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With the increasing prevalence of autism spectrum disorders
(ASD), the pace of research aimed at understanding the neuro-
biology of this complex neurodevelopmental disorder has accel-
erated. Neuroimaging and postmortem studies have provided
evidence for disruptions in functional and structural connectivity
in the brains of individuals with ASD (Vissers et al., 2012). This
burgeoning literature continues to struggle with methodologi-
cal and conceptual issues inherent to discovering relationships
between brain and behavior. While there has been considerable
progress, many open questions remain. In this special topic, a
collection of empirical contributions and reviews from leaders in
the field attempt to synthesize and extend prior work investigat-
ing brain connectivity in autism. Multiple theoretical perspectives
and neuroimaging methods are brought together with the aim of
addressing outstanding questions about the nature and extent of
brain connectivity aberrations in autism.

Functional connectivity magnetic resonance imaging (fcMRI),
which detect correlations of the blood oxygen level dependent
(BOLD) signal, provided first findings (Just et al., 2004) sug-
gesting that the brains of individuals with ASD may exhibit
reduced long-distance connectivity (Just et al., 2012). However,
many more recent studies have suggested that patterns of both
hypo- and hyper-connectivity can be observed in the autistic
brain (Müller et al., 2011). Redcay and colleagues (2013) present
one of the few currently available studies examining whole brain
functional connectivity in ASD using graph theory and resting
state fcMRI. They find that in adolescents with ASD (aged 14–
20 years), a right lateral parietal region show both increased
betweenness centrality and increased functional connectivity with
prefrontal regions, compared with typically developing (TD) par-
ticipants. Another fcMRI study by You et al. (2013) suggests that
atypically increased functional connectivity in ASD may be state-
dependent. The authors find that in TD children, BOLD signal
correlations become reduced and more localized during sustained
attention (compared to rest), whereas this is not seen in children
with ASD. The study raises the important question to what extent
functional overconnectivity maybe maladaptive. Delmonte and
colleagues (2013) examine fronto-striatal circuitry in adolescents
and young adults with ASD, again finding atypically increased
functional connectivity—consistent with and expanding upon an
earlier study (Di Martino et al., 2011). Using independent compo-
nent analysis in order to identify subnetworks within the default
mode network, Starck and colleagues (2013) report decreased

connectivity between anterior and posterior default mode sub-
networks in adolescents with ASD.

Whereas the studies mentioned above focus on long-range
connectivity, relatively little is known from fcMRI about local
connectivity. The article by Maximo and colleagues (2013) uses
a regional homogeneity approach to reveal local overconnectivity
in posterior occipital and temporal cortices alongside local under-
connectivity in posterior cingulate and medial prefrontal regions
in adolescents with ASD.

The fcMRI studies described above suggest that differential
findings are not only region- or network-specific (Redcay et al.,
2013 and Delmonte et al., 2013 vs. Starck et al., 2013), but also
state-specific (You et al., 2013). An important additional aspect
is discussed in a review by Uddin et al. (2013), who suggest
that research on brain connectivity in autism should be placed
in a developmental framework in order to more precisely pin-
point the sources of age-related group differences in functional
connectivity. In their review, the authors summarize recent evi-
dence suggesting that at younger ages closer to disorder onset,
the brains of children with ASD are hyper-connected in com-
parison with TD controls. Keehn and colleagues provide further
empirical evidence in support of this claim. They used func-
tional near-infrared spectroscopy to examine brain connectivity
in infants in the first year of life who are at high risk for devel-
oping autism. They report that at 3 months, high-risk infants
showed increased connectivity compared to low-risk infants, and
that between 6 and 9 months these group differences disappear
and even reverse in direction (Keehn et al., 2013). Another study
by Padmanabhan and colleagues examine striatal functional con-
nectivity in a relatively large ASD and TD samples (ages 8–36
years), using resting state functional MRI. Aside from a main
group effect (increased connectivity with parietal and decreased
connectivity with frontal areas in ASD), they identify numer-
ous regions in cerebellum and temporal lobe showing age-related
increases of functional connectivity with striatal seeds in TD chil-
dren and adults, contrasted by decreases in ASD. These findings
highlight the importance of studying autism across the lifespan
using multimodal neuroimaging approaches.

In addition to age-related factors that may contribute to the
conflicting hypo- vs. hyper-connectivity results in the literature,
several methodological factors are beginning to be identified. It is
now understood that group differences in functional connectiv-
ity studies can be dramatically affected by methodological details
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(Jones et al., 2010; Nair et al., 2014), as for example the thor-
ough treatment of head motion even in the sub-millimeter range
(Power et al., 2012, 2014). Gotts and colleagues show how a
related issue, i.e., fluctuations of the whole brain (global) signal
across time, and its treatment in data preprocessing can influ-
ence the pattern of group differences observed. They find that the
common practice of global signal regression can alter the location
and direction of connectivity differences, obscuring neural find-
ings. The empirical contributions by Starck et al. in this special
issue carefully address these methodological concerns by explic-
itly characterizing and censoring motion artifacts to validate the
robustness of their connectivity findings.

In contrast to the high spatial but low temporal resolution
of functional connectivity MRI, MEG (magnetoencephalogra-
phy) and EEG (electroencephalography) enable the measurement
of functional connectivity with high temporal resolution and
medium level spatial resolution. An additional advantage of these
techniques is that they are not susceptible to motion artifacts that
would confound connectivity results in the same way as fcMRI.
Using EEG, Coben and colleagues (2014) propose a theory of
mixed under- and over-connectivity in ASD, based on EEG data
supporting both types of effects in ASD. The authors emphasize
the use of more advanced statistical approaches to EEG coher-
ence analysis, and discuss three different forms of multivariate
connectivity analysis. In parallel, using MEG, Buard and col-
leagues (2013) investigate the differences in low frequency and
high frequency oscillatory power in participants with ASD and
their first degree relatives. They also find mixed results, with dif-
fering patterns of abnormalities in ASD across different frequency
bands, opening the door to interesting potential mechanistic
interpretations.

While functional connectivity studies of autism continue to
reveal nuanced patterns of hypo- and hyper-connectivity asso-
ciated with the disorder, studies of white matter connectivity
using diffusion tensor imaging (DTI) and tractography pro-
vide complementary metrics. However, only few studies to date
have combined functional and anatomical connectivity findings
(Mueller et al., 2013; Nair et al., 2013). Delmonte and colleagues,
despite detecting functional overconnectivity between striatum
and frontal cortex during resting state, find no group differences
in structural connectivity in corresponding fronto-striatal tracts,
using DTI. The authors suggest that hyperconnectivity within
certain circuits may be a reflection of complex functional reor-
ganization in autism. Another study by Lewis and colleagues
(2013) examines the potential impact of brain overgrowth in
autism on conduction delays and long-distance connectivity,
using DTI. They find network efficiency in adults with autism
to be inversely correlated with intracranial volume, and sug-
gest that the reduction in efficient connectivity in autism may
be due to early brain overgrowth. Schaer and colleagues (2013)
address the issue of connectivity by examining changes in corti-
cal folding, comparing a local gyrification index with connectivity
indices from DTI. This approach is based upon Van Essen’s the-
ory that mechanical tension exerted on long connections shapes
cortical folds (Van Essen, 1997). While they do not observe a
relationship between long-range connectivity and gyral patterns,
they observe a higher gyrification index in ASD participants with

higher short-range connectivity. McGrath and colleagues use a
multimodal neuroimaging approach (functional MRI and High
Angular Diffusion MRI) to examine the relationship between
abnormal functional connectivity in a visuospatial task in autism
and the integrity of corresponding white matter tracts. They find
altered white matter microstructure to be related to disruptions in
functional connectivity during visuospatial processing, especially
in connections between left occipital lobe and five paired regions
in the left hemisphere (caudate head, caudate body, uncus, tha-
lamus, and cuneus). While findings from fcMRI and DTI do
not always correspond in obvious ways (see Delmonte et al.,
2013) the studies described above highlight the importance of
multimodal neuroimaging approaches for a more comprehensive
understanding of brain network abnormalities in ASD.

An important aspect of understanding the neurobiology of
autism is to test the utility of the findings in aiding the diagnostic
process, which may establish such findings as neural signatures
or biomarkers. In a machine learning approach, Nielson and
colleagues use a large fMRI autism database, the Autism Brain
Imaging Data Exchange (ABIDE) (Di Martino et al., 2013), to
classify participants with ASD from TD participants based on
functional connectivity features. This study uses resting state
functional connectivity data obtained from 964 participants
across 16 international sites. Diagnostic classification accuracy
in this study is 60% overall, disappointingly hovering just above
chance. The authors suggest that additional sources of variabil-
ity with use of multisite data are likely to blame, indicating a
need for standardized data acquisition protocols. Their results
may also indicate advantages of longer fMRI acquisition times.
While this multisite study shows relatively low classification accu-
racy, Deshpande and colleagues (2013) use different connectivity
measures, obtained from an fMRI study of theory-of-mind, in a
classification analysis. They report that effective connectivity dif-
ferences across 19 paths in the brain classify participants with
autism from typical controls with 95% accuracy. A couple of
interesting aspects of this study are: (1) While functional con-
nectivity studies of autism are abundant, there are only a handful
of studies examining effective connectivity (the causal influence
of one brain area on another). This study presents differences in
effective connectivity between autism and control participants.
(2) The authors use different indices of connectivity (functional,
effective, and white matter integrity) in their classification anal-
ysis and find effective connectivity results classifying the two
groups with the highest level of accuracy. Connectivity-based pat-
tern classification studies, with larger sample size and multiple
indices, can provide valuable insight in identifying reliable neural
markers of autism.

In a comprehensive review, McFadden and Minshew (2013)
examine the findings of brain connectivity in autism and their
underlying structural and genetic bases. Their review points to
widespread abnormalities during different stages of brain devel-
opment to be critical in altered brain connectivity in autism.
They suggest that a relatively consistent finding involving excess
of interstitial neurons may be a function of a general over-
proliferation of cortical neurons or a reflection of aberrant axonal
and/or synaptic connectivity during fetal life causing a sub-
sequent failure of appropriate developmental apoptosis. This
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review emphasizes that axonal abnormalities and their underlying
genetic bases may be critical for characterizing the neurobiology
of ASD. Similarly, Zikopoulos and Barbas focus their review of
postmortem microscopic changes on axonal pathology in ASD.
Their findings show a complex pattern of fewer large myelinated
axons and increased numbers of thin myelinated axons in superfi-
cial white matter in anterior cingulate cortex, no change in lateral
prefrontal cortex, and decreased thin myelinated axons in orbital
frontal cortex. These results are consistent with the notion of
regionally varying patterns of hypo- and hyper-connectivity asso-
ciated with ASD, as discussed above. However, knowledge of brain
anomalies at the cellular level in ASD is hampered by a lack
of in vivo imaging techniques that can detect cytoarchitectonic
changes. The study by Jeong and colleagues uses a sophisticated
analysis of diffusion weighted MRI data in order to detect con-
nectivity changes in the cerebellum related to Purkinje cell loss,
as known from postmortem studies. They find evidence that
tracts between cerebellar cortex and dentate nuclei (i.e., axonal
efferents from Purkinje cells) are compromised in children with
ASD, suggesting that in vivo diffusion weighted MRI can generate
complementary evidence in support of cellular findings from the
postmortem literature.

Returning to the basic questions regarding brain network
connectivity in ASD raised in the initial announcement, the
contributions to this Research Topic underline the need for differ-
entiated interpretations of functional connectivity findings that
consider the specificity of networks and cognitive states under
investigation and the exact preprocessing pipelines and analysis
tools implemented. The need for electrophysiological studies that
provide a window onto the dynamic aspects of network connec-
tivity is further emphasized by several contributions, as is the
need for multimodal investigations that combine assays of func-
tional and anatomical connectivity. The developmental trajectory
of brain connectivity and the classification potential of different
connectivity measures are important topics that are investigated
by different studies. Finally, several articles contribute to a bet-
ter understanding of the links between cellular abnormalities in
autistic cortex (both cerebral and cerebellar) and disturbances in
network connectivity.
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Abnormalities in frontostriatal circuitry potentially underlie the two core deficits in Autism
Spectrum Disorder (ASD); social interaction and communication difficulties and restricted
interests and repetitive behaviors. Whilst a few studies have examined connectivity within
this circuitry in ASD, no previous study has examined both functional and structural
connectivity within the same population. The present study provides the first exploration of
both functional and structural frontostriatal connectivity in ASD. Twenty-eight right-handed
Caucasian male ASD (17.28 ± 3.57 years) and 27 right-handed male, age and IQ matched
controls (17.15 ± 3.64 years) took part in the study. Resting state functional connectivity
was carried out on 21 ASD and control participants, and tractography was carried out
on 22 ASD and 24 control participants, after excluding subjects for excessive motion
and poor data quality. Functional connectivity analysis was carried out between the
frontal cortex and striatum after which tractography was performed between regions that
showed significant group differences in functional connectivity. The ASD group showed
increased functional connectivity between regions in the frontal cortex [anterior cingulate
cortex (ACC), middle frontal gyrus (MFG), paracingulate gyrus (Pcg) and orbitofrontal
cortex (OFC)], and striatum [nucleus accumbens (NAcc) and caudate]. Increased functional
connectivity between ACC and caudate was associated with deactivation to social rewards
in the caudate, as previously reported in the same participants. Greater connectivity
between the right MFG and caudate was associated with higher restricted interests
and repetitive behaviors and connectivity between the bilateral Pcg and NAcc, and
the right OFC and NAcc, was negatively associated with social and communicative
deficits. Although tracts were reliably constructed for each subject, there were no group
differences in structural connectivity. Results are in keeping with previously reported
increased corticostriatal functional connectivity in ASD.

Keywords: Autism Spectrum Disorder, connectivity, frontostriatal, striatum, fMRI, DTI, social reward

INTRODUCTION
Frontostriatal circuitry plays an important role in social moti-
vation, which is postulated to underlie deficits in social interac-
tion and communication in Autism Spectrum Disorder (ASD)
(Dawson et al., 2005, 2012; Chevallier et al., 2012). Aberrant
BOLD responses to social rewards have been reported in a num-
ber of studies of social reward processing in ASD, providing sup-
port for this hypothesis (Scott-Van Zeeland et al., 2010; Dichter
et al., 2011; Delmonte et al., 2012; Kohls et al., 2012a,b). Studies
of reward and executive function also implicate frontostriatal cir-
cuitry in repetitive behavior symptoms (Langen et al., 2011a,b;
Dichter et al., 2012). Additionally, functional abnormalities in
frontostriatal circuitry have been reported during higher-order
cognitive and sensorimotor tasks (Schmitz et al., 2006; Takarae
et al., 2007; Scott-Van Zeeland et al., 2010). Therefore, abnormal-
ities in frontostriatal circuitry may underlie the two core deficits
in ASD; social interaction and communication, and restricted
interests and repetitive behaviors (Langen et al., 2011a,b;

Chevallier et al., 2012; Dichter et al., 2012), as well as other
cognitive and motor impairments that are associated with ASD.

Frontostriatal circuitry plays a key role in a number of different
processes such as emotion, motivation, cognition, and the con-
trol of movement, which work in tandem to execute goal directed
behaviors (Haber, 2003). The functional variety of frontostriatal
circuits can be explained to some extent by examining its cortical
inputs. Frontostriatal circuits have a looped structure with cor-
tical inputs feeding information to the striatum which in turn
projects back to the cortex via the thalamus (Alexander et al.,
1986, 1990). Primate studies have shown that frontostriatal pro-
jections are arranged into a number of parallel, integrative loops,
with each loop comprising discrete regions of striatum, cortex,
globus pallidus, substantia nigra and thalamus, and subserv-
ing specific motor, cognitive, or affective function (Groenewegen
et al., 1999, 2003; Haber and Knutson, 2009). Information
is primarily channelled from ventral limbic, to more dorsal
cognitive and motor loops such that action decision-making is
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influenced by motivation and cognition (Middleton and Strick,
2000; Haber, 2003). Diffusion tensor imaging (DTI) studies indi-
cate that corticostriatal circuitry is similarly organized into segre-
gated and converging loops in humans (Lehéricy et al., 2004; Leh
et al., 2007; Draganski et al., 2008; Verstynen et al., 2012) and rest-
ing state functional connectivity analysis of the human striatum
has shown functional organization of corticostriatal loops into
affective, cognitive, and motor components (Di Martino et al.,
2008; Choi et al., 2012).

ASD is characterized by abnormal functional and structural
connectivity (Just et al., 2004; Cherkassky et al., 2006; Alexander
et al., 2007; Keller et al., 2007; Kleinhans et al., 2008; Di Martino
et al., 2010; Weng et al., 2010; Langen et al., 2011a,b; Müller
et al., 2011; Sato et al., 2012; Von dem Hagen et al., 2012).
Despite the growing evidence implicating frontostriatal circuitry
in ASD pathology, few studies have specifically examined connec-
tivity within this circuit. In a resting state study of corticostriatal
connectivity, children with ASD showed increased connectivity
between the caudate and putamen and a number of cortical and
subcortical regions (Di Martino et al., 2010). Only one previous
DTI tractography study has examined frontostriatal structural
connectivity in ASD. The ASD group showed lower fractional
anisotropy (FA) in tracts connecting the putamen to the frontal
cortex, and increased mean diffusivity (MD) in tracts connecting
the NAcc to the frontal cortex (Langen et al., 2011a,b).

To date, no previous study has combined functional and
structural MRI data from the same participants to examine the
connectivity of frontostriatal circuitry in ASD. In the present
study, we investigated functional connectivity between frontos-
triatal regions and potential white matter differences underlying
group differences in functional connectivity. Group differences
in connectivity were examined in relation to behavioral impair-
ments and striatal deactivation to social rewards as previously
reported in the same particpants (Delmonte et al., 2012).

METHODS
PARTICIPANTS
Twenty-eight right-handed Caucasian male ASD [mean age
(SD) = 17.28 (3.57) years] and 27 right-handed male, age and IQ
matched controls [mean age (SD) = 17.15 (3.64) years] took part
in the MRI study. Twenty-one ASD and control participants were
retained for the fMRI analysis and 22 ASD and 24 control partic-
ipants were included in the DTI analysis after excluding subjects
for excessive motion (movements >3 mm) or poor data quality.
ASD participants were recruited through an associated genet-
ics research programme, clinical services, schools and advocacy
groups. Controls were recruited through schools, the university
and volunteer websites. Ethical approval was obtained from the
St. James’s Hospital/AMNCH (ref: 2010/09/07) and the Linn Dara
CAMHS Ethics Committees (ref: 2010/12/07). Written informed
consents/assents were obtained from all participants and their
parents (where under 18 years of age).

Exclusion criteria included a Full Scale IQ (FSIQ) <70,
known psychiatric, neurological, or genetic disorders, a history
of a loss of consciousness for more than 5 min and those cur-
rently taking psychoactive medication. Four subjects in the ASD
group had a secondary diagnosis of Attention Deficit Disorder

(ADD) or Attention Deficit Hyperactivity Disorder (ADHD).
Controls were excluded if they had a first degree relative with
ASD or scored above 50 on the Social Responsiveness Scale
(SRS) (Constantino et al., 2003) or above 10 on the Social
Communication Questionnaire (SCQ) (Rutter et al., 2003). The
Adult prepublication version of the SRS was used with per-
mission in cases 18 years or older (Constantino and Todd,
2005). All participants had normal, or corrected to normal,
vision.

DIAGNOSTIC ASSESSMENTS AND COGNITIVE MEASURES
ASD diagnosis was confirmed using the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al., 1994) and the Autism
Diagnostic Interview Revised (ADI-R; Lord et al., 2000). Clinical
consensus diagnosis was established using DSM-IV-TR criteria
and expert clinician (Louise Gallagher). FSIQ was measured using
the four subtest version of the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999) or the Wechsler Intelligence
scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003).
Performance IQ (PIQ) score was based on the Matrix Reasoning
and Block Design subtests and Verbal IQ (VIQ) score on the
Vocabulary and Similarities subtests.

MRI DATA ACQUISITION
A high-resolution 3D T1-weighted MPRAGE image was acquired
for each participant (FOV = 256 × 256 × 160 mm; TR = 8.5 ms;
TE = 3.9 ms; acquisition time = 7.3 min; voxel size = 1 × 1 ×
1 mm). One hundred and fifty resting state (eyes shut) functional
scans were acquired using a using a T∗

2 weighted gradient echo
sequence to visualize changes in the BOLD signal (TR = 2000 ms,
TE = 28 ms; flip angle = 90◦; FOV = 240 × 240 mm; voxel size:
3 × 3 × 3.5 mm, slice gap 0.35 mm; 38 slices; acquisition time
= 5.06 min). Diffusion weighted data were encoded along 32
independent directions, with one non-diffusion weighted image,
using a single-shot echo-planar imaging (EPI) sequence with
SENSE parallel imaging scheme (SENSivitiy Encoding; TR =
12052 ms; TE = 55 ms; B-value 1000; slice thickness/gap FOV;
slice number = 70; voxel dimensions 2 × 2 × 2 mm; acquisition
time 8.08 min).

STATISTICAL ANALYSIS OF BEHAVIORAL DATA
Behavioral data were analysed using SPSSv16. Two sample t-tests
were used to examine group differences in age and IQ measures.
Correlations were performed to examine relationships between
structural and functional connectivity, between connectivity val-
ues and ADI-R scores and between connectivity values and striatal
activation to social rewards. For correlations with the ADI-R,
the DSM-5 model, which classifies ASD symptoms into social
and communicative deficits (SCD) and restricted and repetitive
behaviors (RRB), was used. The two factor model has been sup-
ported by a number of factor analytic studies (Boomsma et al.,
2008; Frazier et al., 2008; Georgiades et al., 2012; Mandy et al.,
2012). Item level data were classified into SCD or RRB symp-
tom domains according to the two factor model reported by
Georgiades et al. (2012) to create a quantitative score on each fac-
tor. Pearsons’s and Spearman’s rank-order correlations were used
where appropriate.
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FUNCTIONAL CONNECTIVITY ANALYSIS
fMRI preprocessing was carried out in SPM8 (www.fil.ion.ucl.ac.
uk/spm) in Matlab, 2009a (MathWorks Inc., United Kingdom).
Before preprocessing, the origin was set to the anterior com-
misure for both T1-weighted and EPI Images. The images
were slice-time corrected, realigned to correct for motion
artifacts and co-registered to the skull stripped T1-weighted
image. Normalization to standard stereotaxic space (Montreal
Neurological Institute; MNI) was performed using the ICBM EPI
template and the unified segmentation approach (Ashburner and
Friston, 2005). The data were then re-sliced to a voxel size of
2 × 2 × 2 mm3. Finally, the images were smoothed using a 5 mm
full-width-half-maximum (FWHM) Gaussian kernel to conform
to assumptions of statistical inference using Gaussian Random
Field Theory (Friston et al., 1995a,b). Given recent evidence that
resting-state networks are particularly susceptible to head motion
(Power et al., 2012; Van Dijk et al., 2012) independent sam-
ples t-tests were performed to ensure that groups did not differ
on rotation or translation parameters [translation: mean ASD
= 0.0401 (SD = 0.016), mean control = 0.0331 (SD = 0.0157)
p = 0.136; rotation: mean ASD = 0.0006 (SD = 0.00002), mean
control = 0.0005 (SD = 0.00002) p = 0.122] and average frame-
wise displacements (see Figure 1) were included as covariates of
no interest in the analyses as findings from a recent resting-state
study indicate that this yields similar results to removing high-
movement time-points (scrubbing) (Fair et al., 2012; Di Martino
et al., 2013; Satterthwaite et al., 2013; Yan et al., 2013).

Functional connectivity analysis was carried out using
the CONN toolbox (http://www.nitrc.org/projects/conn/)
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Normalized bias
corrected T1 images were generated in SPM (http://www.fil.ion.

ucl.ac.uk/spm/) and segmented into gray matter, white matter,
and CSF. The principle eigenvariate of the BOLD time-courses

FIGURE 1 | Scatterplot showing individual mean framewise

displacement. Individual subjects are shown on the x-axis and framewise
displacement (mm) on the y-axis. ASD subjects are shown as gray
diamonds and controls as white squares. The dashed vertical line divides
the two groups. Solid horizontal lines across the ASD and Control values
show the group mean.

from white matter and CSF, as well as the 6 motion correction
parameters were included as regressors in the analysis to remove
signals associated with these factors. The data were then band
pass filtered between 0.008 and 0.2 Hz as recommended by
Baria et al. (2011). A hanning window was used to weight down
the initial and end scans within the resting state period. Seed
regions were defined within the left and right frontal cortex
[including the frontal medial and orbital cortices, inferior
frontal gyrus, pars opercularis and pars triangularis, frontal
pole, middle, superior frontal gyrus, subcallosal cortex, cingulate
gyrus-anterior division, the paracingulate gyrus, precentral
gyrus, and juxtapositional lobule cortex/supplementary motor
area (see Figure 2)]. As the amygdala provides important inputs
to the striatum (Haber, 2003; Groenewegen et al., 2003; Haber
and Knutson, 2009) and has been implicated in functional
and structural MRI studies of ASD (Baron-Cohen et al., 2000;
Schultz, 2005; Verhoeven et al., 2009; Groen et al., 2010; Greimel
et al., 2012a,b; Sato et al., 2012), it was also included as a seed
region in this analysis (see Figure 3). Target regions included the
left and right caudate, putamen, and NAcc (see Figure 3). Masks
for these regions were generated using the Harvard-Oxford
probabilistic atlas in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
and thresholded at 20%. The ROI time series were defined as the
principle eigenvariate of the time series within the ROI voxels
using principle component decomposition. ROI-to-ROI correla-
tional analyses were performed between each of the seed regions
in the frontal cortex and amygdala and the target regions in the
striatum. Second level random effects analyses were computed
to examine group differences in connectivity using a t-test with
age, IQ, and frame-wise displacements included as covariates to
control for the effects of these factors. Results were corrected for
multiple comparisons for the target regions at the FDR threshold
(p < 0.05).

DIFFUSION TENSOR TRACTOGRAPHY
Preprocessing of diffusion weighted data was carried out using
Explore DTI (Leemans et al., 2009). The data were first screened
by looping through each subjects’ image to ensure that there were
no gross artifacts such as signal dropout. Data were then corrected
for eddy current distortions and subject motion with b-matrix
rotation to preserve orientational information (Leemans and
Jones, 2009). First, the diffusion-weighted images were realigned
to the non-diffusion weighed (B0) image using a full affine trans-
formation and cubic interpolation. Motion tensor values were
estimated using robust estimation of tensors by outlier rejection
(RESTORE; Chang et al., 2005). The RESTORE method improves
tensor estimation compared to the linear and non-linear least
squares methods, correcting for distortions due to fat suppres-
sion and cardiac pulsation. The final preprocessing step involved
correcting for physically implausible signals. The data were then
visually inspected to ensure that the gradient components were
in the correct orientation. Finally, participants were excluded
for excessive motion (>3 mm), with 22 ASD and 24 control
participants retained for further analysis.

Tractography analyses were confined to intra-hemispheric
tracts between regions that showed significant group differences
in functional connectivity. Whole brain tractography was carried

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 430 | 11

www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/conn/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Delmonte et al. Frontostriatal connectivity in ASD

FIGURE 2 | Masks for the frontal cortex (only the left hemisphere is

shown). ACC is shown in red, the OFC in blue, the MPFC in green, frontal
pole in violet, IFG opercularis in yellow, IFG triangularis in cyan,
juxapositional lobe in green, MFG in yellow, paracingulate in blue,
precentral gyrus in light blue, SFG in grayscale and the subcallosal gyrus in
yellow, displayed on the left hemisphere of a standard brain in neurological
convention (left is left and right is right).

FIGURE 3 | Masks for the striatum and amygdala. The NAcc is shown in
yellow, the caudate in green, the putamen in red and the amydgala in blue
displayed on the right hemisphere of a standard brain in neurological
convention (left is left).

out using the deterministic streamline algorithm (Basser et al.,
2000) as implemented in Explore DTI (Leemans et al., 2009).
Tractography was carried out in each subjects’ native space using
a 2 mm seed point resolution, a 1 mm step size, an angle threshold
of 30◦ and an FA tract termination threshold of 0.2. Specific tracts
of interest were then isolated using regions of interest (ROIs)
with inclusive Boolean logical “AND” operators used to include
tracts passing through a specific regions and exclusion “NOT”

FIGURE 4 | Caudate and NAcc tracts for the template subject. Tracts are
shown in the axial (left) and sagittal (right) planes in neurological convention
(left is left). The caudate-prefrontal tracts are shown in yellow and
NAcc-prefrontal tracts are shown in red.

operators used to exclude tracts passing through other regions.
The atlas based segmentation approach was used to define ROIs
in a template subject’s native space (Lebel et al., 2008). These
ROIs were then transformed to each subjects’ native space for
tractography analysis. A template subject was chosen at random
as in Lebel et al. (2008). Masks of the caudate and NAcc from
the Harvard-Oxford atlas, and a mask of the frontal cortex from
the MNI atlas were created in FSL and thresholded at 20% in
SPM8. These masks were then transformed to the template sub-
jects native space by (i) co-registering the subjects T1 image to the
subject’s motion distortion corrected FA map (ii) multiplying the
masks by the inverse transform parameters (MNI->Native space)
generated using the segmentation option in SPM, (iii) re-slicing
the masks to the same dimensions as the FA map and binaris-
ing them using the “imcalc” option in SPM. These masks were
then visually inspected to ensure that they provided a good fit to
the anatomical structure. Tractography analysis was carried out in
the template subject using these inclusion masks (see Figure 4).
“AND” gates were then placed at the caudate and NAcc to include
only the regions from which tracts projected to the PFC. NOT
gates were drawn in the planes across the midline and the pos-
terior commisure, and to exclude motor tracts, cortico-spinal
tracts, tracts from the corpus callosum and tracts to the tempo-
ral lobe. The atlas based segmentation tool was used to carry out
tractography analysis in each subject’s native space using the ROIs
transformed into the subject specific space for each tract as this
method has been successfully applied to improve tract delineation
(Verhoeven et al., 2010). An upper limit of 100 mm was placed on
the tract length. Outliers were excluded for each group separately
for FA, MD, RD and AD values that were greater than 1.5 box
lengths from the inter-quartile range. Multivariate analyses were
computed to compare groups in terms of FA, MD, RD, and AD.

RESULTS
Groups did not differ in terms of age or IQ (see Table 1).

STRIATAL FUNCTIONAL CONNECTIVITY
Group-wise comparisons
Regions showing significantly increased functional connectivity
between the frontal cortex and the striatum in the ASD group
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are listed in Table 2. There were no regions that showed signif-
icantly reduced connectivity between the frontal cortex and the
striatum and there were no significant group differences in con-
nectivity between the amygdala and striatum. Bar charts showing
z-transformed r-values, adjusted for age, IQ and frame-wise dis-
placements, for connectivity between each of the regions for
which there was a significant group difference can be seen in
Figure 5. The ASD group showed significant positive connectiv-
ity between regions for which there were significant connectivity
differences between groups, whereas controls showed negative
connectivity between these regions at rest, when adjusting for age,
IQ and frame-wise displacements. With the exception of right
MFG to NAcc connectivity, negative connectivity was no longer
apparent between frontostriatal regions in controls when covari-
ates were not included in the analysis. Within group values for
regions showing significant group differences in connectivity can
be seen in Table 3.

Correlations with social reward processing
The same participants previously completed an fMRI study of
social and monetary reward processing (Delmonte et al., 2012),
the results of which indicated that the ASD group showed deacti-
vation to social rewards in the left caudate. We therefore explored
whether increased connectivity between the right ACC and the

Table 1 | Mean age and IQ scores.

Autism Controls P

Age 17.28 (3.57) 17.15 (3.64) 0.545

WASI

Full Scale IQ
Verbal IQ
Performance IQ

109.25 (15.04)

108.54 (14.22)

107.52 (14.68)

111.85 (12.32)

110.52 (13.59)

110.81 (11.11)

0.889
0.967
0.660

Standard deviations are shown in parenthesis.

Table 2 | T-scores and p-values for regions showing significantly

increased connectivity in the ASD group, controlling for age, IQ and

frame-wise displacements.

Source Target T -Value P-Unc P-FDR

Right cingulate gyrus,
anterior division

Right accumbens
Right caudate
Left caudate

2.52
2.72
2.98

0.016
0.009
0.005

0.032
0.029
0.029

Right middle frontal
gyrus

Right accumbens
Right caudate

2.68
2.56

0.011
0.015

0.044
0.044

Right paracingulate
gyrus

Right accumbens
Right caudate

3.24
3.01

0.003
0.005

0.014
0.014

Right frontal orbital
gyrus

Right accumbens
Left accumbens

2.67
2.53

0.011
0.016

0.048
0.048

Left paracingulate
gyrus

Right accumbens
Right caudate
Left caudate

2.92
3.04
2.38

0.006
0.004
0.023

0.018
0.018
0.045

left caudate in ASD was associated with deactivation to social
rewards. There was a negative correlation between connectivity
and SID activation in ASD but not controls (ASD: r = −0.576,
p = 0.006; CON: r = 0.234; p = 0.307), see Figure 6. In the ASD
group, deactivation to social rewards in the left caudate was asso-
ciated with increased connectivity between the left caudate and
the anterior cingulate.

Correlations with behavior
There was a positive correlation between connectivity in the
right MFG and the right caudate and RRB in the ASD group
(r = 0.573, p = 0.008); greater connectivity was associated with
greater impairment. Connectivity between the right and left
Pcg and the right NAcc was negatively correlated with SCD
in the ASD group (r = −0.511, p = 0.012; r = −0.572; p =
0.008); greater connectivity was associated with less impairment.
Similarly, there was a negative correlation between connectivity
between the right OFC and right NAcc and SCD score in the
ASD group (r = −0.519; p = 0.019). Associations between con-
nectivity values and behavioral measures can be seen in Figure 7.
These correlations did not withstand correction for multiple
comparisons at the bonferroni level [p(0.05/24) = 0.002]. Twenty-
four correlations were performed as there were twelve regions
showing significant group differences in functional connectivity
and 2 behavioral measures. Figure 7 shows plots of the correla-
tions between connectivity values and behavioral measures in the
ASD group.

STRIATAL STRUCTURAL CONNECTIVITY
Multivariate analyses with age, I.Q. and TIV entered as covariates
indicated that there were no significant between group differences
in FA, MD, RD, or AD in the tracts of interest.

CORRELATIONS BETWEEN STRUCTURAL AND FUNCTIONAL
CONNECTIVITY
There was a significant positive correlation between AD in the
right caudate to prefrontal tract and functional connectivity (raw
z-scores) between the right MFG and the right caudate across
the group as a whole (r = 0.414, p = 0.010), however, a within
group analysis showed only a trend in the ASD group (r = 0.445,
p = 0.056) and no relationship with control participants (r =
0.214, p = 0.380) indicating that the significant correlation was
largely driven by variance in the ASD group. There were no
other significant correlations between functional and structural
connectivity.

DISCUSSION
The ASD group showed increased functional connectivity
between the ACC, Pcg, OFC, and the MFG in the prefrontal
cortex and the caudate and NAcc in the striatum, with group dif-
ferences primarily in the right hemisphere. Increased functional
connectivity between frontostriatal regions in ASD was associ-
ated BOLD deactivation to social rewards (Delmonte et al., 2012)
and behavioral measures of SCD and RRB. There were no sig-
nificant group differences in the structure of frontostriatal tracts.
This suggests that group differences in functional connectivity,
reported in the present study, may not be due to alterations in
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FIGURE 5 | Group differences in functional connectivity between the

frontal cortex and the striatum. Bar charts show Z-transformed R-Values for
connectivity between each of the regions for which there was a significant
group difference, adjusting for age, IQ and frame-wise displacements. The

ASD group is shown in gray and the controls in white with standard error of
the mean displayed. R, Right; L, Left; ACC, Anterior Cingulate Cortex; MFG,
Middle Frontal Gyrus; Pcg, Paracingulate Gyrus; NAcc, Nucleus Accumbens;
Caud, Caudate.

frontostriatal structural connectivity in ASD, though these find-
ings could also reflect methodological issues associated with DTI
tractography.

GROUP DIFFERENCES IN FUNCTIONAL CONNECTIVITY
Hyperconnectivity between the anterior cingulate cortex (ACC) and
striatum in ASD
Neuranatomical connections between the ACC and the striatum
are organized in functionally distinct loops. The ventral ACC is
connected to the ventral and dorsal striatum (VS and DS) and
the dorsal ACC to the DS (Beckmann et al., 2009). ACC regions
connected to the VS are involved in emotion, reward and pain
whereas regions connected to the DS are mostly involved in motor
functions, conflict/error detection and reward (Beckmann et al.,

2009). The dorsal cognitive division of the ACC is connected
to other regions involved in attention including the dorsolat-
eral prefrontal cortex (dlPFC) and parietal attention regions. The
rostral-ventral affective division is connected to limbic regions
including the OFC, amygdala, and periaqueductal gray (PAG)
(Bush et al., 2000).

Previous findings, together with the present results, suggest
that hyperconnectivity between the ACC and caudate may be
specific to adolescents/adults with ASD. Increased bilateral con-
nectivity between the ACC and caudate has been reported during
visuomotor performance among adults with ASD (Turner et al.,
2006) but not resting state among children with ASD (Di Martino
et al., 2010). ACC pathology has also been implicated more gen-
erally in functional and structural neuroimaging studies of ASD.
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Table 3 | Within-groups t-scores and p-values for regions showing

group differences in functional connectivity controlling for age, IQ

and frame-wise displacements.

Source Target T -value P-FDR

Right cingulate
gyrus, anterior
division

Right accumbens

Left caudate

Right caudate

ASD = 2.53
Control = −2.35
ASD = 2.98
Control = −2.76
ASD = 2.67
Control = −2.36

ASD = 0.0314
Control = −0.0486
ASD = 0.0299
Control = 0.0486
ASD = 0.0314
Control = 0.049

Right middle
frontal gyrus

Right accumbens

Right caudate

ASD = 2.73
Control = −2.68
ASD = 2.62
Control = −2.64

ASD = 0.0378
Control = 0.0355
ASD = 0.0378
Control = 0.0355

Right
paracingulate
gyrus

Right accumbens

Right caudate

ASD = 3.29
Control = −3.55
ASD = 3.07
Control = −3.14

ASD = 0.0118
Control = 0.0006
ASD = 0.0118
Control = 0.0009

Right frontal
orbital gyrus

Right accumbens

Left accumbens

ASD = 2.67
Control = −2.47
ASD = 2.38
Control = −1.91

ASD = 0.0484
Control = 0.07
ASD = 0.0484
Control = 0.09

Left
paracingulate
gyrus

Right accumbens

Right caudate

Left caudate

ASD = 2.98
Control = −3.05
ASD = 0.3.00
Control = −2.68
ASD = 2.39
Control = −2.25

ASD = 0.0149
Control = 0.0247
ASD = 0.0149
Control = 0.0328
ASD = 0.0436
Control = 0.06

In a meta-analysis of functional neuroimaging studies, hypoacti-
vation was reported in the perigenual ACC in ASD during social
tasks and in the dorsal ACC for non-social tasks (Di Martino et al.,
2009). Reduced ACC gray matter volume (Haznedar et al., 2000;
Greimel et al., 2012a,b) and surface area (Hadjikhani et al., 2006;
Doyle-Thomas et al., 2012), primarily in the right hemisphere,
have also been reported.

Hyperconnectivity between the right ACC and the left cau-
date was associated with deactivation to social rewards in ASD
as reported in a previous study among the same participants
(Delmonte et al., 2012). This is in keeping with the role of the
ACC in social perception and social cognition deficits in ASD
(Di Martino et al., 2009) and with recent evidence of abnormal
ACC activation during social and non-social reward processing
(Dichter et al., 2011; Kohls et al., 2012a,b)—although we did not
observe the latter in our previous study. Taken together these
results suggest that abnormal activation in the left caudate during
social reward feedback may have been due to abnormal top–down
processes governed by the ACC.

Hyperconnectivity between the paracingulate (Pcg) and striatum
in ASD
The Pcg is often thought of as part of the ACC (Gallagher
and Frith, 2003; Walter et al., 2005), though it is anatomically,

FIGURE 6 | Connectivity between the left caudate and right anterior

cingulate and activation to social rewards in the left caudate.

Connectivity values are shown on the x-axis and percent signal change for
social reward feedback is shown on the y-axis. The ASD group is shown in
gray (with dashed trend-line) and the controls in white (with solid black
trend-line).

and perhaps functionally, distinct from the ACC (Gallagher
and Frith, 2003). Diffusion MRI data in humans indicates that
it is connected to the VS and DS and the dorsal prefrontal
cortex (Beckmann et al., 2009). The Pcg is involved in emo-
tion, social interaction, reward and decision-making, conflict
monitoring and error detection (Vogt, 2005; Amodio and Frith,
2006; Beckmann et al., 2009). The anterior Pcg, along with
the superior temporal sulci and the temporal poles, plays an
important role in theory of mind (Gallagher and Frith, 2003;
Walter et al., 2005) with activation modulated by the amount
of social interaction involved in the task (Walter et al., 2004).
The Pcg and striatum are thought to be involved in separate
phases of decision-making, with the Pcg involved in action selec-
tion and the VS responding to positive outcomes (Rogers et al.,
2004).

Previous functional connectivity studies of the striatum in
ASD have not implicated the Pcg (Turner et al., 2006; Di Martino
et al., 2010), however, reduced connectivity between the Pcg
and the intraparietal sulcus during working memory task per-
formance (Koshino et al., 2005) and reduced connectivity with
the IFG during sentence comprehension have been reported in
ASD (Just et al., 2004). Additionally, reduced Pcg activation dur-
ing theory of mind tasks (Kana et al., 2009) and reduced gray
matter volume in the right Pcg (Abell et al., 1999) have been
reported. In the present study increased connectivity between the
Pcg and the NAcc was negatively associated with SCD deficits,
suggesting that increased connectivity between these regions in
people with high functioning ASD could reflect a compensatory
mechanism.
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FIGURE 7 | Plots of the correlations between connectivity values and behavioral measures for the ASD group. Connectivity values are shown on the
x-axes and scores on the behavioral measures on the y-axes. ASD single subjects are represented as gray diamonds (solid black trend-line).

Hyperconnectivity between the middle frontal gyrus (MFG) and
striatum in ASD
The MFG, along with part of the SFG, comprises the dlPFC
(Barbas and Pandya, 1989; Badre and D’Esposito, 2009; Yeterian
et al., 2012), which is connected to the rostral dorsolateral cau-
date as well as the OFC and medial prefrontal cortex (mPFC)
(Haber, 2003; Lehéricy et al., 2004; Leh et al., 2007; Draganski
et al., 2008). The dlPFC is involved in a host of executive func-
tions including working memory, set-shifting, rule learning, and
planning (Goldman-Rakic et al., 1996; Leung et al., 2002; Badre
and D’Esposito, 2009) and is thought to work together with the
caudate to mediate these functions (Haber, 2003; Pasupathy and
Miller, 2005). In terms of rule-learning, rewarded associations
are thought to be identified in the striatum, which trains slower
learning mechanisms in the dlPFC (Pasupathy and Miller, 2005).
The dlPFC is involved in rule-learning via reinforcement; once
the rule has been acquired, the dlPFC is no longer required and
action execution is controlled by the premotor cortex (Badre and
D’Esposito, 2009).

As in previous studies of striatal connectivity (Turner et al.,
2006; Di Martino et al., 2010), there was a significant increase
in connectivity between the caudate and MFG in ASD. In addi-
tion, the ASD group showed hyperconnectivity between the MFG
and the NAcc. This is in keeping with a body of evidence impli-
cating the MFG/dlPFC in ASD. Decreased functional connectivity
has been reported between the dlPFC and the visuospatial regions
in the occipital and parietal lobes during visuospatial processing
(Damarla et al., 2010). ASD subjects also show less negative cor-
relation between the dlPFC and amygdala during passive viewing
of emotional facial expressions (Rudie et al., 2011) and increased
regional homogeneity (local synchronization of the BOLD signal)

in the right MFG during rest (Paakki et al., 2010). Reduced
activation in the dlPFC during social and non-social informa-
tion processing, including spatial working memory (Luna et al.,
2002), sustained attention (Christakou et al., 2012) and mem-
ory encoding of social information have been recorded (Greimel
et al., 2012a,b) as well as abnormal involvement in tasks such
as gaze perception (Vaidya et al., 2011). In addition, increased
gray matter volume (Ecker et al., 2012) and neuronal number
(Courchesne et al., 2011) indicate structural abnormalities in the
dlPFC in ASD.

Connectivity between the right MFG and right caudate was
associated with increased RRB. This in keeping with previ-
ous literature implicating the frontostriatal circuitry, particularly
the caudate and MFG/dlPFC, in executive function and repet-
itive behavior deficits in ASD (Hollander et al., 2005; Rojas
et al., 2006; Estes et al., 2011; Langen et al., 2011a; Ecker
et al., 2012) and suggests that cognitive as opposed to senso-
rimotor circuitry is implicated in repetitive behaviors in high
functioning ASD.

Hyperconnectivity between the orbitofrontal cortex (OFC) and
striatum in ASD
The OFC is involved emotion, motivation and reward, and is the
region of prefrontal cortex most often associated with reward-
guided decision-making, subserving both sensory and abstract
reward processing (Haber, 2003; Haber and Knutson, 2009;
Rushworth et al., 2011). Specifically, OFC activity is thought
to reflect signal valuation, for both rewards and punishments,
tracking expected reward value prior to decision-making and the
received reward value after a choice has been made (Rushworth
et al., 2011). Efferent connections from the OFC provide input to
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the VS, with the VS also receiving input from the amygdala and
hypothalamus (Haber, 2003; Draganski et al., 2008). The OFC,
together with the VS and amygdala, is thought to compute the
salience value of social stimuli, with this circuitry playing a poten-
tial role in social motivation deficits in ASD (Chevallier et al.,
2012; Kohls et al., 2012a,b).

Previous fMRI studies have indicated abnormal activation of
the OFC, VS and amygdala during both social and non-social
reward processing in ASD (Scott-Van Zeeland et al., 2010; Dichter
et al., 2011, 2012; Kohls et al., 2012a,b), providing support for the
hypothesized role of these regions in social motivation difficulties
in ASD. Additionally, structural alterations have been recorded in
the OFC in ASD, including decreased gray matter volume (Ecker
et al., 2012), increased cortical thickness (Hyde et al., 2010) and
altered sulcogyral morphology (Watanabe et al., 2013). Previous
examinations of frontostriatal functional connectivity in ASD
have not specifically implicated abnormal OFC—VS connectiv-
ity (Turner et al., 2006; Di Martino et al., 2010). The results of the
present study indicated that increased connectivity between the
OFC and NAcc was associated with fewer SCD deficits, suggesting
that increased connectivity between these regions may function
to reduce social difficulties among adolescents/young adults with
high-functioning ASD.

FRONTOSTRIATAL STRUCTURAL CONNECTIVITY
There were no significant group differences in white matter
microstructure (FA, MD, RD, AD) in tracts connecting the cau-
date or NAcc to the prefrontal cortex. Only one previous study
has specifically examined microstructural integrity of frontostri-
atal circuits. Greater MD was reported in projections between
the right NAcc and prefrontal cortex but not in projections
between the caudate and prefrontal cortex among adults with
ASD (Langen et al., 2011a,b). The disparity between the present
findings and those of Langen et al. (2011a,b) could be due to age
differences between the samples, with the sample in the present
study being younger than those previously examined. The dif-
ference between structural and functional connectivity findings
in the present study, with significant group differences for func-
tional data but not structural data, may be due to several factors.
Resting state connectivity analysis is not anatomically constrained
therefore differences in connections between the striatum and
PFC could potentially arise from structural alterations in another
part of the circuit, for example in fiber pathways connecting the
striatum and pallidum, pallidum and thalamus, or thalamus and
cortex. Frontostriatal connections may be characterized by topo-
graphical reorganization of fiber pathways in ASD rather than
microstructural alterations. This could be explored using connec-
tivity based classification methods (Behrens et al., 2007). Another
potential explanation is that structural data may be less sensitive
to group differences than functional data (Finger et al., 2012)
or that subtle white matter differences may remain undetected
by the typical “tract averaged” approach used in most tractog-
raphy studies and may require the use of “tract resampling”
techniques to capture more subtle variations over the length of
a tract (Colby et al., 2012). Finally, with the exception of a sig-
nificant correlation between functional connectivity between the
right caudate and MFG, and AD in the right caudate to prefrontal

tract, measures of functional connectivity were unrelated to struc-
tural metrics in the present study. Greater concordance between
functional and structural connectivity metrics may be obtained
by examining specific loops (i.e., cingulo-striatal loops or dlPFC-
striatal loops) in frontostriatal circuitry rather than connections
between the striatum and the entire frontal cortex. It is likely that
such analyses would require high-resolution diffusion imaging
(HARDI) data and advanced modeling techniques such as con-
strained spherical deconvolution (CSD) rather than the tensor
model used here.

LIMITATIONS AND FUTURE DIRECTIONS
The results of the present study should be interpreted in the light
of several methodological issues. We did not replicate previous
findings showing positive functional connectivity between fron-
tostriatal regions, for example between the MFG and the caudate,
in our control group (Di Martino et al., 2008). This is perhaps
due to developmental factors related to the age range of the
participants in the present study. Indeed negative connectivity
between frontostriatal regions in controls was no longer appar-
ent when covariates were not included in the analyses. Another
potential explanation is that Di Martino et al. (2008) divided the
caudate into ventral and dorsal regions, which showed distinct
patterns of connectivity with sub-regions of the ACC and dlPFC,
whereas we examined connectivity using gross morphological
boundaries. Examining connectivity across entire structures in
the current study may have obscured functional relationships
between sub-regions of these structures. This can be circum-
vented to some extent by using a seed-to-voxel approach rather
than the ROI-to-ROI approach taken in this study. However,
the seed-to-voxel approach also requires a significantly greater
number of statistical comparisons, which can potentially lead
to Type II errors (false negatives). Given that ASD is a func-
tionally heterogeneous population and this study has a relatively
small sample size (N = 21), the ROI-to-ROI approach used in
the present study is likely to have been more sensitive to group
differences. Recent studies have shed light on the topography
of functional and structural connections within the striatum
(Robinson et al., 2012; Verstynen et al., 2012; Tziortzi et al., 2013)
which may be useful in defining seed regions for future stud-
ies of functional and anatomical connections in frontostriatal
circuitry in ASD.

A limitation of functional connectivity methods used in the
present study is that one cannot infer the source of differences
in functional connectivity. Frontostriatal loops are part of larger
circuitry which also involve thalamo-cortical connections (Haber
and Knutson, 2009). Increased connectivity between the thalamus
and frontal cortical regions has been reported in ASD (Mizuno
et al., 2006), indicating that thalamo-cortical circuitry is also
abnormal in ASD, which could impact on frontostriatal circuitry.
Given the looped structure of cortico-striatal-thalamo-cortical
connections (Alexander et al., 1986, 1990), and various regulatory
influences on this circuitry (Haber and Knutson, 2009), it is diffi-
cult to infer at what point dysregulation occurs, i.e., in the frontal
cortex, the thalamus, the striatum, other regulatory subcortical
structures, or in specific connections between these structures.
We did not examine the connectivity of the midbrain—which
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provides important dopaminergic input to the striatum (Schultz
et al., 1997; Haber and Knutson, 2009)—due to the fact that
the midbrain is particularly susceptible to artifacts from car-
diac (Greitz et al., 1992; Dagli et al., 1999) and respiratory (Raj
et al., 2001) signals. Future studies could examine midbrain
function in ASD using optimized fMRI methods (Limbrick-
Oldfield et al., 2012), could include additional ROIs in regions
such as the midbrain and thalamus, and could use effec-
tive connectivity modeling techniques to more fully character-
ize connectivity within frontostriatal circuitry (and potentially
shed light on the source of hyperconnectivity in this circuit)
in ASD.

The lack of group differences in structural connectivity should
be interpreted in the light of several factors. Firstly, DTI is asso-
ciated with a number of confounds (Jones, 2010). The tensor
model cannot characterize diffusion in regions of complex fiber
architecture, or “crossing fibers” where fibers kiss, twist, splay
kink, or bend (Basser et al., 2000; Frank, 2001; Tuch, 2004; Jones,
2010). This is an important issue given that crossing fibers are
thought to make up to 90% of white matter (Jeurissen et al.,
2012). Tensor derived metrics are also influenced by acquisi-
tion parameters, such as the b-value (Vos et al., 2012), which
may further confound results. Improved understanding of brain
structural connectivity in ASD will therefore require the use of
HARDI methods such as CSD tractography. Another potential
concern is that the presence of subtle differences along white
matter fiber tract may remain undetected as the diffusion met-
rics are typically averaged along the entire tract segment under
investiagtion, thus masking subtle and highly localized regions
of effect. Emerging tractography techniques that assess variations
in the diffuison meteric along the tract using a “tract resam-
pling mechanism” have been shown to potentially increase the
sensitivity of analyses to the presence of very subtle but impor-
tant white matter fiber differences (Colby et al., 2012). Again the
use of HARDI methods may provide futher insight into more
subtle stuctural differences in ASD. Another potential method-
ological issue is that the age range of the participants in the
present study may have introduced heterogeneity in the data due
to ongoing developmental processes, which could have reduced
power to detect group differences. Previous studies suggest that
both gray and white matter undergo different developmental tra-
jectories in ASD (Carper et al., 2002; Keller et al., 2007; Langen
et al., 2009; Cheng et al., 2010; Mak-Fan et al., 2012), therefore
future studies should use tighter age ranges to limit heterogeneity
for group-wise comparisons. Finally, the size of the sample in the

present study may have reduced power to detect potential group
differences in structural connectivity.

Interestingly, hyperconnectivity between the PFC and the
striatum was primarily lateralized to the right hemisphere in the
present study. This is in keeping with evidence that differences
in the structure and function of the ACC are largely lateralized
to the right hemisphere (Haznedar et al., 2000; Bejjani et al.,
2012; Dichter et al., 2012; Joshi et al., 2012), that increased gray
and white matter volume asymmetries are lateralized to the right
hemisphere (Herbert et al., 2005) and that regional homoegene-
ity, a measure of functional connectivity thought to index local
synchrony in the BOLD signal, is primarily lateralized to the
right hemisphere in ASD (Liu et al., 2008; Paakki et al., 2010).
Future studies may wish to further examine potential hemi-
spheric asymmetries in functional and structural connectivity
in ASD.

CONCLUSIONS
These results are in line with previous reports of increased
functional connectivity between the striatum and frontal, tem-
poral and parietal lobes as well as the pons in ASD (Turner
et al., 2006; Di Martino et al., 2010). In the present study,
hyperconnectivity was confined to limbic and associative fron-
tostriatal circuits. Unlike previous studies (Di Martino et al.,
2010), there were no group differences in sensorimotor loops.
These findings add to a growing body of literature indicating
significant increases as well as decreases in functional connec-
tivity in ASD and do not support general under-connectivity
accounts (Just et al., 2007), but suggest that ASD is character-
ized by complex functional re-organization which also involves
hyperconnectivity within certain circuits. Increased functional
connectivity in frontostriatal circuitry was associated with behav-
ioral characteristics of ASD in terms of social interaction and
communication and restricted interests/repetitive behaviors, as
well as deactivation to social rewards in the striatum. There were
no differences in structural connectivity as measured by DTI.
This suggests that differences in functional connectivity were
not detectable by DTI tractography in frontostriatal white mat-
ter but further research using advanced CSD based tractography
is needed to clarify if subtle structural abnormalities exist in
this region.
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While there is almost universal agreement amongst researchers that autism is associated
with alterations in brain connectivity, the precise nature of these alterations continues to
be debated. Theoretical and empirical work is beginning to reveal that autism is associated
with a complex functional phenotype characterized by both hypo- and hyper-connectivity
of large-scale brain systems. It is not yet understood why such conflicting patterns of brain
connectivity are observed across different studies, and the factors contributing to these
heterogeneous findings have not been identified. Developmental changes in functional
connectivity have received inadequate attention to date. We propose that discrepancies
between findings of autism related hypo-connectivity and hyper-connectivity might be
reconciled by taking developmental changes into account. We review neuroimaging
studies of autism, with an emphasis on functional magnetic resonance imaging studies
of intrinsic functional connectivity in children, adolescents and adults. The consistent
pattern emerging across several studies is that while intrinsic functional connectivity in
adolescents and adults with autism is generally reduced compared with age-matched
controls, functional connectivity in younger children with the disorder appears to be
increased. We suggest that by placing recent empirical findings within a developmental
framework, and explicitly characterizing age and pubertal stage in future work, it may
be possible to resolve conflicting findings of hypo- and hyper-connectivity in the extant
literature and arrive at a more comprehensive understanding of the neurobiology of
autism.

Keywords: autism spectrum disorders, brain development, functional connectivity, puberty, fMRI

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental dis-
order characterized by impaired social interaction and commu-
nication, repetitive behaviors, and restricted interests. According
to the latest reports, ASD affects nearly 1 in 88 children, and the
prevalence continues to grow (Investigators, 2012). The recogni-
tion of the increasing prevalence of ASD has placed a mandate on
understanding its neurobiological foundations. As highlighted in
several articles appearing in this special topic, one of the most
well-documented observations in the autism literature is that the
brains of individuals with the disorder exhibit aberrant func-
tional connectivity or inter-regional communication (Belmonte
et al., 2004). Functional connectivity as measured from functional
magnetic resonance imaging (fMRI) data is defined as “temporal
correlations between remote neurophysiological events” (Friston,
1994). Functional connectivity is typically measured using one of
three approaches: (1) regression analysis using a seed region of
interest (Greicius et al., 2003; Fox et al., 2005), (2) full or par-
tial correlation analysis of multiple regions of interest (Ryali et al.,

Abbreviations: ASD, Autism spectrum disorder; fMRI, Functional magnetic res-
onance imaging; DMN, Default mode network; ICA, Independent component
analysis.

2012), or (3) independent component analysis (ICA) of the entire
imaging dataset to identify spatial maps with common tempo-
ral profiles (Beckmann and Smith, 2004; Cole et al., 2010). These
measures have been used to characterize large-scale networks in
the human brain (Bressler and Menon, 2010; Sporns, 2011), and
have paved the way for increasingly sophisticated investigations of
brain connectivity in ASD (Kennedy and Adolphs, 2012).

Temporal correlations in blood oxygen level dependent
(BOLD) fMRI signals are thought to arise from signal propa-
gation and dynamical slowing down of fluctuations in anatom-
ically constrained neural networks (Deco et al., 2013). Consistent
with this, empirical studies using human ECoG have shown
that slow (<0.1 Hz) spontaneous fluctuations of firing rate and
gamma local field potentials are correlated with spontaneous
fMRI fluctuations (Nir et al., 2008). Intrinsic functional connec-
tivity measured during resting state fMRI may reflect a history
of task-dependent coactivation, and likely serves to organize and
coordinate neuronal activity, or might represent dynamic predic-
tions about expected patterns of use (Fox and Raichle, 2007).

Several investigations have reported that functional connec-
tivity between brain regions is weaker in high-functioning ASD,
leading to long-distance cortical “under-connectivity” theories
of autism (Courchesne and Pierce, 2005; Geschwind and Levitt,
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2007; Schipul et al., 2011; Just et al., 2012). However, there is
emerging evidence that challenges these models and suggests that
functional connectivity between brain regions can be stronger in
ASD (Uddin et al., 2013). It is not yet understood why such con-
flicting patterns of brain connectivity results are observed across
different studies, and factors contributing to these heterogeneous
findings have not been identified. A more nuanced account cap-
turing patterns of both task-related and intrinsic hypo- and
hyper-connectivity observed in autism is essential for characteriz-
ing aberrant brain organization in the disorder (Kana et al., 2011;
Muller et al., 2011; Vissers et al., 2011). Recent attempts to pro-
vide explanations for the discrepant findings in the literature have
delineated both methodological issues (Muller et al., 2011) and
conceptual issues (Vissers et al., 2011). Here we propose that yet
another source of inconsistency exists, namely that developmen-
tal changes in functional connectivity have received inadequate
attention to date. We posit that discrepancies between findings of
autism-related hypo-connectivity and hyper-connectivity might
be reconciled by taking developmental stage into account.

The idea that critical periods of plasticity during brain devel-
opment represent particularly vulnerable stages during which
aberrant maturational process can occur is not a new one. In 2003
Rubenstein and Merzenich first introduced the theory that autism
may arise from an increased ratio of excitation/inhibition in
developing neural systems subserving sensory, mnemonic, social,
and emotional processes. Hyperexcitability as a result of this
imbalance has been hypothesized to contribute to poorly func-
tionally differentiated and inherently unstable cortex in autism
(Rubenstein and Merzenich, 2003). As summarized in a recent
review characterizing autism as a critical period disorder, exces-
sive plasticity at the wrong times could result in noisy and
unstable processing, yet a brain that lacks appropriate levels of
plasticity early in life might remain hyper- or hypo-connected and
unresponsive to environmental changes early in life (LeBlanc and
Fagiolini, 2011).

One of the earliest signs of autism is enlarged head circum-
ference or macrocephaly (Lainhart et al., 1997). Infants and
young children with ASD show signs of early brain overgrowth
(Courchesne et al., 2003). Postmortem studies of children with
ASD show that they have an overabundance or excess numbers
of neurons in the prefrontal cortex (Courchesne et al., 2011).
Animal models likewise provide evidence for hyper-connectivity
at very early time points in development (Testa-Silva et al., 2011).
There is a profound inconsistency between these observations and
“under-connectivity” or hypo-connectivity theories that by and
large do not account for the possibility of an early phase of neural
hyper-connectivity in ASD.

The EEG literature has long reflected an understanding that
stabilization and pruning of connections during development
plays a central role in the development of cognitive and per-
ceptual functions during critical periods early in life. Uhlhaas
and colleagues summarize decades of work to hypothesize that
“in ASDs abnormal brain maturation during early prenatal and
postnatal periods results in cortical circuits that are unable to sup-
port the expression of high-frequency oscillations during infancy.
These impaired oscillations might in turn reduce the tempo-
ral precision of coordinated firing patterns and thereby disturb

activity-dependent circuit selection during further development”
(Uhlhaas et al., 2010). These developmental perspectives from
animal models and electrophysiological studies should be inte-
grated into the fMRI community, which has struggled to reconcile
inconsistent findings with regards to functional brain connectiv-
ity in ASD over the past several years.

There has been rapid progress in understanding changes in
functional connectivity accompanying typical development with
the advent of resting-state fMRI (Uddin et al., 2010). For example,
it is now known that subcortical areas are more strongly function-
ally coupled with primary sensory, association, and paralimbic
areas in children, whereas adults show stronger cortico-cortical
functional connectivity between paralimbic, limbic, and associ-
ation areas (Supekar et al., 2009). More generally, several stud-
ies have demonstrated that over development, functional brain
networks shift from a local anatomical emphasis to a more dis-
tributed architecture (Fair et al., 2009; Kelly et al., 2009). It has
recently been suggested that motion-related artifacts can have a
significant impact on functional connectivity estimates (Power
et al., 2012; Van Dijk et al., 2012) in such a way that makes it dif-
ficult to study developmental differences. While the appropriate
treatment of motion-related artifacts is as yet an unresolved issue
in the field (see Satterthwaite et al., 2012, 2013), findings from
other imaging modalities including diffusion tensor imaging cor-
roborate functional connectivity findings of increased integrity
of long-distance connections with development (Supekar et al.,
2010; Uddin et al., 2011). These and other insights from develop-
mental cognitive neuroscience can and should inform theories of
atypical development of functional connectivity in autism.

The majority of functional neuroimaging studies of autism
have been conducted in adolescents or adults, in part due to prac-
tical limitations related to scanning very young children (Yerys
et al., 2009). Evidence from these studies of older individu-
als generally supports the hypo-connectivity theory of autism.
However, the lack of available empirical data from younger chil-
dren with the disorder has made it difficult to test the extent to
which the hypo-connectivity theory generalizes to younger age
groups. Although calls for data sharing in autism research have
been put forth in the past (Belmonte et al., 2008), only recently
have large neuroimaging datasets been released. One recent grass-
roots data sharing initiative (http://fcon_1000.projects.nitrc.org/
indi/abide/) has made pre-publication datasets of neuroimaging
data collected from individuals between the ages of 6 and 60
available to researchers to facilitate and accelerate the discovery
of the functional architecture of the autistic brain (Di Martino
et al., 2013a). Still, at this time relatively little has been published
addressing the issue of functional brain connectivity in young
children with ASD.

The purpose of this review is to (1) summarize the current sta-
tus of the field by highlighting key findings from studies using
fMRI to examine task-related and intrinsic functional connectiv-
ity in individuals with ASD across various age groups, (2) reveal
critical gaps in the literature which have led to an inconsistent
characterization of functional connectivity in ASD, and (3) argue
that a developmental perspective can help reconcile some extant
contradictory findings, and is necessary for future progress in the
field.
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FUNCTIONAL BRAIN CONNECTIVITY IN AUTISM: REVIEW
Autism is a disorder with early life onset and variable develop-
mental trajectory (Stefanatos, 2008). Functional neuroimaging
studies of young children are thus especially critical for develop-
ing accurate models of the underlying neurobiology of the disor-
der. Thus, it is perhaps surprising that very few fMRI studies have
addressed the question of how the brain is functionally organized
in childhood ASD, at developmental stages more proximal to the
onset of the disorder (Akshoomoff et al., 2002; Amaral, 2010).
Below we survey fMRI studies of ASD examining task-based func-
tional connectivity and resting-state functional connectivity with
the goal of providing an overview of the existing literature and
highlighting the dearth of developmental studies of functional
connectivity in ASD.

TASK-BASED FUNCTIONAL CONNECTIVITY
Task-based functional connectivity measures the synchronization
of activation levels between brain regions during the performance
of a given cognitive task. Since the initial fMRI reports of hypo-
connectivity in autism (Just et al., 2004), task-related reductions
in inter-regional brain connectivity during language (Just et al.,
2004; Mason et al., 2008; Jones et al., 2010), working memory
(Koshino et al., 2005, 2008), mental imagery (Kana et al., 2006),
executive functions (Just et al., 2007), cognitive control (Kana
et al., 2007; Solomon et al., 2009; Agam et al., 2010), visuomo-
tor coordination (Villalobos et al., 2005) and social cognition
(Kleinhans et al., 2008; Kana et al., 2009) have been documented.
However, reports of brain hyper-connectivity in ASD also exist
in the domains of visuomotor processing (Mizuno et al., 2006;
Turner et al., 2006), visual search (Shih et al., 2011), emotion pro-
cessing (Welchew et al., 2005), memory (Noonan et al., 2009), and
language (Shih et al., 2010). These findings are comprehensively
reviewed elsewhere (Thai et al., 2009; Schipul et al., 2011; Vissers
et al., 2011). A recent review of studies conducted mainly in adults
highlights several methodological variables including concatena-
tion of specific task blocks, the use of low-pass filtering, regression
of main effects of task, and methods for selecting regions-of-
interest that result in considerable heterogeneity between studies
with respect to how functional connectivity is conceptualized and
analyzed. The authors suggest that such variables may partially
account for discrepancies in connectivity results, and that hypo-
connectivity findings may be contingent upon these method-
ological choices (Muller et al., 2011). For example, Muller and
colleagues surveyed 32 studies and found that the use of low-pass
filtering of fMRI data more often produced results inconsistent
with the general under-connectivity theory (Muller et al., 2011).

Recognizing and documenting methodological issues is a
critical first step toward synthesizing findings in the “func-
tional connectivity in autism” literature and identifying robust
and replicable results. Overall, task-based functional connectiv-
ity studies largely support the hypo-connectivity theory, how-
ever, the majority of these report results from older adolescents
and adults. Additionally, task-based approaches produce results
that cannot be easily generalized to other cognitive states, and
differences between groups in task performance can make inter-
pretation of hypo- and hyper-connectivity results difficult. The
emergence of resting-state fMRI as a means for characterizing the

intrinsic functional architecture of the brain, unconfounded by
task and behavioral effects, has facilitated data collection from
younger typically developing (TD) children and children with
ASD (Uddin et al., 2010).

RESTING-STATE FUNCTIONAL CONNECTIVITY
Since the initial demonstration by Biswal and colleagues that
coherent spontaneous low-frequency fluctuations in BOLD signal
can be detected within functional systems in the absence of task
performance (Biswal et al., 1995), the use of resting-state fMRI
in neuroscience has grown exponentially. Applications in clini-
cal neuroscience have been particularly useful, and have provided
insights into systems-level cortical and subcortical anomalies of
functional connectivity in neurodevelopmental disorders such as
attention-deficit/hyperactivity disorder (ADHD, Castellanos and
Proal, 2012) and schizophrenia (Yu et al., 2012). Surprisingly,
however, there are relatively few published resting-state functional
connectivity studies examining individuals with ASD. Extant
studies have by and large focused on adolescents or adults with
the disorder, with a few notable exceptions.

The earliest published intrinsic functional connectivity study
of autism was conducted by Cherkassky and colleagues, who
used a seed region-of-interest (ROI) approach to demonstrate
functional hypo-connectivity in anterior–posterior connections
in adolescents and adults with ASD (Cherkassky et al., 2006).
Using an ROI-based approach in another study, Kennedy and
colleagues demonstrated disrupted intrinsic connectivity of the
default mode network (DMN), but not the dorsal attention net-
work, in a group of adolescents and adults with autism (Kennedy
and Courchesne, 2008). Others have replicated this finding of
reduced DMN connectivity in adults (Monk et al., 2009), as well
as adolescents (Weng et al., 2010) with ASD. Similar findings
of decreased functional connectivity of the DMN in adults with
ASD have been obtained using data-driven ICA approaches (Assaf
et al., 2010), as well as studies combining both seed correlation
and ICA (von dem Hagen et al., 2013). Whole-brain connectiv-
ity approaches have also provided evidence of hypo-connectivity
of social processing-related brain circuits in adolescents with
ASD (Gotts et al., 2012), though a recent systematic investiga-
tion using both ROI-based and ICA-based analytic approaches
found very few examples of functional hypo-connectivity in
adults with ASD compared with age-matched control partici-
pants (Tyszka et al., 2013). A study of adolescents and adults
revealed decreased intrinsic functional connectivity of the insu-
lar cortex in high-functioning ASD (Ebisch et al., 2010). As
summarized in Table 1, the studies that have reported group
differences in the direction of autism-related intrinsic hypo-
connectivity were all conducted in either adolescent or adult
high-functioning (average or above average IQ) samples. The
nascent literature on childhood ASD, in contrast, paints a very
different picture.

In a group of children between 7 and 14 years of age, Di
Martino and colleagues found that children with ASD exhibit
functional hyper-connectivity compared with TD peers. They
found increased functional connectivity between striatal subre-
gions and heteromodal association and limbic cortices including
insula and superior temporal gyrus (Di Martino et al., 2011).
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Table 1 | Resting-state functional connectivity MRI studies in ASD.

Publication Ages examined Gender and sample size Intrinsic functional connectivity method and results

Dinstein et al., 2011 ASD: 2.42
Range: 1–3.83
TD: 2.33
Range: 1.08–3.83

29 ASD; 30 TD; gender not
reported

Interhemispheric hypo-connectivity between left and
right superior temporal gyri and left and right inferior
frontal gyri (seed-based during auditory stimulation)

Di Martino et al., 2011 ASD: 10.4 ± 1.7
TD: 10.9 ± 1.6
Range: 7.6–13.5

20 ASD (17 male); 20 TD (14 male) Hyper-connectivity of striatum with insula and superior
temporal gyrus (seed-based)

Uddin et al., 2013 ASD: 9.96 ± 1.59
Range: 7.52–11.88
TD: 9.95 ± 1.60
Range: 7.75–12.43

20 ASD (16 male); 20 TD (16 male) Hyper-connectivity within salience, default mode,
frontotemporal, motor, and visual networks (ICA)

Lynch et al., 2013 ASD: 9.96 ± 1.59
TD: 9.88 ± 1.61
Range: 7–12

20 ASD (16 male); 19 TD (15 male) Hyper-connectivity within default mode network
(seed-based)

Washington et al.,
2013

ASD: 10.88 ± 2.27
TD: 10.08 ± 3.17
Range: 6–17

24 ASD (21 male); 24 TD
(21 male)

Hyper-connectivity within default mode, visual, and
motor networks (ICA), internodal default mode
hypo-connectivity (seed-based)

Rudie et al., 2012 ASD: 13.57
TD: 12.79

38 ASD (32 male); 33 TD
(28 male)

Hypo-connectivity within default mode network
(seed-based)

Weng et al., 2010 ASD: 15 ± 1.45 years
Range: 13–17
TD: 16 ± 1.44 years
Range: 13–18

16 ASD (15 male); 15 TD (14 male) Hypo-connectivity within default mode network
(seed-based)

Assaf et al., 2010 ASD: 15.7 ± 3.0
Range: 11–20
TD: 17.1 ± 3.6
Range: 10–23

15 ASD (14 male); 15 TD (13 male) Hypo-connectivity within default mode sub-network
(ICA)

Ebisch et al., 2010 ASD: 15.79 ± 1.93
TD: 15.95 ± 1.65
Range: 12–20

14 ASD (10 male); 15 TD (13 male) Hypo-connectivity of insular cortex with amygdala
(seed-based)

Gotts et al., 2012 ASD: 16.92 ± 2.66
TD: 17.86 ± 3.00
Range: 12–23

31 ASD (29 male); 29 TD
(28 male)

Whole-brain hypo-connectivity

Cherkassky et al.,
2006

ASD: 24 ± 10.6 years
TD: 24 ± 9.0 years

57 ASD (53 male); 57 TD
(52 male)

Hypo-connectivity between anterior cingulate and
posterior cingulate (seed-based)

Kennedy and
Courchesne, 2008

ASD: 26.5 ± 12.8
years
Range: 15.7–52.1
TD: 27.5 ± 10.9
years
Range: 15.9–45.4

12 ASD (12 male); 12 TD (12 male) Hypo-connectivity within default mode network
(seed-based)

Monk et al., 2009 ASD: 26 ± 5.93 years
TD: 27 ± 6.1 years

12 ASD (11 male); 12 TD (10 male) Hypo-connectivity within default mode network
(seed-based)

Anderson et al., 2011 ASD: 22.4 ± 7.2
Range: 12–42
TD: 21.1 ± 6.5
Range: 8–34

53 ASD (53 male); 39 TD
(39 male)

Interhemispheric hypo-connectivity between left and
right insula and left and right parieto-occipital regions

(Continued)
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Table 1 | Continued

Publication Ages examined Gender and sample size Intrinsic functional connectivity method and results

Tyszka et al., 2013 ASD: 27.4 ± 2.4
TD: 28.5 ± 2.5

19 ASD (15 male); 20 TD (17 male) No group differences in whole-brain connectivity (ICA)

von dem Hagen et al.,
2013

ASD: 30 ± 8:
Range: 19–40
TD: 25 ± 6
Range: 19–36

15 ASD (15 male); 24 TD (24 male) Hypo-connectivity within default mode network (ICA
and seed-based)

Mueller et al., 2013 ASD: 35.5 ± 11.4
TD: 33.3 ± 9.0

12 ASD (9 male); 12 TD (8 male) Hypo-connectivity within dorsal attention, default
mode, and left fronto-parietal network (ICA)

ASD, autism spectrum disorder; TD, typically developing; only studies using resting state fMRI methods are included.

Recently, we demonstrated that children aged 7–12 with autism
exhibit hyper-connectivity of several major large-scale brain net-
works important for cognitive functions. A widely-used method
for comparing brain networks between groups is dual regres-
sion ICA. Dual regression employs a set of spatial maps derived
from the initial group ICA in a linear model fit against each
individual fMRI dataset, resulting in matrices describing the
temporal dynamics of the corresponding networks for each sub-
ject (Beckmann et al., 2005; Filippini et al., 2009). Using this
approach, we found that children with ASD exhibited greater
functional connectivity than TD children within the DMN,
salience, fronto-temporal, motor, and visual networks (Uddin
et al., 2013). This somewhat surprising hyper-connectivity result
also emerged using complementary analytic approaches and was
replicated in several independent datasets (Supekar et al., 2012),
and by other groups examining wider age ranges (6–17-year-olds)
(Washington et al., 2013). Further, we have found that even within
the DMN, hypo- vs. hyper-connectivity results can be observed in
children with ASD depending on the precise anatomical location
of ROIs within the posterior medial cortex (Lynch et al., 2013).
Another recent study of children aged 9–18 found mixed patterns
of hypo- and hyper-connectivity between ROIs across the entire
brain (Rudie et al., 2013). Rudie and colleagues also report data
from graph theoretical analyses demonstrating that while “small
worldness” was similar between groups, network level reductions
in modularity and clustering as well as shorter characteristic path
lengths were observed in children and adolescents with ASD.
Some reports of hypo-connectivity between specific ROIs in chil-
dren with ASD have been published recently (Dinstein et al., 2011;
Abrams et al., 2013).

These recent findings raise an important question: If child-
hood autism is characterized by functional hyper-connectivity,
and adults with autism exhibit functional hypo-connectivity,
why has the field been slow to examine this important devel-
opmental discontinuity? One possible explanation is that the
hypo-connectivity theory of ASD has been so dominant that
investigators finding contradictory findings have been reluctant
to publish their results. This idea has been discussed in a recent
Simons Foundation blog (http://sfari.org/news-and-opinion/
specials/2013/connectivity/guest-blog-negative-results). A sur-
vey of presentations at recent meetings of the International
Meeting for Autism Research (IMFAR) and the Organization for
Human Brain Mapping (OHBM) suggests that this may in fact

be the case. Deen and colleagues conducted ROI-based analyses
on data collected from children aged ∼13 with ASD and TD
control participants. In a poster presented at IMFAR in 2011,
they report: “A number of group differences were found in both
directions, with no trend toward more differences in the direc-
tion of TD>ASD . . . in the ROI analysis, 19 correlations were
stronger in the TD group, while 38 were stronger in the ASD
group” (Deen and Pelphrey, 2011). In an HBM poster from the
2012 meeting, You and colleagues reported using a “connectivity
degree”—computed by counting, for each voxel, the number of
voxels meeting a correlation threshold of r > 0.25 inside (local)
and outside (distant) its neighborhood defined as a sphere of
14 mm radius (Sepulcre et al., 2010)—to find that degree of func-
tional connectivity was higher in 7–13-year-old children with
ASD than TD children (You et al., 2012). These initial findings of
functional hyper-connectivity in children with ASD are only now
beginning to surface, and may have been initially received with
skepticism due to their inconsistency with the hypo-connectivity
theory.

DEVELOPMENTAL MODEL OF FUNCTIONAL BRAIN
CONNECTIVITY IN ASD
We propose that the discrepancies between the adult ASD and
childhood ASD findings with respect to whole-brain functional
connectivity may be reconciled by considering critical devel-
opmental factors such as the onset of puberty, which signals
the beginning of adolescence and has a major impact on brain
structure and function. Puberty typically begins between 9 and
12 years of age, and creates a surge of hormones that trigger
rapid physical growth, sexually dimorphic alterations in facial
structure, metabolic changes, and several social, behavioral, and
emotional changes (Crone and Dahl, 2012). Studies of brain
development in animals suggest that the hormonal events sur-
rounding puberty exert significant effects on brain maturation
(Cahill, 2006). Relatively few neuroimaging studies have explored
the role of puberty in human brain development (Blakemore
et al., 2010; Crone and Dahl, 2012; Galvan et al., 2012), though
it was noted long ago that measurements of peak gray matter
volume coincide with the onset of puberty (Giedd et al., 1999;
Blakemore, 2012).

The age-related discontinuity in the autism neuroimaging lit-
erature between findings from children and adults coincides with
this developmental period. As summarized in Table 1, studies
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of children under the age of 12 (presumably predominantly
pre-pubertal) find considerable evidence for functional hyper-
connectivity in ASD, whereas the studies reporting data col-
lected from adolescents and adults (presumably predominantly
post-pubertal) reveal functional hypo-connectivity in ASD. A
schematic model of this proposed developmental shift is depicted
in Figure 1.

A growing body of literature documents age-related increases
in white matter volume (Lenroot and Giedd, 2006), which may
be related to increases in long-range functional connectivity from
childhood through adolescence and into adulthood (Fair et al.,
2008; Kelly et al., 2009). Recent reports of strengthening of struc-
tural and functional connectivity with age have shed light on
typical developmental processes (Hagmann et al., 2010; Supekar
et al., 2010; Uddin et al., 2011). Similar developmental studies
of brain connectivity in ASD do not yet exist. In concert with
studies of the effects of puberty on typical brain development,
this work will help to explain the developmental shift that is
suggested by the existing literature of functional connectivity in
autism.

CHALLENGES AND GAPS IN THE LITERATURE
LACK OF LONGITUDINAL DATA AND DATA FROM YOUNGER
PARTICIPANTS
The most critical gap in the literature on functional brain con-
nectivity in ASD is the lack of longitudinal studies tracking the
same individuals as they progress from pre- to post-pubertal
stages of development (Wass, 2011). There are a few longitu-
dinal findings from structural neuroimaging studies spanning
the developmental period discussed in this review. One report
found significantly greater decreases in gray matter volume in
children with autism scanned at two time points (age ∼11 and at
30-month follow-up) compared with TD children (Hardan et al.,
2009).

While very few studies have examined functional connectivity
in young children and toddlers with autism (Dinstein et al., 2011),
some have started to use structural measures to examine high-
risk infants, including siblings of children with autism. Wolff and
colleagues report that infants with ASD showed higher fractional
anisotropy (FA) of most fiber tracts at 6 months followed by a
slower change over time relative to infants without ASD such that

FIGURE 1 | Schematic model of two scenarios that could explain a

developmental shift from intrinsic hyper-to hypo-connectivity in ASD.

