
EDITED BY : Subramanian Ramamoorthy, Joe Hays and Christian Tetzlaff

PUBLISHED IN : Frontiers in Neurorobotics

ROBUST ARTIFICIAL INTELLIGENCE
FOR NEUROROBOTICS

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics

Frontiers in Neurorobotics 1 January 2022 | Robust Artificial Intelligence for Neurorobotics

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88974-246-2

DOI 10.3389/978-2-88974-246-2

https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
https://www.frontiersin.org/journals/neurorobotics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

Frontiers in Neurorobotics 2 January 2022 | Robust Artificial Intelligence for Neurorobotics

ROBUST ARTIFICIAL INTELLIGENCE
FOR NEUROROBOTICS

Topic Editors:
Subramanian Ramamoorthy, University of Edinburgh, United Kingdom
Joe Hays, United States Naval Research Laboratory, United States
Christian Tetzlaff, University of Göttingen, Germany

Citation: Ramamoorthy, S., Hays, J., Tetzlaff, C., eds. (2022).
Robust Artificial Intelligence for Neurorobotics. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-88974-246-2

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
http://doi.org/10.3389/978-2-88974-246-2

Frontiers in Neurorobotics 3 January 2022 | Robust Artificial Intelligence for Neurorobotics

04 Editorial: Robust Artificial Intelligence for Neurorobotics

Joe Hays, Subramanian Ramamoorthy and Christian Tetzlaff

07 Robustness Through Simplicity: A Minimalist Gateway
to Neurorobotic Flight

Simon D. Levy

13 The DIAMOND Model: Deep Recurrent Neural Networks for
Self-Organizing Robot Control

Simón C. Smith, Richard Dharmadi, Calum Imrie, Bailu Si
and J. Michael Herrmann

20 Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics

Travis DeWolf, Pawel Jaworski and Chris Eliasmith

31 Perception Understanding Action: Adding Understanding to the Perception
Action Cycle With Spiking Segmentation

Paul Kirkland, Gaetano Di Caterina, John Soraghan and George Matich

51 Echo View Cells From Bio-Inspired Sonar

Jacob D. Isbell and Timothy K. Horiuchi

66 A Spike-Based Neuromorphic Architecture of Stereo Vision

Nicoletta Risi, Alessandro Aimar, Elisa Donati, Sergio Solinas
and Giacomo Indiveri

77 Extending the Functional Subnetwork Approach to a Generalized Linear
Integrate-and-Fire Neuron Model

Nicholas S. Szczecinski, Roger D. Quinn and Alexander J. Hunt

100 Robust Trajectory Generation for Robotic Control on the Neuromorphic
Research Chip Loihi

Carlo Michaelis, Andrew B. Lehr and Christian Tetzlaff

114 Reverse Engineering and Robotics as Tools for Analyzing Neural Circuits

Ioannis Pisokas

132 SpikePropamine: Differentiable Plasticity in Spiking Neural Networks

Samuel Schmidgall, Julia Ashkanazy, Wallace Lawson and Joe Hays

Table of Contents

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics

EDITORIAL
published: 16 December 2021

doi: 10.3389/fnbot.2021.809903

Frontiers in Neurorobotics | www.frontiersin.org 1 December 2021 | Volume 15 | Article 809903

Edited and reviewed by:

Florian Röhrbein,

Technische Universität

Chemnitz, Germany

*Correspondence:

Subramanian Ramamoorthy

s.ramamoorthy@ed.ac.uk

Received: 05 November 2021

Accepted: 22 November 2021

Published: 16 December 2021

Citation:

Hays J, Ramamoorthy S and Tetzlaff C

(2021) Editorial: Robust Artificial

Intelligence for Neurorobotics.

Front. Neurorobot. 15:809903.

doi: 10.3389/fnbot.2021.809903

Editorial: Robust Artificial
Intelligence for Neurorobotics

Joe Hays 1, Subramanian Ramamoorthy 2* and Christian Tetzlaff 3

1 Robotics and Machine Learning Section, Dynamics and Control Systems Branch, Spacecraft Engineering Division,

United States Naval Research Laboratory, Naval Center for Space Technology, Washington, DC, United States, 2 Institute of

Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom, 3 Bernstein

Center for Computational Neuroscience, Third Institute of Physics, Georg-August-Universität Göttingen, Göttingen, Germany

Keywords: robotics, adaptation, neuromorphic, artificial intelligence, autonomy

Editorial on the Research Topic

Robust Artificial Intelligence for Neurorobotics

INTRODUCTION

Neural computing is a powerful paradigm that has revolutionized machine learning. Building from
early roots in the study of adaptive behavior and attempts to understand information processing
in parallel and distributed neural architectures, modern neural networks have convincingly
demonstrated successes in numerous areas—transforming the practice of computer vision, natural
language processing, and even computational biology.

Applications in robotics bring stringent constraints on size, weight and power constraints
(SWaP), which challenge the developers of these technologies in new ways. Indeed, these
requirements take us back to the roots of the field of neural computing, forcing us to ask how it
could be that the human brain achieves with as little as 12 watts of power what seems to require
entire server farms with state of the art computational and numerical methods. Likewise, even
lowly insects demonstrate a degree of adaptivity and resilience that still defy easy explanation or
computational replication.

In this Research Topic, we have compiled the latest research addressing several aspects of these
broadly defined challenge questions. As illustrated in Figure 1, the articles are organized into four
prevailing themes: Sense, Think, Act, and Tools.

OVERVIEW

Sense
Three contributed articles focused primarily on the perception tasks of a robotic system.
Specifically, Kirkland et al. investigated how to add understanding to the perception action cycle
with spiking neural network (SNN) based segmentation. They demonstrated that an event based
neuromorphic camera coupled with a Spiking fully Convolutional Neural Network (SpikeCNN)
successfully provided semantic segmentation and understanding of their test scenes, and whose
output was fed into a spiking control system providing actions.

Risi et al. presented a neuromorphic architecture for stereo vision, based on SNNs, that leverages
the advantages of brain-inspired neuromorphic computing by interfacing two event-based vision
sensors to an event-based mixed-signal analog/digital neuromorphic processor. Their results show
a path toward the realization of low-latency, end-to-end event-based, neuromorphic architectures
for stereo vision.

4

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.809903
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.809903&domain=pdf&date_stamp=2021-12-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.ramamoorthy@ed.ac.uk
https://doi.org/10.3389/fnbot.2021.809903
https://www.frontiersin.org/articles/10.3389/fnbot.2021.809903/full
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
https://doi.org/10.3389/fnbot.2020.568319
https://doi.org/10.3389/fnbot.2020.568283

Hays et al. Editorial: Robust Artificial Intelligence for Neurorobotics

FIGURE 1 | The articles of this Research Topic are organized into the following

four themes: Sense, Think, Act, and Tools.

Finally, Isbell and Horiuchi presented the concept of Echo
View Cells which used bat-inspired sonar to mimic how bats
might sense objects in the environment and recognize the views
associated with different places. They successfully demonstrated
spatial invariance by training feed-forward neural networks,
both traditional artificial neural networks (ANNs) and SNNs, to
recognize 66 distinct places in a laboratory environment over a
limited range of translations and rotations.

Think
Three articles focused on general approaches to algorithm
development based on Spiking Neural Networks, representing
the thinking aspects of systems. Pisokas presented the perspective
that the combination of reverse engineering with simulations
allows the study of both the structure and function of biological
neural circuits. This approach augmented understanding of both
the computation performed by the neuronal circuit and the role
of its components. Thus, a robotics practitioner can gain added
inspiration and guidance in the development of network-based
robotic algorithms.

Szczecinski et al. extend their previously-developed method
for tuning ANNs, the “Functional Subnetwork Approach,” to
SNNs based on generalized linear integrate-and-fire neurons.
This extension enabled specific functions to be realized in SNNs
through a direct analytic method of assembling and tuning
the networks without the use of global optimization, or other
forms of machine learning. Robotic algorithm developers are
now able to directly implement specific functions in a network
without training.

Finally, Schmidgall et al. introduced a framework,
SpikePropamine, for simultaneously learning the underlying
fixed-weights, and the rules governing the dynamics of
synaptic plasticity and neuro-modulated synaptic plasticity
in SNNs through gradient descent. This offers practitioners
an approach to leverage the strengths of online plasticity in
their robotic algorithm development through methods such as
reinforcement learning.

Act
Two articles addressed the action, or motor output, aspects of an
embodied robotic system. Michaelis et al. presented a network
architecture including the anisotropic network and a pooling
layer which allows fast spike read-out from a neuromorphic
processor (Intel’s research chip Loihi) and performs an inherent
regularization. With this, they showed that the anisotropic
network reliably encoded sequential patterns of neural activity,
each representing a robotic action, and that the patterns allowed
the generation of multidimensional trajectories on control-
relevant timescales.

Additionally, Smith et al. present latest results from their
framework for self-organizing robotic sensorimotor control,
DIAMOND, which employs a deep recurrent neural network,
based on the principles of predictive coding. Their results
provide evidence that deeper networks enable more complex
exploratory behaviors.

Tools
From a development tool perspective, Levy presented a
minimalist application programming interface (API) for sensors
and PID controllers, which makes it relatively easy for engineers
to prototype neuromorphic approaches to micro-air-vehicle
sensing and navigation.

Additionally, DeWolf et al. demonstrated how the Nengo
neural modeling and simulation libraries enable users to quickly
develop robotic perception and action neural networks for
simulation on neuromorphic hardware. Hereby, users can rely on
tools they are already familiar with, such as Keras and Python.

OUTLOOK FOR THE FUTURE

A long standing open question at the intersection of many
fields—Artificial Intelligence, Neural Computing, Neuromorphic
Systems and other forms of Biomimesis—pertains to the
specification of how artificial systems should emulate the natural
phenomena around learning and adaptation, and what the
construction of such artificial systems might tell us about nature
itself. Papers in this volume explore exactly this interface. With
rapid advances both in our understanding of models (natural
and artificial) and in our ability to fabricate new devices, the
gaps between these diverse methodologies are rapidly closing,
potentially enabling entirely new ways of answering these long-
standing questions.

AUTHOR CONTRIBUTIONS

All authors reviewedmultiple contributed articles in this research
task and collaboratively wrote this Editorial.

ACKNOWLEDGMENTS

We thank all authors contributing their work to this Research
Topic. JH acknowledges support from the US Naval Research
Laboratory’s Base Program Safe Lifelong Motor Learning
(WU1R36). SR acknowledges support from the US Office
of Naval Research–Global (award no. N62909-19-1-2072) for

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2021 | Volume 15 | Article 8099035

https://doi.org/10.3389/fnbot.2020.567991
https://doi.org/10.3389/fnbot.2020.578803
https://doi.org/10.3389/fnbot.2020.577804
https://doi.org/10.3389/fnbot.2021.629210
https://doi.org/10.3389/fnbot.2020.589532
https://doi.org/10.3389/fnbot.2020.00062
https://doi.org/10.3389/fnbot.2020.00016
https://doi.org/10.3389/fnbot.2020.568359
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Hays et al. Editorial: Robust Artificial Intelligence for Neurorobotics

the organization of the Robust Artificial Intelligence for
Neurorobotics Workshop. CT acknowledges support by the
H2020 projects Plan4Act (#732266), ADOPD (#899265), and by
the Intel Corporation via a financial gift without restrictions.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest. The Intel Corporation did not influence the current

work nor had any role in it.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2021 Hays, Ramamoorthy and Tetzlaff. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 3 December 2021 | Volume 15 | Article 8099036

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 16 March 2020

doi: 10.3389/fnbot.2020.00016

Frontiers in Neurorobotics | www.frontiersin.org 1 March 2020 | Volume 14 | Article 16

Edited by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Reviewed by:

Terrence C. Stewart,

University of Waterloo, Canada

Sebastian Scott James,

University of Sheffield,

United Kingdom

*Correspondence:

Simon D. Levy

simon.d.levy@gmail.com

Received: 26 November 2019

Accepted: 27 February 2020

Published: 16 March 2020

Citation:

Levy SD (2020) Robustness Through

Simplicity: A Minimalist Gateway to

Neurorobotic Flight.

Front. Neurorobot. 14:16.

doi: 10.3389/fnbot.2020.00016

Robustness Through Simplicity: A
Minimalist Gateway to Neurorobotic
Flight
Simon D. Levy*

Computer Science Department, Washington and Lee University, Lexington, VA, United States

In attempting to build neurorobotic systems based on flying animals, engineers have

come to rely on existing firmware and simulation tools designed for miniature aerial

vehicles (MAVs). Although they provide a valuable platform for the collection of data for

Deep Learning and related AI approaches, such tools are deliberately designed to be

general (supporting air, ground, and water vehicles) and feature-rich. The sheer amount

of code required to support such broad capabilities can make it a daunting task to

adapt these tools to building neurorobotic systems for flight. In this paper we present

a complementary pair of simple, object-oriented software tools (multirotor flight-control

firmware and simulation platform), each consisting of a core of a few thousand lines

of C++ code, that we offer as a candidate solution to this challenge. By providing

a minimalist application programming interface (API) for sensors and PID controllers,

our software tools make it relatively painless for engineers to prototype neuromorphic

approaches to MAV sensing and navigation. We conclude our discussion by presenting

a simple PID controller we built using the popular Nengo neural simulator in conjunction

with our flight-simulation platform.

Keywords: drones, miniature aerial vehicles, spiking neural network, PID control, flight simulator

1. INTRODUCTION

Beginning with J.J. Gibson’s pioneering research on visual perception (Gibson, 1979), decades
of research in behavioral neuroscience have shown the importance of robust, tightly-coupled
perception/action cycles in supporting successful movement (predation, obstacle avoidance) in
challenging environments. This is especially true for flying animals like birds and insects, whose
survival depends on overcoming of a variety of forces in three-dimensional space; most obviously,
gravity (Floreano et al., 2009).

In attempting to build neurorobotic systems based on flying animals, engineers have come to rely
on existing firmware and simulation tools designed for miniature aerial vehicles (MAVs). Although
they provide a valuable platform for quick entrée into the world of first-person-view (FPV) racing
or aerial photography (firmware), and the collection of data for Deep Learning and related AI
approaches (simulation), such tools are deliberately designed to be as feature-rich and general as
possible, to appeal to the widest audience. The most popular software tools support air, ground,
and water vehicles and provide a hierarchy of safety mechanisms for minimizing the likelihood of
injury and property damage. Unsurprisingly, the sheer amount of code required to support such
broad capabilities can make it a daunting task to adapt these tools to building neurorobotic systems
for flight.

7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00016
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00016&domain=pdf&date_stamp=2020-03-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:simon.d.levy@gmail.com
https://doi.org/10.3389/fnbot.2020.00016
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00016/full
http://loop.frontiersin.org/people/837020/overview

Levy Neurorobotic Flight

In the remainder of this paper we present a pair of simple,
object-oriented software tools—Hackflight andMulticopterSim—
each consisting of a core of a few thousand lines of C++ code, that
we offer as a candidate solution to this challenge. These software
tools are built on the popular Arduino microcontroller platform
and the popular video game platform Unreal Engine 4. By
providing a minimalist application programming interface (API)
for sensors and PID controllers, these tools make it relatively
painless for engineers to prototype neuromorphic approaches to
MAV sensing and navigation.

2. HACKFLIGHT

Hackflight is an open-source toolkit for building multirotor
flight-control firmware and software. The project began in 2015
as an attempt by the author to build a simple open-source
flight-control firmware program for MAVs using the Arduino
platform (Banzi and Shiloh, 2014). At that time, as well as today,
there were two major firmware projects for MAVs: ArduPilot
(ArduPilot Dev Team, 2019a) and Cleanflight (Cleanflight Team,
2019). ArduPilot focuses on sophisticated mission planning with
waypoint navigation and other features, and runs mainly on
the Pixhawk flight controller. Cleanflight and its derivatives
(Betaflight, Raceflight) are popular with FPV racing enthusiasts,
and run on a broad variety of flight-control boards designed for
FPV racing. (A more recent Cleanflight derivative, iNav, adds
features for navigation and for fixed-wing aircraft). Although
both projects can trace their origin to the Arduino platform,
they have long since switched to using their own non-Arduino
hardware drivers for sensing and motor control. Both projects
are supported by large development teams and have a code base
of several hundred thousand lines (see Table 1). Hackflight, by
contrast, uses approximately 4,500 lines1.

How can Hackflight get away with using to or three orders
of magnitude less code than the two most popular flight-control
firmware packages? As discussed in the sections below, we
attribute this difference to a few important design principles:
(1) limitation to multirotor vehicles, not fixed-wing or ground
vehicles; (2) targeting programmers instead of general users; (3)
Arduino compatibility; (4) simple object-oriented API.

2.1. Features
Unlike ArduPilot, which supports a variety of vehicle types
(multirotors, fixed-wing aircraft, ground vehicles, marine
vehicles), Hackflight supports only multirotors. Cleanflight and
its derivatives, while supporting mainly multirotors (and perhaps
fixed-wing aircraft), offer a variety of configuration features
and flight modes (PID controllers), allowing everyone from
beginners to professional racing pilots to use them. Hackflight,
by contrast, uses only a the bare minimum of PID controllers

1To estimate the number of lines of code in each package, we cloned the package

repository from github, ran the cloc program (https://github.com/AlDanial/

cloc) in the root directory of the repository, and summed over the reported

number of lines in C/C++ header files, C files, and C++ files. For reference,

the respective git commits were: Hackflight: 206a6dd; Cleanflight: 83ed5df;
Ardupilot: 87a5189.

TABLE 1 | Approximate size of flight-control firmware packages.

Package Lines of code

Cleanflight 851,659

ArduPilot 283,316

Hackflight 4,445

necessary for stable flight, allowing you to create your own PID
controllers with relative ease (see section 2.4 below).

2.2. Audience
Although both ArduPilot and Cleanflight are open-source, their
target users are mostly non-programmers. There is therefore
a heavy focus in both projects on GUI-based configurator
programs. Hackflight, by contrast, is targeted toward engineers
and researchers comfortable with coding in C++. Adding a
feature to Hackflight therefore requires significantly less code
support, enabling rapid prototyping of new sensors, PID,
controllers, etc.

2.3. Arduino Compatibility
As mentioned above, Hackflight began as the author’s attempt
to build a simple open-source flight-control program using the
Arduino software libraries. Although Hackflight now supports
a subset of the STM32F3/4 flight controllers supported by
Cleanflight and its derivatives, our focus has always been
on Arduino compatibility. Thanks to the recent availability
of small, fast, 32-bit microcontroller development boards like
Teensy and the STM32L4 line from Tlera Corporation2, Arduino
compatibility is no longer tied to slower, eight-bit boards lacking
floating-point support (see Figure 1). Arduino compatibility
means that Hackflight can quickly exploit the increasing variety
of new sensors available today, without the need to write a custom
driver. Although the variety of neuromorphic sensors currently
available cannot rival the variety of Arduino-compatible MEMS
sensors (inertial measurement units, proximity sensors, and the
like), we are optimistic that neuromorphic devices will follow
the same trajectory; i.e., they will provide a UART or other
low-level serial interface for working with Arduino and similar
development platforms.

2.4. Simple Object-Oriented API
Hackflight is written entirely in C++, with the core components
written in header-only style. Our focus is on object-oriented
design, with most classes (altitude PID control, distance sensing)
being subclasses of other, more abstract classes (PID controller,
sensor). In addition to enabling extensive code re-use, this
approach allows us to abstract the driver code for a component
(sensor, motor) from the algorithms using that component
(Madgwick quaternion filter, mixer). This clean separation
allows Hackflight to be “dropped” directly into a simulation
environment (through the use of C++ #include statements),
without the need for “Hardware-In-the-Loop” (HIL), socket
connections, or other indirect mechanisms (see section 3 below).

2https://www.tindie.com/stores/TleraCorp/

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2020 | Volume 14 | Article 168

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://www.tindie.com/stores/TleraCorp/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Levy Neurorobotic Flight

Although both ArduPilot and Cleanflight separate the driver
code from the algorithmic code, Hackflight’s consistent use
of object-oriented design allows us to avoid pre-processor
macros (#ifdef ... #else ... #endif) that are used
extensively in those two packages and can make it difficult to
arrive at a basic understanding of much of the code.

As well as keeping the codebase small, simple, and
portable, these design principles support a more direct
connection between the mathematical theory underlying
flight control and its implementation in code. Figure 2

illustrates this point by showing the main loop in Hackflight.
In the figure, each box (demands, state) represents a simple
datatype in the C++ code, and each oval (R/C Receiver,
Sensors, PID controllers, Mixer) represents an abstract
class. Mathematically, then, each abstract class is a function
from one datatype to another: Sensor :State 7→ State;
PIDController :(State × Demands) 7→ Demands. We believe
that this design principle makes Hackflight both easy to
understand and simple to adapt.

Figure 3 illustrates these principles by showing a complete
Arduino firmware sketch (main program) for a quadcopter using
the flight controller in Figure 1. As the sketch shows, Hackflight’s
simple API supports programs in which only the required
components (microcontroller, IMU, receiver, PID controllers,
mixer, motors) need to be specified (as opposed to choosing
from a list of options with a control statement). This approach
results in example programs that are easy for a programmer to
read and to adapt for use with new sensors, vehicle designs and
control paradigms.

3. MULTICOPTERSIM

Like Hackflight, MulticopterSim is designed as a minimalist
solution to a difficult engineering problem; in this case, a
physically realistic multirotor simulator general enough to
interface with a variety of flight-control packages. As with similar
efforts by others who have attempted to use a general-purpose
robotics simulator like Gazebo (Koenig and Howard, 2004),
our simulator began as a plugin for a more general robotics
simulation platform, V-REP (Rohmer et al., 2013). The lack of
realistic simulated camera images in these packages led us to
a photo-realistic game engine, UnrealEngine4 (Sanders, 2016).
Because UE4 is also used by Microsoft’s popular AirSim (Shah
et al., 2017) drone simulator, AirSim provides a useful frame-of-
reference for MulticopterSim3.

In addition to its focus on Deep Learning, AirSim has since
expanded to include support for self-driving cars, and provides
Python APIs for remote operation of the vehicles. As with flight-
control firmware discussed in the previous section, this rich set of
features translates into significantly more code.Table 2 shows the

3In March of 2017 the head of Microsoft’s AirSim project contacted the author

about using Hackflight as the flight-control software for AirSim, citing the design

principles of Hackflight is the primary reason for this interest. After a licensing

incompatibility ended up making this collaboration unfeasible, the author turned

to developing quadcopter flight simulator from scratch, using UE4 and the

Hackflight firmware.

FIGURE 1 | Arduino-compatible flight controller for Hackflight (total cost ∼$55

U.S.).

relative sizes of AirSim and MulticopterSim, based on the same
metric used in Table 1. As we saw with Hackflight, the design
principles used in MulticopterSim help keep the codebase small,
manageable, and easily extendable.

The core of MulticopterSim is the abstract C++ FlightManager
class. This class provides support for running the vehicle
dynamics and the PID control regime (e.g., Hackflight) on its
own thread, after it first disables the built-in physics in UE4. The
dynamics we used are based directly on the model presented in
Bouabdallah et al. (2004), written as a standalone, header-only
C++ class that can be easily adapted for other simulators and
applications if desired. This class also supports different frame
configurations (quadcopter, hexacopter) via virtual methods. By
running the FlightManager on its own thread, we are able
to achieve arbitrarily fast updates of the dynamics and flight-
control. We currently limit the update rate to 1kHz, based on
the data output rate of current MEMS gyrometers. It would also
be possible to run the dynamics and control on separate threads,
though we have not yet found it advantageous to do that.

The FlightManager API contains a single virtual method,
update(), which accepts the current time and the state of
the vehicle (as computed by the dynamics), and returns the
current motor values. The motor values are then passed to the
dynamics object, which computes the new vehicle state. On the
main thread, UE4’s Tick() method queries the flight manager
for the current vehicle pose (location, rotation) and displays
the vehicle and its environment kinematically at the 60–120 Hz
frame rate of the game engine. In a similar manner, the threaded
VideoManager classes can be used to process the images collected
by a simulated gimbal-mounted camera on the vehicle, using
OpenCV (Bradski, 2000). An abstract C++ Target class supports

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2020 | Volume 14 | Article 169

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Levy Neurorobotic Flight

FIGURE 2 | Hackflight main loop.

FIGURE 3 | Sample Hackflight sketch for Arduino.

modeling interaction with other moving objects having their own
dynamics; for example, in a predator/prey scenario.

This simplicity of our flight-control scheme makes it
easy to connect MulticopterSim to existing flight-control
software like Hackflight, or to the Software-in-the-Loop
(SITL) mechanism of ArduPilot (ArduPilot Dev Team,
2019b), as modules in the MulticopterSim codebase. With

the Hackflight module, for example, we treat the control
device (e.g., joystick, Xbox game controller) as “virtual
receiver,” which provides the R/C Receiver signal shown
at the top of Figure 2. Further, the abstraction provided by
Hackflight for sensing and open-loop control allows rapid
prototyping of hybrid control systems, as we describe in the
next section.

Frontiers in Neurorobotics | www.frontiersin.org 4 March 2020 | Volume 14 | Article 1610

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Levy Neurorobotic Flight

TABLE 2 | Approximate sizes of two flight-simulation packagesa.

Package Lines of code

AirSim 77,600

MulticopterSim 2,266

aThe line count for MulticopterSim includes the module for Hackflight (see main text for

details). For reference, the respective git commits wereMulticopterSim: aec0ae8; AirSim:

ca29068.

FIGURE 4 | Nengo model for simple PID control.

4. TOWARD NEUROMORPHIC FLIGHT
CONTROL

As a demonstration of our approach, we used the Python-
based Nengo neural simulator (Bekolay et al., 2014) to create
a simple PID controller class for altitude hold. As shown
in Figure 4, the controller consists of three populations of
200 spiking neurons: one population for computing the error
between the target altitude and current altitude (P term); one for
integrating the error (I term), and one for computing the error
derivative D) term. (For this simple experiment we used only
P.) The constants KP, KI , and Kd are implemented as arguments
to the transform parameter of the nengo.Connection
constructor; i.e., as connection weights between pools of neurons.
We set the simulation time step to 0.001 s4 and used the
default values for the remaining parameters in the Nengo
class constructors. We made this Python class available to
MulticopterSim by adding a UDP client/server module to
MulticopterSim: the PID control code runs in Python as a server,
and the C++ code for the simulator acts as a client for this server,
sending the vehicle state to the server and getting back motor
commands to fly the vehicle.

For this trial experiment, we chose a simple PID control
task common to flight-control systems like ArduPilot, namely,
takeoff to a fixed altitude. We wrote two versions of the same
basic Python server script. One version used the ArduPilot
algorithm for altitude hold, with the error between the target

4We chose this value as an order-of-magnitude approximation to the data output

rate (DOR) of contemporary inertial measurements units. As one reviewer pointed

out, it would also be useful to know how close to real-time such a model runs on

the sort of standard CPU hardware that is available on a quadcopter (see future

work section below).

FIGURE 5 | Comparison of traditional (solid line) and neural (dashed line) PID

controllers.

and actual altitudes as a set-point for a secondary, velocity-
based PID controller. The other version used the Nengo-based
PID controller shown in Figure 4. Sample results for this
experiments are provided in Figure 5. As the figure shows, the
Nengo-based control compares favorably to the algorithm that
computes the PID control signal in the traditional way, albeit with
some oscillation and greater undershoot. Although this Nengo-
based PID controller has been hand-tuned by us to work with
our simulator, and could obviously use some improvement, it
provides a simple proof of the feasibility of using an advanced
neural simulator like Nengo with a real-time flight simulator,
paving the way for more interesting experiments.

5. CONCLUSION AND FUTURE WORK

As the closest robotic approximation to flying insects, birds, and
mammals, miniature aerial vehicles (MAVs) offer a compelling
new platform for research in neuromorphic sensing, notably in
the realm of vision (Mitrokhin et al., 2019). Such research faces
unique challenges.

In the physical realm, the current weight and form factor
of commercially-available event-based dynamic vision sensor
(DVS) devices makes them impractical for deployment onmicro-
scale aerial vehicles. We are currently experimenting with our
recently-purchased DAVIS346 sensor H (40 × 60 × 25 mm, 100
g), using a RaspberryPi to convert the sensor’s USB3 signal to
UART (TTL) format for consumption by an Arduino-compatible
microcontroller. If that arrangement proves successful, we will
look into acquiring the much smaller mini-eDVS unit (18 × 18
× 7 mm, 3 g), from the same manufacturer5.

In simulation, the 60–120 Hz frame rate of game engines
like UE4 and Unity (Menard, 2011) exceeds that of most
commercially-available CMOS cameras but is inadequate for

5We thank a reviewer for suggesting the mini-eDVS, which was not available for

purchase at the time of this writing.

Frontiers in Neurorobotics | www.frontiersin.org 5 March 2020 | Volume 14 | Article 1611

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Levy Neurorobotic Flight

emulating themulti-kilohertz data rates enabled by DVS (Gallego
et al., 2019). Hence, one of our current research directions
involves modeling the DVS datastream directly from the
dynamics of the vehicle and target object.

To extend our Nengo-based PID controller in a more
biologically realistic direction, we are also experimenting with
a Python version of our multirotor dynamics code, to exploit
Nengo’s support for reinforcement learning (Bekolay and
Eliasmith, 2011). This paradigm would provide an accelerated
way to develop neuromorphic flight controllers in an abstract
mathematical simulation, to be validated by transferring them to
MulitCopterSim, and eventually to an actual vehicle.

Finally, our Python-based client/server moduel will make it
significantly easier to experiment with other neural simulators
offering a Python API, including Brian (Stimberg et al., 2019) and
NEURON (Hines and Carnevale, 2013).

For both real and simulated flying robots, we see our
minimalist, integrated approach to software and firmware design
as a promising direction for robust aerial neurorobotics.

6. DOWNLOADS

The software described in this paper can be downloaded from the
following repositories:

• https://github.com/simondlevy/Hackflight
• https://github.com/simondlevy/MulticopterSim
• https://github.com/simondlevy/MulticopterSim/tree/

NengoModule
• https://github.com/simondlevy/gym-copter.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

We thank Terry Stewart for help with the Nengo PID controller,
Shital Shah for the header-only rewrite of Hackflight, and two
reviewers for helpful suggestions. This research was supported
by winter 2019 sabbatical-leave funding from Washington and
Lee University.

REFERENCES

ArduPilot Dev Team (2019a). History of Ardupilot. Available online at: http://

ardupilot.org/planner2/docs/common-history-of-ardupilot.html (accessed

June 15, 2019).

ArduPilot Dev Team (2019b). Sitl Simulator (Software in the Loop). Available

online at: http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.

html (accessed June 17, 2019).

Banzi, M., and Shiloh, M. (2014). Getting Started With Arduino. Sebastopol, CA:

Maker Media.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., etal. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Bekolay, T., and Eliasmith, C. (2011). “A general error-modulated stdp learning

rule applied to reinforcement learning in the basal ganglia,” in Proceedings of

the Conference on Computational Systems Neuroscience (COSYNE) (Salt Lake

City, UT), 24–27.

Bouabdallah, S., Murrieri, P., and Siegwart, R. (2004). “Design and control of

an indoor micro quadrotor,” in Proceedings of the 2004 IEEE International

Conference on Robotics and Automation, ICRA 2004, April 26 - May 1, 2004

(New Orleans, LA), 4393–4398. doi: 10.1109/ROBOT.2004.1302409

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Cleanflight Team (2019). Available online at: http://cleanflight.com (accessed June

15, 2019).

Floreano, D., Zufferey, J.-C., Srinivasan, M. V., and Ellington, C. (2009). Flying

Insects and Robots, 1st Edn. New York, NY: Springer Publishing Company,

Incorporated. doi: 10.1007/978-3-540-89393-6

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al.

(2019). Event-based vision: a survey. CoRR, abs/1904.08405.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA:

Houghton Mifflin.

Hines, M., and Carnevale, T. (2013). NEURON Simulation Environment. New

York, NY: Springer.

Koenig, N., and Howard, A. (2004). “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (Sendai), 2149–2154.

Menard, M. (2011). Game Development with Unity, 1st Edn. Boston, MA: Course

Technology Press.

Mitrokhin, A., Sutor, P., Fermüller, C., and Aloimonos, Y. (2019). Learning

sensorimotor control with neuromorphic sensors: toward hyperdimensional

active perception. Sci. Robot. 4:eaaw6736. doi: 10.1126/scirobotics.aaw6736

Rohmer, E., Singh, S. P. N., and Freese, M. (2013). “V-rep: a versatile and scalable

robot simulation framework,” in Proceedings of the International Conference on

Intelligent Robots and Systems (IROS).

Sanders, A. (2016). An Introduction to Unreal Engine 4. Natick, MA: A. K. Peters,

Ltd.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2017). “Airsim: high-fidelity visual

and physical simulation for autonomous vehicles,” in Proceedings of the 11th

Conference on Field and Service Robotics (FSR 2017) (Zurich).

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Levy. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2020 | Volume 14 | Article 1612

https://github.com/simondlevy/Hackflight
https://github.com/simondlevy/MulticopterSim
https://github.com/simondlevy/MulticopterSim/tree/NengoModule
https://github.com/simondlevy/MulticopterSim/tree/NengoModule
https://github.com/simondlevy/gym-copter
http://ardupilot.org/planner2/docs/common-history-of-ardupilot.html
http://ardupilot.org/planner2/docs/common-history-of-ardupilot.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/ROBOT.2004.1302409
http://cleanflight.com
https://doi.org/10.1007/978-3-540-89393-6
https://doi.org/10.1126/scirobotics.aaw6736
https://doi.org/10.7554/eLife.47314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

BRIEF RESEARCH REPORT
published: 15 September 2020
doi: 10.3389/fnbot.2020.00062

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2020 | Volume 14 | Article 62

Edited by:

Christian Tetzlaff,

University of Göttingen, Germany

Reviewed by:

Luca Patanè,

University of Catania, Italy

Yinyan Zhang,

Jinan University, China

*Correspondence:

J. Michael Herrmann

michael.herrmann@ed.ac.uk

Received: 31 May 2020

Accepted: 03 August 2020

Published: 15 September 2020

Citation:

Smith SC, Dharmadi R, Imrie C, Si B

and Herrmann JM (2020) The

DIAMOND Model: Deep Recurrent

Neural Networks for Self-Organizing

Robot Control.

Front. Neurorobot. 14:62.

doi: 10.3389/fnbot.2020.00062

The DIAMOND Model: Deep
Recurrent Neural Networks for
Self-Organizing Robot Control

Simón C. Smith 1, Richard Dharmadi 1, Calum Imrie 1, Bailu Si 2,3 and

J. Michael Herrmann 1,2*

1 Institute of Perception, Action and Behaviour (IPAB), School of Informatics, University of Edinburgh, Edinburgh,

United Kingdom, 2 State Key Laboratory of Robotics, Shenyang Institute of Automation, Institutes for Robotics and Intelligent

Manufacturing, Chinese Academy of Sciences, Shenyang, China, 3 School of Systems Science, Beijing Normal University,

Beijing, China

The proposed architecture applies the principle of predictive coding and deep learning in

a brain-inspired approach to robotic sensorimotor control. It is composed of many layers

each of which is a recurrent network. The component networks can be spontaneously

active due to the homeokinetic learning rule, a principle that has been studied previously

for the purpose of self-organized generation of behavior. We present robotic simulations

that illustrate the function of the network and show evidence that deeper networks enable

more complex exploratory behavior.

Keywords: deep neural networks, autonomous learning, homeokinesis, self-organizing control, robot control

1. INTRODUCTION

Deep neural architectures (Fukushima and Miyake, 1980; Hinton et al., 2006) have reached a level
comparable to human performance in certain pattern recognition tasks (Krizhevsky et al., 2012).
Also in robotic applications, deep networks gainmore andmore importance, from state abstraction
to seamless end-to-end control in complex repetitive tasks (Levine et al., 2016). Moreover, it has
been speculated whether deep feed-forward networks can account for some aspects of information
processing in the mammalian visual system (Serre et al., 2007), which is not to say that the brain is
nothing but a collection of deep neural networks. Quite to the contrary, the brain is known to have
dynamical properties that are much richer than standard deep architectures:

• Biological neural systems consist of patches of interconnected neurons which also receive
re-entrant connectivity via other patches.

• Spontaneous behavior can occur at any level of depth and may spread in either direction.
• Sensory inputs are not only providing information for decision about actions, but are also

analyzed for effects of previous actions.
• A hierarchical organization enables lateral transferability and flexible compositionality.
• There is little use for supervised learning.

Based on these considerations, we propose here an architecture that combines the undeniable
strengths of deep neural networks with homeokinesis (Der, 2001), an approach to meet
requirements of autonomous robots (see section 2). Our work connects to (Carvalho and Nolfi,
2016) where the introduction of flexibility and plasticity in a neural controller showed a good
effect in a cleaning task, however, mainly based on an evolutionary approach, whereas we
aim at a more principled architecture that achieves an increased flexibility by a hierarchy of
identical controllers. The autonomously generate activity of higher-lever controllers provide an

13

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00062
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00062&domain=pdf&date_stamp=2020-09-15
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michael.herrmann@ed.ac.uk
https://doi.org/10.3389/fnbot.2020.00062
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00062/full

Smith et al. The DIAMOND Model

intrinsic motivation (Oudeyer et al., 2007) for the lower
ones. In this way, we are able to propose a more brain-
like architecture which implicitly realizes a predictive coding
principle, compare (Adams et al., 2013) for a related approach,
at least in some parameter range, as discussed below. An early
interesting comparison is provided by (Rusu et al., 2003) which
presents a neuro-fuzzy controller for determining the behavior
of a robot in a navigation task. Their architecture had a similarly
layered structure, although the behaviors had to be predefined at
a time when homeokinesis (Der, 2001) was just being developed.
More recently, differential Hebbian learning was used to explore
possible behaviors of a robot (Pinneri and Martius, 2018),
presenting a more brain-like approach at the low level, whereas
we aim a model that captures characteristics of the area-level
organization of the brain.

In the following, we will consider first the homeokinetically
controlled sensorimotor loop (Der, 2001) as the basic element
of the proposed system (section 2). In this way, we incorporate
a source of spontaneous activity. The composition of these
elements in the DIAMOND (Deep Integrated Architecture for
sensoriMotor self-Organization aNd Deliberation) architecture
(section 3) will thus be able to generate activity at all levels
and work in a fully self-supervised way, although it is also
possible to steer the system to desired behavior by very small
guiding inputs (Martius and Herrmann, 2011). The main layout
of the architecture includes a basic layer that receives information
from outside world and sends actions and is expected to
represent low-level features. There is a variable number of
deeper layers that interact only with the neighboring layers and
which represent more abstract features that are extracted from
the data through the lower layers. The architecture learns by
the homeokinetic learning rule (see below) which implies that
consistency between neighboring layers is required. We will
present a few experimental results in section 4, and discuss the
realism and performance of the architecture as well as further
work in section 5.

2. HOMEOKINETIC CONTROL

The basic element of our architecture is formed by a
homeokinetic controller, which we will describe here only
briefly, details can be found in (Der and Martius, 2012).
This unsupervised active learning control algorithm shapes the
interaction between a robot and its environment by updating the
parameters of a controller and of an internal model. The learning
goal can be characterized as a balance of predictability and
sensitivity with respect to future inputs. The resulting behavior is
random yet coherent both temporally and acrossmultiple degrees
of freedom. The controller is a parametric function

yt = C(xt;C) (1)

of the vector xt of current sensory states of the robot. It generates
a vector of motor commands yt in dependence on the current
values of the parameter matrix C. The update of the parameters
is based on the sensitivity of the distance between inputs and their

predictions by means of an internal model. This model

x̂t+1 = M(xt , yt;M), (2)

produces a prediction of future states x̂t+1 based on the current
input xt or action yt or both, and a parameter matrix M.
The difference between actual and estimated state defines the
prediction error

ξ t+1 = xt+1 − x̂t+1, (3)

which gives rise to one of the two complementary objective
functions that are relevant here, firstly the prediction error

Et+1 = ‖xt+1 − x̂t+1‖
2, (4)

which is used to adapt the parameters M of the internal model
(2), and secondly the time loop error

Et = ‖xt − x̌t‖
2, (5)

which is based on a post-diction x̌t of previous input xt obtained
via the inverse of Equation (2) given the new input xt+1, i.e., Et is
calculated only at time step t + 1, and is related to the prediction
error (4) by

Et = ‖ηt‖
2
= η⊤t ηt = ξ⊤t+1(JtJt

⊤)−1ξ t+1. (6)

where J is the linearization of themaps from current input to next
input dependent on the current controller. As only the projection
η of J−1 on ξ is relevant, the time loop error can be efficiently
estimated. The homeokinetic learning rule updates the parameter
matrix C of the controller (1) by gradient descent

1Cij = −εC
∂Et

∂Cij
, (7)

where Cij is an element of C and εC is a learning rate.
If the representational power is of less importance than the

flexibility (Smith and Herrmann, 2019), then a simple quasi-
linear system can be considered as sufficient. Below, when we
will consider a multi-layered system, the representational power
is meant to be achieved by the interaction between the layers each
of which will consist of one instance of the current controller-
predictor unit. A pseudo-linear controller, i.e., a quasi-linear
function of the inputs with coefficients that are adaptive on the
behavioral time scale,

yt = C (xt) = g (Cxt + c) (8)

and a linear model

x̂t+1 = M(yt) = Myt +m, (9)

does thus not limit the complexity of achievable control. The
parameters of the controller and the model are now the matrices
C and M resp., which are complemented by the matching bias
vectors c and m. In order to incorporate limitations of actions

Frontiers in Neurorobotics | www.frontiersin.org 2 September 2020 | Volume 14 | Article 6214

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Smith et al. The DIAMOND Model

FIGURE 1 | Schematic representation of multi-layer homeokinetic learning. Left: In the elementary sensorimotor loop, a control action y0 is calculated by the

controller C1 and executed in the environment W which then produces the new input x̂0. The prediction error is obtained as the difference of new sensory input x̂0
and its prediction x̂1 that was obtained from the previous input x̂0. It is used in the update of the model M, see Equations (13), (14). Right: In homeokinetic learning,

the time-loop error, i.e., the difference of previous input x0 and re-estimated previous input x1 (which is obtained via the downwards arrows and corresponds to x̌t in

Equation 5), is used to update the controller parameters, see Equations (11), (12). The curved downward arrows indicate the time step: The “new” input that was

previously predicted or obtained from the environment, is now used by the controller to produce the next action (rather than the re-estimated input). The inner layers

follow exactly the same dynamics based on predictions from the respective outer layers rather than based on the environment. Top-down effects are included by

additional connections This includes virtual actions (arrows from yi to Mi) analogous to the initiation of actions in the environment, and virtual states taken into account

by the controller (arrows from xi to Ci). The activities are propagated alternatingly through the upwards (orange, violet, and brown) arrows and through the respective

transposed matrices via downwards arrows (cyan), both of which correspond to a set of parallel fibers, whereas the adaptive interconnections are maintained in the

controller (C nodes) or the model (M nodes).

of the robot, the controller is quasi-linear due to the element-
wise sigmoidal function g. Because of the simple structure
of Equation (8), we can omit here the state dependency (2) and
define the model M only in motor space. The parameter update
(7) becomes

1Cij = εC η⊤J
∂J

∂Cij
η, (10)

and analogously for the bias term c. With µ = G′M⊤
(

J⊤
)

−1
η

and ζ = Cη the learning rules for a linear controller with a linear
model are

1Cij = εCµiηj − 2εCµiζiyixj (11)

1ci = −2εCµiζiyi. (12)

Simultaneously, but possibly with a different learning rate, the
parameters M of the linear model (9) are updated via gradient
descent on the standard prediction error (Equation 4, rather than
Equation 6).

1Mij = −εM
∂E

∂Mij
= εMξiyj (13)

1mi = −εM
∂E

∂bj
= εMξi (14)

where εM is the learning rate for the adaptation of the internal
model. The ratio of the two learning rates εC and εM is
known to be critical for the behavior of controlled robot (Smith
and Herrmann, 2019). For the architecture presented next, an
optimized ratio is to be used, see also Figure 2.

3. THE DIAMOND MODEL

3.1. Deep Homeokinesis
The DIAMOND model is a generalization of the homeokinetic
controller described in section 2. As shown in Figure 1, the
comparison of a state variable x (t) and its estimate x̂ (t) is now
repeated also for estimates of estimates etc., x0 (t) = x (t),
x1 (t) = x̂ (t), x2 (t), . . . , where each pair of neighboring layers
corresponds to a homeokinetic controller that acts onto the lower
layer as its environment and receives biases from the higher layer.
In the inner layers (larger ℓ) the external information becomes
less and less dominant.

In order to use homeokinetic learning in a multilayer
architecture, several instances of the homeokinetic sensorimotor
loop are stacked. The internal model of any lower layer serves as
the “world” for the next higher layer. Likewise, estimates for input
obtained at by a lower layer are the inputs for the higher layers,
so each layer reproduces the elementary loop shown in Figure 1.

Frontiers in Neurorobotics | www.frontiersin.org 3 September 2020 | Volume 14 | Article 6215

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Smith et al. The DIAMOND Model

3.2. Simple Variant
The architecture consists of controllers for each layer ℓ < L (no
controller for ℓ = L)

yℓ (t) = Cℓ+1 (xℓ (t)) = g (Cℓ+1xℓ (t) + cℓ+1) (15)

and linear models that are given by

x̂ℓ (t + 1) = Mℓ(yℓ−1 (t) , yℓ (t))

= Mℓyℓ−1 (t) + M̃ℓỹℓ (t) +mℓ. (16)

which simplifies for the top layer ℓ = L where ỹL (t) ≡ 0, i.e., no
higher effects are present.

In Equation (16) also the effect of virtual actions ỹℓ (t), ℓ ≥ 1
is included as follows: First, the previous prediction of a layer
x̂ℓ (t − 1) is copied into the input unit xℓ (t) at the beginning
of the new time step, see Figure 1. The back-propagated input
x̌ℓ (t − 1) that was used in Equations (5) and (6) is no longer
needed. From xℓ (t) a virtual action yℓ (t) is computed that
then contributes additively to the prediction (16). The controller
update is here the same as for the one-layer model, and the M̃

matrix (not shown in the figures) is updated in the same way as
theMmatrix.

3.3. Main Variant
The variant with extra connections (Figure 1) has for
the controller

yℓ (t) = Cℓ+1 (xℓ (t)) (17)

= g
(

Cℓ+1xℓ (t)+C̃ℓ+1x̂ℓ+1(t − 1)+cℓ+1

)

i.e., in the same way as new input x̂0 (t + 1) that is used to
calculate the prediction error is also used in the next time step
as input x0 (t), we are also for ℓ > 0 using previous predictions
as new virtual input. For the deepest layer ℓ = L, Equation (17)
is not applied, and for the penultimate layer we have simply

yℓ (t) = Cℓ+1 (xℓ (t)) = g (Cℓ+1xℓ (t) + cℓ+1) . (18)

For the model, Equation (16) is used as above.
While the first C matrix in Equation (17) is adapted learned

in the standard way (see Equations 11 and 12), the matrix C̃ is
updated by gradient descent with respect to the prediction error
for the action

E =

(

yℓ (t) − ỹℓ (t)
)2
,

where

ỹℓ (t) = g
(

C̃ℓ+1x̂ℓ+1 (t − 1) + c̃ℓ+1

)

,

i.e., the input x̂ℓ+1 (t − 1) from the more inner level is used to
predict the motor output yℓ (t). The update equations for C̃ are
similar to Equations (13) and (14), but also contains a derivative
of g. Note that no loops are present in the network of Figure 1,
which may not be a problem as the loops have no function

(yet), and may be included later. However, it is not clear what
“deliberation” could mean without these loops.

We assume that the inner (deeper) layers are updated first.
The deepest layer ℓ = L has no variables, just the controller
and the model. According to Equation (18), no higher-level input
variables are needed in order to update the variables at ℓ = L−1.
In this way, virtual actions and virtual inputs are available to be
used in Equations (17) and (16) to update the next layer toward
the outer side, i.e., with lower ℓ. For the update of the matrices
M, M̃, C and C̃ the time order is not essential, if the variables are
calculated as described above.

3.4. Main Variant With Deep Associations
As a further variant, which is, however, not implemented in
the present simulations, a standard deep neural network can
be employed to connecting the inputs xℓ directly between
neighboring levels. In this case a separate set of connections Pℓ

would be learned for map from xℓ−1 to xℓ. The weights P are
learned by the activations xℓ that arise due to the activations of
the network. In addition it is possible to add a further set of
connections R that play the same role as P, but for the predicted
sensor values.

The network can sustain persistent activity that represents
an action perception cycle. Activity in the subnetworks that are
completed by recurrent connections arises by self-amplification
of noise or spurious activity following the homeokinetic learning
of the respective controller. It may be possible to use also
the cycles more explicitly for learning, but we want to restrict
ourselves here to one-step learning rule, i.e., gradients are
calculated only over one The full model also includes perceptual
pathways consisting of bridges between input-related units. In
this way the network activity becomes shaped by standard deep
feed-forward networks.

4. EXPERIMENTAL RESULTS

4.1. Active Response by the Recurrent
Network
As a first test, we have considered the simple variant of the
architecture (see section 3.2) when it is driven with a sinusoidal
input and the “world” reproduces simply a noisy version of the
motor action as next input to the robot. Typical results are
shown in Figure 2 for a two combinations of the learning rates
εC (11, 12) and εM (13, 14), which lead either to an abstracted
reproduction of the input in the deeper layers or to a self-
organization of activity that, however remains without effect in
this simple variant. At lower learning rates (left column), even
deeper layers respond to the original input. In this case, the
internal layers are square versions of the original input. For larger
learning rates (right column), the internal layers have a different
response. The fifth row shows a combination of homeokinetic
adaptation (the red line between 310 and 320 s) and noisy output
while still following the input from the first layer. Deeper layers
(lower rows), tend have a decay in the generation of motor action
attributed to the squashing function.

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2020 | Volume 14 | Article 6216

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Smith et al. The DIAMOND Model

FIGURE 2 | Activity evolution in a perceptually connected network structure according to the model in section 3.2. The sensory trajectory is shown by the solid line

(red) and the intermediate motor action by the dashed line (green). The top row gives the input activity, the second row the activity of the first layer and the following

rows show every 10th layer of the architecture to a total depth of 50. The left panel is for learning rates εM = 0.01, εC = 0.05, and the right one for εM = 0.1,

εC = 0.2. While at low leaning rates, the input is similar across all layers, for larger ratios εM/εC the model is more flexible and the deeper activity becomes largely

independent on the input, which allows for self-organized activity in the deeper layers that is not immediately affecting the outside world.

4.2. A Wheeled Robot in the Hills
The main variant (section 3.3) is used in an exploration task,

where a four-wheeled robot is expected to cover a large portion

of an unknown territory (Smith and Herrmann, 2019). The
hilly landscape shown left in Figure 3 can be scaled in vertical
direction such that different levels of difficulty can be achieved
ranging from a flat ground (level 0) to slopes that require
maximal motor power (level 1) and that can cause instabilities
and thus large prediction errors (4). The activity decays in a five-
layer DIAMOND model for a flat arena, as the inner layers are
not needed, whereas for a hilly landscape (difficulty level > 0)
the inner layers did not show much attenuation. The behavior
of the robot is evaluated based on a 10 × 10 grid overlaid to the
square-shaped arena. The number of visited grid cells is averaged
over five runs for each difficulty and each controller depth and
represented as a coverage rate. The total coverage was in all cases
below 50% such that the increase of the coverage with time was
nearly linear.

Whereas a single layer can achieve a similar performance
across all terrain difficulties, for increasing difficulty of the task
the higher layer are more and more engaged and take advantage
of the increased errors in the terrain that provide thus a potential
for a more comprehensive coverage of the arena per time unit.

4.3. A Spherical Robot in a Polygonal Arena
Finally, we studied a simulated spherical robot which is
controlled by three masses that a movable along internal axes,
see Figure 4, left. The robot is exploring freely in an polygonal
environment which was chosen to discourage circular movement
along the wall. The controller picks up quickly a suitable rhythm
of the internal weights that is effecting in moving the robot in
any direction. Collisions with wall usually stop the robot until the
emergence of a different mode of the movements of the internal
weights moves the robot in a different direction. Although amore
systematic study is yet to be performed, it is already obvious
that adding a small number of additional layers increases the
behavioral repertoire of the robot and reduces the duration of
any wall collisions and re-emergence of behavior in the robot.
The example is also meant to demonstrate, that the applications
of the learning rule and architecture are beyond exploration of a
planar arena and can be used in order to generate and to organize
elementary robotic behaviors.

5. DISCUSSION

The numerical results seem to imply that a few layers
are sufficient, i.e., a larger number of layers does not lead

Frontiers in Neurorobotics | www.frontiersin.org 5 September 2020 | Volume 14 | Article 6217

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Smith et al. The DIAMOND Model

FIGURE 3 | A four-wheeled robot exploring a hilly landscape. (See text and Smith and Herrmann, 2019 for details on the task). The panel on the right shows results

for five levels of difficulty (linear scaling of the slopes, with the simples level being a flat ground) and five depths of the network (ℓ = 1, 2, 3, 4, 5) are considered,

showing an increased exploration capability. The code for simulator (Der and Martius, 2012) and the DIAMOND controller architecture described here is available at

https://github.com/artificialsimon/diamond.

FIGURE 4 | Spherical robot (left) in a dodecagonal arena. For a one-layer architecture, the robot mostly follows the wall (middle), while for a 3-layer network, the

robot shows a highly exploratory behavior (right).

to further improvements or may require a much longer
learning time than attempted here. It should, however,
be considered that the tasks and environments are all
very simple, such that it is not possible to generalize this
observation to more complex situations. It can nevertheless
be expected that the spontaneous internal activations that
were observed for suitable learning rate ratios, lead to
a learning time that is approximately linearly increasing
with the number of layers, and not much worse. This is
suggested by earlier results with homeokinetic learning rule
(Martius et al., 2007).

The present model is a representation of the idea (see
e.g., Anderson et al., 2012) that it is difficult to define a
clear boundary between brain and body or even between
body and world. At all layers the system follow the same
principles in its adaptation of the actions onto lower layers
and in the learning of a model that affects higher layers.
The reduction of complexity of the internal dynamics toward
higher layers is counterbalanced by the autonomous activity such

that the main eigenvalue at each layer will hover near unity
(Saxe et al., 2014).

Although the activity is updated here in parallel
in all layers, the stacked structure is clearly similar
to the subsumption architecture (Brooks, 1986) as it
allows for shorter or longer processing loops. It remains
to be studied whether more general architectures
are beneficial, especially when more complex tasks
are considered.

In Figure 1, it is understood that the dynamical variables (x, y,
and x̂) exist each in two instances, one updated by the controlling
and predictive pathways, the other by the feedback within the
re-estimation system. The need to disambiguate these units
points to an interesting parallel to the roles of the layers of the
mammalian cortex.

Finally, it should be remarked the principle of predictive
coding is inherent in the architecture from the homeokinetic
principle. Activity can only travel to the deeper layers if
it is not already predicted by the internal model of the

Frontiers in Neurorobotics | www.frontiersin.org 6 September 2020 | Volume 14 | Article 6218

https://github.com/artificialsimon/diamond
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Smith et al. The DIAMOND Model

current layer. In some cases this can lead to a complete
decay of the activity in the deeper layers (see Figure 3),
although more complex robots and more challenging
environments need to be studied in order to precisely
identify parallels to the predictive coding principle in natural
neural systems.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

JH, BS, and SS: conception. JH and SS: model design.
RD, SS, and CI: experiments. JH, BS, and SS: writing. JH:
project organization.

FUNDING

SS was supported by the ORCA Hub EPSRC project
(EP/R026173/1, 2017-2021). CI was supported by grant
EP/L016834/1 for the University of Edinburgh, School of
Informatics, Centre for Doctoral Training in Robotics and
Autonomous Systems (http://www.edinburgh-robotics.org)
from the UK Engineering and Physical Sciences Research
Council (EPSRC). BS received funding from the National Key
R&D Program of China (2019YFA0709503).

ACKNOWLEDGMENTS

We thank Georg Martius (Tübingen), Klaus Pawelzik (Bremen),
Alessandro Treves (Trieste), and Hemang Kanwal (Edinburgh)
for stimulating discussions. JH is grateful to CAS SIA for their
kind hospitality.

REFERENCES

Adams, R. A., Shipp, S., and Friston, K. J. (2013). Predictions not commands:

active inference in the motor system. Brain Struct. Funct. 218, 611–643.

doi: 10.1007/s00429-012-0475-5

Anderson, M. L., Richardson, M. J., and Chemero, A. (2012).

Eroding the boundaries of cognition: implications of embodiment.

Topics Cogn. Sci. 4, 717–730. doi: 10.1111/j.1756-8765.2012.

01211.x

Brooks, R. A. (1986). A robust layer control system for a mobile robot. J. Robot.

Automat. RA-2, 14–23. doi: 10.1109/JRA.1986.1087032

Carvalho, J. T., and Nolfi, S. (2016). Behavioural plasticity in evolving

robots. Theory Biosci. 135, 201–216. doi: 10.1007/s12064-016-

0233-y

Der, R. (2001). Self-organized acquisition of situated behaviors. Theory Biosci. 120,

179–187. doi: 10.1007/s12064-001-0017-9

Der, R., and Martius, G. (2012). The Playful Machine: Theoretical Foundation and

Practical Realization of Self-Organizing Robots, Vol. 15. Springer Science &

Business Media.

Fukushima, K., and Miyake, S. (1980). “Neocognitron: self-organizing network

capable of position-invariant recognition of patterns,” in Proc. 5th Int. Conf.

Patt. Recogn. (Berlin), 459–461.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

doi: 10.1162/neco.2006.18.7.1527

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger (Lake Tahoe, NV: Curran Associates Inc.), 1097–1105.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end

training of deep visuomotor policies. J. Mach. Learn. 17, 1334–1373.

doi: 10.7746/jkros.2019.14.1.040

Martius, G., and Herrmann, J. M. (2011). Variants of guided self-organization

for robot control. Theory Biosci. 131, 129–137. doi: 10.1007/s12064-011-

0141-0

Martius, G., Herrmann, J. M., and Der, R. (2007). “Guided self-organisation for

autonomous robot development,” in Advances in Artificial Life. ECAL 2007.

Lecture Notes in Computer Science, eds F. Almeida e Costa, L. M. Rocha, E.

Costa, I. Harvey, and A. Coutinho (Berlin, Heidelberg: Springer), 766–775.

doi: 10.1007/978-3-540-74913-4_77

Oudeyer, P., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems

for autonomous mental development. IEEE Trans. Evol. Comput. 11, 265–286.

doi: 10.1109/TEVC.2006.890271

Pinneri, C., and Martius, G. (2018). “Systematic self-exploration of behaviors

for robots in a dynamical systems framework,” in Artificial Life Conference

Proceedings (MIT Press), 319–326. doi: 10.1162/isal_a_00062

Rusu, P., Petriu, E. M., Whalen, T. E., Cornell, A., and Spoelder, H. J. W.

(2003). Behavior-based neuro-fuzzy controller for mobile robot navigation.

IEEE Trans. Instrument. Meas. 52, 1335–1340. doi: 10.1109/TIM.2003.816846

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,” in International

Conference on Learning Representations.

Serre, T., Oliva, A., and Poggio, T. (2007). A feedforward architecture accounts

for rapid categorization. Proc. Natl. Acad. Sci. U.S.A. 104, 6424–6429.

doi: 10.1073/pnas.0700622104

Smith, S. C., and Herrmann, J. M. (2019). Evaluation of internal models

in autonomous learning. IEEE Trans. Cogn. Dev. Syst. 11, 463–472.

doi: 10.1109/TCDS.2018.2865999

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Smith, Dharmadi, Imrie, Si and Herrmann. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2020 | Volume 14 | Article 6219

http://www.edinburgh-robotics.org
https://doi.org/10.1007/s00429-012-0475-5
https://doi.org/10.1111/j.1756-8765.2012.01211.x
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1007/s12064-016-0233-y
https://doi.org/10.1007/s12064-001-0017-9
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.7746/jkros.2019.14.1.040
https://doi.org/10.1007/s12064-011-0141-0
https://doi.org/10.1007/978-3-540-74913-4_77
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1162/isal_a_00062
https://doi.org/10.1109/TIM.2003.816846
https://doi.org/10.1073/pnas.0700622104
https://doi.org/10.1109/TCDS.2018.2865999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 09 October 2020

doi: 10.3389/fnbot.2020.568359

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 568359

Edited by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Reviewed by:

Jeffrey L. Krichmar,

University of California, Irvine,

United States

Yulia Sandamirskaya,

Intel, Germany

*Correspondence:

Travis DeWolf

travis.dewolf@

appliedbrainresearch.com

Received: 01 June 2020

Accepted: 01 September 2020

Published: 09 October 2020

Citation:

DeWolf T, Jaworski P and Eliasmith C

(2020) Nengo and Low-Power AI

Hardware for Robust, Embedded

Neurorobotics.

Front. Neurorobot. 14:568359.

doi: 10.3389/fnbot.2020.568359

Nengo and Low-Power AI Hardware
for Robust, Embedded Neurorobotics
Travis DeWolf 1*, Pawel Jaworski 1 and Chris Eliasmith 1,2

1 Applied Brain Research, Waterloo, ON, Canada, 2Centre for Theoretical Neuroscience, University of Waterloo, Waterloo,

ON, Canada

In this paper we demonstrate how the Nengo neural modeling and simulation libraries

enable users to quickly develop robotic perception and action neural networks for

simulation on neuromorphic hardware using tools they are already familiar with, such

as Keras and Python. We identify four primary challenges in building robust, embedded

neurorobotic systems, including: (1) developing infrastructure for interfacing with the

environment and sensors; (2) processing task specific sensory signals; (3) generating

robust, explainable control signals; and (4) compiling neural networks to run on target

hardware. Nengo helps to address these challenges by: (1) providing the NengoInterfaces

library, which defines a simple but powerful API for users to interact with simulations

and hardware; (2) providing the NengoDL library, which lets users use the Keras and

TensorFlow API to develop Nengo models; (3) implementing the Neural Engineering

Framework, which provides white-box methods for implementing known functions and

circuits; and (4) providing multiple backend libraries, such as NengoLoihi, that enable

users to compile the same model to different hardware. We present two examples

using Nengo to develop neural networks that run on CPUs and GPUs as well as

Intel’s neuromorphic chip, Loihi, to demonstrate two variations on this workflow. The

first example is an implementation of an end-to-end spiking neural network in Nengo

that controls a rover simulated in Mujoco. The network integrates a deep convolutional

network that processes visual input from cameras mounted on the rover to track a target,

and a control system implementing steering and drive functions in connection weights to

guide the rover to the target. The second example uses Nengo as a smaller component

in a system that has addressed some but not all of those challenges. Specifically it is

used to augment a force-based operational space controller with neural adaptive control

to improve performance during a reaching task using a real-world Kinova Jaco2 robotic

arm. The code and implementation details are provided1, with the intent of enabling other

researchers to build and run their own neurorobotic systems.

