve the signal-to-noise ratio in the fixed tissue
and increase resolution.

Fixation was protracted for 10 weeks after the second MRI
session and the tissue was subsequently cryo-protected by immer-
sion in 30% sucrose. Following the removal of superficial blood
vessels and pial membranes, the whole specimen was embed-
ded in a block of 10% gelatin and frozen in a bath of chilled
isopentane (—40°C). The gelatin-brain block was attached to a
custom-engineered freezing stage and sectioned on a large motor-
ized sliding microtome (Leica Microsystems Inc., Bannockburn,
IL) during an uninterrupted cutting procedure. The tissue was
cut at an interval of 70 microns. Digital images of the cut surface
were acquired before each tissue slice was collected using a digi-
tal, single-lens reflex camera (Nikon D700; Nikon Inc., Melville,
NY) that was mounted directly in line with the microtome stage.
Image acquisition during the sectioning procedure produced an
unabridged series of tomographic anatomical images through the
brain (Figure 1C). These data contain excellent tissue contrast,
ideal for anatomical delineations and the stack is the basis for the
correct alignment and 3-D reconstruction of corresponding tissue
slices.

Two adjacent, regularly spaced series of giant histological slices
were stained using Thionin (Nissl staining) and a sensitive sil-
ver impregnation technique based on the original Gallyas (1979)
protocol for myelinated fibers (Annese et al., 2004; Figure 1D).
Tissue slices were mounted on large glass slides (5 x 7 inches)
and the tissue was imaged on custom-engineered large-format
microscope scanners. The core digitizing unit is composed of
a computer-controlled microscope, a linear-encoded motorized
stage, a line scanner camera, and storage server (Annese et al,
2009). The images representing the entire giant tissue slice are
typically composed of 40,000 image tiles that are acquired sys-
tematically at 20x magnification (resolution: ~0.4 wm/pixel).
Image tiles are stitched into pyramidal “virtual” slices that allow
for fast exploratory viewing and the topographic localization of
microscopic features (Mikula et al., 2007; Weinstein et al., 2009).
The images are very large (dimensions in pixels are: 334,500 x
266,200; file size on disk 250-400 GB) nevertheless, as JPG2000
compressed pyramidal files (size reduced to 15 GB), the images
can be examined through increasing magnification levels while
a fixed number of pixels spanning progressively smaller fields of
view are shown. This technology, combined with the possibility
of surveying slices at multiple locations in the 3D model of the
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FIGURE 1 | (A) T1-weighted scan of the brain of H.T. acquired

in situ 3D IR-SPGR, matrix size: 256 x 256, voxel size of 0.9375 x 0.9375,
slice thickness = 1.2 mm. The volume underwent the automated

labeling of subcortical structures and cortical gyri that is part of the
morphometry pipeline included in the software Freesurfer (Fischl et al., 2002,
2004). (B) High-resolution T1-weighted scan of the formalin-fixed specimen
imaged ex situ. The brain was scanned in a dedicated chamber filled with

phosphate buffer (matrix size: 512 x 512, pixel size: 0.5/0.5, slice
thickness: 1.2 mm). Multiple acquisitions were repeated in order to
increase the signal-to-noise ratio. (C) Coronal blockface image from
the same brain at the level of the posterior hippocampus.

(D) Corresponding histological slice stained for myelinated fibers
[protocol modified from Gallyas (1979); Annese et al. (2004)].

Scale bar: 1cm.

brain, is the key to the proper comparison of histological and
neuroimaging data sets.

DIFFERENT VIEWS OF THE DEEP WHITE MATTER

The anatomical and DTT data were aligned using tools for auto-
mated affine registration included in Amira (Developer Package;
Visage Imaging Inc, San Diego, CA). A binary mask based on
color segmentation (Annese et al,, 2006) was created to sep-
arate brain tissue from the surrounding gelatin matrix in the
tomographic images acquired during the sectioning procedure.
These were reconstructed into a volume and this dataset was
registered to the average By volume acquired during the DTI
protocol. Because the anatomical volume is composed of images
that correspond to unique histological sections, it is possible to
identify which sections cross any region of interest in the DTI
data. The direct, landmark-based comparison of two equivalent
coronal images at the level of the posterior hippocampus reveals
the histological complexity underlying tensor-based maps of fiber
orientation (Figures 2A,B).

This approach permits quantitative correlations between
diffusion-based measures of fiber integrity and directional-
ity (derived from fractional anisotropy values) with formal
descriptions of axonal architecture. The latter can be pro-
duced from high-resolution histological images (Figure 2C) using

automated (hence potentially large-scale) image analysis rou-
tines (Figure 2D). Quantification at the histological level pro-
duces actual values representing main fiber directionality, axonal
diameter, and cross-over (Bartsch et al., 2011).

It should be noted that myelination is not the only histological
feature that affects MRI signal; gliosis, and perivascular neu-
ropathogenetic phenomena produce visible effects in MRI images
of the deep white matter. In order to decipher the relationship
between non-invasive imaging and the underlying histology, mul-
tiple sequences with different scanning parameters must be corre-
lated with the co-localization of different histopathologic markers
of structure and disease. Using specific antibody staining, it is
possible to localize neuropathological phenomena that produce
visible MRI abnormalities. Each subject-specific data set should
be analyzed as a registered stack of anatomical layers that contain
overlapping maps of biomarkers. In the context of our method-
ological pipeline, MRI and DTI are also “stains” in the sense
that they show properties of the tissue that are complementary
to the features detected by histochemical or immuno-cytological
methods.

A better understanding of local white matter architecture at the
microscopic level can help defining DTT acquisition and modeling
parameters; these may need to be specific to different regions of
the white-matter if the goal is to generate accurate whole-brain
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FIGURE 2 | Comparison between (A) fiber orientation maps derived
from DTI and (B) the underlying myelo-architecture in the region of
intersection of the fibers belonging to the corpus callosum (cc) which
travel along the coronal plane (parallel to the plane of the figure) and
the superior corona radiata (scr). In this example, the region of
intersection between cc fibers and the scr is an area that shows significant
crossing over of fibers of small caliber (blue box). (C) One DTI voxel-wide
selection from silver-stained tissue slice (magnification = 20x). (D) The
density and orientation of single white matter fibers is quantified using a
template matching algorithm [Bartsch et al. (2011)]. The insert in panel D
shows the discrete orientations of the templates used to classify fiber
bundles. DTl acquisition parameters: image matrix size = 96 x 96, By =
1000, 51 directions, FOV = 24 cm, 47 axial slices, slice thickness = 2.5 mm.
Fiber track definition derived from the atlas of Qishi and colleagues (2011);
bce: body of the corpus callosum; cgc: cingulum; slf: superior longitudinal
fasciculus. Scale bars: Panel B = 5mm); Panel C = 100 microns.

models of connectivity. In general, the approach demonstrates
the possibility of extending animal neuroimaging studies and
resources that combine non-invasive and histological mapping
(Johnson et al., 2010) to the human brain.

POTENTIAL AND FUTURE PROSPECTS

The power of our approach lies in the fact that the resolution
of the images of H.T’s brain created with different modalities
spans from several millimeters (2.5 mm/voxel in our 3-D DTI
data) to a few hundred nanometers (0.3 pm/pixel in the 2-D

histological images). The MRI (and DTI) of the brain acquired
in situ, containing gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) and representing the original geometry
is necessary because these scans link the microscopic maps created
from H.Ts brain to the very large base of non-invasive structural
and functional neuroimaging data that will be collected by the
HCP. Furthermore, the neuroimaging sequences that were used
to acquire images of the brain of H.T. can be matched to the
standard protocols employed by the HCP and other ongoing
neuroimaging projects to make direct correlations and inform
the development of analysis tools. This way, the growing sample of
brain specimens that will be fully characterized at the microscopic
level will also be accessible as anatomical reference to large-scale
neuroimaging databases. This cross-sectional data will serve as a
base line reference for the interpretation of low-resolution images.
One could additionally envisage “embedding” MRI data-sets, like
that belonging to the brain of H.T., into the processing pipelines of
the HCP and other purely non-invasive studies. The output of these
pipelines could be evaluated based on corresponding histological
images, providing an efficient means to algorithm optimization.

As noted in the previous section, mapping local microscopic
features within a 3D model of the whole brain can lead to the
formulation of “signature” models that classify neuroanatomi-
cal features in specific compartments of the brain. Histological
models may help predict individual anatomy (and pathology)
from the macroscopic markers that are visible and measurable in
non-invasive low-resolution images. In other words, local micro-
architectural patterns that can be localized consistently in a large
number of subjects may eventually be used to resolve ambigui-
ties in the interpretation of low-resolution data (Leergaard et al.,
2010). The systematic characterization and classification of local
micro-architectural patterns as exemplified in Figure2 will be
extremely useful for the calibration of the next generation of fiber
tracking software and interpretation of the results from diffusion
imaging.

Our methodology may not be universally feasible for rou-
tine implementation. Aside from equipment and operational
costs, the computational requirements for managing massive
histological data-sets are considerable. However, depreciation
of digital storage will occur sufficiently rapidly to justify the
timely implementation of the protocols described above. Many
web-based products and initiatives, like Google Maps and the
Hubble Telescope, leverage on remote access and interoperabil-
ity with digital images in the Gigapixel range. The digitization at
20x magnification of whole histological sections of the human
brain actually produces images in the Terapixel range; these can
nonetheless be shared on the web with the support of appropriate
hardware and bandwidth. To demonstrate this functionality, The
Brain Observatory developed the infrastructure for a web-based
atlas of the human brain that can deliver Terapixel histological
images representing whole brain sections at cellular resolution;
these are associated with other views of the brain created in
2D and 3D using other neuroimaging modalities (Annese et al.,
2012).

The development of robust quantitative methods for regis-
tration and analysis combined with the availability of adequate
computational resources for handling very large data-sets will
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make comparisons between neuroimaging data and the under-
lying microscopic features increasingly effective. Furthermore,
as the number of single-subject neuroimaging studies like the
one involving H.T, where we combined in vivo and postmortem
modalities and for whom we were able to compute maps that span
multiple spatial scales, increases the predictive power of the digi-
tal neuroanatomical catalog will become stronger, representing a
useful resource for data mining, cross-modality validations, and
algorithm development.

The example provided in this article should support the notion
of multi-modal, single-subject paradigm as a complement to MRI
data obtained in the context of large-scale neuroimaging initia-
tives such as the HCP (Marcus et al., 2011). However, a note
of caution is due before the concluding remarks. Histological
images only contain a final, “freeze-frame” picture of the brain’s
microanatomy; whereas we know that the architecture of neu-
ral circuits, from the system level to local dendritic properties,
changes with maturation, behavior, and disease. Secondly, his-
tology should not be considered unquestioningly as the “gold
standard” for neuroimaging. Postmortem methods produce well-
known artifacts and admittedly it is extremely difficult to produce
consistent results on a large scale; nevertheless, the implementa-
tion of “industrial” and carefully controlled protocols for tissue
processing can greatly increase the quality and reproducibility
of microscopic data. Common standards are needed for histo-
logical processing, as well as for the acquisition, storage, and
sharing of digital histological files. The importance of incorpo-
rating maps of microscopic anatomy into the HCP and other
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1. INTRODUCTION

Connectomics is the study of the full connection matrix of the brain. Recent advances
in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of
whole small animal brains at a sub-micrometer resolution, potentially opening the road
to full-blown connectomics research. One of the first such instruments to achieve whole-
brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope
(KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma
distribution), and India ink (vascular networks). KESM data can contribute greatly to con-
nectomics research, since they fill the gap between lower resolution, large volume imaging
methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial
sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale,
ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a
huge challenge, before we even start worrying about quantitative connectivity analysis. To
solve this issue, we developed a web-based neuroinformatics framework for efficient visu-
alization and analysis of the multiscale KESM data sets. In this paper, we will first provide
an overview of KESM, then discuss in detail the KESM data sets and the web-based neu-
roinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will
discuss the relevance of the KESMBA to connectomics research, and identify challenges
and future directions.

Keywords: mouse brain; Golgi; web-based brain atlas; multiscale; connectomics; Knife-Edge Scanning Microscopy

such instruments to achieve whole-brain-scale imaging at sub-

Connectomics aims to map the full connection matrix of the brain
(Sporns et al., 2005; Sporns, 2011). The fundamental assumption
in connectomics is that structure defines function. To evaluate
this assumption, we can consider the fact that the functional evo-
lution of the brain has been mainly driven by that of the brain
architecture and not by individual neurons (Swanson, 2003). Also,
“basic circuits” of the brain have been identified as an important
abstraction of brain function at the system-level (Shepherd, 2003).
Furthermore, structure (connectivity) has been shown to greatly
affect the dynamics of the network (Sporns and Tononi, 2002).
Varying the delay distribution in a network was also found to
alter its dynamics (Thiel et al., 2003), where structural analogs of
delay, e.g., connection length, could also contribute to the same
effect. These, taken together, indicate that obtaining the connec-
tome can lead to a major breakthrough in understanding brain
function.

Recent advances in high-throughput, high-resolution 3D
microscopy methods have enabled the imaging of whole small
animal brains at a sub-micrometer resolution, potentially open-
ing the road to full-blown connectomics research. One of the first

micrometer resolution is the Knife-Edge Scanning Microscope
(KESM; McCormick, 2003, 2004; Kwon et al., 2008; Mayerich et al.,
2008Db; cf. Li et al., 2010 based on the same imaging principles as
that of the KESM). KESM whole-brain data sets now include Golgi
(neuronal circuits; Abbott, 2008), Nissl (soma distribution; Choe
et al., 2010), and India ink (vascular networks; Choe et al., 2009;
Mayerich et al., 2011b). Methods related to the KESM include
All-Optical Histology (Tsai et al., 2003) and Array Tomography
(Micheva and Smith, 2007). There are also methods that explore
much finer structural detail, such as Serial Block-Face Scanning
Electron Microscopy (SBF-SEM; Denk and Horstmann, 2004),and
Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM; Hay-
worth, 2008). The resolution and size of the volume that can be
imaged by the above methods vary widely (resolution of 10s of nm
to 100s of nm, to volumes ranging from 10s of jum cube up to 1 cm
cube; see Choe et al., 2008 for a review), but they all share the same
principle of physical sectioning or physical ablation, as opposed to
optical sectioning common in conventional 3D microscopy (All-
Optical Histology uses a hybrid approach, physical plus optical
sectioning; Tsai et al., 2003).
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Data from KESM and similar approaches based on light
microscopy can greatly contribute to connectomics research,
by filling the critical gap between large scale, lower resolution
methods like diffusion MRI (Basser and Jones, 2002; Tuch et al.,
2003; Hagmann et al., 2007; Roebroeck et al., 2008) on the one
hand and small-scale, higher resolution methods like SBF-SEM
(Denk and Horstmann, 2004) on the other hand. It is also notable
that KESM data are by nature multiscale, ranging from the sub-
cellular (<1 pum) to the whole organ scale (~1cm). Due to the
large volume (several tera voxels) and the multiscale nature, visu-
alization alone is a huge challenge, before we even start worrying
about quantitative connectivity analysis. Furthermore, delivering
the neuronal circuit data to connectomics researchers is also a
challenge, due to the same reasons as above. To solve this issue,
we developed a web-based neuroinformatics platform for efficient
visualization and analysis of the multiscale KESM data sets.

In this paper, we will first provide an overview of KESM, then
discuss in detail the web-based neuroinformatics framework called
the KESM brain atlas (KESMBA). Next, we will present the KESM
data sets using KESMBA. Finally, we will discuss the relevance of
the KESMBA to connectomics research, and identify challenges
and future directions.

2. MATERIALS AND METHODS

2.1. SPECIMEN PREPARATION

Two mouse brains were imaged in their entirety, after being
stained by Golgi-Cox for the visualization of neuronal morphol-
ogy. C57BL/6] mice were anesthetized with isoflurane inhalant
anesthesia. Each mouse was decapitated, the brain removed and
immersed in Golgi-Cox solution that contained 1% potassium
chromate, 1% potassium dichromate, and 1% mercuric chloride
in distilled water. The brain was then soaked for 10-16 weeks in the
dark and then washed in distilled water overnight. Additionally, it
was immersed in a 5% ammonium hydroxide solution in distilled
water for about one week in the dark and then again washed in
distilled water for 4 h. After that, the brain was dehydrated through
a graded series of ethanols starting with 50% ethanol in water and
increasing to 100% ethanol over a time period of 6 weeks. Finally,

it was embedded in araldite following a standard protocol (Abbott
and Sotelo, 2000), with the exception that each step needed to infil-
trate the brains with araldite took 24 h. KESM sectioning requires
that whole-brains be completely dehydrated and infiltrated with
araldite plastic. Normal plastic embedding is typically carried out
on much smaller pieces of tissue, so we have modified the process-
ing steps to allow us to embed whole mouse brains that we can cut
using the KESM.

2.2. IMAGING WITH THE KNIFE-EDGE SCANNING MICROSCOPE

We used the KESM for sectioning and imaging (Mayerich et al.,
2008b) two prepared mouse brains (both Golgi). Figure 1 shows
a photo of the KESM with its major components.

Each stained mouse brain, embedded in a plastic block, was
mounted on the three-axis precision stage. The diamond knife-
collimator assembly was used to cut sequential 1.0 pm-thick
sections from the tissue blocks, while providing transmission illu-
mination. (Note that the KESM design supports illumination
through the objective (McCormick, 2004) and the original imple-
mentation already includes this design, especially for fluorescence
imaging.) The light passed through the diamond knife and pene-
trated the tissue sections for imaging. The brain tissues stained in
Golgi were imaged with a Nikon Fluor 10x objective (NA =0.3).
The actual image digitizing was performed by a DALSA CT-F3
high-sensitivity line-scan camera capturing the transmitted light,
and these images were stored in the designated storage. In order
to automatically control the stage movement and data acquisi-
tion process, we developed in-house control software (Kwon et al.,
2008). Noise due to the knife-edge misalignment, defects in the
knife blade, and knife chatter were removed through image pro-
cessing algorithms including light normalization (Mayerich et al.,
2007). The KESM controller also employed a stair-step cutting
algorithm to minimize damage to tissue between neighboring
columns (Kwon et al., 2008). After preliminary image process-
ing for noise and distortion removal, TIFF formatted raw image
files were compressed into high quality JPEG format and stored for
further processing, while the original TIFF images were kept for
archival purposes. We imaged horizontal sections from the brain.

FIGURE 1 | The knife-edge scanning microscope and its operation.

(A) The Knife-Edge Scanning Microscope and its main components are
shown: (1) high-speed line-scan camera, (2) microscope objective, (3) diamond
knife assembly and light collimator, (4) specimen tank (for water immersion

lllumination
through
diamond
knife

’

SPECIMEN BLOCK ——>

KESM operation

imaging), (5) three-axis precision airbearing stage, (6) white-light microscope
illuminator, (7) water pump (in the back) for the removal of sectioned tissue,
(8) PC server for stage control and image acquisition, (9) granite base, and (10)
granite bridge. (B) The imaging principle of the KESM is shown.
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2.3. THE KESM BRAIN ATLAS

The KESM brain atlas (KESMBA) framework has been designed
and implemented to allow the widest dissemination of KESM
mouse brain circuit data and to enable easy visual and quanti-
tative analysis. For this, we had several design requirements, that
the atlas is (1) not dependent on high-end computer hardware
(e.g., expensive graphics cards), (2) not dependent on custom 3D
viewing applications or plug-ins, and (3) browsable within any
standard web browser.

2.3.1. Basic idea: transparent overlay with distance attenuation
The basic idea we use to meet the requirements listed above is
transparent overlay of images with distance attenuation (Eng and
Choe, 2008). Figure 2 shows the concept. Overlaying an image
stack containing two intertwining objects (Figure 2A) to get min-
imum intensity projection (Figure 2B) results in the loss of 3D
information. Interleaving each image with semi-opaque blank
images brings out the 3D information (Figure 2C). This is similar
to the artistic use of haze to achieve depth effect in a 2D medium
(cf. Kersten et al., 2006). In practice, raw images containing data
already have semi-opaqueness in the background once made
transparent, so simply overlaying them results in the same kind
of effect. This simple approach, when combined with a Google
Maps™-like zoomable web interface, results in a powerful brows-
ing environment for large 3D brain data. In fact, we customized
and extended the Google Maps API (version 2) to construct the
KSEMBA.

2.32. Image processing and adding transparency

After the raw image files were acquired using the KESM, three
additional image processing steps were performed to enhance
the image quality suitable for the web atlas. First, to enhance
visibility when overlayed, we inverted the original images with
black foreground and white background to have white foreground
and black background. Next, because the inverted images do not
have enough luminance contrast, we performed Gamma correc-
tion with a sigmoidal non-linearity to expand the luminance
contrast between foreground and background pixels within each

image. Finally, we turned the background color of the image to
be transparent, for layering of the images to achieve a 3D view
within a web browser. The pixels were made transparent accord-
ing to their gray-level value. The processed images were stored
in PNG format which supports alpha channel transparency. The
contrast factor and contrast center values (25 and 50, respec-
tively) used in the gray-level transparency process were empirically
selected.

2.3.3. Multiscale tile generation

Once the image processing is done, pyramidal tiles are generated.
Each tile in Google Maps consists of 256 x 256 pixels. The pyra-
midal structure of the Google Maps tiles in different zoom levels
is shown in Figure 3A. Our Golgi data sets have 8-10 columns,
where each column consists of a tall stack of 2,400 x 12,000-
pixel images. Below, we will consider the case with 8 columns.
Calculation for the 10 column case can be done in a similar
manner.

With the KESM image stack, we prepared tiles for 6 different
zoom levels compatible with the Google Maps API’s zoom level
from 2 to 7. The number of tiles required at zoom level z is 2% x 27,
Therefore, the Golgi data set requires ZZZZ 2% x 2% = 21,840
tiles for each section, and 121,692,480 tiles for all 5,572 sections,
theoretically. Fortunately, the actual number of tiles we created
is 4,892 per section and 27,258,224 overall because each image
section is not square-shaped and we only had to create tiles con-
taining tissue data. Figure 3B shows an example of the tiles we
created for the highest zoom level of 7. In the example, we had
to create only 8 tiles out of 16 possible ones because the other 8
tiles were empty. Preparing a tile pyramid requires extra storage,
time, and effort. Assuming that the above mentioned PNG trans-
form did not increase the file size, in our Golgi data set, the tile
pyramid (4,892 x 256 x 256 x 5,572 = 320,002,112) causes about
39% increase in disk space usage (without tiles, the total size is
19,200 x 12,000 x 5,572 = 230,400,000). However, once they are
generated, they contribute to saving image download time for the
currently viewed portion of the atlas. For example, the KESMBA
has a map area of 80% browser window width x 600 pixel window

-.‘ -

- .

Overlay without distance attenuation

Image stack containing two objects

FIGURE 2 | Transparent overlay with distance attenuation. (A) An image stack containing two intertwined objects are shown. (B) Simple overlay of the
image stack in (A) results in loss of 3D perspective. (C) Overlay with distance attenuation helps bring out the 3D cue.

C
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FIGURE 3 | Multiscale tiling. (A) Tile pyramid compatible with
GoogleMaps. Quad-tree pyramid of tiles and the x-y coordinate indexing
convention are depicted. Each tile has 256 x 256 pixels. Zoom level
ranges from 0 to 7 and zoom level N has 2V x 2V tiles. Following this
tiling convention automatically enables various map functions including
zoom-infout. (B) Example of actual tiles. The maximum zoom level of the
Golgi image section (19,200 x 12,000 pixels) is 7 [=argmin,

(256 x 2*>max(19200,12000))]. The minimum zoom level is set to 2. This
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Tile coordinates

particular example shows how the original image is tiled and how the
tiles are named at zoom level 2. The dark image in the middle is the
image section halved down 5 times (600 x 375 pixels) to fit in zoom level
2 (1,024 x 1,024 pixels). After putting the downsized image at the center,
transparent image patches (gray dashed area) are added to fill the
incomplete tiles so that every tile can have the same 256 x 256 pixels
size. Because there is no need to generate empty tiles, only 8 tiles are
created out of 16 possible ones.

height specified in a Cascading Style Sheet (CSS). Given typical
screen resolution, the number of 256 x 256 sized tiles concurrently
displayed on a client web browser will be ~30 at the maximum,
which is less than 1% of the original image section at the maximum
zoom level (19,200 x 12,000). Once all the tiles are generated,
each tile is named consistent with Google Maps tile specifica-
tion. For example, a tile name 1_2_3.png denotes zoom level =1,
x-coordinate = 2, and y-coordinate = 3.

2.34. Web atlas based on Google maps API

To enable 3D visualization, we customized the Google Maps
JavaScript API. Google Maps JavaScript API provides extensive
functions required for a geographical atlas. In addition to the
essential navigational functions of zooming and panning, Google
Maps JavaScript API offers useful features such as zoom scale
bar, double-click zoom-in, and overlaying various objects includ-
ing images, text, markers, and polygons. Google Maps provides
an extensive API specification and there exist a large number of
private developers seeking and sharing solutions for customizing
the APL.

2.3.4.1. Customizations. Existing API functions were cus-
tomized to fit the purpose of the KESMBA. This customiza-
tion included: using custom tiles; tile overlays; user options to
select the number and interval of the tile overlays; overlaying
zoomable annotation; and map redraw function. The API was
further extended to include: information panel; scale bar; map
capture button; and z-axis navigation controller.

We generated a custom map type instance of the “GMapType”
class to call the map tiles from the Google database to feed in the
custom tiles we generated. Multiple tiles from subsequent image
sections are overlaid to create a 3D effect. The summary code below
provides an overview of how this is achieved using the Google
Maps APIL.

[17177717717777777777
// File: overlay.js
[1771777177177777717777

// 1. Create a tile layer.
customLayer=[new GTileLayer(...)];

// 2. Generate a custom tile URL.
customLayer.getTileUrl=customGetTileUrl;

// 3. Create an overlay instance of
// the GTileLayerOverlay class.
customOverlay=new GTileLayerOverlay
(customLayer) ;

// 4. Create a map type instance of the
// GMapType class.
customMap=new GMapType(...);

// 5. Create a map instance of the GMap2
// class.
var myMap=new GMap2 (document.getElementById
(nmapu) ,
{mapTypes: [customMap] }) ;
// 6. Add predefined custom map type into
// the map instance.
myMap . addMapType (customMap) ;

// 7. Add a custom tile layer into the map
// instance.
cMap.addOverlay (overlays) ;
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We allow users to select the number of tiles to overlay and the
interval between two overlays, so that they can freely generate the
3D view that they prefer. On top of the image tile overlays, we
added another optional overlay for text annotation. This anno-
tation can change at different zoom levels, so that it can show
more global description at a distant view and detailed description
at close-up. Finally, we added a “redraw” function so that when a
user changes any of the above options (overlay size, overlay inter-
val, and annotation on/off) and the map needs to be redrawn, it
does not refresh the entire page but redraws only the map area.
This is achieved by using the JavaScript “arguments.callee” prop-
erty, with which an executing function can recursively refer to
itself. When “loadFcn” is called to redraw the map, it re-invokes
the original “load” function. Redrawing the map in this way does
not have to resummon the entire page, and therefore is faster.

2.3.4.2. Extensions. Since the Google Maps JavaScript API is
created solely for 2D geographical maps, some features necessary
for the 3D brain atlas are missing and thus are not customizable.
We introduced a horizontal menu bar on top of the map to include
the functions that are necessary for the KESMBA. Most of the new
features are achieved by using various properties of the Document
Object Model (DOM). In the menu, we added a z-axis navigation
function with a drop-down menu (depth navigation step size)
and buttons (“+” and “—” for moving in/out). Also, users can
choose whether to display the annotation layer by clicking on a
checkbox. To facilitate capturing the current view on the atlas,
we added an image capture button. When the button is clicked,
it opens the print.html file using the windows.open method. In
print.html, it gets the map area information of index.html by the
“window.opener” property. Then, it copies whatever is on the map
area of index.html to generate the page content of print.html using
the “innerHTML” property.

Scale bar is one of the uncustomizable features of Google Maps.
Therefore, we created one and attached it onto the map. We first
created a (div) object using “createElement” method. Then, it was
appended to the map div ({(div id =“mapArea”)) by using “get-
Container” and “appendChild” methods. To make KESMBA more
informative, we created a panel to display the information of the
current view. In the panel to the right, the KESMBA displays the
information about the specimen, stain type, current plane of view,
dimension of the image section, and the z-range of the layers in
the current view. An area to display the above information dynam-
ically is first encapsulated by (span id =“xx”). . .(/span) tags, and
its contents are updated using the “firstChild” and “data” proper-
ties. This way, contents of the information panel are automatically
updated as the user navigates or switches between the atlases using
the top menu bar. Figure 4 shows the interface of the KESMBA
containing all the above mentioned features.

3. RESULTS
In this section, we will present our two KESM Golgi data sets and
results from applying the KESMBA framework to these data sets.

3.1. KESM GOLGI DATA SETS
The first Golgi brain was sectioned and imaged in 2008 (from July
7 to August 8, 2008). These results were first reported in Abbott

(2008). The first Golgi data set did not include the left frontal lobe,
part of the left temporal lobe, and part of the right frontal lobe
due to a misconfigured frame buffer that truncated the images,
although the entire brain was sectioned using the KESM. The sec-
ond Golgi brain was sectioned and imaged in 2010 (from June 8
to August 4, 2010). The second data set contained the entire brain.
The first Golgi data set, although partly incomplete, includes less
noise than the second Golgi data set, so we decided to make avail-
able both data sets within the KESMBA framework. These results
are shown in Figures 5-7. All data sets had a voxel resolution of
0.6 um x 0.7 um x 1.0 um, so at maximum zoom, the data are
quite detailed, as shown in Figure 8.

3.2. 3D RENDERING THROUGH IMAGE OVERLAYS

All results shown in Figures 5-8 were from direct screenshots
of the KESMBA. The 3D effect is most notable in Figure 8.
To highlight the z-axis resolution of the KESM data sets, and
to show the effectiveness of our overlaying technique, we pre-
pared views of a fixed region in the KESM data set by varying
the number of overlays (Figures 9A—C). As we can see from this
figure, overlays are effective in rendering 3D content, all within
a standard web browser without any dedicated plug-in. Another
technique that we implemented that is especially helpful when
viewing with a larger field of view (i.e., zoomed out) is to overlay
images at a certain interval. For example, overlaying 20 images at
an interval of 5 would visualize a 100-pwm-thick volume (compare
Figures 9D,E).