In scenario 1 (solid red line), the ASD group shows a less steep
developmental increase in functional connectivity over the age span
compared with the TD group. In scenario 2 (dashed red line), the ASD
group shows anomalous patterns of connectivity across the pubertal

period. Resting-state functional connectivity MRI studies provide evidence
for widespread hyper-connectivity in children with ASD in contrast to
hypo-connectivity observed in adolescents and adults with ASD. To
reconcile these findings, it will be necessary to conduct longitudinal
studies that span the developmental period surrounding puberty (gray
oval). ASD, autism spectrum disorders; TD, typical development.
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by 24 months of age, the infants with ASD had lower FA values
(Wolff et al., 2012). This study suggests that aberrant develop-
ment of white matter may precede the manifestation of autistic
symptoms in the first year of life, and highlights the importance
of longitudinal data and data from young children and infants
with the disorder.

LACK OF PUBERTAL STAGE ASSESSMENT
As highlighted throughout, a potentially informative way of strat-
ifying a sample would be to group individuals by pubertal stage
to examine brain maturation as a function of sexual maturity in
ASD. Explicit characterization of pubertal stage in research par-
ticipants can be accomplished in one of several ways. The most
widely used tool is the Tanner scale for assessing pubertal devel-
opment. Tanner staging characterizes individuals along a puberty
scale from 1 to 5 on the basis of pubic hair and breast devel-
opment in females, and pubic hair and genital development in
males (Tanner and Whitehouse, 1976). A physical exam carried
out by a trained clinician is the typical mode of administration.
While there are several limitations to Tanner staging (including
ethnic homogeneity of the scale), the test is the current gold
standard for puberty assessment. Self-report versions of the scale
have also been developed [e.g., the Petersen Developmental Scale
(PDS) (Petersen et al., 1988)]. Hormonal assays can also in prin-
ciple be used to assess pubertal stage, but practical considerations
limit their utility Blakemore et al. (2010). Adopting one of these
approaches to pubertal assessment when studying adolescents will
likely contribute to clarity and interpretability of neuroimaging
findings in this population.

INSUFFICIENT CHARACTERIZATION OF HETEROGENEITY
One significant obstacle to understanding the brain basis of ASD
is the fact that the disorder (indeed, disorders) encompasses a
wide range of abilities and levels of functioning. Almost no func-
tional brain imaging data is available from individuals who are
considered “low-functioning.” Additionally, because of the 4:1
male:female ratio in diagnosis (Werling and Geschwind, 2013),
males with the disorder are much more prevalent and therefore
receive the majority of attention from researchers. As a conse-
quence, very little is known about gender-specific functional con-
nectivity differences associated with the disorder. It has recently
been shown that individuals with variants of the MET gene show
differential patterns of resting-state functional connectivity, such
that differences between ASD and controls were moderated by
genotype (Rudie et al., 2012). This study highlights the impor-
tant point that studies of disorders characterized by considerable
heterogeneity, such as ASD, may need to be particularly mindful
of potential genetic differences within their samples.

Reports of relationships between efficiency of functional brain
networks and IQ (van den Heuvel et al., 2009) as well as between
regional node properties and IQ (Wu et al., 2013) are beginning
to emerge. Important directions for future work include assess-
ing interactions between diagnostic category, IQ, and functional
connectivity measures. One can speculate that a unique devel-
opmental trajectory might exist for children with ASD on the
low-functioning end of the spectrum, compared with high-
functioning ASD and typical development.

DIRECT COMPARISONS BETWEEN TASK-BASED AND RESTING-STATE
FUNCTIONAL CONNECTIVITY
Both task-based and resting-state fMRI have been applied to the
study of functional connectivity in ASD. However, to date no
empirical work has investigated both types of measures in the
same individual. It is clear that methodological choices in both
task- and resting-state approaches can affect outcomes in autism
neuroimagingstudies(Mulleretal.,2011).Further, it is increasingly
recognizedthatintrinsicandevokedbrainstatesinteractincomplex
and unpredictable ways (He, 2013). As the field moves closer
toward understanding the ways in which task-based and resting-
state measures can meaningfully capture brain dynamics, it will
continue to inform functional connectivity theories of autism
and allow investigators to more confidently predict the conditions
under which aberrant brain connectivity in ASD will manifest.

RELATIONSHIPS BETWEEN FUNCTIONAL AND STRUCTURAL
CONNECTIVITY
As the focus of the current review is to summarize findings from
the fMRI functional connectivity literature, and structural find-
ings have recently been reviewed elsewhere (Schipul et al., 2011;
Vissers et al., 2011), we have included only a limited discussion
of the links between structural and functional connectivity here.
Relationships between functional and structural connectivity are
complex, even in the neurotypical adult brain (Damoiseaux
and Greicius, 2009), and these relationships undergo significant
changes with development (Supekar et al., 2010; Uddin et al.,
2011). In a previously published review of structural connectiv-
ity changes in ASD (Vissers et al., 2011), it is noted by the authors
that few studies exist simultaneously examining functional and
structural changes in ASD. To our knowledge, there are only three
reports that do so. In a study by Rudie and colleagues, the authors
report that structural connectivity (measured by FA) between the
medial prefrontal cortex and posterior cingulate cortex did not
show significant differences between ASD and TD children (Rudie
et al., 2012). This group has also recently shown that there are no
significant differences between groups with respect to structure-
function correlations assessed at the whole brain level (Rudie
et al., 2013). Finally, it was recently shown that in adults with ASD,
reduced functional and structural connectivity can be observed in
the right temporo-parietal junction and left frontal lobe (Mueller
et al., 2013). The dearth of studies examining structure-function
relationships and their development in ASD leaves several open
questions that will need to be addressed by future multimodal
imaging approaches.

ASSESSING WHOLE BRAIN vs. REGION-SPECIFIC PATTERNS OF
FUNCTIONAL CONNECTIVITY
An important area for future work will be to understand func-
tional connectivity abnormalities in ASD at the global level,
across the whole brain, as well as in specific functional networks
or sets of nodes. There is already evidence to suggest that in
children with the disorder, widespread hyper-connectivity can
be observed (Supekar et al., 2012; Uddin et al., 2013) along-
side both hypo-connectivity (Abrams et al., 2013; Lynch et al.,
2013) and hyper-connectivity (Di Martino et al., 2011) between
subsets of specific regions. The immediate challenge will be
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to develop metrics to more systematically assess region-specific
and large-scale patterns of connectivity and apply them uni-
formly to different age groups of individuals with ASD and TD
controls.

CLINICAL IMPLICATIONS: BRAIN-BASED BIOMARKERS
One of the goals of functional imaging of neurodevelopmental
disorders is to quantify brain connectivity in ways that may even-
tually be used to develop brain-based biomarkers for objectively
identifying children with disorders. Anderson and colleagues
demonstrate that functional connectivity based classifiers per-
form more accurately on datasets from younger individuals (<20
years of age) with ASD (Anderson et al., 2011). These findings
underscore the importance of understanding age-related changes
in functional connectivity in ASD, as they have clear implications
for the development of increasingly sophisticated approaches to
diagnosis and evaluation of response to treatment. Functional
connectivity measures can also aid in understanding unique and
shared neural markers in ASD and comorbid conditions such
as ADHD (Di Martino et al., 2013b). Our recent demonstration
of high levels of classification accuracy based on examination of
specific intrinsic large-scale networks in 7–12 year-old children
highlights the utility of using data from narrower developmen-
tal windows to identify potential biomarkers for the disorder
(Uddin et al., 2013).

SUMMARY AND FUTURE DIRECTIONS
Inadequate attention to critical age-related developmental stages
has impeded our understanding of functional brain connec-
tivity in ASD. Here we have (1) reviewed the emerging lit-
erature on intrinsic functional brain connectivity in ASD, (2)
identified results of hypo- and hyper-connectivity as being par-
tially attributable to the age of participants examined, and (3)
proposed that longitudinal studies examining pre- and post-
pubertal individuals with ASD are sorely needed to resolve
current controversies regarding the nature of brain connectiv-
ity abnormalities in the disorder. A developmental perspec-
tive will contribute greatly to future research efforts in autism
neuroimaging.
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Disruption of structural and functional neural connectivity has been widely reported in
Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to
integrate analysis of functional and structural connectivity in the same study population,
an approach that may provide key insights into the specific neurobiological underpinnings
of altered functional connectivity in autism. The aims of this study were (1) to
determine whether functional connectivity abnormalities were associated with structural
abnormalities of white matter (WM) in ASD and (2) to examine the relationships between
aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and
22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan.
Structural connectivity was analysed using constrained spherical deconvolution (CSD)
based tractography. Regions for tractography were generated from the results of a
previous study, in which 10 pairs of brain regions showed abnormal functional connectivity
during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region
pairs that showed abnormal functional connectivity; linking a region in the left occipital
lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left
thalamus, and left cuneus. Measures of WM microstructural organization were extracted
from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to
controls were significant for WM connecting left BA19 to left caudate head and left BA19
to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant
WM microstructure in tracts that directly connect brain regions that are abnormally
functionally connected in ASD. These results provide novel evidence to suggest that
structural brain pathology may contribute (1) to abnormal functional connectivity and (2)
to atypical visuospatial processing in ASD.

Keywords: neuroimaging, autism spectrum disorders, functional connectivity, diffusion tractography, constrained

spherical deconvolution, visuospatial processing, structural connectivity, mental rotation

INTRODUCTION
There is extensive evidence to suggest that autism is a disor-
der characterized by disrupted functional and structural neural
connectivity. Abnormal inter- and intra-regional functional con-
nectivity has been described whilst participants have performed
various neuropsychological paradigms and whilst in the resting
state. In parallel with functional connectivity research, a number
of diffusion imaging studies in autism have demonstrated aber-
rant “structural connectivity”—a term referring to the integrity of
white matter (WM) micro- and macrostructure. Abnormal func-
tional connectivity between brain regions in autism may arise
from disrupted organization of WM, but its pathophysiology is
unknown. Despite the numerous studies that have consistently
reported abnormal functional connectivity in autism, there is
a surprising lack of research attempting to integrate analysis of

functional and structural connectivity in the same study popula-
tion, an approach that may provide key insights into the specific
neurobiological underpinnings of altered functional connectivity
in autism.

BEHAVIORAL EFFECTS OF DISRUPTED NEURAL CONNECTIVITY IN ASD
There appear to be significant behavioral effects of disrupted
structural and functional connectivity in autism. In relation to
structural connectivity, several studies have explored the corre-
lation between WM organization and autism symptom severity.
Fractional anisotropy (FA) is a widely used measure that provides
information about the degree of WM organization. Increased
severity of restricted and repetitive behaviors was correlated with
increased FA in left precentral gyrus and posterior brain regions
(Cheung et al., 2009), with reduced FA in the right anterior

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 434 |

HUMAN NEUROSCIENCE

34

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00434/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JaneMcGrath&UID=69946
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KatherineJohnson_1&UID=96658
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ERikO_Hanlon&UID=99294
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LouiseGallagher&UID=95182
mailto:jane.mcgrath@tcd.ie
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
http://community.frontiersin.org/people/HughGaravan/28039


McGrath et al. Brain structure-function relationships in autism

cingulate cortex (Thakkar et al., 2008) and with the number of
tracts in the forceps minor (Thomas et al., 2011). More severe
social-communicative deficits have been correlated with reduced
FA in WM of fronto-striatal regions, temporal regions, the pos-
terior part of the corpus callosum (Cheung et al., 2009), left and
right uncinate fasciculus, left superior longitudinal fasciculus, left
and right fornix (Poustka et al., 2011), the dorsolateral prefrontal
cortex (Noriuchi et al., 2010), right anterior thalamic radiation
and right uncinate fasciculus (Cheon et al., 2011) and left cere-
bellar peduncle (Catani et al., 2008) and with increased fiber
length and density in the corpus callosum (Kumar et al., 2010).
Alexander et al. found a relationship between Autism Spectrum
Disorder (ASD) symptom severity (Social Responsiveness Scale)
and WM measures (although it was only seen across both groups
combined and not just within the ASD group; Alexander et al.,
2007). Some studies however have found no correlation between
ASD symptomatology and WM measures (Sundaram et al., 2008;
Barnea-Goraly et al., 2010; Shukla et al., 2010; Hong et al., 2011;
Jou et al., 2011). Reduced microstructural organization of WM in
autism has also been correlated with lower performance IQ scores
(Alexander et al., 2007) and with increased response times in a
pictorial problem-solving task (Sahyoun et al., 2010).

A number of studies have also investigated the behavioral
effects of functional connectivity abnormalities in ASD and have
reported correlations between altered functional connectivity and
core symptoms of autism. Reduced fronto-posterior functional
connectivity was found to correlate with increased severity of
autism (Just et al., 2007). Poorer social functioning in indi-
viduals with ASD has been associated with reduced functional
connectivity between the superior frontal gyrus and posterior cin-
gulate (Monk et al., 2009; Weng et al., 2010) and communication
deficits have been associated with increased functional connec-
tivity between regions of the default mode network during the
resting state (Weng et al., 2010). Increased severity of repetitive
behaviors in autism has been associated with reduced functional
connectivity between frontal structures and the posterior cin-
gulate (Weng et al., 2010), and also with increased functional
connectivity between the posterior cingulate and parahippocam-
pal gyrus (Monk et al., 2009) and between the anterior cingulate
and frontal eye fields (Agam et al., 2010). In summary, results
from both anatomical and functional studies suggest that dis-
rupted neural connectivity in autism may impact negatively on
core features of the condition.

EVIDENCE FOR A RELATIONSHIP BETWEEN DISRUPTED BRAIN WHITE
MATTER STRUCTURE AND FUNCTIONAL CONNECTIVITY
ABNORMALITIES IN ASD
The direct impact of WM abnormalities on functional connec-
tivity in ASD has been less well-studied. This is surprising given
the extensive literature that has documented abnormal functional
connectivity in the disorder, and the lack of knowledge about
the pathophysiology of this abnormal functional connectivity.
A small number of studies have used a measure of the size of
the corpus callosum as an index of “anatomical connectivity”
and demonstrated a relationship between reduced size of the
corpus callosum and reduced functional connectivity during a
number of neuropsychological paradigms, including the Tower

of London task (Just et al., 2007), a sentence comprehension and
visual imagery task (Kana et al., 2006), the Embedded Figures task
(Damarla et al., 2010), a narrative comprehension task (Mason
et al., 2008), and whilst participants were at rest (Cherkassky et al.,
2006). No previous studies in autism have attempted to iden-
tify whether there are abnormal WM connections that directly
link brain regions showing abnormal functional connectivity, nor
have any studies examined the relationship between alterations in
structural connectivity and functional connectivity.

EVIDENCE FOR A RELATIONSHIP BETWEEN BRAIN WHITE MATTER
STRUCTURE AND FUNCTIONAL CONNECTIVITY IN NEUROTYPICAL
POPULATIONS
In neurotypical populations, a number of multimodal (func-
tional MRI and diffusion MRI) imaging studies have integrated
structural and functional connectivity analyses in the same study
population and have shown that there is evidence of substantial
correspondence between structural and functional connectivity.

Studies that have combined analyses of structural and func-
tional connectivity during the resting state have revealed a struc-
tural basis for resting state functional connectivity. Regions of the
default mode network are linked by WM tracts (Greicius et al.,
2009), the level of WM organization in the cingulum is correlated
with resting state functional connectivity between midline brain
regions (van den Heuvel et al., 2008) and maps of resting state
functional connectivity in adult macaque monkeys were shown to
be markedly similar to maps of structural connectivity obtained
from tracer studies (Vincent et al., 2007; Margulies et al., 2009).

These combined structural/resting state studies have also
provided evidence for a relationship (albeit complex) between
anatomical and functional connectivity. Studies that have gener-
ated whole brain maps of functional and anatomical connectivity
on the same cohort of participants have demonstrated that struc-
tural connection patterns and functional interactions between
regions of the cortex are significantly correlated (Hagmann et al.,
2008; Skudlarski et al., 2008; Honey et al., 2009; Hermundstad
et al., 2013). This relationship between structural and functional
connectivity is not a simple one however; strong functional con-
nections often exist between regions with no direct anatomical
connection (Honey et al., 2009). Such functional connections
may arise from indirect WM connections, or from the two
regions receiving common input from a third region (Behrens
and Sporns, 2012).

There is also some evidence supporting a direct relation-
ship between anatomical and functional connectivity at the level
of individual pathways. The strength of functional connectiv-
ity within the default mode network was positively correlated
with the level of WM organization in the cingulum, as esti-
mated by FA (van den Heuvel et al., 2008). Consistent with
the hypothesis that functional connectivity is directly related to
anatomical connectivity, a study of three patients with callosal
agenesis revealed reduced interhemispheric functional connec-
tivity in the motor and auditory cortices (Quigley et al., 2003).
Complete section of the corpus callosum in a young boy with
intractable epilepsy resulted in a striking loss of interhemispheric
resting state functional connectivity, with preservation of intra-
hemispheric functional connectivity (Johnston et al., 2008). In
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patients with multiple sclerosis, disease-related reduction of func-
tional connectivity between left and right primary sensorimotor
cortices was associated with increased radial diffusivity in the WM
tracts connecting these regions, again indicating a relationship
between reduced anatomical connectivity and reduced functional
connectivity (Lowe et al., 2008).

To date, studies investigating a link between structural and
functional connectivity in neurotypical populations have indi-
cated that functional connectivity has a structural basis, and
that there is evidence of substantial correspondence between the
strength of structural and functional connectivity.

FUNCTIONAL CONNECTIVITY DURING VISUOSPATIAL PROCESSING IN
ASD
Atypical visuospatial processing is common in autism spectrum
disorders. In brief, enhanced visuospatial processing in ASD has
been described in behavioral studies during a variety of cog-
nitive tasks (see McGrath et al., 2012, for review). A number
of neuroimaging studies have revealed that brain activity and
connectivity differs markedly between ASD and control groups
during visuospatial processing (Lee et al., 2007; Manjaly et al.,
2007; Damarla et al., 2010). Recent work from our group used
functional connectivity MRI (fcMRI) to investigate the neural
correlates of visuospatial processing during a mental rotation
task, whereby two rotated stimuli were judged to be the same
(“Same” trials) or mirror-imaged (“Mirror” trials; McGrath et al.,
2012). Results of this study indicated that there was a rela-
tive advantage of mental rotation in the ASD group. The ASD
group performed Same and Mirror trials at similar speeds, but
the control group slowed significantly on Mirror trials relative
to Same trials. Functional connectivity analysis revealed marked
abnormalities in the ASD group that were characterized by long-
range fronto-posterior underconnectivity and short-range intra-
occipital overconnectivity. This study concluded that atypical
visuospatial processing in ASD appears to be associated with both
quantitative and qualitative differences in functional connectivity,
which may result in a combination of enhanced low-level visual
perceptual processing and a reduction of higher-level cortical
control. A further study from our group investigated the struc-
tural properties of major WM tracts that are thought to play an
important role in visuospatial processing (McGrath et al., 2013)
This research demonstrated that there were significant alterations
in the microstructural organization of WM in the right inferior
fronto-occipital fasciculus (IFOF) in ASD. This alteration was
associated with poorer visuospatial processing performance in the
ASD group. This study provided an insight into structural brain
abnormalities that may influence atypical visuospatial processing
in autism, however it did not provide any information on how
WM abnormalities may impact on functional connectivity in the
disorder.

AIMS AND HYPOTHESES
In ASD, there is strong evidence for disrupted functional and
anatomical connectivity but no previous studies have attempted
to integrate these types of connectivity analyses. The integration
of functional and structural connectivity analysis in the same
study population allows for the investigation of inter-participant

variability in structural connectivity and provides an opportu-
nity to relate this variability to differences in individual functional
connectivity and behavior (Hagmann et al., 2008). As discussed
above, such multimodal connectivity studies in neurotypical pop-
ulations have revealed strong relationships between WM organi-
zation, functional connectivity and behavior. Thus, the aims of
this study were two-fold; first to investigate the structural integrity
of WM that directly connected brain regions showing abnor-
mal functional connectivity in ASD, and second to investigate
relationships between brain WM structure, functional connec-
tivity and behavior. To do this, brain regions from a previously
reported functional connectivity analysis (McGrath et al., 2012)
were used as regions of interest (ROIs) for diffusion tractogra-
phy in order to isolate WM tracts that directly linked the two
regions. Microstructural organization of these WM tracts was
assessed and correlated with both functional connectivity and
behavioral measures to provide a comprehensive examination
of the relationships between brain structural connectivity, func-
tional connectivity and behavior in ASD. It was hypothesized
that there would be WM tracts linking some, but not all, pairs
of brain regions that showed abnormal functional connectiv-
ity. This hypothesis was based on the knowledge that functional
connectivity between regions does not always require a direct
WM connection, but can be mediated by indirect connections
or input from unrelated regions (Behrens and Sporns, 2012). It
was also hypothesized that WM structure would be abnormal
in tracts directly connecting the functionally defined ROIs and
that there would be correlation between microstructural organi-
zation of WM, functional connectivity and behavior. It is difficult
to make specific predictions about the correlations in this study
because there is such a limited literature that has investigated
relationships between structural connectivity, functional connec-
tivity and behavior. Nevertheless, it was theorized that if ASD and
control groups do use qualitatively and quantitatively neural net-
works for successful visuospatial processing as hypothesized in
McGrath et al. (2012), there should be differential relationships
between WM organization, functional connectivity and response
time data in the ASD and control groups.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two right-handed male individuals with ASD and 22
right-handed age- and IQ-matched male neurotypical controls
were included in the analysis (see Table 1). Participants with
ASD were recruited from an existing autism genetics sample
at the Department of Psychiatry, Trinity College Dublin, and
through additional recruitment from local schools and child
and adolescent mental health services. The diagnosis of autism
was established using two structured research diagnostic tools;
the Autism Diagnostic Interview-Revised [ADI-R, (Lord et al.,
1994)] and the Autism Diagnostic Observation Schedule-Generic
[ADOS-G, (Lord et al., 2000)]. Administrators of the ADI-R
and ADOS-G were trained to reliability and maintained relia-
bility. Community-recruited control participants were selected
to match participants with autism on age, handedness, gender,
race and IQ (full-scale IQ was estimated based on four sub-scales
of the WISC/WAIS [Wechsler Intelligence Scale for Children
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Table 1 | Demographics of study participants *Full scale IQ was estimated based on four sub-scales of the WISC/WAIS [Wechsler Intelligence

Scale for Children (WISC-III or IV UK), (Wechsler, 2004) and Wechsler Adult Intelligence Scale (WAIS-III), (Wechsler, 1997)].

Control ASD p-value

Number 22 22

Gender Male (22) Male (22)

Age mean (SD, Range) 17.51 (2.76, 13.6–21.3) 17.56 (2.91, 13.0–21.8) 0.76

Full scale IQ* Mean (SD, Range) 110.50 (16.97, 84–147) 105.95 (13.46, 84–127) 0.25

Verbal IQ∧ Mean (SD, Range) 117.60 (12.69, 93–134) 105.60 (18.48, 79–134) 0.11

Performance IQ∼ Mean (SD, Range) 120.80 (26.39, 91–155) 124.35 (17.46, 99–155) 0.73

Handedness Right (22) Right (22)

Medication None None

Ethnicity Irish (22) Irish (22)

∧Verbal IQ was estimated using the Information and Vocabulary subtests of the WISC III for n = 10 participants with ASD and n = 10 matched controls, using

Sattler’s method (Sattler, 1992). It was not possible to produce a Verbal IQ for n = 12 participants with ASD and n = 12 controls, as the WISC IV was used to

estimate full scale IQ for these participants. ∼Performance IQ was estimated using the Picture Completion and Block Design subtests of the WISC III for n = 10

participants with ASD and n = 10 for controls, using Sattler’s method (Sattler, 1992). It was not possible to produce a Performance IQ for n = 12 participants with

ASD and n = 12 controls, as the WISC-IV was used to estimate full scale IQ for these participants. Subtests of the WISC-IV that were used to calculate full scale IQ

included Similarities, Block Design, Digit Span, and Coding. Subtests of the WAIS that were used to calculate full scale IQ included Similarities, Block Design, Digit

Span and Matrix Reasoning.

(WISC-III and IV UK)], (Wechsler, 2004) and Wechsler Adult
Intelligence Scale (WAIS-III), (Wechsler, 1997)]. Verbal IQ and
performance IQ were estimated from the verbal and performance
subtests of the WISC-III and WAIS-III data. Exclusion criteria
included known causes for autism, e.g., tuberous sclerosis/fragile-
X syndrome, current/past neurological or psychiatric conditions,
serious head injuries, MR contraindications, below-average intel-
ligence (full-scale IQ <80) and current use of psychoactive medi-
cation. Additional exclusion criteria for controls included history
of developmental delay or first-degree relatives with ASD. The
study was approved by the Irish Health Services Executive Linn
Dara-Beechpark Research Ethics committee and by the School
of Psychology Ethics Committee, Trinity College Dublin. Written
informed consent was obtained from parents (where appropriate)
and participants prior to scanning. Demographics of participants
are detailed in Table 1.

OVERVIEW OF METHODS
To investigate the links between brain structural connectivity
and functional connectivity, diffusion MRI data, and previously
analysed functional connectivity data (see McGrath et al., 2012)
from the same participants were combined. Three questions were
posed:

1. Were there WM tracts directly linking pairs of brain regions
that showed abnormal functional connectivity in the ASD
group?

2. If there were WM tracts that directly linked pairs of brain
regions showing abnormal functional connectivity, were there
structural abnormalities of this WM in the ASD group?

3. Was there evidence for relationships between structural con-
nectivity, functional connectivity and behavior?

To answer question 1, ROIs were defined from the results of
a previously reported functional connectivity analysis, in which

significant abnormalities of functional connectivity were reported
in the ASD group (McGrath et al., 2012). These functionally
defined ROIs were then used in diffusion tractography analy-
sis to determine whether WM tracts linked brain regions that
were abnormally functionally connected in the ASD group. In the
methods sections below, there is a brief overview of the previ-
ously reported functional connectivity analysis (section Review
of Functional Connectivity Analysis), a description of the dif-
fusion MRI acquisition and pre-processing (section Diffusion
MRI Acquisition/Preprocessing), a description of how function-
ally defined ROIs for tractography were selected (section Selection
of Functionally Defined Seed Regions for Diffusion Tractography)
and prepared for diffusion tractography (section Preparation of
Functionally Defined ROIs for Tractography), and a descrip-
tion of the diffusion tractography protocol (section Diffusion
Tractography Protocol).

To answer question 2, diffusion measures were extracted from
the isolated tracts and compared between groups. Methods for
this analysis are outlined in sections Dependent Measures and
Between-Group Differences in White Matter Structure.

To answer question 3, a series of exploratory correlation
analyses were performed to investigate the relationships between
structural connectivity, functional connectivity and behavior
(visuospatial processing speed). Methods for the correlation anal-
yses are outlined in sections Correlation Analyses and Measures
of White Matter Structure, Functional Connectivity and Behavior
Included in the Correlation Analyses.

REVIEW OF FUNCTIONAL CONNECTIVITY ANALYSIS
fcMRI data was available on all participants who completed
the diffusion MRI scan. In a previous study (McGrath et al.,
2012), psychophysiological interaction (PPI) functional connectiv-
ity analysis (Friston et al., 1997) was used to examine func-
tional connectivity between six seed ROIs and the rest of the
brain during performance of a mental rotation task. Please see
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McGrath et al. (2012) for full details of the mental rotation
task, functional MRI acquisition, and PPI functional connec-
tivity analysis. A brief summary of the functional connectivity
analysis performed in McGrath et al. (2012) follows. PPI anal-
yses were performed separately for each ROI for the Same and
Mirror trials for ASD and control groups. For each PPI analysis,
a multiple regression analysis was carried out for each sub-
ject. This analysis comprised seven task-related regressors (one
for each experimental condition in the mental rotation task)
and the motion-corrected time-series regressors to accommo-
date nuisance variance (for fMRI analysis). In addition, there
were two other regressors. The first regressor, the physiological
variable, was the detrended subject-specific time course of activ-
ity in the ROI (averaged across all voxels in the 8 mm sphere).
The second regressor—the PPI term—was created by calculat-
ing the product of the detrended activation time-course from
the seed region and the task regressor. The parameter estimate
for the interaction term was converted to a Z-score through
Fisher transformation for each subject. To investigate between-
group differences in functional connectivity, Z-scores from each
PPI analysis were entered into a Two-Way repeated-measures
ANOVA [Group (ASD/Control)× Trial-type (Same/Mirror)].
The dependent variables that result from this PPI analysis are
negative and positive connectivity. Negative connectivity indi-
cates that the influence the task has on activity in the seed
region produces a correlated opposite effect on the correlated
region, which is consistent with (but not proof of) one region
suppressing the other. In contrast positive connectivity between
a pair of brain regions indicates that as activity in one brain
region increases, there is a correlated increase in activity in the
other region.

This previous study identified between-group differences in
functional connectivity between all seed ROIs and numerous
brain regions. These findings are summarized in Table 2, which
is a modified version of Table 3 from McGrath et al. (2012).

DIFFUSION MRI ACQUISITION/PREPROCESSING
Whole-brain high angular resolution diffusion imaging (HARDI)
data were acquired on a Philips Intera Achieva 3.0 Tesla MR
system (Best, Netherlands) equipped with an eight-channel
head coil. A parallel Sensitivity Encoding (SENSE) approach
(Pruessmann et al., 1999) with a reduction factor of 2 was utilized
for all diffusion weighted image (DWI) acquisitions. Single shot
spin echo-planar imaging was used to acquire diffusion weighted
data using the following parameters (Jones and Leemans, 2011):
echo time (TE) 79 ms, repetition time (TR) 20,122 ms, field of
view 248 × 248 mm2, matrix 128 × 128, isotropic voxel resolu-
tion 2 × 2 × 2 mm3, 65 slices with 2 mm thickness with no gap
between slices. Diffusion gradients were applied in 61 isotropi-
cally distributed orientations with b = 1500 s/mm2 and also four
images with b = 0 s/mm2 were acquired. Total DWI scan time was
24.3 min.

Pre-processing and tractography analyses were performed
with the diffusion MR toolbox ExploreDTI (http://www.

ExploreDTI.com; Leemans et al., 2009). Each DW-MRI dataset
was corrected for eddy current induced geometric distortions
and subject motion by realigning all DWIs to the b = 0 images

using Elastix (Klein et al., 2010), with an affine co-registration
technique (with 12 degrees of freedom) and mutual information
as the cost function (Pluim et al., 2003). In this procedure, the
required reorientation of the B-matrix was performed (Leemans
and Jones, 2009) and the tensor model was fitted to the data using
the RESTORE approach (Chang et al., 2005), which uses a pro-
cess of iteratively reweighted least-square regression for outlier
identification and subsequent removal, thus minimizing estima-
tion errors originating from gross signal artifacts (e.g., cardiac
pulsation and subject motion).

SELECTION OF FUNCTIONALLY DEFINED SEED REGIONS FOR
DIFFUSION TRACTOGRAPHY
Results of the functional connectivity analysis, discussed in detail
in McGrath et al. (2012), revealed that there were significant
group differences in functional connectivity between a large num-
ber of brain regions (see Table 2). In the current study, pairs of
brain regions showing abnormal functional connectivity in ASD
were used as ROIs for diffusion tractography analysis. To mini-
mize the number of tractography analyses, only ipsilateral pairs
of brain regions that showed abnormal functional connectivity
were selected for analysis (i.e., the pair of brain regions had to
be either in right or left hemisphere). The analysis was limited to
ipsilateral pairs as it was thought less likely that there would be
direct long-range WM connections between left and right hemi-
spheres. For example, unless the two regions showing abnormal
connectivity both were in the region of the corpus callosum, it
was unlikely that there would be one direct WM tract linking
them. In total there were 16 ipsilateral pairs of brain regions that
showed abnormal functional connectivity in ASD in this previ-
ous study. These are shown shaded in Table 2, which is a modified
version of Table 3 in McGrath et al. (2012), in which the results
of between-group differences in functional connectivity are
summarized.

PREPARATION OF FUNCTIONALLY DEFINED ROIs FOR TRACTOGRAPHY
To prepare the 16 pairs of ROIs for tractography, each clus-
ter of interest was isolated from the fcMRI analysis and was
projected back from standard MNI space into the space of the
original subjects’ diffusion data (native space) using the FSL TBSS
Deproject tool (http://www.fmrib.ox.ac.uk/fsl/tbss/index.html).
These ROIs were subsequently used to select the fiber trajectories
that were computed with the constrained spherical deconvolu-
tion (CSD) based tractography approach (discussed in section
Diffusion Tractography Protocol below).

Three of these ROIs (namely, the right superior frontal gyrus,
right superior temporal gyrus, and left inferior semilunar lobule)
failed to deproject successfully into native space. This failure to
deproject occurred because the fcMRI clusters fell solely within
the external extremity of the gray matter cortex and did not
extend into subcortical WM regions. These subcortical regions
are used by (and required by) the TBSS analysis during construc-
tion of the FA skeleton that is needed for transformation between
native and standard space. Therefore, after deprojection, there
were 10 pairs of brain regions in native diffusion space that were
used as ROIs for CSD-based tractography. The location of these
10 pairs of brain regions are reported in Table 3.
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Table 2 | A modified version of Table 3 in McGrath et al. (2012), in which the results of between-group differences in functional connectivity are

summarized.

Seed ROI Region Cluster location BA Voxels X Y Z Effect

Right BA8 Frontal L Medial frontal gyrus 6 2024 1.6 −4.5 52.3 C − ASD +
L Inferior frontal gyrus 47 1154 22 −30.4 2.2 C − ASD +
L Superior frontal gyrus 11 253 23.6 −44 −18.2 C − > ASD −
L Inferior frontal gyrus 47 187 50.2 −25.8 −7 C + > ASD+
R Superior frontal gyrus 11 162 −27 −42.6 −16.6 C − ASD +

Parietal L Precuneus 7 673 27.4 55.7 51.5 C − ASD +
Cingulate L Posterior cingulate 23 331 1.1 32 23.1 C − ASD +
Temporal L Superior temporal gyrus 38 461 34.9 −15.9 −21.9 C − ASD +

L Fusiform gyrus 277 28.9 58.1 −9.5 C − ASD +
Occipital L Cuneus 19 1330 18.7 85.3 30.1 C − ASD +

Cuneus 17 222 1.4 91.8 2.8 C − ASD +
Cerebellum L Culmen 244 10.1 48.2 −0.1 C − ASD +
Subcortical L Thalamus 1106 1.4 19.8 9.6 C − ASD +

Right fusiform Frontal R Precentral gyrus 4 170 −32 21.5 60.6 C − > ASD −
Parietal L Postcentral gyrus 1 346 33.8 33.9 66.4 C − ASD +
Temporal L Parahippocampal gyrus 20 162 43.2 14.7 −15.7 C − > ASD −
Subcortical L Pons 264 8.9 16.7 −35.2 C − ASD +

Right cuneus Parietal L Inferior parietal lobule 40 404 55.5 53.9 39 C + > ASD +
R Inferior parietal lobule 40 222 −58.1 32.2 28.2 C + ASD −
R Supramarginal gyrus 39 180 −53.8 58 30.1 C + > ASD +

Temporal L Superior temporal gyrus 39 1439 51.2 61.2 20.5 C + ASD −
R Middle temporal gyrus 22 720 −52 39.1 5.4 C + ASD −

Left BA19 Frontal R Middle frontal gyrus 6 977 −18.3 10 59.1 C − > ASD −
R Medial frontal gyrus 6 935 −1.8 −3.6 51.5 C − > ASD −

Parietal L Postcentral gyrus 3 541 46.2 15.4 52.2 C − > ASD −
Temporal L Uncus 20 165 28.3 −0.1 −33.1 C − ASD +
Occipital L Cuneus 18 657 19.2 84.4 26.1 C − > ASD −

R Cuneus 17 459 −4.9 91.5 4.7 C − ASD +
R Cuneus 18 177 −16.1 86.8 19.2 C − ASD +

Subcortical L Caudate head 1198 10.2 −7 4.7 C − > ASD −
L Thalamus 1026 4.6 23.1 8.9 C − > ASD −
L Caudate body 337 24.5 18.3 28.9 C − ASD +
R Caudate 598 −13.4 −13.6 12.1 C − > ASD −
R Lentiform 233 −17.6 −4.2 −4.6 C − > ASD −

Left inferior semilunar lobule Frontal L Precentral gyrus 6 347 48.4 −2.3 34.4 C − > ASD −
R Middle frontal gyrus 6 653 −27.5 7.4 48.5 C − > ASD −

Parietal L Precuneus 7 255 17.2 77.1 45.7 C − > ASD −
L Superior parietal lobule 7 173 25.3 59.9 55.7 C − > ASD −
R Superior parietal lobule 7 325 −22.9 65.1 46.4 C − > ASD −

Occipital L Cuneus 19 566 21.3 88.2 25.4 C − > ASD −

Right caudate Temporal R Superior temporal gyrus 22 317 −62.2 44.4 6.2 C + ASD −
Cerebellar L Cerebellar tonsil 380 34.9 35.6 −44.1 C + > ASD +

L Cerebellum (XIII) 347 41.8 50.6 −51.9 C + > ASD +
Subcortical L Thalamus 218 6.1 18.7 8 C − > ASD −

Gray shading indicates ipsilateral brain region pairs that were used as regions of interest for CSD based tractography in the current study. [Direction of between-

group difference denoted with arrows (–, Negative functional connectivity, +, Positive functional connectivity), >, greater than (note that when both groups show

negative connectivity the > means a larger negative value), C, Control group, ASD, Autism Spectrum Disorder group].
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Table 3 | Summary of results from functional connectivity and tractography analysis.

ROI 1 X Y Z ROI 2 X Y Z Mean functional

connectivity

Tractography result

Right Fusiform −55 51 −19 Right precentral gyrus −32 22 61 C −0.046
ASD −0.013

No direct tracts

Right Cuneus −11 75 6 Right inferior parietal lobule −58 32 28 C +0.029
ASD −0.013

No direct tracts

Right supramarginal gyrus −54 58 30 C +0.046
ASD +0.004

No direct tracts

Right middle temporal gyrus −52 39 5 C +0.017
ASD −0.018

No direct tracts

Left BA19 42 73 −2 Left postcentral gyrus 46 15 52 C −0.059
ASD −0.010

No direct tracts

Left caudate head 10 −7 5 C −0.050
ASD −0.011

Tracts in 9 controls, 11 ASD

Left thalamus 5 23 9 C −0.051
ASD −0.003

Tracts in 12 controls, 13 ASD

Left caudate body 25 18 29 C −0.004
ASD +0.027

Tracts in 22 controls, 22 ASD

Left cuneus 19 84 26 C − 0.066
ASD −0.010

Tracts in 22 controls, 22 ASD

Left Uncus 28 0 −33 C −0.020
ASD +0.005

Tracts in 5 controls, 6 ASD

ROI_1 and ROI_2 refer to the regions used in tractography analysis. [Direction of between-group difference for functional connectivity is denoted with arrows (−,

Negative functional connectivity, +, Positive functional connectivity), C, Control group, ASD, Autism Spectrum Disorder group].

DIFFUSION TRACTOGRAPHY PROTOCOL
CSD based tractography was used in this study. Typically a
model of diffusion tensor tractography has been used in ASD
research, however in recent years it has become evident that
there are significant limitations associated with this method,
in particular in voxels containing more than one coherently
oriented fiber population (e.g., in “crossing fibers” configura-
tions; Wedeen et al., 2000; Alexander et al., 2002; Frank, 2002;
Wedeen et al., 2008; Tournier et al., 2011; Jeurissen et al.,
2012). The CSD method allows reliable estimation of one or
more fiber orientations in the presence of intra-voxel orien-
tational heterogeneity (Tournier et al., 2004, 2007, 2008), it
overcomes partial volume effects associated with diffusion ten-
sor imaging (Vos et al., 2011, 2012), permits fiber-tracking
through regions of crossing fibers (Tournier et al., 2008), and
has recently shown promising results in other clinical appli-
cations (Metzler-Baddeley et al., 2012; Reijmer et al., 2012,
2013).

The WM tracts between each pair of ROIs were reconstructed
using CSD based tractography (Jeurissen et al., 2011). This trac-
tography procedure consisted of the following steps: (i) CSD,
using a spherical harmonics model with maximum harmonic
degree L = 8 was used to extract the fiber orientation distri-
bution (FOD) from the diffusion weighted signal in each voxel
(Tournier et al., 2007), (ii) Seed points were defined on a uni-
form 2 × 2 × 2 mm3 grid to cover the entire brain; (iii) For each
step during tract propagation, the FOD peak direction that was
closest to the previous stepping direction was extracted; (iv) The

trajectory was advanced with a fixed step size (1 mm) along the
peak direction obtained with step (iii). Tracking ended when the
FOD peak magnitude was beneath a fixed threshold (i.e., 0.1),
or when a maximum angle (30◦) was exceeded. Subsequently,
from this whole-brain tractography result, WM tracts that ran
directly between each pair of ROIs were identified by coding the
two regions as “AND” regions (i.e., only WM tracts that passed
through ROI 1 and ROI 2 were isolated).

Preliminary tractography analysis was carried out using the
exact clusters from functional connectivity analysis as outlined
in Table 2, however this analysis indicated that there were no
(or very few) WM tracts between the pairs of brain regions.
One possible reason for this is that these are functionally defined
ROIs, which are essentially generated by BOLD signal fluctu-
ation in gray matter, and therefore they may not have pro-
jected far enough into the adjacent WM. A pragmatic approach
was thus adopted using larger ROIs in the analysis to increase
projection into WM. These larger ROIs were created in stan-
dard space by generating a sphere 8 × 8 mm for each cluster
with its center-point the center of mass of the original fcMRI
derived cluster. This size of sphere was chosen as it corre-
sponded with the size of the seed spheres used in the cor-
responding functional connectivity analysis (McGrath et al.,
2012). These spheres were then back projected from standard
MNI space to each participants’ native diffusion space and used
as the ROIs for CSD based tractography as outlined above.
All tractography analyses were performed in native diffusion
space.
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DEPENDENT MEASURES
For each tract in each participant, microstructural measures of
FA and the Westin measures of linear diffusion coefficient (CL)
and planar diffusion coefficient (CP; Westin et al., 2002) were
computed from the tracts. The mean values for FA, CL, and
CP were extracted from all tracts using Explore DTI software
(Leemans et al., 2009). FA was the primary measure of interest
as it is the most widely used measure in the literature, and shows
high sensitivity. In regions of complex fiber architecture how-
ever, tensor derived measures such as FA are unreliable (Jones
and Cercignani, 2010) and the interpretation of these measures
can be ambiguous (Jeurissen et al., 2012) and see McGrath et al.
(2013) for discussion. In order to reduce the ambiguity about
the biological interpretation of FA changes, alternative measures
of diffusion anisotropy are often measured in conjunction with
FA. One example of such alternative tensor-based metrics are
the Westin measures of CL and CP. Although these measures
are indeed still based on the eigenvalues, they can describe the
geometrical shape of the diffusion tensor and, therefore, can
provide a more meaningful interpretation of microstructural
changes that are occurring in the ASD group compared to the
FA (Westin et al., 2002; Reijmer et al., 2013). A high value of
CL implies that there is only one dominant fiber orientation
within a voxel (Vos et al., 2012) and a high value of CP indi-
cates the presence of crossing fiber configurations (Vos et al.,
2012).

STATISTICAL ANALYSIS
Between-group differences in white matter structure
Statistical comparisons of the data were performed using PASW
(SPSS) software version 18 (SPSS Inc., Chicago, IL). For all anal-
yses the level of statistical significance was defined as p < 0.05
(two-tailed) and Bonferroni corrections were used for within-test
comparisons. To investigate whether there were between-group
differences in the WM of tracts that directly connected a pair
of brain regions, univariate ANOVA with Group (ASD/Control)
as the between-subjects factor was performed for the dependent
measures FA, CL, and CP in each separate set of these WM
tracts.

Correlation analyses
To explore how brain WM structure, functional connectivity and
behavior are related, a number of exploratory correlation analy-
ses (using bivariate Pearson correlation analysis) were performed
to investigate the relationships between (1) WM structure and
functional connectivity, (2) WM structure and behavior, (3) func-
tional connectivity and behavior. Given the extremely limited
data in current literature, in both autism and healthy popu-
lations, on relationships between brain structural connectivity,
functional connectivity, and behavior, it was felt important that
all these measures were included to comprehensively explore the
possible associations. Pearson correlation analysis was used as
behavioral response times, fcMRI and DTI data in this study are
normally distributed, as indicated by p-values of >0.05 following
Kolmgorov–Smirnov and Shapiro–Wilk tests of normality. The
correlation analyses were exploratory in nature, and correction
for multiple comparisons was not performed.

Measures of white matter structure, functional connectivity and
behavior included in the correlation analyses. For WM struc-
ture, FA was included in the correlation analysis. This measure of
WM structure is the most widely used measure in the literature,
and shows high sensitivity.

Four measures of functional connectivity were included in the
correlation analyses; negative functional connectivity on Same
trials, negative functional connectivity on Mirror trials, positive
functional connectivity on Same trials and positive functional
connectivity on Mirror trials. The distinction between Same and
Mirror trials was included in the correlations as behavioral and
functional connectivity analyses both demonstrated an inter-
esting dissociation between ASD and control groups on Same
vs. Mirror trials (McGrath et al., 2012). These findings may
indicate that visuospatial processing in ASD is achieved using
qualitatively (and quantitatively) different neural networks. A
primary aim of the current study was to increase our under-
standing of the structural correlates of atypical visuospatial
processing in ASD. We hypothesized that correlation analyses
would demonstrate differential relationships between ASD and
control groups on Same and Mirror trials. A distinction was
also made between negative and positive functional connectiv-
ity. Unfortunately, there is very limited literature investigating
the relationships between structural and functional connectiv-
ity in neurotypical populations, therefore it is not possible to
make specific predictions about how structural connectivity may
relate differentially to these types of functional connectivity.
Nevertheless, there is an important difference between these mea-
sures in terms of functional interactions between brain regions
(see McGrath et al., 2012, for discussion). While it seems plau-
sible that the level of WM organization should be correlated
with the overall strength of functional connectivity, it was felt
that it would not be appropriate to combine negative and pos-
itive functional connectivity into a composite measure as doing
so might obscure important relationships between WM orga-
nization and functional connectivity. Functional connectivity
values were individual z-scores extracted from the PPI Main
effect of Group results. These were extracted for each partici-
pant for each pair of brain regions in which there were WM
connections.

The behavioral data used in the correlation analyses
provided a measure of visuospatial processing speed. This
was calculated using mean response times (MRTs) for
the Same and Mirror trials during a mental rotation task
(McGrath et al., 2012).

A set of correlation analyses was performed for every set
of brain regions that had direct WM connections. The groups
(ASD and controls) were analysed separately for the correlation
analyses.

RESULTS
OVERVIEW OF RESULTS
Section 3.1
Results relate to Question 1 outlined in Methods section
Overview of Methods—are there WM tracts between all
pairs of ROIs that are functionally connected? This sec-
tion includes a summary of the between-group differences in
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functional connectivity, which are reported in McGrath et al.
(2012).

Section 3.2
Results relate to Question 2 outlined in the Methods section
Overview of Methods—if there were WM tracts that directly
linked pairs of brain regions showing abnormal functional con-
nectivity, were there structural abnormalities of this WM in the
ASD group? This section outlines the between-group compar-
isons of diffusion measures extracted from the isolated WM
tracts.

Section 3.3
Results relate to Question 3 outlined in the Methods sec-
tion Overview of Methods—was there evidence for relation-
ships between structural connectivity, functional connectivity
and behavior? This section outlines the results of the correlation
analyses.

ARE THERE WHITE MATTER TRACTS BETWEEN ALL PAIRS OF ROIs
THAT ARE FUNCTIONALLY CONNECTED?
Table 3 summarizes the results of the tractography analy-
ses between the 10 pairs of ROIs that showed abnormal
functional connectivity. In summary, there were WM tracts
directly connecting the left BA19 ROI to five other ROIs
including the left uncus, left cuneus, left caudate head, left
caudate body, and left thalamus (see Figures 1–5). There
were no WM tracts in any participants between the other
five pairs of seed regions. Consequently, the subsequent
analyses of diffusion measures and the correlation analyses
are restricted to the five pairs of ROIs with direct WM
tracts.

FIGURE 1 | (A) Regions for tractography in left BA19 (green sphere) and left
caudate head (yellow sphere). The ASD group showed weaker functional
connectivity relative to controls between these regions during a mental
rotation task. The bar graph shows the strength of functional connectivity
(FC) in the Control group (blue) and ASD group (orange) between these
seed regions. (B) Example of white matter tracts that directly connect the
left BA19 and left caudate head regions in one participant. The bar graph
shows Fractional Anisotropy (FA) in the Control group (blue) and ASD group
(orange) in these white matter tracts. ∗ indicates statistical significance with
p < 0.05.

IF THERE WERE WHITE MATTER TRACTS THAT DIRECTLY LINKED
PAIRS OF BRAIN REGIONS SHOWING ABNORMAL FUNCTIONAL
CONNECTIVITY, WERE THERE STRUCTURAL ABNORMALITIES OF THIS
WHITE MATTER IN THE ASD GROUP?
Changes in white matter between left BA19 and left caudate head
There were WM tracts directly connecting the regions in left
BA19 and left caudate head in 9 controls and 11 participants

FIGURE 2 | (A) Regions for tractography in left BA19 (green sphere) and left
thalamus (yellow sphere). The ASD group showed much weaker functional
connectivity relative to controls between these regions during a mental
rotation task. The bar graph shows the strength of functional connectivity
(FC) in the Control group (blue) and ASD group (orange) between these
regions. (B) Example of white matter tracts that directly connect the left
BA19 and left thalamus regions in one participant. The bar graph shows
Fractional Anisotropy (FA) in the Control group (blue) and ASD group (orange)
in these white matter tracts. ∗ indicates statistical significance with p < 0.05.

FIGURE 3 | (A) Regions for tractography in left BA19 (green sphere) and left
caudate body (yellow sphere). The ASD group showed increased functional
connectivity relative to controls between these regions during a mental
rotation task. The bar graph shows the strength of functional connectivity
(FC) in the Control group (blue) and ASD group (orange) between these
regions. (B) Example of white matter tracts that directly connect the left
BA19 and left caudate body regions in one participant. The bar graph shows
Fractional Anisotropy (FA) in the Control group (blue) and ASD group
(orange) in these white matter tracts. ∗ indicates statistical significance with
p < 0.05.
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FIGURE 4 | (A) Regions for tractography in left BA19 (green sphere) and left
cuneus (yellow sphere). The ASD group showed weaker functional
connectivity relative to controls between these regions during a mental
rotation task. The bar graph shows the strength of functional connectivity
(FC) in the Control group (blue) and ASD group (orange) between these
regions. (B) Example of white matter tracts that directly connect the left
BA19 and left cuneus regions in one participant. The bar graph shows
Fractional Anisotropy (FA) in the Control group (blue) and ASD group
(orange) in these white matter tracts. ∗ indicates statistical significance with
p < 0.05.

FIGURE 5 | (A) Regions for tractography in left BA19 (green sphere) and left
uncus (yellow sphere). The ASD group showed weaker functional
connectivity relative to controls between these regions during a mental
rotation task. The bar graph shows the strength of functional connectivity
(FC) in the Control group (blue) and ASD group (orange) between these
regions. (B) Example of white matter tracts that run through the left BA19
and left uncus regions in one participant. The bar graph shows Fractional
Anisotropy (FA) in the Control group (blue) and ASD group (orange) in these
white matter tracts. ∗ indicates statistical significance with p < 0.05.

with ASD, and the WM tracts linking these regions formed
part of the left IFOF (see Figure 1). Univariate ANOVA of the
dependent measures from diffusion analysis revealed that there
was significantly reduced FA (mean FA ASD 0.38, SD 0.04, con-
trols 0.42, SD 0.05, F = 5.972, p = 0.027, η2

p = 0.272) and CL
(mean CL ASD 0.35, SD 0.04, controls 0.40, SD 0.06, F = 5.074,
p = 0.039, η2

p = 0.199) in the ASD group relative to controls

(Table 4), indicating that WM microstructural organization was
reduced in these tracts in the ASD group.

Changes in white matter between left BA19 and left thalamus
There were WM tracts directly connecting left BA19 and left tha-
lamus in 12 controls and 13 participants with ASD, and this
WM appeared to comprise part of the left IFOF (see Figure 2).
Univariate ANOVA revealed significantly reduced FA (mean FA
ASD 0.36, SD 0.04, controls 0.40, SD 0.04, F = 4.306, p < 0.050,
η2

p = 0.170) and CL (mean CL ASD 0.34, SD 0.04 controls 0.38,

SD 0.03, F = 8.085, p < 0.010, η2
p = 0.278) in the ASD group rel-

ative to controls in the WM directly connecting left BA19 and left
thalamus regions.

Changes in white matter between left BA19 and left caudate body
There were WM tracts directly connecting left BA19 and left cau-
date body in 22 controls and 22 participants with ASD, and this
WM appeared to be part of the superior longitudinal fascicu-
lus (see Figure 3). There were no between-group differences in
microstructural measures of the WM linking left BA19 and left
caudate body.

Changes in white matter between left BA19 and left cuneus
There were WM tracts directly connecting the regions in left BA19
and left cuneus in 22 controls and 22 participants with ASD (see
Table 3). This WM tract ran intra-occipitally in the left hemi-
sphere (see Figure 4). There were no between-group differences
in microstructural organization of this tract (see Table 4).

Changes in white matter between left BA19 and left uncus
There were WM tracts directly connecting the regions in left
BA19 and the left uncus in only 5 controls and 6 participants
with ASD (see Table 3). This WM appeared to be part of the
left IFOF/left inferior longitudinal fasciculus (see Figure 5). There
were no between-group differences in WM microstructure in this
tract (see Table 4).

IS THERE EVIDENCE FOR RELATIONSHIPS BETWEEN STRUCTURAL
CONNECTIVITY, FUNCTIONAL CONNECTIVITY AND BEHAVIOR?
Correlation analyses of behavioral measures, diffusion measure,
and functional connectivity in left BA19/left caudate head region
For both control and ASD groups, no significant correlations were
found between the functional connectivity and mean RT mea-
sures (Table 5), FA and mean RTs (Table 6), or FA and functional
connectivity measures (Table 7 and see Figure 6).

Correlation analyses of behavioral measures, diffusion measures,
and functional connectivity in left BA19/left thalamus region
Controls. In controls, there was a significant correlation between
negative functional connectivity during Same trials, and MRT
during these trials (r = 0.80, p < 0.006), indicating that a
reduction in MRT (i.e., faster task performance) was associ-
ated with stronger negative connectivity (see Table 5 and see
Figure 6).

There was no significant correlation between the diffusion
measure of FA and MRT.

There were correlations between structural organization of the
WM connecting the regions in left BA19 and left thalamus and
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Table 4 | The mean, standard deviation and p-values for the three micro-structural dependent measures (FA, CP, CL) for white matter tracts

connecting functionally defined regions in the ASD and control groups.

Tract Left BA19 − Left BA19 − Left BA19 − Left BA19 − Left BA19 −
Left uncus Left cuneus Left caudate head Left thalamus Left caudate body

ASD n = 6 ASD n = 22 ASD n = 9 ASD n = 12 ASD n = 22

Con n = 5 Con n = 22 Con n = 11 Con n = 13 Con n = 22

Measure Group Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p

FA ASD 0.37 (0.06) 0.69 0.35 (0.04) 0.98 0.38* (0.04) 0.02* 0.36* (0.04) 0.05* 0.37 (0.03) 0.23

Con 0.37 (0.07) 0.35 (0.03) 0.42* (0.05) 0.39* (0.04) 0.38 (0.03)

CP ASD 0.16 (0.03) 0.65 0.17 (0.03) 0.81 0.16 (0.02) 0.93 0.16 (0.04) 0.48 0.19 (0.03) 0.85

Con 0.17 (0.04) 0.17 (0.02) 0.16 (0.01) 0.15 (0.02) 0.19 (0.02)

CL ASD 0.35 (0.05) 0.78 0.32 (0.05) 0.96 0.35* (0.04) 0.04* 0.34** (0.04) 0.01** 0.33 (0.03) 0.26

Con 0.34 (0.08) 0.32 (0.04) 0.40* (0.06) 0.38** (0.03) 0.34 (0.03)

*Indicates statistical significance p < 0.05; **indicates statistical significance p < 0.01.

Table 5 | Results of correlation analysis between functional connectivity and mean response times during Same and Mirror trials of a mental

rotation task (p: p-value, r: Pearson correlation co-efficient, FC_S − Negative functional connectivity on Same trials, FC_S + Positive functional

connectivity on Same trials, FC_M − Negative functional connectivity on Mirror trials, FC_M + Positive functional connectivity on Mirror trials,

MRT: mean response time, ∧1 Insufficient data for correlation as all functional connectivity values were negative between seed regions in left

BA19 and left caudate head).

MRT_S r (p) MRT_M r (p)

Left BA19 − Left cuneus FC_S − ASD 0.18 (0.53 FC_M − ASD 0.16 (0.55)

Control −0.17 (0.51) Control 0.02 (0.93)

FC_S + ASD −0.52 (0.29) FC_M + ASD 0.03 (0.97)

Control −0.08 (0.92) Control ∧1

Left BA19 − Left caudate head FC_S − ASD −0.22 (0.58) FC_M − ASD 0.03 (0.95)

Control 0.63 (0.07) Control 0.15 (0.69)

FC_S + ASD ∧1 FC_M + ASD ∧1

Control ∧1 Control ∧1

Left BA19 − Left thalamus FC_S − ASD −0.63 (0.37) FC_M − ASD 0.17 (0.57)

Control 0.80 (0.006)** Control 0.18 (0.42)

FC_S + ASD −0.35 (0.33) FC_M + ASD −0.16 (0.77)

Control ∧1 Control ∧1

Left BA19 − Left caudate body FC_S − ASD −0.50 (0.31) FC_M − ASD ∧1

Control −0.03 (0.93) Control −0.18 (0.53)

FC_S + ASD 0.23 (0.36) FC_M + ASD 0.53 (0.02)*

Control 0.53 (0.14) Control 0.34 (0.41)

*Indicates statistical significance p < 0.05; **indicates statistical significance p < 0.01.

functional connectivity between these regions. FA was signifi-
cantly correlated (r = 0.69, p < 0.03) with negative functional
connectivity on Same trials in controls (see Table 7 and see
Figure 6). This correlation indicates that as WM organization
increases (with increasing FA), there is a correlated reduction in
the strength of negative functional connectivity.

ASD. In the ASD group, there were no correlations between
mental rotation performance (MRT) and functional connectivity

or WM integrity of tracts between left BA19 and left thala-
mus (see Tables 5, 6 and see Figure 6). WM organization was
significantly correlated with functional connectivity. FA was
associated with positive functional connectivity in Same trials
(FA r = −0.92, p < 0.01; see Table 7 and see Figure 6). These
results indicate that a greater level of microstructural organiza-
tion in the WM between left BA19 and left thalamus (increased
FA) is associated with a reduction in positive functional
connectivity.
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Table 6 | Results of correlation analysis between mean response times during a mental rotation task and the micro-structural diffusion

measure of FA extracted from the white matter tracts linking functionally defined regions.

Left BA19 − Left BA19 − Left BA19 − Left BA19 −
Left cuneus Left caudate head Left thalamus Left caudate body

MRT_S r (p) MRT_M r (p) MRT_S r (p) MRT_M r (p) MRT_S r (p) MRT_M r (p) MRT_S r (p) MRT_M r (p)

FA ASD −0.04 (0.85) 0.17 (0.44) −0.31 (0.39) −0.09 (0.80) −0.01 (0.98) −0.05 (0.89) −0.48 (0.03)* −0.57 (0.01)**

Con −0.14 (0.53) −0.33 (0.13) 0.12 (0.77) −0.32 (0.39) 0.25 (0.43) 0.09 (0.79) −0.01 (0.98) 0.02 (0.94)

(p, p value; r, Pearson correlation co-efficient; MRT_S, mean response time on Same trials; MRT_M, mean response time on Mirror trials). *Indicates statistical

significance p < 0.05; **indicates statistical significance p < 0.01.

Table 7 | Results of correlation analysis between diffusion measures in white matter tracts and functional connectivity during Same and Mirror

trials of a mental rotation task (p, p-value; r, Pearson correlation co-efficient; FC_S − Negative functional connectivity on Same trials; FC_S +
Positive functional connectivity on Same trials, FC_M − Negative functional connectivity on Mirror trials, FC_M + Positive functional

connectivity on Mirror trials, Con: Control, ∧1 Insufficient data for correlation as all functional connectivity values were negative between seed

regions in left BA19 and left caudate head).

FC_S − r (p) FC_S + r (p) FC_M − r (p) FC_M + r (p)

LEFT BA19 − LEFT CUNEUS

FA ASD 0.09 (0.75) −0.13 (0.81) −0.10 (0.70) 0.01 (0.99)

Con −0.49 (0.06) 0.89 (0.11) −0.01 (0.96) ∧1

FC_S − FC_S + FC_M − FC_M +

LEFT BA19 − LEFT CAUDATE HEAD

FA ASD 0.09 (0.82) ∧1 −0.08 (0.84) ∧1

Con 0.31 (0.42) ∧1 0.31 (0.42) ∧1

LEFT BA19 − LEFT THALAMUS

FA ASD 0.23 (0.72) −0.92 (0.01)** 0.40 (0.60) 0.53 (0.28)

Con 0.69 (0.03)* ∧1 0.21 (0.55) ∧1

LEFT BA19 − LEFT CAUDATE BODY

FA ASD 0.30 (0.57) 0.16 (0.56) 0.09 (0.84) −0.48 (0.04)*

Con 0.36 (0.28) −0.23 (0.54) 0.31 (0.33) −0.53 (0.18)

*Indicates statistical significance p < 0.05; **indicates statistical significance p < 0.01.

Correlation analyses of behavioral measures, diffusion measures,
and functional connectivity in left BA19/left caudate body region
Controls. In controls, there were no correlations between the dif-
fusion measure, functional connectivity, and MRT during mental
rotation (see Tables 5–7 and see Figure 6).

ASD. In the ASD group there was a significant correlation
between the behavioral measure of MRT during Mirror trials and
positive functional connectivity (r = 0.53, p < 0.02; see Table 5
and see Figure 6). This indicates that faster MRT on Mirror
trials is associated with reduced strength of positive functional
connectivity.

There was a significant correlation between FA and MRT on
Same (r = −0.48, p < 0.03) and Mirror (r = −0.57, p < 0.01)
trials indicating that as microstructural organization of the WM
linking left BA19 and left caudate body increases (characterized by
an increase in FA), there is an associated reduction in MRT (i.e.,
faster MRT) in the ASD group (see Table 6 and see Figure 6).

There was also correlation between FA and functional con-
nectivity in the ASD group. FA was significantly correlated with

positive functional connectivity on Mirror trials (r = −0.48, p <

0.04; see Table 7 and see Figure 6) indicating that increased
structural organization of WM (increased FA) is associated with
reduced strength of positive functional connectivity.

Correlation analyses of behavioral measures, diffusion measure,
and functional connectivity in left BA19/left cuneus region
For both control and ASD groups, no significant correlations
were found between the functional connectivity and MRT data
(Table 5), the diffusion data and mean RTs (Table 6), or the
diffusion data and functional connectivity data (Table 7).

Correlation analyses of behavioral measures, diffusion measure,
and functional connectivity in left BA19/left uncus region
There were no significant correlations between the diffusion
measure and behavior (see Table 6). Power was limited how-
ever, by the small sample size. There was insufficient data
to perform correlation analyses of functional connectivity and
diffusion measures or functional connectivity and behavioral
measures.
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FIGURE 6 | Scatterplots of correlation analyses showing significant relationships between functional connectivity, structural connectivity and

behavior.

DISCUSSION
The main finding of this study is that there are microstruc-
tural abnormalities in WM tracts that directly connect brain
regions showing abnormal functional connectivity in participants
with ASD. In addition, there are significant correlations between
measures of WM microstructure, functional connectivity and
behavior, which provide insight into the relationships between
brain structure, brain function, and information processing in
both neurotypical controls and individuals with ASD.

This discussion focuses on the implications these results have
for the original hypotheses of this study, which predicted firstly

that there would be WM tracts linking some, but not all pairs
of brain regions showing abnormal functional connectivity, sec-
ondly that WM structure would be abnormal in tracts directly
connecting the functionally defined regions and finally that there
would be relationships between microstructural organization of
WM, functional connectivity and behavior.

FUNCTIONAL CONNECTIVITY IS NOT ALWAYS ASSOCIATED WITH
DIRECT WHITE MATTER CONNECTIONS
In this study, 10 pairs of brain regions were used as regions
for selecting fiber pathways, reconstructed with CSD-based
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tractography. These regions were generated from functional con-
nectivity maps during a mental rotation task, and indicated brain
regions between which there was abnormal functional connectiv-
ity in ASD. Tractography analysis revealed that there were WM
tracts directly connecting five of these 10 pairs of regions in most
participants. For the other five region pairs there were no direct
structural connections in any participants. This finding supports
the first hypothesis. This finding of a direct structural connection
between only half of the regions showing functional connectivity
is consistent with results of imaging studies that have used a sim-
ilar multimodal approach to integrate fcMRI and diffusion MRI.
One of the first studies to use this approach reported that high
functional and low structural connectivity can co-occur, but that
low functional connectivity rarely occurs between regions where
there is high structural connectivity (Koch et al., 2002). In keep-
ing with this finding, a more recent study investigating the links
between resting state functional connectivity and structural con-
nectivity revealed that functional connectivity between regions
is not indicative of a direct structural connection between those
regions (Honey et al., 2009). This is likely to be because functional
connectivity can be mediated by indirect connections or by input
from a third region into the two regions, which modulates con-
nectivity in the two primary regions (Koch et al., 2002; Honey
et al., 2009; Behrens and Sporns, 2012).

ABNORMAL FUNCTIONAL CONNECTIVITY IS ASSOCIATED WITH
ABNORMAL STRUCTURAL CONNECTIVITY
As discussed in section Evidence for a Relationship Between
Brain White Matter Structure and Functional Connectivity in
Neurotypical Populations of the introduction, previous studies
have demonstrated a relationship between abnormal functional
connectivity and abnormal structural connectivity (Quigley et al.,
2003; Johnston et al., 2008; Lowe et al., 2008). Consistent with
the prediction that abnormal functional connectivity would be
associated with abnormal structural connectivity in the current
study, there was reduced microstructural organization of WM in
two of the five tracts linking regions of abnormal functional con-
nectivity. In the ASD group, there was a significant reduction
in the strength of functional connectivity between an occipital
region (left BA19) and the left caudate head and also between
this occipital seed region and the left thalamus. Analysis of diffu-
sion measures in the WM directly linking these occipito-striatal
and occipito-thalamic regions revealed significant microstruc-
tural abnormalities in the ASD group, which were characterized
by reduced FA and CL, two measures that provide an indica-
tion of the level of organization of WM fibers. This finding of
altered structural connectivity between brain regions that also
show reduced functional connectivity is particularly interesting as
it provides novel evidence to suggest that structural brain pathol-
ogy may contribute to the abnormal functional connectivity that
has been widely reported in the autism literature.

It is also noteworthy that the WM in both these tracts formed
part of the left IFOF, a major WM association tract in the human
brain. Interestingly, this study revealed structural abnormalities in
this sub-region of the left IFOF, whereas a previous analysis of the
whole left IFOF using the same data from the same study popula-
tion found no abnormalities of WM (McGrath et al., 2013). This

is of relevance as it supports a concern that current whole brain or
even tract-specific analyses of WM may lack sensitivity in detect-
ing WM abnormalities, and may not be specific enough about
the exact locations of pathology in cases where abnormalities are
reported.

It is important however to note that for the remaining three of
the five WM tracts directly connecting regions showing abnormal
functional connectivity, there was no evidence of disrupted orga-
nization of WM. In addition, in only one of these three tracts were
there significant correlations between DTI and fcMRI measures
(discussed in more detail in the following section). These findings
are consistent with the theory that functional connectivity can be
modulated by factors other than the level of microstructural orga-
nization of WM connecting brain regions. Such factors include
the number of WM connections between regions; Hermudstat
et al. recently demonstrated that the number of WM connections
is positively correlated with the strength of resting state functional
connectivity (Hermundstad et al., 2013). There are numerous dif-
fusion measures that could be used to infer a level of “structural
connectivity” in the human brain, but to date, the impact of most
of these measures on functional connectivity is poorly under-
stood. Neurochemical factors may also play an important role in
modulation of functional connectivity, but a detailed discussion
of these factors is outside the scope of this manuscript.

CORRELATIONS BETWEEN MICROSTRUCTURAL ORGANIZATION OF
WHITE MATTER, FUNCTIONAL CONNECTIVITY AND BEHAVIOR
Correlation analysis revealed intriguing links between WM
microstructure, functional connectivity and behavior in two of
the five pairings in which there were direct WM tract connections;
between regions in left BA19 and left thalamus, and between left
BA19 and left caudate.

Between occipito-thalamic regions, functional connectivity
was associated with behavior (faster visuospatial processing
was associated with stronger negative functional connectivity)
and with FA (stronger negative functional connectivity was
associated with reduced microstructural organization) in the
control group only. These correlation analyses suggest that dur-
ing visuospatial processing, neurotypical controls benefit from
increased functional inhibition between left BA19 and left tha-
lamus, which is associated with reduced organization in WM
between these regions. In the ASD group, structural and func-
tional connectivity between occipito-thalamic regions were corre-
lated (reduced microstructural organization was associated with
reduced strength of positive functional connectivity). There were
no statistically significant correlations between visuospatial pro-
cessing speed and structural or functional connectivity, therefore
the effect of altered connectivity in this tract on visuospatial pro-
cessing is not known. It is interesting that both groups show a
similar (statistically significant) relationship between structural
and functional connectivity whereby less well-organized WM
(reduced FA) is associated with increased functional suppression
between regions. This may indicate that both ASD and control
groups use this occipito-thalamic tract in a qualitatively simi-
lar way during visuospatial processing. This study has shown a
reduction in FA in this tract in the ASD group. Given the cor-
relation in the control group that shows a relationship between
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reduced FA and faster response times, it is possible that the
reduced FA in the ASD group may contribute to their relative
behavioral advantage in visuospatial processing.

Functional connectivity between left BA 19 and left caudate
body was significantly increased in the ASD group relative to
controls, but WM organization in the tracts directly connect-
ing these regions was normal. The correlation analyses however
implied that there were significant between-group differences in
the functional use of this tract during visuospatial processing.
Controls showed no association between structural, functional,
and behavioral measures, whereas structural connectivity, func-
tional connectivity, and visuospatial processing speed appeared
to be strongly related in the ASD group. The lack of correlations
in controls is in sharp contrast to the strong relationships found
in the ASD group and might indicate that the ASD group relies
on connectivity between these regions during visuospatial pro-
cessing, whereas the controls do not. In relation to correlations
observed in the ASD group, firstly greater organization of WM
(higher FA) was associated with reduced functional connectivity
between left BA19 and left caudate. Secondly, reduced functional
connectivity between these regions was associated with faster
MRT. Finally, faster MRT was correlated with greater microstruc-
tural organization of the WM between left BA19 and left caudate
body. When considered together, these correlations suggest that
a higher level of structural organization of this tract confers a
benefit to visuospatial processing speed in ASD that may be medi-
ated by increased functional suppression between left BA19 and
left caudate. This finding is perplexing, as higher levels of WM
organization have previously been associated with stronger rather
than weaker functional connectivity; van de Heuvel reported a
positive correlation between strength of functional connectivity
in the default mode network and the level of FA in the cingulum
(van den Heuvel et al., 2008) and another study demonstrated
that increased radial diffusivity in WM connecting right and
left primary sensorimotor cortices was associated with reduction
of functional connectivity between these regions (Lowe et al.,
2008). A recent paper specifically investigating the relationships
between structural connectivity and resting state/task-based func-
tional connectivity in the human brain’ (Hermundstad et al.,
2013), did not investigate the degree of organization of WM,
but revealed that it is a high number of connections that facil-
itate strong resting state functional connectivity. In the current
study, FA rather than number of connections was chosen as the
measure of structural connectivity. In future studies investigat-
ing relationships between structural and functional connectivity,
the measure(s) used to infer structural connectivity should be
carefully considered.

Correlation analyses of connectivity and behavior between
left BA19 and left caudate head and between left BA19 and left
cuneus regions did not yield such strong evidence for an inter-
relationship of structure, function, and behavior. There were no
relationships between brain structure, functional connectivity or
behavior. It is difficult to speculate on the reasons for this rel-
ative lack of structure/function/behavior correlations between
these regions because, as discussed already, there is very little
literature documenting relationships between brain WM struc-
ture and functional connectivity. There is however increasing

recognition of the urgent need for research investigating links
between anatomical connectivity, functional connectivity and
behavior; this knowledge is crucial to understand the “capabilities
of and constraints on human cognitive function” (Hermundstad
et al., 2013).

DIRECT IMPLICATIONS OF THIS STUDY
Together, these findings offer a fascinating insight into the rela-
tionships between brain structure, brain function, and informa-
tion processing in both neurotypical controls and individuals
with ASD. This multimodal imaging study has used a novel
approach to integrate functional and structural neuroimaging
data. It has demonstrated, for the first time in ASD research that
there is reduced microstructural organization of WM in tracts
that directly connect brain regions that show abnormal functional
connectivity. It also reveals that in some brain regions, individ-
ual differences in WM organisation are related to the level of
functional connectivity during a visuospatial processing task, and
further that this relationship has consequences on behavior.

There are many studies investigating functional or structural
connectivity in ASD; however to date none have attempted to
relate the two types of connectivity, an approach that is vital
to increase understanding of the underlying neurobiology. The
approach that is described in this study is rational and clinically
feasible. It is hoped that future neuroimaging research in ASD
will follow this type of methodology to integrate investigation
of functional and structural connectivity. It will be interesting to
see the impact of abnormal structural connectivity on functional
connectivity during other neuropsychological paradigms and at
rest.

POTENTIAL IMPLICATIONS OF FINDINGS FROM CURRENT STUDY ON
THERAPEUTIC INTERVENTIONS FOR AUTISM
A greater understanding of the specific deficits in functional and
anatomical connectivity in autism is particularly salient as there
is some evidence to suggest that connectivity abnormalities are
amenable to training interventions. Neuroplasticity in humans
is well-documented (Doidge, 2007) and two fascinating stud-
ies have demonstrated training-related changes in brain WM
structure (Keller and Just, 2009; Scholz et al., 2009). One study
demonstrated that healthy adults who were trained on a complex
visuo-spatial skill (juggling) developed an increase in FA in WM
underlying the intraparietal sulcus (Scholz et al., 2009), while
the other reported that after 100 h of intensive remedial instruc-
tion, children with impaired reading ability showed an increase
in FA in a brain region that, prior to instruction, had showed
significantly lower FA relative to good readers (Keller and Just,
2009). In addition, a recent study in patients with schizophre-
nia reported that improvement in brain functioning following
cognitive remediation therapy might be based on an increase of
the interhemispheric information transfer between the bilateral
prefrontal cortexes via the corpus callosum (Penades et al., 2013).

That WM structure can be influenced by experience is highly
relevant for autism research. WM integrity is abnormal in numer-
ous regions in autism; but it may be possible to introduce
therapeutic training to stimulate improvement in WM organi-
zation. Although this study focuses on visuospatial processing, a
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cognitive function that is enhanced in ASD, it has revealed abnor-
mal WM in a number of discrete brain regions. It is crucial to
characterize the WM deficits in ASD to develop targets for future
treatments, which could conceivably focus on interventions that
improve WM organization and inter-regional brain connectivity.
Improved brain connectivity in ASD may lead to improvements
in the behaviors that are often impaired in this condition.

LIMITATIONS
There were a number of limitations to this study. Participants
with ASD were limited to male, right-handed individuals with
average or above-average IQ. Results are therefore very spe-
cific to this group and are not representative for all individuals
on the spectrum. In this study, we adopted a novel approach
whereby we specifically isolated WM tracts that directly con-
nected brain regions showing abnormal functional connectivity.
This approach was chosen as a primary aim of this research
was to try to increase understanding of the neural correlates of
atypical visuospatial processing in ASD and it was felt that a ratio-
nal approach would be to use functionally defined ROIs from
the connectivity analysis for diffusion tractography. This method
allowed specific examination of the microstructural organization
of WM in tracts that directly connected brain regions showing
abnormal connectivity. It is important to point out however that
there were a number of difficulties inherent in this approach.
For example, it was not possible to back-project all functionally
generated regions into native diffusion space and it is likely that
valuable information about frontal and cerebellar WM abnormal-
ities was not analysed in this study as a result. In addition, tracts
between most of the fcMRI-defined ROIs are traceable in only
a subset of participants. Also, we did not analyse any pairs of
interhemispheric brain regions. It is also important to note that
there are alternative approaches to investigating brain structural-
functional connectivity relationships that were not adopted in the
current study. For example one approach might be to define ROIs
for tractography based on the location of between-group differ-
ences in diffusion measures, and move forward toward looking
at the functional connectivity of the connected regions. In this
study the diffusion measures used to infer structural connectivity
were FA, CL, and CP. Recent research however has shown signif-
icant correlations between the number of tracts and functional
connectivity, and researchers investigating relationships between
functional and structural connectivity should carefully consider
the measure(s) of “structural connectivity” selected.

In an attempt to increase understanding of the relationships
between brain structural connectivity, functional connectivity

and behavior, a large number of correlation analyses were carried
out. Given the extremely limited data in both autism and healthy
populations on the relationships between WM structure, func-
tional connectivity and behavior, it was felt that it was reasonable
to perform this number of exploratory correlation analyses; how-
ever, it is important to point out that correction for multiple
comparisons was not carried out, thus some of the significant cor-
relations reported may have been due to chance. In addition it is
important to note that sample sizes for some of these correlation
analyses were very small, which limited power. Nonetheless, it is
illuminating to note the significant inter-relatedness of structure,
function, and visuospatial processing speed in two of the WM
tracts investigated (between the left occipital lobe and left cau-
date, and left occipital lobe and left thalamus). The correlations
between these three measures lend strength to the hypothesis that
there are indeed relationships, albeit complex, between structure,
function, and behavior.

CONCLUSION
This novel multimodal imaging study has identified aberrant WM
microstructure in tracts that directly connect brain regions that
are abnormally functionally connected during visuospatial pro-
cessing in ASD. Exploratory correlation analyses have revealed
associations between structural connectivity, functional connec-
tivity and visuospatial processing speed in both ASD and control
groups, however the dearth of literature on normal relationships
between DTI, fcMRI, and behavior makes it difficult to speculate
on the true meaning of these associations. There is an urgent need
for further research investigating links between structural connec-
tivity, functional connectivity and behavior in both neurotypical
and ASD populations. It is critical to understand the complex
neural pathophysiology of autism in order to develop rational,
targeted therapeutic interventions to improve WM organization
and inter-regional neural connectivity.
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We have previously argued from a theoretical basis that the standard practice of regression
of the Global Signal from the fMRI time series in functional connectivity studies is ill
advised, particularly when comparing groups of participants. Here, we demonstrate in
resting-state data from participants with an Autism Spectrum Disorder and matched
controls that these concerns are also well founded in real data. Using the prior theoretical
work to formulate predictions, we show: (1) rather than simply altering the mean or
range of correlation values amongst pairs of brain regions, Global Signal Regression
systematically alters the rank ordering of values in addition to introducing negative values,
(2) it leads to a reversal in the direction of group correlation differences relative to other
preprocessing approaches, with a higher incidence of both long-range and local correlation
differences that favor the Autism Spectrum Disorder group, (3) the strongest group
differences under other preprocessing approaches are the ones most altered by Global
Signal Regression, and (4) locations showing group differences no longer agree with those
showing correlations with behavioral symptoms within the Autism Spectrum Disorder
group. The correlation matrices of both participant groups under Global Signal Regression
were well predicted by our previous mathematical analyses, demonstrating that there is
nothing mysterious about these results. Finally, when independent physiological nuisance
measures are lacking, we provide a simple alternative approach for assessing and
lessening the influence of global correlations on group comparisons that replicates our
previous findings. While this alternative performs less well for symptom correlations than
our favored preprocessing approach that includes removal of independent physiological
measures, it is preferable to the use of Global Signal Regression, which prevents
unequivocal conclusions about the direction or location of group differences.

Keywords: functional connectivity, typically developing, artifact, resting-state fMRI, GCOR, global correlation

INTRODUCTION
Interest in the functional organization of large-scale brain cir-
cuitry in normal and disordered populations has exploded in
recent years. Out of the variety of methods and techniques in
use to study this organization, much effort has been focused
on studies of very slow fluctuations of brain activity during rest
using BOLD fMRI (see Fox and Raichle, 2007, for review). In
part, resting-state studies of inter-regional brain correlations, also
referred to as “functional connectivity,” have proliferated because
of the ease of acquiring the data. However, there are also promis-
ing potential benefits of the method for studying participant
groups that are less able to perform complex behavioral tasks,
including clinical populations (e.g., Fox and Greicius, 2010),
human infants (e.g., Fransson et al., 2007), and animals (e.g.,
Vincent et al., 2007; Margulies et al., 2009).

The study of Autism Spectrum Disorders (ASD), in particu-
lar, has benefited from these methods, with a growing number
of studies evaluating the hypothesis that the behavioral impair-
ments in ASD result from abnormal brain connectivity (e.g.,
Castelli et al., 2002; Belmonte et al., 2004; Just et al., 2004;

see Müller et al., 2011,for review). To date, most resting-state
(as well as task-based) fMRI studies of ASD have found evidence
of decreased correlations throughout a variety of brain regions
involved in social processing (e.g., Kennedy and Courchesne,
2008; Monk et al., 2009; Assaf et al., 2010; Weng et al., 2010;
Anderson et al., 2011b; Ebisch et al., 2011; Gotts et al., 2012; von
dem Hagen et al., 2012). However, not all studies have found this
pattern. A recent resting-state study with a relatively large partic-
ipant sample (N ≈ 40 per group) reported a mixture of increased
and decreased correlations in ASD relative to typically develop-
ing (TD) control participants (Rudie et al., 2013). Another recent
study, given the well-publicized concern about residual head-
motion artifacts in functional connectivity studies (e.g., Deen and
Pelphrey, 2012; Power et al., 2012; Van Dijk et al., 2012), carefully
examined head motion artifacts and failed to find large group
differences in connectivity between ASD and TD participants
(Tyszka et al., 2013).