Keywords: Nengo, neuromorphic, neurorobotic, spiking neural networks, robotic control, adaptive control,

embedded robotics

1. INTRODUCTION

Specialized AI hardware offers exciting potential for the development of low-power, highly
responsive robotic systems with embedded control. Edge devices for accelerating neural networks
are starting to become commercially available from companies, such as NVIDIA, BrainChip, GrAI
Matter Labs, Google, Intel, and IBM. While the promise of low-power and low-latency embedded

1https://github.com/abr/neurorobotics-2020

20

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.568359
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.568359&domain=pdf&date_stamp=2020-10-09
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:travis.dewolf@appliedbrainresearch.com
mailto:travis.dewolf@appliedbrainresearch.com
https://doi.org/10.3389/fnbot.2020.568359
https://www.frontiersin.org/articles/10.3389/fnbot.2020.568359/full
https://github.com/abr/neurorobotics-2020

DeWolf et al. Nengo for Neurorobotics

processing and control is highly desirable, the process of
implementing algorithms on the hardware generally remains a
significant hurdle. Developing neural networks for processing
sensory data and generating control signals is a difficult problem,
and adding further constraints specific to a particular piece of
hardware only increases the challenge. In this paper we focus
on the development of spiking neural networks (SNNs) for the
subset of devices known as neuromorphic hardware (Mead,
1990). Effectively using such hardware often requires additional
expert knowledge outside of traditional machine learning and
neural network methods to program effectively. In short, it is
difficult to quickly and easily build robust, integrated neural
models for controlling robots using neuromorphic hardware.

Building neurorobotic systems can be characterized as
consisting of four tasks:

1. Developing infrastructure to send and receive signals
from the environment. There are a multitude of different
interface protocols for sensors, hardware, and simulators.
To minimize development time, simple interfaces should be
available and interchangeable with minimal changes to the
model description.

2. Processing task specific sensory signals. Deep neural networks
(DNNs) are the principle machine learning tool used for
sensory processing, and it is important to take advantage of
the extensive literature and solutions in this field. To that end,
users need to be able to take DNNs, convert them to networks
that can run on neuromorphic hardware, and integrate
them into a neurorobotics control system. For systems using
perception methods not rooted in neural networks, it is also
important to be able to easily integrate their output with
downstream networks.

3. Generating robust control signals with explainable neural
networks. When generating control signals, having guarantees
on performance is important, and often necessary. To
accomplish this users needs to know exactly what operations
are being implemented to guarantee stability. The Neural
Engineering Framework (NEF; Eliasmith and Anderson,
2003) offers “white-box” neural network development
methods that allow integration of these methods into
neurorobotics control systems, making an API for building
up such networks quickly desirable.

4. Compiling neural networks to run on multiple targeted
hardware platforms. During the process of designing control
and perception systems it is often desirable to develop
neural network models on standard hardware with minimal
compilation overhead. Once a prototype network is working,
it should be straightforward to compile to targeted special
purpose hardware. Being able to compile the same model to
different hardware can greatly speed up the development of
neurorobotics systems.

In this paper we present a neurorobotics development workflow
for building neural networks that run on standard and
neuromorphic hardware using the Nengo neural modeling
platform (http://nengo.ai/; Bekolay et al., 2014). As part of this
workflow, we take advantage of the NengoInterface package to
streamline interfacing with the physics simulators, the NengoDL

package for integrating Keras and TensorFlow models that
process incoming sensory data, and the NengoLoihi package for
compiling the model to run on Intel’s Loihi neuromorphic chip
(Davies et al., 2018).

We illustrate two variations on this workflow by describing
two example neurorobotics applications in detail. The first
example implements an end-to-end perception and action system
in Nengo for tracking a target with a rover simulated in
Mujoco (Todorov et al., 2012). The rover has four mounted
cameras whose input is fed into a DNN built using Keras. The
DNN estimates the distance to the target, and this estimate is
sent to a control network which generates torques to apply to
the steering wheel and drive wheels to move the rover to the
target. This full system is then compiled onto Loihi. In the
second example, we demonstrate how Nengo can be integrated
with an existing system by augmenting a standard robotic arm
force controller using a neural adaptive controller that learns
online. We implement the adaptive component both on standard
hardware and Loihi, where we take advantage of its on-chip
learning. We compare implementations of the adaptive control
system as it drives a physical Jaco2 robot arm from Kinova
to perform a reaching task while adapting to the unmodeled
force of holding a two pound weight. We discuss the workflow
bottlenecks and challenges that are encountered, addressed,
and remaining.

2. BACKGROUND

2.1. Nengo and Supporting Development
Packages
Nengo is a neural modeling development and simulation
platform. Users specify the architecture of models using a
Python-based API, referred to as the “front-end,” and then
compile their model for simulation on hardware using a “back-
end.” The API is designed such that the same model can be run
on different hardware with few to no changes in the front-end
script. Supported hardware includes CPUs, GPUs, FPGAs, and
specialized neuromorphic hardware (such as Intel’s Loihi chip).

Nengo users are able to quickly design and simulate neural
networks, and use the NengoGUI package to visualize and
interface with them during run-time. The NengoDL package
extends Nengo’s API to interface with and integrate deep and
machine learning networks built in Keras or TensorFlow, as
well as take advantage of TensorFlow’s resource distribution
manager for efficient simulation across multiple processors.
The NengoInterfaces package provides easy interface access
with the Mujoco simulator, abstracting out the setup and
overhead involved in connecting, running, communicating,
and restarting Mujoco simulations. The NengoLoihi package
allows us to compile our models to run on the Loihi, and also
handles communication to and from the chip. Additionally,
the NengoLoihi package provides a Loihi emulator that
allows users to run their models while simulating Loihi
dynamics and computations on their computers, which
aids efficient development. Nengo has more supporting
packages, but in the interest of space we limit our review

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 56835921

http://nengo.ai/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

to the above packages relevant to the work presented in
this paper.

2.2. The Loihi Chip
We use Intel’s Loihi chip (Davies et al., 2018) for demonstration
in the examples below. The Loihi chip is a many-core mesh
with 128 neuromorphic cores, 3 embedded × 86 processing
cores, and off-chip communication interfaces. An asynchronous
network-on-chip communicates packetized messages between
cores, allowing write, read request and response, spike messages,
and barrier messages for time synchronization to be sent between
cores. Each neuromorphic core has 1,024 neural “compartments,”
where a compartment can be allocated to simulate a neuron
or dendrite.

The NengoLoihi package allows users to compile their
front-end script to the Loihi chip, handling all of the low-
level mapping and communication. Some front-end scripts will
require modification specifying low-level details, such as how
to allocate neural populations across Loihi cores, but largely
the details of this low-level mapping are abstracted out and
handled automatically.

2.3. Other Neurorobotic Workflows and
Toolkits
Most commonly, building neurorobotic applications involves
hand-crafting and tuning SNNs for the task of interest. In
Gutierrez-Galan et al. (2020) the authors build an SNN inspired
by biology to implement a central-pattern generator that runs
on the SpiNNaker neuromorphic board (Furber et al., 2014)
and drives a hexapod robot to walk, trot, or run. In Kreiser
et al. (2019), the authors hand craft an SNN to run on the
Loihi to steer a small rover. In Stagsted et al. (2020), a PID
controller is implemented in an SNN running on Loihi to steer
an unmanned aerial vehicle. The authors accomplish this using
one-hot encoding, such that only one neuron in a population is
able to spike at a time, and each neuron represents a different
possible variable value, to build up networks implementing
addition and subtraction, at which point a PID controller can
be built. Implementation of non-linear functions is listed as
future work. We note that these models can be built using
the Nengo API, and the NEF API makes non-linear function
implementation straight-forward.

The authors of Taunyazov et al. (2020) implement an SNN
visual tactile system that runs on Loihi and performs container
classification and rotational slip detection. The network is a deep
net trained with the SLAYER (Bam Shrestha and Orchard, 2018)
method, which uses stochastic spiking neurons to overcome
the undefined derivative in spiking neurons that prevents
backpropagation from working. In Hwu et al. (2017), the authors
train an Energy-Efficient Deep Neural Network (EEDN), a
deep network designed specifically to run on IBM’s TrueNorth
neuromorphic chip (Sawada et al., 2016), on trail photos to train
up a network that attaches to a real-world rover and guides it
along a path. The authors mention that the trained weights work
well in a standard convolutional neural network or in the EEDN,
which can transfer its weights directly to the TrueNorth. As we
detail in our examples below, the NengoDL package allows users

to take advantage of similar deep learning methods for training
SNNs to run on neuromorphic hardware.

Another way to program neuromorphic hardware is using
the Python Neural Networks (PyNN) interface (Davison et al.,
2009). PyNN is a front-end API that shares Nengo’s goal of
creating a high-level front-end API that specifies neural network
architecture without being tied to the low-level implementations
specifics. PyNN was developed to standardize scripting neural
networks across several different low-level neural simulators,
including Brian (Goodman and Brette, 2008), NEURON (Hines
and Carnevale, 1997), and Nest (Gewaltig and Diesmann, 2007).
Since its development, others have extended PyNN to include
backends for other simulators and neuromorphic hardware.
While Nengo allows the same low-level specificity of PyNN,
Nengo also allows many of these details to be easily abstracted,
and has more focus on high-level objects that speed the
development of large or complex neural systems. For example, to
implement a communication channel between two populations
of neurons takes ∼12 lines in Nengo, and over 80 lines
in PyNN (Bekolay, 2011). Importantly, Nengo also supports
methods for generating connection weight matrices, including
the NEF as well as Keras/TensorFlow techniques, which PyNN
does not.

The Neurorobotics Platform (NRP; Falotico et al., 2017) is a
web-based simulation environment for running SNNs hooked
up to virtual robots. Developed as part of the Human Brain
Project (Markram, 2012), the goal of the NRP is to streamline the
process of running experiments with SNNs and robots. The NRP
lets users quickly select a virtual environment, robot, and SNNs
to run an experiment. The NRP has a broad scope, offering tools,
such as the web-based robot designer, experimental workflow
editor, and Gazebo simulation environment editor. In contrast,
Nengo focuses primarily on the development, integration, and
simulation of neural networks (both spiking and non-spiking),
support of different neural network programming paradigms
like the NEF and Keras/TensorFlow, compiling to different
hardware backends, and systems interfacing through Python.
There is potential for collaboration between Nengo and the
NRP, expanding the neural network development and simulator
interfacing of the NRP, and the experiment design and web
interface of Nengo.

3. NEUROROBOTIC ROVER SYSTEM

In this example we develop an end-to-end perception and action
system for tracking a target with a rover in Mujoco (Todorov
et al., 2012). The simulated rover we use is a four wheeled vehicle,
built using Mujoco’s XML modeling language, with Ackerman
steering and rear differential drive in a boundless environment
with no obstacles. The rover has 4 RGB cameras mounted on its
back, each with a 90◦ field-of-vision, that provide a full 360◦ view
of the environment, and a sensor on the front wheels that provide
steering angle information. The rover accepts two torque input
signals, one to control the acceleration of the rear wheels, and
one to turn the front wheels right or left. The target is a red sphere
that floats in the air and warps to a new location (generated from

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 56835922

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 1 | A neurorobotic rover. (1) A diagram of the neural network implementing the rover’s perception and action system. The components inside the gray

rounded rectangle are run on the Loihi hardware. Arrows indicate the flow of information. The “conv” prefix denotes convolutional layers, the “dense” prefix denotes

fully connected layers, and the “ens” prefix denotes NEF layers. (2) Top: The control network’s approximation of the steering (top) and acceleration (bottom) signals are

plotted in blue. The ideal function output is plotted as a dashed red line. Bottom: The vision network’s estimate of the target x (top) and y (bottom) location relative to

the rover is plotted in blue. Ground truth is plotted as a dashed red line. (3) The trajectory followed by the rover is plotted in orange as it approaches different targets,

as seen from above. The rover starts in the center at the green X and drives to the different targets, plotted as blue Xs. (4) Left: An image of the rover and the target in

the Mujoco environment. Right: The images from the four mounted cameras attached to the rover, which generate the input to the vision network. (5) The firing rate

curve of standard and Loihi neurons, to show the effects of discretization on the on-chip activity profiles neurons. (Left) Spiking rectified linear neurons; (right) Leaky

integrate-and-fire neurons.

a random distribution within 3 m of the origin) when the center-
of-mass of the rover is within 50 cm of the center of the target.
Figure 1–4 shows the rover in the world on the left, and the view
from each of the 4 cameras on the right.

To begin developing our perception and action systems, we
first build out the controller without using neural networks. We
use the exact ground-truth information provided by Mujoco to
identify the target location relative to the rover, and calculate

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 56835923

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

the torques for acceleration and steering in Python. Next, we
address sensory perception by building a DNN that can identify
target (x, y) location relative to the rover based on input from the
four mounted cameras. This requires building a dataset using the
simulator to train the DNN. We initially train the system using
standard artificial rate neurons, to confirm that the desired level
of performance can be achieved with our network architecture.
We then us NengoDL to convert the network to spiking neurons
and tune the parameters to optimize performance. Next, we
replace each function in the control system with spiking analogs,
testing each in isolation before finally integrating the entire
spiking network. Once performance is achieved in a fully spiking
neural network, we move the network simulation from Nengo
into the NengoLoihi emulator, and tune the parameters again to
optimize under the constraints of the Loihi. Finally we compile
the network to the Loihi hardware, again using NengoLoihi. In
the next sections we describe each of these steps in more detail.

3.1. Interfacing With Mujoco
Interfacing to Mujoco is done through NengoInterfaces, which
uses the mujoco-py (Ray et al., 2020) library for Python
bindings to the Mujoco C API. The interface accepts force
signals from the neural network, applies them inside Mujoco
and moves the simulation forward one time step, and then
returns feedback from the rover. Environment information
can be accessed directly from the NengoInterfaces API, and
less common functions are available through the mujoco-py
simulation and environment model parameters.

3.2. Processing Visual Input Using a Keras
DNN Converted to a Nengo SNN
The network used for tracking the target location consists of
two convolutional layers and three dense layers, and is shown
in the bottom block of Figure 1–1. The first convolutional layer
uses 1 × 1 kernels with a stride of 1, and a filter size of 3; its
purpose is to convert the image signal into spikes to be sent to
the layers running on Loihi2. To generate the input image, we
take a 32 × 32 pixels resolution snapshot from each camera,
and concatenate them horizontally to create a 32 × 128 pixels
input to the network. This resolution was chosen as the smallest
network size that could still identify targets at a distance of 3 m.
To retrieve the signal from the last layer running on-chip we use
neural probes, which monitor spiking activity.

The dataset used for training the model was generated by
recording both input from the mounted cameras and the relative
distance to the target. The data was collected while our non-
spiking control system drove the rover to the targets, recording
every 10th frame. The final dataset used consists of roughly
40,000 images and target (x, y) locations (the height of the target
is constant and is not relevant to control so we ignore it).

Training the network with non-spiking ReLU activation
functions using standard DNN tools (i.e., Keras) was the first
step. This allows us to validate the network architecture. For all
of our training we use the RMSprop optimizer from TensorFlow

2It is also possible to send information to Loihi by setting the bias and current for

neurons, but we have found this method to be slower for a dynamic input signal.

and the mean squared error loss function on network output
to learn to output the target (x, y) locations associated with
an image. When converting the network into spiking neurons
take into account both the desired firing rates and the activation
function of neurons running on the Loihi. We have found that
if the average firing rates are <50 Hz, spiking neurons are
not driven strongly enough to generate any activity. We target
the 175 Hz range for firing rates, because it is large enough
to ensure spiking, but still inside the range where the Loihi
neurons approximate standard neurons well (discussed below).
To achieve this, we initialize the weights of our network by setting
the scale_firing_rates parameter of the NengoDL built-
in Keras converter to 400. This parameter encourages the
optimizer to converge to firing rates that are higher or lower,
based on the scaling. An alternative, and more fine-grained and
reliable method, is to add a firing rate regularization term to
the cost function that penalizes neurons firing outside of the
desired range.

The second factor we need to account for is the activation
function of neurons on the target neuromorphic hardware.
Neurons on the Loihi have a unique activation profile because
of discretization that occurs on-chip, as shown in Figure 1–5.
We use NengoLoihi’s model of the Loihi rectified linear neuron
during training to ensure that the network is trained on the same
kind of activation functions used during inference.

Finally, we set network synapses throughout the network as
required to smooth out the signal and filter noise. In Nengo, you
can set synapses to 0 to implement no filtering, or to None to
collapse the computations of two connected layers into a single
layer. We set each of the synapses on the connections between
layers to None. This speeds up the propagation of spikes through
the network, but also has the potential to decrease performance
due increased noise in the signal. We found empirically, however,
that applying a 0.05 s time constant low-pass filter on the
vision network output smoothed the target location estimate and
improved the control signal generated downstream.

3.3. Generating Robust, Explainable
Control Signals Using the NEF
We described the NEF as a “white-box” approach to building
neural networks because of its mechanistic approach. Briefly,
the NEF uses populations of neurons to represent vectors,
feed-forward connections between populations to implement
functions on those vectors, and recurrent connections to
implement differential equations. Rather than specifying a task-
level cost function, as in standard machine learning methods, the
user must first design a circuit that solves the problem, including
specifying a state space representation, set of computations,
and flow of information. The user then uses Nengo’s NEF API
to implement this circuit in neurons. These added top-down
constraints give clear network structure that allows users to
identify points of error and apply specific changes to debug and
improve network performance. This is in contrast to “black-
box” deep learning methods, which use training algorithms to
find a network configuration that solves the problem, without
knowledge of the function implemented. In situations, such

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 56835924

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

as complex visual analysis where the algorithmic solution is
unknown this is very desirable, but in cases where proven
solutions are available and we would like performance guarantees
the methods of the NEF are preferable.

The motor system for the rover is implemented using the
NEF. The first step in this implementation is deriving the
functions for vehicle acceleration and steering wheel control. We
calculate acceleration as distance to target multiplied by a gain
term, clipped to a maximum magnitude empirically chosen to
prevent the rover from flipping when traveling at top speed and
turning sharply. Formally,

uacceleration = kamin(‖(x∗, y∗)‖, 1) (1)

where u is the control signal sent to the rover, ka is the
acceleration gain term, x∗ and y∗ are the target location relative
to the rover, and ‖ · ‖ denotes the 2-norm.

The torque applied to the steering wheel is calculated with a
simple proportional controller using the difference between the
current and desired angle of the wheels multiplied by a gain term.
The desired angle is calculated as the angle to the target using
arctan2(−x∗, y∗), where order of the arguments and the negative
sign in front of the x term account for the orientation of the rover
relative to the environment. Formally,

usteer = kp(arctan2(−x∗, y∗)− q) (2)

where kp is the proportional gain term, and q is the current angle
of the steering wheel.

The neural circuit implementation of this controller is done
in two parallel ensembles, with the connections weights on
the outbound connections calculated to approximate the above
equations, as shown in the top portion of Figure 1–1. In Nengo,
we project the relevant variables into each population and specify
the functions to be computed on their outbound connections
using Python code. Nengo then solves for connection weights
using the principles of the NEF. In this particular case,
we compute these functions using separate ensembles, rather
than having a single ensemble with two separate outbound
connections, because the functions they are calculating depend
on different sets of variables. The acceleration function only
requires the estimated target (x, y) values for calculation, while
the steering function requires the estimated target (x, y) and the
current angle of the steering wheel. While the variables required
by the acceleration function are a subset of the variables used in
the steering function, we can achieve greater precision by using
an ensemble that only encodes the target (x, y).

In the hardware implementation, each ensemble consists of
4,096 Loihi leaky integrate-and-fire neurons, spread across four
cores. This specific number of neurons is chosen to satisfy
hardware constraints on the number of inbound connections a
population of neurons can receive. The neurons in the ensemble
are set up to have maximum firing rates between 175 and 220 Hz,
chosen because in general higher firing rates provide for more
accurate function approximation.

3.4. Integration and Compiling to Hardware
Putting the vision and control networks together is a simple
matter of connecting the output of one to the input of the other
in Nengo. As both networks were built using Loihi-type neurons,
they are also prepared to be mapped to neuromorphic hardware.
During the initial building and debugging process running on
a CPU backend, which is the Nengo default, greatly expedited
development. The NengoLoihi backend can then be used to
compile the network to run on the Loihi (we could also use
NengoOCL or NengoDL to compile to GPU and run directly in
Nengo). We used a workstation with and Intel Core i7-6700K
CPU @ 4.00 GHz × 8 with 32 GB RAM and GeForce GTX
1070/PCIe/SSE2 running Ubuntu 18.04, and the Intel Nahuku
board with 32 Loihi chips (Davies et al., 2018) running NxSDK
0.9. In this example, we are only using one of the Loihi chips
on the board. When the system is running, Nengo provides
the interface between the simulator and the hardware, but all
computations are run on the Loihi chip.

3.5. Performance
Figure 1–3 shows the (x, y) trajectory of the rover moving
throughout the environment to six different targets in the
environment, starting from the green “x.” Figure 1–2 shows
the perception and action signals from the network, with the
target (x, y) estimated in the top figures in blue and the ground
truth shown in red. The lower figure shows the steering and
acceleration control signals generated by the network in blue
with the ideal values in orange. As can be seen, the rover
drives accurately (to within 50 cm) over the course of the
trial. We have not performed extensive testing of the accuracy,
and do not provide quantitative results as our purpose here
is to focus on the methods used to develop the system. There
is clearly significant room for improvement and extension to
this work. Nevertheless, this simple example demonstrates the
implementation of an end-to-end perception and action spiking
neural network running on neuromorphic hardware. All code
is available online at https://github.com/abr/neurorobotics-2020.
We have provided full code to serve as a starting point for those
interested in exploring neurorobotic solutions that can leverage
embedded neuromorphic hardware for next generation systems.

4. NEUROROBOTIC ADAPTIVE ARM
CONTROL

In this second example we augment an existing force controller
with an adaptive neural network implemented on Loihi, using
on-chip learning to control a Kinova Jaco2 physical robot in
a reaching task while it holds an unexpected weight. The
existing control system generates joint torques using a standard
proportional derivative (PD) operational space controller (OSC;
Slotine et al., 1988), designed to move the hand along a target
path. The adaptive controller adds an adaptive signal trained
online to account for any unexpected forces affecting movement,
which is tuned online. We compare performance of the adaptive
control system to a non-adaptive PD OSC, and an industry
standard proportional integrated-error derivative (PID) OSC.

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 56835925

https://github.com/abr/neurorobotics-2020
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

We also compare the neuromorphic implementation with CPU
and GPU implementations of the adaptive control system. We
compare all systems in terms of accuracy, power use, and control
loop update latency.

Operational space control relies on an accurate model of
the arm dynamics to generate torques that will move the arm
as desired. If the arm picks up an object, is subjected to
external forces or perturbances, or wears down over time, the
dynamics have changed and OSC performance will degrade
unless the changes can be accurately modeled. In general, these
perturbations can not be predicted in advance, so updating
the controller on-the-fly is desirable. This is the purpose of
the adaptive controller we use here, implemented as a neural
network. Intuitively, the adaptive controller acts as a context
sensitive integrated error term. Where standard integrated error
terms (such as the I in PID control) apply the same learned error
regardless of the current joint angles or velocities, the adaptive
controller learns to account for errors specific to different arm
states. The difference becomes significant in the control of highly
non-linear systems, where the error that needs to be compensated
for changes significantly with system state.

4.1. Interfacing With the Jaco2 Robotic Arm
In this example Nengo is called as a sub-function of the PD
OSC. The PD OSC itself is implemented in Python and runs
on a workstation that interfaces with a physical Kinova Jaco2

6 degrees-of-freedom (DOF) arm. The interface implemented
is through the ABR Jaco2 repository, and includes no neural
network infrastructure. To integrate neural computation with
this standard Python code, at each time step in the control
model, Nengo is called to run the neural network for a single
step. The control code sends feedback from the arm to Nengo
and receives back an adaptive control signal to add into the
outbound set of joint torques sent to the Jaco2. Nengo takes care
of running the neural network on a CPU, GPU, or the Loihi
neuromorphic hardware.

4.2. Processing Sensory Feedback Using
the NEF
In this application we are augmenting an existing control system
with an adaptive control signal generated by a neural ensemble.
The ensemble requires sensory feedback related to joint positions
and velocities as input in order to compute the necessary
correction to the control signal. Because the sensory feedback
is a relatively low-dimensional signal (e.g., compared to image
input), it does not need to be processed by a deep neural network
before we can use it to generate a corrective control signal. The
adaptive controller requires that the effects of the unexpected
force are predictable given the input provided to the ensemble
to be able to learn to compensate for unexpected forces affecting
the arm. If, for example, the force affecting the armwas a function
of joint angle, and the ensemble only had inputs related to joint
velocity, then the network would not be able to adapt to the force.

Given that we have appropriate inputs, we further need to
make sure that the neurons are sufficiently sensitive to different
states of the arm relevant for compensating for the unexpected
force. In the NEF, the neural tuning properties are determined by

a combination of the neuron encoders (or “preferred” direction
vectors), gains, and biases. This tuning determines which parts
of the input state space are represented by the neural ensemble.
In this section, we present considerations that determine how to
appropriately pick these tuning curves for adaptive control in a
highly non-linear state space.

In particular, we need to ensure that neurons are not
active over a large part of state space. If this is the case, the
compensatory signal they learn in one part of state space may
incorrectly generalize to other parts. In contrast, if neurons are
active over a small part of state space, then the compensatory
signal they learn in one area will not affect what learning
occurs in other parts of state space. Unsurprisingly, there is a
trade-off between the specificity of neural responses and their
generalization abilities. In arm control, because the dynamics
are highly non-linear, we generally want to ensure that neurons
in our ensemble are sensitive to localized parts of state space.
We also do not want to waste neural resources. Consequently,
neurons should only be sensitive to parts of state space that are
actually explored by the arm. In other words, we do not want our
population to include neurons that never become active.

To handle both of these issues, we need to carefully choose
neural tuning curves, and hence NEF encoders. To optimize
neurons for the relevant parts of the state space, we begin by
subtracting the mean and then normalizing the input signals for
each dimension given their joint limits. Next, we project into the
D + 1 unit hypersphere, where D is the number of dimensions
represented by the ensemble. By doing this it becomes possible to
carefully control the range of values that cause neurons in the
ensemble to respond. Because we have 6 joints and two input
signals from each (i.e., position and velocity), we project the
normalized signals onto the 13-dimensional (i.e., 12 + 1) unit
hypersphere and use that as input to the ensemble.

Figure 2 illustrates how this allows us to control neural
responses by considering the simpler case of projecting 2D into
3D. Assuming we have inputs in the −1 to 1 range along each
dimension, the inputs are going to lie somewhere in the unit
square. In the NEF, by default, each of our neurons will initially
have an encoder that is a vector pointing from the origin to
somewhere inside unit circle. Neurons with encoding vectors
that point in the same direction will have similar firing rates
responses to the same input, as shown in the top half of Figure 2.
By projecting our encoding vectors and input signal into the 2 +
1 dimensional unit hypersphere, our neurons are still sensitive to
all parts of the original 2D input signal, but co-linear encoding
vectors can also generate distinct activity, as shown in the bottom
half of Figure 2. For example, we can have neurons sensitive to
an input signal of (0, 0.5) but not (0, 1), which was not possible
with our 2D preferred direction vectors. Essentially, this method
allows us to have neurons sensitive to more specific parts of
state space.

4.3. Online Learning for Adaptive Control
The neural adaptive controller presented here is a neuromorphic
implementation of the control system presented in DeWolf et al.
(2016), where it is proven that this adaptive controller performs
as well or better than a PID controller. The neural adaptive

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 56835926

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 2 | An example of how increasing encoder dimensionality can create neurons that are more selectively responsive. On the right side of all figures the spike

raster (top) and filtered output (bottom) is plotted, showing the firing rates of these neurons for the same 2D input signal that moves from [0, −1] to [0, 1], projected

into 3D for (3,4). In the top row we show two neurons with 2D encoding vectors (0, 0.5) [shown in (1) on the left] and (0, 1.0) [shown in (2) on the left]. The arrows in

the figures represent the neuron’s encoding vectors. The z-axis and color reflect the firing rates of these neurons given different (x, y) input. As can be seen, the activity

of these neurons with co-linear encoding vectors is indistinguishable. In the bottom row, we project these same 2D encoders, (0, 0.5) [shown in (3) on the left] and (0,

1.0) [shown in (4) on the left], into 3D. The arrows in the figures represent the neuron’s encoding vectors projected into 3D. The firing rates of the neurons given

different (x, y, z) input is represented by color, showing that the neurons are responsive to different parts of 3D state space.

controller uses the Prescribed Error Sensitivity (PES; MacNeil
and Eliasmith, 2011) learning rule, which is a local, spiking or
non-spiking, error-driven Hebbian rule. The Loihi chip supports
several different kinds of online learning, providing the ability
to use microcode to define different kinds of rules. NengoLoihi
implements the PES learning rule using this feature of the chip,
which allows weight updates to be calculated on-chip. For the
other hardware, core Nengo includes a definition of the PES rule.

The adaptive control signal is calculated via

uadapt = ad, (3)

where a is the vector of neural activities (i.e., filtered neural spike
trains) and d denotes a vector of “decoders” which are the output
weights from the ensemble. The resulting uadapt is a vector of the
same dimensionality as the OSC control signal. We initialize d to
a vector of zeros, and use the learning rule

1d = −κ a⊗ u, (4)

to update the decoder weights, where κ is a learning rate, u is
the OSC’s outbound control signal (acting as the error in the
PES rule), and⊗ denotes the outer product. This training signal,
u, was chosen based on Lyapunov stability analysis. Details,
derivation, and proof of stability of this adaptive neural controller
are provided in DeWolf et al. (2016).

In the system diagram shown in Figure 3–1, the hollow
triangle denotes the connection providing the training signal, u,
for the learning rule.

4.4. Compiling to Neuromorphic Hardware
The NengoLoihi backend is used to instantiate the neural
ensemble on the Loihi with the parameters discussed above, and
implement the PES learning rule on-chip. Core Nengo is used for
the CPU implementation and the NengoOCL backend package
is used for the GPU implementation. In this example we used a
workstation with and Intel Core i7-6700K CPU @ 4.00 GHz ×
8 with 32 GB RAM and GeForce GTX 1070/PCIe/SSE2 running
Ubuntu 18.04 and the Intel Kapoho Bay board with 8 Loihi chips
running NxSDK 0.9 In this example, we are only using one of the
Loihi chips on the board.

4.5. Performance
Figure 3–2 shows the arm performing a reaching task while
holding an unexpected two pound mass. In this task the arm
repeatedly starts from the same position and reaches to the same
target 50 times, with continuous learning between reaches. We
perform the 50 reaches with each controller five times, using
different randomly generated neuron ensemble parameters (such
as bias and maximum firing rates), and calculate the mean error
and 95% confidence intervals. The adaptive controller is run
while simulating the neurons on the Loihi, and the CPU and
GPU of our workstation (specifications are in section 4.4), and
compared against a standard PID controller running on the same
workstation. We normalize our performance results using the
performance of a PD operational space controller. We consider
that controller reaching under normal conditions with nothing in
the hand as 0% error, and the results of that controller reaching
while holding the unaccounted-for two pound weight as 100%

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2020 | Volume 14 | Article 56835927

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 3 | A neurorobotic adaptive arm controller. (1) The system diagram of the neurorobotic adaptive control system. The hollow triangle denotes the connection

providing the training signal to the learning rule. Note that Nengo is only used to run the neural part of the system. The “ens” prefix denotes NEF layers. (2)

Performance error while reaching to a target while holding an unexpected two pound mass. Black: PD controller with no extra mass, used as a 0% reference error.

Gray: PD controller reaching while holding the two pound mass, used as 100% reference error. Brown: PID controller reduces error to 65.3%. Green: Adaptive

controller CPU implementation with 1,000 neurons reduces error to 37.6%. Red: Adaptive controller GPU implementation with 1,000 neurons reduces error to 36.2%.

The initially high error is due to the increased latency of the GPU implementation. Blue: Adaptive controller Loihi implementation with 1,000 neurons reduces error to

26.7%. Results are averaged over five sets of 50 trials with 95% confidence intervals shown. The adaptive controller demonstrates a 2.45 times improvement in

accuracy over PID, and 1.49 and 1.57 times improvement over the CPU and GPU adaptive controller implementations, respectively. (3) Top: A power comparison

between adaptive controller implementations. Running adaptation on the CPU and GPU requires 4.6× and 43.2× more power than Loihi. Bottom: Latency

measurements of the controllers. PD: 2.91 ms, PID: 2.95 ms, Adaptive Loihi: 3.08 ms, Adaptive CPU: 3.13 ms, Adaptive GPU: 4.38 ms.

error. As can be seen, the Loihi system outperforms all other
controllers after 50 trials of training. Unsurprisingly, the CPU
and GPU perform similarly, and better than the PID controller.

Figure 3–3 shows the power and latency measurements
of the controllers during the task, where the neuromorphic
implementation consumes the least energy of the adaptive
controllers, with a minimal increase in latency compared to the
non-adaptive controllers. Specifically, the CPU uses 4.6× more
power, and the GPU 43.2× more. As well, the CPU is a similar
latency (i.e., 2% slower), while the GPU is 42% slower than
the Loihi.

To measure the power use of the CPU, we used the software
package s-tui, available online at https://github.com/amanusk/
s-tui. To measure the power use of the GPU, we used the
nvidia-smi software. To measure the Loihi power use,
we used the Linear Tech DC1613A dongle and LTpowerPlay
software, which provides current and voltage measurements for
the chip’s two power supplies, from which we calculated the total
power use.

5. DISCUSSION

We have demonstrated how to take advantage of neuromorphic
technology to fully implement or augment existing robotic
control systems. In particular, we showed how a set of tools in the
Nengo ecosystem allows efficient execution of four central tasks
for building neurorobotic systems.

1. The NengoInterfaces library provides an easy API for
interfacing with the Mujoco simulation, used in the first
example, both for sending in control signals and receiving

feedback. While the second example is not directly providing
simple API access, it illustrates the flexibility of Nengo to
be incorporated into already developed Python programs
and interfaces.

2. In the rover example, we show how NengoDL provides
a natural way to integrate Keras and TensorFlow models.
For non-neural perception algorithms, Python code can be
directly executed from Nengo or the code can be run outside
Nengo and sent into a Nengo model, as is done in the adaptive
arm example.

3. We illustrated how a circuit design that solves the problem
of interest can be implemented in a neural network using
Nengo, providing white-box neural network systems. In the
first example this was shown with the rover control network
that steered and drove the rover to the target, and the second
example showed the use of a vector-space training signal with
stability guarantees to implement non-linear adaptive control.

4. The Nengo development toolkit allows users to compile
their model to run on multiple different hardware platforms,
including CPU (Bekolay et al., 2014), GPU (Rasmussen, 2019),
FPGA (Morcos, 2019), Intel’s Loihi (Hunsberger et al., 2018),
and SpiNNaker (Mundy et al., 2015).

We have made all of the code used in these examples publicly
available, to provide practical, reproducible examples for the
community. We believe this set of tools and examples helps
address the core challenge of making neurorobotic systems easier
to build, and a wide variety of architectures easier to explore.

In the first example, while we did not benchmark or
quantitatively characterize the result, it provides a demonstration
of how our chosen tools allow the development of complete
perception-action systems for neurorobotics. In particular,

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 56835928

https://github.com/amanusk/s-tui
https://github.com/amanusk/s-tui
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

it demonstrated how to couple white box (i.e., NEF) and
black box (i.e., DNN) techniques and implement them
on a single underlying spiking neuromorphic hardware
platform (i.e., Loihi).

Nengo is unique in its ability to make such integration easily
accessible. Nengo has several advantages in this context: (a) it is
not vendor specific, and supports hardware from several sources;
(b) it allows a high-level model specification for easy portability,
while also allowing hardware specific details to be incorporated
(e.g., via its configuration system); and (c) Nengo removes the
need to have detailed knowledge about SNNs, neuromorphic
hardware, simulator interfaces, embedded programming, and so
on, while allowing those with such knowledge to leverage it (e.g.,
by easily defining new neuron models, using the configuration
system, building new hardware specific backends, and so on).

Our second example provided a more quantitative
characterization of the advantages of neurorobotics. From
a tools perspective, it demonstrated howNengo can be integrated
into existing systems and run the same neural model across
multiple kinds of hardware. But, more importantly, this
example demonstrates the kinds of advantages we expect from
neuromorphics: an increase in speed and accuracy, and several-
fold decrease in power compared to traditional hardware. As is
well-established, low latency and energy efficiency are critical for
many mobile robotics applications.

Possible extensions to the examples provided here are many
and varied. Perhaps one of themore obvious ones is to implement
the entire adaptive controller on neuromorphic hardware. To
the best of our knowledge this has only been done with a 3-link
planar arm (DeWolf et al., 2016). Since the adaptive controller
has performance guarantees, and the white box methods of the
NEF allow us to implement it on neuromorphic hardware while
preserving those guarantees, a full implementation would be a
rare example of an adaptive, fully neurorobotic controller with
clear performance guarantees.

While we believe the Nengo ecosystem is useful for the
development of neurorobotic systems, there remain a variety
of challenges and directions for future development that
stand to improve it. For instance, Nengo backends that
target non-spiking AI acceleration hardware, such as Google’s
Coral chip, would expand the community able to use the
methods we have discussed because spiking neuromorphic
hardware, such as Intel’s Loihi chip, is not commercially or
otherwise widely available. Extending the interfaces offered by

the NengoInterfaces package to improve accessibility, as well

as offering the same automatic conversion from DNNs to
SNNs for PyTorch users also remains important future work.
Perhaps most importantly, continuing to increase the number
of available tutorials, ready-to-use models, and online examples
is critical to reducing the startup overhead for new users and
better supporting the neurorobotics, neural networks, and edge
AI communities.

In conclusion, theNengo ecosystemmakes it possible for users
to quickly develop applications for neuromorphic hardware,
while taking advantage of already developed neural or non-
neural machine learning solutions. We have shown two examples
that demonstrate how the ecosystem can be used to address
four core stages of the development workflow. We encourage
interested researchers to use the code and tools that we have
made available, and look forward to exploring the vast space
of robust, embedded neurorobotics systems with the emerging
research community.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
supplementary material.

AUTHOR CONTRIBUTIONS

TD directed the project. TD, PJ, and CE implemented the
examples. PJ and CE collected the data for the arm example.
TD wrote the manuscript. CE provided research guidance and
edited the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

The NengoLoihi interface development was funded by Intel. All
other funding was provided by Applied Brain Research, Inc.

ACKNOWLEDGMENTS

The authors would like to thank Daniel Rasmussen, Eric
Hunsberger, and Xuan Choo for their help in the development
of this project. We would also like to thank Intel for access to the
Nahuku board and Kapoho Bay used in the examples, and Mike
Davies for reviewing an early draft of the paper.

REFERENCES

Bam Shrestha, S., and Orchard, G. (2018). Slayer: spike layer error reassignment in

time. arXiv 1810.

Bekolay, T. (2011). Learning in large-scale spiking neural networks (Master’s thesis),

University of Waterloo, Waterloo, ON, Canada.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009). Pynn: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A spiking

neural model of adaptive arm control. Proc. R. Soc. B Biol. Sci. 283:20162134.

doi: 10.1098/rspb.2016.2134

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 56835929

https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1098/rspb.2016.2134
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:

MIT Press.

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck,

J. C., et al. (2017). Connecting artificial brains to robots in a comprehensive

simulation framework: the neurorobotics platform. Front. Neurorobot. 11:2.

doi: 10.3389/fnbot.2017.00002

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Gutierrez-Galan, D., Dominguez-Morales, J. P., Perez-Peña, F., Jimenez-

Fernandez, A., and Linares-Barranco, A. (2020). Neuropod: a real-time

neuromorphic spiking CPG applied to robotics. Neurocomputing 381, 10–19.

doi: 10.1016/j.neucom.2019.11.007

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hunsberger, E., Bekolay, T., Rasmussen, D., Voelker, A., Stewart, T., Patel, K., et al.

(2018). Nengoloihi. Available online at: https://github.com/nengo/nengo-loihi

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). “A self-driving robot using

deep convolutional neural networks on neuromorphic hardware,” in 2017

International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK:

IEEE), 635–641. doi: 10.1109/IJCNN.2017.7965912

Kreiser, R., Waibel, G., Sandamirskaya, Y., and Renner, A. (2019). “Self-calibration

and learning on chip: towards neuromorphic robots,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2019) (Macao).

MacNeil, D., and Eliasmith, C. (2011). Fine-tuning and the stability of recurrent

neural networks. PLoS ONE 6:e0022885. doi: 10.1371/journal.pone.0022885

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55.

doi: 10.1038/scientificamerican0612-50

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Morcos, B. (2019). NengoFPGA: an FPGA backend for the nengo neural simulator

(Master’s thesis), University of Waterloo, Waterloo, ON, Canada.

Mundy, A., Knight, J., Stewart, T. C., and Furber, S. (2015). “An efficient

spinnaker implementation of the neural engineering framework,” in 2015

International Joint Conference on Neural Networks (IJCNN) (Killarney: IEEE),

1–8. doi: 10.1109/IJCNN.2015.7280390

Rasmussen, D. (2019). NengoDL: combining deep learning and

neuromorphic modelling methods. Neuroinformatics 17, 611–628.

doi: 10.1007/s12021-019-09424-z

Ray, A., McGrew, B., Schneider, J., Ho, J., Welinder, P., Zaremba, W., et al. (2020).

mujoco-py. Available online at: https://github.com/openai/mujoco-py

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P.,

et al. (2016). “Truenorth ecosystem for brain-inspired computing: scalable

systems, software, and applications,” in SC’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis

(Salt Lake City, UT: IEEE), 130–141. doi: 10.1109/SC.2016.11

Slotine, J.-J. E., Khatib, O., and Ruth, D. (1988). Robust control in operational space

for goal-positioned manipulator tasks. Int. J. Robot. Autom. 3, 28–34.

Stagsted, R. K., Vitale, A., Binz, J., Larsen, L. B., Sandarmirskaya, Y., and Renner,

A. (2020). “Towards neuromorphic control: a spiking neural network based

PID controller for UAV,” in Robotics: Science and Systems (Corvalis, OR).

doi: 10.15607/RSS.2020.XVI.074

Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., et al. (2020).

Event-driven visual-tactile sensing and learning for robots. Perception 4:5.

doi: 10.15607/RSS.2020.XVI.020

Todorov, E., Erez, T., and Tassa, Y. (2012). “Mujoco: a physics engine for model-

based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems (Vilamoura: IEEE), 5026–5033. doi: 10.1109/IROS.2012.6386109

Conflict of Interest: The authors are employees of Applied Brain Research, Inc.,

which develops and distributes Nengo free for academic and non-commercial use.

The authors declare that this study received funding from Applied Brain Research,

Inc. The funder had the following involvement with the study: paid for publication

fees. The NengoLoihi interface development was funded by Intel.

Copyright © 2020 DeWolf, Jaworski and Eliasmith. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2020 | Volume 14 | Article 56835930

https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1162/neco.1997.9.6.1179
https://github.com/nengo/nengo-loihi
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1371/journal.pone.0022885
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/IJCNN.2015.7280390
https://doi.org/10.1007/s12021-019-09424-z
https://github.com/openai/mujoco-py
https://doi.org/10.1109/SC.2016.11
https://doi.org/10.15607/RSS.2020.XVI.074
https://doi.org/10.15607/RSS.2020.XVI.020
https://doi.org/10.1109/IROS.2012.6386109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 19 October 2020

doi: 10.3389/fnbot.2020.568319

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 568319

Edited by:

Joe Hays,

United States Naval Research

Laboratory, United States

Reviewed by:

Garrick Orchard,

Intel, United States

Sumit Bam Shrestha,

Institute for Infocomm Research

(A*STAR), Singapore

Ed Lawson,

United States Naval Research

Laboratory, United States

*Correspondence:

Paul Kirkland

paul.kirkland@strath.ac.uk

Received: 31 May 2020

Accepted: 20 October 2020

Published: 19 October 2020

Citation:

Kirkland P, Di Caterina G, Soraghan J

and Matich G (2020) Perception

Understanding Action: Adding

Understanding to the Perception

Action Cycle With Spiking

Segmentation.

Front. Neurorobot. 14:568319.

doi: 10.3389/fnbot.2020.568319

Perception Understanding Action:
Adding Understanding to the
Perception Action Cycle With Spiking
Segmentation

Paul Kirkland 1*, Gaetano Di Caterina 1, John Soraghan 1 and George Matich 2

1Neuromorphic Sensor Signal Processing Lab, Centre for Image and Signal Processing, Electrical and Electronic

Engineering, University of Strathclyde, Glasgow, United Kingdom, 2 Leonardo MW Ltd., London, United Kingdom

Traditionally the Perception Action cycle is the first stage of building an autonomous

robotic system and a practical way to implement a low latency reactive system within a

low Size, Weight and Power (SWaP) package. However, within complex scenarios, this

method can lack contextual understanding about the scene, such as object recognition-

based tracking or system attention. Object detection, identification and tracking along

with semantic segmentation and attention are all modern computer vision tasks in which

Convolutional Neural Networks (CNN) have shown significant success, although such

networks often have a large computational overhead and power requirements, which

are not ideal in smaller robotics tasks. Furthermore, cloud computing and massively

parallel processing like in Graphic Processing Units (GPUs) are outside the specification

of many tasks due to their respective latency and SWaP constraints. In response

to this, Spiking Convolutional Neural Networks (SCNNs) look to provide the feature

extraction benefits of CNNs, while maintaining low latency and power overhead thanks to

their asynchronous spiking event-based processing. A novel Neuromorphic Perception

Understanding Action (PUA) system is presented, that aims to combine the feature

extraction benefits of CNNs with low latency processing of SCNNs. The PUA utilizes

a Neuromorphic Vision Sensor for Perception that facilitates asynchronous processing

within a Spiking fully Convolutional Neural Network (SpikeCNN) to provide semantic

segmentation and Understanding of the scene. The output is fed to a spiking control

system providing Actions. With this approach, the aim is to bring features of deep learning

into the lower levels of autonomous robotics, while maintaining a biologically plausible

STDP rule throughout the learned encoding part of the network. The network will be

shown to provide a more robust and predictable management of spiking activity with

an improved thresholding response. The reported experiments show that this system

can deliver robust results of over 96 and 81% for accuracy and Intersection over Union,

ensuring such a system can be successfully used within object recognition, classification

and tracking problem. This demonstrates that the attention of the system can be tracked

accurately, while the asynchronous processing means the controller can give precise

track updates with minimal latency.

Keywords: spiking, convolution, segmentation, tracking, STDP, neuromorphic, neural network, asynchronous

31

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.568319
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.568319&domain=pdf&date_stamp=2020-10-19
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paul.kirkland@strath.ac.uk
https://doi.org/10.3389/fnbot.2020.568319
https://www.frontiersin.org/articles/10.3389/fnbot.2020.568319/full

Kirkland et al. Perception Understanding Action

1. INTRODUCTION

Understanding and reasoning is a fundamental process in most
biological perception action cycles. It is through understanding
of our visual perception that helps to inform our basic
decision-making processes like ‘friend or foe” and “edible or
inedible,” which ultimately is key to progression or survival.
Adding some level of understanding into this cycle can
help to deliver a robust robotic system that could perform
more complex variations of simple following and tracking
tasks. Computer Vision (CV) has made this understanding
a reality for robotics systems, with traditional CV methods
providing simple feature extraction at low latency, or modern
deep learning-based Convolutional Neural Networks (CNN)
providing state of the art results in almost every task with
high precision and accuracy, but at the cost of higher latency
and computation throughput. This often leaves the CNN
out of the reach of the small robotic system world due to
its lower power and computational specifications. Modern
research looks toward biological inspirations to help solve
these tasks, by bringing forward neuromorphic robotics, which
seeks to merge the computational advantages of system, such
as the neuromorphic event-based vision sensor (NVS) and
neuromorphic processors together, combined with Spiking
Neural Network (SNN) which can allow for processing and
control system structures. Typically a robotic system in this
domainmight aim to reach a Perception, Cognition, Action cycle,
while the simpler approach of Understanding as a step toward
cognition could be realized in an easier way, using the Perception
Understanding Action (PUA) cycle as a stepping stone toward
this goal.

Perception using neuromorphic vision sensors has become
a promising solution. An NVS, as for example the Dynamic
Vision Sensor (DVS) (Lichtsteiner et al., 2008), mimics the
biological retina to generate spikes in the order of microseconds,
in response to the pixel-level changes of brightness caused
by motion. NVSs offer significant advantages over standard
frame-based cameras, with no motion blur, a high dynamic
range, and latency in the order of microseconds (Gehrig
et al., 2018). Hence, the NVS is suitable for working
under poor light conditions and on high-speed mobile
platforms. There has been considerable research detailing
the advantages of using an NVS in various vision tasks,
such as high-speed target tracking (Lagorce et al., 2015;
Mueggler et al., 2017) and object recognition (Kheradpisheh
et al., 2018). Moreover, due to the fact that a pixel of
an NVS is a silicon retinal neuron represented by an
asynchronously generated spiking impulse, this can be directly
fed into Spiking Neural Networks (SNNs) as input spikes for
implementing target detecting and tracking in a faster and more
neuromorphic approach.

Understanding through asynchronous spiking event-based
computations like SNNs, often seen as the low latency biologically
inspired alternative to CNNs, could provide an alternative
solution to tracking and segmentation problems, through the
ability to only compute on the currently active parts of the

network, which in comparison to Artificial Neural Networks
(ANN) and CNNs can require orders of magnitude less power
consumption (Park et al., 2014). SNNs differ from normal
computation processing and take inspiration from closer to
biology, where expensive memory access operations are negated
due to computations and memory being exclusively local
(Paugam-Moisy and Bohte, 2012). Instead of using numerical
representations like traditional methods, SNNs use spikes to
transmit information with a key emphasis on the timing
of those spikes. Several methods exist to train SNNs, with
recent implementations seeing a conversion from CNN to
SNN (Cao et al., 2015; Hunsberger and Eliasmith, 2015; Kim
et al., 2019; Sengupta et al., 2019) yield promising results
and open SNN architectures to the wider Machine and Deep
Learning (ML-DL) audience. However, this method is still
burdened with the training computational overhead and does
little to utilize the efficiency of event driven computations. The
SNN’s Spike Time Dependent Plasticity (STDP) and spike-based
back-propagation learning have been demonstrated to capture
hierarchical features in SpikeCNNs (Masquelier and Thorpe,
2007; O’Connor et al., 2013; Panda et al., 2017; Kheradpisheh
et al., 2018; Masquelier and Kheradpisheh, 2018; Falez et al.,
2019). Both of these methods better equip the network to deal
with event driven sensors, where the significant gains over CNNs
could be realized.

This work aims to build on the already successful perception-
action models (Nishiwaki et al., 2003; Xie, 2003; Bohg et al.,
2017; Masuta et al., 2017) and add some semantic understanding
to the robotic system. With image segmentation seen as a
critical low-level visual routine for robot perception, a semantic
understanding of the scene can play an important role for robots
to understand the context in their operational environment. This
context can then lead to a change in the action that could be
undertaken. In this article, we show how using a spiking fully
convolution neural network for event-based segmentation of a
neuromorphic vision sensor can lead to accurate perception and
tracking capabilities with low latency and computation overhead.
Leveraging this spiking event-based segmentation framework to
feed a spiking control system allows the low latency to continue
from the perception to the action.

The PUA system presented builds on SpikeSEG, a spiking
segmentation network from previous work (Kirkland et al.,
2020), and extends it with a systematic approach to spike-based
object recognition with tracking, lateral inhibition classifications,
a new thresholding mechanism and modification to STDP
learning process. Moreover, differently from Kirkland et al.
(2020), the novel work presented is applied to a different
application context, i.e., object recognition with attention. In
light of this the novel contributions of this work include:

• SpikeSEGs segmentation output is integrated into a
spike-based control system to produce the Perception-
Understanding-Action system where the segmentation infers
the attention of the system to allow controller track updates.

• The revised network includes more features to enhance the
segmentation ability, including:

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 56831932

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

– Lateral inhibition pseudo classification mechanism for
semantic segmentation-based attention.

– A new Pre-Empt then Adapt Thresholding (PEAT)
approach designed to deal with potentially noisy, corrupt
or adversarial inputs.

– Amodification to the STDP learning rules to include feature
pruning (resetting) if under/over utilized.

The rest of the paper is organized as follows. Section 2 reviews
related research topics covering each of the PUA framework
individual sections. Section 3 presents the methodology, with an
insight to each of the proposed system components. The results
are detailed in section 4 and section 5 provides the conclusion.

2. RELATED WORK

The allure of low latency object recognition and localization has
brought the attractive features of the NVS (mainly the DVS) to
the forefront of research. Early low latency control examples,
such as the Pencil Balancer (Conradt et al., 2009) and the
Robotic Goalie (Delbruck and Lang, 2013), help to highlight
the latency advantages that an NVS can provide. Exploiting the
sparse and asynchronous output of the sensor allow successful
applications to these low latency reactive tasks. However, both
systems fall short of fully capitalizing on the event-driven
asynchronous output, through a processing and control regime
of similar nature.

The concept of exploiting the NVS low latency continues into
object tracking. Low latency tracking relies upon robust feature
detection, with geometric shapes being ideal features to detect.
A number of methods have been implemented successfully,
such as geometric constraints (Clady et al., 2015) along with
advanced corner detectionmethods, as for example Harris (Vasco
et al., 2016) and FAST (Mueggler et al., 2017). The use of
more complex features, such as Gaussians, Gabors, and other
hand crafted kernels (Lagorce et al., 2015) provides a pathway
to modern Convolutional Neural Network feature extraction
approaches (Li and Shi, 2019), that implement a correlation filter
from the learned features of the CNN. This allows a multi-level
approach whereby correlations of intermediate layers can also be
performed to improve the inherent latency disadvantage of the
CNN approach, albeit with an accuracy trade-off.

Spiking Neural Networks have seen success with NVS data
used for object detection and classification (Bichler et al.,
2012; Stromatias et al., 2017; Paulun et al., 2018). Recent
work has implemented Spiking Convolutional Neural Networks
(Kheradpisheh et al., 2018; Falez et al., 2019) with NVS-like
data created using a difference of Gaussian filter, suggesting the
combination of SNNs and Deep Learning could yield successful
results (Tavanaei et al., 2019). SNNs have also been utilized for
tracking with an NVS through implementations inspired by the
Hough Transform (Wiesmann et al., 2012; Seifozzakerini et al.,
2016; Jiang et al., 2019), to be able to detect and track lines
and circles. Spiking Neural Networks can also be utilized to
implement control systems, from simple altitude control (Levy,
2020) to an adaptive robotic arm controller (DeWolf et al., 2016).
Ultimately the majority of research only utilizes one aspect of

the SNN, either processing or control. Even though SNNs have
been shown to implement a full perception cognition action cycle
with Spaun (Eliasmith et al., 2012), underpinning the ideology
of a fully spike-based neuromorphic system similar to that
proposed with the Perception Understanding Action framework
in this paper.

3. METHODOLOGY

3.1. Perception-Understanding-Action
Framework
The Perception-Understanding-Action framework specifies how
the system will utilize the asynchronous event driven nature
of the Neuromorphic spiking domain, and it is illustrated
in Figure 1. In the Perception block, the NVS is used to
sparsely and asynchronously encode the luminosity changes
within the scene. In the Understanding block, inputs are
understood through the use of the Encoder-Decoder SpikeCNN
[SpikeSEG (Kirkland et al., 2020)] contextualizing and building
understanding of the scene through semantic segmentation. In
the Action block, the segmented output is used to provide
an input to the spike counters at the edge of the field of
view, allowing a simplistic semantic tracking controller to be
realized. This control output would then be able to influence
motors or actuators to allow an asynchronous end to end
Neuromorphic system. This system aims to provide a low
latency competitor to the Perception Action robotic system
where the sensor input is directly fed to the controller, while
providing an upgraded feature representation to the more
complex line and edge detection-based approaches. The system
can even provide benefits or replace some computer vision-based
robotic tasks which utilize CNNs for complex feature extraction,
while providing lower latency and computational overhead.
Furthermore, compared to the CNN, the SCNN provides a
more readily understandable processing stage, where features are
sparse and more visually interpretable.

3.2. Perception
A key element in producing a low latency system with a low
computational overhead is to have a sensor that can exploit the
sparse and asynchronous computational elements of an SNN
while still giving a detailed recording of the scene. Neuromorphic
Vision Sensors (NVS) (event-based Vision Sensors) (Lichtsteiner
et al., 2008; Brandli et al., 2014) have recently become more
popular and widespread. These camera-like devices are bio-
inspired vision sensors that attempt to emulate the functioning
of biological retinas. They differ from conventional cameras
in that, they don’t record all the information the sensor
sees at set intervals. Instead these sensors produce an output
only when a change is detected. This in turn means they
are capturing the luminosity at a set point in time, meaning
a continuous temporal derivative of luminosity is output.
Whenever this happens, an event e = [x, y, ts, p] is created,
indicating the x and y position along with the time ts at
which the change has been detected and its polarity, where
p ∈ {1,−1} is a positive or negative change in brightness.
This change in operation not only increases the sparsity of the

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 56831933

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 1 | Perception understanding action framework, with internal system diagrams showing the perception input [image from Caltech Dataset (Li et al., 2004),

the Understanding network SpikeSEG (Kirkland et al., 2020), and the Action controller method].

signal but allows for it to output asynchronously. Resulting
in microsecond temporal resolution and considerably lower
power consumption and bandwidth. These parameters make
the NVS an ideal candidate for object tracking, especially of
fast moving objects (Delbruck and Lichtsteiner, 2007; Glover
and Bartolozzi, 2017), however many methods are still yet to
utilize this spiking sensor within a match spiking processing,
such as SNNs.

3.3. Understanding Through Spiking
Segmentation
The Understanding of this system is inferred from the semantic
segmentation operation carried out by the SpikeSEG network
(Kirkland et al., 2020), seen in Figure 1within the Understanding
block. The SpikeSEG segmentation network has received a
number of improvements and upgrades along with its integration
within the PUA framework.

3.3.1. Network Architecture
The network architecture illustrated within Figure 1

(Understanding) is made up of two main sections seen in
green and orange, that relate to the encoding and decoding
layers, respectively. The network is split into these two
sections where training only occurs on the encoding side,
while the weights are tied to the mirrored decoding layers.
This allows a integrate and fire neuron with layer-wise STDP
mechanism with adaptive thresholding and pruning to be used
to help compress the representation of the input to allow the
decoding layer to segment the image based on the middle
pseudo classification layers. This encoding-decoding structure
symbolizes a feature extraction then shape generation process.
The learning of the encoding process aims to extract common
spatial structures as useful features, then decode those learned
features over to the shape generation process, unraveling the
latent space classification representation but with a reduction
in spike due to the max pooling process. The network has
nine computational layers (Conv1-Pool1-Conv2-Pool2-Conv3-
TransConv3-UnPool2-TransConv2-UnPool1-TransConv1)
as seen in Figure 1. Between the Conv3 and TransConv3
layers, there is a user-defined attention inhibition mechanism,
which can operate in two manners: No Inhibition, which

allows semantic segmentation of all recognized classes from
the pseudo classification layer; or With Inhibition, that
only allows one class to propagate forward to the decoding
layers. This attention not only provides a reduction in the
amount of computation, but also simplifies the input to
the controller.

3.3.2. Encoding
The encoding part of this system is derived from a basic
SpikeCNN with a simplified STDP learning mechanism
(Kheradpisheh et al., 2018). To allow the network to better suit
the framework and encoding decoding structure a number of
modification are applied. As the structure of the network is now
fully convolutional there is no longer a requirement for a global
pooling layer for classification. Instead the final convolution layer
is utilized as a mock classifier by mapping the number of known
classes to the number of kernel used for feature learning. This
method is also used to help the interperitability of the system as
having one kernel per classes allows for better visualization of
the network features. Through the use of a modified STDP rule
and adaptive neuron thresholding, the encoder aims to capture
the reoccurring features that are most salient through the event
stream inputs. The input events are fed into the network via a
temporal buffering stage, to allow for a more plausible current
computing solution, such as on the Intel Loihi Neuromorphic
chip (Davies et al., 2018), while ideally they would just be a
constant stream. To internally mimic the continuous data, 10 ms
of event data is buffered into 10 steps, representing 1 ms each
(this value of 10 ms is chosen to empirical testing and based
on the input spike count of the N-Caltech Dataset); this input
data stream is shown in Figure 2. Figure 2, also illustrates what
1 ms of data looks like over the 10 ms (A) and how it looks if
accumulated over 10 ms (B). Figure 2 then demonstrates how
added noise affects the input stream, repeating the images in
Figures 2A,B with noise in 1 ms steps in (C) and accumulated
over 10 ms in (D). For each time step in the encoding processing,
a spike activity map Skmt is also produced, wherem is the feature
map and t is the time step. This allows an account of the exact
spatial time location of each active pixel used in the encoding
processing, which helps allow the decoder to map these active
areas back into the pixel space.

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 56831934

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 2 | Input event streams from N-Caltech Dataset “Face,” with (A,B) showing a 10 ms clip over 10 steps going from left to right. (A) Showing the input to the

network per step and (B) showing the accumulated inputs for easier visualization. (C,D) Show a 10 ms clip over 10 steps with additive noise to show how extra noise

affects the input stream, with (C) showing per step and (D) showing accumulated.

FIGURE 3 | Decoding using transposed convolutions with spike activity mapping, resulting in active pixel saliency mapping.

3.3.3. Decoding
The Decoding Process makes use of the same unpooling and
transpose convolutions as (Simonyan et al., 2013; Zeiler and

Fergus, 2014; Long et al., 2015; Badrinarayanan et al., 2017)
taking pixels in the latent classification space back into the
original pixel space. However, no learning mechanism is used,

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 56831935

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

as the mapping is based on temporal activity and pixel saliency
mapping, utilizing a similar method to tied weights (Hinton
et al., 2006) and switches (activations within the pooling layers)
from the encoding layer to map directly to the decoding such
that Wij(encoding) = Wji(decoding). This modification is required
to deal with the temporal component of the spiking network,
as now the latent pixel space representation must be unraveled
with the constraints and context of space and time. Changes are
made to both the transposed convolutions and the unpooling
layers. The transposed convolution still functions as a fractionally
strided convolution of the weight kernel as normal. However,
now an extra step of comparing the output mapping with a
temporal spike activity map of the post-convolution pixel space
is required as illustrated in Figure 3, where the conventional
Input via Kernel to Output stage remains, with an added
Spike Activity Map check on each term in the output for
temporal causality.

Since the encoding neurons emit at most one spike per
buffered time input, the Spike Activity Map is used to keep
track of the first spike times (in time-step scale) of the
neurons. Every stimulus is represented by M feature maps,
each constitutes a grid of neurons seen as a kernel value
K, equal to the row-major linear indexing of the kernel. Let
Tp be the processing steps between the tied encoding and
decoding layer with a maximum possible difference of nine
processing time-steps (five encoding and decoding layers each).
While each encoding layer has a value Tem,k, which denotes
the spike time of the encoding neuron placed at position
(k) of the feature map m, where 0 ≤ m < M, 0 ≤

k < K. The individual decoding layer then considers this
stimulus as a three-dimensional binary spike tensor S of size
Tpmax × M × K where a spike in the decoding layer Sd is a
function of:

Sd(Tp,Te,m, k) =

{

1 Tdm,k = Tem,k + Tp

0 otherwise
(1)

Where the decoding time Tdm,k for each map and kernel value
is compared to the equivalent encoding layer Tem,k offset by the
processing time Tp. It is this Tem,k+Tp that is represented by the
Spike Activity Map shown in Figure 3 where Skm,t is illustrated
as the process ensuring Tdm,k = Tem,k + Tp while “Output”
demonstrates an example of the transposed convolution process.
To reduce memory overhead only the last 9 Spike Activity Maps
as this is the minimum requirement to ensure temporal causality.
Within Figure 3, the green and orange squares represent the
transposed convolution outputs and the green, orange and black
outputs represent the outputs from the transposed convolution
decoding that also matched up with encoding layer, through
correlation with the Spike Activity Map. This demonstrates how
the Spike Activity Map reduces the “Output” values to only
those with equivalent temporal values. The saliency mapping
occurs within the unpooling layers which operate on a similar
manner in order to keep temporal causality, but due to the max
pooling operation working in reverse only one pixel per pooling
kernel is processed. With reference to Figure 3, this would mean
the orange kernel would only have one active square, which

reduces the output significantly. The measure allows only the
most salient features to propagate through the decoding layers,
resulting in the segmentation with only those features that best
fit the pseudo classification. A verbal illustration being, if there
are nine time steps between Conv-1 and TConv-1, while only five
steps between Conv-2 and TConv-2 and one step between Conv-
3 and TConv-3. So, if a spike occurs at time step 2 within Conv-1,
the temporal check will only allow TConv-1 to allow a spike at
that location at time step 11.