3.3. MULTISCALE NATURE OF THE KESM DATA

One of the main advantages of the KESMBA is that it is very
easy to navigate through the data, both within a certain scale and
across multiple scales. In fact, this capability assisted greatly in
producing the figures in the very article. Here, we will present the
multiscale nature of the KESM data and show the effectiveness
of the KESMBA framework in handling such multiscale data. In
Figure 10, we show successive snapshots of the KESMBA while
zooming from the largest scale to the smallest scale. Each step
of zooming in doubles the resolution, so the final panel has 32x
higher resolution than the first panel.

3.4. NEURONAL CIRCUITS: LOCAL AND GLOBAL

Finally, we examine the relevance of the KESM data sets to con-
nectomics research. Although it is true that with Golgi-Cox only
~1% of the entire population of neurons are stained and thin
myelinated axons are not stained reliably, we can still gain valu-
able insights from this whole-organ level data at a microscopic
resolution.

KESM Golgi data sets can help advance connectomics research
in two ways, (1) locally and (2) globally. At the local scale, we
can investigate the basic circuits (Shepherd, 2003). Although exact
connectivity cannot be established, the repeating pattern can help
us refine our basic circuit model, and also use the data to validate
synthetic circuits constructed based on a theoretical generative
model (see, e.g., van Pelt and Uylings, 2005; Koene et al., 2009).
Having access to these basic circuits from all regions in the brain
is also a great benefit, as shown in Figure 11. This figure shows
neurons from the cerebellum, inferior colliculus, thalamus, and
hippocampus.
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FIGURE 4 | KESM brain atlas interface. A screenshot of the KESM
brain atlas running in a web browser is shown. Red markers and text
were added on top for the purpose of explanation, below. (A) Navigation
panel: panning and zoom-in/zoom-out. (B) Data set selection. Golgi,
Golgi2, India Ink are available in the pull-down menu. (C) Sectioning
plane orientation. Three standard planes supported (planned). (D) Depth
navigation. Amount of movement (unit="1pum) in the z direction and
forward (deeper, [+]) or backward (shallower, [—]) can be controlled. (E)
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(H) Scale bar that automatically adjust to the given zoom level. (I) Main
display. Note that the Google logo on the bottom left is shown due to the
use of the Google Maps API, and it by no means indicate any connection
between the KESM data and Google.

At the global scale, certain fiber tracts show up prominently in
the KESM Golgi data. For example, various commissures in the
frontal lobe and dense fiber bundles in the striatum are promi-
nently visible (Figure 12). Similar fiber tracts can easily be identi-
fied, such as the hippocampal commissure in the posterior part of
the brain.

3.5. DOWNLOAD PERFORMANCE

The above results confirm the effectiveness of the KESMBA’s
pseudo 3D view method using image overlays. However, the
additional image overlays mean longer download time, and it
will have limited utility if the download time exceeds wait-
ing time tolerable for the users. Figure 13 shows the result
of download time analysis of the KESMBA. Download time

and download data size were measured in two modern web
browsers (Internet Explorer 8.0.6 and Mozilla Firefox 3.6.8) using
HttpWatch 7.0.26, a browser plug-in to monitor http traffic.
Expectedly, the download time and data size were proportional
to the number of overlays. Notably, Firefox took extraordinar-
ily long with large variance, while downloading 20 overlays.
The Intranet and the Internet download times for 20 overlays
reached above 22 and 44s respectively with Microsoft Inter-
net Explorer, and 53 and 52 s respectively with Mozilla Firefox.
Literature on the tolerable waiting time for a web page down-
load presents discordant thresholds between 4 and 41 s (Selvidge
et al., 2002; Galletta et al., 2004), but none of them used a
web page with as much graphical content as the KESMBA.
Considering the unique graphics-rich nature of the KESMBA,
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FIGURE 5 | Golgi data set 1. A fly-through of the Golgi data set 1 is shown.
The data were obtained by sectioning in the horizontal plane (upper right
corner: anterior, lower left corner: posterior). This is the full extent of the data
that was captured. We can see that part of the left temporal lobe, left frontal
lobe, and part of the right frontal lobe are cut off. Scale bar =1 mm. Each

image is an overlay of 20 images in the z direction. The z-interval between
each panel is 600 pm. The numbers below the panels show the ordering.
These are cropped screenshots from the KESMBA. This data set, obtained in
2008, is the first whole-brain-scale data set of the mouse at sub-micrometer
resolution.

we believe the above download times are within the tolerable
threshold.

4. DISCUSSION

This article presents one of the first whole-brain-scale mouse
brain atlases imaged at a sub-micrometer resolution, and a
novel neuroinformatics framework for rapid visualization and
exploration of the massive data sets. The main value of this
kind of resource is that it fills the gap between (1) the lower

resolution (100s of pms), system-level (10s of c¢m), diffusion
MRI-based tractography data and (2) the higher resolution (10s
of nm), small volume (10s of pwm), EM-based synaptome data.
Both local and global circuit data from our KESM brain atlas
are expected to contribute greatly to connectomics research.
In the following, we will discuss existing brain atlas and neu-
ronal morphology resources and draw a comparison with the
KESM brain atlas, and consider potential challenges and initial
solutions.
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FIGURE 6 | Golgi data set 2. A fly-through of the Golgi data set 2 is shown.
The data were obtained by sectioning in the horizontal plane (left: anterior,
right: posterior). Scale bar=1mm. Each image is an overlay of 20 images in
the z direction. The z-interval between each panel is 800 um, except for the

last where it was 200 um (so that data from near the bottom of the data stack
can be shown: otherwise it will overshoot into regions with no data). The
numbers below the panels show the ordering. See Movie S1 in
Supplementary Material for a fly-through of this data set.

4.1. BRAIN MAPS AND ATLASES
The 3D mouse brain atlas, at a typical macroscale spatial reso-
lution of 10 wm, is an indispensable guide to navigation within

the mouse brain (Paxinos and Franklin, 2001; Paxinos and Wat-
son, 2006). Without it, the mouse brain microstructure, viewed
as a database of individual neurons, is virtually unintelligible. The
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These views show the superior z-axis resolution of the KESM data sets.

FIGURE 7 | Golgi data set 2, Coronal and Sagittal Views. The coronal (A) and sagittal (B) views of the data set in Figure 6 are shown. Scale bar=1mm.

Sagittal

FIGURE 8 | Details from Golgi data set 1. Details from the Golgi data set
1 are shown at full resolution. This panel shows an overlay of 20 images,
thus it is showing a 20-um-thick volume. Scale bar = 100 um. The arrow
heads, from left to right, point to (1) the soma of a pyramidal cell in the
cortex and (2) its apical dendrite, and (3) a couple of spiny stellate cells.
Other pyramidal cells and stellate cells can be seen in the background. At
this resolution, we can see dendritic spines as well.

focus of activity for standardizing anatomical structures and ontol-
ogy for the mouse, like those defined in the mouse and rat atlases
produced by Paxinos and Franklin (2001) and Paxinos and Watson
(2006), are at this macrostructure level.

4.1.1. The Mouse Atlas Project (MAP)

MacKenzie-Graham et al. (2003) developed a probabilistic atlas
of the adult and developing C57BL/6] mouse. MAP consists of
not only data from Magnetic Resonance Microscopy (MRM) and
histological atlases, but also a suite of tools for image process-
ing, volume registration, volume browsing, and annotation. MAP
will produce an imaging framework to house and correlate gene
expression with anatomic and molecular information drawn from
traditional and novel imaging technologies. This digital atlas of the
C57BL/6] mouse brain is composed of volumes of data acquired
from WMRI, block-face imaging, histology, and immunohisto-
chemistry. MAP technology provides the infrastructure for the

development of the Allen Brain Atlas (MacKenzie-Graham et al.,
2003; see below). Also see the related Mouse BIRN (Biomedical
Informatics Research Network).

4.1.2. The Allen Brain Atlas

The Allen Brain Atlas contains detailed gene expression maps for
~20,000 genes in the C57BL/6] mouse (Lein et al., 2007). A semi-
automated procedure was used to conduct in situ hybridization
and data acquisition on 25 pum-thick sections (z-axis) of the mouse
brain. The x-y-axis resolution of the images range from 0.95 to
8 um. The Allen Brain Atlas is the first comprehensive gene expres-
sion map at the whole-brain level, and is currently accessed over
4 million times per month, with over 250 scientists browsing the
data on a daily basis.

4.1.3. The Mouse Brain Library (MBL)

MBL is developing methods to construct atlases from celloidin-
embedded tissue to guide registration of MBL data into a standard
coordinate system, by segmenting each brain in its collection into
1,200 standard anatomical structures at a resolution of 36 pum
(Rosen et al., 2000). Algorithms are to be designed to segment
each brain in the MBL into a set of standard anatomical struc-
tures like those defined in the rat atlas produced by Computer
Vision Laboratory for Vertebrate Brain Mapping at Drexel College
of Medicine, whose computerized 3D atlas was built from stained
sections for the mouse brain that reconstructs Nissl-stained sec-
tional material, a 17.9-pm isotropic 3D data set, from a freshly
frozen brain of an adult male C57BL/6] mouse.

4.1.4. BrainMaps.org

BrainMaps.org is an internet-enabled, high-resolution brain map
(Mikula et al., 2007). The map contains over 10 million mega
pixels (35 terabytes) of scanned data, at a typical resolution of
~0.46 pm/pixel (in the x-y plane). The atlas provides an intuitive
web-based interface for easy and band-width-efficient navigation,
through the use of a series of subsampled (zoomed out) views of
the data sets, similar to the Google Maps interface. Even though
the x-y plane resolution is below 1 wm, the z-axis resolution is
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Overlay = 20 (interval = 1)

FIGURE 9 | Effectiveness of image overlays. The effect of an increasing
number of overlays is shown. Scale bar =100 wm. The data is from the same
region as that from Figure 8. (A) Since each KESM image corresponds to a
1-wm-thick section, a single image conveys little information about the
neuronal morphology. (B) Five overlayed images, corresponding to a
5-um-thick section, begins to show some structure but it is not enough. (C)
With twenty overlayed images, familiar structures begin to appear. (D,E) At a

Overlay = 20 (interval = 5)

zoomed-out scale, skipping over images can be an effective strategy to view
the circuits more clearly. In (D), 20 overlays at an interval of 1, representing a
20-um-thick volume is shown. In (E), 20 overlays at an interval of 5 is shown,
representing 100 wm. The dense dendritic arbor in the hippocampus (left),
fiber tract projecting toward the hippocampal commissure (middle, top), and
the massive number of pyramidal cells and their apical dendrites (right) are
clearly visible only in (E).

orders of magnitude lower (for example, one coronal brain set has
234 slides in it, corresponding to a sectional thickness of 25 um).
The database also serves serial sections from electron microscopy,
cryo sections, and immunohistochemistry, and hosts a total of 135
data sets (as of March 2, 2011).

4.1.5. Whole-Brain Catalog (WBC)
WBCis a 3D virtual environment for exploring multiple sources of
brain data (including mouse brain data), e.g., Cell Centered Data-
base (CCDB, see below), Neuroscience Information Framework
(NIF), and the Allen Brain Atlas (see above). WBC has native sup-
port for registering to the Waxholm Space, a rodent standard atlas
space (Johnson et al., 2010). Multiple functionalities including
visualization, slicing, animations, and simulations are supported.
In summary, there are several mouse brain atlases available,
with data from different imaging modalities, but their resolution
is not high enough in one or more of the x, y, or z axes to show
morphological detail of neurons.

4.2. DATABASES OF 3D RECONSTRUCTION OF NEURONS
The low spatial resolution in existing whole-brain level brain
maps and atlases have been pointed out as a major limitation.

Near-micron-level reconstructions of brain areas do exist, but
only for a small volume. Part of the reason is that, in many cases,
the geometric reconstructions were done manually, with the aid
of interactive editing tools like Neurolucida (Glaser and Glaser,
1990), Reconstruct (Fiala, 2005), or Neuron_Morpho (Brown
et al., 2007).

4.21. The Duke/Southampton archive of neuronal morphology
This on-line archive of neuronal geometry (Cannon et al,
1998) includes full 3D representations of 124 neurons from
the rat hippocampus, obtained following intracellular stain-
ing with biocytin and reconstruction using Neurolucida. The
archive includes data both in the native format as supplied
from the digitization software, and in a simpler, 3D standard-
ized format (given the extension “SWC” in the archive). The
data for the SWC files are obtained by fitting cell segments in
three dimensions with cylinders, directly confirming the loca-
tion and size of these shapes using a computer-based tracing
system.

4.22. NeuroMorpho.org
Thisis a centrally curated collection of reconstructed neurons, cur-
rently containing 5793 cells (version 5, November 15, 2010) from
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FIGURE 10 | Multiscale view of the KESMBA. A multiscale view of the
KESMBA is shown (Golgi data set 1), by gradually zooming into the
hippocampus (the numbers below the panels show the zoom-in sequence).

ar =100 pm

-

32x (scale bar = 100 pm)
All panels show an overlay of 20 sections. The first four panels are shown with
an overlay interval of 5 and the last two with an interval of 1. Axons emerging
from the hippocampal neurons are clearly visible (arrow head, last panel).

various species and brain regions (Ascoli et al., 2007). The data
are available for download in SWC format. L-neuron is a model-
ing and analysis project that is associated with this database, where

statistical features of dendritic geometry and stochastic generation
of (statistically) realistic neurons are studied (Senft and Ascoli,
1999; Ascoli and Krichmar, 2000; Ascoli, 2002).
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FIGURE 11 | Different types of local circuits. Different types of local circuits
from the KESM Golgi data set 1 are shown. (A) Cerebellum. (B) Inferior
colliculus. (C) Thalamus. (D) Hippocampus (also see Figure 10). See Figure 8

for circuits in the neocortex. Scale bar =100 um. See Movie 2 in
Supplementary Material (cerebellum, colliculi) and Movie 3 in Supplementary
Material (hippocampus).

4.23. The cell centered database (CCDB)

CCDB houses high-resolution 3D light and electron microscopic
reconstructions spanning the dimensional range from 5nm? to
50 um® produced at the National Center for Microscopy and
Imaging Research (NCMIR; Martone et al., 2002). The current
CCDB has 8391 micrograph data sets (as of March 2, 2011) in
various modalities including confocal, light microscopy, electron
tomography, electron microscopy, live imaging, filled cell imaging,
protein imaging, and serial block-face imaging.

4.24. The SynapseWeb
The SynapseWeb (Fiala and Harris, 2001) is a portal into a
dense network of synaptic connections and supporting struc-
tures in the gray matter of the brain that can be fully visualized
only through 3D electron microscopy. It provides an interface
for examining volumes of brain tissue at nanometer resolu-
tions which have been reconstructed from serial section electron
microscopy. Currently, the SynapseWeb houses three brain vol-
umes ranging from 62 to 108 um?® from the CAl regions of rat
hippocampus.

In summary, there are several excellent neuronal morphol-
ogy databases that serve the neuroscience community, but they

are limited to a small number of neurons from limited volumes,
isolated from the system-level context.

4.3. ATLASING AND NEURONAL MORPHOLOGY DESCRIPTION
STANDARDS

A rapid increase in web-based resources serving neuronal mor-

phology and atlas-scale data sets gave rise to the need for data

representation standards.

The Waxholm Space (Johnson et al., 2010; Hawrylycz et al.,
2011) is a new standard atlasing space for rodents. The effort to
build this standard space was motivated by multiple non-standard,
yet widely used coordinate spaces such as those in the Allen Brain
Atlas (Lein et al., 2007) or Paxinos and Franklin’s atlas (Paxinos
and Franklin, 2001).

As for neuronal morphology, NeuroML has become the de facto
standard (using XML). BrainML, on the other hand, provides an
XML framework for the exchange of general neuroscience data at
the whole-brain scale.

4.4. ALTERNATIVE MAPPING APIs
Geospatial interfaces have undergone massive innovation in the
last decade and as we have demonstrated in this article, they can
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(scale bar = 100 um)

FIGURE 12 | System-level fiber tracts in the KESM Golgi data
set 2. (A) Horizontal section at the level of the anterior commissure
(the “)"-shaped fiber bundle) is shown (left: anterior, right:
posterior). Massive fiber tracts in the striatum can also be observed.

b i [ ¥
(scale bar = 100 um)
(B,C) Zoomed in view showing the anterior commissure near the
middle. (D) Close-up of the fiber bundles in the striatum can be

seen. A large number of apical dendrites in the adjoining cortex can
also be seen.

seconds
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40 | —8— |E-Intranet (on campus)
| - |E-Internet (at home)
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0
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FIGURE 13 | KESMBA download performance analysis. Average of 10
download trials for each setting (browser type and overlay size) is plotted
(error bars indicate standard deviation). |E, internet explorer, FF, firefox.
Except for the case of Mozilla Firefox downloading 20 overlays, both the
Intranet and Internet downloading times increased proportionally with the
overlay size.

be very effective in presenting biological data. However, existing
tools are encumbered by proprietary licensing, which limits adap-
tation to cosmetic levels and requires awkward workarounds to
implement even basic functionality. Use of open source tools will
allow for code level adaptation as opposed to API extension, and
facilitate interoperability and adoption by other groups.

Tools that can help this transition include GDAL and Open-
Layers. The open source GDAL! is a translator library for data
formats maintained by the Open Source Geospatial Foundation.
OpenlLayers is an open source browser-based map display system
using client side JavaScript. OpenLayers? serves up data as a service
and supports the basic tile display functionality (i.e., zoom levels,
layers) with custom controls used in map navigation. It also sup-
ports a number of advanced features such as layer opacity, feature
opacity, vector formats and others necessary for more sophisti-
cated user interfaces. A key feature is the ability to use disk-based
caching to improve local performance, which can greatly improve
performance of KESMBA-like web atlases.

Open standards and best practices are widely used in the
geospatial community and contribute significantly to the interop-
erability of geospatial visualization across a wide range of devices.
Modifications of standards such as the Web Map Service for large
scale microscopy data offer potential for interoperability between
neuroinformatics systems.

45. CHALLENGES

The KESM data sets are in a unique strategic position to help
advance the field of connectomics in the short term future (5—
10years). This is due to its system-level scope combined with
sub-micrometer resolution. However, there are many challenges

Uhttp://gdal.org/
Zhttp://openlayers.org

Frontiers in Neuroinformatics

www.frontiersin.org

November 2011 | Volume 5 | Article 29 | 96


http://gdal.org/
http://openlayers.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Chung et al.

Knife-edge scanning microscope brain atlas

that need to be overcome in order to enable fully quantitative con-
nectivity analysis such as graph theoretical analysis (Sporns, 2002;
Sporns and Tononi, 2002; Koétter and Stephan, 2003) or motif
analysis (Milo et al., 2002). Here, we will discuss some of these
challenges and suggest strategies to overcome these challenges.

4.5.1. Establishing connectivity

One of the main issues with any approach based on light
microscopy (LM) is the requirement that sparse stains like Golgi
are used (which stains about 1% of the total neuronal popula-
tion). Dense stains commonly used in electron microscopy will
render objects in the specimen indistinguishable at the resolution
permitted by LM. Furthermore, stains like Golgi do not stain thin
axons, thus tracing long projections even for the sparse sample is
difficult. Long-range tracers like biocytin could be a good solu-
tion, but these tracers require intracellular injection and a long
transport time, so applying them at the whole-brain scale can
be troublesome. An attractive possibility is to use Brainbow trans-
genic mice (Livetetal.,2007), combined with fluorescence imaging
(recently, we have successfully imaged fluorescent proxies [10 pm
beads] with the KESM using laser illumination). This way, neu-
rons are densely labeled, but due to the variation in the emitted
wavelength, even close-by neurons can be differentiated (Licht-
man et al., 2008). Techniques using pseudorabies virus (PRV) can
also be used to label neurons that form an actual circuit since PRV
allows for trans-synaptic tracing (Smith et al., 2000; Willhite et al.,
2006; Kim et al., 2011). As most recent labeling methods such as
Brainbow and PRV require fluorescence imaging, further devel-
opment of KESM fluorescence imaging capability will become a
key requirement.

An alternative to the experimental techniques above is to esti-
mate connectivity based on the sparse data. Methods like those
proposed by Kalisman et al. (2003) can be used for this pur-
pose. Also, a systematic simulation study can be conducted with a
full synthetic circuit, by dropping a certain proportion of connec-
tions and observing the resulting change in behavior. The degree

of redundancy in the connections (both for real and synthetic
circuits) will play an important role here.

4.52. From image to structure

Another important issue is that of structural reconstruction
(Figure 14). Together with whole-brain-scale data acquisition,
structural reconstruction is a grand challenge for connectomics.
The DIADEM (Digital Reconstruction of Axonal and Dendritic
Morphology) Challenge and lessons learned from the first round
of competition show a long road ahead of us in terms of accu-
rate circuit tracing (Liu, 2011). The KESM data sets are basically
image stacks and they do not provide quantitative morpholog-
ical or connectivity data. Among different approaches we have
found that vector tracing methods are fast and reliable (Can et al.,
1999; Al-Kofahi et al., 2002; Mayerich et al., 2008a, 2011a; Han
et al.,, 2009a,b). However, these approaches are not perfect and
small errors can lead to topological mistakes, which can cause
serious errors in establishing connectivity (Jain et al., 2010a). Jain
et al. (2010b) propose the use of machine learning techniques,
and this can be a promising direction. However, whatever auto-
mated methods we use the burden of validation (see, e.g., Warfield
et al., 2004; Mayerich et al., 2008¢) still remains and human inter-
vention is inevitable. The question is how to make this human
intervention minimal while maximizing accuracy. We are currently
exploring several options: (1) multiple-choice selection from para-
meterized reconstruction alternatives, (2) interactive editing using
graph cuts, and (3) colorized voxel-intensity-based confidence
to aid in rapid editing region selection (Yang and Choe, 2009).
These approaches can help combine automated reconstruction
algorithms with the power of human computing (von Ahn, 20065
von Ahn et al., 2006, 2008), to enable reliable tracing of massive
volumes of neuronal circuit data.

4.5.3. From structure to function
The connectome is fundamentally a static structure, an adja-
cency matrix. Important physiological parameters such as sign

Myatt and Nasuto, 2007).

FIGURE 14 | From image to geometry. (A) A portion of KESM Golgi data set 1 is shown (cortex). Maximum intensity projection is used to show a thicker
section containing a large number of neurons. Scale bar = 100 wm. (B) Semi-automated 3D reconstruction results are shown (partial results, using Neuromantic,
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(excitatory/inhibitory), weight (synaptic efficacy), and delay
(axonal conduction delay) are not available. How can these and
other physiological properties be inferred from just the struc-
ture? Toledo-Rodriguez et al. (2004) shows a possibly powerful
solution to this: Use gene expression data. They found that gene
expression and electrophysiological properties are closely corre-
lated. The availability of very large gene expression atlases such
as the Allen Brain Atlas (Lein et al., 2007; 22,000 genes), and
imaging modalities such as Array Tomography that support mol-
ecular as well as EM imaging (Micheva and Smith, 2007) are
great resources for this kind of approach (see, e.g., Markram,
2006). Another straight-forward yet potentially valuable approach
is to start with computational simulation based on detailed neu-
ronal morphology (cf. the Blue Brain Project; Markram, 2006).
The reconstructed geometry can be used to construct multi-
compartment models (see, e.g., Dayan and Abbott, 2001). Appro-
priate parameters such as channel conductance, capacitance, etc.,
need to be figured out (Vanier and Bower, 1999). Tools like NEU-
RON, GENESIS, neuroConstruct, and NeuGEN can be used for
multi-compartment simulation and parameterized synthetic cir-
cuit generation/simulation/analysis (Hines and Carnevale, 1997;
Bower and Beeman, 1998; Ascoli et al., 2001; Eberhard et al., 2006;
Gleeson et al.,2007; Koene, 2007; Koene et al., 2009). Data from the
KESM can help narrow down on the range of various parameters
for these simulations (see Druckmann et al., 2008 for parameter
constraining procedures).

4.5.4. Enabling connectomics research through neuroinformatics
From visualization to annotation to editing and quantitative analy-
sis, neuroinformatics tools are expected to serve as a key to the
success of connectomics research. This is because the process of
going from data to information and information to knowledge
cannotbe achieved through purely automated (fast butinaccurate)
or purely manual (accurate but slow) means. Thus, an informatics
platform is needed to optimally blend both automated and manual
exploration and analysis methods.

The KESM brain atlas framework provides a good starting
point. However, to increase its utility as a connectomics plat-
form, it needs to be expanded to include support for all three
standard sections (coronal, horizontal, and sagittal), overlay of
automated reconstructions, and reconstruction editing facilities
(uncertainty/confidence visualization, reconstruction alternatives,
etc.). These reconstructed morphologies have to be moved one step
farther to achieve the connectivity diagram needed for connec-
tomics research. Thus, facilities to allow users to manually specify
neuron-to-neuron connectivity, or allow parametric connectivity
specification (e.g., connect axons and dendrites that meet a certain

rule, where the rule can be specified by setting parameters such as
proximity radius, etc.) are needed. With the reconstructed geom-
etry already in place, calculating such parameterized connectivity
could be done rapidly. A distribution of connection matrices can
be generated based on such parametrizations, from which mean-
ingful structural and functional properties of the connectome can
be extracted.
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SUPPLEMENTARY MATERIAL
The Movies S1, S2, and S3 for this article can be found online at
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.
00029/abstract

Media Files: All video clips were made using MeVisLab
(http://www.mevislab.de). Note that the video clips are presented
to showcase the KESM data itself, and are independent of the
KESMBA web interface.

Movie S1 | A video clip of a sweep-through of the entire KESM Golgi data set 2
is shown, along all three sectioning planes: Sagittal, coronal, and horizontal.
Initial block width is 11.52 mm.

Movie S2 | A video clip of a small region near the cerebellum and the colliculi
from the KESM Golgi data set 1 is shown. Zoom-in near the end of the clip
shows a number of cerebellar Purkinje cells. The view is initially horizontal, but
later on it rotates and shows sagittal sections. Initial width of the block is
2.88mm.

Movie S3 | A video clip of a small region near the hippocampus (middle) and the
cortex (bottom) from the KESM Golgi data set 1 is shown. Initial width of the
block is 1.44 mm.
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Despite the overwhelming need, there has been a relatively large gap in our ability to
trace network level activity across the brain. The complex dense wiring of the brain makes
it extremely challenging to understand cell-type specific activity and their coommunica-
tion beyond a few synapses. Recent development of the optogenetic functional magnetic
resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by
enabling causal tracing of activities arising from defined cell types and firing patterns across
the whole brain. Brain circuit elements can be selectively triggered based on their genetic
identity, cell body location, and/or their axonal projection target with temporal precision
while the resulting network response is monitored non-invasively with unprecedented spa-
tial and temporal accuracy. With further studies including technological innovations to bring
ofMRI to its full potential, ofMRI is expected to play an important role in our system-level
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Human brains form highly complex circuits where the circuit ele-
ments communicate using electrical and/or chemical signals. It
consists of approximately 100 billion neurons and many more glial
cells. Furthermore, the hundreds of billions of neurons and glial
cells also come in various different cell types, which can be cate-
gorized based on their shape, location, genetic properties, and the
chemicals used for communication. It has been extremely difficult
to spatially distinguish pertinent elements, adding complexity to
the understanding of a circuit’s connection topology and function.
Different state-of-the art methods to understand brain circuits
include microscopic approaches looking at small-scale connec-
tions with electron (Briggman and Denk, 2006; Bock et al., 2011;
Briggman et al., 2011) and light microscopy (Livet et al., 2007;
Micheva and Smith, 2007; Choe et al., 2008), and larger scale
connection topologies using light microscopy of brain sections
across the whole brain (Bohland et al., 2009), and diffusion tensor
MRI (Mori and Zhang, 2006). However, one of the most impor-
tant approaches in understanding complex circuits, as is often
used with electronic circuits, is the ability to trigger specific cir-
cuit elements with high temporal precision while monitoring the
global network response in an intact circuit. The new optogenetic
(Boyden et al., 2005; Zhang et al., 2006, 2007a,b) functional mag-
netic resonance imaging (ofMRI; Lee et al., 2010) has the potential
to enable such processes for brain circuits. Optogenetic stimula-
tion allows for cell-type specific stimulation with high temporal
precision while the network response is measured non-invasively
across the whole brain. This approach allows brain circuits to be

understanding of the brain circuit mechanism.

Keywords: optogenetics, BOLD, of MRI, opto-fMRI, connectomics

systematically analyzed in normal and diseased conditions where
it not only provides tracing of activity throughout the brain but
has the potential to serve as an in vivo quantitative biomarker that
can be directly correlated with normal and diseased phenotypes.

BRAIN CIRCUIT ANALYSIS AND DEBUGGING WITH ofMRI

Optogenetics (Boyden et al., 2005; Zhang et al., 2006, 2007a,b), is
a revolutionary technology in which single-component microbial
light-activated trans-membrane conductance regulators are intro-
duced into specifically targeted cell types using genetic approaches
allowing millisecond-scale targeted activity modulation in vivo
(Aravanis et al., 2007). Channelrhodopsin (ChR2) is a monova-
lent cation channel that allows Na+ ions to enter the cell following
exposure to 470 nm blue light, whereas Halorhodopsin (NpHR)
is a chloride pump that activates upon illumination with 580 nm
yellow light. As the optimum activation wavelength of these two
proteins are over 100 nm apart, they can be controlled indepen-
dently to either initiate action potential firing or suppress neural
activity in intact tissue, and together may modulate neuronal syn-
chrony. Both proteins have fast temporal kinetics, on the scale of
milliseconds, making it possible to drive reliable trains of high fre-
quency action potentials in vivo using ChR2 and suppress single
action potentials within high frequency spike trains using NpHR.
Recent developments in optogenetics also provide a wide range
of additional tools including more accurate temporal kinetics
(Gunaydin et al., 2010), step function control (Berndt et al., 2009),
and higher sensitivity to light (Gradinaru et al., 2008; Chow et al.,
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2010). Thus far, one of the greatest challenges in neuroscience
has been the difficulty of selectively controlling different circuit
elements due to the dense complex wiring of many different cell
types. Optogenetics, by enabling in vivo control of genetically tar-
geted circuit elements, represents an exciting new opportunity for
addressing these complicated issues.