Indeed, time-varying artifacts are a large source of concern in
functional connectivity studies. Major sources of artifact include
head motion (e.g., Power et al., 2012; Satterthwaite et al., 2012,
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2013; Jo et al., 2013; Yan et al., 2013), non-neural physiologi-
cal variation resulting from cardiac and respiration cycles (e.g.,
Glover et al., 2000; Birn et al., 2006, 2008; Shmueli et al., 2007;
Chang and Glover, 2009; Chang et al., 2009), as well as hard-
ware artifacts (e.g., Cordes et al., 2002; Jo et al., 2010). Much
recent attention has been given in the literature to the confound-
ing impact of head motion on group differences in correlation,
while much less has been given to physiological and hardware
artifacts, perhaps because many researchers still do not collect
the independent cardiac and respiration measures and/or utilize
the analysis tools that would permit more direct examination.
The goal of preprocessing steps in resting-state fMRI studies is
to remove as much nuisance or “noise” variation from the time
series as possible in order to allow observed correlation patterns
(and group differences) to reflect the underlying neural inter-
actions rather than non-neural artifacts. Not all preprocessing
recipes are as comprehensive or direct in addressing the myriad
of noise sources as others, and there is no currently accepted stan-
dard in the field for these critical noise cleaning procedures. A
principal difficulty is to remove noise/artifact components of the
time series data without removing neurally-derived components.

The goal of the current paper is to draw attention to the
detrimental effects of the still common practice of removing the
Global Signal (GS), the average time series in a whole-brain mask,
from the data prior to comparing groups of participants. Multiple
motivations for including the GS as a nuisance regressor have
been articulated, including that it helps to remove uninterest-
ing global fluctuations that mask circuit-level organization, that

it captures global physiological artifacts that other tissue-derived
measures from the ventricles or white matter fail to capture,
and that it enhances the strength and reliability of experimental
results (e.g., Fox et al., 2009; Keller et al., 2013). Most recently,
the GS has been argued to provide additional aid in attenuating
residual motion artifacts that can confound group comparisons
(Satterthwaite et al., 2013; Yan et al., 2013). However, including
the GS as a nuisance regressor can also have a number of undesir-
able effects. Its role in introducing negative correlations that are
otherwise largely absent from fMRI correlations has been widely
discussed (Fox et al., 2009; Murphy et al., 2009; Anderson et al.,
2011a). It has also been demonstrated in monkeys that the GS in
fMRI is tightly coupled with electrical neural activity (local field
potential recordings) across a range of frequencies (Schölvinck
et al., 2010). Removing it will therefore be expected to alter the
actual pattern of neural interactions that one desires to measure,
a point recently acknowledged by some of the originators of the
practice (Snyder and Raichle, 2012).

Less widely discussed to date are the detrimental effects for
interpreting group comparisons. In a recent paper (Saad et al.,
2012), we used simulation and mathematical analyses to show
the impact of GS regression on correlation patterns and group
comparisons, a summary of which is provided graphically in
Figure 1. We simulated two groups of participants, A and B,
for which the circuit-level structure differed in a simple way. In
Group A, three simulated patches of voxels had positive corre-
lations within but not across patches (correlations of zero). In
Group B, correlations within patches were identical to A, with the

FIGURE 1 | Distortion of simulated group differences in correlation by

GS regression. Adapted from Figure 4 in Saad et al. (2012), patterns of
correlation are shown for two simulated groups of participants, Group A
and B (N = 30 in each). Pre-GS regression (left panels), both groups have
three patches of simulated voxels (counter-clockwise from lower left:
patches 1, 2, and 3) that have average within-patch correlations of 0.5 (see
color bar to the right). Group B also has a correlation across patches 1 and
2, with all other inter-patch correlations in both groups set to be
approximately 0. The presence of the across-patch correlation in Group B

leads to an overall larger level of global correlation (GCOR values shown to
left in green). After GS regression (middle panels), negative correlations
are introduced among many of the patches and a larger amount of global
variation is removed from patches 1 and 2 in Group B. Significant group
correlation differences (right panel) are then found at all locations instead
of at the one appropriate location (correlation between, not within, patches
1 and 2). The appropriate group differences are most distorted (�) by GS
regression in and between patches 1 and 2, the locations involved in the
largest true differences.
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only difference between groups being a positive correlation of 0.5
between patches 1 and 2. After GS regression (middle column of
Figure 1), negative correlations were inappropriately introduced
between patches for Group A, and the within-patch correlations
were slightly reduced. For Group B, the presence of correlations
among patches 1 and 2 led these time series to contribute rela-
tively more to the GS than the time series in patch 3 (since they
will weight into the global average more). Correspondingly, GS
regression led more shared variation to be removed in patches
1 and 2, decreasing the related “local” and “long-range” corre-
lations. In all, this procedure led to significant group differences
being expressed at every location, rather than just at the single
appropriate location (between patches 1 and 2) (rightmost col-
umn of Figure 1). The virtue of this demonstration is that the
true statistics are known in all of their details, so it is clear that
the effects one would observe after GS regression are artifactual.
While the complexity of real data (and the absence of perfect
knowledge about what patterns of data to expect) make these
kinds of artifacts harder to examine, it is possible to derive three
main predictions from this simulation and from a more com-
prehensive mathematical understanding of how GS regression
should affect correlation matrices:

(1) The equations that describe the influence of GS regression on
any given correlation matrix show that the new matrix will
depend in a complex manner on the initial matrix, with all
of the values being “warped” to varying degrees (Saad et al.,
2012, 2013). The prediction for real data is that rather than
simply re-centering or re-scaling correlation values around a
new mean value in an all-to-all matrix (0 after GS regression:
Fox et al., 2009), the rank ordering of these values should
also be altered. Furthermore, the alterations to the correla-
tion matrix relative to the absence of GS regression can be
predicted in a straightforward manner;

(2) If two groups differ in their global level of correlation (as
might be expected for ASD participants relative to TD partic-
ipants), then the resultant re-centering of the corresponding
correlation matrices to 0 after GS regression will necessarily
lead to group differences in both directions and in locations
where they should not occur, both in “local” correlations and
in “long-range” correlations—even if the underlying group
differences go in a single direction (see Jones et al., 2010, for
an example of this in task-based functional connectivity of
ASD). Note that the global level of correlation (GCOR), the
grand average of the all-to-all correlation matrix, is lower in
Group A than in Group B (green text in the left column of
Figure 1);

(3) Group comparisons will not be altered indiscriminately. They
will tend to be altered most in locations that exhibit the
largest underlying group differences - differences that are
large enough and coherent enough over the spatial extent
of the brain that they affect the GS measure. This is shown
in the rightmost column of Figure 1, with the magnitudes
of distortion (�) from the underlying group differences
being the largest within and across patches 1 and 2. There
is a simple mathematical explanation for this phenomenon.
Whole-brain “connectedness” measures have been used in

a number of studies to find locations of high connectiv-
ity with the rest of the brain (i.e., “hubs”: Buckner et al.,
2009; Cole et al., 2010) and locations that differ between
two groups in their interaction with the rest of the brain
(e.g., Salomon et al., 2011; Gotts et al., 2012). The primary
difference between whole-brain connectedness and correla-
tion with the GS is simply whether whole-brain averaging
is done before or after the correlation calculation. Indeed,
if the time series are first transformed to z-scores with unit
variance (allowing each voxel to contribute equally to the
GS), whole-brain connectedness using Pearson correlation is
directly proportional to both correlation and regression with
the GS, with the effect of GS removal being greater removal
of the largest connectedness differences.

In the remainder of this paper, we systematically vary the pre-
processing procedures in order to evaluate these predictions in
our own previously published ASD and TD resting-state data
(Gotts et al., 2012). In addition to the GS and our preferred
ANATICOR de-noising approach, which more explicitly mod-
els physiological and hardware artifacts (Jo et al., 2010), we
evaluate a simple alternative to GS regression when indepen-
dent cardiac and respiration measures are not available. The
alternative, referred to as GCOR (for Global Correlation, Saad
et al., 2013), treats the level of global correlation amongst all
brain voxels as a nuisance covariate at the group-level of anal-
ysis, after the relevant correlation measures have already been
calculated for each individual participant without the use of
GS regression.

MATERIALS AND METHODS
PARTICIPANTS
The full details of our participant sample have already been
published previously (Gotts et al., 2012). Twenty-nine typically
developing (TD) participants (28 males, 1 female) between 12 and
23 years of age and 31 high-functioning participants (29 males,
2 females) with an autism spectrum disorder (ASD) between
12 and 23 years of age took part in the study. ASD partici-
pants were recruited from the Washington, DC metropolitan
area, and all met Diagnostic and Statistical Manual-IV diagnos-
tic criteria as assessed by an experienced clinician (20 Asperger’s
syndrome, 7 high-functioning autism, and 4 pervasive develop-
mental disorder-not otherwise specified). Thirty ASD partici-
pants received the Autism Diagnostic Interview (ADI or ADI-R)
(Le Couteur et al., 1989; Lord et al., 1994) and the Autism
Diagnostic Observation Schedule (ADOS, Modules 3 or 4; Lord
et al., 2000), administered by a trained, research-reliable clinician.
All scores from participants with ASD met cut-off for the category
designated as ’broad autism spectrum disorders’ according to cri-
teria established by the National Institute of Child Health and
Human Development/National Institute on Deafness and Other
Communication Disorders Collaborative Programs for Excellence
in Autism (see Lainhart et al., 2006). Because the ADI and ADOS
do not provide an algorithm for Asperger’s syndrome, Lainhart
and colleagues developed criteria that include an individual on
the broad autism spectrum if s/he meets the ADI cut-off for
“autism” in the social domain and at least one other domain or
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meets the ADOS cut-off for the combined social and commu-
nication score. Scores on the Social Responsiveness Scale (SRS)
(Constantino, 2002), an informant-based rating scale used to
assess ASD social and communication traits quantitatively over
the full range of severity, were obtained from parents for 29 ASD
participants. IQ scores were obtained for all participants, and
all full-scale IQ scores were ≥ 85 as measured by the Wechsler
Abbreviated Scale of Intelligence (26 ASD, 29 TD), the Wechsler
Adult Intelligence Scale-III (3 ASD), or the Wechsler Intelligence
Scale for Children-IV (2 ASD). Participant groups did not dif-
fer in terms of full-scale IQ, age, or sex ratio (see Gotts et al.,
2012, Table 1). Informed assent and consent were obtained from
all participants and/or their parent/guardian when appropriate
in accordance with a National Institutes of Health Institutional
Review Board-approved protocol.

fMRI IMAGING METHODS
fMRI data were collected using a GE Signa 3 Tesla whole-
body MRI scanner at the NIH Clinical Center NMR Research
Facility using standard imaging procedures. For each participant,
a high-resolution T1-weighted anatomical image (MPRAGE)
was obtained (124 axial slices, 1.2-mm slice thickness, Field
of View = 24 cm, 224 × 224 acquisition matrix). Spontaneous,
slowly-fluctuating brain activity was measured during fMRI using
a gradient-echo echo-planar series with whole-brain coverage
while participants maintained fixation on a central cross and
were instructed to lie still and rest quietly (TR = 3500 ms, TE =
27 ms, flip angle = 90◦, 42 axial contiguous interleaved slices
per volume, 3.0-mm slice thickness, FOV = 22 cm, 128 × 128
acquisition matrix, single-voxel volume = 1.7 × 1.7 × 3.0 mm).
Each resting scan lasted 8 min and 10 s for a total of 140 con-
secutive whole-brain volumes. Independent measures of nuisance
physiological variables (cardiac and respiration) were recorded
during the resting scan for later removal in the majority of par-
ticipants (24 ASD, 22 TD). Seven additional participants without
these measures were included in each group after comparing
descriptive statistics of the whole-brain-averaged EPI time series
post-preprocessing to those calculated for the participants with
measures present (see Gotts et al., 2012, Supplementary Materials
and Methods, for full description). A GE 8-channel send-receive
head coil was used for all scans, with a SENSE factor of 2 used to
reduce gradient coil heating during the session.

fMRI PREPROCESSING
Four preprocessing models were compared in the current study.
All preprocessing conditions utilized the AFNI software package
(Cox, 1996) and had the following series of steps in common.
The first 4 EPI volumes were removed from the resting scan,
and large transients in the remaining volumes were removed by
constraining values to be within 4 standard deviation units of
the mean (using AFNI’s 3dDespike). Volumes were then slice-
time corrected, co-registered to the anatomical scan, resampled to
2.0-mm isotropic voxels, smoothed with an isometric 6-mm full
width half maximum Gaussian kernel, normalized by the mean
signal intensity in each voxel to reflect percent signal change,
and transformed into the standardized Talairach and Tournoux
(1988) volume for the purposes of group analyses. Tissue-based

nuisance regressors were created by segmenting the anatomical
scan into tissue compartments using Freesurfer (Fischl et al.,
2002). Ventricle and white-matter masks were created, eroding
the outer voxels of the masks to prevent partial volume effects
with grey matter. Eroded masks were then applied to the volume-
registered EPI data (prior to smoothing) in order to yield nui-
sance time series with minimal contribution from gray matter
signals for the ventricles, as well as a local average, at each voxel, of
the EPI signal from the (eroded mask) white matter voxels within
a 15 mm radius of the central voxel.

Basic Model: Motion + Ventricles + Local WM
The “basic model” is a reduced version of our full ANATICOR
model without the independent physiological measures. It is com-
mon to the other three preprocessing models considered in this
study. As indicated by the label above, nuisance variables for each
voxel included the 6 head motion parameters (3 translation, 3
rotation) derived from the volume registration step, one average
time series from the eroded ventricle mask, and the “local” aver-
age white matter time series. Throughout the remainder of the
paper, the shorthand label “Basic” model refers exclusively to this
preprocessing pipeline. The Basic model has two essential virtues
that convey to the remaining preprocessing models: (1) it virtu-
ally eliminates the distance-dependent artifacts that result from
transient head motion, even for the high movement cohorts such
as the children cohort reported in Power et al. (2012) (Jo et al.,
2013; see also Gotts et al., 2012, Supplementary Figures 5–11),
and (2) the local white matter regressor (Local WM) markedly
attenuates transient hardware artifacts that result from faulty
channels in send/receive head coils and that generate spatially
restricted signals in adjacent white and gray matter voxels (Jo
et al., 2010). Indeed, TD participants from our study served as
examples of the artifact in Jo et al. (2010). The EPI time series
and all nuisance time series were detrended with fourth-order
polynomials prior to least-squares model fitting to each voxel’s
time series. No further temporal filtering was applied to the Basic
model, since cardiac and respiratory cycles (frequencies above
the Nyquist frequency of 0.5 ∗ 1/TR ≈ 0.14286 Hz) are aliased
to lower frequencies, preventing a bandpass filter from removing
them appropriately.

Basic Model + GCOR
The temporal preprocessing steps in the +GCOR model are iden-
tical to the Basic model. The only addition is the use of the Global
Correlation (or GCOR) measure as a nuisance covariate in the
group analyses, after the correlation values of interest have already
been calculated. This is explained in full in the section fMRI
Analyses.

Basic Model + GS regression
In the +GS Regression model, the GS has been added to the
list of nuisance regressors in the Basic model. The GS is calcu-
lated by applying a whole-brain mask for each participant to the
volume-registered EPI time series to yield one average time series.
As with the other nuisance regressors and the BOLD time series,
the GS was detrended with fourth-order polynomials prior to
least-squares model fitting.
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ANATICOR
This is the preprocessing model used in our prior study (Gotts
et al., 2012). It consists of the Basic model plus regressors for
RETROICOR (Glover et al., 2000; estimated for slice time 0) and
Respiration Volume Per Time (RVT) (Birn et al., 2008), created
from independently acquired cardiac and respiration measures
during the EPI scan (sampling rate 50 Hz). These physiological
regressors are intended to estimate: (1) aliased cardiac and res-
piration cycles, and (2) slower, BOLD-like effects of respiration
(end-tidal CO2) that are typically below 0.1 Hz. These influences
are not small for data in the current study, accounting for approx-
imately 10–20% of variance in the EPI/BOLD signal and leading
to Type II statistical errors if they are not removed (Gotts et al.,
2012, Supplementary Figure 1).

fMRI ANALYSES
In Gotts et al. (2012), we developed an analysis approach to iden-
tifying resting-state correlation differences between ASD and TD
participants throughout the entire brain (see also Anderson et al.,
2011b; Salomon et al., 2011). In the current paper, we adopt a
mixture of approaches intended to illustrate the impact of prepro-
cessing steps on correlation differences calculated between pairs
of regions that are sampled throughout the brain, as well as to
estimate correspondences with our previously reported results.

Large-scale sampling of whole-brain mask with 1880 ROIs
As one relatively comprehensive approach, we uniformly sam-
pled spherical ROIs (6 mm radius) within our previous group
brain mask (each voxel present in >85% of participants in each
group). ROI centers were chosen by down-sampling the origi-
nal voxel grid in Talairach coordinates to a new 4 × 4 × 4 grid
of the original voxels (a new volume of 8 × 8× 8 mm3), resulting
in a total of 1880 ROIs (from 119,751 original voxels). Example
ROI centers (each of which represents a 6 mm-radius sphere) are
shown in Figure 2 in red, overlaid on the group brain mask in
green. Note that the mask excludes ventricles, white matter, and
the sagittal sinus, focusing on signals from the gray matter and
subcortical structures. Correlations of the preprocessed average
time series from each ROI for each participant were calculated in
an all-to-all fashion and transformed to approximately normally
distributed values (Fisher’s z transform). Average group ROI-
ROI correlation matrices were then calculated across participants
within the ASD and TD groups and compared with two-sample
t-tests. The relative rank ordering of correlation values within
the ROI-ROI matrix was compared across preprocessing models
using the Spearman rank correlation.

Assessing agreement with previous results using Gotts et al. (2012)
ROIs
The 27 ROIs identified in Gotts et al. (2012) as showing greater
correlation in TD than in ASD participants were also applied to
the de-noised data from each preprocessing model in order to
evaluate consistency with our previously reported group compar-
isons, as well as with our previous ASD symptom correlations
using the SRS total score (Constantino, 2002). These ROIs are
shown in Figure 3, with each ROI assigned a unique color. As with
the analyses using 1880 ROIs, the all-to-all ROI correlation matrix

FIGURE 2 | Sampling the group brain mask with 1880 ROIs. The original
group brain mask from Gotts et al. (2012) (voxels shared in >85% of
participants in both ASD and TD groups; shown in green) was sampled by
choosing every fourth voxel from the original voxel grid (in X,Y,Z directions in
Talairach coordinates). Each chosen voxel (red voxels) served as the center
for a 6-mm radius sphere, totaling 1880 ROIs. The original group brain mask
excluded voxels in white matter, the ventricles, and the sagittal sinus.

was calculated for each participant, comparing groups using two-
sample t-tests after first transforming to normally distributed
values (Fisher’s z). In analyses of correlation with SRS total score,
partial correlations were calculated across participants using the
values in the ASD group at each ROI-ROI combination, remov-
ing the shared variation with Age and Full Scale IQ. Predictions
regarding the influence of preprocessing model on “short-range”
correlations were also assessed for these 27 ROIs. For these anal-
yses, the average voxel-to-voxel Pearson correlation within each
ROI was calculated for each ASD and TD participant, these values
were then transformed using Fisher’s z, and then they were com-
pared across groups in each ROI using two-sample t-tests. The
Pearson correlation was chosen for ease of implementation, and
the results are not expected to depart markedly from those using
canonical correlation and other similar methods (e.g., Regional
Homogeneity or ”ReHo“: Zang et al., 2004; Paakki et al., 2010;
Shukla et al., 2010; see also Jiang et al., 2013).

GCOR preprocessing model and analyses
The +GCOR model, as discussed above in the section Basic
Model + GCOR, involves the same preprocessing steps as the
Basic model. After the calculation of correlation coefficients
between a pair of ROIs(/voxels) and the application of the Fisher’s
z transform, the GCOR method involves partialling out the
influence of the global level of correlation (grand mean corre-
lation of all voxels with all voxels in a whole-brain mask) on
the group comparison of correlation values using an Analysis
of Covariance (ANCOVA) approach (Saad et al., 2013). The
top panel of Figure 4 provides a simplified illustration of the
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FIGURE 3 | ROIs showing the largest group differences (TD > ASD) in

Gotts et al. (2012). ROIs 1–27 are shown using a distinct color for each
ROI, ranging from cool colors (blue = 1) up to hot colors (red = 27).

partialling process for a single participant group (the 29 TD
participants) using an example pair of ROIs. The blue dots form
a scatterplot of the Fisher’s z GCOR value on the x-axis and
the Fisher z-transformed ROI-ROI r-value on the y-axis across
the TD participants. A frequency histogram of the y-axis val-
ues prior to GCOR removal (“original”) is shown to the left of
the plot using blue-outlined bars. For this single-group example,
the y-values are adjusted (vertical black lines leading away from
the blue dots) using the slope of the best-fit line and the dis-
tance of the GCOR value from the group median GCOR value
(shown with a vertical dashed blue line). The actual ANCOVA is
more complex in implementation (program 3dttest++ in AFNI),
involving the full model of grouping variable (2 levels: ASD and
TD) and the continuous covariate (GCOR). The choice of mean
or median for centering should depend on whether the distribu-
tion is approximately symmetrical or skewed, respectively (the
GCOR distributions are skewed for both ASD and TD popu-
lations, shown in the bottom panel of Figure 4). The effect of
covariate removal is to yield a more narrow distribution with
reduced variance (frequency histogram of solid black bars to the
left of the y-axis). This will tend to have the impact of increasing
the amplitude of corresponding t-values when comparing groups
if correlations in both groups strongly depend on the level of
global correlation. For the analyses in the current paper, separate
medians are used for centering each group, permitting differential

FIGURE 4 | GCOR method of removing global correlations. (top panel)

The x-axis shows the global level of Pearson correlation (GCOR) for each of
the 29 TD participants, calculated among all possible voxel combinations in
a whole brain mask and then transformed with Fisher’s z. The y-axis shows
the Fisher’s z-transformed correlation value between two example ROIs for
each participant, with frequency histograms across participants shown to
the left of the y-axis. The blue dots are the original values of GCOR and
ROI-ROI correlation for each participant under the Basic preprocessing
model. Covariate removal is illustrated here for a single-group of
participants, but appropriate removal for group comparisons is more
complicated, carried out using Analysis of Covariance (ANCOVA), which is
implemented in AFNI with the program 3dttest++ for two-level grouping
variables. For a single group, the best-fit regression line (dashed red) is
used to adjust y-values as a function of the distance from the median
x-value (dashed blue vertical line). The adjusted values are shown relative to
the blue dots using black vertical lines, with the new values at the
endpoints. The adjusted values have a reduced standard deviation on the
y-axis relative to the original distribution (see histogram of solid black bars
on the left). (bottom panel) Frequency histograms of GCOR values are
shown for TD (black) and ASD (red) participants. Distributions are
overlapping and skewed for both groups, which motivated the choice of
median rather than mean for re-centering.

levels of average correlation between the groups (as in Figure 1).
If a single grand-mean or median is desired for centering both
groups (depending on the study and hypotheses), then it is criti-
cal to verify that the groups being compared have similar overall
ranges of GCOR. Otherwise, distortions similar to GS regression
are expected to occur to a certain extent (see Saad et al., 2013, for
further discussion).

Comparisons of whole-brain “connectedness”
In our prior study (Gotts et al., 2012), we compared functional
connectivity levels between ASD and TD groups in a whole-brain
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manner by first finding the average correlation of each voxel
with the rest of the brain mask (i.e., whole-brain “connected-
ness”; see also Salomon et al., 2011). Connectedness is similar, but
not necessarily identical, to the measure of “degree centrality” in
graph theory, and it is related to GCOR through calculation of
a simple average over connectedness values. By comparing con-
nectedness maps between groups, we identified good candidate
“seeds” to be tested in subsequent analyses. We utilize this same
whole-brain approach in the current study in order to identify
the locations of strongest correlation differences between groups.
Results for the Basic model and ANATICOR models were already
presented in the prior study (see Gotts et al., 2012, Figures 2, 3,
and Supplementary Figure 1). In the current paper, we conducted
these analyses for the +GS regression and +GCOR models. The
same statistical and cluster-size thresholds were used as in the
prior study to afford direct comparisons of the preprocessing
models (p < 0.05, uncorrected, with a spatial extent of at least
100 voxels).

Mathematical prediction of GS correlation matrices
Saad et al. (2012, 2013) have provided mathematical descriptions
of the distortion in correlations induced by GS regression. In the
current paper, we use these equations to predict the values of
the correlation matrices for ASD and TD participants under the
+GS preprocessing model using the time series data under the
Basic model (without GS regression). These equations would be
exact (i.e., equivalent to carrying out GS regression) if we were
to use all voxel time series in a whole-brain mask. Here, we will
use only data from the 1880 ROIs sampled from the group brain
mask, excluding time series from white matter, ventricles and the
sinuses. Therefore, the equations will only serve as predictive esti-
mates, and these predictions will be accurate to the extent that the
effects of GS regression depend primarily on gray matter signals
and do not depend on signals in the excluded “non-neural” tissue
compartments.

The equations used for these analyses are derived in detail
in Saad et al. (2013), but we repeat them briefly here for
convenience:

Z =
(

I − g
(

gTg
)−1

gT
)

Y

where Z is the data matrix after GS regression (N time points
x M voxels), I is the identity matrix, g is the GS of the NxM
data matrix Y prior to GS regression. The time series in Y are
presumed to have been de-meaned (i.e., means set to 0). Then:

P = 1/N YTY

Q = 1/N ZTZ = P −
(

P11TP
)

/(1TP1)

R = P ∗σPσT
P

where P and Q are the MxM covariance matrices of the Y
and Z data matrices, R is the full correlation matrix based
on Y , ∗ is the Hadamard element-wise matrix product, σP

is the reciprocal square root (1/sqrt) of the diagonal elements

(variances) of P. Next,
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Q
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/
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))

∗σQσT
Q

where S is the correlation matrix after GS regression, 1 is an Mx1
vector of ones, and σ Q is the reciprocal square root of the diagonal
elements of Q. From this equation, it is clear that S is a func-
tion of the covariance matrix P of the data prior to GS regression.
The “warping” effect of GS regression on the original correlation
matrix R can then be seen by examining the difference S-R:

S − R =
(

P −
(

P11TP
)

/
(

1TP1
))

∗σQσT
Q − P ∗ σPσT

P

This final equation shows that GS regression warps every value of
the correlation matrix in a complex manner that depends solely
on the covariance matrix P (the variance terms of Q are also
dependent solely on P).

For the purposes of the current analyses, we use the average
time series calculated in the 1880 ROIs (Figure 2) under the Basic
preprocessing model (without GS regression). This is tantamount
to applying GS regression serially after the nuisance regressors in
the Basic model have already been removed. This simplification
will serve as a further potential source of inaccuracy in the esti-
mation of S, since the regression in the +GS model removes all
nuisance variables simultaneously.

RESULTS
As discussed above, the main goal of the current paper is to
evaluate three central theoretical predictions about the distort-
ing effects of GS regression on group comparisons of functional
connectivity in real data. To this end, we re-analyze resting-state
data from 31 ASD and 29 TD participants that were originally
reported in Gotts et al. (2012) using four different preprocessing
models: (1) the Basic model (Motion + Ventricles + Local WM),
(2) the Basic model +GCOR, (3) the Basic model +GS regres-
sion, and (4) our preferred ANATICOR model (Basic model +
RETROICOR and RVT physiological regressors).

PREDICTION 1: CORRELATION MATRICES ARE “WARPED” UNDER GS
REGRESSION
We begin by evaluating the first prediction articulated in the
introduction, namely that the effect of GS regression is not sim-
ply to re-center (alter the mean) or re-scale (alter the standard
deviation) the correlations amongst a collection of voxel time
series. Rather, the values are also “warped” as a function of the
initial data covariance matrix, altering the rank orderings of the
values within the all-to-all matrix. Correlations were calculated
among all combinations of the 1880 ROIs (Figure 2) for the 31
ASD and 29 TD participants using the four preprocessing models.
These results are shown averaged within each group in Figure 5
by preprocessing model. Also shown are the two-sample t-tests by
ROI-ROI combination and thresholded t-maps (p < 0.05, uncor-
rected), with corresponding colorbars shown to the right of each
plot. Few if any negative correlations were observed in either
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FIGURE 5 | Effect of preprocessing model on ROI-ROI correlations and

group differences. Correlation matrices for the TD and ASD groups and the
corresponding group comparisons are shown for each of the four
preprocessing models using 1880 ROIs sampled from the group brain mask.
Results for the “Basic” model (Motion+Ventricles+Local WM) are shown in
the upper left, the Basic+GCOR model in the upper right, the Basic+GS
regression model in the lower left, and the full ANATICOR model in the lower

right. The upper two plots of each model show the average ROI-ROI
correlation matrices for the TD and ASD groups (see corresponding colorbars
for scale), the lower left plot of each model shows the unthresholded
t-values, and the lower right plot of each model shows the t-values
thresholded at p < 0.05 (uncorrected). ROIs are ordered by scanner
coordinates (ranked by Inferior-Superior, then by Anterior-Posterior, then by
Right-Left).

participant group for the Basic, +GCOR or ANATICOR mod-
els, whereas negative correlations were common in both groups
under the +GS Regression model, yielding an average correlation
value of approximately 0 for both groups. For both groups, the
average correlation matrices are quite similar, both in scale and in

rank-order for the Basic, +GCOR, and ANATICOR models. The
grand mean (and standard deviation) of the correlation matri-
ces for the ASD group were 0.2138 (0.1105), 0.2155 (0.1128), and
0.2028 (0.1111) for the Basic, +GCOR, and ANATICOR mod-
els, respectively. These same numbers for the TD group were
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0.2222 (0.1133), 0.2275 (0.1160), 0.2240 (0.1166). Note that the
TD group had an average correlation greater than the ASD group
of approximately 0.01–0.02 across these three models. In contrast,
for the +GS model the means (standard deviations) of the ASD
and TD groups were 0.0155 (0.1165) and 0.0146 (0.1215), with
the average correlation slightly larger for the ASD group. As with
the mean correlations, the rank orderings of values within the
ROI-ROI matrices were highly similar for the Basic, +GCOR, and
ANATICOR models. Spearman rank correlations among these
models were 0.9885 or larger for the ASD matrices and 0.9844
or larger for the TD matrices. In contrast, the Spearman rank
correlation of the +GS model with the Basic, +GCOR, and
ANATICOR models was 0.6896,0.6963, and 0.7125 for the ASD
group and 0.6976,0.6930, and 0.6794 for the TD group. In other
words, while better than 96.9% of the variance (R2 values) was
shared in the rank orderings of group-average correlation val-
ues among the Basic, +GCOR, and ANATICOR models for both
groups, approximately 50% of the variance was shared between
the correlation matrices under the +GS model and those of the
other models for both groups.

While it is difficult to compare these numbers statistically
for the group-average matrices (there are statistical dependencies
amongst the rows and columns), deriving the same measures for
the ASD and TD individuals allowed comparisons and assessment
of reliability across participants. Paired t-tests across participants
within both the ASD and TD groups showed that the Spearman
rank correlations of the +GS correlation matrices with the Basic
and ANATICOR models were significantly reduced relative to the
Spearman rank correlations between the Basic and ANATICOR
models (+GCOR is applicable only to group-level analyses and
was not part of these analyses). For the 31 ASD participants,
average Spearman rank correlations of the +GS model with
Basic and ANATICOR models were 0.7535 and 0.7261, respec-
tively, whereas the average rank correlation between the Basic and
ANATICOR models was 0.9362 [paired t(30) > 8.50, p < 1.0e-08,
for both; Bonferroni-corrected P-value = 0.05/3 = 0.0167]. For
the 29 TD participants, Spearman rank correlations of the +GS
model with the Basic and ANATICOR models were 0.7494 and
0.6971, respectively, whereas the rank correlations between the
Basic and ANATICOR models was 0.9329 [paired t(28) > 8.61,
p < 1.0e-08, for both]. In summary, the rank ordering of the
ROI-ROI correlation values for both ASD and TD participants
is significantly altered or “warped” by GS regression, consistent
with Prediction 1.

PREDICTION 2: GS REGRESSION WILL ALTER THE DIRECTION OF
GROUP COMPARISONS
The second prediction articulated in the introduction is that GS
regression should alter the direction of group comparisons. In
the case of Autism Spectrum Disorders, the prediction is that GS
regression should lead to a higher incidence of ROI-ROI pairs
for which ASD correlations are greater than TD correlations.
This can occur for at least two reasons in the current context.
First, if the average level of correlation differs between groups
prior to GS regression (as shown in the previous section: TD
> ASD), the re-centering of the average correlation (to approx-
imately 0) will be differential in magnitude for the two groups,

with a larger subtraction of correlation values from the TD group
than from the ASD group. This will necessarily lead to reverse
group differences (with ASD>TD) in some locations that did not
differ prior to GS regression (possible Type I errors). Differential
re-centering should also lead to the attenuation of real group
differences in locations where they should be found (possible
Type II errors). The second reason that correlation differences can
become reversed after GS regression has to do with differential
warping of the correlations in the two groups. A clear example
of this phenomenon is shown in Figure 1, where larger shared
variation is removed from patches 1 and 2 in Group B after GS
regression compared to Group A. In either case, the expectation
for real data is that the incidence of ASD>TD group differences
should increase for the +GS model relative to the other mod-
els. For a previous task-based study (verbal fluency) of functional
connectivity of ASD and TD participants in our lab, this phe-
nomenon has already been demonstrated (Jones et al., 2010). In
this section, we evaluate the effects of preprocessing model on the
warping of the entire matrix of t-values, as well as on the relative
incidence of significant group differences in both directions (TD
> ASD and ASD > TD).

Warping of group comparisons by GS regression
As with the average group correlation values for the ASD and TD
groups among the 1880 ROIs (section Prediction 1: Correlation
matrices are “warped” under GS regression), it was possible to
evaluate the alteration of the corresponding t-values by prepro-
cessing model. The means (standard deviations) of the t-values
of the Basic, +GCOR, +GS regression, and ANATICOR mod-
els were 0.0593 (0.9438), 0.3127 (1.1015), −0.0327 (1.1015),
and 0.4606 (1.0081) (see Figure 5 and summary histograms in
Figure 6A). The Spearman rank correlations for the t-values
among the Basic, +GCOR, and ANATICOR models were 0.8989
and greater (Basic with +GCOR:0.9899; Basic with ANATICOR:
0.8989; +GCOR with ANATICOR:0.9057). In contrast, the
Spearman rank correlations of the +GS model with the others
were 0.7504, 0.7604, and 0.6662 with the Basic, +GCOR, and
ANATICOR models. In summary, the contrast t-values were most
positive under the +GCOR and ANATICOR models, slightly pos-
itive for the Basic model, and slightly negative for the +GS model
(i.e., greater correlations for the ASD participants). The rank
orderings of the t-values were similar for the Basic, +GCOR, and
ANATICOR models, despite differences in the mean values, shar-
ing at least 80% of the variance among any combination of these
models. In contrast, the rank orderings under the +GS model
shared between 44 and 58% of the variance with those under the
remaining models. All of these distributions are highly discrim-
inable from one another, with t-values from paired t-tests well
above 100 for all comparisons due to the diminishing standard
error values for these very large sample sizes (N = 1766260 values
in each).

Incidence of group differences in both directions as a function of
preprocessing model
Both differential re-centering and warping of the correlation val-
ues by participant group predict a relatively higher incidence
of group differences favoring the ASD group under the +GS
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FIGURE 6 | Effect of preprocessing model on the distributions of group

differences. (A) Full distributions of t-values (TD-ASD) over all unique
combinations of the 1880 ROIs (N = 1766260) under all four preprocessing
models. (B) (top panel) Ratio of positive to negative t-values that survive the
threshold t-value, shown as a function of the threshold on the x-axis (ranging
from p < 0.05 to p < 0.0005, uncorrected). (bottom panel) Percentage of
tests that yield significant negative t-values (i.e., favoring the ASD group) as a

function of threshold t-value and preprocessing model. These values serve
as the denominator in the ratios of the top panel. (C) Mean t-value across all
1880 ROI for each ROI as the seed (i.e., averaging across the rows of the full,
unthresholded t-matrix of each model), rank-ordered from small to large by the
mean t-values in the Basic model. These curves demonstrate that the largest
alterations to the group comparisons by GS regression are for ROIs that elicit
the largest average t-values under the +GCOR and ANATICOR models.

model (the other models favor the TD group to varying degrees).
Information about the relative likelihood of TD > ASD and
ASD > TD group differences is present in graphical form in
Figures 5, 6. The full matrices of t-values in Figure 5 show that
the +GS model yields the most blue colors, indicating greater
correlations for the ASD group. This is apparent both in the
unthresholded and thresholded plots (lower left and right for each
of the four models). In contrast, the +GCOR and ANATICOR
models yielded the most positive (yellow/red) t-values, and the
Basic model yielded fewer significant values in either direction
(upper left panels of Figure 5). This can be quantified by count-
ing the number of significant positive and negative t-values for
a given significance threshold. Using p < 0.05 (uncorrected), out
of 1766260 unique ROI-ROI combinations (1880 ROIs), the Basic
model yielded 1.9155% significant positive t’s and 1.5759% neg-
ative t’s (+/−ratio: 1.2154), the +GCOR model yielded 6.1231%
positive t’s and 1.8582% negative t’s (+/−ratio: 3.2952), the
ANATICOR model yielded 5.6807% positive t’s and 1.035% neg-
ative t’s (+/−ratio: 5.4888). In contrast, the +GS model yielded
3.2192% positive t’s and 3.7507% negative t’s (+/−ratio: 0.8583).
As the P-value threshold is lowered (down to p < 0.0005), ratios
of positive to negative counts increase slightly for the +GCOR

and ANATICOR models whereas they decrease for the +GS
model (see Figure 6B). Combined with the information from sec-
tion Warping of group comparisons by GS regression that the
overall distributions of t-values are significantly shifted to more
negative values for the +GS model relative to the other three
models, it is clear that Prediction 2 (greater incidence of ASD>TD
group differences) holds for this dataset across choice of statistical
threshold (see also Jones et al., 2010). Indeed, the average TD-
ASD t-value over all ROI-ROI combinations is significantly less
than 0 under GS regression, a notable departure from the other
models [mean = −0.0327, median = −0.0301, SD = 1.1015;
one-sample t-test: t(1766259) = −39.44, p < 1.0e-10].

PREDICTION 3: GS REGRESSION WILL MOST ALTER THE STRONGEST
GROUP DIFFERENCES UNDER OTHER PREPROCESSING MODELS
The third prediction articulated in the introduction is that GS
regression will not alter group comparisons indiscriminately.
Rather, it will tend to alter results most in locations that exhibit
the largest underlying group differences. One relatively simple
way to evaluate this prediction for the current dataset is to
first find regions out of the 1880 that yield the largest aver-
age group differences. This was done by averaging the t-values
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across the rows of the 1880 × 1880 t-matrices in Figure 5 for
each preprocessing model. Then, these column-averaged t-values
can be rank ordered from smallest to largest. Given the results
in the section on Prediction 2, one expects the rank order-
ings of the Basic, +GCOR, and ANATICOR models to have
quite similar rank orderings, whereas the +GS model should
differ—at least relatively—in its rank orderings from these mod-
els. The critical prediction is that the ROIs with the largest
average t-values for the Basic, +GCOR, and ANATICOR mod-
els should be the most altered in value for the +GS model.
Rather than rank ordering the average t-values for each model
separately (which would make it difficult to evaluate the agree-
ment of particular ROIs in the rank ordering across models),
we chose to rank order the ROIs relative to a single reference
model, in this case the Basic model that is common to all of the
other models. Figure 6C shows that the ROIs with the largest
average t-values are quite similar for the Basic, +GCOR, and
ANATICOR models (the black, green, and red curves, respec-
tively). Indeed, the Spearman rank correlations of these 1880
column-averaged values ranged between 0.8848 and 0.9863 for
these three models. In contrast, the average t-values of the +GS
model are relatively flat when sorted by the t-values of the
Basic model, indicating a strong alteration in the rank order-
ing. Accordingly, the Spearman rank correlation of the +GS
model with the Basic, +GCOR, and ANATICOR models is
0.255, 0.2678, and 0.2623 respectively. Visually, it is clear from
Figure 6C that the average t-values under the +GS model are
most different from the +GCOR and ANATICOR models at the
highest average t-values. In order to evaluate this phenomenon
statistically, we compared the slopes of the best-fit regression
lines to these curves. The slopes of the best-fit lines to the
+GCOR and ANATICOR curves were 8.1509e-04 and 7.3080e-
04, respectively, while the best-fit slope to the +GS curve was
0.73161e-04. The 99% confidence intervals calculated for the
slope estimates were non-overlapping for the +GS model and
those of the +GCOR and ANATICOR curves, demonstrating that
they are significantly different from each other. The larger posi-
tive slopes for the +GCOR and ANATICOR models guarantees
that they will differ most from the +GS model at their largest
t-values.

MATHEMATICAL PREDICTION OF ASD AND TD CORRELATION
MATRICES UNDER THE +GS MODEL
In the sections above, we evaluated and confirmed three main
predictions about effect of GS regression on group comparisons
in real data. The purpose of the current section is to evaluate the
extent to which the distorting effect of GS regression on a matrix
of correlation values is captured by the equations of Saad et al.
(2012, 2013). As described in section Mathematical prediction of
GS correlation matrices, if we were to use all voxel time series in
a whole brain mask, these equations would be exact (i.e., equiva-
lent to performing GS regression). What makes this analysis more
interesting is that only time series from the 1880 ROIs sampled
from the group brain mask (Figure 2) were used for the estima-
tion. Since the group brain mask excluded the brain tissue types
that have been argued to contain the largest global nuisance sig-
nals (white matter, ventricles, and sinuses), successful prediction

of +GS model correlations using only data from the Basic pre-
processing model in these sampled ROIs would demonstrate that
the main distorting effects of GS regression derive from averag-
ing signals in gray matter voxels. Successful prediction will also
highlight the fact that the equations describe the warping effect
of GS regression correctly and that the reported distortions of
group comparisons should not come as a surprise. Figure 7 shows
the group-average ROI-ROI correlation matrices under the +GS
preprocessing model for the ASD and TD groups in the left col-
umn and the matrices predicted from the sampled ROIs using
the Basic model and the equations from Saad et al. (2013) in
the middle column. Both Pearson correlation and Spearman rank
correlations (scatterplots in right column) reveal that approxi-
mately 95% or better of the variation (R2 values) in the actual
matrices are captured by the predicted matrices for both partic-
ipant groups. These results indicate excellent performance of the
equations, despite using only a subset of the voxel time series that
were concentrated in gray matter. Note further that the agree-
ment of the actual and predicted matrices is substantially higher
than that between the +GS model correlation matrices and those
under the other three models (approximately 50–55% of the
variance shared).

ANATOMICAL LOCATIONS OF THE STRONGEST GROUP DIFFERENCES
UNDER THE +GS VERSUS +GCOR MODELS
Under one method of correcting for global correlations, GS
regression, correlation matrices and group comparisons are dis-
torted. Under another, GCOR, results appear to be qualitatively
similar in many respects to our previously published results using
ANATICOR. In order to facilitate more direct comparisons with
the anatomical locations of our previous results in Gotts et al.
(2012) (the 27 ROIs shown in Figure 3), we calculated whole-
brain connectedness measures for each participant using both the
+GS and +GCOR models and compared across groups using
two-sample t-tests (see also Salomon et al., 2011). Using the same
statistical and cluster-size thresholds as in the previous study,
the results are shown for both models in Figure 8. The results
for the +GCOR model are in good accord with our previous
results, with greater connectedness values in the TD relative to
the ASD group being observed throughout social brain areas, par-
ticularly in limbic-related brain regions (compare to Figure 3).
In contrast, the +GS model yielded many more locations for
which connectedness values were greater for the ASD group
(note the results in cerebellum and striatum) and with relatively
weak overall agreement with either the +GCOR or ANATICOR
results.

EFFECT OF GS REGRESSION AND OTHER PREPROCESSING MODELS ON
“LOCAL” CORRELATIONS
In Figure 1, we highlighted the inter-dependence of long- and
short-range correlations under GS regression. “Long-range” dif-
ferences between groups that are large enough to manifest in the
GS measure will have a tendency to be aliased into the “short-
range” correlations involving the same voxels, although in the
opposite direction as the long-range differences (note the reverse
within-patch group differences in patches 1 and 2 after GS regres-
sion). In the current paper, we evaluated whether this same
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FIGURE 7 | Mathematical prediction of correlation matrices under GS

regression. The left two panels show the group average ROI-ROI
correlation matrices for the TD and ASD groups under the +GS
preprocessing model (shown also in Figure 5). The middle two panels
show the matrices predicted by the equations developed by Saad et al.
(2013) when applied to the time series data under the Basic
preprocessing model (for equations used, see section Mathematical

prediction of GS correlation matrices). Scatterplots of the agreement
between the left and middle panels are shown in the rightmost panels,
with Pearson and Spearman rank correlations shown to quantify the
level of agreement. The predictions are accurate despite only estimating
the distortions under GS regression from 1880 ROIs sampled in the
group brain mask (excluding nuisance tissue signals such as white
matter, ventricles, and sinuses).

phenomenon occurs in our ASD/TD data by calculating “local”
correlations among voxel time series within each of the 27 ROIs
that we have shown exhibit greater long-range correlations for the
TD group (Gotts et al., 2012; see Figure 3). If the groups exhib-
ited equal levels of local correlation prior to GS regression, then
there should be a tendency for significantly greater local corre-
lations in the ASD group after GS regression. If the TD group
exhibits larger local correlations prior to GS regression, then these
differences should be attenuated or reversed after GS regression.
In the event that the ASD group exhibits greater local corre-
lations than the TD group prior to GS regression, then these
differences should become enhanced after GS regression. In sum-
mary, since the long-range differences in these 27 ROIs favor the
TD group, the influence of GS regression should be to shift the
local correlations in these regions toward favoring the ASD group
regardless of the initial direction of these differences. The results
for the four preprocessing models, shown in Figure 9, are pre-
sented left-to-right from ROIs 1 to 27 (listed in the same order
as Table 1 from Gotts et al., 2012). The Basic, +GCOR, and
ANATICOR models all show a tendency for greater local corre-
lations in the TD group, with results significant at p < 0.05 for
3, 6, and 6 ROIs out of the 27, respectively, and no ROIs show-
ing significant differences favoring the ASD group. In contrast,
the +GS model yielded results in 17/27 ROIs that numerically

favored the ASD group (compared to 5, 4, and 3 out of 27 for
the Basic, +GCOR, and ANATICOR models), with 2/27 ROIs
showing significant differences (ROIs 4 and 16: the right ven-
tromedial anterior temporal ROI and the left anterior superior
frontal ROI). The +GS model also yielded results favoring the
TD group in 2/27 ROIs, although with smaller t-values than for
the +GCOR and ANATICOR models. The distributions of these
t-values across ROIs did not differ from normality for any of the
models, permitting their comparison with t-tests. The only two
models that failed to show significant differences with each other
are the +GCOR and ANATICOR models (p < 0.1). The +GS
model yielded t-values that were significantly more negative than
all of the other models [vs. Basic: paired t(26) = −8.7585, p <

3.1055e-09; vs. +GCOR: paired t(26) = −13.2229, p < 4.7379e-
13; vs. ANATICOR: paired t(26) = −11.8368, p < 5.6743e-12]. In
accordance with the predictions articulated above, these results
establish that the same aliasing of long-range correlation differ-
ences into reversed local correlations (as in Figure 1) occurs in
our ASD/TD data. They also provide additional new evidence that
local correlation differences between ASD and TD participants
have a tendency to occur in the same direction as the long-range
correlation differences when GS regression is not applied (i.e.,
favoring the TD participants; e.g., Khan et al., 2013; for further
discussion, see Belmonte et al., 2004; Müller et al., 2011).
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FIGURE 8 | Group comparisons of whole-brain connectedness for the

+GS and +GCOR preprocessing models. Whole-brain connectedness
(i.e., the average correlation of each voxel time series with the rest of
the voxels in the brain mask) was compared separately for the +GS
regression and the +GCOR models. The +GS regression model, shown
in the left plots, led to a larger number of locations with ASD

connectedness values larger than TD values, as well as the absence of
TD > ASD effects in locations found previously using ANATICOR. In
contrast, the +GCOR method of removing global correlations, shown in
the right plots, largely replicated the results found with ANATICOR
(compare to ROIs in Figure 3 from the same sagittal and axial views).
See text for full description.

ANATOMICAL ALIGNMENT OF GROUP DIFFERENCES AND
CORRELATIONS WITH ASD SOCIAL SYMPTOMS
One critical demonstration of our prior study (Gotts et al., 2012)
is that the brain locations showing the largest group differ-
ences between ASD and TD groups are also those that exhibit
the largest associations between correlation level and the sever-
ity of social impairment within the ASD group (indexed by
SRS total score). In particular, among the 3 clusters of ROIs
that we examined, the largest effects of both types (group dif-
ferences and SRS correlations) occurred between the limbic-
related ROIs of Cluster 1 (ROIs 1–7) and the remaining social
brain regions in Clusters 2 and 3 (ROIs 8–27). In the cur-
rent study, we evaluated the agreement of the group differences
and SRS correlations for the four preprocessing models using
these same 27 ROIs (see Figure 3). Results are presented in
Figure 10, with group differences (t-tests: TD-ASD) shown in
the top row and correlation with SRS total score, partialling
Age and IQ (as in our previous study), shown in the bot-
tom row. Symptom correlations in the case of the +GCOR
model were conducted using the participant-specific correlation
matrices under the Basic model, partialling the GCOR value
for each participant along with Age and IQ. Yellow/red col-
ors for the group comparisons indicate greater correlations for
the TD group, blue colors indicate greater correlations for the
ASD group, and light green indicates t-values that fail to reach
a two-tailed significance level of p < 0.05. For the correlations
with SRS within the ASD group, blue colors indicate that low

ROI-ROI correlation levels predict high SRS total scores (i.e.,
lower correlation → higher social impairment), whereas yel-
low/red colors indicate the opposite relationship. Figure 10 shows
that the locations of the strongest group differences (TD > ASD)
are quite similar for the Basic, +GCOR, and ANATICOR mod-
els (between ROIs 1–7 and ROIs 8–27), while the +GS model
shows weak or non-significant differences in these same loca-
tions. The relative lack of results in these locations is in agreement
with the earlier results reported for Prediction 3 and shown in
Figures 6C, 8.

On visual examination, the only preprocessing model of the
four that exhibited good agreement between the group com-
parisons and symptom correlations was the ANATICOR model.
This was examined in more detail statistically with the use of
permutation tests (e.g., Maris and Oostenveld, 2007), as the
column/row interdependencies of the matrices prevented easy
estimation of the appropriate degrees of freedom. The quanti-
tative agreement between the matrices in the top and bottom
rows for each model was first assessed using Pearson correla-
tion. Rather than using the t-values in the top row directly
for these analyses, the group mean difference of the correlation
values (TD-ASD) was used so that the same type of measure
(with the same numerical scale/distribution) was being associ-
ated in both matrix types. After calculation of the r-values for
the group difference and behavioral correlation matrices using
the original data, P-values were estimated empirically by ran-
domly re-labeling participants as either ASD or TD. The group
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FIGURE 9 | Effect of preprocessing model on group comparisons of local

correlation. Group t-tests of local correlation (TD-ASD) under the four
preprocessing models are shown for regions in Gotts et al. (2012) that
exhibited greater long-range correlations for TD participants (ROIs 1-27; see

Figure 3). Dashed red (TD > ASD) and blue horizontal lines (ASD > TD) mark
the p < 0.05 significance level for individual tests. On average, the +GS
model yielded more negative t-values (favoring the ASD participants) relative
to the other three models.

FIGURE 10 | Effect of preprocessing model on the agreement of

group differences and social symptom correlations within the ASD

group. Group t-tests are shown for the four preprocessing models in the
top row using ROIs 1–27 (Figure 3) (see colorbar for scale of t-values to
the right). Partial correlations of SRS total score with ROI-ROI correlation
level within the ASD group, removing shared variation with Age and full

scale IQ, are shown in the bottom row (see colorbar for scale of partial
r -values to the right). Only the ANATICOR model produced significant
correspondence between the group differences and behavioral
correlations solely within the ASD group (see text for details). The +GS
model also failed to exhibit strong group differences using these ROIs,
consistent with the results of Figure 6C.

comparisons and behavioral correlations were re-calculated for
these randomly formed groups along with the corresponding
Pearson r-value between matrices, and the entire randomization
process was repeated 1000 times. The P-value (Type I error) for

the original matrix agreement measures corresponded to the per-
centage of random iterations with an agreement value stronger
than that observed for the original data. The Pearson r-values
(and P-values) for the Basic, +GS, +GCOR, and ANATICOR
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models were −0.0477 (p > 0.3), −0.0198 (p > 0.4), −0.1051
(p > 0.1), and −0.2777 (p < 0.027), respectively. The signifi-
cant negative r-value for the ANATICOR model indicates that
ROI pairs with group differences favoring the TD group tended
to be the same ROI pairs as those with a significant negative
correlation with SRS score, as originally reported (Gotts et al.,
2012).

The anatomical agreement of the group differences and symp-
tom correlations could also be examined in a whole-brain fash-
ion using the voxel-wise whole-brain connectedness values for
each participant under the four preprocessing models (see also
Figure 8 in the current paper; Figures 2, 5 in Gotts et al., 2012).
These results are shown in Figure 11 using a single axial slice that
captures the largest overlap of the two effects for the ANATICOR
model (z = −14). As previously reported, the ANATICOR model
shows a good agreement between the two effects, with spatial
overlap of the results in three out of seven of the Cluster 1 ROIs
(ROIs 1–7). Isolated locations of overlap between the two effects
also exist for the Basic and +GCOR models (e.g., in the ventro-
medial prefrontal cortex), although the overall strength of the SRS
correlations is notably weaker for these models. Group differences
and SRS correlations were both robust when using whole-brain
connectedness with the +GS model. However, they had little or
no spatial overlap with one another. Furthermore, it was not just
the group comparisons that were altered by GS regression rela-
tive to the other models: the SRS correlations solely within the

ASD group were also strongly altered. This last effect underscores
the point that the warping effect of GS regression on correlation
matrices can be just as problematic for analyses involving single
groups of participants.

DISCUSSION
The main goal of the current paper was to examine several theo-
retically motivated predictions regarding the detrimental impact
of GS regression on group comparisons of functional connec-
tivity. We tested these predictions in our previously published
resting-state data of ASD and TD participants relative to three
other preprocessing models of interest, including our original
ANATICOR approach and a novel alternative to GS regression
that we refer to as GCOR (see also Saad et al., 2013). In summary,
we have demonstrated the following points:

(1) GS regression does not simply re-center and/or re-scale a
matrix of correlation values. It “warps”the values differen-
tially in different voxel/ROI pairs as a function of the initial
covariance matrix (see also Saad et al., 2012, 2013). This
effect is not small. It reduced the Spearman rank correlations
of matrices pre- and post-GS regression to approximately
0.7, sharing around 50% of the variance. This was not sim-
ply a function of removing unwanted global artifacts that
influence BOLD fMRI. Results from two alternative meth-
ods, our ANATICOR approach that models physiological

FIGURE 11 | Effect of preprocessing model on the agreement of

group differences and ASD social symptom correlations using

whole-brain connectedness. Whole-brain connectedness was
compared between groups for each of the four preprocessing models
(top row; see colorbar to right for scale and direction of effects).
Whole-brain connectedness for the ASD participants was also
correlated with SRS total score, partialling Age and IQ, for the four
models (bottom row; see colorbar to the right for scale and direction

of effects). While select locations overlapped between the two effects
for the Basic and +GCOR models, the best correspondence was still
obtained under the ANATICOR model. The two effects were robust
individually under the +GS model, but they exhibited little spatial
overlap with each other and only minor overlap with the effects under
the other models (e.g., TD > ASD in the ventromedial prefrontal
cortex). Only the +GS model exhibited prominent reversed effects
(ASD > TD) for the group comparisons (see also Figure 8).
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nuisance signals more explicitly and GCOR that partials the
influence of the global level of correlation from the single-
participant correlation values, were not altered comparably,
with Spearman rank correlations of approximately 0.9 or
higher (sharing better than 80% of the variance). The dis-
tortion of correlation values under GS regression was also
well predicted by our prior mathematical analyses (corre-
lations above 0.97 and 95% of variance accounted for),
despite the fact that signals were not included from nui-
sance brain tissue compartments (white matter, ventricles,
sinuses). Given that the distortion is a systematic function of
the initial covariance matrix, results are expected to replicate
well across labs and studies. In fact, the use of GS regres-
sion does increase the consistency of correlation estimates
and correlation differences due to a reduction in brain-wide
noise sources when such sources are otherwise unaccounted
for (e.g., Fox et al., 2009; Keller et al., 2013). However this
increased consistency is not a justification for the use of GS
regression because it comes at the cost of rendering con-
trasts between groups with differing correlation structures
uninterpretable, as illustrated in theory (Saad et al., 2012,
2013) and in practice here. Even single-group results will
become distorted with GS regression (see bottom panels of
Figures 10, 11).

(2) GS regression substantially increases the number of loca-
tions that demonstrate greater correlation for ASD relative
to TD participants, both long-range and local. Indeed, under
GS regression the average t-value observed across all regions
sampled (N = 1880) was significantly different from zero,
favoring the ASD group. Greater correlations for the ASD
relative to the TD group were not prominently observed in
any of the other preprocessing models. Furthermore, the two
alternative preprocessing methods that address more global
artifacts (ANATICOR, GCOR) produced qualitatively similar
results to one another, with reasonable agreement about the
direction of effects and regions involved as in another recent
whole-brain study of functional connectivity in ASD that
did not apply GS regression (e.g., Anderson et al., 2011b).
The locations involved also agree well with task-based stud-
ies of evoked responses in ASD and TD participants that
employ social and linguistic stimuli (e.g., Castelli et al., 2002;
Just et al., 2004; Di Martino et al., 2009; Kaiser et al., 2010;
Lombardo et al., 2010; Dinstein et al., 2011; Weisberg et al.,
2012). In contrast, a recent whole-brain resting-state study of
ASD that applied GS regression found a mixture of increased
and decreased correlations relative to TD participants (Rudie
et al., 2013). Indeed, the negative correlations present under
GS regression for both groups led to separate effects in both
directions for the positive versus the negative correlations.
Given the results reported in the current paper, it is not
clear whether the greater correlations observed for the ASD
group in the Rudie et al. study are real or produced by GS
regression.

(3) GS regression has a tendency to distort group comparisons
most in locations that exhibit the strongest effects under
other preprocessing models. ROIs that elicited the largest
average seed-based correlation differences were the same

ROIs for which the average correlation differences were most
attenuated under GS regression (Figure 6C). When examin-
ing correlation differences among the 27 ROIs that yielded
the largest effects in our prior study (Gotts et al., 2012), group
differences were also mostly non-significant after GS regres-
sion (Figure 10). As discussed in the introduction, this occurs
for a relatively simple mathematical reason: whole-brain con-
nectedness is a direct function of the fit to the GS. The process
of GS regression is to subtract this portion of variation from
the results. This is not to say that all studies that employ
GS regression will fail to find group differences similar to
what we report here for ANATICOR or GCOR. Indeed, we
already know from functional connectivity studies using a
more restricted number of seed locations that a similar sub-
set of results can be obtained when using GS regression (e.g.,
Kennedy and Courchesne, 2008; Ebisch et al., 2011; von dem
Hagen et al., 2012; see Di Martino et al., 2013, for related
discussion). However, we would expect such results to be
larger in amplitude if an alternative such as GCOR were used,
and we would also expect convergence toward the pattern
of mixed increases and decreases if more seed locations are
used.

(4) Locations exhibiting group differences and ASD social symp-
tom correlations no longer overlap with one another after
GS regression. Using the matrix of 27 ROIs from our
previous study to assess the quantitative agreement of
these two effects, the correlation was near zero after GS
regression, whereas there was a significant level of agree-
ment using the ANATICOR model (r = −0.277, p < 0.03)
(Figures 10, 11).

Taken together, our results strongly argue against using GS
regression when comparing correlation values between groups
of participants. It is difficult to avoid the conclusion that noth-
ing can be demonstrated unequivocally about either the loca-
tion or direction of group differences when this form of “de-
noising” is applied. Given the further alteration of the SRS
correlations solely within the ASD group (Figures 10, 11), it is
clear that the “warping” effects of GS regression on individ-
ual correlation matrices may also affect results obtained within
single groups of participants (e.g., whole-brain parcellations of
functional areas/networks that utilize correlation measures). It
may therefore be prudent to re-examine such results with an
alternative approach, perhaps with GCOR or preferably with
de-noising approaches that avoid signals from the gray mat-
ter regions of interest (e.g., Jo et al., 2010; Anderson et al.,
2011a).

IS THERE EVER A LEGITIMATE REASON TO APPLY GS REGRESSION?
While our conclusions here regarding GS regression are quite
negative, we would like to emphasize that there are good rea-
sons for examining—and perhaps removing—global fluctuations
in fMRI time series. In many respects, the Basic preprocessing
model produced highly similar matrices to those produced by
ANATICOR and GCOR; the Spearman rank correlations are all
above 0.9 for both the average matrices and those of individual
participants. However, the group comparisons using the Basic
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model failed to yield robust results, and it is worth consider-
ing why this occurred. The effect of removing global sources
of variation, either by modeling physiological variation directly
(ANATICOR) or partialling out the influence of the global level
of correlation (GCOR), was not primarily to modulate the aver-
age correlation values for the ASD and TD groups (see results
related to Prediction 1). Rather, the larger impact appeared to
be on the variation across participants for a given pair of ROIs
(as in Figure 4, top panel). A relatively small number of par-
ticipants have large global levels of correlation in both groups
(Figure 4, bottom panel), which when comparing the two groups
has the effect of making the standard deviations that contribute
to the denominator of the t-values large and thus the t-values
themselves become small and non-significant. Attenuating the
variation in each group then has the effect of shifting all of the t-
values to be more positive (Figure 6A). Indeed, this is one of the
primary motivations for applying GS regression, and it demon-
strates that if global artifacts in the data are not modeled and
removed sufficiently, then one will be at risk of making Type II
statistical errors.

One possible example of doing too little to remove global
artifacts is provided in the recent study by Tyszka et al. (2013).
These authors did an admirable job of assessing the impact of
head motion on group differences, which is one source of global
artifact in fMRI time series. They found mostly weak and non-
significant group differences between ASD and TD participants,
smaller on average than the influence of high versus low lev-
els of head motion. This led them to conclude that resting-state
correlations in ASD participants are largely typical. However,
no aspect of the preprocessing in this study directly addressed
global artifacts other than head motion, and GS regression was
not applied. Physiological variation will not typically be well
removed by the popular bandpass filtering step (Tyszka et al.,
2013, removed independent components with more than 33%
of spectral power above 0.1 Hz), since the problematic frequen-
cies (∼0.3 Hz for respiration cycles and ∼0.9–1 Hz for cardiac
cycles) have already been aliased to frequencies below the Nyquist
frequency (0.25 Hz in Tyszka et al. for TR = 2 s). Slower fluctua-
tions in the BOLD response that result from spontaneous breath
withholding during fMRI scans, due to end-tidal CO2 effects on
BOLD measurements (Chang and Glover, 2009) and that are
modeled by our RVT regressors (Birn et al., 2008), can have
quite a large impact on resting-state correlations (>20–30% of
total variance in some of our participants; see Supplementary
Figure 1, Gotts et al., 2012). Since RVT regressors have most
of their power (>90%) in frequencies below 0.1 Hz, bandpass
filtering below 0.1 Hz will also fail to address this source of vari-
ation. Overall, one expects a preprocessing pipeline that does not
address more global physiological artifacts to fail to find strong
group differences, as shown in the supplement to our original
paper (Gotts et al., 2012) and in the Basic model of the current
paper (using regressors for motion, ventricles, and local white
matter). In that sense, the results of Tyszka et al. (2013) are exactly
in accord with our expectations. It would be quite useful to re-
examine their results with a method such as GCOR to establish
whether the t-values would shift to be more positive and signif-
icant as in our current study. Hardware artifacts, addressed by

the local white matter regressor in all of the models in the cur-
rent study (see Jo et al., 2010, 2013 for discussion), are another
source of relatively global artifact that has received much less
attention than merited. We agree with advocates of GS regression
that removing the GS will be expected to attenuate all of these
more global artifacts in the data, leading to stronger group dif-
ferences, higher reliability of results, etc. This is the case for our
current results relative to the Basic model. However, it will do
so at the high cost of warping the matrices of interest, prevent-
ing any straightforward conclusions about group comparisons.
Therefore, we cannot recommend its application, especially when
cleaner alternative methods exist for removing global artifacts—
including the distant-dependent effects of transient head motion
documented by Power et al. (2012) and addressed recently in Jo
et al. (2013).

GCOR AS AN ALTERNATIVE TO GS REGRESSION
The GCOR model yielded a pattern of group differences that
largely replicated what we reported originally for ANATICOR.
The strongest group differences were between limbic-related
(ROIs 1–7) and non-limbic social brain regions (ROIs 8-27)
(Figures 8, 10, 11). If anything, the group comparisons under
GCOR were larger in magnitude. However, it failed to replicate
the correlations with SRS score within the ASD group. This fail-
ure was not entirely unanticipated, since the approach explicitly
alters the variation in individual correlation values around the
mean (or median), which is the same as the primary measure
used for the SRS correlations. Under the GCOR approach, there
is no a priori way to correctly partition the global level of corre-
lation into different sources, some of which should be removed
(global artifacts such as head motion, physiological and hard-
ware artifacts) and some of which should not (neurally generated
global variation; e.g., Schölvinck et al., 2010). It is this issue that
prevents us from enthusiastically endorsing it for general use as
a covariate. However, its good performance for the group com-
parisons in the current study suggests that it may be useful for
conducting group comparisons in seed-based correlation studies
when physiological de-noising is not possible due to lack of car-
diac and respiration measures. It is also useful as a diagnostic tool
to assess the distribution of global correlation levels in different
groups. With subsequent work on this and other forms of data
standardization (e.g., Yan et al., 2013), a post-hoc correction that
works well for both group comparisons and symptom correla-
tions may eventually be discovered, preserving datasets that were
acquired without independent physiological measures. However,
any time that nuisance measures are taken from the data that
they are intended to clean, the risk is high for collinearity with
the grouping variable, necessarily leading to GS-regression-like
effects to some degree (Saad et al., 2013). It will be essential to
examine any such methods with both simulations and mathemat-
ical analyses for the biases that they can introduce into single- and
multi-group analyses. For example, in the current GCOR method,
it is critical to examine the issue of data centering and to ver-
ify that the distributions of the covariates in the two groups are
substantially overlapping (see Figure 4). If covariate distributions
are non-overlapping in the two groups and a single grand mean
center for the covariate is used, GCOR will introduce distortions
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similar to those introduced by GS regression (Saad et al., 2013),
although such distortions will likely fail to reach significance
because the covariate is highly collinear with the grouping vari-
able. If group-specific centering is chosen (as in the current
study), then it is possible that the difference in average correla-
tion between the two groups is based on an artifactual source
of global variation rather than a real neural difference. The best
current alternative is to collect independent measures of physio-
logical variation, modeling their influences separately. Given the
impact that these preprocessing choices can have on the results
that one obtains, it is difficult to overstate the importance of col-
lecting heart rate and respiratory waveforms at the time of data
acquisition.

ARE STUDIES OF FUNCTIONAL CONNECTIVITY DOOMED BY
ARTIFACTS?
One reaction to the data that we have presented is that the pattern
of data one finds is strongly influenced by choice of preprocess-
ing model. Without knowing which model is the correct one to
use, how can we be confident in any of the results? Our reac-
tion to the data is more optimistic than that. For three of the
models examined (Basic, GCOR, and ANATICOR), the over-
all ROI-ROI structure of the correlation matrices and group
comparisons was remarkably similar across models. One would

not be led down a substantially different theoretical pathway
by either of the two non-GS models that address global arti-
facts. Instead, our results highlight the importance of address-
ing all of the major classes of time-varying artifacts that MR
methods research has identified for BOLD fMRI (i.e., head
motion, physiological, and hardware). In principle, many pre-
processing models - including ICA-based models, can do a
sufficient job at addressing this family of artifacts. We view
certain alternatives to standard regression-based data cleaning,
such as multi-echo fMRI with ICA to sort BOLD from non-
BOLD variation (Kundu et al., 2012), as extremely promising.
Future studies comparing such alternatives with single-echo fMRI
that is acquired along with independent physiological measures
should help to clarify which data-cleaning approaches work the
best.
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Background: Systematic differences in functional connectivity MRI metrics have
been consistently observed in autism, with predominantly decreased cortico-cortical
connectivity. Previous attempts at single subject classification in high-functioning autism
using whole brain point-to-point functional connectivity have yielded about 80% accurate
classification of autism vs. control subjects across a wide age range. We attempted to
replicate the method and results using the Autism Brain Imaging Data Exchange (ABIDE)
including resting state fMRI data obtained from 964 subjects and 16 separate international
sites.

Methods: For each of 964 subjects, we obtained pairwise functional connectivity
measurements from a lattice of 7266 regions of interest covering the gray matter
(26.4 million “connections”) after preprocessing that included motion and slice timing
correction, coregistration to an anatomic image, normalization to standard space, and
voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter
signals. Connections were grouped into multiple bins, and a leave-one-out classifier
was evaluated on connections comprising each set of bins. Age, age-squared, gender,
handedness, and site were included as covariates for the classifier.

Results: Classification accuracy significantly outperformed chance but was much lower
for multisite prediction than for previous single site results. As high as 60% accuracy was
obtained for whole brain classification, with the best accuracy from connections involving
regions of the default mode network, parahippocampaland fusiform gyri, insula, Wernicke
Area, and intraparietal sulcus. The classifier score was related to symptom severity, social
function, daily living skills, and verbal IQ. Classification accuracy was significantly higher
for sites with longer BOLD imaging times.

Conclusions: Multisite functional connectivity classification of autism outperformed
chance using a simple leave-one-out classifier, but exhibited poorer accuracy than for
single site results. Attempts to use multisite classifiers will likely require improved
classification algorithms, longer BOLD imaging times, and standardized acquisition
parameters for possible future clinical utility.

Keywords: functional connectivity, fcMRI, classification, autism, ABIDE

INTRODUCTION
Brain imagingclassification strategies of autism have used
information from structural MRI (Ecker et al., 2010a,b; Jiao
et al., 2010; Uddin et al., 2011; Calderoni et al., 2012; Sato
et al., 2013), functional MRI (Anderson et al., 2011d; Coutanche
et al., 2011; Wang et al., 2012), diffusion tensor MRI (Lange

et al., 2010; Ingalhalikar et al., 2011), positron emission tomog-
raphy (Duchesnay et al., 2011), and magnetoencephalography
(Roberts et al., 2010, 2011; Tsiaras et al., 2011; Khan et al.,
2013). Such approaches have been undertaken for several clini-
cal objectives. Sensitive and specific biomarkers for autism may
contribute potentially useful biological information to diagnosis,
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prognosis, and treatment decision-making. It is hoped that imag-
ing biomarkers may also help delineate subtypes of individu-
als with autism that may have common brain neuropathology
and respond to similar treatment strategies, although different
methodology will likely be required for subgrouping individu-
als than for classifying individuals by diagnosis. Such quantitative
biomarkers may also serve as a metric for biological efficacy
of potential behavioral or pharmacologic interventions. Finally,
imaging biomarkers may help identify pathophysiologic mecha-
nisms of autism in the brain that can guide investigations into the
specific neural circuits, developmental windows, and genetic or
environmental factors that may result in improved treatments.

Abnormal functional connectivity MRI (fcMRI) has been
among the most replicated imaging metrics in autism. The pro-
posed basis for fcMRI is that connected brain regions are likely
to exhibit synchronized neural activity, which can be detected as
covariance of slow fluctuations in Blood Oxygen Level Dependent
(BOLD) signal between the regions. Initial reports of decreased
functional connectivity in autism by three independent groups
(Just et al., 2004; Villalobos et al., 2005; Welchew et al., 2005) have
been followed by more than 50 primary reports of abnormal func-
tional connectivity in autism in the literature, derived from fMRI
data both in a resting state and acquired during cognitive tasks
(Anderson, 2013).

Most reports show decreases in connectivity between dis-
tant brain regions, including nodes of the brain’s default mode
network (Cherkassky et al., 2006; Kennedy and Courchesne,
2008; Wiggins et al., 2011), social brain regions (Gotts et al.,
2012; von dem Hagen et al., 2013), attentional regions (Koshino
et al., 2005), language regions (Dinstein et al., 2011), interhemi-
spheric homologues (Anderson et al., 2011a), and throughout
the brain (Anderson et al., 2011d). Nevertheless, some reports
have also shown abnormal increases in functional connectiv-
ity in autism (Muller et al., 2011) or unchanged connectivity
(Tyszka et al., 2013). In particular, higher correlation between
brain regions has been observed in negatively correlated connec-
tions (Anderson et al., 2011d), corticostriatal connections (Di
Martino et al., 2011),visual search regions (Keehn et al., 2013),
and brain network-level metrics (Anderson et al., 2013a; Lynch
et al., 2013).

Despite the large and growing body of reports of abnormal
functional connectivity in autism, uncertainty remains about the
spatial distribution of decreased and increased connectivity and
how this relates to the clinical heterogeneity of autism spectrum
disorders (ASD). One of the challenges for answering these ques-
tions has been fractionation of the available data into individual
site-specific studies with relatively small sample sizes. There is a
need for analysis of multisite datasets that can improve statistical
power, represent greater variance of disease and control sam-
ples, and allow replication across multiple sites with differential
subject recruitment, imaging parameters, and analysis methods.
Ultimately, clinically useful biomarkers will need to be repli-
cated in diverse acquisition conditions that reflect community
and academic imaging practices.

The advent of cooperative, publicly available datasets for
resting state functional MRI is an important step forward.
Multiple such datasets have now been released including the 1000

functional connectome project (Biswal et al., 2010), the ADHD
200 Consortium dataset (ADHD-200_Consortium, 2012), and
most recently the Autism Brain Imaging Data Exchange (ABIDE)
(Di Martino et al., 2013), consisting of images from 539 indi-
viduals with ASD and 573 typical control individuals, acquired
at 16 international sites. In the present study, we evaluate clas-
sification accuracy of whole-brain functional connectivity across
sites, and determine which abnormalities in connectivity across
the brain are most informative for predicting autism from typical
development, which imaging acquisition features lead to greatest
accuracy, whether functional connectivity abnormalities covary
with metrics of disease severity, and the extent to which abnormal
functional connectivity is replicated across sites.

MATERIALS AND METHODS
SUBJECT SAMPLE
ABIDE consists of 1112 datasets comprised of 539 autism and
573 typically developing individuals (Di Martino et al., 2013).
Each dataset consists of one or more resting fMRI acquisitions
and a volumetric MPRAGE image. All data are fully anonymized
in accordance with HIPAA guidelines, with analyses performed
in accordance with pre-approved procedures by the University of
Utah Institutional Review Board. All images were obtained with
informed consent according to procedures established by human
subjects research boards at each participating institution. Details
of acquisition, informed consent, and site-specific protocols are

Subject demographics for individuals satisfying inclusion cri-
teria are shown in Table 1. Six different testing batteries were
used to calculate verbal IQ and performance IQ, respectively.
In addition to the IQ measures, the following measures were
included in correlations with the classifier score (see Table 1
for summary of behavioral measures):the Social Responsiveness
Scale (Constantino et al., 2003) is a measure of social func-
tion and the Vineland Adaptive Behavior Scales (Sparrow et al.,
1984) is a measure of daily functioning. See the ABIDE web-
site for more information on the specific behavioral measures
used. For handedness, categorical handedness (i.e., right-handed,
left-handed, or ambidextrous) was used in the leave-one-out clas-
sifier (see details below). In the case that only a quantitative
handedness measure was reported, positive values were con-
verted to right-handed, negative values to left-handed, and a value
of zero to ambidextrous. Fifteen subjects lacked a categorical
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available at http://fcon_1000.projects.nitrc.org/indi/abide/.
Inclusion criteria for subjects were successful preprocessing

with manual visual inspection of normalization to MNI space
of MPRAGE, coregistration of BOLD and MPRAGE images, seg-
mentation of MPRAGE image, and full brain coverage from MNI
z > −35 to z < 70 on all BOLD images. Inclusion criteria for sites
were a total of at least 20 subjects meeting all other inclusion crite-
ria. A total of 964 subjects met all inclusion criteria (517 typically
developing subjects and 447 subjects with autism from 16 sites).
Each site followed different criteria for diagnosing patients with
autism or ascertaining typical development, however, the major-
ity of the sites used the Autism Diagnostic Observation Schedule
(Lord et al., 2000) and Autism Diagnostic Interview-Revised
(Lord et al., 1994). Specific diagnostic criteria for each site can
be found at fcon_1000.projects.nitrc.org/indi/abide/index.html.
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Table 1 | Subjects included from the ABIDE sample with demographic information.

Age ADI-R social ADI-R verbal ADOS total Verbal IQ Performance IQ SRS total Vineland

Number of
subjects

964 348 349 348 781 796 335 201

Control (426 M, 91 F) 0 0 32 413 425 160 80

Autism (396 M, 51 F) 348 349 316 367 371 175 121

Control mean
±SD

16.9 ± 7.56 NA NA 1.25 ± 1.37 112 ± 13.3 108 ± 13.3 21.2 ± 16.2 105 ± 11.6

(Control
range)

(6.47–56.2) NA NA (0–4) (67–147) (67–155) (0–103) (77–131)

Autism mean
±SD

16.6 ± 8.1 19.7 ± 5.65 15.9 ± 4.55 11.9 ± 3.81 105 ± 17.4 106 ± 17.2 91.6 ± 30.6 75 ± 13.2

(Autism
range)

(7–64) (2–30) (2–26) (2–22) (50–149) (59–157) (6–164) (41–106)

and quantitative measure of handedness. In those cases, a near-
est neighbor classification function (ClassificationKNN.m in
MATLAB) was used to assign categorical handedness. For the
classifier, 862 subjects were right-handed, 95 were left-handed,
and 7 were ambidextrous.

BOLD PREPROCESSING
Preprocessing was performed in MATLAB (Mathworks, Natick,
MA) using SPM8 (Wellcome Trust, London) software. The fol-
lowing sequence of preprocessing steps was performed:

(1) Slice timing correction.
(2) Realign and reslice correction of motion for each volume

relative to initial volume.
(3) Coregistration of BOLD images to MPRAGE anatomic

sequence.
(4) Normalization of MPRAGE to MNI template brain, with

normalization transformation also applied to coregistered
BOLD images.

(5) Segmentation of gray matter, white matter, and CSF com-
ponents of MPRAGE image (thorough clean).

(6) Voxelwisebandpass filter (0.001–0.1 Hz) and linear detrend

(a) The lower limit of 0.001 Hz was chosen in order to be
certain as much neural information was included as
possible (Anderson et al., 2013b). The linear detrend
removed much of the contribution of low frequencies
given the relatively short time series available in the
dataset.

(7) Extraction of mean time courses from the restriction masks
applied to BOLD images from ROIs consisting of:

(a) CSF segmented mask with bounding box −35 < x <

35, −60 < y < 30, 0 < z < 30.
(b) White matter segmented mask overlapping with 10 mm

radii spheres centered at x = −27, y = −7, z = 30,
x = 27, y = −7, z = 30.

(c) Mask of scalp and facial soft tissues (Anderson et al.,
2011b).

(8) Voxelwise regression using glmfit.m (MATLAB Statistics
Toolbox) software of CSF, WM, Soft tissue, and 6 motion
parameters from realignment step from time series of each
voxel of BOLD images.

(9) Motion scrubbing (Power et al., 2012) of framewise dis-
placement and DVARS with removal of volumes before
and after a root-mean-square displacement of >0.2 mm for
either parameter and concatenation of remaining volumes.
In 86.2% of the participants more than 50% of the volumes
remained after motion scrubbing. Among the remaining
participants with fewer than 50% retained volumes, the
majority belonged to the autism group (8.8%, compared to
5.0% from the typically developing group; p = 0.02). The
groups differed in the number of retained volumes when
considering the entire sample of 964 subjects (t = 4.11,
p < 0.001) and when considering only those with greater
than 50% of the volumes remaining (t = 2.04, p = 0.04).

(10) No spatial smoothing was performed. The global mean sig-
nal and gray matter time courses were not regressed from
voxelwise data (Saad et al., 2012, 2013; Jo et al., 2013).

ROI ANALYSIS
From preprocessed BOLD images for each subject, mean time
course was extracted from 7266 gray matter ROIs. These ROIs
from a lattice covering the gray.nii image (SPM8) from z = −35
to z = 70 at 5-mm resolution, with MNI coordinates of centroids
previously reported (Anderson et al., 2011d). The ROIs averaged
4.9 ± 1.3 standard deviation voxels in size for 3 mm isotropic
voxels. A 7266 × 7266 matrix of Fisher-transformed Pearson cor-
relation coefficients was obtained for each subject from the ROI
timecourses representing an association matrix of functional con-
nectivity in each subject between all pairs of ROIs. Each pair of
ROIs is termed a “connection” for the present analysis.