3.3.4. Adaptive Neuron Thresholding
The adaptive neuron thresholding used within this paper builds
upon the Pre-Emptive Neuron Thresholding (Kirkland et al.,
2019, 2020). Improvements are made by no longer solely
relying on synaptic scaling from the input number of spikes
as a means of homoeostasis. Although this was successful
in stopping the progression of less structured noise features
within the first convolution layer and structured noise when
synaptic scaling was applied to all layers. Along with the
structured noise filtering process, this homoeostasis rule also
accidentally removes some of the less common desired features
from propagating as discrimination between these and noise
from input spike count is insufficient. The update to the
algorithm sees an adaptive element in the form of intrinsic
layer-wise synaptic scaling (a layer-wise spike counter) added
to the thresholding parameter to potentially counter this less
common feature removal. During training the thresholding is set
as follows

Vthr(Sin , Sl) =































Kl
4 for Sin < Sin(min)

c+mVthr + h− for Sl < Hl

c+mVthr + h0 for Sl = Hl

c+mVthr + h+ for Sl > Hl















for Sin(min) < Sin < Sin(max)

Kl
2 for Sin > Sin(max)

(2)

Where Vthr is the neuron threshold, dependent on both the
spiking input rate, Sin, and the layer-wise spike rate, Sl. m is
gradient of the linear relationship between Vthr and Sin, with c
being the y-intercept. h the homoeostasis offset is determined
to be either positive, negative or zero dependent on the layer-
wise spike count, Sl when compared to the set homoeostasis
value Hl. While Kl is the convolution kernel size within that
layer. The equation follows a piecewise function such that Vthr

is described as {Vthr ∈ N |
Kl
4 < Vthr <

Kl
2 }. When the

spike input rate Sin is within a normal range, the function is then
defined by the bounded linear relationship with the homoeostasis
offset. The values of h−, h0, h+ and Hl are set through empirical
testing by monitoring the range of Sl and Sin values from the
N-Caltech dataset.

Once training is complete and the features within the
convolution kernels are known, the thresholding changes to take
into account the size of the feature, as the range of threshold
values might now be smaller than in the training stage. This
modification changes the outer bounds of the threshold as shown

Vthr(Sin , Sl) =































Fmin
2 for Sin < Sin(min)

c+mVthr + h− for Sl < Hl

c+mVthr + h for Sl = Hl

c+mVthr + h+ for Sl > Hl















for Sin(min) < Sin < Sin(max)

Fmin for Sin > Sin(max)

(3)

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 56831936

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

Where Fmin is the smallest feature size within that layer. This
parameter change ensure the threshold value does not exceed the
smallest feature size, which would result in that neuron being
unable to reach firing potential. In both cases the training and
testing the input spike count Sin value affects the threshold for
each input spike buffer, while the layer-wise spike count Sl is
average over 10 inputs.

This allows a layer-wise adaptability dependent on the amount
of spiking within the previous layer. The algorithm now permits
a high volume of spiking activity at the input to be initially pre-
emptively dealt with, ensuring a large amount of spiking activity
does not reach the controller, causing an undesired response.
Then adapting the thresholds to allow sufficient spiking activity
ensures a smoother and more robust controller output of the
system. The key element of thismethod is to ensure amore robust
and predictable outcome when a noisy, corrupt or adversarial
input is received. With this being more of a concern due to the
system be asynchronous end to end, a high volume incoherent
input could directly lead to a wild or undesired response from
the controller. This approach errs on the side of caution with the
sudden increase in input spikes being inhibited first, and then
excited to a desired level, in contrast to a typical intrinsic response
of allowing the activity, and then inhibiting to a desired response.

3.3.5. Changes to STDP Training With Active Pruning
A simplified unsupervised STDP rule (Bi and Poo, 1998;
Kheradpisheh et al., 2018) is used throughout the training
process, including a Winner Take All (WTA) approach to STDP,
that operates by only allowing one neuron (feature) in a neuronal
map (feature map) to fire per time constant; this is viewed as
an intra map competition. This WTA approach then moves onto
the inter map inhibition, only allowing one spike to occur in any
given spatial region, typically the size of the convolution kernel,
throughout all the maps. As a result of these inhibition measures,
two features can tend toward representing the same feature until
such point where one becomes more active, while the other
gets inhibited to the point of infrequent or no use. At this
stage the feature representation has become obsolete and can be
pruned or reset, allowing the opportunity to form another more
useful feature. To capture this information the layer-wise training
method make use of the training layers convergence values

Cl =

∑

k

∑

i

wki(1− wki)

nwki

(4)

Where Cl is the convergence score for the layer and wki is the
ith synaptic weight of the kth convolution kernel. The nwki

is the
number of individual weights contained with the layer calculated
by kernel size and the number of kernels in the previous and
current layers, nwki

= K × kpre × kcur . The pruning function
makes use of the convergence score that is typically used to
indicate when training is complete, as the convergence tends to
zero due to the weights tending to 0 or 1. Noticing that the
layer-wise convergence is just a sum across all the kernels allows
a modification to calculate the convergence across each kernel

within that layer with respect to all previous maps.

Ckcur =

∑

kpre

∑

i

wkprei(1− wkprei)

nwkprei

(5)

This new terms Ckcur allows monitoring of each kernel during
the learning process, as previously mentioned obsolete kernels
that learned similar features are less active, resulting in higher
convergence numbers while maintaining a high spiking activity.
The high spiking activity is due to the kernel maintaining the
high starting weight value which are random values drawn from
a normal distribution with the mean of µ = 0.8 and standard
deviation of σ = 0.05. However, the kernel does not exhibit
a feature that allows it to spike quick enough to receive a
weight update from the STDP WTA rule. As the kernel had
already started a convergence to a particular feature, once under-
active it then attempts to convergence to another commonly
occurring feature. However, the kernel often convergences to
a useless feature representation that is unhelpful to the final
result of the network. This pruning method, rather than simply
removing the kernel, gives it the chance to learn a new feature
from scratch by resetting the kernels weights. Thus, allowing
the best chance of convergence to a useful feature. This pruning
process takes place once the convergence value of the layer Cl
drops below the original starting value. As initially the weights
are deconverging from the mean weight initialization, before
returning to the original convergence value on the way to zero.
Once this milestone has been reached the pruning function
in activated

Prunekcur (Ckcur ,Cl , Sk) =

{

1 for Ckcur > C̄l + 1σCl
and Sk > S̄l + 3σSl

0 otherwise
(6)

where C̄l is the mean convergence for that layer, σCl
is the

standard deviation of that layers values, Sk is the spike activity
within an individual kernel. S̄l is the mean spike count of that
layer and σSl is it standard deviation. If a kernel value has a
convergence score higher than 1 STD from the mean while
having a spiking activity 3 STD higher than the mean spike
rate in that layer, the kernel is reset with the initial weight
distribution. Since many of the kernels are already converging to
useful features this newly reset kernel will convergence to a new
unrepresented feature.

3.3.6. Latent Space Inhibition for Attention
In order to have the network change its focus or attention, the
latent space pseudo classification layer also acts as an inhibition
layer for this mechanism. This operates by inhibiting other
neurons in that layer if a specific neurons feature is chosen to
be the attention. This is an external mechanism to the network as
otherwise, the network will give equal attention to the full scene
and semantically segments all known objects within a scene. This
allows a simplification of the output of the network fed to the
controller, allowing the attention of the system to be narrowed to
that particular pseudo-class. This segmentation-based attention
can then be used to follow a given class dependent on the
output of the controller. It operates between convolution layer
3 and trans-convolution layer 3 with the same principals as the
inter map inhibition with the encoder, though now the spatial

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 56831937

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

region is the whole latent space. This inhibition can also work
autonomously where the pseudo-class with the most activity is
the attention of the network, allowing the network to switch
attention to known classes based on their prevalence within
the scene.

3.4. Tracking With Attention
The Action part of the system with its spiking controller is
directly influenced by the attention mechanism, as when no
attention is chosen the controller acts on all the segmented
data being output by the SpikeSEG network. This could cause
unwanted control output if the scene contained more than one
known class, as unknown classes should still be removed by
the process. Once a class has been chosen as the attention, the
segmentation output is reduced to only that class, as illustrated
in Figure 1 (Action), which allows for simple spike counter
controller to produce a more robust and reliable output. The
reduction in information initially by the NVS which then further
reduces through the semantic segmentation and attention, allow
the implementation of this simple spike counter. This is due to
the segmentation output only containing information relating
to the attention of the network, the controllers task is just to
keep this in the center of the field of view. The simplicity of the
controller also allows it to take advantage of the asynchronous
event-driven system to provide low latency tracking updates a
key element of the system. However, if there was more than one
instance of a class in a scene there is no way to separate the two
instances, so tracking would be based off all instances of a class.
Nevertheless, this system would make an improvement over the
purely spiking activity tracking systems by adding some semantic
context to the activity, while the simplified spike counter in this
instance allows class based tracking could be enhanced withmore
complex spike tracking, such as dynamic neural fields (Renner
et al., 2019)

4. RESULTS

In this section, a series of experiments on individual and multi
event-stream recordings are presented. The metric used in this
paper is the Intersection over Union (IoU, also known as the
Jaccard Index) to grade the segmentation, which guides the
control system of the network and ultimately, with user choice,
the Attention of the system. This metric was used due to the
availability of the bounding box annotations within the subset
of the N-Caltech dataset that was used within the experiments.
The feasibility of the attention-based tracking is also encapsulated
within the IoU value, though due to the small saccademovements
of the camera within the N-Caltech dataset, it is infeasible to
use this to highlight spike-based tracking. This is due to two
issues throughout the movements. The first is the IoU value only
receives a small change as the displacement is often <10 pixels.
The second is that the occurrence of segmented spike activity in
the controlled regions, is due to the tight field of view around
the class in scene. This results in the testing of the Perception
and Understanding system only with this data. To ensure testing
of the full Perception, Understanding, and Action system, two
further experiments were carried out. The first with multi input

streams on a large input space and the second using our own
captured DVS data of a desk ornament with a hand held sensor.
Lastly, the results sections show how the system is more robust
and interpretable than alternative models, with the use of the
Pre-Empt and Adapt Thresholding and the contour like sparse
features within the weights of SpikeSEG.

Within these experiments the step time for any processing is
now linked to the input time step, meaning internal propagation
of spikes takes one step (or 1ms) per layer, resulting in a 11ms lag
to get the segmented results. This allows for better visualization
of the asynchronous manner of the processing and control for
each step. However, this does not reflect the actual processing
time of the network which, given its complexity compared to
similar models ran on neuromorphic hardware, would most
likely be able to execute this task in real-time for the 1 ms step,
meaning a full pass through the network per input step. However,
testing in this manner would not fully highlight the asynchronous
advantage especially within a dynamic environment.

One further note is that throughout all the testing the features
of Convolution Layer 1 are pre-set to best found features for
initial edge detection, which results in a horizontal, vertical and
two diagonal lines which can be see later in the Interpretablity
section 4.3.2 within Figure 14.

4.1. Perception to Understanding With
Segmentation
Initially two subset classes from the N-Caltech dataset (Orchard
et al., 2015) are used to evaluate the Understanding section of
the system. On this single stream input typically only containing
a singular class with variable amounts of background noise and
clutter, the network is able to gain an accuracy of 96.8% within
the pseudo classification layer and a 81% mean Intersection
over Union score over each of the 10 ms buffered input that
resulted in successful segmentation, results are also shown in
Table 1. This is an improvement on the single results seen within
(Kirkland et al., 2020) of 92 and 67% for accuracy and IoU,
with the improved feature creation allowing a more detailed
representation allowing an improvement in both the accuracy
and segmentation. The test results are based on training with 200
samples from the Face and Motorbike classes with another 200
used for testing. This number was limited as the “Easy Faces”
has just over 400 images and was converted into “Faces” within
the N-Caltech dataset with the “Faces” category being removed.
Four hundred images provided an equal training set between
the Face and Motorbike classes. The images in Figure 4 shows
how the segmentation process was completed firstly through
encoding the event stream input through three convolution and
two pooling layers (Figures 4B–D,I–K), resulting in a sparse
latent space representation used to provide a classification of
this binary task (Figures 4D,K). Figure 4, then shows how the
classification locations are thenmapped back onto the pixel space
through the undoing of the three convolutions and two pooling
layers (Figures 4E–G,L–N). For illustrative purposes, both the
face and motorbike are accumulations of the network activity
according to 10 ms input buffer and full propagation of spikes
through the network. Each convolution process is shown, with

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2020 | Volume 14 | Article 56831938

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

TABLE 1 | Results from each of the experimental setup, listing both the accuracy

and intersection over union.

Dataset Classification

accuracy (%)

Intersection over

union (%)

N-CalTech (2 class) 96.8 81

N-CalTech (5 class) 86 76

N-CalTech (10 class) 75 71

Multistream N-CalTech 96.8 81

Multistream N-CalTech with noise 95.1 79

Panda 94 75

pooling omitted, Convolution Layer 1 is shown in Figures 4B,I

while layer 2 (Figures 4C,J,D,K) showing the third convolution
also used as pseudo classification. Figures 4E,L show the second
transposed convolutional layer, named to mirror the encoding
side, while Figures 4F,M show transposed convolution 1 and
Figures 4G,N display the segmented outputs. This segmentation
result is shown overlapped onto the input for two examples
within Figure 4. The colors used within Figure 5 are linked to
the corresponding feature that was activated in that layer with
Figures 4C,J showing different colored features active for each
the face and motorbike, with section 4.3 exploring what the
feature maps contain. This output from the SpikeSEG network
can feed directly into the spiking controller of the PUA system,
guiding any movement that would be required to follow the
attention of the system. Although the controller in this context
is unable to operate due to the narrow field of view and limited
movement, the Understanding section of the system does still
capture this small saccade movement of the camera within the
segmented output as seen in this overlapped output image,
Figure 6A showing a downward and right shift of the segmented
pixels over time, relating to the inverse movement performed by
the camera, while Figures 6B,C show the two further saccade
movements. The segmentation also maintains an IoU value of
above 0.7 throughout the movement, meaning the segmentation
is of good quality throughout (0.5 being acceptable, 0.7 being
good, and 0.9 being precise) (Zitnick and Dollár, 2014), for
reference if the full input size is used for IoU the average output is
∼0.57. Consequently, this means tracking would still be possible
through alternative non-spiking methods such bounding boxes
or centroid/center of mass calculation, but would remove the all
spiking asynchronous feature of this system.

4.1.1. N-Caltech Dataset Extended
To further evaluate the scalability of the model, a further two
experiments are carried out with 5 and 10 classes. This allowed
testing the model with 2, 5, and 10 classes within the same
experimental parameters, that being 16 features per class in
second convolution layer and 1 per class in the third convolution
layer, with active thresholding and pruning. Sixteen features was
found to be a suitable value for number of features through
prior empirical testing, where more features gave no further
improvement, while less features was unable to capture the

variation of some classes. The further classes added are: Inline
Skate, Watch and Stop Sign for the 5 class, while Camera,
Windsor Chair, Revolver, Stegosaurus and Cup are added for
the 10 class experiment. These classes are chosen due to low
variability in image spatial structure. As the network is only
looking for natural spatial structural similarity avoidance of
classes which have a large intraclass variance compared to the
overall interclass relationship (Zamani and Jamzad, 2017). With
this in mind and due to some the additional classes having
a smaller number of sequences, the number of training and
testing instances was changed to suit, at 20 training and 10
testing. Overall the network was able to achieve classification
accuracies of 86 and 75% and IoU values of 76 and 71% for
the 5 and 10 classes, respectively, results are shown in Table 1.
The decrease in overall accuracy with additional classes is to
be expected at the features built in the second convolution
layer tend to get more similar. This is visually detailed in
section 4.3.2 with the Interpretability showing the different
features learned in the convolution layers. With this closer
similarity of layer-wise features, an example of how the active
pruning mechanism is shown in Figure 7, where a number of
the features within the second convolution layer have a slower
convergence rate while maintaining a high spike activity. This
typically suggests the feature is not very discriminative and
is an ideal candidate for being reset to learn a new feature.
Figure 7, shows the original features just prior to reaching the
pruning check point within (A), then indicates which features
are chosen to prune with the feature being reset to random
initialization within (B), the finally resulting in new features
shown in (C).

Drawing insight from the result, within the 5 class experiment
the inter class variance was high. However, once the 10 classes
were added this inter and intra class variances seems to overlap.
Resulting in many of the classes relying on similar features
constructed from circles, with Motorbike, Cup, Camera, Watch,
Stop Sign, and Face at times producing features are that
undistinguishable from one another. It was also noted that as
the number of classes increased the difference between average
number of features in a kernel per class (that is ones that can be
recognized as belonging to a particular class) leads to a higher
likelihood that the class with the highest average feature number
will be the most active. Within the last experiment with the 10
classes this was prevalent within the Revolver class as it had an
average feature count in convolution layer 2 of around 200, while
the average for camera was 110. This results in a higher chance
that the revolver was classified by mistake ultimately bringing the
overall accuracy down.

4.2. Perception, Understanding, and Action
This section is split into two parts both further testing the full
PUA system, the first continues using the N-Caltech Dataset,
however with multiple simultaneous inputs. The second part
makes use of recorded data of desk ornament from a hand-held
NVS to provide a further example of how the systemworks within
another test environment and how the action part of the system
deals with a moving class.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 56831939

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 4 | Segmentation performance of the network on an example face (A–G) and motorbike (H–N), highlighting the encoding transition into the latent space

used for pseudo classification (A–D,H–K), then retracing of chosen features back to pixel level (D–G,K–N).

FIGURE 5 | Segmentation overlays for the (A) Face and (B) Motorbike class from the N-CalTech dataset.

4.2.1. N-Caltech Mutli-Stream Input
Building upon the results gathered from the successful process
in section 4.1, this experiment looks at how the system would
deal with multiple input streams. This allows the network to
demonstrate the segmentation ability in the face of multiple
distractors and spatio-temporal Gaussian noise with an average
PSNR of 18 dB, an example of the input with and without noise is
shown in Figures 8A,B, respectively. Figure 8 also demonstrates
the layout of the new input image, which is based on the Face
class subset, but is three times the size to make a 3 × 3 grid
where each corner and the center will host an input stream.
Each stream is presented for 300 ms (dictated by the recording
length in the dataset) then some of the locations are changed

and the next stream is played. The input streams illustrated
in Figures 8A,B, consist of one face and two motorbikes for
the known classes and two Garfield streams for the unknown,
with Figure 8B demonstrating the affect of noise on the input.
This gives an opportunity to display the asynchronous layer-wise
spike propagation once thresholds have been surpassed, while
also offering an insight into how an SNN reduces computational
throughout with this thresholding value.

Figure 9 displays both this asynchronous throughput of
activity and how the network reduces the numbers of
computations, even when presented with noise and distractors,
with the time axis showing an accumulation of spikes to ease with
visibility. Figure 9 shows that by Conv 1 the added noise is mostly

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 56831940

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 6 | Overlapped Segmentation output over the complete event stream, showing the triangle of movements over the three saccades, (A) first movement, (B)

second movement, (C) third movement.

FIGURE 7 | Features from the second convolution layer during training highlighting the pruning process. (A) Highlights the features prior to pruning, (B) shows which

feature were reset to initial parameters, and (C) shows the newly learned features.

removed as it lacks any real structured shape, but the distractor,
Garfield, remains and progresses onto Conv 2. During this layer
though, due to its low saliency with any of the learned features for
the classes of Face or Motorbike the distractor is removed from
the processing pipeline. This leaves only the two known classes,
which then progress onto the Conv3 layer, then through the
decoder layers to the output where they are successful segmented.
When testing the multi-stream input without any noise the
accuracy and IoU value is identical to the single stream instance
at 96.8 and 81%. Then with added noise this value sees a slight
reduction to 95.1 and 79% for accuracy and IoU, these results
are also shown in Table 1. The decreases being attributed to
the noisy pixels directly contacting or occurring within the class
boundary, as the network has no real way to discern this noise
from actual data. This is clearly shown within the segmented
output comparisons shown in Figure 10, where the noiseless

output (A) and the noisy (B) show considerable difference in their
respective segmentations with far more diagonal lines present in
the noisy output (B) in comparison to (A). This outcome could
have been predicted and will be highlighted in section 4.3 as the
first layer of the network has a larger feature representation for
the diagonal line when compared to the horizontal and vertical
lines, withmore pixels allocated to representing the diagonal lines
rather than horizontal and vertical, due to the larger variety of
edges this feature had to represent. Meaning relatively with the
same threshold the diagonal feature is more likely to be activated
than the horizontal and vertical.

With the segmentation successfully output the spiking
controller now has less spiking activity so should find it easier
to be able to track a given class. The tracking starts once the user
has made a selection of which class is to become the attention
of the network. Experimentally this was tested by selecting the

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2020 | Volume 14 | Article 56831941

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 8 | Example of input for the Multi-Stream Input without noise (A) and with noise (B), both with extra gridlines indicating the 3 × 3 grid which determines the

initial location of the inputs.

attention after two successful multi class segmentation examples
where the stream inputs were repositioned. Figure 11 displays
the outputs of the three inputs (A–C) with their subsequent
paths to segmentation. Figure 11 shows that for inputs (A,B)
the network is correctly segmenting the input and displaying an
output with a highlighted segment displayed in the 3 × 3 grid.
It is only in Figure 11C that the guided attention mechanism
is triggered causing the inhibition of the other class in the
propagation between layer Conv 3 and T-Conv 3. This feature
is highlighted with the red circle showing which neurons are
now no longer represented in the subsequent layer and thus no
longer computed out to the segmentation, highlighting part of
the efficiency in SNN. The last section of the diagram in Figure 11
highlights the attention of the network being drawn to the face
located on the bottom left of the grid, which in the spiking
controller would result in an output of left and down to ensure
the face is located within the central region. The arrow within
the Figure 11C also indicated the movement of the track update,
which is based off the central region as within the previous two
sequences the multiclass attention doesn’t give a control output.
This attention-based tracking update is delivered within 34 ms
or 34 input steps, which with the 11 ms processing lag with
each layer to propagate through the network results in a 31 ms
delay within the 300 ms input stream. This may seem like a
considerable amount of time, but as shown in both Figures 2,
9 due to the way the N-Caltech dataset was recorded, the first
30 ms of the recording contains very little information due to
the lack of movement with the main concentration of spiking
activity during the middle of each of the saccade movements.

To test this the first 30 ms of events were removed from all the
input streams which result in a reduction in track update to 15
ms and with the offset of 11 ms to progress through the network
means a 4–5 ms latency to get from input to a control output
if the processing could be done in real-time. However, even this
latency is mainly from the initial delay in spiking activity within
the network first layer, suggesting once running the latency would
decrease. This would make it a highly competitive alternative or
efficient middle ground between highly precise CNNs and low
latency edge detection systems. Furthermore, the total number of
average calculations represented by the images seen in Figure 11

is only ∼9% of the total available calculations (equivalent CNN)
due to the sparse nature of both the features and the SNN
thresholding processing. Approximately 10% of capacity is used
in the encoding process and∼5% in the decoding process, which
is visualized in both Figures 9, 11.

4.2.2. Tracking From Handheld NVS
For this section, the SpikeSEG network was retained to be
able to identify a panda desk ornament and aims to better
highlight the control and tracking aspects of the PUA system.
The input stream recorded from DVS346 NVS has the panda
start on the far left in the field of view then the camera pans
to the left resulting in the panda being on the far right, with
an example of the input images shown in Figure 12A. The
results detail how well the segmentation would work within this
example, with the extra complexity of 3D shapes and natural
indoor lighting conditions. Overall the results of the 1 s test
stream, show that only 60 ms (6%) of streaming footage failed

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2020 | Volume 14 | Article 56831942

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 9 | Full Layer-wise spiking activity for the system, showing the progression of spikes through the network encoding then decoding section into the

segmentation output.

to produce a segmentation output. This also occurs at the points
where the least amount of movement of the camera happens,
the turning points, subsequently producing fewer output spikes.
Nevertheless, this results in no actual loss in tracking accuracy
as the panda object stayed within the previous segmentations
IoU bounding box. Furthermore, the IoU for this test stream
was 75%, shown in Table 1, perhaps lower than expected given
the high level of accuracy within the classification/segmentation

process. This is illustrated in Figure 12A where the middle
section of the panda is not well-resolved by the sensor, meaning
on occasion the segmentation output was only of the top
or bottom section. Figures 12B–D also show the full system
process for the two different control outputs of moving left (D)
and right (C), that is when the segmentation area enters the
proximity of the spike counter at the edges of the output image.
Within Figure 12D there is also an example of how the system

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2020 | Volume 14 | Article 56831943

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 10 | Segmentation overlays for the (A) Multi-Stream Input and (B) Multi-Stream Input with noise, including the classes Face, Motorbike, and Garfield from the

N-CalTech dataset.

overcame a background object that could have affected simpler
approaches, as originally the input image had a background
object on the right hand side of the image. Due to the feature
extraction and segmentation, the background object was unable
to influence the controller which without the Understanding-
based segmentation would have had spiking activity in both left
and right spike counters.

4.3. Robustness and Interpretability
This section highlights two key features of utilizing an SNN
approach for this framework, the first is system robustness,
especially that pertaining to Perception and Understanding (the
sensor and processing) and how that affects the Actions of the
system. The second feature is that of interpretability something
that is not often not associated with CNN type approaches.

4.3.1. Robustness
The added robustness of the PUA approach comes from
the Understanding section within the PEAT (Pre-Empt then
Adapt Thresholding) mechanism. As mentioned in section
3.3.2, the buffering of input spikes allows a spike counter to
be implemented, allowing a pre-emptive rather than reactive
approach to the thresholding within the network. Permitting
synaptic scaling homoeostasis to increase the threshold values

on all layers, ensuring noisy or adversarial inputs are mitigated
first. Subsequently, if the spike level persists the threshold levels
using an intrinsic homoeostasis may be adapted. An example
of this system at work is illustrated within Figure 13, with (A)
showing a multi-stream input with no noise, then the input is
corrupt with noise in (B–D) showing the resulting effects of
the noise throughout the system with and without the PEAT
mechanism active. The PUA framework implements the regime
that no output is better than an incorrect output, especially
when the input is degraded due to noise or adversarial sensor
values. This robustness features is highlighted in the output of
Figure 13B which is incorrect and if passed to the controller
could cause an undesired response, meanwhile in Figure 13C the
PEAT is seen to allow the network to threshold the noise level
resulting in no segmentation output. Incidentally, Figure 13D
could be the adaptive outcomes of both approaches (B,C), it is
just intermediate control output suppression that adds an extra
level of robustness to the system.

4.3.2. Interpretability
The interpretability of a system is often overlooked when values
of accuracy or precision appear to be high. But understanding or
gaining some insight into how the system got to an answer could
be a valuable advantage for SCNN compared to conventional

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2020 | Volume 14 | Article 56831944

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 11 | Image showing three separate multi input data streams. (A,B) both representing the full system layer-wise computations when no attention is selected,

while (C) shows the layer-wise computation after the Face class has been selected as the attention of the network, thus enabling a simplification of the output and

activating the action part of the system with a tracking controller update.

FIGURE 12 | (A) Panda Input Image, (B) Panda being in the middle in the field of view, (C) Panda reaching rightmost boundary triggering a control action, (D) Panda

reaching leftmost boundary triggering a control action.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2020 | Volume 14 | Article 56831945

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 13 | Highlighting the Robust noise suppression with the Pre-Empt then Adapt Thresholding mechanism. (A) Showing no noise input as reference, (B)

Showing noisy input without PEAT active, resulting in noisey output, (C) Pre-Emptive Thresholding causing over suppression of neurons resulting in no output, (D)

Shows the input to output with PEAT active, suppressing the noise but allowing the useful data to pass through.

CNNs. As SCNN trained using STDP happen to produce a
sparse feature variation of typical CNN outputs, the SCNN
results in features that are more akin of those from contour
matching papers (Barranco et al., 2014) while CNNs typically
take on features that resemble textures (Olah et al., 2017). These
texture maps are often hard to interpret, although modern
approaches have found ways to highlight the most salient parts
of an input with reference to these texture maps. Nevertheless,
it is still often difficult to predict how the system might react
to an unknown input. The features that were learned for
the testing of the N-Caltech dataset used within this work
is shown in Figure 14. Figure 14A, illustrates the differences
between the previous version of the model and the current
implementation with PEAT and pruning improving the feature
extraction, using the same Conv-1 features representing simple
edge detection structure of horizontal, vertical and two diagonal
lines. Figure 14A then shows the mapping those features onto
the weights of the Conv-2 resulting in the features that resemble
shapes and objects before the classification stage in Conv-3.
It can be seen that half of the 36 features in Conv-2 relate

to the Face class and the other half the Motorbike, with
these features helping to build up the classification layers with
two features either Face or Motorbike. This image helps to
explain what the network has learned and how it appears
to be looking for contour like shapes to help it distinguish
between inputs. Along with this insight into how the network
operates, it also allows the user to perhaps understand why
it might not always give the correct answers. Similar to how
if creating a system using hand-crafted contours features,
you would understand the limitation this allows a similar
understanding to be had. This could allow manual manipulation
of features or manual pruning throughout the training if the user
happens to have expert knowledge of the task, bringing neural
networks closer to known computer vision-based techniques,
which could provide an interesting overlap, especially in the
robotics domain.

In order to perceive how the additional classes affects the
interpretability of the system Figures 14B,C highlights a sub-
selection of the features within the 5 and 10 class models. This
highlights how the interpretability is still there for some of the

Frontiers in Neurorobotics | www.frontiersin.org 16 October 2020 | Volume 14 | Article 56831946

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

FIGURE 14 | (a) Features map representations of the convolution layers, with coloring to match the latent space representation from the two class experiment,

showing prior and current results of the Conv-2 features and Class features. The Figure also shows a selection of features from both the Five Class (b) and Ten Class

(c) experiments. Top half showing the Conv-2 features and the bottom showing the Class Features. (a) Classes shown in Class Features are Motorbike-Face then

Face-Motorbike for the previous and current results. (b) Classes shown in Class Features order are: Face, Motorbike, In-line Skate, Stop Sign, and Watch. (c) Classes

shown in Class Features order are: Stegosaurus, Watch, Cup, In-line Skate, Motorbike, Revolver, Camera, Face, Stop Sign, and Windsor Chair.

features while others have become more difficult to understand,
perhaps due to overlapping features from two classes. Overall,
Figures 14B,C highlight how reviewing of the features within
a Spiking Neural Network can help to gain understanding
about parts of the network, with the classification layers features
representing each of the 5 and 10 classes. The visualizations help
to explain why certain classes might struggle vs. others due to
similar sub classification features.

5. DISCUSSION

The understanding method shown in this work details an
unsupervised STDP approach. To fully utilize the spiking nature
of the processing it is paired with the perception method of
spiking input sensor. Together this perception understanding
pair can successfully semantically segment up to 10 classes of the
N-Caltech dataset. The output of this process is a spiking grid
indicating the location of the class within the scene, which can
be interpreted by the action system to allow the objects to be
followed if attempting to leave the field of view.

The full PUA process is completed in a spiking and
fully convolutional manner. This ensures all calculations are
either spiking or spike counting. Allowing the network to
maintain the temporal and processing advantages, along with
the asynchronicity associated with neuromorphic vision sensors,
from input to output. However, this method of processing

is not without its drawbacks, as there is an overall decrease
in accuracy associated with this adding of extra classes. That
perhaps indicates the limitation with this unsupervised method
in terms of problem scaling. For instances with the 100
classes available within the N-Caltech dataset, the system would
only be able to learn the most common features that occur
within each class, but only if they present a large enough
variance. That is it will only learn common class features as
long as they look different enough from the other classes.
Which is essentially what can be seen happening with the
5 and 10 class experiments visualized in Figures 14, 7C.
Figure 7C highlights that even with a high inter class variance
the kernels sometimes learn differentiating features from all
other classes, while other times learns features that are an
amalgamation of two or more classes. The 5 class experiment
displays this most prominently with the Bike and In-Line Skate
classes, as there are similarities between the outline shape of
both objects.

Nevertheless, this ability to find most common features
that express the highest variance from others, is both the
limitation and strength of this STDP approach. Limiting in
that this approach might not scale to larger datasets, but a
strength in that it made the network asynchronous, adaptable,
computational sparse and visually interpretable. This highlights
that the STDP method used might not be suitable for all
problems, but serves as a indication of the benefits if the
problem is appropriate. This work demonstrates that STDP

Frontiers in Neurorobotics | www.frontiersin.org 17 October 2020 | Volume 14 | Article 56831947

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

alone can be used to find the most common features of a
dataset. Which in turn, can be used to successfully perform
image classification and semantic segmentation. However, a
further learning rule to help focus on more discriminative
features, such as R-STDP (Izhikevich, 2007; Legenstein et al.,
2008; Mozafari et al., 2018) would be a useful extension. This
could help in tackling the main issue of inter to intra class
variance differentiation. This could allow not only the most
common feature to be discovered, but the most common
discriminative feature.

6. CONCLUSION

We proposed a new spiking-based system, the Perception
Understanding Action Framework, which aims to exploit the
low latency and sparse characteristic of the NVS in a fully
neuromorphic asynchronous event driven pipeline. Using the
understanding gained through the SpikeSEG segmentation, the
network is able to detect, classify and segment classes with
high accuracy and precision. Then from this understanding,
the system makes a more informed decision about what action
is to be taken. In this context, the framework was able to
show a semantic class tracking ability that combines feature
extraction capability of CNNs and low latency and computation
throughput of line and corner detectionmethods. The framework
also explores the unique benefits that can be gained through
utilizing SNNs with interpretability and robustness, with the use
of thresholding algorithms and sparse feature extractions. The
PUA framework also shows off the unique attention mechanism,

emphasizing how simple local inhibition rules when combined
with an encoder decoder structure; this can help reduce the
computation overhead of the semantic segmentation process.
This research highlighted the series of benefits when utilizing
a fully neuromorphic approach with a pragmatic engineering
and robotics outlook, looking at the biologically inspired
mechanisms, features and benefits, then combining them with
modern deep learning-based structures.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

PK contributed to the framework and experimental work. PK,
GD, and JS contributed to the paper writing. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was support in part by Leonardo MW Ltd., as part of a
Ph.D. sponsorship programme.

ACKNOWLEDGMENTS

We would like to thank GM for discussion, reviewing, and his
helpful feedback.

REFERENCES

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet:

a deep convolutional encoder-decoder architecture for image

segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495.

doi: 10.1109/TPAMI.2016.2644615

Barranco, F., Fermuller, C., and Aloimonos, Y. (2014). Contour motion

estimation for asynchronous event-driven cameras. Proc. IEEE 102, 1537–1556.

doi: 10.1109/JPROC.2014.2347207

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.

(2012). Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.

doi: 10.1016/j.neunet.2012.02.022

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., et al.

(2017). Interactive perception: leveraging action in perception and perception

in action. IEEE Trans. Robot. 33, 1273–1291. doi: 10.1109/TRO.2017.2721939

Brandli, C., Berner, R., Minhao, Yang, Shih-Chii, Liu, and Delbruck, T. (2014). A

240× 180 130 dB 3 \mui s latency global shutter spatiotemporal vision sensor.

IEEE J. Solid State Circuits 49, 2333–2341. doi: 10.1109/JSSC.2014.2342715

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Clady, X., Ieng, S.-H., and Benosman, R. (2015). Asynchronous event-

based corner detection and matching. Neural Netw. 66, 91–106.

doi: 10.1016/j.neunet.2015.02.013

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R., and Delbruck, T.

(2009). “A pencil balancing robot using a pair of AER dynamic vision sensors,”

in 2009 IEEE International Symposium on Circuits and Systems (Taipei: IEEE),

781–784. doi: 10.1109/ISCAS.2009.5117867

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4%

CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223.

doi: 10.3389/fnins.2013.00223

Delbruck, T., and Lichtsteiner, P. (2007). “Fast sensory motor control

based on event-based hybrid neuromorphic-procedural system,”

in 2007 IEEE International Symposium on Circuits and Systems

(New Orleans, LA: IEEE), 845–848. doi: 10.1109/ISCAS.2007.

378038

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A

spiking neural model of adaptive arm control. Proc. Biol. Sci. 283:1843.

doi: 10.1098/rspb.2016.2134

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Falez, P., Tirilly, P., Marius Bilasco, I., Devienne, P., and Boulet, P. (2019). “Multi-

layered spiking neural network with target timestamp threshold adaptation

and STDP,” in 2019 International Joint Conference on Neural Networks (IJCNN)

(Budapest: IEEE), 1–8. doi: 10.1109/IJCNN.2019.8852346

Gehrig, D., Rebecq, H., Gallego, G., and Scaramuzza, D. (2018). “Asynchronous,

photometric feature tracking using events and frames,” in Proceedings of

the European Conference on Computer Vision (ECCV) (Munich), 750–765.

doi: 10.1007/978-3-030-01258-8_46

Frontiers in Neurorobotics | www.frontiersin.org 18 October 2020 | Volume 14 | Article 56831948

https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/JPROC.2014.2347207
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1109/TRO.2017.2721939
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.1109/ISCAS.2009.5117867
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.1109/ISCAS.2007.378038
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.1126/science.1225266
https://doi.org/10.1109/IJCNN.2019.8852346
https://doi.org/10.1007/978-3-030-01258-8_46
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

Glover, A., and Bartolozzi, C. (2017). “Robust visual tracking with a freely-

moving event camera,” in 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (Vancouver: IEEE), 3769–3776.

doi: 10.1109/IROS.2017.8206226

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

doi: 10.1162/neco.2006.18.7.1527

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with lif neurons.

arXiv 1510.08829.

Izhikevich, E. M. (2007). Solving the distal reward problem through

linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452.

doi: 10.1093/cercor/bhl152

Jiang, Z., Bing, Z., Huang, K., and Knoll, A. (2019). Retina-based pipe-like object

tracking implemented through spiking neural network on a snake robot. Front.

Neurorobot. 13:29. doi: 10.3389/fnbot.2019.00029

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

STDP-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kim, S., Park, S., Na, B., and Yoon, S. (2019). Spiking-yolo: Spiking neural

network for real-time object detection. arXiv 1903.06530. doi: 10.1609/aaai.v34i

07.6787

Kirkland, P., Di Caterina, G., Soraghan, J., Andreopoulos, Y., and Matich,

G. (2019). “UAV detection: a STDP trained deep convolutional spiking

neural network retina-neuromorphic approach,” in International

Conference on Artificial Neural Networks (Munich: Springer), 724–736.

doi: 10.1007/978-3-030-30487-4_56

Kirkland, P., Di Caterina, G., Soraghan, J., and Matich, G. (2020). “Spikeseg:

spiking segmentation via STDP saliency mapping,” in 2020 International Joint

Conference on Neural Networks (IJCNN) (Glasgow), 1–8.

Lagorce, X., Meyer, C., Ieng, S.-H., Filliat, D., and Benosman, R. (2015).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for

reward-modulated spike-timing-dependent plasticity with application to

biofeedback. PLoS Comput. Biol. 4:1000180. doi: 10.1371/journal.pcbi.10

00180

Levy, S. D. (2020). Robustness through simplicity: a minimalist gateway to

neurorobotic flight. Front. Neurorobot. 14:16. doi: 10.3389/fnbot.2020.00016

Li, F. F., Fergus, R., and Perona, P. (2004). “Learning generative visual models from

few training examples: an incremental bayesian approach tested on 101 object

categories,” in 2004 Conference on Computer Vision and Pattern Recognition

Workshop (Washington: IEEE), 178.

Li, H., and Shi, L. (2019). Robust event-based object tracking combining

correlation filter and CNN representation. Front. Neurorobot. 13:82.

doi: 10.3389/fnbot.2019.00082

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 120 dB 15micro s latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43,

566–576. doi: 10.1109/JSSC.2007.914337

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks

for semantic segmentation,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 3431–3440.

doi: 10.1109/CVPR.2015.7298965

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and distributed

coding of spatiotemporal spike patterns through STDP and coincidence

detection. Front. Comput. Neurosci. 12:74. doi: 10.3389/fncom.2018.00074

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual features

through spike timing dependent plasticity. PLoS Comput. Biol. 3:e30031.

doi: 10.1371/journal.pcbi.0030031

Masuta, H., Motoyoshi, T., Sawai, K., Koyanagi, K., and Oshima, T. (2017).

“Perception and action cycle for cognitive robotics,” in 2017 International

Symposium on Micro-NanoMechatronics and Human Science (MHS) (Nagoya:

IEEE), 1–7. doi: 10.1109/MHS.2017.8305180

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-

modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.

doi: 10.1109/TNNLS.2018.2826721

Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017). Fast Event-Based Corner

Detection. University of Zurich.

Nishiwaki, K., Sugihara, T., Kagami, S., Kanehiro, F., Inaba, M., and Inoue,

H. (2003). “Design and development of research platform for perception-

action integration in humanoid robot: H6,” in Proceedings. 2000 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2000) (Cat.

No.00CH37113), Vol. 3 (Takamatsu: IEEE), 1559–1564.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosc. 7:178. doi: 10.3389/fnins.2013.00178

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature Visualization. Distill.

Available online at: https://distill.pub/2017/feature-visualization

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015).

Converting static image datasets to spiking neuromorphic datasets

using saccades. Front. Neurosci. 9:437. doi: 10.3389/fnins.2015.0

0437

Panda, P., Srinivasan, G., and Roy, K. (2017). Convolutional Spike Timing

Dependent Plasticity Based Feature Learning in Spiking Neural Networks. arXiv

preprint arXiv:1703.03854.

Park, J., Ha, S., Yu, T., Neftci, E., and Cauwenberghs, G. (2014). “A 65k-

neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-

and-fire array transceiver,” in IEEE 2014 Biomedical Circuits and Systems

Conference, BioCAS 2014–Proceedings (Lausanne: Institute of Electrical

and Electronics Engineers Inc.), 675–678. doi: 10.1109/BioCAS.2014.69

81816

Paugam-Moisy, H., and Bohte, S. M. (2012). “Computing with spiking neuron

networks,” in Handbook of Natural Computing, eds G. Rozenberg, T.

Back, and J. Kok (Springer-Verlag), 335–376. doi: 10.1007/978-3-540-929

10-9_10

Paulun, L., Wendt, A., and Kasabov, N. (2018). A retinotopic

spiking neural network system for accurate recognition of

moving objects using neucube and dynamic vision sensors.

Front. Comput. Neurosci. 12:42. doi: 10.3389/fncom.2018.0

0042

Renner, A., Evanusa, M., and Sandamirskaya, Y. (2019). “Event-based

attention and tracking on neuromorphic hardware,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW) (California, CA: IEEE), 1709–1716. doi: 10.1109/CVPRW.2019.0

0220

Seifozzakerini, S., Yau, W.-Y., Zhao, B., and Mao, K. (2016). “Event-based hough

transform in a spiking neural network for multiple line detection and tracking

using a dynamic vision sensor,” in Procedings of the British Machine Vision

Conference 2016 (York, PA: British Machine Vision Association), 94.1–94.12.

doi: 10.5244/C.30.94

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019).

Going deeper in spiking neural networks: VGG and residual

architectures. Front. Neurosci. 13:95. doi: 10.3389/fnins.2019.0

0095

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional

networks: visualising image classification models and saliency maps. arXiv

1312.6034.

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). An event-driven classifier for spiking neural networks fed

with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.

(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

doi: 10.1016/j.neunet.2018.12.002

Vasco, V., Glover, A., and Bartolozzi, C. (2016). “Fast event-based Harris

corner detection exploiting the advantages of event-driven cameras,”

in 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Daejeon: IEE), 4144–4149. doi: 10.1109/IROS.2016.775

9610

Wiesmann, G., Schraml, S., Litzenberger, M., Belbachir, A. N., Hofstatter,

M., and Bartolozzi, C. (2012). “Event-driven embodied system for feature

extraction and object recognition in robotic applications,” in 2012 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Frontiers in Neurorobotics | www.frontiersin.org 19 October 2020 | Volume 14 | Article 56831949

https://doi.org/10.1109/IROS.2017.8206226
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.3389/fnbot.2019.00029
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1007/978-3-030-30487-4_56
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1371/journal.pcbi.1000180
https://doi.org/10.3389/fnbot.2020.00016
https://doi.org/10.3389/fnbot.2019.00082
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1109/MHS.2017.8305180
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.3389/fnins.2013.00178
https://distill.pub/2017/feature-visualization
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/BioCAS.2014.6981816
https://doi.org/10.1007/978-3-540-92910-9_10
https://doi.org/10.3389/fncom.2018.00042
https://doi.org/10.1109/CVPRW.2019.00220
https://doi.org/10.5244/C.30.94
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/IROS.2016.7759610
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Kirkland et al. Perception Understanding Action

Workshops (Providence, RI: IEEE), 76–82. doi: 10.1109/CVPRW.2012.623

8898

Xie, M. (2003). Fundamentals of Robotics, Volume 54 of Series in Machine

Perception and Artificial Intelligence. Singapore: World Scientific.

Zamani, F., and Jamzad, M. (2017). A feature fusion based localized

multiple kernel learning system for real world image classification.

EURASIP J. Image Video Proc. 2017:78. doi: 10.1186/s13640-017-

0225-y

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional

networks,” in European Conference on Computer Vision (Springer), 818–833.

doi: 10.1007/978-3-319-10590-1_53

Zitnick, C. L., and Dollár, P. (2014). Edge Boxes: Locating Object Proposals From

Edges. Cham: Springer.

Conflict of Interest: GM was employed by the company Leonardo MW Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Kirkland, Di Caterina, Soraghan and Matich. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 20 October 2020 | Volume 14 | Article 56831950

https://doi.org/10.1109/CVPRW.2012.6238898
https://doi.org/10.1186/s13640-017-0225-y
https://doi.org/10.1007/978-3-319-10590-1_53
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 05 November 2020

doi: 10.3389/fnbot.2020.567991

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2020 | Volume 14 | Article 567991

Edited by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Reviewed by:

Ninad B. Kothari,

Johns Hopkins University,

United States

Nicolas Cuperlier,

Equipes Traitement de l’Information et

Systèmes, France

*Correspondence:

Jacob D. Isbell

jisbell@umd.edu

Received: 31 May 2020

Accepted: 08 October 2020

Published: 05 November 2020

Citation:

Isbell JD and Horiuchi TK (2020) Echo

View Cells From Bio-Inspired Sonar.

Front. Neurorobot. 14:567991.

doi: 10.3389/fnbot.2020.567991

Echo View Cells From Bio-Inspired
Sonar
Jacob D. Isbell 1* and Timothy K. Horiuchi 1,2,3

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States, 2 Institute for

Systems Research, University of Maryland, College Park, MD, United States, 3 Program in Neuroscience and Cognitive

Science, University of Maryland, College Park, MD, United States

Place recognition is naturally informed by the mosaic of sensations we remember from

previously visiting a location and general knowledge of our location in the world. Neurons

in the mammalian brain (specifically in the hippocampus formation) named “place cells”

are thought to reflect this recognition of place and are involved in implementing a

spatial map that can be used for path planning and memory recall. In this research,

we use bat-inspired sonar to mimic how bats might sense objects in the environment

and recognize the views associated with different places. These “echo view cells” may

contribute (along with odometry) to the creation of place cell representations observed

in bats. Although detailed sensory template matching is straightforward, it is quite

unlikely that a flying animal or robot will return to the exact 3-D position and pose

where the original memory was captured. Instead, we strive to recognize views over

extended regions that are many body lengths in size, reducing the number of places to

be remembered for a map. We have successfully demonstrated some of this spatial

invariance by training feed-forward neural networks (traditional neural networks and

spiking neural networks) to recognize 66 distinct places in a laboratory environment

over a limited range of translations and rotations. We further show how the echo view

cells respond between known views and how their outputs can be combined over time

for continuity.

Keywords: bat, echolocation, place cells, place fields, robotics, sonar, neural network, skim

INTRODUCTION

The hippocampal formation in the mammalian brain is well-known for its population of “place
cells,” a type of neuron that responds when an animal is in a particular place in its environment.
Studies in the rat suggest that these cells use internal odometry signals (allowing the system to
operate in darkness) as well as external sensory cues (allowing the system to recognize places
and correct the odometry system) (O’Keefe, 1976; Jung et al., 1994). In the flying, echolocating
bat, neurons with very similar properties have been found (Ulanovsky and Moss, 2007; Yartsev
et al., 2011; Yartsev and Ulanovsky, 2013; Geva-Sagiv et al., 2015). Unlike rats, bats have the
uncommon ability to perceive the three-dimensional locations of objects by actively emitting
sounds and localizing the reflections (Wohlgemuth et al., 2016), allowing the bat to navigate
where other sensory systems, such as vision, are ineffective. Although the signal processing and
neural mechanisms with which bats recognize places is still largely unknown, modeling this
capability with biologically-plausible sensors and robotics can give us insights into problems that
bats encounter and motivate future behavioral and neurophysiological experiments with bats.

51

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.567991
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.567991&domain=pdf&date_stamp=2020-11-05
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jisbell@umd.edu
https://doi.org/10.3389/fnbot.2020.567991
https://www.frontiersin.org/articles/10.3389/fnbot.2020.567991/full

Isbell and Horiuchi Echo View Cells From Sonar

Although most robotic explorations into mapping and
navigation have focused on variants of the SLAM (simultaneous
localization and mapping) algorithm using light-based sensors
(e.g., computer vision or LIDAR) (Strösslin et al., 2005; Bachelder
andWaxman, 2011) for metrically-accurate maps, little work has
been done exploring how a bat might use sonar to accomplish
the same task. One good example is that of Steckel and Peremans
(2013) that used a biomimetic sonar device on a mobile,
ground robot to navigate and map different office and laboratory
environments, however, the SLAM algorithm used was notmeant
to be a model of a biological system. The work presented here
addresses the question whether place cells can be recognized
over an extended region using only a narrow-band (∼40 kHz)
sonar in a laboratory environment. Unlike the place cells that
signal when the animal is in a particular area (i.e., the “place
field”) based on a combination of odometry and sensory inputs,
we are constructing “echo view cells” that recognize previously
encountered views (i.e., an “echo fingerprint”) based solely on
sonar. Phenomenologically similar to primate “spatial view cells”
that are active when the animal is gazing at a particular set
of objects (over a limited field-of-view), these echo view cells
recognize previously memorized echo patterns. Unlike primate
spatial view cells, however, object range is included in the
pattern and thus the echo view cells fire over a small region of
the environment.

A neural network model was used to implement echo view
recognition that incorporates concepts from machine learning
related to pattern separation and classification. A key aspect of
this investigation is the attempt to bridge the gap from high-
dimensional, low-level, sensory inputs to the more symbolic,
discrete nature of place recognition that is critical to higher-level
cognitive models of path planning (Koul and Horiuchi, 2019). A
key goal is to ensure that the echo view cells respond over a wider
area and not just to a single coordinate in space. One limitation
of the work is that only limited information is available from
the narrowband sonar (typical objects are represented by only
a few echoes) and object recognition was difficult, preventing
a landmark-based approach, as is common for visual place
recognition algorithms. Instead, views were recognized based
solely on the spatiotemporal pattern of echoes allowing the
memorization of views in a variety of environments without prior
training of an object recognition layer. From view recognition,
direction-independent place recognition can be constructed in
convergence with odometric information. Such approaches to
place recognition with sonar have been used (Ollington and
Vamplew, 2004; Vanderelst et al., 2016). One challenge with
sonar is that small changes in the position and angle (particularly
in man-made environments) can produce large changes in the
resulting echo pattern. Multi-path reflections are also sensitive to
positioning. To explore this, data was taken with a large variety
of small changes to the positioning of the sonar.

This work explores two very different neural networks
that can achieve this: a single layer neural network operating
on a recorded echo pattern presented as an image, and a
biologically-realistic, spiking neural network (SNN) presented
with echoes in the time domain to simulate live sonar
signals. In addition to our motivations to ultimately model
and understand the biological implementation of sonar-guided

behavior (mentioned above), this work has applications for
mobile, autonomous robotics. There are many circumstances
when a drone may need to navigate in a dark building for stealth,
through a building filled with smoke, through a forest with dense
fog, or through tunnels filled with dust. Since standard cameras
and LIDAR do not work well in these environments, sonar is a
reasonable alternative or complementary sensor. Sonar has been
shown to be useful for obstacle avoidance (Eliakim et al., 2018).
Currently, the most common use of sonar systems is underwater.
Since the speed of sound is much faster underwater, the effective
range and efficiency of sonar is greatly increased underwater.
Current laser and radar systems consume much more energy
than a sonar system; this would reduce the robot’s field time and
potential range (Jiang et al., 2010). The weight and cost of radar
systems can also reduce their feasibility of use. One can imagine
a lightweight, flying drone that can quickly maneuver through a
dark house and provide a map based more on sensory features
and not metrical details, closer to the way humans communicate
with each other.

MATERIALS AND METHODS

Hardware
The sonar system used in the work presented here consists of
three custom-modified MaxBotix R© sonar transducers, similar
to the MaxBotix XL-MaxSonar R©-EZTM commercial series of
sonar range finders, a custom PIC R© 18F2620 microcontroller-
based sonar controller board, a Futaba S148 hobby servo,
and a computer interface to both record and display echo
signals and control the servo to orient the sonar (shown
in Figure 1). The transducers act as both a speaker and a
microphone. They resonate at 40 kHz and will only detect
signals near this frequency. The custom sonar boards report a
logarithmically-compressed envelope signal as an analog voltage.
This compression allows the output to report the very wide
dynamic range of amplitudes that occurs with sonar without
saturating. The maximum working range of this sonar is 7.65m.
These transducers were custom modified to provide more
control over the timing and duration of the outgoing pulse, a
louder outgoing pulse, and access to a log-compressed envelope
of the transducer response. All these functionalities are now
commercially available through MaxBotix. The transducers are
placed in a 3-D printed mount (shown in Figure 2) on the
servo motor. In this demonstration system, the transducers
transmit and receive over a cone of about +/– 30 degrees
(−6 dB beam width), so the transducers are held facing 30
degrees apart to ensure sufficient overlap and coverage of the
area in front of the transducers for binaural localization based
on interaural level differences. The ultrasonic pulse trigger-
timing and analog-to-digital (A/D) conversion is done by the
microcontroller. Themajority of the data processing is performed
on the microcontroller to ensure a quick response.

The sonar system executes four steps: pulsing, sampling,
processing, and communicating. A short duration pulse voltage
(∼0.25ms) is supplied to the transducer, however, due to the
resonant quality of the transducer, the emitted sound has a ring-
up and ring-down period, resulting in an extended pulse duration
of about 1ms. Following the pulse, the transmitting transducer

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 56799152

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 1 | The flow of signals through the hardware. The microcontroller sends pulse voltages to the transducers and reads the acoustic voltage off the transducers.

This data is sent to Python (van Rossum, 1995) on a PC, which also controls the servo motor.

continues to ring for several milliseconds. Echoes can be detected
during this ringing period once the amplitude has diminished
sufficiently, so a short two millisecond delay is incorporated
before sampling begins. The log-compressed envelope voltage
is sampled every 8th of a millisecond, a sampling frequency of
8 kHz. An object is detected when the temporal derivative of the
envelope switches from positive to negative, denoting a peak.
The range is determined by finding the time when the envelope
reaches its peak value. Envelope voltages on all transducers are
recorded at the time of the peak. Our sampling time of an 8th of
a millisecond gives us a range resolution of 2.14 cm or 0.84 in.
We sample for 255 time bins, giving us a range of 5.5m or 18 ft.
Following the sampling period, echo data is transferred via serial
interface to a PC and all further processing on the information
is performed on the PC. An example of this data is shown in
Figure 3.

The code used on our microcontroller is available at https://
github.com/jacob-isbell/sonarPIC/blob/master/PICcode.asm.

Dataset Description
Data was recorded in our laboratory and the adjoining hallway.
66 different recording locations were spread throughout this
environment. Locations were spaced 2 feet apart where possible,
forming a grid-like placement (Figure 4A). No attempt wasmade

to restructure the objects in the lab to accommodate the sensing;
things were left as they were. No objects were moved during the
recording at different locations.

To capture a broader view, a variety of data was collected at
different translations and rotations within each square at each
of the 66 locations. Across 1 square foot, data was recorded
at 25 different translations inside a 5 × 5 square grid with a
3 inch (7.6 cm) spacing. At each of these 25 points, data was
recorded at 11 different angles, ranging from −5 to +5 degrees
in 1 degree increments (Figures 4B,C). Ten samples were taken
at each angle. In total, each square location has: (25 translations)
× (11 angles) × (10 repetitions) = 2,750 sonar images per
location. With 66 locations, the full data set consists of 181,500
sonar images.

Echo Fingerprint Recognition
Two different neural network architectures were tested for their
ability to recognize which of the 66 locations a sonar pulse
came from. A conventional, single layer network was used and
a biologically-plausible, temporally-based architecture called the
Synaptic Kernel Inverse Method (SKIM) (Tapson et al., 2013)
was used. The inputs and outputs of both networks were similar.
The inputs consisted of one sonar image. 255 range bins were

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2020 | Volume 14 | Article 56799153

https://github.com/jacob-isbell/sonarPIC/blob/master/PICcode.asm
https://github.com/jacob-isbell/sonarPIC/blob/master/PICcode.asm
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 2 | The schematic used for the 3-D printing of the sonar transducer

holder. The sonar system consists of three sonar transducers oriented with 30

degree angular separation mounted on a rotating servo motor (not shown).

used with data from the 3 transducers, resulting in a 765-
dimensional input vector. The envelope amplitude data was
supplied to the network. If there was no echo in a time bin,
the value was kept as zero. The resolution of each range bin
was 2.14 cm or 0.84 in. Each sonar image was L2 normalized
before being fed to the network. While normalizing means the
network doesn’t have direct access to the echo magnitudes,
the relative magnitude between echoes contains more reliable
and reproducible information, such as the magnitude difference
between transducers which relates to echo direction. Each output
corresponds to a different location, so with 66 locations there are
66 outputs. In both networks, a form of supervised learning was
used to train the network.

Although the angle of an arriving echo could be calculated
using the magnitude difference between the transducers (e.g.,
using interaural level differences) to reduce the dimensionality,

FIGURE 3 | A comparison of the raw transducer data and the processing

done on the microcontroller. In the top graph (A), the transducer voltage is

shown as it produces the outgoing pulse and receives the echoes. Only peak

magnitude and time of echo peak are processed and recorded, shown in the

bottom graph (B).

we chose to retain the raw values and let the network learning
rules determine how this information would be used.

Single Layer Feedforward Network
In this experiment, a very simple neural network was used
to process the data. The network consisted of the input layer
fully connected by weights to the output layer (Figure 5). The
non-linear logistic function was applied to the summation of
weighted inputs to provide the output. Learning was performed
by a modified version of gradient descent that uses an adaptive
momentum term to speed learning, called the AdamOptimizer
algorithm (Kingma and Ba, 2014). This was implemented in
the machine-learning software package, TensorFlow (Abadi
et al., 2015) on Google’s Colaboratory cloud computing platform
(Bisong, 2019), allowing us to speed up the training with free use
of their GPUs.

In this task, the single layer network performed as effectively
as multiple-layer networks and its simplicity led to an easier

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2020 | Volume 14 | Article 56799154

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 4 | The top image (A) shows a map of places data was recorded. Every dot is a recorded place. Locations and objects are approximately to scale. Bottom

left (B) shows how a variety of data was recorded at different translations and rotations at each point in the lab. Eleven angles were recorded along five rows and five

columns giving 275 recordings at each place. Bottom right (C) shows explicitly how data was recorded at each place, capturing a large variety of data throughout the

lab.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2020 | Volume 14 | Article 56799155

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 5 | The network architecture for the single layer network. There is one layer of fully connected weights from the inputs to the outputs. Each output has a

logistic non-linearity applied to it to maintain outputs between 0 and 1.

observation and analysis of how the network was solving
this problem.

Synaptic Kernel Inverse Method (SKIM)
SKIM is a multi-layer network architecture that combines the
benefits of Extreme Learning Machines (ELM) but with spiking
neuron (temporal) representations. Sonar lends itself to being
represented in the spiking domain because echoes themselves
are inherently time-based signals and typically pulsatile in
nature. The temporal nature of this network suggests a real-time
implementation using spiking neuromorphic hardware (Moradi
et al., 2017). Figure 6 illustrates the SKIM network architecture
(Tapson et al., 2013).

The first layer of weights in the SKIM network consists of
fixed, random weights connecting the inputs to the hidden layer.
These weights can be positive or negative. The fanout here is

usually 10–20 (or a hidden layer that has 10–20 times more
neurons than the input layer), resulting in a very large hidden
layer. This is typical of an ELM approach, which aims to expand
the dimensionality of the input data to make pattern separation
easier (Huang et al., 2011). There is also a non-linearity applied
at each hidden unit. Every hidden unit has a randomly selected
temporal synaptic kernel associated with it that consists of a time
delayed alpha function. If A is the activation of the unit, t is the
time, 1T is the delay, and τ the width of the alpha function, the
equation is:

f(t) = tanh(A
t− 1T

τ
e−

t−1T
τ)

where different hidden units have different delays (1T) and
widths of the alpha function (τ) (Figure 7). The time delay
is essential to recognizing patterns that occur over time,

Frontiers in Neurorobotics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 56799156

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 6 | Adapted from Tapson et al. (2013). The architecture for the SKIM neural network. The top of the figure shows what a corresponding biological system

would look like, while the bottom shows this network from a computational perspective. Inputs from the presynaptic neurons are summed onto the dendrites of the

postsynaptic neurons. Each dendrite has an associated non-linear, synaptic kernel [F(g,t)] with a time constant (τ), and dendritic delay (1T). The dendritic activity is

summed onto the soma and creates a spiking output when above a threshold. The weights from the input layer to the hidden layer are static (wxy); the linear

connection from the hidden layer to the output has weights that are trained (w
(2)
yz).

and gives the network a form of memory, a way to be
influenced by data in the past. A compressive non-linearity
(the hyperbolic tangent, tanh) is applied as well. These hidden
units create a high-dimensional, non-linear transformation of
the input data that has occurred recently in time. This allows
for complex, temporal patterns to be more easily recognized
and separated.

The next layer of this network is linear. There are a set
of fully-connected weights from the hidden layer units to
the output. These are the weights that are modified during
learning. Since this is the only dynamic part of the network, the
learning is simplified. As this is a linear transformation with a
known hidden-unit activation and a known output (since we
are performing supervised learning), the weights can be solved
for analytically.