The ofMRI technology (Lee et al., 2010; Figures 1 and 2), by
combining optogenetics with fMRI, allows precise control of brain
circuit elements and in vivo visualization of the resulting causal
effects on the brain. In the first study demonstrating ofMRI (Lee
et al., 2010), brain circuit elements were successfully controlled
and monitored based on their genetic identity, cell body loca-
tion, and axonal projection target. Selective excitation of excitatory
neurons with cell body in M1 cortex resulted in robust activity
measurement in local cortex (Figure 1) and distal areas includ-
ing striatum, and thalamus (Figure 2). It was also demonstrated
that the neural activity is more accurately mapped throughout
the brain using the passband bSSFP-fMRI technique (Lee et al.,

2008) compared to the conventional GRE-BOLD fMRI technique
(Figure 2). The temporal dynamics of the fMRI signal was also
shown to have strong correlations with the electrophysiological
measurements indicating that the fMRI hemodynamic response
accurately reflects temporal neural activity pattern (Figure 2 in
Lee et al., 2010). Targeting excitatory neurons in anterior and pos-
terior thalamus also demonstrated robust local and long-range
activity consistent with the existing literature regarding network
connectivity of each region (Figure 4 in Lee et al., 2010). In addi-
tion, selective excitation of axonal fibers projecting from M1 cortex
within the thalamus, by selective expression of ChR2 in excitatory
neurons with cell body in the M1 cortex and optical stimulation in
the thalamus, showed that wiring patterns in addition to genetic
identity can be used to selectively target and monitor the brain
circuitry (Figure 3 in Lee et al., 2010). These findings demonstrate
basic feasibility on how ofMRI defines a potent tool that is suit-
able for functional circuit analysis as well as global phenotyping
of dysfunctional circuitry.

L]
15 ms, 20 Hz

ofMRI signal of activated voxels

BOLD signal change (%)

FIGURE 1 | Optogenetic functional magnetic resonance imaging
enables systematic brain circuit analysis through cell-type specific
stimulation and non-invasive monitoring of the activity throughout
the whole brain. (A) Schematic: transduced cells (triangles) and blue
light delivery shown in M1. Coronally imaged slices in (D) marked as
“1.0.9." (B) Confocal images of ChR2-EYFP expression in M1. (C)
Extracellular optrode recordings during 473 nm optical stimulation
(20Hz/15 ms pulsewidth). (D) BOLD activation is observed at or near the

Coherence

Motor cortex

ofMRI-HRF

ENE-

N

10s

site of optical stimulation in animals injected with
AAV5-CaMKlla::ChR2-EYFP (white arrowhead: injection/stimulation
site). Coronal slices are consecutive and 0.5 mm thick. (E), Left: of MRI
hemodynamic response during 6 epochs of optical stimulation at

20 Hz/15ms 473 nm light stimulation repeated every 60s (blue bars).
Hemodynamic response averaged across all voxels with coherence
coefficient >0.35 in motor cortex. Right, Mean of all stimulation epochs.
(Modified Figure from Lee et al., 2010).
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Fluorescence

=

Striatum Motor cortex
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FIGURE 2 | (A) Injection of CaMKlla::ChR2-EYFP in M1, as expected, leads to
opsin expression in motor cortex, striatum, and thalamus, i.e., the primary
site of injection and sites targeted by the axonal projection of expressing
neurons. (B) Conventional BOLD fMRI activity map superimposed onto

appropriate anatomical and atlas images. (C) Passband bSSFP-fMRI activity
map superimposed onto appropriate anatomical and atlas images, which
more fully captures circuit-level activity. (Modified supplemental Figure from
Lee et al., 2010).

TRACING THE BRAIN CONNECTION TOPOLOGY AND
ACTIVITY

To compare the nature of different information obtained using
various methods to understand the connectivity of the brain, let us
consider a simple model of the brain (Figure 3A). Assume a brain
that has three distinct areas (nodes labeled A—C), with connections
originating from each area with the number of connections from
one node to another ranging from 1 to 4. For simplicity, let us
further assume that a given node is either excitatory (red triangle)
or inhibitory (blue square). We will further assume that conflict-
ing signals received from different nodes is resolved by majority
vote. For example, if four inhibitory inputs and three excitatory
inputs are received, the node will be inhibited. We also assume all
nodes are synchronized where t is the time it takes for each node
to trigger the next node and that external stimulation results in an
immediate state change at the stimulated node, which allows us to
assume a discrete time model where n is the time variable with the
discrete time interval t. While the realistic scenario is obviously
much more complex than what is represented here, this simple
model brain can help illustrate how different techniques address
distinct pieces of the puzzle in our effort to understand the brain
circuit. The model brain described above can be summarized with
Eq. 1, where G is the connectivity matrix with entry values that can
range from —4 to 4, X(n) and Y(n) are the stimulus input vector
and the activity at a given time n with values of 0 (not active) or
1 (active). G will then be a 3 by 3 matrix, X(n) and Y(n) will be
3 by 1 vectors. u is the unit step function applied to each vector

components separately.
Y(n+1) =u(GY(n) + X(n)) where n=20,1,2... (1)

For the model brain outlined in Figure 3A, the G matrix is as
follows with a zero-state initial condition.

00 0

G=|3 1 —4 (2)
(21 0
K

Y0)=1]0 (3)
L0

The tracer methods (Raju and Smith, 2006) based on viral and/or
chemical tracers will provide anatomical information with direc-
tionality (Figure 3B). For example, if an anterograde tracer that
does not cross synapses is injected into node A, the injection node
will be highlighted with its axonal projections showing nodes that
are directly connected with node A (B, C). Different types of trac-
ers, for example, retrograde tracers (Miyamichi et al., 2011) will
give information regarding which nodes the injected region receive
axonal projections from. As demonstrated with this example, the
tracer-based methods have the advantage of providing informa-
tion about how different areas are connected with direction and
cell type information. However, the main drawback of the method
is that it does not allow in vivo evaluation of the connection, as
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FIGURE 3 | Tracing brain pathways: simplified model of brain
demonstrates nature of the different information obtained using the
current state-of-the art methods. (A) Simplified model brain with three
distinct areas labeled A-C. Each area has connections originating from one
area connecting to another with the number of connections that range from
1 to 4. Each node is also characterized as excitatory (red triangle) or
inhibitory (blue square). (B) Anatomical tracing with anterograde tracers
that do not cross synapses. (C) Diffusion tensor MRI has the potential to
reveal large-scale axonal connections without connection type and
directional information. (D) ofMRI with stimulation of the excitatory
neurons with cell bodies at node A.1/6t Hz, 3t s duration (t=4ms)
stimulation, repeated every 1 min for 20 s duration will result in 1/6t Hz
activity in all three nodes. Node B activity will be at T duration while A and C
have 3t duration. Node B and C activity will also be delayed by t (Table 1A).
The color of the node (red) represent the expected positive BOLD signal
from the increased activity at all three nodes synchronized with the
stimulation cycle. Blue time course on the right of node Are presents
temporally encoded optogenetic stimulation and the gray time curves show
the temporal firing patterns captured through ofMRI-HRF. of MRl is
expected to reflect network activity pattern determined by the cell types
involved, network connection topology, and temporal stimulation pattern.

well as the fact that the number of synapses that can be crossed
by existing tracers is limited. Recent developments of powerful
tracers with high level of specific control (Wall et al., 2010) and
manganese ion (Mn?T, Pautler et al., 1998)-based MRI-sensitive
in vivo fiber tract tracer potentially overcome some of the chal-
lenges. While individual tracer methods pose different pros and
cons, the main information the tracing methods aims to obtain
is the anatomical connectivity with directionality (Gj; vs. Gj;) and
cell type (+, —).

Diffusion tensor imaging (DTIL; Mori and Zhang, 2006) is an
MR technique that relies on the restricted and/or anisotropic
zero-displacement diffusion of metabolites (normally the most
abundant water molecules are used) within and across differ-
ent neural compartments (such as intra/extra cellular diffusion

and diffusion within the myelin sheath etc.). Signal attenuation
is observed whenever diffusion is present along the direction of
the magnetic field gradients. The resulting diffusion ellipsoids for
each voxel can then be concatenated in order to yield smooth
trajectories that are assumed to be co-linear to the primary direc-
tion of the physical barriers, which cause the diffusion to be
restricted/anisotropic in the first place. With DT, large-scale con-
nections can be measured without directionality, and without
cell type information (Figure 3C). Due to limitations in spatial
resolution and DTI technique’s ability to resolve directional ambi-
guities when fibers cross, the information that is obtained using
DTI will be coarser than those obtained using tracer methods.
However, DTI allows in vivo, non-invasive, and whole brain scan-
ning ability, which enables the assessment of the connections in
fully intact brain with the possibility of longitudinal assessment
in living humans. Ideally, DTI aims to uncover the larger values
of |Gjjl +1G;il (no direction, cell type information). In Figure 3C,
the DTI image shows connections with |Gl 4 |Gj;l values over 3
as an example.

To fully understand the brain, temporal dynamics have to be
resolved in addition to the anatomical connections. Traditionally,
electrophysiological stimulation and recording hold an important
place in the assessment of the activity. For activity assessment in
an intact circuit, electrodes are placed in vivo where cells at a spe-
cific location are stimulated and/or recorded. However, one of the
most significant difficulties with this approach has been the lack
of cell type specificity in the stimulation (Histed et al., 2009), and
the limited spatial information in the readout. With the lack of
cell type specificity, it is difficult to interpret the resulting signal
while the limited spatial information makes it difficult to trace the
activity throughout the brain. fMRI (Ogawa et al., 1992; Bandet-
tini and Wong, 1997; Song et al., 2000), on the other hand, while
being a completely non-invasive technique with whole brain spa-
tial information, also lacks cell-type specificity in stimulation with
the conventional sensory stimulations and micro-electrode based
stimulations (Tolias et al., 2005). Techniques such as resting-state
fMRI (Fox and Raichle, 2007), while revealing valuable, completely
non-invasive information about the network level connectivity, do
not provide causal information. Modeling approaches to obtain
causal information include the use of granger causality (Goebel
et al., 2003) and dynamic causal modeling (Stephan and Friston,
2011).

ofMRI adds valuable new information since causal communi-
cation can be directly traced throughout the brain across multiple
synapses with global activity pattern information in vivo. For
example, if node A is excited, the downstream impact of such stim-
ulation will be visualized across the whole brain with full spatial
information. Assuming a stimulation with 1/6t Hz, 3t s duration
(where, Tt=4ms) repeated every 1 min for 20 s duration at node
A [Figure 3D; Table 1A; X(n)], one can potentially expect posi-
tive BOLD signal in all three nodes, since all three nodes will have
increased neural activity at 1/6t Hz with 3t duration at node A and
C and t duration at node B [Table 1A; Y(n)]. The amplitude of
the ofMRI-measured response at node B could be 3 times smaller
than the other nodes since it is three times less active. Alternatively,
if continuous stimulation is applied at node A for 20 s every 1 min
[Table 1B; X(n)], one can expect positive BOLD signal in only
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Table 1 | Temporal dynamics of the simplified brain circuit. X(n) and Y(n)
for an example stimulation of (A), 1/6t Hz, 3t s duration (t=4ms),
repeated every 1 min for 20's at node A, and (B), constant stimulation
repeated every 1 min for 20 s at node A. Each column represents signal
value at every time interval t.)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
A1 1 1 0 0 O0/i1 1 1 0 0 0Ji1
Xn))B| 0 0 0O 0OOOO O OO O OO
c| 0 0 0O 0O 0 0O 0 0 0O 0 O o0 O
Al 0O 1 1 1 0 0 O0/l1 1 1 0 0 O
Y(n))B| O 01 0 O O O 0O/l1 0 O 0O O
c/0 01 1 1 0 0 O0/l1 1 1 0 O
B n 0 1 2 3 4 5 6 7 8 9 10 11 12
A1 1 1 1 1 1 1 1 1 1 1 1 1
Xn))B| 0 0 0O OOO OO OO O OO
c|, 0 0 0O 0 0 0O O OO O O 0O
Al O (2 12 1 1 1 1 1 1 1 1 1 1
Y(n)B| 0 011 _ 0 O O O O O O O 0O O
c| 0 011 1 1 1 1 1

node A and C since node B will not be active except for a mere ts
at the beginning of the 20-s stimulation [Table 1B; Y(n)].

As illustrated through this simple example, temporal encod-
ing of the stimulation, in addition to the anatomical connections
and cell type, is expected to determine how activity propagates
throughout the brain. ofMRI, for the first time, offers the potential
to trace such activity throughout the whole brain with temporal
accuracy. While the exact relationship between the neural activ-
ity and the observed ofMRI signal remains elusive, initial studies
show that neural activity patterns are strongly correlated with the
ofMRI hemodynamic response function (HRF; Figure 2 in Lee
et al., 2010).

DISCUSSION

While the published study (Lee et al., 2010) shows great promise
in terms of the ofMRI technology’s capability to accurately trace
neural activity across the whole brain, further investigation on
neurovascular coupling is necessary to accurately trace neural
activity. While the causal roles of the excitatory neurons have been
investigated, causal roles of other cell types need to be further stud-
ied. In addition, triggering of any specific cell types will result in a
cascade of activity in many different cell types that are connected
to the primary neuron that is being modulated. Therefore, in order
to study the one to one relationship between specific cell types and
the resulting HRF, combinatorial approach of excitation and inhi-
bition using ChR2 and NpHR will be necessary (see Pearl, 2002 for
the use of inhibition to infer causality). For example, in order to
study the role of excitatory neurons in generating the BOLD signal
in the absence of activity in any other cell types, one can stimulate
the excitatory neurons with ChR2 while inhibiting all other cell

types using NpHR. Furthermore, ofMRI signal most likely repre-
sents a group average of neural activity since each imaging voxel is
much larger than individual neurons. Each voxel can contain both
excitation and inhibition. Therefore, investigating the relationship
between how different mixture of activity is reflected in the of MRI
signal will be of great importance.

In addition to uncovering the cell-type specific roles in gener-
ating distinct HRFs, one can also utilize the temporally accurate
control enabled by optogenetics to investigate the relationship
between temporal signaling and the corresponding HRF. Tem-
poral encoding will most likely change the local HRF as well as
the signal propagation throughout the neural network. Once the
relationship between the signaling pattern and the ofMRI signal
is revealed, ofMRI studies can be used to accurately infer the sig-
naling pattern in addition to the location of the traced activity.
While initial studies hint at the possibility of inferring such tem-
poral information, further studies to understand the relationship
with experiment designs specifically targeted to understand the
relationship will be necessary to bring this potential capability to
its full potential.

In the efforts to trace the neural activity, distinguishing activity
resulting from the first, second, and higher order connectivity is
of great interest. Due to the relatively slow time scale provided by
fMRI studies, which is on the order of seconds, activity cannot
be traced at the timescale of the neural activity. However, careful
experiment designs involving anatomical knowledge, particular
design of stimulation patterns, and the study of the resulting shape,
delay of the HRF can potentially provide valuable information.

Additional considerations that need to be taken into account
include the use of anesthesia. Initial experiments were conducted
with light isoflurane anesthesia. Anesthesia is known to have an
impact on the neural activity, its propagation and the resulting
HRE Precisely how it impacts the system and whether it is of
importance will depend on the system under investigation. While
anesthesia is likely to bring about changes in neural response,
whether the specific change impacts the conclusion of a study can
vary. Further studies utilizing different anesthesia and awake ani-
mals will be of crucial importance to fully understand the impact
of anesthesia on ofMRI signals.

Furthermore, while the initially published study demonstrates
0.5mm x 0.5 mm x 0.5 mm resolution scans covering most of the
brain volume, future technological developments can potentially
enable ofMRI at the cortical layer and sub-nucleus specific level
while covering the whole brain. Combining ofMRI approaches
with other methods including anatomical connectomics data,
modeling approach, resting-state fMRI, electrophysiological stud-
ies, optical imaging, and behavioral readouts will also be a powerful
new synergistic approach to study brain circuits.

CONCLUSION

Increasing data suggest that the brain functions as an integrated
circuit with network communication across diverse brain circuit
elements and that disorders result in network level dysfunction
of the brain (Cardin et al., 2009; Gradinaru et al., 2009; Kravitz
etal.,2010). With ofMRI, large-scale communication arising from
specifically targeted neural populations can be mapped across the
whole brain with spatial and temporal accuracy. This will add an
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important new dimension to the anatomical connectomics project
(Sporns et al., 2005) by visualizing how information propagates
through the network. ofMRI based, cell-type specific, activity-
dependent brain atlases can also provide a new angle to under-
standing the brain architecture by providing additional informa-
tion in the efforts to segment different brain regions (Hilgetag
et al,, 2000) and in understanding the relationship between the
segmented regions (Stephan et al., 2000; Honey et al., 2007).
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The Human Connectome Project (HCP) is a major endeavor that will acquire and analyze
connectivity data plus other neuroimaging, behavioral, and genetic data from 1,200 healthy
adults. It will serve as a key resource for the neuroscience research community, enabling
discoveries of how the brain is wired and how it functions in different individuals. To fulfill its
potential, the HCP consortium is developing an informatics platform that will handle: (1) storage
of primary and processed data, (2) systematic processing and analysis of the data, (3) open-
access data-sharing, and (4) mining and exploration of the data. This informatics platform wvill
include two primary components. ConnectomeDB will provide database services for storing
anddistributing the data, as well as data analysis pipelines. Connectome \Workbench will provide
visualization and exploration capabilities. The platform will be based on standard data formats
and provide an open set of application programming interfaces (APIs) that will facilitate broad
utilization of the data and integration of HCP services into a variety of external applications.
Primary and processed data generated by the HCP will be openly shared with the scientific
community, and the informatics platform will be available under an open source license. This
paper describes the HCP informatics platform as currently envisioned and places it into the
context of the overall HCP vision and agenda.

Keywords: connectomics, Human Connectome Project, XNAT, caret, resting state fMRI, diffusion imaging, network

analysis, brain parcellation

INTRODUCTION

The past decade has seen great progress in the refinement of non-
invasive neuroimaging methods for assessing long-distance con-
nections in the human brain. This has given rise to the tantalizing
prospect of systematically characterizing human brain connectivity,
i.e., mapping the connectome (Sporns et al., 2005). The eventual
elucidation of this amazingly complex wiring diagram should reveal
much about what makes us uniquely human and what makes each
person different from all others.

The NIH recently funded two consortia under the Human
Connectome Project (HCP)'. One is led by Washington University
and University of Minnesota and involves seven other institu-
tions (the “WU-Minn HCP consortium”)? The other, led by
Massachusetts General Hospital and UCLA (the MGH/UCLA HCP
consortium), focuses on building and refining a next-generation 3T
MR scanner for improved sensitivity and spatial resolution. Here,
we discuss informatics aspects of the WU-Minn HCP consortium’s
plan to map human brain circuitry in 1,200 healthy young adults
using cutting-edge non-invasive neuroimaging methods. Key
imaging modalities will include diffusion imaging, resting-state
fMRI, task-evoked fMRI, and magnetoencephalography combined

'http://humanconnectome.org/consortia/

*http://humanconnectome.org/

with electroencephalography (MEG/EEG). A battery of behavioral
and cognitive tests will also be included along with the collection
of genetic material. This endeavor will yield valuable informa-
tion about brain connectivity, its relationship to behavior, and
the contributions of genetic and environmental factors to indi-
vidual differences in brain circuitry. The data generated by the
WU-Minn HCP consortium will be openly shared with the sci-
entific community.

The HCP has a broad informatics vision that includes support
for the acquisition, analysis, visualization, mining, and sharing of
connectome-related data. As it implements this agenda, the con-
sortium seeks to engage the neuroinformatics community through
open source software, open programming interfaces, open-access
data-sharing, and standards-based development. The HCP infor-
matics approach includes three basic domains.

* Data support components include tools and services that
manage data (e.g., data uploads from scanners and other data
collection devices); execution and monitoring of quality assu-
rance, image processing, and analysis pipelines and routines;
secure long-term storage of acquired and processed data;
search services to identify and select subsets of the data; and
download mechanisms to distribute data to users around the
globe.
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+  Visualization components include a spectrum of tools to view
anatomic and functional brain data in volumetric and surface
representations and also using network and graph-theoretic
representations of the connectome.

+  Discovery components are an especially important category of
the HCP’s informatics requirements, including user interfaces
(UI) for formulating database queries, linking between related
knowledge/database systems, and exploring the relationship of
an individual’s connectome to population norms.

The HCP is expected to generate approximately 1 PB of data, which
will be made accessible via a tiered data-sharing strategy. Besides
the sheer amount of data, there will be major challenges associated
with handling the diversity of data types derived from the various
modalities of data acquisition, the complex analysis streams asso-
ciated with each modality, and the need to cope with individual
variability in brain shape as well as brain connectivity, which is
especially dramatic for cerebral cortex.

To support these needs, the HCP is developing a comprehensive
informatics platform centered on two interoperable components:
ConnectomeDB, a data management system, and Connectome
Workbench (CWB), a software suite that provides visualization
and discovery capabilities.

ConnectomeDB is based on the XNAT imaging informatics plat-
form, a widely used open source system for managing and sharing
imaging and related data (Marcus et al., 2007)*. XNAT includes an
open web services application programming interface (API) that
enables external client applications to query and exchange data with
XNAT hosts. This API will be leveraged within the HCP informatics
platform and will also help externally developed applications con-
nect to the HCP. CWB is based on Caret software, a visualization
and analysis platform that handles structural and functional data
represented on surfaces and volumes and on individuals and atlases
(Van Essen et al., 2001). The HCP also benefits from a variety of
processing and analysis software tools, including FreeSurfer, FSL,
and FieldTrip.

Here, we provide a brief overview of the HCP, then describe
the HCP informatics platform in some detail. We also provide a
sampling of the types of scientific exploration and discovery that
it will enable.

OVERVIEW OF THE HUMAN CONNECTOME PROJECT
INFERRING LONG-DISTANCE CONNECTIVITY FROM /N VIVOIMAGING
The two primary modalities for acquiring information about
human brain connectivity in vivo are diffusion imaging (dMRI),
which provides information about structural connectivity, and
resting-state functional MRI (R-fRMI), which provides informa-
tion about functional connectivity. The two approaches are comple-
mentary, and each is very promising. However, each has significant
limitations that warrant brief comment.

Diffusion imaging relies on anisotropies in water diffusion to
determine the orientation of fiber bundles within white matter.
Using High Angular Resolution Diffusion Imaging (HARDI), mul-
tiple fiber orientations can be identified within individual voxels.
This enables tracking of connections even in regions where multiple

*http://www.xnat.org

fiber bundles cross one another. Probabilistic tractography inte-
grates information throughout the white matter and can reveal
detailed information about long-distance connectivity patterns
between gray-matter regions (Johansen-Berg and Behrens, 2009;
Johansen-Berg and Rushworth, 2009). However, uncertainties aris-
ing at different levels of analysis can lead to both false positives
and false negatives in tracking connections. Hence, it is impor-
tant to continue refining the methods for dMRI data acquisition
and analysis.

R-fMRI is based on spatial correlations of the slow fluctuations
in the BOLD fMRI signal that occur at rest or even under anesthesia
(Fox and Raichle, 2007). Studies in the macaque monkey demon-
strate that R-fMRI correlations tend to be strong for regions known
to be anatomically interconnected, but that correlations can also
occur between regions that are linked only indirectly (Vincent et al.,
2007). Thus, while functional connectivity maps are not a pure
indicator of anatomical connectivity, they represent an invaluable
measure that is highly complementary to dMRI and tractography,
especially when acquired in the same subjects.

The HCP will carry out a “macro-connectome” analysis of long-
distance connections at a spatial resolution of 1-2 mm. At this scale,
each gray-matter voxel contains hundreds of thousands of neurons and
hundreds of millions of synapses. Complementary efforts to chart the
“micro-connectome” at the level of cells, dendrites, axons, and synapses
aspire to reconstruct domains up to a cubic millimeter (Briggman and
Denk, 2006; Lichtman et al., 2008), so that the macro-connectome and
micro-connectome domains will barely overlap in their spatial scales.

A TWO-PHASE HCP EFFORT

Phase I of the 5-year WU-Minn HCP consortium grant is focused
on additional refinements and optimization of data acquisition
and analysis stages and on implementing a robust informatics plat-
form. Phase I, from mid-2012 through mid-2015, will involve data
acquisition from the main cohort of 1,200 subjects as well as con-
tinued refinement of the informatics platform and some analysis
methods. This section summarizes key HCP methods relevant to
the informatics effort and describes some of the progress already
made toward Phase I objectives. A more detailed description of our
plans will be published elsewhere.

SUBJECT COHORT

We plan to study 1,200 subjects (300 healthy twin pairs and available
siblings) between the ages of 22 and 35. This design, coupled with
collection of subjects’ DNA, will yield invaluable information about
(i) the degree of heritability associated with specific components
of the human brain connectome; and (ii) associations of specific
genetic variants with these components in healthy adults. It will
also enable genome-wide testing for additional associations (e.g.,
Visscher and Montgomery, 2009).

IMAGING

All 1,200 subjects will be scanned at Washington University on
a dedicated 3 Tesla (3T) Siemens Skyra scanner. The scanner
will be customized to provide a maximum gradient strength
of ~100 mT/m, more than twice the standard 40 mT/m for
the Skyra. A subset of 200 subjects will also be scanned at the
University of Minnesota using a new 7T scanner, which is
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expected to provide improved signal-to-noise ratio and better
spatial resolution, but is less well established for routine, high-
throughput studies. Some subjects may also be scanned on a
10.5 T scanner currently under development at the University
of Minnesota. Having higher-field scans of individuals also
scanned at 3T will let us use the higher-resolution data to con-
strain and better interpret the 3T data.

Each subject will have multiple MR scans, including HARDI,
R-fMRI (Resting-state fMRI), T-fMRI (task-evoked fMRI), and
standard T1-weighted and T2-weighted anatomical scans. Advances
in pulse sequences are planned in order to obtain the highest reso-
lution and quality of data possible in a reasonable period of time.
Already, new pulse sequences have been developed that accelerate
image acquisition time (TR) by sevenfold while maintaining or
even improving the signal-to-noise ratio (Feinberg et al., 2010).
The faster temporal resolution for both R-fMRI and T-fMRI made
possible by these advances will increase the amount of data acquired
for each subject and increase the HCP data storage requirements, a
point that exemplifies the many interdependencies among various
HCP project components.

Task-fMRI scans will include a range of tasks aimed at providing
broad coverage of the brain and identifying as many functionally
distinct parcels as possible. The results will aid in validating and
interpreting the results of the connectivity analyses obtained using
resting-state fMRI and diffusion imaging. These “functional local-
izer” tasks will include measures of primary sensory processes (e.g.,
vision, motor function) and a wide range of cognitive and affective
processes, including stimulus category representations, working
memory, episodic memory, language processing, emotion process-
ing, decision-making, reward processing and social cognition. The
specific tasks to be included are currently being piloted; final task
selection will be based on multiple criteria, including sensitivity,
reliability and brain coverage.

A subset of 100 subjects will also be studied with combined
MEG/EEG, which provides vastly better temporal resolution
(milliseconds instead of seconds) but lower spatial resolution than
MR (between 1 and 4 cm). Mapping MEG/EEG data to cortical
sources will enable electrical activity patterns among neural popula-
tions to be characterized as functions of both time and frequency.
As with the fMRI, MEG/EEG will include both resting-state and
task-evoked acquisitions. The behavioral tasks will be a matched
subset of the tasks used in fMRI. The MEG/EEG scans, to will
be acquired at St. Louis University using a Magnes 3600 MEG
(4DNeuroimaging, San Diego, CA, USA) with 248 magnetometers,
23 MEG reference channels (5 gradiometer, and 18 magnetom-
eter) and 64 EEG voltage channels. This data will be analyzed in
both sensor space and using state-of-the-art source localization
methods (Wipf and Nagarajan, 2009; Ou et al., 2010) and using
subject specific head models derived from anatomic MRI. Analyses
of band-limited power (BLP) will provide measures that reflect the
frequency-dependent dynamics of resting and task-evoked brain
activity (de Pasquale et al., 2010; Scheeringa et al., 2011).

BEHAVIORAL, GENETIC, AND OTHER NON-IMAGING MEASURES

Measuring behavior in conjunction with mapping of structural and
functional networks in HCP subjects will enable the analysis of the
functional correlates of variations in “typical” brain connectivity

and function. It will also provide a starting point for future stud-
ies that examine how abnormalities in structural and functional
connectivity play a role in neurological and psychiatric disorders.

The HCP will use a battery of reliable and well-validated meas-
ures that assess a wide range of human functions, including cogni-
tion, emotion, motor and sensory processes, and personality. The
core of this battery will be from the NIH Toolbox for Assessment
of Neurological and Behavioral function®. This will enable federa-
tion of HCP data with other large-scale efforts to acquire neu-
roimaging and behavioral data and will facilitate comparison of
brain-behavior relationships across studies (Gershon et al., 2010).
Additional tests that are currently being piloted will be drawn from
other sources.

GENETIC ANALYSES

Blood samples collected from each subject during their visit
will be sent to the Rutgers University Cell and DNA Repository
(RUCDR), where cell lines will be created and DNA will be
extracted. Genetic analysis will be conducted in early 2015, after
all Phase I subjects have completed in-person testing. Performing
the genotyping in the later stages of the project will allow the
HCP to take advantage of future developments in this rapidly
advancing field, including the availability of new sequencing
technologies and decreased costs of whole-genome sequencing.
Genetic data and de-identified demographic and phenotype data
will be entered into the dbGAP database in accordance with NIH
data-sharing policies. Summary data look-up by genotype will be
possible via ConnectomeDB.

STUDY WORKFLOW

The collection of this broad range of data types from multiple
family groups will necessitate careful coordination of the various
tests during in-person visits. Figure 1 illustrates the data collection
workflow planned for the high-throughput phase of the HCP. All
1,200 subjects in the main cohort will be scanned at Washington
University on the dedicated 3T scanner. A subset of 200 subjects
(100 same-sex twin pairs, 50% monozygotic) will also be scanned
at University of Minnesota using 7T MRI (HARDI, R-fMRI, and
T-fMRI) and possibly also 10.5 T. Another subset of 100 (50
same-sex twin pairs, all monozygotic) will be scanned at St. Louis
University (SLU) using MEG/EEG. Many data management and
quality control (QC) steps will be taken to maximize the quality
and reliability of these datasets (see Data Workflow and Quality
Control sections).

THE HCP INFORMATICS APPROACH

Our HCP informatics approach includes components related to
data support and visualization. The Section “Data Support” dis-
cusses key data types and representations plus aspects of data pro-
cessing pipelines that have major informatics implications. This
leads to a discussion of ConnectomeDB and the computational
resources and infrastructure needed to support it, as well as our
data-sharing plans. The Section “Visualization” describes CWB
and its interoperability with ConnectomeDB. These sections also
include examples of potential exploratory uses of HCP data.

‘www.nihtoolbox.org

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 4 | 110


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Marcus et al.

HCP informatics

,i\ SlBSH.IP* f_@___
o o //——:i\

INTAKE & li |

RE-CONSENT
(1HR)

PIPELINE

FIGURE 1 | HCP subject workflow.