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 599 | 74

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Nielsen et al. Multisite functional connectivity classification

LEAVE-ONE-OUT CLASSIFIER
The classification approach is summarized in Figure 1. Overall,
a leave-one-out classifier was used to generate a classification
score for each of the 964 subjects, leaving out one subject at a
time and calculating the classification score for the left out sub-
ject. The classification approach followed the approach reported
previously, with slight modifications (Anderson et al., 2011d).
First, the correlation measurements for the remaining 963 sub-
jects were extracted for one of the 26.4 million connections from
the 7266 × 7266 association matrix described above (Figure 1,
Step 1). Second, a general linear model was fit to the measure-
ments separately for autism (red fit line in Figure 1, Step 2) and
control subjects (black fit line in Figure 1, Step 2) for the given
connection with covariates of subject age, age-squared, gender,
and handedness. From these data, estimated values for the left out
subject for this connection were calculated based on the left out
subject’s age, gender, and handedness. A value was estimated sep-
arately from the remaining autism subjects (blue X in Figure 1,
Step 2) and remaining control subjects (green X in Figure 1,
Step 2).

Because each site used slightly different scanning hardware
and parameters that may systematically bias results, the estimated
values of the left out subject (blue and green X in Figure 1,
Step 2) were adjusted by adding the difference of the site’s mean
value for that connection (minus the left out subject) from the
mean value for that connection from all other sites. Finally, the
actual value for the left out subject for the connection (green
dot in Figure 1, Step 2) was subtracted from the estimated value
obtained from autism subjects (blue vertical line on Figure 1,
Step 2) and from the estimated value obtained from control sub-
jects (green vertical line in Figure 1, Step 2). The difference of
the absolute value of these two differences was then multiplied
by the F-statistic for the difference between the remaining autism
and control subjects. This process was iteratively carried out for
all 26.4 million connections and then averaged across the 7265
connections in which each of 7266 ROIs participates. Then the
averaged values for each of the 7266 ROIs were summed. The
summed value was equal to the classification score for the sub-
ject. More negative values for the classification score predict the
left out subject was a control subject, and more positive values
for classification score predict the left-out subject was an autism
subject.

BINS OF “CONNECTIONS”
Connections were grouped into bins in several different ways
to aggregate groups of connections to test for accuracy in dis-
criminating autism from control subjects. First, a measurement
of correlation strength was obtained for each connection from
961 independent subjects from the 1000 Functional Connectome
project using identical preprocessing steps (see y-axis of Figure 6).
Subjects included in this sample have been previously described
(Ferguson and Anderson, 2011). Second, Euclidean distance
between each pair of ROIs was calculated from the centroid coor-
dinates for the ROIs (see x-axis of Figure 6). Connections were
grouped into 2-dimensional bins based on the strength of the
correlation and the distance between the ROIs, with bin spac-
ing of 0.05 units of Fisher-transformed correlation and 5-mm

FIGURE 1 | Summary of classification approach. Step 1, Association
matrices corresponding to the intrinsic connectivity between each pair of
7266 gray matter regions (about 26.4 million connections) are estimated

(Continued)
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FIGURE 1 | Continued

for the leftoutsubject and the963 remainingsubjects.Step2,Plotdepictingan
example connection (i.e., single cell of the possible 26.4 million cells from the
association matrices in Step 1) for the 964 subjects. The plot includes axes for
correlation strength and age, however, the plot represents a multidimensional
space that includes age-squared, gender, and handedness as covariates.
Black line, fit line for the control group; red line, fit line for the autism group;
green data point, left out subject (a control subject in this example); green X,
estimated value for the control group; blue X, estimated value for autism
group; green vertical line, difference between actual connection strength
value for left out subject and estimated value for control group; blue vertical
line, difference between actual connection strength value for left out subject
and estimated value for autism group. Steps 3 and 4 are described in the text.

distance. The results for accurately classifying the subjects using
this binning system are summarized in Figure 6.

A separate binning scheme was performed during the evalu-
ation of a leave-one-out-classifier. For each left out subject, sets
of connections were calculated that satisfied a two-tailed t-test
between remaining autism and control subjects with p-values
less than 0.01, 0.001, 0.0001, and 0.00001. These sets of con-
nections varied slightly for each left out subject, since no data
that can reflect the value of the left-out subject’s connectivity
measurement can be used in the classifier.

Classification accuracy, sensitivity, and specificity were cal-
culated for the set of connections that differed between autism
and control subjects at p-values of 0.01, 0.001, 0.0001, 0.00001
(Figure 3A). We used this last binning system because there is
a tradeoff in using many connections in constructing the classi-
fier scores and using fewer but more informative connections. We
wanted to determine which thresholded bin yielded the highest
accuracy.

STATISTICAL ANALYSES
For each bin of connections, a vector of 964 classification scores
was obtained (one for each left out subject) and the classification
score was thresholded at 0 (in the case of the strength/Euclidean
distance bins, or at a threshold selected to optimize the area under
a receiver operating characteristic curve for the case of the bins
determined by p-values. Predicted diagnosis (autism vs. control)
was compared to the actual diagnosis of each left out subject, and
significant classification accuracy was determined by a binomial
distribution. For 964 subjects, predicting 509 subjects (52.8%)
correctly corresponded to an uncorrected p-value of less than
0.05, and predicting 531 subjects (55.1%) correctly corresponds
to p-value of less than 0.001. Two-proportion z-tests were used
to test the following: (1) whether there was a group difference in
the proportion of subjects with less than 50% of the BOLD vol-
umes remaining after motion scrubbing (results above in BOLD
preprocessing section), (2) whether classification accuracy differed
between the eyes open and eyes closed subjects, (3) whether clas-
sification accuracy differed between the male and female subjects,
and (4) whether accuracy increased when considering only those
subjects with greater than 50% of the BOLD volumes remaining
after motion scrubbing, rather than all 964 subjects. Two-sample
t-tests were used to determine if there was a group difference
in the number of remaining volumes (results above in BOLD
preprocessing section).

FIGURE 2 | Total accuracy, sensitivity, and specificity for leave-one-out

classifier in 964 subjects. The total accuracy, sensitivity, and specificity are
shown when all 26.4 million connections were included in the classifier and
then for different p-value thresholds that determine which connections are
included in the classifier.

RESULTS
First, we investigated the overall accuracy, sensitivity, and speci-
ficity of the leave-one-out classifier for all 964 subjects in
the ABIDE consortium (Figure 2) and the 16 data collection
sites individually (Figure 3). For the entire ABIDE consortium,
we achieved the highest overall accuracy (60.0%), sensitivity
(62.0%), and specificity (58.0%) when connections were included
in the classification algorithm if group differences for the connec-
tion met a p-value threshold of less than 10−4; whereas the lowest
accuracy (55.7%), sensitivity (57.1%), and specificity (54.4%)
were found when all 26.4 million connections were included in
the leave-one out classifier. When considering only those sub-
jects with greater than 50% of the BOLD volumes remaining
after motion scrubbing, the accuracy for the five different p-value
thresholds increased between 0.6% and 3.1%, although the dif-
ference was not significant compared to the accuracy for all 964
subjects (p > 0.18). No difference in classification accuracy was
found between subjects who had their eyes open during the scan
vs. those who had their eyes closed, after correcting for multi-
ple comparisons using an FDR of q < 0.05. Also, no difference in
classification accuracy was found between male and female sub-
jects, after correcting for multiple comparisons using an FDR of
q < 0.05.

We also compared the accuracy, sensitivity, and specificity
across sites using different p-value thresholds for determining
which connections to include in the leave-one-out classifier. The
accuracy, sensitivity, and specificity varied at each site depending
on the p-value threshold, however, we consistently achieved the
highest accuracy at SBL (mean accuracy = 69.3%), USM (mean
accuracy = 69.1%), Stanford (mean accuracy = 67.7%), and
Pitt (mean accuracy = 65.4%); the highest sensitivity at SDSU
(90.0%), Leuven (88.9%), SBL (84.0%), and Stanford (74.4%);
and the highest specificity at USM (79.5%), Olin (75.0%), UCLA
(71.5%), and KKI (70.6%).

Next, we determined whether the site’s sample size or the num-
ber of imaging volumes from a single run related to the site’s clas-
sification accuracy (Figure 4). The number of imaging volumes
was positively correlated with accuracy (r = 0.55, p = 0.03).
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FIGURE 3 | Accuracy, sensitivity, and specificity for each data

acquisition site. Accuracy (A) is shown for each data acquisition site
at different p-value thresholds. The sensitivity and specificity (B) are

shown for each data acquisition site at a threshold of p < 0.0001 (i.e.,
the threshold at which optimal total accuracy was obtained in
Figure 2).

If the number of imaging volumes post-scrubbing was aver-
aged across site, the relationship between number of imaging
volumes and accuracy was no longer significant. Sample size
did not correlate with site’s classification accuracy (r = 0.17,
p = 0.53).

We then determined which brain regions and connection char-
acteristics accurately classified the ABIDE subjects. In Figure 5,
the following brain regions (and the 7265 connections in which
they were involved) resulted in the highest accuracy: parahip-
pocampaland fusiform gyri, insula, medial prefrontal cortex, pos-
terior cingulate cortex, Wernicke Area, and intraparietal sulcus.
In Figure 6, two clusters of bins resulted in the highest accuracy.
The first cluster included bins with short-range (10–25 mm) and
medium-strength connections (0.3 < z < 0.5). The second clus-
ter included bins with long-range (100–125 mm) and medium-
strength connections (0.15 < z < 0.4).

Finally, we investigated the relationship between the subject’s
classifier score and behavioral measures (Figure 7). Estimates of
symptom severity (r = 0.13, p = 0.01), as measured by the ADOS
social + communication algorithm score, and SRS (r = 0.17,
p = 0.002) positively correlated with the classifier score, how-
ever, symptom severity, as measured by the ADI-R verbal domain
algorithm score (r = −0.06, p = 0.30) or social domain algo-
rithm score (r = −0.04, p = 0.51), and performance IQ (r =
−0.03, p = 0.38) did not correlate with the classifier score. Verbal
IQ (r = −0.07, p = 0.05) and Vineland adaptive behavior com-
posite score(r = 0.17, p = 0.002) negatively correlate with the
classifier score. In other words, as social function (lower SRS
score is indicative of better social function), verbal IQ, and
daily living skills increased and current level of symptom sever-
ity decreased, a subject was more likely to be classified as a
control.
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FIGURE 4 | Relationship between a site’s total accuracy and the

number of imaging volumes acquired by each site. Each site’s total
accuracy was calculated when using a p < 0.0001 threshold (i.e., the
threshold at which optimal total accuracy was obtained in Figure 2) and
correlated with the number of BOLD imaging volumes acquired during the
resting-state sequence.

DISCUSSION
Functional connectivity MRI data from a set of 26.4 million “con-
nections” per subject is able to successfully classify a subject as
autistic or typically developing using a leave-one-out approach
with an accuracy of 60.0% (p < 2.2 × 10−10), across a set of
964 subjects contributed from 16 different international sites.
Overall specificity was 58.0% and overall sensitivity was 62.0%.
Classification consisted of a weighted average of connections
that used no information about the left out subject except for
age, gender, site, and handedness. Using a weighted average of
all 26.4 million connections resulted in a classification accuracy
of 55.7% (p = 0.00017), with best accuracy (60.0%) achieved
for a subset of connections that satisfied p < 10−4 for a dif-
ference between autism and control among remaining subjects
for each left-out subject. Classification scores significantly covar-
ied with metrics of current disease severity including ADOS-G
(as opposed to ADI-R, which incorporates disease severity at
early ages), SRS, and verbal IQ metrics. Classification accuracy
significantly improved in sites for which longer BOLD imag-
ing times were used, but no relationship was found between
number of subjects contributed by a site and classification
accuracy.

Classification accuracy was lower in this multisite study despite
its much larger sample size when compared with a prior study
using similar methods from a single site (Anderson et al.,
2011d). The prior study achieved ∼80% accuracy, with 90%
accuracy for subjects under 20 years of age in both a pri-
mary cohort and a replication sample of affected and unaf-
fected individuals from multiplex families. Several reasons may
explain this difference. Expanding a classifier to accommodate
multisite data necessarily involves dealing with many addi-
tional sources of variance. The pulse sequence, magnetic field
strength, scanner type, patient cohort and recruitment pro-
cedures, scan instructions (eyes open vs. closed vs. fixation),
BOLD imaging length, age distribution, gender differences, and

FIGURE 5 | Total accuracy for 7266 brain regions. Accuracy was
determined for each of the 7266 brain regions independently by only taking
into account the 7265 connections in which a given region was involved (no
p-value threshold, all connections used). The minimum accuracy displayed
for a single region is 53.95%, which was the false discovery rate corrected
percentage for 7266 regions and a binomial cumulative distribution.

population ethnicity all varied across sites. Each of these vari-
ables has the potential to decrease sensitivity and specificity of
functional connectivity measurements for autism. Nevertheless,
a multisite cohort helps test generalizability of the results
across different samples, making it more likely that connec-
tions identified as discriminatory between autism and control
reflect disease properties rather than particulars of a single
dataset.

Classification accuracy in the multisite cohort varied with the
subset of connections used to construct the classifier. This find-
ing reflected a tradeoff between improved accuracy when using
more connections with decreased accuracy when including less
specific connections in the classifier. This result argues against
a homogenous regional distribution of connectivity abnormal-
ities in autism in favor of a heterogeneous spatial distribu-
tion of connectivity disturbances that involves specific brain
regions. Analysis of brain regions most affected in abnormal
connections herein confirms the findings of previous reports:
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FIGURE 6 | Total accuracy across connection strength and distance

between brain regions. The 26.4 million connections were divided up into
bins based on the correlation strength of the connection (determined by an
independent sample) and the distance between the connection’s two
endpoints. Accuracy is displayed for each bin with at least one connection.

areas of greatest abnormality included the insula, regions of
the default mode network including posterior cingulate and
medial prefrontal cortex, fusiform and parahippocampal gyri,
Wernicke Area (posterior middle and superior temporal gyrus),
and intraparietal sulcus (Anderson et al., 2011a,d; Gotts et al.,
2012). All of these regions correspond to functional domains
that are known to be impaired in autism, including attention,
language, interoception, and memory. We note that some of
these regions are in brain areas with relatively high suscepti-
bility artifact and sensitivity to changes in brain shape (such
as the medial prefrontal cortex). However, given the coherent
distribution of the default mode network, we favor an inter-
pretation of network-based differences attributable to autism
rather than underlying structural or artifactual sources of these
findings.

When interrogating subsets of connections from an inde-
pendent dataset based on the Euclidean distance between
ROIs and connection strength in a previous study, we found
that the most informative connections consisted of typically
strong connections between distant ROIs that were weaker in
autism, and typically negatively correlated connections, that were
less negative in autism (less anti-correlated) (Anderson et al.,
2011d). In the current study, the connection bins based on
strength and distance that showed greatest classification accu-
racy were not precisely the same connection bins found pre-
viously. Rather, they were adjacent to the bins in the previous
study. This is the case because the classification algorithm in
the current study takes advantage of larger numbers of con-
nections. There was again a tradeoff between using more con-
nections, given that individual connections exhibited relatively
little information, and using sets of connections that differed
more in autism. Thus, bins of medium strength connections
(0.3 < z < 0.5) outperformed the more specific bins of stronger
connections (z > 0.5) because the slightly weaker sets of con-
nections included many more connections in the bin. This

cautionary finding is relevant when attempting to identify the
“optimal” set of connections for constructing candidate brain
imaging biomarkers for ASD. Although specific affected regions
appear to have autism connectivity abnormalities, classifica-
tion schemes using only a small number of connections are
likely to suffer from the high variance in metrics for individual
connections.

This point is reinforced by a significant positive relation-
ship between classification accuracy across sites and the length
of BOLD imaging time per subject. Previous studies of test-
retest reliability using functional connectivity MRI have shown
that accuracy of results varies with one over the square root
of BOLD imaging time (Van Dijk et al., 2010; Anderson et al.,
2011c), with only moderate reproducibility when short BOLD
imaging times such as 5 min are used (Shehzad et al., 2009;
Van Dijk et al., 2010; Anderson et al., 2011c). This relation-
ship would suggest that classifiers using information from many
brain regions continue to show benefit from much longer imag-
ing times, with continued improvements even after hours of
imaging across multiple sessions per subject to the extent this
is practical (Anderson et al., 2011c). Improvements in pulse
sequence technology may also facilitate acquisition of greater
numbers of volumes in shorter periods of time (Feinberg and
Yacoub, 2012).The correlation between total imaging time and
accuracy was more significant than the correlation between num-
ber of volumes used after scrubbing and accuracy. This might
indicate that imaging time is more important than the num-
ber of volumes used. As multiband acquisition protocols become
more prevalent (Setsompop et al., 2012), it will be important
to determine the extent to which finer sampling vs. longer
imaging time will contribute to specificity of BOLD fcMRI
measurements.

In a prior study that examined the effect of BOLD imag-
ing time on ability to identify functional connectivity values
obtained from a single individual compared to a group mean,
individual “connections” could only be reliably distinguished
after 25 min of BOLD imaging time. The number of connec-
tions that could be reliably distinguished increased exponentially
with imaging time for at least up to 10 h of total imaging time
(Anderson et al., 2011c). Indeed, there is good theoretical basis
that any desired accuracy can be obtained with sufficient imag-
ing time, stretching into many hours. Although Van Dijk and
colleagues report that the intrinsic connectivity measurements
stabilize around 5 min of imaging time, they also state that noise
continues to decrease at a rate of 1/sqrt(n), where n is the amount
of imaging time (Van Dijk et al., 2010) (which is in accordance
with our findings from (Anderson et al., 2011c). Moreover, they
report that the stabilization is of composite network-level met-
rics rather than connections between small individual ROIs. In
contrast, we have found that coarse network-level measurements
are not particularly informative in classification compared to
fine-grained metrics that take into account specific differences in
the spatial distribution of connectivity. There may be no upper
limit for continued improvements if more imaging time were
obtained.

We found significant relationships between the classification
score and some behavioral measures, such as social function and
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FIGURE 7 | Scatterplots depict the relationship between the

classifier scores for control subjects (black) and subjects with

autism (red) and the following behavioral measures: ADOS-G

social + communication algorithm score (A), ADI-R social verbal

algorithm score (B), verbal IQ (C), performance IQ (D), SRS total

score (E), and Vineland Adaptive composite standard score (F).

Correlation coefficients and corresponding p-values are included on
the plots.

daily living skills, however, the proportion of variance in the
behavioral measures that was explained by the linear relationship
between the classification score and the behavioral measure was
small (between 0.5 and 2.9%). This may be due to the overall

poor accuracy of the classification approach. As accuracy and
techniques for combining multisite data improves, we also expect
an increase in the proportion of variance accounted for by the
correlations.
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Additional benefits may be achieved through improved clas-
sification algorithms that take advantage of machine learning
techniques to allow more effective weighted combinations of
connections. Similarly, multimodal classifiers remain a promis-
ing, relatively untapped method for characterizing diagnostic
and prognostic information about autism. Given classification
accuracies of single site datasets exceeding 80% for structural
MRI (Ecker et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011;
Calderoni et al., 2012; Sato et al., 2013), diffusion tensor MRI
(Lange et al., 2010; Ingalhalikar et al., 2011), positron emission
tomography (Duchesnay et al., 2011), and magnetoencephalog-
raphy (Roberts et al., 2010, 2011; Tsiaras et al., 2011; Khan et al.,
2013), it would be of great interest to determine whether dif-
ferent modalities identify similar cohorts of subjects correctly,
and whether a combination neuroimaging approach that lever-
ages these different features might be able to achieve even greater
accuracy than any one alone.

Although multisite datasets such as those in ABIDE are invalu-
able for testing replicability of neuroimaging findings in autism,
they contain inherent limitations that should be recognized.
Large inhomogeneities in acquisition parameters, subject popu-
lations, and research protocols limit the sensitivity for detecting
abnormalities. These inhomogeneities may overwhelm the ability
of discriminating many findings, and may lead to overconfi-
dence in a result as definitive because of the large sample of
subjects used. There remains a need for replicating results in
high-quality, carefully controlled individual datasets that may
show increased sensitivity for some results compared to multi-
site data, as exhibited by classification accuracy in the present
study. Preprocessing methods may also bias results in unpre-
dictable ways, as has been suggested with head motion correction

strategies (Power et al., 2012; Van Dijk et al., 2012) and regression
procedures (Murphy et al., 2009; Anderson et al., 2011b; Saad
et al., 2012). Datasets such as those in ABIDE will be of great value
in testing multiple procedural manipulations in relatively large
samples allowing determination of optimal processing methods
for specific questions. Ultimately, it is unknown whether differ-
ences in resting state functional connectivity in autism arise from
differential performance of the “resting” task or underlying dif-
ferences in structural connectivity reflected in the measurements.
Continuing comparison with structural metrics such as diffusion
tensor imaging will help to clarify this point.

Nevertheless, it remains an attractive hypothesis that with
longer imaging times, controlled acquisition strategies, integra-
tion of multimodal features, and improvement in classification
methodology, neuroimaging may be able to contribute useful
biological information to the clinical diagnosis and care of indi-
viduals with ASD and further elucidate pathophysiology and
brain-based intermediate phenotypes.

ACKNOWLEDGMENTS
The analysis described was supported by NIH grant numbers
K08MH092697 and R01MH084795, R01MH080826, the Flamm
Family Foundation, the Morrell Family Foundation and by the
Ben B. and Iris M. Margolis Foundation. The content is solely
the responsibility of the authors and does not necessarily repre-
sent the official views of the National Institute of Mental Health
or the National Institutes of Health. Funding sources for the
datasets comprising the 1000 Functional Connectome Project are
listed at fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html.
Funding sources for the ABIDE dataset are listed at fcon_1000.
projects.nitrcc.org/indi/abide.

REFERENCES
ADHD-200_Consortium. (2012). The

ADHD-200 Consortium: a model to
advance the translational potential
of neuroimaging in clinical neuro-
science. Front. Syst. Neurosci. 6:62.
doi: 10.3389/fnsys.2012.00062

Anderson, J. S. (2013). “Cortical under-
connectivity hypothesis in autism:
evidence from functional connec-
tivity MRI,” in Comprehensive Guide
to Autism, eds V. Patel, C. Martin,
and V. Preedy (Berlin: Springer-
Verlag) (in press). doi: 10.1007/
SpringerReference_331190

Anderson, J. S., Druzgal, T. J.,
Froehlich, A., Dubray, M. B., Lange,
N., Alexander, A. L., et al. (2011a).
Decreased interhemispheric func-
tional connectivity in autism.
Cereb. Cortex 21, 1134–1146. doi:
10.1093/cercor/bhq190

Anderson, J. S., Druzgal, T. J., Lopez-
Larson, M., Jeong, E. K., Desai, K.,
and Yurgelun-Todd, D. (2011b).
Network anticorrelations, global
regression, and phase-shifted
soft tissue correction. Hum.
Brain Mapp. 32, 919–934. doi:
10.1002/hbm.21079

Anderson, J. S., Ferguson, M. A.,
Lopez-Larson, M., and Yurgelun-
Todd, D. (2011c). Reproducibility
of functional connectivity measure-
ments in single subjects. AJNR Am.
J. Neuroradiol. 32, 548–555. doi:
10.3174/ajnr.A2330

Anderson, J. S., Nielsen, J. A., Froehlich,
A. L., Dubray, M. B., Druzgal, T.
J., Cariello, A. N., et al. (2011d).
Functional connectivity magnetic
resonance imaging classification of
autism. Brain 134, 3742–3754. doi:
10.1093/brain/awr263

Anderson, J. S., Nielsen, J. A.,
Ferguson, M. A., Burback, M.
C., Cox, E. T., Dai, L., et al.
(2013a). Abnormal brain syn-
chrony in Down Syndrome.
Neuroimage: Clinical 2, 703–715.
doi: 10.1016/j.nicl.2013.05.006

Anderson, J. S., Zielinski, B. A., Nielsen,
J. A., and Ferguson, M. A. (2013b).
Complexity of low-frequency blood
oxygen level-dependent fluctuations
covaries with local connectivity.
Hum. Brain Mapp. doi: 10.1002/
hbm.22251. [Epub ahead of print].

Biswal, B. B., Mennes, M., Zuo, X.
N., Gohel, S., Kelly, C., Smith,

S. M., et al. (2010). Toward dis-
covery science of human brain
function. Proc. Natl. Acad. Sci.
U.S.A. 107, 4734–4739. doi:
10.1073/pnas.0911855107

Calderoni, S., Retico, A., Biagi, L.,
Tancredi, R., Muratori, F., and
Tosetti, M. (2012). Female chil-
dren with autism spectrum disor-
der: an insight from mass-univariate
and pattern classification analyses.
Neuroimage 59, 1013–1022. doi:
10.1016/j.neuroimage.2011.08.070

Cherkassky, V. L., Kana, R. K., Keller,
T. A., and Just, M. A. (2006).
Functional connectivity in a
baseline resting-state network in
autism. Neuroreport 17, 1687–1690.
doi: 10.1097/01.wnr.0000239956.
45448.4c

Constantino, J. N., Davis, S. A., Todd,
R. D., Schindler, M. K., Gross, M.
M., Brophy, S. L., et al. (2003).
Validation of a brief quantitative
measure of autistic traits: compar-
ison of the social responsiveness
scale with the autism diagnos-
tic interview-revised. J. Autism
Dev. Disord. 33, 427–433. doi:
10.1023/A:1025014929212

Coutanche, M. N., Thompson-Schill, S.
L., and Schultz, R. T. (2011). Multi-
voxel pattern analysis of fMRI data
predicts clinical symptom sever-
ity. Neuroimage 57, 113–123. doi:
10.1016/j.neuroimage.2011.04.016

Di Martino, A., Kelly, C., Grzadzinski,
R., Zuo, X. N., Mennes, M.,
Mairena, M. A., et al. (2011).
Aberrant striatal functional con-
nectivity in children with autism.
Biol. Psychiatry 69, 847–856. doi:
10.1016/j.biopsych.2010.10.029

Di Martino, A., Yan, C. G., Li, Q.,
Denio, E., Castellanos, F. X., Alaerts,
K., et al. (2013). The autism brain
imaging data exchange: towards a
large-scale evaluation of the intrin-
sic brain architecture in autism.
Mol. Psychiatry doi: 10.1038/mp.
2013.78. [Epub ahead of print].

Dinstein, I., Pierce, K., Eyler, L., Solso,
S., Malach, R., Behrmann, M.,
et al. (2011). Disrupted neural
synchronization in toddlers with
autism. Neuron 70, 1218–1225. doi:
10.1016/j.neuron.2011.04.018

Duchesnay, E., Cachia, A., Boddaert,
N., Chabane, N., Mangin, J. F.,
Martinot, J. L., et al. (2011).

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 599 | 81 81

http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrcc.org/indi/abide
http://fcon_1000.projects.nitrcc.org/indi/abide
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Nielsen et al. Multisite functional connectivity classification

Feature selection and classification
of imbalanced datasets: applica-
tion to PET images of children
with autistic spectrum disorders.
Neuroimage 57, 1003–1014. doi:
10.1016/j.neuroimage.2011.05.011

Ecker, C., Marquand, A., Mourao-
Miranda, J., Johnston, P., Daly, E.
M., Brammer, M. J., et al. (2010a).
Describing the brain in autism
in five dimensions—magnetic
resonance imaging-assisted
diagnosis of autism spectrum
disorder using a multiparam-
eter classification approach.
J. Neurosci. 30, 10612–10623. doi:
10.1523/JNEUROSCI.5413-09.2010

Ecker, C., Rocha-Rego, V., Johnston,
P., Mourao-Miranda, J., Marquand,
A., Daly, E. M., et al. (2010b).
Investigating the predictive value
of whole-brain structural MR
scans in autism: a pattern classifi-
cation approach. Neuroimage 49,
44–56. doi: 10.1016/j.neuroimage.
2009.08.024

Feinberg, D. A., and Yacoub, E. (2012).
The rapid development of high
speed, resolution and precision in
fMRI. Neuroimage 62, 720–725.
doi: 10.1016/j.neuroimage.2012.
01.049

Ferguson, M. A., and Anderson, J.
S. (2011). Dynamical stability of
intrinsic connectivity networks.
Neuroimage 59, 4022–4031. doi:
10.1016/j.neuroimage.2011.10.062

Gotts, S. J., Simmons, W. K., Milbury,
L. A., Wallace, G. L., Cox, R.
W., and Martin, A. (2012).
Fractionation of social brain
circuits in autism spectrum disor-
ders. Brain 135, 2711–2725. doi:
10.1093/brain/aws160

Ingalhalikar, M., Parker, D., Bloy, L.,
Roberts, T. P., and Verma, R.
(2011). Diffusion based abnormal-
ity markers of pathology: toward
learned diagnostic prediction of
ASD. Neuroimage 57, 918–927. doi:
10.1016/j.neuroimage.2011.05.023

Jiao, Y., Chen, R., Ke, X., Chu, K.,
Lu, Z., and Herskovits, E. H.
(2010). Predictive models of
autism spectrum disorder based on
brain regional cortical thickness.
Neuroimage 50, 589–599. doi:
10.1016/j.neuroimage.2009.12.047

Jo, H. J., Saad, Z. S., Gotts, S. J.,
Martin, A., and Cox, R. W. (2013).
Correction: quantifying agreement
between anatomical and functional
interhemispheric correspondences
in the resting brain. PLoS ONE
8:5. doi: 10.1371/annotation/
cb15c6af-2153-49a9-8330- 45e40e
6c296d

Just, M. A., Cherkassky, V. L., Keller,
T. A., and Minshew, N. J. (2004).

Cortical activation and syn-
chronization during sentence
comprehension in high-functioning
autism: evidence of underconnec-
tivity. Brain 127, 1811–1821. doi:
10.1093/brain/awh199

Keehn, B., Shih, P., Brenner, L. A.,
Townsend, J., and Muller, R. A.
(2013). Functional connectivity for
an “Island of sparing” in autism
spectrum disorder: an fMRI study
of visual search. Hum. Brain Mapp.
34, 2524–2537. doi: 10.1002/hbm.
22084

Kennedy, D. P., and Courchesne,
E. (2008). The intrinsic func-
tional organization of the
brain is altered in autism.
Neuroimage 39, 1877–1885. doi:
10.1016/j.neuroimage.2007.10.052

Khan, S., Gramfort, A., Shetty, N.
R., Kitzbichler, M. G., Ganesan, S.,
Moran, J. M., et al. (2013). Local and
long-range functional connectivity
is reduced in concert in autism spec-
trum disorders. Proc. Natl. Acad.
Sci. U.S.A. 110, 3107–3112. doi:
10.1073/pnas.1214533110

Koshino, H., Carpenter, P. A.,
Minshew, N. J., Cherkassky, V.
L., Keller, T. A., and Just, M. A.
(2005). Functional connectivity
in an fMRI working memory
task in high-functioning autism.
Neuroimage 24, 810–821. doi:
10.1016/j.neuroimage.2004.09.028

Lange, N., Dubray, M., Lee, J. E.,
Froimowitz, M., Froehlich, A.,
Adluru, N., et al. (2010). Atypical
diffusion tensor hemispheric asym-
metry: a potential DTI biomarker
for autism. Autism Res. 3, 350–358.
doi: 10.1002/aur.162

Lord, C., Risi, S., Lambrecht, L., Cook,
E. H. Jr., Leventhal, B. L., Dilavore,
P. C., et al. (2000). The autism
diagnostic observation schedule-
generic: a standard measure of
social and communication deficits
associated with the spectrum of
autism. J. Autism Dev. Disord. 30,
205–223. doi: 10.1023/A:100559240
1947

Lord, C., Rutter, M., and Le Couteur,
A. (1994). Autism diagnostic
interview-revised: a revised version
of a diagnostic interview for care-
givers of individuals with possible
pervasive developmental disorders.
J. Autism Dev. Disord. 24, 659–685.
doi: 10.1007/BF02172145

Lynch, C. J., Uddin, L. Q., Supekar,
K., Khouzam, A., Phillips, J., and
Menon, V. (2013). Default mode
network in childhood autism: pos-
teromedial cortex heterogeneity and
relationship with social deficits.
Biol. Psychiatry 74, 212–219. doi:
10.1016/j.biopsych.2012.12.013

Muller, R. A., Shih, P., Keehn, B., Deyoe,
J. R., Leyden, K. M., and Shukla,
D. K. (2011). Underconnected, but
how? A survey of functional con-
nectivity MRI studies in autism
spectrum disorders. Cereb. Cortex
21, 2233–2243. doi: 10.1093/cer-
cor/bhq296

Murphy, K., Birn, R. M., Handwerker,
D. A., Jones, T. B., and Bandettini,
P. A. (2009). The impact of
global signal regression on
resting state correlations: are anti-
correlated networks introduced?
Neuroimage 44, 893–905. doi:
10.1016/j.neuroimage.2008.09.036

Power, J. D., Barnes, K. A., Snyder, A. Z.,
Schlaggar, B. L., and Petersen, S. E.
(2012). Spurious but systematic cor-
relations in functional connectivity
MRI networks arise from subject
motion. Neuroimage 59, 2142–2154.
doi: 10.1016/j.neuroimage.2011.
10.018

Roberts, T. P., Cannon, K. M., Tavabi,
K., Blaskey, L., Khan, S. Y., Monroe,
J. F., et al. (2011). Auditory mag-
netic mismatch field latency: a
biomarker for language impair-
ment in autism. Biol. Psychiatry 70,
263–269. doi: 10.1016/j.biopsych.
2011.01.015

Roberts, T. P., Khan, S. Y., Rey, M.,
Monroe, J. F., Cannon, K., Blaskey,
L., et al. (2010). MEG detection of
delayed auditory evoked responses
in autism spectrum disorders:
towards an imaging biomarker for
autism. Autism Res. 3, 8–18. doi:
10.1002/aur.111

Saad, Z., Reynolds, R. C., Jo, H. J.,
Gotts, S. J., Chen, G., Martin, A.,
et al. (2013). Correcting brain-wide
correlation differences in resting-
state FMRI. Brain Connect. 3,
339–352. doi: 10.1089/brain.2013.
0156

Saad, Z. S., Gotts, S. J., Murphy, K.,
Chen, G., Jo, H. J., Martin, A., et al.
(2012). Trouble at rest: how correla-
tion patterns and group differences
become distorted after global sig-
nal regression. Brain Connect. 2,
25–32. doi: 10.1089/brain.2012.
0080

Sato, J. R., Hoexter, M. Q., Oliveira, P.
P. Jr., Brammer, M. J., Murphy, D.,
and Ecker, C. (2013). Inter-regional
cortical thickness correlations are
associated with autistic symptoms:
a machine-learning approach.
J. Psychiatr. Res. 47, 453–459. doi:
10.1016/j.jpsychires.2012.11.017

Setsompop, K., Gagoski, B. A.,
Polimeni, J. R., Witzel, T., Wedeen,
V. J., and Wald, L. L. (2012).
Blipped-controlled aliasing in
parallel imaging for simultaneous
multislice echo planar imaging with

reduced g-factor penalty. Magn.
Reson. Med. 67, 1210–1224. doi:
10.1002/mrm.23097

Shehzad, Z., Kelly, A. M., Reiss, P. T.,
Gee, D. G., Gotimer, K., Uddin,
L. Q., et al. (2009). The resting
brain: unconstrained yet reliable.
Cereb. Cortex 19, 2209–2229. doi:
10.1093/cercor/bhn256

Sparrow, S., Da, B., and Vc, D.
(1984). Vineland Adaptive Behavior
Scales: Interview Edition, Survey
form Manual. Circle Pines, MN:
A.G. Service.

Tsiaras, V., Simos, P. G., Rezaie,
R., Sheth, B. R., Garyfallidis,
E., Castillo, E. M., et al. (2011).
Extracting biomarkers of autism
from MEG resting-state functional
connectivity networks. Comput.
Biol. Med. 41, 1166–1177. doi:
10.1016/j.compbiomed.2011.04.004

Tyszka, J. M., Kennedy, D. P., Paul, L.
K., and Adolphs, R. (2013). Largely
typical patterns of resting-state
functional connectivity in high-
functioning adults with autism.
Cereb. Cortex doi: 10.1093/cercor/
bht040. [Epub ahead of print].

Uddin, L. Q., Menon, V., Young, C.
B., Ryali, S., Chen, T., Khouzam,
A., et al. (2011). Multivariate
searchlight classification of
structural magnetic resonance
imaging in children and adolescents
with autism. Biol. Psychiatry 70,
833–841. doi: 10.1016/j.biopsych.
2011.07.014

Van Dijk, K. R., Hedden, T.,
Venkataraman, A., Evans, K.
C., Lazar, S. W., and Buckner,
R. L. (2010). Intrinsic functional
connectivity as a tool for human
connectomics: theory, properties,
and optimization. J. Neurophysiol.
103, 297–321. doi: 10.1152/jn.
00783.2009

Van Dijk, K. R., Sabuncu, M. R.,
and Buckner, R. L. (2012). The
influence of head motion on
intrinsic functional connectivity
MRI. Neuroimage 59, 431–438. doi:
10.1016/j.neuroimage.2011.07.044

Villalobos, M. E., Mizuno, A., Dahl,
B. C., Kemmotsu, N., and Muller,
R. A. (2005). Reduced functional
connectivity between V1 and infe-
rior frontal cortex associated with
visuomotor performance in autism.
Neuroimage 25, 916–925. doi:
10.1016/j.neuroimage.2004.12.022

von dem Hagen, E. A., Stoyanova, R.
S., Baron-Cohen, S., and Calder,
A. J. (2013). Reduced functional
connectivity within and between
‘social’ resting state networks in
autism spectrum conditions. Soc.
Cogn. Affect. Neurosci. 8, 694–701.
doi: 10.1093/scan/nss053

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 599 | 82 82

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Nielsen et al. Multisite functional connectivity classification

Wang, H., Chen, C., and Fushing,
H. (2012). Extracting multiscale
pattern information of fMRI
based functional brain con-
nectivity with application on
classification of autism spectrum
disorders. PLoS ONE 7:e45502. doi:
10.1371/journal.pone.0045502

Welchew, D. E., Ashwin, C., Berkouk,
K., Salvador, R., Suckling, J., Baron-
Cohen, S., et al. (2005). Functional
disconnectivity of the medial tem-
poral lobe in Asperger’s syndrome.
Biol. Psychiatry 57, 991–998. doi:
10.1016/j.biopsych.2005.01.028

Wiggins, J. L., Peltier, S. J., Ashinoff,
S., Weng, S. J., Carrasco, M.,
Welsh, R. C., et al. (2011). Using
a self-organizing map algorithm
to detect age-related changes in
functional connectivity during
rest in autism spectrum disorders.
Brain Res. 1380, 187–197. doi:
10.1016/j.brainres.2010.10.102

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 29 April 2013; accepted: 04
September 2013; published online: 25
September 2013.
Citation: Nielsen JA, Zielinski BA,
Fletcher PT, Alexander AL, Lange N,
Bigler ED, Lainhart JE and Anderson JS
(2013) Multisite functional connectivity
MRI classification of autism: ABIDE
results. Front. Hum. Neurosci. 7:599.
doi: 10.3389/fnhum.2013.00599
This article was submitted to the journal
Frontiers in Human Neuroscience.

Copyright © 2013 Nielsen, Zielinski,
Fletcher, Alexander, Lange, Bigler,
Lainhart and Anderson. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the orig-
inal author(s) or licensor are credited
and that the original publication in
this journal is cited, in accordance
with accepted academic practice. No
use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 599 | 83

http://dx.doi.org/10.3389/fnhum.2013.00599
http://dx.doi.org/10.3389/fnhum.2013.00599
http://dx.doi.org/10.3389/fnhum.2013.00599
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 22 November 2013

doi: 10.3389/fnhum.2013.00802

Resting state fMRI reveals a default mode dissociation
between retrosplenial and medial prefrontal subnetworks
in ASD despite motion scrubbing
Tuomo Starck1,2*, Juha Nikkinen1, Jukka Rahko3, Jukka Remes1,4, Tuula Hurtig3, Helena Haapsamo3,

Katja Jussila3, Sanna Kuusikko-Gauffin3, Marja-Leena Mattila3, Eira Jansson-Verkasalo5,

David L. Pauls6, Hanna Ebeling3, Irma Moilanen3, Osmo Tervonen1,2 and Vesa J. Kiviniemi1,2

1 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
2 Department of Diagnostic Radiology, Oulu University, Oulu, Finland
3 Department of Child Psychiatry, Institute of Clinical Medicine, Oulu University Hospital and Oulu University, Oulu, Finland
4 Department of Electrical and Information Engineering, Oulu University, Oulu, Finland
5 Department of Behavioral Sciences and Philosophy, Logopedics, University of Turku, Turku, Finland
6 Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA

Edited by:

Lucina Q. Uddin, Stanford
University, USA

Reviewed by:

Scott Peltier, University of Michigan,
USA
Charles J. Lynch, Georgetown
University, USA

*Correspondence:

Tuomo Starck, Department of
Diagnostic Radiology, Oulu
University Hospital, PO Box 50,
Kajaanintie, Oulu, 90029 OYS,
Finland
e-mail: tuomo.starck@ppshp.fi

In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum
disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding.
However, the picture of the default mode network (DMN) hypoconnectivity remains
incomplete. In addition, the functional connectivity analyses have been shown to be
susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically
called for re-evaluation with stringent motion correction, which we aimed to conduct by
so-called scrubbing. A rich set of default mode subnetworks can be obtained with high
dimensional group independent component analysis (ICA) which can potentially provide
more detailed view of the connectivity alterations. We compared the DMN connectivity
in high-functioning adolescents with ASDs to typically developing controls using ICA
dual-regression with decompositions from typical to high dimensionality. Dual-regression
analysis within DMN subnetworks did not reveal alterations but connectivity between
anterior and posterior DMN subnetworks was decreased in ASD. The results were very
similar with and without motion scrubbing thus indicating the efficacy of the conventional
motion correction methods combined with ICA dual-regression. Specific dissociation
between DMN subnetworks was revealed on high ICA dimensionality, where networks
centered at the medial prefrontal cortex and retrosplenial cortex showed weakened
coupling in adolescents with ASDs compared to typically developing control participants.
Generally the results speak for disruption in the anterior-posterior DMN interplay on the
network level whereas local functional connectivity in DMN seems relatively unaltered.

Keywords: autism, resting state, fMRI, ICA, default mode, motion

INTRODUCTION
In autism spectrum disorders (ASDs) the functional connectiv-
ity (FC) research with resting state functional magnetic resonance
imaging (fMRI) has shown aberrant FC (Cherkassky et al., 2006;
Kennedy and Courchesne, 2008; Monk et al., 2009; Assaf et al.,
2010; Weng et al., 2010; Wiggins et al., 2012). The evidence for
disrupted connectivity in ASD was seen in 1988 by positron emis-
sion tomography (Horwitz et al., 1988). Of the several resting
state networks (RSNs), the Default mode network (DMN) can
be readily designated as the most prominent with its cognitive
associations in, such as self-referential processing and envision-
ing of the past and the future (Andreasen et al., 1995). DMN
has recently gained interest as a functional entity due to a study
(Anderson et al., 2011) where several DMN regions were found
to be most informative for classifying individuals with autism
and typically developing (TD) control subjects. In resting state
fMRI, the majority of the findings have shown decreased DMN

FC especially in frontal-posterior pairs in ASD (Schipul et al.,
2011), thereby supporting the theory of frontal-posterior under-
connectivity in autism (Just et al., 2004, 2007). While the under-
connectivity is a typical finding in ASD it is important to bear
in mind the developmental aspect of the disorder as which has
recently been explored (Lynch et al., 2013; Washington et al.,
2013).

It has lately been established that the resting state DMN con-
stitutes of subsystems that manifest themselves in various ways,
depending on the analysis method. Spatial ICA and spatial group
ICA have been shown to work well in the DMN region-of-
interest definition for FC analysis (Marrelec and Fransson, 2011).
Temporal-concatenation based spatial group ICA (Calhoun et al.,
2001) is known to split some components along increasing ICA
dimensionality (i.e., model order) and the major DMN split-
ting into default mode subnetworks (DM-SN) already occurs at
very low dimensionalities (Abou-Elseoud et al., 2010). Division
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of the DMN into anterior and posterior has been demonstrated
(Calhoun et al., 2008; Uddin et al., 2009), but DMN dynamics
are more complex than this (Buckner et al., 2008). With ICA, a
ventral-dorsal splitting of the posterior DMN has been demon-
strated in several publications around the typical ICA decompo-
sition dimensionality of 20–30 components (Damoiseaux et al.,
2008; Kim et al., 2009). However, different DMN parcellations
with ICA in three subnetworks have also been presented (Jafri
et al., 2008; Assaf et al., 2010). Using methods other than ICA,
DMN has been shown to fractionate in several ways (Buckner
et al., 2008; Uddin et al., 2009; Andrews-Hanna et al., 2010; Leech
et al., 2011) and the posteromedial cortex has been shown to
present heterogeneous FC (Margulies et al., 2009; Dastjerdi et al.,
2011).

The versatile DMN manifestation combinations suggest that
it has a very dynamic constellation that is insufficiently depicted
with static maps. However, in an attempt to delineate this com-
plex spatiotemporal connectivity it could be useful to study the
DMN appearance at varying ICA decomposition levels. High
dimensional group ICA of around 70–100 components has been
increasingly studied for resting state fMRI data (Malinen et al.,
2007; Kiviniemi et al., 2009; Ystad et al., 2010; Abou Elseoud
et al., 2011) and the highly parcellated components obtained have
been shown to be in good correspondence with the parcellation of
fMRI activation data (Smith et al., 2009). On the other hand, ICA
has been demonstrated not to suffer from the usage of such high
model order but instead from the use of too low model order, for
single subject analysis (Esposito and Goebel, 2011) and for group
analysis (Allen et al., 2012). Moreover, there are indications that
the source separation between physiological noise sources and
RSNs is better at higher dimensionality (Beall and Lowe, 2010;
Starck et al., 2010).

Recently a serious concern has emerged about motion induced
spurious signal changes contaminating the FC analysis. Some
long-distance correlations in the brain have been shown to
decrease due to subject motion and the elimination of time-
points indicated with excess motion by “scrubbing” has been
proposed as a solution (Power et al., 2012). In a DMN seed cor-
relation analysis with a large sample size, a small group-wise dif-
ference in motion has been shown to alter the FC results between
the anterior and posterior brain regions (Van Dijk et al., 2012).
Also in an ICA combined with dual-regression analysis motion
has been found to impact the DMN estimates although differently
between two studies (Mowinckel et al., 2012; Satterthwaite et al.,
2012). Altogether the motion issue has led to speculations (Deen
and Pelphrey, 2012) about the validity of the frontal-posterior
hypoconnectivity theory in ASD as children and adolescents with
ASDs have a tendency to move more than TD subjects during
fMRI scanning.

In this study we aimed to map the resting state DMN con-
nectivity in adolescents with ASDs by ICA using dimensionalities
within the usual range and high dimensionality. The ratio-
nale behind the deployment of a multi-dimensional data-driven
approach is to investigate different functional hierarchies that rep-
resent heterogeneity of the DMN connectivity. We investigated
FC within and between default mode subnetworks (DM-SNs)
with a specific interest in the ICA manifestation of the reported

anterior-posterior hypoconnectivity (Schipul et al., 2011).
Additionally, we carried out the motion scrubbing procedure as
motion has been suspected to undermine the hypoconnectivity
theory in ASD. The results were compared to analysis without
scrubbing.

METHODS
PARTICIPANTS AND fMRI DATA
Thirty high-functioning adolescents with ASDs were gathered
from a community-based study conducted between 2000 and
2003 (Mattila et al., 2007, 2011, 2012) and from a clinic-based
study conducted in 2003 (Kuusikko et al., 2009; Mattila et al.,
2009; Weiss et al., 2009). Further information about the screening
and diagnostic process can be found from these earlier publica-
tions. Thirty age and gender-matched TD controls were recruited
from mainstream schools in Oulu (Jansson-Verkasalo et al., 2005;
Kuusikko et al., 2008). All participants and their parents gave
written informed consent, and the study was approved by the
Ethical Committee of the University Hospital of Oulu, Finland.

After the screening process the DSM-IV-TR criteria (APA,
2000) were used to construct the consensus ASD diagnoses based
on the information gathered. The information for diagnostic
examination in the clinic-based study consisted of the Autism
Diagnostic Interview-Revised (ADI-R; Lord et al., 1995), Autism
Diagnostic Observation Schedule—module 3 (ADOS; Lord et al.,
2000), Wechsler Intelligence Scale for Children—Third revi-
sion (WISC-III; Wechsler, 1991) and medical records of Oulu
University Hospital. In the community-based study the gathered
information consisted additionally of school-day observations
and teacher interviews for some of the individuals. The ADI-R
and ADOS were not used to make diagnostic classifications in this
study. Instead, these instruments were used to obtain structured
information from parents and for semi-structured observation
of a child. The physicians and a Master of Education graduate
who participated in the diagnostic process had been trained in
the use of the ADI-R and ADOS for research purposes, but inter-
rater reliabilities had not been established. The full-scale IQ was
greater than 75 for the participants with ASDs. The ASD individ-
uals with Tourette’s disorder or hyperkinesia were excluded based
on interviews using the Schedule for Affective Disorders and
Schizophrenia for School-Age Children (K-SADS-PL) (Kaufman
et al., 1997) following DSM-IV-TR criteria. In addition, the sub-
jects with ASDs included in the neuroimaging were not allowed
to have any medications. Psychometric information to be used
in the present study was gathered in 2003, 4 years before the
MRI, with the Social Responsiveness Scale (SRS) (Constantino,
2002).

TD control participants were screened using the Autism
Spectrum Screening Questionnaire (ASSQ) (Ehlers et al., 1999)
to exclude those with clinically significant ASD symptoms. Other
psychiatric disorders were screened using the K-SADS-PL. The
IQ of the controls was not measured, however, all control par-
ticipants attended mainstream elementary schools and in Finland
the majority of mainstream schools’ students in each class have
normal range IQ and only few children with intellectual disabili-
ties may be integrated into a mainstream class with the help of a
personal assistant.
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Imaging was carried out during 2007 using a GE 1.5 T
HDX scanner equipped with an 8-channel head coil employ-
ing parallel imaging with an acceleration factor of 2. During
the resting state scan the participants were asked to lie still, stay
relaxed and awake and look at a white cross on the middle of a
dark-gray screen. Within the MRI session the resting state was
scanned before any task-fMRI scans. BOLD fMRI scanning of
7.5 min consisted of 253 whole brain volumes of which the first
three were discarded due to T1 equilibrium effects. Parameters
of the GR-EPI scanning employing parallel imaging were TR
1.8 s, TE 40 ms, flip angle 90◦, FOV 256 mm, 64 × 64 in-plane
matrix, 4 × 4 × 4 mm voxel size, 28 oblique axial slices with
a 0.4 mm gap and interleaved acquisition order. Structural data
were acquired using a T1-weighted 3D FSPGR sequence with
1 mm oblique axial slices, FOV 24.0 × 24.0 cm with a 256 × 256
matrix.

The study population was reduced during the imaging phase
due to the following issues: one participant with ASD refused
to undergo imaging in the MRI scanner room and the dataset
of one participant with ASD was lost. One control participant
had teeth braces and due to the resulting imaging artifacts the
scanning was aborted. Two control participants were discarded
due to suprathreshold ASSQ scores >7. There remained 28 high-
functioning adolescents with ASDs and 27 TD individuals for
the current study before exclusion of participants with too much
motion during the resting state scan.

After omitting the datasets with excess motion the final sam-
ple consisted of 24 participants with ASDs (18 ♂, 6 ♀, age 14.9 ±
1.4, three left-handed) and 26 TD participants (19 ♂,7 ♀; age
14.8 ± 1.7; two left-handed). In the ASD group there were 17 par-
ticipants diagnosed with Asperger syndrome and 7 with autism.
Mean FSIQ was 107.3 ± 16.9 in the ASD group. The average SRS
psychometric measures (n = 21, not available for all participants
with ASD) were the following for the ASD group: SRS total 83.4,
SRS subscales: awareness 10.1, Cognition 15.6, Communication
27.7, Motivation 12.9 and Mannerism 15.2.

DATA PRE-PROCESSING
Raw time-series were subjected to a stringent motion control
procedure known as scrubbing (Power et al., 2012), using the
fsl_motion_outliers-tool in FSL 5.0. The threshold value for time-
point exclusion based on a framewise displacement metric was set
to 0.20 mm, a proposed best practice threshold by Power et al.
(2012). One time-point following the time-point with motion
threshold exceeding was always removed from the time-series, a
decision based on measured motion effects on global BOLD time-
series (Satterthwaite et al., 2013). Actual removal of time-points
was carried out for fully pre-processed time-series that were not
low-pass filtered. High-motion subjects (4 ASD, 1 TD) with less
than 4 min of data remaining after scrubbing were excluded from
the analysis according to criteria by Satterthwaite et al. (2013).
For the remaining sample the percentage of average scrubbed
time-points was 13.5% for the ASD and 11.4% for the TD
group.

The first actual pre-processing step was the spike removal
from the time-series with the AFNI 3dDespike tool using default
threshold settings. All other pre-processing was carried out

using functions embedded into the MELODIC version 3.05 tool
in the FSL 4.0 software package. Head motion was corrected
using multi-resolution rigid body co-registration of volumes
(MCFLIRT) (Jenkinson et al., 2002); the middle volume was
the reference. Subsequently, slice timing correction and brain
extraction was carried out for fMRI data with MELODIC pre-
processing, brain extraction for structural data was performed
separately using BET (Smith, 2002). Temporal high-pass filtering
(cut-off frequency 0.01 Hz), Gaussian temporal low-pass filter-
ing (half width at half maximum 2.8 s), and spatial filtering
with a Gaussian kernel (5 mm FWHM) were performed. Every
fMRI dataset was intensity normalized by a single scaling fac-
tor (grand mean scaling). Multi-resolution affine co-registration
(Jenkinson and Smith, 2001) was used to co-register fMRI vol-
umes with 6◦-of-freedom to structural scans of corresponding
subjects, and structural images were co-registered with 12◦-of-
freedom to the MNI standard structural space template with a
resampling resolution of 4 mm.

FUNCTIONAL CONNECTIVITY ANALYSIS
Group ICA in temporal concatenation mode using the MELODIC
ICA version 3.05 (Beckmann and Smith, 2004) was conducted
for a range of dimensionalities: typical (20 and 30), and very
high (100). Stopping criteria for the iterative algorithm was set
to be fairly stringent 0.0000001 in order to produce more robust
decomposition especially on the high dimensionality. The DM-
SN selection procedure utilized spatial correlation between uni-
tary DMN from low dimensionality ICA and target components.
The ICA dimensionality producing a single DMN component was
manually searched.

The dim = 100 decomposition was subjected to ICA repeata-
bility analysis with ICASSO (Himberg et al., 2004). In this check
it was ascertained that the analysis would be carried out for
DM-SNs closely resembling the ICASSO cluster centroid com-
ponents. On the dim = 100 ICASSO was performed 100 times
as done previously (Kiviniemi et al., 2009) and with similar
algorithm settings as those of the above single MELODIC runs.
The ICASSO centroid decomposition could not be used in the
following dual-regression since it resulted in spuriously similar
time-series (cc ∼0.98) for different components, probably due to
violation of the linear independence assumption in the general
linear model algorithm.

The resulting decompositions from single MELODIC runs
including all motion and physiological noise components were
used as a spatial a priori for the Dual Regression—FSL tool
(Filippini et al., 2009) version 0.5, which provides subject-level
spatial maps and time-courses of the components. The procedure
involves first using the obtained group ICA spatial maps in a lin-
ear model fit against the individual fMRI data sets (spatial regres-
sion) resulting in time-courses specific for each independent
component in each subject. Secondly, using variance normalized
time-courses, subject-specific spatial maps are calculated voxel-
by-voxel (temporal regression). Unlike the datasets that were used
for ICA computation, the dataset fed to the dual-regression were
generated in an otherwise similar manner but without low-pass
filtering. Dual-regression analysis was performed for both motion
scrubbed and full time-series.
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In addition to the above within network FC with dual-
regression, the between networks FC was studied using subject-
level network time-courses provided by the first regression
step in dual-regression. For the between network FC the zero-
lag correlation coefficient was computed between the DM-
SN time-series in Matlab 7.3 (http://www.mathworks.com).
Correlation coefficients were Z-transformed before statistical
testing.

STATISTICAL TESTING
In the dual-regression procedure the group-level statistical infer-
ence was carried out with a non-parametric test using FSL
Randomise (Nichols and Holmes, 2002). The number of per-
mutations was set to 5000. Threshold-free cluster enhancement
(TFCE) (Smith and Nichols, 2009) was used to control for
multiple comparison correction on each component separately
with corrected probability of 0.05 determined as the significance
threshold.

In statistical testing of the between network FC, the corre-
lations between DM-SNs were hypothesized to be decreased in
ASD. Testing was carried out with FSL Randomise with 10,000
permutations and multiple comparison correction with signif-
icance threshold of p = 0.05 determined over all DM-SN pairs
separately on each ICA dimensionality.

In all of the above statistical tests the demeaned absolute and
relative gross motion estimates from MCFLIRT were set as covari-
ates of no interest. Absolute (referenced to middle time-point)
and relative (compared to previous time-point) estimates are
root-mean-square values of translational and rotational move-
ments.

All FC measures that were found to be significant in the above
group comparison were a subject of further covariance testing
within the ASD group. Specifically, we tested the covariance of
age in order to investigate the developmental aspect of the disor-
der. Also, covariance of the psychometric SRS measures with FC
measures was tested.

RESULTS
MOTION DIFFERENCES
The group averages and group differences of root-mean-square
motion estimates computed by FSL MCFLIRT (Jenkinson et al.,
2002) were as follows:

• relative motion of 0.059 mm for TD and 0.061 mm for ASD
(p = 0.37).

• absolute motion of 0.24 mm for TD and 0.37 mm for ASD
(p = 0.03).

DM-SN SELECTION
The unitary DMN component to be used in the selection proce-
dure was found with ICA dim = 8 (Figure 1).

• DM-SNs revealed from dim = 20 were clearly distinguish-
able as anterior (DMN-A) and posterior (DMN-P) weighted
compartments.

• ICA decomposition at dim = 30 revealed three DM-SNs prin-
cipally similar to those of the previous study (Damoiseaux

et al., 2008) and they correlated about equally with the single
DMN reference. As a general outline, the ICA-based DMN
fractionation on this typical ICA dimensionality (dim = 30)
is represented by the following division:

◦ DMN-A covering mainly the medial prefrontal cortex
(MPFC)

◦ dorsal (DMN-D) with the main nodes in the central-
posterior precuneus and in the PCC

◦ ventral (DMN-V) centered at the retrosplenial cortex.

• DM-SN selection at 100 components yielded five components
of which DMN-D had the highest correlation to the refer-
ence DMN. The spatial distribution of the DM-SNs was more
confined compared to the lower dimensional ICA results.

◦ DMN-A covering mainly the MPFC, more ventrally than at
dim = 20/30

◦ DMN-D centered at the central-posterior precuneus and the
PCC

◦ DMN-V centered at the retrosplenial cortex
◦ Right (DMN-R) covering mainly the right parietal lobule
◦ Left (DMN-L) covering the left parietal lobule.

ICASSO reliability estimates of the dim = 100 decomposition
showed that the DM-SNs were reasonably robust. DM-SNs had
high cluster quality indexes between 0.85 and 0.95 except DMN-
R had a quality index of 0.70, which is still sufficiently repeatable.
Decomposition from a single ICA run, which was used in the
actual statistical analysis, showed good correspondence in the
selected DM-SNs to the ICASSO centroid components. Spatial
correlation coefficients of the DM-SNs were between 0.91 and
0.96 except for DMN-L, which was slightly lower at 0.80. Overall,
these measures guaranteed the robustness of the DM-SNs used in
the analysis.

FUNCTIONAL CONNECTIVITY WITHIN DM-SNs
In FC analysis with normal ICA / dual-regression procedure, nei-
ther significant nor even near-significant group differences were
detected on any model order for the DM-SNs. In this regard the
result was similar for analyses with and without scrubbing.

FUNCTIONAL CONNECTIVITY BETWEEN DM-SNs
ASD participants showed significantly lower temporal correla-
tion between the anterior DM-SN and varying posterior DM-SNs
on every tested ICA dimensionality (Figure 2, Table 1). Firstly,
antero-posterior hypoconnectivity in ASD was found on dim =
20 between the two DM-SNs. On dim = 30 the hypoconnec-
tivity was dispersed between two pairs: there was a significant
difference in the DMN-A—DMN-D connection, plus a near sig-
nificant difference in the DMN-A—DMN-V connection. Finally
the details of the antero-posterior hypoconnectivity in ASD were
specified with dim = 100 where the DMN-A—DMN-V connec-
tion turned out to be the only distinct group difference. The
finding on dim = 100 also remained statistically significant (p <

0.05) after multiple comparison correction also over the three
ICA dimensionalities.

Age was not found to significantly covary with the above find-
ings of decreased antero-posterior DMN connectivity in the ASD
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FIGURE 1 | Illustration of the DMN division into distinct DM-SNs

presented across the studied ICA dimensionalities of 20, 30, and 100.

First at dim = 20 the original low model order single DMN is split into

anterior and posterior SNs and then the posterior SN is further split into
dorsal and ventral components. At high dim = 100 clearly lateralized
DMNs appear.

FIGURE 2 | The lines between DM-SNs illustrate the tested

connections on varying ICA dimensionalities between the

participants with ASDs and TDs. The red line denotes statistically

significant hypoconnectivity in ASD between the nodes and the line
width denotes the connection strength in the TD group (see
Table 1).
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Table 1 | The results of temporal correlation coefficients (Fisher Z-transformed) between DM-SNs with and without motion scrubbing.

ICA dim 20 30 30 30 100 100 100 100 100 100 100 100 100 100

DM-SN 1 A A A D A A D A A D D V V L

DM-SN 2 P D V V D V V L R L R L R R

WITH MOTION SCRUBBING

TD mean cc 0.52 0.48 0.46 0.62 0.55 0.46 0.50 0.56 0.41 0.50 0.41 0.28 0.42 0.52

ASD mean cc 0.38 0.35 0.35 0.61 0.52 0.33 0.42 0.55 0.32 0.42 0.44 0.17 0.36 0.52

t-score 2.36 2.27 1.96 −0.38 0.12 2.81 1.10 0.46 1.20 0.85 −0.69 1.91 0.78 −0.23

p (corr.) 0.01 0.04 0.08 − 0.96 0.03 0.63 0.89 0.57 0.75 − 0.22 0.78 −
WITHOUT MOTION SCRUBBING

TD mean cc 0.49 0.46 0.47 0.61 0.53 0.46 0.50 0.55 0.39 0.51 0.43 0.27 0.42 0.53

ASD mean cc 0.36 0.33 0.37 0.60 0.53 0.33 0.42 0.53 0.31 0.43 0.44 0.18 0.35 0.53

t-score 2.51 2.27 1.82 −0.33 −0.04 2.54 0.92 0.70 1.0 0.83 −0.67 1.77 0.87 −0.05

p (corr.) 0.009 0.04 0.10 − − 0.06 0.70 0.82 0.68 0.74 − 0.28 0.74 −

Statistically significant differences between the ASD and TD groups are denoted with a gray cell background. Abbreviations of the DM-SNs: A, Anterior; P, Posterior;

D, Dorsal; V, Ventral; L, Left; R, Right.

group. The relationship between connectivity and age was posi-
tive but the p-value close to one. Similarly, no signicant covariance
between the antero-posterior FC measures with SRS total score or
any of the SRS subscale scores was found. The relationship with
the SRS total was slightly negative but the p-value was almost one.

Gross motion estimates were not found to reach statistical
significance (results not shown) in co-variance with DM-SN cor-
relations on any ICA dimensionality, with or without the scrub-
bing procedure. However, on dim = 100 the DMN-D—DMN-R
correlation coefficient strength was near-significantly positively
co-varying with motion estimates.

THE EFFECT OF MOTION SCRUBBING
The effect of motion scrubbing compared to full time-series
analysis was studied for the FC between DM-SNs that were
found to differ between the groups in the above analyses.
The scrubbing procedure yielded somewhat greater group dif-
ferences in some of the DMN antero-posterior connections,
but decreases in others (Table 1). On average, the t-scores
changed by 0.13 units while the maximum change was 0.27
units. The most influential increase was observed in dim = 100
where the DMN-A—DMN-V connection was statistically sig-
nificantly greater in TDs compared to ASD participants after
scrubbing, but just below the significance threshold without
scrubbing.

DISCUSSION
The present ICA results with adolescent participants support the
notion of antero-posterior DMN hypoconnectivity in ASD. The
motion scrubbing only minimally altered the results over conven-
tional methods. The result with high dimensional ICA showed a
particularly interesting dissociation between anterior and ventral
DMN nodes (Figure 2). Excluding limitations in physiological
noise correction, our findings indicate that network level inter-
play is affected in adolescents with ASDs and indeed, interaction
between distinct brain networks has been acknowledged as criti-
cal for understanding the cognitive and behavioral symptoms in
ASD (Uddin and Menon, 2009). We did not detect any local DMN

FC differences in ICA dual-regression analysis, which is in con-
cordance with a recent whole brain analysis showing no changes
in adult participants with ASDs (Tyszka et al., 2013). However,
our FC analysis between DM-SN time-courses complements the
study by Tyszka and colleagues by showing alterations in network-
level interplay. A lack of local alterations in DMN suggests rather
normal regional functionality in ASD. Age or symptom measures
were not found to correlate with DMN hypoconnectivity.

Analysis results after motion scrubbing point out that the
antero-posterior DMN hypoconnectivity in ASD does not emerge
from motion artifact and thereby supports the hypoconnectiv-
ity theory in ASD. Motion scrubbing did not coherently alter
the investigated DMN correlations across ICA dimensionality or
across DM-SNs (Table 1). Overall, the additive effect of scrub-
bing was diminutive compared to ICA results with conventional
methods of motion artefact suppression that included removal
of considerably moving subjects and gross motion estimates as
covariates in the statistical testing. Based on the present results,
the ICA dual-regression carried out with conventional motion
control measures is resilient against motion artefacts in static FC
analysis. Motion scrubbing can presumably give slightly more
accurate results but the changes are small in this context.

Local DMN FC alterations in ASD were not detected
in our ICA dual-regression analysis, and even noteworthy
supra-threshold differences could not be observed. The lack of
differences slightly contradicts with earlier resting state stud-
ies reporting diverse findings (Kennedy and Courchesne, 2008;
Monk et al., 2009; Weng et al., 2010), although the spatial extent
of the findings was fairly small for instance in an ICA study of an
adolescent ASD population (Assaf et al., 2010) that has the most
comparable analysis to ours. The type of resting state scanning in
these earlier studies was similar to ours, namely visual fixation,
so the main dissimilarities remain in the analysis methods and
in the heterogeneity of participants. In their recent study, (Tyszka
et al., 2013) discuss reasons for possible overemphasis on group
differences in earlier ASD studies. Such reasons may be target-
ing brain networks already thought to be abnormal (e.g., DMN),
bias induced by prior task-fMRI on successive resting state scans,
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excess head motion in ASD and publication bias toward group
differences. Additionally the sample characteristics will have an
effect on the analysis outcome with probably more differences
occurring with lower level of functioning and younger age in the
sample. Although our study targeted the DMN and participants
were relatively young, there were no local differences in ICA dual-
regression. In the present study there were also aspects that made
the groups more equal: resting state data were acquired before any
task-fMRI scans eliminating cognitive carry-over effects, and the
effect of motion was practically eliminated in the analysis.

During the preparation of the present study new results on
default mode FC in ASD have been published with findings
indicating that the “underconnectivity” theory of ASD is too
simplistic and that ASD has to be considered more from a devel-
opmental viewpoint. Nevertheless, the findings of the present
study did not correlate with age, nor was there any DMN hyper-
connectivity observed in ASD. In other studies the findings also
do not seem fully consistent, although comparison is difficult due
to varying methodology. In young children (7–12 years) there was
mainly increased FC found in the DMN (Lynch et al., 2013). On
the other hand, in another study utilizing the rest periods from
task-fMRI, the older half (10–17 years) of the population clearly
presented decreased FC between DM-SNs (also between PCC and
MPFC), while in the younger half (6–9 years) the decreases were
more subtle (Washington et al., 2013). Finally, in adult partici-
pants with ASDs no marked FC differences at the whole brain
level were found either with atlas-based inter-regional correla-
tion or ICA dual-regression analyses (Tyszka et al., 2013). Overall,
the FC results in the literature seem relatively variable still and it
remains to be conclusively determined how DMN connectivity
alters during the developmental stages in ASD.

DM-SN time-series’ correlations (Table 1) demonstrated
clearly lowered DMN connectivity in those with ASDs between
DMN-A and DMN-P at dim = 20 and between DMN-A and
DMN-D at dim = 30. However, at dim = 100 dysconnectivity
was detected between DMN-A and DMN-V with more confined
DMN parcellations. This finding does not conflict with those
at lower model orders since the connectivity in the DMN-A—
DMN-V—pair was already near-significant (p = 0.08) at dim =
30. Interestingly though, the DMN-A—DMN-D connectivity was
very similar for the TD and ASD groups at dim = 100, which
is a prominent difference compared to lower dimensionalities.
This altering result pattern across dimensionalities is certainly
related to the correspondingly changing spatial DMN charac-
teristics. A major difference in DM-SN constellations is that
the parietal lobule connectivity at dim = 100 is dedicated to
DMN-L and DMN-R, and largely eliminated from DMN-D com-
pared to dim = 30. Secondly, DMN-A is more ventrally weighted
at dim = 100.

Our attempt to relate the findings to ASD symptoms as mea-
sured by SRS scores (obtained 4 years prior to MRI) did not
give any indications about relevant symptoms. Also, interpret-
ing the altered resting state antero-posterior DMN connectivity
via psychological processes is challenging due to the various cog-
nitive functions that have often simultaneously been attributed
to both the anterior and posterior DMN nodes (e.g., Schilbach
et al., 2008). However, our DM-SN constellation from dim =

100 decomposition is highly similar to a compelling study by
Andrews-Hanna et al. (2010) wherein the DMN FC was mapped
in the resting state and the relation of several tasks on the self-
relevancy and present-future axis to the DMN were investigated.
The DMN was split into anterior and posterior midline core
nodes (vs. DMN-D and DMN-A) and into two distinct subsys-
tems termed the medial temporal lobe (MTL) subsystem (vs.
DMN-V) and the dorsal medial prefrontal cortex (dMPFC) sub-
system (vs. combined DMN-R and DMN-L). Core midline nodes
DMN-D and DMN-A are active during tasks related to present
and future self whereas DMN-V is particularly related to future
self, not present self. In more detail, the fMRI stimulus variables
that disentangle DMN-V from core nodes include memory, imag-
ination and spatial content. As a summary, the combination of
anterior, dorsal, and ventral DM-SNs was most prominently acti-
vated when the subject was thinking about themself in the future
(Andrews-Hanna et al., 2010). Intriguingly, the decreased cou-
pling between DMN-V and DMN-A could be linked to delayed
imaginative play, another symptom in autism (Levy et al., 2009),
as imagination and self-referential processing are elementary for
such activity. Also related to our main finding, autobiographical
episodic memory and self-referential processing in the past tem-
poral domain are particularly impaired in those with ASDs (Lind,
2010). Our findings indicate the need for brain imaging studies of
autobiographical memory in people with ASDs as earlier noted by
Uddin (2011).

The antero-posterior DMN dissociation has also been robustly
shown in aging and wide domain decline in the cognitive per-
formance of older adults is associated with this finding too
(Andrews-Hanna et al., 2007). Interestingly, a psychedelic state
induced by psilocybin manifests as a significant decoupling in
antero-posterior DMN connectivity, implying that the DMN has
an imperative role in cognitive integration (Carhart-Harris et al.,
2012). The reverse finding of increased antero-posterior DMN
connectivity with ICA has been reported in schizophrenia (Jafri
et al., 2008). Altogether these studies and our findings again
emphasize the central role of the DMN in sound function of the
brain.

In task-fMRI the DMN brain regions are known to nor-
mally deactivate during the task and activate during rest periods.
However, diminished DMN deactivation in diverse task-fMRI
studies has been a characteristic finding for participants with
ASDs (Kennedy et al., 2006; Murdaugh et al., 2012; Rahko et al.,
2012; Spencer et al., 2012; Christakou et al., 2013). From task-
fMRI studies it is not straightforward to conclude whether abnor-
mal baseline activity or failure to deactivate is the ultimate driver
for group differences, but our results support the view that DMN
connectivity is already altered at baseline.

In our previous diffusion tensor imaging study (Bode et al.,
2011), with almost the same participants with ASDs as the present
study, a decreased diffusivity in the transverse direction was
detected in the inferior fronto-occipital fasciculus. That fiber for-
mation directly connects the IPL of DMN-V with the MPFC of
DMN-A. Inferior fronto-occipital fasciculus is also in close con-
nection with the RSC, a main node of DMN-V, which provides a
potential structural explanation for our decreased FC findings in
DMN.
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The investigation of optimally determined ICA model order
is a persistent topic in resting state connectivity research, but
our aim was to study the DMN connectivity at very differ-
ent dimensionalities without restricting the analysis on one data
representation. The unitary DMN obtained from very low ICA
dimensionality is highly similar to the conjunction analysis result
of several DMN seed correlations (Fox et al., 2005). The diverse
DMN manifestations demonstrated also in the present study
suggests that if one aims to study the DMN FC with temporal-
concatenation based group ICA, either very low dimensionality
(<10) should be used or several DM-SNs should be incorporated
into the analysis already at around typical 20–30 dimensionality.
A high dimensional group ICA has a disadvantage that compo-
nent estimates become more variable across ICA runs and less
generalizable across subjects (Pendse et al., 2012), and also the risk
of unwanted component splitting arises due to inter-individual
spatial variability (Allen et al., 2012). However, high dimension-
ality has been found to be useful, for example, in a group ICA
based fMRI data classification study comparing a wide range of
dimensionalities (Duff et al., 2012), it was found that predic-
tion accuracy was highest using 80 or more components. The
prediction accuracy did not deteriorate when using even sev-
eral 100 components. Based on our earlier investigations (e.g.,
Abou-Elseoud et al., 2010) regarding DMN core regions, DM-
SNs seem to converge to a relatively stable decomposition at very
high model orders, which supports the validity of analysis on such
decomposition.

A limitation of the present study is the lack of specific subject-
level control over physiological signal sources, although on the
group level, the ICA dual regression procedure models physio-
logical noise with a wide set of spatial components.. If there are
systematic differences between ASD and TD groups in the phys-
iological noise processes, they might account for the observed
DMN hypoconnectivity in ASDs. Mixing of physiological nui-
sance sources with RSNs of interest has also been shown to occur
on the DMN (Birn et al., 2008) but less on high ICA dimensional-
ity (Beall and Lowe, 2010; Starck et al., 2010). Therefore, the fact
that the differences are potentiated at high ICA dimensionality
support our findings. Also, physiological noise signal strength is
less in our 1.5 T data as compared to 3 T data (Krüger et al., 2001).
Additionally, recently the ICA dual-regression procedure with-
out explicit physiological correction was shown to produce robust
DMNs that were not notably different for physiologically cor-
rected (RETROICOR or RVHRCOR) data (Khalili-Mahani et al.,
2013).

In conclusion, we have shown antero-posterior hypoconnec-
tivity in ASD despite additional elimination of motion effects by
means of motion scrubbing. Detailed views on the altered DMN
connectivity in adolescents with ASDs were obtained by multi-
dimensional ICA analysis and the results suggest that the aberrant
FC manifests particularly in the network-level interplay rather
than in local abnormalities. In particular, high ICA dimension-
ality analysis showed a significant decrease of aDMN—vDMN
connectivity in ASD. Our findings of resting state DMN disas-
sociation in adolescents with ASDs could be related to deficits in
autobiographical memory and self-referential processing, which
provides an interesting future prospect in autism research.
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Converging evidence from diverse studies suggests that atypical brain connectivity
in autism affects in distinct ways short- and long-range cortical pathways, disrupting
neural communication and the balance of excitation and inhibition. This hypothesis is
based mostly on functional non-invasive studies that show atypical synchronization and
connectivity patterns between cortical areas in children and adults with autism. Indirect
methods to study the course and integrity of major brain pathways at low resolution show
changes in fractional anisotropy (FA) or diffusivity of the white matter in autism. Findings in
post-mortem brains of adults with autism provide evidence of changes in the fine structure
of axons below prefrontal cortices, which communicate over short- or long-range pathways
with other cortices and subcortical structures. Here we focus on evidence of cellular and
axon features that likely underlie the changes in short- and long-range communication
in autism. We review recent findings of changes in the shape, thickness, and volume
of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural
and neurochemical features of individual axons in the white matter, where pathology
is evident even in gross images. We relate cellular and molecular features to imaging
and genetic studies that highlight a variety of polymorphisms and epigenetic factors that
primarily affect neurite growth and synapse formation and function in autism. We report
preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons
in prefrontal cortex, known to shape network dynamics and the balance of excitation
and inhibition. Finally we present a model that synthesizes diverse findings by relating
them to developmental events, with a goal to identify common processes that perturb
development in autism and affect neural communication, reflected in altered patterns of
attention, social interactions, and language.

Keywords: prefrontal cortex (PFC), parvalbumin-positive interneurons, anterior cingulate cortex, ratio of excitation

and inhibition, myelinated axons, GAP-43, white matter, short-range and long-distance pathways

INTRODUCTION—THE GENERAL HYPOTHESIS FOR
DISRUPTED CONNECTIVITY IN ASD
The balance of excitation and inhibition is disrupted in
autism spectrum disorders (ASD) with widespread repercus-
sions on neural communication (Rubenstein and Merzenich,
2003; Amaral et al., 2008; Rubenstein, 2011). Connections are
the conduit for neural communication, forming local or inter-
areal circuits, which collectively construct large scale networks.
In the primate brain, cortico-cortical, and cortico-subcortical
pathways that travel through the white matter originate from
excitatory neurons. The white matter pathways, which consist
largely of axons of excitatory neurons, can be subdivided into
short/medium- or long-range based on the distance they travel to
connect with other neural structures. When these pathways reach
their targets in the cortex or in subcortical structures they form
excitatory synapses with local excitatory or inhibitory neurons,
participating in local microcircuits within a column/minicolumn,
or neighboring columns in the cortex, or within subcortical struc-
tures. Axons from inhibitory neurons in primates are largely con-
fined within the gray matter and innervate nearby neurons found

in the same or different layers within the same or neighboring
columns.

This brief description of structural connectivity highlights
multiple levels at the macro and micro scales that may be dis-
rupted in varying degrees in ASD, affecting neural communica-
tion, and the balance of excitation and inhibition. Converging
evidence from genetic, functional, and structural studies sug-
gests that there are changes in excitatory and inhibitory neural
communication in ASD and in the structure of the underlying
cortical circuits or networks. At the microcircuit and synaptic
level, numerous genetic studies have highlighted a large variety
of polymorphisms and epigenetic factors that primarily affect
neurite growth, synapse formation, and synaptic transmission of
excitatory and inhibitory neurons (see Samaco et al., 2005; Hogart
et al., 2007; Weiss et al., 2009; Gilman et al., 2011; Hallmayer
et al., 2011; Hussman et al., 2011; Voineagu et al., 2011; Shulha
et al., 2012; reviewed in Geschwind, 2011). At the level of the net-
work, most imaging studies have also focused on affected brain
systems by identifying abnormalities in the gray and white mat-
ter, primarily in frontal and temporal lobes, or in their major
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pathways (Belmonte et al., 2004a; Herbert, 2005; Casanova, 2007;
Courchesne et al., 2007; Kumar et al., 2009; Schumann et al., 2010;
Schipul et al., 2011; Just et al., 2012).

However, there is a paucity of data about specific changes in
neural elements that form excitatory and inhibitory brain circuits
and underlie mechanisms of imbalance in ASD. While in short
supply, studies at the cellular level have described changes in the
cytoarchitecture, density and neurochemical features of excitatory
and inhibitory neurons in frontal and temporal areas in autism
(Bauman and Kemper, 2005; Casanova, 2007; Amaral et al., 2008;
Schmitz and Rezaie, 2008; Blatt and Fatemi, 2011; Penzes et al.,
2011; Schumann and Nordahl, 2011; Srivastava et al., 2012).
Only a few studies have employed a combination of high reso-
lution methods to study the neural pathophysiology of autism,
by identifying specific structural, neurochemical, and molecular
changes of neuronal elements that may underlie atypical develop-
ment of synaptic interactions within functional cortical networks
(Weidenheim et al., 2001; Garbern et al., 2010; Zikopoulos and
Barbas, 2010). The present review focuses on these structural
aspects that likely tip the balance of excitation and inhibition at
the level of circuits and networks in ASD.

Several cortical and subcortical areas including frontal and
temporal cortices, the amygdala, and the cerebellum exhibit atyp-
ical functional and structural characteristics in ASD; it should be
noted however, that pathology may also be present in other and
as yet not studied brain regions. Frontal cortical pathways have
received considerable attention because they consistently show
functional disruption in ASD (Hill, 2004; Pickett and London,
2005; Wass, 2011; Just et al., 2012). For this reason, here we
focus on three robustly interconnected prefrontal regions: ante-
rior paracingulate and cingulate areas (referred thereafter as ACC)
in the medial prefrontal cortex, orbitofrontal cortex (OFC) in the
ventral and ventrolateral prefrontal cortex, and lateral prefrontal
areas (LPFC). These areas have a key role in attention, social inter-
actions, emotions, and executive control (Barbas, 2000a,b; Barbas
et al., 2011), in processes that are severely affected in autism
(Baron-Cohen, 1991; Ozonoff et al., 1991; Carper et al., 2002;
Maestro et al., 2002; Sparks et al., 2002; Mundy, 2003; Hill, 2004;
Girgis et al., 2007; Jiao et al., 2010). In some cases we include rel-
evant findings in temporal or parietal cortices that are connected
with the above prefrontal cortices.