IfM is the number of hidden units and k is the number of time
steps in our dataset, we obtain amatrix describing the hidden unit
activation over time, H ε R Mxk. If N is the number of outputs,
we have the output activation matrix, Y ε R Nxk. The weights
connecting the two layers will be W ε R NxM, such that WA =

Y. To find the weights we simply have to solve for W, giving W
= YA+, where A+ can be found by taking the Moore-Penrose
pseudoinverse of A.

To solve this analytically, we use the Online PseudoInverse
Update Method (OPIUM) (Tapson and van Schaik,
2013). This is an application of Greville’s method,
which shows an incremental solution to finding the
pseudoinverse, but is adapted and simplified for this
specific problem to reduce the needed computation without
losing accuracy.

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2020 | Volume 14 | Article 56799157

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 7 | Some example synaptic kernels. Two parameters are changed, the delay for the onset of the function (1T), and the width of the alpha function (τ). The

x-axis corresponds to the variable t of this function.

FIGURE 8 | Network accuracy as training progresses. Each algorithm iteration takes ∼0.5 s, and the network takes about 1 h to train.

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 56799158

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 9 | Perceptive fields of the output neurons in the single layer network (A,B). It’s clear that in some spots these perceptive fields split the left and right signals.

This gives the network the ability to discriminate direction.

RESULTS

Single Layer Network
This network was trained to predict which of the 66 locations a
sonar pattern came from. The recorded sonar dataset was split
into three parts, 80% training data, 10% testing data, and 10%
validation data. The data was randomly shuffled across locations
and positions within locations before being split into these three
groups. Our accuracy of identifying the location of a particular
pattern from the validation data set reached 97.5%. A graph of
the accuracy across the training regimen is shown in Figure 8.

Since this network is very simple, it is easy to understand

how the weights can be interpreted. Each output neuron has

a weight corresponding to every input. These can be thought

of as the perceptive field of this output neuron. By looking at

which inputs cause the output to activate, we can get an idea

of the sonar image preferred by each output neuron. Figure 9

shows some example weights from the network. One noticeable

pattern in these weights is the splitting that occurs between the

right and left transducers; there are clear ranges where one will
be positive and the other will be negative. Functionally, this is

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 56799159

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 10 | Perceptive fields of the output neurons in the single layer network. These (A,B) are from the hallway data. These weights were of lower amplitude, and all

transducers were correlated with one another.

the network learning to look for objects at a certain angular
orientation. Another clear pattern that arose in the network
weights; the weights from the hallway seemed to be synchronized
across transducers (Figure 10). These weights were also lower in
amplitude than those from inside the lab.

Figures 11A–D shows how the different view cells responded
across the whole map. It is clear that the network learned
very rigid boundaries where it was trained to do so. Although
this demonstrates a successfully trained network, the sharp
distinctions between neighboring locations is not what is seen in
mammalian place cells.

SKIM
In the SKIM network trained with OPIUM, we achieved up to
93.5% accuracy on our dataset. The choice of time constants
(τ , the alpha function widths) and delays (1T) for the synaptic
kernels was very important. The time constants determine the
temporal precision the network can observe; large time constants
lead to less temporal precision. Long time constants provide
tolerance to temporal jitter between patterns but result in a loss
of temporal discrimination when needed. The time constants
used for this network covered one to five time bins, with τ ′s
randomly chosen between 0.5 and 1.5, keeping a relatively narrow

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2020 | Volume 14 | Article 56799160

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 11 | An overhead view of the different echo view fields created by the two networks. This map is the same as shown in the top of Figure 4. Each plot

represents a different echo view cell’s activation across the entire map. The top plots (A–D) show the original network for four different views, and the plots (E–H)

shows the single layer network with widened labels, resulting in neighboring views being activated. Plots (I–P) show the view activations for the SKIM network and the

widened SKIM network. It is important to note that only areas in the training dataset are displayed. The 1 foot squares in between each of the locations have been

omitted (shown explicitly in Figure 4C).

and precise response. The choice of delays determined which
temporal part of the data is relevant (i.e., beginning, middle,
end of the pulse). The delays were distributed randomly over
the length of the sonar pulse to ensure that all the echoes

had an equal probability of activating the network, with 1T
′

s
randomly chosen between 0 and 255. The network was trained
to deliver an output at the end of a sonar image (t = 255).
Accuracy was determined by taking the output neuron with the
highest activation at t= 255. Figures 11I–L shows how the SKIM
view cells responded across the whole map. The response is
very similar to the single layer network with rigid boundaries
between views.

Recognition Outside of Training Data
Outside of the locations (squares) where data was collected, both
networks does not predictably recognize that it is near a known
location. The accuracy was high when in an area it was trained on,
but recognition drops quickly even inches away. Figures 12A–C
shows this for the single layer network; Figures 12G–I shows this
for the SKIM network. To spread the activation of the network
to neighboring areas outside the training area, network training
was changed. Instead of an output neuron being trained to 1.0
in its corresponding location and all other neurons trained to
0.0, neighboring neurons were trained to respond to neighboring
views. A Gaussian function was used, giving adjacent views
an activation of 0.5 and diagonal views and activation of 0.38.

After this round of training the accuracy of the single layer
network dropped to 92.3%, while the accuracy of the SKIM
network remained stable at 93.4%. Figures 12D–F,J–L show the
results of this new training for the single layer network and
SKIM network, respectively. The new activation pattern of the
network is now spread through areas that were not explicitly
trained on, and qualitatively looked more like biological place
fields. Figures 11E–H,M–P also shows how these new view cells
respond across the whole map. There is now more noticeable
activation in areas that were not trained on. The cells have
become much more broadly tuned. We call this new network
the “widened” network, in contrast to the “original” network.
The single layer network and the SKIM network responded very
similarly in all the cases presented.

DISCUSSION

Functionality Test Along a Path
To demonstrate how this system might be used in practice,
sonar data was recorded along a path consisting of points both
inside and outside of the training data. The single layer network’s
response to this data shows how views can be recognized along
the entirety of this path (Figure 13).

The widened network, which allows multiple view neurons to
be active at once, creates a broader, more spatially-continuous
response when compared with the original network. Less reliance

Frontiers in Neurorobotics | www.frontiersin.org 11 November 2020 | Volume 14 | Article 56799161

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 12 | Each graph presents an overhead view of a location. Inside the white square is where training data was recorded; outside the white square is an adjacent

area that was not used for the training of the networks. Along the x axis, eleven adjacent pixels show the eleven angles for each of the 25 (5 × 5) spatial positions

inside the white box. Pixels along the y axis are spaced evenly. These view neuron activation patterns are generated by the corresponding output neuron from the

neural network. The top plots (A–C) show how the single layer network responds around these locations, showing sparse activation outside the trained square and

very high activation inside the square. Plots (D–F) show the single layer network trained to respond to neighboring views. Plots (G–L) show the same information, but

for the SKIM network and the widened SKIM network. The widened networks show a much more spread out activation in the non-trained area outside the square.

on a single view neuron activating provides a more stable
and nuanced interpretation of location. In situations where the
original network fails to activate the correct view neuron, the
widened network is more likely to alleviate the situation by
activation of other nearby view neurons.

Leaky integration was also used to help smooth out the
network response over time; each activation is given an
exponentially decreasing tail over time. With At as the activation

for a position at time t, and Lt as the activation for a
position after leaky integration is applied, the equation used
is Lt=αAt+ (1− α) Lt−1. In this example, one view is about
10 movements wide. Using a leaky integration constant (α)
of 5/9 allows for activation to be maintained at %10 of its
original value 10 time steps in the future, allowing persistent
activation while moving across a position at the cost of a slight
lag. An equivalent way to calculate this would be to have each

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2020 | Volume 14 | Article 56799162

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 13 | Panel (A) shows the path the sonar system moves through, in red. There are 39 positions total along this path, each position 3 inches from the last. The

portion of the path within the yellow squares is contained in the training set for the networks (5 of the path positions). The rest of the path was not used for the training

of the networks. Panels (B–D) show echo view field responses on the path. The red dot represents the position of the sonar. The activations of the echo view cells are

shown in their corresponding location, seen as colored squares on the plots. The single layer network was trained to have only one view cell active at a time. The

widened network allows for more cells to be active at once, improving accuracy in between trained views. The leaky integration maintains a more stable activation due

to its use of the past activations in the path.

activation exponentially decaying over time; the corresponding
time constant would be 4.5. In some locations on the path,
the sonar is not able to correctly recognize the view. For this
example, integration over time gives the network more stability
and accuracy. Supplementary videos show the activations of the
original network, the widened network, and the leaky integration
applied to the widened network similar to Figure 13, but over the
entire path.

The widened network with leaky integration gives consistently
accurate results over the whole path. The echo view fields
activated are generally smooth over space and decaying activation
can be seen multiple locations away. To evaluate the effectiveness
of these echo view fields, we calculated the activity-weighted
centroid at each point on the path, giving us an average point
of each field to compare with the actual position of the sonar.
The distance between the activity-weighted centroid and the
actual position was used to calculate a mean error. Across 117
steps along three different paths, the original network’s average
error was 28.6 inches (72.6 cm), the widened network’s average
error was 18.6 inches (47.2 cm), and the widened network with
leaky integration’s average error was 16.3 inches (41.4 cm). This
system successfully recognized locations that are not contained

in the training set; the network can generalize and recognize
many nearby views. When this fails, leaky integration allows past
information to maintain a stable sense of place for the system.

Context/Previous Studies
These results complement previous studies that have used sonar
to aid in place recognition. A large inspiration for our project
was BatSLAM (Steckel and Peremans, 2013), a biomimetic sonar
system that used odometry and sonar to map an area of their
laboratory. Because odometry is quite inaccurate due to wheel
slippage and other errors, such as compounding inaccuracies
in estimating direction and position, sonar was used to provide
error correction. Their system first drew paths of motion based
solely on odometry. When the sonar-based recognition system
recognized the current location from a prior visit, it updated
the odometry system to match its memory and propagated the
correction to earlier time steps for consistency. This was sufficient
to correctly create a map of the area with little error. While this
approach showed that sonar was able to aid place recognition,
it did not do so in a biologically-plausible manner. Over the
robot’s path, 6,000 sonar measurements were taken, and 3,300
different places were established. While this system provides a

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2020 | Volume 14 | Article 56799163

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

method to maintain an estimate of the robot’s position, it does
not seem to reflect what little is known about how biological
memories of the environment. Memorizing 3,300 different places
all within one environment is computationally and memory-
intensive; it is not a biologically-plausible algorithm. While our
study attempted to show that odometry is not needed for view
recognition, incorporating odometric information can provide a
strong framework for unsupervisedmapping. For example, a new
“place” can be created when a system, using odometry, estimates
it is a certain distance from any other “place.”

Another recent paper explored the idea of recognizing place
with sonar in three different locations (Vanderelst et al., 2016).
Using a very precise sonar sensor they measured the echo
response at positions over a wide range of angles and along a
linear, 10m long path. They collected an enormous amount of
data (over 20,000 echo traces) and evaluated whether the echoes
varied smoothly over angle and distance as well as whether
unique locations could be classified. Most of the data came
from angular variation; large translational steps contrast the high
angular resolution. They also found places that were difficult to
distinguish between, mainly in open areas with few objects to
sense, but concluded that sonar is enough to recognize most
locations. When they were comparing different positions along
a linear path, they compared the same precise angle (0.1 degree
error) from the different positions. This is much more precise
than an animal can hope to achieve, in reality both angle and
position will be changing at the same time. We have shown in
this study how sensitive an echo signature can be to changes in
angle; we expect place recognition to be tolerant to moderate
changes in the sensing direction. Our study can complement this
one by providing a wider, two-dimensional range of positions
for comparison as well as removing the need for very precise
angular measurements.

In our study, all views were looking in the same direction. A
network that could respond to views in different directions but
at the same general location would be a step toward modeling
a more general place cell. This could be modeled using an
additional layer of a neural network. We have shown that
different views can be separately recognized in a single layer
network, another layer would be able to select which views
correspond to the same place. This could be as simple as an “or”
function that allows a view from any direction to activate the
place cell.

Single Frequency vs. Broadband
One important aspect of the sonar currently used in our system
that is not biologically-realistic is the use of a single frequency
(40 kHz). Bats use a broadband sonar pulse that provides
much richer echo signatures with spectral content that likely
contributes to object characterization that is not possible with our
sonar (Mogdans and Schnitzler, 1990). Even with this limitation,
this study shows that place field generation is still possible
knowing only object range (inferred by the peak sound pressure
on the three transducer channels) and echo magnitude. Different
objects with multiple close surfaces can also produce echoes with
different durations. With a broadband sonar sensor, it may be
possible to significantly improve the size and reliability of the
place fields.

CONCLUSION

We have presented a robotic sonar system that uses ultrasonic
transducers to mimic bat echolocation and have demonstrated
two different networks that can recognize sonar views over a
range of angles and offsets (“echo view fields”), with one network
showing that this can be done in a biologically plausible manner.
This view-based approach that does not require the identification
of specific objects or explicit use of landmarks. The echo view
cells produce “reasonable” responses outside of places where
training data was collected and has the potential to be integrated
into a larger system to model bat hippocampal place cells and
spatial mapping.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TH: created the hardware and software template for the
sonar system. JI: created the sonar mount and modified
the software for this project, and performed the data
collection and analysis with advice and guidance from TH.
Both authors discussed the results and contributed to the
final manuscript.

FUNDING

This work was support by grants from the U.S. Office of
Naval Research (N000141210339), the U.S. Air Force Office of
Scientific Research (FA9550-14-1-0398, Center of Excellence),
and the U.S. National Science Foundation (SMA1540916,
Neuromorphic Engineering Workshop, and DGE-1632976,
COMBINE program).

ACKNOWLEDGMENTS

We thanked Connor O’Ryan for his contributions to initial
SKIM software testing and helped collecting some data, Chenxi
Wen for technical advice and advice on early manuscripts, and
Terrence Stewart for advice onmachine learning implementation
and software.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.567991/full#supplementary-material

Supplementary Video | Similar to Figure 13, these videos show echo view fields

responses along the path. The red dot represents the position of the sonar. The

activations of the echo view cells are shown in their corresponding location, seen

as colored squares on the plots. Video 1 shows the single layer network, which

was trained to have only one view cell active at a time. Video 2 shows the widened

single layer network, which allows for more cells to be active at once, improving

accuracy in between trained views. Video 3 shows the leaky integration applied to

the widened network, which maintains a more stable activation due to its use of

the past activations in the path.

Frontiers in Neurorobotics | www.frontiersin.org 14 November 2020 | Volume 14 | Article 56799164

https://www.frontiersin.org/articles/10.3389/fnbot.2020.567991/full#supplementary-material
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Isbell and Horiuchi Echo View Cells From Sonar

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro Abadi, C., et al.

(2015). TensorFlow: large-scale machine learning on heterogeneous systems,

2015. arXiv. arXiv:1603.04467. Software Available online at: https://www.

tensorflow.org/ (accessed October 18, 2020).

Bachelder, I. A., and Waxman, A. M. (2011). Mobile robot visual mapping

and localization: a view-based neurocomputational architecture that

emulates hippocampal place learning. Neural Netw. 7, 1083–1099.

doi: 10.1016/S0893-6080(05)80160-1

Bisong, E. (2019). “Google Colaboratory.” Building Machine Learning and Deep

Learning Models on Google Cloud Platform. Berkeley, CA: Apress, 59–64.

doi: 10.1007/978-1-4842-4470-8_7

Eliakim, I., Cohen, Z., Kosa, G., and Yovel, Y. (2018). A fully autonomous

terrestrial bat-like acoustic robot. PLoS Comput. Biol. 14:e1006406.

doi: 10.1371/journal.pcbi.1006406

Geva-Sagiv, M., Las, L., Yovel, Y., and Ulanovsky, N. (2015). Spatial cognition in

bats and rats: from sensory acquisition to multiscale maps and navigation. Nat.

Rev. Neurosci. 16, 94–108. doi: 10.1038/nrn3888

Huang, G.-B., Dian, H. W., and Yuan, L. (2011). Extreme learning machines:

a survey. Int. J. Mach. Learn. Cyber. 2, 107–122. doi: 10.1007/s13042-011-

0019-y

Jiang, T., Zang, W., Chao, C., and Shi, J. (2010). An energy consumption

optimized clustering algorithm for radar sensor networks based on an

ant colony algorithm. EURASIP J. Wireless Commun. Netw. 2010.1:627253.

doi: 10.1155/2010/627253

Jung, M. W., Wiener, S. I., and McNaughton, B. L. (1994). Comparison of

spatial firing characteristics of units in dorsal and ventral hippocampus of

the rat. J. Neurosci.14, 7347–7356. doi: 10.1523/JNEUROSCI.14-12-07347.

1994

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv. arXiv preprint:1412.6980.

Koul, S., and Horiuchi, T. K. (2019). Waypoint path planning with synaptic-

dependent spike latency. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 1544–1557.

doi: 10.1109/TCSI.2018.2882818

Mogdans, J., and Schnitzler, H. (1990). Range resolution and the possible use of

spectral information in the echolocating bat, E. ptesicusfuscus. J. Acous. Soc. Am.

88, 754–757. doi: 10.1121/1.399724

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (dynaps). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp.

Neurol. 51, 78–109. doi: 10.1016/0014-4886(76)90055-8

Ollington, R., and Vamplew, P. (2004). “Learning place cells from sonar data,” in

AISAT2004: International Conference on Artificial Intelligence in Science and

Technology (Hobart).

Steckel, J., and Peremans, H. (2013). BatSLAM: simultaneous localization

and mapping using biomimetic sonar. PLoS ONE 8:0054076.

doi: 10.1371/journal.pone.0054076

Strösslin, T., Sheynikhovich, D., Chavarriaga, R., and Gerstner, W. (2005).

Robust self-localisation and navigation based on hippocampal place

cellsral networks. Neural Netw. 18, 1125–1140. doi: 10.1016/j.neunet.2005.

08.012

Tapson, J., and van Schaik, A. (2013). Learning the pseudoinverse solution to

network weights. Neural Netw. 45, 94–100. doi: 10.1016/j.neunet.2013.02.008

Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila, Y., Wang,

R. M., et al. (2013). Synthesis of neural networks for spatio-temporal

spike pattern recognition and processing. Front. Neurosci. 7:153.

doi: 10.3389/fnins.2013.00153

Ulanovsky, N., and Moss, C. F. (2007). Hippocampal cellular and network

activity in freely moving echolocating bats. Nat. Neurosci. 10, 224–233.

doi: 10.1038/nn1829

van Rossum, G. (1995). Python Tutorial, Technical Report CS-R9526. Amsterdam:

Centrum voor Wiskunde en Informatica (CWI).

Vanderelst, D., Steckel, J., Boen, A., Peremans, H., and Holderied, M.

W. (2016). Place recognition using batlike sonar. Elife 5:e14188.

doi: 10.7554/eLife.14188.018

Wohlgemuth, M. J., Luo, J., and Moss, C. F. (2016). Three-dimensional auditory

localization in the echolocating bat. Curr. Opin. Neurobiol. 41, 78–86.

doi: 10.1016/j.conb.2016.08.002

Yartsev, M. M., and Ulanovsky, N. (2013). Representation of three-

dimensional space in the hippocampus of flying bats. Science 340, 367–372.

doi: 10.1126/science.1235338

Yartsev, M. M., Witter, M. P., and Ulanovsky, N. (2011). Grid cells without

theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107.

doi: 10.1038/nature10583

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Isbell and Horiuchi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 November 2020 | Volume 14 | Article 56799165

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1016/S0893-6080(05)80160-1
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1371/journal.pcbi.1006406
https://doi.org/10.1038/nrn3888
https://doi.org/10.1007/s13042-011-0019-y
https://doi.org/10.1155/2010/627253
https://doi.org/10.1523/JNEUROSCI.14-12-07347.1994
https://doi.org/10.1109/TCSI.2018.2882818
https://doi.org/10.1121/1.399724
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1016/0014-4886(76)90055-8
https://doi.org/10.1371/journal.pone.0054076
https://doi.org/10.1016/j.neunet.2005.08.012
https://doi.org/10.1016/j.neunet.2013.02.008
https://doi.org/10.3389/fnins.2013.00153
https://doi.org/10.1038/nn1829
https://doi.org/10.7554/eLife.14188.018
https://doi.org/10.1016/j.conb.2016.08.002
https://doi.org/10.1126/science.1235338
https://doi.org/10.1038/nature10583
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 13 November 2020

doi: 10.3389/fnbot.2020.568283

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2020 | Volume 14 | Article 568283

Edited by:

Christian Tetzlaff,

University of Göttingen, Germany

Reviewed by:

Jorg Conradt,

Royal Institute of Technology, Sweden

Akos Ferenc Kungl,

Heidelberg University, Germany

*Correspondence:

Nicoletta Risi

nicoletta.risi@uzh.ch

Received: 31 May 2020

Accepted: 09 October 2020

Published: 13 November 2020

Citation:

Risi N, Aimar A, Donati E, Solinas S

and Indiveri G (2020) A Spike-Based

Neuromorphic Architecture of Stereo

Vision. Front. Neurorobot. 14:568283.

doi: 10.3389/fnbot.2020.568283

A Spike-Based Neuromorphic
Architecture of Stereo Vision
Nicoletta Risi*, Alessandro Aimar, Elisa Donati, Sergio Solinas and Giacomo Indiveri

Institute of Neuroinformatics, University of Zurich, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland

The problem of finding stereo correspondences in binocular vision is solved effortlessly

in nature and yet it is still a critical bottleneck for artificial machine vision systems. As

temporal information is a crucial feature in this process, the advent of event-based

vision sensors and dedicated event-based processors promises to offer an effective

approach to solving the stereo matching problem. Indeed, event-based neuromorphic

hardware provides an optimal substrate for fast, asynchronous computation, that

can make explicit use of precise temporal coincidences. However, although several

biologically-inspired solutions have already been proposed, the performance benefits

of combining event-based sensing with asynchronous and parallel computation are yet

to be explored. Here we present a hardware spike-based stereo-vision system that

leverages the advantages of brain-inspired neuromorphic computing by interfacing two

event-based vision sensors to an event-based mixed-signal analog/digital neuromorphic

processor. We describe a prototype interface designed to enable the emulation of a

stereo-vision system on neuromorphic hardware and we quantify the stereo matching

performance with two datasets. Our results provide a path toward the realization of

low-latency, end-to-end event-based, neuromorphic architectures for stereo vision.

Keywords: neuromorphic, event-based processing, event-based sensing, stereo vision, asynchronous

computation

1. INTRODUCTION

Biological and artificial binocular visual systems rely on stereo-vision processes to merge the visual
information streams. This implies solving the stereo-matching problem, i.e., finding correspondent
points in two slightly shifted views (Cumming and Parker, 1997). Typical applications in
robotics that can benefit from stereo vision include navigation in unknown environments, object
manipulation, and grasping. However, current machine-vision approaches still lag behind their
biological counterpart mainly in terms of bandwidth and power consumption (Tippetts et al.,
2016; Steffen et al., 2019). Classical methods are based on frame-based vision sensors. The main
challenges of frame-based algorithms are spatial redundancy and temporal information loss due
to the intrinsic nature of fixed-rate processing. This affects latency, throughput, and power
consumption, making frame-based approaches difficult to integrate into mobile platforms.

Biological systems, on the other hand, seem to efficiently solve the stereo-matching problem
by using space-variant and asynchronous space-time sampling (Steffen et al., 2019). Space-variant
resolution refers to a non-uniform distribution of retinal photoreceptors, with higher density in
the center (fovea) and a decreasing density toward the periphery. Asynchronous instead refers
to event-driven, self-timed sensing and processing. Therefore, a massively parallel, asynchronous,

66

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.568283
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.568283&domain=pdf&date_stamp=2020-11-13
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nicoletta.risi@uzh.ch
https://doi.org/10.3389/fnbot.2020.568283
https://www.frontiersin.org/articles/10.3389/fnbot.2020.568283/full

Risi et al. On-Chip Spike-Based Stereo Vision

event-based chain, from sensing to processing, seems to be a
promising solution for more robust and efficient architectures of
stereo vision.

In this context, neuromorphic hardware has proven to be an
effective substrate (Chicca et al., 2014; Indiveri et al., 2015). To
date, the emerging field of event-based stereo vision has shown
successful approaches that interface Spiking Neural Networks
(SNNs) with neuromorphic event-based sensors, also referred
to as “event cameras,” in order to build real-time event-based
visual processing systems (Mahowald, 1994a; Osswald et al.,
2017). Inspired by the retinal ganglion cells, the neuromorphic
vision sensors broadcast information, independently for all the
pixels, only in response to significant changes in illumination,
which results in a low-power, low-latency, event-driven, and
sparse input stream (Lichtsteiner et al., 2008; Posch et al., 2010;
Berner et al., 2013). Spiking neurons, in turn, can process
signals using temporal information, and therefore, can take full
advantage of an event-based input stream to solve the stereo-
matching problem. However, although several biologically-
inspired implementations of stereo vision (Mahowald, 1994b;
Piatkowska et al., 2013, 2017; Dikov et al., 2017; Osswald
et al., 2017; Kaiser et al., 2018) have extensively been explored,
only a few solutions fully exploit the advantages of parallel
computation, with an end-to-end neuromorphic architecture
that can replace traditional Von Neumann architectures.
In Dikov et al. (2017), the first scalable architecture of the
Marr and Poggio cooperative network (Marr and Poggio, 1976,
1977, 1979) is implemented on the SpiNNaker platform (Furber
et al., 2014). Despite the short latency (2 ms) of the network
and the portable design, the reported power consumption
of the neuromorphic implementation (90W for a 3-board
SpiNNaker machine) makes it difficult to integrate in mobile
or autonomous applications. More recently, Andreopoulos et al.
(2018) proposed the first fully end-to-end stereo pipeline,
implemented on multiple TrueNorth processors (Sawada et al.,
2016). The architecture achieves a 200× improvement, compared
to Dikov et al. (2017), in terms of power per pixel per disparity
map (0.058 mW/Pixel). Both solutions, however, emulate the
cooperative stereo network on digital hardware. Inspired by
biological neurons, analog neuromorphic circuits, by contrast,
can potentially lead to more promising solutions for low-power,
yet noisy, computation.

Following up on the work from Osswald et al. (2017),
we present an end-to-end neuromorphic architecture of
cooperative stereo vision implemented on mixed analog/digital
neuromorphic hardware. Compared to the previous work, here
we replaced the mixed-signal Very Large Scale Integration
(VLSI) ROLLS chip (Qiao et al., 2015) with a scalable multi-
core design (Moradi et al., 2018). Moreover, the proposed
solution shifts the event-based computation directly on chip
and provides a more robust, biologically-inspired coincidence
detection mechanism. In the next section, we describe the
digital interface between the sensing and the processing
stage. Then, we present the neuromorphic implementation of
the spiking network and we quantify the stereo matching
performance with a synthetic dataset and an event
camera dataset.

FIGURE 1 | The neuromorphic stereo-vision setup: OpalKelly XEM7360 [1],

DYNAP [2], Stereo DAVIS240C [3].

2. METHODS

The stereo-vision architecture introduced here combines two
event-based sensors, the Dynamic and Active Pixel Vision
Sensor (DAVIS) (Berner et al., 2013), and three VLSI multi-
core analog/digital Dynamic Neuromorphic Asynchronous
Processors (DYNAPs) (Moradi et al., 2018) integrated in a 4-
chip board. As a prototype, we designed the interface between
sensing and processing on a dedicated Field Programmable
Gate Array (FPGA) device (Xilinx Kintex-7 FPGA on the
OpalKelly XEM7360).

2.1. Event-Based Sensing
As opposed to classical frame-based cameras, event-
based sensor encodes information with lower latency and
redundancy (Gallego et al., 2019). Inspired by the biological
photoreceptors, the neuromorphic pixels operate independently
and send out asynchronous events in response to significant
changes in illumination using an event-based data protocol
Address Event Representation (AER) (Deiss et al., 1998). The
polarity of those events encodes increases (ON events) or
decreases (OFF events) in illumination. Overall, this results
in fast data acquisition with low latency and high temporal
resolution. Compared to the original DVS (Lichtsteiner et al.,
2008), the DAVIS sensor features a higher spatial resolution
(240× 180) and adds an APS (Active Pixel Sensor) readout.

In the proposed architecture, the two DAVIS sensors are
mounted on a stereo-setup (see Figure 1) and are separated by a
baseline distance of about 6 cm, which is similar to the pupillary
distance of humans. Events are sent separately from both retinas
to an FPGA using the AER protocol.

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 56828367

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 2 | Overview of the event-based digital interface.

2.2. Sensors-Processor FPGA Interface
Figure 2 shows the main modules of the event-based digital
interface. The communication to/from the FPGA is based on a
4-phase handshake protocol, handled by the Handshake Receiver
(HSR). Since the 4-phase handshake interfaces two different clock
domains, metastable states of the input events could occur. This
is handled by the Metastability Synchronizer (MSC) module,
which uses a chain of two Flip-Flops to prevent metastability.
A pre-processing element (PEL) reduces the input resolution to
a 16 × 16 array to redirect the AER events to the destination
core on the neuromorphic processor. The pre-processed events
are thus forwarded to a small FIFO with eight entries, in charge
of absorbing the pipeline stall due to the successive multiplexing
stage. The DAVIS Input Selector (DIS) module multiplexes the
data using a round-robin scheme and forwards them to the
Handshake Sender (HSS), which handles the output handshake
with the neuromorphic processor.

2.3. Event-Based Processing
The architecture computational substrate is a multi-core
asynchronous mixed-signal neuromorphic processor fabricated
using standard 0.18 µm 1P6M CMOS technology, the
DYNAP (Moradi et al., 2018). Each core comprises 256
adaptive exponential integrate-and-fire (AEI&F) silicon neurons
that emulate the biophysics of their biological counterpart, and
four different dedicated analog circuits that mimic fast and slow
excitatory/inhibitory synapse types (Brette and Gerstner, 2005).
Each neuron has a Content Addressable Memory (CAM) block,
containing 64 programmable entries allowing to customize
the on-chip connectivity. A fully asynchronous inter-core and
inter-chip routing architecture allows flexible connectivity
with microsecond precision under heavy systems loads. Digital
peripheral asynchronous input/output logic circuits are used to
receive and transmit spikes via an AER communication protocol,
analogous to the one used for the event-based input stream. As
a result, the proposed implementation leads to a prototype for a
fully asynchronous pipeline of event-based stereo vision.

2.4. The Spiking Neural Network Model
The SNN implemented on the DYNAP is adapted from the
structure presented in Osswald et al. (2017). It consists of three
neuronal populations: the retina, the coincidence detectors, and
the disparity detectors (see Figure 3). Each coincidence and
disparity neuron is assigned a triplet of coordinates, a horizontal

cyclopean position (x = xR + xL), a vertical cyclopean position
(y), and a disparity value (d = xR − xL), which determines the
neuron representation of a location in the 3D space.

Each coincidence neuron receives excitatory inputs from a
pair of retina cells tuned to its same spatial location (xR or xL),
thereby encoding temporal coincidences among pairs of inter-
ocular events. However, the temporal information is crucial but
not sufficient to correctly solve the stereo ambiguity, which arises
from matching features from different stimuli. For instance, two
stimuli moving synchronously on a plane yield four clusters of
activation in the coincidence detectors population: two correct
matches along the direction of constant disparity, here referred to
as True Targets (TT) and two wrong matches along the direction
of constant cyclopean position, here referred to as False Targets
(FT), which correspond to the erroneous perception of two
stimuli moving in depth.

This ambiguity is reduced in the disparity population by
means of two mechanisms of inhibition: recurrent inhibition
(Type I) across disparity neurons tuned to the same line of
sight (i.e., x = xL or x = xR) and feed-forward inhibition
(Type II) from coincidence neurons tuned to the same
cyclopean position. Moreover, disparity neurons receive feed-
forward lateral excitation from coincidence neurons tuned to
the same disparity. This excitatory-inhibitory balance allows
integrating the stimulus spatiotemporal features over time,
thereby implementing the matching constraints of cooperative
algorithms (Marr and Poggio, 1976; Mahowald, 1994b; Osswald
et al., 2017). As a result, the SNN model can solve the
stereo matching problem, with only TT represented in the
disparity population.

2.5. Neuromorphic Hardware
Implementation
The entire pipeline of visual information processing was designed
to be a scalable neuromorphic architecture. In our proof-of-
concept mixed-signal implementation of stereo vision, both
coincidence and disparity detectors are implemented using
silicon neurons. All neurons in the architecture are emulated
by parallel physical circuits in real-time on the neuromorphic
processor. In order to optimize the trade-off between the retina
field of view and the computational resources on hardware, the
input pixels from the event cameras are downscaled to two 2D
arrays of 16 × 16 neurons on FPGA which, in turn, project to
a 3D array of coincidence detectors. Therefore, the array has a

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2020 | Volume 14 | Article 56828368

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 3 | The spiking neural network model. The input space of the retina (R, L) is downscaled and processed by four populations of coincidence (C) and disparity

(D) neurons (first one highlighted in light gray). Excitatory (red) and inhibitory (blue) connections are shown. Adapted from Osswald et al. (2017).

width of 16 neurons, both in the xR and xL dimensions. The y
dimension, instead, is further downscaled to four levels, hereafter
referred to as network “layers” L1–4 (Figure 3). The same
structure is implemented for the 3D array of disparity neurons.
In total, the architecture comprises Nn = 3, 072 silicon neurons
and Ns = 62, 562 silicon synapses (see Supplementary Data 1.2

for the estimated power consumption of the network).

2.5.1. Coincidence Detection
Since coincidence detection is a key component of our model,
we carefully emulated and further optimized the low-power
mechanism exploited by biological brains. Specifically, temporal
coincidences are detected by combining the mechanism of supra-
linear, dendritic summation of synaptic events with slow and fast
synaptic time constants. As in biological brains, AMPA synaptic
currents can boost the effect of slow NMDA synapses when both
synaptic inputs are close in time (González, 2011). Coincidence
detectors are emulated on the chip exploiting the non-linear
properties of the dedicated analog synapse circuit block, which
mimics the biological NMDA voltage-gating dynamics. Each
coincidence detector is connected to one of the corresponding
input retina cells via the slow (NMDA-like) synapse and to
the other one via the fast (AMPA-like) synapse circuit block.
Only if both synapses are stimulated in rapid succession
the coincidence detector neuron fires. A demonstration of
coincidence detection emulated on-chip is shown in Figure 4

(see Supplementary Data 1.1 for a full characterization of the
proposed coincidence detection building block). To reduce the
effect of high-frequency homolateral excitation (Dikov et al.,
2017), we included one inhibitory connection from each input
neuron to the coincidence detectors population. By controlling
the ratio between excitatory/inhibitory synaptic time constants,
this helps to suppress incoming monocular events with a high
input rate, which would otherwise boost the activation of

coincidence detectors, leading to the erroneous perception of
inter-ocular coincidences.

2.5.2. Disparity Detection
Lateral feed-forward inhibition was implemented with a
separate population of coincidence neurons receiving
excitatory connections from the coincidence detectors
(Supplementary Figure 3). As a result, the effect of the lateral
inhibition is delayed with respect to the feed-forward input from
the population of excitatory coincidence detectors. This allows
to boost the activity of neurons receiving excitatory inputs due
to temporally correlated inter-ocular events and therefore helps
to suppress false targets in the disparity population.

2.5.3. Network Calibration
As shown in Osswald et al. (2017), neurons in the emulated SNN
model of cooperative stereo vision compute an approximation of
the local covariance of the spatiotemporal visual information. As
a result, neuronal and synaptic time constants are key parameters
in the proposed architecture, and they were configured as follows.
First, we measured the distribution of both monocular and
interocular inter-spike-intervals of the input events. Then, the
time constants of coincidence detectors were set according to
the constraints in (Supplementary Data equation S2). Finally,
the neuronal time constants of disparity detectors were set
significantly larger than the time constants of coincidence
detectors, i.e., within the timescale of hundreds of milliseconds.

2.6. Experiments
Prior to a full-scale implementation of the prototype architecture,
we assessed the stereo matching performance by comparing the
network output to an event-based ground truth. We included in
our interface design another datapath that uses the OpalKelly
USB3.0 to allow high-speed data transfer from the PC. This

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2020 | Volume 14 | Article 56828369

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 4 | Emulation of coincidence detection: recorded membrane potential of a coincidence detector as a function of the NMDA voltage-gating threshold (VNMDA).

As the threshold decreases, the silicon neuron responds to larger inter stimulus interval delays and therefore, the coincidence detector sensitivity increases.

allowed us to validate the network performance in two scenarios.
First, we used a synthetic dataset to test the effectiveness of
lateral inhibition with temporally correlated input events. Next,
we tested the network performance with real events collected
with the event cameras.

2.6.1. Stereo Matching With Synthetic Inputs
As a first step, we generated a synthetic dataset to mimic the
output of two neuromorphic retinae recording the scenario
of motion on a plane, and specifically two stimuli (dark
edges) moving in opposite directions on different depth planes
(Figure 5B). The spiking network model in Osswald et al. (2017)
is designed to have individual coincidence detectors for each
event polarity. However, since a full-scale implementation of the
model is out of the scope of this work, we chose to focus our
analysis on one event polarity. Figure 5A shows the reproduced
activity in the input neurons, together with the expected output
of the disparity population. The neural activity is depicted as
a temporal image, with gray levels representing synchronous
activation in time.

We define as “stimulus speed” the number of input neurons
sequentially activated by the stimulus over time. Thus, we chose
a speed of 20 input neurons/s for both stimuli, with each
input neuron firing at 50 Hz when the stimulus moves to its
corresponding location (Supplementary Figure 7A). Moreover,
events were generated with vertical coordinates such that they
would target only one out of four network layers.

Since the goal is to validate the effect of lateral inhibition,
we explicitly constructed the input events with perfect temporal
inter-ocular correlation. In this scenario, only if the network
uses the lateral inhibition to integrate not only temporal but also
spatial features of the stimuli, the ambiguity can be resolved.

2.6.2. Stereo Matching With Event Cameras Inputs
Real-time scenarios recorded with event cameras inevitably
produce noisy events, mainly due to camera jitter and variable
latency. Therefore, in order to validate the proposed approach
for an end-to-end event-based architecture of stereo vision, it
is essential to assess whether the network can still resolve the
ambiguity of stereo correspondences with noisy inputs. To this
end, we reproduced the scenario of motion on a plane simulated
with synthetic data and recorded events from the event cameras.
The experimental setup is illustrated in Figure 6A.

The software “Processing” (Reas and Fry, 2007) was used to
simulate two dark edges moving on a white background at a
constant speed on two different screens. The setup was calibrated
using the MATLAB Stereo Camera Calibrator Toolbox with
the grayscale images of the DAVIS240C. Upon estimating the
camera extrinsics and intrinsics, one screen was placed around
the camera vergence point and the second one between the
vergence point and the stereo setup. In order to optimize the ratio
between spatial resolution and the number of input neurons,
a window of 96 × 96 pixels centered around the stimulus was
applied to filter out information outside the region of interest,
and the recorded events were further downscaled with a kernel
of 6× 6 pixels.

2.7. Stereo Matching Performance
2.7.1. Event-Based Ground Truth
In order to assess the stereo matching performance of the
network, an event-based ground truth is required. While this
is intrinsically available in the case of synthetic datasets, it is
not as straightforward with a real dataset. For this scenario, we
assumed as true matches the stereo correspondences detected
with generalized time-based technique (Ieng et al., 2018) with
spatial, temporal, and motion consistency used as matching

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2020 | Volume 14 | Article 56828370

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 5 | Synthetic dataset: the neural activity is depicted as a temporal image, with gray levels representing synchronous activation in time (A). Two spike trains

were generated to simulate the activity of event cameras in response to two edges moving in opposite directions at constant depth levels (B). Input binocular time

series and expected activation over time of disparity neurons are shown as temporal images.

FIGURE 6 | Event camera dataset. Sketch of experimental setup (A) two monitors were used for the generation of two edges separated in depth and moving on a

plane. After calibration, the monitor generating Stimulus 1 was placed closer to the region of the camera vergence point, while Stimulus 2 was placed closer to the

stereo setup. Pointcloud reconstruction (B) with generalized time-based technique (time window ǫ = 2 ms, exponential decay kernel τ = 10 ms and a spatial kernel of

10 × 10 pixels).

constraints1. To increase the ground-truth accuracy, we fed
the generalized time-based technique with one stimulus at a
time so that there was no stereo ambiguity. Finally, detected
stereo correspondences were labeled as true targets if yielding
a correlation score larger than c = 0.4 (resulting pointcloud
reconstruction shown in Figure 6B).

1As the DAVIS240C does not integrate the synchronous luminance information,

the luminance consistency constraint could not be included in our analysis.

2.7.2. Accuracy
The stereo matching accuracy was measured with the following
metrics proposed in Osswald et al. (2017).

1. Percentage of Correct Matches (PCM):

PCMC,D(ti) =
TTC,D(ti)

FTC,D(ti) + TTC,D(ti)
(1)

with TTC,D(ti), and FTC,D(ti) being the normalized number of
true targets and false targets recorded within a time window

Frontiers in Neurorobotics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 56828371

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 7 | Results of network emulation with the synthetic dataset. Mean firing rate of coincidence neurons (C, excitatory population) and disparity population (D)

(A). Histogram of encoded disparity values across the trial duration in both coincidence (blue) and disparity neurons (orange) (B). As the activity clusters around the

true disparity values (d = 0, d = −3), the disparity population successfully resolves the stereo ambiguity.

ti, both for coincidence and disparity neurons. Spikes were
labeled as true targets if the minimum euclidean distance
in the 2D plane (x, d) between the recorded neuron id and
the ground truth neuron ids was smaller than the threshold
distance Dmin = 1.

2. True Target Amplification (TTA) and False Target
Amplification (FTA):

TTA =

∑

ti
TTD(ti)

∑

ti
TTC(ti)

FTA =

∑

ti
FTD(ti)

∑

ti
FTC(ti)

(2)

which allow quantifying the disparity sensitivity (TTA) and
the degree to which false targets are suppressed due to
recurrent and lateral feed-forward inhibition (FTA).

3. RESULTS

3.1. Stereo Matching With Synthetic Inputs
Figure 7 shows the mean firing rate of coincidence (excitatory
population) and disparity neurons during the whole trial.
The coincidence detectors successfully detect the temporal
matches, i.e., an action potential arises only when the
input events from the retina cells are coincident in time.
However, coincidence detectors still respond to false targets,
i.e., coincident events arising from different stimuli. Indeed,
in this scenario, binocular time series related to different
stimuli are perfectly synchronized (Supplementary Figure 8A)
and therefore not distinguishable from the true targets in the
temporal domain (Mulansky and Kreuz, 2016). However, as
they activate coincidence detectors along the dimension of
constant cyclopean position, they also trigger the activation of
the correspondent inhibitory coincidence detectors, leading to
inhibition of disparity detectors tuned to the same cyclopean
position (Supplementary Figure 4). This is not the case for true

targets as binocular events due to the same stimulus target
coincidence detectors along the dimension of constant disparity,
which injects excitatory current into target disparity detectors
tuned to the same disparity. As a result, disparity detectors
integrate evidence of true disparities and effectively solve the
stereo ambiguity.

This is well-depicted by the metrics of stereo matching
performance. Compared to coincidence detectors, disparity
neurons can successfully suppress false targets (FTA = 0.08),
while still being responsive to true targets (TTA = 0.45). This
leads to a PCM score of 0.88, compared to PCM = 0.57 for
coincidence detectors.

As temporal information is the key feature for an event-
based network, the stimulus speed is a crucial factor influencing
the network performance. Indeed, as the number of input
neurons sequentially activated by the stimulus decreases, the
ratio TTA/FTA decreases, thereby affecting the stereo matching
performance (Figure 8).

3.2. Stereo Matching With Event Cameras
Inputs
Analogously to the analysis performed with synthetic data,
we first measured the average instantaneous firing rate of
coincidence and disparity neurons during one trial with
data from the event cameras. Notably, binocular time series
of non-correspondent stimuli are less correlated in real
scenarios (Supplementary Figure 8B). Therefore, false and true
targets become more separable from the temporal information
already. This is why the activation of coincidence detectors
responding to false targets is reduced compared to those
responding to true targets (Figure 9). However, disparity
detectors still achieve better performances in resolving the stereo
ambiguity (Figure 10).

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2020 | Volume 14 | Article 56828372

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 8 | Performance sensitivity to the stimulus speed: PCM (bottom graph, with median and interquartile range, measured across one trial over time windows

ti = 300 ms), TTA, and FTA (top graph). As the stimulus speed increases, the stereo matching performance increases (i.e., lower FTA).

FIGURE 9 | Results of network emulation with event camera dataset from network layer L2. Mean firing rate of coincidence neurons (C, excitatory population) and

disparity population (D) (A). Histogram of encoded disparity value across the trial duration in both coincidence (blue) and disparity neurons (orange) (B). As the activity

clusters around the true disparity values, the disparity population successfully resolves the stereo ambiguity.

4. DISCUSSION

We have presented a prototype architecture for cooperative
stereo vision implemented on a scalable neuromorphic
architecture. Recovering the 3D structure of a scene is
still computationally expensive for conventional computer
vision approaches. Yet, biology shows several examples
of stereo vision whereby space-variant and asynchronous
space-time sampling are some of the key features involved.

With parallel, sparse, and asynchronous computation,
neuromorphic hardware promises to offer an optimal substrate
for a low-latency implementation of 3D vision. However,
only a few approaches developed so far fully exploit the
advantages of analog asynchronous computation. Hereby we
implemented a biologically-inspired, event-based network
of stereo vision on a mixed analog-digital neuromorphic
processor and we validated the stereo matching performances of
the architecture.

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 56828373

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 10 | Stereo matching accuracy: PCM, median and interquartile range. In all network layers (L1–4) the PCM of disparity neurons is larger than the PCM of

coincidence neurons, showing that disparity detectors can still solve the stereo ambiguity with slower, and uncorrelated, real stimuli.

Our model is derived from the work of Osswald et al.
(2017), which presents software simulations of the full-scale
implementation. By solving the stereo-matching problem with
leaky-integrate-and-fire neurons, the simulated spiking network
proves an effective approach to fully exploiting the event-based
visual sensors. However, the full potential of the model and its
scalability can only be leveraged if the neurons operate in parallel.
Here we validated the stereo-matching abilities of the network
by implementing it on a massively parallel neuromorphic
processor. Compared to the previous feasibility study based
on the ROLLS chip (Osswald et al., 2017), the proposed
solution shifts the coincidence detection mechanism, previously
on FPGA, directly on analog silicon neurons. Exploiting the
non-linear properties of a dedicated analog circuit, that mimics
the biological NMDA voltage-gating dynamics, led to a robust
coincidence detection mechanism that could ease the network
sensitivity to device mismatch, which is a crucial feature of
subthreshold mixed-signal neuromorphic processors. In this
regard, we anticipate that quantifying the effect of device
mismatch on coincidence detection will be a crucial step prior
to a full-scale implementation of the network on-chip.

In order to validate the effectiveness of the neuromorphic
substrate in solving the stereo correspondence problem, we
assessed the network performances in two scenarios. First, with
a synthetic dataset, we demonstrated the crucial role of the
synaptic kernel of feed-forward lateral inhibition. To do so,
we explicitly constructed the input binocular time series such
that false targets would be temporally correlated and, therefore,
only distinguishable from the true matches if disparity neurons
integrated the stimulus spatiotemporal features. However, this
is only possible when the temporal dynamics of the stimulus
are comparable with the neuron synaptic time constants, as

we showed in Figure 8. In other words, as the network
exploits motion cues to solve the stereo matching problem, the
network temporal sensitivity becomes intrinsically related to the
network spatial resolution. Thus, the number of input neurons
sequentially activated by the moving stimulus over time is a
crucial factor: increasing the number of neurons sensitive to the
input field of view would restore the network sensitivity to lower
speed stimuli.

The second scenario with data from event cameras allowed
us to test the network performance with noisy time series,
whereby non-correspondent inter-ocular events are not perfectly
correlated. Here the lateral inhibition fails due to lower speed
stimuli (Supplementary Figure 7B). Yet the network can still
achieve good stereo matching performances due to the recurrent
inhibition, which triggers competition among disparity neurons
tuned to the same line of sight. In this scenario, the feed-
forward excitatory input from coincidence detectors responding
to temporally correlated stimuli boosts the activation of disparity
neurons responding to true targets, therefore successfully leading
to false target suppression again.

Overall, both experiments validate our approach with
stimulus motion yielding constant disparity. The future step
is testing the network dynamics in the case of motion-
in-depth, which naturally addresses the trade-off accuracy
vs. speed. Indeed, coincidence detectors feature low-latency
response to short inter-ocular time differences, thereby setting
the network temporal resolution within the timescale of
microseconds. Disparity detectors, by contrast, need to integrate
the stimulus motion cues over time to resolve the stereo
ambiguity, and therefore they require longer neuronal time
constants (up to 100 ms). In fact, by receiving excitatory
and inhibitory projections from coincidence and inhibitory

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 56828374

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

neurons, respectively, disparity neurons compare evidence of
the current stimulus statistics against the integrated evidence
of the stimulus spatiotemporal features. Measuring the network
response in the case of motion in depth will allow investigating
the effect of this excitatory/inhibitory balance on the stereo-
matching performances. Moreover, since no synaptic plasticity
is included in the architecture and given the event-based nature
of the input stimulus, a prior assumption about the stimulus
statistics is currently required to calibrate the network. Future
implementations on the new generation of DYNAP chips will
allow to incorporatemechanisms of short-term plasticity, thereby
enabling an autonomous adaptive calibration procedure.

Although the architecture proposed is scalable by
construction, implementing very large-scale systems based
on such architecture, able to operate in real-time, requires
adequate resources, and supporting neuromorphic processing
hardware. The DYNAP processor used in this study comprises
only 1,024 neurons, distributed among four cores of 256 neurons
each. However, the routing scheme implemented on that device
supports all-to-all connections of up to 16 by 16 chips providing
already the ability to scale the system up to 256k neurons. This
would, however, require very large printed circuit boards, or
many boards interconnected among each other. The DYNAP
chips proposed in Moradi et al. (2018) could be integrated
into a system comprising a much higher number of cores
[e.g., the IBM TrueNorth chip has 4,096 cores (Merolla et al.,
2014), and the Intel Loihi chip has 128 cores (Davies et al.,
2018)] without making any changes to the design. This would
enable the construction of larger scale stereo-vision setups that
would still be able to operate in real-time, given the parallel
processing ability of the emulated neurons and synapses. We
anticipate that designing an end-to-end asynchronous dedicated
architecture of this type would allow to fully leverage the
potential of sparse, event-based computation of SNN models
of cooperative stereo-matching. An additional strategy that
would enable the construction of large-scale stereo-vision setups
would be to use more complex vision pre-processing stages,
for example, implemented using convolutional networks and
applying the same principles presented in this work to the
features extracted by the convolutional network, rather than the
raw pixel values. This would allow us to use a smaller feature
space compared to the resolution of the vision sensor, and
increase robustness to noise in the vision sensors. As discussed
in Steffen et al. (2019), although there are many methods for
event-based depth estimation, the lack of a comprehensive
dataset or a standard testbed makes it difficult to compare them.
Yet, some event-based datasets for stereo vision have been
recently released (Andreopoulos et al., 2018; Zhu et al., 2018).
Implementing the full-scale model on new generations of mixed
analog/digital neuromorphic processors would allow comparing
the architecture performances against already existing methods.
In the long-term, the goal of the approach proposed is to
enable on-chip estimation of depth on a per-event basis, with
the highest resolution confined around the camera vergence
point. Indeed, conventional approaches of event-based stereo

vision constrain the search window for stereo matches along
the epipolar lines, which results in the point of zero disparity to
be shifted at infinity, and depth error increasing quadratically
with depth. Instead, in this work, we took inspiration from the
biological coarse and space-variant sampling and processed
the raw events with large input search zones. In other words,
here disparity detectors tuned to zero disparity respond to
targets moving around the camera vergence point. While this
naturally constrains the spatial (and therefore depth) resolution,
it could set out an optimized solution with latency response
and space-variant sampling. Combined with vergence control,
this active perception strategy could lead to promising solutions
for embedded neuromorphic architectures of stereo vision in
humanoid robots (Gallego et al., 2019). Moreover, the need for
compelling benchmarks that could show the advantages of spike-
based computation in real-world scenarios is currently one of the
major challenges for the neuromorphic research field (Davies,
2019). Our solution could show a valuable example of exploiting
spike-timing to process real-time information in closed-loop
systems, by emulating sparse, parallel computation of biological
neurons in order to solve the stereo matching problem.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

NR did the research and wrote the manuscript. AA designed
the digital interface. ED designed the interface between the
neuromorphic chip and the OpalKelly board. ED, SS, and GI
supervised the work. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by the ERCGrant NeuroAgents (Grant.
No. 724295).

ACKNOWLEDGMENTS

We authors would like to thank Marc Osswald for the fruitful
discussions, Chenxi Wu for contributing to the AER interface
design, and Dmitrii Zendrikov for helping with the process of
calibrating the network parameters on the DYNAP. Additionally,
we would like to thank the organizers of the Robust Artificial
Intelligence for Neurorobotics Workshop, where preliminary
results of this work were presented.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.568283/full#supplementary-material

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2020 | Volume 14 | Article 56828375

https://www.frontiersin.org/articles/10.3389/fnbot.2020.568283/full#supplementary-material
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Risi et al. On-Chip Spike-Based Stereo Vision

REFERENCES

Andreopoulos, A., Kashyap, H. J., Nayak, T. K., Amir, A., and Flickner, M. D.

(2018). “A low power, high throughput, fully event-based stereo system,” in The

IEEE Conference on ComputerVision and Pattern Recognition (CVPR) (Salt Lake

City, UT), 7532–7542.

Berner, R., Brandli, C., Yang, M., Liu, S.-C., and Delbruck, T. (2013). “A 240× 180

10 mW 12µs latency sparse-output vision sensor for mobile applications,” in

2013 Symposium on VLSI Circuits (Kyoto: IEEE), C186–C187.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic

electronic circuits for building autonomous cognitive systems. Proc. IEEE 102,

1367–1388. doi: 10.1109/JPROC.2014.2313954

Cumming, B. G., and Parker, A. J. (1997). Responses of primary visual cortical

neurons to binocular disparity without depth perception. Nature 389, 280–283.

doi: 10.1038/38487

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.

Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deiss, S., Douglas, R., and Whatley, A. (1998). “A pulse-coded communications

infrastructure for neuromorphic systems,” in Pulsed Neural Networks, Chapter

6, eds W. Maass and C. Bishop ((Cambridge, MA: MIT Press), 157–178.

Dikov, G., Firouzi, M., Röhrbein, F., Conradt, J., and Richter, C. (2017). “Spiking

cooperative stereo-matching at 2 ms latency with neuromorphic hardware,” in

Conference on Biomimetic and Biohybrid Systems (Stanford, CA: Springer),

119–137.

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi,

A., et al. (2019). Event-based vision: a survey. arXiv 1904.08405.

doi: 10.1109/TPAMI.2020.3008413

González, J. (2011). Distinguishing linear vs. non-linear integration in CA1

radial oblique dendrites: it’s about time. Front. Comput. Neurosci. 5:44.

doi: 10.3389/fncom.2011.00044

Ieng, S.-H., Carneiro, J., Osswald, M., and Benosman, R. (2018). Neuromorphic

event-based generalized time-based stereovision. Front. Neurosci. 12:442.

doi: 10.3389/fnins.2018.00442

Indiveri, G., Corradi, F., and Qiao, N. (2015). “Neuromorphic architectures

for spiking deep neural networks,” in 2015 IEEE International Electron

Devices Meeting (IEDM) (Washington, DC: IEEE), 4.2.1–4.2.14.

doi: 10.1109/IEDM.2015.7409623

Kaiser, J., Weinland, J., Keller, P., Steffen, L., Tieck, J. C. V., Reichard,

D., et al. (2018). “Microsaccades for neuromorphic stereo vision,” in

Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) (Rhodes).

doi: 10.1007/978-3-030-01418-6_24

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 dB 15

µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Mahowald, M. (1994a). “Analog VLSI chip for stereocorrespondence,” in

International Symposium on Circuits and Systems (ISCAS) (London), Vol. 6,

347–350. doi: 10.1109/ISCAS.1994.409597

Mahowald, M. (1994b). An Analog VLSI System for Stereoscopic Vision. Boston,

MA: Kluwer.

Marr, D., and Poggio, T. (1976). Cooperative computation of stereo disparity.

Science 194, 283–287. doi: 10.1126/science.968482

Marr, D., and Poggio, T. (1977). A Theory of Human Stereo Vision.

Technical report, Massachusetts Institute of Technology, Cambridge Artificial

Intelligence Lab.

Marr, D., and Poggio, T. (1979). A computational theory of human stereo vision.

Proc. R. Soc. Lond. B Biol. Sci. 204, 301–328. doi: 10.1098/rspb.1979.0029

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Mulansky, M., and Kreuz, T. (2016). Pyspike-a python library for analyzing spike

train synchrony. SoftwareX 5, 183–189. doi: 10.1016/j.softx.2016.07.006

Osswald, M., Ieng, S.-H., Benosman, R., and Indiveri, G. (2017). A spiking neural

network model of 3Dperception for event-based neuromorphic stereo vision

systems. Sci. Rep. 7:40703. doi: 10.1038/srep44722

Piatkowska, E., Belbachir, A., and Gelautz, M. (2013). “Asynchronous stereo

vision for event-driven dynamic stereo sensor using an adaptive cooperative

approach,” in 2013 IEEE International Conference on Computer Vision

Workshops (ICCVW) (Sydney, NSW), 45–50. doi: 10.1109/ICCVW.2013.13

Piatkowska, E., Kogler, J., Belbachir, N., and Gelautz, M. (2017). “Improved

cooperative stereo matching for dynamic vision sensors with ground

truth evaluation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (Honolulu, HI), 370–377.

doi: 10.1109/CVPRW.2017.51

Posch, C., Matolin, D., and Wohlgenannt, R. (2010). “A QVGA 143 dB dynamic

range asynchronous address-event PWM dynamic image sensor with lossless

pixel-level video compression,” in International Solid-State Circuits Conference

Digest of Technical Papers, ISSCC 2010 (San Francisco, CA), 400–401.

doi: 10.1109/ISSCC.2010.5433973

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9, 1–17.

doi: 10.3389/fnins.2015.00141

Reas, C., and Fry, B. (2007). Processing: A Programming Handbook for Visual

Designers and Artists. MIT Press.

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P.,

et al. (2016). “Truenorth ecosystem for brain-inspired computing: scalable

systems, software, and applications,” in SC’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis

(Salt Lake City, UT: IEEE), 130–141. doi: 10.1109/SC.2016.11

Steffen, L., Reichard, D., Weinland, J., Kaiser, J., Roennau, A., and Dillmann,

R. (2019). Neuromorphic stereo vision: a survey of bio-inspired sensors

and algorithms. Front. Neurorobot. 13:28. doi: 10.3389/fnbot.2019.

00028

Tippetts, B., Lee, D. J., Lillywhite, K., and Archibald, J. (2016). Review of stereo

vision algorithms and their suitability for resource-limited systems. J. Real Time

Image Process. 11, 5–25. doi: 10.1007/s11554-012-0313-2

Zhu, A. Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V., and Daniilidis,

K. (2018). The multivehicle stereo event camera dataset: an event camera

dataset for 3D perception. IEEE Robot. Autom. Lett. 3, 2032–2039.

doi: 10.1109/LRA.2018.2800793

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Risi, Aimar, Donati, Solinas and Indiveri. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 November 2020 | Volume 14 | Article 56828376

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1038/38487
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.3389/fncom.2011.00044
https://doi.org/10.3389/fnins.2018.00442
https://doi.org/10.1109/IEDM.2015.7409623
https://doi.org/10.1007/978-3-030-01418-6_24
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/ISCAS.1994.409597
https://doi.org/10.1126/science.968482
https://doi.org/10.1098/rspb.1979.0029
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1016/j.softx.2016.07.006
https://doi.org/10.1038/srep44722
https://doi.org/10.1109/ICCVW.2013.13
https://doi.org/10.1109/CVPRW.2017.51
https://doi.org/10.1109/ISSCC.2010.5433973
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/SC.2016.11
https://doi.org/10.3389/fnbot.2019.00028
https://doi.org/10.1007/s11554-012-0313-2
https://doi.org/10.1109/LRA.2018.2800793
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 13 November 2020

doi: 10.3389/fnbot.2020.577804

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2020 | Volume 14 | Article 577804

Edited by:

Joe Hays,

United States Naval Research

Laboratory, United States

Reviewed by:

Vikas Bhandawat,

Drexel University, United States

Erik Christopher Johnson,

Johns Hopkins University,

United States

*Correspondence:

Nicholas S. Szczecinski

nicholas.szczecinski@mail.wvu.edu

Received: 30 June 2020

Accepted: 08 October 2020

Published: 13 November 2020

Citation:

Szczecinski NS, Quinn RD and

Hunt AJ (2020) Extending the

Functional Subnetwork Approach to a

Generalized Linear Integrate-and-Fire

Neuron Model.

Front. Neurorobot. 14:577804.

doi: 10.3389/fnbot.2020.577804

Extending the Functional Subnetwork
Approach to a Generalized Linear
Integrate-and-Fire Neuron Model

Nicholas S. Szczecinski 1*, Roger D. Quinn 2 and Alexander J. Hunt 3

1Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States,
2Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States,
3Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, United States

Engineering neural networks to perform specific tasks often represents a monumental

challenge in determining network architecture and parameter values. In this work, we

extend our previously-developed method for tuning networks of non-spiking neurons,

the “Functional subnetwork approach” (FSA), to the tuning of networks composed of

spiking neurons. This extension enables the direct assembly and tuning of networks of

spiking neurons and synapses based on the network’s intended function, without the use

of global optimization ormachine learning. To extend the FSA, we show that the dynamics

of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities

to those of a non-spiking leaky integrator neuron model. We derive analytical expressions

that show functional parallels between: (1) A spiking neuron’s steady-state spiking

frequency and a non-spiking neuron’s steady-state voltage in response to an applied

current; (2) a spiking neuron’s transient spiking frequency and a non-spiking neuron’s

transient voltage in response to an applied current; and (3) a spiking synapse’s average

conductance during steady spiking and a non-spiking synapse’s conductance. The

models become more similar as additional spiking neurons are added to each population

“node” in the network. We apply the FSA to model a neuromuscular reflex pathway two

different ways: Via non-spiking components and then via spiking components. These

results provide a concrete example of how a single non-spiking neuron may model the

average spiking frequency of a population of spiking neurons. The resulting model also

demonstrates that by using the FSA, models can be constructed that incorporate both

spiking and non-spiking units. This work facilitates the construction of large networks

of spiking neurons and synapses that perform specific functions, for example, those

implemented with neuromorphic computing hardware, by providing an analytical method

for directly tuning their parameters without time-consuming optimization or learning.

Keywords: spiking neuron, generalized integrate and fire models, non-spiking neuron, neurorobotics, functional

subnetwork approach, synthetic nervous system

77

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.577804
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.577804&domain=pdf&date_stamp=2020-11-13
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nicholas.szczecinski@mail.wvu.edu
https://doi.org/10.3389/fnbot.2020.577804
https://www.frontiersin.org/articles/10.3389/fnbot.2020.577804/full

Szczecinski et al. Extending the Functional Subnetwork Approach

1. INTRODUCTION

Neuromorphic computing hardware is becoming more widely
available (Khan et al., 2008; Pfeil et al., 2013; Benjamin et al.,
2014; Gehlhaar, 2014; Merolla et al., 2014; Ionica and Gregg,
2015; Davies et al., 2018). Such chips have non-traditional
architecture, with highly-parallel processing and specialized
circuits that mimic neural and synaptic dynamics. These
chips mimic the communication of spiking neural networks,
whose discrete communication events (i.e., spikes) reduce the
communication overhead relative to continuous networks. Many
canonical brain networks have been tested with these chips
including decorrelation networks, winner-take-all networks, and
balanced random networks (Pfeil et al., 2013), as well as
other networks that perform complex computations, such as
multi-object recognition (Merolla et al., 2014) and keyword-
matching (Blouw et al., 2018), using <100 mW of power in the
process.