RECRUITING &
SCHEDULING

NEUROSCREEN

3T SCANS
(2x2 HR)

BEHAVIOR
(3 HR)

DATA QC
[J

BLOOD &

(THR)

DATA SUPPORT

Data types

Volumes, surfaces, and representations. MR images are acquired
in a 3-D space of regularly spaced voxels, but the geometric rep-
resentations useful for subsequent processing depend upon brain
structure. Subcortical structures are best processed in standard
volumetric (voxel) coordinates. The complex convolutions of the
cortical sheet make it advantageous for many purposes to model
the cortex using explicit surface representations — a set of vertices
topologically linked into a 2D mesh for each hemisphere. However,
for other purposes it remains useful to analyze and visualize cortical
structures in volume space. Hence, the HCP will support both volu-
metric and surface representations for analysis and visualization.

For some connectivity data types, it is useful to represent sub-
cortical volumetric coordinates and cortical surface vertices in a
single file. This motivates introduction of a geometry-independent
terminology. Specifically, a “brainordinate” (brain coordinate) is a
spatial location within the brain that can be either a voxel (3, j, k
integer values) or a surface vertex (x, y, z real-valued coordinates
and a “node number”); a “grayordinate” is a voxel or vertex within
gray matter (cortical or subcortical); a “whiteordinate” is a voxel
within white matter or a vertex on the white matter surface. These
terms (brainordinate, grayordinate, and whiteordinate) are espe-
cially useful in relation to the CIFTI data files described in the
next paragraph.

When feasible, the HCP will use standard NIFTI-1 (volumetric)
and GIFTI (surfaces) formats. Primary diffusion imaging data will
be stored using the format MiND recently developed by Patel et al.
(2010). By conforming to these existing formats, datasets gener-
ated using one software platform can be read by other platforms
without the need to invoke file conversion utilities. Several types
of connectivity-related data will exceed the size limits supported
by NIFTI-1 and GIFTI and will instead use the recently adopted
NIFTI-2 format®. NIFTI-2 is similar to NIFTI-1, but has dimension
indices increased from 16-bit to 64-bit integers, which will be use-
ful for multiple purposes and platforms. For the HCP, connectivity

*http://www.nitrc.org/forum/message.php?msg_id = 3738

or time-series values will be stored in the binary portion of the
NIFTI-2 format. Datasets whose brainordinates include both vox-
els and surface vertices pose special metadata requirements that
are being addressed for the HCP and for other software platforms
by a “CIFTI” working group (with “C” indicating connectivity).
A description of CIFTI data types including example file formats
has been reviewed by domain experts and is available for pub-
lic comment®. CIFTTI file formats will support metadata that map
matrix rows and columns to brainordinates, parcels (see below),
and/or time points, in conformance with NIFTI conventions for
header extensions.

Individuals, atlases, and registration. The anatomical substrates
on which HCP data are analyzed and visualized will include individ-
ual subjects as well as atlases. In general, quantitative comparisons
across multiple subjects require registering data from individuals
to an atlas. Maximizing the quality of inter-subject registration
(alignment) is a high priority but also a major challenge. This is
especially the case for cerebral cortex, owing to the complexity
and variability of its convolutions. Several registration methods
and atlases are under consideration for the HCP, including popu-
lation-average volumes and population-average cortical surfaces
based on registration of surface features. Major improvements in
inter-subject alignment may be attainable by invoking constraints
related to function, architecture, and connectivity, especially for
cerebral cortex (e.g., Petrovic etal., 2007; Sabuncu et al., 2010). This
is important for the HCP informatics effort, insofar as improved
atlas representations that emerge in Phase II may warrant support
by the HCP.

Parcellations. The brain can be subdivided into many subcorti-
cal nuclei and cortical areas (“parcels”), each sharing common
characteristics based on architectonics, connectivity, topographic
organization, and/or function. Expression of connectivity data
as a matrix of connection weights between parcels will enable
data to be stored very compactly and transmitted rapidly. Also,

‘http://www.nitrc.org/projects/cifti
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graph-theoretic network analyses (see below) will be more tractable
and biologically meaningful on parcellated data. However, this will
place a premium on the fidelity of the parcellation schemes. Data
from the HCP should greatly improve the accuracy with which the
brain can be subdivided, but over a time frame that will extend
throughout Phase II. Hence, just as for atlases, improved parcel-
lations that emerge in Phase IT may warrant support by the HCP.

Networks and modularity. Brain parcels can often be grouped
into spatially distributed networks and subnetworks that subserve
distinct functions. These can be analyzed using graph-theoretic
approaches that model networks as nodes connected by edges
(Sporns, 2010). In the context of HCP, graph nodes can be brain-
ordinates or parcels, and edges can be R-fMRI correlations (full
correlations or various types of partial correlations), tractography-
based estimates of connection probability or strength, or other
measures of relationships between the nodes. The HCP will use
several categories of network-related measures, including meas-
ures of segregation such as clustering and modularity (Newman,
2006); measures of integration, including path length and global
efficiency; and measures of influence to identify subsets of nodes
and edges central to the network architecture such as hubs or
bridges (Rubinov and Sporns, 2010).

Processing pipelines and analysis streams. Generation of the
various data types for each of the major imaging modalities will
require extensive processing and analysis. Each analysis stream
needs to be carried out in a systematic and well-documented way.
For each modality, a goal is to settle on customized processing
streams that yield the highest-quality and most informative types
of data. During Phase I, this will include systematic evaluation of
different pipelines and analysis strategies applied to the same sets
of preliminary data. Minimally processed versions for each data
modality will also remain available, which will enable investigators
to explore alternative processing and analysis approaches.

ConnectomeDB

XNAT foundation. ConnectomeDB is being developed as a custom-
ized version of the XNAT imaging informatics platform (Marcus
et al., 2007). XNAT is a highly extensible, open source system for
receiving, archiving, managing, processing, and sharing both imag-
ing and non-imaging study data. XNAT includes five services that
are critical for ConnectomeDB operations. The DICOM Service
receives and stores data from DICOM devices (scanners or gate-
ways), imports relevant metadata from DICOM tags to the data-
base, anonymizes sensitive information in the DICOM files, and
converts the images to NIFTI formatted files. The Pipeline Service
for defining and executing automated and semi-automated image
processing procedures allows computationally intensive process-
ing and analysis jobs to be offloaded to compute clusters while
managing, monitoring and reporting on the execution status of
these jobs through its application interface. The Quality Control
Service enables both manual and automated review of images and
subsequent markup of specific characteristics (e.g., motion arti-
facts, head positioning, signal to noise ratio) and overall usability
of individual scans and full imaging sessions. The Data Service
allows study data to be incorporated into the database. The default

data model includes a standard experiment hierarchy, including
projects, subjects, visits, and experiments. On top of this basic
hierarchy, specific data type extensions can be added to represent
specific data, including imaging modalities, derived imaging meas-
ures, behavioral tests, and genetics information. The Data Service
provides mechanisms for incorporating these extensions into the
XNAT infrastructure, including the database backend, middleware
data access objects, and frontend reports and data entry forms.
Finally, the Search Service allows complex queries to be executed
on the database.

All of XNATs services are accessible via an open web services API
that follows the REpresentational State Transfer (REST) approach
(Fielding, 2000). By utilizing the richness of the HTTP protocol,
REST web services allow requests between client and server to be
specified using browser-like URLs. The REST API provides specific
URLSs to create, access, and modify every resource under XNAT’s
management. The URL structures follow the organizational hier-
archy of XNAT data, making it intuitive to navigate the API either
manually (rarely) or programmatically. HCP will use this API for
interactions between ConnectomeDB and CWB, for importing data
into and out of processing pipelines, and as a conduit between
external software applications and HCP datasets. External libraries
and tools that can interact with the XNAT API include pyxnat —a
Python library for interfacing with XNAT repositories’; 3D Slicer —
an advanced image visualization and analysis environment®; and
LONI Pipeline — a GUI-based pipelining environment®.

AP] extensions. The HCP is developing additional services to sup-
port connectome-related queries. A primary initial focus is on
a service that enables spatial queries on connectivity measures.
This service will calculate and return a connectivity map or a
task-evoked activation map based on specified spatial, subject, and
calculation parameters. The spatial parameter will allow queries to
specify the spatial domain to include in the calculation. Examples
include a single brainordinate (see above), a cortical or subcorti-
cal parcel, or some other region of interest (collection of brain-
ordinates). This type of search will benefit from registering each
subject’s data onto a standard surface mesh and subcortical atlas
parcellation. The subject parameter will allow queries to specify the
subject or subject groups to include in the calculation examples
including an individual subject ID, one or more lists of subject IDs,
subject characteristics (e.g., subjects with IQ > 120, subjects with
a particular genotype at a particular genetic locus), and contrasts
(e.g., subjects with IQ > 110 vs. subjects with IQ < 90). Finally,
the calculation parameter will allow queries to specify the specific
connectivity or task-evoked activation measure to calculate and
return. Basic connectivity measures will include those based on
resting-state fMRI (functional connectivity) and diffusion imag-
ing (structural connectivity). Depending on the included subject
parameter, the output connectivity measure might be the indi-
vidual connectivity maps for a specific subject, the average map
for a group of subjects, or the average difference map between
two groups. When needed, the requested connectivity information

"http://packages.python.org/pyxnat/
*http://slicer.org

*http://www.loni.ucla.edu
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(e.g., average difference maps) will be dynamically generated. Task-
evoked activation measures will include key contrasts for each
task and options to they view activation maps for a particular task
in a specific subject, the average map for a group of subjects, or
comparing two groups.

Importantly, connectivity results will be accessible either as dense
connectivity maps, which will have fine spatial resolution but will
be slower to compute and transmit, or as parcellated connectivity
maps, which will be faster to process and in some situations may be
pre-computed. Additional features that are planned include options
to access time courses for R-fMRI data, fiber trajectories for structural
connectivity data, and individual subject design files and time courses
for T-fMRI data. Other approaches such as regression analysis will
also be supported. For example, this may include options to deter-
mine the correlation between features of particular pathways or net-
works and particular behavioral measures (e.g., working memory).

When a spatial query is submitted, ConnectomeDB will parse
the parameters, search the database to identify the appropriate
subjects, retrieve the necessary files from its file store, and then
execute the necessary calculations. By executing these queries on
the database server and its associated computing cluster, only the
final connectivity or activation map will need to be transferred back
to the user. While this approach increases the computing demands
on the HCP infrastructure, it will dramatically reduce the amount
of data that needs to be transferred over the network. CWB will be
a primary consumer of this service, but as with all services in the
ConnectomeDB AP]J, it will be accessible to other external clients,
including other visualization environments and related databases.

User interface. The ConnectomeDB UI is being custom devel-
oped using dynamic web technologies (HTML 5, Javascript, Ajax;
Figure 2). Building on advanced web technologies has several
advantages, including streamlined access to remote data, high levels

of dynamic user interaction, and portability across client systems
(browsers, desktop applications, mobile devices). The interface will
include two main tracks. The Download track emphasizes rapid
identification of data of interest and subsequent download. The
most straightforward downloads will be pre-packaged bundles,
containing high interest content from each quarterly data release
(see Data-Sharing below). Alternatively, browsing and search
interfaces will allow users to select individual subjects and sub-
jects groups by one or more demographic, genetic, or behavioral
criteria. The Visualization & Discoverytrack will include an embed-
ded version of CWB, which will allow users to explore connectivity
data on a rendered 3D surface (see Visualization below). Using a
faceted search interface, users will build subject groups that are
dynamically rendered by CWB.

High-throughput informatics

The HCP informatics platform will support high-throughput data
collection and open-access data-sharing. Data collection require-
ments include uploading acquired data from multiple devices
and study sites, enforcing rigorous QC procedures, and executing
standardized image processing. Data-sharing requirements include
supporting world-wide download of very large data sets and high
volumes of API service requests. The overall computing and data-
base strategy for supporting these requirements is illustrated in
Figure 3 and detailed below.

Computing infrastructure. The HCP computing infrastructure
(Table 1) includes two complementary systems, an elastically
expandable virtual cluster and a high performance computing sys-
tem (HPCS). The virtual cluster has a pool of general purpose serv-
ers managed by VMW are ESXi. Specific virtual machines (VMs)
for web servers, database servers, and compute nodes are allocated
from the VMW are cluster and can be dynamically provisioned to
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and Workbench view are fed by ConnectomeDB's open API. (Right) This
mockup of the Download track illustrates the track’s emphasis on guiding
users quickly to standard download packages and navigation to

specific data.
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PostgreSQL database for storage of non-imaging data, imaging session packages.

Table 1 |The HCP computing infrastructure.

Component Device

Notes

2 Dell PowerEdge R610s managed byVMWare
ESXi
VMs running Tomcat 6.0.29 and XNAT 1.5

Virtual cluster
Web servers
Database servers

VMs running Postgres 9.0.3.

VMs running Sun Grid Engine-based queuing.
Scale-out NAS (Vendor TBD)

Compute Cluster

Data storage

Load balancing Kemp Technologies LoadMaster 2600

HPCS IBM system in WU's CHPC

DICOM gateway Shuttle XS35-704 Intel Atom D510

Elastic computing Partner institutions, cloud computing

and storage

Additional nodes will be added in years 3 and 5. Dynamically expandable
using NIAC cluster.

Load-balanced web servers host XNAT system and handle all APl requests.
Monitored by Pingdom and Google Analytics.

Postgres 9 is run in synchronous multi-master replication mode, enabling
high availability and load balancing.

Executes pipelines and on-the-fly computations that require short latencies.
Planned 1 PB capacity will include tiered storage pools and 10Gb
connectivity to cluster and HPCS.

Distributes web traffic across multiple servers and provides hardware-
accelerated SSL encryption

The HPC will execute computationally intensive processing including
“standard” pipelines and usersubmitted jobs.

The gateway uses CTP to manage secure transmission of scans from
UMinn scanner to ConnectomeDB.

Mirror data sites will ease bottlenecks during peak traffic periods. Elastic
computing strategies will automatically detect stress on compute cluster
and recruit additional resources.

The web servers, database servers, and compute cluster are jointly managed as a single VMware ESXi cluster for efficient resource utilization and high availability.
The underlying servers each include 48-GB memory and dual 6-core processors. Each node in the VMware cluster is redundantly tied back in to the storage system
for VM storage. All nodes run 64-bit CentOS 5.5. The HPCS includes an iDataPlex cluster (168 nodes with dual quad core Nehalem processors and 24-GB RAM), an
e1350 cluster (7 SMP servers, each with 64 cores and 256-GB RAM), a 288-port Qlogic Infiniband switch to interconnect all processors and storage nodes, and 9TB
of high-speed storage. Connectivity to the system is provided by a 4 x 10 Gb research network backbone.

match changing load conditions. Construction of the VMs is man-
aged by Puppet (Puppet Labs), a systems management platform that
enables IT staff to manage and deploy standard system configura-
tions. The initial Phase 1 cluster includes 4 6-core physical CPUs
that will be expanded in project years 3 and 5. We will partner with
the WU Neuroimaging Informatics and Analysis Center (NIAC),
which runs a similar virtual cluster, to dynamically expand the

HCP’s capacity during peak load. During extremely high load, we
may also utilize commercial cloud computing services to elastically
expand the cluster’s computing capacity.

To support the project’s most demanding processing streams,
we have partnered with the WU Center for High Performance
Computing (CHPC), which operates an IBM HPCS that com-
menced operating in 2010. Pipelines developed for the HCP greatly
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benefit from the ability to run in parallel across subjects and take
advantage of the vast amount of memory available in the HPCS
nodes. Already, several neuroimaging packages including FreeSurfer,
FSL, and Caret have been installed on the platform and are in active
use by the HCP. The system utilizes a MOAB/TORQUE scheduling
system that manages job priority. While the CHPC’s HPCS is a
shared resource openly available to the University’s research com-
munity, the HCP will have assured priority on the system to ensure
that the project has sufficient resources to achieve its goals.

The two HCP computing systems are complementary in that the
virtual cluster provides rapid response times and can be dynami-
cally expanded to match load. The HPCS, on the other hand, has
large computing power but is a shared resource that queues jobs.
The virtual cluster is therefore best for on-the-fly computing, such
as is required to support web services, while the HPCS is best for
computationally intensive pipelines that are less time sensitive.

The total volume of data produced by the HCP will likely be
multiple petabytes (1 petabyte = 1,000,000 gigabytes). We are cur-
rently evaluating data storage solutions that handle data at this scale
to determine the best price/performance ratio for the HCP. Based
on preliminary analyses, we are expecting to deploy 1 PB of stor-
age, which will require significant compromises in deciding which
of the many data types generated will be preserved. Datasets to be
stored permanently will include primary data plus the outputs of
key pre-processing and analysis stages. These will be selected on the
basis of their expected utility to the community and on the time
that would be needed to recompute or regenerate intermediate
processing results.

A driving consideration in selecting a storage solution is close
integration with the HPCS. Four 10-Gb network connections
between the two systems will enable high-speed data transmis-
sion, which will put serious strain on the storage device. Given
these connections and the HPCS’s architecture, at peak usage, the
storage system will need to be able to sustain up to 200,000 input/
output operations per second, a benchmark achievable by a number
of available scale-out NAS (Network Attached Storage) systems. To
meet this benchmark, we expect to design a system that includes
tiered storage pools with dynamic migration between tiers.

In addition to this core storage system, we are also planning for
backup, disaster recovery, and mirror sites. Given the scale of the
data, it will be impossible to backup all of the data, so we will prior-
itize data that could not be regenerated, including the raw acquired
data and processed data that requires significant computing time.
We will utilize both near-line backups for highest priority data and
offsite storage for catastrophic disaster recovery. As described below,
our data-sharing plan includes quarterly data releases throughout
Phase 2. To reduce bottlenecks during peak periods after these
releases, we aim to mirror the current release on academic partner
sites and commercial cloud systems. We are also exploring distri-
bution through the BitTorrent model (Langille and Eisen, 2010).

Data workflow. All data acquired within the HCP will be uploaded
or entered directly into ConnectomeDB. ConnectomeDB itself
includes two separate database systems. Initially, data are entered
into an internal-facing system that is accessible only to a small
group of HCP operations staff who are responsible for review-
ing data quality and project workflow. Once data pass quality

review, they will be de-identified, including removal of sensitive
fields from the DICOM headers and obscuring facial features in
the high-resolution anatomic scans, transferred to a public-facing
database, and shared with the public according to the data-sharing
plan described below. All processing and analysis pipelines will be
executed on the public-facing system so that these operations are
performed on de-identified data only.

MRI data acquired at Washington University will be uploaded
directly from the scanner to ConnectomeDB over the DICOM
protocol on a secure private network. MRI data acquired at the
University of Minnesota will be sent from the scanners to an on-site
DICOM gateway configured with RSNA’s Clinical Trial Processor
(CTP) software. The CTP appliance will receive the data over
the DICOM protocol, which is non-encrypted, and relay it to
ConnectomeDB over the secure HTTPS protocol. Once the data
have been uploaded, several actions will be triggered. First, XNAT’s
DICOM service will import metadata from the DICOM header
fields into the database and places the files into its file repository.
Next, a notification will be sent to HCP imaging staff to complete
manual inspection of the data. Finally, a series of pipelines will
be executed to generate sequence-specific automated QC metrics
with flags to the HCP imaging staff regarding problematic data,
and to validate metadata fields for protocol compliance. We aim to
complete both manual and automated QA within 1 h of acquisi-
tion, which will enable re-scanning of individuals while they are
still on-site.

MEG/EEG data will be uploaded to ConnectomeDB via a dedi-
cated web form in native 4D format that will insure de-identifi-
cation and secure transport via https. QC procedures will ensure
proper linkage to other information via study specific subject IDs.
EEG data will be converted to European Data format (EDF)' while
MEG data will remain in source format.

Demographic and behavioral data will be entered into
ConnectomeDB, either through import mechanisms or direct data
entry. Most of the behavioral data will be acquired on the NIH
Toolbox testing system, which includes its own database. Scripts
are being developed to extract the test results from the Toolbox
database and upload them into ConnectomeDB via XML docu-
ments. Additional connectome-specific forms will be developed
for direct web-based entry into ConnectomeDB, via desktop or
tablet computers.

Quality control. Initial QC of imaging data will be performed
by the technician during acquisition of the data by reviewing the
images at the scanner console. Obviously flawed data will be imme-
diately reacquired within the scan session. Once imaging studies
have been uploaded to the internal ConnectomeDB, several QC
and pre-processing procedures will be triggered and are expected
to be completed within an hour, as discussed above. First, the scans
will be manually inspected in more detail by trained technicians.
The manual review process will use a similar procedure as that
used by the Alzheimer’s Disease Neuroimaging Initiative, which
includes evaluation of head positioning, susceptibility artifacts,
motion, and other acquisition anomalies along a 4-point scale
(Jack et al., 2008). Specific extensions will be implemented for

http://www.edfplus.info/
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BOLD and diffusion imaging. Second, automated programs will
be run to assess image quality. Specific quality metrics are cur-
rently being developed for each of the HCP imaging modalities
and behavioral paradigms. The resulting metrics will be com-
pared with the distribution of values from previous acquisitions
to determine whether each is within an expected range. During
the initial months of data acquisition, the number of HCP scans
contributing to these norm values will be limited, so we will seed
the database with values extracted from data obtained in similar
studies and during the pilot phase. As the study database expands,
more sophisticated approaches will become available, including
metrics specific for individual fMRI tasks (which may vary in the
amount of head motion). Specific QC criteria for each metric will
be developed during Phase I.

Data quality will be recorded in the database at the imaging
session level and for each scan within the session. The database
will include a binary pass/fail determination as well as fields for the
aforementioned manual review criteria and the automated numeric
QC metrics. Given the complexity and volume of image data being
acquired in the HCP protocol, we anticipate that individual scans
within each imaging visit will vary in quality. A single fMRI run, for
example, might include an unacceptable level of motion, whereas
other scans for that subject are acceptable in quality. In such cases,
data re-acquisition is unlikely. The appropriate strategy for han-
dling missing datasets will be dependent on exactly which data
are absent.

Pipeline execution. The various processing streams described
above are complex and computationally demanding. In order to
ensure that they are run consistently and efficiently across all sub-
jects, we will utilize XNAT’s pipeline service to execute and monitor
the processing. XNAT’s pipeline approach uses XML documents
to formally define the sequence of steps in a processing stream,
including the executable, execution parameters, and input data.
As a pipeline executes, the pipeline service monitors its execution
and updates its status in the database. When a pipeline exits, noti-
fications will be sent to HCP staff to review the results, following
pipeline-specific QC procedures similar to those used to review
the raw data. Pipelines that require short latency (such as those

associated with initial QC) will be executed on the HCP cluster,
while those that are more computationally demanding but less time
sensitive will be executed on the HPCS.

Provenance. Given the complexity of the data analysis streams
described above, it will be crucial to keep accurate track of the
history of processing steps for each generated file. Provenance
records will be generated at two levels. First, a record of the com-
putational steps executed to generate an image or connectivity map
will be embedded within a NIFTI header extension. This record
will contain sufficient detail that the image could be regenerated
from the included information. Second, higher level metadata,
such as pipeline version and execution date, will be written into
an XCEDE-formatted XML document (Gadde et al., 2011) and
imported into ConnectomeDB. This information will be used to
maintain database organization as pipelines develop over time.

Data-sharing. The majority of the data collected and stored by the
HCP will be openly shared using the open-access model recom-
mended by the Science Commons'’. The only data that will be with-
held from open access are those that could identify individual study
participants, which will be made available only for group analyses
submitted through ConnectomeDB. Data will be distributed in a
rolling fashion through quarterly releases over the course of Phase
2. Data will be released in standard formats, including DICOM,
NIFTIL, GIFTL and CIFTI.

Given the scope and scale of the datasets, our aim of open and
rapid data-sharing represents a significant challenge. To address this
challenge, the HCP will use a tiered distribution strategy (Figure 4).
The first tier includes dynamic access to condensed representations
of connectivity maps and related data. The second distribution tier
will allow users to download bundled subsets of the data. These
bundles will be configured to be of high scientific value while still
being small enough to download within a reasonable time. A third
tier will allow users to request a portable hard drive populated by a
more extensive bundle of HCP data. Finally, users needing access
to extremely large datasets that are impractical to distribute will be

http://sciencecommons.org/projects/publishing/open-access-data-protocol/
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able to obtain direct access to the HPCS to execute their computing
tasks. This raises issues of prioritization, cost recovery, and user
qualification that have yet to be addressed.

Some of the data acquired by the HCP could potentially be used
to identify the study participants. We will take several steps to miti-
gate this risk. As mentioned above, sensitive DICOM header fields
will be redacted and facial features in the images will be obscured.
Second, the precision of sensitive data fields will be reduced in the
open-access data set, in some cases binning numeric fields into
categories. Finally, we will develop web services that will enable
users to submit group-wise analyses that would operate on sensitive
genetic data without providing users with direct access to individual
subject data. For example, users could request connectivity differ-
ence maps of subjects carrying the ApoE4 allele versus ApoE2/3.
The resulting group-wise data would be scientifically useful while
preventing individual subject exposure. This approach requires care
to ensure that requested groups are of sufficient size and the number
of overall queries is constrained to prevent computationally driven
approaches from extracting individual subject information.

VISUALIZATION

The complexity and diversity of connectivity-related data types
described above result in extensive visualization needs for the HCP.
To address these needs, CWB, developed on top of Caret software
(Van Essen et al., 2001)" will include both browser and desktop
versions. The browser-based version will allow users to quickly
view data from ConnectomeDB, while the desktop version will
allow users to carry out more demanding visualization and analysis
steps on downloaded data.

Connectome Workbench

Connectome Workbench is based on Caret6, a prototype Java-
based version of Caret, and will run on recent versions of Linux,
Mac OS X, and Windows. It will use many standard Caret features
for visualizing data on surfaces and volumes. This includes multi-
ple viewing windows and many display options. Major visualiza-
tion options will include (i) data overlaid on surfaces or volume
slices in solid colors to display parcels and other regions of interest
(ROIs), (ii) continuous scalar variables to display fMRI data, shape
features, connectivity strengths, etc., each using an appropriate pal-
ette; (iii) contours projected to the surface to delineate boundaries
of cortical areas and other ROIs, (iv) foci that represent centers of
various ROIs projected to the surface; and (v) tractography data
represented by needle-like representations of fiber orientations
in each voxel.

A “connectivity selector” option will load functional and struc-
tural connectivity data from the appropriate connectivity matrix
file (dense or parcellated) and display it on the user-selected surface
and/or volume representations (e.g., as in Figure 2). Because dense
connectivity files will be too large and slow to load in their entirety,
connectivity data will be read in from disk by random access when
the user requests a connectivity map for a particular brainordinate
or patch of brainordinates. For functional connectivity data, it may
be feasible to use the more compact time-series datasets and to calcu-
late on the fly the correlation coefficients representing connectivity.

http://brainvis.wustl.edu/wiki/index.php/Caret:About

Figure 5 illustrates how CWB allows concurrent visualization
of multiple brain structures (left and right cerebral hemispheres
plus the cerebellum) in a single window. Subcortical structures
will be viewable concurrently with surfaces or as volume slices in
separate windows.

Connectome Workbench will include options to display
the results of various network analyses. For example, this may
include concurrent visualization of network nodes in their 3D
location in the brain as well as in a spring-embedded network,
where node position reflects the strength and pattern of con-
nectivity. The connection strength of graph edges will be rep-
resented using options of thresholding, color, and/or thickness.
As additional methods are developed for displaying complex
connectivity patterns among hundreds of nodes, the most useful
of these will be incorporated either directly into CWB or via
third party software.

Both the dense time-series and the parcellated time-series files
provide temporal information related to brain activity. A visualiza-
tion mode that plays “movies” by sequencing through and display-
ing each of the timepoints will be implemented. Options to view
results of Task-fMRI paradigms will include both surface-based
and volume-based visualization of individual and group-average
data. Given that Task-fMRI time courses can vary significantly
across regions (e.g., Nelson et al., 2010), options will also be avail-
able to view the average time course for any selected parcel or
other ROL

MEG and EEG data collected as part of the HCP will entail addi-
tional visualization requirements. This will include visualization in
both sensor space (outside the skull) and after source localization to
cortical parcels whose size respects the attainable spatial resolution.
Representations of time course data will include results of power
spectrum and BLP analyses.

FIGURE 5 | Connectome Workbench visualization of the inflated atlas
surfaces for the left and right cerebral hemispheres plus the cerebellum.
Probabilistic architectonic maps are shown of area 18 on the left hemisphere
and area 2 on the right hemisphere.
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ConnectomeDB/Workbench Integration

Querying ConnectomeDB from Connectome Workbench. While
users will often analyze date already downloaded to their own
computer, CWB will also be able to access data residing in the
Connectome database. Interactions between the two systems
will be enabled through ConnectomeDB’s web services API.
CWB will include a search interface to identify subject groups
in ConnectomeDB. Once a subject group has been selected,
users can then visually explore average connectivity maps for
this group by clicking on locations of interest on an atlas surface
in CWB. With each click, a request to ConnectomeDB’s spatial
query service will be submitted. Similar interactive explorations
will be possible for all measures of interest, e.g., behavioral test-
ing results or task performances from Task-fMRI sessions, with
the possibility of displaying both functional and structural con-
nectivity maps.

Browser-based visualization and Querying Connectome DB.
Users will also be able to view connectivity patterns and other search
results via the ConnectomeDB Ul so that they can quickly visualize
processed data without having to download data — and even view
results on tablets and smart phones. To support this web-based
visualization, we will develop a distributed CWB system in which
the visualization component is implemented as a web-embeddable
viewer using a combination of HTMLS5, JavaScript, and WebGL.
The computational components of CWB will be deployed as a
set of additional web services within the Connectome API. These
workbench services will act as an intermediary between the viewer
and ConnectomeDB, examining incoming visualization requests
and converting them into queries on the data services API. Data
retrieved from the database will then be processed as needed and
sent to the viewer.

Links to external databases

Providing close links to other databases that contain extensive
information about the human brain will further enhance the util-
ity of HCP-related datasets. For example, the Allen Human Brain
Atlas (AHBA)" contains extensive data on gene expression patterns
obtained by postmortem analyses of human brains coupled to a pow-
erful and flexible web interface for data mining and visualization. The
gene expression data(from microarray analyses and in situ hybridiza-
tion analyses) have been mapped to the individual subject brains in
stereotaxic space and also to cortical surface reconstructions. We plan
to establish bi-directional spatially based links between CWB and the
AHBA. This would enable a user of CWB interested in a particular
ROI based on connectivity-related data to link to the AHBA and
explore gene expression data related to the same ROI. Conversely,
users of AHBA interested in a particular ROI based on gene expres-
sion data would be able to link to ConnectomeDB/Workbench and
analyze connectivity patterns in the same ROI. A similar strategy
will be useful for other resources, such as the SumsDB searchable
database of stereotaxic coordinates from functional imaging studies™.
Through the HCP’s outreach efforts, links to additional databases
will be developed over the course of the project.

