Research Topic

CFD Applications in Nuclear Engineering

About this Research Topic

High fidelity nuclear reactor thermal hydraulic simulations are a hot research topic in the development of nuclear engineering technology. The three-dimensional Computational Fluid Dynamics (CFD) and Computational Multi-phase Fluid Dynamics (CMFD) methods have attracted significant attention in predicting ...

High fidelity nuclear reactor thermal hydraulic simulations are a hot research topic in the development of nuclear engineering technology. The three-dimensional Computational Fluid Dynamics (CFD) and Computational Multi-phase Fluid Dynamics (CMFD) methods have attracted significant attention in predicting single-phase and multi-phase flows under steady-state or transient scenarios in the field of nuclear reactor engineering. Compared with three-dimensional thermal hydraulic methods, the traditional one-dimensional system analysis method contains inherent defects in the required accuracy and spatial resolution for a number of important nuclear reactor thermal-hydraulic phenomena.

At present the CFD method has been widely adopted in the nuclear industry, across both light water reactors and liquid metal cooled fast reactors, providing an effective solution for complex issues of thermal hydraulic analysis. However, the CFD method employs empirical models for turbulence simulation, heat transfer, multi-phase interaction and chemical reactions. Such models must be validated before they can be used with confidence in nuclear reactor applications. In addition, user practice guidelines play a critical role in achieving reliable results from CFD simulations.

This Research Topic will provide the necessary comprehensive coverage of CFDs, including application, development, current status and challenges. It aims to publish the most advanced and latest CFD research from around the world, applied to the simulation of issues affecting the safety of nuclear systems. Themes of interest include, but are not limited to:

1. CFD single phase simulation
2. CMFD simulation
3. Multi-scale coupling with CFD
4. Multi-physics coupling with CFD
5. Open source CFD code development and application
6. LES and DNS
7. Best Practice Guidelines (BPGs) research
8. Porous medium model application
9. Key components simulation using CFD method
10. Other applications of CFD in nuclear engineering


Keywords: CFD, nuclear reactor, thermal-hydraulics, two-phase flow, high-fidelity simulation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

12 January 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

12 January 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..