Neuromorphic hardware is advancing both computational
neuroscience (Eliasmith and Anderson, 2002; Eliasmith et al.,
2012) and artificial intelligence (Pfeil et al., 2013; Benjamin et al.,
2014; Merolla et al., 2014), and soon will play a critical role
in robotics. Animals’ mobility shows that neuron-based control
is effective, and several groups have already developed neural-
inspired controllers that could benefit from the low power and
parallel computing of neuromorphic hardware (Ayers et al., 2010;
Floreano et al., 2014; Dasgupta et al., 2015; Hunt et al., 2017;
Szczecinski and Quinn, 2017b; Dürr et al., 2019). However, to
apply these neuromorphic chips to robotics, these controllers
must be converted into a chip’s specific neural model, which
may not be trivial. All chips use a variant of the integrate-and-
fire model (Brunel and van Rossum, 2007). Toward this goal, we
have developed methods for applying our functional subnetwork
approach (FSA) for designing non-spiking recurrent neural
networks (Szczecinski et al., 2017b) to the specific generalized
integrate-and-fire (GLIF) model used by Intel’s Loihi chip
(Mihalaş and Niebur, 2009; Davies et al., 2018).We will show that
these models (i.e., non-spiking and GLIF) have several parallels
that enable a network designer to map between them. The details
of this comparison are listed at the end of the Introduction.

Setting parameter values in dynamic neural networks can
be extremely difficult. Even when network architecture is
created directly from animal architecture, parameters cannot
be practically measured across all neurons and synapses, and
there may be thousands of parameters that dynamically interact.
Therefore, these parameter values must be set by the modeler
such that the network produces the desired behavior. Some
methods and tools have been developed to assist neural designers
when mapping network behavior to a desired output, for
example, the Neuroengineering Framework and its browser-
based design program, Nengo (Eliasmith and Anderson, 2002;
Maass and Markram, 2004; Bekolay et al., 2014). These methods
seek to build populations of neurons, whose average activity (i.e.,
spiking frequency) encodes a value of interest. Each population
can then interact with others to perform specific operations,
such as arithmetic or calculus. This technique is very powerful,
enabling the construction of brain-scale networks (Eliasmith,

2013). However, one drawback is that within each population,
the connectivity is random, and may not provide insight into
how biological networks are structured at small scales. This
method is also not ideal for modeling networks with relatively
few neurons, such as those that have been described in the
locomotion networks of animals (e.g., Bueschges et al., 1994;
Sauer et al., 1996; Berg et al., 2015).

As an alternative to this technique we have developedmethods
for explicitly computing neural and synaptic parameter values for
non-spiking dynamical neural networks that perform arithmetic
and calculus (Szczecinski et al., 2017b). Such networks are
also called “recurrent neural networks,” because each neuron’s
instantaneous state is a function of its own history, producing
a form of self-feedback. While such recurrent dynamics can
make it difficult to tune networks, such continuous dynamical
neural models enable direct analysis of a network’s eigenvalues,
equilibrium points, and therefore, individual neuron behavior
in response to specific inputs (Szczecinski et al., 2017a,b). Such
analysis can be difficult to perform on spiking networks, but is
particularly important in robotics, in which engineers seek to
guarantee a robot’s stability and the controller’s robustness to
parameter changes or sensor noise. The resulting networks are
sparse and based on known anatomy, similar to related robotic
controllers composed of analog very large scale integration
(VLSI) circuits or efficient, discrete-time neuron models (Ayers
and Crisman, 1993; Ayers et al., 2010).

Such non-spiking, continuous-valued models theoretically
have the same activation dynamics as the average spiking
frequency of a population of spiking neurons, all of whom
receive the same (noisy) inputs (Wilson and Cowan, 1972).
The current manuscript explores this assertion by identifying
relationships between the parameter values in the non-spiking
model used in our previous work (Szczecinski et al., 2017a,b)
and those in a GLIF model (Mihalaş and Niebur, 2009; Davies
et al., 2018). Applying the functional subnetwork approach to
spiking networks has three primary benefits: First, it enables rapid
and direct assembly of spiking networks that have predictable
performance; second, it enhances neural robot controllers with
richer dynamics than recurrent neural networks; and third, it
is a tool for implementing neural controllers on neuromorphic
hardware for robots.

In this manuscript, we demonstrate the first of these
benefits by extending our previously-developed design tools
for non-spiking models (Szczecinski et al., 2017b) to spiking
models. We present three “parallels” between the non-spiking
and spiking models that enable the extension of our non-
spiking network design techniques to spiking networks.
This extension includes reducing the impact of non-linear
relationships within a network. We derive three parallels
between these models:

P1. The steady-state spiking frequency of a spiking neuron is
parallel to the steady-state depolarization of a non-spiking
neuron because each is proportional to the current applied
to the neuron. We refer to both of these quantities as the
“activation” of the neuron. The activation of each model can
be related to the other via model parameters, and specific

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 57780478

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

parameter values increase the similarity between spiking
frequency and non-spiking depolarization.

P2. The instantaneous spiking frequency of a spiking neuron is
parallel to the instantaneous depolarization of a non-spiking
neuron. Each exhibits a transient response when stimulated.
The decay rate of each model can be related to the other via
model parameters, and specific parameter values increase the
similarity between the spiking frequency time constant and
the non-spiking membrane time constant.

P3. The time-averaged conductance of a spiking synapse is
parallel to the conductance of a non-spiking synapse
because each is proportional to the activation of the pre-
synaptic neuron. Both spiking and non-spiking synapses
can be designed to implement a given “gain” value, i.e.,
the ratio between the post-synaptic (i.e., receiving) and
pre-synaptic (i.e., sending) neurons’ activations. Specific
parameter values increase the similarity between the time-
averaged spiking synapse conductance and the non-spiking
synapse conductance.

This manuscript is organized as follows. The methods in section
2 present the non-spiking and GLIF models and compute
fundamental quantities for each, including equilibrium points
and useful relationships between parameter values and variables.
We use these expressions to extend our FSA for designing non-
spiking networks to spiking models. The results in section 3
demonstrate parallels P1-P3 and leverage them into a sequential
process for designing a spiking pathway. In section 4, the results
from section 3 are applied to a neuromuscular model of a stretch
reflex, and the resulting motion of the models is compared.
Finally, the discussion in section 5 summarizes the work, explains
how neurobiologists and roboticists can apply this work to their
research, and proposes future work. To aid the reader, variable
names are defined in Table 1.

2. METHODS

In this section, we present both the non-spiking model and the
spiking model. For each, we compute parameter values necessary
to demonstrate parallels P1–P3. Then we briefly summarize the
philosophy behind the FSA.

2.1. Non-spiking Neuron and Synapse
Models
The non-spiking model is a leaky integrator, or recurrent neural
model (Beer and Gallagher, 1992). Such a model describes the
subthreshold dynamics of a neuron with the differential equation

C̄mem ·
dŪ

dt
= −Gmem · Ū+

n
∑

i=1

Ḡs,i · (Es,i− Ū)+ Iapp+ Ibias, (1)

where Ū is the non-spiking neuron voltage above its rest potential
(referred to as “membrane depolarization” throughout, see
Szczecinski et al., 2017b for more detail), C̄mem is the capacitance
of the cell membrane, Gmem is the leak conductance, Ḡs,i is the
instantaneous conductance of the ith incoming non-spiking (i.e.,
graded) synapse, Es,i is the reversal potential of the i

th incoming

TABLE 1 | List of variables and descriptions.

Variable Description

NON-SPIKING

¯U Membrane voltage, state variable

¯Cmem Membrane capacitance, constant parameter

Gmem Membrane conductance/leak conductance, constant parameter

Iapp Applied current, input variable

¯Gmax Maximum non-spiking synaptic conductance, constant parameter

¯Gs Instantaneous non-spiking synaptic conductance, piecewise linear

function of the pre-synaptic neuron’s voltage

¯Es Non-spiking synaptic reversal potential, constant parameter

SPIKING

U Membrane voltage, state variable

θ Spiking threshold, state variable

Cmem Membrane capacitance, constant parameter

Gmem Membrane conductance/leak conductance, constant parameter

Iapp Applied current, input variable

θ0 Initial spiking threshold, constant parameter

τθ Spiking threshold time constant, constant parameter

m Proportionality constant that determines the change in θ relative to U,

constant parameter

Gmax Maximum spiking synaptic conductance, constant parameter

Gs Instantaneous synaptic conductance, state variable

τs Synaptic time constant, constant parameter

Es Spiking synaptic reversal potential, constant parameter

synapse relative to the neuron’s rest potential, Iapp is the applied
current that encodes information (e.g., muscle stretch, as shown
in Figure 1), and Ibias is the constant offset current. The synaptic
conductance Ḡs is a piecewise linear function of the pre-synaptic
neuron voltage,

Ḡs = Ḡmax,i ·











0, if Ūpre ≤ 0,
Ūpre

R , if 0 < Ūpre < R,

1, if Ūpre ≥ R.

(2)

Ḡmax is the maximum synaptic conductance, and R is the
maximum membrane depolarization of neurons in the network
(Szczecinski et al., 2017b). Parameters with a bar (e.g., Ū) are
those that relate to the non-spiking model, and will be mapped
to analogous parameters in the spiking model in section 2.2. The
results in section 3 explain how to map from these values into
their spiking model counterparts.

The steady-state membrane depolarization, Ū∞, is calculated
by solving Equation (1) when dŪ/dt = 0,

Ū∞ =

∑n
i=1 Ḡs,i · Es,i + Iapp + Ibias

∑n
i=1 Ḡs,i + Gmem

. (3)

Note that the equilibrium voltage is effectively the average of
incoming synaptic potentials Es, weighted by their conductances
Ḡs. If a neuron receives an applied current but has no incoming

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2020 | Volume 14 | Article 57780479

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 1 | An example of a simple reflex pathway that encodes muscle stretch and decodes to muscle force. Both non-spiking and spiking implementations are

shown. Both methods require mapping to and from mechanical states and neural states, but the specific transforms required depend on the model used. The rest of

this manuscript demonstrates the relationships between parameters in these models.

synaptic connections, this expression simplifies to:

Ū∞ =
Iapp + Ibias

Gmem
. (4)

If Ibias = 0, then Ū is directly proportional to Iapp. This
expression will be used to demonstrate parallel P1 between
the models.

How does the non-spiking model’s response evolve over time?
The response to a tonic current that is turned on at time

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2020 | Volume 14 | Article 57780480

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

t = 0 is

Ū(t) = Ū∞ · (1− e−t/τmem), (5)

where U∞ comes from Equation (3), and

τmem =
Cmem

∑n
i=1 Gs,i + Gmem

. (6)

The transient response of Ū decays with time constant τmem,
which will be compared to the spiking model’s transient spiking
frequency, demonstrating parallel P2 between the models.

The effect of a synaptic input on the post-synaptic neuron can
be quantified by the “gain” of the synapse. We define the gain
ksyn = Ū∞,post/Ū∞,pre, the ratio between the post-synaptic and
pre-synaptic steady-state voltage. Substituting the expression for
synaptic conductance in Equation (2) into Equation (3) relates
the synapse’s parameter values to its gain (Szczecinski et al.,
2017b):

Ḡmax =
ksyn · R

Es − ksyn · R
. (7)

This expression will be extended to design spiking synapses, once
we demonstrate parallel P3 between the models.

2.2. Spiking Neuron and Synapse Model
The spiking model used in this work is a generalized leaky
integrate and fire (GLIF) model (Mihalaş and Niebur, 2009;
Davies et al., 2018). The dynamics of the membrane voltage are
identical to Equation (1) (Equation 8), except that U is reset
to 0 after crossing the spiking threshold, θ (Equation 10). In
addition, the threshold θ is itself a dynamical variable that evolves
according to Equation (9). The dynamics of U and θ interact to
produce a diverse set of spiking responses (Mihalaş and Niebur,
2009).

The spiking model’s dynamics are:

Cmem ·
dU

dt
= −Gmem · U +

n
∑

i=1

Gs,i · (Es,i − U)+ Iapp + Ibias

(8)

τθ ·
dθ

dt
= −θ + θ0 +m · U (9)

if U ≥ θ , 0←− U, (10)

where the variable names and functions are the same as in
Equation (1), with the exception of the synaptic conductance Gs,i

(described below); and the threshold variable θ , whose equation
includes the threshold time constant τθ , the initial threshold θ0,
and the proportionality constant that specifies how θ changes in
response to changes in U, calledm.

The spiking synapse conductance Gs is reset to its maximum
value Gmax when the pre-synaptic neuron spikes, and decays to 0
with a time constant τs,

τs ·
dGs

dt
= −Gs. (11)

The steady-state threshold value θ∞ is calculated by solving
Equation (9) when dθ/dt = 0,

θ∞ = θ0 +m · U∞, (12)

where U∞ is the neuron’s steady-state membrane depolarization
(as in Equation 3), if the spiking mechanism (Equation 10) is
disabled. We will refer to U∞ as the “target voltage.” When the
spiking mechanism is enabled, then steady-state spiking occurs
if U∞ > θ∞, which we show below.

The steady-state spiking frequency of a neuron fsp is the
inverse of the time required for the neuron’s membrane potential
in Equation (5) to cross the threshold θ(t),

fsp =
−1

τmem · ln
(

1− θ
U∞

) . (13)

Equation (13) indicates that if the target voltage is below the
threshold (i.e., U∞ < θ), then the argument of ln() becomes
<0 and the frequency is undefined because no spikes can occur.
Increasing the target voltage U∞ (e.g., via synaptic inputs or
applied current) or decreasing the threshold θ increases fsp by
decreasing the amount of time needed for U(t) to reach θ . The
spiking frequency can also be increased by reducing τmem, which
similarly reduces the time needed for U(t) to reach θ .

If the spiking threshold is not dependent on the membrane
voltage (i.e.,m = 0 in Equation 10), then θ(t) = θ0, and Equation
(13) is used to calculate the spiking frequency explicitly, given the
target voltageU∞. According to Equation (3),U∞ is a function of
Iapp, so Equation (13) provides the Iapp → fsp mapping necessary
to demonstrate parallel P1 whenm = 0.

The spiking thresholdmay depend on themembrane potential
(m 6= 0 in Equation 10), for example, when modeling neurons
that exhibit class 2 excitability, frequency adaptation, or other
non-constant spiking frequency responses (Mihalaş and Niebur,
2009). In such cases, Equation (13) is still used to calculate the
spiking frequency. However, since θ is a dynamical variable, the
value of θ at the instant that a spike occurs, called θ∗ must be
found. Additionally, θ∗ may change from spike to spike, so in
fact one must solve for θ∗

∞
, the instantaneous spiking threshold

for each spike during steady-state spiking. This amounts to
solving the following implicit equation, which is derived in the
Supplementary Materials S1.1.1 and S1.1.2:

f (θ∗
∞
) = 0 =











(θ∞ − θ∗
∞
) ·

θ∗
∞

U∞
+m · U∞ ·

(

1−
θ∗
∞

U∞

)

· ln
(

1−
θ∗
∞

U∞

)

,

if τmem = τθ ; (θ∞ − θ∗
∞
) ·

(

1− (1−
θ∗
∞

U∞
)τmem/τθ

)

+

m·U∞·τmem
τθ−τmem

·

(

(1−
θ∗
∞

U∞
)− (1−

θ∗
∞

U∞
)τmem/τθ

)

, else.

(14)

Equation (14) implicitly describes the relationship between the
target voltage U∞ and the threshold at the instant a spike occurs
θ∗
∞
, and must be solved numerically. Once θ∗

∞
is found, the

steady-state spiking frequency is calculated by substituting θ =

θ∗
∞

in Equation (13).

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2020 | Volume 14 | Article 57780481

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

A more easily computed but less accurate explicit function
approximation of θ∗

∞
based on U∞ is shown below in Equation

(16). This approximation follows from observing that when fsp is
large, two key phenomena arise: First, there is less time between
spikes for θ to fluctuate, so its average value is a good estimate
of its instantaneous value; second, the average voltage Uavg

approaches θ∗
∞

/2 (Supplementary Materials S1.1.3), enabling
the usage of Equation (12) to calculate

θ∗
∞
= θ0 +m ·

θ∗
∞

2
. (15)

Rearranging for θ∗
∞

yields

θ∗
∞
=

θ0

1−m/2
= B · θ0, (16)

where B = 1/(1−m/2). The approximation in Equation (16) has
the advantage of being explicit. However, it is only accurate when
1/fsp << τθ . Its utility will be explored in the results (section 3).

2.2.1. Average Synaptic Conductance
The average synaptic conductance Gavg is computed by solving
for Gs(t) and calculating its average value over a duration of one
interspike period, Tsp = 1/fsp. The synaptic conductance evolves
according to Equation (11). Because a pre-synaptic spike resets
the conductance to Gmax, the conductance after a spike at time
t = 0 is simply

Gs(t) = Gmax · e
−t/τs . (17)

The average conductance Gavg given a steady-state pre-synaptic
interspike period Tsp can be calculated by integrating Equation
(17) over the interval [0,Tsp] and dividing by Tsp. Performing
this integral,

Gavg = Gmax · τs · fsp · (1− e−1/fsp·τs). (18)

The average conductance Gavg is directly proportional to the pre-
synaptic spiking frequency fsp except for the influence of the
exponential term, which we define as

δ = e−1/fsp·τs (19)

This equation will be necessary to tune synaptic connections in
the network.

2.3. Network Construction
To control motion, the nervous system must map from
mechanical quantities (e.g., muscle stretch) to neural quantities
(e.g., sensory neuron voltage, spiking frequency, etc.), perform
computations, and then map neural output back into mechanical
quantities (e.g., muscle force) (Eliasmith and Anderson, 2003;
Szczecinski et al., 2017b; Hilts et al., 2019). Thus, the network
“encodes” the mechanical state of the animal or robot, performs
control computations, and then “decodes” the required actuator
forces. For example, Figure 1 illustrates a simple stretch reflex,
implemented as both non-spiking and spiking pathways. The

type of encoding and decoding that take place in each pathway
depends on whether it is spiking or non-spiking, but the
computation itself should not differ.

In this manuscript, each non-spiking neuron has a maximum
expected membrane depolarization R, and each spiking neuron
has a maximum expected spiking frequency Fmax. The minimum
value in each case is 0. Specifying an expected range of activity
for each type of network simplifies network tuning in two ways.
First, it enables a clear comparison between non-spiking and
spiking implementations of the same network. The activation
of analogous nodes in two networks should be equal once
normalized to the range of activity, e.g., Ū/R = fsp/Fmax.
When all of a network’s nodes have the same activity scale, more
specific and precise computations can be designed within the
network (Szczecinski et al., 2017b). Second, it enables synaptic
connections between serial nodes in the same network to be
parameterized by the gain ksyn, whether non-spiking or spiking
models are used. The gain can be formulated as either ksyn =
Ūpost/Ūpre or ksyn = fpost/fpre. Normalizing network activity
in this way will enable us to apply the same design constraints
derived in Szczecinski et al. (2017b) to the spiking model.

2.4. Simulation
All simulations were implemented in Matlab (The Mathworks,
Natick, MA). Neurons were initialized with a random initial
depolarization U(0) ∈ [0, θ0]. This added some variation to
the simulation. All units were scaled to ms, mV, nA, nF, and
µS (M�). Dynamics were simulated using the forward Euler
method, with time step 1t = min(τmem) · 10

−4 ms.

3. RESULTS

3.1. Comparison of Non-spiking and
Spiking Neuron Activation
The steady-state spiking frequency fsp is approximately a linear
function of the applied current Iapp. Equation (4) shows that the
non-spiking model’s voltage Ū is directly proportional to Iapp.
However, Equation (13) shows that the spiking frequency of the
spiking model fsp is a transcendental function of the neuron’s
applied current Iapp. Despite its transcendental nature, it can be
bounded by parallel lines,

Iapp

Gmem · τmem · θ∗∞
−

1

2 · τmem
≤ fsp(Iapp, θ

∗

∞
)

≤

Iapp

Gmem · τmem · θ∗∞
+

1

2 · τmem
, (20)

provided that

Ibias =
Gm · θ

∗

∞

2
. (21)

This inequality is derived in Supplementary Materials (S1.1.4).
For any Iapp, the precise value of θ∗

∞
is calculated numerically

with Equation (14), or approximated with the explicit function in
Equation (16). Then, Equation (20) provides affine bounds on the
spiking frequency, with a range of ±1/(2 · τmem). Figures 2A,B

Frontiers in Neurorobotics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 57780482

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 2 | (A) A neuron’s spiking frequency fsp is an approximately linear function of the steady-state membrane voltage U∞, staying between the upper bound

fsp,ub = (U∞ + θ∗
∞

/2)/(τmem · θ
∗

∞
) and the lower bound fsp,lb = (U∞ − θ∗

∞
/2)/(τmem · θ

∗

∞
) (Equation 20). (B) Zooming in shows that the linear approximation is poor at low

frequencies. (C) The error between the measured and approximated spiking frequency is a function of both U∞ and m, but stays below 2% in all cases. (D) Even if the

spiking threshold can change over time (m 6= 0), neurons tend to spike at the same threshold no matter the value of U∞. This threshold approaches the explicit

approximation in Equation (16) (dashed lines) as U∞ increases.

plot the three terms in Equation (20) vs. Iapp/Gmem. Figure 2A
shows that as Iapp increases, fsp is an approximately linear
function of Iapp, and approaches the mean of the bounds from
Equation (20). The resulting approximation is

fsp,approx(Iapp, θ
∗

∞
) =

Iapp

Gmem · τmem · θ∗∞
. (22)

Figure 2B shows that the linear approximation in Equation (22)
breaks down for very small values of Iapp, but Figure 2C shows

that the error asymptotically approaches 0 as Iapp increases,
no matter the value of m. Figure 2D shows that for any
value of m, θ∗

∞
approaches the value in Equation (16) as Iapp

(and fsp) increases.
Equation (22) reveals the parallel between the non-

spiking activation Ū and the spiking activation fsp: Both
are directly proportional to Iapp (provided the bias current
is tuned according to Equation 21). To strengthen this
parallel, τmem can be tuned such that each activation
value equals its maximum value when the input Iapp

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2020 | Volume 14 | Article 57780483

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

equals its maximum value, Gmem · R. The resulting
constraint is

τmem =
R

Fmax · θ∗∞
. (23)

This condition implies that given the same
input current Iapp, the non-spiking and spiking
activations can be mapped to each other
through the relationship

fsp,approx(Iapp, θ
∗

∞
) =

Fmax

R
· Ū∞, (24)

The results show that the spiking frequency is parallel
to the membrane depolarization of the non-spiking model.
Each activation state is a linear function of the applied
current, and can be related to each other by the factor
Fmax/R. This supports parallel P1 from the Introduction: Non-
spiking neuron voltage is analogous to the spiking neuron’s
spiking frequency.

3.2. Comparison of Non-spiking and
Spiking Activation Transient Responses
The transient spiking threshold θ∗ can be tuned to approximate
the transient response of the non-spiking membrane
depolarization Ū. Knowing the steady-state spiking threshold
at the time of spiking, θ∗

∞
, one can calculate the evolution of

θ∗ from spike to spike. This evolution describes the transient
response of the neuron’s spiking frequency in response to
a step-input current. The following expression is derived
in Appendix 1.4:

θ∗(t) = θ∗
∞
+ (θ0 − θ∗

∞
) · e−t/τθ∗ , (25)

where θ∗
∞

is calculated via Equation (14) or Equation (16) and
τθ∗ = τθ · B (Equation 46).

Equation 25 describes how the spiking threshold, and thus
the spiking frequency, evolves from spike time to spike time.
This is analogous to the non-spiking neuron membrane transient
response from Equation (5), whose time constant is defined in
Equation (6). The time constants in a non-spiking functional
subnetwork (e.g., as designed according to Szczecinski et al.,
2017b) are mapped to the threshold’s time constant in a spiking
neuron network with the equation

τθ = τ̄mem ·

(

1−
m

2

)

. (26)

Figure 3A plots the response of θ and fsp when m = −5,
compared to the response of a non-spiking neuron voltage
Ū, scaled by Fmax/R (Equation 24). Figures 3Ai–iii show
that Equation (25) accurately predicts the spiking threshold
at each spike time, even as different values of τθ are used.
Figures 3Aiv–vi show that when m = −5, fsp evolves smoothly,
because θ∗ evolves quickly and with a large amplitude.

Figure 3B plots the transient responses when m = −0.5. θ∗

is predicted accurately in Figures 3Bi–iii. However, the spiking
frequency discontinuously leaps from 0 to a non-zero value as

shown in Figures 3Biv–vi. Since θ has the same transient time
constant as Ū, the transient firing frequency has the same decay
rate as the non-spiking neuron voltage. However, the amplitude
does not map directly.

Finally, Figures 3Ci–iii show that this analysis applies even
whenm > 0, that is, when the threshold increases as U increases.
Figure 3C does not include plots of fsp or Ū because whenm > 0,
fsp decreases over time, a behavior that the non-spiking model
cannot reproduce.

The data in Figure 3A show that when m << 0, the firing
frequency fsp evolves smoothly at the same rate as Ū scaled by
Fmax/R, when subjected to the same current input. This result
supports parallel P2 from the Introduction: The transient spiking
threshold θ∗ mimics the transient membrane depolarization Ū
as long as τθ∗ = τθ · B = τ̄mem.

3.3. Comparison of Non-spiking and
Spiking Synaptic Conductance
The average spiking synaptic conductance Gavg can be tuned to
approximate the non-spiking synaptic conductance Ḡs. Gavg is
approximately proportional to fsp when τs is sufficiently small.
Decreasing τs improves this approximation by reducing the
impact of δ, the exponential term in Equation (18). Figure 4
illustrates δ graphically. After selecting a value for δ, Equation
(19) can be solved to compute the upper limit of τs,

τs ≤
−1

Fmax · ln δ
. (27)

For example, if δ = 0.01 (1% deviation from a linear relationship)
and Fmax = 0.1 kHz, then τs ≤ 2.17 ms. Equation 27 is
necessary to ensure that the average synaptic conductance Gavg

is an approximately linear function of the pre-synaptic neuron’s
firing frequency fsp.

Figure 4 plots Gavg vs. fsp for various parameter value
combinations. δ is different in each column. In each case, τs
is calculated using Equation (27). When δ is small (≤ 1%),
the average spiking synaptic conductance is almost directly
proportional to the spiking frequency of the pre-synaptic neuron.
This is analogous to the non-spiking synaptic conductance,
which is proportional to the membrane depolarization of the pre-
synaptic neuron (Equation 2). This result supports parallel P3
from the Introduction: The average spiking synaptic conductance
Gavg is proportional to the pre-synaptic neuron’s activation.
However, Gavg is an emergent property of the synapse; the
designer can only set the value of Gmax. How should Gmax be set?
Once the desired value for Gavg is known (see section 3.4), Gmax

is determined by rearranging Equation (18),

Gmax =
Gavg

τs · Fmax · (1− δ)
. (28)

What if one wishes to set Gmax to achieve a particular functional
gain, that is, ratio of firing frequencies between the post-
synaptic and pre-synaptic neurons (i.e., fsp,post/fsp,pre)? In this
case, one sets Gavg in Equation (28) equal to the equivalent non-
spiking synaptic conductance in Equation (7), which is expressed

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 57780484

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 3 | The evolution of the spiking threshold when a spike occurs can be predicted. (A) When the threshold strongly hyperpolarizes in response to membrane

voltage depolarization, the transient spiking frequency evolves much like the non-spiking neuron’s membrane voltage. (B) When the threshold weakly hyperpolarizes in

(Continued)

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 57780485

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 3 | response to membrane voltage depolarization, the transient spiking frequency evolves at the same rate as a non-spiking neuron’s membrane voltage, but

the amplitude matches poorly. This is because the spiking neuron’s membrane must depolarize strongly before firing even one spike, leading to a large leap in

frequency from 0 to a non-zero value. (C) This analysis also applies if the spiking threshold depolarizes in response to membrane voltage depolarization (i.e., m > 0).

However, the comparison between fsp and U is not shown because in this case, fsp begins large and decreases over time, rather than beginning small and increasing

over time, like ¯U.

FIGURE 4 | Decreasing the synaptic time constant τs increases the linearity of the average synaptic conductance Gavg as a function of the pre-synaptic neuron’s

spiking frequency fpre. Changing the network’s maximum spiking frequency Fmax will change the specific value of τs, but the linearity δ varies in the same way.

in terms of ksyn, the functional synaptic gain. As a further
simplification, let us assume δ ≈ 0, in which case:

Gmax =
ksyn · R

(E− ksyn · R) · τs · Fmax
. (29)

This equation enables the direct design of synaptic conductance
based on synaptic gain.

3.4. Extending the Functional Subnetwork
Approach for Designing Non-spiking
Networks to Spiking Networks
Having established analogous parameters between non-spiking
and spiking networks, we can now adapt the functional
subnetwork approach (FSA) (Szczecinski et al., 2017b) to spiking
networks. The goal of the FSA is to determine the parameter
values for individual neurons and synapses based on network-
wide parameter values (e.g., R and Fmax) and the intended
function of a portion of a network. In the non-spiking framework
we previously developed, one could construct networks that
could add two (orN) input signals using three (orN+1) neurons;
subtract two signals using three neurons; multiply two signals
using four neurons; divide two signals using three neurons;
differentiate a signal using four neurons; and integrate a signal
over time using two neurons. The accuracy of the FSA has a
practical limit, especially when parameter values are constrained
to biologically plausible bounds. However, the FSA enables the
rapid, direct assembly of networks that can perform sophisticated
tasks, such as entraining rhythmic output to periodic inputs
(Nourse et al., 2018) or learning the appropriate force to

apply to the environment (Szczecinski and Quinn, 2017a), right
“out of the box.” Such networks also serve as good starting
configurations for subsequent optimization (Pickard et al., 2020).
As such, we find the FSA to be useful for designing computational
models and robot controllers.

How does one use the FSA to select parameter values based
on network function? As an example, consider a pathway in
which one neuron’s activation may represent the average of
two other neurons’ activation. To accomplish this, the synapses
connecting these neurons should each have gain ksyn = 1/2,
such that f3 = 1/2 · (f1 + f2). For another example, one
neuron’s activation may represent the difference between two
other neurons’ activation if the synapses have equal and opposite
gain, e.g., ksyn,1 = 1, ksyn,2 = −1 (and the second synapse has a
negative reversal potential). The FSA ensures that each neuron
encodes the intended quantities and performs the intended
operation by tuning parameter values in an algorithmic way.

Table 2 contains the FSA for spiking networks. The designer
first sets network-wide values for the spiking neuron parameters
Fmax, θ0, R, either based on biological data or arbitrarily.
Applying the same values across the entire network ensures
proper encoding and decoding (e.g., Figure 1). Next, the designer
sets m and τθ based on the desired transients in the system.
Then Ibias and τmem are calculated so that fsp = Fmax when
Iapp/Gm = R. After the neural parameters, the synaptic
parameters are tuned. The synaptic decay constant τs is calculated
to ensure the average synaptic conductance is proportional to the
pre-synaptic neuron’s spiking frequency. Finally, the maximum
synaptic conductance Gmax is calculated to achieve the intended
average synaptic conductance.

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2020 | Volume 14 | Article 57780486

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

TABLE 2 | Expanded functional subnetwork approach for designing spiking pathways.

Step Goal Param. Eq. No. Equation

1. Set network-wide activation parameters. Fmax , R, and θ0 24 fsp,approx =
Fmax
R
·
¯U∞

2. For each neuron, set transient response type based on function in the network. m For d
dt fsp > 0, set m < 0.

For d
dt fsp = 0, set m = 0.

For d
dt fsp < 0, set m > 0.

3. For each neuron, set the duration of transient firing based on its function in the

network.

τθ 26 τθ = τ̄mem · (1−
m
2)

4. For each neuron, calculate bias current. Ibias 21 Ibias =
Gmem ·θ0
2−m

5. For each neuron, ensure fsp ∈ [0, Fmax]. τmem 23 τmem =
R

Fmax
·

1− m
2

θ0

6. For each synapse, limit its non-linearity. τs 27 τs ≤
−1

Fmax ·ln δ

7. For each synapse, set synaptic gain ksyn based on function in the network. Gmax 29 Gmax =
ksyn ·R

(Es−ksyn ·R)·τs ·Fmax

As an example, let us design a pathway wherein the post-
synaptic neuron’s spiking frequency mirrors its pre-synaptic
neuron’s spiking frequency. Following Table 2, the steps are:

1. Arbitrarily, but in the range of biological systems, pick the
maximum spiking frequency Fmax = 0.1 kHz, the maximum
membrane depolarization R = 20 mV, and the initial firing
threshold θ0 = 1 mV. These are arbitrary quantities, but may
be tuned to match a specific pathway if data is available.

2. Pickm = 0 so θ is constant, and each neuron has no transient
spiking frequency.

3. Sincem = 0, there is no transient, and this step is skipped.
4. Calculate Ibias = 0.5 nA, so that fsp = 0 when Iapp = 0 and

fsp = Fmax when Iapp = R.
5. Using the values from steps 1 to 4, calculate τmem = 200 ms.

The neuron properties are now set.
6. Set δ = 1% such that Gavg is nearly directly proportional to fsp

of the pre-synaptic neuron, with a maximum deviation of 1%.
This condition is met if τs = 2.17 ms.

7. Using non-spiking network design rules from Szczecinski et al.
(2017b), design a signal transmission pathway with a gain of
ksyn = 1. For a value of Es = 160, Gmax = 0.658 µS.

Figure 5 shows the behavior of the signal transmission pathway
designed above. The left column shows the pre-synaptic neuron
activity, and the right column shows the post-synaptic neuron’s
response. Themembrane depolarizationU is plotted in the upper
row for each trial, and the spiking frequency fsp is plotted in
the lower row. In each case, the post-synaptic neuron’s spiking
frequency is effectively the same as the pre-synaptic neuron’s. The
key result is that the process we outline above produces parameter
values for the construction of neural systems to produce a
particular behavior without optimization.

Let us perform another example, in which m < 0, to mimic
the behavior of a non-spiking neuron whose membrane time
constant is τ̄mem = 500 ms. In this case, we can also validate that
the transient spiking frequency is consistent with the non-spiking
model’s transient membrane depolarization.

1. Pick Fmax = 0.1 kHz, R = 20 mV, and θ0 = 1 mV.
2. Pick m = −5, such that the spiking frequency has a

transient response.
3. If τ̄mem = 500 ms, then τθ = 1, 750 ms.

4. Calculate Ibias = 0.143 nA.
5. Using the values from steps 1 to 4, calculate τmem = 700 ms.

Steps 4 and 5 ensure that fsp = 0 when Iapp = 0 and fsp = Fmax

when Iapp = R. Neuron properties are now set.
6. Same as in the previous example, τs = 2.17 ms.
7. Same as in the previous example, Gmax = 0.658 µS.

Figure 6 shows the same type of data as Figure 5. The spiking
frequency plots enable us to compare the smoothed transient
spiking frequency to the membrane depolarization of the
analogous non-spiking network. The spiking model’s smoothed
transient response decays at the same rate as the non-spiking
model’s, although some differences in the responses are visible.
First, the spiking neuron’s smoothed transient does not exhibit
the same exponential-shaped rise as the non-spiking neuron’s
transient. Second, the spiking neuron’s transient response to a
spiking input exhibits fluctuations because the spiking threshold
is continuously adapting to the instantaneous membrane voltage.
In the next subsection, we show that adding more neurons can
eliminate this problem.

3.5. Spiking Pathways May Introduce
Unwanted Artifacts
We have shown that we can apply our non-spiking signal
pathway design rules to spiking networks by treating many
values as their average over time. However, there are some
unintended artifacts of this approach that reduce performance.
The first is an intermittent drop in a post-synaptic neuron’s
spiking frequency (Figure 7A). The way the system is tuned, the
post-synaptic neuron should fire every time that the pre-synaptic
neuron fires. Occasionally, however, the post-synaptic spike time
is delayed relative to the synaptic current. This manifests as
a temporary drop in the instantaneous spiking frequency. The
prediction of the average spiking frequency is intermittently
incorrect as a result.

The second artifact is a periodic instantaneous spiking
frequency (about the predicted spiking frequency, Figure 7B).
This occurs when m < 0, and thus the spiking threshold θ

decreases when the neuron is depolarized, making it easier for
the neuron to spike. Particularly at low stimulus frequencies, the
neuron may exhibit a periodic spiking frequency (Figure 7B).
However, one can see that the prediction of the average spiking

Frontiers in Neurorobotics | www.frontiersin.org 11 November 2020 | Volume 14 | Article 57780487

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 5 | Data from three simulations testing a signal transmission pathway where ksyn = 1 with different applied currents (Iapp) to the pre-synaptic neuron. In each

section, the upper row is the membrane voltage, and the lower row is the instantaneous spiking frequency plotted vs. time. In every case, the post-synaptic neuron’s

spiking frequency is the same as the pre-synaptic neuron’s spiking frequency and is consistent with the prediction from the analysis above. In addition, it is

approximately equal to ¯U for the equivalent non-spiking network. Spikes are indicated by violet asterisks (no “cosmetic spikes” are plotted). (A) Response to a 5 nA

current applied to the presynaptic neuron. (B) Response to a 10 nA current applied to the presynaptic neuron. (C) Response to a 20 nA current applied to the

presynaptic neuron.

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2020 | Volume 14 | Article 57780488

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 6 | Data from three simulations testing the signal transmission pathway. In each section, the left column is the pre-synaptic neuron’s activity, the right column

is the post-synaptic neuron’s activity, the upper row is the membrane voltage, and the lower row is the instantaneous spiking frequency (inverse of the time between

two spikes) plotted vs. time. In every case, the post-synaptic neuron’s spiking frequency is the same as the pre-synaptic neuron’s spiking frequency, and consistent

with the prediction from the analysis above. In addition, the transient spiking frequency of each neuron follows the transient membrane voltage of the analogous

non-spiking pathway. Spikes are indicated by violet asterisks (no “cosmetic spikes” are plotted). (A) Response to a 5 nA current applied to the presynaptic neuron.

Note that the presynaptic neuron’s low spiking frequency causes large fluctuations in the postsynptic neuron’s spiking frequency. (B) Response to a 10 nA current

applied to the presynaptic neuron. Due to the higher spiking frequency, fluctuations in the postsynaptic neuron’s spiking frequency appear less severe than in A. (C)

Response to a 20 nA current applied to the presynaptic neuron. Fluctuations in the postsynaptic neuron’s spiking frequency are not severe.

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2020 | Volume 14 | Article 57780489

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 7 | (A) If a pre-synaptic spike does not elicit a spike in the post-synaptic neuron, then its spiking frequency will intermittently drop. (B) The spiking frequency

of a post-synaptic neuron whose threshold hyperpolarizes in response to membrane voltage depolarization may oscillate at low frequencies. In both columns, spikes

are indicated by violet asterisks (no cosmetic “spikes” are plotted).

frequency remains accurate. In the following section, we show
that both of these unwanted artifacts can be eliminated by adding
more neurons and synapses to the network.

3.6. A Spiking Pathway’s Regularity and
Accuracy Depends on the Number of
Neurons in the Network
Adding more neurons to both the pre-synaptic and post-synaptic
populations in a pathway helps mitigate the issues described
in the previous subsection. To demonstrate this, we performed
the same spiking frequency tests as before by connecting two
populations of neurons together through a single pathway
composed of multiple synapses. For these tests, each population
hasN neurons, and every neuron in each population is connected
to every neuron in the second population, requiringN2 synapses.
This connectivity pattern is illustrated in Figure 8.

Figure 9 displays the post-synaptic population’s mean spiking
frequency as N increases. The same parameter values were
used as in Figure 5, but with Gmax randomly distributed
across each neuron’s N incoming synapses (uniform random
distribution). For each value of N, 30 simulations were run.
The raw spiking frequency over time is plotted for each. The
spiking frequency fluctuates with smaller magnitude when the
pathway contains more neurons. This is because each incoming
synapse has a smaller maximum conductance, producing a
total synaptic conductance that fluctuates less over time than
when fewer synapses are present. Figure 9B plots the maximum
and minimum spiking frequency of any one neuron in the
population, normalized to the mean spiking frequency of the
population. As N increases, each individual neuron’s spiking
frequency approaches the mean of the population. Figure 9C
plots the mean spiking frequency of the population for each trial.
As N increases, the population’s spiking frequency more closely
matches the intended value.

Adding more neurons to a pathway also reduces the random
fluctuations in the transient response of a spiking pathway in
whichm 6= 0. Figure 10 plots data similar to that in Figure 9, but
for the pathway shown in Figure 6. Much like in Figure 9, adding
more neurons to the signal transmission pathwaymakes the post-
synaptic neurons fire more regularly, and with less fluctuation
during the transient. As more neurons are added, the transient
response more closely matches that of the equivalent non-spiking
network (in black).

4. APPLICATION TO A
NEUROMECHANICAL SYSTEM

The similarities between non-spiking models and a population
of spiking models apply to neuromechanical control models.
Figures 11, 12 show data from a simulation of the muscle stretch
reflex illustrated in Figure 1. In each case, the extensor muscle
was activated, causing the flexor to stretch. The system’s behavior
was simulated in four scenarios: (1) open loop, that is, the
flexor does not activate, although it can develop passive tension;
(2) closed loop, with a pathway containing a single spiking
neuron at each level that mediates a stretch reflex to activate
the flexor and resist the stretch imposed by the extensor; (3)
closed loop, with a pathway built from populations of 10 spiking
neurons per node, connected as illustrated in Figure 8, and (4)
closed loop, with a pathway built from non-spiking neurons and
synapses. Noise was added to the model via reset noise (Gerstner,
2000). The impact of such reset noise on a neuron’s encoding
properties is calculated in Supplementary Materials (S1.1.6),
and the model’s formulation and parameter values are listed in
Supplementary Materials (S1.2.1).

Figure 11 compares the system performance when the spiking
neurons have constant spiking threshold θ , i.e., m = 0. In this
case, there is effectively no transient spiking frequency when

Frontiers in Neurorobotics | www.frontiersin.org 14 November 2020 | Volume 14 | Article 57780490

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 8 | Diagram showing the all-to-all connectivity scheme used between populations of spiking neurons. The N input neurons (blue) all receive the same applied

current Iapp, causing spikes that transmit this signal via N2 synapses to the N output neurons (red).

a stimulus is applied based on the length of the flexor muscle
(Figure 1). In case 1, the open loop case, contracting the extensor
results in significant joint extension, ≈0.7 radian. In all three
closed loop cases, the joint extends much less in response to the
muscle force due to the stretch reflex. After the major motions
have died out, the muscle force, and therefore the joint angle,
fluctuates the most in case 2, less in case 3, and not at all in
case 4. All of the key response characteristics, including the angle
overshoot, the settling time, and the final angle are the same
in cases 2–4, suggesting that these systems are interchangeable
models of such a stretch reflex.

Figure 12 compares the system performance when the spiking
neurons do not have constant spiking threshold θ , i.e., m = −5.
Tuning the spiking and non-spiking networks to exhibit similar
transient behavior (e.g., in section 3.4) will result in much longer
membrane time constants for the non-spiking system. In this case
one would expect delayed activation of the nodes along the reflex
pathway, causing a delayedmuscle membrane depolarization and
resulting in more overshoot and a longer rise time than when
m = 0. Indeed this occurs in each case 2–4 relative to the
experiments in Figure 11.

However, the non-spiking system in case 4 exhibits damped
oscillation after case 3 has effectively come to rest. The spiking
pathway does not exhibit such oscillations because the transient
spiking frequency is due to the threshold θ changing from its
initial value θ0 to the steady state value at which spikes occur
θ∗
∞
. Figure 2D illustrates this point, showing that once a neuron

begins spiking, the value of θ∗ is largely constant, even as the
input Iapp (and thus the spiking frequency fsp) increases. This
is because the average voltage Uavg is relatively insensitive to
changes in spiking frequency (Figure S1), causing only small
changes in θ∗ and thus fsp. Despite this mismatch in transient
responses, the FSA enables us to rapidly construct models that
contain both spiking and non-spiking elements.

5. DISCUSSION

5.1. Summary
The analysis and numerical results in this manuscript show how
continuous, non-spiking leaky-integrator neural dynamics can
approximate the dynamics of a population of identical GLIF
spiking neurons with randomized interconnections. The parallels
in encoding and information transfer manifest through three
analogs: (1) A spiking population’s mean spiking frequency
is analogous to the membrane voltage of a leaky integrator,
(2) the transient spiking frequency of a spiking neuron can
mimic a non-spiking neuron’s transient voltage, and (3) a
spiking synapse’s average conductance is proportional to the
pre-synaptic neuron’s spiking frequency, analogous to how
a non-spiking synapse’s conductance is proportional to the
pre-synaptic neuron’s membrane depolarization. Since the
dynamics are approximately similar, a network built from
either type can be used to encode and transfer information
in an equivalent manner. Therefore, networks of either type
can have similar overall behavior, and either type might
effectively be used to model and understand the nervous
system.

The parallels between non-spiking neural models and models
of populations of spiking neurons have been known for quite
some time (Wilson and Cowan, 1972). However, the process
and tools needed to set parameters within networks of these
models to achieve desired and/or equivalent behavior have
been lacking. In an attempt to apply the classical analysis
from (Wilson and Cowan, 1972) to the practical application
of programming neuromorphic hardware, we extended our
functional subnetwork approach (FSA) to tuning networks of
GLIF neurons and synapses. This extension enables one to
tune control systems built from either non-spiking nodes or
populations of spiking neurons. We presented a step-by-step

Frontiers in Neurorobotics | www.frontiersin.org 15 November 2020 | Volume 14 | Article 57780491

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 9 | Adding more neurons to the pre-synaptic and post-synaptic populations increases encoding accuracy and reduces activation variation. (A) Average

spiking frequency of the post-synaptic population ¯fsp over time when the spiking threshold θ is constant (i.e., m = 0) for all neurons. Thirty individual trials (blue), the

mean over time (red), and the equivalent non-spiking pathway (black dotted) are plotted. (B) The highest (blue circles) and lowest (red circles) mean frequency of a

single neuron in the population. Line plots the mean of each group, error bars are ±1 standard deviation. (C) The error between the mean spiking frequency of the

entire population and the intended spiking frequency for each trial (blue circles). Line plots the mean, error bars are ±1 standard deviation.

method for tuning practical networks of populations of spiking
neurons and synapses. We provided examples showing how
increasing the number of neurons makes data transmission
more ideal (i.e., match the expected population average activity).
Finally, we provided a practical example of how such a method
can be used to tune a neuromechanical model for control,

and how the non-spiking and spiking implementations compare
and contrast.

Despite the similarities between the models’ activation in
response to inputs (section 3.1) and how this activation maps
to synaptic conductivity (section 3.3), we observe differences in
the models’ transient responses. A spiking neuron’s smoothed

Frontiers in Neurorobotics | www.frontiersin.org 16 November 2020 | Volume 14 | Article 57780492

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 10 | Adding more neurons to the pre-synaptic and post-synaptic populations increases encoding accuracy and reduces activation variation. (A) Average

spiking frequency of the post-synaptic population ¯fsp over time when the spiking threshold θ is variable (i.e., m = −5) for all neurons. Thirty individual trials (blue), the

mean over time (red), and the equivalent non-spiking pathway (black dotted) are plotted. (B) The highest (blue circles) and lowest (red circles) mean frequency of a

single neuron in the population. Line plots the mean, error bars are ±1 standard deviation. (C) The error between the mean spiking frequency of the entire population

and the intended spiking frequency for each trial is plotted (blue circles). Line plots the mean, error bars are ±1 standard deviation.

(i.e., time-averaged) transient spiking frequency is a good
match for a non-spiking neuron’s transient membrane voltage
if the spiking neuron is not initially spiking (Figures 6, 10).
This is because the spiking threshold must change from
the initial value θ0 to the steady state value when a
spike occurs, θ∗

∞
. However, the spike-time threshold θ∗

∞
is

insensitive to a neuron’s input current (and therefore the

neuron’s spiking frequency), meaning that the amplitude of
the transient is very small once a neuron is spiking. This
is not true for the non-spiking model, whose transient
amplitude depends strongly on the input current. Therefore,
the response properties of networks tuned to have long,
exaggerated transient responses are a good match initially, but
not once a neuron is already spiking (Figure 12). In all other

Frontiers in Neurorobotics | www.frontiersin.org 17 November 2020 | Volume 14 | Article 57780493

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 11 | Data from a simulation of the system in Figure 1. Each column shows data from a different configuration of the system, from left to right: Case 1, open

loop; case 2, spiking reflex pathway, N = 1; case 3, spiking reflex pathway, N = 10 (fsp for every neuron is shown in light blue, population mean fsp is plotted in dark

blue); case 4, non-spiking reflex pathway. All corresponding axes are scaled the same. Each row plots data from a different stage of the reflex loop as depicted in

Figure 1. In this figure, all spiking neurons have a constant spiking threshold θ (i.e., m = 0).

Frontiers in Neurorobotics | www.frontiersin.org 18 November 2020 | Volume 14 | Article 57780494

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 12 | Data from a simulation of the system in Figure 1. Each column shows data from a different configuration of the system, from left to right: Case 1, open

loop; case 2, spiking reflex pathway, N = 1; case 3, spiking reflex pathway, N = 10 (fsp for every neuron is shown in light blue, population mean fsp is plotted in dark

blue); case 4, non-spiking reflex pathway. All corresponding axes are scaled the same. Each row plots data from a different stage of the reflex loop as depicted in

Figure 1. In this figure, all spiking neurons have a variable spiking threshold θ (i.e., m = −5).

Frontiers in Neurorobotics | www.frontiersin.org 19 November 2020 | Volume 14 | Article 57780495

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

respects, however, these models can be tuned to produce the
same responses.

5.2. Expanding These Methods
The analysis in this manuscript primarily provides a framework
for designing rate-coding networks, based on their steady-state
spiking frequency. We have already shown how steady-state
analysis contributes to designing arithmetic and dynamic (i.e.,
differentiation and integration over time) networks (Szczecinski
et al., 2017b). However, not all neural computation is rate-
coding, meaning that additional techniques are needed to expand
this work to engineer direct encoding of other signals to
produce more sophisticated neural behaviors. For instance, a
non-spiking model captures class II excitability, in which a
neuron’s spiking frequency exponentially approaches a steady-
state spiking frequency when subjected to a step input (Mihalaş
and Niebur, 2009). However, the GLIF spiking neuron model
used in this work can also exhibit class I excitability in
which there is no transient spiking frequency, a behavior
that a non-spiking neuron cannot replicate. Such a response
might be useful in a reflex pathway, in which delayed sensory
feedback may destabilize the system. In addition, a spiking
neuron can exhibit phasic excitability, in which its spiking
frequency starts high, but decays to 0 during a step input
(Mihalaş and Niebur, 2009, see also Figure 3C). In the future,
we plan to investigate whether such phasic responses could
be used to replace the differentiation network from the non-
spiking FSA approach (Szczecinski et al., 2017b) with a single
neuron, a technique we have used in the past, but did not
characterize thoroughly (Szczecinski et al., 2014). Exploiting
single-neuron properties in this way could enable designers
to pack more computational capability into chips with limited
(albeit large) network sizes, such as Loihi (Davies et al.,
2018).

However, creating small networks that seek to exploit
single-neuron properties may reduce the accuracy of encoding,
decoding, and other operations within the network. Alternative
systems, such as the Neuroengineering Framework (NEF)
(Eliasmith and Anderson, 2002), rely on nodes (ensembles) with
many neurons (on the order of 10–1,000) to accurately encode
information into the network. What makes NEF so powerful is
the relatively hands-off design process, wherein the user specifies
the intended function and number of neurons per node, and
then NEF learns the intra-node parameter values necessary to
perform that function (Eliasmith et al., 2012; Bekolay et al., 2014).
This approach is much less onerous to the designer than the
FSA, which requires explicit tuning of parameters for encoding,
decoding, and other functions. We anticipate that these two
approaches may complement one another, wherein the direct
network tuning accomplished by the FSA could be used to
initialize tuning within the NEF. In our experience, the FSA can
be used to select initial network parameters that aid subsequent
parameter optimization (Pickard et al., 2020). As a next step, we
plan to compare the accuracy and efficiency of networks tuned
via the FSA with those tuned via the NEF. We expect that the
NEF may achieve arbitrarily high accuracy, but possibly at a
computational cost. The FSA could be used to initialize learning

networks in a less randomway, requiring fewer neurons per node
and less time to train.

5.3. When to Use Spiking or Non-spiking
Neurons
A question that follows from this work is that if non-spiking
and spiking neuron dynamics have many parallels, how does a
modeler choose to use one or the other type? We believe that
both types are useful in different contexts, depending on the
knowledge available about the system to be modeled, the research
question addressed by the model, and the real-world application
of the network (e.g., in robotics).

A natural choice is to model spiking neurons in the nervous
system with spiking models, and non-spiking neurons with non-
spiking models. However, biomechanical constraints determine
whether animals use spiking or non-spiking neurons. Specifically,
action potentials can be transmitted over long distances, whereas
graded (i.e., non-spiking) signals tend to dissipate over even short
distances. This may be why many non-spiking neurons have
been identified in insects and other small animals, particularly
for integrating sensory information (Burrows et al., 1988; Sauer
et al., 1996); they have less room in their bodies to house networks
of many spiking neurons, and their small bodies do not require
them to transmit information over long distances. No matter
why animals have spiking or non-spiking neurons, a computer
model does not share these biochemical constraints, so it is worth
deciding how to model networks based on the computational
hardware available.

One purely technological motivation to use spiking models is
for model implementation on neuromorphic hardware. Chips,
such as Loihi (Davies et al., 2018), SpiNNaker (Khan et al., 2008),
TrueNorth (Merolla et al., 2014), and others (Pfeil et al., 2013;
Gehlhaar, 2014; Ionica and Gregg, 2015) use non-traditional
architecture to simulate hundreds of thousands of spiking
neurons and hundreds of millions of synapses in real-time
while using on the order of one watt of power. Neuromorphic
computers tend to use spiking models because they have
less communication overhead than non-spiking networks. For
spiking networks, communication can be binary (1 bit per spike)
and only must occur after a spike occurs, at a maximum of 200–
300 Hz (Gerstner et al., 1997; Carter and Bean, 2010) but more
often below 1–2 Hz (Kerr et al., 2005). In contrast, non-spiking
synapses need to be updated during every simulation step,
because they depend on the pre-synaptic neuron’s continuous
membrane voltage. Such a requirement significantly increases
overhead relative to spiking models.

Spiking neurons and synapses are also attractive because
they enable the use of spike timing dependent plasticity (STDP)
learning techniques (Gerstner et al., 1996; Markram et al., 1997,
2012), a powerful class of machine learning tools. These methods
have been applied to many stimulus-recognition tasks, such as
hearing, speech, and vision. They measure the coincidence of
incoming spikes to increase or decrease the strength of synapses
in the network, and thus rely on spiking models. These networks
are typically classified as “self-organizing,” meaning that they
initially have no structure, but develop their own structure as

Frontiers in Neurorobotics | www.frontiersin.org 20 November 2020 | Volume 14 | Article 57780496

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

connections are pruned due to disuse. However, many parts of
the nervous system have exquisite structure, and lend themselves
to being directly modeled, structure, and all. Thus, we believe that
the methods in this manuscript may serve to produce baseline
parameter values for a highly structured network, which may
then use spike-based mechanisms to tune itself over time, a
technique like that utilized in Nengo (Bekolay et al., 2014). In
such cases, populations of spiking neurons would be preferable
to non-spiking population models, but could be initialized using
the tuning rules presented in this manuscript.

Additionally, spiking neurons and synapses may be beneficial
because even a simple model like that used in this work can
produce a wide variety of behaviors and responses (Mihalaş and
Niebur, 2009). For example, setting m > 0 can produce spike
frequency adaptation and phasic spiking, which are known to
be critical for filtering sensory feedback in locomotory systems
(Mamiya et al., 2018; Zill et al., 2018). Such rate-sensitive
responses can be produced by small networks of non-spiking
neurons and synapses (Szczecinski et al., 2017b), but force the
modeler to use more neurons than may be necessary. Therefore,
if the modeler knows that single neurons in their model system
generate more complex responses than class I or II excitability,
then spiking models should be utilized. However, if the neuron
responses in the network are simple, then the model could be
implemented as a network of non-spiking neurons instead.

We believe non-spiking networks may be particularly
beneficial if a model is not meant to run on specialized
neuromorphic hardware. Simulating the membrane voltage of
each spiking neuron in a population requires storing and
updating orders of magnitude more states than simply using
a non-spiking node to represent the mean activity of the
population. In addition, throughout this study, we observed that
the timing of spikes was sensitive to the simulation step used (i.e.,
spikes cannot happen between time steps), and simulations only
closely matched our analytic predictions as the time step became
very small. We also tested adaptive stepping algorithms (Matlab’s
ode45 and ode15s solvers); however, the discontinuous nature of
spikes required the use of event functions that halt simulation
whenever a spike occurs, complicating the code. In general, we
found that it took longer to simulate the dynamics of a spiking
network relative to those of a non-spiking network. These reasons
motivate implementing networks on traditional computers with
non-spiking models.

Finally, non-spiking neurons may contribute to models by
representing neuromodulatory neurons that cause large-scale
changes to network behavior. In Szczecinski et al. (2017b), we
not only designed “signal transmission” pathways as in this
work, but also “signal modulation” pathways, in which one
neuron could modify the gain of another neuron’s response to
its synaptic inputs. When we tested signal modulation pathways

built from spiking neurons and synapses, the results were
poor (data not shown). Due to the discrete nature of spikes,
modulation was inconsistent, leading to unpredictably varying
firing frequencies from the “modulated” neuron. However, it
may be advantageous to instead construct networks in which
signals are transmitted via spiking neurons, but modulated
via non-spiking neurons. These non-spiking neurons in effect
model neuromodulatory neurons, whose voltage reflects the
concentration of a neuromodulator in the network, and whose
non-spiking synapses represent the activation of receptors
sensitive to that particular neuromodulator. Such pathways may
change the resting potential, membrane conductance, and time
constant of other neurons throughout the network (for a review,
see Miles and Sillar, 2011). Such non-spiking neurons would
have long time constants, enabling them to modify network
performance on much longer timescales than that of a single
spike. Such neurons could receive either descending input from
the brain, or ascending input from local sensory neurons. The
result would be a model that can modulate its control system
based on exteroception and interoception, and exhibit truly
adaptive, context-dependent behavior.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

NS conceived of the study. NS, RQ, and AH planned the
results to be collected. NS collected results and wrote
the manuscript. RQ and AH edited the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by NSF: NeuroNex Grant #2015317 to
RQ, AH, and NS funds research into creating computational and
robotic models of animal motor control, NSF: RI Grant #1704436
to RQ funds research into tuning dynamical neural controllers
for legged robots, and NSF: US-German Collaboration Grant
#1608111 to RQ funds research into tuning dynamical neural
controllers for legged robots.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.577804/full#supplementary-material

REFERENCES

Ayers, J., and Crisman, J. (1993). “Lobster walking as a model for

an omnidirectional robotic ambulation architecture,” in Proceedings

of the Workshop on “Locomotion Control in Legged Invertebrates”

on Biological Neural Networks in Invertebrate Neuroethology and

Robotics (San Diego, CA: Academic Press Professional, Inc.),

287–316.

Frontiers in Neurorobotics | www.frontiersin.org 21 November 2020 | Volume 14 | Article 57780497

https://www.frontiersin.org/articles/10.3389/fnbot.2020.577804/full#supplementary-material
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

Ayers, J., Rulkov, N., Knudsen, D., Kim, Y. B., Volkovskii, A., and Selverston, A.

(2010). Controlling underwater robots with electronic nervous systems. Appl.

Bionics Biomech. 7, 57–67. doi: 10.1155/2010/578604

Beer, R. D., and Gallagher, J. C. (1992). Evolving dynamical neural networks

for adaptive behavior. Adapt. Behav. 1, 91–122. doi: 10.1177/105971239200

100105

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C.,

Rasmussen, D., et al. (2014). Nengo: a Python tool for building large-scale

functional brain models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.

00048

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J. M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Berg, E. M., Hooper, S. L., Schmidt, J., and Büschges, A. (2015). A leg-local neural

mechanism mediates the decision to search in stick insects. Curr. Biol. 25,

2012–2017. doi: 10.1016/j.cub.2015.06.017

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2018). Benchmarking

Keyword Spotting Efficiency on Neuromorphic Hardware.

Brunel, N., and van Rossum, M. C. W. (2007). Quantitative investigations of

electrical nerve excitation treated as polarization. Biol. Cybernet. 97, 341–349.

doi: 10.1007/s00422-007-0189-6

Bueschges, A., Kittmann, R., and Schmitz, J. (1994). Identified nonspiking

interneurons in leg reflexes and during walking in the stick insect. J. Compar.

Physiol. A 174, 685–700. doi: 10.1007/BF00192718

Burrows, M., Laurent, G., and Field, L. (1988). Proprioceptive inputs to nonspiking

local interneurons contribute to local reflexes of a locust hindleg. J. Neurosci. 8,

3085–3093. doi: 10.1523/JNEUROSCI.08-08-03085.1988

Carter, B. C., and Bean, B. P. (2010). Incomplete inactivation and rapid recovery of

voltage-dependent sodium channels during high-frequency firing in cerebellar

purkinje neurons. J. Neurophysiol. 105, 860–871. doi: 10.1152/jn.01056.2010

Dasgupta, S., Goldschmidt, D., Wörgötter, F., and Manoonpong, P. (2015).

Distributed recurrent neural forward models with synaptic adaptation and

CPG-based control for complex behaviors of walking robots. Front. Neurorobot.

9:10. doi: 10.3389/fnbot.2015.00010

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Dürr, V., Arena, P. P., Cruse, H., Dallmann, C. J., Drimus, A., Hoinville, T., et al.

(2019). Integrative biomimetics of autonomous hexapedal locomotion. Front.

Neurorobot. 13:88. doi: 10.3389/fnbot.2019.00088

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological

Cognition. Oxford: Oxford University Press.

Eliasmith, C., and Anderson, C. H. (2002). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA;

London: MIT Press.

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Computational

Neuroscience. A Bradford Book. Cambridge, MA: MIT Press

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Floreano, D., Ijspeert, A., and Schaal, S. (2014). Robotics and neuroscience. Curr.

Biol. 24, R910–R920. doi: 10.1016/j.cub.2014.07.058

Gehlhaar, J. (2014). Neuromorphic processing: a new frontier in scaling computer

architecture. ACM SIGPLAN Not. 49, 317–318. doi: 10.1145/2644865.2564710

Gerstner, W. (2000). Population dynamics of spiking neurons: fast

transients, asynchronous states, and locking. Neural Comput. 12, 43–89.

doi: 10.1162/089976600300015899

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A

neuronal learning rule for sub-millisecond temporal coding.Nature 383, 76–78.

doi: 10.1038/383076a0

Gerstner, W., Kreiter, A. K., Markram, H., and Herz, A. V. M. (1997). Neural

codes: firing rates and beyond. Proc. Natl. Acad. Sci. U.S.A. 94, 12740–12741.

doi: 10.1073/pnas.94.24.12740

Hilts, W. W., Szczecinski, N. S., Quinn, R. D., and Hunt, A. J. (2019). A dynamic

neural network designed using analytical methods produces dynamic control

properties similar to an analogous classical controller. IEEE Control Syst. Lett.