Phttp://human.brain-map.org/
“http://sumsdb.wustl.edu/sums/

DISCUSSION

By the end of Phase II, the WU-Minn HCP consortium anticipates
having acquired an unparalleled neuroimaging dataset, linking
functional, structural, behavioral, and genetic information in a large
cohort of normal human subjects. The potential neuroscientific
insights to be gained from this dataset are great, but in many ways
unforeseeable. An overarching goal of the HCP informatics effort
is to facilitate discovery by helping investigators formulate and test
hypotheses by exploring the massive search space represented by
its multi-modal data structure.

The HCP informatics approach aims to provide a platform
that will allow for basic visualization of the dataset’s constituent
parts, but will also encourage users to dynamically and efficiently
make connections between the assembled data types. Users will
be able to easily explore the population-average structural con-
nectivity map, determine if the strength of a particular con-
nection is correlated with a specific behavioral characteristic or
genetic marker, or carry out a wide range of analogous queries.
If the past decade’s experience in the domain of genome-related
bioinformatics is a guide, data discovery is likely to take new and
unexpected directions soon after large HCP datasets become
available, spurring a new generation of neuroinformatics tools
that are not yet imagined. We will be responsive to new meth-
odologies when possible and will allow our interface to evolve
as new discoveries emerge.

The HCP effort is ambitious in many respects. Its success in
the long run will be assessed in many ways — by the number and
impact of scientific publications drawing upon its data, by the
utilization of tools and analysis approaches developed under its
auspices, and by follow-up projects that explore brain connectiv-
ity in development, aging, and a myriad of brain disorders. From
the informatics perspective, key issues will be whether HCP data
are accessed widely and whether the tools are found to be suitably
powerful and user-friendly. During Phase I, focus groups will be
established to obtain suggestions and feedback on the many facets
of the informatics platform and help ensure that the end product
meets the needs of the target users. The outreach effort will also
include booths and other presentations at major scientific meetings
(OHBM, ISMRM, and SfN), webinars and tutorials, a regularly
updated HCP website'®, and publications such as the present one.

In addition to the open-access data that will be distributed by
the HCP, the HCP informatics platform itself will be open source
and freely available to the scientific community under a non-viral
license. A variety of similar projects will likely emerge in the com-
ing years that will benefit from its availability. We also anticipate
working closely with the neuroinformatics community to make
the HCP informatics system interoperable with the wide array of
informatics tools that are available and under development.

While significant progress has been made since funding com-
menced for the HCP, many informatics challenges remain to be
addressed. Many of the processing and analysis approaches to be
used by the HCP are still under development and will undoubtedly
evolve over the course of the project. How do we best handle the
myriad of potential forks in processing streams? Can superseded
pipelines be retired midway through the project or will users prefer

Shttp://www.humanconnectome.org/
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for them to remain operational? What if a pipeline is found to
be flawed? These and other data processing issues will require an
active dialog with the user community over the course of the pro-
ject. Subject privacy is another issue that requires both technical
and ethical consideration. How do we minimize the risk of subject
exposure while maximizing the utility of the data to the scientific
community? Finally, what disruptive technologies may emerge over
the 5 years of the HCP? How do we best maintain focus on our core
deliverables while retaining agility to adopt important new tools
that could further the scientific aims of the project? History suggests
that breakthroughs can come from unlikely quarters. We anticipate
that the HCP’s open data and software sharing will encourage such
breakthroughs and contribute to the nascent field of connectome
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Advanced neuroinformatics tools are required for methods of connectome mapping, analysis,
and visualization. The inherent multi-modality of connectome datasets poses new challenges for
data organization, integration, and sharing. We have designed and implemented the Connectome
ViewerToolkit—a set of free and extensible open source neuroimaging tools written in Python.The
key components of the toolkit are as follows: (1) The Connectome File Format is an XMl:-based
container format to standardize multi-modal data integration and structured metadata annotation.
(2) The Connectome File Format Library enables management and sharing of connectome
files. (3) The Connectome Viewer is an integrated research and development environment for
visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin
architecture supports extensions with network analysis packages and an interactive scripting
shell, to enable easy development and coommunity contributions. Integration with tools from the
scientific Python community allows the leveraging of numerous existing libraries for powerful
connectome data mining, exploration, and comparison. We demonstrate the applicability of
the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome
Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

Keywords: connectomics, connectome, neuroimaging, python, multi-modal data, data management, network analysis,

visualization

1INTRODUCTION

What nervous systems do — essentially — is to connect. Investigations
into the connectivity properties of nervous systems have a long
history (Douglas and Martin, 2007; Fishman, 2007). Despite many
efforts, contemporary knowledge about the specificity of structural
and functional connectivity is still poor. The new field of connec-
tomics is emerging to tackle the challenge of mapping complete
neural circuitry, or connectomes.

Connectomes represent the fundamental pathways on which
complex spatiotemporal activity patterns evolve. In turn, these
activity patterns modify underlying structural pathways. For an
understanding of how activity patterns arise (physiology) and
what they are able to produce and mean (behavior), it is indis-
pensable to have connectome data (neuroanatomy) on all spatial
descriptive levels.

On the cellular level of description, light, and electron micros-
copy are the main imaging tools for mapping neuronal circuitry.
Partial and complete connectomes have been mapped in a variety of
organisms and structures such as the nematode Caenorhabditis ele-
gans(Ward etal., 1975; White et al., 1976), the crustacean Daphnia’s
opticlobe (Macagno etal., 1979), cat visual cortex (Binzegger et al.,
2004), macaque (Felleman and Van Essen, 1991; Markov et al.,
2010), the rabbit retina (Anderson et al., 2011), the mouse inters-
cutularis muscle (Lu et al., 2009), hippocampus (Ascoli, 2010), or
Drosophila melanogaster (Cardona et al., 2010; Chklovskii et al.,
2010; Hampel et al., 2011).

On the macroscale level of description, diffusion-weighted
magnetic resonance imaging (MRI) is the main imaging tech-
nology employed for mapping the structural connectivity of the
human connectome (Hagmann, 2005; Sporns et al., 2005; Sporns,
2011). Magnetic resonance connectomics (Hagmann etal.,2010) is
increasingly recognized as a tool for basic and clinical neuroscience.
Several methodological advances in image acquisition, reconstruc-
tion, and tractography (Wedeen et al., 2008; Johansen-Berg and
Behrens, 2009) suggest that automated processing pipelines will
make it possible to generate comprehensive in vivo whole brain
statistical connectomes.

Despite the big differences in spatial scale and data size, both lev-
els of connectome mapping consist of similar stages. Connectome
mapping workflows involve image acquisition, registration and
segmentation, data organization and sharing, high-throughput
pipelining, analysis, and visualization. Advanced neuroinformatics
tools will be required to meet challenges that each stage presents. In
this article, we will focus on the development of neuroinformatics
tools in the emerging field of macroscale connectomics.

The efficiency of sharing data and source code would benefit if
a transdisciplinary lingua franca for programming was available.
Especially in the neurosciences, where researchers with varying
degrees of scientific knowledge and programming skills meet, a
common programming language helps to bridge gaps between
theoretical and experimental worlds of investigation. Moreover,
the programming language must be high-level, cross-platform,

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 3 | 120


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00003/abstract
http://www.frontiersin.org/people/stephangerhard/6543
http://www.frontiersin.org/people/alessandrodaducci/31872
http://www.frontiersin.org/people/alialemkaddem/31891
http://www.frontiersin.org/people/retomeuli/33186
http://www.frontiersin.org/people/jean_philippethiran/33185
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard

Gerhard et al.

The Connectome Viewer Toolkit

easy-to-learn, and have a large number of scientific libraries
available. In recent years, Python' has become a viable alternative
to Matlab, Java, or C++. More and more, Python is becoming the
language of choice in scientific computing communities (Oliphant,
2007; Langtangen, 2009). Python is a free, open source, cross-
platform programming language with a rapidly growing number
of high-quality scientific libraries and interfaces to legacy code.
A special-topic issue on “Python in neuroscience” in Frontiers in
Neuroinformatics, and a number of publications (Kinser, 2008;
Spacek et al., 2008; Davison et al., 2009) give an indication of the
significance of the Python programming language.

Due to improved data acquisition methods, it is now possible to
acquire large multi-modal datasets in projects involving thousands
of subjects. For instance, the Human Connectome Project? is cur-
rently underway and collects Diffusion MRI, fMRI, EEG, MEG,
behavioral, and genetic data in a cohort of 1200 healthy subjects.
In such large-scale projects, the neuroinformatics challenges of
data handling, sharing, and analysis become unnecessarily difficult
without common infrastructure and data format standards. Due to
their longer tradition, in the fields of volume-based and surface-
based analysis in neuroimaging, standardized data formats have
already been established such as NIFTT for volume-based data and
GIFTT" for surface-based data. Importantly for MR connectomics,
no common format for network-based data yet exists. To approach
the task of specifying such a format for connectivity-related neu-
roimaging data, the Connectivity InFormatics Technology Initiative
(CIFTI) was launched. Furthermore, a dedicated program of the
International Neuroinformatics Coordinating Facility (INCF°) on
standards for data and metadata sharing was established.

For data management and sharing of large and multi-faceted
datasets, a flexible data format is necessary. The key requirements
of such a flexible data format under the macroscale connectomics
perspective are severalfold:

> A standardized container format for raw and processed multi-
modal datasets that is based on common neuroimaging data
formats, extended by a standard format for network-based
datasets.

> A minimal set of required metadata that can be extended fle-
xibly by user-defined metadata, and that allow easy sharing of
data and metadata across collaborating groups.

> The possibility of relating different data modalities to each
other.

> An interface to database infrastructures.

> A mapping to an object model in common programming
languages.

> To enable the storage of behavioral data.

> To enable the storage of provenance information such as pro-
cessing scripts and runtime environment

> The ability to link data and concepts to semantic frameworks.

> To enable easier data visualization (Benger, 2009) and analysis.

'www.python.org
*humanconnectome.org
*nifti.nimh.nih.gov
‘www.nitrc.org/frs/? group_id = 75

*www.incf.org/core/programs/datasharing

To establish a novel data format, it must come with appropriate
libraries for reading and writing. Only when it is possible to easily
read, modify, and save data in the new format, does it benefit the
researcher who wants to focus on analysis and visualization. There
exist many standard formats for the different data modalities, but
no one has yet tried to combine these multi-modal datatypes into
a single format.

Complementary to common data formats, investigators in the
field of macroscale connectomics will require interactive research
and development environments for data analysis and visualiza-
tion. An optimal solution would be an integrated neuroinformatics
environment based on Python. It would need to provide a graphical
user interface (GUI) with extensive libraries, an interactive scripting
shell and built-in script editors with code-highlighting and debug-
ging functionality. Graph analysis libraries are required to unravel
the complex brain network organization of structural and func-
tional systems (Bullmore and Sporns, 2009). Furthermore, such a
macroscale connectomics research environment needs to support
an interactive mode of analysis and visualization of multi-modal
datasets. Scripting interfaces provide the required flexibility to allow
the implementation of a variety of multi-modal data exploration
and data mining strategies in an interactive way (Akil et al., 2011).
The environment needs not only to provide a methodology to auto-
matically perform elementary functionality, but also guidance for
the performance of more complex analysis and visualization tasks.
Moreover, a modular software architecture fosters contributions
by the open source research community. Open interfaces facilitate
the reuse of a diversity of tools and external libraries that the con-
nectome researcher can draw from.

We used the Python programming language to develop the
free and open source Connectome Viewer Toolkit. We specify the
Connectome File Format (CFF) as a container data format for
multi-modal neuroimaging datasets, specifying a connectome file.
We present the Python-based Connectome File Format Library
(cfflib) for data manipulation and data sharing of connectome files.
The Connectome Viewer provides a framework for interactive visu-
alization and analysis of connectomes and multi-modal datasets.
We will illustrate the application of the Connectome Viewer Toolkit
on Diffusion MRI datasets processed by the Connectome Mapper.
The Connectome Mapper is a Python-based tool that currently
implements structural connectome mapping. Figure 1 summarizes
the general connectome processing workflow for structural and
functional data. It highlights the use of the Connectome Viewer
tools presented in this article.

2TOOLKIT DESIGN
After having outlined the key neuroinformatic challenges when
developing tools for macroscale connectomics, we present the
design and implementation of the Python-based Connectome
Viewer Toolkit for data organization, analysis, and visualization
of connectome data.

General considerations We have adhered to best-practices
for open source scientific software tool development from the
beginning (Baxter et al., 2006). Python provides mature software
engineering tools for writing, testing, debugging, and maintaining
scientific software. We have followed a very modular philosophy
when designing the tools and the toolkit in general.

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 3 |121


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gerhard et al.

The Connectome Viewer Toolkit

We have adopted the powerful and widely used distributed
version control system called git (Chacon, 2009). It is comple-
mented by its biggest hosting platform GitHul®. We use GitHub
as a project management platform for the support of all stages
of the collaborative software development process. Our GitHub
organization repositories are used for source code hosting, bug
tracking, release management, code review, wiki, and visualization
of the version control history and contributions.

We use the Sphinx tool” to create the online documentation
for all tools. Sphinx uses so-called restructured text as its markup
language, allowing one easily to create HTML, and PDF documen-
tation with cross-referencing. The built-in syntax highlighting of
code improves the readability of the documentation. Moreover, we
provide user guides, tutorials, and example datasets for all tools.

Installation For proper software packaging and distribution,
the NeuroDebian project® provides professional expertise and infra-
structure. NeuroDebian provides a repository of neuroscience-related
packages for easy installation on Debian-based Linux operating sys-
tems, such as Ubuntu. The Connectome Viewer Toolkit is distributed
through the NeuroDebian repository, thereby facilitating the installa-
tion of dependencies and regular updates. For users on Windows or
Mac OS X platforms, the Enthought Python Distribution® provides
the required Python environment for the toolkit. The Enthought
Python Distribution is free for academic purposes.

2.1 THE CONNECTOME FILE FORMAT

The metaphor of a container shall serve to explain how the
Connectome File Format (CFF) is structured. The CFF makes
a distinction between two entities: the Connectome Markup

Sgithub.com/LTS5
’sphinx.pocoo.org
®neuro.debian.net

*www.enthought.com

Data Source

Mapping | eomeres
Data . : =
Metadata Connectome File Format
Analysis

Visualization

ConnectomeViewer " ‘

FIGURE 1 | General processing stages of a connectome workflow. The
Connectome Viewer Toolkit currently supports the workflow highlighted in
yellow. Mapping streams for structural data, such as the Connectome Mapper,
or functional data may converge to a connectome file and can be further
managed, analyzed, and visualized with the Connectome Viewer. Connectome
files may be reused in other frameworks for analysis and visualization tasks.

Language file and the connectome objects. The Connectome
Markup Language file is a single XML-based file named meta.cml,
containing metadata and a list of connectome objects. The schema
for the Connectome Markup Language file is specified in conform-
ance to the W3C standard XML schema 1.0 language (Thompson
et al., 2004) and is available online. Figure 2 illustrates the basic
design of the CFF graphically.

We take advantage of the power and flexiblity inherent in defin-
ing objects with XML to specify connectome objects. Connectome
objects wrap data files of multiple modalities. They add a layer of
metadata information to the primary data file they refer to. Each
connectome object holds information about its name, fileformat,
datatype, description, and additionally a flexibly extensible metadata
tag. We use the term multi-modal here to distinguish data types
rather than measurement modalities. The basic categories of con-
nectome objects are: CMetadata, CNetwork, CVolume, CSurface,
CTrack, CData, CScript, CTimeseries, and CImagestack. Table 1
describes the connectome object types in detail.

The connectome file is not confined to contain multi-modal
datasets for a single datasets, but it can store multi-subject datasets.
When storing multi-subject datasets, adding metadata annotation
tags of the subject ids is suggested. Retrieving connectome objects
grouped by the subject ids is then enabled by the grouping func-
tion group_by_tagkey as shown below in the listing of Section 2.2
Similarly, when individual connectome objects are tagged as belong-
ing to a patient or control group, retrieving the corresponding data-
sets for group-wise comparison is possible with the same function.

Open Metadata Flexible annotation of metadata for each
connectome object is enabled by the metadata tag. It is possible
to annotate every connectome object in the container in the same
way. We defined two ways to create annotations of metadata: (a)
by simple tagging, (b) by structured annotation.

For (a),simple key-value pairs of the form <t ag key="nunber _
of _nodes” >83</ t ag> are used to tag connectome objects. The
employed keys can be used later on to group required objects easily in
Python’s so-called dictionaries. For instance, CNetwork objects can be

=3
i

§>

CSurface

CVolume

CNetwork

-

.cff
U

FIGURE 2 | The Connectome File Format Container. The connectome
objects with reference to their primary data and metadata are depicted as
small boxes. They are stored in a connectome file, represented by the open
big box. After data manipulation, the connectome file can be compressed and
shared with collaborators or sent to databases.

N

Compression
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Table 1|The variety of connectome objects the CFF supports.

Object types

Description

CMetadata

CNetwork

CVolume

CSurface

The CMetadata object describes metadata relevant to contents of the whole connectome file. We use relevant parts of the Dublin Core
Metadata Terms specification (dublincore.org) to define the following tags: title, creator, publisher, created, modified, license,
references, description. \We have extended the core metadata tags with generator, species, and email tags. For each connectome
object, a metadata tag can be added that expresses containerwide valid properties.

Networks of any sort can be stored. For MR structural connectomes, nodes represent brain regions and edges represent fiber
tractography derived connections. The possibility of storing an arbitrary number of attributes per node and edge allows, for example,
brain region nodes to point to ontologies that define them uniquely.

Formats: GraphML, GEXF, NXGPickle, Other

Types: Attribute Network, Dynamic Network, Hierarchical Network, Structural Network, Functional Network, Effective Network, ...
Volumetric, voxel-based datasets are widely used in the neuroimaging community to store many different measurement modalities.
Examples: Apart from acquired raw data, brain segmentations or probability maps can be stored as 3D volumes.

Formats: Nifti1, Nifti2, Other

Types: Segmentation, T1-weighted, T2-weighted, PD-weighted, fMRI, Probability map, ASL, MD, FA, LD, TD, FLAIR, MRA, MRS, PET, ...
Surface-based datasets are usually stored as triangular meshes. They are often extracted from an underlying volumetric segmentation.
Examples: Cortical maps for parcellations, thickness, or curvature information.

Formats: Gifti, Other

Types: Labeling, Surfaceset, Probability map, Surfaceset + Labeling, ...

CTrack

Deterministic tractography creates sets of single polygonal lines.

Examples: Reconstructed fiber bundles from Diffusion MRI

Formats: TrackVis, Other
Types: FACT Tractography, ...
CData

Data of any type that does not fit into any other connectome object category.

Examples: Phenotypic subject variables, assessment results
Formats: NumPy, HDF5, XML, JSON, CSV, Pickle, TXT, Other
Types: Fiber Labeling, Bval, Bvect, FPI-R, NEO-P-I-R, STAI, BIS-Test, I-S-T 2000R, ...

CScript

Visualization and analysis procedures in the form of executable scripts. They may serve as provenance information for processed data.

Examples: Connectome Mapper configuration script, Nipype script

Formats: TXT, Python, Bash, Matlab, Other

Types: Statistical Analysis, rsfMRI Connectivity Mapping, ...

CTimeseries
containers that can store arbitrary time-series data.
Formats: HDF5, NumPy, Other
Types: EEGTime series, MEG Time series, fNIRS, ...
Clmagestack

There are plenty of time series related formats which makes it difficult to support a general one. We support generic data array

Series of 2D images not simply representable in volume-based formats.

Examples: Typical examples would be annotated slice-based atlases that represent areas as closed 2D polygons.

Formats: PNG, JPG, TIFF, SVG, Other
Types: Scalable Brain Atlas, ...

The connectome objects are a wrapping mechanism, extending single data files by further annotations. Formats lists the file formats that are supported for reading
and writing through the Connectome File Format Library. Types is a freely defined string. It usually denotes the measurement modality and is retrieved from

controlled vocabularies.

grouped by their number of nodes, or connectome objects of multiple
subjects can be grouped based on the subject id key. Although this
scheme is very handy for everyday analysis, it is often desirable to store
more structured metadata. As for (b), we adopted the Open Metadata
Markup Schema odML' that was created to represent metadata for
neurophysiology data in a bottom-up fashion. For metadata annota-
tion, there are named sections that contain properties. The properties
have a name and value, and additionally type, unit, and uncertainty
information. This bottom-up scheme is very flexible and extensible

%http://www.g-node.org/projects/odml

and does not make any assumption about the terminology used.
These terminologies are expected to emerge as the researchers start to
annotate connectome objects using open metadata markup. Existing
controlled vocabularies can already be employed with this schema.
An example of the application of the metadata tag to the CMetadata
object is shown in the Section 3 in Figure 6.

Multi-Modal Data Integration A connectome file can contain
connectome objects for multiple modalities. These modalities are
related to each other using unique numeric identifiers. Any given
entity such as a brain structure or region of interest can poten-
tially be represented in different modalities. Geometrically, an entity
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is instantiated as a set of cortical voxels in a volume and/or as a
particular set of triangles in a surface mesh. The same entity may
be represented by a node in a network.

We use integer values to establish this three-way relationship.
Each entity is given a unique integer value. For each modality,
this particular integer value is stored at defined places. For the
CVolume object, the values are stored in individual voxels, thereby
defining a segmentation. For the CSurface object, the values are
stored as labelings on the vertices or on the faces, defining a
surface-based parcellation. For the CNetwork object, we store
the integer value as a node property. In Figure 3, we use the key
dn_correspondence_id to store the integer value for a CNetwork

object represented in the GraphML format''. In later analysis and
visualization stages, the relevant data in the different modalities
can be retrieved and combined as needed. Figure 4 depicts this
schema graphically.

Similarily, this schema is applied to connectivity information,
combining the origin and target entities using their unique inte-
ger identifiers. The labeling of a subset of fibers of a whole brain
tractography corresponds to the group of fibers that connect two
brain regions. This connection has its correspondence in an edge
of a CNetwork. Additional properties that hold for this group of

"graphml.graphdrawing.org

<node id="1">

</node>

</edge>

</graph></graphml>

positions are useful in graph layouting for comparison.

<graphml xmlns="http://graphml.graphdrawing.org/xmlns" >
<graph id="MyConnectome" edgedefault="undirected">

<data key="dn_label">VisualAreal RH</data>

<data key="dn_node_position">(23.13,23.34,23.76) </data>

<data key="dn_uri">http://wuw.connectome.ch/wiki/V1_(Homo sapiens)</data>
<data key="dn_correspondence_id">1</data>

<edge id="eb5_14" source="5" target="14">
<data key="de_number_of_fibers">10</data>
<data key="de_average_length_mm">22.6466</data>

FIGURE 3 | Networks are represented using the GraphML file format. The storage of an arbitrary number of attributes on the nodes and edges is possible. For
instance, nodes denoting brain regions may link to semantic frameworks where definitions, delineation criteria, and literature references given. Standardized node

Connectome
as CNetwork

regions.

14

FIGURE 4 | Relationship between multi-modal connectome objects. Correspondence is established with unique (integer) identifiers between the nodes of a
network, the ROl in a volumetric dataset, and the surface mesh. Analogically, a network edge has the same identifier as the fiber tracts that connect such two brain

Voxelset
as CVolume

Fiberset
as CTrack

L [5.14]
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fibers, such as the number of fibers or averages of scalar values
along the fibers, are stored as edge properties. For storing the label
information for the fibers belonging to a network edge, we employ
a CData object that represents a Nx2 NumPy array. N is the number
of fibers and the first row stores integer values denoting the ori-
gin region of interest, and the second row stores the target region
of interest. As a convention for the undirected fiber data derived
from magnetic resonance tractography, we store the smaller integer
value always in the first row. Thus, it becomes straightforward to
retrieve all the fibers that connect two arbitrary regions of interest
for further processing or visualization.

For time-dependent data, the same schema can be used. Time-
series data from any source is stored in an NxM dimensional
homogenous array. N is the number of channels and M is the
number of time points. A CData object contains the labeling for
the N channels to relate the series to any entity within the connec-
tome file. Thus, time series can be defined for instance for brain
regions, surface patches, network nodes, or electrodes in a very
flexible manner. The CTimeseries object is used to store the array,
for example in Hierarchical Data Format 5 (HDF5") or NumPy
(Oliphant, 2006) array format. In the CTimeseries metadata
fields, additional parameters such as the sampling frequency can
be stored. Additional CData objects may contain spatial position
of the channels.

When psychological assessments are made in clinical trials, the
datasets are often stored as spreadsheets. Bundling these data as
CData within the connectome files in tabular form (CSV) or as an
XML file, facilities data organization, and subsequent statistical
correlation procedures with neuroimaging data.

Ultimately, all relevant multi-modal datasets for a neuroimaging
study comprising multiple subjects or a single subject can be stored
within a single connectome file.

2.2 THE CONNECTOME FILE FORMAT LIBRARY

The CFF specification is complemented by the Connectome File
Format Library (¢fflib) for Python. The cfflib supports (a) reading
and writing of the connectome metadata markup (meta.cml) and
compressed connectome files, (b) basic Input/Output of the sup-
ported file formats using supporting Python libraries, (c) a lazy
loading strategy for data, (d) synchronizing files with a remote
XNAT database servers, (e) setter and getter methods for updat-
ing metadata, (f) auxiliary methods for grouping objects based on
metadata tag values and type.

We used the generateDSlibrary (Dave Kuhlmann®) to create the
Python object model. All classes were derived from the Connectome
File Format XML schema. Subclasses provide additional methods
for manipulation of the connectome files and basic loading and
saving functionality. An example of an interactive Python session
employing cfflib and its object model is given below:

# Import cfflib for usage

In [1]: import cfflib

# Load connectome markup file

In [2]: mycon = cfflib.load(’meta.cml’)

2www.hdfgroup.org

Pwww.rexx.com/~dkuhlman/generateDS.html

# Print summary of contained data

In [3]: mycon.print_ summary()

# Retrieve particular connectome object by name

In [4]: mynet = mycon.get_ by_ name(’My
Connectome 83°)

# Load the connectome data into memory

In [5]: mynet.load()

# Display nodes with attributes

In [6]: print mynet.data.nodes(data = True)

# On-the-fly grouping based on metadata key-values tags
In [7]: mygroup = cfflib.group_ by_ tagkey(cobj_
list = mycon.get_ all(),

tagkey = "sex", cobj_ type = ["CNetwork"],
exclude_ values = ["unknown"])

# Create list of CVolume names

In [8]: mynamelist = [vol.name for vol in mycon.
get_ connectome_ volume()]

Online tutorials explain extensively how to use cfflib to work with
and create new multi-modal connectome files'.

CFFdatarepository Viaour GitHub repository'’, we provide
a set of public, curated connectome datasets: single subject and
group connectome files (generated with the Connectome Mapper),
functional connectomes based on fMRI (Biswal et al., 2010), human
atlas datasets such as Freesurfer’s fsaverage, MNI152 templates,
SRI24 Atlas (Rohlfing et al.,2010), and also some non-human data-
sets from C. elegans, Macaca Mulatta, and Mouse Brain (Johnson
et al., 2010). We welcome contributions of connectome datasets
under an open license for this data repository.

Database Interface We support connectome data sharing
by providing an interface to remote database infrastructures. The
eXtensible Neuroimaging Archive Toolkit (XNAT) is an informatics
platform for managing, exploring, and sharing neuroimaging data
(Marcus et al., 2007). It exposes web services using a RESTful APIL.
Large neuroimaging initiatives, such as the Human Connectome
Project, use the XNAT infrastructure for storage and sharing of large
multi-subject, multi-site datasets. The Python library PyXNAT"®
interfaces to XNAT servers by their RESTful APL. It supports an
interactive mode of access for data selection, pulling, and pushing.
Any type of data can be pushed to XNAT.

We implemented a push and pull mechanism using PyXNAT
for connectome files in cfflib. After the configuration of the con-
nection settings to the XNAT server, it is possible to push and
pull connectome files to and from XNAT servers. For pushing
the connectome file, the parameters project id, subject id, and
experiment id must be set, in order to correctly associate the data
in the project organization. All the connectome objects in the con-
tainer are then submitted to the XNAT server sequentially. For the
pulling operation, the same information has to be given with the
storage path as an additional parameter. Submitted connectome
objects can be displayed and downloaded from the XNAT web
interface individually.

“emtk.org/cfflib/
"*github.com/LTS5/cffdata
"*packages.python.org/pyxnat/

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 3 | 125


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gerhard et al.

The Connectome Viewer Toolkit

2.3 THE CONNECTOME VIEWER

We wanted to provide neuroimaging researchers with an easy entry
into the world of connectome analysis with Python. We designed
the Connectome Viewer as a GUI environment with a powerful
scripting interface for interactive data analysis and visualization.
The primary data source for the application are connectome files.
The role of the Connectome Viewer is to provide a tool for the
analysis and visualization of connectome files derived from dif-
ferent mapping streams (see Figure 1).

2.3.1 Dependencies

The Connectome Viewer depends on the Enthought Tool Suite
(ETSY). ETS provides the application-building framework Envisage
and the Traits and Traits UI libraries for creating GUIs. We use
Mayavi (Ramachandran and Varoquaux, 2011), the main compo-
nent in ETS for interactive scientific 3D data visualization, based
on the popular Visualization Toolkit VTK (Schroder et al., 2006).
Furthermore, we require Chaco for interactive plotting, IPython
(Perez and Granger, 2007) for interactive Python shell support and
cfflib for data input/output. We rely on the NetworkX (Hagberg
et al., 2008) data structures for representation of networks. The
dependencies of the Connectome Viewer are listed in Table 2. All
required dependencies are installed automatically by using the
NeuroDebian repository.

2.32 Script Generation Mechanism For Usability

The approach we took in the design of the Connectome Viewer to
support synergy effects of combined analysis and visualization is
based on a simple and proven paradigm. We call it the Code Oracle:
for a given task, first a set of graphical user dialogs are presented
for the setting of task-relevant parameters. Afterward, a Python
script is automatically generated according to the these parameters.
Then the script is displayed in the script editor, and can be executed
without further modifications in order to perform the requested
task. The generated scripts are commented, enabling the researcher

code.enthought.com

to understand the commands performed by the script. It is easily
possible to change the basic parameters without going back to the
GUI dialogs again by modifying the script directly. Moreover, the
commands necessary for reading the appropriate data, performing
the visualization and analysis tasks, and generation of results can
be modified in the Script Editor.

2.3.3 Plugin Architecture

The Connectome Viewer as an Envisage-based application consists
of a set of plugins as the primary building blocks. Plugins may
contribute menus, widgets, and other functionality to the applica-
tion. The core plugins are the Connectome File View, the IPython
Shell, the Script Editor, and Mayavi. The Code Oracle and Python
Connectome Toolbox are two additional plugins.