The ACC, OFC, LPFC and their pathways are functionally
disorganized in autism. There is evidence that at least some of
these areas exhibit local over-connectivity and long-distance dis-
connection (Casanova et al., 2002b; Barnea-Goraly et al., 2004;
Casanova, 2004; Herbert et al., 2004; Courchesne and Pierce,
2005; Herbert, 2005; Kana et al., 2006b; Girgis et al., 2007; Just
et al., 2007; Pardini et al., 2009; Assaf et al., 2010; Hyde et al.,
2010; Anagnostou and Taylor, 2011; Bernardi et al., 2011; Wass,
2011). Aberrant function of ACC in autism includes hyperac-
tivity during response monitoring and social target detection
(Thakkar et al., 2008; Dichter et al., 2009) and desynchronized
activity during working memory tasks (Kana et al., 2006b), while
LPFC shows lower activity in working memory tasks (Luna et al.,
2002; Koshino et al., 2008; reviewed in Schipul et al., 2011).
Activity in LPFC and OFC is correlated with intellectual level
and predicts poor performance of individuals with autism in

neuropsychological tasks (Loveland et al., 2008). In addition, in
autism there is decreased functional connectivity between OFC,
other areas that process emotions, reward, and social interactions,
like the amygdala or insula, and language areas in the poste-
rior superior temporal sulcus (Sabbagh, 2004; Bachevalier and
Loveland, 2006; Hardan et al., 2006; Girgis et al., 2007; Abrams
et al., 2013).

The goal of this article is to synthesize recent high resolution
neuropathological findings at the cellular level of circuits and
relate the observed changes to relevant gross anatomical, func-
tional, genetic, or epidemiological data. The focus is on axons
and neurons that form local or distant circuits. We highlight
similarities and differences in the way local vs. long-distance cir-
cuits may be affected in ASD and propose refinements to the
hypothesis of disrupted connectivity in ASD that may reconcile
conflicting findings regarding the prevalence and significance of
over-connectivity or under-connectivity in frontal and temporal
networks. We additionally report preliminary findings of changes
in the ratio of distinct types of inhibitory neurons in dorsolateral
prefrontal area 9 of adults with ASD. This pilot study presents
novel evidence that addresses the overarching hypothesis of dis-
ruption in the balance of excitation and inhibition in autism.
Finally, by grounding findings within a developmental framework
we propose potential common mechanisms that may underlie
the disruption of neural communication and the imbalance of
excitation and inhibition in ASD.

WHAT BRINGS ABOUT CHANGES IN STRUCTURAL
CONNECTIVITY?
Structural connectivity can change by direct alterations in the
physical connections between neurons, reflected in the numbers
of synapses, and the biophysical attributes of individual synapses
that affect synaptic efficacy. Significant structural changes likely
affect functional connectivity, reflected in ASD as atypical syn-
chronization and connectivity patterns of frontal or temporal
areas in children and adults with autism, suggesting abnormal
engagement and interactions of short-range and long-range exci-
tatory pathways and local inhibitory circuits (Rubenstein and
Merzenich, 2003). The study of structural connectivity at the
synaptic level in humans is challenging, primarily due to limited
tissue availability and variability in tissue preservation that may
impede rigorous analyses. Despite these limitations there is con-
siderable evidence for changes in neuronal elements in cortical
areas that could affect synaptic function in ASD. Studies report
changes in the structure of presynaptic and post-synaptic ele-
ments, pathways in the white and gray matter, and density and
size of various neuronal and glial cell types, as elaborated below.

AXON PATHOLOGY IS AT THE CORE OF ATYPICAL
CONNECTIVITY IN ASD
Imaging studies in children and adults with autism, show
decreased functional connectivity between frontal and other areas
and gross changes in the structural integrity of frontal gray and
white matter (Barnea-Goraly et al., 2004; Kana et al., 2006a; Just
et al., 2007; Keller et al., 2007; Minshew and Williams, 2007;
Koshino et al., 2008; Thakkar et al., 2008; Pardini et al., 2009;
Minshew and Keller, 2010). Typical findings in the white matter
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include lower fractional anisotropy (FA) and higher radial diffu-
sivity in ASD groups than in controls, which may come about
by a reduction of diffusion barriers between axons (reviewed in
Muller et al., 2011). These findings suggest decreased axon diam-
eter and/or decreased myelination that reduce axon volume, and
may result in changes in the density of axons.

The relative position and size of axons in the white matter
below the cortex can be used as an indicator of their termina-
tion in nearby or distant brain areas. The deep (inner or sagittal)
white matter includes long-range excitatory pathways (Herbert

et al., 2004; Hilgetag and Barbas, 2006; Petrides and Pandya, 2006,
2007; Schmahmann and Pandya, 2006; Sundaram et al., 2008),
with thicker axons than found in the superficial white matter just
below the cortex (Zikopoulos and Barbas, 2010; Figure 1). The
superficial (outer or radiate) white matter is situated below cor-
tical layer 6, and carries mostly thin excitatory fibers as axons
branch to connect with nearby areas (Figure 1).

Based on the relationship of pathways within the white mat-
ter, functional imaging and physiological studies have shown that
long-range cortico-cortical pathways that link frontal areas with

FIGURE 1 | High resolution segmentation of the white matter. (A)

Coronal view of a representative ACC (A32) tissue slab. Dotted lines
indicate gross (macroscopic) distinction of superficial (SWM) and deep
(DWM) white matter, based on subsequent microscopic analysis. (B,C)

Fluorescent photomicrographs of coronal sections from A32 white
matter after labeling of axons with a neurofilament protein antibody
(NFP-200; green). Light microscopic segmentation of superficial (B) and
deep (C) white matter is based on the distinct orientation of axons at

different depths from the gray matter. Axons in the superficial white
matter travel mainly perpendicular to the surface of the cortex (B,
axons appear mainly as thin lines), whereas in the deep white matter
most axons travel parallel to the cortical surface (C, axons appear
mainly as green dots). (D,E) EM photomicrographs show mostly
elongated axon profiles in the superficial white matter (D) and mostly
circular axon profiles in the deep white matter (E). Adapted from
Zikopoulos and Barbas (2010).
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other cortices are weak and disorganized in autism. Specifically,
there is reduced coherence and correlation in task-related activity
of distant areas, which constitutes decreased functional connec-
tivity (Just et al., 2004, 2007; Courchesne and Pierce, 2005). In
addition, gross structural imaging studies have shown reduced
size, FA, and diffusivity in deep white matter tracts, suggest-
ing differential composition or compromised structural integrity
of long-distance pathways in adults and children with autism
(Alexander et al., 2007; Just et al., 2007; Frazier and Hardan,
2009; Casanova et al., 2011; Jou et al., 2011; Shukla et al., 2011a).
In contrast, gross structural imaging studies have reported tran-
sient enlargement of the superficial white matter in the frontal
cortex of children with autism (Belmonte et al., 2004a; Herbert
et al., 2004; Herbert, 2005). Concomitantly, functional studies
have shown aberrant or excessive activation and increased syn-
chrony within frontal cortices, suggesting local overconnectivity
in autism (Courchesne and Pierce, 2005; Kennedy et al., 2006).

Our recent work in adult human post-mortem brain tissue
(Zikopoulos and Barbas, 2010) provides novel evidence for spe-
cific structural and molecular changes in individual prefrontal
axons (Figure 2). In agreement with the long-range undercon-
nectivity hypothesis, we found that below the anterior cingu-
late/paracingulate cortices (ACC) in the brains of adults with
autism there are fewer large myelinated axons in the deep white
matter, which link distant areas (Herbert et al., 2004; Hilgetag and
Barbas, 2006; Petrides and Pandya, 2006, 2007; Schmahmann and
Pandya, 2006; Sundaram et al., 2008). In sharp contrast, we found
a higher density of thin myelinated axons in the superficial white
matter below ACC, which was partially due to excessive branch-
ing of thin and medium-sized axons, which link nearby areas. In
addition, axons below OFC had thinner myelin in ASD cases than
in controls (Figure 2). The thinner myelin in OFC was not due to
a reduction in the density of oligodendroglia in the white matter
(Zikopoulos and Barbas, 2010).

The significance of these findings is twofold. First, the ACC
has a key role in attentional control (Gehring and Knight, 2000;
Paus, 2001; Ito et al., 2003; Johnston et al., 2007), and OFC in
emotions (Barbas and Zikopoulos, 2006; Zikopoulos and Barbas,
2012), and both processes are seriously disrupted in autism
(Gomot et al., 2006; Steele et al., 2007; Vlamings et al., 2008;
Norbury et al., 2009; Markram and Markram, 2010; Bernardi
et al., 2011). Second, in non-human primates, the ACC has
the most widespread connections with other prefrontal cortices
(Barbas et al., 1999). The OFC is distinguished for its multimodal
input from every sensory modality through high-order sensory
association and multimodal cortices (Barbas, 1993; Barbas and
Zikopoulos, 2006). These findings suggest that changes in axons
below ACC and OFC have widespread repercussions on pre-
frontal networks and beyond. That is why, even though axon fea-
tures below lateral prefrontal cortices (LPFC) appear unaffected
(Zikopoulos and Barbas, 2010), the altered white matter com-
position below ACC and OFC changes the relationship among
prefrontal areas. The changes in the relationship of axons below
prefrontal areas could affect LPFC function, because these regions
are robustly interconnected in primates (Petrides and Pandya,
1988; Seltzer and Pandya, 1989; Barbas et al., 1999; Barbas, 2000a;
Fullerton and Pandya, 2007; Schmahmann et al., 2007).

Two well-studied networks can be used to illustrate additional,
and perhaps more specific, implications for the pathology of
intrinsic or distant prefrontal circuits in ASD. First, studies of the
ACC-LPFC intrinsic circuit in non-human primates show that
ACC sends a robust feedback projection that targets primarily the
superficial layers of LPFC (Medalla and Barbas, 2009, 2010, 2012).
As is typical in cortico-cortical networks in primates, excitatory
axons from ACC mainly target excitatory pyramidal neurons in
LPFC. However, a smaller but significant proportion (∼20%) of
excitatory ACC axons form synapses with inhibitory neurons in
the superficial layers of LPFC, where they innervate preferentially
calbindin (CB) inhibitory neurons (Medalla and Barbas, 2009).
Anatomic, physiologic, and computational studies have shown
that CB inhibitory neurons innervate the distal dendrites of exci-
tatory pyramidal neurons (Peters and Sethares, 1997) and modu-
late their activity, increasing the signal-to-noise ratio (Peters and
Sethares, 1997; Gonzalez-Albo et al., 2001; Wang et al., 2004).
These synaptic specializations suggest that ACC can enhance rel-
evant signals and reduce noise in LPFC, to facilitate focusing
attention on a task, and are especially useful during challeng-
ing cognitive tasks (Gehring and Knight, 2000; MacDonald et al.,
2000; Paus, 2001; Schall, 2001; Ito et al., 2003; Badre and Wagner,
2004; Johnston et al., 2007; Tanji and Hoshi, 2008). The exu-
berance of thin, short-range axons found in adults with autism
(Zikopoulos and Barbas, 2010) that link ACC with nearby areas,
including LPFC, suggests a potential exaggeration of this mecha-
nism that could underlie the difficulty of even high-functioning
individuals with autism to shift attention. Distant regions that are
likely affected are temporal lobe structures, including auditory
or multimodal temporal cortices and the amygdala, which have
strong bidirectional interactions with prefrontal cortices in non-
human primates (e.g., Barbas and Mesulam, 1985; Barbas et al.,
1999, 2005b; Ghashghaei and Barbas, 2002; Germuska et al., 2006;
Ghashghaei et al., 2007; Medalla et al., 2007; Zikopoulos et al.,
2008).

In spite of the small number of cases and heterogeneity on
the ASD spectrum, changes in axons below ACC were present
in all autistic cases studied, suggesting a fundamental autism
phenotype in axons below some prefrontal areas (Zikopoulos
and Barbas, 2010). The power and generalizability of these find-
ings are high likely because the cases were well-matched and
within a narrow age range (30–44 years), obviating differences
in the developmental trajectory that can increase variability.
Importantly, the findings are based on multiple independent
methods to estimate the same or related variables. For example,
axon size and branching were independently evaluated both at the
confocal and electron microscopes, and additionally corroborated
by independently labeling and estimating the proportion of axons
that express axon growth factors, as elaborated below.

MOLECULAR MECHANISMS THAT REGULATE AXON GROWTH ARE
AFFECTED IN AUTISM
In the study of adults with autism (Zikopoulos and Barbas, 2010),
supernumerary branching, and density of thin axons below ACC
are associated with increased expression of the Growth Associated
Protein 43 (GAP-43; Figure 2). This intracellular protein is pro-
duced in the cell body and is quickly transported down the axon
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FIGURE 2 | Changes in myelinated axons below prefrontal cortices in

adults with ASD. (A) In the superficial white matter (SWM) below ACC (area
32) the relative density of small (thin) axons (±SEM) is increased in the
autistic cases, and more axons branch and express GAP-43. These data
suggest increased local connectivity of ACC in ASD. In contrast, in the deep
white matter (DWM) below ACC the relative density of large axons is
reduced in ASD, suggesting weakening of long-range connectivity. Thinning
of the myelin in axons of all sizes just below OFC (area 11) suggests weak
local connections. (B,C) Laminar and overall neuronal density below ACC,
OFC, and LPFC is similar in adults with ASD and controls and is not
correlated with the changes in axons below PFC. (D) EM photomicrograph of

axons in the superficial white matter below ACC of an adult with ASD. (E)

Collapsed image (z-projection) from a three-dimensional confocal stack
shows myelinated axons branching, labeled with NFP-200 (green). A
branching axon is pseudo colored with orange/yellow hue for visualization
(yellow arrowheads point to branches). (F) Image from a three-dimensional
confocal stack with double immunofluorescence shows GAP-43 (red) in
axons labeled with NFP-200 (green). Some myelinated axons contain GAP-43
in their axolemma, which is transported to axon terminals and branching
points. Colocalization of the two antibodies is rendered white. (G) EM
photomicrographs show differences in myelin thickness in OFC between
control and autistic adults, apparent in all axon size groups.

to reach branching points, growth cones, and axon terminals
(reviewed in Benowitz and Routtenberg, 1997). It is, therefore,
most abundant in the superficial part of the white matter and
in the gray matter, as axons branch to innervate their targets.
GAP-43 also promotes neurotransmitter release, endocytosis and
synaptic vesicle recycling (Denny, 2006). These actions are con-
tingent upon phosphorylation of GAP-43 by protein kinase C,
which induces local actin filament-membrane attachment. GAP-
43 is expressed at high levels during late prenatal and early

postnatal stages of axon growth, and is subsequently markedly
reduced with the onset of myelination (Kapfhammer and Schwab,
1994; Benowitz and Routtenberg, 1997). In the adult brain GAP-
43 is found in significant amounts only in some limbic areas,
including the hippocampus and ACC, where it also promotes
axon growth, and acts as a lateral stabilizer of actin filaments
presynaptically, strengthening synapses to promote long-term
potentiation, spatial memory formation, and learning (Maviel
et al., 2004; Holahan et al., 2007; Holahan and Routtenberg,
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2008). In addition, GAP-43 is found at focal sites after brain
injury, where it promotes axon sprouting and regeneration (Neve
et al., 1988; Benowitz and Routtenberg, 1997).

In autism, an increase in GAP-43 may persist in adulthood in
response to reported inflammation (Vargas et al., 2005; Morgan
et al., 2010), or due to axon damage. Interestingly, GAP-43 tran-
scription is directly regulated by calcineurin and nuclear factor
of activated T cells (Yoshida and Mishina, 2005; Nguyen et al.,
2009), which are targets of immunosuppressants like rapamycin
(Ho et al., 1996). Rapamycin inhibits the mTOR signaling path-
way, and improves neurological dysfunction in animal models
of tuberous sclerosis that are relevant for autism (Ehninger and
Silva, 2011). Therefore, it seems plausible that GAP-43 and related
signaling proteins may provide the link between neurological
deficits and the extensive immune dysregulation in autism (Smith
et al., 2007; Atladottir et al., 2009; Becker and Schultz, 2010;
Patterson, 2011; Garbett et al., 2012; Hsiao et al., 2012; Malkova
et al., 2012; Patterson, 2012).

A variety of external factors up-regulate GAP-43 expression,
including estrogenic agents that disrupt endocrine function, such
as bisphenol A, and immunosuppressive and psychiatric drugs
used for a variety of common disorders, including psoriasis,
asthma, rheumatoid arthritis, dry eye, depression, and anxiety
(Wong et al., 1989; Jyonouchi et al., 2001; Granda et al., 2003;
Croen et al., 2005, 2011; Ostensen et al., 2006; Sairanen et al.,
2007; Brown, 2009; Nguyen et al., 2009). Several of these sub-
stances came into heavy use in the early 80s at a time when the
prevalence of autism began to rise (Blaxill, 2004). The use of
endocrine disruptors during pregnancy has been correlated with
increased autism risk (Croen et al., 2011; Simpson et al., 2011; de
Cock et al., 2012).

Information on the developmental trajectory of axon growth
and relevant signaling pathways will help delineate a more
detailed timeline for the development of autism pathology, nar-
row down the temporal window for the insult, and spur new
research to identify affected signaling pathways and factors that
may be targeted for therapeutic interventions. Importantly, epi-
demiologic studies are necessary to investigate the relationship
between signaling pathways and possible cumulative effects of
environmental agents, diet, and drugs on the uterine and post-
natal environment that may perturb the expression of factors
implicated in axon growth and guidance in autism.

DENDRITIC SPINE PATHOLOGY IN ASD
Structural evidence for the disturbance of neural communication
in ASD is also apparent in the cortical gray matter, specifically on
post-synaptic targets of cortical or subcortical afferents, the den-
drites of excitatory pyramidal neurons. In dorsolateral prefrontal
area 9, temporal area 21, and parietal area 7, there is increased
dendritic spine density in layer II pyramidal neurons, and in neu-
rons of layer V only in area 21, among those studied (Hutsler and
Zhang, 2010). These differences were found in all major dendritic
branches (apical, basilar, and oblique), and along the length of
apical dendrites of pyramidal cells for several hundred microme-
ters from the cell body. Based on these results, ASD seems to be
part of a small group of developmental disorders where there is
no apparent loss of dendritic spines.

Since the majority of synapses on spines of pyramidal neu-
rons are excitatory (e.g., Lowenstein and Somogyi, 1991; Peters
et al., 1991; Ahmed et al., 1997; Somogyi et al., 1998; Alonso-
Nanclares et al., 2004; Douglas and Martin, 2004; Anderson and
Martin, 2009; Medalla and Barbas, 2009, 2010; Micheva et al.,
2010), changes in spine density suggest an alteration in the density
of excitatory synapses on dendritic segments within prefrontal,
temporal, and parietal cortices in ASD. However, one cannot
rule out possible changes in the density of inhibitory synapses
onto cortical neurons, which also target dendritic spines and
shafts in various ratios, depending on the pathway. Moreover,
preliminary morphological analysis (Hutsler and Zhang, 2010;
Avino et al., 2012) shows immature morphology and excessive
fluctuation in the length and shape of spines in ASD cases, sug-
gesting synaptic lability. The same morphological changes could
affect dendritic cytosolic compartmentalization, dendritic com-
putations, and ultimately neuronal processing (for a review see
London and Hausser, 2005).

The findings on spine features are limited to studies by one
group so far and do not offer explicit clues about the potential
local or distant presynaptic origin of the connections affected, but
are nevertheless informative about the overall pathology in ASD.
Specifically, a consistent finding is increased layer II connectiv-
ity in ASD in association areas examined by (Hutsler and Zhang,
2010). Neurons in the superficial layers of the cortex are primarily
involved in ipsilateral and contralateral cortico-cortical connec-
tions, and receive feedback projections from areas that have fewer
layers or lower neuronal density, such as the ACC (Barbas and
Rempel-Clower, 1997), and these pathways may be dispropor-
tionately affected in ASD. Layer II in LPFC receives strong input
from the amygdala (Ghashghaei et al., 2007), most subcortical
neuromodulatory systems (Berger et al., 1988; Lewis et al., 1988;
Gaspar et al., 1989; Lewis and Morrison, 1989; Raghanti et al.,
2008), and the ACC (Barbas et al., 1999; Medalla and Barbas,
2009, 2010). Another type of pathway that targets the superfi-
cial cortical layers, including layer II, originates from the widely
projecting matrix neurons of the thalamus, which can effectively
propagate and synchronize thalamocortical activity over large
expansions of the cortex (Zikopoulos and Barbas, 2007; Jones,
2009). It is possible that within the frontal lobe, potential thalam-
ocortical pathology in the upper layers may be restricted to lateral
prefrontal areas, because at least the gross features of myelinated
thalamocortical axons in the deep white matter below the ACC are
not affected in ASD (Zikopoulos and Barbas, 2010). Further work
is needed to determine if thalamocortical axons are more specif-
ically affected as they branch to innervate different prefrontal
cortices.

Further, based on the inside-out model of development of the
cortex, layer II is the last layer to develop. The maturation period
of layer II is protracted as connections are formed, in accord with
the fact that long-distance cortico-cortical and callosal connec-
tions that these superficial layers participate in also develop late.
It seems that changes in white matter axons, described in previ-
ous sections (Zikopoulos and Barbas, 2010), as well as changes
in dendritic spines in the gray matter (Hutsler and Zhang, 2010),
point toward late prenatal or early postnatal critical periods for
the development of ASD neuropathology. This is also supported
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by the fact that callosal pathways, which also develop late, are
severely compromised in ASD as well (Alexander et al., 2007; Just
et al., 2007; Frazier and Hardan, 2009; Jou et al., 2010; Anderson
et al., 2011b; Cantlon et al., 2011; Casanova et al., 2011; Fame
et al., 2011; Schipul et al., 2011).

The finding of increased dendritic spine density in layer V
pyramidal neurons only in temporal area 21 (Hutsler and Zhang,
2010) may be associated with atypical auditory or language pro-
cessing and with deficits in social-emotional interactions in ASD.
This idea is in accord with imaging studies (e.g., Just et al., 2004;
Gomot et al., 2006; Bigler et al., 2007; Lee et al., 2007). Within the
cortex, atypical activation patterns of layer V neurons in tempo-
ral areas may have an effect in feedback pathways to other cortical
areas. Moreover, the amygdala, thalamus, and striatum are major
subcortical targets of cortical layer V neurons, and structural as
well as functional studies indicate that these subcortical struc-
tures and their circuits may be affected in autism (e.g., Bauman
and Kemper, 1985; Tsatsanis et al., 2003; Schumann et al., 2004;
Haznedar et al., 2006; Schumann and Amaral, 2006; Shukla et al.,
2010; Tamura et al., 2010; Cheon et al., 2011; Di Martino et al.,
2011; Langen et al., 2012).

NEURONAL AND GLIAL CELL DENSITIES AND
MORPHOLOGY IN ASD
Several structural imaging studies have shown that there is abnor-
mal acceleration of brain growth in ASD. The brains of young
children with ASD are larger than those of typically developing
controls, and although this enlargement is attributed mostly to
increased white matter volume, there is also significant enlarge-
ment of gray matter, especially in frontal and temporal areas
(reviewed in Courchesne et al., 2011a). The white matter or cor-
tical enlargement appears to be transient and is not evident in
adults with ASD (Herbert, 2005; Redcay and Courchesne, 2005).
In agreement with these data, recent preliminary findings sug-
gest that the increase in gray matter volume in children with
ASD may, in some cases, be due to increased number of neu-
rons, at least in some prefrontal cortices (Courchesne et al.,
2011b). The authors of this study reported that children with ASD
have, on average, 79% more neurons in dorsolateral prefrontal
cortices (DLPFCs) and 29% more neurons in mesial prefrontal
cortices (mesial: medial prefrontal cortices excluding cingulate
areas). An earlier study also reported neuropathological thick-
ening of the subependymal cell layer, multifocal subependymal
nodular dysplasia, and heterotopias in some children and adults
with ASD (Wegiel et al., 2010). These developmental changes
may reflect multiregional cortical and subcortical dysregulation
of neurogenesis, neuronal migration, and maturation in ASD.

In the brains of adults with autism there are no significant
changes in the overall number or density of neurons (Zikopoulos
and Barbas, 2010), or in the laminar density of neurons in medial
areas 24, 32, orbital area 11, or dorsolateral areas 9 and 46. This
evidence indicates that in autism the numbers of neurons in pre-
frontal cortices are comparable to controls in adulthood. Several
other studies also report no differences in the numbers or den-
sity of neurons in other cortical areas, including ventrolateral
language-related frontal areas 44 and 45 (Jacot-Descombes et al.,
2012), area 23 in the posterior cingulate cortex (PCC) and area

37 in the fusiform gyrus (FFG; Oblak et al., 2011b, but see van
Kooten et al., 2008), and in areas 3b, 4, 9, 10, 11, 17, 24, 43, and
44 (Casanova et al., 2002b, 2006) in children or adults with ASD.
In line with this evidence, there appear to be no differences in
cortical layering and thickness in prefrontal, temporal, and pari-
etal areas of children and adults with ASD (Hutsler et al., 2007;
Zikopoulos and Barbas, 2010). However, parts of areas 24 and
23 in the dorsal and posterior cingulate cortices display altered
cytoarchitecture with irregularly distributed neurons, leading to
irregular lamination and poor demarcation of layers IV and V in
some ASD cases (Simms et al., 2009; Oblak et al., 2011b).

Detection of potential changes in the number or density of
neurons in ASD additionally depends on the types of neurons
analyzed. A recent study showed that children with autism con-
sistently had a significantly higher ratio of von Economo neurons
(VENs, also known as spindle neurons) to pyramidal neurons
than control subjects in frontoinsular cortex (Santos et al., 2011).
The authors of this study posit that higher numbers of VENs in
autism may be related to alterations in migration, cortical lami-
nation, and apoptosis, and may also underlie a heightened intero-
ception, described in some clinical observations. It seems though
that VEN numbers may be regionally specific and age-dependent,
because there are no overall differences between autism and con-
trol brains in ACC area 24 in teenagers and young adults (Simms
et al., 2009). However, among the autism cases, there were two
subsets; 1/3 of the cases had significantly increased VEN density
and the remaining 2/3 of the cases had reduced VEN density
compared to controls.

Changes in the density of glia in the cortex in ASD appear to
be type- and region-specific, as well. In a recent study, we did
not find differences in the densities of oligodendrocytes, astro-
cytes, and microglia in the white matter below OFC (Zikopoulos
and Barbas, 2010). However, findings suggest a role of glia in
ASD pathology in the gray matter based on increased density of
astrocytes in frontal cortices in ASD, although the results were
not based on stereological analysis (Cao et al., 2012). Another
intriguing finding pertains to a higher density of microglia in the
gray matter of DLPFC, accompanied by increased activation of
microglia in some ASD cases (Morgan et al., 2010). The same
group recently showed that microglia are more frequently present
near neurons in DLPFC leading to aberrantly close microglia–
neuron association (Morgan et al., 2012). Interestingly, the den-
sity of activated microglia is additionally elevated in the gray
matter of medial prefrontal, cingulate, orbitofrontal, and the gyral
fusiform cortices in ASD (Pardo et al., 2005; Vargas et al., 2005;
Suzuki et al., 2013). These findings indicate the potential for neu-
roinflammation and immune responses in some ASD cases that
may be linked to higher levels of GAP-43 (Zikopoulos and Barbas,
2010).

Finally, a frequently observed change in the structure
of cortical gray matter in children and adults with ASD
is minicolumnopathy, defined by decreased columnar width,
characterized by diminished and disrupted peripheral neuropil
compartment (Casanova et al., 2002a,b, 2006; Buxhoeveden et al.,
2006). More specifically, minicolumns in ASD appear to have
less peripheral neuropil space and increased spacing among the
constituent cells in several areas (3b, 4, 9, 10, 11, 17, 24, 43, 44).
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Frontal area 44 seems to be the most affected, and the pathology
is evident in children and adults with ASD. The increased number
of minicolumns in autism may be accompanied or brought about
by changes in the size of neurons, the number of cells per col-
umn, or their greater dispersion, resulting in no global difference
in neuronal density. In line with this evidence, there are reports of
decreased size of pyramidal neurons in layers III, V, VI in language
related areas 44, 45 (Jacot-Descombes et al., 2012), in layers I-III
and layers V-VI of cingulate area 24b and in cell packing density in
layers V-VI of cingulate area 24c (Simms et al., 2009) in children
and adults with ASD. In addition, areas 24 and 23 in the ACC
and PCC display altered cytoarchitecture and increased density
of neurons in the subcortical white matter (Simms et al., 2009;
Oblak et al., 2011b). The latter is in agreement with observa-
tions of abnormal cell patterning at the cortical gray-white matter
border of areas 9, 21, and 7 in ASD (Avino and Hutsler, 2010).

All these reported changes in neuron density and morphol-
ogy, as well as laminar and columnar distribution, can affect both
excitatory and inhibitory connections and circuits. In particu-
lar, the peripheral neuropil space surrounding the minicolumn is
the conduit for inhibitory and excitatory local circuit projections
(Peters and Sethares, 1996; Mountcastle, 1997, 1998; Casanova
et al., 2003; Douglas and Martin, 2004) that may also be affected,
further tipping the balance of excitation and inhibition in ASD, as
elaborated below.

STRUCTURAL CHANGES IN CORTICAL INHIBITORY
NEUROTRANSMISSION
CHANGES IN INHIBITORY NEUROTRANSMISSION IN ASD
Key evidence for irregular inhibition patterns in autism comes
from functional data, suggesting decreased levels of synchroniza-
tion during response inhibition tasks (Rubenstein and Merzenich,
2003; Yizhar et al., 2011). In addition, molecular studies of autistic
individuals and relevant animal models have identified dysregu-
lation of inhibitory biomarkers and mutations in genes associated
with the development of cortical inhibitory neurons and their
synaptic communication (Ma et al., 2005; Collins et al., 2006;
Selby et al., 2007; Tabuchi et al., 2007; Yip et al., 2008; Fatemi
et al., 2009a,b; Chao et al., 2010; Blatt and Fatemi, 2011; Gandal
et al., 2012).

Importantly, a number of recent studies have consistently
found changes in the levels of GABA receptors in frontal and
temporal areas. The mean density of GABAA receptors and the
density of benzodiazepine binding sites in all layers of area 24
are decreased in ASD (Oblak et al., 2009). Similar reduction is
found in the superficial layers of areas 23 (PCC) and 37 (FFG).
In the deep layers of the FFG there is also reduction in the num-
ber of benzodiazepine binding sites (Oblak et al., 2011a), found
on inhibitory neurons (Murray and Wise, 2012). Interestingly, in
the superficial layers of PCC and FFG the autism group appears
to have higher binding affinity for ligands of the GABAA receptor.
The authors suggest that the observed downregulation of recep-
tors may be the result of increased GABA innervation and/or
release. In addition, there are significant reductions in GABAB

receptor density in the ACC, PCC and FFG in the brains of people
with autism compared to matched controls (Oblak et al., 2010).
These changes in the GABAB receptor subtype may contribute

to the functional deficits in socio-emotional and cognitive pro-
cessing, as well as identification of faces and facial expressions by
individuals with ASD.

The reduction in GABA receptors and benzodiazepine binding
in the cortex is a consistent deficit in autism, with similar findings
in the hippocampus (Blatt et al., 2001; Guptill et al., 2007), sug-
gesting widespread GABA receptor abnormalities in ASD. Based
on recent findings (Fatemi et al., 2009b) of reduced levels of
proteins in three of the GABAA receptor subunits in autism in
multiple cortical regions, it is possible that a defect in one or
more of the GABAA receptor subunits exists as well. Moreover,
genetic studies found significant association and molecular inter-
actions of specific GABA receptor subunit genes in autism (Ma
et al., 2005). However, despite the evidence for widespread dis-
ruption of inhibitory neurotransmission in the cortex little is
known about the state of the GABAergic interneurons themselves
in the cortex in ASD (Lawrence et al., 2010; Oblak et al., 2011b),
whose organization and function is highlighted below.

CIRCUIT BASIS FOR THE INITIATION OF INHIBITORY CONTROL
In the cortex, inhibitory control is primarily mediated through
local GABAergic interneurons, which comprise a diverse group
distinguished by morphology, the types of neurons and sites they
synapse with, physiologic properties, and efficacy of inhibitory
control (White, 1989; Kawaguchi and Kubota, 1997; Thomson
and Deuchars, 1997; Somogyi et al., 1998; Gupta et al., 2000).
Inhibitory neurons represent 20–30% of all neurons in the mam-
malian neocortex and in the frontal cortex of humans they make
up ∼21% of the neuronal population (Hornung and De Tribolet,
1994; Kalus and Senitz, 1996; Benes et al., 2001; Sherwood et al.,
2010). In primates, inhibitory neurons can be classified by their
expression of the calcium-binding proteins parvalbumin (PV),
calbindin (CB), and calretinin (CR), which comprise largely non-
overlapping neurochemical groups of inhibitory neurons in the
cortex (Hendry et al., 1989; Defelipe, 1997). PV labels basket and
chandelier inhibitory neurons (Defelipe et al., 1989b; Kawaguchi
and Kubota, 1997), which are most prevalent in the middle
layers of the cortex, where they form perisomatic synapses on
pyramidal neurons, providing strong inhibition (Defelipe et al.,
1989b; Shao and Burkhalter, 1999). CB labels several cortical
morphologic types of inhibitory neurons, which are most densely
distributed in cortical layers 2 and upper layer 3, and inner-
vate distal dendrites of pyramidal neurons (Peters and Sethares,
1997), modulating their activity. CR inhibitory neurons are found
mostly in the upper layers (I-IIIa) as well, where they innervate
mostly other GABAergic neurons, at least in the upper layers
(Gabbott et al., 1997; Meskenaite, 1997; Defelipe et al., 1999;
Gonchar and Burkhalter, 1999). This regularity in the laminar
distribution of PV, CB, and CR neurons is seen in frontal, tem-
poral, and sensory association areas, which have been studied in
primates (Defelipe et al., 1989a, 1990; Conde et al., 1994; Kondo
et al., 1999; Dombrowski et al., 2001; Barbas et al., 2005b).

In the cortex there is also regularity in the laminar origin
and termination of excitatory pathways, which can be predicted
based on the structure of interconnected areas, as described by
the structural model for connections (Barbas, 1986; Barbas and
Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000). Briefly,
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according to this model, limbic areas, which have fewer than 6
layers and lower cell density, send mainly feedback projections
to eulaminate areas, which have 6 layers and higher cell den-
sity. These projections originate mainly from the deep layers and
terminate mostly in the superficial layers. Projections in the oppo-
site direction are feedforward, predominantly originate from the
superficial layers of eulaminate areas and terminate in the mid-
dle/deep layers of limbic cortices. Connections between areas with
similar architecture originate and terminate equally in all lay-
ers. Numerous studies, have consistently supported this model
for ipsilateral and callosal connections among diverse cortices in
non-human primates (Barbas, 1986; Barbas and Rempel-Clower,
1997; Barbas et al., 2005a,b; Medalla and Barbas, 2006; Medalla
et al., 2007; Bunce and Barbas, 2011), and in other species (Grant
and Hilgetag, 2005; Hilgetag and Grant, 2010).

Moreover, a series of studies in non-human primates has
established that whereas excitatory prefrontal pathways inner-
vate mostly excitatory neurons at the site of termination, they
also innervate a smaller but significant (∼10–30%) propor-
tion of inhibitory neurons (Barbas et al., 2005b; Medalla et al.,
2007; Medalla and Barbas, 2009, 2010; Anderson et al., 2011a;
Bunce and Barbas, 2011; reviewed in Barbas and Zikopoulos,
2007). These findings provide the circuit basis for initiation
of inhibitory control by prefrontal areas. Connections thus
originate and terminate in distinct laminar microenvironments
where the distribution of specific classes of inhibitory neurons
also varies, providing the framework to examine the struc-
tural underpinnings for the imbalance in excitation and inhi-
bition in autism, as elaborated in the preliminary experiments
presented below.

DECREASED RATIO OF PV/CB INHIBITORY NEURONS IN
DORSOLATERAL PREFRONTAL AREA 9 IN ASD
The balance of excitation and inhibition is affected in autism
with detrimental effects on neural communication. Elements of
inhibitory neurons are affected in autism, but the state of distinct
neurochemical classes of inhibitory neurons in prefrontal cortex
is unknown. Here we performed a preliminary study to examine
the laminar distribution of cortical inhibitory neurons in ASD,

using post-mortem adult human brain tissue from dorsolateral
prefrontal area 9 (n = 2 autistic; n = 2 matched controls for age,
sex, and hemisphere; Figure 3; Table 1). We compared the den-
sity of two non-overlapping, functionally distinct classes of local
inhibitory interneurons, which, in primates, are also neurochem-
ically distinct, based on their expression of the calcium-binding
proteins calbindin (CB) or parvalbumin (PV).

There was a significant reduction of PV neurons in the autistic
brains, in both cases [(density: cells/mm3 ± standard deviation)
control, PV: 3747 ± 786; CB: 3747 ± 337; ASD, PV: 2390 ±
564; CB: 3693 ± 511; p = 0.01; Figure 4]. The ratio of PV/CB
inhibitory neurons thus decreased by approximately a third in
ASD (to 0.65), potentially affecting inhibitory efficacy and over-
all network dynamics. In typical controls the ratio is close to 1, as
is also found in non-human primates (Gabbott and Bacon, 1996;
Dombrowski et al., 2001).

PV inhibitory neurons are most prevalent in the middle corti-
cal layers, and provide strong perisomatic inhibition of excitatory
neurons (Defelipe et al., 1989b; Kawaguchi and Kubota, 1997;
Shao and Burkhalter, 1999). Reduction in PV inhibitory neurons
in area 9 may help explain abnormally high columnar activation
and desynchronization of oscillatory activity in autism (reviewed
in Defelipe, 1999). Our findings are in accord with evidence of
compromised inhibitory neurotransmission in autism, reflected
by reduced gamma band power of auditory responses in children
and adolescents with autism (Wilson et al., 2007), and absence
of stimulus-driven synchronization effects on sensory perception
(Tommerdahl et al., 2008). These findings suggest atypical coordi-
nation of local excitatory-inhibitory cortical activity. Our prelim-
inary findings are also in line with a recent report, showing that in
the fusiform face area (FFA) there is less synchrony between alpha
and gamma waves, when subjects with autism look at faces, when
compared to controls (Khan et al., 2013). Because both of these
brain rhythms depend on local inhibition driven primarily by PV
neurons (Chow et al., 1998; White et al., 2000; Whittington et al.,
2000, 2011; Borgers and Kopell, 2003; Buzsaki and Draguhn,
2004), reduction in phase-amplitude coupling between slow
alpha and fast gamma rhythms suggests compromised inhibitory
neurotransmission.

FIGURE 3 | Map of human frontal areas. (A) Lateral view of the human
brain shows the dorsolateral prefrontal area 9 and its relationship with other
frontal areas. Dotted lines indicate the coronal level used for analysis. (B) One

centimeter thick slab of frontal cortex shows the region sampled in the
dorsolateral prefrontal cortex (red dotted-line square). See Appendix for
abbreviations.
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Table 1 | Clinical characteristics of post-mortem cases studied.

Case number Control-4786 Control-4981 Autism-4541 Autism-6677

Age at death (years) 36 42 44 30

Sex Male Male Male Male

Post-mortem interval (hours) 20 18 31 16

Primary cause of death Myocardial infarction Myocardial infarction Acute myocardial infarction Congestive heart failure

Hemisphere Right Right Right Right

AUTISM DIAGNOSTIC INTERVIEW—REVISED (ADI-R) SCORES FOR AUTISTIC CASES

(A) Qualitative impairments in reciprocal social
interactions (cutoff: 10)

26 26

(B) Qualitative abnormalities in communication
(Verbal; cutoff: 8)

18 22

(C) Qualitative abnormalities in communication
(Non-verbal; cutoff: 7)

13 #

(D) Restricted, repeated, and stereotyped
patterns of behavior (cutoff: 3)

6 12

(E) Abnormality of development evident at or
before 36 months (cutoff: 1)

5 5

#Scores were not obtained/not applicable due to lack of communication skills. All donors in the autism group had difficulties with communication, social behaviors,

and atypical interests, consistent with a diagnosis of autism, and the ADI-R scores met and exceeded cutoffs for autism in each of these areas.

On the other hand, we found no differences in the density of
CB inhibitory neurons in area 9, which are most numerous in the
superficial cortical layers, and have modulatory effects (e.g., Peters
and Sethares, 1997; Gonzalez-Albo et al., 2001). CB neurons in
LPFC have a role in gain modulation during attentional processes,
and among inhibitory classes, they are targeted preferentially by
ACC pathways (Medalla and Barbas, 2009).

Previous findings of changes in the white matter suggest that
pathways linking ACC with nearby prefrontal areas are excessively
dense in autism (Zikopoulos and Barbas, 2010). These findings
are consistent with functional studies showing that ACC in autism
is hyperactive, especially during response monitoring (Thakkar
et al., 2008). This could lead to over activation of CB inhibitory
neurons in area 9. This circuit mechanism suggests heightened
ability to focus attention, which, on one hand, can be advanta-
geous for complex problem solving. On the other hand, excessive
strength in the pathway from ACC to LPFC may also disrupt the
ability to shift attention flexibly, and may contribute to the rigid
and repetitive behavior seen in autism. In line with this hypothe-
sis, the reported increase in the density of dendritic spines on layer
II pyramidal neurons of dorsolateral area 9 (Hutsler and Zhang,
2010), may reflect a plasticity change that spines can undergo
(Nimchinsky et al., 2002), perhaps to accommodate the excess
fiber input of feedback pathways from ACC in ASD.

A potential change in the ratio of the functionally distinct
classes of inhibitory neurons in lateral area 9 in autism can
have an impact on the activity of other areas both locally and
in widespread distributed circuits, affecting neural dynamics of
communication in the cortex. In accordance with our preliminary
data, a reduction in PV inhibitory neurons, which mediate periso-
matic inhibition of pyramidal excitatory neurons, may diminish
strong inhibition in prefrontal areas, leading to over excitation
and desynchronization of neuronal activity over large brain net-
works. This outcome could offer clues on the high prevalence

of epilepsy in autism (about 30%) (reviewed in Levisohn, 2007;
Hughes, 2008), and has profound implications for LPFC func-
tion, like working memory, as reported for autism (Luna et al.,
2002; Steele et al., 2007). The ability of LPFC to dynamically
adjust the attentional gain in these processes relies heavily on
the activity of local PV inhibitory neurons, which underlie shifts
in cortical rhythms during cognitive tasks (Abbott and Chance,
2005; Borgers et al., 2008), a process that is also necessary to shift
attention flexibly.

To date, DLPFC is the only cortical area in which changes in
the ratio of inhibitory neurons in ASD have been reported, since
Oblak et al. (2011b) found no differences in parvalbumin, or cal-
bindin interneurons in areas in the posterior cingulate and FFG.
It should be noted however, that given the extensive physiologi-
cal evidence for atypical inhibitory activity patterns in ASD more
cortical areas need to be examined. If supported with data from
more cases, our findings will have important implications for the
pathology in autism. In addition, studies in a variety of animals
and humans have established that CB neurons develop earlier
than PV neurons (Alcantara et al., 1993; Yan et al., 1997; Letinic
and Kostovic, 1998; Hof et al., 1999), and the selective reduction
of PV neurons in area 9 in autism suggests the likely timing of
the pathology. The status of axons below prefrontal areas also
point to changes that have their root in development, as discussed
below in the context of a model that relates pathological findings
to developmental events.

A MODEL FOR THE DEVELOPMENT OF DISRUPTED FRONTAL
NETWORKS IN ASD
LOCAL OVERCONNECTIVITY, LONG-DISTANCE DISCONNECTION, OR
BOTH? IT DEPENDS ON THE AREA
Findings from a variety of functional and structural imaging
studies suggest that the breakdown in neural communication
in autism involves local overconnectivity and long-distance
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FIGURE 4 | There is a decrease in the ratio of parvalbumin (PV) to

calbindin (CB) inhibitory neurons in area 9 of the human brain in autism.

(A) Fluorescent photomicrograph shows the preferential laminar distribution
of CB (red) in the superficial layers and PV (green) in the middle-deep layers
of the human dorsolateral prefrontal cortex. (B,C) High magnification

photographs of CB and PV neurons in the human dorsolateral prefrontal
cortex (indicated by blue arrows). (D) Preliminary results show lower density
of PV neurons in autistic cases (cells/mm3 ± standard deviation). (E,F) Low
magnification photographs of PV neurons in the dorsolateral prefrontal cortex
(indicated by blue arrows) of control and ASD adults.
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disconnection, especially in pathways that include the frontal
lobe (Herbert et al., 2003; Belmonte et al., 2004b; Carper and
Courchesne, 2005; Courchesne and Pierce, 2005; Kennedy et al.,
2006; Thakkar et al., 2008). There is general agreement that long-
distance connections are weak in autism, but some studies suggest
that local connections are also weak, or at least not excessive
(e.g., Sundaram et al., 2008; Shukla et al., 2011a,b). The dispar-
ity in findings on first blush may be attributed to methodological
issues inherent in the limited resolution of MRI and DTI, spe-
cific methodological and data analysis choices (reviewed in Muller
et al., 2011), or poor contrast of the gray-white matter bound-
ary in autism that renders automatic segmentation ambiguous
(Bailey et al., 1998; Avino and Hutsler, 2010).

The most likely scenario, however, is that connectivity is
affected differentially in distinct cortical regions in autism
(Figure 5). This hypothesis is consistent with findings that suggest
weak local connectivity in some sensory areas or the face region
(Sundaram et al., 2008; Shukla et al., 2011a,b; Khan et al., 2013),
contrasted with excessive connectivity between some prefrontal
cortices in autism (Herbert et al., 2003; Kennedy et al., 2006;
Thakkar et al., 2008; Zikopoulos and Barbas, 2010). We found
evidence suggesting overconnectivity by the ACC, no change in
lateral prefrontal, and weak connectivity in OFC in autism. These
findings are based on high resolution methods to view individual
axons at the level of the system and to zero in at axon segments at
the electron microscope in post-mortem brain tissue (Zikopoulos
and Barbas, 2010). The high resolution methods employed make
it possible to differentiate not only the gray-white matter border,
but also to separate the superficial from the deep white mat-
ter based on axon orientation. In coronal sections, axons that
course in the superficial white matter appear as elongated rods
of variable size and direction. In contrast, axons that dive down

to the deep white matter en route to distant areas appear as small
circular, doughnut-like, structures, because they travel parallel to
the cortical surface (Figure 1).

Precise segmentation of the superficial white matter revealed
an excess number of medium and thin axons and more branch-
ing just below the ACC in the brains of adults with autism
(Zikopoulos and Barbas, 2010). The affected superficial white
matter links nearby areas. We found no such changes in axons
below lateral areas 9, 46, or orbital area 11. But just below
area 11 the myelin was thinner in the brains of autistic people
than in controls, consistent with decreased functional anisotropy
(FA) in some frontal areas (Sundaram et al., 2008). The above
findings demonstrate that the connectivity status in autism varies
depending on cortical region.

The changes in axons below the ACC are of special interest for
several reasons. To begin with, in non-human primates the ACC
has the most widespread connections with neighboring prefrontal
cortices (Barbas et al., 1999). The ACC may exercise its critical
role in allocating attention through its normally extensive influ-
ence on the rest of the prefrontal cortex. Further, in non-human
primates, excitatory pathways from the ACC innervate not only
excitatory neurons in LPFC, but also a smaller but significant
proportion of inhibitory neurons. Importantly, pathways from
ACC form large and efficient synapses with inhibitory neurons
in LPFC, and innervate preferentially the neurochemical class of
inhibitory neurons labeled for calbindin (Medalla and Barbas,
2009, 2010), which are suited to reduce neural noise and enhance
signal (Constantinidis et al., 2002; Wang et al., 2004). The exu-
berance of axons that connect the ACC with LPFC over short
or medium distances may help explain why people with autism
focus on a stimulus and have difficulty in orienting to other stim-
uli in the environment when needed. The problems in shifting

FIGURE 5 | Relationship of axonal features to developmental events.

Changes in axons and inhibitory neurotransmission affect network dynamics
in ASD. ACC exhibits local overconnectivity in ASD, which combined with
changes in the ratio of inhibitory neurons in LPFC can tip the balance of
excitation and inhibition. OFC exhibits weak local connectivity in ASD due to

thinning of the myelin, which may affect conduction velocity. Overall,
prefrontal areas exhibit weakening in their long-distance connections. This
connectivity pattern is supported by structural and functional data. Black lines
indicate typical connectivity and purple lines indicate connectivity in ASD. The
thickness of the line indicates the strength of a connection.
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attention are universal among people with autism, who are oth-
erwise heterogeneous with regard to language acquisition, or the
presence or absence of mental retardation or epilepsy (Zikopoulos
and Barbas, 2010).

On the other hand, there is general agreement that path-
ways that travel over long distances are weak in autism, based
on a variety of physiological and structural data (Courchesne
and Pierce, 2005; Lepagnol-Bestel et al., 2008; Zikopoulos and
Barbas, 2010; Muller et al., 2011; Schipul et al., 2011; Just et al.,
2012), including findings at the level of single axons (Zikopoulos
and Barbas, 2010). This consistent finding in autism likely con-
tributes to the incongruence of cortical rhythms that engage
distant cortices in autism (Thatcher et al., 2009; Lai et al., 2010;
Khan et al., 2013). The physiological changes within large scale
networks may help explain why people with autism have diffi-
culty in shifting attention from one stimulus to another as the
situation demands. In non-human primates, long-distance path-
ways are sparse in comparison with short-range pathways, which
account for about 80% of connections (Barbas, 1988; Hilgetag
et al., 2000; Hilgetag and Grant, 2000; Hilgetag and Kaiser,
2004; Barbas et al., 2005a). Nevertheless, long-distance pathways
have considerable influence on the cortex. The prefrontal cortex,
in particular, relies on sparse long-distance pathways for sen-
sory input. Long-distance pathways also include interhemispheric
connections, which have a critical role for synthesizing informa-
tion across the commissures for a large variety of cognitive tasks,
including language. In non-human primates, connections across
the two hemispheres are less dense than connections within one
hemisphere but involve just as many areas as the ipsilateral, at
least for the prefrontal cortex (Barbas et al., 2005a). Contralateral
pathways are also severely compromised in autism (Alexander
et al., 2007; Just et al., 2007; Frazier and Hardan, 2009; Jou et al.,
2010; Anderson et al., 2011b; Cantlon et al., 2011; Casanova et al.,
2011; Fame et al., 2011; Schipul et al., 2011). In view of their
functional significance and lower density, even small changes in
long-range connections in autism likely have devastating effects
on function.

In conclusion, areas are affected in varied ways in their con-
nections in autism (Figure 5). In the superficial white matter
below ACC, there is exuberance of short- or medium-range axons
that link areas over short or medium distances. The white matter
below lateral areas 9 and 46 shows no differences in axon den-
sity. On the other hand, in the superficial white matter below
orbitofrontal area 11 the myelin is thinner, suggesting weak local
connectivity. In the deep white matter below ACC there is a
paucity of large axons that connect it with distant sensory and
association areas. Pathology in ACC, which has a key role in
attention, suggests that it may be the epicenter for abnormalities
elsewhere, resulting in deficits in attention—excessive focusing on
one stimulus or thought, and inability to disengage and attend to
other stimuli flexibly. The deficits in ACC are consistent with the
universal problems in attention in people with autism regardless
of the severity of symptoms.

A TESTABLE BIOLOGICAL MODEL RELATES STRUCTURAL AXON
FEATURES IN AUTISM TO DEVELOPMENT
Why are thin and medium axons in excess just below the ACC,
large axons in short supply in long-distance pathways, and myelin

is insufficient in orbital area 11? Are these disparate findings
independent or related? Autism is a disorder with its roots in
development and to begin to sort out what may go awry with con-
nections it is necessary to consider the development of affected
areas (Figure 5). Let us first consider the ACC, which appears
to have more than its share of deficiencies in autism. In non-
human primates the ACC develops early in ontogeny (Rakic,
2002). When migrating neurons take their position in the cortex
they extend axons that branch to connect with other areas. Several
proteins expressed in development are critical for axon growth
and guidance. One of these proteins is GAP-43, which is expressed
at high levels in all areas during development (Milosevic et al.,
1995; Kanazir et al., 1996; Oishi et al., 1998). In adult brains
GAP-43 is expressed in significant levels only in some areas, albeit
less than in development, and the ACC is one such region. The
continued presence of GAP-43 into normal adulthood may help
explain the numerous pathways that connect the ACC with neigh-
boring areas, as seen in normal non-human primates (Barbas
et al., 1999).

In contrast to the early migration of neurons in ACC, myelina-
tion begins much later, and is nearly as late as the last myelinating
lateral prefrontal areas (Flechsig, 1901; Von Bonin, 1950; Yakovlev
and Lecours, 1967; Hasegawa et al., 1992). Why are two devel-
opmental processes so much separated in time in the ACC? It
turns out that GAP-43 and myelin proteins inhibit each other
and consequently there is an inverse relationship between GAP-
43 expression and myelination (Kapfhammer and Schwab, 1994;
Benowitz and Routtenberg, 1997). Axons first elongate and then
myelinate. The onset and duration of myelination varies among
cortical areas, starting prenatally, gradually increasing postnatally,
and continuing throughout childhood in most prefrontal cor-
tices (Flechsig, 1901; Von Bonin, 1950; Yakovlev and Lecours,
1967; Benes, 1989; Paus et al., 1999, 2001; Levitt, 2003; Suzuki
et al., 2003). The differences in development and myelination
among areas may help explain why areas are not equally affected
in autism.

In the brains of adults with autism just below ACC, GAP-43
is expressed in more than double the number of axons than in
normal controls (Zikopoulos and Barbas, 2010). If expression of
GAP-43 is also higher in children with autism that would help
explain the exuberant branching of axons below ACC in adults.
We used data from development and our findings from post-
mortem brains from adults with autism to construct a biological
model (Zikopoulos and Barbas, 2010). The model shows in broad
terms the likely fate of axons and their branching and myelination
based strictly on the sequence of developmental events in non-
human primates and humans. A high level of GAP-43 in ACC,
which develops early (Rakic, 2002), promotes axon growth and
branching. The selective increase in medium and thin axons in
the superficial white matter below the ACC is explained by the
exposure of axons to GAP-43, which is highest at the growing end
of axons, mediating branching as axons enter or leave the white
matter to link nearby areas. This pattern is expected to increase
the density of medium and thin axons. The model shows that
myelination should not be affected, because the ACC myelinates
very late (Flechsig, 1901; Von Bonin, 1950; Yakovlev and Lecours,
1967), when GAP-43 level drops relative to its expression early in
development.
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Development takes a different temporal course in OFC, where
there is no excessive branching of axons but the myelin is thin-
ner in the brains of autistic adults (Zikopoulos and Barbas,
2010). In OFC, neurons normally migrate to the cortex later than
in ACC, but myelinate earlier, effectively shortening the inter-
val between neuronal migration and axonal myelination. Based
on these developmental events, the model predicts that a small
increase in GAP-43 in OFC in development can affect myelination
but not axon branching, as seen in the brains of adults with autism
(Zikopoulos and Barbas, 2010). In lateral prefrontal areas 9 and
46, neurogenesis and migration are completed much later (Rakic,
2002), when levels of GAP-43 are comparatively low, which helps
explain why neither axon branching nor myelination are affected
in adults with autism (Zikopoulos and Barbas, 2010).

The predictions of our biological model, which is testable,
are bolstered by recent genetic studies that have associated sin-
gle nucleotide polymorphisms in the GAP-43 gene with autism
(Allen-Brady et al., 2009), and identified its extended chromo-
somal region as an autism risk locus (Trikalinos et al., 2006;
Szatmari et al., 2007). In addition, studies in mice have shown
that wide changes in the levels of GAP-43 can lead to autistic-
like behaviors, including learning disability and stereotypical
behaviors (Routtenberg et al., 2000; Zaccaria et al., 2010).

Atypical GAP-43 levels in autism may, therefore, help explain
the exuberance of short-range pathways below ACC, which leads
to intrinsic overconnectivity in the frontal lobe (Courchesne and
Pierce, 2005). Importantly, based on the late onset and comple-
tion of the development of connections between distant cortices,
high levels of GAP-43 in ACC may also help explain the weakened
long-distance connections that course in the deep white mat-
ter below ACC. Reduction in strength of long-distance pathways
that course through the deep white matter in autism may be sec-
ondary to the excessive short-range connections, which develop
first, reach their targets fast, and occupy sites that normally would
be available to the sparser long-distance pathways (Zikopoulos
and Barbas, 2010). Pathways that reach the ACC from a long dis-
tance thus may be at a competitive disadvantage, not only because
they develop late, but also because their axons must continue to
elongate to reach and form synapses in the prefrontal cortex.

In conclusion, using the distinct findings in ACC, orbitofrontal
and lateral prefrontal areas and their relationship to developmen-
tal events, including neuronal migration, axonal branching in the
presence of GAP-43, and myelination, a biological model can help
explain the varied effects within the frontal lobe. The findings
suggest overconnectivity of the ACC with nearby areas, long-
distance disconnection, weakening of nearby connections of the
OFC, and sparing of axonal structure in lateral prefrontal areas 9
and 46. However, even though none of the changes seen in axons
below ACC or orbitofrontal area 11 were evident below prefrontal
areas 9 and 46, the interlinkage of these areas suggests that they do
not remain unscathed. Indeed, the relationship of axon types was
seriously altered among prefrontal areas, suggesting widespread
repercussions beyond the immediate areas affected.

In line with the above findings, the increased density of spines
of the late-developing neurons in the superficial layers of lat-
eral prefrontal areas may help accommodate excessive feedback
from ACC in autism. Moreover, lateral prefrontal areas appear

to have reduced PV/CB ratio, due to fewer PV inhibitory neu-
rons, which also develop later than CB neurons in animals and
humans. Future studies with more cases are needed to investigate
if the ratio of distinct inhibitory neurons is altered in autism and
may help explain the changes seen in GABA receptors. Combined,
these findings provide converging information about the devel-
opmental timeline of ASD, pointing to a critical perinatal period
for the emergence of axon pathology and neural communication
deficits in autism.

MATERIALS AND METHODS
TISSUE PREPARATION
Post-mortem prefrontal brain tissue was obtained from the
Harvard Brain Tissue Resource Center through the Autism Tissue
Program from two autistic male adults and two typically devel-
oped, age-matched, male controls, ages 30–44 years. The selec-
tion of cases used was based on tissue availability of cases with
closely matched characteristics, including post-mortem interval
(Table 1), and period of storage of tissue in formalin (mean ±
standard deviation = 137 ± 37 months), which minimized vari-
ability of tissue immunolabeling and shrinkage. The study was
approved by the Institutional Review Board of Boston University.
The diagnosis of autism was based on the Autism Diagnostic
Interview-Revised (ADI-R) in both cases (Table 1). Clinical char-
acteristics are summarized in Table 1. We excised small blocks
(∼2 × 3 cm) of matched frontal coronal tissue slabs (∼1 cm
thick), containing gray and white matter from DLPFC area 9
(Figure 3) based on the human brain atlas from the Autism Tissue
Portal (www.atpportal.org) and (Von Economo, 2009, re-issued),
and additional cytoarchitectonic studies of human prefrontal cor-
tex (Selemon et al., 1998; Stark et al., 2004; Miguel-Hidalgo et al.,
2006). We matched all samples to minimize variability and max-
imize statistical power. To ensure adequate preservation of the
tissue the blocks were stored at −20◦C in anti-freeze solution
(30% ethylene glycol, 30% glycerol, 0.05% azide in PB). The
blocks were rinsed in 0.1 M PB and cut coronally in series of
adjacent sections (50 µm) on a vibratome (Pelco, series 1000).

IMMUNOHISTOCHEMISTRY
We used standard immunohistochemical procedures to label
inhibitory neurons, as described (e.g., Barbas et al., 2005b;
Zikopoulos and Barbas, 2006, 2007). Briefly, free-floating sec-
tions (50 µm thick) were treated with 1% H2O2 aqueous solution
to suppress endogenous peroxidase activity, followed by 0.05 M
glycine in 0.01 M phosphate buffered saline (PBS), pH: 7.4, to
reduce cross-linking of lipids due to fixation. Tissue was placed
in blocking solution of 0.3% Triton-X, 5% bovine serum albu-
min (BSA), 5% normal goat serum (NGS) in PBS, and then
incubated in mouse monoclonal antibody (0.3% Triton-X in
PBS) against CB, or PV, (1:2000, Swant). The sections were then
incubated with a secondary biotinylated anti-mouse antibody
(1:200 in PBS with 0.1% Triton-X; Vector), followed by avidin-
biotin-peroxidase solution (Vector ABC Elite kit). We visualized
positive neurons by the peroxidase-catalyzed polymerization of
0.05% 3,3-diaminobenzidine tetrahydrochloride (DAB; Zymed
Laboratories) in 0.01% H2O2 buffer solution (pH, 7.5). After
binding of the primary antibodies some sections were rinsed in
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PBS, incubated for 4 h with goat anti-mouse secondary antibodies
conjugated with the fluorescent probes Alexa Fluor 488 (green) or
568 (red; 1:100; Invitrogen) and rinsed with PBS. To test for non-
specific labeling we performed control experiments with sections
adjacent to the experimental, omitting the primary antibodies,
and incubating with secondary antisera. A small number of CB+
neurons in the cortex are pyramidal, but their labeling is min-
imized by using a monoclonal antibody (Gonzalez-Albo et al.,
2001; and personal observations). In addition, we can morpho-
logically identify these neurons, since they are larger and have
spiny dendrites as opposed to smooth, small bipolar inhibitory
CB neurons.

STEREOLOGICAL ANALYSIS—LIGHT AND CONFOCAL MICROSCOPY
We estimated the laminar density of labeled PV and CB inhibitory
neurons as well as total neuronal density in tissue blocks of similar
size and volume of DLPFC area 9 using the stereological method
of the optical fractionator (Gundersen, 1986; Howard and Reed,
1998) and specific software (StereoInvestigator; Microbrightfield)
under the microscope at high magnification (×400), as we have
described (e.g., Dombrowski et al., 2001; Zikopoulos and Barbas,
2006, 2010). For microscopic analyses we used a minimum of
three sections from one series of coronal sections (50 µm thick)
from each case. To estimate the number of neurons we first mea-
sured the thickness of each section, and used StereoInvestigator
to set a guard zone at the bottom and top of each section to cor-
rect for objects plucked during sectioning; the disector thickness
was thus smaller than the thickness of the section (Gundersen,
1986; West et al., 1991; Howard and Reed, 1998). The sampling
fraction was 1/50 of the total volume of the area examined. The
use of uniform random sampling ensured that every part of the
area examined had the same chance of being included in the sam-
ple. The estimated numbers of neurons and the volumes of the
corresponding layers (estimated with the Cavalieri method) were
divided to assess relative density of label. In all experiments we
stained one series of sections for Nissl (thionin) to place cytoar-
chitectonic borders. The section surface, the cytoarchitectonic
borders of areas of interest, and layers, were outlined with the aid
of a commercial computerized microscope system and motorized
stage at a magnification ×400.

It should be noted here that the densities we report are rel-
ative, not absolute, since we did not apply a correction factor
to account for inevitable tissue shrinkage during prolonged fix-
ation and immunohistochemical processing. Variability due to
tissue shrinkage was likely minimal because the period of stor-
age of tissue in fixative was comparable across cases, and brain
sections were simultaneously processed, using a standardized pro-
tocol, under identical conditions. This resulted in comparable

shrinkage of tissue due to processing, mounting, and air dry-
ing, which was minimal in the X and Y dimensions (∼2%) and
within expected levels in the Z dimension (∼65%), as reported
previously (Dombrowski et al., 2001). Matching of normal and
autistic brain sections and simultaneous processing under iden-
tical conditions, minimized experimental variability and made it
possible to use a small number of brains, as each brain yields a
large amount of data. This is particularly critical with the use of a
rare and valuable resource of human brain tissue.

STATISTICAL ANALYSIS
We gathered data blind to condition and cortical region. Random
codes for cases and images were broken after completion of each
part of the study, as described (Zikopoulos and Barbas, 2010).
In all cases data collection was performed by at least two inves-
tigators. Values obtained from the two independent measures
were highly correlated (Pearson R = 0.97, p = 0.001). Data dis-
tributions for continuous variables were not significantly different
from normal as determined by the Kolmogorov–Smirnov test,
and thus allowed the use of parametric statistics. Data were eval-
uated with Statistica (StatSoft, Tulsa, OK), through a two-tailed
t-test. For all analyses p-values <0.05 were taken as statistically
significant.
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APPENDIX
Abbreviations: ACC, Anterior cingulate cortex; ASD, Autism spectrum disorders; CB, Calbindin; CC, Corpus callosum; CR,
Calretinin; cs, Central sulcus; DLPFC, Dorsolateral prefrontal cortex; DWM, Deep white matter; FFA, Fusiform face area; FFG,
Fusiform gyrus; GAP-43, Growth axon protein 43 KDa; ifs, Inferior frontal sulcus; LPFC, Lateral prefrontal cortex; M1, Primary
motor cortex; OFC, Orbitofrontal cortex; PCC, Posterior cingulate cortex; PFC, Prefrontal cortex; PV, Parvalbumin; sfs, Superior
frontal sulcus; SMA, Supplementary motor area; SWM, Superficial white matter.
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Background: Autism spectrum disorder (ASD) has been called a “developmental
disconnection syndrome,” however the majority of the research examining connectivity
in ASD has been conducted exclusively with older children and adults. Yet, prior ASD
research suggests that perturbations in neurodevelopmental trajectories begin as early
as the first year of life. Prospective longitudinal studies of infants at risk for ASD may
provide a window into the emergence of these aberrant patterns of connectivity. The
current study employed functional connectivity near-infrared spectroscopy (NIRS) in order
to examine the development of intra- and inter-hemispheric functional connectivity in
high- and low-risk infants across the first year of life.

Methods: NIRS data were collected from 27 infants at high risk for autism (HRA) and
37 low-risk comparison (LRC) infants who contributed a total of 116 data sets at 3-, 6-,
9-, and 12-months. At each time point, HRA and LRC groups were matched on age, sex,
head circumference, and Mullen Scales of Early Learning scores. Regions of interest (ROI)
were selected from anterior and posterior locations of each hemisphere. The average time
course for each ROI was calculated and correlations for each ROI pair were computed.
Differences in functional connectivity were examined in a cross-sectional manner.

Results: At 3-months, HRA infants showed increased overall functional connectivity
compared to LRC infants. This was the result of increased connectivity for intra- and
inter-hemispheric ROI pairs. No significant differences were found between HRA and
LRC infants at 6- and 9-months. However, by 12-months, HRA infants showed decreased
connectivity relative to LRC infants.

Conclusions: Our preliminary results suggest that atypical functional connectivity may
exist within the first year of life in HRA infants, providing support to the growing body of
evidence that aberrant patterns of connectivity may be a potential endophenotype for ASD.

Keywords: autism, functional connectivity, near-infrared spectroscopy, endophenotype, infancy

INTRODUCTION
Autism spectrum disorder (ASD) is considered by many to
be a “developmental disconnection syndrome” (Geschwind and
Levitt, 2007), reflecting a shift in perspective from conceptualiz-
ing ASD as a disorder of region-specific dysfunction toward one
associated with atypical neural circuitry (Belmonte et al., 2004;
Muller, 2007; Wass, 2010). Despite being termed a developmental
disconnection syndrome, the majority of the research examining
anatomical and functional connectivity in ASD has focused on
school-aged children, adolescents, and adults, with a small minor-
ity of imaging studies examining changes in connectivity across
time. However, in ASD, perturbations in neurodevelopmental
trajectories begin as early as the first year of life (e.g., Redcay and
Courchesne, 2005), indicating that important neuropathological
processes are operating in infancy if not earlier.

Prospective longitudinal studies of infants at high-risk for
ASD (HRA; because they have an older sibling diagnosed with
ASD) provide a window into the earliest manifestations of these
aberrant patterns of neurofunctional and structural connectiv-
ity. Moreover, studies investigating siblings of individuals diag-
nosed with ASD also have potential to shed light on possible
endophenotypes. Endophenotypes reflect characteristic behav-
ioral or neurobiological features that are present in both affected
individuals and their first-degree family members (Gottesman
and Gould, 2003), and may lead to a more straightforward
decomposition of complex genetic disorders, such as ASD. Both
children with ASD and their siblings atypically evidence reduc-
tions in white matter connectivity (Barnea-Goraly et al., 2010).
More recently, altered developmental trajectories of anatomi-
cal connectivity in high-risk infants later diagnosed with ASD
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were found (Wolff et al., 2012), indicating that atypical connec-
tivity may represent an endophenotype or potential biomarker
for ASD.

Much of the ASD anatomical and functional connectivity
literature focusing on older individuals supports the undercon-
nectivity theory of ASD originally put forward by Just et al. (2004,
2012). Findings from diffusion tensor imaging (DTI) studies, an
imaging modality used to measure microstructural properties of
white matter, have generally reported indices of reduced anatom-
ical connectivity in school-aged children, adolescents, and adults
with ASD (see Travers et al., 2012, for review). However, in con-
trast to DTI studies of older individuals with ASD, work with
children with ASD as young as one-year-old has shown increased
fractional anisotropy (FA) as compared to typically developing
(TD) children (Ben Bashat et al., 2007; Weinstein et al., 2011).
These results may be indicative of accelerated white matter devel-
opment in ASD (although see Walker et al., 2012, for discussion
of the difficulties interpreting DTI indices), and provide evidence
that patterns of over- and under-connectivity may differ as a
function of development.

Prior studies investigating connectivity using functional con-
nectivity MRI (fcMRI), an analytical approach used to investigate
inter-regional signal cross-correlations that reflect distributed
functional networks, have reported both over- and under-
connectivity in older individuals with ASD (which may be depen-
dent on specific methodological decisions; see Muller et al.,
2011). In the only study to examine functional connectivity
in toddlers and younger children with ASD, Dinstein et al.
(2011) reported reduced inter-hemispheric connectivity simi-
lar to findings from older individuals diagnosed with ASD.
In typically developing infants, fcMRI analyses have shown
that functional networks exist in neonates and mature grad-
ually across the first years of life (see Smyser et al., 2011,
for review). However, to date, no study has examined the
development of functional brain networks in the first year of
life in ASD.

Recently, functional connectivity has been investigated using
near-infrared spectroscopy (fcNIRS) in typically developing
infants (Homae et al., 2010, 2011; White et al., 2012) and adults
(Mesquita et al., 2010; Zhang et al., 2010; Duan et al., 2012; Sasai
et al., 2012). Near-infrared spectroscopy (NIRS) is a relatively
new, non-invasive method used to measure concentrations of
oxy- (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) in the cortex,
and therefore provides an indirect measure of neuronal activ-
ity (similar to functional magnetic resonance imaging; fMRI)
(see Gervain et al., 2011, for review). Unlike fMRI, NIRS does
not require rigid head stabilization or that the infant be asleep
(to avoid motion), making it a more suitable tool to study
infant brain development. Furthermore, simultaneous NIRS-
fcMRI studies have demonstrated that both methods produce
similar functional networks (Duan et al., 2012; Sasai et al., 2012).
The current study employed NIRS to examine functional connec-
tivity in the first year of life in infants at high- and low-risk for
ASD as they passively listened to linguistic stimuli (Gervain et al.,
2008).

Although a failure of neurotypical development of functional
brain networks is thought to characterize ASD, only a handful

of studies have investigated early differences in connectivity.
The current study addresses this gap in the literature by exam-
ining functional connectivity in infants at risk for autism as
early as 3-months of age. Additionally, while our study is cross-
sectional in nature, by investigating infants at risk for ASD
we are able to examine changes in connectivity across the first
year of life (before a reliable diagnosis of ASD can be made),
and therefore provide insight into how atypical network orga-
nization may emerge in ASD. To our knowledge, this is the
first study to examine functional connectivity in infants at
risk for ASD. Specifically, the current study employed fcNIRS
in order to examine the development of intra- and inter-
hemispheric functional connectivity in high- and low-risk com-
parison (LRC) infants across the first year of life in order to
determine if atypical connectivity represents an endophenotype
in ASD.

MATERIALS AND METHODS
PARTICIPANTS
A total of 76 infants (n = 33 HRA; n = 43 LRC) completed vis-
its at 3-, 6-, 9-, and/or 12-months of age. All infants had a
minimum gestational age of 36 weeks, no history of prenatal
or postnatal medical or neurological problems, and no known
genetic disorders (e.g., fragile-X, tuberous sclerosis). Low-risk
infants had a typically developing older sibling and no fam-
ily history of autism or other neurodevelopmental disorders;
infants at high-risk for ASD were defined by having at least one
older full sibling with a diagnosis of Autistic disorder, Aspergers
disorder, or Pervasive Developmental Disorder–Not Otherwise
Specified. Community diagnosis of the older sibling with ASD
was confirmed using the Social Communication Questionnaire
(SCQ; Rutter et al., 2003). At 6- and 12-month visits, infants
were administered the Mullen Scales of Early Learning (MSEL;
Mullen, 1995) in order to obtain a measure of developmen-
tal functioning. Independent-samples t-tests and Fisher’s Exact
tests confirmed that, at 3-, 6-, 9-, and 12-month visits, HRA
and LRC infants that contributed usable NIRS data did not dif-
fer significantly with regard to age, sex, head circumference, and
at 6- and 12-months, did not differ on MSEL Early Learning
Composite score (ELCS) (all p > 0.1) (see Table 1). Total attrition
rates for the current study (26%) were similar to previous infant
NIRS studies (∼40%; see Lloyd-Fox et al., 2010, for review).
At each visit time point, infants were excluded if they were
unable to tolerate the NIRS hat, did not complete at least 14
blocks of the task, or did not have at least one usable chan-
nel in any region of interest (see Table 2 for more information).
The final sample included a total of 64 infants (n = 27 HRA;
n = 37 LRC) who contributed 116 data sets. Informed consent
was obtained from all caregivers in accordance with the Boston
Children’s Hospital and Boston University Institutional Review
Boards.

STIMULI
Stimuli consisted of trisyllabic sequences presented in either
an ABB (e.g., “ba-lo-lo”) or ABC (e.g., “ba-lo-ti”) artifi-
cial grammar (see Gervain et al., 2008, for further details).
Trisyllabic sequences were grouped into blocks of 10 sounds
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Table 1 | Participant information.

HRA LRC

3 months

(n = 17)

6 months

(n = 12)

9 months

(n = 8)

12 months

(n = 6)

3 months

(n = 13)

6 months

(n = 18)

9 months

(n = 21)

12 months

(n = 21)

Age [days] 106 (11)
91–121

217 (15)
193–242

296 (17)
272–329

396 (13)
382–416

110 (12)
94–135

207 (17)
186–241

297 (17)
276–336

388 (13)
364–422

Sex [males;
females]

10; 7 5; 7 3; 5 2; 4 7; 6 8; 10 10; 11 11; 10

MSEL ELCS n/a 91 (8)
79–110

n/a 105 (24)
81–138

n/a 93 (9)
74–113

n/a 103 (12)
77–116

Blocks
completed

27 (3)
17–28

26 (4)
15–28

27 (2)
24–28

27 (2)
23–28

27 (3)
19–28

28 (2)
19–28

27 (2)
22–28

27 (3)
18–28

HC 0.38 (0.80)
−0.9–1.8

0.78 (0.69)
0–2.3

1.0 (0.85)
−0.1–2.7

1.1 (1.0)
−0.5–2.3

0.58 (1.3)
−1.2–3.2

0.99 (1.3)
−0.6–3.4

0.99 (1.3)
−1.8–3.4

0.84 (1.2)
−1.3–3.2

Mean (SD); Range. Early Learning Composite Score (ELCS); Head circumference z-score (HC).

Table 2 | Attrition rates for entire sample of infants.

HRA LRC Total

3 months 6 months 9 months 12 months 3 months 6 months 9 months 12 months

Included 17 (94%) 12 (67%) 8 (62%) 6 (43%) 13 (100%) 18 (78%) 21 (78%) 21 (68%) 116 (74%)

Excluded: refused
cap; fussed-out

0 (0%) 0 (0%) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 1 (3%) 3 (2%)

Excluded: <14
blocks administered

1 (6%) 4 (22%) 2 (15%) 5 (36%) 0 (0%) 1 (4%) 1 (4%) 2 (6%) 16 (10%)

Excluded: no usable
channels in ROI

0 (0%) 2 (11%) 2 (15%) 3 (21%) 0 (0%) 4 (17%) 4 (15%) 7 (23%) 22 (14%)

with a random inter-trial interval of 500–1500 ms. Each block
lasted ∼16 s and was separated by a silent pause of vary-
ing duration (15 s minimum). In general, the examiner ini-
tiated subsequent blocks after the 15 s silent pause that fol-
lowed each block; however, in instances in which the infant
became upset the experimenter would initiate the subse-
quent block only after the infant was no longer fussy. Up
to 28 blocks were presented in one of two semi-randomized
sequences.

PROCEDURE
Data were acquired in a dimly lit electrically- and acoustically-
shielded room. Infants were seated on their caregivers’ lap. During
the visit, infants completed three tasks in the following order:
(1) a NIRS experiment examining facial identity and emotion
processing, (2) an upright-inverted face eye-tracking paradigm,
and (3) the task reported here, a NIRS language processing
paradigm. For this task, each block was initiated by an exam-
iner who monitored the infant’s movement. Blocks were pre-
sented until a total of 28 were completed or until the infant
no longer tolerated the task. Infants were also presented with a
continuous video of different moving shapes. If infants became
uninterested in the video or upset, an experimenter used silent
toys and bubbles in an attempt to keep the infant calm and
still. Infants who became fussy were permitted to nurse, feed

from a bottle, or to eat in order to expose them to as many
blocks as possible. While these techniques have the potential to
introduce motion artifacts, prior electrophysiological studies (a
methodology more susceptible to motion artifacts than NIRS)
have demonstrated sufficient amounts of artifact-free data can
be acquired under similar circumstances. A subset of infants
fell asleep during the course of the experiment; in these cases,
the experiment proceeded as described above as most infant
fcNIRS studies have been completed during natural sleep. Given
the nature of the study visit (which required awake infants to
attend to visual stimuli prior to the current experiment) and
infant experimental research in general, infant state varied across
the task (i.e., including awake and attending to visual infor-
mation, eating or nursing, and/or asleep). Because connectivity
measures are dependent on levels of wakefulness and arousal
(e.g., awake vs. asleep; see Heine et al., 2012, for review) as
well as task-related activation (e.g., Arfanakis et al., 2000), we
examined whether groups differed with respect to the frequency
of attentive, feeding, and sleeping states across the task. Based
on notes taken from each visit, infant state was coded accord-
ing to three broadly defined categories: (1) visual attention:
infant watched video, bubbles, and/or silent toys, (2) feeding:
infant nursed, fed from a bottle, or ate, and (3) sleep: infant
fell asleep. Relative to the total number of blocks completed,
infants were coded as whether they spent 0%, <50%, or ≥50%
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of their time in each state. Distributions of visual attention, feed-
ing, and sleeping between groups were compared at each age
using chi-squared tests (see Figure 1). Groups only differed sig-
nificantly in the distribution of sleep at 3-months, X2(2, n =
30) = 6.3, p < 0.05, with a greater percentage of HRA infants
sleeping relative to LRC infants. Furthermore, to confirm that
variability of NIRS signal did not differ between groups, the root
mean square (RMS) of the average ROI time courses was cal-
culated (Larson-Prior et al., 2009). RMS did not differ between
groups for any ROI at any time point with the exception of
the left anterior ROI at 6-months, t(28) = 2.1, p < 0.05, where
the LRC group had significantly larger RMS compared to the
HRA group.

NEAR-INFRARED SPECTROSCOPY (NIRS)
Acquisition and processing
A 24-channel Hitachi ETG-4000 NIRS system was used to
measure levels of oxy- and deoxy-hemoglobin (oxy-Hb and
deoxy-Hb). Two wavelengths of light (695 and 830 nm) were
used to detect hemodynamic responses with a sampling rate of
10 Hz. The NIRS probes were arranged in two 3 × 3 chevron

arrays, each with five incident and four detecting fibers with
3 cm spacing. Each pair of emitting-detecting fibers defines a
single channel. Probes were attached to a soft hat designed
for infants (see Figure 2). NIRS probe sets were upgraded over
the course of our longitudinal study. There was no significant
difference between groups for the number of data sets collected
with each probe set at 3-, 9-, or 12-months (p > 0.4); at 6-
months, groups did differ on the distribution of data collected
with old (HRA n = 9; LRC n = 22) vs. new (HRA n = 5; LRC
n = 0) probes (p < 0.05). However, at the ages at which signif-
icant group differences emerged (i.e., 3- and 12-months), there
were no significant main effects of probe type (new, old) or inter-
actions between probe and group (p > 0.3) for overall mean
connectivity.

Analyses were conducted on NIRS data that were acquired
continuously 5 s prior to the onset of the first block until
10 s after the end of the final block. Average time series dura-
tion was approximately 15 min and did not differ between
HRA and LRC groups at any age (ps > 0.3). Based on light
intensity detection through each channel, relative concentrations
of oxy-Hb and deoxy-Hb were calculated for the absorbance

FIGURE 1 | Coded behavioral data for time spent attending to visual stimuli, feeding, and sleeping for LRC and HRA groups at 3-, 6-, 9-, and

12-months.
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FIGURE 2 | Four regions of interest (ROI) selected from anterior and

posterior recording sites on each hemisphere. Gray circles represent
channels included in anterior ROIs; black circles are channels included in
posterior ROIs. Probes not included in ROIs are depicted in white. Smaller
red and blue circles represent infrared emitters and detectors, respectively.

of each wavelength using the modified Beer-Lambert law. Data
were then band-pass filtered (0.008 < f < 0.08) and the
linear trend was removed. Next, given the impact of head
motion on functional connectivity measured using fcMRI (Power
et al., 2012; Van Dijk et al., 2012), a series of quality con-
trol procedures were conducted to insure that only artifact-
free data were included in the functional connectivity anal-
ysis. First, individual time points were censored if the raw
signal exceeded 4.95 (indicating saturation signals) or if total-
Hb change exceeded 0.3 mM∗mm within a two sample time
window. Next, for each channel, the RMS of the first tem-
poral derivative was calculated for the oxy-Hb signal; chan-
nels were excluded if the RMS exceeded a threshold of 0.25
or if more than 50% of time points exceeded saturation
threshold.