3, 320–325. doi: 10.1109/LCSYS.2018.2871126

Hunt, A., Szczecinski, N., and Quinn, R. (2017). Development and training of a

neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11:18.

doi: 10.3389/fnbot.2017.00018

Ionica, M. H., and Gregg, D. (2015). The movidius myriad architecture’s potential

for scientific computing. IEEE Micro 35, 6–14. doi: 10.1109/MM.2015.4

Kerr, J. N. D., Greenberg, D., and Helmchen, F. (2005). Imaging input and output

of neocortical networks in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 14063–14068.

doi: 10.1073/pnas.0506029102

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al.

(2008). “Spinnaker: mapping neural networks onto a massively-parallel chip

multiprocessor,” in IEEE International Joint Conference on Neural Networks,

2008. IJCNN 2008 (IEEE World Congress on Computational Intelligence)

(Hong Kong: IEEE), 2849–2856. doi: 10.1109/IJCNN.2008.4634199

Maass, W., and Markram, H. (2004). On the computational power

of circuits of spiking neurons. J. Comput. Syst. Sci. 69, 593–616.

doi: 10.1016/j.jcss.2004.04.001

Mamiya, A., Gurung, P., and Tuthill, J. C. (2018). Neural coding

of leg proprioception in Drosophila. Neuron 100, 636–650.

doi: 10.1016/j.neuron.2018.09.009

Markram, H., Gerstner, W., and Sjöström, P. J. (2012). Spike-timing-dependent

plasticity: a comprehensive overview. Front. Synap. Neurosci. 4, 2010–2012.

doi: 10.3389/fnsyn.2012.00002

Markram, H., Luebke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mihalaş, Ş., and Niebur, E. (2009). A generalized linear integrate-and-fire neural

model produces diverse spiking behaviors. Neural Comput. 21, 704–718.

doi: 10.1162/neco.2008.12-07-680

Miles, G. B., and Sillar, K. T. (2011). Neuromodulation of vertebrate locomotor

control networks. Physiology 26, 393–411. doi: 10.1152/physiol.00013.2011

Nourse, W., Quinn, R. D., and Szczecinski, N. S. (2018). “An adaptive

frequency central pattern generator for synthetic nervous systems,” in

Conference on Biomimetic and Biohybrid Systems (Paris: Springer), 361–364.

doi: 10.1007/978-3-319-95972-6_38

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.

(2013). Six networks on a universal neuromorphic computing substrate. Front.

Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Pickard, S. C., Quinn, R. D., and Szczecinski, N. S. (2020). A dynamical model

exploring sensory integration in the insect central complex substructures.

Bioinspir. Biomimet. 15:026003. doi: 10.1088/1748-3190/ab57b6

Sauer, A. E., Driesang, R. B., Büschges, A., Bässler, U., and Borst, A. (1996).

Distributed processing on the basis of parallel and antagonistic pathways

simulation of the femur-tibia control system in the stick insect. J. Comput.

Neurosci. 3, 179–198. doi: 10.1007/BF00161131

Szczecinski, N. S., Brown, A. E., Bender, J. A., Quinn, R. D., and Ritzmann,

R. E. (2014). A neuromechanical simulation of insect walking and transition

to turning of the cockroach Blaberus discoidalis. Biol. Cybernet. 108, 1–21.

doi: 10.1007/s00422-013-0573-3

Szczecinski, N. S., Hunt, A. J., and Quinn, R. (2017a). Design process and tools for

dynamic neuromechanical models and robot controllers. Biol. Cybernet. 111,

105–127. doi: 10.1007/s00422-017-0711-4

Szczecinski, N. S., Hunt, A. J., and Quinn, R. D. (2017b). A functional

subnetwork approach to designing synthetic nervous systems that control

legged robot locomotion. Front. Neurorobot. 11:37. doi: 10.3389/fnbot.2017.

00037

Szczecinski, N. S., and Quinn, R. D. (2017a). Leg-local neural

mechanisms for searching and learning enhance robotic

locomotion. Biol. Cybernet. 112, 99–112. doi: 10.1007/s00422-017-

0726-x

Szczecinski, N. S., and Quinn, R. D. (2017b). “Mantisbot changes stepping

speed by entraining cpgs to positive velocity feedback,” in Conference

Frontiers in Neurorobotics | www.frontiersin.org 22 November 2020 | Volume 14 | Article 57780498

https://doi.org/10.1155/2010/578604
https://doi.org/10.1177/105971239200100105
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1016/j.cub.2015.06.017
https://doi.org/10.1007/s00422-007-0189-6
https://doi.org/10.1007/BF00192718
https://doi.org/10.1523/JNEUROSCI.08-08-03085.1988
https://doi.org/10.1152/jn.01056.2010
https://doi.org/10.3389/fnbot.2015.00010
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnbot.2019.00088
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/j.cub.2014.07.058
https://doi.org/10.1145/2644865.2564710
https://doi.org/10.1162/089976600300015899
https://doi.org/10.1038/383076a0
https://doi.org/10.1073/pnas.94.24.12740
https://doi.org/10.1109/LCSYS.2018.2871126
https://doi.org/10.3389/fnbot.2017.00018
https://doi.org/10.1109/MM.2015.4
https://doi.org/10.1073/pnas.0506029102
https://doi.org/10.1109/IJCNN.2008.4634199
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.1016/j.neuron.2018.09.009
https://doi.org/10.3389/fnsyn.2012.00002
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.1254642
https://doi.org/10.1162/neco.2008.12-07-680
https://doi.org/10.1152/physiol.00013.2011
https://doi.org/10.1007/978-3-319-95972-6_38
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1088/1748-3190/ab57b6
https://doi.org/10.1007/BF00161131
https://doi.org/10.1007/s00422-013-0573-3
https://doi.org/10.1007/s00422-017-0711-4
https://doi.org/10.3389/fnbot.2017.00037
https://doi.org/10.1007/s00422-017-0726-x
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Szczecinski et al. Extending the Functional Subnetwork Approach

on Biomimetic and Biohybrid Systems (Stanford, CA: Springer), 440–452

doi: 10.1007/978-3-319-63537-8_37

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and

inhibitory interactions in localized populations of model

neurons. Biophys. J. 12, 1–24. doi: 10.1016/S0006-3495(72)

86068-5

Zill, S. N., Dallmann, C. J., Büschges, A., Chaudhry, S., and Schmitz,

J. (2018). Force dynamics and synergist muscle activation in

stick insects: the effects of using joint torques as mechanical

stimuli. J. Neurophysiol. 120, 1807–1823. doi: 10.1152/jn.

00371.2018

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Szczecinski, Quinn and Hunt. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 23 November 2020 | Volume 14 | Article 57780499

https://doi.org/10.1007/978-3-319-63537-8_37
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1152/jn.00371.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 26 November 2020

doi: 10.3389/fnbot.2020.589532

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2020 | Volume 14 | Article 589532

Edited by:

Jorg Conradt,

Royal Institute of Technology, Sweden

Reviewed by:

Alejandro Linares-Barranco,

Sevilla University, Spain

Terrence C. Stewart,

National Research Council Canada

(NRC-CNRC), Canada

*Correspondence:

Carlo Michaelis

carlo.michaelis@

phys.uni-goettingen.de

Received: 30 July 2020

Accepted: 28 October 2020

Published: 26 November 2020

Citation:

Michaelis C, Lehr AB and Tetzlaff C

(2020) Robust Trajectory Generation

for Robotic Control on the

Neuromorphic Research Chip Loihi.

Front. Neurorobot. 14:589532.

doi: 10.3389/fnbot.2020.589532

Robust Trajectory Generation for
Robotic Control on the
Neuromorphic Research Chip Loihi
Carlo Michaelis*, Andrew B. Lehr and Christian Tetzlaff

Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany

Neuromorphic hardware has several promising advantages compared to von Neumann

architectures and is highly interesting for robot control. However, despite the high speed

and energy efficiency of neuromorphic computing, algorithms utilizing this hardware in

control scenarios are still rare. One problem is the transition from fast spiking activity

on the hardware, which acts on a timescale of a few milliseconds, to a control-relevant

timescale on the order of hundreds of milliseconds. Another problem is the execution of

complex trajectories, which requires spiking activity to contain sufficient variability, while

at the same time, for reliable performance, network dynamics must be adequately robust

against noise. In this study we exploit a recently developed biologically-inspired spiking

neural network model, the so-called anisotropic network. We identified and transferred

the core principles of the anisotropic network to neuromorphic hardware using Intel’s

neuromorphic research chip Loihi and validated the system on trajectories from a

motor-control task performed by a robot arm. We developed a network architecture

including the anisotropic network and a pooling layer which allows fast spike read-

out from the chip and performs an inherent regularization. With this, we show that

the anisotropic network on Loihi reliably encodes sequential patterns of neural activity,

each representing a robotic action, and that the patterns allow the generation of

multidimensional trajectories on control-relevant timescales. Taken together, our study

presents a new algorithm that allows the generation of complex robotic movements as

a building block for robotic control using state of the art neuromorphic hardware.

Keywords: robot control, neuromorphic computing, Loihi, anisotropic network, spiking neural network,

computational neuroscience

1. INTRODUCTION

During infancy, humans acquire fine motor control, allowing flexible interaction with real world
objects. For example, most humans can effortlessly grasp a glass of water, despite variations in object
shape and surroundings. However, achieving this level of flexibility in artificial autonomous systems
is a difficult problem. To accomplish this, such a system must accurately classify inputs and take
appropriate actions under noisy conditions. Thus, increasing robustness to input noise is crucial
for the development of reliable autonomous systems (Khalastchi et al., 2011; Naseer et al., 2018).

Neuromorphic hardware is based on highly parallel bio-inspired computing, which employs
decentralized neuron-like computational units. Instead of the classical separation of processing
and memory, on neuromorphic hardware information is both processed and stored in a network
of these computational units. Neuromorphic architectures offer faster and more energy-efficient

100

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.589532
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.589532&domain=pdf&date_stamp=2020-11-26
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlo.michaelis@phys.uni-goettingen.de
mailto:carlo.michaelis@phys.uni-goettingen.de
https://doi.org/10.3389/fnbot.2020.589532
https://www.frontiersin.org/articles/10.3389/fnbot.2020.589532/full

Michaelis et al. Robust Trajectory Generation on Loihi

computation than traditional CPUs or GPUs (Blouw et al., 2019;
Tang et al., 2019), which is a vital feature for autonomous systems.
However, porting existing robot control algorithms (e.g., Ijspeert
et al., 2002) to neuromorphic hardware is per se ambitious (but
see Eliasmith and Anderson, 2004; DeWolf et al., 2016; Voelker
and Eliasmith, 2017) and difficult to optimize to the specific
hardware architecture. At the same time, the development of
new algorithms is also challenging due to the decentralized
design principle of neuromorphic hardware as a network of
computational units (Lee et al., 2018).

The basic network type for the various neuromorphic
architectures developed in recent years (Schemmel et al., 2010;
Furber et al., 2014; Davies et al., 2018; Neckar et al., 2018) are
spiking neural networks (SNNs), coined third generation neural
networks (for review, see Maass, 1997; Tavanaei et al., 2019). In
particular, the reservoir computing paradigm, such as echo state
networks (Jaeger, 2001, 2007) or liquid state machines (Maass
et al., 2002), often serves as an algorithmic basis. In reservoir
computing a randomly connected SNN provides a “reservoir” of
diverse computations, which can be exploited by training weights
from the reservoir units to additional units that constitute time-
dependent outputs of the system.

The internal dynamics of the reservoir or SNN generally
provide a sufficient level of variability such that arbitrary output
functions on a control-relevant timescale can be read out.
However, the system fails if the input is noisy or perturbations
arise while the trajectory is being performed (Maass et al.,
2002; Sussillo and Abbott, 2009; Laje and Buonomano, 2013;
Hennequin et al., 2014). That is to say, spiking dynamics in
SNNs are often unstable, meaning that small changes in the initial
conditions result in different spiking patterns (Sompolinsky
et al., 1988; Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000;
London et al., 2010). Thus, when an output is trained using such
a spiking pattern, low levels of noise lead to a deviation of the
estimated output from the target output and stable trajectories
can only be obtained on a timescale of milliseconds. On the other
hand, attractor dynamics provide highly stable, persistent activity
(Amit, 1992; Tsodyks, 1999); however, they tend to lack the
variability in the spiking dynamics required for complex output
learning (Nachstedt and Tetzlaff, 2017). This implies a stability-
variability trade-off, also denoted as a robustness-flexibility trade-
off (Pehlevan et al., 2018).

A number of approaches have been developed in recent
years to stabilize the spiking dynamics of SNNs while
retaining sufficient variability for output learning (Laje
and Buonomano, 2013; Hennequin et al., 2014; Pehlevan
et al., 2018; Vincent-Lamarre et al., 2020). To improve
stability, recent approaches used feed-forward structures
(Pehlevan et al., 2018) or employed supervised learning
rules (Laje and Buonomano, 2013). While feed-forward
structures provide stable activity patterns, in general these
play out on a very fast timescale (Zheng and Triesch, 2014)
or require neural/synaptic adaptation such that activity
moves between neuron groups (York and Van Rossum,
2009; Itskov et al., 2011; Murray et al., 2017; Maes et al.,
2020). And since for supervised learning all states in the
network need to be accessible at each computing unit, these

so-called global learning rules are not compatible with most
neuromorphic hardware.

Thus, achieving stable activity patterns on a control-relevant
timescale in a network architecture and learning regime
capable of running on neuromorphic hardware remains an
open problem. Necessary criteria are that (1) learning or
adaptation mechanisms in the SNN should be local to individual
synapses, or synapses should be static, (2) sequential activity
patterns should remain active for hundreds of milliseconds, (3)
spike patterns should contain sufficient variability for arbitrary
output learning, and (4) the network should possess noise-
robust neuronal dynamics. Meeting these criteria is especially
difficult for recurrent network structures, like reservoir networks.
However, the so-called anisotropic networkmodel appears to be a
promising candidate (Spreizer et al., 2019). Themodel is based on
a biologically-inspired rule for forming spatially asymmetric non-
plastic connections. Thus, synapses are static, meeting the first
criterion, and the timescale of activity sequences is on the order
of tens to hundreds ofmilliseconds, fulfilling the second criterion.
However, whether the model also fulfills the third and fourth
criteria, sufficient variability and stability under input noise, has
not yet been assessed.

In this paper we use the anisotropic network as a building
block for a novel algorithm yielding robust robotic control.
We implement the network architecture on Kapoho Bay, a
neuromorphic hardware system from Intel containing two Loihi
chips (Davies et al., 2018), and show that this approach can be
used to learn complex trajectories under noisy input conditions
on a control-relevant timescale. Furthermore, we demonstrate
that this neuromorphic network architecture can not only
robustly represent complex trajectories, but even generalize
beyond its training experience.

2. METHODS

We first describe the architecture of the novel algorithm
implemented on the neuromorphic chip Loihi, which supports
robust robotic control of movement trajectories. The anisotropic
network and its implementation is then explained in detail.
Finally analyses methods to evaluate the implementation of
the anisotropic network on Loihi, the stability of its network
dynamics, and the learning of complex movement trajectories
are described.

2.1. Architecture of the Algorithm for
Robotic Control
The architecture, shown in Figure 1A, was designed to support
the storage and execution of stable movement trajectories in real-
time. The architecture consists of an input layer, an anisotropic
network layer, and a pooling layer, all of which are fully
implemented on Loihi. Spike patterns from the anisotropic
network or the pooling layer are read out and serve as the basis
for training output units.

The basic computational structure for the robotic control
algorithm is the anisotropic network. Excitatory and inhibitory
neurons are initialized with local, spatially inhomogeneous

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 589532101

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 1 | The architecture of the robot control algorithm. (A) The anisotropic network is the basis of the architecture, indicated by the colored layers, and consists

of 3, 600 excitatory and 900 inhibitory neurons. An area of 25 excitatory neurons receive external input. The excitatory neurons of the anisotropic network project to a

pooling layer. The anisotropic network, the input neurons and the 72 pooling neurons are simulated on-chip. Finally, the spiking activity is used to train a trajectory.

(B) In detail, the pooling layer contains 72 neurons organized into two 6× 6 grids. Each pooling neuron receives all-to-one feed-forward connections from a 10× 10

square patch of the anisotropic network’s excitatory layer. Hence, the pooling layer has 10× 10 window size and stride 5.

connections as described below. An input is connected to a grid
of 5× 5 excitatory neurons in order to start spiking activity with
a short input pulse.

The excitatory neurons of the anisotropic network are
connected to a pooling layer with 72 excitatory neurons. Pooling
layer neurons are organized into two grids with a size of 6 × 6
neurons, as shown in Figure 1B. Each neuron in the pooling layer
receives input from a 10 × 10 group of excitatory neurons from
the anisotropic network. These projections are all-to-one and all
feed-feedforward weights are equal. In other words, the pooling
layer has 10× 10 window size and stride 5.

Depending on the task, either the excitatory neurons of the
anisotropic network or the 72 neurons of the pooling layer are
read out. Since reading out data from Loihi is a bottle neck that
reduces the simulation speed considerably, the pooling layer is
designed to reduce read out and therefore increase simulation
speed. Finally, linear regression is applied to the spiking activity
of the read-out (see section 2.5).

2.2. The Anisotropic Network
We briefly describe the main principles of the anisotropic
network. For an in depth treatment, we refer readers to Spreizer
et al. (2019).

In locally connected random networks (LCRNs), neurons are
distributed in (connectivity) space (e.g., on a 2D grid or torus)
and the connection probability between two neurons decreases
(possibly non-monotonically) with the distance between them.
Stable bumps of spatially localized activity can arise in LCRNs
(Roxin et al., 2005; Hutt, 2008; Spreizer et al., 2017, 2019) and
these activity bumps can move through the network in a stream-
like manner if spatial asymmetries are introduced into the local
connectivity (Spreizer et al., 2019).

The anisotropic EI-network consists of both excitatory and
inhibitory neurons arranged on a 2D torus. Neurons project their

axons in a distance dependent way with connection probability
decreasing monotonically according to a Gaussian distribution.
In a standard LCRN, axon projection profiles are centered at
the neuron and axons project symmetrically in all directions.
In the anisotropic EI-network, the Gaussian distribution is
shifted for excitatory neurons such that connections to other
excitatory neurons are formed preferentially in a particular
direction (Figure 2A).

A so-called landscape is computed on the torus using Perlin
noise (Perlin, 1985), and each point on the grid (neuron)
is assigned a direction based on this. The Perlin landscape
ensures that the preferred direction of nearby neurons are similar
while preferred directions of those far apart are uncorrelated
(Figure 2B). Each excitatory neuron’s connectivity profile is
shifted by one grid point in its preferred direction, resulting
in spatially asymmetric but correlated connectivity. When a set
of neurons in close proximity are stimulated, spatio-temporal
sequences of activity lasting tens to hundreds of milliseconds are
elicited (Figure 2C).

Taken together, a biologically plausible rule can generate
spatially asymmetric connectivity structures supporting spatio-
temporal sequences. Spreizer et al. (2019) show that if
(1) individual neurons project a small fraction (∼2–5%) of
their axons preferentially in a specific direction (Figure 2A), and
(2) neighboring neurons prefer similar directions (Figure 2B),
then sequences of neural activity propagate through the network
(Figure 2C). This simple generative connectivity rule results
in feed-forward paths through the otherwise locally connected
random network.

2.3. Anisotropic Network Implementation
We adapted the anisotropic EI-network model from Spreizer
et al. (2019). Since the total number of connections currently
supported by the Loihi NxSDK-API is limited (see section 4),

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2020 | Volume 14 | Article 589532102

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 2 | The connectivity underlying the anisotropic network and resulting network dynamics. (A) Neurons are evenly distributed on a 2D grid, folded to form a

torus. The black dot represents a reference neuron. From here outgoing connections can be drawn locally with a Gaussian distribution, either symmetrically (gray-blue)

or non-symmetrically (red). In the non-symmetrical case the center of the Gaussian distribution is shifted by one neuron. This shift can be chosen in different ways.

Either with the same shift direction for every neuron (homogeneously), a random shift direction for every neuron, or with a specific distribution. (B) If for each neuron

the shift direction is chosen based on Perlin noise, the distribution of shift directions for the whole network results in an anisotropic connectivity structure. The black

region represents spatially-localized input. (C) Given local input, the anisotropic network forms a bump of activity, which moves in a stream-like pattern through the

inhomogeneous structure of connections. Here, we used the Loihi implementation and binned the spikes into non-overlapping time windows. Each graph shows the

average firing rate over 50 time steps, color code depicts firing rate.

it was necessary to reduce network size by a factor of four to
npopE = 3, 600 and npopI = 900. Each neuron projects to
pconn × npopE = 180 excitatory targets and pconn × npopI =

45 inhibitory targets, where pconn = 0.05 is the connection
probability. Connection probability decreases with distance
according to a Gaussian distribution with space constants given
in Supplementary Table 1. We first adapted the anisotropic EI-
network model within NEST and then transferred it to Loihi,
tuning the network to qualitatively match the behavior of the
NEST simulation.

NEST Implementation

Neurons were modeled as leaky integrate-and-fire (LIF) neurons,
with sub-threshold membrane potential v of neuron i evolving
according to:

Cm
dvi

dt
= −gL(vi(t)− EL)+ Ii(t)+ I

input
i (t), (1)

where Cm is the membrane capacitance, gL the leak conductance,
and EL the reversal potential. For neuron i, Ii(t) is the total

synaptic current from its recurrent connections and I
input
i (t) the

current induced by external input.

The total synaptic current Ii(t) to neuron i at its recurrent
synapses is the sum of the current transients at each of its
synapses, Ii(t) =

∑

j Iij(t). When a pre-synaptic neuron spikes,

a current transient is elicited with temporal profile given by an
alpha function:

Iij(t) = Jsyn
t − tj,k

τsyn
exp

(

−

t − tj,k

τsyn

)

. (2)

Note here that the superscript syn can denote both excitatory
(exc) and inhibitory (inh) synapses. Synaptic strength is Jsyn,
synaptic time constant is τsyn, and spike time is tj,k for the kth

spike from neuron j.
To compensate for the decreased network size and hence

fewer recurrent connections (see above) we scaled up the synaptic
weights. The excitatory synaptic current was scaled up by a
factor of four to Jexc = 40.0 pA. To ensure persistent spiking
activity in response to an input pulse, the ratio of recurrent
inhibition and excitation was reduced to g = 4. As a result,
Jinh = −g × Jexc = −160.0 pA.

Activity was triggered by external input to a subset of
neighboring neurons, each of which receives an input pulse of 500

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2020 | Volume 14 | Article 589532103

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

spikes with synaptic strength Jinput = 1.0 pA arriving according
to a Gaussian distribution with standard deviation of 1ms.

Loihi Implementation

For the implementation on neuromorphic hardware we used the
research chip Loihi from Intel (Davies et al., 2018), which is a
digital and deterministic chip that is based on an asynchronous
design. The board we used contains two chips, with each chip
providing 128 neuron cores and three embedded x86 CPUs.
Each neuron core time-multiplexes the calculation and allows the
implementation of up to 1, 024 neurons each. We distributed the
total of 4, 572 utilized neurons (reservoir and pooling layer) with
20 neurons per core. Computation on the chip is performed in
discrete time steps and has no relation to physical time. Finally,
the Loihi board is connected to a desktop computer, called host
in the following, via a serial bus (USB).

We translated the NEST implementation to the NxSDK
(version 0.9.5-daily-20191223) for Loihi, provided by Intel labs
(Lin et al., 2018). For this, we developed a software framework
PeleNet1, based on the NxSDK, especially for reservoir
networks on Loihi. This framework was used for all simulations
in this study.

The Loihi chip implements a leaky integrate-and-fire (LIF)
neuron with current-based synapses and the membrane potential
v of neuron i evolves according to

dvi

dt
= −τ−1

v vi(t)+ Ii(t)+ I
input
i (t)− vthσi(t), (3)

where τv describes the time constant, vth the firing threshold, Ii(t)

the total synaptic current from recurrent connections, I
input
i (t)

the current induced by the input, and σi(t) denotes whether
neuron i spiked at time t. The first term on the right-hand
side controls voltage decay, the second/third term increases the
voltage according to the synaptic/input currents, and the last
term resets the membrane potential after a spike occurs.

While the NEST implementation uses alpha-function shaped
synaptic currents (see Equations 1 and 2), Loihi’s current-based
synapses implement instantaneous rise and exponential decay.
The total synaptic current from recurrent connections to neuron
i is given by

Ii(t) =
∑

i6=j

J
syn
ij (αI ∗ σj)(t)+ Ibiasi , (4)

where J
syn
ij is the synaptic strength from neuron j to neuron i

which can be excitatory (Jexc) or inhibitory (Jinh) and Ibiasi is a bias
term. The σj(t) represents the incoming spike train from neuron
j and αI(t) a synaptic filter. The spike train for a neuron j is given
by a sum of Dirac delta functions with

σj(t) =
∑

k

δ(t − tj,k), (5)

1https://github.com/sagacitysite/pelenet/tree/neurorobotics

where tj,k is the time of spike k for neuron j. The function simply
indicates whether neuron j spiked in time step t. The spike train
is convolved with a synaptic filter given by

αI(t) = τ−1
I exp

(

−

t

τI

)

H(t), (6)

where τI is a time constant and H(t) the unit step function.
With Equations (5) and (6), we can bring Equation (4) into

a form which is comparable to Equation (2). Setting Ibias = 0,
we get

Ii(t) =
∑

i6=j

J
syn
ij (αI ∗ σj)(t)

Equation(5)
=

∑

i6=j

J
syn
ij

∑

x

αI(x)
∑

k

δ((t − x)− tj,k))

=

∑

i6=j

J
syn
ij

∑

k

αI(t − tj,k)

Equation(6)
=

∑

i6=j

J
syn
ij

∑

k

τ−1
I exp

(

tj,k − t

τI

)

H(t − tj,k). (7)

Due to the filter, the input current induced by a pre-synaptic spike
decays exponentially for each following time step. And instead
of rising slowly, at the time of a spike, t = tj,k, synaptic current

increases by τ−1
I J

syn
ij . Thus, compared to the neuron model from

the anisotropic network implementation in NEST (Spreizer et al.,
2019), the hardware-implemented neuron model on Loihi differs
since it lacks a current rise time.

2.4. Comparing the Implementations
Network activity was started with the input mentioned above
and 500 discrete time steps in Loihi and 500ms in NEST were
recorded. In NEST the resolution was set to dt = 0.1ms
(see also Supplementary Table 1) per simulation step, while in
Loihi a physical time is not defined. After the simulation, the
NEST spiking data was binned to 1ms to match the Loihi
data. Note that, given the refractory period of 2ms, the binned
spike trains still contain binary values, but with a less precise
information about the sub-millisecond spike times. In the end,
both data sets, the spike trains for NEST and the spike trains for
Loihi contained 500 discrete steps.

To compare the spiking patterns between NEST and Loihi
quantitatively, we calculated the mean firing rate of groups
of excitatory neurons in both networks, which is shown in
Figure 3B. For this, we split the two dimensional network
topology into a 6 × 6 grid, analogous to the grid used for
the pooling layer (see Figure 1B) such that each grid position
represents a group of 100 neurons. The indices of the groups are
chosen from top left to bottom right. For each group, we averaged
the firing rate over the 500 time steps resulting in 36 values.

2.5. Stability and Output Learning
To analyse the stability (Figure 5) of the network and for the
output learning (Figure 6), we applied another protocol. Note

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2020 | Volume 14 | Article 589532104

https://github.com/sagacitysite/pelenet/tree/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

that from this point on, the NEST implementation was not
used. Out of the 25 excitatory neurons connected to the input,
we stimulated only 24 neurons such that 1 neuron stays silent
(Figure 4A). This input grid then allows 25 different input
configurations and therefore 25 different trials with a noise level
of 4%. Every trial was recorded for 215 time steps and then the
activity was stopped by resetting the membrane voltages. We did
this by applying a C code that runs on one x86 core on each chip
(a so called SNIP). After waiting 30 time steps, the next input
was applied to the network. The applied protocol is indicated by
arrows in Figure 5A on top of the spike train plots.

To learn trajectories from the spike patterns we used multiple
linear regression, which was applied to two different tasks. In
the representation task, we estimated model parameters based
on all 25 trials and tested on one of them. In the generalization
task, training was performed on only 24 trials and testing
was done using the remaining trial. Both tasks are sketched
in Figure 4B. To compare the anisotropic network with a
classical reservoir computing approach, we also implemented
a randomly connected network on Loihi and exchanged the
anisotropic network in our network architecture with a randomly
connected network of equal size. We set the parameters of the
random network such that the main statistics of both networks
match. The firing rate in both networks is in a range of 0.1 − 0.2
spikes per number of neurons (Figure 5A bottom) and the mean
Fano factor over all trials is relatively similar with FFrand =

0.80 ± 0.01 for the randomly connected network and FFaniso =

0.84± 0.002 for the anisotropic network.
After all data were recorded, in a first step, we prepared the

data for the estimation of the regression model. Due to the slow
rise in the firing rate of the network (Figure 3C), the very first
time steps contain little information. Therefore, we omitted the
first 5 time steps which reduces the length of the data set to 210
per trial. Before the linear regression was applied to the spike
data, the spike trains were binned in order to smooth our spiking
data. We used a sliding window with a width of 10 time steps,
which reduced the length of the data set again from 210 to 200.

Next we used the binned data of the 200 time steps to
estimate the regression parameters. In addition to the spiking
data from the neurons, an intercept was added such that the
number of parameters equal the number of neurons plus one.
The linear regression model was performed on the CPU of the
host computer, using the spiking data from the readout provided
by Loihi. The two different tasks, the representation task and
the generalization task, were performed using the spiking data
from the anisotropic network as well as those from the randomly
connected network. Furthermore, we estimated output weights
based on either the pooling layer neurons (72 neurons) or the
excitatory neurons of the reservoir (3, 600 neurons), see also
Figure 1. The excitatory neuron readout serves as a control and
compares the pooling layer approach to a traditional readout.

For the estimation based on all excitatory reservoir neurons,
we applied an elastic net regularization (Zou and Hastie, 2005)
to avoid overfitting, due to the numerous parameters. This
regularization approach for regression models simply combines
LASSO and ridge regression. We used the fit_regularized
function from the statsmodels package in Python, which

applies elastic net as

β̂ = argmin
β

[

‖y− Xβ‖22 + α
(

(1− λ)‖β‖22 + λ‖β‖1
)]

. (8)

In this variant the parameter α determines the degree of
regularization and λ balances between LASSO (L1 regularization)
and ridge regression (L2 regularization).

To better compare the predicted function with the target
function, we applied a Savitzky–Golay filter (Savitzky and Golay,
1964) to smooth the predicted function. For this we used the
savgol_filter function of the Python package scipy.
We chose a window length of 21 and an order of the polynomial
of 1 as parameters for smoothing.

We trained our algorithm on 7 different trajectories
performing ordinary robotic tasks. The tasks are hide, unhide,
move down, move up, pick and place, put on top and take down
(see e.g., Wörgötter et al. (2020)). Movement data is given in 3
dimensional Cartesian coordinates, resulting in three outputs or
– biologically speaking – in three rate coded output neurons.

3. RESULTS

We start by demonstrating that the main principles of the
anisotropic network are preserved by the Loihi implementation
and then confirm that the Loihi-based anisotropic network
admits noise-robust spiking dynamics. Based on these findings,
we demonstrate that our architecture can learn complex
trajectories under noisy input conditions.

3.1. Implementing the Computer-Based
Anisotropic Network on Loihi
Due to the different hardware architectures, we first assess
the extent to which the Loihi-based implementation of
the anisotropic network agrees with the computer-based
NEST simulation. Please note that it is not our goal to compare
two neural network simulators, but to ensure that the anisotropic
network implementation on Loihi preserves the main features.
For the sake of comparison, we used the same connectivity
structure and input positions for both implementations. The
networks were initialized at rest and spike patterns were evoked
via a spatially-localized input. Raster plots of evoked spike
trains indicate that, although the detailed spiking activity is
not identical, the overall spiking pattern is mainly preserved
(Figure 3A). Accordingly, the mean firing rate of the network for
each implementation evolves similarly over time (Figure 3C).

We confirmed the similarity between both implementations
quantitatively, comparing the mean firing rate and firing
rate variability over several input and network initializations.
Figure 3D shows the distribution of mean firing rates over (1) 15
different input positions for the same network connectivity and
over (2) 15 different initializations of the network connectivity
with a fixed input position. Across input positions in the same
network, firing rates for the Loihi implementation were ¯f Linp =

0.131 ± 0.008 and for the NEST implementation ¯fNinp = 0.118 ±

0.004. Across network initializations, firing rates were ¯f Linit =

0.120 ± 0.013 for Loihi and ¯f Linit = 0.113 ± 0.009 for NEST. In

Frontiers in Neurorobotics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 589532105

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 3 | One example of the anisotropic network implementation on Loihi compared to activity statistics of the NEST simulations. (A) The spiking activity is shown

as spike raster plots. Red: NEST simulation; blue: Loihi implementation. Both networks are initialized with the same weight matrix and triggered with the same input.

(B) By pooling neurons into groups, each consisting of 100 neurons, and binning across the whole simulation time, we obtain the distribution of mean firing rates

(# spikes / # neurons per group) for the NEST and Loihi implementation. (C) The time course of the network firing rate (# spikes / # neurons) from the NEST and Loihi

simulations is depicted. (D) Testing one network initialization with 15 different input locations (Locations) and one location but 15 different network initialization

(Networks) for the NEST as well as the Loihi implementation. White dots indicate the median of the mean firing rate (# spikes / # neurons) of the 15 simulations for

each case.

addition, the ranges (minimum to maximum mean firing rate)
of the obtained mean firing rates are very tight and overlap
largely between both implementations. For the locations, the
values for Loihi are in a range of 0.11 ≤ f Linp ≤ 0.14 and for

NEST in an interval of 0.11 ≤ fNinp ≤ 0.12. In case of the
different initializations, we obtained mean firing rates between
0.10 ≤ f Linit ≤ 0.15 for Loihi and 0.09 ≤ fNinit ≤ 0.13 for the
NEST implementation. To compare the variability of the firing
rate in both implementations, we evaluated the Fano factor (FF):

For different input positions, we obtained a mean of FF
L
inp =

0.83 ± 0.03 for Loihi and FF
N
inp = 0.86 ± 0.01 for NEST.

In the case of the 15 network initializations, the mean FF for
Loihi is FF

L
init = 0.84 ± 0.02 and FF

N
init = 0.86 ± 0.01 for

NEST. All FF values between Loihi and NEST are very close
to each other and indicate that spiking is less variable than a
Poisson process.

Given that the neural activity in the anisotropic network
forms spatially-localized bumps moving through the network,
we next measured its average spatial distribution. For the spike
rasters shown in Figure 3A, we pooled the neurons into groups
of 100, taking into account the topology of the network (see
Figure 1B), and calculated the mean firing frequencies averaged
across the whole simulation time. This procedure provides a
distribution of the mean activity across the network for both
implementations (Figure 3B). Normalizing these distributions
and comparing them with a Kolmogorov–Smirnov test reveals
that the activity distributions from the NEST- and Loihi-based
implementations do not differ significantly (D = 0.11, p =

0.97 > 0.05). Hence the spatial structure of activity patterns is
similar in both implementations.

Taken together, we conclude that the Loihi implementation
matches the NEST-based anisotropic network implementation
according to diverse statistics of the network activity. This

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2020 | Volume 14 | Article 589532106

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 4 | The input protocols for the representation and generalization task.

(A) A square represents an area of 25 possible input neurons. During a trial,

we triggered the network activity by activating 24 out of the 25. This leads to

25 different input patterns and therefore to 25 different trials. (B) We used two

different training tasks. In the representation task, for the trajectory training, we

used the spiking activity of all 25 trials and tested on one of them. In the

generalization task, we trained only on the spiking activity of 24 trials and

tested on the spikes of a different trial, which was not used for training.

indicates a successful transfer of the core principles of the
anisotropic network to neuromorphic hardware despite the
differences in architecture.

3.2. The Loihi Implementation of the
Anisotropic Network Is Robust to Input
Noise
Next, to assess the robustness of the Loihi-based anisotropic
network to input noise, we evaluate the stability of spiking
dynamics. An input pulse is administered to an area of the
anisotropic excitatory layer consisting of 25 neurons (Figure 1A).
In each trial, 24 of these neurons were activated and a different
neuron was systematically excluded from the input, leading to
25 different possible input configurations and, thus, to 25 unique
trials (Figure 4).

For each trial the network activity was started with a short
input pulse of one time step. We then recorded 200 time
steps of activity, stopped the activity manually and activated it

again by the next input. The protocol is also indicated on top
of Figure 5A.

As a control, we applied the same protocol to a randomly
connected network implemented on Loihi and compared it
with the anisotropic network implementation. For this, we
implemented the same algorithmic architecture, but exchanged
the anisotropic network with a randomly connected network
of equal size. The spiking activity of the first three trials is
shown in Figure 5A1 for the anisotropic network (green) and
Figure 5A2 for the randomly connected network (brown). Due
to the inhomogeneous connectivity structure, the activity of the
anisotropic network spreads out like a stream in the network.
Note that, given the torus network topology (see section 2), the
activity stream wraps around from neurons with low indices
to neurons with high indices (Figure 5A). As expected, in
the randomly connected network such a stream-like spread of
activity does not form.

The population firing rates progress differently in the
anisotropic and randomly connected networks. The mean firing
rate of the anisotropic network increases slowly until it reaches
a relatively constant rate slightly above 0.1. The randomly
connected network was tuned such that it generates a similar
mean population firing rate (see section 2). However, unlike in
the anisotropic network, the firing rate does not rise gradually,
but instead starts at about 0.1− 0.2 straight away. The slow start
in the anisotropic network is due to the relatively small input area
and the local connectivity of the network. While moving forward
in the 2D-topology, the area of activity grows step by step, which
can intuitively be understood as a snowball effect.

In order to measure the stability of the spiking dynamics
between different input trials, we calculated the pairwise
differences between the spike patterns of all combinations of the
25 trials. The mean and standard deviations of these differences
are shown in Figure 5B for both the anisotropic network (green)
and the randomly connected network (brown). The differences
between trials are much higher over the whole time course
for the randomly connected network than for the anisotropic
network. For the anisotropic network, the deviations of the trial-
to-trial differences are very small in the beginning and drift apart
over time. To quantify this, we performed a Levene test with
three samples at time steps 10, 100, and 190 which revealed
that the variance stays constant between the differences of the
randomly connected network trials (W = 0.60, p = 0.54 >

0.05) but increases for the anisotropic network trials over time
(W = 208.87, p = 3.36 · 10−75 < 0.05). This means that,
over time, spiking patterns between some trials stay very similar
whereas some trial comparisons tend to differ more. Therefore,
the anisotropic network tends to slowly diverge with time, which
can also be seen by the increasing mean differences. Importantly
the mean differences in the anisotropic network remain much
lower than the spiking differences between the trials in the
randomly connected network, even at the end of the 200 time
steps. This clearly demonstrates the stabilizing feature of the
anisotropic network.

To visualize differences between the single trials, we reduced
the dimensionality of the spiking data by applying principal
component analysis (PCA) to all trials (see section 2). The

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 589532107

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 5 | The Loihi implementation of the anisotropic network is robust to varying input conditions, while a randomly connected network is not. (A) Three

examplary trials out of the 25 trials are shown for a simulation based on an anisotropic connectivity structure (green) and with randomly initialized weights (brown). The

anisotropic structure clearly has a stream-like spiking pattern, where the firing rate starts slowly until it reaches a constant rate. The randomly connected network

shows a Poisson-like spiking pattern, where the firing rate starts directly at a high level. (B) The solid lines show the mean difference between all trial combinations and

the shaded area indicates the standard deviation of the trial-to-trial differences for the anisotropic (green) and random (brown) network. (C) In the reduced space of the

first two principal components of the activity of all 25 trials over time for both networks, we can clearly see that the spiking pattern of the anisotropic network are very

similar between trials, while the activity in the randomly connected network differ much more between trials.

results are shown in Figure 5C. For the anisotropic network
(Figure 5C1), all trajectories are very similar whereas for the
randomly connected network (Figure 5C2) the trajectories differ
considerably. We quantified this by calculating statistics in the
first dimension of the PCA space. First, we obtained the pairwise
normalized mean squared error between all trials for each
network type. The normalized mean error between the trials of
the randomly connected network is MSErand = 1.66, while the
anisotropic network has a mean error of only MSEaniso = 0.03,
which is significantly lower (Mann–WhitneyU-test:U = 3572.0,
p = 4.27 · 10−85 < 0.05). Even though some trajectories seem
to follow a common path, in the random network, the mean
standard deviation for the first principle component σ̄rand =

2.50 is significantly higher than in the anisotropic network with
σ̄aniso = 0.41 (Mann–WhitneyU-test:U = 0.0, p = 1.56·10−8 <

0.05). This indicates sufficient stability over 200 time steps for the
anisotropic network.

Taken together, this shows the ability of the anisotropic
network to produce stable spiking dynamics under noisy input
conditions. In addition it confirms the successful implementation
of the network on Loihi. In the next step we will use this intrinsic

stability feature of the anisotropic network to learn robust
trajectories and examine if our network produces sufficient
variability to learn arbitrary functions.

3.3. Learning Robust Trajectories
After having tested and demonstrated the stabilizing feature
of the anisotropic network, we aimed to use its robustness to
train arbitrary output trajectories. This step makes use of the
underlying network architecture shown in Figure 1 and adds a
linear regression model on top of this architecture for a robot
control task. The overall algorithm contains the initialization,
creation and simulation of the anisotropic network, which is
running on the neuromorphic hardware Loihi, and the output
learning of the trajectories, which is calculated on the host CPU.

To show the robustness of this algorithm, we learned 7
different 3D-trajectories commonly used in robotic research,
like pick-and-place or put-on-top (see section 2). Using these
target functions, we applied two different tasks, a representation
and a generalization task, as shown in Figure 4B. In the
representation task we estimated the linear regression model
based on all 25 trials and predicted one of them, showing that

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 589532108

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

the variability in the anisotropic network is sufficient to learn
an arbitrary function. To show the ability of our algorithm to
robustly generalize for variations in the input, we also apply a
generalization task, where we estimate the regression model on
24 trials and predicted the trajectory for an unseen trial.

As before, here we also compare the performance of the
anisotropic network with the randomly connected network as
a control. For our algorithm we estimate our model based on
the 72 pooling layer neurons, which we can read out efficiently
from the chip. Since we reduce the parameter space of the linear
regression model by using only the spiking activity of the pooling
layer neurons as data, we also estimated all models based on the
3, 600 excitatory reservoir neurons for comparison.

Results for the representation task, based on all excitatory
neurons, revealed that the excitatory reservoir neurons
contain enough variability to represent an arbitrary output
function with high accuracy. An example is shown in
Supplementary Figure 1A1 for the randomly connected
network and in Supplementary Figure 1A2 for the anisotropic
network. If the model was estimated on the 72 pooling
layer neurons the number of available parameters is
heavily decreased by a factor of 50. But still the amount
of information seems to be satisfactory for the anisotropic
network (Supplementary Figure 1A4), but not for the randomly
connected case (Supplementary Figure 1A3). Normalized
root mean squared error between the predicted trajectory
and the target trajectory, averaged over 7 3D-trajectories, are
shown in Figure 6A1. The errors for all trajectories using
the spiking activity of the 3, 600 excitatory reservoir neurons
are very low (left plot) for both networks, but interestingly
even lower for the anisotropic network. For the errors of the
estimation based on the pooling layer neurons (right plot in
Figure 6A1), the mean error over all trajectories is still low
for the anisotropic network eaniso = 0.02 ± 0.003, compared
to the randomly connected network erand = 0.33 ± 0.07.
Due to the inhomogeneous weight structure and the stream-
like spread of spiking activity in the anisotropic network,
the neurons in the pooling layer can maintain variability, as
can be seen in Supplementary Figure 1B1. Intuitively, since
nearby neurons have correlated activity patterns, pooling
over them preserves information. In contrast, as shown
in Supplementary Figure 2B2, the spiking activity in the
pooling layer of the randomly connected network simply
produces downsampled random spiking activity and therefore
reduced variability.

In the generalization task, the parameters for the movement
trajectory were estimated based on the spiking activity of 24
trials. We then predicted the same trajectory based on the spiking
activity elicited by a 25th trial, not seen during training. This task
was designed to test the robustness of the system to a variation in
initial conditions. To compare the classical reservoir computing
approach with our network architecture, we trained the network
based on all 3, 600 neurons and on the 72 output neurons. In
addition, this tested the ability of the pooling neurons to preserve
sufficient variability while reducing the number of parameters.

For the full network read-out, we applied a linear regression
model based on all excitatory neurons of the anisotropic network.

Since fitting a model based on all 3, 600 neurons requires many
parameters, here we used an elastic net regularization estimation
method (see section 2) to reduce the number of parameters and
to avoid overfitting. Optimizing the regularization parameters
resulted in α = 0.001 and λ = 0.05. For the pooling layer read-
out, we estimated a linear regression model based on the pooling
layer neurons without regularization.

In Figure 6A2, we show the average normalized root-mean-
squared deviation over 7 trajectories. In both cases (using
excitatory neurons or pooling layer neurons) the error of the
anisotropic network is much lower, showing that the anisotropic
network has a better performance compared to a classical
randomly connected network.

For the network architecture with the randomly connected
network, the elastic net approach, based on all excitatory neurons,
has a better performance than the linear regression approach,
based on the pool neurons (t-test: t = −4.24, p = 0.0001 <

0.05). Interestingly, the error for the anisotropic network is lower
when the trajectories are estimated based on the pool neurons
compared to the excitatory neurons (Mann–Whitney U-test:
U = 47.0, p = 6.75 · 10−6 < 0.05). This indicates that, for
the anisotropic network, the pooling layer is an equivalent, or
even better regularization method compared to the elastic net
approach with all excitatory neurons.

Figure 6B shows all three dimensions of the predicted
trajectory over time for a hide movement. The overall trajectory
is shown in Figure 6C. We also calculated a smoothed version,
using a Savitzky–Golay filter (Savitzky and Golay, 1964) (see
section 2), to better compare the prediction with the target.
This shows that the anisotropic network implemented on Loihi,
combined with the pooling layer, contains sufficient variability
to represent complex 3D trajectories while at the same time
remaining stable for at least 200 time steps.

3.4. Simulation on Loihi in Real-Time
In addition to evaluating the stability of the system, we also
looked at the speed of the network simulation. The data we used
came from a Kuka robot arm, which can run fluently with an
output frequency of 100Hz, therefore the 200 time steps equal
2 s of movement. In the following we denote this reference as
“real-time.” To achieve a real-time output of spiking data from
the Loihi chip, the speed of the simulation of the neurons and the
data transfer from the chip to the host must be higher than the
necessary data frequency of the robot for a smooth movement.

The simulation of these 200 time steps requires taniso3,600 =

15.73 s for one trial on Loihi, when all 3, 600 excitatory reservoir
neurons were read out from the system. This speed is about 8
times slower than real-time. When reading out only from the 72
pooling neurons, the speed increases to taniso72 = 1.49 s per trial,
which is 25% faster than real-time and therefore well-suited for
robot control.

The simulation speed of the anisotropic network (taniso3,600 =

15.73 s & taniso72 = 1.49 s per trial) and the randomly connected

network (trand3,600 = 16.11 s & trand72 = 1.73 per trial) were nearly
the same, which is expected since the number of neurons is the
same and the number of synapses is similar. Thus, the anisotropic

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2020 | Volume 14 | Article 589532109

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

FIGURE 6 | Predicting a trajectory on the spiking activity. (A) We predicted 7 different trajectories with 3 dimensions each and calculated the error regarding the target

trajectory using a normalized root-mean-square error. In all cases, the anisotropic network has a lower error than the randomly connected network. (B) For the hide

movement, we show one example of the predicted trajectory of the anisotropic network for each of the 3 dimensions. Here, we used the pooling neurons (green) in

comparison with the target (pink) and a smoothed variant of the prediction (black dotted). The whole trajectory is shown in (C).

network has, in terms of speed, no disadvantage compared to the
randomly connected network.

Therefore, the pooling layer does not only reduce the
sensitivity of the system but also helps to speed up the system
considerably. Together, this supports robotic applications where
trajectories can be stored and replayed robustly in real-time.

4. DISCUSSION

We aimed to develop an algorithm for neuromorphic hardware,
which provides stable spiking dynamics under noisy input
conditions, in order to make use of the low power neuromorphic
chips for future autonomous systems. For this, we derived an
algorithm to store and control robotic movement sequences that
unfold on a control-relevant timescale of seconds. To validate our
approach, we chose a set of 2-s-long robot arm movements that
were triggered by noisy inputs.

For our approach we chose a recently developed spiking
neural network (Spreizer et al., 2019) with an inhomogeneous
weight structure. In a first step, we successfully transferred the
main principles of this network to the Loihi research chip from
Intel (Davies et al., 2018), a neuromorphic hardware architecture
implementing spiking neurons. In a second step, we tested

the stability of the anisotropic network implementation and
compared its stability to a classical randomly connected network,
similar to echo state networks (Jaeger, 2001, 2007) or liquid state
machines (Maass et al., 2002). We finally used a pooling layer
(Figure 1) to efficiently read out spiking data from the chip. Using
these spiking data we were able to learn 3D trajectories in a noise-
robust way (Figure 6C). The pooling layer successfully increased
the simulation speed to faster than real-time. It was also intended
to make the spiking activity more invariant to small changes in
the network, which is the exact purpose of using pooling layers
in deep neural networks (Goodfellow et al., 2016, Chapter 9.3;
Boureau et al., 2010). A pooling layer has been applied to spiking
neural networks before (Tavanaei and Maida, 2017; Tavanaei
et al., 2019), but – to the best of our knowledge – such a structure
has never been applied to enhance the performance of read-outs
from recurrent network architectures. The fact that the pooling
layer improved performance for the anisotropic network in our
study indicates that implementing pooling layers in reservoir
computing architectures could be useful in other cases, for
example when the reservoir has spatially-dependent connectivity
(Maass et al., 2002), and especially for reducing parameters on
algorithms running on neuromorphic hardware.

Taken together, in this study we provide an algorithm for
storing stable trajectories in spiking neural networks, optimized

Frontiers in Neurorobotics | www.frontiersin.org 11 November 2020 | Volume 14 | Article 589532110

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

for the neuromorphic hardware Loihi. The network architecture
is capable of executing these trajectories on demand in real-
time given noisy, and even never-before-seen, inputs. While an
exhaustive exploration of the parameter space remains the subject
of future work, we have shown that the anisotropic network
admits stable sequences with sufficient variability for output
learning across hundreds of milliseconds, making it suitable for
applications reaching far beyond motor control. Further, we
demonstrated that spike-based pooling can implement on-chip
regularization for the ansiotropic network, improving read out
speed and accuracy. In contrast, in the randomly connected
network nearby neurons show uncorrelated activity and spatial
pooling has no benefit. Thus, spatial pooling in locally-connected
SNNs proved to be a promising feature, specifically for real-
time robotic control on neuromorphic hardware. Importantly,
we provide the first neuromorphic implementation which has no
global learning or adaptation mechanism and produces noise-
robust spiking patterns on a control-relevant timescale with
sufficient variability to learn arbitrary functions.

While other approaches employing spiking neural networks
exist, in general they fail to meet at least one of the mentioned
criteria. This means, in their current form, these models are
either not implementable on neuromorphic hardware or do not
produce sequences that are stable, variable and long enough. We
briefly describe these models and highlight how they may be
adapted for neuromorphic implementation.

Laje and Buonomano (2013) presented an “innate training”
approach. The network was initialized with a short input pulse
and amodified FORCE algorithm (Sussillo andAbbott, 2009) was
used to train the recurrent connections. This stabilizes the innate
structure of the recurrent connections and allows a network state
between chaotic and locally stable activity patterns. A trained
output trajectory was robust to perturbations, due to the tuned
recurrent weights. Unfortunately this algorithm uses a rate coded
network and non-local learning rules, both of which are not
applicable for most neuromorphic systems.

Pehlevan et al. (2018) analyzed different approaches to solve
the stability-variability trade-off in the context of songbird songs.
One additional and important criterion for their evaluation
was the ability of an algorithm to provide temporal flexibility,
such that outputs can be replayed faster or slower. They
concluded that a synfire chain model fits best to solve this task.
While this approach seems to model the dynamics underlying
songbird songs with flexible timing, synfire chains have a feed-
forward structure which makes them less flexible than recurrent
network types.

Hennequin et al. (2014) put more focus on getting
stable output from unstable initial conditions. They used an
optimization algorithm to build an inhibitory structure that helps
to stabilize the excitatory activity. More precisely, the strength of
existing inhibitory connections was changed or new inhibitory
synapses were created or removed using an algorithm based
on a relaxation of the spectral abscissa of the weight matrix
(Vanbiervliet et al., 2009).With this they obtained relatively stable
spiking dynamics. Interestingly, this approach is similar to our
study in a sense that both approaches focus on the weight matrix.
While their proposed solution to the stability-variability trade-off
is promising, so far the algorithm hasmainly been tested with rate

coded networks. A more elaborate analysis with a spiking neural
network would be of interest.

Another recent approach involves multiplexing oscillations in
a spiking neural network (Miall, 1989; Vincent-Lamarre et al.,
2020). Two input units inject sine-waves into a reservoir of
neurons and the spiking dynamics in the reservoir follow a stable
and unique pattern, which enables the learning of a long and
stable output. Compared to our algorithm, the oscillating units
provide a continuous input to the network. We see this approach
as a potential alternative to the anisotropic network for robotic
control. Interestingly, stability is encoded in time rather than
space, which raises the question whether this approach could
be combined with a pooling layer, reflecting temporal structure
instead of spatial structure.

Maes et al. (2020) trained a recurrently connected spiking
network such that small groups of neurons become active
in succession and thus provide the basis for a simple index
code. Via a supervisor signal, output neurons are trained
to become responsive to a particular group or index from
the recurrent network and, thus, fire in a temporal order
encoded in the feed-forward weights to the output layer.
Importantly, learning within the recurrent network and from the
recurrent network to the output layer is done using spike-timing
dependent plasticity. However, as is, their implementation has
a few small, but likely reconcilable, incompatibilities with the
neuromorphic hardware considered here. For example, learning
and synaptic normalization is only local to the neuron, and
not to the synapse and they rely on adaptive exponential
integrate and fire neurons, which are not implemented by Loihi.
With some modifications, their model may provide another
neuromorphically implementable approach.

While our approach provides an algorithm for storing stable
trajectories, our two-chip Loihi system is limited in the number
of neurons available, constrained mainly by the high number of
synapses in our recurrent network. Since this limitation is mainly
caused by the current NxSDK software and not by hardware,
we expect an improvement in upcoming releases. With more
neurons available we expect even better stability, reducing the
last remaining variations in our predictions and allowing even
longer movement actions, beyond 2 s. At this point, further
investigation of how performance depends on network size,
network parameters, and pooling layer configuration will be
of interest.

Withmore neurons available, one could addmultiple inputs to
the network. We hypothesize that nearby input locations lead to
similar activity patterns, while input regions far from each other
produce distinct activity patterns. This behavior could be used
to train multiple trajectories from different input locations. With
this, more complex robotic control tasks could be performed,
beyond the generation of single trajectories.

One general hurdle in developing neuromorphic
implementations is the difficulty in transferring existing spiking
neural network models from CPU-based implementations to
neuromorphic hardware. As outlined in the section 2, Loihi
provides a fixed hardware-implemented neuron model. It is
possible to adjust parameters, but not the neuron model itself.
Therefore, a perfect match between traditional simulators like
NEST (Gewaltig and Diesmann, 2007) or Brian2 (Stimberg

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2020 | Volume 14 | Article 589532111

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

et al., 2019) and neuromorphic hardware, like Loihi, is in general
an issue for future neuromorphic algorithms. Efficient methods
for translating neuroscientific models to Loihi is the subject of
current work.

Finally, to complete the algorithm for autonomous use
cases, in which Loihi is able to control a robot independently,
an on-chip output learning algorithm is vital. This requires
the implementation of an output neuron on the chip, with
appropriate on-chip output weights. It is already possible to train
weights offline and transfer them to Loihi, applied for example
in Nengo Loihi (Bekolay et al., 2014; Hampo et al., 2020).
We expect that the on-chip regularization inherent in spatial
pooling will improve the robustness of future online output
learning algorithms.

5. CONCLUSION

Taken together, we developed an algorithm which can serve as
a basic unit in robotic applications. The anisotropic network
structure offers stability against noisy inputs and the overall
architecture, especially using the pooling layer, paves the
way for further steps in the development of algorithms for
neuromorphic hardware. Our study proposes an algorithm
based on intrinsic self-stabilizing features of a well-initialized
anisotropic connectivity structure, which can overcome the
instability problem of spiking neural networks and support
robust outputs on a timescale of seconds.

DATA AVAILABILITY STATEMENT

The PeleNet framework for Loihi, which was written for this
study, can be found on GitHub (https://github.com/sagacitysite/

pelenet/tree/neurorobotics). The data that support the findings
of this study are available from the corresponding author
on request.

AUTHOR CONTRIBUTIONS

AL contributed the network simulations. CM contributed the
Loihi implementation, including the Pelenet framework. CT
acquired funding and supervised the study. All authors designed
the study and reviewed the manuscript.

FUNDING

The research was funded by the H2020-FETPROACT project
Plan4Act (#732266) [CM, AL, CT], by the German Research
Foundation (#419866478) [AL, CT], and by the Intel Corporation
via a gift without restrictions.

ACKNOWLEDGMENTS

The authors are thankful to Osman Kaya for providing Kuka
robot trajectories, to Arvind Kumar and Lukas Ruff for helpful
discussions, and to Tristan Stöber for improving the text. All of
them helped to improve the quality of this work. Furthermore,
we thank the Intel Corporation for providing access to their
Loihi chip.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.589532/full#supplementary-material

REFERENCES

Amit, D. J. (1992). Modeling Brain Function: The World of Attractor Neural

Networks. Cambridge: Cambridge University Press.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen,

D., et al. (2014). Nengo: a Python tool for building large-scale functional

brain models. Front. Neuroinform. 7, 1–13. doi: 10.3389/fninf.2013.

00048

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking

keyword spotting efficiency on neuromorphic hardware,” in Proceedings of

the 7th Annual Neuro-inspired Computational Elements Workshop (New

York, NY; Albany, NY: Association for Computing Machinery), 1:8.

doi: 10.1145/3320288.3320304

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). “A theoretical analysis of

feature pooling in visual recognition,” in Proceedings of the 27th International

Conference on Machine Learning (ICML-10) (Madison, WI: Omnipress),

111–118.

Brunel, N. (2000). Dynamics of networks of randomly connected

excitatory and inhibitory spiking neurons. J. Physiol. 94, 445–463.

doi: 10.1016/S0928-4257(00)01084-6

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A spiking

neural model of adaptive arm control. Proc. R. Soc. B Biol. Sci. 283:20162134.

doi: 10.1098/rspb.2016.2134

Eliasmith, C., and Anderson, C. H. (2004). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:

MIT Press.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,

MA: MIT Press, 330–334.

Hampo, M., Fan, D., Jenkins, T., DeMange, A., Westberg, S., Bihl, T., et al.

(2020). “Associative memory in spiking neural network form implemented

on neuromorphic hardware,” in International Conference on Neuromorphic

Systems 2020, 1–8. doi: 10.1145/3407197.3407602

Hennequin, G., Vogels, T. P., and Gerstner,W. (2014). Optimal control of transient

dynamics in balanced networks supports generation of complex movements.

Neuron 82, 1394–1406. doi: 10.1016/j.neuron.2014.04.045

Hutt, A. (2008). Local excitation-lateral inhibition interaction yields oscillatory

instabilities in nonlocally interacting systems involving finite propagation

delay. Phys. Lett. A 372, 541–546. doi: 10.1016/j.physleta.2007.08.018

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). “Movement imitation

with nonlinear dynamical systems in humanoid robots,” in Proceedings

2002 IEEE International Conference on Robotics and Automation

(Cat. No. 02CH37292), Vol. 2 (Washington, DC: IEEE), 1398–1403.

doi: 10.1109/ROBOT.2002.1014739

Itskov, V., Curto, C., Pastalkova, E., and Buzsáki, G. (2011). Cell

assembly sequences arising from spike threshold adaptation keep

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2020 | Volume 14 | Article 589532112

https://github.com/sagacitysite/pelenet/tree/neurorobotics
https://github.com/sagacitysite/pelenet/tree/neurorobotics
https://www.frontiersin.org/articles/10.3389/fnbot.2020.589532/full#supplementary-material
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1145/3320288.3320304
https://doi.org/10.1016/S0928-4257(00)01084-6
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1145/3407197.3407602
https://doi.org/10.1016/j.neuron.2014.04.045
https://doi.org/10.1016/j.physleta.2007.08.018
https://doi.org/10.1109/ROBOT.2002.1014739
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Michaelis et al. Robust Trajectory Generation on Loihi

track of time in the hippocampus. J. Neurosci. 31, 2828–2834.

doi: 10.1523/JNEUROSCI.3773-10.2011

Jaeger, H. (2001). The “Echo State” Approach to Analysing and Training Recurrent

Neural Networks-With an Erratum Note. German National Research Center for

Information Technology, Bonn. GMD Technical Report.

Jaeger, H. (2007). Echo state network. Scholarpedia 2:2330.

doi: 10.4249/scholarpedia.2330

Khalastchi, E., Kaminka, G. A., Kalech, M., and Lin, R. (2011). “Online

anomaly detection in unmanned vehicles,” in The 10th International Conference

on Autonomous Agents and Multiagent Systems (Richland, SC; Taipei:

International Foundation for Autonomous Agents and Multiagent Systems),

115–122.

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns

by taming chaos in recurrent neural networks. Nat. Neurosci. 16:925.

doi: 10.1038/nn.3405

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Lin, C.-K., Wild, A., Chinya, G. N., Cao, Y., Davies, M., Lavery, D. M., et al. (2018).

Programming spiking neural networks on intel’s Loihi. Computer 51, 52–61.

doi: 10.1109/MC.2018.157113521

London, M., Roth, A., Beeren, L., Häusser, M., and Latham, P. E. (2010). Sensitivity

to perturbations in vivo implies high noise and suggests rate coding in cortex.

Nature 466, 123–127. doi: 10.1038/nature09086

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Maes, A., Barahona, M., and Clopath, C. (2020). Learning spatiotemporal signals

using a recurrent spiking network that discretizes time. PLoS Comput. Biol.

16:e1007606. doi: 10.1371/journal.pcbi.1007606

Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural

Comput. 1, 359–371. doi: 10.1162/neco.1989.1.3.359

Murray, J. M. et al. (2017). Learning multiple variable-speed sequences in striatum

via cortical tutoring. eLife 6:e26084. doi: 10.7554/eLife.26084

Nachstedt, T., and Tetzlaff, C. (2017). Working memory requires a combination of

transient and attractor-dominated dynamics to process unreliably timed inputs.