The Connectome File View plugin A connectome file can be
loaded and saved via the menu. The plugin has a tree view widget
that represents the connectome file. All connectome objects are
shown in this tree view. Moreover, the loaded connectome file is
accessible in the IPython shell for scripting. Double-clicking con-
nectome objects in the tree view loads the referred data file into
memory. Connectome objects can be dragged and dropped in the
IPython shell for further data inspection and usage in scripts.

The IPython Shell plugin  The IPython Shell plugin provides
a widget with an enhanced interactive Python shell. Features such
as tab-completion, automated docstring display, logging, history,
and many others make it an ideal environment for interactive sci-
entific computing.

The Script Editor plugin The Script Editor plugin enables
loading, saving, and execution of Python scripts and text files. It
features line numbering and syntax highlighting. Scripts can be
executed directly in the IPython Shell by keybindings (Ctrl-R for
executing or Ctrl-S for saving scripts).

The Mayavi plugin  The Mayavi plugin is the major building
block that provides advanced interactive 3D visualization and plot-
ting (Ramachandran and Varoquaux, 2011) to the application. It
exposes an easy-to-use interface to the well-known Visualization
Toolkit VTK (Schroder et al., 2006). Mayavi as a stand-alone

Table 2 | Connectome Viewer library dependencies. \When using NeuroDebian for the installation, all required dependencies are installed automatically.

Package Version Short description

Envisage >=3.12 Application-building framework similar to the Eclipse framework. Envisage is a system to define, register and use
plugins to build complete applications. It is part of the Enthought Tool Suite.

Traits/ >=3.4.0 Extends the Python type declarations for improved initialization, validation, and notification. TraitsUI provides

TraitsUI GUl-creation methods for Traits-based objects.

Mayavi >=3.3.2 3D Scientific Data Visualization and Plotting. For easy and interactive visualization of data and seamless integration
in Envisage-based applications. Mayavi uses Traited VTK exposing a Pythonic API to VTK.

Chaco >=3.3.1 Interactive 2D plotting environment using Traits and TraitsUl.

IPython >=0.10 An enhanced interactive shell environment for scientific computing.

Fos >=0.1 A lightweight package for scientific 3D visualization (http://fos.me/). It supports basic visualization of dynamic
networks, surfaces, and large tractography datasets and is included in the Connectome Viewer codebase.

cfflib >=2.0 The Connectome File Format Library. It provides functionality for manipulation of connectome files and depends on
Nibabel, NumPy, and NetworkX.

Nibabel >=11.0 General library for reading and writing many neuroimaging file formats.

NumPy >=13 Homogenous, multi-dimensional array support for different data types with manipulation, and processing routines.

NetworkX >=14 Data structures and algorithms for complex network analysis.
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application uses the Envisage application framework. Because all
functionality is exposed as Envisage plugins, the integration as part
of the Connectome Viewer was straightforward. The Mayavi plugin
also provides the Mayavi Visualization Tree widget, which manages
scenes, visualization objects, and filters hierarchically. Additionally,
the Visualization Object Editor lets the user change all parameters
of the visualization objects, filters, and scenes.

The Code Oracle plugin  We encapsulated the script-generating
functionality in the Code Oracle plugin. The Code Oracle plugin adds a
menu to the Connectome Viewer for invoking the Code Oracle mecha-
nism for specific task. The Code Oracle menu is structured according to
analysis and visulization task on the different connectome file objects:
“Surface Mesh With Labels” (CSurface); “Volume Slicer,” “Volume
Rendering” (CVolume); “Network Visualization,” “Connection Matrix
Viewer,” “Network Report” (CNetwork); “Network-based statistic
(NBS)” (Statistics); “Fiber Visualization” (CTrack); “XNAT Push and
Pull” (Other); “Brain Extraction using BET” (Nipype).

This list presents a set of basic functionality. Several generated
Code Oracle scripts may be combined and modified in the script
editor for more complex tasks. The number of generated scripts
is expected to grow rapidly as new use cases are discovered and
algorithms developed and integrated.

The Python Connectome Toolbox plugin The Python
Connectome Toolbox serves as a container for a collection of connec-
tome-related analysis algorithms. They can also be used without the
GUI. We provide within the Python Connectome Toolbox a Python
wrapper to the C++implementation bet-cpp (Williams et al., 2011)
of the Brain Connectivity Toolbox (Rubinov and Sporns, 2009). We
expose all of the toolbox’s functions with an easy-to-use interface
and parameter descriptions. The Brain Connectivity Toolbox algo-
rithms are widely used for network analysis in the neuroimaging
community. An abundance of additional well-designed network
analysis libraries and Python wrappers exist that cover almost all
aspects of network-based connectome analysis: NetworkX (Hagberg
etal.,2008), Boost Graph Library (Siek et al., 2001), iGraph (Csardi
and Nepusz, 2006), graph-tool®, or Python-graph®.

Furthermore, we provide within the toolbox two Network-
based statistics for case—control or task-control group studies:
the Network-based statistic (Zalesky et al., 2010) and Block-based
statistic (Meskaldji et al., 2010). The Code Oracle plugin produces
scripts that use the Python Connectome Toolbox’s functionality.

2.3.4 Supporting Libraries
Through the open design of the Connectome Viewer, we encourage
the use of the many libraries available in the scientific Python com-
munity. The supporting libraries presented here provide powerful
tools for creative data exploration and data mining. Every library
is usable from the IPython widget in the Connectome Viewer. Vice
versa, contributed packages to the Connectome Viewer are usable
from a pure IPython shell if they do not require the GUL

The Neuroimaging in Python (NIPY?) project (Millman and
Brett, 2007) is an umbrella project for various efforts to build
well-written and documented open source neuroimaging libraries.

!8projects.skewed.de/graph-tool/
Pcode.google.com/p/python-graph/
“nipy.org

Currently, NIPY consists of the following five packages. A few more
helpful packages for the neuroimaging researcher have been added
to the list:

Nibabel “Nibabel provides read and write access to some
common medical and neuroimaging file formats, including:
ANALYZE, GIFTI, NIfTI1, MINC, DICOM, MGH, TrackVis,
as well as PAR/REC.” Nibabel constitutes a necessary compo-
nent for writing data analysis workflows, because it is crucial
to retrieve and exchange data across different analysis software
and computer platforms.

Dipy “Dipy is an international, free and open software project
for diffusion magnetic resonance imaging analysis in Python.
DiPy includes methods for reconstruction, resampling,
tractography, warping, fiber clustering and visualization.”
(Garyfallidis et al., 2011)

Nipype “Nipype, an open source, community-developed initia-
tive under the umbrella of NIPY, is a Python project that pro-
vides a uniform interface to existing neuroimaging software
and facilitates interaction between these packages within a
single workflow. Nipype provides an environment that encou-
rages interactive exploration of algorithms from different
packages, eases the design of workflows within and between
packages, and reduces the learning curve necessary to use dif-
ferent packages.” (Ghosh et al., 2010)

Nitime “Nitime is a library for time-series analysis of data from
neuroscience experiments. It contains a core of numerical algo-
rithms for time-series analysis both in the time and spectral
domains, a set of container objects to represent time-series, and
auxiliary objects that expose a high-level interface to the nume-
rical machinery and make common analysis tasks easy to express
with compact and semantically clear code.” (Rokem et al., 2009)

NiPy “NiPy is a Python-based framework for the analysis of
structural and functional neuroimaging data. It currently has a
full system for general linear modeling of functional magnetic
resonance imaging (fMRI).”

PyROI “PyROI is a Python package for functional neuroima-
ging region of interest extraction and analysis. It offers an
efficient processing stream and a wide range of flexibility in
the way source images are parcellated. Using PyROI, users can
extract parameter and contrast effect sizes or timecourses.”*!

PyMVPA “PyMVPA is a Python package intended to ease stati-
stical learning analyses of large datasets. It offers an extensible
framework with a high-level interface to a broad range of algo-
rithms for classification, regression, feature selection, data import
and export. While it is not limited to the neuroimaging domain,
it is eminently suited for such datasets.” (Hanke et al., 2009)

scikit-learn “For easy-to-use and general-purpose machine
learning in Python. It contains supervised learning (SVM,

GLM), as well as unsupervised learning algorithms.”*

We want to emphasize the additional tremendous potential
for data exploration and data mining of connectomes using these
external libraries. For a functional mapping stream, PyROI may be

'web.mit.edu/mwaskom/pyroi/

Zscikit-learn.sourceforge.net
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used to extract averaged time series from regions of interest. Nitime
may then be used to perform functional connectivity analysis from
extracted time-series data. Nipype is ready to implement even more
sophisticated data workflows using external packages and parallelize
them on cluster infrastructures. For Diffusion MRI, Dipy imple-
ments reconstruction, tractography, and fiber visualization meth-
ods in a free and open source manner. Furthermore, the PyMVPA
framework and the scikit-learn library provide widely used machine
learning algorithms. The application of machine learning methods
is facilitated for non-experts through extensive online tutorials, for
instance in tutorials on fMRI decoding analysis with scikit-learn”
or a general introduction to the PyMVPA framework?.

2.4 CONNECTOME MAPPING WORKFLOWS

The general workflow to derive useful connectome information
from primary neuroimaging data was shown in Figure 1. Data
used here for the demonstration of the Connectome Viewer Toolkit
is derived from Diffusion MRI. We reimplemented the pipeline
used by Hagmann et al. (2008). We used the Traits and Traits UI
libraries to build a GUI for the Connectome Mapper tool. The
Connectome Mapper’s processing stages are depicted Figure 5. All
image processing stages can be parameterized and run interactively,
or remotely using a configuration script. Details of the individual
processing stages are available from the online documentation. The
Connectome Mapper is released together with the Connectome
Viewer Toolkit as the Connectome Mapping Toolkit”, but the
toolkit can be used as stand-alone application, and also with other
mapping workflows, such as Nipype.

We will not detail the Connectome Mapper architecture, indi-
vidual processing stages or validation issues here. We note only
that the last “Connectome Creation” stage merges data from the two
processing streams. The fibers from tractography are merged with
volumetric region of interest masks denoting brain regions to form
a network. This step exemplifies one instance of establishing the
relationships between multi-modal data types as shown in Figure 4.

#nis].github.com/
“www.pymvpa.org/tutorial.html

Bwww.cmtk.org

The multi-modal datasets produced by connectome worksflows
was a major motivation to create the CFE. The product of such
a mapping stream not only comprises the resulting connection
matrix, but also fibers, surfaces, segmentations, labelings, other
data arrays, and metadata. Capturing provenance information and
storing it along with the raw and processed data is very important
for later reproducibility. There are no accepted standards in the neu-
roimaging community for provenance tracking. In the Connectome
Mapper, the log and configuration file including versions of the
called executables and the operating system environment are stored
for provenance everytime the pipeline is run. The CFF provides
a convenient way to store this data, as well as other provenance
information.

3RESULTS

Connectome file for Multi-Modal Datasets The last process-
ing stage of the Connectome Mapper implements an automatic
conversion of original and processed data into connectome files.
Using cfflib, data with relevance for subsequent analysis and visu-
alization are packed into a connectome file. In the Connectome
Mapper, the generated connectome files usually consist of the
networks (CNetwork), the volumetric segmentations and the
raw data (CVolume), the extracted surfaces with their brain
region labeling (CSurfce), the original and filtered fibers from
the deterministic tractography (CTrack), the fiber labeling and
property arrays (CData), and the subject and project metadata
(CMetadata). During the pipeline configuration, these sub-
ject- and project-specific metadata fields have to be entered. In
a postprocessing step, additional datasets such as psychological
assessment and behavioral assays can be added to the generated
connectome file.

An excerpt of the connectome markup meta.cml for a single
subject that was generated in the conversion stage of the process-
ing pipeline is shown in Figure 6. It is enriched by an example
section that contains information about the EEG acquisition
parameters.

The connectome file may now be published to a public or private
repository or database infrastructure. For instance, the connectome
file can be published to an XNAT server (Marcus et al.,2007) using
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FIGURE 5 | The general processing stages of the Connectome Mapper. This pipeline is an example implementation of a structural connectome mapping stream.
Here, two processing streams dealing separately with brain region (node) and white matter (edge) information eventually converge into the connectome of one

particular subject.

Tractography

Segmentation
Surface Extraction

Fiber Filtering

Connectome Creation

r

Parcellation
Mask Creation

Connectome File

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 3 | 128


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gerhard et al.

The Connectome Viewer Toolkit

<connectome xmlns="http://www.connectomics.org/cff-2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dcterms="http://purl.org/dc/terms/">
<connectome-meta version="2.0">
<generator>CMP1.0< /generator>
<dcterms:creator>Stephan Gerhard</dcterms:creator>
<dcterms:created>2010-06-20</dcterms:created>
<dcterms:title>Single subject connectome</dcterms:title>
<dcterms:license>0DC Public Domain Dedication and Licence
</dcterms:license>
...more metadata tags...
<metadata>
<tag key="subject_age">26</data>
<tag key="subject_sex">N</data>
<section title="EEG Acquisition">
<property>
<name>Sampling frequency</name>
<value>256.0</value>
<type>float</type>
<uncertainty >0.0</uncertainty >
<unit>Hz</unit>
</property>
< /section>
</metadata>
</connectome-meta>
<connectome-network name="MyConnectome 83"
src="Networks/myconnectome83.graphml"
dtype="StructuralNetwork" fileformat="GraphML">
<metadata>
<tag key="number_of_nodes">83</tag>
<tag key="hassubcortical">1</tag>
</metadata>
<description>Connectome with 83 brain regions.</description>
</connectome-network>
...more connectome objects...
</connectome>

FIGURE 6 | The content of a meta.cmlfile.

cfflib and PyXNAT with a few lines of Python code. The required
commands are generated with the “XNAT Push and Pull” func-
tion of the Code Oracle plugin. For further analysis and visualiza-
tion, the connectome file is loaded in the Connectome Viewer.
The Connectome File View widget is updated and may appear as
in Figure 7, displaying nodes for each connectome object in the
connectome file.

The Connectome Viewer GUI consists of widgets contributed
by its core plugins. The main window after loading a connectome
file and executing a surface display script (using the Code Oracle)
with an anatomical cortical parcellation (Desikan et al., 2006) is
shown in Figure 8.

In Figure 9, the connectivity matrix based on particular
Diffusion-derived measures for edge values is presented in an inter-
active user interface. The interface allows the user to zoom, drag,
select the display range, switch between different edge values, and
show the connecting regions when moving over an edge.

An instance of multi-modal data integration using network
properties and reconstructed surfaces is depicted in Figure 9. A
simple network metric, namely the node degree (number of adjoin-
ing edges), was computed. The nodes correspond to brain regions,
delineated on a inflated brain surface. The node degree values were
then used for color-coding the corresponding regions. Mayavi pro-
vides the DataSet Clipper to clip the surface mesh and reveal the
view onto the subcortical nuclei. Comparatively, a much higher
node degree is readily recognizable for the subcortical regions com-
pared to the low node degree on the cortical surface.

Connectome File View

A4l | Connectome File
«+, connectome_freesurferaparc
v & Surface |h.pial [Loaded]
@ CortexLeft / Pial (pointset)
@ Data arrays (triangle)
& Surface |h.inflated

v & Surface Label Ih.aparc.annot [Loaded]
@ Data arrays (label)

& Raw Diffusion

& Raw T1 image

& Raw T2 image

& GFA Scalar Map

# ROI Volume freesurferaparc

® Final Tractography (freesurferaparc)
101 Final fiber labels (freesurferaparc)
101 Final fiber lengths (freesurferaparc)

FIGURE 7 | Connectome File View as a Connectome Viewer widget. The
treeview gives a convenient user interface to deal with connectome objects
contained in a connectome file. Data files are loaded into memory by
double-clicking. Single tree nodes can be dragged to the IPython shell for data
inspection and scripting.

The results of a Code Oracle analysis script to extract and cluster
cortico-cortico U-fibers from tractography are shown in Figure 10. It
uses supporting Python libraries, such as NumPy for array handling
and comparison, Dipy for the local skeleton clustering algorithm
(Garyfallidis et al., 2010) and Fos for visualization. Interactively,
improvements in the fiber extraction and clustering parameters were
made. The direct influence of parameter changes in the script are read-
ily visible by re-executing the script. The script “U-fiber Extraction”
to reproduce Figure 10 can be invoked from the Code Oracle plugin.

Furthermore, we show an example PDF output of the network
report generation mechanism, created using the “Network Report”
Code Oracle (Figure 11). For PDF creation, ReportLab® is used.
The figures in the report are generated using Matplotlib (Hunter,
2007) for 2D plotting. Connection matrix and node degree histo-
grams are displayed along with basic network statistics for a selected
networks contained in the currently loaded connectome file. The
script that produces the reports can easily be adapted for modi-
fication of the layout or report content to include other network
measures or visualizations (Figure 12).

4 DISCUSSION

4.1 CONNECTOME FILE FORMAT

In this article, we exemplified the application of the CFF for
Diffusion MRI data and metadata. We envision more use cases of
functional connectivity analysis using fMRI, EEG, MEG methods.
The CFF specification is flexible enough to also accommodate such
multi-modal datasets and their metadata.

*reportlab.com
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FIGURE 8 | The Connectome Viewer GUI. The main application is shown with the highlighting. They can be manipulated and run in the IPython console. (D) The

placeable widgets contributed by the core plugins. (A) The Connectome File View Mayavi Scene displays the visualized data. (E) The IPython shell is integrated as a
shows a treeview of the contents of a loaded connectome file. (B) The Mayavi widget. It exposes the loaded connectome file and other objects for interactive
Visualization Tree manages the visualization objects and scenes in a pipeline. (C) scripting and data inspection. (F) The Namespace widget displays the variables and
The ScriptEditor shows scripts generated with the Code Oracle with syntax packages currently loaded in memory and accessible in the IPython Shell.
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FIGURE 9 | Node degree display on the surface of an inflated left to a medium degree, and red to a high degree. The Connection Matrix
hemisphere (left). The right hemisphere and parts of the medial surface of Viewer (right). Switching between edge values and highlighting of the edge
the left hemisphere are clipped using the Mayavi DataSet Clipper. A set of value ranges is possible. The From andTo labels, and edge values are

left hemispheric cortical and subcortical regions is visible. The node degree updated automatically when moving over the matrix with the mouse

of each region is coded in color. Blue corresponds to a low degree, green cursor.

One current limitation is a missing specification in the format As multi-modal or multi-subject datasets are often very large,
itself of the shared spatial data space among connectome object in the order of tens or hundreds of gigabytes, having all data-
types. For instance, it is possible that the affine transformation sets in one compressed container is disadvantageous for fast
stored in NIFTT or GIFTI files do not map to the same common file access and manipulation. Because the meta.cml file stores
space, such as MNI152, due to different preprocessing. The annota-  relative references to the connectome object data files, the data
tion of the particular data spaces for individual connectome objects ~ files can reside on the local or remote file system in subfolders
as metadata of the connectome file is possible. relative to the meta.cml file. The meta.cml can be loaded with
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FIGURE 10 | Cortico-cortico U-shaped fibers generated with a Code Oracle script. The method to extract fibers from a subject uses criteria for fiber start and
endpoint closeness, fiber curvature. The local skeleton clustering procedure (Garyfallidis et al., 2011) is used for the cluster coloring. The extracted U-fibers are cortical
short distance connections hypothesized to contribute to the cortical small world network property (Bassett and Bullmore, 2006).
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FIGURE 11 | Network PDF Report. Reports can be automatically generated
using the Code Oracle “Network Report”” The layout and report content can
be adapted and extended with required results.

cfflib, thereby exposing the all contained connectome objects.
This enables fast access and manipulation of the connectome
objects without decompression and compression steps. Existing

compression mechanisms for individual data files such as GZIP
for NIFTT and GIFTI files reduce the data size substantially and
can still be employed. Only for data exchange or distribution,
the multi-modal dataset is ZIP compressed (filename ending.
cff). We adopted the ZIP compression algorithm because it is
widely supported and gives good performance in terms of fast
compression and compression ratio on medium-sized datasets,
such as single subject datasets.

The XML-Based Clinical Experiment Data Exchange Schema
XCEDE2 (Gadde et al., 2011) provides an extensive metadata
hierarchy for experimental context representation, provenance,
and protocol information. Whereas XCEDE2 focuses on complete
representation of neuroimaging studies and uses web frontends
for data manipulation and annotation, the CFF metadata hier-
archy is more open, flexible, and analysis-centric. All CFF data
manipulation can be performed using cfflib from an interactive
Python console. Experimental context representation may be
stored as CData objects. For example, they may contain instances
of XCEDE?2 files.

The CIFTI format for connectivity-related neuroimaging data
is proposed by the CIFTI and is based on the NIFTI-2 format.
Currently, we employ GraphML to store connectivity graphs
and associate them with surface and volume-based datasets,
but adopting the CIFTI format for this purpose will be rather
straightforward.

Recently, efforts to standardize terminologies and build ontolo-
gies for neuroscience have undergone a resurgence (Larson and
Martone, 2009). We encourage linking to and referencing exist-
ing ontologies as much as possible. For instance, every node in a
network produced by the Connectome Mapper denotes a brain
structure. With attributes on these nodes, we refer to a unique
Uniform Resource Identifier, as seen in Figure 3, pointing to

Frontiers in Neuroinformatics

www.frontiersin.org

June 2011 | Volume 5 | Article 3 | 131


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Gerhard et al.

The Connectome Viewer Toolkit

FIGURE 12 | Brain Connectivity Hairball. Display of the whole connectivity
information at once does not allow for any sensible interpretation.
Interactive manipulation of visualization parameters such as node position
and coloring enables data exploration. Nodes are located here at the center
of gravity of their underlying inflated brain region mesh. Nodes are scaled

k-core

0.

and colored according to their k-core number. The k-core number was
computed using NetworkX in the IPython shell. The numbers were reused
as a parameter to update the visualization interactively. Segregation of
nodes with high k-core number at particular regions may be visible
(Hagmann et al., 2008).

a standardized ontology or wiki. This reference allows other
researchers to retrieve the concept and delineation criteria for a
particular brain structure in a parcellation scheme. In addition,
the annotation of metadata by the researcher, together with using
standardized terminologies, will facilitate future data integration
challenges of connectome datasets.

4.2 CONNECTOME FILE FORMAT LIBRARY

We used the CFF object model to create the Python library cfflib
for connectome file manipulation and annotation. Within the
Connectome Viewer Toolkit, cfflib naturally serves to convert
multi-modal datasets and metadata from the Connectome Mapper
into a connectome file. The Connectome Viewer uses cfflib to load
and save connectome files. Thus, the CFF and cfflib serve well as
interfacing tools.

Asnew file format input/ouput libraries are developed, the cfflib
will be able to reuse these libraries to expose a common interface
to the neuroimaging researcher dealing with multi-modal datasets
of different file formats.

4.3 CONNECTOME VIEWER

We have demonstrated the usability of the Connectome Viewer
as a research and development environment. Our experience has
shown that integrating analysis, data manipulation, and visualiza-
tion capabilities synergistically in a single application is beneficial
to researchers. This is especially true for data exploration and data
mining. Extending visualization applications with analysis and
data manipulation functionality by including a Python shell was
recently achieved in 3D Slicer (Gering et al., 2001). 3D Slicer is a
comprehensive application for multi-modal visualization with over
one million lines of mostly C++ code. The underlying toolkit for
visualization is VTK. By using Mayavi as an interface to VTK, we
can hide much of the complexity of VTK and provide an easy-to-
use interface for visualization to the researcher. Mayavi provides

extensive documentation and examples for many use cases, yet it
allows one to use the underlying VTK objects if necessary. Similarily,
the DataViewer3D (Gouws et al., 2009) uses VIK directly to pro-
vide multi-modal visualization capabilities and is Python-based.
DataViewer3D does not include a Python shell for analysis and
does not use the Enthought Toolsuite or Mayavi.

We have reused supporting libraries as much as possible, taking
advantage from the expertise of library developers in their vari-
ous domains. This has led to a comparatively small codebase for
the Connectome Viewer which is approachable for contributor
who may wish to create extensions. The modular plugin archi-
tecture furthers this. Through the Code Oracle script generation
mechanism, the Connectome Viewer facilitates the introduction to
Python scripting considerably. The scripts are easily adaptable and
extendable to the needs of connectome researcher. As our experi-
ence shows, writing Python scripts feels very familiar to researchers
used to other development environments such as Matlab, and can
be learned in a short time period.

5 CONCLUSION

We have proposed the Connectome File Format as a conveni-
ent, easy-to-use container data format to deal with some of the
heterogeneity and complexity of multi-modal neuroimaging
data. The CFF connects multi-modal data sources and metadata
in a comprehensive and flexible way. We have showed how the
CFF and its accompanying Python library cfflib solve data man-
agement and integration challenges. We also foresee the useful-
ness of the CFF for datasets from functional neuroimaging and
behavioral domains.

We have presented the Connectome Viewer, an integrated neu-
roinformatics research and development framework for 3D visu-
alization and analysis. The modular plugin architecture provides
means for extensibility and the Code Oracle method supports lev-
eraging of the scripting interface by an automated script generation
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mechanism for common analysis tasks. The full compatibility with
the CFF facilitates cross-modal data mining, analysis and visualiza-
tion in an interactive, scriptable way.

The Connectome Viewer Toolkit, its supporting libraries and the
Connectome Mapper constitute the Connectome Mapping Toolkit.
Altogether, this toolkit creates a unique, extensible workbench for
new and ongoing macroscale connectome mapping, management,
analysis, and visualization.

6 INFORMATION SHARING STATEMENT

The Connectome Viewer Toolkit is released under the terms of
the open source Modified BSD license (opensource.org/licenses/
bsd-license.php). Contributed packages and plugins adhere to
their own open source licensing policy. All packages, documenta-
tion and example datasets can be downloaded from http://www.

cmtk.org/. Furthermore, the tools are listed and associated in the
Neuroimaging Informatics Tools and Resources Clearinghouse
under http://www.nitrc.org/.
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INTRODUCTION

Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g.,
with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal
cell (PC) extends thousands of synapses over macroscopic distances (~cm). The contrasting
requirements of high-resolution and large field of view make it too challenging to acquire the entire
synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole
neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial
appositions between axons and dendrites could thus bridge the opposite scales, from synaptic
level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons
makes these “potential synapses” functionally relevant to learning capability and memory
capacity. To date, however, potential synapses have only been mapped in the surrounding of a
neuron and relative to its local orientation rather than in a system-level anatomical reference.
Here we overcome this limitation by estimating the potential connectivity of different neurons
embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic
trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal
and transversal curvatures. \We report the potential connectivity onto PC dendrites from the
axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The
numbers, densities, and distributions of potential synapses were analyzed in each sub-region
(e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal
vs. ventral). The overall ratio between the numbers of actual and potential synapses was ~0.20
for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the
anatomical location of both pre-synaptic and post-synaptic neurons.

Keywords: rat hippocampus, potential synapses, connectivity, 3D model, CA pyramidal axons, dentate mossy fiber,
CA3b interneuron axons, computational

In particular, the connectivity maps of entire neurons can be

Mammalian brains have complex network architectures (Sporns,
2010), with each neuron connecting to thousands of others.
Connectivity must be characterized at both synaptic and regional
levels to advance our knowledge of cognitive and computational
functions of nervous systems (Sporns et al., 2005; Buzsaki, 2007).
Numerous studies recently explored structural and functional
connectivity with different experimental modalities, including
non-invasive imaging (Bullmore and Sporns, 2009; Honey et al.,
2009; Bressler and Menon, 2010), electrophysiology (Kalisman
et al., 2005), light microscopy (Ishizuka et al., 1990; Sik et al.,
1993; Li et al., 1994; Wittner et al., 2007), and electron microscopy
(Mishchenko etal.,2010). Non-invasive imaging such as DTT allows
investigation of the whole human brain, but is only amenable to
analyzing regional connectivity. Electron microscopy has comple-
mentary strengths and limitations, as it can unambiguously identify
all synapses, but only in a narrow region of interest. Unfortunately,
neither technique is suitable to acquire the whole synaptic connec-
tivity of a typical cortical neuron. Light microscopy provides an
optimal balance of resolution and field of view for this neuronal
connectomic level bridging the micro- and macro-scale.

investigated computationally based on light-level digital recon-
structions of axonal and dendritic morphologies in simplified
(Amirikian, 2005) or detailed (Stepanyants and Chklovskii, 2005;
Escobar et al., 2008; Stepanyants et al., 2008) geometrical represen-
tations. In most such studies, putative connectivity is established
on the basis of the close proximity between a pair of pre-synaptic
(axonal) and post-synaptic (dendritic) segments (Kalisman et al.,
2003; Stepanyants et al., 2004). These spatial overlaps have been
defined as “potential synapses” because of strong evidence of spine
and bouton motility and their essential role for synapse formation
and memory consolidation (Lendvai et al., 2000; Chklovskii et al.,
2004; Knottetal.,2006). This conceptual framework is appropriate
for the mammalian hippocampus, as this region displays structural
plasticity throughout adulthood and is clearly involved in learning
(Squire and Zola-Morgan, 1991; Eichenbaum and Cohen 2001).
To date, however, potential synapses have only been mapped in
the surrounding of a neuron and relative to its local orientation
rather than in a system-level anatomical reference. This limitation
is particularly evident in the hippocampus, because of its peculiarly
curved and laminar organization.
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The methodology presented here applies an existing math-
ematical framework to estimate potential synaptic connectivity
(Stepanyants and Chklovskii, 2005) to detailed arbor geometries
embedded into a 3D reconstruction of the rat hippocampus. The
hippocampal model was built by assembling the cyto-architectonic
layers segmented from high-resolution histological images of thin
cryostatic brain sections, and transforming the resulting space into
avolumetric representation with uniformly sized voxels (Ropireddy
et al., 2008). A custom-designed computational framework was
developed to embed digital neuromorphological reconstructions
with respect to the natural hippocampal axes (Ropireddy et al.,
2011). The key advantage of this methodological extension is the
ability to analyze potential synaptic maps of different neurons
within the proper anatomical frame of reference. As the prin-
cipal neurons of the hippocampus have long-range projections
(Tamamaki et al., 1988; Li et al., 1994) forming synapses across
different sub-regions and layers, this framework provides a unique
opportunity to quantify potential synaptic patterns across the entire
hippocampal extent.

The present analysis is based on all publicly available digital
reconstructions of hippocampal pyramidal cell (PC) dendrites
(Ascoli et al., 2007) and a representative sample of complete 3D
axonal tracings. In particular, the pre-synaptic neuronal selection
consists of a dentate granule cell (GC), 4 PCs (with somata in
proximal CA3c, distal CA3c, CA3b, and CA2, respectively), and 13
CA3Db radiatum and lacunosum-moleculare (LM) interneurons.
For each case, we analyzed the numbers, densities, and distribu-
tions of potential synapses in every sub-region (e.g., CA3 vs. CAl),
layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g.,
dorsal vs. ventral).