Functional connectivity analysis
Similar to previous studies investigating functional connectiv-
ity in infants using NIRS (Homae et al., 2010, 2011), we chose
to focus on oxy-Hb, as the oxy-Hb signal has a higher signal-
to-noise ratio than deoxy-Hb (Tong and Frederick, 2010) and
overlaps to a greater degree with functional networks defined
by the fMRI BOLD signal (Duan et al., 2012). Four regions of
interest (ROI) were selected from anterior and posterior loca-
tions for each hemisphere (LA, left anterior; LP, left posterior;
RA, right anterior; RP, right posterior) (see Figure 2). The aver-
age time course for each ROI was calculated from signals from
usable channels within each ROI. Because findings of over- and
under-connectivity in ASD-related studies may be associated with
specific methodological choices (Muller et al., 2011), we chose to
examine the data using two separate pipelines–with and with-
out task regression. For the task-regression pipeline (referred to
below as intrinsic connectivity), task-related signal fluctuations
were removed in order to examine intrinsic cortical connectivity.
Task regressors for both ABB and ABC conditions were included
in a general linear model to remove hemodynamic responses
associated with auditory stimuli. Next, correlations between the
residual time courses for each ROI pair (for all 6 ROI pairs)
were computed. For the non-task-regressed pipeline (referred to

below as co-activation connectivity), task related activation was
not removed. Instead, correlations between mean time courses for
each ROI pair were computed. For both pipelines, ROI pair cor-
relations were transformed using Fisher’s r to z’ transformation.
Next, mean z’ scores were created for all (all 6 ROI pairs), inter-
hemispheric (LA-RA, LA-RP, LP-RA, LP-RP; which includes both
homo- and hetero-topic connections), and intra-hemispheric
(LA-LP, RA-RP) ROI pairs. Finally, differences in functional con-
nectivity were examined in a cross-sectional manner at 3-, 6-, 9-,
and 12-months. Z-transformed data were entered into a series of
independent-samples t-tests to assess between-group differences
in connectivity at each time point. A secondary bootstrap analysis
(10,000 iterations) was used to confirm t-test results. Shapiro–
Wilk test of normality confirmed the data for each group met
the normality assumption for tests that showed between-group
differences. All statistical analyses were performed using SPSS,
version 18.0.0.

RESULTS
Intrinsic and co-activation connectivity z-scores for all ROI
pairs for both HRA and LRC groups at 3-, 6-, 9-, and
12-months are shown in Figure 3. At 3-months, differences
between HRA and LRC infants for intrinsic connectivity were
present only for the LA-RP ROI pair, t(28) = −2.3, p < 0.05.
More robust group differences emerged for co-activation con-
nectivity as HRA infants showed marginally increased over-
all functional connectivity, t(28) = −2.0, p = 0.054. This was
mainly due to increased connectivity for intra-hemispheric ROI
pairs, t(28) = −2.3, p < 0.05. Analysis of individual ROI pairs
revealed significantly increased connectivity between LA-RP,
t(28) = −2.5, p < 0.05, and marginally increased connectivity
between LA-LP, t(28) = −1.8, p < 0.1, in HRA as compared
to LRC infants. Results for both intrinsic and co-activation
t-tests at 3-months were confirmed by a bootstrap analysis
(10,000 iterations).

There were no significant differences between any average z’
score or individual ROI pair for either intrinsic or co-activation
analysis at 6- or 9-months (all p > 0.4). However, by 12-months,
LRC infants showed increased intrinsic connectivity relative
to HRA infants. Specifically, LRC infants had increased intra-
hemispheric connectivity relative to HRA infants, t(20.7) = 2.3,
p < 0.05, which was primarily due to significantly increased con-
nectivity of the LA-LP ROI pair, t(25) = 2.7, p < 0.05. Increases
in global connectivity did not reach significance; however, as
can be seen in Figure 4, differences in connectivity across the
first year of life shift from marginally increased connectiv-
ity for HRA infants at 3-months to increased connectivity for
LRC infants by 12-months. Findings for co-activation connec-
tivity were identical to intrinsic connectivity results; relative
to the LRC group, the HRA group showed decreased con-
nectivity for intra-hemispheric connections, t(22.2) = 2.5, p <

0.05, which was driven by significantly decreased LA-LP con-
nectivity, t(25) = 2.7, p < 0.05. Results for both intrinsic and
co-activation t-tests at 12-months were confirmed by a boot-
strap analysis (10,000 iterations) with the exception of mean
intra-hemispheric connectivity, which was marginally increased
in LRC infants for co-activation analysis, t(25) = 1.6, p < 0.1,

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 444 | 122

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Keehn et al. fcNIRS in infants at-risk for ASD

FIGURE 3 | Intrinsic (left column) and co-activation (right column) connectivity for HRA and LRC groups at 3-, 6-, 9-, and 12-months for all six ROI

pairs. Error bars represent one standard error of the mean. ∗p < 0.1, ∗∗p < 0.05.

and no longer significant for intrinsic analysis, t(25) = 1.5,
p > 0.1.

DISCUSSION
The current study is the first to use NIRS to examine func-
tional connectivity in infants at-risk for developing ASD. Our
preliminary findings suggest that divergent patterns of functional

connectivity emerge across the first year of life. Whereas LRC
infants showed a pattern of increasing functional connectiv-
ity from 3- to 12-months, HRA infants exhibited a pattern
of decreasing connectivity. These contrasting patterns resulted
in increased connectivity at 3-months in HRA compared to
LRC infants and, by 12-months, decreased connectivity in HRA
compared to LRC infants.

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 444 | 123

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Keehn et al. fcNIRS in infants at-risk for ASD

FIGURE 4 | Group differences in mean z’-scores for global connectivity

and intra- and inter-hemispheric connectivity measures at 3-, 6-, 9-, and

12-months for task-regressed, intrinsic functional (left column) and

co-activation (right column) connectivity pipelines. Positive scores reflect
LRC > HRA; negative scores reflect HRA > LRC for connectivity measures.
Error bars represent one standard error of the mean. ∗p < 0.1, ∗∗p < 0.05.

Differences in functional connectivity at 3-months suggest
that prenatal or early postnatal differences in brain connectiv-
ity exist in infants at-risk for ASD. A comparison to the findings
of Wolff et al. (2012), which previously reported early connec-
tivity differences in at-risk infants, is difficult because the study
did not include a neurotypical comparison group. However,
findings from other DTI studies suggest elevated indices of
white matter connectivity and, perhaps, accelerated white mat-
ter growth (Ben Bashat et al., 2007; Weinstein et al., 2011),
which is followed by reduced FA in school-aged children, adoles-
cents, and adults with ASD (Travers et al., 2012). Our findings
of increased functional connectivity at 3-months is in agree-
ment with the idea that, early in development, individuals with
(or at-risk for) ASD may potentially have diffusely increased
connectivity.

However, similar to Dinstein et al. (2011) fcMRI study of tod-
dlers with ASD, our preliminary 12-month results show reduced
connectivity of both anterior and posterior inter-hemispheric
connections (albeit not significantly so). Further, our results show
that, at 12-months, HRA infants have reduced intra-hemispheric
connectivity (both co-activation and intrinsic) for the left hemi-
sphere compared to LRC infants. These results, in conjunction

with weaker inter-hemisphere connectivity of inferior frontal and
superior temporal gyri reported by Dinstein et al. (2011), sug-
gest that early atypical development of the language-processing
network may exist in infants and toddlers at risk for or diag-
nosed with ASD. Although we are currently unable to deter-
mine whether differences in connectivity at 3- and 12-months
were driven by infants that will later go on to meet diag-
nostic criteria for ASD, the results add to a growing body
of evidence suggesting that atypical connectivity may be an
potential endophenotype for ASD (e.g., Barnea-Goraly et al.,
2010).

Previous functional connectivity studies in neurotypical adults
have shown state (e.g., awake vs. asleep) may alter degree of net-
work connectivity (see Heine et al., 2012, for review). Although
state-dependent deviations in connectivity may be network-
specific and vary according to level of wakefulness [e.g., descent
to sleep (Larson-Prior et al., 2009) vs. deep sleep (Horovitz
et al., 2009)], reduced levels of awareness are generally associated
with decreased levels of connectivity. In the current study, NIRS
data were acquired during different levels of wakefulness and
arousal. Differences in the distribution of visual attention, feed-
ing, and sleeping were similar for HRA and LRC infants except at
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3-months where a larger proportion of at-risk infants slept during
the task compared to the LRC infants. Assuming similar prop-
erties of connectivity dynamics exist in the infant brain (which
remains undetermined as no study to date has examined differ-
ences in functional connectivity in sleep-wake states in infants),
we would assume that high-risk infants would show reduced con-
nectivity relative to LRC infants based on state alone. However,
our results show that infants at-risk have increased connectivity
relative to low-risk infants despite spending a larger portion of
the assessment sleeping.

Although infants at risk for ASD have been shown to have sim-
ilar brain volume measurements at 6-months compared to LRC
infants (Hazlett et al., 2012; Shen et al., 2013), ASD is associated
with accelerated brain growth over the first years of life (Redcay
and Courchesne, 2005; Shen et al., 2013). Lewis and Elman (2008)
hypothesized that early overgrowth results in atypical patterns
of connectivity, specifically reduced long-distance connectivity,
and demonstrated that developmental differences in connectivity
emerged at between 12 and 24 simulated months using a neu-
ral network model. Further, Lewis et al. (2009) have shown that
larger brains are associated with reduced long distance connectiv-
ity (potentially due to increased conduction delays and cellular
costs associated with long-distance connections), and that cor-
pus callosum size in individuals with ASD is inversely related
to intracranial volume (i.e., larger brain, smaller corpus callo-
sum) (Lewis et al., 2012). Although the current study did not
find any between-group differences in head circumference, future
studies may wish to examine the relations between trajectories
of brain size or head circumference and the emergence of group
differences in patterns of anatomical and functional connectivity.

Lastly, the current study employed task-regressed, intrinsic
and non-task-regressed, co-activation analyses as task regression
in fcMRI studies may result in different patterns of over- and
under-connectivity in ASD (Jones et al., 2010; Muller et al., 2011).
Although general patterns of over- and under-connectivity were
consistent for both methods across 3-, 6-, 9-, and 12-month time
points, group differences (specifically, increased connectivity in
the HRA group) were more robust for co-activation analyses at
3-month of age.

LIMITATIONS
There are several limitations to the current study. First, our sam-
ple sizes, especially for the 9- and 12-month time points, are small
and therefore the current results should be viewed as preliminary
and interpreted with caution. Furthermore, small sample sizes
restricted current analyses to a cross-sectional examination of the
data. Future studies with larger sample sizes will employ longi-
tudinal statistical analyses to examine developmental trajectories
of functional connectivity across the first year of life. Second,
measurement of oxy- and deoxy-Hb responses requires trans-
mission of light through scalp, skull, cerebral spinal fluid, and
meninges; however, scalp-brain distance increases across devel-
opment and is significantly shorter in the left compared to right
hemisphere (Beauchamp et al., 2011). Additionally, the presence
of hair (which increases throughout development) can result in
the attenuation of light and result in unreliable measurements. It
is unclear how these developmental changes differentially impact

low- and high-risk infants (although see Shen et al., 2013, for
example of differences in cerebral spinal fluid); nevertheless,
future studies may wish to address these potentially confounding
issues. Third, although levels of wakefulness and arousal varied
within each infant’s visit, the distribution of infant state rarely
varied across group. Nevertheless, the current results should be
interpreted with caution as subtle variations in infant state could
have potentially impacted our group comparisons. Additionally,
while we took steps to remove time points and channels corrupted
by movement artifacts, head motion was not measured in the
current study and therefore we are unable to determine whether
group differences in motion artifacts were present. Lastly, ROIs in
the current study included large areas of lateral frontal and pos-
terior cortex and are therefore unlikely to sample homogeneous
cortical areas. As a result, our current measure has limited spa-
tial resolution, which is likely to introduce variability within our
connectivity measures.

CONCLUSIONS
Distributed functional brain networks arise from the complex
interaction of genes, environmental factors, and experience-
dependent processes. Our findings suggest that, in infants with
a family history of ASD, there are early differences in brain con-
nectivity and an atypical developmental trajectory of functional
connectivity compared to LRC infants. Because the majority of
our current sample of infants have yet to reach 36 months of age,
we do not have data regarding diagnostic outcome. Therefore,
our current analysis has only examined whether risk for autism
is associated with differences in connectivity (i.e., an endophe-
notype), rather than whether infants that are later diagnosed with
ASD exhibit unique patterns of connectivity in the first year of life.
In conjunction with previous findings (e.g., Barnea-Goraly et al.,
2010), the current results suggest that atypical network connec-
tivity may represent a putative endophenotype in ASD. Although
our findings are in accord with other functional and structural
connectivity studies of high-risk infants and toddlers with ASD
(Dinstein et al., 2011; Wolff et al., 2012), our results should be
interpreted with caution given the small sample sizes. Ongoing
data collection will provide a larger sample for more sophisticated
longitudinal analyses, as well as the ability to examine whether
differences in connectivity exist between high-risk infants that do
and do not go on to develop ASD.
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Postmortem neuropathology studies report reduced number and size of Purkinje cells
(PC) in a majority of cerebellar specimens from persons diagnosed with autism spectrum
disorders (ASD). We used diffusion weighted MRI tractography to investigate whether
structural changes associated with reduced number and size of PC, could be detected
in vivo by measuring streamlines connecting the posterior-lateral region of the cerebellar
cortex to the dentate nucleus using an independent component analysis with a ball and
stick model. Seed regions were identified in the cerebellar cortex, and streamlines were
identified to two sorting regions, the dorsal dentate nucleus (DDN) and the ventral dentate
nucleus (VDN), and probability of connection and measures of directional coherence for
these streamlines were calculated. Tractography was performed in 14 typically developing
children (TD) and 15 children with diagnoses of ASD. Decreased numbers of streamlines
were found in the children with ASD in the pathway connecting cerebellar cortex to the
right VDN (p-value = 0.015). Reduced fractional anisotropy (FA) values were observed in
pathways connecting the cerebellar cortex to the right DDN (p-value = 0.008), the right
VDN (p-value = 0.010) and left VDN (p-value = 0.020) in children with ASD compared to
the TD group. In an analysis of single subjects, reduced FA in the pathway connecting
cerebellar cortex to the right VDN was found in 73% of the children in the ASD group
using a threshold of 3 standard errors of the TD group. The detection of diffusion changes
in cerebellum may provide an in vivo biomarker of Purkinje cell pathology in children with
ASD.

Keywords: Purkinje cell, dentate nucleus, autism spectrum disorders, diffusion weighted MRI, independent

component analysis tractography with a ball and stick model

INTRODUCTION
Autism spectrum disorders (ASD) are prevalent neurodevel-
opmental disorders characterized by impaired language devel-
opment, repetitive or stereotyped behaviors, and difficulties
in socio-emotional interactions (Kanner and Eisenberg, 1957;
Fonbonne, 2003). Many neuroimaging studies demonstrate that
the development of the cerebellum is abnormal in children with
ASD, both neuroanatomically and functionally. For instance,
abnormalities in cerebellar size, morphology, and function have
been reported and correlated with behavioral deficits in func-
tional domains (Abell et al., 1999; Courchesne et al., 2001;
McAlonan et al., 2002; Akshoomoff et al., 2004; McAlonan et al.,
2005; Fatemi et al., 2012). Neuropathology studies have shown
significant reductions in Purkinje cells (PC) in the posterior-
lateral cerebellar hemisphere in brain specimens from patients
with ASD (Bauman and Kemper, 1985, 2005; Ritvo et al., 1986;
Bailey et al., 1998; Whitney et al., 2009). In addition, decreased
size of PC in autism brain specimens has been reported (Fatemi
et al., 2002).

The PC are the primary efferent neurons of the cerebellar cor-
tex. Loss of PC may result in altered cerebellar cortical efferent

signals (Tsai et al., 2012) and may be associated with some of
the symptoms that have been identified in children with ASDs
including problems with motor control and learning (Hoxha
et al., 2013). The dentate nuclei lie in a key position within the
cerebellum, serving to integrate inputs from the PC efferents
(Batini et al., 1992). Previous studies have reported no changes
in cell number or size of the dentate nuclei in samples of chil-
dren with ASDs (Bauman and Kemper, 1985; Yip et al., 2009).
However, a recent diffusion weighted MRI (DW-MRI) study
demonstrated alterations in white matter in the dentatorubroth-
alamic pathway in high and low functioning children with ASD
(Jeong et al., 2012). This study divided the dentate nucleus
into four subdivisions, dorso-rostal, dorso-caudal, ventro-rostal,
and ventro-caudal, in order to investigate four different denta-
torubrothalamic pathways associated with motor and non-motor
domains (Küper et al., 2011). It was found that children with
ASD had significant differences in fractional anisotropy (FA),
axial diffusivity (AD), and radial diffusivity (RD) in the denta-
torubrothalamic tracts originating in both the dorso-rostal and
ventro-caudal portions of the dentate nucleus compared to a typ-
ically developing (TD) control group. These diffusion changes
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were highly correlated with deficits in daily living skills and
communication, respectively (Jeong et al., 2012).

To date, no neuroimaging studies have investigated white mat-
ter connecting the cerebellar cortex to the dentate nucleus in
children with ASD. This is due to several technical challenges
involved in accurately defining these pathways, and in particular,
the problem of crossing fibers. In order to address this prob-
lem, the present study applied a newly developed tractography
method for DW-MRI termed the “independent component anal-
ysis with a ball and stick model” (ICA+BSM) (Jeong et al., 2013).
This method was developed to resolve the orientation of multiple
fiber bundles in clinical DW-MRI data and thereby increase the
feasibility of detecting changes in efferent white matter in young
children with autism, potentially related to decreases in number
and size of PC neurons in cerebellar cortex shown postmortem.
In addition to the crossing fiber problem, clinical MRI scans
performed on children with ASD are performed under seda-
tion, while MRI studies of TD children performed for research
purposes are conducted without sedation due to ethical issues.
Comparing data in which one group is sedated and the other is
not may be result in between-group differences in movement and
physiological artifacts (Walker et al., 2011, 2012) related to the
effects of sedation, potentially confounding the identification of
hypothesized differences in diffusion metrics between diagnos-
tic groups (i.e., ASD vs. TD). In order to address the problems
of motion and physiological artifacts, we assessed the magnitude
of these artifacts in the cerebellum and corrected for them using
iRESTORE (Chang et al., 2012).

We hypothesized that decreased number and size of the PC
may result in reduced directional coherence and detection of
streamlines connecting cerebellar cortex with dentate nuclei.
Decreased PC cell number and size might also cause significant
changes in other conventional DW-MRI metrics such as FA, AD,
RD, streamline volume (SV), and streamline count (SC) (Song
et al., 2002, 2005; Budde et al., 2009; Jones et al., 2013). Such
changes in DW-MRI metrics may provide in vivo measures related
to the previous pathology findings (Bauman and Kemper, 1985;
Ritvo et al., 1986; Bailey et al., 1998; Bauman and Kemper, 2005;
Whitney et al., 2009). This study assessed diffusion differences
between children with ASD and TD children, while assessing
potential artifacts associated with these measurements.

METHODS AND MATERIALS
SUBJECTS
This study included 15 children with ASD (age: 6.2 ± 3.1 years,
range: 3.6–13.3 years, 11 boys) and 14 TD children (TD, age:
6.8 ± 3.1, range = 4.0–14.0 years, 11 boys). These subjects are
a subset of subjects included in a previous study of the denta-
torubrothalamic pathway (Jeong et al., 2012). The children with
ASD were referred from the Children’s Hospital of Michigan
Pediatric Neurology Clinic based upon a clinical diagnosis of
autistic disorder, Asperger disorder, or pervasive developmental
disorder not otherwise specified made by pediatric neurologists
using the Diagnostic and Statistical Manual of Mental Disorders,
4th edition, criteria.

Inclusion and exclusion criterion for ASD were detailed in our
previous study (Jeong et al., 2012). In brief, inclusion criteria

for the study required that children with clinical diagnoses of
ASD meet criteria for an autism spectrum disorder according
to the ADI-R. In the present study 12 of the children met or
exceeded the clinical cutoff on all three sections of the ADI-R
[(a) Qualitative Abnormalities in Reciprocal Social Behavior, (b)
Qualitative Abnormalities in Communication, and (c) Restricted,
Repetitive, and Stereotyped Patterns of Behavior] and received
diagnoses of Autistic Disorder. The remaining three children
met or exceeded the cutoffs for criteria (a) and (c) and were
diagnosed with Asperger’s Disorder. Adaptive behavior was mea-
sured using the Vineland Adaptive Behavior Scales. The Vineland
Adaptive Behavior Scales-2nd Edition (VABS) is a caregiver-
reported semi-structured interview that yields measures of the
child’s adaptive behavior functioning in four domains (commu-
nication, daily living, socialization, and motor skills), as well as
an overall adaptive behavior composite. The measure is used
extensively in research studies on children with developmen-
tal disabilities and has excellent reliability and validity (Sparrow
et al., 1984). Neurological disorders were excluded in the ASD
group, including seizure disorders (patients with abnormal EEG
without seizures were not excluded), PKU, tuberous sclerosis
complex, Rett Syndrome, Fragile X, Down Syndrome and trau-
matic brain injury. The Human Investigation Committee at
Wayne State University granted permission for the retrieval and
analysis of the clinical data and MRI scans of children with ASD.
Written informed consent was obtained for the children in the TD
group.

MRI DATA ACQUISITION AND PROCESSING
A 3T Signa EXCITE scanner (GE Healthcare, Waukesha, WI)
equipped with an eight channel phased-array head coil was uti-
lized to acquire the whole brain DW-MRI data at TR/TE =
12,500/88.7 ms, voxel size = 1.88 × 1.88 × 3 mm. A multislice
single-shot echo-planer spin-echo sequence was employed to
obtain the measurements at a diffusion weighting of b =
1000 s/mm2 and 55 diffusion gradient directions. An addi-
tional acquisition at b = 0 s/mm2 was also obtained to normalize
the diffusion weighted signals at individual gradient directions.
Parallel imaging of DW data acquired with the eight-channel
EXCITE head coil was accomplished using the array spatial sensi-
tivity encoding technique with an acceleration factor of 2. A three-
dimensional fast spoiled gradient echo sequence (FSPGR) was
acquired for each subject at TR/TE/TI of 9.12/3.66/400 ms, slice
thickness of 1.2 mm, and planar resolution of 0.94 × 0.94 mm2.
Since the participants in the ASD group underwent clinical scans,
they were sedated during their scans. TD children were not
sedated, but their movements were carefully monitored during
the scans. In order to quantify head motion, an estimated head
motion index (sum of displacements) was obtained from indi-
vidual children in the TD and the ASD groups. For each child,
a, b = 0 image was selected as a target image for co-registering
the 55 b = 1000 images. Six motion parameters including three
translation and three rotation parameters in x,y,z were estimated
for each b = 1000 image using SPM 8 (http://www.fil.ion.ucl.ac.
uk/spm/). For each parameter, the absolute displacement between
adjacent images was averaged to assess the degree of head motion
(Ling et al., 2012). The summation of the six motion assessments
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was used to denote the overall degree of head motion for each
child.

We utilized a software package called the Tolerably Obsessive
Registration and Tensor Optimization Indolent Software
Ensemble (TORTOISE version 1.4.0. available from https://
science.nichd.nih.gov/confluence/display/nihpd/TORTOISE) in
order to (1) preprocess the DW-MRI data for correction of
motion and eddy current distortion using DIFF_PREP, (2)
estimate diffusion tensor data using informed Robust Estimation
of Tensors by Outlier Rejection (iRESTORE) using DIFF_CALC,
and (3) calculate the maps of FA, AD, and RD from the tensors
of iRESTORE. The iRESTORE method utilizes an iterative
non-linear least square fitting with equal weight to identify
optimal outlier data on a voxel-by-voxel basis (Chang et al.,
2012). It removes the identified data from consideration in the
final tensor fitting, and performs conventional fitting on the
remaining data points. It was designed to remove physiological
noise artifacts and head motion in DW-MRI data acquired at low
angular resolution.

ICA+BSM TRACTOGRAPHY
The ICA+BSM tractography was performed using the
TORTOISE-corrected DW-MRI data to identify the crossing fiber
components in voxels of small clusters where dimensionality
reduction and BSM fitting are sequentially applied to isolate the
multiple diffusion components that are independently attenuated
in each direction of the diffusion sensitizing gradients (Jeong
et al., 2013). An eleven-neighborhood window was defined at
each voxel of the white matter to create a diffusion data matrix
with row vectors indicating the diffusion-weighted signals at
every voxel of the window. Multiple diffusion tensors (up to 3)
were estimated by iterating two complementary steps, hidden
source decomposition using fast ICA and the multi-compartment
ball-stick model.The resulting tensors were utilized to resolve
the major fiber directions existing at the voxel and were finally
applied for subsequent tractography. At each seeding point,
tracking was started in the direction of the most prominent
stick compartment. The step size was 0.2 voxels width, and the
turning angle threshold was 60◦. The propagation direction was
calculated by applying trilinear interpolation on the directions of
the stick compartments having a fraction >0.15, provided from
8 nearby voxels of the current point. For each nearby voxel, only
the direction that had the smallest turning angle was considered
for interpolation. In order to smooth the streamlines, each sub-
sequent direction was determined by the previous direction with
0.5 weighting and the incoming direction with 0.5 weighting.

VISUALIZATION OF TRACTS CONNECTING THE CEREBELLAR CORTEX
WITH THE DENTATE NUCLEI
To generate tracts containing the PC efferent fibers from the
ICA+BSM tractography of individual subjects, the current study
defined seeding points at the posterior-lateral region of the
cerebellar cortex (e.g., cerebellum crus 1 and 2). The conven-
tional FreeSurfer process (http://surfer.nmr.mgh.harvard.edu)
was applied to the high resolution FSPGR images in order to
segment the cerebellar cortex in each hemisphere. The result-
ing cerebellar cortex was then masked by the standard templates

of cerebellum crus 1 and 2 (available at http://www.cyceron.
fr/index.php/fr/plateforme/freeware). To seed the streamlines
containing the PC efferent fibers, the masked region was finally
registered to the b0 image via rigid body transformation using
SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/). A total of 2000 seed-
ing points were uniformly distributed over all the voxels of the
registered seed region.

An ROI approach was utilized to sort the tracts connecting
from the seed region to each of two dentate ROIs, the dorsal
dentate nucleus (DDN) and the ventral dentate nucleus (VDN),
which are considered to be the motor and non-motor domains
of the dentate nucleus (Küper et al., 2011). The two subdivi-
sions of the dentate nucleus in template space [using “Spatially
Unbiased Infratentorial Template (SUIT)”] were separately trans-
formed into the FSPGR space of the individual subjects by
applying the inverse of the deformation field that fits the cere-
bellar cortex of the individual FSPGR image to that of the SUIT
space (Diedrichsen, 2006, available at http://www.icn.ucl.ac.uk/
motorcontrol/imaging/suit.htm). The SUIT normalized ROIs in
the FSPGR space were registered to the b0 space by applying the
rigid body transformation obtained between the FSPGR and b0
image using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/). Figure 1
illustrates an example of the cerebellar cortex seeding ROIs and
the two dentate subregion sorting ROIs (DDN, VDN) that were
objectively located in the b0 image. For each of the pathways
projecting to the DDN and VDN, a streamline visitation map
was created by the number of streamlines passing each voxel.
Voxels having more than 5 visits were assumed to belong to each
pathway, and the values of FA, AD, and RD for the voxels in
each pathway was averaged for comparison. SV was measured
by summing the volume of all voxels belonging to the pathway.
SC was calculated by counting the total number streamlines per
pathway. FA, AD, RD, SC, and SV were separately measured for
each pathway bilaterally and compared to quantify diffusion met-
rics potentially associated with decreased PC size and number in
children with ASD.

STATISTICAL ANALYSIS
Separate multi-variate general linear model analyses using four
different dependent variables (left DDN, left VDN, right DDN,

FIGURE 1 | Regions of interest to track streamlines containing PC

efferent axons. The posterior-lateral cortex of the cerebellum (seed region,
magenta for left, cyan for right) and two subdivisions of the dentate nucleus
(target region, green for DDN, yellow for VDN) were objectively placed for
the tractography using the SUIT normalization procedure.
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right VDN) were applied for each diffusion parameter to inves-
tigate differences between the TD and ASD groups. For these
analyses, age and head-motion were used as covariates where
head-motion was assessed for the individual subjects by sum-
ming the absolute differences of displacement estimates between

FIGURE 2 | Estimated head motion index (sum of displacements)

obtained from individual children in the TD and the ASD groups. For
each child, a, b = 0 image was selected as a target image for co-registering
the 55 b = 1000 images. Six motion parameters including three translation
and three rotation parameters in x,y,z were estimated for each b = 1000
image. For each parameter, the absolute displacement between adjacent
images was averaged to assess the degree of head motion (Ling et al.,
2012). The summation of the six motion assessments was used to denote
overall degree of head motion for each child. Note that this index has no
unit since two physical metrics (mm and radian) are summed.

FIGURE 3 | Streamlines connecting the posterior-lateral cerebellar

cortex with the DDN (red) and the VDN (blue) in two age-matched

boys, (top) TD and (bottom) ASD. It is visually apparent that the boy with
ASD shows significantly reduced streamline number and volume compared
to the TD child; total streamline volume of both sides = 13985 and
8933 mm3 for the TD child and the child with ASD, respectively.

adjacent b = 1000 images in six motion parameters, including
three translations and three rotations (Ling et al., 2012). Finally,
all diffusion parameters were correlated with developmental and
behavioral variables (VABS assessments of motor, communica-
tion, daily living skills, and socialization) within the ASD group.
For these analyses, age and head-motion were used as covariates,
and partial Pearson correlation coefficients were obtained. SPSS
21.0 was used for the statistical analyses.

RESULTS
ASSESSMENT OF MOTION AND PHYSIOLOGICAL ARTIFACTS
The estimated head motion index (sum of displacements)
obtained from individual children in the TD and the ASD groups
is shown in Figure 2. Head motion is higher in the TD group than
in the ASD group, as expected due to sedation of the ASD group
(group average ± standard deviation of the sum of motion dis-
placements: 2.00 ± 0.67 for the TD group and 1.12 ± 0.63 for
the ASD group). Analyses with iRESTORE identified more outlier

FIGURE 4 | (A) Directions of stick compartments obtained by the
ICA+BSM in two boys, (left) TD and (right) ASD. Each colored bar
represents primary orientation of individual axonal bundle within the voxel
of cerebellar white matter. (B) Voxels having no stick compartments were
denoted by red boxes. (C) The density of cerebellar voxels having no stick
compartments was evaluated in individual children in both the TD and ASD
groups. To avoid a confound of size of the cerebellum, the total number of
voxels having no stick compartments was normalized by total number of
voxels in entire cerebellum which yields the density of voxels having no
stick compartments. The TD group shows a significant age-related
decrease in the density of voxels having no stick compartments (R2 = 0.48,
p = 0.0044), while the ASD group shows no age related decrease
(R2 = 0.02, p = 0.619).

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 110 | 131

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Jeong et al. Reduced Purkinje cell fibers in autism

data points in the TD group (9.1 ± 1.3%) than in the ASD group
(7.2 ± 0.6%).

VISUALIZATION OF TRACTS CONNECTING THE CEREBELLAR CORTEX
WITH THE DENTATE NUCLEI
Figure 3 shows representative examples of streamlines connect-
ing the cerebellar cortex and the dentate nuclei in age-matched
boys with TD and ASD. It is visually apparent in this figure
that the SV in the posterio-lateral cerebellar cortex is reduced in
the child with ASD, compared with the TD child. Although the
decrease in streamlines was striking in some children with ASD
as shown here, there was great variability among the children in
the group. Both SC and SV were significantly lower only in the
pathway projecting to the right VDN (p = 0.015 and 0.048 for SC
and SV, respectively) in ASD group, compared to the TD group.
Representative examples of directional compartments of stream-
lines identified by the ICA+BSM tractography (i.e., primary
eigenvectors of the stick compartments) are shown in Figure 4A.
The directional stick compartments are reduced near the voxels
of the cerebellar cortex in the child with ASD (marked by red

in Figure 4B), which may result in fewer streamlines in the child
with ASD, compared with the TD child. Interestingly, age-related
reduction of no stick voxels normalized by total cerebellum vol-
ume (i.e., density of voxels having no fibers) was notable in the
TD group (R2 = 0.48, p = 0.0044) but not in the ASD group
(R2 = 0.02, p = 0.619, Figure 4C).

COMPARISON OF DIFFUSION PARAMETERS
Tables 1, 2 summarize changes in four different diffusion param-
eters measured along pathways connecting the posterior-lateral
cerebellar cortex with the dentate nuclei obtained from the TD
and ASD groups. The mean values of the diffusion parameters
showing significant group differences are given in Figure 5A. The
multi-variate analyses revealed that FA was significantly lower in
three pathways in the ASD group, compared to the TD group:
pathways projecting to the right DDN (p = 0.008) and path-
ways projecting to the VDN bilaterally (left: p = 0.020, right:
p = 0.010). In the left VDN and the right DDN, the reduced FA
was apparent at all ages in children with ASD (Figure 5B). AD was
significantly lower in the pathway projecting to the left DDN (p =

Table 1 | Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of the pathways connecting the posterior-lateral cerebellar

cortex with the dentate nuclei.

Pathway Group FA AD [104 mm/s2] RD [104 mm/s2]

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

Left DDN TD 0.27 ± 0.03 0.083 8.97 ± 0.37 0.002** 5.76 ± 0.44 0.956

ASD 0.24 ± 0.03 8.46 ± 0.38 5.85 ± 0.38

TD≤5y .o 0.26 ± 0.03 0.161 9.14 ± 0.23 0.000** 5.93 ± 0.57 0.640

ASD≤5y .o 0.23 ± 0.03 8.53 ± 0.25 6.04 ± 0.33

TD>5y .o 0.28 ± 0.03 0.224 8.53 ± 0.25 0.054 5.66 ± 0.34 0.552

ASD>5y .o 0.26 ± 0.02 8.36 ± 0.54 5.56 ± 0.28

Left VDN TD 0.27 ± 0.03 0.020* 9.13 ± 1.12 0.040* 6.03 ± 0.80 0.273

ASD 0.24 ± 0.02 8.51 ± 0.78 5.90 ± 0.32

TD≤5y .o 0.25 ± 0.03 0.071 9.06 ± 0.47 0.094 6.02 ± 0.49 0.9556

ASD≤5y .o 0.23 ± 0.03 8.60 ± 0.44 6.03 ± 0.29

TD>5y .o 0.27 ± 0.03 0.121 9.17 ± 1.40 0.219 6.04 ± 0.96 0.421

ASD>5y .o 0.25 ± 0.02 8.39 ± 0.54 5.70 ± 0.26

Right DDN TD 0.28 ± 0.03 0.008* 9.06 ± 0.97 0.514 5.76 ± 1.00 0.396

ASD 0.24 ± 0.04 8.84 ± 0.51 5.93 ± 0.44

TD≤5y .o 0.28 ± 0.02 0.092 9.15 ± 0.40 0.181 5.74 ± 0.43 0.505

ASD≤5y .o 0.24 ± 0.04 8.87 ± 0.31 5.91 ± 0.44

TD>5y .o 0.29 ± 0.04 0.0161* 9.03 ± 1.20 0.673 5.78 ± 1.23 0.727

ASD>5y .o 0.24 ± 0.02 9.03 ± 1.20 5.97 ± 0.48

Right VDN TD 0.27 ± 0.03 0.010* 9.03 ± 1.24 0.630 5.84 ± 1.29 0.316

ASD 0.23 ± 0.03 8.80 ± 0.52 6.05 ± 0.59

TD≤5y .o 0.26 ± 0.02 0.083 9.10 ± 0.45 0.221 5.59 ± 0.25 0.1222

ASD≤5y .o 0.23 ± 0.03 9.10 ± 0.45 5.94 ± 0.43

TD>5y .o 0.27 ± 0.03 0.030* 8.98 ± 1.55 0.780 5.99 ± 1.61 0.7667

ASD>5y .o 0.23 ± 0.01 8.79 ± 0.72 6.20 ± 0.78

DDN, dorsal dentate nucleus; VDN, ventral dentate nucleus; SD, standard deviation; Group mean and SD were reported for TD (n = 14), ASD (n = 15).
*, **p-value < 0.05 and 0.005, respectively (α = 0.05).
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Table 2 | Streamline count (SC) and streamline volume (SV) of the pathways connecting cerebellar cortex to the dentate nuclei.

Pathway Group SC SV [mm3]

Mean ± SD p-value Mean ± SD p-value

Left DDN TD 328.86 ± 245.73 0.511 4822.93 ± 2483.78 0.776

ASD 221.23 ± 143.57 3668.28 ± 1676.55

TD≤5y .o 226.40 ± 146.10 0.400 3896.02 ± 1735.3 0.593

ASD≤5y .o 314.33 ± 195.65 4485.94 ± 2012.32

TD>5y .o 385.78 ± 277.92 0.189 5337.88 ± 2771.98 0.579

ASD>5y .o 222.00 ± 85.46 4665.23 ± 870.83

Left VDN TD 401.64 ± 291.83 0.230 5258.36 ± 2660.71 0.333

ASD 198.27 ± 134.62 3304.01 ± 1558.77

TD≤5y .o 307.40 ± 73.39 0.544 4665.23 ± 870.83 0.354

ASD≤5y .o 253.00 ± 183.93 3932.81 ± 1777.67

TD>5y .o 454.00 ± 356.47 0.172 5517.18 ± 3259.20 0.431

ASD>5y .o 234.17 ± 114.64 4389.26 ± 1033.49

Right DDN TD 430.93 ± 219.79 0.196 5604.90 ± 1962.33 0.416

ASD 271.19 ± 153.14 4048.79 ± 1557.02

TD≤5y .o 360.40 ± 178.18 0.305 5174.30 ± 1688.04 0.446

ASD≤5y .o 286.11 ± 85.31 4599.61 ± 1068.87

TD>5y .o 470.11 ± 240.39 0.389 5844.13 ± 2156.96 0.462

ASD>5y .o 470.11 ± 240.39 4981.64 ± 2160.28

Right VDN TD 533.34 ± 247.84 0.015* 5990.62 ± 1967.36 0.048*

ASD 279.38 ± 124.69 3769.70 ± 1376.23

TD≤5y .o 487.80 ± 212.29 0.064 6039.14 ± 752.26 0.017*

ASD≤5y .o 305.33 ± 126.87 4348.83 ± 1223.67

TD>5y .o 558.78 ± 274.33 0.050 5963.66 ± 2450.37 0.215

ASD>5y .o 296.17 ± 131.23 4510.55 ± 1424.99

DDN, dorsal part of dentate nucleus; VDN, ventral part of dentate nucleus; SD, standard deviation; Group mean and SD were reported for TD (n = 14), ASD (n =
15). *p-value < 0.005, respectively (α = 0.05).

0.002) and to the left VDN (p = 0.040) in ASD group, compared
to the TD group. However, RD was not significantly different in
any of the pathways in ASD group compared to the TD group.
Both SC and SV were significantly lower in the pathway pro-
jecting to right VDN in ASD group, compared to the TD group
(p = 0.015, 0.048 for SC and SV, respectively). The FA difference
between the ASD and TD groups for the right DDN pathway was
more significant in older children (>5 y.o, Table 1), while the
reduced AD in left DDN and VDN, and SV in the right VDN
were more prominent in younger children (≤5 y.o, Tables 1, 2).

Figure 6 presents the cumulative density functions of FA, AD,
SC, and SV measured from separate pathways showing signifi-
cant changes between the TD and ASD groups. The ASD group
shows significantly higher probability to have lower FA (left VDN,
right DDN, right VDN), lower AD (left DDN, left VDN), lower
SC (right VDN), and lower SV (right VDN) than the TD group,
probably due to the reduced directional coherence of streamlines
in ASD group. Furthermore, as reported in Table 3, FA was 3 stan-
dard errors below the mean of the TD group in 10 of 15 ASD cases
(67%) for the right DDN pathway. For the right VDN pathway, a
total 11 of the 15 ASD cases (73%) showed the reduced FA being
3 standard errors below the mean of the TD group.

There was a trend for a positive correlation between FA of
right DDN and daily living skills (R = 0.39, p = 0.084). There
were no other correlations between diffusion parameters (AD,
RD, SC, SV) and VABS variables (communication, socialization,
and motor skills).

DISCUSSION
The present study demonstrates that the ICA+BSM tractography
method can be used to detect differences in the cerebellar white
matter that contain PC efferent pathways. Although the patho-
logical origin of reduced directional coherence remains unclear
in DW-MRI, the decreases in FA, AD, SC, and SV in the ASD
group were hypothesized based upon previous pathology stud-
ies showing reduced numbers and size of PC in postmortem
brain from subjects with autism (Bauman and Kemper, 1985,
2005; Ritvo et al., 1986; Bailey et al., 1998; Fatemi et al., 2002;
Whitney et al., 2009). In addition to decreased numbers and size
of PC in ASDs, there is also evidence for neuroinflammation
throughout the brain in ASD; such inflammation is reported to be
more prominent in cerebellum (Vargas et al., 2005; Suzuki et al.,
2013). Changes associated with glial proliferation and inflamma-
tory processes might be one source of the decreased directional
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FIGURE 5 | (A) Group mean values and standard errors of fractional
anisotropy (FA) obtained from four pathways of the PC efferent
streamlines. ∗, ∗∗p-value < 0.05 and 0.005, respectively (α = 0.05). (B)

FA values and ages of individual subjects obtained from left VDN
pathway (left) and right DDN pathway (right) showing the most
significant group differences.

coherence in children with ASD observed in the present study.
We found that 73.3% of children with ASD (11 of 15 studied
ASD cases, Table 3) showed reduced FA in fibers connecting cere-
bellar cortex to right VDN using a threshold 3 standard errors
below the mean of the TD group. Similarly, Palmen et al. reported
that 72.4% of subjects with ASD (21 of 29 studied cases) had a
decreased number of PC (Palmen et al., 2004). Thus, the diffusion
methods in the current study detected white matter pathology in
pathways connecting the lateral cerebellar cortex to the dentate
nuclei in a similar portion of cases as in postmortem pathol-
ogy showing decreased PC in lateral posterio-lateral cerebellar
cortex.

The mechanisms for the observed decreases in numbers of
PC and other cerebellar pathology may reflect different etiolo-
gies. There is evidence for ASD genetic risk factors involving
mutations in genes involved in cerebellar development such as
Engrailed2 (Gharani et al., 2004) and the tuberous sclerosis genes
TSC1 and TSC2 (Reith et al., 2011, 2013; Tsai et al., 2012),
maternal infection and preterm birth (Pinto-Martin et al., 2011;
Limperopoulos et al., 2014). Each mechanism might involve dif-
ferent aspects of PC development and maintenance. For example,
PC might not be sufficiently generated, may fail to migrate to
the proper layer or may degenerate later in development. There
is evidence from human pathology studies that cells are formed,
but are then lost. Bauman and Kemper (1994) hypothesized that
that the PC loss occurred early in development at or before 30

weeks of gestation, associated with absence of glial cell hyperpla-
sia and the preservation of neurons in the inferior olive. Whitney
et al. (2009) suggested that PC are lost during the last trimester
or early postnatal period potentially due to the preservation of
basket and stellate cells in neuropathology samples from autis-
tic subjects where there is PC loss. More recently, Wegiel et al.
(2013) compared autism and control postmortem tissue and
focused on the floccular region of cerebellar cortex. They reported
focal areas of dysplasia in the flocculus with not only decreased
PC, but also misaligned PC and loss of basket and stellate
cells.

Mouse models in which the tuberous sclerosis genes TSC1
(Tsai et al., 2012) or TSC2 (Reith et al., 2013) are knocked down
specifically in PC produced an increase in PC size followed by
a progressive loss of PC. PC loss has been reported in two of
four patients with TSC (Reith et al., 2011). Cerebellar abnormali-
ties have also been shown following hypoxic or hypoxic-ischemic
forebrain injury at postnatal day 2 in the neonatal rat (Biran et al.,
2011). In this model, there were decreased numbers of PC and a
decrease in the thickness of the molecular cell layer in multiple
cerebellar lobules at postnatal day 21. The timing of the injury in
this model would be similar to a very preterm infant born at 28
weeks gestation. An increased risk of ASD has been reported in
preterm infants (Pinto-Martin et al., 2011) and infants with very
low birthweight (Moss and Chugani, 2014). Furthermore, injury
to the premature cerebellum in humans was significantly linked to
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FIGURE 6 | Cumulative density functions of the diffusion parameters

showing the significant group differences reported in Figure 5A.

Probabilities (parameter ≤X) were measured from the TD (n = 14) and ASD

(n = 15) groups in the corresponding pathways showing significant group
differences. The ASD group shows significantly higher probability to have a
reduction in each parameter than the TD group in all pathways.

Table 3 | Percentage of children with ASD showing significant

changes in diffusivity parameters in the pathways connecting the

cerebellar cortex with the dentate nuclei compared to the values of

the TD group.

Pathway Criterion FA AD RD SC SV

Left DDN <lower 10% (TD) 27 53 0 0 0
<Mean(TD)—3*SE(TD) 60 73 13 27 20

Left VDN <lower 10% (TD) 33 0 0 0 7
<Mean(TD)—3*SE(TD) 53 27 13 33 20

Right DDN <lower 10% (TD) 53 0 0 0 7
<Mean(TD)—3*SE(TD) 73 13 7 27 20

Right VDN <lower 10% (TD) 47 0 0 7 0
<Mean(TD)—3*SE(TD) 67 7 0 40 33

DDN, dorsal dentate nucleus; VDN, ventral dentate nucleus; SE, standard error;

Group mean and SE were evaluated from TD (n = 14) and ASD (n = 15).

autism (Limperopoulos et al., 2014). Preterm birth has also been
associated with prenatal infection. Utilizing two mouse models,
one involving maternal infection with the influenza virus, a sec-
ond of maternal inflammation using poly I:C, Shi et al. (2009)

found decreased numbers of PC and heterotopic PC in lobule VII,
as well as delayed migration of granule cells in lobules VI and VII.
Thus, there is evidence for multiple genetic and environmental
risks for ASD that may lead to decreased PC number with or with-
out changes in other cerebellar cell types and affecting different
cerebellar cortical regions.

LIMITATIONS OF THE STUDY
Two common problems encountered in DW-MRI are (1) head
motion and physiological artifacts (i.e., cardiac pulsation) and
(2) the existence of multiple fiber orientations within an imag-
ing voxel (referred to as the “intra-voxel crossing fiber problem”).
A recent study reported that head motion resulted in a positive
bias for the calculation of FA even though a standard correction
method was applied to DW-MRI data (Ling et al., 2012). Indeed,
it was also found that cardiac pulsation might influence the dif-
fusion signals leading to over-estimation of the FA in cerebellum
and underestimation of the FA in the genu and splenium of the
corpus callosum in healthy adults (Walker et al., 2011). Since the
ASD group was sedated and the TD group was not, there likely
was more motion in the TD group. In addition, sedation of the
ASD group may have systemically affected the heart rate and the
breathing cycle resulting in altered patterns of physiological noise
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in the ASD group compared to the TD group. These types of arti-
facts were reported to be dominant in cerebellum (Walker et al.,
2011, 2012).

To minimize the effects of these artifacts on the quality of
the DW-MRI data, the present study utilized the iRESTORE ten-
sor fitting to reduce variance and normalize the mean value of
the metrics (Walker et al., 2011; Chang et al., 2012). iRESTORE
fitting minimizes the variability of the metrics in the cerebel-
lum by removing artifacts produced by both uncorrected head
motion and the physiological noise including cardiac pulsation
and respiration drop-out. Even though the iRESTORE tensor fit-
ting was utilized to minimize the effect of physiological artifacts
in both groups, the fitting algorithm might not correct the arti-
facts at all cerebellar voxels since the present study acquired the
data without cardiac gating. In order to further correct for head
motion, amount of head movement was included as a covariate in
the statistical analyses. The group differences (i.e., ∼10% reduc-
tion in FA) remained statistically significant even after covarying
for age and head motion.

To address the intra-voxel crossing fiber problem, we utilized
a novel tractography model called “ICA+BSM” which can pro-
vide the most accurate recovery of multiple streamlines in clinical
DWI data, compared with other tractography methods (Jeong
et al., 2013). Although the ICA+BSM was utilized to solve the
problem of crossing fibers in the present study, it may not guar-
antee a complete solution for every voxel. In addition, the present
study utilized SC as a measure of probable connection between
the seeding region and the sorting ROI. Thus, the false estimates
of PC efferent related streamlines may reflect uncertain change
in geometry such as curvature, density, and length, suggesting
that SC may be suboptimal to measure the degree of probable
connection in PC efferent fibers (Jones et al., 2013). Further, the
present study defined seeding points only in posterior-lateral cor-
tex of cerebellum (see Figure 1) and therefore the methodology
in the present this study would not detect PC pathology in other
cerebellar cortical regions.

Additional limitations of the present study include the large
age range of participants, the small sample size, the use of clinical
diagnosis with ADI-R without a measure of direct observation
(i.e., Autism Diagnostic Observation Schedule, ADOS) which
is the current gold standard diagnostic instrument, and limited
spatial-angular resolution of DWI data including the relatively
small number of diffusion sensitizing gradients at a single b value.
In addition, although the main connection between the cerebellar
cortex and the dentate nuclei consists of PC efferent fibers, there
is evidence of reciprocal afferents from the dentate to the cerebel-
lum in several species (Brown and Graybiel, 1976; Tolbert et al.,
1978). Finally, the apparent hemispheric asymmetry (more differ-
ences detected in pathways on the right side) in our study might
be related to incomplete spatial normalization to identify cerebel-
lar cortex and dentate nucleus in children with ASD. Although the
present study successfully imaged changes in tracts containing PC
efferent streamlines by combining conventional SUIT approach
with FreeSurfer analysis, the current SUIT normalization scheme
was reported to achieve about 94% of maximal overlap across
participants and ±1.5 mm of registration error to locate the
dentate nucleus in x-y-z axis (Diedrichsen et al., 2011). The error

probably increases in younger children with ASD due to greater
mismatch to the template. On the other hand, the right lateralized
findings are consistent with other studies reporting differences
in function in right and left cerebellum. For example, strongly
right lateralized cerebellar intrinsic functional connectivity in the
posterior lobe of cerebellum (crus I and II) with contralateral
cerebral association cortex was reported in a study using resting
state fMRI (Wang et al., 2013). Finally, functional asymmetries of
tryptophan metabolism in cerebellum in children with ASD were
also detected on α-11C-methyl-L-tryptophan positron emission
tomography (Chugani et al., 1997; Eluvathingal et al., 2006).

CONCLUSION
In summary, we used diffusion weighted MRI tractography to
investigate whether structural abnormalities in cerebellar white
matter (i.e., decreased PC numbers and size) that have been
identified in postmortem specimens of individuals with ASD
diagnoses could be detected in vivo in children with ASDs. Using
this method we found reduced number and volume of stream-
lines from cerebellar cortex to dentate nuclei and reduced direc-
tional coherence in children with ASD diagnoses compared to
TD children. Importantly, this method detected the white mat-
ter abnormalities at a similar proportion as has been reported
in postmortem studies of ASD samples. Still, given the some of
the limitations discussed above, these results are preliminary and
further validation of this approach and replication of the above
findings are warranted.
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Current theories concerning the cause of autism spectrum disorders (ASDs) have con-
verged on the concept of abnormal development of brain connectivity. This concept is
supported by accumulating evidence from functional imaging, diffusion tensor imaging,
and high definition fiber tracking studies which suggest altered microstructure in the
axonal tracts connecting cortical areas may underly many of the cognitive manifestations
of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates
known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and
perinatal life. Neuropathological observations in postmortem ASD brain samples further
support this model and include subtle disturbances of cortical lamination and subcortical
axonal morphology. Of note is the relatively common finding of poor differentiation of the
gray–white junction associated with an excess superficial white matter or “interstitial”
neurons (INs). INs are thought to be remnants of the fetal subplate, a transient structure
which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-
cortical connections and the organization of cortical columnar architecture. While not
discounting the importance of synaptic dysfunction in the etiology of ASD, this paper
will briefly review the cortical abnormalities and genetic evidence supporting a model of
dysregulated axonal growth and guidance as key developmental processes underlying the
clinical manifestations of ASD.

Keywords: autism spectrum disorders, connectivity, neuritic outgrowth, axonal guidance, subplate

INTRODUCTION
Autism spectrum disorders (ASDs) are characterized by deficits
across apparently disparate domains; language, social reci-
procity, sensory integration, and repetitive/restricted behavior
patterns among others. Within each domain, however, function-
ing is often markedly uneven, and the coexistence of significant
impairments with areas of normal or even enhanced perfor-
mance is a long recognized paradox. Cognitive-neurologic testing
(Minshew et al., 1997, Minshew et al., 2002; Williams et al., 2006)
has indicated the common denominator across domains is a nor-
mal or enhanced ability to perform perceptual and simple infor-
mation processing tasks coupled with significant deficits in the
ability to perform tasks requiring complex information process-
ing, even in high-functioning, high-IQ subjects with ASD. Rather
than implicating dysfunction in a particular brain area/structure,
this cognitive profile is most consistent with altered functioning
of the distributed cortical neural network, i.e., how and how well
cortical functional areas, particularly association areas, communi-
cate with each other and their subcortical targets (Minshew and
Payton, 1988). This model of aberrant connectivity in ASD is now
widely accepted, although the details vary (e.g., Belmonte et al.,
2004; Geschwind and Levitt, 2007).

Functional magnetic resonance imaging (fMRI), which allows
for examination at the neural systems level, has been key to
demonstrating the above impairments and modeling altered con-
nectivity in ASD. Numerous fMRI studies have reported decreased

synchronization of critical cortical areas during the performance
of complex tasks (or at rest) in subjects with ASD relative to age
and IQ-matched controls. This appears to be particularly marked
in tasks requiring high functional connectivity between frontal
association (e.g., anterior cingulate and prefrontal cortices), and
more posterior cortical regions (reviewed in Schipul et al., 2011)
such as complex sentence comprehension (Just et al., 2004), social
inference (Just et al., 2007), or inhibition (Kana et al., 2007).

Altered anatomic connectivity is the most likely substrate for
reduced functional connectivity (Figure 1), although the exact
basis of the relationship is not established and much debated. At
the physical level, neural circuitry is comprised of neurons, their
processes (axons and dendrites), and their synapses on neigh-
boring or distant neurons. Wiring the brain, therefore, requires
the coordinated interactions of numerous molecular cascades and
environmental exposures during development so that neurons
proliferate, migrate to the appropriate locations, extend axons with
a high degree of spatial and temporal fidelity, and establish synap-
tic connections with appropriate target neurons. Clearly, one or
more of these developmental processes does not unfold in the
typical fashion in ASD. In recent years, much attention has been
paid to altered synaptic function as the central event explaining
altered brain connectivity in ASD. However, the view of ASD as
predominately an intrinsic synaptopathy is unsatisfying in view of
the cerebral white matter alterations documented in many subjects
and outlined below.
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FIGURE 1 | Sources of evidence for a model of dysregulated axonal

development in ASD. A broad gap exists between the clinical manifestations
of ASD and growing list of genetic candidates; a gap only incompletely
bridged by a general model of altered connectivity. A significant component

of dysregulated axonal development (polarity, outgrowth, and
guidance/targeting should be considered in constructing a model of ASD
etiology that encompasses all of the clinical, functional, structural, and
genetic observations.

ALTERED BRAIN GROWTH TRAJECTORIES: EVIDENCE FROM
STRUCTURAL MRI STUDIES
Structural MRI, morphometric, and neuropathologic studies
provide ample evidence of altered neocortical growth and organi-
zation in ASD. Studies examining head circumference and brain
volume in individuals with ASD have demonstrated altered brain
growth trajectories across the lifespan. While not significantly dif-
ferent from controls at birth, up to 70% of infants later diagnosed
with ASD exhibit abnormally accelerated brain growth in the first
year of life (Courchesne et al., 2003). Approximately 20–25% of
infants in this subset meet formal criteria for macrocephaly in the
first year. Brain volume ascertained by MRI is significantly larger
in 90% of infants with ASD by 2–4 years of life as well (Courchesne
et al., 2003). Many studies note a marked rostral–caudal gradient
in these altered growth trajectories (reviewed in Lainhart, 2006). At
the time of maximal brain growth in very early childhood, cerebral
gray matter and white matter are both increased (by approxi-
mately 20 and 40%, respectively). The frontal cortical gray and

white matter show the most enlargement followed by the tempo-
ral and parietal lobes. The occipital gray and white matter and
parietal gray matter tend not to vary significantly from normal
(Carper et al., 2002). Within the frontal lobes, the gray matter
areas most affected are the dorsolateral and mesial prefrontal cor-
tex. Similarly, the white matter most involved appears to be the
radiate compartment and U-fibers immediately underlying these
cortical areas which represent intrahemispheric, cortico-cortical
connections originating from cortical layers II and III (Herbert
et al., 2003). The corpus callosum, conversely, is often reduced in
autism (e.g., Hardan et al., 2000; Keary et al., 2009). Therefore,
increased brain size in toddlers with ASD appears to be largely
driven by enlargement of the white matter compartment underly-
ing the frontal and temporal cortices (Carper et al., 2002; Herbert
et al., 2004; Carper and Courchesne, 2005).

Following this initial acceleration, growth rates decline sig-
nificantly causing an apparent normalization of brain volume
by adolescence and early adulthood (Courchesne et al., 2001,
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Courchesne et al., 2004; Waiter et al., 2005). This relative decrease
is most marked in the white matter in that children with autism
experience only a 10% increase in cerebral white matter between
the ages of 3 and 12 years (Courchesne et al., 2001). Gray mat-
ter volumes remain elevated into adulthood as does mean head
circumference. Rates of macrocephaly, although lower, remain
increased overall. This pattern stands in stark contrast to the
age related cerebral white matter increase (60%) and gray mat-
ter decrease observed in typically developing individuals between
the ages of 4 and 22 years (Tau and Peterson, 2010) which are
generally thought to be a function of the concurrent processes
of synaptic/collateral pruning and myelination. It must be noted
that the above pattern does not hold true for all individuals with
ASD. Many show typical rates of head and brain growth and a
small subset even meet criteria for microencephaly, although this
is more common in the setting of syndromic ASD (see Activating
Mutations in the mTOR Pathway are Associated with Syndromic
ASD for discussion of this concept).

ALTERED CORTICAL MICROSTRUCTURE: EVIDENCE FROM
POSTMORTEM STUDIES
A number of studies have reported gross and microscopic changes
that may relate to increased gray matter and alterations in relative
compartmental volumes. One recent report of seven autistic chil-
dren with increased brain size (Courchesne et al., 2011) involved
a 67% increase in the numbers of neurons in the prefrontal cor-
tex relative to age-matched controls. Neurogenesis, the birth and
early proliferation of neurons, is largely a prenatal process. At birth,
cortical neurons are typically small, so that an appreciable excess
might not translate into a significant change in head size. However,
in the first years of life, the typical dramatic increase in cytoplasmic
volumes (both of the cell body and axons/dendrites) occurring
in more than the usual complement of frontal neurons, could
account for abnormally accelerated brain growth in the first years
of life. It would also explain why maturational synaptic/neuritic
pruning may not register as an appreciable loss of cerebral gray
matter in these individuals.

Related to this is the finding of subtle microstructural abnor-
malities in cortical architecture, even in the absence of more
obvious dysgenic lesions. Although most of these analyzes are
not rigorously stereologic, the impression is of increased numbers
of narrow minicolumns containing increased densities of neu-
rons (Casanova et al., 2002, 2006; Buxhoeveden et al., 2006) in
the frontal cortex of ASD brains. This trend appears to be most
pronounced in the frontal lobe, particularly the dorsolateral pre-
frontal cortex, and is not seen in more posterior regions such
as the visual cortex. Minicolumns are the vertical cell columns
created by sequential waves of migrating neurons traveling along
radial glial fibers during early corticogenesis. Increased numbers
of such arrays may reflect excess early divisions of radial glial cells
immediately prior to the onset of neurogenesis and migration.
Furthermore, the distribution of minicolumn abnormalities cor-
relates with patterns of accelerated growth and excess neurons in
the early postnatal period.

More than half of all postmortem investigations have uncov-
ered additional features of cortical dysgenesis, presumably caused
by abnormal neurogenesis, neuronal migration or maturation,

in ASD brains. Bailey et al. (1998) observed significant and
widespread cortical dysgenic lesions in four of six subjects with
ASD. Similarly, in a recent large-scale study, Wegiel et al. (2010)
reported a wide variety of dysgenic lesions and heterotopias
in multiple cortical regions in 12 of 13 subjects with ASD.
These included excess subependymal neurons, subcortical and
periventricular heterotopias, and additional minor disruptions of
cytoarchitecture. In the seminal postmortem studies by Kemper
and Bauman (Bauman and Kemper, 1985, 1998; Kemper and Bau-
man, 1993, 2002), the only consistent abnormality in the cerebral
cortex was relatively small neuronal cell size and increased cell
packing in the anterior cingulate cortex. Simms et al. (2009) also
found decreased cell size and decreased cell packing in different
sub-regions of the anterior cingulate. Van Kooten et al. (2008)
conducted a stereologic study on the fusiform gyrus, involved
in face processing, and found significantly lower neuronal den-
sities within layer III and lower total neuron numbers in layers
III, V, and VI, as well as smaller average cell volumes of neurons
in layers V and VI. Hutsler and Zhang (2010) found increased
dendritic spine densities in the temporal lobes of individuals with
ASD and intellectual disability relative to age-matched controls.
Most of the reported cortical microstructural finding in ASD
are very subtle. It must be noted that even the non-subtle dys-
genic lesions reported in the literature are not specific to ASD
and are more often found in non-ASD individuals both with
and without seizures or other neurologic symptoms. Conversely,
the vast majority of ASD brains show relatively normal cortical
cytoarchitecture.

ALTERED CORTICAL WHITE MATTER: EVIDENCE FROM DTI
AND POSTMORTEM STUDIES
It is very possible that an increase in absolute numbers and den-
sities of neurons in the frontal cortex could have an adverse effect
on anterior–posterior connectivity. The mismatch created by rel-
atively too few afferent and/or too many efferent axonal terminals
attempting to form circuits could potentially be disruptive. But
converging lines of evidence also point to microstructural dif-
ferences in white matter. Much of this evidence is indirect and
relatively non-specific, but white matter is notoriously hard to
study. While MRI-based studies allow the direct examination of
the general course and volume of major white matter tracts, they
have lacked the necessary resolution to directly examine even large
axon fascicles or to trace these entering the cortex. Histologic
techniques, conversely, have permitted the direct examination of
axons and their myelin coverings, but are too laborious and time
consuming to feasibly trace connections over large distances in
the brain. Fortunately, recent advances in high definition fiber
tracking (HDFT) promise to soon permit the best (or the best com-
promise) of both worlds. HDFT is a novel tractography method
using high-angular-resolution diffusion imaging and diffusion
spectrum imaging (DSI) techniques in order to track white matter
fibers from cortical origins, through complex fiber crossings, to
cortical and subcortical targets with at least millimeter resolution
(a few hundred axons; Verstynen et al., 2011; Fernandez-Miranda
et al., 2012). Initial reports (only in the popular media for now)
have demonstrated significant alterations in the morphology (i.e.,
wiring plan) of a number of major white matter tracts in a few

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 671 | 141

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00671” — 2013/10/21 — 10:38 — page 4 — #4

Fadden and Minshew Dysregulation of axonal growth and guidance in ASD

individuals with ASD (e.g., Schneider, 2011, 2012). These highly
preliminary findings indicate the physical alterations of ASD in
the brain may prove to be quite unsubtle, but until now, almost
completely invisible.

Much of the current evidence for altered white matter comes
from studies employing diffusion tensor imaging (DTI). DTI mea-
sures apparent diffusibility of water molecules as a function of
direction over time and is a method to characterize the organi-
zation and microstructural properties of white matter. The most
common DTI measure is fractional anisotropy (FA) which charac-
terizes the directional variation in the apparent diffusions. White
matter, which is arranged in parallel arrays of axonal bundles
(fascicles) tends to have a higher FA than gray matter as dif-
fusion of water in neuropil has less directionality (i.e., is more
isotropic). A complementary measure, radial diffusivity (RD),
describes the tendency of perpendicular water movement and
is, therefore, lower in white matter compared to gray matter
(reviewed in Travers et al., 2012). Numerous studies have found
widespread decreases in FA (and concurrent increases in RD or
similar measures) in children (>4 years of age) and adults with
ASD (reviewed in Travers et al., 2012). This tendency is most pro-
nounced in the corpus callosum (e.g., Shukla et al., 2010; Jeong
et al., 2011), cingulum bundle, and various white matter tracts
involving the temporal and frontal lobes (e.g., Jou et al., 2011;
Shukla et al., 2011) thereby correlating, generally, with both the
fMRI and structural MRI growth trajectory data. These white mat-
ter alterations are attributed to reduced tract coherence and/or loss
of microstructural integrity, but are not specific to a particular eti-
ology as similar effects could potentially be produced by reduced
myelination, increased axonal diameter, alterations of axonal den-
sity, or more complex white matter (i.e., turning or crossing fibers,
or excess branching) or reduced axonal fasciculation (Travers et al.,
2012).

Microscopic tissue studies, although limited by the time nec-
essary to perform, allow a greater degree of resolution and may
potentially being able to resolve these differences. In a rare and
recent study, Zikopoulos and Barbas (2010) stereologically inves-
tigated the fine structure (by light and electron microscopy) of
myelinated axons in the white matter below the anterior cingulate
cortex, orbitofrontal cortex, and lateral prefrontal cortex in indi-
viduals with ASD relative to age-matched controls. They found
similar overall axonal density between groups below all prefrontal
areas. However, the ASD group had significantly fewer large axons
(likely representing the more long-range cortico-cortical connec-
tions) in the deep white matter below the anterior cingulate cortex.
This was associated with the presence of a significantly greater
density of smaller axons (thought to connect more adjacent cor-
tical areas) in the corresponding superficial white matter. There
were no discernible differences in neuronal densities or distri-
butions in the overlying gray matter. The white matter below
the anterior cingulate cortex also exhibited a significantly higher
proportion of branched axons of medium caliber. Axons in the
superficial white matter below the orbitofrontal exhibited signifi-
cantly thinner myelin sheaths when controlled for axon diameter
despite similar numbers of oligodendrocytes (Zikopoulos and Bar-
bas, 2010). Azmitia et al. (2010, 2011) also found a significant
excess of morphologically abnormal serotonin axons in principle

ascending fiber bundles of the medialand lateral forebrain bundles
as well as target areas in the temporal cortex, amygdala, and globus
pallidus.

THE POTENTIAL ROLE OF THE FETAL SUBPLATE IN WIRING
ALTERATIONS IN ASD
Probably the most pervasive cortical finding in ASD, documented
in both neuropathologic and structural MRI studies, is the rela-
tively poor differentiation of the gray–white junction associated
with excess superficial white matter or interstitial neurons (INs;
Bailey et al., 1998; Casanova et al., 2002; Hutsler et al., 2007; Simms
et al., 2009; Wegiel et al., 2010; Avino and Hutsler, 2011). This
is noted particularly in the white matter just below the frontal
association cortices and superior temporal gyrus (e.g., Avino and
Hutsler, 2010). The presence of excess INs in ASD has been long
attributed to abnormalities of cortical migration despite the very
limited findings of gross laminar alterations within the cortex
proper. An alternative theory, however, is that these INs rep-
resent excess remnants of the fetal subplate instead of arrested
neurons destined for the upper layers of the cortical plate (Avino
and Hutsler, 2010). This is an attractive hypothesis as this structure
performs numerous developmental functions related to forma-
tion of neocortical circuits. Interestingly, this finding is also not
specific to autism. Increased numbers of INs, particularly in the
dorsolateral prefrontal and temporal cortices of schizophrenic
patients, have been reported in five of six studies to date, making
it one of the most replicated postmortem finding in this dis-
order as well (Eastwood and Harrison, 2003; Fung et al., 2011;
Yang et al., 2011).

The subplate is a transient cortical compartment which
becomes fully established during the second trimester and mostly
resolves by the sixth postnatal month in humans. Many subplate
neurons are actually born before the appearance of the cortical
plate proper, and are the first cortical neurons to mature func-
tionally, differentiating into diverse subpopulations in terms of
morphology, molecular markers, and neurotransmitter identity
(Kostovic and Rakic, 1990). Throughout fetal development, the
subplate serves as the major, albeit transient, postsynaptic target
for all classes of cortical afferents, both in terms of location of ori-
gin and neurotransmitter system (Kanold and Luhmann, 2010).
This function is reflected by subplate-enriched or specific expres-
sion of numerous extracellular matrix (Chun and Shatz, 1988) and
axon guidance molecules, e.g., cadherins, ephrins, semaphorins,
and Rho-GTPases (Oeschger et al., 2012).

The earliest afferents, which enter the subplate and synapse on
subplate neurons between 8 and 12 gestational weeks, derive from
the brainstem nuclei and basal forebrain (Kostovic et al., 2012).
Thalamocortical afferents then arrive in huge numbers beginning
approximately 13 gestational weeks. All of the above afferents
accumulate and remain within the subplate until approximately
22–24 gestational weeks when they begin to penetrate the cortical
plate roughly in the order in which they arrived in the subplate
(Kostovic and Judas, 2010). At the same time, significant numbers
of cortico-cortical and callosal afferents begin arriving in the sub-
plate where they will wait as well. In the case of thalamocortical
connections, the most studied in this context, it is thought that
the role of the subplate neurons during the “waiting” period is
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to act as an intermediary between the thalamic neuron and the
cortical target thereby relaying thalamic input to layer IV. The
subplate neuron then serves as a pioneer axon to guide the affer-
ent to the target cell. The early thalamocortical synapse is weak,
but by co-activating the target neuron, the subplate neuron assists
in maturing and strengthening the connection (Kanold and Luh-
mann, 2010). Subplate neurons likely play the same role for other
classes of cortical afferents, but this has not been established.

When an adequately strong final synaptic connections are
finally established, it is thought that subplate neurons receive an
unknown signal to undergo developmental apoptosis. During the
perinatal period of subplate dissolution, afferents representing
long associative cortico-cortical pathways are still present in the
diminishing subplate (Vasung et al., 2010; Kostovic et al., 2012).
Subplate dissolution can be seen to begin earlier in primary motor
and sensory cortices and later in association areas (e.g., prefrontal
cortex and operculum) and coincides somewhat with the develop-
ment gyral complexity. The postnatal persistence of the subplate
in frontal association areas has been related to the ongoing growth
of short-range cortico-cortical connections Finally, the subplate
is still present in the early postnatal frontal cortex and contains
developing short cortico-cortical pathways (Kostović and Judas,
2007; Kostovic et al., 2012).

Neurons surviving dissolution of the subplate persist into
adulthood as INs, dispersed among the cortico-cortical “U-fibers”
of the superficial white matter. In humans and other primates
they remain quite numerous in frontal and prefrontal areas rela-
tive to more caudal regions, e.g., visual cortex and are represented
by both excitatory, glutamatergic and inhibitory, GABAergic cells
(reviewed in Suárez-Solá et al., 2009). What role they may play
in adult brain function is unknown, although it is hypothesized
that abnormal axonal connectivity during fetal life may cause, or
be reflected by, abnormalities in the numbers and/or distribution
of INs that persist into adulthood. The presence of excess INs in
ASD could potentially be explained by either abnormal prolifera-
tion early in embryonic life or reduced developmental apoptosis
in the later fetal/perinatal period (Chun and Shatz, 1989; Avino
and Hutsler, 2010). Because the subplate is an early structure, the
same frontal overgrowth causing excess radial glia/minicolumns
and cortical neurons may also be responsible for (or related to)
the production of excess subplate neurons. This could potentially
be tested. Conversely, subplate neurons not capable of “hooking
up” their dependent cortical afferents to the proper targets, for one
reason or another, might not receive or properly process the signal
for programed cell death. This would be much more difficult to
test.

GENETIC MODELS OF ASD
A predominately genetic etiology for ASD is well established and
supported by twin and family studies. An estimated 10–15% of
children evaluated for ASD have a known genetic syndrome (e.g.,
Fragile X or tuberous sclerosis), and an additional 25% or so are
found to have an identifiable chromosomal deletion or duplication
(i.e., copy number variation, CNV; Sebat et al., 2007). However,
despite the recent use of microarray technology to perform CNV
analysis and whole genome expression profiling and association
studies on large samples, the genetic structure underlying most

idiopathic autism is still poorly known. There is considerable
debate concerning this architecture, and arguments may be made
for either effects of single, rare risk alleles, or interactions of
numerous common low-risk alleles. Although these models are
not mutually exclusive, only a few identified genetic lesions are
recurrent to any appreciable extent. Therefore, the majority of
the dozens of candidate loci (and hundreds of associated genes)
currently under investigation are derived from rare Mendelian
mutations, CNVs, and genes/chromosomal regions associated
with syndromic forms of ASD (Marshall and Scherer, 2012). A
number of schemes have been generated to organize this growing
list in order to both identify a common, underlying pathophys-
iology as well as point to new potential candidate genes. Most
of these models group candidates according to (1) participation
in a common signaling pathway, (2) shared molecular or cellu-
lar function, or (3) participation in a common developmental
pathway.

ACTIVATING MUTATIONS IN THE mTOR PATHWAY ARE ASSOCIATED
WITH SYNDROMIC ASD
Approximately 10–15% of children being evaluated for ASD are
found to have a syndromic form, i.e., an ASD or ASD-like behav-
ioral phenotype occurring in the context of a recognized single
gene or chromosomal syndrome and/or associated with one or
more dysmorphic features (e.g., fragile X or tuberous sclerosis).
Many common syndromic disorders with a significant ASD com-
ponent are caused by alterations in genes that directly or indirectly
participate in the mammalian target of rapamycin (mTOR) sig-
naling pathway, i.e., tuberous sclerosis (TSC1/2), fragile X mental
retardation 1 (FMR1), neurofibromatosis type 1 (NF1), PTEN
mutation syndrome, and Rett’s syndrome (MECP2; reviewed in
Levitt and Campbell, 2009). The mTOR signaling pathway serves
to integrate extracellular signals (e.g., growth factors) with down-
stream intracellular activities. In response to upstream tyrosine
kinase signaling, ERK and PI3K activate mTOR which, via further
kinase signaling, activates multiple downstream genes responsi-
ble for cellular proliferation, growth, survival, fate decision, and
motility. PTEN, NF1, and TSC1/2 are all inhibitors of mTOR so
that their pathogenic mutations all have the downstream effect of
increasing mTOR signaling. MECP2 encodes a protein that reg-
ulates the transcription of multiple downstream genes involved
either directly in the ERK/PI3K pathway or the upstream MET
RTK pathway. Again, the net effect of MECP2 mutation is to
increase mTOR signaling.

While the consequences of increased ERK/PI3K/mTOR signal-
ing are consistent with many of the anatomic and neuropathologic
findings in ASD (e.g., excess brain growth and neuronal prolifer-
ation), it must be noted that this pathway is a central cellular
regulator in most organ systems and pathogenic mutations in
key members produce more diverse, severe, and widespread clin-
ical manifestations than is generally seen in non-syndromic or
idiopathic ASD. However, this convergence on a single molecu-
lar pathway is considered a significant clue to the pathogenesis
of idiopathic ASD. It is likely that many ASD mutations occur in
genes further upstream, thereby imparting a more subtle and brain
region specific orientation to the downstream effect of mTOR
activation. Probably the most studied and well known of such

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 671 | 143

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00671” — 2013/10/21 — 10:38 — page 6 — #6

Fadden and Minshew Dysregulation of axonal growth and guidance in ASD

upstream activators is a receptor tyrosine kinase coded by the
MET gene, located in the 7q31 ASD candidate region. MET is
known to be important in forebrain development and exhibits
altered expression in ASD cortical tissue (Campbell et al., 2007).
A common promoter variant which affects MET function in vitro
(Campbell et al., 2006), as well as a number of MET mutations, has
been found to be associated with a subset of ASD cases (Campbell
et al., 2009).

ALTERATIONS IN SYNAPSE-RELATED GENES ARE ASSOCIATED WITH
ASD
A second model for the pathogenesis of ASD focuses on abnor-
mal formation or function of synaptic connections. This was first
suggested by findings of abnormal dendritic spine morphology in
the above syndromic forms of ASD as well as the high preva-
lence of seizures in both syndromic and idiopathic ASD. This
model was supported by the identification of NLGN3, NLGN4X,
NRXN1, and SHANK3 in ASD candidate loci. These are all synap-
tic cell adhesion molecules (CAMs) which are crucial for the
dendrite development, initial contact between pre- and postsynap-
tic neurons, and/or assembly and anchoring of synaptic scaffolding
proteins (reviewed by Betancur et al., 2009; Bourgeron, 2009).
Overall, alterations in most candidate CAM genes do not appear to
account for an appreciable proportion of ASD individually and are
as likely to be found in association with other conditions or non-
affected individuals alike. Additionally, single gene mouse models
of these synaptic candidates usually have no discernable behavioral
phenotype, although this alone does not exclude any candidate
gene as potentially contributing to risk for ASD in humans.

Numerous other CAMs and synaptic scaffolding proteins are
also under investigation as ASD susceptibility genes. These include
various cadherins and protocadherins, members of the Ig CAM
superfamily (e.g., L1CAM), and the contactins. One functional
grouping (SHANK2/3, SYNGAP1, DLGAP2) converge on the
postsynaptic density. Additionally, recent large-scale molecular
and functional pathway analyses of CNV and association candi-
dates (e.g., Pinto et al., 2010; Gilman et al., 2011; Hussman et al.,
2011) have identified large functional groups converging on regu-
lation of actin filament network dynamics. One group specifically,
the Rho family of small GTPases, is particularly central to this pro-
cess and therefore essential to dendrite morphogenesis and spine
remodeling.

ALTERATIONS IN GENES REGULATING NEURONAL POLARITY, NEURITIC
OUTGROWTH, AND AXONAL
Guidance are associated with ASD
A third model for the pathogenesis of ASD, more recently
advanced, reinterprets many of the above functional groupings
in terms of axon outgrowth, guidance, and targeting. Many of
these proteins can be thought of more generally as providing
positional information and mediating motility and are, therefore,
re-cycled for various developmental processes mechanistically
requiring specific recognition and/or movement (Figure 2). An
axonal model is therefore also supported by the identification
of many of the aforementioned synaptic CAMs (e.g., L1CAM,
SHANKs, and NRXN1), which are often involved in neuritic out-
growth and axon guidance and targeting (Sheng and Kim, 2000;
Gjorlund et al., 2012; Tagliavacca et al., 2013). The Rho-GTPases

FIGURE 2 | Key molecular pathways of axonal development

implicated by genetic studies. Genome-wide association and CNV
studies have implicated numerous molecules and molecular pathways
involved in neuritic outgrowth, neuronal polarity, axonal-dendritic
targeting, and synaptogenesis. Many of these are common to

multiple related developmental processes as they serve the more
general functions of providing positional information. This recycling
phenomenon may explain the link between arealization/proliferation
abnormalities, axonal and dendritic abnormalities, and synaptic
dysfunction in ASD.
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and their regulators also act long before synaptogenesis to induce
neurite formation and differentiation, mediate axonal extension
and branching, and cause growth cone collapse in response to
repulsive axonal guidance cues (Gilman et al., 2011). They do this
by coordinating the interactions between the actin cytoskeleton
of the axonal growth cone which interprets CAM-based guid-
ance cues, and the microtubule network which stabilizes the
growing neurite (Govek et al., 2011). Two recent ASD candi-
dates, cdc42 and CRMP-2 (Gilman et al., 2011) are particularly
important in early neuronal polarization, i.e., the differentia-
tion of early neuritic processes into a single axon and multiple
dendrites. This process forms the basis of directional informa-
tion flow in neuronal circuits (Govek et al., 2011). Alterations
in expression of these candidates in developing neurons causes
either inhibition of axon formation or the production of super-
numerary axons (Govek et al., 2011). No doubt as more “synaptic”
molecules are investigated more closely in terms of develop-
mental expression, axonal functions will continue to come to
light.

The mTOR pathway, while important for synaptic function, it
is also critical for neuritic growth and neuronal polarity. TSC1 and
TSC2, mutated in tuberous sclerosis, form a complex which per-
mits the functioning of a TSC2 GTPase activating protein for Rheb
GTPase which inhibits the mTOR pathway. TSC pathway compo-
nents are expressed in a polarized manner in developing neurons
so that TSC2 is inactivated (and mTOR activity is increased) in
the developing axon (Choi et al., 2008). Choi et al. (2008) found
that overexpression of Tsc1/2 significantly inhibited axon forma-
tion in cultured mouse hippocampal neurons. Knockdown of Tsc2
and knockout of Tsc1 in hippocampal cultures, conversely, caused
developing neurons to have multiple axons. This was born out in
vivo by examinations of cortical sections derived from Tsc1−/−
mice, which have relatively a normal cortical and hippocampal
architecture, but develop seizures at postnatal day 5 and die in a
few weeks. Neurofilament stained sections demonstrated numer-
ous ectopic axons throughout the cortex of these mice, even in the
usually dendrite-rich upper layers (Choi et al., 2008).