Sci. Rep. 7, 1–14. doi: 10.1038/s41598-017-02471-z

Naseer, T., Burgard, W., and Stachniss, C. (2018). Robust visual localization across

seasons. IEEE Trans. Robot. 34, 289–302. doi: 10.1109/TRO.2017.2788045

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A.

R., et al. (2018). Braindrop: a mixed-signal neuromorphic architecture with

a dynamical systems-based programming model. Proc. IEEE 107, 144–164.

doi: 10.1109/JPROC.2018.2881432

Pehlevan, C., Ali, F., and Ölveczky, B. P. (2018). Flexibility in motor timing

constrains the topology and dynamics of pattern generator circuits. Nat.

Commun. 9, 1–15. doi: 10.1038/s41467-018-03261-5

Perlin, K. (1985). An image synthesizer. SIGGRAPH Comput. Graph. 19, 287–296.

doi: 10.1145/325165.325247

Roxin, A., Brunel, N., and Hansel, D. (2005). Role of delays in shaping

spatiotemporal dynamics of neuronal activity in large networks. Phys. Rev. Lett.

94:238103. doi: 10.1103/PhysRevLett.94.238103

Savitzky, A., and Golay, M. J. (1964). Smoothing and differentiation of

data by simplified least squares procedures. Anal. Chem. 36, 1627–1639.

doi: 10.1021/ac60214a047

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modelling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. (1988). Chaos in random neural

networks. Phys. Rev. Lett. 61:259. doi: 10.1103/PhysRevLett.61.259

Spreizer, S., Aertsen, A., and Kumar, A. (2019). From space to time:

spatial inhomogeneities lead to the emergence of spatiotemporal

sequences in spiking neuronal networks. PLoS Comput. Biol. 15:e1007432.

doi: 10.1371/journal.pcbi.1007432

Spreizer, S., Angelhuber, M., Bahuguna, J., Aertsen, A., and Kumar,

A. (2017). Activity dynamics and signal representation in a striatal

network model with distance-dependent connectivity. eNeuro 4.

doi: 10.1523/ENEURO.0348-16.2017

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns

of activity from chaotic neural networks. Neuron 63, 544–557.

doi: 10.1016/j.neuron.2009.07.018

Tang, G., Shah, A., and Michmizos, K. P. (2019). Spiking neural network

on neuromorphic hardware for energy-efficient unidimensional

slam. arXiv preprint arXiv:1903.02504. doi: 10.1109/IROS40897.2019.

8967864

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.

(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., and Maida, A. (2017). “Bio-inspired multi-layer spiking neural

network extracts discriminative features from speech signals,” in Neural

Information Processing, eds L. Derong , X. Shengli, L. Yuanqing, Z.

Dongbin,and E.-A. El-Sayed (Cham: Springer International Publishing), 899–

908. doi: 10.1007/978-3-319-70136-3_95

Tsodyks, M. (1999). Attractor neural network models of

spatial maps in hippocampus. Hippocampus 9, 481–489.

doi: 10.1002/(SICI)1098-1063(1999)9:4<481::AID-HIPO14>3.0.CO;2-S

Van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks

with balanced excitatory and inhibitory activity. Science 274, 1724–1726.

doi: 10.1126/science.274.5293.1724

Vanbiervliet, J., Vandereycken, B., Michiels, W., Vandewalle, S., and Diehl, M.

(2009). The smoothed spectral abscissa for robust stability optimization. SIAM

J. Optimizat. 20, 156–171. doi: 10.1137/070704034

Vincent-Lamarre, P., Calderini, M., and Thivierge, J.-P. (2020). Learning long

temporal sequences in spiking networks by multiplexing neural oscillations.

Front. Comput. Neurosci. 14:78. doi: 10.3389/fncom.2020.00078

Voelker, A. R., and Eliasmith, C. (2017). Methods for applying the neural

engineering framework to neuromorphic hardware. arXiv [Preprint].

arXiv:1708.08133.

Wörgötter, F., Ziaeetabar, F., Pfeiffer, S., Kaya, O., Kulvicius, T., and Tamosiunaite,

M. (2020). Humans predict action using grammar-like structures. Sci. Rep. 10,

1–11. doi: 10.1038/s41598-020-60923-5

York, L. C., and Van Rossum, M. C. (2009). Recurrent networks

with short term synaptic depression. J. Comput. Neurosci. 27:607.

doi: 10.1007/s10827-009-0172-4

Zheng, P., and Triesch, J. (2014). Robust development of synfire chains

from multiple plasticity mechanisms. Front. Comput. Neurosci. 8:66.

doi: 10.3389/fncom.2014.00066

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the

elastic net. J. R. Stat. Soc. Ser. B 67, 301–320. doi: 10.1111/j.1467-9868.2005.0

0503.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Michaelis, Lehr and Tetzlaff. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 November 2020 | Volume 14 | Article 589532113

https://doi.org/10.1523/JNEUROSCI.3773-10.2011
https://doi.org/10.4249/scholarpedia.2330
https://doi.org/10.1038/nn.3405
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1038/nature09086
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1371/journal.pcbi.1007606
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.7554/eLife.26084
https://doi.org/10.1038/s41598-017-02471-z
https://doi.org/10.1109/TRO.2017.2788045
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1038/s41467-018-03261-5
https://doi.org/10.1145/325165.325247
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1371/journal.pcbi.1007432
https://doi.org/10.1523/ENEURO.0348-16.2017
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1109/IROS40897.2019.8967864
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1007/978-3-319-70136-3_95
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4$<$481::AID-HIPO14$>$3.0.CO;2-S
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1137/070704034
https://doi.org/10.3389/fncom.2020.00078
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1007/s10827-009-0172-4
https://doi.org/10.3389/fncom.2014.00066
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 26 January 2021

doi: 10.3389/fnbot.2020.578803

Frontiers in Neurorobotics | www.frontiersin.org 1 January 2021 | Volume 14 | Article 578803

Edited by:

Christian Tetzlaff,

University of Göttingen, Germany

Reviewed by:

Takeshi Kano,

Tohoku University, Japan

Alexander J. Cope,

The University of Sheffield,

United Kingdom

*Correspondence:

Ioannis Pisokas

i.pisokas@sms.ed.ac.uk

Received: 01 July 2020

Accepted: 18 December 2020

Published: 26 January 2021

Citation:

Pisokas I (2021) Reverse Engineering

and Robotics as Tools for Analyzing

Neural Circuits.

Front. Neurorobot. 14:578803.

doi: 10.3389/fnbot.2020.578803

Reverse Engineering and Robotics as
Tools for Analyzing Neural Circuits
Ioannis Pisokas*

Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Understanding neuronal circuits that have evolved over millions of years to control

adaptive behavior may provide us with alternative solutions to problems in robotics.

Recently developed genetic tools allow us to study the connectivity and function of

the insect nervous system at the single neuron level. However, neuronal circuits are

complex, so the question remains, can we unravel the complex neuronal connectivity

to understand the principles of the computations it embodies? Here, I illustrate the

plausibility of incorporating reverse engineering to analyze part of the central complex,

an insect brain structure essential for navigation behaviors such as maintaining a

specific compass heading and path integration. I demonstrate that the combination of

reverse engineering with simulations allows the study of both the structure and function

of the underlying circuit, an approach that augments our understanding of both the

computation performed by the neuronal circuit and the role of its components.

Keywords: robotics, neurorobotics, navigation, head direction cells, ring attractor, insect, central complex,

Drosophila melanogaster

1. INTRODUCTION

Neurorobotics attempts to derive inspiration from neuroscience on how the brain solves problems
in order to develop robust and adaptive artificial agents. The combination of neuroscience with
embodied robot agents provides a platform for testing hypotheses and deciphering the principles
on which the brain operates. One approach for deciphering the principles of neuronal circuit
operation is to implement phenomenological computational models of the neuronal circuit and
then identify and analyze similarities between the models and the neuronal circuit in the hope
of learning about the neuronal circuit’s architecture. Such an approach is exemplified by work
comparing features learned by deep convolutional neural networks with those found in the ventral
visual system of animals (e.g., Yamins et al., 2014; Cichy et al., 2016; Yamins and DiCarlo, 2016).
Phenomenological models attempt to reproduce the mapping of inputs to outputs while being only
weakly constrained with respect to the actual neuronal circuit’s architecture, thus admitting a range
of possible implementations. Therefore, this approach has the potential to provide inspiration for
hypothesis formulation and for focusing further research but does not unravel the actual neuronal
circuits of biological organisms.

Another approach for analyzing neuronal circuits is to simulate part of the connectome in
order to study the circuit’s function. This approach is faithful to the actual neuronal connectivity,
thus imposing strong constraints with respect to the biological architecture (as done for example
by Kakaria and de Bivort, 2017). This approach has the potential to provide insights about
the computation performed by the actual neuronal circuit; however, it does so based on
phenomenological observations about computation at the system level and does not provide
us with a real mechanistic understanding of the underlying neuronal circuit structure and
component interaction.

114

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.578803
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.578803&domain=pdf&date_stamp=2021-01-26
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:i.pisokas@sms.ed.ac.uk
https://doi.org/10.3389/fnbot.2020.578803
https://www.frontiersin.org/articles/10.3389/fnbot.2020.578803/full

Pisokas Tools for Analyzing Neural Circuits

A third approach is to reverse engineer the actual neuronal
circuit in order to decipher its organization and structure.
Reverse engineering is a technique traditionally used for
unraveling the inner workings of hardware devices (Rekoff,
1985). It aims to describe a system at the component level and
explain how its components interact with each other. Once the
structure of a neuronal circuit is reverse engineered, we can
study how its neurons interact and draw hypotheses about the
circuit’s function on the basis of its neuronal components, thereby
offering a mechanistic level of understanding.

Each of the three approaches has merits on its own, but
their combination can provide an even more powerful tool for
deciphering the function of neuronal circuits. A component-
level understanding of the neuronal circuit structure through
reverse engineering can be combined with the second approach,
that is, computational simulations in order to understand the
circuit’s function. Deriving such a mechanistic understanding
of the neuronal circuit at the neuron level will enable us to
modify and customize it for use in specific applications, including
robotics. I present here an example of this approach by reverse
engineering the head direction circuit of the fruit fly and then
utilizing simulations of a situated robotic agent to characterize
the circuit’s performance.

1.1. Insects as an Example Organism
A limiting factor in the study of any system, including the brain,
is the level of detail at which it can be scrutinized. However, where
detail is available, understanding structure and function may be
difficult because naturally evolved neural systems do not obey
an overarching structural simplicity principle. On an interesting
crossroad of complexity and available neuroanatomical detail are
insects. Insects have relatively small and simple brains compared
with vertebrates and yet solve many similar problems, such
as perception, navigation, foraging, homing, and reproduction.
Recent developments of genetic tools and methods provide us
with the unique opportunity to study insect brains at the single
neuron level. The relative simplicity, together with the fine
level of detail available about insect brains, enable us to reverse
engineer their neuronal circuits, understand their operation and
derive principles that can guide our design of solutions to
problems in robotics.

Recent research in insect neurobiology has focused on
the study of the central complex of the fruit fly Drosophila
melanogaster. The central complex is a brain structure that
has been preserved through millions of years of evolution and
exists across all insect species (Homberg et al., 2011). This brain
structure has been implicated in spatial orientation (Neuser et al.,
2008; Triphan et al., 2010; Homberg et al., 2011), locomotor
control (Strauss, 2002; Ritzmann et al., 2012; Martin et al., 2015;
Varga et al., 2017), visual memory (Liu et al., 2006; Neuser et al.,
2008; Ofstad et al., 2011), and path integration (Cope et al., 2017;
Stone et al., 2017). The central complex consists of five neural
formations: the protocerebral bridge, the ellipsoid body, the fan
shaped body, the noduli, and the asymmetric bodies (Wolff and
Rubin, 2018). The neuronal connectivity of the central complex
has an intricate and yet topographically regular structure. Tracing
the neurons of the whole central complex is still an ongoing task;

however, most of the neurons innervating two of its structures,
the protocerebral bridge (PB) and the ellipsoid body (EB), have
been traced in adequate detail in the fruit fly D. melanogaster, by
multiple labs (e.g., Green and Maimon, 2018; Wolff and Rubin,
2018; Turner-Evans et al., 2020), allowing us to reverse engineer
the underlying circuit.

Calcium imaging of the neurons that innervate both the PB
and the EB, while a tethered fruit fly is walking or flying in a
virtual reality environment, has revealed a striking relationship
between neuronal activity and behavior. Specifically, it has been
observed that the neuronal ensemble maintains localized spiking
activity—commonly called an activity “bump”—that moves from
one group of neurons to the next as the animal rotates with
respect to its surroundings (Seelig and Jayaraman, 2015; Kim
et al., 2017; Giraldo et al., 2018). The neuronal activity “bump”
is maintained even when the visual stimulus is removed, and it
moves relative to the no longer visible cue as the animal walks
in darkness (Seelig and Jayaraman, 2015). Thus, this neuronal
activity appears to constitute an internal encoding of heading,
which is strongly reminiscent of the hypothetical ring attractor
(Amari, 1977) proposed by Skaggs et al. (1995) to account for the
“head direction” cells of rats (Taube et al., 1990).

Ring attractor models typically consist of a topological ring
of neurons utilizing opposing excitatory and inhibitory synapses
to establish a unique activity “bump” around the ring, with
neurons forming lateral excitatory connections to neighboring
neuronal units and inhibitory connections inhibiting neurons on
the opposite side of the ring (Taube et al., 1990; Skaggs et al., 1995;
Zhang, 1996). The result is that the most active neurons suppress
the activity of all other neurons around the ring and a unique
“bump” of activity emerges. Adequate external stimulation of
a neuron in the ring causes the activity “bump” to move to
the new most active neuron and this new attractor state to be
maintained even after the stimulus is removed. This type of
ring attractor model can reproduce the phenomena recorded via
calcium imaging of fruit flies (Kim et al., 2017). However, this is
only a phenomenological similarity and does not reveal whether
the actual neuronal circuit in the animal’s brain has the same form
as this hypothetical ring attractor or if a different circuit structure
produces the phenomena.

In this paper, I investigate the circuit structure and function
separately. I illustrate that using reverse engineering on the
projection patterns of the fruit fly’s heading tracking neuronal
circuit is possible to reveal an underlying connectivity that has
a ring structure with eight-fold radial symmetry. I subsequently
illustrate that combining insights from reverse engineering with
simulations allows us to explore the circuit’s function and
identify some notable differences from classic ring attractor
models, which may contribute to the stability and flexibility
of its function.

2. NEURONAL CIRCUIT ANALYSIS

As an illustrative example of the usefulness of reverse engineering
of a neuronal circuit, I will present a detailed explanation of
the process applied to the fruit fly’s head tracking circuit. This

Frontiers in Neurorobotics | www.frontiersin.org 2 January 2021 | Volume 14 | Article 578803115

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

technique was recently applied to two insect species and the
results were presented in Pisokas et al. (2020). Here, I illustrate
the reverse engineering process in detail to enable others to apply
it to different neuronal circuits and I show that this approach can
help us understand neuronal circuit structure and function.

The circuit structure will be reverse engineered at the neuron
level of abstraction, removing details about neuron anatomy,
biophysics, and location. In the particular case of the central
complex, neurons follow a topographically regular pattern, which
offers an advantage that will be exploited in the process. The
reverse engineering procedure described in the sequel consists of
three steps:

1. First, we identify neuron classes. Each neuron class follows a
particular connectivity pattern.

2. Second, we identify the neural volumes where neurons form
synapses with each other. We number these volumes so that
we can systematically inspect them.

3. Third, for each class of neurons, we record connections
between neurons in a directed graph. To this end, we focus
on each neuron in turn and add its output connections with
other neurons.

In the central complex, there is redundancy in the neuronal
circuit due to the mirrored connectivity in the left and right
hemispheres. The final graphs shown here have eight neurons
for each neuron class, which is the result of an iterative process
removing redundancy in each iteration. In the first iteration,
there were as many graph nodes as there are neurons in the
circuit. In each iteration, duplicate neurons were removed and
the same process was repeated to reach the final result.

2.1. What Is the Effective Neuronal Circuit
Structure?
A subset of neuron types in the central complex appear to be the
key elements of a circuit with a ring structure. The connectivity
of the neurons has been inferred here from anatomical data,
with overlapping neuronal terminals assumed to form synapses
between them (Wolff et al., 2015; Wolff and Rubin, 2018). The
following analysis considers four types of neurons, the E-PG,
P-EG, P-EN, and Delta7 neurons (Table 1), in accordance with
previous work (Green et al., 2017; Kakaria and de Bivort, 2017;
Kim et al., 2017; Su et al., 2017). Each of the four types of neurons
follows a particular connectivity pattern.

These neurons innervate two of the central complex
structures: the protocerebral bridge and the ellipsoid body. The
protocerebral bridge (PB) consists of nine “glomeruli” in each
hemisphere, arranged the one next to the other (Figure 1). The
ellipsoid body (EB) consists of eight sectors called “tiles.” Each tile
is further divided into two “wedges” (Figure 1). Neurons form
synapses within glomeruli of the PB or tiles of the EB. Since all
neurons considered here form synapses in the PB, we number the
neurons by the glomerulus they innervate. Since Delta7 neurons
have both their input and output terminals in the PB we number
them by the glomerulus where their output terminals are located.

The E-PG, P-EG, and P-EN neurons are assumed to have
excitatory effect on their postsynaptic neurons, while Delta7

TABLE 1 | Neuronal nomenclature.

Model neuron

name

Included neurons Systematic names (Wolff and Rubin,

2018)

E-PG E-PG and E-PGT PBG1–8.b-EBw.s-D/V GA.b and

PBG9.b-EB.P.s-GA-t.b

P-EN P-EN PBG2-9.s-EBt.b-NO1.b

P-EG P-EG PBG1–9.s-EBt.b-D/V GA.b

Delta7 Delta7 or 17 PB18.s-Gx17Gy.b and PB18.s-9i1i8c.b

Correspondence between neuron names used in the model and the neurons names used

in the literature. The first column shows the names used in this paper to refer to each group

of neurons. The other two columns provide the shorthand consensus names and the full

neuron names used in the literature.

FIGURE 1 | Schematic depiction of the protocerebral bridge and ellipsoid

body anatomy. The protocerebral bridge (PB) consists of nine “glomeruli” in

each hemisphere, arranged the one next to the other. The ellipsoid body (EB)

consists of eight sectors called “tiles” further divided into “wedges”.

neurons are assumed to form inhibitory synapses with their
postsynaptic neurons, as Kakaria and de Bivort (2017) proposed.
These assumptions are consistent with RNA sequencing,
indicating that E-PG, P-EG, and P-EN are cholinergic while
Delta7 glutamatergic (Turner-Evans et al., 2020). At this point,
we have done the preparatory work (steps 1 and 2) and we
can proceed with deriving the underlying effective circuit by
redrawing the connectivity as a directed graph, which is a
convenient representation for studying circuit topology.

2.1.1. Inhibitory Circuit
First, we will walk through reverse engineering the connectivity
of the first class of neurons, the eight inhibitory Delta7 neurons.
These neurons innervate the whole length of the PB (Figure 2A).
Anatomical evidence shows that each Delta7 neuron has output
synaptic terminals in two or three glomeruli along the PB and
input terminals across all remaining glomeruli (Wolff and Rubin,

Frontiers in Neurorobotics | www.frontiersin.org 3 January 2021 | Volume 14 | Article 578803116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 2 | Effective connectivity of the inhibitory (Delta7) neurons. (A) Schematic depiction of how the eight Delta7 neuron types innervate the glomeruli of the

protocerebral bridge. (B,C) The effective connectivity in the first and third glomeruli is depicted as directed graphs with discs representing neurons and lines inhibitory

synapses between them. (D) The effective neuronal circuit connectivity of the eight Delta7 neurons. Each Delta7 neuron inhibits all other Delta7 neurons resulting in an

all-to-all inhibition pattern.

2018). Output terminal domains of each neuron are separated by
seven glomeruli (Figure 2A).

Each Delta7 neuron forms synapses with all other Delta7
neurons in two or three glomeruli along the PB (Figure 2A).
Starting from the first glomerulus (glomerulus 1) in the left
hemisphere, we see that one neuron has output terminals
while the other seven neurons have input terminals; we add
arrows in the directed graph to indicate which neurons receive

input synapses from this first neuron (Figure 2B). This can
be systematically repeated for the synapses in each glomerulus
from left to right (glomeruli 1–8 in the left hemisphere). Then
proceeding to glomerulus 9 and through 1–9 in the right
hemisphere, we observe that the same connectivity pattern
repeats. Since we are interested only in the effective connectivity,
we do not preserve information about repeated connections
between neurons in the final directed graph (Figure 2D). As

Frontiers in Neurorobotics | www.frontiersin.org 4 January 2021 | Volume 14 | Article 578803117

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

such, the two or three synaptic connections between pairs of
Delta7 neurons are reduced to one single connection between
each pair of nodes in the simplified effective circuit in Figure 2D.
This reduction to the essential connectivity is crucial for gaining
an understanding of the circuit structure. The directed graph
depiction of the circuit makes it evident that each Delta7 neuron
forms synapses with and inhibits all other Delta7 neurons.
Therefore, a uniform, all-to-all, inhibition pattern is revealed.

2.1.2. Excitatory Circuit
Now, we will walk through the steps of reverse engineering
the excitatory portion of the circuit. The excitatory portion of
the circuit consists of three classes of neurons, the P-EG, E-
PG, and P-EN neurons. The synaptic terminals of each neuron
are confined to one glomerulus of the PB (Figures 3–5). In the
EB, the synaptic terminals of E-PG neurons are constrained in
single wedges (half tiles) while the synaptic terminals of P-EN
and P-EG neurons extend to whole tiles. In our schematic of the
anatomy (see Figure 3), the glomeruli are numbered 1–9, left-
to-right, in each PB hemisphere, and the EB tiles are numbered
1–8 clockwise. The neurons are numbered by the glomerulus they
innervate, e.g., P-EN1. For brevity, a tile numbered n is denoted
as Tn and a glomerulus numberedm as Gm.

According to calcium and electrophysiology recordings
(Turner-Evans et al., 2017), there must be one activity “bump”
emerging around the EB and two activity “bumps” along the PB,
one in each hemisphere. Preliminary simulation of the neuronal
circuit, using the connectivity matrix derived from the neuronal
anatomy, confirmed that the two activity “bumps” are centered
around neurons innervating identically numbered PB glomeruli.
That is, if the one activity “bump” is centered around G5 in
the left hemisphere, the second activity “bump” will be centered
around G5 in the right hemisphere. This observation about
function will be used here in order to simplify the circuit structure
and derive the effective connectivity.

Under the aforementioned numbering scheme, each P-EG
neuron has synaptic terminals in identically numbered PB
glomeruli and EB tiles (Figure 3A). That is, P-EG1 has synaptic
terminals in tile T1 and glomeruli G1 in both hemispheres of the
PB. Since the two P-EG1 neurons receive equal input in glomeruli
G1, in both hemispheres, and connect to the same EB tile, T1,
they are replaced with a single effective functional unit, as shown
at the bottom of panel Figure 3A, in the form of a directed
graph. The same reasoning can be repeated for the next pair of
neurons, P-EG2, that connect glomeruli G2 to tile T2 (Figure 3B).
Figure 3C shows the resulting effective circuit if these steps are
followed all the way until P-EG8, the pair of neurons connecting
glomeruli G8 to tile T8. Finally, we consider the last pair of
neurons, P-EG9; this pair of neurons connects glomeruli G9 to
tile T1, breaking the pattern. These neurons are represented with
a new node in the graph, but as it will become apparent in the next
paragraph, the P-EG9 neurons receive the same input as P-EG1

neurons allowing us to combine them.
A second class of cells, E-PG neurons, also have synaptic

terminals in equally numbered EB tiles and PB glomeruli,
following a similar pattern with the P-EG neurons but with
their input and output terminals on opposite ends (Figure 4).

Pairs of these neurons can again be replaced by single equivalent
neuronal units because they receive input from the same EB tile
and innervate equally numbered glomeruli in both hemispheres.
The first pair of E-PG neurons, E-PG1, receive input in tile T1 and
provide output in glomeruli G1 in both hemispheres (Figure 4A).
Adding the corresponding connections results in the directed
graph shown at the bottom of Figure 4A. Repeating the same for
neurons E-PG2 to E-PG8 results in the graph shown in Figure 4C.
Here, again there is a ninth pair of cells, the E-PG9 neurons, that
connect T1 to G9 in both hemispheres. These neurons receive
the same input signal as E-PG1 neurons but provide output
to neurons in G9 instead of G1. Therefore, P-EG1 and P-EG9

neurons receive the same signal, in glomeruli G1 and G9, and
provide the same output to both E-PG1 and E-PG9 neurons, as
mentioned in the previous paragraph. This allows us to combine
the P-EG1 and P-EG9 neurons into one single unit in the graph
of Figure 4D.

Unlike the P-EG and E-PG neurons, the P-EN neurons do
not innervate the two middlemost glomeruli (G9 in the left
hemisphere and G1 in the right hemisphere, Wolff et al., 2015).
There are, therefore, eight pairs of P-EN neurons, spanning
glomeruli 1–8 in the left hemisphere and 2–9 in the right
hemisphere. P-EN2 through P-EN8 form pairs connecting equally
numbered glomeruli to two different EB tiles, one shifted to the
left and one to the right, i.e., P-EN2 would connect glomeruli G2
to tiles T1 and T3 (Figure 5B), P-EN3 would connect glomeruli
G3 to tiles T2 and T4, etc. P-EN2 neurons form synapses with
E-PG1 neurons in T1 and E-PG3 neurons in T3, which would
innervate glomeruli G1 and G3, respectively. The exceptions in
this pattern are the two P-EN neurons receiving input from
the outermost glomeruli of the PB, P-EN1 and P-EN9. P-EN1

is unpaired and connects G1 of the left hemisphere to T2
(Figure 5A). P-EN9 is also unpaired and connects G9 of the
right hemisphere to T8 (Figure 5D). Since P-EN1 and P-EN9

receive the same input from E-PG1 and E-PG9 neurons, they
constitute a pair closing the ring, as shown in Figure 5D. In
the directed graphs, each pair of P-EN neurons is preserved as
two overlapped discs because P-EN neurons not only receive
common input in the glomeruli but may also receive differential
angular velocity input depending on which PB hemisphere they
innervate (Turner-Evans et al., 2017).

It becomes apparent from Figure 5D that the E-PG neurons
provide input to the P-EN and P-EG neurons, with P-EG neurons
forming recurrent synapses back to E-PG neurons. P-EN neurons
provide input to E-PG neurons with a shift of one octant to the
left or right.

2.1.3. Overall Circuit
In each PB glomerulus, the inhibitory Delta7 neurons form
synapses with the three types of excitatory neurons. Figure 6
shows the interaction of the excitatory and inhibitory portions
of the circuit. Each Delta7 neuron makes inhibitory synapses
to P-EG and P-EN neurons, as well to all other Delta7 neurons
(Figures 6A,B). Due to their projection patterns, the Delta7
neurons provide uniform inhibition to all eight octants of
the circuit, while E-PG neurons provide input to all Delta7
neurons (Figures 6C,D). For drawing the graphs in Figure 6,

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2021 | Volume 14 | Article 578803118

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 3 | (A–D) The connectivity pattern of P-EG neurons of the fruit fly. The top of each panel shows the connectivity pattern of a pair of P-EG neurons with their

synaptic domains and connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a

directed graph. In the top portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows

represent synaptic connections.

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2021 | Volume 14 | Article 578803119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 4 | (A–D) The connectivity pattern of the E-PG neurons of the fruit fly. The top of each panel shows the connectivity pattern of pairs of E-PG neurons with

their synaptic domains and connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a

directed graph. In the top portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows

represent synaptic connections.

Frontiers in Neurorobotics | www.frontiersin.org 7 January 2021 | Volume 14 | Article 578803120

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 5 | (A–D) The connectivity pattern of P-EN neurons of the fruit fly. The top of each panel shows examples of P-EN neurons with their synaptic domains and

connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a directed graph. In the top

portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows represent synaptic

connections.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2021 | Volume 14 | Article 578803121

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 6 | Connectivity of combined excitatory and inhibitory portions of the circuit. Each colored disc represents one or more neurons with the lines representing

synaptic connections. (A) The connectivity pattern of the Delta7 neurons with the P-EG neurons. (B) The connectivity pattern of the Delta7 neurons with the P-EN

neurons. (C,D) The connectivity pattern of E-PG neurons (E-PG1&9 and E-PG2). The other E-PG neurons follow the same connectivity pattern rotated around the

Delta7 neurons. Each pair of E-PG neurons excites all Delta7 neurons.

Figures 2A, 3–5 were revisited and the connections within each
glomerulus were added in the graphs.

The resulting directed graph representation removed the
details about the anatomical organization of the EB and the
PB while preserving the effective connectivity of the circuit.
This analysis revealed that even though the PB is organized in
nine glomeruli in each hemisphere, the effective circuit has an
eight-fold radial symmetry. This is because the E-PG and P-
EG neurons innervating the PB glomeruli G1 and G9, in both
hemispheres, have synaptic domains in the same EB tile, T1.
This aggregation of synaptic connections between the edges
of the PB and T1, results in the closing of the ring between
octants 1 and 8 (Figure 5D). The ring topology of the circuit
reveals the interaction between components and is indicative of
its function.

2.2. Computational Model
Now that we have reverse engineered the circuit structure, we
can use simulations to investigate its function and corroborate
the role of its components. To this end, a spiking neuron model
of the derived circuit was implemented using the connectivity
matrix and utilizing leaky integrate and fire neuron models with
refractory period (section 4). Since neurophysiological evidence
suggests a ring attractor resembling function and the effective
circuit structure has the topology and necessary elements for a
ring attractor, it was decided to impose the constraint that the
circuit should function as a ring attractor. Using this constraint,
an optimization algorithm was used to search for synaptic
weights that result in a working ring attractor (section 4).
The activity “bump” location was set by a heading stimulus
provided as incoming spiking activity directly to the E-PG

Frontiers in Neurorobotics | www.frontiersin.org 9 January 2021 | Volume 14 | Article 578803122

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 7 | Response of the ring attractor to abrupt changes of stimulus azimuth. (A) The spike raster plot on top shows the stimulus provided to the E-PG neurons.

The lower part of the plot shows in color coding the spiking rate activity of each neuron in the circuit. At 0.5 s an incoming stimulus sets the initial attractor state of the

ring attractor. A “darkness” period of no stimulus follows, during which the “bump” of activity is maintained at the same location. Then a second stimulus,

corresponding to a sudden change of heading by 180o, is provided, producing a sudden change in the position of the “bump,” with this new location then maintained

after the stimulus is removed. The order of recorded neurons is the same as shown in the connectivity matrix (Figure 12). (B) The mean activity “bump” heading and

corresponding standard deviation across time when the ring attractor is stimulated with a step change of heading (80 trials).

neurons, corresponding to input from Ring neurons (Young
and Armstrong, 2010). This heading input mapped the position
of a visual cue, or retinotopic landmark position (Seelig and
Jayaraman, 2015), around the animal to higher firing rates of E-
PG neurons in the corresponding tile of the EB. The neuronal
parameters were set to values consistent with evidence from
measurements in D. melanogaster, as described in section 4.
Figure 7 shows examples of neuronal activity in the simulated
ring attractor circuit with the activity “bump” transitioning from
one attractor state to another in response to a change of the
stimulus azimuth.

2.3. Situated Agent Behavior
The stimulus used in the preceding simulation was a step
function of time, but a real fruit fly or robot would not perform
instantaneous turns between heading directions; instead, they
would exhibit smoother transitions between headings and a
generally variable angular velocity over time. It is, therefore,
important to characterize the circuit’s performance in such a
more natural scenario. For this reason, the flight trajectory
of a real fruit fly was next used to simulate an agent
turning with respect to a visual landmark. The fruit fly’s
heading over time was extracted from such a flight trajectory
and was used to generate the time series of headings the
agent adopts.

Figure 8A shows the motion trajectory of a fruit fly flying
in a circular arena (Tammero and Dickinson, 2002; Figure 2).
From the power spectral density plot of the heading over time,
we can see that the fruit fly’s heading signal has a main period of
1.092 s, corresponding to the fruit fly completing a full rotation
around the arena in approximately 1 s (spectral peak at 0.916

Hz in Figure 8B). This was confirmed with calculation of the
auto-covariance that produced a mean period of 1.087 s.

The visual landmark’s azimuth with respect to the agent was
retinotopically mapped to the E-PG neurons around the ring
attractor (section 4). The correspondence between the heading of
the agent and the heading encoded by the ring attractor circuit
is shown in Figure 8C. The ring attractor tracked the agent’s
heading with an average lag of 100 ms. The exact phase lag
depended on the frequency component of the signal, with a
trend for higher frequencies—faster heading changes—resulting
in increased lag (see bottom plot of Figure 8B). This is an
expected effect because neurons have non-zero time constants
and response times.

Overall, even though the heading encoded by the ring
attractor accumulated error during fast turns of the agent, it
caught up with the actual heading as soon as the agent’s angular
velocity was reduced (Figure 8C). This effect is due to the
ring attractor circuit being continually driven by the stimulus’
azimuthal position, so if given enough time to respond, the circuit
state is readjusted to the stimulus position. It becomes apparent
with this situated agent simulation that even though the agent’s
heading may change faster than the circuit’s ability to track it, as
soon as the agent slows down, the visual cue input corrects the
location of the activity “bump” (Figure 8C).

2.4. Role of Circuit Elements
Now that we have both the underlying circuit structure and
its computational model, we can draw hypotheses and ask
pointed questions about the role of each circuit component. We
can artificially manipulate the circuit by removing or replacing
functional elements in order to study their effect on circuit
function.We recently used this method to investigate the stability

Frontiers in Neurorobotics | www.frontiersin.org 10 January 2021 | Volume 14 | Article 578803123

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 8 | Response of the ring attractor activity “bump” to the heading changes of a real fruit fly. (A) Top view of the trajectory of a fruit fly flying in a circular arena

(Modified from Tammero and Dickinson, 2002). (B) Top: the spectral content of the fruit fly heading progress over time. Bottom: the phase difference between the fruit

fly heading and the heading tracked by the ring attractor across frequency components. (C) Top: the angular velocity of the fruit fly over time. Middle: the heading of

the fruit fly (in blue) and the azimuth of the activity “bump” around the ring attractor (in red). Bottom: the heading error (absolute difference) between the fruit fly heading

and the ring attractor tracked heading.

of the activity “bump” in the absence of stimulus (Pisokas et al.,
2020). We extend this approach here and investigate the circuit’s
performance as part of a situated agent that turns with respect to
a visual cue.

Figure 9 shows the effect of heterogeneity of synaptic weights
on the ability of the circuit to track the agent’s heading when
turning with respect to a visual cue. The ability to accurately track
the agent’s heading deteriorates with increasing heterogeneity
(additive Gaussian noise) of synaptic weights.

Furthermore, when the circuit is driven by heading stimulus,

it is significantly more tolerant of heterogeneity in neuronal
membrane conductance than in membrane capacitance

(Figure 10). The circuit can successfully track the agent’s heading
even when the membrane conductance deviates 50% away from
its nominal value.

Next, we investigate the effect of heterogeneity introduced in
different neuron synapses. While Pisokas et al. (2020) found that
the P-EG neurons enhance the stability of the activity “bump,”
in Figure 11A we see that the ability of the activity “bump” to
successfully track the agent’s heading, when the circuit is driven
by heading stimulus, is unaffected by variation of the P-EG to
E-PG synaptic weights. The ring attractor successfully tracks
the agent’s heading even if the P-EG neurons are completely

silenced. This means that the P-EG neurons play an important
role inmaintaining a stable heading when no stimulus is provided
but are not necessary when such a heading stimulus is present.
Whether the inclusion of these neurons is justified in a particular
ring attractor design would therefore depend on the operational
environment and the agent’s behavioral repertoire.

We can observe that the circuit is more sensitive to variations
in the E-PG to P-EN synapses than variations of the P-EN to
E-PG synapses (Figure 11A). The circuit is also sensitive to
heterogeneity introduced in the inhibitory synapses from Delta7
neurons to P-EG and P-EN neurons since inhibition of excitatory
neurons is an essential aspect of a ring attractor circuit for the
emergence of an activity “bump” (Figure 11B).

However, the circuit is tolerant to variations of the input
weights of Delta7 neurons (Figure 11B). This is because Delta7
neurons reciprocally synapse with each other, resulting in similar
spiking activity in all of them due to averaging out the effect of
synaptic weight variation.

Such insights drawn from observations about the ring
attractor found in the brain of the fruit fly can be incorporated
in building improved ring attractors with applications in robotics
as well as in developing theoretical models. The ability to
manipulate the circuit in robotic simulations can be used

Frontiers in Neurorobotics | www.frontiersin.org 11 January 2021 | Volume 14 | Article 578803124

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 9 | Effect of synaptic weights heterogeneity on heading tracking

performance. The ability of the ring attractor to track the heading of a

simulated robot, replicating the turns of a real fruit fly, deteriorates as function

of synaptic noise. Synaptic noise was introduced by adding values drawn from

the Gaussian distribution to the nominal values of all synaptic weights.

FIGURE 10 | Effect of membrane properties heterogeneity on heading

tracking performance. The ability of the ring attractor to track the heading of a

simulated robot, replicating the turns of a real fruit fly, deteriorates as function

of Gaussian noise added to the neuronal membrane conductance and

capacitance.

for testing hypotheses both at the neuron level and at the
system level.

3. DISCUSSION

The increasing availability of detail about neuronal structure,
particularly in invertebrate brains, raises the possibility
to simulate complete circuits. However, while directly

implementing and simulating a biological neuronal circuit
model allows us to understand the computation performed
by it and to potentially derive its transfer function, it does not
necessarily provide us with a real mechanistic understanding
of its principle of operation and how its components interact.
Reverse engineering the neuronal circuit can provide a real
mechanistic understanding of the underlying principles of the
computational structure. Such a mechanistic understanding
is necessary for transfer to robotic technology because it
would allow engineers to adapt the design to each application’s
particular needs.

An intriguing challenge was posed by Jonas and Kording
(2017) who asked whether the tools and methods available to a
neuroscientist would allow understanding of a microprocessor.
Here, I have used reverse engineering techniques, borrowed from
engineering, to reverse engineer the neuronal circuit that is
encoding the head direction of the fruit fly. I derived the effective
topological structure of the circuit and then determined (through
optimization) the synaptic weights that would allow it to function
as a ring attractor, mimicking the dynamics of the biological
circuit. This illustrates that reverse engineering of a neuronal
circuit with fewer than a hundred neurons is feasible.

It is worth noting that the circuit studied here, even though
highly recurrent, has a regular structure that facilitates the
systematic application of the presented procedure. It remains
to be seen how this approach would need to be augmented in
order to be tractably applied to circuits exhibiting less regularity.
This highlights the need to develop tools that would assist the
systematic analysis of larger neuronal circuits.

The availability of detailed neuron-level anatomical data and
neuronal recordings from behaving animals in combination with
computational simulations enabled the analysis and study of
the circuit’s organization and function. This level of detailed
information is currently available for a few species, mainly
insects. The fruit fly is one of these, allowing the application
of the method to it. As data become available for more species
and brain areas, we could have the opportunity to analyze more
circuit structures and their function.

3.1. Assumptions and Simplifications
As any model, the present model is a simplification of the
neuronal circuit found in the fruit fly brain; therefore, it is
important to outline the assumptions made. The presented
analysis is based on data collected using light microscopy
(Wolff et al., 2015; Wolff and Rubin, 2018). Neurons with
input and output synaptic terminals occupying the same
volume were assumed to form synapses. Analysis of recently
published electron microscopy data will allow more definite
determination of synaptic connections between neurons and
lead to more accurate models. Furthermore, all neurons in the
model were assumed to have the same nominal biophysical
property values. Of course, this will not be the case in the actual
animals, but currently, there is no adequate data available about
the biophysical properties of the individual neurons included
in the model.

It was also assumed that Delta7 neurons have a uniform
distribution of input terminals along the PB. Imaging of Delta7

Frontiers in Neurorobotics | www.frontiersin.org 12 January 2021 | Volume 14 | Article 578803125

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 11 | Effect of synaptic weights heterogeneity on heading tracking performance. The ability of the ring attractor to track the heading of a simulated robot,

replicating the turns of a real fruit fly, as function of Gaussian noise added to synaptic weights for different classes of neuron synapses. (A) Effect of Gaussian noise on

excitatory synapses. (B) Effect of Gaussian noise on synapses with Delta7 neurons on the presynaptic or postsynaptic side.

neurons suggests a subtle variation of dendritic density along the
PB, but it is yet unclear how this variationmight relate to synaptic
density and efficacy. Therefore, the simplifying assumption that
the synaptic efficacy of Delta7 neurons along the PB is uniform
was made. It was also assumed that neuronal terminals are clearly
delineated and confined within the volumes of glomeruli and
tiles. However, in some cases, stray terminals are known to sprout
out to neighboring tiles of the EB (Turner-Evans et al., 2020).
Such cross-innervation and interaction of EB volumes might
have consequences for the connectivity of the circuit, potentially
allowing a smoother transition of the activity “bump” between
circuit octants. Future work will build upon the core circuit
analyzed here and incorporate more circuit detail based on new

electron microscopy data.
Occasionally neurons have mixed input and output terminals

within the same volume. Given the uncertainty in the

identification of the type of synaptic terminals, in those cases, the
predominant terminal type was used. Furthermore, the synaptic

weights of each type of synapse were assumed to be identical

across neurons. This is not expected to be the case in actual fruit

flies, especially for the neurons innervating tile T1 of the EB.
This tile is innervated by twice the number of E-PG and P-EG
neurons as other tiles; thus, some modulation of synaptic efficacy
is expected in this volume in order to maintain a functional
radial symmetry in the circuit. Such synaptic efficacy variation is
suggested by the fact that the volumes of the innermost glomeruli
of the PB are smaller than those of the other glomeruli (Wolff
et al., 2015). Future functional connectivity studies will allow
further investigation of this aspect.

It should also be noted that the ring topology of the resulting
circuit alone does suggest but does not prove a ring attractor
function. Here, the prior observation of neurobiological studies
that the circuit maintains an activity “bump” that tracks the
heading of the animal was used to impose constraints in the

search for synaptic weights. For simplifying the computational
complexity of the search for synaptic weights, it was assumed
that all synapses between each neuron pair type are identical.
Had the computational complexity of the search not been an
issue, it would have been preferable to optimize all synaptic
weights as independent parameters because that would have
potentially revealed alternative weight configurations satisfying
the objective function.

3.2. Nature as Inspiration for Theory and
Engineering
The presented analysis method allowed us to unravel that
the underlying head direction circuit has an eight-fold radial
structure forming a closed ring (Pisokas et al., 2020). Without
reverse engineering of the neuronal circuit, we would not have
been able to see this underlying circuit structure, especially
because, even though there are eight tiles in the EB, the PB
has nine glomeruli in each hemisphere. As the connectivity
results in a closed ring, it is an important aspect of the circuit,
allowing the activity “bump” tomove around the ring as the agent
changes heading.

Combining reverse engineering with simulations enabled the
identification of circuit elements that differ in several ways from
the “canonical” ring attractor described in earlier theoretical
models (e.g., Amari, 1977; Skaggs et al., 1995; Zhang, 1996).
The P-EG neurons are a novel element in a ring attractor,
forming local feedback loops within each octant of the circuit
(reciprocal synapses between P-EG and E-PG neurons). These
local reciprocal connections increase the tolerance of the circuit
to structural noise in the synaptic weights, hence reducing the
drift of the activity “bump” when no stimulus is provided
(Pisokas et al., 2020); however, they are not important if the
stimulus can be assumed at all times. This circuit component will
be a useful trick in the toolkit of neuromorphic circuit designers.

Frontiers in Neurorobotics | www.frontiersin.org 13 January 2021 | Volume 14 | Article 578803126

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

Another difference from textbook ring attractor circuits
revealed by the presented analysis method is that the P-EN
neurons, instead of functioning as mere input neurons, are
also part of the lateral excitation circuit (Pisokas et al., 2020).
These neurons provide lateral excitation to their two nearest
neighbors. P-EN neurons’ dual function suggests a more efficient
use of neuronal resources compared with typical ring attractor
models that use separate sets of neurons for providing the lateral
excitation and for rotating the activity “bump” around the ring in
response to angular velocity input. The architecture of the ring
attractor circuit found in the fruit fly and its differences from
classical ring attractor models can inspire the design of novel ring
attractor architectures with increased stability and efficient use
of neuronal resources, both valuable aspects for applications in
neuromorphic hardware and neurorobotics.

Reverse engineering gives us a mechanistic understanding
of the underlying circuit, while computational simulations give
us the tools to study the circuit’s performance without having
an analytical description of the model. Combined reverse
engineering and computational simulations are tools that enable
us to isolate and manipulate components of the neuronal
structure in order to study their role in whole circuit. The
mechanistic understanding of how the circuit components
interact allows us to infer the circuit behavior under regimes
beyond those explicitly tested with simulations. Combining these
two tools allows us to obtain a deep understanding of neuronal
circuits and enables us to learn their principles of operation.

Furthermore, the approach illustrated here shows that
simulating the circuit as part of a robotic agent reveals aspects of
the circuit’s function that are masked when studying the circuit
in isolation. For example, we saw that even if the ring attractor’s
response time is not sufficient for keeping up with fast turns of
the agent, as long as the agent does not constantly turn faster
than the circuit’s response capability, and the heading stimulus is
available, the ring attractor can readjust to the correct heading.
We also saw that the P-EG neurons’ presence, while essential
for the stability of the activity “bump” when no stimulus is
available, is not important to the circuit’s function when a heading
stimulus is available. These findings highlight the importance of
characterizing neuronal circuits as part of behaving agents.

The studied circuit appears to be an effective means for an
animal to internally track its orientation with respect to its
surroundings and in insects appears to be a core component
of a variety of navigation behaviors spanning from long-range
migration to local path integration. The continued study of
the detailed anatomy of the insect brain provides an exciting
opportunity for the further unraveling of this circuit’s function
that evolved to support complex adaptive behavior.

4. MATERIALS AND TOOLS

4.1. Neuronal Nomenclature
Throughout this paper, I refer to neurons using their short names
for brevity. The correspondence between the nomenclature used
here and in the literature is shown in Table 1.

4.2. Neuron Model
The computational models and simulations were based on the
source code of Kakaria and de Bivort (2017). The neurons were
modeled as leaky integrate and fire units with refractory period.
The membrane potential of each neuron was modeled by the
differential Equation (1).

dVi

dt
=

1

Cm





V0 − Vi

Rm
+ Ii +

N
∑

j=1

Mj,iIj



 (1)

where Vi is the membrane potential of neuron i, Rm
the membrane resistance, Cm the membrane capacitance,
Ii the external input current to neuron i, V0 the resting
potential, Mj,i the network connectivity matrix, Ij the output
current of each neuron in the circuit and N is the number
of neurons.

The neuron properties were set to the same values as
those used by Kakaria and de Bivort (2017). These values are
consistent with evidence frommeasurements inD. melanogaster.
Cm was set to 2nF and Rm to 10M� for all neurons,
assuming a surface area of 10−3cm2 (Gouwens and Wilson,
2009). The resting potential V0 was −52mV for all neurons
(Rohrbough and Broadie, 2002; Sheeba et al., 2008) and
the action potential threshold was −45 mV (Gouwens and
Wilson, 2009). The action potential template was defined
as (Kakaria and de Bivort, 2017):

V(t) =














Vthr + (Vmax − Vthr)
N

(

ttp
2 ,

(

tAP
2

)2
)

−α1

β1
, if 0 ≤ t < tAP

2

Vmin + (Vmax − Vmin)
sin

((

t−
tAP
2

)

2π
tAP

+
π
2

)

+γ1

δ1
, if tAP

2 ≤ t ≤ tAP

(2)

When the membrane potential reached the threshold voltage
Vthr , the action potential template was inserted in the recorded
voltage time series. Vmax = 20 mV is the peak voltage
(Rohrbough and Broadie, 2002) and Vmin = −72 mV is
the undershoot potential (Nagel et al., 2015). tAP = 2 ms
is the duration of the action potential (Gouwens and Wilson,
2009; Gaudry et al., 2012). N (µ, σ 2) is a Gaussian function
with mean µ and standard deviation σ . α1, β1, γ1, and δ1 are
normalization parameters for scaling the range of the Gaussian
and the sinusoidal to [0,1]. No other action potentials were
allowed during the template duration in effect producing a
refractory period.

The postsynaptic current generated by the action potential was
modeled as (Kakaria and de Bivort, 2017):

I(t) =







IPSC
sin(tπ

2 −
π
2)+α2

β2
, if 0 ≤ t < 2ms

IPSC
2−(t−2)/tPSC+γ2

δ2
, if 2ms ≤ t ≤ 2ms+ 7tPSC

(3)

Excitatory and inhibitory postsynaptic currents were assumed to
have the same magnitude but opposite signs. The parameters

Frontiers in Neurorobotics | www.frontiersin.org 14 January 2021 | Volume 14 | Article 578803127

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 12 | The connectivity matrix derived by the neuronal projection data of the fruit fly Drosophila melanogaster (Wolff et al., 2015; Wolff and Rubin, 2018).

Synaptic weight is denoted by color in units of postsynaptic current equivalents.

were set to IPSC = 5 nA (Gaudry et al., 2012) and tPSC = 5
ms (Gaudry et al., 2012). The postsynaptic current traces had
duration 2ms+ 7tPSC (2 ms of rise time plus 7tPSC of decay time).
α2, β2, γ2, and δ2 are normalization constants so that the range
of the sinusoidal and exponential terms is [0,1]. Our simulation
code was derived from the source code published by Kakaria and
de Bivort (2017). The simulations were implemented in Matlab
using Euler’s method with a simulation time step of 10−4s. The
source code is available at https://github.com/johnpi/Frontiers_
Neurorobotics_Pisokas_2020.

4.3. Neuronal Projections and Connectivity
Matrix
The connectivity matrix of the circuit (Figure 12) has been
inferred from anatomical data derived using light microscopy,
with overlapping neuronal terminals assumed to form synapses
between them (Wolff et al., 2015; Wolff and Rubin, 2018).

4.4. Stimuli
The heading stimulus was provided as incoming spiking activity
directly to the E-PG neurons. The heading, visual cue azimuth
(Seelig and Jayaraman, 2015) around the animal or agent, was
encoded as higher firing rates supplied to E-PG neurons at the
corresponding location around the EB ring (Figure 13). The

heading stimulus followed spatially a vonMises distribution with
mean equal to the azimuth of the stimulus and full width at half
maximum (FWHM) of approximately 90◦. This was converted
to Poisson distributed spike trains by sampling from a Poisson
distribution. The background neuronal activity level was set to 5
impulses/s and themaximum stimulus activity was set to the peak
level of activity of the E-PG neurons in the neuronal population.

4.5. Selection of Synaptic Weights
The free parameters of the model were the synaptic weights.
The synaptic weights connecting each class of neurons were
assumed to be identical, e.g., all E-PG to P-EN synapses had
identical weights. Therefore, there was one free parameter for
each synaptic class. To reduce the computational complexity
during optimization, the synaptic weights of E-PG to P-EN and P-
EG were identical as were the synaptic weights of Delta7 to P-EN
and P-EG. This was the minimum set of independent synaptic
weights that resulted in working ring attractors. The synaptic
weights were modeled as the number of IPSC unit equivalents
flowing to the postsynaptic neuron per action potential.

The simulated annealing and particle swarm optimization
algorithms were used to search for synaptic weights that resulted
in working ring attractors (Matlab Optimization Toolbox
“simulannealbnd” and “particleswarm” functions). The objective

Frontiers in Neurorobotics | www.frontiersin.org 15 January 2021 | Volume 14 | Article 578803128

https://github.com/johnpi/Frontiers_Neurorobotics_Pisokas_2020
https://github.com/johnpi/Frontiers_Neurorobotics_Pisokas_2020
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

FIGURE 13 | Simulated agent and its environment. (A,B) The simulated agent (R) is located in the middle of its environment (large black circle), with a visual cue (gray

circle at the top of the environment). During the simulation the heading of the agent changes. (C,D) The azimuth of the visual cue with respect to the agent is mapped

retinotopically to the E-PG neurons around the ring attractor. The azimuthal location is converted to a von Mises activity distribution and then to Poisson distributed

spikes to stimulate the E-PG neurons. (A,B) Two poses of the agent with respect to the visual cue. (C,D) The corresponding stimulation of the E-PG neurons around

the ring attractor.

function optimized for solutions that produced an activity
“bump” with a full width at half maximum (FWHM) of
approximately 90◦ since this is the width that has been reported
in fruit flies (Kim et al., 2017).

The objective function used to optimize the synaptic weights
wi was:

argmin
w

4(ǫH1(w)+ ǫH2(w))+ ǫW1(w)+ ǫW2(w)+ Np0(w)

s. t. ǫH1(w) =
|Hd(t1)−Ha(w, t1)|

360◦

ǫH2(w) =
|Hd(t2)−Ha(w, t2)|

360◦

ǫW1(w) =
|90◦ −Wa(w, t1)|

360◦

ǫW2(w) =
|90◦ −Wa(w, t2)|

360◦

p0(w) =
1

N

N
∑

i=1

(e−|wi|)2

0 ≤ w1 ≤ 100

0 ≤ w2 ≤ 100

0 ≤ w3 ≤ 100

−100 ≤ w4 ≤ 0

−100 ≤ w5 ≤ 0

(4)

Where ǫH1, ǫH2, ǫW1, and ǫW2 are the error factors measured
as deviations from the desired values. Hd(t) is the desired
activity “bump” heading at time t, while Ha(w, t) is the actual
activity “bump” heading at time t given a model with synaptic
weights w. Wa(w, t) is the actual width of the activity “bump”
at time t (measured as the full width at half maximum). p0
is used to penalize synaptic weights that are too close to 0
and N is the number of synaptic weights wi. The constraints
in 4 specify that the synapses with Delta7 neurons at their
presynaptic side are inhibitory (negative) and all others are
excitatory (positive). Excitatory synaptic weights were initialized
with value 0.01 and inhibitory synaptic weights with value−0.01.
During optimization, the model was simulated to search the
space of synaptic weights. The objective function was used to

Frontiers in Neurorobotics | www.frontiersin.org 16 January 2021 | Volume 14 | Article 578803129

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

optimize the synaptic weights separately for the two models,
the fruit fly model and the one without P-EG neurons. The
optimized synaptic weight sets were manually tested to verify
the results.

4.6. Sensitivity Analysis
For the sensitivity analysis, white Gaussian noise was added to
the synaptic weights, using the formula

wi = wnominal +
x

100
wnominalǫ,

ǫ ∼ N (µ, σ 2)
(5)

where wi is the resulting noisy value of weight i. i =

{1, 2, . . . ,M} and M is the number of weights. wnominal is the
nominal value of the weight, x ∈ [0, 100] is the percentage of
noise to be added to the nominal value, ǫ is a random variable
sampled from the Gaussian distribution with µ = 0 and σ 2

= 1.
The number of successful trials was counted in each condition.
The criterion for a successful trial was that the activity “bump”
tracked the stimulus heading with an error of <±10◦ for more
than 50% of stimulus duration.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://doi.org/10.1002/cne.24512.

AUTHOR CONTRIBUTIONS

IP conceptualized and developed the method for deriving the
effective circuit and contributed to the experimental design,
software, validation of results, statistical analysis, visualizations,
and manuscript writing.

FUNDING

IP was funded by the Principal’s Career
Development Scholarship.

ACKNOWLEDGMENTS

The author would like to thank Stanley Heinze and Barbara
Webb for their invaluable input as well as William Berg and Nina
Kudryashova for their valuable comments on early versions of
this manuscript.

REFERENCES

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern. 27, 77–87. doi: 10.1007/BF00337259

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016).

Comparison of deep neural networks to spatio-temporal cortical dynamics of

human visual object recognition reveals hierarchical correspondence. Sci. Rep.

6, 1–13. doi: 10.1038/srep27755

Cope, A. J., Sabo, C., Vasilaki, E., Barron, A. B., and Marshall, J. A. (2017). A

computational model of the integration of landmarks and motion in the insect

central complex. PLoS ONE 12:e0172325. doi: 10.1371/journal.pone.0172325

Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L., and Wilson, R. I. (2012).

Asymmetric neurotransmitter release enables rapid odour lateralization in

Drosophila. Nature 493, 424–428. doi: 10.1038/nature11747

Giraldo, Y. M., Leitch, K. J., Ros, I. G., Warren, T. L., Weir, P. T., and Dickinson,

M. H. (2018). Sun navigation requires compass neurons in Drosophila. Curr.

Biol. 28, 2845–2852.e4. doi: 10.1016/j.cub.2018.07.002

Gouwens, N.W., andWilson, R. I. (2009). Signal propagation inDrosophila central

neurons. J. Neurosci. 29, 6239–6249. doi: 10.1523/JNEUROSCI.0764-09.2009

Green, J., Adachi, A., Shah, K. K., Hirokawa, J. D., Magani, P. S., and Maimon,

G. (2017). A neural circuit architecture for angular integration in Drosophila.

Nature 546, 101–106. doi: 10.1038/nature22343

Green, J., and Maimon, G. (2018). Building a heading signal from anatomically

defined neuron types in the Drosophila central complex. Curr. Opin. Neurobiol.

52, 156–164. doi: 10.1016/j.conb.2018.06.010

Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., and El Jundi, B. (2011). Central

neural coding of sky polarization in insects. Philos. Trans. R. Soc. B Biol. Sci. 366,

680–687. doi: 10.1098/rstb.2010.0199

Jonas, E., and Kording, K. P. (2017). Could a neuroscientist

understand a microprocessor? PLoS Comput. Biol. 13, 1–24.

doi: 10.1371/journal.pcbi.1005268

Kakaria, K. S., and de Bivort, B. L. (2017). Ring attractor dynamics emerge from a

spiking model of the entire protocerebral bridge. Front. Behav. Neurosci. 11:8.

doi: 10.3389/fnbeh.2017.00008

Kim, S. S., Rouault, H., Druckmann, S., and Jayaraman, V. (2017). Ring

attractor dynamics in the Drosophila central brain. Science 356, 849–853.

doi: 10.1126/science.aal4835

Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., et al. (2006). Distinct memory

traces for two visual features in the Drosophila brain. Nature 439, 551–556.

doi: 10.1038/nature04381

Martin, J. P., Guo, P., Mu, L., Harley, C. M., and Ritzmann, R. E. (2015). Central-

complex control of movement in the freely walking cockroach. Curr. Biol. 25,

2795–2803. doi: 10.1016/j.cub.2015.09.044

Nagel, K. I., Hong, E. J., and Wilson, R. I. (2015). Synaptic and circuit mechanisms

promoting broadband transmission of olfactory stimulus dynamics. Nat.

Neurosci. 18, 56–65. doi: 10.1038/nn.3895

Neuser, K., Triphan, T., Mronz, M., Poeck, B., and Strauss, R. (2008). Analysis

of a spatial orientation memory in Drosophila. Nature 453, 1244–1247.

doi: 10.1038/nature07003

Ofstad, T. A., Zuker, C. S., and Reiser, M. B. (2011). Visual place learning in

Drosophila melanogaster. Nature 474, 204–209. doi: 10.1038/nature10131

Pisokas, I., Heinze, S., andWebb, B. (2020). The head direction circuit of two insect

species. eLife. 9:e53985 doi: 10.7554/eLife.53985.sa2

Rekoff, M. G. (1985). On reverse engineering. IEEE Trans. Syst. Man Cybern. 15,

244–252. doi: 10.1109/TSMC.1985.6313354

Ritzmann, R. E., Harley, C. M., Daltorio, K. A., Tietz, B. R., Pollack, A. J., Bender,

J. A., et al. (2012). Deciding which way to go: how do insects alter movements

to negotiate barriers? Front. Neurosci. 6:97. doi: 10.3389/fnins.2012.00097

Rohrbough, J., and Broadie, K. (2002). Electrophysiological analysis of synaptic

transmission in central neurons of Drosophila larvae. J. Neurophysiol. 88,

847–860. doi: 10.1152/jn.2002.88.2.847

Seelig, J. D., and Jayaraman, V. (2015). Neural dynamics for landmark orientation

and angular path integration. Nature 521, 186–191. doi: 10.1038/nature

14446

Sheeba, V., Gu, H., Sharma, V. K., O’Dowd, D. K., and Holmes, T. C. (2008).

Circadian- and light-dependent regulation of resting membrane potential and

spontaneous action potential firing of drosophila circadian pacemaker neurons.

J. Neurophysiol. 99, 976–988. doi: 10.1152/jn.00930.2007

Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S., and McNaughton, B. L. (1995). A

model of the neural basis of the rat’s sense of direction. Adv. Neural Inform.

Process. Syst. 7, 173-80.

Stone, T., Webb, B., Adden, A., Weddig, N. B., Honkanen, A., Templin, R., et al.

(2017). An anatomically constrained model for path integration in the bee

brain. Curr. Biol. 27, 3069–3085.e11. doi: 10.1016/j.cub.2017.08.052

Frontiers in Neurorobotics | www.frontiersin.org 17 January 2021 | Volume 14 | Article 578803130

https://doi.org/10.1007/BF00337259
https://doi.org/10.1038/srep27755
https://doi.org/10.1371/journal.pone.0172325
https://doi.org/10.1038/nature11747
https://doi.org/10.1016/j.cub.2018.07.002
https://doi.org/10.1523/JNEUROSCI.0764-09.2009
https://doi.org/10.1038/nature22343
https://doi.org/10.1016/j.conb.2018.06.010
https://doi.org/10.1098/rstb.2010.0199
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.3389/fnbeh.2017.00008
https://doi.org/10.1126/science.aal4835
https://doi.org/10.1038/nature04381
https://doi.org/10.1016/j.cub.2015.09.044
https://doi.org/10.1038/nn.3895
https://doi.org/10.1038/nature07003
https://doi.org/10.1038/nature10131
https://doi.org/10.7554/eLife.53985.sa2
https://doi.org/10.1109/TSMC.1985.6313354
https://doi.org/10.3389/fnins.2012.00097
https://doi.org/10.1152/jn.2002.88.2.847
https://doi.org/10.1038/nature14446
https://doi.org/10.1152/jn.00930.2007
https://doi.org/10.1016/j.cub.2017.08.052
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Pisokas Tools for Analyzing Neural Circuits

Strauss, R. (2002). The central complex and the genetic dissection

of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633–638.

doi: 10.1016/S0959-4388(02)00385-9

Su, T. S., Lee, W. J., Huang, Y. C., Wang, C. T., and Lo, C. C. (2017). Coupled

symmetric and asymmetric circuits underlying spatial orientation in fruit flies.

Nat. Commun. 8. doi: 10.1038/s41467-017-00191-6

Tammero, L. F., and Dickinson, M. H. (2002). The influence of visual landscape

on the free flight behavior of the fruit fly Drosophila melanogaster. J. Exp. Biol.

205(Pt 3), 327–343.

Taube, J., Muller, R., and Ranck, J. (1990). Head-direction cells recorded from the

postsubiculum in freely moving rats. I. Description and quantitative analysis. J.

Neurosci. 10, 420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990

Triphan, T., Poeck, B., Neuser, K., and Strauss, R. (2010). Visual targeting

of motor actions in climbing Drosophila. Curr. Biol. 20, 663–668.

doi: 10.1016/j.cub.2010.02.055

Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J.