MATERIALS AND METHODS

Previous work described in detail our high-resolution 3D recon-
struction of the rat hippocampus from thin histological sections
(Ropireddyetal.,2008) and the embedding of digitally traced neu-
ronal morphologies (Ropireddy et al.,2011). Here, we only present
a brief overview emphasizing just the procedures that specifically
pertain to the present analysis.

DIGITAL 3D RECONSTRUCTION OF THE RAT HIPPOCAMPUS

A 45-day-old, male, Long—Evans hooded rat (226-237 g; Harlan,
Indianapolis, IN, USA) was sacrificed by guillotine and its brain
quickly removed and stored air-tight at —80°C. The brain was sec-
tioned coronally at 16 pm in the dorso-ventral direction with a
cryostat at —18°C. The 290 sections encompassing the entire hip-
pocampus were mounted on slides and cover-slipped after Nissl
staining. Slices were imaged at 3200 dpi with an EPSON scanner
and contrast enhanced by the Matlab routine “imcontrast” The
image stack was loaded into “Reconstruct” (Fiala, 2005) with a pixel/
pm conversion factor (4.28) accounting for the measured planar
shrinkage. Images were initially registered by mid-line guided man-
ual alignment. Seven clearly identifiable cyto-architectonic layers
were manually segmented (Figure 1A): hilus, GC, and molecular
layer (ML) in the dentate gyrus (DG); and oriens (OR), PC, radia-
tum (RAD), and LM layers in CA3 and CA1. Serial tracing produced
sets of pixels representing layer contours as closed polygons. All
locations inside the boundaries of a given layer were identified by

triangulation, extending a previous algorithm to yield 3D voxels
from neighboring slices. Cubic voxels were thus defined with side
corresponding to the inter-slice distance (16 um). The initial regis-
tration was refined by iterative three-point average of the centroids
through the longest hippocampal axis until reaching geometric
convexity.

The 3D location of each voxel was mapped both onto canonical
brain planes (coronal, sagittal, and horizontal), and in a natural
hippocampus reference frame denoting longitudinal and trans-
versal positions. Longitudinal coordinates were calculated as
path distances from the septal to the temporal poles (Figure 1B).
Transversal coordinates were computed by first virtually generating
60 cross-sectional planes, which displayed the classic double “C”
shape corresponding to the principal cell layers. The medial axes
of these granular and pyramidal contours defined the DG and CA
transversal positions as the distances from the infra-pyramidal tip
and from the CA3c end, respectively (Figure 1B). Additionally, each
voxel was assigned appropriate stereotactic coordinates and tagged
by its sub-region, namely DG infra- (“I”) and supra-pyramidal
(“S”) blades, and CA3c, CA3b, CA3a, CA2, and CA1 (Figure 1C).

EMBEDDING OF DIGITAL NEURONAL MORPHOLOGIES

A selection of 18 fully 3D traced axons from different sub-regions
of the hippocampus was obtained from NeuroMorpho.Org (Ascoli
etal.,2007): 1 GC, 4 pyramidal neurons, and 13 interneurons. The
somata of these pre-synaptic neurons were positioned according
to the stereotactic coordinates reported in the original reports.
The dentate GC and the distal CA3c pyramidal neuron were at
AP = 2.5-3 mm and ML = 2.5 mm from bregma (Tamamaki
and Nojyo, 1991). The proximal CA3c pyramidal neuron was at
AP = 3.5 mm and ML = 2.5 mm (Wittner et al., 2007). The CA3b
pyramidal neuron was at AP = 2.4 mm and ML = 3.5 mm (Li
et al., 1994). The CA2 pyramidal neuron was at AP = 2-2.5 mm
and ML = 2.5 mm (Tamamaki et al., 1988). All interneurons had
somata in CA3b, six in the radiatum layer, and seven in LM. The
range of their stereotactic coordinates were AP = 1.95-3.85 mm
and ML = 2.4-2.6 mm (Ascoli et al., 2009). Since all these somatic
locations for the pre-synaptic neurons are reported with a precision
of 0.1 mm, they identify a range of six locations in the hippocam-
pus reconstruction, each corresponding to voxels with 16 um side
(16 pm X 6 = 0.1 mm). Cells were positioned in the location closest
to the center of this range. In one case (GC) the entire range of
5 x 5 adjacent locations was tested (see Results).

The dendritic reconstructions of PCs were embedded as poten-
tial post-synaptic targets. For CA3, 54 pyramidal neurons were
pooled from 5 different studies (Ishizuka et al., 1995; Turner
et al., 1995; Henze et al., 1996; Carnevale et al., 1997; Jaffe and
Carnevale, 1999). For CAl, 103 pyramidal neurons were pooled
from 2 of the above studies and 5 additional ones (Pyapali and
Turner, 1994, 1996; Ishizuka et al., 1995; Carnevale et al., 1997;
Pyapali et al., 1998; Megias et al., 2001; Brown et al., 2005). In all
cases, the somata were positioned based on the location ranges
reported in the respective papers. As for the pre-synaptic neurons
just discussed, the range of suitable voxels in the hippocampus 3D
reconstruction was extended to account for the limited precision of
the published positional information. Altogether, the location spans
of these 10 datasets covered the entire hippocampal space invaded
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FIGURE 1 | Hippocampus 3D template and potential synapse illustration. permission from Elsevier. (C) Maps marking the CA and DG sub-region borders
(A) Nissl-stained coronal section with CA (blue) and DG (red) cyto-architectonic with respect to the septo-temporal and transversal axes. (D) Representation of
layers segmented in the dorsal hippocampus. The inset shows an enlarged view  the DG (red) and CA (blue) principal layers of the hippocampus 3D

of the segmentation labeling the CA (CA1 and CA3a,b,c) and DG (infra and reconstruction, with an embedded CA3bS? interneuron and a CA3b pyramidal
supra) sub-regions and layers. Layer abbreviations: GC, granule cell; ML, cell dendritic tree. (E) Enlarged view of the CA3bS" interneuron (axon: yellow,
molecular; PC, pyramidal cell; RAD, radiatum; LM, lacunosum-moleculare; OR, dendrite: green) and the CA3b pyramidal cell (red), illustrating three potential
oriens. (B) The septo-temporal and transversal axes of the hippocampus (“S” synapses (light blue). Inset shows a further zoom-in on one of the potential

and “T" mark the septal and temporal poles). The rat brain depiction in synapses, identifying a location where the interneuron axon is within 1 ypm of
lateral-medial orientation is adapted from Amaral and Witter (1989) with the CA3b pyramidal cell dendrite.
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by the 18 selected axons. The pyramidal layers were densely packed
by stochastically re-sampling the above 157 post-synaptic neurons,
each within its appropriate voxel range. The PC layer was packed
with CA3 and CA1 neurons with appropriate somatic densities so
as to reflect the known total number of cells in these regions (Rapp
and Gallagher, 1996).

Pyramidal and GCs were oriented in the 3D hippocampal
reconstruction (Figure 1D) such that the principal axis of their
dendritic arborization was perpendicular to the cellular layer and
the secondary axis lay on the transversal plane (Scorcioni et al.,
2002). To account for the natural variability observed in this general
alignment (Claiborne et al., 1990; Ishizuka et al., 1995), the initial
orientations were stochastically tilted between 0° and 5° around
a random 0°-360° rotation. Principal and secondary axes were
computed relative to the soma by single value decomposition of
the digital reconstructions (Scorcioni et al., 2002) using standard
numerical recipes (Press, 1988). Dendritic trees were scaled so as
to reach the appropriate cyto-architectonic boundaries (ML for
granule, LM for pyramidal apical, and, OR for basal trees). To ensure
that the entire axonal arbors of the pre-synaptic cells fell within
the 3D boundaries of the hippocampus, the orientations of these
neurons were further manually fine-tuned within £30° relative to
their automatic embedding using quaternions (Hanson, 2006).

POTENTIAL SYNAPTIC CONNECTIVITY MEASUREMENT

A potential synapse occurs when a pre-synaptic segment comes in
close proximity of a post-synaptic segment (Figure 1E). For excita-
tory synapses, the interaction distance is generally considered as a
spine length or ~2 pm (Spacek and Hartmann, 1983; Harris and
Stevens, 1989; Harris, 1999; Kalisman et al., 2003). For inhibitory
synapses, the interaction distance can be approximated as the sum
of the radii of the dendritic and axonal segments, typically 1 um
(Wierenga et al., 2008). The number of potential synapses can be
derived from the geometry of pre- and post-synaptic neurons based
on a published mathematical formula (Stepanyants and Chklovskii,
2005):

Np(Ra’ﬁd)
=25y I}
ij

This equation defines the number of potential synapses between
the axons of one neuron and the dendrites of a second neuron,
Np(R,,R,) as a function of their position in space, whereas the
somata of the two cells are placed at coordinates R, and R, respec-
tively. In the right hand side, s is the axo-dendritic interaction dis-
tance (in our case, 2 and 1 pm for principal cells and interneurons,
respectively), I' and I represent the unit-volume lengths of the
axonal and dendritic segments along the unit vectors 71’ and 71}, and
Isin(n!,n))1 is the absolute value of the sine of the angle between
unit vectors 7, and 7). These neuronal reconstructions are taken
to represent the morphology of a class of similar, but non-identical,
neurons. Thus, a Gaussian filter with SD G is applied around the
centers of the axonal and dendritic segments with vectors 7' and
7/. The parameter ¢ was fixed at 10 um, corresponding to the
average length of all segments. This equation is iteratively applied
to all of the axonal and dendritic segments (indicated with i and

sin(n; M) )| exp[—(?j —7 )2 /4(52]/(41_[(52 )3/2

j» respectively). Thus, the diameter measurements of the axon and
dendrite segments are not used in computing the number of poten-
tial synapses.

COMPUTATIONAL DETAILS AND DATA ANALYSIS
The core computational framework was written in C/C++and com-
piled with the GNU compiler under UNIX. Potential connectivity
computations were executed on an SGI cluster of 80 Altix 8200
nodes, each containing two quad core Intel Xeon E5440 2.83 GHz
processors with 16 GB of RAM. Instead of parallelizing the C/C++
code, we maximized the number of available nodes by submitting
to the server a number of PBS (Portable Batch System) scripts that
split the job into independent tasks'. At the same time, the code
was optimized using pthreads (Silberschatz et al., 2009) to capitalize
on the multi-processors of each node. As expected, the computing
time decreased sub-linearly on the cluster machine compared to
a single CPU. For instance, computing the potential connectivity
for the proximal CA3c axon took ~24 h on a single computer vs.
~2 h on the cluster.

The program returns the number of potential contacts between
a pre-synaptic neuron and all post-synaptic targets. Moreover,
it records the anatomical locations of every potential synapse
both within the hippocampus (in each of the coordinate systems
described above) and in terms of distances from the somata of the
pre- and post-synaptic neurons along the axonal and dendritic
paths, respectively. Two-dimensional color maps (e.g., Figure 2)
were generated using the R package “ggplot2”*. Linear dependencies
were computed from these potential connectivity maps as regres-
sion fits of the septo-temporal positions weight-averaged by the
corresponding numbers of potential synapses at a given transversal
position. Virtual Reality Modeling Language files were generated

with the freeware viewer “view3dscene™.

RESULTS

The results presented here are intended as a proof-of-concept of
the 3D framework in computing the full potential connectivity of
single neurons throughout system-level regional maps. As such, the
research design was data-rather than hypothesis-driven.

We named the various neurons with a region_cell-type nomen-
clature convention, using subscripts AX and DE for pre- and post-
synaptic cells, respectively and superscripts to specify sub-regions
as needed. Thus, the dentate GCis labeled DG_GC, . The pre-syn-
aptic PCs in various sub-regions are referred to as CA3c>_PC,,
CA3c®_PC,,, CA3b_PC,,, and CA2_PC,,. The interneurons
with somata in the radiatum and LM layers are distinguished as
CA3b*_IN, and CA3b"™_IN, ,respectively. The post-synaptic PC
targets are referred to as CA3_PC_  and CA1_PC_,.

POTENTIAL SYNAPTIC FRAMEWORK ILLUSTRATION

The dentate mossy fibers exemplify a well-known axonal arbor
system within the hippocampus, with projections to all three
sub-regions of the CA3 pyramidal network (Figure 2A). The
axons of dentate GCs contact both PCs and interneurons in CA3

'http://www.unix-info.org
*http://had.co.nz/ggplot2

*http://vrmlengine.sourceforge.net/view3dscene.php
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distance. The solid and dashed colored lines correspond to averages and 95%
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stratum lucidum (Acsady et al., 1998). Here we only considered
PCs as the potential post-synaptic targets. Previous research on
the organization of the dentate mossy fiber pathway revealed
that the main axonal path initially traverses the CA3 region in
a septal direction. Then at the CA3b/CA3a border it abruptly
changes course to a temporal/caudal orientation relative to the
soma position of the GC (Acsady et al., 1998). This peculiar
shape of the mossy fibers is evident from the visualization of the
axonal embedding within the 3D hippocampal reconstruction
(Figure 2A) and the potential synaptic map in CA3 (Figure 2B).
The map is built from 25 GC somatic positions around the center
of the spatial range in the supra-pyramidal region corresponding
to the reported stereotactic coordinates (star in the DG schematic
of Figure 2B).

The total number of potential synapses made by the GC on
pyramidal dendrites is 103.8 £ 4.1 (mean + SD, N = 25), with
an almost equal distribution among the three sub-regions of
CA3:32.2 £2.3 in CA3c, 36.6 £ 2.1 in CA3b, and 35.0 + 1.1 in
CA3a. However, both the number of potential contacts and the

proportions among the sub-fields vary non-uniformly along the
longitudinal axis. In particular, the distribution along the septo-
temporal axis follows a double Gaussian (Figure 2C). The first
peak is centered around the somatic septo-temporal position of
the GC, and largely consists of potential synapses in areas CA3c
and CA3b. The second peak (displaced ~0.6 mm temporally) is
twice as wide but of smaller (~1:5) amplitude, and almost entirely
corresponds to potential contacts in CA3a. In contrast to the
absolute numbers of potential contacts, the potential synaptic
density is significantly higher in CA3c compared to CA3b and
CA3a (Figure 2C inset, p < 0.0001, unpaired two-tailed #-test).
The uneven density can be explained by analyzing the number
of potential synapses with respect to the axonal path distance
(Figure 2D). The potential synaptic count rises sharply and peaks
at ~1 mm within CA3c, but then decreases farther along the path
in correspondence to the CA3b and CA3a sub-regions. These
results parallel the empirical observations on mossy bouton and
actual synapse counts within each CA3 sub-region (Acsady et al.,
1998; Henze et al., 2000).
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DISTINCT POTENTIAL SYNAPTIC CONNECTIVITY PATTERNS IN THE
PYRAMIDAL CELL NETWORK

The axonal trees of the four examined pyramidal neurons share
common general characteristics, at the same time exhibiting exqui-
sitely distinct potential synaptic maps onto the CA3/CA1 principal
neuronal network (Figure 3). All four arbors project to large por-
tions of the CA3 and CA1 sub-regions, with ~3 mm longitudi-
nal coverage. The numbers of potential synapses, however, vary
widely from ~176 K for CA3¢*>_PC,, and ~160 K for CA2_PC ,
to~100 K for CA3c%t_PC . and ~80 K for CA3b_PC, . These differ-
ences, considerable even within sub-region, largely reflect variation
in axonal length (Ropireddy et al., 2011).

Except for CA3b_PC,, all other three neurons have potential
synapses across every CA sub-field, with relative differences in their
count of potential contacts between CA3 and CAl. A prominent
difference among the maps concerns their orientations with respect
to the two natural axes of the hippocampus, reflected by the linear
regressions of the weighted averages (Figure 3 insets). Specifically,
no particular trend is apparent for CA3c?*>_PC,  (Figure 3A). In

contrast, CA3¢™'_PC, (Figure 3B) and CA2_PC,, (Figure 3D)
clearly favor septal locations in the proximal transversal regions
(CA3 toward the DG), and temporal locations in the distal trans-
versal regions (CA1 toward the subiculum), with a significantly
positive correlation (r=0.87 and r=0.98, respectively). Conversely,
CA3b_PC,, displays the opposite tendency (Figure 3C) due to a
fairly uniform spread of CA3 contacts around the somatic position
and a ~1 mm septal shift in CA1 (r=-0.81).

The distinct patterns of potential connectivity are particularly
evident along the transversal axis (Figure 4A,B). The CA3c*>_PC
bimodal distribution peaks in CA3c and in mid-CA1. The multi-
modal shape of CA3c**'_PC,, reveals a preference for the CA3c
and CA3a sub-regions, but tails off within proximal CA1l. These
contrasting tendencies are summarized in the counts of potential
contacts within CA3 (and its sub-fields) and CA1 (bar plots of
Figure 4A). To quantify the opposite differences statistically, we
repeated the embedding of all post-synaptic PCs 10 times with
different random seeds for the exact positions and orientations. For
the CA3c?>_PC, , the potential synaptic count is 1.5 times larger in

A CA3cPox_PC,,

|- - - -5th, 95th weighted average

200
400
600
800
1000
1200
1400

septo-temporal position (mm)

-2 -1 0 1 2 3
transversal position (mm)

CA3b_PC,,

weighted average |

(¢}

Np
0
100
200
300
400
500

CA3c CA3b -
© § 600

L W e
T [ I T I
-2 -1 0 1 2 a

transversal position (mm)

septo-temporal position (mm)

FIGURE 3 | Potential connectivity maps of four pre-synaptic CA3/2 principal neurons onto pyramidal cells. (A) CA3c™>_PC,, (gray), (B) CA3c**'_PC,, (blue),
(C) CA3b_PC,, (green), and (D) CA2_PC, (red). In all maps, the white star denotes the transversal and septo-temporal coordinates of the pre-synaptic soma. Insets
show the linear regression and 95% confidence interval of the septo-temporal vs. transversal positions weight-averaged by the potential synapse numbers.

B CA3cdst_PC,,
63 --- ?th 95th —wéiéﬁterdi average
€ _l2d
5 = |
E 0
(s 1 |
S 4+ ] 100
.v) . a
200
8_ 0
= 34
o
g
£ 27
2
9 11
Q.
(0]
w
T T T T T T
2 -1 0 1 2 3
transversal position (mm)
D CA2_PC,y
6|3 ----5th, 95th —— weighted average |
. N
E p
£ 0
.5 200
=
= 400
(o]
e 600
g 800
g 1000
L 1200
o
o - i 1400
% \\-.,\'l.
I I I T I T
-2 -1 0 1 2 3

transversal position (mm)

Frontiers in Neuroinformatics

www.frontiersin.org

July 2011 | Volume 5 | Article 5 | 140


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ropireddy and Ascoli

Potential connectivity of hippocampal neurons

A ~
120,000+ o,
— 6000 CA3er_PCax ' =
S I Se EX
E CA3cdst_PCyy 80,0004 %-— = or
@ 50001 2 60,0001 $2]
1723
8- 40,0004 E-n._
(] - o
= 4000 3
> gl ‘ ‘
(2] g CA3c CA3b CA3a CA1
@ 3000
=
= T
ko S p—
S 2000 L ||= kgo
s : | =%
2
(o] G
« 1000 o]
[0} o ©
.g g
5 @4 cAze | :
S CA3c CA3b CA3a CAT 8 ) T
|2 I 11 - (I) ! é 113 CA3cYS!_PC,y &~ CA3c CA3b CA3a CA1
B transversal axis (mm) ~
Lo
Ak =
.. / \ -
a 6000 | _ CA3b_PCAx 75,000 1 %
60,000 o e 5
= CA2_PC,, = Fepe g
S|
& 5000 , 45.000 g °
i i aQ
< ~ ©
a 30,0004 0 7
S 4000~ £
= 15,000 sl _ '
7y o= ; 8~ CA3cCA3b CA3a CA1
— 04
3000+
= CA3b_PCjy ~
o)
E R
© 2000 125,000 T
X
o 100,000 2
[e) | 2
s 1000 _ 75,000 g
z a
o 50,000 g
E 0 = g
g 25,000 £a
CA3c iCA3b: CA3a | CA1 2" CA3c CA3b CA3a CA1
T 3 T ; T T
-2 -1 0 I 1 2 3
transversal axis (mm)
FIGURE 4 | Sub-region and layer specificity of pyramidal cell potential the total counts in each CA3 sub-region and in CA1. (C) Proportion of
connectivity. (A,B) Potential synapse distributions along the transversal axis ~ potential contacts in CA3 (light) and CA1 (dark) layers. The layers not
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CA1 than in CA3, whereas for CA3c%_PC . this ratio is 0.45 (both
P <0.0001, unpaired two-tailed ¢-test). Moreover, CA3¢*>_PC,
makes three-fourth of its potential synapses in CA3c, while half of
the CA3¢™_PC, potential contacts is in CA3a. The CA3b_PC,
neuron exhibits the most localized potential connectivity, peak-
ing around the somatic position in CA3b and extending nearly an
order of magnitude fewer potential synapses in CA1 than in CA3.
The CA2_PC,, transversal distribution is bimodal with peaks in
CA3a and mid-CALl. The total number of CA1 potential contacts
is twice that in CA3 (p < 0.0001).

The four PCs also display general similarities and distinct dif-
ferences in potential connectivity across layers (Figure 4C). As
expected, the vast majority of potential synapses are always found
in radiatum (RAD) and oriens (OR), with only small fractions in
the pyramidal (PC) and LM layers. The CA3 and CA1 radiatum
proportions notably differentiate the four pre-synaptic neurons.
For CA3c¢?>_PC, , the RAD potential contacts are 1.7 times more
abundant in CA1 than in CA3, while the inverse ratio (0.4) applied
to CA3c%t_PC - In both neurons, only less than or close to one-
tenth of potential synapses are contributed by OR, as opposed

Frontiers in Neuroinformatics

www.frontiersin.org

July 2011 | Volume 5 | Article 5 | 141


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ropireddy and Ascoli

Potential connectivity of hippocampal neurons

to more than two-thirds by RAD. For CA3b_PC,, radiatum is
still dominant in the minor CAl component, but for the major
CA3 contribution, oriens and radiatum provide an approximately
even number of potential synapses. A mirror situation occurs in
CA2_PC, ., whereradiatum has greater representation in the minor
CA3 component, but oriens claims an equal split in the synapti-
cally richer CA1 field. For both CA3b_PC,  and CA2_PC,,, less
than 50% of potential synapses are found in RAD, and more than
a third in OR.

In addition to the count of potential contacts, the potential syn-
apse densities also vary across sub-regions and layers among the
four axons (Figure 4D). For CA3c?>_PC, ,, the highest density of
potential synapses occurs in CA3c even though the total count is
greater in CA1. In contrast, CA3c*™'_PC,, shows similar potential
synapse densities in all CA3 and CA1 sub-regions. For CA3b_PC, ,
the potential synapse density is highest in CA3b and CA1, again in
spite of the lower CA1 total count, indicating a focal concentration

of potential connectivity within a smaller area (cf. Figure 4B). The
CA2_PC, potential synapse density is maximal in CA3a followed
by CA1, where more than two-thirds of the potential contacts are
made. Thus, each of the four neurons displays unique patterns of
preferred density domains. Conversely, in all cases and for each
sub-field, the potential synaptic density is substantially greater in
radiatum than in oriens with only three exceptions in which the
two values are similar: CA3c and CA3a for CA3b_PC, , and CAl
for CA2_PC,,.

POTENTIAL SYNAPSE DISTRIBUTIONS ALONG THE AXONAL AND
DENDRITIC PATHS

The distance from the soma of a pre-synaptic terminal along the
axonal path may affect spike propagation delay and reliability.
Thus, we investigated how the dependence on axonal distance of
potential connectivity varies among neurons (Figure 5A). The four
PCs exhibit linear increases with similar slopes in the cumulative
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count of potential synapses up to ~1.5 mm, indicating a uniform
distribution of potential pre-synaptic contacts in the first part of
the axonal path. Beyond this distance, the neuron with the longest
axon (CA3c¢>_PC, ) has a shallow accumulation of potential con-
tacts (mostly in CA3) within the more proximal one-third of path
(the initial ~7 mm), and makes progressively more CA1 potential
synapses in the next ~7 mm. The neuron with the fewest potential
contacts (CA3b_PC,, ) is also essentially confined within CA3 and
in fact ends shortly after the initial 7 mm of path, though it displays
a faster potential synapse increase reaching a plateau in the first
~5 mm. Within this same path, the other two neurons have the
steepest (and very similar) accumulation of potential contacts. The
neuron with the shortest path (CA3c¢*'_PC,, ) synapses mostly in
CA3 for the first half of its path and only in CAL1 for the second
half. CA2_PC, also forms potential contacts exclusively in CA3
for the first ~2.5 mm, but then continues for ~10 mm after switch-
ing to CAl.

The four axonal arbors also differ in terms of the proportion of
post-synaptic targets they contact, either out of all (225,000 CA3
and 390,000 CA1) PCs or only considering those with dendrites
within the spatial reach of each axon (Table 1). These numbers vary
widely among neurons and between CA3 and CA1. In contrast, the
spatial coverage is similar among the four axons in CA3 (~40%) and
CA1 (~25%). The average number of potential contacts per post-
synaptic neuron ranged from ~2.2 to 5.6, with small coefficients
of variation (typically below 0.1). Thus, most neurons receiving
potential synapses tended to be contacted multiple times. In fact,
individual connections only accounted for one-third of the cases.
However, the distributions of the number of potential synapses per
contacted PC varied dramatically depending on the pre-synaptic
axon (Figure 5B). Interestingly, the grand average of potential syn-
apses per PC over the whole post-synaptic pool (the product of
overall % PCs contacted by their averaged received contacts) is simi-
lar for all axonal arbors on CA3 pyramidal dendrites (~0.3) but not
on CA1 pyramidal dendrites, where it spans an order of magnitude
from 0.29 for CA2_PC, t0 0.03 for CA3b_PC, . These divergence
ratios are consistent with previous findings (Li et al., 1994).

The distance of a synapse from the soma along the dendritic
path can affect signal integration both by cable filtering and active
membrane properties. The distributions of potential synapses in
the apical and basal dendrites of PCs reflect the patterns observed

in the oriens and radiatum layers, respectively, in CA3 (Figure 5C)
and CALl (Figure 5D). All four neurons have a peak of potential
synapses on the basal dendrites at a similar distance along the path
(~200 pm). However, CA3b_PC  and CA3c?>_PC,, have the larg-
est number of basal potential contacts in CA3 and the smallest in
CALl.In contrast, CA2_PC,, is dominantin CAl,and CA3¢™_PC
has a similar number in both regions. The four neurons display
more similar distributions of potential contacts along the CA3 api-
cal paths, except for the more proximal peak of CA3c?*_PC, . The
patterns along the CA1 apical paths, in contrast, are completely dis-
tinct in the four cases. CA3c?>_PC, and CA2_PC, have the larg-
est and second largest peaks, but are located at opposite extremes
(distal and proximal, respectively) of the apical dendrites, almost
750 pm apart. The remaining two CA3 neurons have smaller peaks
(especially CA3b_PC, ) at intermediate path distances.

POTENTIAL SYNAPSE DISTRIBUTIONS OF RADIATUM AND
LACUNOSUM-MOLECULARE CA3b INTERNEURONS
Interneurons with somata in CA3b radiatum and LM layers have
distinct electrophysiology and synaptic plasticity, yet similar axonal
morphology (Ascoli et al., 2009). The collective potential synaptic
map for the 13 interneurons (6 CA3b*_IN, and 7 CA3b™_IN, )
depicts localized CA3 distributions spanning approximately the
same spatial extent in the septo-temporal and longitudinal dimen-
sions (Figure 6A). CA3b"_IN, and CA3b™_IN, make approxi-
mately 50,000 and 40,000 potential contacts, respectively, with
CA3 PC dendrites. The difference between these mean values was
not statistically significantly (p > 0.5, unpaired two-tailed #-test).
The spatial extent in the septo-temporal and transversal axes were
0.60 £0.09 mm and 2.91 £ 0.55 mm (mean + SD, N = 13), respec-
tively. The potential synaptic map area was 1.38 = 0.23 mm? The
coefficient of variation for these three parameters is thus under
0.2. We also computed the mean square deviation (MSD) for
the same three parameters by comparing the connectivity map
of each neuron with the convolved map (shown in Figure 6A).
The corresponding measurements were 0.02 mm, 0.31 mm, and
0.09 mm?, demonstrating a modest variation among these 13 CA3b
interneurons.

Interestingly, however, the two groups of interneurons can be
clearly differentiated based on their potential connectivity patterns
along the transverse axis (Figure 6B). The number of potential

Table 1 | Percentage of pyramidal cells contacted by the four axonal CA3/CA2pc arbors and number of potential synapses they receive.

CA3c™™_PC,, CA3cé=_PC,, CA3b_PC,, CA2_PC,,
CA3 Overall PCs contacted (%) 5.9 12.0 8.9 4.9
Np per PC contacted (u + o) 5.6+0.20 25+0.18 3.4+0.30 5.1+0.12
Spatial coverage (%) 41 39 45 42
PCs contacted in spatial coverage (%) 14.4 30.8 19.8 1.7
CA1 Overall PCs contacted (%) 9.0 3.7 0.8 73
Np per PC contacted (u + o) 3.0+£0.07 2.2+0.40 3.8+£0.15 4.0+0.39
Spatial coverage (%) 24 23 26 24
PCs contacted in spatial coverage (%) 375 16.1 3.1 305

The “overall % PCs contacted” is computed based on a total of 225,000 and 390,000 CA3 and CA1 pyramidal neurons respectively. The “Np per PC contacted” only
counts the target PCs receiving potential synapses. “Spatial coverage” represents the proportion of PCs with dendrites within the spatial reach of each pre-synaptic axon.