The Met receptor, long known to be present (at low levels) and
active in synapses of the mature brain (Tyndall and Walikonis,
2006) has now been found to be more highly expressed, before
most synaptogenesis occurs, in extending forebrain axons of the
developing mouse brain. Judson et al. (2009) demonstrated peak
Met expression by Western blot at birth in the developing mouse
brain; the period at which neurons are finished migrating and
are actively extending axons and dendrites. These levels declined
during synaptogenesis to low, adult baseline levels (Judson et al.,
2009). Strong mRNA expression of Met was visualized in cortical
neurons of layers II/III and V/VI and exhibited a strong caudal
(high) to rostral (low) gradient in the cortical plate but uniform
expression in the subplate. Protein expression by immunohis-
tochemistry was visualized in the callosal, cingulated, anterior
commissure, and internal and external capsule white matter tracts
as well as in axons extending from the hippocampus, septum,
and amygdala (Judson et al., 2009). No appreciable dendritic or
synaptic staining was detected with this method.

Recently published association and CNV studies have also
identified numerous candidate genes coding for canonical axonal

guidance molecules including multiple members of the Slit
(Duvall et al., 2006; Hu et al., 2009), Robo (Anitha et al., 2008),
Ephrin (Sbacchi et al., 2010), and Semaphorin (Melin et al., 2006;
Sbacchi et al., 2010) families. Sbacchi et al. (2010) used gene
ontogeny and pathway analyses to determine common functions
of duplicated or deleted genes lying within CNVs derived from
four large ASD microarray data sets. They identified a substan-
tial number of canonical axonal guidance genes as well as certain
BMP, Wnt, Engrailed morphogens which are also known to partic-
ipate in axon guidance (Charron and Tessier-Lavigne, 2005) and
linked to ASD by previous studies (Kalkman, 2012). Hussman et al.
(2011), similarly identified a substantial group of ASD candidate
genes involved in neurite outgrowth by genome-wide associa-
tion. Specific functions included axonal guidance, Rho-GTPase
signaling, cytoskeletal regulation, and cadherin–catenin function.
Interestingly, while different canonical axonal guidance genes are
implicated in different studies, SEM5A appears to be listed in prac-
tically all of them. Sema5a has also been recently found to be
enriched in the mouse subplate during development along with
other ASD candidates such as Nrxn1, and cadherins 10, 18, and 9
(Hoerder-Suabedissen et al., 2013).

CONCLUSION
Structural studies of brain development indicate a large sub-
set of individuals with ASD experience dramatic overgrowth of
frontal white matter in the first years of life. Excess fetal neuronal
proliferation is likely responsible for much of the added vol-
ume, but may not explain abnormalities of white matter integrity
and microstructure seen by DTI and microscopy. Abnormali-
ties that persist into adult life, even as volumes “normalize.”
Frontal and temporal cortical areas overlying this white matter
are not as functionally integrated with more posterior cortical
regions. Subtle (for the most part) abnormalities of cortical neu-
ronal migration and lamination are variably seen, but there is
little consistency in the findings. An exception to this is a rel-
atively frequent excess of INs, presumed remnants of the fetal
subplate. This excess may be a function of a general over-
proliferation of cortical neurons or a reflection of aberrant axonal
and/or synaptic connectivity during fetal life causing a subsequent
failure of appropriate developmental apoptosis. Certainly, mor-
phologic abnormalities reported in superficial subcortical white
matter axons indicate a possible role for disordered organization
of cortical afferent and/or efferent wiring through the subplate
region.

Recently published association and CNV studies have iden-
tified, not only multiple axonal guidance molecules, but also
numerous ASD candidate genes involved in neuritic outgrowth,
neuronal polarity, and axonal–dendritic targeting. These include
various participants in the mTOR signaling cascade, neuronal
CAMs, Rho-GTPases, and traditional morphogens known to
mediate axonal guidance. Many of these, particularly the CAMs
and morphogens, can be thought of more generally as providing
positional information, cues that may be variously interpreted by
responding cells as division, fate specification, migration, neuritic
sprouting/pathfinding, or synaptogenesis signals. In other words,
they are re-cycled for various developmental processes mechanis-
tically requiring positional information. Other candidates, such
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as those involved in mTOR and Rho-GTPase signaling, medi-
ate neuronal interpretation of positional information and direct
the response in a context-dependent manner. This recycling phe-
nomenon may explain the link between arealization/proliferation
abnormalities (frontal overgrowth), axonal and dendritic abnor-
malities, and synaptic dysfunction in ASD. Current interpretations
of the genetic and neuropathologic data are more a matter of
emphasis than mutual exclusion, however, the concept of a sig-
nificant axonal component to the pathogenesis of ASD should be

considered in constructing a model that encompasses all of the
clinical, structural, and functional observations.
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and Kostović, I. (2010). Development
of axonal pathways in the human
fetal fronto-limbic brain: histochem-
ical characterization and diffusion
tensor imaging. J. Anat. 217, 400–
417. doi: 10.1111/j.1469-7580.2010.
01260.x

Verstynen, T., Jarbo, K., Pathak, S., and
Schneider, W. (2011). In vivo map-
ping of microstructural somatotopies
in the human corticospinal pathways.
J. Neurophysiol. 105, 336–346. doi:
10.1152/jn.00698.2010

Waiter, G. D., Williams, J. H., Murray,
A. D., Gilchrist, A., Perrett, D. I., and
Whiten, A. (2005). Structural white

matter deficits in high-functioning
individuals with autistic spectrum
disorder: a voxel-based investiga-
tion. Neuroimage 24, 455–461. doi:
10.1016/j.neuroimage.2004.08.049

Wegiel, J., Kuchna, I., Nowicki, K.,
Imaki, H., Wegiel, J., Marchi, E.,
et al. (2010). The neuropathology of
autism: defects of neurogenesis and
neuronal migration, and dysplastic
changes. Acta Neuropathol. 119, 755–
770. doi: 10.1007/s00401-010-0655-4

Williams, D. L., Goldstein, G., and Min-
shew, N. J. (2006). Neuropsychologic
functioning in children with autism:
further evidence for disordered com-
plex information-processing. Child
Neuropsychol. 12, 279–298. doi:
10.1080/09297040600681190

Yang, Y., Fung, S. J., Rothwell,
A., Tianmei, S., and Weickert,
C. S. (2011). Increased interstitial
white matter neuron density in the
DLPFC of people with schizophre-
nia. Biol. Psychiatry 69, 63–70. doi:
10.1016/j.biopsych.2010.08.020

Zikopoulos, B., and Barbas, H. (2010).
Changes in prefrontal axons may
disrupt the network in autism. J.
Neurosci. 30, 14595–14609. doi:
10.1523/JNEUROSCI.2257-10.2010

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 01 June 2013; accepted: 26
September 2013; published online: 22
October 2013.
Citation: McFadden K and Minshew
NJ (2013) Evidence for dysregulation
of axonal growth and guidance in the
etiology of ASD. Front. Hum. Neu-
rosci. 7:671. doi: 10.3389/fnhum.2013.
00671
This article was submitted to the journal
Frontiers in Human Neuroscience.
Copyright © 2013 McFadden and Min-
shew. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 671 | 148

http://dx.doi.org/10.3389/fnhum.2013.00671
http://dx.doi.org/10.3389/fnhum.2013.00671
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 10 December 2013

doi: 10.3389/fnhum.2013.00845

Network efficiency in autism spectrum disorder and its
relation to brain overgrowth
John D. Lewis1*, Rebecca J. Theilmann2, Jeanne Townsend3,4 and Alan C. Evans1

1 McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
2 Department of Radiology, University of California, San Diego, La Jolla, CA, USA
3 Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
4 Research on Aging and Development Laboratory, University of California, San Diego, La Jolla, CA, USA

Edited by:

Rajesh K. Kana, University of
Alabama at Birmingham, USA

Reviewed by:

Alexandros Goulas, MPI Leipzig,
Germany
Elizabeth J. Carter, Carnegie Mellon
University, USA

*Correspondence:

John D. Lewis, McConnell Brain
Imaging Center, Montreal
Neurological Institute, McGill
University, 3801 University, WB208,
Montreal, QC H3A 2B4, Canada
e-mail: jlewis@bic.mni.mcgill.ca

A substantial body of evidence links differences in brain size to differences in brain
organization. We have hypothesized that the developmental aspect of this relation plays a
role in autism spectrum disorder (ASD), a neurodevelopmental disorder which involves
abnormalities in brain growth. Children with ASD have abnormally large brains by the
second year of life, and for several years thereafter their brain size can be multiple
standard deviations above the norm. The greater conduction delays and cellular costs
presumably associated with the longer long-distance connections in these larger brains is
thought to influence developmental processes, giving rise to an altered brain organization
with less communication between spatially distant regions. This has been supported
by computational models and by findings linking greater intra-cranial volume, an index
of maximum brain-size during development, to reduced inter-hemispheric connectivity in
individuals with ASD. In this paper, we further assess this hypothesis via a whole-brain
analysis of network efficiency. We utilize diffusion tractography to estimate the strength
and length of the connections between all pairs of cortical regions. We compute the
efficiency of communication between each network node and all others, and within local
neighborhoods; we then assess the relation of these measures to intra-cranial volume,
and the differences in these measures between adults with autism and typical controls.
Intra-cranial volume is shown to be inversely related to efficiency for wide-spread regions
of cortex. Moreover, the spatial patterns of reductions in efficiency in autism bear a
striking resemblance to the regional relationships between efficiency and intra-cranial
volume, particularly for local efficiency. The results thus provide further support for the
hypothesized link between brain overgrowth in children with autism and the efficiency of
the organization of the brain in adults with autism.

Keywords: autism, brain size, network analysis, connectivity, tractography, optimal wiring, scaling

INTRODUCTION
Brains differ dramatically in both size and structure across
species. These two dimensions of variation are not independent,
but large brains are not big small brains. The organization of both
gray- and white-matter varies with brain size, but not in a uni-
form manner. Larger brain size is associated with a greater white-
matter to gray-matter ratio (Rilling and Insel, 1999b; Zhang and
Sejnowski, 2000), but a reduced degree of long-distance connec-
tivity (Ringo, 1991; Rilling and Insel, 1999a; Karbowski, 2003;
Changizi, 2007), as well as with increased modular structure
(Changizi and Shimojo, 2005), greater surface convolutedness
(Jerison, 1982; Prothero and Sundsten, 1984; Hofman, 1985), and
various other morphological and cellular aspects of neural orga-
nization. Scaling laws capture much of the variation in structure
in terms of brain size (Jerison, 1982; Ringo, 1991; Karbowski,
2003; Changizi and Shimojo, 2005; Changizi, 2007). However,
significant structural variability remains unaccounted for by these
scaling laws.

The underpinnings of these scaling relationships are not well
understood, but are thought to be related to a design princi-
ple originally postulated by Ramón y Cajal: that neural circuit
design is under pressure to minimize cellular costs and conduc-
tion delays (Ramón y Cajal, 1995). Increased brain size provides
increased computational power, but at hugely increased cost.
Neural material is expensive to construct and to operate. The
human brain makes up only about 2 percent of the total body
weight, but its operation is responsible for approximately 15
percent of cardiac output, 20 percent of oxygen usage, and 25 per-
cent of glucose usage (Magistretti, 1999). These metabolic costs
are largely due to the cost of neural signaling, and maintaining
the resting potentials needed for neural signaling. These costs
increase with membrane surface area, which increases with the
number and size of the axons. Larger brains have a larger num-
ber of axons, and the longest of these axons are both longer and
slightly larger in diameter than are those of smaller brains; thus
the total membrane surface area is increased. Axon diameter does
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not increase sufficiently with brain size, however, to compensate
for the increased fiber lengths, so larger brains also have longer
conduction delays (Olivares et al., 2001). These greater costs and
conduction delays appear to be related to at least some of the
aspects of organization that scale with brain size, e.g. the reduced
degree of long-distance connectivity (Ringo, 1991; Rilling and
Insel, 1999a; Karbowski, 2003; Changizi, 2007).

The focus on cross-species differences, where differences in
brain size can be more than 1000-fold within classes, e.g.,
Mammalia, and 100-fold within orders, e.g., Primates, allows rela-
tionships between brain size and structure to be apparent despite
differences in structure unrelated to brain size. But, it ignores
potentially important differences in developmental brain growth
trajectories. There are substantial inter-species differences in rate
of brain growth, and developmental trajectories can even vary
considerably between individuals, e.g., brain size may differ by
as much as 50% in children of the same age (Giedd, 2008). Brain
size differences between adults account for some of the differences
in structure (Jäncke et al., 1997; Honey et al., 2009; Lewis et al.,
2009); differences in brain growth trajectories likely account for
additional structural variability.

Substantial neural reorganization occurs over development.
Neural development is largely a combination of over-exuberance
and competition-based elimination. Large numbers of transient
projections are produced during cortical development (Rakic
et al., 1986; LaMantia and Rakic, 1990), and which connections
are retained is determined by their metabolic demands and their
ability to compete for neurotrophins (Van Ooyen and Willshaw,
1999). Due to the lesser degree of myelination in the develop-
ing brain than in the mature brain, the differences in conduction
delays and metabolic costs associated with differences in fiber
length will be substantially greater (Chugani et al., 1987; Paus
et al., 1999; Thatcher et al., 2008). Thus, to the extent that
differences in brain size during development coincide with differ-
ences in brain size in mature individuals, normal developmental
processes may underlie at least some portion of the scaling rela-
tionships seen across and within species; moreover, differences in
brain size during development which do not coincide with dif-
ferences in brain size in mature individuals may account for a
portion of the structural variability that is not accounted for by
scaling laws.

This conjecture is clearly relevant to developmental disorders
showing abnormalities in brain growth trajectories. Autism spec-
trum disorder (ASD) is such a case. ASD is a disorder of neural
developmental defined by impairments in reciprocal social inter-
actions, impairments in verbal and non-verbal communication,
and a restricted repertoire of activities and interests (American
Psychiatric Association, 1994). The aetiology of ASD is unknown,
but there is now consensus that brain size during development is
increased. Infants who go on to a diagnosis of ASD show abnor-
mally rapid brain growth during the first years of life (Lainhart
et al., 1997; Redcay and Courchesne, 2005), and after the sec-
ond or third year of life children with ASD show increased head
size (Lainhart et al., 1997; Hazlett et al., 2005) and brain size
(Piven et al., 1995; Courchesne et al., 2001; Hazlett et al., 2005).
Early in development this size difference can be multiple standard
deviations above the norm (Redcay and Courchesne, 2005).

Lewis and Elman (2008) have shown via computational mod-
eling that the increased conduction delays presumably associated
with the early brain overgrowth in ASD may lead to the later
functional and structural long-range underconnectivity. Further,
in adults with ASD, Lewis et al. (2012) have shown that cal-
losal tract length adjusted for intra-cranial volume (ICV), an
index of maximum brain-size during development (Whitwell
et al., 2001; Aylward et al., 2002; Buckner et al., 2004), shows
the typical inverse relation to relative corpus callosum size,
and so the early brain overgrowth in autism appears to in
fact account for some portion of the later observed long-range
underconnectivity.

In the current paper we extended this work to assess the
impact of the early brain overgrowth in ASD on overall brain
organization. We performed a network analysis and assessed the
relation between the network metrics and ICV. Network analy-
sis methods have evolved over the past decade and a half, from
straightforward applications of graph theory, which assess only
network topology (Watts and Strogatz, 1998), to more sophis-
ticated approaches which take account of the spatial aspects
of connectivity to assess the efficiency of information trans-
fer within the network (Latora and Marchiori, 2001, 2003;
Achard and Bullmore, 2007; Bullmore and Sporns, 2012). Such
approaches utilize measures of the length and strength of con-
nections between all pairs of anatomical regions to estimate how
efficiently information can be transferred between regions. We
used probabilistic tractography to estimate the strength of con-
nectivity between all pairs of regions, and the length of the
connections between regions. We computed the efficiency of
communication from all regions to all others, and within local
neighborhoods. We then assessed the relation between both of
these measures of efficiency and ICV, as well as group differences
in efficiency. We predicted that there would be an inverse rela-
tion between ICV and both measures of efficiency, reflecting an
adverse effect of brain overgrowth on overall brain organization,
and that this would explain a portion of the group differences in
efficiency.

METHODS
PARTICIPANTS
A total of 44 adult males participated in the study: 22 with ASD
ranging between 19 and 51 years of age (mean 34.14; SD 10.67),
and 22 typical adult males ranging between 20 and 45 years of
age (mean 32.25; SD 9.98). All ASD participants met diagnos-
tic criteria for ASD on the DSM-IV as confirmed by a licensed
clinician. Eighteen of the twenty two ASD participants met the
DSM diagnosis for autistic disorder (classic autism) and, based
on absence of early language delay and no significant abnor-
mality in communication, four of the twenty two subjects addi-
tionally met diagnostic criteria for Asperger’s disorder. Autism
Diagnostic Interview, Revised (ADI-R) scores were available for
16 of the ASD participants; Autism Diagnostic Observation
Schedule (ADOS) scores were available for 18; and Childhood
Autism Rating Scale (CARS) scores were available for 12. Table 1
summarizes these data. In all but one case the ASD diagnosis
was confirmed by all of the available additional assessments; the
one exception was below the cutoff for the CARS, but above
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Table 1 | The behavioral data.

Cutoff Range Mean SD

ADI-R Social 10 13–54 27.06 8.74

ADI-R Communication (Verbal) 8 6–25 18.75 4.43

ADI-R Repetitive behaviors 3 3–14 8.25 2.91

ADOS Social 6 4–20 10.50 3.60

ADOS Communication 3 2–9 6.39 1.85

ADOS Stereotyped behavior 0–13 2.29 2.97

CARS 30 23.5–51.5 36.46 7.46

Cutoff scores for the Autism Diagnostic Interview, Revised (ADI-R) and the

Childhood Autism Rating Scale (CARS) are available only for autism; thus we

also used the autism cutoffs for the Autism Diagnostic Observation Schedule

(ADOS).

all cutoffs for the ADI-R and ADOS. General intellectual ability
in the ASD participants was evaluated by the Wechsler Adult
Intelligence Scale-Revised (WAIS-R) or the Wechsler Abbreviated
Scale of Intelligence (WASI). Mean scores were: Verbal IQ, 88.48
± 23.06; Performance IQ, 106.10 ± 15.91. Individuals with a
history of significant medical or neurological disorders includ-
ing seizures or with Fragile X syndrome were excluded from the
sample. Typical participants with a first degree relative with a
diagnosis of ASD were excluded from the sample. The partici-
pants were those from Lewis et al. (2012) augmented by new data
from individuals with ASD. Those subjects who were capable gave
informed consent; a caregiver gave informed consent for the oth-
ers. The study was approved by the Human Research Protections
Program at the University of California, San Diego.

IMAGING
All subjects were scanned at the UCSD Center for fMRI on a
GE Signa EXCITE 3.0T short bore scanner with an eight-channel
array head coil. Three types of images were acquired from each
subject: (i) one set of 3D T1-weighted images (Fast Gradient
Echo, SPGR;TE = 3.1 ms; flip angle = 12; NEX = 1; FOV =
25 cm; matrix = 256 × 256); (ii) two sets of diffusion weighted
images isotropically distributed along 15 directions (dual spin-
echo,EPI; TR = 15 s; TE = 89 ms; 45 axial slices; NEX = 2; FOV =
22 cm; matrix = 128 × 128; resolution = 1.875 × 1.875 × 3 mm;
3 mm interleaved contiguous slices; b value = 1400 s/mm2); and
(iii) fieldmaps matched to the diffusion-weighted images. During
acquisition scans were visually inspected to ensure that usable
data were collected. Where motion introduced visible artifacts in
multiple volumes, the scan sequence was aborted and reinitiated,
or an additional scan was acquired. Note that at least two sets
of diffusion weighted images were acquired, each with NEX = 2;
thus each image was acquired at least four times. Fieldmaps were
acquired before the first diffusion-weighted images were acquired,
and, in cases where there was between scan motion, an additional
set of fieldmaps was acquired after the second.

IMAGE PROCESSING
The T1-volumes were processed with CIVET, a fully auto-
mated structural image analysis pipeline developed at the
Montreal Neurological Institute. CIVET corrects intensity
non-uniformities using N3 (Sled et al., 1998); aligns the input

volumes to the Talairach-like ICBM-152-nl template (Collins
et al., 1994); classifies the image into white matter, gray mat-
ter, cerebrospinal fluid, and background (Zijdenbos et al., 2002;
Tohka et al., 2004); and extracts the white-matter and pial surfaces
(Kim et al., 2005). ICV was calculated via the atlas based spa-
tial normalization procedure described in Buckner et al. (2004).
The CIVET results were visually inspected to ensure that surface
construction was correct, and then used to construct the seed,
stop, and target masks for use with FSL’s probtrackx (Behrens
et al., 2007). Seed masks control from which voxels tracts are
seeded; seed masks were white-matter. Stop masks determine
where tract propagation is halted; stop masks were voxels on
the boundary of white-matter. Target masks determine the map-
ping from voxels of the stop masks to brain regions; target
masks were the voxels at the boundary of white-matter and the
cortex, and mapped these voxels to the Automatic Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), shown in
Figure 1.

Each diffusion dataset was first corrected of distortions caused
by inhomogeneities in the magnetic field using the fieldmaps.
This was done using software developed by the UCSD Center for
fMRI. The resulting diffusion-weighted volumes were then sub-
jected to a quantitative quality control evaluation using DTIprep
(Liu et al., 2010). DTIprep corrects motion artifacts where pos-
sible, and excludes directions from the data when correction is
not possible. For each subject, the two diffusion-weighted vol-
umes with the fewest number of excluded directions were chosen
for further processing. The b0 volumes of both diffusion scans
were then affine registered to the T1-volume in stereotaxic space
using the Oxford University FMRIB Software Library’s (FSL)
flirt (Jenkinson and Smith, 2001), and the resultant transforms
used to align the two 4D volumes; the rotational component was
applied to the directional vectors. The two were then merged
using FSL’s fslmerge. The merged volume was then preprocessed
for probablistic tractography with FSL’s bedpostx (Behrens et al.,
2007). Probabilistic tractography, utilizing FSL’s probtrackx with
distance-bias correction (Behrens et al., 2003, 2007), was then
seeded from 10,000 random locations within each voxel of the
seed masks to generate the number of tracts connecting voxels in
the target mask. A native-scale 4D diffusion volume was gener-
ated using the same procedure, but with the scaling component
removed from the transforms; this was processed in the same
way to generate the lengths of the connections between voxels in
the target mask. These results were then compiled for each AAL
region generating matrices of the total number of connections
between each pair of AAL regions, and the mean length of those
connections. The total number of connections between each pair
of AAL regions was then divided by the mean size of the two
AAL regions to provide an index of the strength of connectivity
between pairs of regions.

ANALYSIS
The efficiency of communication was calculated for all regions,
based on the definition provided by Latora and Marchiori (2001,
2003). The relation of ICV to efficiency was assessed with
statistical linear models, as well as group differences in efficiency.
Correction for multiple comparisons was done using the false
discovery rate method (Benjamini and Hochberg, 1995).
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FIGURE 1 | The AAL atlas views: (A) left lateral, (B) left medial,

(C) anterior, (D) superior, (E) inferior, (F) right lateral, (G) right

medial, and (H) posterior. The regions are colored to identify region
boundaries. Similarity of colors between spatially separated regions is

not meaningful; all regions are spatially contiguous. The cortical
parcellation is based on anatomical landmarks, e.g., sulci. There are
78 cortical regions. These cortical regions serve as the nodes of the
network.

Latora and Marchiori (2001) defined the efficiency εij in the
communication between nodes i and j to be inversely propor-
tional to the shortest path length dij between nodes i and j. They
take the shortest path length dij to be the smallest sum of the phys-
ical distances throughout all of the possible paths from i to j in the
graph, i.e., the travel distance, not the number of edges nor the
Euclidean distance. The efficiency of a network, G, is then

E(G) =
∑

i �= j ∈ G εij

N(N − 1)
= 1

N(N − 1)

∑
i �= j∈ G

1

dij

where N is the number of nodes in the network graph G; εij is the
efficiency of the connection between nodes i and j; and dij is the
length of the shortest path, in terms of physical distances, between
nodes i and j. This measure is normalized by E(GIDEAL), the fully
connected network. Note that the measures of efficiency take into
account the physical distances involved in information transfer,
and so relate more closely to the neurobiological substrates than
do purely topological measures (Watts and Strogatz, 1998; Achard
and Bullmore, 2007; Rubinov and Sporns, 2010).

Latora and Marchiori (2001) apply this formulation to both
the entire network, which they refer to as global efficiency, and to
the subnetworks of the immediate neighbors of each node; they
define local efficiency as the mean of E(Gi), for all nodes i, where
Gi is the subgraph of all the neighbors of node i. These defini-
tions give a single measure of local efficiency and of global efficiency
for the entire network. But, the definitions can be given straight-
forward translations to provide measures of efficiency for each

node, or for collections of nodes. Achard and Bullmore (2007)
define nodal efficiency, which we will refer to as nodal global effi-
ciency, as the inverse of the harmonic mean of the minimum
number of edges between a node, i, and all other nodes in the net-
work. Utilizing the physical distances, as per Latora and Marchiori
(2001), the nodal global efficiency of node i is thus

Enodal global(G, i) =
∑

j ∈ G,i �= j εij

(N − 1)
= 1

(N − 1)

∑
j ∈ G, i �= j

1

dij

where N is the number of nodes in the network graph G; εij is
the efficiency of the connection between nodes i and j; and dij

is the length of the shortest path, in terms of physical distances,
between nodes i and j. The definition of local efficiency can like-
wise be parsed to provide a measure of nodal local efficiency; recall
that the local efficiency of a network is the mean of E(Gi), for all
nodes i, where Gi is the subgraph of all the neighbors of node i.
Thus, the nodal local efficiency of node i is simply

Enodal local(G, i) =
∑

j �= k ∈ Gi
εjk

NGi(NGi − 1)
= 1

NGi(NGi − 1)

∑
j �= k ∈ Gi

1

djk

where NGi is the number of nodes in the subgraph Gi consisting
of all of the neighbors of i; εjk is the efficiency of the connection
between nodes j and k; and djk is the length of the shortest path,
in terms of physical distances, between nodes j and k.

These definitions treat connections in a binarized fashion, i.e.,
as either existing or not. But, the strengths of the connections
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reflect, albeit poorly, biophysical properties of the underlying
axons that are related to conduction velocity and metabolic
costs, e.g., myelination. Moreover, weak long-range connections
between strongly connected modules have been argued to pro-
vide the shortcuts that make the brain an efficient small-world
architecture (Gallos et al., 2012). The strengths of the connections
in the brain may thus be critical to an accurate assessment of its
efficiency. Therefore, we utilize a version of these measures that
incorporates connection weight, i.e., the total number of tracts
connecting two regions, corrected for the distance-bias and region
size. Based on Rubinov and Sporns (2010), we define the weighted
distance between nodes i and j as

dw
ij =

∑
∀e∈S

le
we

where S is the set of edges in the shortest path between nodes i
and j; le is the length of edge e; and we is the connection weight for
edge e. Also based on Rubinov and Sporns (2010), our weighted
formulations of nodal global efficiency and nodal local efficiency are

E
weighted
nodal global(G, i) = 1

(N − 1)

∑
j ∈ G, i �= j

(
dw

ij

)−1

where N is the number of nodes in the network graph G; and dw
ij

is the shortest path, in terms of weighted distance, between nodes
i and j; and

E
weighted
nodal local(G, i) = 1

NGi(NGi − 1)

∑
j �= k ∈ Gi

((
dw

jk

)−1
wijwik

)1/3

where NGi is the number of nodes in the subgraph Gi consisting of
all of the neighbors of i; is the shortest path, in terms of weighted
distance, between nodes j and k; and wij and wik are the connection
weights between nodes i and j, and i and k, respectively. As per
Latora and Marchiori (2001), these measures are normalized by
considering the fully connected network.

The impact of maximum brain size during development on
efficiency was assessed, as well as the group differences in effi-
ciency. As per Lewis et al. (2012), we used ICV as an index of
maximum brain size during development (Whitwell et al., 2001;
Aylward et al., 2002; Buckner et al., 2004). The relation between
ICV and efficiency was assessed via statistical linear models, con-
trolling for age and total brain volume. Group differences in
efficiency were assessed via statistical linear models, controlling
for age. Potential group differences in the relationships between
ICV and measures of efficiency were assessed by considering the
group x ICV interaction term in models with both terms. In all
cases, correction for multiple comparisons was done using the
false discovery rate method (Benjamini and Hochberg, 1995).

RESULTS
The relation between ICV and nodal local efficiency is shown in
Figure 2. The t-statistic is negative over the entire cortex, thus
for all regions this is an inverse relation: larger ICV is associated
with less nodal local efficiency. This inverse relation is significant

over almost the entirety of the posterior of the brain, and also
the right hemisphere frontal lobe. The relation is conspicuously
less negative over left dorsal lateral frontal cortex, and does not
reach significance over much of left hemisphere dorsal lateral cor-
tex; the inverse relation is stronger over the medial surface, and is
significant over much of the medial surface of either hemisphere.

The ICV ∗ group interaction term was non-significant in
all regions, thus this inverse relation between ICV and nodal
local efficiency does not differ between individuals with ASD and
typical controls.

The group differences in nodal local efficiency are shown in
Figure 3. The t-statistic is negative over the entire cortex, thus
for all regions nodal local efficiency is reduced in individuals with
ASD. This reduction is significant over almost the entirety of
the posterior of the brain, and also the right hemisphere frontal
lobe. The t-statistic is conspicuously less negative over left lateral
frontal cortex, and the group difference does not reach signifi-
cance over much of the left lateral frontal cortex; the difference is
significant over much of the left medial surface. The group dif-
ference is non-significant for most of the right medial surface
anterior to the cuneus. Note that the pattern of group differ-
ences in nodal local efficiency parallels that of the inverse relation
between ICV and nodal local efficiency. The cosine similarity of
the two t-statistic vectors is 0.9848.

The relation between ICV and nodal global efficiency is shown
in Figure 4. The t-statistic is negative over most of the cortex, thus
this is again generally an inverse relation: larger ICV is associated
with less nodal global efficiency. Significant inverse relations are
seen in the left hemisphere in all lobes, notably in visual cortex,
the pre- and post-central gyri, and in primary auditory cortex;
significant inverse relations are seen in the right hemisphere in the
temporal lobe, the precuneus, and the paracentral lobule; and sig-
nificant inverse relations are seen bilaterally in the cingulate and
orbitofrontal cortex.

The ICV ∗ group interaction term was non-significant in
all regions, thus this inverse relation between ICV and nodal
global efficiency does not differ between individuals with ASD and
typical controls.

The group differences in nodal global efficiency are shown in
Figure 5. The t-statistic is negative over the entire cortex, thus for
all regions nodal global efficiency is reduced in individuals with
ASD. This reduction is significant over regions of all lobes in both
hemispheres. Note that these reductions overlap with those of the
relation of ICV and nodal global efficiency but are more extensive,
particularly in the right hemisphere. The cosine similarity of the
two t-statistic vectors is 0.9584.

Thus, both nodal local efficiency and nodal global efficiency
showed an inverse relation to ICV, and in neither case was the
ICV ∗ group interaction significant. Moreover, for both measures,
the pattern of results for the inverse relation between ICV and
efficiency was similar to the pattern of reductions in efficiency
in ASD.

DISCUSSION
Networks with a high degree of spatially local connectivity, but
with few long-range connections, i.e., shortcuts, have high local
efficiency and low global efficiency; networks with a high degree
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FIGURE 2 | Nodal Local Efficiency and ICV. The t-statistic (top) and the
p-statistic (bottom) for the relation between ICV and nodal local efficiency in
each region of the AAL atlas. A negative t-statistic represents decreasing
nodal local efficiency with increasing ICV. The t-statistic is overwhelmingly
negative. The p-statistic is FDR-corrected, and is blue where the inverse
relation is significant, and orange where a positive relation is significant. No

regions show a significant positive relation. Significant inverse relations are
seen bilaterally over the temporal lobes, the angular and supramarginal gyri,
the pars opercularis, orbital frontal cortex, and the superior frontal gyrus; the
right hemisphere shows this inverse relation more extensively over the
frontal and parietal lobe; the left hemisphere shows the relation more
extensively on the medial surface.
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FIGURE 3 | Nodal Local Efficiency and Group. The t-statistic (top) and the
p-statistic (bottom) for the group difference in nodal local efficiency in each
region of the AAL atlas. A negative t-statistic represents reduced efficiency in
ASD. The t-statistic is negative everywhere. The p-statistic is FDR-corrected,
and is blue where there is a significant reduction in nodal local efficiency in
ASD, and orange where there is a significant increase in ASD. No regions

show significantly increased nodal local efficiency in ASD. Significant
reductions are seen bilaterally in the temporal, occipital, and parietal lobes,
and in the pars opercularis; the right hemisphere additionally shows
reductions over lateral regions of the frontal lobe; the left hemisphere shows
more extensive reductions over the medial surface. Note the similarities to
the relation of nodal local efficiency and ICV.
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FIGURE 4 | Nodal Global Efficiency and ICV. The t-statistic (top) and the
p-statistic (bottom) for the relation between ICV and nodal global efficiency
in each region of the AAL atlas. A negative t-statistic represents decreasing
nodal global efficiency with increasing ICV. The t-statistic is predominately
negative. The p-statistic is FDR-corrected, and is blue where the inverse

relation is significant and orange where a positive relation is significant. No
regions show a significant positive relation. Significant inverse relations are
seen in the left occipital, parietal, and frontal lobes, and in primary auditory
cortex; in the right temporal lobe, precuneus, and paracentral lobule; and
bilaterally in the cingulate and orbitofrontal cortex.
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FIGURE 5 | Nodal Global Efficiency and Group. The t-statistic (top)

and the p-statistic (bottom) for the group difference in nodal global
efficiency in each region of the AAL atlas. A negative t-statistic
represents reduced efficiency in ASD. The t-statistic is negative
everywhere. The p-statistic is FDR-corrected, and is blue where

there is a significant reduction in nodal global efficiency in ASD, and
orange where there is a significant increase in ASD. No regions
show significantly increased nodal global efficiency in ASD. Significant
reductions are seen bilaterally in all lobes. Note the similarities to
the relation of nodal global efficiency and ICV.
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of long-range connectivity, but which lack spatially local cluster-
ing, have high global efficiency and low local efficiency. Biological
systems in general, and neural networks in particular, tend to
balance global efficiency with local efficiency, having strong
local clustering mixed with sufficient long-range connectivity to
allow rapid communication between distant nodes; these have
been dubbed “small-world” properties (Watts and Strogatz, 1998;
Latora and Marchiori, 2001, 2003). The inverse relation shown
here between ICV and both nodal local and nodal global efficiency
suggests that deviation in brain growth trajectories impacts both
long-range communication and within-neighborhood commu-
nication, and impacts both similarly. The absence of a group ∗
ICV interaction in either case indicates that the same is true in
both typical adults and adults with ASD. The reductions in both
nodal local and nodal global efficiency seen in individuals with
ASD align with this inverse relation, in combination with the
brain overgrowth that occurs in ASD, to suggest that the brain
overgrowth may explain at least part of the reductions in effi-
ciency; and the similarity of the spatial pattern of reductions
in efficiency with the pattern of the relations between ICV and
efficiency further supports this conclusion.

These results complement our previous work showing an
inverse relation between the ICV-adjusted length of callosal fibers
and degree of inter-hemispheric connectivity in ASD (Lewis et al.,
2012), and our computational modeling work showing that the
early brain overgrowth in ASD may cause the later reductions in
long-range connectivity (Lewis and Elman, 2008). Those stud-
ies suggested that the brain overgrowth that occurs in ASD may
underlie the reductions in long-range connectivity seen in adoles-
cents and adults with ASD (Horwitz et al., 1988; Just et al., 2004,
2007; Kana et al., 2007). The current study extends that work to
network analysis, relating the brain overgrowth in ASD to overall
network organization.

The measures of efficiency utilized here do not directly cor-
respond to connectivity; efficiency is defined in terms of paths
through a network, not the strengths of individual connec-
tions. The network measures capture more complex aspects of
brain organization. The inefficiencies in ASD shown here sug-
gest a more random network organization, providing less well-
segregated local processing and a reduced capacity to integrate
information across the network. Reductions in nodal global effi-
ciency might stem from either generally weaker connections,
longer paths between nodes, or both. Topological measures show
shorter characteristic path length in ASD (Rudie et al., 2013),
meaning that communication between pairs of nodes is more
direct. Together with the reductions in nodal global efficiency
shown here this implies a more random configuration, with more
but weaker shortcuts. The reductions in nodal local efficiency sup-
port this interpretation. Since the degree to which a node is a
neighbor of another is determined by the strength of the direct
connection between them, the neighbors of a node may be spa-
tially distant. The local efficiency of a node thus reflects the spatial
clustering of its neighbors, as well as the strength of the connec-
tions between them. Topological measures show reductions in
modularity in ASD (Rudie et al., 2013), thus the reductions in
nodal local efficiency in ASD should not be interpreted as short-
distance under-connectivity, but as indicative of a more random

configuration with more diffuse processing clusters. The ineffi-
ciencies in ASD thus suggest both less segregation and less inte-
gration. The inverse relation between the measures of efficiency
and ICV suggests that these aspects of network organization are
impacted by differences in brain growth trajectories.

This study complements the substantial body of research
showing strong relationships between brain size and brain struc-
ture (Tower, 1954; Jerison, 1982; Ringo, 1991; Prothero, 1997;
Zhang and Sejnowski, 2000; Karbowski, 2003; Changizi, 2007;
Lewis et al., 2009). That research leaves unanswered the question
of the aetiology of these scaling relationships. We have hypothe-
sized that at least some of these scaling relationships come about
over development as a consequence of the impact on normal
developmental mechanisms of differences in metabolic costs and
conduction delays associated with differences in brain size (Lewis
and Elman, 2008; Lewis et al., 2012). Our hypothesis applies both
to individual variability in growth trajectories in typical develop-
ment, including gender differences, and to the atypical variations
that are generally present in developmental disorders. The current
results lend support to this conjecture.

ICV, however, is a very crude index of a very complex phe-
nomenon. In typically developing infants the brain increases from
approximately 25 percent of adult size at birth to approximately
75 percent of adult size by 2 years of age with substantial indi-
vidual variability in rate of growth as well as mature brain size
(Blinkov and Glezer, 1968; Dobbing and Sands, 1973; Courchesne
et al., 2000). Multiple parameters are required to capture even
the most basic aspects of such trajectories. ICV provides only
an index of maximum brain size during development. Likewise,
true efficiency of communication is determined by conduction
delays and metabolic costs, and the measures used here serve as
only crude proxies for such properties. The biophysical proper-
ties that determine conduction delays and metabolic costs, such
as the density of fibers, axon diameters, and the degree of myeli-
nation, are only weakly related to the probabilistic tractography
results used here as connection strengths. Further, the extent to
which the results reported here are robust to the variety of factors
that influence tractography-based estimates of connectivity, e.g.,
scan protocols, tractography parameters, and target parcellation
(Jones et al., 2012), remains to be explored. The inverse rela-
tions between ICV and efficiency thus suggest that brain growth
trajectories may account for a substantial part of the individual
differences in brain organization both in typical adults as well as
those with ASD, but the conjecture must be further tested utiliz-
ing methods which can provide more accurate estimates of brain
growth trajectories, metabolic costs, and conduction delays.
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The structural correlates of functional dysconnectivity in autism spectrum disorders (ASD)
have been seldom explored, despite the fact that altered functional connectivity is
one of the most frequent neuropathological observations in the disorder. We analyzed
cerebral morphometry and structural connectivity using multi-modal imaging for 11
children/adolescents with ASD and 11 matched controls. We estimated regional cortical
and white matter volumes, as well as vertex-wise measures of cortical thickness and local
Gyrification Index (lGI). Diffusion Tensor Images (DTI) were used to measure Fractional
Anisotropy (FA) and tractography estimates of short- and long-range connectivity. We
observed four clusters of lGI reduction in patients with ASD, three were located in the
right inferior frontal region extending to the inferior parietal lobe, and one was in the
right medial parieto-occipital region. Reduced volume was found in the anterior corpus
callosum, along with fewer inter-hemispheric frontal streamlines. Despite the spatial
correspondence of decreased gyrification and reduced long connectivity, we did not
observe any significant relationship between the two. However, a positive correlation
between lGI and local connectivity was present in all four clusters in patients with ASD.
Reduced gyrification in the inferior fronto-parietal and posterior medial cortical regions
lends support for early-disrupted cortical growth in both the mirror neuron system and
midline structures responsible for social cognition. Early impaired neurodevelopment in
these regions may represent an initial substrate for altered maturation in the cerebral
networks that support complex social skills. We also demonstrate that gyrification
changes are related to connectivity. This supports the idea that an imbalance between
short- and long-range white matter tracts not only impairs the integration of information
from multiple neural systems, but also alters the shape of the brain early on in autism.

Keywords: cortical folding, cerebral morphometry, tractography, neuroimaging, autism spectrum disorder

INTRODUCTION
Autism is a heterogeneous disorder characterized by a triad of
symptoms including impairments in social interactions, delayed
development of spoken language, and repetitive patterns of
behavior. To satisfactorily account for the observed clinical
heterogeneity in autism, the name “autism spectrum disor-
der” (ASD) is commonly used to convey the associated clini-
cal manifestations that vary in severity along a continuum of
autistic traits. Most epidemiological records estimate the global
prevalence of ASD at 1 in 160 individuals (Elsabbagh et al.,
2012), with some studies reporting rates as high as 1 in 88
children (Centers for Disease Control and Prevention, 2008).
Understanding the neurobiological bases of this pervasive devel-
opmental disorder, which highly impacts the societal integra-
tion and professional achievements of affected persons, is one

of the main motivations driving the prolific research on the
disorder.

Structural and functional neuroimaging studies on ASD are
particularly abundant. Early morphometric studies reported
increased brain volume, but decreased total volume thereafter,
during the first years of life in patients with ASD compared to
healthy controls (Courchesne et al., 2001; Courchesne, 2004).
This pattern of early overgrowth followed by degenerative change
has been explained by a failure to refine the cerebral cir-
cuitry through the adaptive, experience-driven processes nor-
mally occurring during childhood (Courchesne et al., 2011).
Indeed, there is a large amount of evidence for disrupted
organization of cerebral networks in children, adolescents and
adults with autism. Structural brain imaging studies reported
increased white matter volume in regions corresponding to local
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cortico-cortical connections, and only minor changes, or even
sometimes decreased volumes, in regions corresponding to long-
range or inter-hemispheric connections (reviewed in Minshew
and Williams, 2007). Increased local connectivity and reduced
distant connectivity was further corroborated by post-mortem
examinations (Zikopoulos and Barbas, 2010) and by functional
studies using EEG (Barttfeld et al., 2011). Finally, several fMRI
studies measuring functional connectivity using resting-state
paradigms observed decreased long-range functional connectivity
in children or young adults with ASD (Kennedy and Courchesne,
2008; Assaf et al., 2010; Weng et al., 2010; von dem Hagen et al.,
2013). Despite the plethora of evidence for disrupted structural
and functional connectivity and a growing body of research
demonstrating morphometric differences in the brains of patients
with autism; there are surprisingly few integrated studies that
show how differences in cerebral morphology and connectivity fit
together. Adding to our knowledge of the relationships between
different anatomical impairments should elucidate the mecha-
nisms underlying brain alterations in autism.

It is accepted that cortical folding reflects a person’s prenatal
development (Regis et al., 2005) (as well as events from the
first months of post-natal life (Schaer et al., 2009; Haukvik
et al., 2011)). It follows that measuring the shape of the cor-
tex, using three-dimensional cortical reconstructions, provides us
with insight into early brain development. Although the processes
underlying the creation of specific sulcal patterns are poorly
understood, existing theories point to the determinants of early
cortical folding. Initial hypotheses proposed that gyrification
results from mechanical forces intrinsic to the cortex (Richman
et al., 1975; Welker et al., 1990). However, more recent theories
consider cortical shape as a product of underlying patterns of
connectivity, implicating alterations to both connectivity and
cortical folding, both of which are highly relevant in autism. The
tension-based model of convolutional development (Van Essen,
1997) postulates that strongly interconnected cortical regions are
pulled towards one another during embryological development,
resulting in both compact and streamlined wiring of the nervous
system. According to this model, disturbed gyrification in the
adult human brain reflects abnormal patterns of white matter
connectivity. Measuring gyrification abnormalities at any age may
signal early adverse events and contribute to our understanding of
both the timing and the nature of brain alterations in neurodevel-
opmental disorders.

Previous studies have noted alterations to cortical shape in
autism (Levitt et al., 2003; Nordahl et al., 2007; Shokouhi et al.,
2012), and some have used the Gyrification Index (GI; Hardan
et al., 2004; Casanova et al., 2009; Kates et al., 2009; Jou et al.,
2010; Meguid et al., 2010). Given that the cortex grows primarily
through radial expansion (Rakic, 1988), the GI was specifically
designed to identify early defects in cortical development. How-
ever, all but one (Wallace et al., 2013) existing studies quanti-
fying GI in patients with ASD used two-dimensional or global
approaches, which do not allow for the identification of focal
differences. By contrast, the local Gyrification Index (lGI; Schaer
et al., 2008) has been shown to provide reliable estimates of GI
with fine-grained resolution in many conditions (Zhang et al.,
2009; Juranek and Salman, 2010; Zhang et al., 2010; Palaniyappan

and Liddle, 2012; Palaniyappan et al., 2011; Ronan et al., 2011;
Thesen et al., 2011; Srivastava et al., 2012).

In the present study, we sought to combine advanced multi-
modal techniques in a small individually-matched group of ASD
and healthy controls in order to simultaneously examine alter-
ations in gyrification and structural connectivity. We first propose
an exploratory analysis of the morphometry of gray and white
matter structure, and of white matter connectivity. For that pur-
pose, we use the T1-weighted imaging to quantify the total cere-
bral and cerebellar gray and white matter volumes, the regional
cortical and white matter volumes, and to measure cortical thick-
ness and lGI at thousands of points across the hemisphere. We also
exploit Diffusion Tensor Imaging (DTI) to quantify voxel-wise
alterations in white matter microstructure and use tractography
to provide estimates of structural connectivity. In subsequent
analyses, we aim at integrating the morphometric and the con-
nectivity findings. In line with the Van Essen’s tension-based
morphogenesis hypothesis, we expect to observe that regions with
altered gyrification in autism corresponds to areas with aberrant
patterns of short- and long-range connectivity, as quantified using
tractography.

MATERIALS AND METHODS
PARTICIPANTS
Patients with ASD
Eleven children and adolescents with ASD participated in the
current study (8 males). The group had an average age of 12.9 ±
2.7 years (range 9.3–17.4) and an average full-scale IQ (using the
Wechsler WISC-III (Wechsler, 1991)) score of 79.4 ± 18.1 (range
51–105). Participants were recruited with the help of local asso-
ciations, therapeutic schools, and a local ASD diagnostic clinic.
Once participants contacted us to express interest in the study, a
detailed medical history, including details about their diagnosis
were taken. Individuals with known genetic disorders, as well
as malformations and birth defects, were excluded. An initial
appointment was then set to reconfirm participants’ diagnoses
using the autism diagnostic interview-revised (ADI-R) interview
with one or both parents. The group of patients with ASD had
the following scores on the ADI-R (Le Couteur et al., 2007): social
interaction: 15.7 ± 7.9, communication: 12.4 ± 6.6, restricted and
repetitive behaviors: 5.7 ± 3.3. The ADI-R was followed by an
autism diagnostic observation scale (ADOS; Lord et al., 2009),
which was conducted by a research-reliable clinician from the
institution’s ASD diagnostic clinic. The parents of all participants
also filled in the Social Communication Questionnaire (SCQ;
Berument et al., 1999).

Control participants
The comparison group was comprised of 11 healthy controls,
individually matched with each patient for gender and age.
The control group had an average age of 12.7 ± 2.7 (range
8.7–16.8). There was no difference in mean age between patients
and controls (p = 0.897). The average full-scale IQ of the control
group was 110.5 ± 13.3 (range 88–129).

Written informed consent was received from all subjects and
their parents in accordance with protocols approved by the local
ethics committee.
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IMAGE PROCESSING
Cerebral magnetic resonance images were acquired using a
Siemens Trio 3T scanner at the Geneva Center for Biomedical
Imaging (CIBM). A set of T1-weighted 3D volumetric images was
acquired as a series of 192 contiguous coronal slices, with a voxel
size of 0.86 × 0.86 × 1.1 mm (repetition time (TR) = 1200 ms,
echo time (TE) = 3 ms, flip angle = 8◦). DTI were acquired on
the same day as a series of 64 axial slices with 30 directions, with
a voxel size of 2 × 2 × 2 mm (b0 = 1000 ms, TR = 8300 ms,
TE = 82 ms, flip angle = 90◦).

Cortical reconstruction
The T1-weighted images were used to create cortical reconstruc-
tion and volumetric segmentation using the FreeSurfer package
(Martinos Center for Biomedical Imaging, Massachusetts Gen-
eral Hospital, Boston1). Briefly, the processing was comprised
of removing non-brain tissue, executing automatic segmentation
of the subcortical gray matter structures, and extracting cortical
surface (Dale et al., 1999; Fischl, 2012). Both intensity and con-
tinuity data from the entire three-dimensional MR volume are
used in the segmentation procedures, thus producing accurate
representations of cortical thickness and volumes. These pro-
cedures have been validated against histological studies (Rosas
et al., 2002) and have been shown to be reliable across scanner
models and field strengths (Han et al., 2006). At the end of
the reconstruction process, the following volumes were available:
total cerebral gray and white matter volumes, cerebellar gray and
white matter volumes, corpus callosum volume, and the volumes
of subcortical structures including thalamus, putamen, pallidum,
caudate nucleus, as well as amygdala and hippocampus.

Regional cortical volumes
Subsequent to cortical reconstruction, the cortex was also sub-
divided into units based on gyral and sulcal structures (Desikan
et al., 2006). This parcellation method has been shown to be
both valid and reliable, with high intra-class correlation coeffi-
cients between the manual and automated procedures for both
cortical volume estimates and region boundaries. The parcellation
produces 34 cortical regions subdivided into 11 frontal regions,
9 temporal regions, 5 parietal regions, 4 occipital regions, 4 parts
of the cingulate cortex, and one label for the insula.

Regional white matter volumes
The parcellation of the cortical gray matter was subsequently used
to subdivide the underlying white matter as described in Salat
et al. (2009), a Voronoi diagram was created in the white matter
voxels based on the distance to the nearest parcellation label, using
a distance constraint of 5 mm. As a result of this process, regional
white matter volumes were available for each of the 34 regions
corresponding to the aforementioned gyral labeling.

The corpus callosum was also identified and subdivided into
5 portions along its anteroposterior axis, according to procedures
detailed in Rosas et al. (2010). The volume of the corpus callosum
was measured for each of the 5 portions (anterior, mid-anterior,

1http://surfer.nmr.mgh.harvard.edu

center, mid-posterior and posterior) on a 5 mm lateral extent
centered on the mid-sagittal place.

Cortical thickness and cortical gyrification
Cortical thickness was measured in the native space of the images,
as the shortest distance between the white (gray-white boundary)
and the pial (gray-CSF interface) surfaces. As a result, cortical
thickness values with submillimeter accuracy were available at
more than 150,000 different points over each hemisphere res-
olution (Fischl and Dale, 2000). Finally, based on the outer
cortical surface reconstruction (pial surface), lGI was measured
at thousands of points across each hemisphere using previously
validated algorithms (Schaer et al., 2008). lGI is a surface-based
measurement of the degree of cortical folding that iteratively
quantifies the amount of cortex buried within the sulcal folds in
the surrounding circular region.

Inter-subject comparison of the cortical thickness and gyri-
fication values is achieved through spherical registration of the
surfaces that minimizes metric distortion and allows for a highly
reliable point-to-point comparison of cortical thickness between
groups (Fischl et al., 1999).

Tract-based spatial statistics of the white matter structure
The DTI images were used for voxelwise statistical analysis of the
Fractional Anisotropy (FA) using Tract-Based Spatial Statistics
(TBSS; Smith et al., 2006), which is part of FSL software.2 First, FA
images were created by fitting a tensor model to the raw diffusion
data using algorithms embedded in the FDT toolbox, followed by
skull stripping. As described in the original protocol (Smith et al.,
2006, 2007), subjects’ FA data were then aligned into a common
space using nonlinear registration. Next, the mean FA image was
created and thinned to create a mean FA skeleton that represents
the centers of all tracts common to the group. Each subject’s
aligned FA data were then projected onto this skeleton and the
resulting data were fed into voxelwise cross-subject statistics.

Tractography analyses
To relate the cortical anatomy with the underlying architecture of
white matter fibers, we used tools embedded in the Connectome
Mapping Toolkit (Daducci et al., 2012).3 Briefly, registration
between the T1-weighted and DTI images was completed using
the bbregister function of FreeSurfer. The DTI images were pro-
cessed with Diffusion Toolkit software4 using the deterministic
streamline algorithm (Mori et al., 1999) to obtain tractographic
reconstruction of white matter bundles.

In the present study, we used the number of streamlines to
quantify two different aspects of connectivity. First, we measured
the amount of fibers connecting the homologous lobe between
each hemisphere. The inter-hemispheric fibers obtained by this
method represent a simple way to define long-range connectivity
without having to define an arbitrary length threshold. To obtain
the inter-hemispheric frontal fibers, we retained all streamlines
connecting cortical regions comprised in the frontal lobe, as

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3http://www.connectomics.org/connectomemapper/
4http://trackvis.org/dtk/
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defined in the Desikan parcellation (Desikan et al., 2006). To
select the streamlines corresponding to inter-hemispheric parietal
streamlines, we repeated the process with cortical regions corre-
sponding to the parietal lobe. Finally, streamlines connecting the
temporal and occipital cortical regions were considered together
for this analysis, given the small amount of inter-hemispheric
fibers connecting these two lobes. As a result, three different
variables summarizing one aspect of long-range connectivity were
studied: the number of inter-hemispheric frontal, parietal, and
temporo-occipital streamlines. Second, we measured the connec-
tivity within each lobe (i.e., the number of streamlines connecting
one lobe to itself) as an estimate of short-connectivity that also
doesn’t require any arbitrary length threshold.

STATISTICAL ANALYSES
Volumetric analyses
We used ANCOVA to compare cerebral, cerebellar and subcortical
volumes between groups, including age and gender as covariates.
To identify potential regional cortical alterations, we subsequently
applied a MANCOVA on the 34 gyral regions in each hemisphere
by entering diagnosis as the fixed factor, and both age and
gender as covariates. Potential changes in regional white matter
volumes were examined by doing a MANCOVA on the five corpus
callosum regions, and another MANCOVA on the 34 regional
white matter volume in each hemisphere. All the MANCOVA
were performed with diagnosis as the fixed factor and both age
and gender as covariates.

Cortical thickness and gyrification analyses
The comparisons of cortical thickness and gyrification over the
whole brain used the fsaverage template included in the FreeSurfer
distribution. Cortical thickness maps were smoothed using a
full width at half maximum (FWHM) kernel of 10 mm. As lGI
is already smooth (the degree of smoothness in our lGI data
corresponds to a smoothing kernel of 10 mm), the data were
not additionally smoothed prior to statistical analyses. Statistical
analyses employed a General Linear Model (GLM) to estimate the
effect of diagnosis, age and gender on thickness or gyrification at
each cortical point. Cortical thickness or gyrification changes with
age were fitted using a linear model. All results were corrected for
multiple comparisons using the Monte Carlo simulation at the
cluster level at the corrected significance threshold of p < 0.05.

Tract-Based Spatial Statistics of the white matter structure
TBSS voxel-wise analyses were carried out across subjects for
each point of the common skeleton. As our population was
comprised of children and adolescents, the mean FA volume
provided by FMRIB software library (FSL) (“FMRIB58”) based
on 58 adult brains was not optimal. Therefore, we chose the
recommended alternative, using the “most typical” subject in our
sample, to process the statistics. Local FA differences between
patients and controls were tested for significance using a GLM.
The skeleton-based approach has the advantage of reducing the
number of statistical tests performed by reducing the num-
ber of voxels being compared. Nevertheless, we performed a
permutation-based approach to control for “Family-Wise Error”
(FWE; Nichols and Holmes, 2002). The options we used in
the statistic TBSS pipeline were the most recommended ones:

the Threshold-Free Cluster Enhancement (TFCE) option and a
number of permutations at 500 (see the TBSS user guide on
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS). A post-hoc t-test was
ultimately conducted, comparing individual measurements of
axial and radial diffusivity in clusters of significant between-group
FA differences.

Tractography analyses
We used ANCOVA to compare the total number of streamlines
with the total number of inter-hemispheric streamlines between
patients with ASD and controls, while correcting for age and
gender. We then conducted two MANCOVA to quantify potential
differences between groups for the number of inter-hemispheric
streamlines (long-range connectivity) and the number of stream-
lines connecting each lobe with itself (short-range connecti-
vity), with age, gender and the total number of streamlines as
covariates.

Correlations between gyrification and connectivity
We conducted partial correlations between the average lGI in each
cluster of between-group differences and measures of short- and
long-range connectivity, while correcting for the effects of age,
gender and total number of fibers. For long-range connectivity,
we correlated lGI for each cluster with the inter-hemispheric fibers
corresponding to the lobe where the largest part of the cluster
was located. For the short-range connectivity, we correlated lGI
with the number of intra-lobar fibers in the lobe where the largest
part of the cluster was located. These partial correlations were
conducted separately in ASD and control groups. Given that these
correlations were based on our a priori hypothesis postulating a
relationship between gyrification and underlying connectivity, we
did not correct for multiple comparisons.

Correlations with the clinical phenotype
Finally, we explored how the neuroanatomical differences
observed between the two groups may be related to the clinical
outcome. For that purpose, we conducted partial correlations
between neuroanatomical variables and the scores obtained at the
ADI-R and in the SCQ, correcting for age and gender. In addition,
variables measuring the number of streamlines between regions
of interest were also corrected for the total number of streamlines.
Correlations with clinical phenotype were not corrected for mul-
tiple comparisons.

RESULTS
VOLUMETRIC ANALYSES
We did not observe any significant differences between the
cerebral, cerebellar and subcortical volumes of the groups (all
p > 0.386). Upon further examination of the 34 cortical parcel
volumes, we did not detect any significant patterns of change (left:
Wilks Lambda: 0.042, p = 0.612; right: Wilks Lambda: 0.028,
p = 0.517), nor did we detect pattern differences in the 34
subcortical white matter regions (left: Wilks Lambda: 0.001,
p = 0.087; right: Wilks Lambda: 0.037, p = 0.585). Despite the
trend for a significant pattern of between-group differences in the
MANCOVA corresponding to the left white matter subregions,
none of the individual subregions revealed any significant differ-
ence in the post-hoc analysis.
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FIGURE 1 | Convergent evidence for disrupted connectivity at the level of

inter-hemispheric frontal connectivity in ASD. (A) Example of subdivision
of the five sections of the corpus callosum displayed on a mid-sagittal slice.
(B) Boxplots depicting volumetric measurements for the five sections in the
two groups. The p-values are extracted from the MANCOVA (with correction

for age and gender). (C) Example of tractographic reconstruction where the
inter-hemispheric fibers are subdivided into three groups according to the
cortical regions that they connect. (D) Boxplots comparing the number of
streamlines connecting homologous lobes. The p-values are extracted from
the MANCOVA (correction for age, gender and total number of streamlines).

Results from the corpus callosum analysis are depicted in
Figures 1A, B. We observed significant group differences among
the five sub-regions of the corpus callosum (Wilks Lambda: 0.354,
p = 0.007, F = 5.11), with a selective reduction in the most
anterior part of the corpus callosum in the ASD group compared
to controls (p = 0.030). These results remained significant when
covarying for total intracranial volume or total white matter
volume instead of age and gender, as well as for total white matter
volume, age and gender.

VERTEX-WISE ANALYSES
We did not observe any significant differences in cortical thick-
ness related to diagnosis. However, vertex-wise comparisons of
gyrification revealed four clusters of significant lGI reduction in
patients with ASD compared to controls that remained significant
after correcting for multiple comparisons. As shown in Figure 2,

the clusters were all located in the right hemisphere, in the
inferior parietal region, the lower part of the precentral gyrus,
the inferior frontal gyrus, and the medial parieto-occipital region
(cuneus/precuneus).

TBSS ANALYSES
We found eight clusters of decreased FA in patients with ASD as
compared to controls. The largest cluster of difference was located
in the anterior part of the corpus callosum. The remaining seven
clusters were located in the right hemisphere, no cluster of FA
difference was seen in the left hemisphere. Figure 3 further details
the distribution, location and size of these clusters. When compar-
ing axial and radial diffusivity measurements in the clusters where
FA significantly differed between patients with ASD and controls,
we observed a significant between-group difference for axial dif-
fusivity in only one cluster (cluster H, patients: 9.44e−3 ± 6.73e−5,
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FIGURE 2 | Results of the vertex-wise comparison of lGI between groups. Four clusters of reduced lGI were observed in the group of children and
adolescents with ASD compared to controls after correcting for multiple comparisons.

controls: 8.96e−3 ± 4.59e−5, p = 0.03), whereas significantly
decreased radial diffusivity was observed in all eight clusters in
patients with ASD compared to controls (all p < 0.003).

TRACTOGRAPHIC ANALYSES
We did not observe any difference in the total number of stream-
lines reconstructed from the DTI images (ASD: 103021 ± 10883,
controls: 107331 ± 12769, p = 0.341).

We observed a significant reduction in the total number of
inter-hemispheric fibers in patients with ASD (ASD: 4293 ±
1834, controls: 6276 ± 1771; p = 0.033, F = 5.405). Further-
more, and as demonstrated in Figures 1C, D, we also observed
a significant between-group difference in the regional pattern of
inter-hemispheric fibers (MANCOVA covarying out the effect of
age, gender and total number of fibers: Wilks Lambda: 0.478,
p = 0.010, F = 5.47), showing a selective reduction in the number
of inter-hemispheric frontal fibers (p = 0.002), with a selec-
tive reduction in the number of inter-hemispheric frontal fibers
(p = 0.002), but no significant differences in the inter-
hemispheric parietal and temporo-occipital fibers.

No difference in the pattern of short-range connectivity was
observed between the group of patients with ASD and controls
(Wilks Lambda: 0.600, p = 0.594).

CORRELATIONS BETWEEN GYRIFICATION AND CONNECTIVITY
Examining the relationship between gyrification and connectivity,
we did not observe any significant relationships between the
three clusters located in the frontal lobe and the number of
inter-hemispheric frontal streamlines or in the occipital cluster
and the number of inter-hemispheric occipital streamlines, in

either diagnostic group. However, we found positive correlations
between lGI and the variables measuring short-range connectiv-
ity, in the ASD group only. As depicted in Figure 4, we observed
a significant positive correlation between lGI in all three right
frontal clusters and the number of streamlines connecting the
right frontal lobe to itself (p = 0.043, p = 0.030 and p = 0.004 for
clusters 1, 2 and 3 respectively as numbered on Figure 2). We also
observed a positive correlation between lGI in the right occipital
cluster (cluster 4 on Figure 2) and the number of streamlines
connecting the right occipital lobe to itself (p = 0.010, R = 0.836).
The spatial correspondence of the positive correlation between
gyrification and short-range connectivity is further supported by
the absence of a significant correlation between the three frontal
clusters of lGI differences and the occipital connectivity, and the
absence of a significant correlation between the occipital lGI and
the frontal connectivity (as depicted in Figure 4 with dashed
lines).

CORRELATIONS WITH THE CLINICAL PHENOTYPE WITHIN ASD
Results of the exploratory correlations between clinical scores at
the ADI and SCQ and all variables that showed between-group
differences are presented in Table 1. Briefly, lGI in the posterior
cluster (number 4 in Figure 2) negatively correlated with the
total score obtained on the ADI-R (R = −0.737, p = 0.024),
and the reciprocal social interaction (R = −0.726, p = 0.027)
and communication (R = −0.773, p = 0.015) domains from the
ADI-R. Furthermore, the ADI-R scores in the domain of restric-
tive and stereotyped patterns of behaviors negative correlated neg-
atively with the number of inter-hemispheric fibers (R = −0.784,
p = 0.021) and with the number of inter-hemispheric frontal
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Table 1 | Correlations between clinical scores and neuroanatomical variables with between-group differences in participants with ASD.

ADI: Total score ADI: Reciprocal

social

interactions

score

ADI:

Communication

score

ADI: Restrictive

and stereotyped

patterns of

behavior

ADI: Early

anomalies in

development

SCQ: Total score

Gyrification
lGI in cluster 1 −.005 (p = 0.989) −.216 (p = 0.577) .030 (p = 0.940) .497 (p = 0.173) .056 (p = 0.887) .076 (p = 0.845)
lGI in cluster 2 −.136 (p = 0.728) −.386 (p = 0.305) −.020 (p = 0.959) .451 (p = 0.223) .041 (p = 0.917) −.181 (p = 0.641)
lGI in cluster 3 −.037 (p = 0.925) −.292 (p = 0.446) .045 (p = 0.908) .494 (p = 0.177) .146 (p = 0.708) −.117 (p = 0.764)
lGI in cluster 4 −.737 (p = 0.024) −.726 (p = 0.027) −.773 (p = 0.015) −.043 (p = 0.912) .205 (p = 0.597) −.541 (p = 0.132)

Volumetric measurements
Anterior section of
the corpus callosum

.482 (p = 0.189) .537 (p = 0.136) .649 (p = 0.059) −.325 (p = 0.394) −.419 (p = 0.262) .315 (p = 0.409)

Tractographic measurements
Number of
inter-hemispheric
streamlines

−.345 (p = 0.402) −.165 (p = 0.697) −.317 (p = 0.445) −.784 (p = 0.021) .544 (p = 0.163) −.682 (p = 0.063)

Number of
inter-hemispheric
frontal streamlines

−.390 (p = 0.339) −.241 (p = 0.566) −.309 (p = 0.457) −.779 (p = 0.023) .392 (p = 0.337) −.681 (p = 0.063)

This table provides R-values from partial correlations. Significance level is given in parentheses. Partial correlations accounted for an effect of age and gender on

gyrification and volumetric measurements, as well as for an additional effect of total number of streamlines on tractographic measurements. Significant correlations

at p < 0.05 (uncorrected) are highlighted in bold.

fibers (R = −0.779, p = 0.023). None of the neuroanatomical
variables correlated with the total score obtained on the SCQ.

DISCUSSION
In this study, we applied neuroimaging techniques using T1-
weighted and DTI images in the interest of quantifying morpho-
metric and connectivity differences in a group of children and
adolescents with ASD. We observed: (a) decreased gyrification in
the right inferior frontal region extending into the inferior parietal
region and in the medial parieto-occipital region of patients with
ASD as compared to controls, the latter of which was related to the
severity of social communications deficits in the group of ASD;
(b) convergent evidence from three different analyses for altered
long-range connectivity at the level of inter-hemispheric frontal
fibers: volumetric reduction of the anterior corpus callosum,
reduced FA in the anterior corpus callosum, and a decreased num-
ber of virtual streamlines connecting homologous frontal lobes
which further correlated with the severity of restrictive/repetitive
behaviors; (c) further reduced FA in seven clusters of the right
hemisphere of patients with ASD compared to controls; and (d) a
positive correlation between lGI in the clusters of between-group
differences and short-range connectivity in the corresponding
lobe.

DECREASED GYRIFICATION
We used a validated technique with exquisite resolution to mea-
sure local cortical gyrification across the hemispheres (Schaer
et al., 2008), and observed four clusters of reduced GI in patients
with ASD compared to controls, three of them located in the
frontal lobe. This is in contrast with previous studies using GI in
children, adolescents or adults with ASD, which report either an
increased GI (Hardan et al., 2004; Jou et al., 2010), or an absence

of significant difference (Casanova et al., 2009; Kates et al., 2009;
Meguid et al., 2010). Lower intellectual abilities in our patient
group may explain part of the divergence with previous results,
given that both studies that reported increased GI comprised
participants with higher full-scale IQ scores (means: 105 ± 16
for Hardan et al. (2004), 110 ± 15 for Jou et al. (2010) and
113 ± 15 for Wallace et al. (2013)). However, we believe part
of the difference to relate to the way GI was calculated. Indeed,
the two studies that reported higher GI in the frontal lobe of
subjects with ASD used manual delineation on one single frontal
slice. Aside from the fact that manual tracing may be less reliable
than automated delineation, measuring GI on 2-D sections does
not take into account the inherent 3-D nature of the cortical
surface. 2-D measurement also can be biased by slice orientation
(Zilles et al., 1997) and the presence of buried sulci (Magnotta
et al., 1999), and it does not allow for precise localization of gyral
anomalies in sublobar regions. Other studies that partly addressed
these concerns did not report any significant differences in GI in
patients with ASD compared to controls (Casanova et al., 2009;
Kates et al., 2009; Meguid et al., 2010). Casanova et al. used
manual delineation in 40 randomly selected slices; Kates et al.
applied an automated technique for measuring global and lobar
GI based on 2D sections; and Meguid et al. measured global GI
using three-dimensional cortical reconstructions. The technique
that we use in the present study to measure lGI is automated,
unbiased by slice orientation, and allows the quantification of
gyrification differences at thousands of points over the recon-
structed cortical surface. As a result, by using lGI, we may have
been able to detect gyrification differences in the frontal lobe of
patients with ASD that had previously gone undetected. Studies
using cortical reconstructions in autism corroborate this idea.
They have detected focal changes to sulcal shape with alterations
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FIGURE 3 | Differences in FA between patients with ASD and controls.
Eight clusters of decreased FA in patients with ASD were observed at p <

0.05 (corrected for multiple comparisons). Each cluster was attributed a letter
according to decreasing size. The clusters were centered at the following
MNI coordinates: A: x = 81, y = 145, z = 90 (939 voxels); B: x = 52, y = 104,

z = 104 (725 voxels); C: x = 66, y = 78, z = 101 (470 voxels); D: x = 57, y =
106, z = 129 (186 voxels); E: x = 46, y = 131, z = 112 (137 voxels); F: x = 82,
y = 70, z = 93 (70 voxels); G: x = 43, y = 128, z = 90 (42 voxels); H: x = 60,
y = 65, z = 88 (23 voxels). We did not observe any clusters with increased FA
in patients with ASD compared to controls.

to the sylvian fissure and inferior frontal sulcus (Levitt et al.,
2003), left frontal operculum (Nordahl et al., 2007), and right
intraparietal sulcus (Shokouhi et al., 2012). It is however worth
noting that a recent study using the same technique as in the
present study observed increased gyrification in different regions
of the brain of 39 male adolescents with ASD as compared to
41 controls, namely in bilateral occipital areas as well as in the
left superior precuneus (Wallace et al., 2013). This discrepancy
in the location and direction of gyrification changes using the
same technique suggest either that different developmental mech-
anisms take place in different regions of the brain of affected
patients, or that that demographic characteristics (such as dif-
ferences in age, gender, cognitive level, or symptom intensity)
may have influenced the results. Indeed, it may be the case
that the high clinical heterogeneity observed in patients affected
with autism may be associated with different neurodevelopmental
pathways.

Decreased gyrification, as observed in the present study, is
highly suggestive of reduced cortical expansion during early
brain development, a process that might differentially affect spe-
cific cortical regions. Neuropathological reports have pointed to
abnormal cortical development in ASD, including a higher inci-
dence of cortical dysgenesis, heterotopias and migration abnor-
malities (Avino and Hutsler, 2010; Wegiel et al., 2010). Further
detailed examination revealed that one cell type affected by migra-
tion deficits in young children with ASD is von Economo neurons
(Santos et al., 2011), which are spindle-shaped neurons thought

to play a role in emotional function (Butti et al., 2013) that are
located in the frontoinsular and cingulate cortices. The location of
the von Economo neurons coincides with the location of cluster
3 in the present study (see Figure 2). This anterior fronto-insular
region is attracting increased attention in autism because of its
key role in the “salience network” (Menon and Uddin, 2010).
The anterior insula may have a critical role in processing infor-
mation relevant to social functioning (Uddin and Menon, 2009)
as a sort of “hub” that mediates interactions between cerebral
networks that are processing information related to an external
or internal stimulus. Functional neuroimaging studies tend to
confirm the hypothesis of hypoactivation of the right anterior
insula in autism, as pointed out by a meta-analysis based on 24
functional neuroimaging studies examining social processes for a
total of 276 patients with ASD and 291 controls (Di Martino et al.,
2009).

Two other clusters, in the right inferior frontal gyrus (cluster
2) and in a region extending from the right inferior part of the
precentral gyrus to the inferior parietal region (cluster 1), are also
located in regions that have received attention in ASD. Indeed,
these regions are striking in their correspondence to the location
of the fronto-parietal mirror neuron system, implicated in action
imitation (Rizzolatti and Craighero, 2004). Decreased gyrification
in the inferior fronto-parietal region thus supports altered devel-
opment of the mirror system in ASD during in utero life or the
first months after birth, pointing to a potential mechanism for
early-disrupted abilities to imitate action of others.
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FIGURE 4 | Correlations between gyrification and short-range

connectivity within the group of patients with ASD. Partial
correlations accounting for age, gender and total number of
streamlines were conducted between lGI in the cluster of

between-group differences and the number of intra-lobar streamlines in
the lobe where most of the cluster was located. Significant positive
correlations were observed only in the corresponding lobe (dashed
lines report non-significant relationships).

The final cluster of reduced gyrification (cluster 4) is cen-
tered in the occipital lobe, encompassing the cuneus and the
pericalcarine sulcus, and further extending to the precuneus.
Volumetric reductions have been consistently reported in the pre-
cuneus in structural neuroimaging studies of ASD (Cauda et al.,
2011). The precuneus is a key part of the default mode network
(DMN), which is thought to be concerned with self-referential
and introspective activity, including the ability to understand
others’ intentions (Fair et al., 2008). Resting state paradigms have
received increased recent interest in autism given the crucial role
of the DMN in some aspects of social cognition. It is currently
unclear to what extent the fronto-parietal mirror system (where
we observed decreased lGI in clusters 1 and 2) interacts with
other regions of the social brain, including regions of the DMN.
In an attempt to integrate these different views of the social
brain, (Uddin et al., 2007) postulated that the cortical midline
structures of the DMN and the fronto-parietal mirror-neuron
system may represent two interwoven parts of self-related pro-
cessing and social cognition: the mirror neurons encode physical
aspects of social understanding (motor simulation and imitation
of behaviors) and the midline DMN structures are associated
with sophisticated processing of social interactions. Accordingly,
reduced gyrification in the mirror-neuron system may impair
physical aspects of the self-other relationship, consequently alter-
ing the developmental cascade of the DMN responsible for more

sophisticated social skills, such as empathy and theory of mind.
The fact that cluster 4 extends into the precuneus may also point
to an early defect, on top of which altered cortical maturation sub-
sequently occurs. Indeed, the currently observed inverse relation-
ship between gyrification and the level of autistic symptoms in
the domains of reciprocal social interactions and communication
points to the idea that early cortical development may determine
the subsequent development of these more sophisticated social
skills encoded in the precuneus.

ABSENCE OF CORTICAL THICKNESS OR VOLUME DIFFERENCE
We found reduced gyrification in the absence of differences in
cortical thickness or volume. This absence contrasts with numer-
ous studies that have reported altered cortical volume or thickness
differences in ASD. Most studies have reported increased cortical
volume or thickness in children with ASD (Hardan et al., 2006;
Mak-Fan et al., 2012), whereas studies in adults have yielded
more diverse results. Some studies in adults with ASD have
reported mostly decreased cortical thickness (Hadjikhani et al.,
2006; Jiao et al., 2010; Wallace et al., 2010), some have shown
a co-occurrence of thickening together with thinning (Ecker
et al., 2010, 2013), and at least one has shown mostly thickening
(Dziobek et al., 2010). Volumetric studies have more consis-
tently reported increased volume in children and reduced volume
in adults, supporting the hypothesis of early brain overgrowth
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followed by neurodegenerative changes (Courchesne, 2004).
Indeed, using a cross-sectional design with patients aged 1 to
50, the largest study published to date provides evidence for an
aberrant trajectory of cortical volume changes with age, with a
pattern of early overgrowth during the first years of life, followed
by decreased volume around 7 or 8 years old (Courchesne et al.,
2011). Longitudinal studies confirm this pattern of abnormal cor-
tical development in toddlers with ASD (Schumann et al., 2010)
and of higher rates of cortical loss with age (Hardan et al., 2009).
It should be noted, however, that studies recording abnormal
trajectories of cortical features require large sample sizes, a broad
age range at inclusion, and preferably, a longitudinal design. By
contrast, our small study sample does not have the power to detect
subtle cortical thickness differences that may be further diluted by
complex maturational changes.

CONVERGENT EVIDENCE FOR ALTERED LONG-RANGE CONNECTIVITY,
MOST PROMINENT IN THE FRONTAL REGION
As the largest white matter bundle of the brain, the corpus
callosum represents the most essential component of connectivity,
and more specifically long-range connectivity. Several fMRI and
EEG studies have reported decreased long-range connectivity
(reviewed in Belmonte et al., 2004). Patients with ASD were also
shown to perform poorly on tests of inter-hemispheric transfer
for auditory, visual and motor tasks (Nyden et al., 2004). More
generally, decreased abilities in associative (Nikolaenko, 2001a)
and metaphoric thinking (Nikolaenko, 2001b) were thought to
depend on decreased inter-hemispheric information transfer.
Here, we observed decreased volume of the most anterior part
of the corpus callosum, reduced inter-hemispheric frontal con-
nections, and decreased FA in the anterior corpus callosum, pro-
viding strong multimodal evidence for altered inter-hemispheric
frontal connections in ASD. Our volumetric finding is consistent
with previous studies reporting reduced area of the entire corpus
callosum, with greater magnitude of reduction in its anterior
region (see the meta-analysis by Frazier and Hardan, 2009).
Reduced FA in the corpus callosum is also consistent with many
previous findings reported by others (Alexander et al., 2007;
Noriuchi et al., 2010; Shukla et al., 2010). But, to the best of our
knowledge, only one study reported a reduction in the number of
inter-hemispheric frontal fibers using tractographic reconstruc-
tions in patients with ASD (Thomas et al., 2011). Thomas et al.
observed decreased numbers of streamlines specific to the body in
high-functioning adults with ASD, which further correlated with
ADI scores in the domain of restricted, repetitive and stereotyped
behaviors. The fact that we replicate this correlation (though we
focus on a more anterior, but overlapping, region) provides strong
support for a role for the corpus callosum in repetitive behaviors,
across ages and across IQ.

REDUCED FA
In addition to multimodal evidence for altered inter-hemispheric
connectivity, we also observed seven clusters of decreased FA in
the right hemisphere of patients with ASD compared to controls.
The direction of our results was consistent with most previously
published studies, which show decreased FA, although a few
studies do report increased FA (reviewed in Travers et al., 2012).

Surprisingly, in our small sample of children and adolescents with
ASD, we found reduced FA only in the right hemisphere and did
not detect changes to FA in the left hemisphere. Exclusively right-
sided alterations to gyrification in the same sample of participants
provide initial support for a relationship between white matter
connectivity and cortical folding. However, it was not possible
to detect whether the observed FA differences were related to
differences in the degree of myelinisation or to differences in
the orientation or number of white matter bundles, using voxel-
wise measurements of FA. The spatial correspondence of altered
gyrification and white matter microstructure in the same hemi-
sphere led us to further examine the relationship between cortical
folding and connectivity using more sophisticated tractographic
measurements.

CORRELATION BETWEEN GYRIFICATION AND CONNECTIVITY
We did not observe a relationship between long-range connec-
tivity and gyrification, as may have been expected from Van
Essen’s hypothesis that mechanical tension exerted on long con-
nections shapes cortical folds (Van Essen, 1997). However, three
out of the four clusters with decreased gyrification were mostly
located in the frontal region, i.e., the region where an important
decrease in inter-hemispheric connectivity was observed. The
co-occurrence of decreased long-range connections in regions
of altered gyrification points to a possible relationship between
these two anatomical variables, but the mechanisms governing
their association is likely to be more complex than what a linear
regression can capture.

We did, however, observe significant positive correlations
between lGI and short-range connectivity in patients with ASD,
but not in controls. This positive correlation means that higher
lGI was observed in patients with higher intra-lobar (short-range)
connectivity. According to Van Essen’s theory, it may also be
that short-range connections affect the creation of cortical folds
during early brain development by reducing the distance between
strongly interconnected regions from the two banks of one gyrus,
thereby permitting compact wiring of the brain. Accordingly, the
gyrification alterations observed in the present study may be a
compensatory way of coping with altered connectivity in patients
with ASD.