D., et al. (2017). Angular velocity integration in a fly heading circuit. eLife 6,

2112–2126. doi: 10.7554/eLife.23496

Turner-Evans, D. B., Jensen, K., Ali, S., Paterson, T., Sheridan, A., Ray, R. P., Wolff,

T., et al. (2020). The neuroanatomical ultrastructure and function of a biological

ring attractor. Neuron 108, 145–163. doi: 10.1016/j.neuron.2020.08.006

Varga, A. G., Kathman, N. D., Martin, J. P., Guo, P., and Ritzmann, R. E. (2017).

Spatial navigation and the central complex: sensory acquisition, orientation,

and motor control. Front. Behav. Neurosci. 11:4. doi: 10.3389/fnbeh.2017.00004

Wolff, T., Iyer, N. A., and Rubin, G. M. (2015). Neuroarchitecture and

neuroanatomy of the Drosophila central complex: a GAL4-based dissection of

protocerebral bridge neurons and circuits. J. Compar. Neurol. 523, 997–1037.

doi: 10.1002/cne.23705

Wolff, T., and Rubin, G. M. (2018). Neuroarchitecture of the Drosophila central

complex: a catalog of nodulus and asymmetrical body neurons and a revision

of the protocerebral bridge catalog. J. Compar. Neurol. 526, 2585–2611.

doi: 10.1002/cne.24512

Yamins, D. L., and DiCarlo, J. J. (2016). Using goal-driven deep learning models

to understand sensory cortex. Nat. Neurosci. 19, 356–365. doi: 10.1038/

nn.4244

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and

DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural

responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.

doi: 10.1073/pnas.1403112111

Young, J. M., and Armstrong, J. D. (2010). Structure of the adult central complex in

Drosophila: organization of distinct neuronal subsets. J. Compar. Neurol. 518,

1500–1524. doi: 10.1002/cne.22284

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics

of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126.

doi: 10.1523/JNEUROSCI.16-06-02112.1996

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Pisokas. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 18 January 2021 | Volume 14 | Article 578803131

https://doi.org/10.1016/S0959-4388(02)00385-9
https://doi.org/10.1038/s41467-017-00191-6
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://doi.org/10.1016/j.cub.2010.02.055
https://doi.org/10.7554/eLife.23496
https://doi.org/10.1016/j.neuron.2020.08.006
https://doi.org/10.3389/fnbeh.2017.00004
https://doi.org/10.1002/cne.23705
https://doi.org/10.1002/cne.24512
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1002/cne.22284
https://doi.org/10.1523/JNEUROSCI.16-06-02112.1996
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 22 September 2021

doi: 10.3389/fnbot.2021.629210

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 629210

Edited by:

Ganesh R. Naik,

Western Sydney University, Australia

Reviewed by:

Claudia Casellato,

University of Pavia, Italy

Sumit Bam Shrestha,

Intel, United States

Vikas Bhandawat,

Drexel University, United States

Erik Christopher Johnson,

Johns Hopkins University,

United States

*Correspondence:

Joe Hays

joe.hays@nrl.navy.mil

Received: 13 November 2020

Accepted: 11 August 2021

Published: 22 September 2021

Citation:

Schmidgall S, Ashkanazy J,

Lawson W and Hays J (2021)

SpikePropamine: Differentiable

Plasticity in Spiking Neural Networks.

Front. Neurorobot. 15:629210.

doi: 10.3389/fnbot.2021.629210

SpikePropamine: Differentiable
Plasticity in Spiking Neural Networks
Samuel Schmidgall, Julia Ashkanazy, Wallace Lawson and Joe Hays*

U.S. Naval Research Laboratory, Washington, DC, United States

The adaptive changes in synaptic efficacy that occur between spiking neurons have

been demonstrated to play a critical role in learning for biological neural networks.

Despite this source of inspiration, many learning focused applications using Spiking

Neural Networks (SNNs) retain static synaptic connections, preventing additional learning

after the initial training period. Here, we introduce a framework for simultaneously

learning the underlying fixed-weights and the rules governing the dynamics of synaptic

plasticity and neuromodulated synaptic plasticity in SNNs through gradient descent.

We further demonstrate the capabilities of this framework on a series of challenging

benchmarks, learning the parameters of several plasticity rules including BCM, Oja’s,

and their respective set of neuromodulatory variants. The experimental results display

that SNNs augmented with differentiable plasticity are sufficient for solving a set of

challenging temporal learning tasks that a traditional SNN fails to solve, even in the

presence of significant noise. These networks are also shown to be capable of producing

locomotion on a high-dimensional robotic learning task, where near-minimal degradation

in performance is observed in the presence of novel conditions not seen during the initial

training period.

Keywords: spiking neural network, plasticity, neuromodulation, reinforcement learning, backpropagation,

temporal learning, motor learning, robotic learning

1. INTRODUCTION AND RELATED WORK

The dynamic modification of neuronal properties underlies the basis of learning, memory, and
adaptive behavior in biological neural networks. The changes in synaptic efficacy that occur on the
connections between neurons play an especially vital role. This process, termed synaptic plasticity,
is largely mediated by the interaction of pre- and post-synaptic activity between two synaptically
connected neurons in conjunction with local and global modulatory signals. Importantly, synaptic
plasticity is largely believed to be one of the primary bases for enabling both stable long-term
learning and adaptive short-term responsiveness to novel stimuli (Martin et al., 2000; Zucker and
Regehr, 2002; Liu et al., 2012).

An additional mechanism that guides these changes is neuromodulation. Neuromodulation, as
the name suggests, is the process by which select neurons modulate the activity of other neurons;
this is accomplished by the use of chemical messaging signals. Such messages are mediated by
the release of chemicals from neurons themselves, often using one or more stereotyped signals
to regulate diverse populations of neurons. Dopamine, a neuromodulator commonly attributed
to learning (Schultz et al., 1997; Frank et al., 2004; Hosp et al., 2011), has been experimentally
shown to portray a striking resemblance to the Temporal-Difference (TD) reward prediction error
(Montague et al., 1996; Schultz et al., 1997; Niv et al., 2005) and more recently distributional

132

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.629210
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.629210&domain=pdf&date_stamp=2021-09-22
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:joe.hays@nrl.navy.mil
https://doi.org/10.3389/fnbot.2021.629210
https://www.frontiersin.org/articles/10.3389/fnbot.2021.629210/full

Schmidgall et al. Differentiable Plasticity in SNNs

coding methods of reward prediction (Dabney et al., 2020).
Such signals have been shown to play a critical role in
guiding the effective changes in synaptic plasticity, allowing
the brain to regulate the location and scale with which such
changes are made (Gerstner et al., 2018). The conceptual role
of dopamine has largely shaped the development of modern
reinforcement learning (RL) algorithms, enabling the impressive
accomplishments seen in recent literature (Mnih et al., 2013;
Bellemare et al., 2017; Barth-Maron et al., 2018; Haarnoja et al.,
2018). While dopamine has primarily taken the spotlight in
RL, many other important neuromodulatory signals have largely
been excluded from learning algorithms in artificial intelligence
(AI). For example, acetylcholine has been shown to play a vital
role in motor control, with neuromodulatory signals often sent
as far as from the brainstem to motor neurons (Zaninetti et al.,
1999). Modeling how these neuromodulatory processes develop,
as well as how neurons can directly control neuromodulatory
signals are likely critical steps toward successfully reproducing
the impressive behaviors exhibited by the brain.

Both historically and recently, neuroscience and AI have had
a fruitful relationship, with neuroscientific speculations being
validated through AI, and advancements in the capabilities of AI
being a result of a better understanding of the brain. A major
contributor toward enabling this, particularly in AI, is through
the application of backpropagation for learning the weights of
Artificial Neural Networks (ANNs). Although backpropagation
is largely believed to be biologically implausible (Bengio et al.,
2015), networks trained under certain conditions using this
algorithm have been shown to display behavior remarkably
similar to biological neural networks (Banino et al., 2018; Cueva
and Wei, 2018).

The promising advances toward more brain-like
computations have led to the development of SNNs. These
networks more closely resemble the dynamics of biological
neural networks by storing and integrating membrane potential
to produce binary spikes. Consequently, such networks are
naturally suited toward solving temporally extended tasks,
as well as producing many of the desirable benefits seen in
biological networks such as energy efficiency, noise robustness,
and rapid inference (Pfeiffer and Pfeil, 2018). However, until
recently, the successes of SNNs have been overshadowed by
the accomplishments of ANNs. This is primarily due to the
use of spikes for information transmission, which does not
naturally lend itself toward being used with backpropagation. To
circumvent this challenge, a wide variety of learning algorithms
have been proposed including Spike-Timing Dependent
Plasticity (STDP) (Masquelier et al., 2009; Bengio et al., 2017;
Kheradpisheh et al., 2018; Mozafari et al., 2018), ANN to SNN
conversion methods (Diehl et al., 2015; Rueckauer et al., 2017;
Hu et al., 2018), Eligibility Traces (Bellec et al., 2020), and
Evolutionary Strategies (Pavlidis et al., 2005; Carlson et al., 2014;
Eskandari et al., 2016; Schmidgall, 2020). However, a separate
body of literature enables the use of backpropagation directly
with SNNs typically through the use of surrogate gradients
(Bohte et al., 2002; Sporea and Grüning, 2012; Lee et al., 2016;
Shrestha and Orchard, 2018). These surrogate gradient methods
are primary contributors for many of the state-of-the-art

results obtained using SNNs from supervised learning to RL.
Counter to biology, temporal learning tasks such as RL interact
with an external environment over multiple episodes before
synaptic weight updates are computed. Between these update
intervals, the synaptic weights remain unchanged, diminishing
the potential for online learning to occur. Recent work by
Miconi et al. (2018) transcends this dominant fixed-weight
approach specifically for the recurrent weights of ANNs by
presenting a framework for augmenting traditional fixed-weight
networks with Hebbian plasticity, where backpropagation
updates both the weights and parameters guiding plasticity. In
follow-up work, this hybrid framework was expanded to include
neuromodulatory signals, whose parameters were also learned
using backpropagation (Miconi et al., 2019).

Learning-to-learn, or meta-learning, is the capability to learn
or improve one’s own learning ability. The brain is constantly
modifying and improving its own ability to learn at both the local
and global scale. This was originally theorized to be a product
of neurotransmitter distribution from the Basal Ganglia (Doya,
2002), but has also included contributions from the Prefrontal
Cortex (Wang et al., 2018) and the Cerebellum (Doya, 1999) to
name a few. In machine learning, meta-learning approaches aim
to improve the learning algorithm itself rather than retaining
a static learning process (Hospedales et al., 2020). For spiking
neuro-controllers, learning-to-learn through the discovery of
synaptic plasticity rules offline provides amechanism for learning
on-chip since neuromorphic hardware is otherwise incompatible
with on-chip backpropagation. Many neuromorphic chips
provide a natural mechanism for incorporating synaptic
plasticity (Davies et al., 2018; van Albada et al., 2018), and more
recently, neuromodulatory signals (Mikaitis et al., 2018).

Despite the prevalence of plasticity in biologically-inspired
learning methods, a method for learning both the underlying
weights and plasticity parameters using gradient descent has
yet to be proposed for SNNs. Building off of Miconi et al.
(2019), which was focused on ANNs, this paper provides a
framework for incorporating plasticity and neuromodulation
with SNNs trained using gradient descent. In addition, five
unique plasticity rules inspired by the neuroscientific literature
are introduced. A series of experiments are conducted with
using a complex cue-association environment, as well as a high-
dimensional robotic locomotion task. From the experimental
results, networks endowed with plasticity on only the forward
propagating weights, with no recurrent self-connections, are
shown to be sufficient for solving challenging temporal learning
tasks that a traditional SNN fails to solve, even while experiencing
significant noise perturbations. Additionally, these networks are
much more capable of adapting to conditions not seen during
training, and in some cases displaying near-minimal degradation
in performance.

2. DIFFERENTIABLE PLASTICITY

Section 2.1 begins by describing the dynamics of an SNN.
Using these dynamic equations, section 2.2 then introduces the
generalized framework for differentiable plasticity of an SNN

Frontiers in Neurorobotics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 629210133

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

as well as some explicit forms of differentiable plasticity rules.
First, the Differentiable Plasticity (DP) form of Linear Decay
is introduced, primarily due to the conceptual simplicity of
its formulation. Next, the DP form of Oja’s rule (Oja, 1983)
is presented as DP-Oja’s. This rule is introduced primarily
because, unlike Linear Decay, it provides a natural and simple
mechanism for stable learning, namely a penalty on weight-
growth. The next form is based on the Bienenstock, Cooper,
and Munro (BCM) rule (Bienenstock et al., 1982), named DP-
BCM. Like Oja’s rule, the BCM rule provides stability, except
in this case the penalty accounts for a given neuron’s deviation
from the average spike-firing rate. Finally, a respective set of
neuromodulatory variants for the Oja’s and BCM differentiable
plasticity rules are presented in section 2.3, as well as a
generalized framework for differentiable neuromodulation. The
rules described in this section serve primarily to demonstrate
an explicit implementation of the generalized framework on two
well-studied synaptic learning rules.

2.1. Spiking Neural Network
We will begin by describing the dynamics of an SNN, and then
proceed in the following sections to describe a set of plasticity
rules that can be applied to such networks. We begin with the
following set of equations:

a(l)(t) = ε ∗ s(l−1)(t) (1)

u(l)(t) = W(l)a(l)(t)+ v ∗ s(l)(t) (2)

s(l)(t) = fs(u
(l)(t)). (3)

The superscript l ∈ N represents the index for a layer of
neurons and t ∈ N discrete time. We further define n(l) ∈ N

to represent the number of neurons in layer l. From here, ε(·)
is a spike response kernel which is used to generate a spike

response signal, a(l)(t) ∈ R
n(l−1)

, by convolving incoming spikes

s(l−1)(t) ∈ B
n(l−1)

,B = {0, 1} over ε(·). We further define
the binary vector s(0)(t) to represent sensory input obtained
from the environment. Often in practice, the effect of ε(·)
provides an exponentially decaying contribution over time,
which consequently has minimal influence after a fixed number
of steps. Exploiting this concept, ε(·) may be represented as
a finite weighted decay kernel with dimensionality K, which
is chosen heuristically as the point in time with which ε(·)
has minimal practical contribution. v(·) is chosen in a similar
manner, where v(·) is the refractory kernel, convolving together
with spikes s(l)(t) to produce the refractory response v ∗ s(l)(t) ∈

R
n(l) . Additionally, W(l)

∈ R
n(l)×n(l−1)

numerically represents
the synaptic strength between each neuron connected from
layer l − 1 and l, which, as a weight is multiplied by a(l)(t)
and further summed with the refractory response v ∗ s(l)(t) to

produce the membrane potential u(l)(t) ∈ R
n(l) . The membrane

potential stores the weighted sum of spiking activity arriving
from incoming synaptic connections, referred to as the Post
Synaptic Potential (PSP).

We further define the spike function fs(·) as:

fs(u) : u → s : = s(t)+ δ(t − t(f)) (4)

t(f) = min{t : u(t) = ϑ , t > t(f−1)
} (5)

In these equations, the function fs(·) produces a binary spike
based on the neuron’s internal membrane potential, ui(t), i ∈ N

indexing an individual neuron. When ui(t) passes a threshold
ϑ ∈ R, the respective binary spike is propagated downstream to
a set of connected neurons, and the internal membrane potential
for that neuron is reset to a baseline value ur ∈ R, which is often
set to zero. The function enabling this is referred to as a dirac-
delta, δ(t), which produces a binary output of one when t = 0
and zero otherwise. Here, tf ∈ R denotes the firing time of the
f th spike, so that when t = t(f) then δ(t − t(f)) = 1.

Like an artificial neural network, fs(·) can be viewed as
having similar functionality to an arbitrary non-linear activation
function φ(·). Unlike the ANN however, fs(·) has an undefined
derivative making the gradient computation for backpropagation
particularly challenging. To enable backpropagation through the
non-differentiable aspects of the network, the Spike Layer Error
Reassignment in Time (SLAYER) algorithm is used (Shrestha
and Orchard, 2018). SLAYER overcomes such difficulties by
representing the derivative of a spike as a surrogate gradient and
uses a temporal credit assignment policy for backpropagating
error to previous layers. Although SLAYER was used in this
paper, we note that any spike-derivative approximation method
will work together with our methods.

2.2. Spike-Based Differentiable Plasticity
To enable differentiable plasticity we utilize the SNN dynamic
equations described in (1–5), however now both the weights and
the rules governing plasticity are optimized by gradient descent.
This is enabled through the addition of a synaptic trace variable,

E(l)(t) ∈ R
n(l)×n(l−1)

, which accumulates traces of the local
synaptic activities between pre- and post-synaptic connections.

An additional plasticity coefficient, α(l) ∈ R
n(l)×n(l−1)

, is often
learned which serves to element-wise scale the magnitude and
direction of the synaptic traces independently from the trace
dynamics. By augmenting our SNN we obtain:

a(l)(t) = (ε ∗ s(l−1)(t)) (6)

u(l)(t) = (W(l)
+ α(l) ⊙ E(l)(t))a(l)(t)+ (v ∗ s(l))(t) (7)

s(l)(t) = fs(u
(l)(t)). (8)

The Hadamard product, ⊙, is used to represent element-
wise multiplication. The primary modifications from the fixed-
weight SNN framework in (1–3) are in the addition of the
synaptic trace E(l)(t) and plasticity coefficient α(l) in (7). Without
this modification, the underlying weight W(l) remains constant
from episode-to-episode in the same way as (2). However, the
additional contribution of the synaptic trace E(l)(t) enables each
weight value to be modified through the interaction of local or

Frontiers in Neurorobotics | www.frontiersin.org 3 September 2021 | Volume 15 | Article 629210134

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

global activity. The differentiable plasticity and neuromodulated
plasticity frameworks presented in this work are concerned with
learning such local and global signals, respectively. Proceeding,
we present three different methods of synaptic plasticity
followed by a section describing neuromodulated plasticity. We
additionally note that this framework is not limited to these
particular plasticity rules and can be expanded upon to account
for a wide variety of different methods.

2.2.1. Generalized
Neuronal activity can be represented by a diverse family of
forms. Plasticity rules have been proposed using varying levels
of abstraction, from spike rates and spike timing, all the way to
modeling calcium-dependent interactions. To encapsulate this
wide variety in our work, we abstractly define a vector ρ(l)(t)
to represent activity for a layer of neurons l at time t. In
many practical instances, time t may represent continuous time,
however our examples and discussions are primarily concerned
with the evolution of discrete time, which is the default mode
from which many models of spiking neurons operate. Likewise,
the activity vector ρ(l)(t) may be represented by a variety of

different sets, such as Bn(l) or Rn(l) for spike-timing or rate-based
activity; this is primarily dependent on which types of activity
the experimenter desires to model. The generalized equation for
differentiable plasticity is expressed as follows:

E(l)(t + 1τ) = F(ρ(l−1)(t), ρ(l)(t),E(l)(t), L(l)). (9)

Here, E(l)(t + 1τ) is updated after a specified time interval
1τ ∈ N. In these equations, F(·) is a function of the pre- and
post-synaptic activity, ρ(l−1)(t) and ρ(l)(t), as well as E(l)(t) at the
current time-step and L(l) which represents an arbitrary set of
functions describing local neuronal activity from either pre- or
post-synaptic neurons. In practice, E(l)(t = 0) is often set to zero
at the beginning of a new temporal interaction.

2.2.2. DP-Linear Decay
Perhaps the simplest form of differentiable plasticity is the linear
decay method:

E(l)(t + 1τ) = (1− η(l))E(l)(t)+ η(l)(ρ(l)(t))⊺ρ(l−1)(t). (10)

Let the set L(l) = {η(l)}, with η(l) ∈ R. In this
equation, E(l)(t + 1τ) is computed using the local layer-specific
function η(l), representing the rate at which new local activity

ρ(l)(t)(ρ(l−1)(t))⊺ ∈ R
n(l)×n(l−1)

is incorporated into the synaptic
trace, as well as the degree to which prior synaptic activity will
be ’remembered’ from (1 − η(l))E(l)(t). While the parameters
regulating E(l)(t + 1τ) will generally approach values that
produce stable weight growth, in practice E(l)(t) is often clipped
to enforce stable bounds. Here, the local variable η(l) acts as a free
parameter and is learned through gradient descent.

2.2.3. DP-Oja’s
Among the most studied synaptic learning rules, Oja’s rule
simplistically provides a natural system of stability and effective
correlation (Oja, 1982). This rule balances potentiation and

depression directly from the synaptic activity stored in the
trace, which cause a decay proportional to its magnitude.
Mathematically, Oja’s rule enables the neuron to perform
Principal Component Analysis (PCA) which is a common
method for finding unsupervised statistical trends in data (Oja,
1983). Building off of this work, we incorporate Oja’s rule into
our framework as Differentiable Plasticity Oja’s rule (DP-Oja’s).
Rather than a generalized representation of activity, DP-Oja’s rule
uses a more specific rate-based representation, where ρ(l)(t) =

r(l)(t) ∈ R
n(l) . To obtain r(l)(t), spike averages are computed over

the pre-defined interval 1τ . DP-Oja’s rule is defined as:

E(l)(t+1τ) = (1−η(l))E(l)(t)+η(l)(r(l)−E(l)r(l−1))(t)⊺r(l−1)(t).
(11)

Similar to (10), we let the set L(l) = {η(l)} contain the local
layer-specific value η(l) that governs the incorporation of novel
synaptic activity. Differing however, E(l)(t) is used twice. The
term E(l)(t) being multiplied by (1 − η(l)) on the left-side of (11)
serves a similar purpose compared with (10), however on the
right-hand side of the addition this value penalizes unbounded
growth, acting as an unsupervised regulatory mechanism. Here,
like in (10), η(l) acts as a free parameter learned through
gradient descent.

2.2.4. DP-BCM
Another well-studied example of plasticity is the BCM rule
(Bienenstock et al., 1982). The BCM rule has been shown
to exhibit similar behavior to STDP under certain conditions
(Izhikevich and Desai, 2003), as well as to successfully describe
the development of receptive fields (Shouval et al., 1970; Law
and Cooper, 1994). BCM differs from Oja’s rule in that it has
more direct control over potentiation and depression through the
use of a dynamic threshold which often represents the average
spike rate of each neuron. In this example of differentiable
plasticity, we describe a model of BCM, where the dynamics
governing the plasticity as well as the stability-providing sliding
threshold are learned through backpropagation, which we refer
to as Differentiable Plasticity BCM (DP-BCM). This rule can be
described as follows:

E(l)(t + 1τ) = (1− η(l))E(l)(t)+ η(l)(r(l)(t))⊺r
(l)
β (t) (12)

r
(l)
β (t) = r(l−1)(t)⊙ (r(l−1)(t)− (φ(l)(t)+ ψ (l))) (13)

φ(l)(t + 1τ) = (1− η
(l)
φ)φ(l)(t)+ η

(l)
φ ω(r(l−1)(t)). (14)

As in (11), the DP-BCM uses a rate-based representation of
synaptic activity, where ρ(l)(t) = r(l)(t). Here, we let the set

of local functions L(l) = {ψ (l),φ(l), η
(l)
φ , η(l)}. To begin, ψ (l)

∈

R
n(l−1)

is a bias vector that remains static during interaction time,

and the parameter φ(l)(t) ∈ R
n(l−1)

is its dynamic counterpart.
These parameters enable the addition of a sliding-boundary,
φ(l)(t) + ψ (l), which determines whether activity results in
potentiation vs. depression. The dynamics of this boundary are
described in (14). Otherwise, ω(·) serves as an arbitrary function

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 629210135

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

of the pre-synaptic activity r(l−1)(t), and η
(l)
φ ∈ R determines

the rate at which new information is incorporated into the
φ(l)(t) trace. For our experiments we let ω(·) = I(·), which
is the identity function. This altogether has the effect of slowly
incorporating the observed rate of pre-synaptic activity r(l−1)(t)
into φ(l)(t). Finally, η(l) ∈ R provides the same utility as in
(10). Comparatively, the BCM rule is more naturally suited
for regulating potentiation and depression than Oja’s, which
primarily regulates depression through synaptic weight decay.

Among the local functions, ψ (l), η
(l)
φ , and η(l) are free parameters

learned through gradient descent.

2.3. Spike-Based Differentiable
Neuromodulation
In addition to differentiable plasticity, a framework
for differentiable neuromodulation is also presented.
Neuromodulation, or neuromodulated plasticity, allows the
use of both learned local signals, as well as learned global signals.
These signals modulate the effects of plasticity by scaling the
magnitude and direction of synaptic modifications based on
situational neuronal activity. This adds an additional layer of
learned supervision, enabling the potential for learning-to-learn,
or meta-learning. Adding neuromodulation provides an analogy
to the neuromodulatory signals observed in biological neural
networks, which provide a rich set of biological processes to take
inspiration from.

As before, we present the equation for generalized
neuromodulated plasticity and further describe a series of
more specific neuromodulation rules.

2.3.1. Generalized Neuromodulated Plasticity
The generalized equation for neuromodulated plasticity is
as follows:

E(l)(t + 1τ) = G(ρ(l−1)(t), ρ(l)(t),E(l)(t), L(l),M). (15)

In this equation, G(·) has the same functionality as F(·) in (9)
except for the addition of neuromodulatory signals M. Here,
the values contained in M may be represented by a wide
variety of functions, however it differs from L(l) in that the
elements may express global signals. Global signals may be
computed at any part of the network, or by a separate network
all together. Additionally, global signals may be incorporated
that are learned independent of the modulatory reaction,
such as dopamine-inspired TD-error from an independent
value-prediction network, or a function computing predictive
feedback-error signals as is observed in the cerebellum (Popa and
Ebner, 2019).

2.3.2. NDP-Oja’s
Building off of (11), Oja’s synaptic update rule is augmented
with a neuromodulatory signal that linearly weights the neuronal
activity of post-synaptic neurons. This neuromodulated variant
of Oja’s rule (NDP-Oja’s) is described as follows:

E(l)(t + 1τ) = (1− η(l))E(l)(t)+ η(l)(M(l)(t)⊙ r(l)

− E(l)r(l−1))(t))⊺r(l−1)(t) (16)

M(l)(t) = W(l)
m r(l)(t). (17)

Where the parameter W
(l)
m ∈ R

n(l)×n(l) weights the post-synaptic
activity r(l)(t), which modulates the right-hand trace dynamics
in (16). Importantly, the effect of the gradient in learning

M(l)(t) ∈ R
n(l) also contributes toward modifying the parameters

producing the post-synaptic activity r(l)(t) rather than simply
having a passive relationship. This enables more deliberate and
effective control of the neuromodulatory signal. In this equation,

both W
(l)
m and η(l) are free parameters learned through gradient

descent. Otherwise, the role of each parameter is identical to (11).

2.3.3. NDP-BCM
In a similar manner, Equations (12–14) for DP-BCM are
augmented with a neuromodulatory signal that linearly weights
the neuronal activity of post-synaptic neurons, which is referred
to as Neuromodulated Differentiable Plasticity BCM (NDP-
BCM). This rule can be described as follows:

E(l)(t+1τ) = (1−η(l))E(l)(t)+η(l)(M(l)(t)⊙r(l)(t))⊺r
(l)
β (t) (18)

r
(l)
β (t) = r(l−1)(t)⊙ (r(l−1)(t)− (φ(l)(t)+ ψ (l))) (19)

φ(l)(t + 1τ) = (1− η
(l)
φ)φ(l)(t)+ η

(l)
φ ω(r(l−1)(t)). (20)

M(l)(t) = W(l)
m r(l)(t). (21)

As above, the learned parameter W
(l)
m ∈ R

n(l)×n(l) weights
the post-synaptic activity r(l)(t), which is then distributed to
modulate the right-hand trace dynamics in (18). Otherwise, each

parameter follows from (12–14). Similarly, ψ (l), η
(l)
φ , and η(l) as

well asW
(l)
m are free parameters learned through gradient descent.

3. RESULTS

The results of this work demonstrate the improvements in
performance that differentiable plasticity provides over fixed-
weight SNNs, as well as the unique behavioral patterns
that emerge as a result of differentiable plasticity. Presented
here are two distinct environments which require challenging
credit assignment.

3.1. Noisy Cue-Association: Temporal
Credit-Assignment Task
Experience-dependent synaptic changes provide critical
functionality for both short- and long-term memory.
Importantly, such a mechanism should be able to disentangle the
correlations between complex sensory cues with delayed rewards,
where the learning agent often has to wait a variable amount
or time before an action is made and a reward is received. A
common learning experiment in neuroscience analyzes the
performance of rodents in a similar context through the use of a
T-maze training environment (Kuśmierz et al., 2017; Engelhard
et al., 2019). Here, a rodent moves down a straight corridor

Frontiers in Neurorobotics | www.frontiersin.org 5 September 2021 | Volume 15 | Article 629210136

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

FIGURE 1 | (A) A graphical visualization of the cue-association T-Maze, where the cues are sequentially presented followed by a delay and decision period. The right

cue is shown in red, the left in blue. (B) Displayed is the sensory neuron input activity. From bottom to top, the activity of ten neurons each represent left and right

cues, followed by ten neurons for an action decision cue, and finally ten neurons that have activity with no relationship to the task. Membrane potential for the output

neurons, and the spiking activity of a random subset of 10 hidden neurons for neuromodulated Oja’s rule (C,D) and non-modulated Oja’s rule (E,F). The blue and red

curves here correspond to the neuron representing the decision for choosing left or right, respectively, also corresponding to the left and right cue colors in (A,B). In

(D), only 5 of the 10 neurons were actively spiking, whereas in (F) all 10 were.

where a series of sensory visual cues are arranged randomly on
the left and right of the rodent as it walks toward the end of
the maze. After the sensory cues are displayed, there is a delay
interval between the cues and the decision period. Finally, at the
T-junction, the rodent is faced with the decision of turning either
left of right. A positive reward is given if the rodent chooses the
side with the highest number of visual cues. This environment
poses unique challenges representative of a natural temporal
learning problem, as the decision-making agent is required to
learn that reward is independent of both the temporal order of
each cue as well as the side of the final cue.

Rather than visual cues specifically, the cues in our experiment
produce a time period of high-spiking activity that is input into
a distinct set of neurons for each cue (Figure 1). Additionally, a
similarly-sized set of neurons begins producing spikes near the
T-junction indicating a decision period, from which the agent

is expected to produce a decision to go left or right. Finally,
the last set of neurons produce noise to make the task more
challenging. The cue-association task has been shown to be
solvable in simulation with the use of recurrent spiking neural
networks for both Backpropagation Through Time (BPTT)
and eligibility propagation (E-Prop) algorithms (Bellec et al.,
2020). However, using the same training methods, a feedforward
spiking neural network without recurrent connections is not
able to solve this task. In the Miconi et al. (2019) experiments,
results were shown for ANNs with plastic and neuromodulated
synapses on only the recurrent weights. In this experiment, we
determine whether non-recurrent feedforward networks with
plastic synapses are sufficient for solving this same task. Here,
we consider both DP-BCM and DP-Oja’s rules as well as the
respective neuromodulatory variants described in sections 2.2,
2.3.We also collect results from an additional environment where

Frontiers in Neurorobotics | www.frontiersin.org 6 September 2021 | Volume 15 | Article 629210137

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

FIGURE 2 | The performance of Oja’s and BCM plastic and neuromodulated learning rules on the low-noise (A) and high-noise (B) environments. (C) The average

spike firing rate of hidden layer neurons in the high-noise environments for plastic and neuromodulated Oja’s and BCM. Once the average network training loss is less

than −0.97, which here is consider optimal, the training is halted. Training accuracy is defined as the ratio of correct cues averaged over a series of trials. To perform

gradient descent, training loss is this value multiplied by −1.

each population of neurons has a significantly higher probability
of spiking randomly, as well as a reduced probability of spiking
during the actual cue interval (Figure 2).

The input layer is comprised of 40 neurons: 10 for the
right-sided cues, 10 for the left-sided cues, 10 neurons which
display activity during the decision period, and 10 neurons which
produce spike noise (Figure 1B). The hidden layer is comprised
of 64 neurons, where each neuron is synaptically connected to
every neuron in the input layer. Finally, the output layer is
similarly fully-connected with two output neurons (Figure 3).

Output activity is collected over the decision interval
averaging the number of spikes over each distinct output neuron.
To decide which action is taken at the end of the decision interval,
the output activity is used as the 2-dimensional log-odds input for
a binomial distribution from which an action is then sampled. To
compute the parameter gradients, the policy gradient algorithm
is employed together with BPTT and the Adam optimization
method (Kingma and Ba, 2014). To compute the policy gradient,
a reward of one is given for successfully solving the task, where
otherwise a reward of negative one is given. A more in-depth
description of the training details is reserved for the section 5.4
of the Appendix.

Accuracy on this task is defined as the ratio of correct cue-
decisions at the end of the maze averaged over 100 trials.

Training loss is defined as accuracy multiplied by −1, hence the
optimal performance is −1. The training results for both the
high- and low-noise environments are shown in Figure 2. For
both environments, the NDP-BCM and NDP-Oja’s consistently
outperform both DP-BCM and DP-Oja’s, whereas the non-plastic
SNN fails to solve the task. The neuromodulated networks
learn to solve the task most efficiently, despite having more
complex dynamics as well as a larger set of parameters to
learn. In comparing the non-modulated plasticity variants,
there is minimal difference in learning efficiency for either
environment. Interestingly, there was minimal degradation in
training performance when transitioning from a low- to high-
noise environment as shown in Figures 2A,B.

One observed difference between the activity of the
neuromodulated and non-modulated variants of BCM and Oja’s
rule is their average hidden spike rates. The average spike-firing
rate is relatively consistent between NDP-Oja’s and NDP-BCM,
as well as the DP-BCM, however the DP-Oja’s network has
almost twice the spike-firing rate of the former three networks
(Figure 2). This is thought to be due to Oja’s rule primarily
controlling synaptic depression through weight decay, which
tends to produce larger weight values in active networks. This
differs from the BCM rule, which produces a sliding boundary
based on the average neuronal spike-firing rate to control

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 629210138

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

FIGURE 3 | Cue-Association network diagram.

potentiation and depression. The neuromodulated variant of
Oja’s rule however, can control potentiation and depression
through the learned modulatory signal, bypassing the weight-
value associated decay. This effect is also seen in Figures 1D,F

where the spiking activity of 10 randomly-sampled neurons is
shown. Again, the NDP-Oja’s rule shows drastically lower average
spiking activity. This demonstrates that neuromodulatory signals
may provide critical information in synaptic learning rules
where depression is not actively controlled. Reduced activity is
desirable in neuromorphic hardware, as it enables lower energy
consumption in practical applications.

To better understand the role of neuromodulation in this
experiment, four unqiue cue-association cases are considered
(Figures A1–A4 inAppendix). It is observed that the modulatory
signals on the output neurons exhibit loose symmetry, whereas
the activity on hidden neurons follow a similar dynamic pattern
for different cues. Additionally, the plastic-weights are shown
to behave differently when deprived of sensory-cues. During
this deprivation period, the characteristic potentiation and
depression seen in all other cue patterns is absent. It is evident
from these experiments that the plasticity and neuromodulation
have a significant effect on self-organization and behavior. A
more in-depth analysis of the neuronal activity is provided in the
Appendix (section 5.6).

3.2. High-Dimensional Robotic Locomotion
Task
Locomotion is among the most impressive capabilities of the
brain. The utility of such a capability for a learning agent
extends beyond biological organisms, and has received a long
history of attention in the robotics field for its many practical
applications. Importantly, among the most desirable properties
of a locomotive robot are adaptiveness, robustness, as well as
energy efficiency. However, it is worth noting that the importance
of having adaptive capabilities for a locomotive agent primarily
serves to enable robust performance in response to noise, varying

environments, and novel situations. Since plasticity in networks
largely serves as a mechanism toward adapting appropriately
to new stimuli, we test the adaptive capabilities of our
differentiable plasticity networks in a locomotive robotic learning
setting (Figure 4).

We thus begin by considering a modified version of the Half-
Cheetah environment. Half-Cheetah is a common benchmark
used to examine the efficacy of RL algorithms. This environment
begins with a robot which loosely has the form of a cheetah,
controlling six actuated joints equally divided among the two
limbs. Additionally, the robot is restricted to motion in 2-
dimensions, hence the name ’Half-Cheetah’. In total, the half-
cheetah is a 9-DOF system, with 3 unactuated floating body
DOFs and 6 actuated-DOFs for the joints. The objective of this
environment is to maximize forward velocity, while retaining
energy efficiency. The sensory input for this environment is
comprised of the relative angle and angular velocity of each joint
for a total of 12 individual inputs. Originally, the environmental
measurements are represented as floating point values. These
measurements are then numerically clipped, converted into a
binary spike representation, and sent as input into the network.
The binary spike representation utilized is a probabilistic
population representation based on place coding. Similar to the
sensory representation, the action outputted by the network
is represented by a population of spiking neurons. In each
population there exists spiking neurons with equal sized positive
and negative sub-populations. The total sum of spikes for each
population is then individually collected and averaged over the
pre-defined integration interval T ∈ N. Both the equations
describing the spike observation and action representation are
further discussed in sections 5.2 and 5.3 of the Appendix.

To introduce action variance for this experiment, the output
floating point value A(t) is used as the mean for a multivariate
Gaussian with zero co-variance, Ae(t) = N (A(t), exp(σ log)

2).
The log standard deviation, σ log , is a fixed vector that is learned
along with the network parameters. To produce an action, the
integration interval T was chosen to be 50 time-steps and the
action sub-population size to be 100 neurons. With the action
floating point dimensionality having been 6, this produced a
spike-output dimensionality of 600 neurons. Additionally, using
a population size of 50 neurons for each state input and a 12-
dimensional input, the spike-input dimensionality was also 600
neurons. Each network model in this experiment is comprised
of 2 fully-connected feed-forward hidden layers with 64 neurons
each (Figure 5).

To compute the gradients for the network parameters we
used BPTT with the surrogate gradient method Proximal Policy
Optimization, altogether with the Adam optimization method
(Kingma and Ba, 2014; Schulman et al., 2017). For the policy
gradient, the reinforcement signal is given for each action output
proportional to forward velocity, with an energy penalty on
movement. This signal is backpropagated through the non-
differentiable spiking neurons using SLAYER, with modifications
described in section 5.1 of the Appendix (Shrestha and Orchard,
2018).

Five unique network types are evaluated on the locomotion
task: a traditional SNN, the DP-BCM, DP-Oja’s, NDP-BCM,

Frontiers in Neurorobotics | www.frontiersin.org 8 September 2021 | Volume 15 | Article 629210139

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

FIGURE 4 | (A) Average performance of each network at each iteration of the training process. (B–D) Average loss in performance as a ratio of the observed

performance in response to noise [x-axis] and the original network performance in the absence of noise at x=0. Averages for each noise standard deviation were

collected over 100 training episodes.

and NDP-Oja’s. Three unique categories of noise are measured
on the trained networks: joint friction noise, action noise, and
observation noise. For each of these categories, a noise vector
is sampled from a Gaussian distribution with a mean of zero
and a specified standard deviation. Then, to obtain an accurate
measurement, the performance for an individual network is
collected and the objective is averaged over 100 performance
evaluations to represent the average performance response
for that network at the specified noise standard deviation
(Figures 4B–D). Both the noise vector dimensionality and the
way in which it is utilized is uniquely defined by the nature of
each task. To represent observation noise, a 12-dimensional noise
vector z(t) ∼ N (0, 1σ 2), with a standard deviation σ which
remains fixed starting at the beginning of an episode, is sampled
for each observation at time t, and further summed with the
respective observation before conversion to spike representation,
Xz(t) = X(t) + z(t). This observation noise is in addition to the
spike-firing probability noise, ϑmin, described in section 5.2 of

the Appendix. For the action noise, the same sampling process
is repeated for a 6-dimensional vector, however here the noise
vector plus one is element-wise multiplied with the output action,
Az(t) = A(t) ⊙ (1 + z(t)). The joint friction noise rather is
sampled at the beginning of a performance episode t = 0 and
held constant throughout that episode, z(t) = z(t = 0). The
sampled noise is then further summed as a percentage of the
originally specified joint friction constants fz(t) at the beginning
of the performance evaluation episode, fz(t) = f(t)⊙ (1+ z(t)).

Despite each network having been trained in the absence of
these noise types, the post-training performance response
of the networks vary (Figure 4). Overall, the networks
augmented with differentiable plasticity are shown to provide
more effective adaptive capabilities, where minimal loss in
performance was observed during the joint friction and
action noise experiment for plastic networks (Figure 4).
However, while these networks displayed improvements in
robustness over the joint friction and action noise tasks,

Frontiers in Neurorobotics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 629210140

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

FIGURE 5 | Locomotion network diagram.

they did not display improvements on the observation noise
task compared with the fixed-weight SNN. In general, the
performance of NDP-Oja’s was better than NDP-BCM, which
may be a result of NDP-BCM’s added complexity, hyper-
parameter choices, network initialization, or network size. Policy
gradient methods tend to favor the model which works best
with the particular implementation details (Engstrom et al.,
2020).

The activity of the modulatory signals in this task seem
to noisily oscillate within a consistent range after the initial
timestep (Figure A6 in Appendix). This behavior is observed
to be consistent across various noise perturbations, and in the
absence of them. However, when deprived of sensory input, as in
the case where the robot flips on its back, modulatory oscillations
cease almost completely (Figure A5 in Appendix). This differs
from the modulatory behavior in the cue-association task where
the hidden signals potentiate and decay significantly during the
sensory cue sequence. A more in-depth analysis for this task is
provided in the Appendix (section 5.8).

Training performance results for both the NDP- and DP-
network variants are relatively consistent for each experiment
included in Figure 4A. This differs from the cue-association
experiment, where NDP-networks converged on the training
task around 50 iterations faster than DP-networks. This
experiment differs fundamentally in that the locomotion task
is inherently solvable without temporal learning capabilities
(Schulman et al., 2017), hence deciphering the role and benefit
of plasticity and neuromodulation is not trivial. Additionally,
neuromodulatory signals in biological networks do not act
solely on modifying synaptic efficacy, rather have a whole
host of effects depending on the signal, concentration, and
region. Perhaps advances in the capabilities of NDP-networks
will be a result of introducing these biologically inspired
modulations (Zaninetti et al., 1999; Hosp et al., 2011; Dabney
et al., 2020).

4. DISCUSSION

We have proposed a framework for learning the rules governing
plasticity and neuromodulated plasticity, in addition to fixed
network weights, through gradient descent on SNNs, providing
a mechanism for online learning. Additionally, we have provided
formulations for a variety of plasticity rules inspired by
neuroscience literature, as well as general equations from which
new plasticity rules may be defined. Using these rules, we
demonstrated that synaptic plasticity is sufficient for solving a
noisy and complex cue-association environment where a fixed-
weight SNN fails. These networks also display an increased
robustness to noise on a high-dimensional locomotion task.
We also showed that the average spike-firing rate for DP-Oja’s
rule is reduced to the same observed rates seen in DP-BCM
and NDP-BCM in the presence of a neuromodulatory signal,
and hence more energy efficient. One potential limitation of
this work is that, while gradients provide a strong and precise
mechanism for learning in feed-forward and self-recurrent SNNs,
there is no straightforward mechanism for backpropagating the
gradients of feedback weights which are often incorporated in
biologically-inspired network architectures. Another limitation
is the computation cost associated with BPTT, which has a
non-linear complexity with respect to weights and time. This
limitation may be alleviated with truncated BPTT (Tallec and
Ollivier, 2017), however this reduces gradient accuracy and hence
often performance as well.

The incorporation of synaptic plasticity rules together with
SNNs has a history that spans almost the same duration as
SNNs themselves. The implications of a framework for learning
these rules using the power of gradient descent may prove
to showcase the inherent advantages that SNNs provide over
ANNs on certain learning tasks. One task that may naturally
benefit from this framework is in the domain of Sim2Real,
where the behavior of policies learned in simulation are
transferred to hardware. Often small discrepancies between a
simulated environment and the real world prove too challenging
for a reinforcement-trained ANN, especially on fine-motor
control tasks. The improved response to noise displayed in our
experimental results for DP-SNNs and NDP-SNNs on the robotic
locomotion task may benefit the transfer from simulation to real
hardware. Additionally, the inherent online learning capabilities
of differentiable plasticity may provide a natural mechanism for
on-chip learning in neurorobotic systems.

While our framework leverages the work of Miconi et al.
(2019) to enter the SNN domain, this work also introduces
novel results and further innovations. In the Miconi et al.
(2019) experiments, results were shown for networks with plastic
and neuromodulated synapses on only the recurrent weights.
In their experiment, the cue association process was iterated
for 200 time-steps without introducing any noise. They show
that only modulatory variants of ANNs with fixed-feedforward
weights and neuromodulated self-connecting recurrent weights
are capable of solving this task. In our experiment, we
extend a similar task to the spike domain and introduce a
significant amount of sensory spike-noise. Additionally, the time
dependency is more than doubled. We show that not only are

Frontiers in Neurorobotics | www.frontiersin.org 10 September 2021 | Volume 15 | Article 629210141

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

neuromodulatory feedforward weights without recurrent self-
connections capable of solving this task, but also that feedforward
plastic weights are. We also show that the introduction of
spike-noise does not decrease training convergence. On the cue
association task, we show that with Oja’s rule, neuromodulatory
signals drastically reduce spike-firing rates compared with the
non-modulatatory variant. This reduction in activity does not
apply to BCM, which has a natural mechanism for both
potentiation and depression. Finally, our experiments showcase
a meta-learning capability to adapt beyond what the network had
encountered during its training period on a high-dimensional
robotic learning task.

While our experiments showcase the performance of BCM
and Oja’s plasticity rules, our proposed framework can be
applied to a wide variety of plasticity rules described in both
the AI and neuroscience literature. Our framework may also
be used to experimentally validate biological theories regarding
the function of plasticity rules or neuromodulatory signals.

Furthermore, the modeling of neuromodulatory signals need
not be learned directly through gradient descent. Our method
can be extended to explicitly model neuromodulatory signals
through a pre-defined global signal. Such signals might include:
an online reward signal emulating dopaminergetic neurons
[Hosp et al., 2011, Hosp et al. (2011)], error signals from a
control system (Popa and Ebner, 2019), or a novelty signal
for exploration (DeYoung, 2013). In addition, evidence toward
biological theories regarding the function of plasticity rules
or neuromodulatory signals may be experimentally validated
using this framework. Finally, the addition of neural processes
such as homeostasis may provide further learning capabilities
when interacting with differentiable synaptic plasticity. The
fruitful marriage between the power of gradient descent and

the adaptability of synaptic plasticity for SNNs will likely enable
many interesting research opportunities for a diversity of fields.
The authors see a particular enabling potential in the field
of neurorobotics.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SS designed and performed the experiments as well as the
analysis and wrote the paper with JH and JA being active
contributors toward editing and revising the paper. WL also
provided helpful editing of the manuscript. JH had the initial
conception of the presented idea as well as having supervised the
project. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was performed at the US Naval Research Laboratory
under the Base Program’s Safe LifelongMotor Learning (SLLML)
work unit, WU1R36.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2021.629210/full#supplementary-material

REFERENCES

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., et al. (2018).

Vector-based navigation using grid-like representations in artificial agents.

Nature 557, 429–433. doi: 10.1038/s41586-018-0102-6

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., Dhruva,

T. B., et al. (2018). Distributed distributional deterministic policy gradients.

arXiv preprint arXiv:1804.08617.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.

(2020). A solution to the learning dilemma for recurrent networks of spiking

neurons. Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17236-y

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective

on reinforcement learning. arXiv preprint arXiv:1707.06887.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards

biologically plausible deep learning. arXiv preprint arXiv:1502.04156.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2017).

STDP-compatible approximation of backpropagation in an energy-

based model. Neural Comput. 29, 555–577. doi: 10.1162/NECO_a_0

0934

Bienenstock, E., Cooper, L., and Munro, P. (1982). Theory for the development

of neuron selectivity: orientation specificity and binocular interaction in

visual cortex. J. Neurosci. 2, 32–48. doi: 10.1523/JNEUROSCI.02-01-0003

2.1982

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Carlson, K., Nageswaran, J., Dutt, N., and Krichmar, J. (2014). An efficient

automated parameter tuning framework for spiking neural networks. Front.

Neurosci. 8:10. doi: 10.3389/fnins.2014.00010

Cueva, C. J., and Wei, X.-X. (2018). “Emergence of grid-like representations

by training recurrent neural networks to perform spatial localization,” in

International Conference on Learning Representations.

Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C. K., Hassabis, D.,

Munos, R., et al. (2020). A distributional code for value in dopamine-based

reinforcement learning. Nature 577, 671–675. doi: 10.1038/s41586-019-1924-6

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

DeYoung, C. (2013). The neuromodulator of exploration: a unifying theory

of the role of dopamine in personality. Front. Hum. Neurosci. 7:762.

doi: 10.3389/fnhum.2013.00762

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia

and the cerebral cortex? Neural Netw. 12, 961–974.

Doya, K. (2002). Metalearning and neuromodulation. Neural Netw. 15, 495–506.

doi: 10.1016/S0893-6080(02)00044-8

Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., et al.

(2019). Specialized coding of sensory, motor and cognitive variables in VTA

dopamine neurons. Nature 570, 509–513. doi: 10.1038/s41586-019-1261-9

Frontiers in Neurorobotics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 629210142

https://www.frontiersin.org/articles/10.3389/fnbot.2021.629210/full#supplementary-material
https://doi.org/10.1038/s41586-018-0102-6
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1162/NECO_a_00934
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.3389/fnins.2014.00010
https://doi.org/10.1038/s41586-019-1924-6
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnhum.2013.00762
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1038/s41586-019-1261-9
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Schmidgall et al. Differentiable Plasticity in SNNs

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., et al.

(2020). Implementation matters in deep policy gradients: a case study on PPO

and TRPO. arXiv preprint arXiv:2005.12729.

Eskandari, E., Ahmadi, A., Gomar, S., Ahmadi, M., and Saif, M. (2016). “Evolving

spiking neural networks of artificial creatures using genetic algorithm,” in

2016 International Joint Conference on Neural Networks (IJCNN), 411–418.

doi: 10.1109/IJCNN.2016.7727228

Frank, M. J., Seeberger, L. C., and O,Reilly, R. C. (2004). By carrot or by stick:

cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943.

doi: 10.1126/science.1102941

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018).

Eligibility traces and plasticity on behavioral time scales: experimental

support of neohebbian three-factor learning rules. Front. Neural Circ. 12:53.

doi: 10.3389/fncir.2018.00053

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: off-policy

maximum entropy deep reinforcement learning with a stochastic actor. arXiv

preprint arXiv:1801.01290.

Hosp, J., Pekanovic, A., Rioult-Pedotti, M.-S., and Luft, A. (2011). Dopaminergic

projections from midbrain to primary motor cortex mediate motor skill

learning. J Neurosci. 31, 2481–2487. doi: 10.1523/JNEUROSCI.5411-10.2011

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2020). Meta-learning

in neural networks: a survey. arXiv preprint arXiv:2004.05439.

Hu, Y., Tang, H., Wang, Y., and Pan, G. (2018). Spiking deep residual network.

arXiv preprint arXiv:1805.01352.

Izhikevich, E., and Desai, N. (2003). Relating STDP to BCM. Neural Comput. 15,

1511–1523. doi: 10.1162/089976603321891783

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

STDP-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kingma, D. P., and Ba, J. (2014). ADAM: a method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Kuśmierz, Ł., Isomura, T., and Toyoizumi, T. (2017). Learning with three factors:

modulating Hebbian plasticity with errors. Curr. Opin. Neurobiol. 46, 170–177.

doi: 10.1016/j.conb.2017.08.020

Law, C. C., and Cooper, L. N. (1994). Formation of receptive fields in realistic

visual environments according to the Bienenstock, Cooper, and Munro (BCM)

theory. Proc. Natl Acad. Sci. U.S.A. 91, 7797–7801. doi: 10.1073/pnas.91.16.7797

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K.,

et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear

memory recall. Nature 484, 381–385. doi: 10.1038/nature11028

Martin, S. J., Grimwood, P. D., andMorris, R. G. M. (2000). Synaptic plasticity and

memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive

STDP-based spike pattern learning. Neural Comput. 21, 1259–1276.

doi: 10.1162/neco.2008.06-08-804

Miconi, T., Clune, J., and Stanley, K. O. (2018). Differentiable plasticity:

training plastic neural networks with backpropagation. arXiv [Preprint].

arXiv:1804.02464.

Miconi, T., Rawal, A., Clune, J., and Stanley, K. O. (2019). “Backpropamine:

training self-modifying neural networks with differentiable neuromodulated

plasticity,” in International Conference on Learning Representations.

Mikaitis, M., Pineda Garcia, G., Knight, J. C., and Furber, S. B. (2018).

Neuromodulated synaptic plasticity on the spinnaker neuromorphic system.

Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.00105

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996). A framework for

mesencephalic dopamine systems based on predictive hebbian learning.

J. Neurosci. 16, 1936–1947. doi: 10.1523/JNEUROSCI.16-05-01936.

1996

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., andMasquelier, T.

(2018). Combining STDP and reward-modulated STDP in deep convolutional

spiking neural networks for digit recognition. arXiv preprint arXiv:1804.00227.

doi: 10.1016/j.patcog.2019.05.015

Niv, Y., Duff, M. O., and Dayan, P. (2005). Dopamine, uncertainty and TD

learning. Behav. Brain Funct. 1, 6. doi: 10.1186/1744-9081-1-6

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Oja, E. (1983). Subspace Methods of Pattern Recognition, Vol. 6. New York,

NY: John Wiley & Sons.

Pavlidis, N. G., Tasoulis, O. K., Plagianakos, V. P., Nikiforidis, G., and Vrahatis,

M. N. (2005). “Spiking neural network training using evolutionary algorithms,”

in Proceedings. 2005 IEEE International Joint Conference on Neural Networks,

2005 (Montreal, QC: IEEE), 2190–2194. doi: 10.1109/IJCNN.2005.1556240

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Popa, L. S., and Ebner, T. J. (2019). Cerebellum, predictions and errors. Front. Cell.

Neurosci. 12:524. doi: 10.3389/fncel.2018.00524

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schmidgall, S. (2020). “Adaptive reinforcement learning through evolving

self-modifying neural networks,” in Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, GECCO ’20 (New York, NY:

Association for Computing Machinery), 89–90. doi: 10.1145/3377929.3389901

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural

substrate of prediction and reward. Science 275, 1593–1599.

doi: 10.1126/science.275.5306.1593

Shouval, H., Intrator, N., Law, C., and Cooper, L. (1970). Effect of binocular cortical

misalignment on ocular dominance and orientation selectivity.Neural Comput.

8, 1021–1040. doi: 10.1162/neco.1996.8.5.1021

Shrestha, S. B., and Orchard, G. (2018). “SLAYER: spike layer error reassignment

in time,” in Proceedings of the 32nd International Conference on Neural

Information Processing Systems, 1419–1428.

Sporea, I., andGrüning, A. (2012). Supervised learning inmultilayer spiking neural

networks. arXiv preprint arXiv:1202.2249. doi: 10.1162/NECO_a_00396

Tallec, C., and Ollivier, Y. (2017). Unbiasing truncated backpropagation through

time. arXiv preprint arXiv:1705.08209.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware spinnaker and the neural network simulation software

nest for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z.,

et al. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nat.

Neurosci. 21, 860–868. doi: 10.1038/s41593-018-0147-8

Zaninetti, M., Tribollet, E., Bertrand, D., and Raggenbass, M. (1999). Presence

of functional neuronal nicotinic acetylcholine receptors in brainstem

motoneurons of the rat. Eur. J. Neurosci. 11, 2737–2748.

Zucker, R. S., and Regehr, W. G. (2002). Short-term synaptic plasticity. Annu. Rev.

Physiol. 64, 355–405. doi: 10.1146/annurev.physiol.64.092501.114547

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Schmidgall, Ashkanazy, Lawson and Hays. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 629210143

https://doi.org/10.1109/IJCNN.2016.7727228
https://doi.org/10.1126/science.1102941
https://doi.org/10.3389/fncir.2018.00053
https://doi.org/10.1523/JNEUROSCI.5411-10.2011
https://doi.org/10.1162/089976603321891783
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.1073/pnas.91.16.7797
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1038/nature11028
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.1523/JNEUROSCI.16-05-01936.1996
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1186/1744-9081-1-6
https://doi.org/10.1007/BF00275687
https://doi.org/10.1109/IJCNN.2005.1556240
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fncel.2018.00524
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1145/3377929.3389901
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1162/neco.1996.8.5.1021
https://doi.org/10.1162/NECO_a_00396
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1146/annurev.physiol.64.092501.114547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Robust Artificial Intelligence for Neurorobotics
	Table of Contents
	Editorial: Robust Artificial Intelligence for Neurorobotics
	Introduction
	Overview
	Sense
	Think
	Act
	Tools

	Outlook for the Future
	Author Contributions
	Acknowledgments

	Robustness Through Simplicity: A Minimalist Gateway to Neurorobotic Flight
	1. Introduction
	2. Hackflight
	2.1. Features
	2.2. Audience
	2.3. Arduino Compatibility
	2.4. Simple Object-Oriented API

	3. MulticopterSim
	4. Toward Neuromorphic Flight Control
	5. Conclusion and Future Work
	6. Downloads
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	The DIAMOND Model: Deep Recurrent Neural Networks for Self-Organizing Robot Control
	1. Introduction
	2. Homeokinetic Control
	3. The DIAMOND Model
	3.1. Deep Homeokinesis
	3.2. Simple Variant
	3.3. Main Variant
	3.4. Main Variant With Deep Associations

	4. Experimental Results
	4.1. Active Response by the Recurrent Network
	4.2. A Wheeled Robot in the Hills
	4.3. A Spherical Robot in a Polygonal Arena

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics
	1. Introduction
	2. Background
	2.1. Nengo and Supporting Development Packages
	2.2. The Loihi Chip
	2.3. Other Neurorobotic Workflows and Toolkits

	3. Neurorobotic Rover System
	3.1. Interfacing With Mujoco
	3.2. Processing Visual Input Using a Keras DNN Converted to a Nengo SNN
	3.3. Generating Robust, Explainable Control Signals Using the NEF
	3.4. Integration and Compiling to Hardware
	3.5. Performance

	4. Neurorobotic Adaptive Arm Control
	4.1. Interfacing With the Jaco2 Robotic Arm
	4.2. Processing Sensory Feedback Using the NEF
	4.3. Online Learning for Adaptive Control
	4.4. Compiling to Neuromorphic Hardware
	4.5. Performance

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Perception Understanding Action: Adding Understanding to the Perception Action Cycle With Spiking Segmentation
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Perception-Understanding-Action Framework
	3.2. Perception
	3.3. Understanding Through Spiking Segmentation
	3.3.1. Network Architecture
	3.3.2. Encoding
	3.3.3. Decoding
	3.3.4. Adaptive Neuron Thresholding
	3.3.5. Changes to STDP Training With Active Pruning
	3.3.6. Latent Space Inhibition for Attention

	3.4. Tracking With Attention

	4. Results
	4.1. Perception to Understanding With Segmentation
	4.1.1. N-Caltech Dataset Extended

	4.2. Perception, Understanding, and Action
	4.2.1. N-Caltech Mutli-Stream Input
	4.2.2. Tracking From Handheld NVS

	4.3. Robustness and Interpretability
	4.3.1. Robustness
	4.3.2. Interpretability

	5. Discussion
	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Echo View Cells From Bio-Inspired Sonar
	Introduction
	Materials and Methods
	Hardware
	Dataset Description
	Echo Fingerprint Recognition
	Single Layer Feedforward Network
	Synaptic Kernel Inverse Method (SKIM)

	Results
	Single Layer Network
	SKIM
	Recognition Outside of Training Data

	Discussion
	Functionality Test Along a Path
	Context/Previous Studies
	Single Frequency vs. Broadband

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Spike-Based Neuromorphic Architecture of Stereo Vision
	1. Introduction
	2. Methods
	2.1. Event-Based Sensing
	2.2. Sensors-Processor FPGA Interface
	2.3. Event-Based Processing
	2.4. The Spiking Neural Network Model
	2.5. Neuromorphic Hardware Implementation
	2.5.1. Coincidence Detection
	2.5.2. Disparity Detection
	2.5.3. Network Calibration

	2.6. Experiments
	2.6.1. Stereo Matching With Synthetic Inputs
	2.6.2. Stereo Matching With Event Cameras Inputs

	2.7. Stereo Matching Performance
	2.7.1. Event-Based Ground Truth
	2.7.2. Accuracy

	3. Results
	3.1. Stereo Matching With Synthetic Inputs
	3.2. Stereo Matching With Event Cameras Inputs

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model
	1. Introduction
	2. Methods
	2.1. Non-spiking Neuron and Synapse Models
	2.2. Spiking Neuron and Synapse Model
	2.2.1. Average Synaptic Conductance

	2.3. Network Construction
	2.4. Simulation

	3. Results
	3.1. Comparison of Non-spiking and Spiking Neuron Activation
	3.2. Comparison of Non-spiking and Spiking Activation Transient Responses
	3.3. Comparison of Non-spiking and Spiking Synaptic Conductance
	3.4. Extending the Functional Subnetwork Approach for Designing Non-spiking Networks to Spiking Networks
	3.5. Spiking Pathways May Introduce Unwanted Artifacts
	3.6. A Spiking Pathway's Regularity and Accuracy Depends on the Number of Neurons in the Network

	4. Application to a Neuromechanical System
	5. Discussion
	5.1. Summary
	5.2. Expanding These Methods
	5.3. When to Use Spiking or Non-spiking Neurons

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi
	1. Introduction
	2. Methods
	2.1. Architecture of the Algorithm for Robotic Control
	2.2. The Anisotropic Network
	2.3. Anisotropic Network Implementation
	NEST Implementation
	Loihi Implementation

	2.4. Comparing the Implementations
	2.5. Stability and Output Learning

	3. Results
	3.1. Implementing the Computer-Based Anisotropic Network on Loihi
	3.2. The Loihi Implementation of the Anisotropic Network Is Robust to Input Noise
	3.3. Learning Robust Trajectories
	3.4. Simulation on Loihi in Real-Time

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Reverse Engineering and Robotics as Tools for Analyzing Neural Circuits
	1. Introduction
	1.1. Insects as an Example Organism

	2. Neuronal Circuit Analysis
	2.1. What Is the Effective Neuronal Circuit Structure?
	2.1.1. Inhibitory Circuit
	2.1.2. Excitatory Circuit
	2.1.3. Overall Circuit

	2.2. Computational Model
	2.3. Situated Agent Behavior
	2.4. Role of Circuit Elements

	3. Discussion
	3.1. Assumptions and Simplifications
	3.2. Nature as Inspiration for Theory and Engineering

	4. Materials and Tools
	4.1. Neuronal Nomenclature
	4.2. Neuron Model
	4.3. Neuronal Projections and Connectivity Matrix
	4.4. Stimuli
	4.5. Selection of Synaptic Weights
	4.6. Sensitivity Analysis

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	SpikePropamine: Differentiable Plasticity in Spiking Neural Networks
	1. Introduction and Related Work
	2. Differentiable Plasticity
	2.1. Spiking Neural Network
	2.2. Spike-Based Differentiable Plasticity
	2.2.1. Generalized
	2.2.2. DP-Linear Decay
	2.2.3. DP-Oja's
	2.2.4. DP-BCM

	2.3. Spike-Based Differentiable Neuromodulation
	2.3.1. Generalized Neuromodulated Plasticity
	2.3.2. NDP-Oja's
	2.3.3. NDP-BCM

	3. Results
	3.1. Noisy Cue-Association: Temporal Credit-Assignment Task
	3.2. High-Dimensional Robotic Locomotion Task

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back cover