Frontiers in Neuroinformatics

www.frontiersin.org

July 2011 | Volume 5 | Article 5 | 143


http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ropireddy and Ascoli

Potential connectivity of hippocampal neurons

>

N
o

CA3c CA3b CA3a

-
oo
|

-
o
|

—_
N
|

s
N
|

septo-temporal position (mm)

_
o

T

1 1 T T T T
25 -20 15 -10 -05 00 05

transversal position (mm)
D

towards
CA3c CA3a

C. =
% Q%
= 6000- S | CA3DRINA
2 ?
o
g B 1
@ 4000 >
S -
© ©
2 2000 @
b
=) (]
— g -
o %)
g 0+ A‘C".l T T — g
= 115 130 145 160 175 &
k]
(=5

septo-temporal position (mm)
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LM neurons. (B) Mean potential synapse distributions and 95% confidence
intervals for six CA3b"_IN,, (purple) and seven CA3b*™_IN,, (gold) along the
transversal axis. The solid colored arrows indicate the average transversal
positions of the somata. The vertical dashed lines demarcate the boundaries
between the three CA3 sub-regions. (C) Gaussian fits of the means and 95%
confidence intervals for the septo-temporal distributions of potential synapses.
(D) Transversal patterns (“toward CA3c"” vs. “toward CA3a") and layer
specificity in potential synapse densities for the two CA3b interneuron types.
(E) Potential synapse distribution along the dendritic path distance of CA3
pyramidal cells.

synapses from CA3b"_IN, gradually increases from CA3c, peak-
ing just past the CA3b/CA3a border, and dropping sharply within
CA3a. In contrast, CA3b"™_IN, _displays a bimodal distribution,
with a prominent potential synapse peak at the CA3¢/CA3b border,
adip in the middle of CA3b, and a secondary peak in CA3a.In con-
trast, the potential connectivity patterns along the septo-temporal
position are symmetric around the somata and indistinguishable
between the two interneuron types (Figure 6C).

The differences along the transverse axis suggest opposite
propensities of CA3b*_IN, and CA3b"™_IN,  to make potential
contacts toward CA3c and CA3a, respectively, as evidenced by
potential synaptic density analysis (Figure 6D). Further inspection
of layer specificity shows in the density bar graphs that the minor
proportion of potential contacts in the oriens layer is unique of
CA3b*_IN, cells, and entirely confined to the CA3c region. In
contrast, in both groups the concentration of potential contacts in
LM grows toward CA3a. The lack of CA3b™_IN, potential syn-

apses in oriens is reflected in the distribution along the dendritic
path distance of the target PCs (Figure 6E), which is similar for the
two interneuron types on the apical, but not basal arbors. Lastly,
interneurons with higher and lower dendritic branch numbers
(called HiDe and LoDe in Ascoli et al., 2009) cannot be distin-
guished by their potential connectivity (not shown).

DISCUSSION

The approach introduced here enables the analysis of potential
connectivity patterns from individual axo-dendritic overlaps
across the entire hippocampus. The spatial scale defined by the
span of whole axonal arborizations bridges the conceptual levels
of potential synapses and regional anatomy. The hippocampus is
especially suitable for studying systems-level connectivity, because
of its unique structural organization and relative wealth of cel-
lular morphological data. At the same time, the highly diverse
hippocampal principal cells and interneurons form complex
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microcircuits whose computational function is only beginning
to be understood. Functionally, the hippocampus is theorized to
play a central role in spatial navigation and memory processing.
Thus, our results might facilitate incorporation of realistic con-
nectivity patterns into models investigating structure—function
relationship.

We observe unique distributions of potential synapses across
the various sub-regions and cyto-architectonic layers of the hip-
pocampus, based on entire axonal reconstructions from seven
neuron types and the dendritic arbors representing the whole
CA PC network. Although axonal morphology constitutes the
most prominent determinant of synaptic connectivity, the present
study demonstrates the importance of integration both across data
sources and data types. The 3D whole-hippocampus reconstruc-
tion enables the embedding of complete axonal arbors traced from
disparate histological preparations into the same framework (e.g.,
Scorcioni and Ascoli, 2005; Ascoli et al., 2009; Ropireddy et al.,
2011). Moreover, the dense dendritic embedding allows actual
computation of potential synaptic maps, as well as quantitative
analysis such as the dendritic and axonal distributions of poten-
tial contacts and the ratio between the numbers of actual and
potential synapses.

In this analysis, the pre-synaptic neuron, the post-synaptic
neuron, and the embedding tissue are reconstructed from dif-
ferent animals. Thus, this framework cannot capture the specific
correlations among pairs of cells within their surroundings. At
the same time, potential connectivity patterns can reveal general
statistical principles of the specific interaction probabilities among
particular cell classes that might apply across individuals. In par-
ticular, if validated with a larger sample, the CA3 axonal potential
connectivity might indicate that proximal CA3c neurons (toward
hilus) communicate primarily with CA1, while distal CA3 neu-
rons (e.g., in CA3b) mostly form recurrent axo-dendritic overlaps
within CA3. Moreover, the strikingly different potential connec-
tivity patterns of the two CA3c neurons (proximal and distal)
suggest that even principal cells from the same sub-region can
have contrasting potential synaptic distributions throughout the
hippocampus. While this finding may have interesting implications
on the information processing in CA3 and CAl, the empirical
observation must be corroborated on a representative sample of
neurons before generalizing to the whole population of proximal
and distal CA3 PCs.

We adopted the concept of potential synapses to characterize
circuitry based on light microscopy data. Functionally, potential
connectivity relates to the capability to create actual synapses lev-
eraging the structural plasticity of dendritic spines and axonal
boutons (Holtmaat and Svoboda, 2009). Evidence for this phe-
nomenon is particularly compelling in the hippocampus, where
it might bear direct functional relevance to information storage
(Chklovskii et al., 2004). From this viewpoint, it is interesting to
evaluate the ratio of actual to potential synapses, called connectivity
fraction (Escobar et al., 2008) or filling fraction (Stepanyants et al.,
2002). The only available dense electron microscopy reconstruction
of a small hippocampal volume from the rat CA1 radiatum layer
(Mishchenko etal.,2010) confirmed earlier estimates of connectiv-
ity fraction in the 0.20-0.25 range. Considering, as in these recent
and earlier reports (Bannister and Larkman, 1995; Megias et al.,

2001), bouton and/or spine counts as proxies for actual synapse
numbers, we obtain values fully consistent with the existing data
for that region. At the same time, our results can be further used
to derive the connectivity fractions for other components of the
hippocampal circuit.

Dentate mossy fibers are estimated to form ~18 mossy terminals
each (Acsady etal., 1998; Henze et al., 2000), leading to connectiv-
ity fractions of 0.17-0.18 in all three sub-fields CA3a,b,c. Similarly,
the bouton numbers reported for the proximal CA3c pyramidal
axon (Wittner et al., 2007) combined with our potential synapse
count yield an overall connectivity fraction of ~0.23. However, this
value changes drastically throughout the hippocampus, from 0.06
in CA1 ORt0~0.17 in CA3 OR and RAD, t0 0.32 in CA1 RAD. This
differentiation by sub-region and layer emphasizes the importance
of analyzing connectivity through the entire anatomical region
invaded by an axonal arborization as opposed to the narrow region
of interest typically covered by electron microscopy.

Summing together the potential synapses made by the four
analyzed pyramidal axons on all PC dendrites, ~26% of the con-
tacts are made in the oriens layer, and ~59% in radiatum. These
fractions, virtually identical in CA3 and CA1, can be compared to
the relative densities of dendritic spines observed in the same lay-
ers. The values in CA3 (Drakew et al., 1996) constitute an almost
perfect match, with 28% of spines in oriens and 59% in radiatum.
Such correspondence suggests equal overall connectivity fraction
between basal and apical dendrites. Interestingly, the proportion
of CAl spines found in radiatum (~55%) is also very similar to
the potential synapse fraction, while the value in oriens (~39%) is
higher (Bannister and Larkman, 1995; Megias et al., 2001), con-
sistent with the addition of recurrent collaterals from CA1 PCs on
the basal dendrites.

A drawback of this study is that the potential connectivity pat-
terns are based on only one axonal reconstruction for each principal
neuron. This is due to the difficulty of obtaining complete digi-
tal reconstructions of projecting axons from extremely laborious
in vivo preparations. With the more contained interneurons, axons
can be reconstructed from slices, enabling analysis of larger samples.
In the case of CA3b Radiatum and LM cells, we found different
potential synaptic patterns across the transversal axis (i.e., among
the CA3 sub-fields). Our previous intrinsic morphometric analysis
could not detect these differences between the two groups (Ascoli
et al., 2009). This observation stresses the importance of study-
ing connectivity patterns within the context of a 3D system-level
anatomical framework.

Based on the axonal and dendritic reconstruction data available
in NeuroMorpho.Org, our computational framework can allow
the estimation of potential interconnectivity of additional neu-
ron classes in the rodent hippocampus. In particular, complete
axonal reconstructions of principal neurons from posterior—ven-
tral region of CA3, CAla, CAlb, CAlc, subiculum, and entorhinal
cortex layer 2 (e.g., Scorcioni and Ascoli, 2005) can be embed-
ded to map their hippocampal potential connectivity. Similarly,
18 axonal reconstructions of interneurons from DG hilus, CA3
stratum lucidum, and CAI stratum oriens can also be included
in future studies. Additionally, 223 dendritic reconstructions of
interneurons throughout all DG, CA3, and CAl sub-fields and
layers can be embedded to extend all potential connectivity maps
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beyond the PC targets examined here. It is also expected that the
number of available reconstructions will continue to grow, enabling
further refinements of these results.

Comparing the potential connectivity obtained for the same
pre-synaptic cells, but using the dendritic trees of different neu-
ronal classes (e.g., interneurons vs. PCs), can also be useful as a
control to examine the role of dendritic specificity in establish-
ing potential synapses. This could be achieved, for example, by
contrasting the connectivity patterns of CA3 pyramidal axons
to CAl basket cell dendrites with those to CA1 PC dendrites.
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INTRODUCTION

A connectome is a comprehensive description of the network ele-
ments and connections that form the brain (Sporns etal., 2005). Such
clear and comprehensive knowledge of anatomical connections lies at
the basis of understanding network functions (Crick and Koch,2003).
For example, the existence of a connection between two brain regions
ascertains that information transfer can occur. Likewise, when inputs
from different brain regions converge onto another region, this can
be interpreted as an anatomical substrate for information integration
(Sporns and Tononi, 2007). Here, we review the current state of the
art knowledge on connectivity of the rat retrosplenial cortex (RSC)
with the hippocampal—parahippocampal region (HF-PHR). Apart
from this written account, the results will be presented graphically in
a comprehensive, interactive, and searchable connectome.

The RSC is the most caudal subdivision of the strip of cortex
around the corpus callosum that is generally referred to as the
cingulate cortex. In primates, the cingulate cortex is subdivided
into an anterior and a posterior part and the most caudoventral
subdivision of the posterior cingulate cortex is called RSC, whereas
in rodents the RSC comprises the entire posterior cingulate cor-
tex (Vogt and Peters, 1981). Compared to well-investigated brain
regions such as the hippocampus, relatively little research has been
carried out on the anatomy and functions of the RSC. Recently,
discoveries that suggest an important role for the RSC in cogni-
tive functions have sparked increased interest in its anatomy and
functions. In humans, the RSC is activated in (autobiographical)
memory tasks, navigation, and prospective thinking (Vann et al.,

between the rat RSC, parahippocampal region and hippocampal formation.

Keywords: connectivity, retrosplenial cortex, hippocampal formation, parahippocampal region, interactive, connectome,

2009). These cognitive functions are also known to be affected in
patients with RSC lesions, in whom topographical disorientation
and learning deficits are commonly observed (Maguire, 2001).
Additional evidence for the involvement of the RSC in cognitive
functions stems from the observation that the RSCis a component
of the so-called default mode network. The default mode network is
an interconnected system of brain regions, involving the lateral and
medial parietal areas, the medial frontal and medial temporal lobe
region, and the RSC (Buckner et al., 2008; Greicius et al., 2009). This
network of brain regions is not only active during retrieval of auto-
biographical memories, but also when an individual is not focused
on the outside world and instead is performing internal tasks such
as daydreaming, envisioning the future, retrieving memories, and
probing emotions and actions of others (Buckner et al., 2008).
Although the function of the default mode network and the role
of the RSC within it remains elusive, it has been argued that the
RSC plays an active part in memory retrieval and visualization of
memories (Greicius et al., 2009).

The cognitive functions in which the RSC is engaged show a
striking similarity with those that engage the medial temporal lobe
system; a system that comprises the HF-PHR. The loss of cogni-
tive capabilities as seen in patients with RSC lesions is remarkably
similar to those seen in patients with HF-PHR damage (Scoville
and Milner, 1957; Henderson et al., 1989; Reed and Squire, 1997;
Maguire, 2001). Furthermore, in Alzheimer’s disease, both HF-
PHR as well as RSC show progressive atrophy (Villain et al., 2008;
Raji et al., 2009; Pengas et al., 2010).
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As in humans, the RSC of rats is thought to be important for
a variety of cognitive tasks. RSC lesions impair performance in
spatial memory tasks (Sutherland et al., 1988), allocentric working
memory tasks (Vann and Aggleton, 2004), egocentric memory tasks
(Cooper and Mizumori, 1999; Whishaw et al., 2001), and tasks in
which animals have to detect if a spatial arrangement is novel or
familiar (Vann and Aggleton, 2002). Particularly within the field
of spatial learning and memory, functional attributes of the RSC
show a large overlap with those of HF-PHR. The presence of so
called head direction cells in the RSC, which have been implicated
in navigation, provides strong support to the notion that the RSC
has a role in spatial cognition (Chen et al., 1994; Muller et al., 1996;
Cho and Sharp, 2001). Head direction cells fire when the animal’s
head points in a specific direction, and such neurons are also present
in a number of subdivisions of PHR, in particular in the presubicu-
lum, parasubiculum, and entorhinal cortex (Boccara et al., 2010).
These three areas of PHR are reciprocally connected with RSC
and in addition, they receive input from CA1 (Cornu Ammonis;
see Nomenclature of HF and PHR) and subiculum (Insausti et al.,
1997; Naber et al., 2001; Jones and Witter, 2007), which are both
involved in navigation (O’ Keefe and Dostrovsky, 1971; Sharp and
Green, 1994). The RSC also receives direct input from CAl and
subiculum (Vogt and Miller, 1983; Van Groen and Wyss, 1990b,
1992, 2003; Insausti et al., 1997).

The functional relevance of the RSC and the striking overlap
with the functional connotations attributed to HF-PHR strongly
suggests a functional relationship between these areas. Knowledge
about the connectome that underlies this relationship is relevant,
but presently not available in an accessible format. In this review,
all reported anatomical connections within the RSC and between
the RSC and the HF-PHR in the rat are presented. The general
patterns of connectivity will be presented in a condensed writ-
ten form and specific connection patterns will be highlighted to
evaluate possible functional implications. Additionally, all pub-
lished connections between the RSC and HF—PHR and the intrinsic
connectivity of the RSC were integrated in the already published
interactive diagram of all published connections of the rat HF-PHR
(Van Strien et al., 2009). The current version of the interactive
and now searchable diagram, represents without doubt the fullest
and most detailed account ever of the brain connections between
the HE, PHR, and RSC. We hope that this contribution will help
to further understanding of the functional interactions between
those brain structures.

MATERIALS AND METHODS

NOMENCLATURE OF THE RSC

Multiple definitions and nomenclatures for the rat cortical man-
tle exist. Krieg (1946) was the first to delineate the RSC in the rat,
based on the anatomical account of Brodmann, who subdivided
the RSC in rabbit and named it area (A)29 (Brodmann, 1909).
For this review, the nomenclature as described by Vogt et al.
(2004) is followed. According to this definition, the rat RSC is
subdivided into four areas referred to as A29a, A29b, A29¢, and
A30. Most of the connectional papers do not separate A29a from
A29b and the combined region will be referred to as A29ab in
this paper (Figure 1). Where necessary, we converted the original
nomenclature used in individual papers into the nomenclature

of Vogt. For this purpose, a “Rosetta table” was created, which
allows easy conversion between different nomenclatures of the
RSC (Table 1).

DELINEATION OF RSC

The RSC is a neocortical structure situated in the midline of the
cerebrum. It arches around the dorsocaudal half of the corpus
callosum in the rat, where it is bordered rostrally by the anterior
cingulate cortex, caudoventrally by the PHR and laterally by the
parietal and visual cortices. The coordinate system that defines
position within the RSC is explained in Figure 1. The delinea-
tion of the subareas of RSC is based on cytoarchitectonic features
(Figure 2). A29a is the most ventral subdivision and it differs
from the dorsally adjacent A29b since it lacks a fully differentiated
layered structure. Cytoarchitectonically, A29a has a homogenous
layer II/II1, while in A29b this layer is divided into a thin superfi-
cial densely packed zone and a less dense deeper zone (Vogt and
Peters, 1981). A29a and A29b are distinguished from A29c most
strikingly in layer III, which in A29ab has cells arranged in bands
parallel to the pial surface, while in A29c¢ layer III is thinner and
the pyramidal cell bodies are randomly spaced (Van Groen and
Wyss, 1990b). An additional way to compare sub-regions is by
looking at chemoarchitectonic features. A29ab shows parvalbumin
stained cells in layers II, V, and VI, which are not as apparent in
A29c¢ (Jones et al., 2005). In AChE stained sections A29c¢ layer IV
shows a widening and increased strength of AChE staining com-
pared to layer IV of A29b (Vogt and Peters, 1981; Sripanidkulchai
and Wyss, 1987; Van Groen and Wyss, 1990b; Jones et al., 2005).
Cytoarchitectonically, A30 shows an abrupt widening and a less
dense packing of layer II/III compared to A29b and A29¢ (Vogt
and Peters, 1981; Sripanidkulchai and Wyss, 1987; Van Groen and
Wyss, 1992; Jones et al., 2005). Also, A30 layer IV is wider than in
A29b/A29c and A30 layer V neuronal cell bodies tend to be larger
(Krieg, 1946; Van Groen and Wyss, 1992). In AChE stained sec-
tions, layer I-IV of A30 are evenly and darkly stained (Van Groen
and Wyss, 1992), whereas in A29c¢ superficial and deep parts of
layer I and layer IV are most densely stained (Sripanidkulchai
and Wyss, 1987).

NOMENCLATURE OF HF AND PHR
The HF is a C-shaped structure situated bilaterally in the caudal
part of the brain. It is subdivided into the dentate gyrus (DG), the
Cornu Ammonis (subdivided into CA3, CA2, and CA1), and the
subiculum (Sub). The HF consists of three layers, a deep polymorph
layer, a more superficial cell layer and on the outside a molecular
layer that is almost devoid of neurons. The deep layer is called hilus
in the DG and stratum oriens in CA and is not really differentiated
in Sub. In DG the cell layer consists of granule cell bodies. In CA
and Sub, the cell layer contains pyramidal cells. The superficially
positioned molecular layer in DG and Sub is not further subdi-
vided, whereas in CA3, it is divided into three sub-layers: stratum
lucidum, stratum radiatum, and stratum lacunosum-moleculare.
The lamination of CA2 and CAl is the same, with the exception
that the stratum lucidum is missing.

The PHR borders HF caudally and medially. It is subdivided
into the presubiculum (PrS), the parasubiculum (PaS), the entorhi-
nal cortex (EC), further subdivided into the medial and lateral
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FIGURE 1 | Representations of the retrosplenial cortex (RSC),
hippocampal formation (HF) and the parahippocampal region (PHR) in
the rat brain. Lateral (A1) and midsagittal (A2) views of the rat brain. The RSC
is subdivided into A29ab, A29c, and A30. For orientation a rostrocaudal and
dorsoventral axis is indicated (A1). The HF consists of the dentate gyrus (DG),
CA3, CA2, CA1, and the subiculum (Sub). The PHR is subdivided into the
presubiculum (PrS), parasubiculum (PaS), the entorhinal cortex, which has a
lateral (LEA) and a medial (MEA) subdivision, the perirhinal cortex (PER;
consisting of Brodmann areas (A)35 and A36) and the postrhinal cortex (POR).
For orientation in HF the long or septotemporal axis is used [also referred to as
the dorsoventral axis; (A1,B2)]. Another commonly used axis is referred to as

CA2 [ CA1

A2
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the proximodistal axis which indicates a position closer to DG or closer to PHR,
respectively (B1). The main axis applied in case of PrS and PaS is also the
septotemporal axis, in PER and POR a rostrocaudal axis and in the entorhinal
cortex is a dorsolateral-to-ventromedial axis [dl and vm; (A1,A2)]. The dashed
vertical lines in panels (A1,A2) indicate the levels of four coronal sections
(B1-B4), which are shown in (B). The gray stippled line in (A1) represents the
position of the rhinal fissure (rf) and in (A2) they represent the global
delineation from the dorsal surface of the brain with the midsagittal and
occipital surfaces. (B) Four coronal sections of the rat brain; the levels of these
sections are indicated in (A). The subfields of the HF, PHR and RSC are
color-coded, see color panel below (B).

entorhinal area (MEA and LEA respectively), the perirhinal cortex
(PER; divided into Brodmann’s areas 35 and 36) and the postrhinal
cortex (POR). The PHR is generally described as having six lay-
ers. The delineation and the HF-PHR connections are extensively
described in earlier publications (Witter and Amaral, 2004; Van
Strien et al., 2009). The coordinate system that defines position
within the HF and the PHR is explained in Figure 1.

DATA COLLECTION AND VISUALIZATION

A search was performed on publications reporting tract-tracing
studies on intrinsic RSC and RSC — HF-PHR connections in
PubMed' and Embase? (see www.temporal-lobe.com for queries).

'www.PubMed.gov

*www.embase.com

The following inclusion criteria were used: (1) tract-tracing studies
or studies which report intracellular filling of single cells; (2) stud-
ies which used healthy, genetically un-altered, untreated adult rats
were included; (3) publications written or translated into English
or in a language using roman print. The database queries retrieved
816 papers of which 46 contained relevant information. The con-
nectional information was retrieved from these papers, including
information from tables and figures, using the following criteria:
(1) it was clear where anterogradely filled terminals or retrogradely
labeled cell bodies were located; (2) the location of the injection site
was clearly described; (3) injection sites did not include multiple
brain areas or fiber bundles; (4) lesion studies were discarded; (5)
explicitly reported non-excitatory projections were excluded; (6)
contralateral projections were excluded. The information about
these connections was stored in a custom-made relational database

Frontiers in Neuroinformatics

www.frontiersin.org

July 2011 | Volume 5 | Article 7 | 150


www.PubMed.gov
www.embase.com
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sugar et al.

Interactive retrosplenial cortex — (para)hippocampal connectome

Table 1| Comparison of nomenclatures of the retrosplenial cortex (RSC).

Vogt et al. Brodmann Rose (1927)* Krieg (1946) Rose and Woolsey (1948)*
(2004) (1909)*
A30 A29d RSag (rostral and 29¢ Area cingularis
intermediate A30)
A29¢c A29c RSgp (caudal A30 and A29c¢) 29b Area cingularis
A29ab RSga Retrosplenial area
A29 A29b
A29a A29a
Vogt et al. Meibach and Krettek and Price (1977)¢ Sripanidkulchai Van Groen and Wyss (1992) Shibata (1994)
(2004) Siegel (1977) andWyss (1987)
A30 RSAG RsAg Rag Rdg RSA
A29c RSGd RsG Rgb Rgb RSG
A29ab RSGv RsG Rga Rga RSG
A29
A29a

Vogt et al. (2004) Zilles and Wree (1995)

Burwell and Amaral (1998)

Jones et al. (2005) Shibata et al. (2009)

A30 RSA RSPd
A29c RSG RSPv
A29ab RSG

A29b

A29a

Rostral and intermediate Rsd 29d
RSv-b 29¢c
RSv-a and caudal RSd
29b
29a

In the present paper, RSC is subdivided into A29a, A29b, A29¢, and A30 according to \ogt et al. (2004).

"Rabbit.
*Mouse.
*Nomenclature described in Zilles and Wree (1995).

Rose (1927): RSag, retrosplenialis agranaluris; RSgB, retrosplenialis granularis dorsalis;, RSga, retrosplenialis granularis ventralis; Meibach and Siegel (1977): RSAG,
retrosplenialis agranularis; RSGd, retrosplenialis granularis dorsalis; RSGv, retrosplenialis granularis ventralis; Krettek and Price (1977): RsAg, agranular retrosplenial
area, RsG, granular retrosplenial area; Sripanidkulchai and Wyss (1987): Rag, retrosplenial agranular cortex; Rgb, retrosplenial granular cortex b; Rga, retrosplenial
granular cortex a; Van Groen and Wyss (1992):Rdg, retrosplenial dysgranular cortex; Rgb, retrosplenial granular b cortex; Rga, retrosplenial granular a cortex, Shibata
(1994): RSA, retrosplenial agranular area; RSG, retrosplenial granular area, Zilles and Wree (1995):RSA, agranular retrosplenial cortex; RSG, granular retrosplenial
cortex; Burwell and Amaral (1998): RSPd, dorsal retrosplenial area;, RSPv, ventral retrosplenial area,; Jones et al. (2005): RSd, dorsal retrosplenial cortex; RSv-b,
ventral retrosplenial cortex dorsal part; RSv-a, ventral retrosplenial cortex ventral part.

(Microsoft Access; Microsoft Corporation, WA, USA). Before data
was entered into this database, the accuracy was verified by at least
two of the authors.

Next, results from independent retrograde and anterograde
experiments were combined, such that both the layers of origin
and termination could be determined. The connections were added
to the existing HF-PHR connectome (Van Strien et al., 2009)
which was drawn in Visio (Microsoft Corporation, WA, USA) and
exported to PDF (Adobe Acrobat Pro; Adobe Systems Inc., CA,
USA), see Figure 3 for an overview of the connectome. In total,
the database now includes 223 references in 710 records, describing
approximately 2600 connections. Compared to the initial interac-
tive connectome, the usability of the current version is improved
by adding a search dialog, help section and a tutorial, developed
using AcroDialogs and AcroButtons (Windjack Solutions, Inc., OR,
USA). Updated and extended support information (e.g., manual,
references, and RSC nomenclature) is available on http://www.
temporal-lobe.com.

RESULTS

In the following section, the intrinsic connections between RSC
subdivisions and connections between RSC subdivisions and the
HF and PHR are summarized in a condensed written form (for
a condensed overview see Table 2). These connections are also
visually presented in the interactive connectome (Supplementary
Material).

CONNECTIONS WITHIN RSC

A29a and A29h

Intrinsic projections are those confined to a defined cytoarchitec-
tonic subarea. In case of A29a and A29b, reports either describe
those separately or the two areas have been combined into one
A29ab. We therefore deal with the two areas in this section together.
The intrinsic projections of A29a originate in layer III-VI and ter-
minate in layers I, II, III, and V. Those of A29b follow a rostral-to-
rostral and a caudal-to-caudal pattern. Rostral projections originate
in layers IL, 111, V, and VI and terminate rostrally in all layers. Caudal
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FIGURE 2 | Cytoarchitecture of rat retrosplenial cortex (RSC).
Photomicrograph of a coronal section stained for NeuN (high power image
taken from the section shown in Figure 1B2), illustrating the cytoarchitectonic
characteristics of A29a, A29b, A29c¢, and A30. A29a has a homogenous layer
[/l and lacks fully differentiated deep layers. In A29b layer II/I1l is divided into
a thin superficial densely packed zone and a less dense deeper zone. A29¢c has
a more differentiated layer V and a more equally dense layer II/Ill compared to
A29b and a thinner layer IV compared to A30. A30 shows a widening and a
less dense packing of layer Il/Ill and layer V neuronal cell bodies tend to be
larger. Layer VI is mostly developed in A30 and A29c and almost absent in
A29a and b (for more details see Vogt et al., 2004; Jones et al., 2005).

projections terminate caudally in layers I, II, III, and V (Shibata
etal.,2009). The A29a projection to rostral and caudal A29b origi-
nates in all cell layers and terminates in layers I, IL, III,and V (Shibata
etal.,2009). Caudal A29b projects to caudal A29a and rostral A29b
projects to rostral A29a and the projections originate in all cell
layers and terminate in layers I, IL, ITI, and V (Shibata et al., 2009).
The terminal patterns, when combined, are essentially in line with
the reported terminal distribution in layers I, III, V, and VI for the
combined area A29ab (Van Groen and Wyss, 1990b; Jones et al.,
2005; Miyashita and Rockland, 2007).

Both A29a and A29b project to the entire rostrocaudal extent of
A29c¢ (Vogt and Miller, 1983; Shibata et al., 2009). Projections that
arise from layer V of caudal A29a terminate in layers I, II, III,and VI
of the intermediate rostrocaudal and caudal parts of A29c¢. Rostral
A29b projects to rostral and intermediate rostrocaudal A29¢c, and
caudal A29b projects to caudal A29c. Projections originate in layers
IL 1L, V, and VI and terminate in all layers of A29c. When described
together (Van Groen and Wyss, 1990b, 2003; Jones et al., 2005;
Miyashita and Rockland, 2007), the only striking deviation from
the combined separate patterns is that the terminal distribution of
the projection from A29ab to rostral A29c is restricted to layers II
and III (Van Groen and Wyss, 1990b).

Neurons in layers V and VI of the caudal part of A29a project to
caudal levels of A30, terminating in layers I, II, III, and V (Shibata
etal.,2009). In case of A29b these projections arise from the entire
rostrocaudal extent, but also target caudal portions of A30, showing
the same laminar distribution as those of A29a (Vogt and Miller,

1983; Shibata et al., 2009). In line with these observations, the
projections from A29ab originate caudally in layer VI and more
rostrally in layers III-V projecting to the midrostrocaudal por-
tion of A30 (Van Groen and Wyss, 1990b, 1992; Jones et al., 2005).

A29c

The intrinsic connections of A29c¢ arise from the entire rostro-
caudal extent and project to the entire rostrocaudal extent (Vogt
and Miller, 1983; Van Groen and Wyss, 2003; Jones et al., 2005;
Miyashita and Rockland, 2007; Shibata et al., 2009). These projec-
tions originate in layers II, III, V, and VI and terminate in layers
I-V. Projections from A29c to caudal A29a exist (Shibata et al,,
2009) and the caudal and midrostrocaudal origin is in layer V and
that of the rostrally originating projections in layers V and VI. The
projections from A29¢ to A29ab or A29b arise from the entire ros-
trocaudal extent and project to the entire rostrocaudal extent (Van
Groen and Wyss, 1990b, 2003; Jones et al., 2005; Miyashita and
Rockland, 2007; Shibata et al., 2009). Rostrally, projections arise
from layers V and VI, whereas in caudal A29¢ projections arise
from layers II, II1, V, and VI. Termination of these projections in
A29b occurs in layers I, II, 111, and V. The projection from A29¢ to
A30 originates and terminates in all layers (Vogt and Miller, 1983;
Sripanidkulchai and Wyss, 1987; Audinat et al., 1988; Van Groen
and Wyss, 1992, 2003; Jones et al., 2005; Shibata et al., 2009). A
topographical organization is present, such that rostral A29¢ pro-
jects to rostral and mid-rostrocaudal A30 and caudal A29c¢ projects
to the entire rostrocaudal extent of A30.

A30

The intrinsic connections of A30 arise from the entire rostrocaudal
extent and project to the entir