LIMITATIONS AND CONCLUSION
The main limitation of our study is its small sample size, restrict-
ing our ability to identify age-related maturational changes or
subtle brain-behavior relationships. We realize that, in a hetero-
geneous disorder such as ASD, such small sample size may lead
to observation of findings that may not be representative of the
variability observed across the spectrum. However, despite the
small sample size, we demonstrate the feasibility of multimodal
studies in autism, bridging the gap between reports of altered
cortical morphometry and findings of abnormal connectivity
patterns. These preliminary results provide initial support for
the idea that a higher degree of short-range connectivity alters
the shape of the brain in patients with ASD during early neural
development, and are an encouraging starting point for exploring
this issue in larger samples of children, adolescents or adults with
autism.
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We examined whether modulation of functional connectivity by cognitive state differed
between pre-adolescent children with Autism Spectrum Disorders (ASD) and age and
IQ-matched control children. Children underwent functional magnetic resonance imaging
(fMRI) during two states, a resting state followed by a sustained attention task. A
voxel-wise method was used to characterize functional connectivity at two levels,
local (within a voxel’s 14 mm neighborhood) and distant (outside of the voxel’s 14 mm
neighborhood to the rest of the brain) and regions exhibiting Group × State interaction
were identified for both types of connectivity maps. Distant functional connectivity of
regions in the left frontal lobe (dorsolateral [BA 11, 10]; supplementary motor area
extending into dorsal anterior cingulate [BA 32/8]; and premotor [BA 6, 8, 9]), right
parietal lobe (paracentral lobule [BA 6]; angular gyrus [BA 39/40]), and left posterior middle
temporal cortex (BA 19/39) showed a Group × State interaction such that relative to the
resting state, connectivity reduced (i.e., became focal) in control children but increased
(i.e., became diffuse) in ASD children during the task state. Higher state-related increase
in distant connectivity of left frontal and right angular gyrus predicted worse inattention
in ASD children. Two graph theory measures (global efficiency and modularity) were
also sensitive to Group × State differences, with the magnitude of state-related change
predicting inattention in the ASD children. Our results indicate that as ASD children
transition from an unconstrained to a sustained attentional state, functional connectivity
of frontal and parietal regions with the rest of the brain becomes more widespread
in a manner that may be maladaptive as it was associated with attention problems in
everyday life.

Keywords: fMRI, intrinsic, spontaneous, task, ASD

INTRODUCTION
Disturbed functional connectivity across distant regions is
posited to mediate functional impairment in Autism Spectrum
Disorders (ASD). Functional impairment in ASD comprises
symptoms of ASD (e.g., difficulty with social interaction and
communication, repetitive and restricted behaviors and interests)
as well as problems with executive function, the goal-directed reg-
ulation of attention, actions and thoughts (Hill, 2004; Kenworthy
et al., 2005, 2008). While executive dysfunction is not part of
ASD diagnosis, it is associated with symptom presentation (e.g.,
Lopez et al., 2005; Kenworthy et al., 2009; Yerys et al., 2009a)
and decreased independence and poor outcomes in adulthood
[see review Hume et al. (2009)]. An emerging theoretical view of
ASD is that frontal-posterior temporal synchronization of blood-
oxygen level dependent (BOLD) signal is reduced in ASD subjects
while they are engaged in social/communicative or executive
functions (Just et al., 2012). Such “underconnectivity” has also
been observed in spontaneous low-frequency BOLD fluctuations
while subjects are not engaged in a directed task, a state of uncon-
strained cognition that is referred to as “resting” (Cherkassky
et al., 2006; Kennedy and Courchesne, 2008; Assaf et al., 2010;

Weng et al., 2010; Wiggins et al., 2011; Gotts et al., 2012; Von dem
Hagen et al., 2012). In addition to evidence supporting under-
connectivity in ASD, greater than normal functional connectivity
(“overconnectivity”) has also been noted, either across cortical
regions or between subcortical and cortical regions, during task-
evoked (Noonan et al., 2009; Shih et al., 2011; Lai et al., 2012) as
well as resting (Monk et al., 2009; Di Martino et al., 2011) states.
Cognitive conditions that yield abnormally weaker or stronger
functional connectivity in ASD are currently not well understood
(Müller et al., 2011).

Functional connectivity may be atypical in ASD not only with
respect to overall strength but also in its modulation by cog-
nitive state. Studies of healthy adults show that the topology
of functional network organization is remarkably similar dur-
ing task-evoked and resting states. Networks delineated from
spontaneous BOLD fluctuations while subjects rest (termed
intrinsic connectivity networks) conform to activation pat-
terns observed during visual, auditory, sensorimotor, executive,
and self/internally-oriented tasks (Smith et al., 2009) and pre-
dict individual differences in task-evoked activation and asso-
ciated performance (Fox et al., 2006; Mennes et al., 2010;
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Gordon et al., 2012c). Further, intrinsic connectivity networks
are preserved during sleep (Fukunaga et al., 2006) and light
anesthesia (Vincent et al., 2007; Greicius et al., 2008), suggest-
ing that they do not depend upon conscious cognition. While
their topology is preserved across states, their strength dif-
fers in several ways: First, intrinsic connectivity was stronger,
within networks and in anticorrelation across networks, dur-
ing awake than non-conscious states [see review Heine et al.
(2012)]. Second, within-subjects’ comparison showed that func-
tional connectivity became stronger from resting to a task-evoked
state selectively, in regions activated during the task such as
auditory (Arfanakis et al., 2000), visual (Arfanakis et al., 2000;
Hampson et al., 2004; Nir et al., 2006), or motor (Arfanakis
et al., 2000; Jiang et al., 2004). Third, functional connectivity
decreased across some networks during task performance rela-
tive to a resting state (Fransson, 2006; Gordon et al., 2012b),
suggesting that specific networks became more segregated when
subjects were in a cognitive state constrained by a task. Fourth,
the extent to which functional connectivity changed from resting
to task states, particularly across networks, varied across indi-
viduals based upon dopamine neurotransmitter function and
traits of distractibility and impulsivity (Gordon et al., 2012b).
Together, these findings support the notion that functional con-
nectivity is dynamic, and its modulation by cognitive state is
associated with individual variability in attentional function.
Whether state-related changes in functional connectivity are
atypical in ASD and whether they predict attentional function is
unknown.

The goal of the present study was to examine whether changes
in functional connectivity, from a resting to a sustained atten-
tion state differ between ASD and typically developing (control)
9–13 year-old children. We focused on this narrow age range
later in childhood in order to minimize developmental differences
and maximize chances of acquiring two motion-free back-to-back
fMRI runs from each child. We measured the strength of func-
tional connectivity using a voxel-wise method that distinguished
local connectivity, defined as within a voxel’s 14 mm neighbor-
hood, and distant connectivity, defined as connectivity of a voxel
to the rest of the brain, outside of its 14 mm neighborhood. Such a
voxel-wise data-driven method allows testing predictions without
regard to a priori functional divisions, an approach that distin-
guishes the present study from past functional connectivity stud-
ies of ASD. For distant connectivity, we predicted a Group × State
interaction such that control but not ASD children would mod-
ulate connectivity in response to the sustained attention state. As
adult findings reviewed above showed that connectivity of selec-
tive networks became stronger during a task relative to a resting
state, we reasoned that in control children, such a change sugges-
tive of focal connectivity networks (i.e., task-relevant connections
get stronger while task-irrelevant connections get weaker) ought
to be expressed as a net reduction in our estimate of distant con-
nectivity, which considers all voxels in the brain. In contrast, in
light of the many underconnectivity findings in ASD during both
task-evoked and resting states reviewed above, we expected over-
all weaker distant connectivity and little change from resting to
task states. Further, we also explored whether whole-brain metrics
of connectivity using two graph theory measures, global efficiency

and modularity, would be sensitive to Group × State interac-
tion. Global efficiency, measured by path length and reflecting
network integration, characterizes the average “speed” of infor-
mation transfer between any pair of nodes (Latora and Marchiori,
2001; Achard and Bullmore, 2007), and was lower in ASD sub-
jects in a resting state magnetoencephalography study (Tsiaras
et al., 2011). Modularity, on the other hand, reflects network
segregation, through defining how well an entire network is orga-
nized into modules of densely interconnected nodes (Newman,
2006), and was higher in ASD subjects in a resting state elec-
troencephalography study (Barttfeld et al., 2011). For regions
(and graph theory metrics) showing the predicted interaction,
we examined whether the state-related change in functional con-
nectivity was related to attention problems measured by the
inattention score of the ADHD Rating Scale (DuPaul et al., 1998).
We focused upon attention, rather than hyperactivity/impulsivity
or ASD symptoms, as it is most closely related to sustained atten-
tion, the task-state examined here. Due to the lack of past work
on local connectivity changes by state in healthy or ASD adults
or children, we tested for the same Group × State interaction but
made no predictions.

METHODS
SUBJECTS
Thirty-one children aged 9–13 years, 15 with a diagnosis of ASD
(3 left handed and 12 right handed) and 16 control children (all
right handed), matched for age, IQ, and gender (see Table 1), par-
ticipated in the study after complying with consenting guidelines
of the Georgetown University and Children’s National Medical

Table 1 | Demographic characteristics (Mean and standard deviation

in parenthesis).

ASD Control

N 15 16

Gender (females) (χ2 = 1.06,
p = 0.30)

3 7

Age (in years) (p = 0.96) 11.2 (1.4) 11.2 (1.3)

Full scale IQ (p = 0.26) 118.7 (11.5) 123.0 (9.2)

Performance IQ (p = 0.17) 112.7 (12.9) 118.5 (9.8)

Verbal IQ (p = 0.44) 120.4 (11.3) 123.5 (11.0)

ADHD Rating scale inattentive
raw score (0–25) (p < 0.0001)

13.9 (6.2) 4.1 (3.5)

ADHD Rating scale
hyperactive/impulsive raw score
(0–25) (p < 0.001)

8.6 (5.5) 2.4 (3.0)

ADOS Communication total (1–7) 3.0 (1.8) –

ADOS Social interaction total
(2–13)

7.5 (3.1) –

ADOS Stereotypical behaviors
and restricted interests total (0–5)

1.8 (1.7) –

ADI-R Total verbal score (7–24) 16.0 (4.8) –

ADI-R Total social interaction
score (11–28)

19.9 (5.5) –

ADI-R Restrictive interests and
repetitive behaviors score (3–7)

4.9 (1.3) –
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center Institutional Review Boards. This sample was retained after
applying criteria for head motion, from a total sample of 24 ASD
and 26 control children. ASD children were recruited through the
Center for ASD at Children’s National Medical Center. Control
children were recruited from the Washington DC area commu-
nity through advertisements at public venues and pediatrician
offices.

ASD case classification followed diagnosis by a trained
and experienced clinician based on the DSM-IV-TR criteria
(American Psychiatric Association, 2000) and was confirmed
with the Autism Diagnostic Interview—Revised (ADI-R) (Lord
et al., 1994) and the Autism Diagnostic Observation Schedule—
Generic (ADOS-G) (Lord et al., 2000) following the criteria
established by the NICHD/NIDCD Collaborative Programs for
Excellence in Autism (Lainhart et al., 2006). These criteria require
that the child meet ADI-R cutoff for autism in the social domain
and at least one other domain (communication and/or repeti-
tive behaviors and restricted interests), and meet ADOS cutoff
(autism or ASD) for the combined social and communication
score. One ASD subject met criteria for an ASD diagnosis on the
ADI and ADOS, and by clinical diagnosis two years prior to this
study, but on re-evaluation showed significant improvement on
the ADOS.

Exclusion criteria included: (1) Full-Scale IQ below 80 as mea-
sured by the Wechsler Intelligence Scale for Children (WISC-IV)
or Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler,
1999); (2) Other neurological diagnosis(e.g., epilepsy) based on
parent report; (3) Psychiatric diagnosis based on Child and
Adolescent Symptom Inventory—4R (Lavigne et al., 2009) for
control children; and (4) Contraindications for MRI such as
metallic implants or pregnancy. We used the WISC-IV General
Ability Index (GAI) as a measure of Full Scale IQ. The GAI pro-
vides a comparable approximation of overall intellectual ability
as represented by the WISC-IV Full-Scale IQ score, yet is less sen-
sitive to the influence of working memory and processing speed
(Prifitera et al., 1998; Weiss et al., 1999; Saklofske et al., 2004). For
participants with WASI scores, we used the Tellegen and Briggs
(1967) formula to convert WASI subtest scores into WISC-IV
Index scores. In addition, we collected the ADHD Rating Scale:
Home Version from parents (DuPaul et al., 1998). Five children
in the ASD group were on stimulants that were withheld for at
least 24 h before scanning; in addition one child with ASD was
on non-stimulant and anti-anxiety medications that could not be
withdrawn. All remaining children were not medicated.

IMAGING PROTOCOL
Echo-planar images were acquired on a Siemens Trio 3T with
parameters: 3 mm isotropic resolution (3.0 × 3.0 × 2.5 mm),
TR = 2000 ms, TE = 30 ms, flip angle = 90◦, FOV = 192 ×
192 mm. Each child underwent two functional runs, a resting
state run for 5:14 min in which children were asked to rest with
eyes open and stay awake, followed by a task run during which
children performed a sustained attention task modified from Zink
et al. (2003). Children were instructed to focus on the center of
the screen and press a button with their right hand for a tri-
angle (target stimuli) among serially presented squares, circles,
and rectangles, and to ignore anything else that may come up

elsewhere on the screen. Each stimulus was presented for 750 ms
within a 2000 ms interstimulus interval. Targets appeared on 25%
of the trials and the remaining trials were non-targets, requiring
no motor response. Of these non-target trials, 25% were pre-
sented with the central stimuli only and on the remaining trials,
a distracter, a small flickering shape was flashed in the periph-
ery in one of the four corners of the display. On half of these
distracter trials, the flickering shape was an open circle, whereas
on the remaining half of the distracter trials, the shape was vari-
able (e.g., star, diamond) and colorful. Therefore, the breakdown
of the types of trials was 25% target, 25% non-target without
distracter, 25% non-target with familiar distracter, and 25% non-
target with novel distracter. The task consisted of 168 total trials
presented in an event-related design with appropriate jitter deter-
mined by Optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq/)
and lasted 5:46 min. Trial types are not pertinent to the present
results as they were regressed out from the connectivity analy-
sis, and therefore, the only difference in connectivity between the
resting and task runs was driven by the attentional state of the
subject, unconstrained in the resting run and sustained in the
task run. Structural images were also acquired for each subject,
with a high resolution sagittal T1-weighted structural scan using
a 3D MPRAGE sequence with a scan time of 8:05 min and the fol-
lowing parameters: TR = 2530 ms, TE = 3.5 ms, 256 × 256-mm
FOV, 176-mm slab with 1-mm-thick slices, and a 7◦ flip angle.
Head motion was minimized by foam cushions padding the space
between the subject’s head and the headcoil.

IMAGE PREPROCESSING
Images were processed in SPM8 (Wellcome Department of
Cognitive Neurology, London, UK) using MATLAB (Version 7.1
Mathworks, Inc., Sherborn, MA) for both rest and task runs. The
first four time points were excluded to allow for signal stabi-
lization. Images were corrected for slice timing and translational
and rotational motion by realigning to the first image of the
session with INRIAlign (Freire et al., 2002). Images were then
normalized to the SPM8 EPI template and resliced to 4 mm for
computational efficiency, low pass filtered to exclude frequen-
cies higher than 0.08 Hz, followed by spatial smoothing with
4 mm FWHM. Contributions of motion and physiological noise
to the time course of each voxel were removed by including the
six motion parameters, signal from ventricle and white matter
regions of interest with their respective first temporal derivatives,
as regressors of no interest (Wise et al., 2004; Birn et al., 2006;
Van Dijk et al., 2010). Further, constant offsets and linear trends
were also removed. For the task run, an additional regressor of
task conditions was included as being of no interest in order to
prevent inflation of functional connectivity estimates by activa-
tion differences associated with task conditions (e.g., distracter
present vs. absent trials; motor response vs. no motor response).
If task conditions are not regressed out, even regions with no
moment-to-moment correlations would appear functionally con-
nected because subjects were responding to task conditions over
the course of trials [see Jones et al. (2010) for discussion of this
point]. Thus, this preprocessing step made the resting and task
data comparable, differing only in the subjects’ cognitive state
[following Gordon et al. (2012a,b)]. The observed pattern of
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results did not change when task conditions were not regressed
out (See Supplementary Materials).

To further restrict the effect of motion on functional con-
nectivity estimates, volumes with greater than 0.5 mm framewise
displacement (FD) or temporal derivative of timecourses-root
mean square variance over voxel (DVARS) greater than.5% of
the whole brain mode value were excluded (as recommended
by Power et al. (2012). This “scrubbing” procedure retained
120 timepoints (4 min) for each child for further analysis. For
retained volumes, mean FD did not differ between control (Rest:
M = 0.158 mm, SD = 0.061 mm; Task: M = 0.167 mm, SD =
0.090 mm) and ASD (Rest: M = 0.171 mm, SD = 0.071 mm;
Task: M = 0.151 mm, SD = 0.069 mm) children during rest (p =
0.58) or task (p = 0.57); further main effect of state (p = 0.63)
and the group × state interaction was not significant (p =
0.16) indicating that head micromovements did not depend on
state. Further, the effects of any residual micromovements were
removed by including Mean FD as a regressor in the second-level
group analysis [following Satterthwaite et al. (2012)].

LOCAL AND DISTANT CONNECTIVITY STRENGTH
Following Sepulcre et al. (2010), the resulting smoothed images
were used to map the local and distant functional connectiv-
ity. The time course of each voxel within a whole-brain mask
excluding the cerebellum was correlated to every other voxel’s
time course, resulting in an n × n correlation matrix, where
n is the dimension of the whole-brain mask (n = 33839). The
correlation calculation is based on Pearson correlation coeffi-
cients (r) and thresholded at p = 0.001 FDR corrected at the
individual level, to exclude less reliable pairwise connections
[following Buckner et al. (2009)], resulting in a r threshold
range of 0.32–0.34 across individuals, after retaining only posi-
tive correlations. For each subject, a resting and task functional
connectivity map was computed by averaging the r-to-Z Fisher
transformed correlation values, for each voxel to voxels inside
(for local connectivity map) and outside (for distant connec-
tivity map) of a 14 mm radius. A 14 mm radius was chosen
following Sepulcre et al. (2010) as they observed stable estimates
of local connectivity for neighborhood radius values greater
than 10 mm and no significant effect on distant connectivity
estimates for radius more than 10–14 mm. For discussion of
the effects of neighborhood threshold, mask, smoothing ker-
nels and r threshold see Buckner et al. (2009) and Sepulcre
et al. (2010). We used connectivity degree weighted by strength
(taking both the count of how many links connected to one
voxel and their connectivity strength into account– see formu-
lae in Supplementary Materials) as our connectivity estimate
rather than connectivity degree alone as used by Sepulcre et al.
(2010).

In order to identify regions where group differences in con-
nectivity depended on cognitive state, we tested for Group (ASD,
Control) X State (rest, task) interaction in second-level anal-
ysis. Subject-specific local and distant functional connectivity
maps were entered into separate ANOVA models in SPM8 with
Group and State as categorical variables and age and Mean FD
as covariates of no interest. This analysis was thresholded at
p < 0.05 corrected for multiple comparisons based on Monte

Carlo simulation (Ward, 2000), which established the correc-
tion threshold at height p < 0.001, k = 5 voxels (for voxel size
of 64 mm3). For clusters that survived the threshold, func-
tional connectivity values were extracted using MarsBaR tool-
box (Brett et al., 2002) from both resting and task runs and
graphed to identify the nature of Group and State differences.
Further, in regions showing Group × State interaction, we exam-
ined whether the magnitude of state-related functional con-
nectivity change was related to inattention. For this analysis,
a difference score was computed by subtracting the functional
connectivity values from the Resting and Task runs and these
difference scores were correlated with the inattention scores
from the ADHD Rating Scale, separately for ASD and control
children.

To visualize the change in distant functional connectivity pat-
terns from resting to task states, we conducted a seed-based
connectivity analysis using regions showing Group × Task inter-
action as seeds. For each subject at each state, the average
timecourse of each significant seed cluster was extracted using
MarsBaR and correlated with the timecourse of all other voxels
in the brain; r values were converted to Z using Fisher’s trans-
formation. During the correlation calculation, we also regressed
out signals of no interest, including timecourses from ventricle,
white matter and six motion parameters with their respective first
temporal derivatives. Then an averaged group map for each state
was generated and visualized (at a range of thresholds 0.1–0.4)
on the cortical surface using the population-average, landmark-
and surface-based (PALS) surface and plotted using Caret soft-
ware (Van Essen, 2005). These results are depicted in Figures 1–4.
This analysis allowed us to see the nature of change in the pattern
of distant connectivity across states.

GLOBAL GRAPH THEORY MEASURES
We calculated two measures of network topology on a voxel-level
graph, global efficiency and modularity, using the brain con-
nectivity toolbox created by Sporns and colleagues (https://sites.
google.com/site/bctnet/measures/list); the images were down-
sampled to 6 mm voxel size for computational efficiency [see
Rubinov and Sporns (2010) and formulae in Supplementary
Materials]. These graph measures were calculated by generating
the undirected binary whole brain graph (excluding cerebellum
as mentioned before), through thresholding the 9736 × 9736 cor-
relation matrix (each 6 mm3 voxel to every other voxel) with
the same FDR-corrected r threshold used for calculating local
and distant connectivity. We also examined the effect of lower
r thresholds (0.2, 0.1 respectively) on the two graph measures
(see Supplementary Materials) to show that our findings were not
biased by more stringent r threshold selection. For each subject,
global efficiency and modularity were calculated for both the rest-
ing and task runs and entered into separate ANOVA models in
R (http://cran.r-project.org) with Group and State as categorical
variables with age and mean FD as covariates of no interest similar
to the local/distant connectivity analysis above. Similarly, we also
examined whether the magnitude of state-related change in global
efficiency and modularity (Task—Resting difference) correlated
with the inattention score of the ADHD Rating Scale, separately
in the two groups.
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FIGURE 1 | Regions showing Group × State interaction for distant connectivity. Each region is identified with a number on the brain image in the top left
corner. The corresponding graphs showing the interaction and correlation with inattention scores in the ASD group are identified with the same number.
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FIGURE 2 | Seed-based connectivity maps of distant functional

connectivity patterns in resting and task states, for three clusters

showing Group × Task interaction: left orbital frontal gyrus (BA 11) (left

panel), left middle frontal gyrus (BA 10) (middle panel) and left premotor

(BA 6/9) (right panel). Region numbers 1–3 on the left corner in the brain
image correspond to the region number in Figure 1.

FIGURE 3 | Seed-based connectivity maps of distant functional

connectivity patterns in resting and task states, for three clusters

showing Group × Task interaction: left premotor (BA 8) (left panel), left

premotor (BA 6) (middle panel) and SMA (BA 32/8) (right panel). Region
numbers 4–6 on the left corner in the brain image correspond to the region
number in Figure 1.

RESULTS
BEHAVIOR
For the task run, groups did not differ in target hits [ASD:
M = 96.2%, SD = 8.0%; Controls: M = 100%, SD = 0%,
t(14) = 1.9, p = 0.08] and false alarms [ASD: M = 0.08%,
SD = 0.3%; Controls: M = 0.2%, SD = 0.5%, t(25.7) = 1,

p = 0.33]. However, target response was slower in ASD
than control children [ASD: M = 602.1 ms, SD = 77.6 ms;
Controls: M = 513.2 ms, SD = 70.6 ms, t(28.3) = 3.3,
p = 0.002]. Mean ADHD Rating scores for Inattention
[t(21.7) = 5.4, p < 0.0001] and Hyperactivity-impulsivity
[t(21.4) = 3.9, p < 0.001] were higher in ASD than control
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FIGURE 4 | Seed-based connectivity maps to understand distant

functional connectivity patterns in resting and task states, for three

clusters showing Group × Task interaction: paracentral Lobule (BA 6)

(left panel), right Angular Gyrus (BA 39/40) (middle panel) and Posterior

MTG (BA 19/39) (right panel). Region numbers 7–9 on the left corner in the
brain image correspond to the region number in Figure 1.

children, indicating worse attentional function in ASD (see
Table 1).

LOCAL AND DISTANT FUNCTIONAL CONNECTIVITY
While no regions showed a significant Group × State interac-
tion for local connectivity, left frontal, right parietal, and left
posterior temporal cortices showed the interaction in distant con-
nectivity (Figure 1). In left frontal cortex, there were six clusters,
a medial one including dorsal anterior cingulate extending into
Supplementary Motor Area (SMA) (BA 32/8), and five lateral
ones including dorsolateral prefrontal (middle frontal gyrus, BA
10; orbital gyrus, BA 11), and three in premotor cortex (BA 8,
6, 6/9). In right parietal cortex, there were two clusters, a dorso-
medial one in paracentral lobule (BA 6) and an inferior lateral
one near angular gyrus (BA 39/40). The final posterior cluster
was in left posterior middle temporal gyrus (BA 19/39). As can
be seen in graphs in Figure 1 (cluster information in Table 2), in
each of these regions, distant connectivity estimates were reduced
in control children but increased in ASD children from resting
to task state (See Table S1 for summary of mean, standard devi-
ation and p-values in Supplementary Materials). Upon repeating
the same analysis without regressing out trial conditions from the
task run, similar Group × State interaction regions were found as
above but with three exceptions—the paracentral lobule and BA
6 clusters did not survive the corrected threshold and the BA 6/9
cluster became larger (19 voxel vs. 16 voxel) (see Table S2 for sum-
mary of mean, standard deviation and p values in Supplementary
Materials).

Seed-based connectivity maps for each of these regions showed
that the connectivity map was more focal (i.e., smaller areas in the
red-yellow intensity range) during the task relative to the resting

Table 2 | Regions showing Group (ASD, Control) × State (Resting,

Sustained attention task) interaction for distant functional

connectivity.

Region MNI coordinates Cluster

size (mm3)

Peak

Z -score
x y z

Left Orbital frontal
gyrus (BA 11)

−18 44 −22 320 3.72

Left Middle frontal
gyrus (BA 10)

−42 48 6 384 3.82

Left Premotor (BA
6/9)

−42 12 38 1024 3.70

Left Premotor (BA 8) −26 20 50 512 4.26

Left Premotor (BA 6) −38 4 58 384 4.36

Medial SMA (BA 32/8) −2 24 46 384 3.57

Medial Paracentral
lobule (BA 6)

−2 −20 70 320 3.34

Right Angular gyrus
(BA 39/40)

50 −60 38 320 4.66

Left Posterior MTG
(BA 19/39)

−46 −80 18 512 3.87

run, for the control group. In contrast, for the ASD group, the
connectivity map was more diffuse (i.e., larger areas in the red-
orange intensity range) during the task relative to the resting run
(See Figures 2–4); Figures showing difference maps (t-test p <

0.005, 5 voxels) comparing groups at each state (Figures S1–S3)
and states for each group (Figures S4–S6) are in Supplementary
Materials.
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GLOBAL GRAPH THEORY MEASURES
Group × State interaction was observed in global efficiency
[F(1, 29) = 7.78, p = .009]; post-hoc t-tests showed that global
efficiency decreased from resting to the task run in control chil-
dren [t(15) = 2.72, p = 0.016] but did not change significantly in
ASD children [t(14) = 0.96, p = 0.36] (See bar graph in Figure 5).
Further, the groups did not differ significantly in global efficiency
during the resting [t(22, 7) = 1.3, p = 0.21] or task [t(26, 7) =
1.22, p = 0.23] runs.

Modularity also showed a Group × State interaction
[F(1, 29) = 9.45, p = 0.005]; post-hoc t-tests showed that mod-
ularity decreased in ASD children [t(14) = 2.62, p = 0.02] but
did not change significantly in control children [t(15) = 1.5, p =
0.15] (See bar graph in Figure 5). Further, ASD children had
higher modularity than controls [t(23.5) = 2.31, p = 0.03] during
the resting run, but the groups did not differ during the task run
[t(28.8) = 0.85, p = 0.40]. These observed patterns did not change
when task conditions were not regressed out (See Table S3).

CORRELATION OF STATE-RELATED CHANGE IN DISTANT
CONNECTIVITY WITH INATTENTION SCORES
The magnitude of increase in distant connectivity from resting
to the task state in clusters showing Group × State interaction
correlated positively with the inattention scores in ASD chil-
dren, indicating that those with greater attention problems in
everyday life showed a stronger increase in distant connectiv-
ity from resting to the task run (see scatterplots in Figure 1).
Specifically, correlation was significant in dorsolateral prefrontal
(BA 11: r = 0.73, p = 0.002; BA 10: r = 0.72, p = 0.003), pre-
motor (BA 8: r = 0.54, p = 0.037; BA 6/9: r = 0.67, p = 0.006),
supplementary motor (BA 32/8: r = 0.59, p = 0.021), and in
right angular gyrus (BA 39/40: r = 0.62, p = 0.013). In the
remaining three clusters, premotor (BA 6, r = 0.38, p = 0.16),

paracentral lobule (r = 0.49, p = 0.064), and middle temporal
(r = 0.48, p = 0.068), the correlation did not reach significance.
The amount of task-related increase of global efficiency (r = 0.53,
p = 0.044) and decrease of modularity (r = −0.67, p = 0.007)
in ASD children also correlated with inattention scores (see scat-
terplots in Figure 5). Correlations were not significant in control
children (ps > 0.077), for either regions showing Group × State
interaction or graph theory measures.

DISCUSSION
We used a voxel-wise method to characterize local and dis-
tant functional connectivity in two cognitive states, resting
and sustained attention, in pre-adolescent children with ASD
and control children. Results showed that state-related changes
in distant functional connectivity differed between groups in
prefrontal, premotor, parietal, and posterior temporal cortical
regions known to be associated with cognitive control and spa-
tial attention. In these regions, distant connectivity, defined by
the weighted strength of each voxel’s temporal correlation with
all voxels in the brain outside of its local neighborhood, increased
in ASD children but reduced in control children, during sus-
tained attention relative to a preceding resting state. Seed-based
maps further confirmed that as hypothesized, reduced distant
connectivity in control children reflected a more focal network
topology during task than during the resting state. In contrast,
contrary to our hypothesis, ASD children showed increased dis-
tant connectivity, reflected in a more diffuse network topology,
during task than during the resting state. The magnitude of state-
related increase in distant connectivity of prefrontal, premotor,
and lateral parietal regions correlated positively with ASD chil-
dren’s inattention as measured by parent report on the ADHD
Rating Scale. The resting versus task state comparison represents
a distinction between attention that is unconstrained relative to

FIGURE 5 | Graphs depicting Group x State interaction for graph theory measures and correlation of the magnitude of state-related change

(Task-Rest) with inattention scores in the ASD group.
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that which is constrained by task-goals (e.g., monitoring for a
target shape), respectively. As ASD children transition between
the unconstrained state to a sustained attention demand, func-
tional connectivity of frontal and parietal regions becomes more
widespread, a property that may be maladaptive as it predicted
greater attention problems in everyday life.

Some methodological considerations are important to note
for interpreting the observed results. First, distant connectivity
maps represent moderately high positive correlations (∼0.33)
between voxels. Further, global signal regression was not per-
formed and therefore, positive/negative correlation value distri-
butions were not altered during preprocessing (Murphy et al.,
2009). Thus, interpretation of the observed results is limited to
state-related changes in positive functional connectivity. Second,
head motion was addressed using “scrubbing” procedures rec-
ommended by Power et al. (2012), resulting in retaining 4 min
of data in each run for each child. While longer durations are
desirable, 4 min is adequate to yield reliable connectivity esti-
mates (Van Dijk et al., 2010). Residual motion was further
addressed by using mean FD as a regressor in second-level
analysis. As the number of volumes removed and mean FD
did not differ between groups, the observed results cannot be
attributed to differences in head motion. Third, the sustained
attention task included manipulation of distracting informa-
tion. As our primary aim was to examine effects of cognitive
state, task conditions were regressed out, in order to ensure that
group differences in connectivity were not driven by differen-
tial response to distraction. Importantly, repeating the analysis
without regressing out task conditions resulted in a similar pat-
tern of state-related group differences (Table S2), suggesting that
the observed group differences were not driven by manipulation
of task conditions. Fourth, scan order was fixed, with the rest-
ing state run acquired immediately before the task run. Order
was not counterbalanced because pre-task and post-task rest-
ing state is not identical as task-related functional connectivity
persists into the subsequent resting state, suggestive of a cogni-
tive aftereffect (Gordon et al., 2012a). Fifth, our sample sizes of
15/16 children per group are relatively small due to our design
requiring two back-to-back fMRI runs satisfying strict motion
criteria from the same child. Nonetheless, it is important to note
that the small samples limit the generalizability of the observed
results.

Distant but not local functional connectivity was sensitive to
group differences in modulation by cognitive state. Efficient cor-
tical processing is posited to reflect the balance of connectivity
within local regions supported by U-fibers, and across disparate
regions supported by long-range white matter tracts (Mesulam,
1998; Schmahmann et al., 2008). While both types of connectiv-
ity are present throughout cortex, regions differ in their dominant
(e.g. local or distant) connectivity properties. Local hierarchi-
cal connections are more representative of sensory cortical areas
whereas association cortices such as prefrontal, parietal, lateral
temporal, and limbic/paralimbic, have more long-range dis-
tributed connections (Felleman and Van Essen, 1991; Mesulam,
1998). In a study with healthy adults, Sepulcre et al. (2010)
showed that the local/distant processing topology was paralleled
in voxel-wise functional connectivity of low-frequency BOLD

signals such that visual and somatosensory cortices showed higher
local connectivity whereas association cortices showed higher
distant connectivity. Further, while performing a semantic clas-
sification task, local and distant connectivity patterns of regions
relevant to that task changed relative to a resting state. Here, we
found that any state-related changes in local connectivity did not
differ between ASD and control children, at least at a threshold
that corrected for multiple comparisons. The size of the local
neighborhood, 14 mm sphere, was selected based upon Sepulcre
et al.’s (2010) recommendation as being optimal for distinguish-
ing regional topography. While that recommendation is based
upon adult brain size, it applies to children of the ages exam-
ined here as normalization of pediatric brain images to adult
stereotactic space has been validated in children as young as 7
years (Burgund et al., 2002; Kang et al., 2003). Lack of significant
group differences in state-related modulation of local connec-
tivity suggests that local processing as reflected in voxel-wise
BOLD temporal correlations is typical in ASD, at least in the con-
text of transitioning to a relatively easy sustained attention task
state.

Distant connectivity was modulated atypically in ASD children
during sustained attention relative to a resting state, specifically
in regions associated with attentional function. These regions
included left dorsolateral prefrontal cortex (BA 10, 11), dor-
sal anterior cingulate extending to SMA (BA 32/8), and lateral
premotor regions (BA 6, 8, 6/9), which are often engaged dur-
ing tasks requiring cognitive control (Bunge et al., 2002; Vaidya
et al., 2005). In addition, there were two parietal clusters, in
right paracentral lobule, perhaps associated with motor responses
and right inferior parietal cortex associated with spatial atten-
tion (Shulman et al., 2010). Finally, there was a cluster in left
posterior middle temporal cortex (BA 19/39), a region that chil-
dren sometimes engage during cognitive control tasks (Rubia
et al., 1999; Durston et al., 2003; Vaidya et al., 2005). In all
these regions, distant connectivity during sustained attention
reduced in control children but increased in ASD children, rel-
ative to a resting state. Seed-based connectivity of each of these
regions disambiguated the rest-to-task connectivity changes by
showing that control children had a focal or less extensive pat-
tern of anterior-posterior connectivity networks during the task
relative to resting state. In contrast, ASD children showed the
opposite pattern, diffuse or more extensive connectivity net-
works during the task relative to resting state, suggestive of a
lack of selective engagement of task-relevant networks. Such a
failure ought to lead to worse performance, which was evident
in slower target detection speed in ASD children, while main-
taining high accuracy. Further, the extent of increased distant
connectivity from rest-to-task states in cognitive control (e.g.,
prefrontal, medial frontal, premotor) and spatial attention (e.g.,
lateral parietal) regions was associated with attention problems in
everyday behavior as ASD children with larger increases in con-
nectivity had worse inattention scores on the ADHD Rating Scale.
Diffuse network engagement during an attentionally demand-
ing state in ASD children may relate to the putative imbalance
of inhibitory to excitatory connections associated with gluta-
matergic (Bejjani et al., 2012) and/or GABAergic dysfuntion
(Rojas et al., 2013). If indeed so, then our results suggest that
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the inhibitory/excitatory milieu of the brain in ASD is modu-
lated by cognitive state in a manner that differs from typical
development. Whatever the physiological basis, it appears that
in transitioning from a resting to sustained attention state, ASD
children exhibited indiscriminate cortical network engagement,
which may underlie their functional impairment in the domain
of attention.

Group differences in state-related distant connectivity changes
were apparent in two graph theory metrics, modularity and
global efficiency, which quantify properties of global network
organization (Rubinov and Sporns, 2010). Modularity describes
the extent to which a network is organized into densely con-
nected modules that are segregated from each other and global
efficiency describes the average number of connections to be
crossed to go from each voxel to every other voxel in the brain.
In control children, global efficiency reduced during sustained
attention compared to a resting state; this reduction reflects
increased path length, which is consistent with a less extensive
network observed during task relative to the resting state. This
metric did not show significant difference across states in ASD
children. ASD children’s modularity reduced during task rela-
tive to the resting state, a pattern suggesting increased noise
between modules (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010), which is consistent with the observation of a
more extensively connected network in ASD children during
task than resting state. Even though state-related change was
significant only for modularity in ASD children, their amount
of change in both graph theory measures predicted inatten-
tion scores. Further, comparison of the groups during the rest-
ing state showed results that were consistent with past studies
using scalp-based imaging measures showing higher modularity
[electroencephalography (Barttfeld et al., 2011; Boersma et al.,
2013)] in ASD compared to control subjects. While lower global
efficiency [magnetoencephalography (Tsiaras et al., 2011)] has
been reported in ASD children, it did not differ significantly
between groups in the present study. These findings add to the
growing volume of studies showing that graph theory metrics
are sensitive to inter-individual differences [e.g., age, neurolog-
ical, and psychiatric disorder (Bullmore and Sporns, 2009)] as
well as intra-individual differences [e.g., learning (Bassett et al.,
2011), working memory performance (Stevens et al., 2012),
IQ (Van den Heuvel et al., 2009)]. Establishing the sensitiv-
ity of such whole-brain network metrics to subject factors or
cognitive state is an important step in assessing their poten-
tial for serving as biomarkers for psychiatric and developmental
disorders.

The present findings contribute to developing theories of
functional connectivity in ASD in four novel ways. First, they
extend the notion that functional connectivity is abnormal in
ASD to include transitions across cognitive states. Studies exam-
ining functional connectivity during task states that are highly
demanding of attention (e.g., theory of mind, working memory,
face processing) show reduced connectivity of task-selective net-
works comprising distant frontal-posterior regions in ASD (Just
et al., 2012; Khan et al., 2013). It is plausible that a failure of
task-selective engagement such as that suggested by more exten-
sive voxel-wise distant connectivity networks observed here is

paralleled in reduced functional connectivity of specific networks
or regions. We are unable to effectively test this prediction within
the present data because procedures for addressing head motion
required excluding volumes with high head motion, making for
sparse sampling of individual trial-types.

Second, our findings highlight that examination of highly
comorbid deficits in ASD such as attentional function may be
insightful about pathophysiology of ASD. Attentional dysfunction
is a common comorbid condition in ASD, with over 40% of ASD
children estimated to also meet criteria for attention deficit hyper-
activity disorder (ADHD) (Leyfer et al., 2006; Yerys et al., 2009b;
Sikora et al., 2012). We cannot formally diagnose ADHD in the
present sample based solely on parental report on the ADHD
Rating scale. However, average scores for inattention and hyper-
activity/impulsivity were higher in ASD than control children
and 6 of the 15 ASD children had clinically elevated scores for
either Inattention or Hyperactivity/impulsivity, consistent with
past reports (Yerys et al., 2009b; Rosenthal et al., 2013; Smithson
et al., 2013). Attentional and executive dysfunction are common
targets for intervention in ASD as they are associated with worse
adaptive functioning (Gilotty et al., 2002; Sikora et al., 2012) and
outcome in adulthood [see review Hume et al. (2009)]. To the
extent that some level of attentional dysfunction always accom-
panies ASD, it is important to characterize the underlying neural
signatures, especially if they prove to be unique to ASD. Thus, it
would be important to conduct a similar study in children with
ADHD to specify the extent to which our results reflect a general
or disorder-specific correlate of transitioning between attentional
states.

Third, our graph theory findings contribute to the growing
body of studies of large-scale network structure of the brain by
showing that modularity and global efficiency were sensitive to
ASD and to manipulation of cognitive state. Demonstrating such
sensitivity contributes to the potential of such connectivity met-
rics to serve as biomarkers for psychiatric and developmental
disorders. Fourth, the present results highlight the importance
of considering cognitive state in current theories of functional
connectivity in ASD. It is likely that neither under- nor over-
connectivity may characterize ASD in absolute terms but that
the nature of alteration may depend upon the specific cognitive
state. Mixed findings across task-evoked functional connectivity
studies may reflect nuanced differences in the subjects cogni-
tive state induced not just by experimental demands but also
the individual’s experience of the task as high/low arousing,
easy/hard, boring/enjoyable. Furthermore, specific networks may
be more susceptible to cognitive state differences than others. As
this area of investigation evolves, consideration of task demands,
networks, and individual subject characteristics ought to be
productive in resolving the status of connectivity abnormality
in ASD.

ACKNOWLEDGMENTS
We thank Evan Gordon for helpful discussion of meth-
ods. This work was funded by MH084961 from NIMH to
Chandan J. Vaidya, and supported by the Intellectual and
Developmental Disabilities Research Center, Children’s National
Medical Center Grant [HD040677-07].

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 482 | 183

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


You et al. Resting-state and task connectivity

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Human_Neuroscience/
10.3389/fnhum.2013.00482/abstract

FIGURE S1 | Group differences in seed-based connectivity maps in resting

and task states, for three clusters showing Group × Task interaction: left

orbital frontal gyrus (BA 11) (left panel), left middle frontal gyrus (BA 10)

(middle panel) and left premotor (BA 6/9) (right panel). Region numbers 1–3
on the left corner in the brain image correspond to the region number in
Figure 1.

FIGURE S2 | Group differences in seed-based connectivity maps in resting

and task states, for three clusters showing Group × Task interaction: left

premotor (BA 8) (left panel), left premotor (BA 6) (middle panel) and SMA

(BA 32/8) (right panel). Region numbers 4–6 on the left corner in the brain
image correspond to the region number in Figure 1.

FIGURE S3 | Group differences in seed-based connectivity maps in resting

and task states, for three clusters showing Group × Task interaction:

Paracentral Lobule (BA 6) (left panel), right Angular Gyrus (BA 39/40)

(middle panel) and Posterior MTG (BA 19/39) (right panel). Region numbers
7–9 on the left corner in the brain image correspond to the region number in
Figure 1.

FIGURE S4 | State differences in seed-based connectivity maps within

each group, for three clusters showing Group × Task interaction: left

orbital frontal gyrus (BA 11) (left panel), left middle frontal gyrus (BA 10)

(middle panel) and left premotor (BA 6/9) (right panel). Region numbers 1–3
on the left corner in the brain image correspond to the region number in
Figure 1.

FIGURE S5 | State differences in seed-based connectivity maps within

each group, for three clusters showing Group × Task interaction: left

premotor (BA 8) (left panel), left premotor (BA 6) (middle panel) and SMA

(BA 32/8) (right panel). Region numbers 4–6 on the left corner in the brain
image correspond to the region number in Figure 1.

FIGURE S6 | State differences in seed-based connectivity maps within

each group, for three clusters showing Group × Task interaction:

Paracentral Lobule (BA 6) (left panel), right Angular Gyrus (BA 39/40)

(middle panel) and Posterior MTG (BA 19/39) (right panel). Region numbers
7–9 on the left corner in the brain image correspond to the region number in
Figure 1.
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While the literature on aberrant long-distance connectivity in autism spectrum disorder
(ASD) has grown fast over the past decade, little is known about local connectivity. We
used regional homogeneity and local density approaches at different spatial scales to
examine local connectivity in 29 children and adolescents with ASD and 29 matched
typically developing participants, using resting state functional magnetic resonance
imaging data. Across a total of 12 analysis pipelines, the gross pattern of between-group
findings was overall stable, with local overconnectivity in the ASD group in occipital and
posterior temporal regions and underconnectivity in middle/posterior cingulate, and medial
prefrontal regions. This general pattern was confirmed in secondary analyses for low-
motion subsamples (n = 20 per group), in which time series segments with >0.25 mm
head motion were censored, as well as in an analysis including global signal regression.
Local overconnectivity in visual regions appears consistent with preference for local over
global visual processing previously reported in ASD, whereas cingulate and medial frontal
underconnectivity may relate to aberrant function within the default mode network.

Keywords: autism, local connectivity, functional MRI, regional homogeneity, graph theory, BOLD signal, intrinsic

connectivity

INTRODUCTION
Autism spectrum disorder (ASD) is a highly prevalent neurode-
velopmental disorder (Kim et al., 2011; CDC, 2012). There is
growing consensus that sensorimotor, cognitive, and sociocom-
municative impairments in ASD are linked to abnormalities of
functional and anatomical connectivity (Wass, 2011; Vissers et al.,
2012). Evidence of aberrant white matter growth anomalies early
in life (Courchesne et al., 2011), atypical white matter matura-
tion in infants and toddlers (Weinstein et al., 2011; Wolff et al.,
2012), and white matter compromise in children and adoles-
cents with ASD (Shukla et al., 2011a) all support the relevance
of connectivity as source for biomarkers of ASD. A growing body
of functional connectivity magnetic resonance imaging (fcMRI)
studies indeed indicates aberrant long-distance connectivity, with
the predominant, though not universally replicated, finding of
underconnectivity in ASD (Müller et al., 2011; Schipul et al.,
2011; Vissers et al., 2012). In strange contrast, rather little is
known about short-distance connectivity in ASD, despite evi-
dence from postmortem studies suggesting that cytoarchitectonic
abnormalities in cerebral cortex (Amaral et al., 2008), in par-
ticular the reported tight packing of cortical minicolumns with
reduced lateral inhibition (Casanova and Trippe, 2009), could
likely affect local connections in ASD. Theoretical arguments
suggesting that local connectivity may be atypically increased
in ASD (Belmonte et al., 2004; Courchesne and Pierce, 2005;
Rippon et al., 2007) have been mostly speculative, although
they appear consistent with some findings indicating increased
cortical excitation/inhibition ratios (Rubenstein and Merzenich,
2003).

Few studies available to date have used magnetic resonance
imaging (MRI) techniques to examine local connectivity, with
rather divergent findings. Note, however, that the concept of
“local connectivity” is not well defined and with its typically low
spatial resolution, functional MRI (fMRI) detects “local” con-
nectivity at a much coarser spatial scale than, for example, the
postmortem studies of minicolumnar organization cited above
(as discussed in detail in Sections “Overall Pattern of Findings and
the Effect of Spatial Scale” and “Regional Patterns and Implica-
tions for the Study of Local Connectivity in ASD”). One fMRI
approach uses the regional homogeneity (ReHo) approach, which
implements Kendall’s coefficient of concordance (KCC) to test the
homogeneity of time courses of the blood oxygen level depen-
dent (BOLD) signal in small clusters of neighboring voxels. While
originally designed for cluster purification (Zang et al., 2004), the
technique has been increasingly used to examine local connectiv-
ity in a variety of clinical disorders (Dai et al., 2012; Farb et al.,
2012; Yin et al., 2012; Zalesky et al., 2012; Weaver et al., 2013)
as well as in the typically developing (TD) brain (Zou et al.,
2009; Lopez-Larson et al., 2011; Wang et al., 2011; Anderson et al.,
2013; Dong et al., 2013). Two studies have implemented ReHo
in ASD. In ReHo analyses of resting state fMRI (rs-fMRI) data
for 27 nearest neighboring voxels, Paakki et al. (2010) detected
mixed between-group effects, with decreased ReHo in adoles-
cents with ASD (compared to matched TD participants) in right
temporal, frontal, and insular sites, accompanied by increased
ReHo in right thalamus and left occipital regions. Shukla et al.
(2010) used fMRI data acquired during visual search, but regressed
out the modeled task effects. Nonetheless, ReHo findings for

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 605 | 187

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/journal/10.3389/fnhum.2013.00605/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JoseMaximo&UID=98803
http://community.frontiersin.org/people/ChristopherKeown/112667
http://community.frontiersin.org/people/AartiNair/112676
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Ralph-AxelM�ller&UID=60926
mailto:rmueller@mail.sdsu.edu
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00605” — 2013/10/8 — 11:05 — page 2 — #2

Maximo et al. Local connectivity in autism

seven nearest neighbors differed heavily from those reported
by Paakki et al. (2010), with increased ReHo in children and
adolescents with ASD in right temporal regions, and decreased
ReHo in numerous bilateral fronto-parietal sites. Notably, both
of these studies used standardized ReHo (in which the KCC
in each voxel is normalized by dividing it by the mean KCC),
which is in principle insensitive to any potential global group dif-
ferences in local connectivity. The mixed pattern of over- and
underconnectivity findings in these studies was thus mandated
by the analysis. However, the inconsistencies in regional pat-
terns require further explanation, being potentially related to the
finer spatial scale in the study by Shukla et al. (2010). Further-
more neither study addressed head motion, which can severely
confound local BOLD correlations, at a level that can be consid-
ered adequate based on recent relevant publications (Power et al.,
2012; Van Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al.,
2013).

The present study used a sample of rs-fMRI data that was well
controlled for motion for a systematic investigation of local con-
nectivity in ASD and matched TD adolescents, examining effects
of spatial scale of local connectivity, standardization in ReHo, and
the impact of head motion. A comparison analysis using the local
density approach from graph theory, which has been applied to
the study of local connectivity in TD adults (Sepulcre et al., 2010),
was also performed.

MATERIALS AND METHODS
PARTICIPANTS
Magnetic resonance imaging data were collected from 37 high-
functioning adolescents with ASD and 33 TD control participants.
Six ASD participants with excessive head motion (as defined in
Section “Motion”) were excluded from the analysis. Two further
ASD and four TD participants were excluded to restore group
matching on age, handedness, non-verbal IQ, and motion (see
below), resulting in a final sample of 29 ASD and 29 TD partic-
ipants (Table 1). Diagnoses in the ASD group were established
using the Autism Diagnostic Interview-Revised (ADI-R; Lord
et al., 1994), and the Autism Diagnostic Observation Schedule
(ADOS; Lord et al., 2000). Children with ASD-related medi-
cal conditions (e.g., Fragile-X syndrome, tuberous sclerosis) or
other neurological conditions (e.g., epilepsy, Tourette’s syndrome)
were excluded. Participants in the TD group had no reported
history of ASD or any other neurological or psychiatric condi-
tion. IQ was assessed using the Wechsler Abbreviated Scale of
Intelligence–2nd edition (WASI-2; Wechsler, 1999). All partici-
pants scored above the cutoff for intellectual disability (IQ > 70).
Hand preference was assessed through the Edinburgh Handedness
Inventory (Oldfield, 1971). The Institutional Review Boards of San
Diego State University and the University of California San Diego
approved the experimental protocol. Parental informed consent
was obtained for all participants, along with written assent from
each participant.

MRI DATA ACQUISITION
Resting state imaging data were acquired on a GE 3T MR750
scanner with an eight-channel head coil at the University of Cal-
ifornia at San Diego Center for Functional MRI. High-resolution

Table 1 | Demographic and diagnostic information.

Groups

TD (n = 29) ASD (n = 29) p

Gender 7 female 4 female 0.31

Handedness 25 R, 4 L 26 R, 3 L 0.57

Age in years 13.5 (2.2) 13.8 (2.4) 0.74

Verbal IQ 106.2 (9.5) 105.4 (20.9) 0.84

Non-verbal IQ 108.1 (10.0) 106.3 (18.51) 0.65

Full-scale IQ 108 (8.9) 107.9 (19.0) 0.97

RMSD 0.15 (0.14) 0.14 (.11) 0.78

ADOS algorithm score

Communication – 3.4 (1.8) –

Social reciprocity – 8.2 (3.0) –

Repetitive behavior – 2.1 (1.4) –

ADI-R algorithm score

Social interaction – 17.4 (6.2) –

Communication – 14.4 (6.0) –

Repetitive behavior – 6.3 (2.3) –

Values for age, IQ, and Autism Diagnostic Observation Schedule (ADOS) scores
are presented as mean, with standard deviation in brackets. The p-value reflects
group differences from χ2 tests (for gender and handedness) and independent
t-tests (for all other variables). The IQ scores were missing for one individual with
ASD. ADOS scores were not available for one individual, and ADI-R scores were
not available for three ASD individuals. RMSD, root-mean-square of displacement;
R, right; L, left.

structural images were acquired with a standard FSPGR T1-
weighted sequence (TR: 11.08 ms; TE: 4.3 ms; flip angle: 45◦;
FOV: 256 mm; matrix: 256 × 256; 180 slices; resolution: 1 mm3).
Functional T2-weighted images were obtained using a single-shot
gradient-recalled, echo-planar pulse sequence. One 6:10-min scan
was acquired consisting of 185 whole-brain volumes (TR: 2000 ms;
TE: 30 ms; slice thickness: 3.4 mm; flip angle: 90◦; field of view:
220 mm; matrix: 64 × 64; in-plane resolution: 3.4 mm2). The
first five time points were discarded to allow for T1 equilibration
effects, leaving 180 time points (6 min) for analysis. Participants
were instructed to keep their eyes directed on a cross-hair in the
center of the projector, relax, and try not to fall asleep for the
duration of the scan.

DATA PREPROCESSING
Functional images were processed using Analysis of Functional
NeuroImages software (AFNI; Cox, 1996) and FMRI soft-
ware library (FSL; Smith et al., 2004). Functional images were
slice-time corrected, and correction for head motion was per-
formed by registering each functional volume to the middle
time point of the scan. Field map correction was applied on
each participant using in-house software for correcting mag-
netic resonance image distortion due to field inhomogeneity.
Functional images were registered to the anatomical images
via FSL’s FLIRT (Jenkinson and Smith, 2001; Jenkinson et al.,
2002). Both images were resampled (3 mm isotropic) and stan-
dardized to the atlas space of the MNI152 template via FSL’s
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nonlinear registration tool (FNIRT) for group comparisons. In
order to isolate spontaneous low-frequency BOLD fluctuations
(Cordes et al., 2001), fMRI time series were bandpass filtered
(0.008 < f < 0.08 Hz), using a second-order Butterworth fil-
ter, which was also applied to all nuisance regressors described
below.

Spatial smoothing preceding ReHo statistics is an obvious
critical question, because smoothness directly impacts time
series correlations between neighboring voxels (Zuo et al., 2013).
Our primary preprocessing pipeline therefore did not include a
smoothing step. However, spatial smoothness may differ across
data sets due to varying interpolation associated with motion cor-
rection and spatial normalization. In order to minimize effects
of varying smoothness, a secondary analysis setting the effective
smoothness of all data sets to a Gaussian FWHM of 6 mm, using
AFNI’s 3dBlurToFWHM, was performed. Results are presented in
Figure 2D. For density analyses, we followed the preprocessing
pipeline by Sepulcre et al. (2010), which included smoothing with
a Gaussian kernel (FWHM 6 mm). Linear effects attributable to
scanner drift were removed during regression.

Six rigid-body motion parameters acquired from motion cor-
rection and their derivatives were regressed from the images. In
order to remove signal from cerebral white matter and lateral ven-
tricles, masks were created at the participant level, using FSL’s
FAST automated segmentation (Zhang et al., 2001). Masks were
trimmed to avoid partial-volume effects, and an average time
series for each region was extracted and removed via regression.
Derivatives for white matter and ventricular time series were also
computed and removed, for a total of 16 nuisance regressors.
All main analyses were performed without global signal regres-
sion (GSR) to avoid the creation of spurious anti-correlations
(Murphy et al., 2009), which may substantially distort group differ-
ences (Saad et al., 2012). Nonetheless, an additional ReHo analysis
including GSR was performed using a cluster size of 27 voxels.
Results are presented in Figure 2E.

MOTION
Motion was quantified as the Euclidean distance calculated from
the six rigid-body motion parameters for two consecutive time
points. For any instance >1.0 mm, considered excessive motion,
the time point as well as the immediately preceding and sub-
sequent time points were censored, or “scrubbed” (Power et al.,
2012). If two censored time points occurred within 10 time points
of each other, all time points between them were also censored.
Participants with fewer than 80% of time points remaining after
censoring were excluded from the analysis. The two groups did
not significantly differ in the number of retained time points
(M = 177 in each group, p = 0.94). Average head motion over
each participant’s session was defined as the root mean square
of displacement (RMSD) and did not significantly differ between
groups (p = 0.78). For more detailed analysis of head motion, a
two-way analysis of variance (ANOVA) was conducted to test the
effects of group and type of motion (three translational and three
rotational). The interaction of group and motion type was not sig-
nificant, F(5,342) = 0.307, p = 0.91. Additionally, we correlated
KCC from ReHo27, averaged across all brain voxels, for cluster
size 27 with RMSD values to determine the relationship between

connectivity and motion. There was no significant correlation
between these two measures, r = −0.135, p = 0.54.

For further protection against potential effects of head motion
on local connectivity measures, a low-motion subsample was iden-
tified and a more conservative censoring threshold of >0.25 mm
was applied. Participants who had less than 80% of their time
points remaining after censoring were excluded from both analy-
sis. Both groups were matched for gender, handedness, age, verbal
IQ, non-verbal IQ, full-scale IQ, and motion (Table 2). The final
low-motion subsample consisted of 42 participants (TD = 22;
ASD = 20).

LOCAL FUNCTIONAL CONNECTIVITY MEASURES
Regional homogeneity
Regional homogeneity implements KCC, which relies on rank cor-
relations of time series to assess the homogeneity of a given center
voxel and its neighboring voxels. KCC within a given cluster of
voxels is equal to the parameter W (ranging from 0 to 1)

W =
∑

(Ri)
2 − n(R̄)2

1
12 K2(n3 − n)

,

where Ri is the sum rank of the ith time point; R̄ is the mean of
the Ris; K is the number of time series within a selected cluster (7,
19, or 27 voxels), and n is the number of ranks, as determined by
the number of time points (Zang et al., 2004).

Table 2 | Demographic and diagnostic information for low-motion

subsamples.

Groups

TD (n = 22) ASD (n = 20) p

Gender 4 female 2 female 0.44

Handedness 18 R, 4 L 14 R, 3 L 0.97

Age in years 14.0 (1.82) 14.37 (2.07) 0.65

Verbal IQ 107.5 (9.76) 110.79 (20.37) 0.50

Non-verbal IQ 107.95 (10.39) 109.32 (18.74) 0.77

Full-Scale IQ 108.68 (9.46) 110.45 (19.93) 0.71

RMSD 0.05 (0.02) 0.05 (0.03) 0.84

ADOS algorithm score

Communication – 3.1 (1.9) –

Social reciprocity – 7.8 (2.8) –

Repetitive behavior – 1.8 (1.2) –

ADI-R algorithm score

Social interaction – 16.8 (6.5) –

Communication – 13.8 (6.0) –

Repetitive behavior – 6.2 (2.4) –

Values for age, IQ, and Autism Diagnostic Observation Schedule (ADOS) scores
are presented as mean and standard deviation (SD). The p-value is from χ2 tests
and independent t-tests for differences between groups. Handedness scores
were missing for three ASD participants, IQ scores were missing for one ASD
participant, and ADI-R scores were not available for another ASD participant.
RMSD, root-mean-square difference; R, right; L, left.
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For this study, ReHo was computed for cluster sizes of 7, 19,
and 27 voxels (abbreviated “ReHo7,” “ReHo19,” and “ReHo27,”
respectively), which correspond to the smallest cluster (a refer-
ence voxel and its six immediate neighbors) and small gradual
symmetric expansions of this cluster. In order to further exam-
ine spatial scale effects, ReHo was also computed using a radius
of 14 mm (407 voxels; “ReHo14mm”), corresponding to a radius
used in the density analysis (described below). A gray-matter mask
was used to avoid partial-volume effects. All individual ReHo
maps were obtained using AFNI’s 3dReHo command. Individ-
ual voxel-wise ReHo maps were standardized into KCC–ReHo
z-values by subtracting the mean voxel-wise KCC–ReHo obtained
for the entire whole-brain mask (i.e., global KCC–ReHo), and then
dividing by the standard deviation. An additional analysis without
standardization was performed (for ReHo27 only) to detect any
potential global group differences in local connectivity. All ReHo
maps were smoothed to a Gaussian FWHM of 6 mm for better
anatomical comparability of ReHo values on the group level, using
AFNI’s 3dBlurToFWHM. Group differences were examined with
two-sample t-tests (3dttest). To correct for multiple comparisons,
Monte Carlo simulations via AFNI’s 3dClustSim command were
applied to obtain a corrected significance level of p < 0.05 (using
a voxelwise threshold of p < 0.05, uncorrected, and a minimum
cluster size of 55 voxels).

The relationship between local connectivity and symptom
severity was further examined focusing on regions with significant
group differences. Two separate combined clusters were created
(all clusters of overconnectivity and all clusters of underconnec-
tivity) based on group comparison for ReHo27 (yellow and blue
clusters in Figure 1E, respectively) and Pearson’s correlation anal-
yses were performed between z-scores from KCC (averaged across
all voxels within combined over- and underconnectivity clusters,
respectively) and ADOS, and ADI scores (as listed in Table 1).

Density analysis
Local functional connectivity was further examined using connec-
tion density, as previously applied in neurotypical adults (Sepulcre
et al., 2010). In graph theory, connection “density” is defined as
the number of “edges” (connections) of a “node” (here: voxel)
in proportion to the total number of possible edges (Bullmore
and Sporns, 2009). We implemented this measure by calculating
the “degree” of each voxel, i.e., the number of neighboring vox-
els with BOLD time series correlation at r > 0.25 (p < 0.001)
within a 6 and 14 mm radius from the reference voxel, based on
the Euclidean distance between the centers of voxel pairs. A 14 mm
radius allowed comparison of results with those reported by Sepul-
cre et al. (2010) who used the same radius, whereas an additional
6 mm radius was chosen for comparison with ReHo27. To generate
a connectivity map for each group, local degrees were converted to
z-scores. Group comparisons were performed using two-sample t-
tests. Multiple comparison correction was performed as described
above.

RESULTS
ReHo
We first inspected ReHo within each group for the most commonly
used cluster size of 27 voxels (Figures 1A,B). Patterns were highly

similar for TD and ASD groups, with bilateral hotspots in posterior
cingulate gyrus extending into precuneus. A hotspot in the ASD
group in striate and extrastriate cortex appeared less pronounced
in the TD group. Further regions of relatively high ReHo were seen
in superior parietal, frontopolar, and medial frontal regions.

Despite the overall similar patterns on within-group maps,
localized group differences were detected for ReHo at all four
spatial scales (7, 19, 27 voxels, 14 mm radius; Figures 1C–F;
Table 3). All of these analyses showed underconnectivity in the
ASD group compared to the TD group in left superior frontal
gyrus and bilateral cingulate cortex, accompanied by overcon-
nectivity in right middle frontal gyrus. Generally, between-group
effects were more modest at the finer spatial scales, and addi-
tional clusters of under- and overconnectivity were detected with
increasingly coarse spatial scale. For example, underconnectiv-
ity in the ASD group was detected in right paracentral regions
only for ReHo27 and ReHo14mm. Extensive overconnectivity
effects were detected in bilateral striate and extrastriate cortices
at 14 mm radius, which were smaller for ReHo27 and ReHo19,
and absent for ReHo7. Overconnectivity effects in parahip-
pocampal, temporal, and supramarginal regions were also only
detected at the coarsest spatial scale (14 mm radius). Non-
standardized ReHo27 (Figure 1G) yielded very similar group
differences compared to standardized ReHo at the same spatial
scale.

Local connectivity from ReHo27 was positively correlated with
ADI-R communicative scores in clusters of underconnectivity in
the ASD group (all blue clusters in Figure 1E combined), r = 0.43,
p = 0.04, as well as in clusters of overconnectivity (all yellow clus-
ters in Figure 1E combined), r = 0.48, p = 0.02. There were
no significant correlations with ADOS scores. However, note that
these analyses were performed for exploratory purposes and cau-
tion is required given that no correction for multiple comparisons
was performed.

DENSITY ANALYSIS
The patterns of group differences for local degrees (density
of connections) were overall similar to the ReHo findings
(Figures 1H,I; Table 4). Comparing only two spatial scales
(radii of 6 mm, corresponding to ReHo27, and 14 mm), we
again found much more robust between-group effects for the
coarser spatial scale. However, there was less regional consis-
tency: only a single effect – local overconnectivity in right middle
frontal gyrus in the ASD group – was found in both analyses.
Overconnectivity in right medial paracentral cortex and under-
connectivity in bilateral anterior cingulate cortex were detected
only for a 6 mm radius. Conversely, extensive overconnectiv-
ity clusters in bilateral striate and extrastriate as well as right
temporopolar cortices were only detected at a 14 mm radius,
as was underconnectivity in middle/posterior cingulate gyri
bilaterally.

SECONDARY ANALYSIS IN LOW-MOTION SUBSAMPLE
ReHo
Additional analyses using ReHo27 (Figure 2A) and ReHo14mm
(Figure 2B) were performed for the low-motion subsample. For
both scales, underconnectivity in the ASD group was found
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FIGURE 1 | Surface renderings of ReHo (27 voxels) for TD (A) and
ASD groups (B). Clusters of significant group differences between
TD and ASD groups in ReHo using cluster sizes of 7 (C), 19 (D),
27 voxels (E), 14 mm radius (F), and non-standardized ReHo (27

voxels) (G). Significant group differences between TD and ASD
groups of density analysis using radii of 6 (H) and 14 mm (I). All
clusters p < 0.05, corr. warm colors: ASD > TD; cool colors:
TD > ASD.
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Table 3 | Clusters of significant group differences in ReHo.

ReHo cluster size (voxels) Region Cluster volume (μl) Peak coordinates Peak

x Y z t

7 TD > ASD

Right precuneus 3888 14.5 −50.5 33.5 −3.8

Left superior frontal gyrus 1944 −18.5 60.5 3.5 −5.0

Left anterior cingulate cortex 1917 −0.5 45.5 18.5 −3.9

ASD > TD

Right middle cingulate cortex 2349 17.5 −20.5 48.5 4.5

Right middle frontal gyrus 1809 41.5 54.5 6.5 5.0

19 TD > ASD

Left middle cingulate cortex 4941 −0.5 −29.5 33.5 −4.2

Right anterior cingulate cortex 3456 2.5 39.5 9.5 −4.2

Left putamen 2322 −27.5 −14.5 12.5 −3.8

Left superior frontal gyrus 2025 −18.5 60.5 3.5 −4.6

Left caudate 1917 −6.5 12.5 6.5 −4.7

ASD > TD

Left calcarine gyrus 3753 −3.5 −86.5 3.5 3.2

Right middle frontal gyrus 3267 41.5 54.5 6.5 4.9

Right paracentral lobule 2403 17.5 −35.5 48.5 4.1

Right fusiform gyrus 2295 32.5 −68.5 −8.5 3.6

27 TD > ASD

Left middle cingulate cortex 5400 −0.5 −29.5 33.5 −4.2

Right superior medial gyrus 4077 8.5 57.5 9.5 −4.1

Left putamen 2349 −27.5 −14.5 12.5 −3.3

Right paracentral lobule 2106 2.5 −32.5 60.5 −3.1

Left superior frontal gyrus 2079 −18.5 60.5 3.5 −4.7

Left caudate 2052 −6.5 12.5 6.5 −4.8

Right supramarginal gyrus 1809 65.5 −38.5 30.5 −3.3

ASD > TD

Left calcarine gyrus 4239 −3.5 −86.5 3.5 3.2604

Right middle frontal gyrus 3240 41.5 54.5 6.5 4.5738

Right fusiform gyrus 2997 32.5 −68.5 −8.5 3.3385

Right middle cingulate gyrus 1971 20.5 −32.5 51.5 3.8254

27 (Non−standardized) TD > ASD

Right middle cingulate cortex 4536 2.5 −23.5 33.5 −3.8

Right anterior cingulate cortex 2862 2.5 39.5 9.5 −3.5

Left caudate 2484 −6.5 9.5 6.5 −4.5

Left superior frontal gyrus 2052 −18.5 60.5 3.5 −4.3

Right supramarginal gyrus 1809 65.5 −38.5 30.5 −2.9

Left thalamus 1566 −3.5 −29.5 12.5 −3.0

ASD > TD

Right calcarine gyrus 2268 5.5 −68.5 12.5 2.8

Right middle frontal gyrus 2133 41.5 54.5 6.5 4.2

(Continued)
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Table 3 | Continued

ReHo cluster size (voxels) Region Cluster volume (μl) Peak coordinates Peak

x Y z t

407 (14 mm) TD > ASD

Left superior medial gyrus 5265 −3.5 42.5 27.5 −2.9

Left cingulate gyrus 4131 −3.5 −26.5 27.5 −3.7

Left inferior temporal gyrus 3348 −51.5 −35.5 −26.5 −3.4

Right supramarginal gyrus 1836 65.5 −35.5 27.5 −3.7

Right anterior cingulate cortex 1755 2.5 42.5 9.5 −2.9

Left supramarginal gyrus 1701 −57.5 −38.5 27.5 −2.8

Right superior medial gyrus 1215 2.5 54.5 9.5 −2.9

ASD > TD

Left lingual gyrus 29808 −15.5 −68.5 3.5 4.3

Right parahippocampal gyrus 3051 29.5 −29.5 −17.5 3.1

Right middle frontal gyrus 2511 44.5 54.5 3.5 3.5

Left middle temporal gyrus 1620 −66.5 −47.5 −8.5 2.8

Right supp. motor area 1161 5.5 −14.5 75.5 −3.0

Table 4 | Clusters of significant group differences in density analysis.

Radius (mm) Region Cluster volume (μl) Peak coordinates Peak

x y z t

6 TD > ASD

Right posterior cingulate cortex 2133 2.5 −41.5 24.5 −4.1

Left anterior cingulate cortex 1701 −3.5 42.5 21.5 −4.1

ASD > TD

Right middle frontal gyrus 2376 41.5 51.5 6.5 4.3

Right postcentral gyrus 2025 23.5 −26.5 48.5 4.0

Left middle temporal gyrus 1485 −54.5 −65.5 12.5 3.5

14 TD > ASD

Right supramarginal gyrus 1809 −65.5 32.5 24.5 −3.7

Right middle cingulate cortex 1512 −2.5 29.5 33.5 −3.6

ASD > TD

Right cuneus 41013 5.5 −74.5 18.5 4.5

Left inferior temporal gyrus 9126 −48.5 −47.5 −23.5 4.1

Right inferior temporal gyrus 3915 53.5 −53.5 −8.5 4.1

Left cuneus 2565 −9.5 −92.5 30.5 3.4

Right superior medial gyrus 2349 5.5 33.5 57.5 4.0

Right middle orbital gyrus 2187 35.5 54.5 −2.5 3.4

Right middle temporal gyrus 1755 44.5 6.5 −26.5 3.0

Right parahippocampal gyrus 1620 23.5 6.5 −29.5 3.9

in left perisylvian and frontopolar regions, as well as in bilat-
eral middle/posterior cingulate gyrus and right paracentral cor-
tex, accompanied by overconnectivity in right middle frontal
and middle temporal gyri. Extensive overconnectivity in visual
regions around the calcarine fissure was only seen at the 14 mm
radius.

Density analysis
For a 14 mm radius (Figure 2C), results were mostly consistent
with the corresponding ReHo analysis and the corresponding den-
sity analysis for the full sample. Widespread overconnectivity was
detected in bilateral occipital and posterior temporal regions, as
well as right middle frontal gyrus, while underconnectivity was
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FIGURE 2 | Clusters of significant group differences between low-
motion TD and ASD groups for ReHo using (A) a cluster size of
27 voxels, and (B) a radius of 14 mm, and (C) for 14 mm density
analysis. Analyses of ReHo (27 voxels) showing clusters of significant

group differences (D) for pipeline applying spatial smoothing before
ReHo statistics and (E) for pipeline including global signal regression.
All clusters p < 0.05, corr; warm colors: ASD > TD; cool colors:
TD > ASD.

found in left insula, bilateral precuneus, and middle/posterior
cingulate gyrus.

DISCUSSION
OVERALL PATTERN OF FINDINGS AND THE EFFECT OF SPATIAL SCALE
Across 12 different analysis pipelines (Figures 1C–I and 2A–
E), regional patterns of between-group differences were overall
stable, with increased local connectivity in the ASD group detected
in bilateral striate and extrastriate as well as right lateral pre-
frontal cortices, accompanied by reduced local connectivity in
anterior and posterior cingulate and medial prefrontal regions.
We generally observed a trend toward more robust between-
group findings for coarser spatial scales, corresponding to radii
of ≥6 mm. This may be primarily attributed to sampling from
a larger number of voxels, which probably improved the signal-
to-noise ratio. Effects that were seen at lower, but not at higher
spatial scales, such as overconnectivity in ASD in right inferior

paracentral regions (Figures 1C–E vs. Figure 1F) are therefore
noteworthy, as they might reflect group differences occurring
only at the more local levels. Some effects, such as under-
connectivity in anterior and posterior cingulate gyrus as well
as medial prefrontal cortex, were also remarkably stable across
radii from c. 3 to 14 mm. On the other hand, effects in stri-
ate and extrastriate visual cortices were much more robust at
higher spatial scales and in fact not at all detected in ReHo7
analysis (for interpretation of regional patterns, see Regional
Patterns and Implications for the Study of “Local Connectivity”
in ASD).

While these findings may suggest an overall superiority of
analyses at coarser spatial scales (when assessed on the basis
of robustness of between-group effects), any such conclusion
very much depends on the exact goals of the investigation.
The study of local connectivity by fMRI is generally hampered
by this technique’s typically modest spatial resolution, which
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limits its sensitivity to abnormalities of local cortical organization
suspected in ASD. For example, smaller size and increased den-
sity of cortical minicolumns with reduced lateral inhibition has
been reported in postmortem studies from one group (Casanova
et al., 2006; Casanova and Trippe, 2009). As minicolumns mea-
sure c. 30–50 μm in width, the spatial resolution in our study
was too low by at least a factor of 100 to capture individual
minicolumns. Although it is possible that basic abnormalities
of minicolumnar organization, such as the suspected reduced
lateral inhibition, could affect the BOLD signal and its local
correlations at the resolution common in fMRI, this remains
speculative. Widening the spatial scale, beyond what is dictated
by raw image resolution (3.4 mm in this study), may therefore
yield cleaner or more robust results; however, these probably
reflect abnormalities at a different level of complexity, compared
to those described in the postmortem literature. Nonetheless, it
is likely that anatomical parameters, such as cortical thickness,
may have some impact on measures of local functional connec-
tivity. Given the mentioned relatively low spatial resolution of
fMRI data, some voxels in a ReHo cluster, for example, may
show partial volume effects (part of the voxel falling onto the
gray/white boundary), which would be expected to reduce BOLD
correlations with a neighboring reference voxel in pure gray mat-
ter. Resulting reductions in ReHo will most likely occur to a
lesser extent in cortex with greater thickness. However, investi-
gation of such links was beyond the scope of the current study.
The described issue here solely serves to illustrate the intimate
links between local functional connectivity and local cortical
anatomy.

Density analyses showed a similar pattern of between-group
effects compared to ReHo analyses, although underconnectivity
clusters were overall less robust and one overconnectivity cluster
in right anterior mediotemporal cortex was seen only in the den-
sity analysis for a 14 mm radius (but not in ReHo14mm). This
may relate to methodological differences: Whereas ReHo is based
on rank ordering of time series to assess the homogeneity in vox-
els within a cluster of chosen size, density reflects degrees, i.e.,
the number of voxels exceeding a threshold Pearson’s correlation
(here, r > 0.25). ReHo is therefore more sensitive to the strength
of correlations within a cluster of selected volume (e.g., 7 or 27
voxels), whereas in our density analysis, weak correlations were
discarded and local connectivity was solely assessed with respect
to the number (not the strength) of the connections exceeding the
correlation threshold. Differences in sensitivity are therefore not
unexpected.

MOTION, SMOOTHNESS, GLOBAL SIGNAL, AND ReHo
STANDARDIZATION
Recent investigations have highlighted the significant impact of
even small amounts of head motion on fcMRI measures (Power
et al., 2012; Van Dijk et al., 2012; Satterthwaite et al., 2013; Yan
et al., 2013). We therefore also ran analyses in a low-motion sub-
sample, including only the 42 participants with >80% time points
remaining after applying a more conservative censoring threshold
of 0.25 mm. The pattern of findings for this subsample was over-
all similar to the one seen in the full sample, suggesting that our
results were well protected against motion confounds.

Image smoothness is of particular importance in local con-
nectivity analyses because smoothing by definition inflates the
correlation between neighboring voxels. In order to avoid this
issue, our primary analysis pipeline implemented smoothing only
subsequent to ReHo statistics. However, even without an explicit
smoothing step, preprocessing requires intermodal alignment (of
functional to high-resolution structural volumes), motion correc-
tion (alignment across time points), and spatial normalization,
which unavoidably increases image smoothness (even when inter-
modal alignment and spatial normalization are performed in a
single interpolation, as in our study). Smoothness may there-
fore vary across individual datasets, and more importantly, across
groups, potentially confounding comparisons of local connectiv-
ity. We therefore performed an additional ReHo27 analysis, setting
the smoothness of all datasets to an effective Gaussian FWHM of
6 mm. This analysis (Figure 2D) yielded almost identical results to
the primary analysis without pre-statistic smoothing (Figure 1C),
indicating that differences in image smoothness did not confound
our group comparisons.

We further considered the question of GSR, the pros and cons
of which have been debated for several years in the fcMRI liter-
ature. Arguments against the procedure include findings that at
least some components of global signal fluctuations likely reflect
true neuronal activity (Schölvinck et al., 2010) and that GSR may
induce spurious negative correlations of BOLD time series (Mur-
phy et al., 2009). Nonetheless, GSR has been found highly effective
in removing noise, especially reducing the effects of head motion
on BOLD correlations (Yan et al., 2013). We therefore included
GSR in one analysis (ReHo27) and found that removal of the
global signal had some effect (e.g., highlighting overconnectivity
effects in the ASD group in left lateral temporal cortex not seen
in ReHo27 without GSR), but did not dramatically change the
overall pattern of findings. Thus, while GSR may in principle bear
the risk of distorting fcMRI group comparisons (Saad et al., 2012),
this was not the case in our data set.

A final methodological issue concerned ReHo standardiza-
tion. As initially advocated by Zang et al. (2004), conversion of
KCC (W) into z-maps was performed in both previous ReHo
studies of ASD (Paakki et al., 2010; Shukla et al., 2010). This
standardization mandates a distribution of whole brain ReHo
maps around zero. While advantageous for teasing out region-
ally specific differences in ReHo, this procedure bears the risk
of type II error in group comparisons, if there are global differ-
ences in ReHo between groups (because the whole brain mean
ReHo in each individual participant from both groups is equally
set to zero). It is therefore possible in principle that the mixed
pattern of effects seen on our ReHo analyses (with both clus-
ters of overconnectivity and underconnectivity) could be due to
the standardization step – a possibility not considered in pre-
vious ASD ReHo studies. However, non-standardized ReHo27
(i.e., without conversion of KCC to z) yielded highly similar
results to standardized ReHo27 (Figure 1G vs. Figure 1E). Over-
all subtly more robust between-group effects for standardized
ReHo can be attributed to lower variance due to z-conversion.
It is therefore unlikely that the mixed pattern of over- and
underconnectivity findings in our study was an artifact of ReHo
standardization.
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COMPARISON WITH PREVIOUS STUDIES
As noted, the two previous ReHo studies of ASD by Paakki et al.
(2010) and Shukla et al. (2010) reported highly divergent findings.
The convergence between either of them and the current study
was equally modest, with only a few roughly consistent findings.
These included local overconnectivity in ASD in occipital lobe
(also detected by Paakki et al., 2010) and underconnectivity in
ASD in left superior frontal gyrus, precuneus, and posterior cin-
gulate gyrus, and overconnectivity in right fusiform gyrus (also
observed by Shukla et al., 2010). While differences between our
study and the study by Shukla et al. (2010) may be attributed to
the use of resting vs. task-activated fMRI data, respectively, the
even more pronounced inconsistencies with the study by Paakki
et al. (2010) may appear less transparent at first, given that these
authors also used resting state data. Participants were probably
overall older in the study by Paakki et al. (2010), although no
exact demographic data are provided and matching on impor-
tant variables, such as age, sex, handedness, and non-verbal IQ,
is either not mentioned or not available due to lack of data (e.g.,
IQ). It is therefore hard to determine whether demographic fac-
tors may have affected the pattern of results in the study by
Paakki et al. (2010).

There were also differences in imaging methods. While acqui-
sition at lower spatial resolution (70.4 vs. 39.3 μl voxels) and at
lower field strength (1.5 vs. 3T) in the study by Paakki et al. (2010),
compared to ours, may have had some effect, the differential treat-
ment of head motion (and other noise components) is probably
crucial in explaining differential findings. Paakki et al. (2010) per-
formed solely conventional motion correction. Noise components
removed through regression of six translational and rotational
motion times series, time series from white matter and ventricles
(and their derivatives) in our study were thus retained in this ear-
lier study. In view of recent methods investigations (Power et al.,
2012; Van Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al.,
2013), which were not available to Paakki et al. (2010) and which
highlight the exquisite sensitivity of fcMRI (including local con-
nectivity and ReHo) analyses to even small amounts of motion,
the confidence in these earlier findings therefore has to be low.
Furthermore, no group matching for head motion or censor-
ing (“scrubbing”) of motion-affected time points was reported
by Paakki et al. (2010). Conversely, the study by Shukla et al.
(2010) performed censoring (albeit at an all-too liberal thresh-
old of 2 mm) and ascertained approximate group matching for
motion (p = 0.7 for translations; p = 0.3 for rotations). In
this context, the relatively greater (though still modest) consis-
tency of findings between this study and the present one may be
noted.

REGIONAL PATTERNS AND IMPLICATIONS FOR THE STUDY OF “LOCAL
CONNECTIVITY” IN ASD
As already alluded to above, the term “local connectivity” is
ill-defined, encompassing spatial scales from a few microns to
millimeters and even centimeters. While there has been some
indirectly supporting evidence (Rubenstein and Merzenich, 2003;
Casanova and Trippe, 2009), the theoretical idea of atypi-
cally increased local connectivity in ASD (Belmonte et al., 2004;
Courchesne and Pierce, 2005; Rippon et al., 2007) therefore

requires specification of scale. The expectation that fMRI, using
ReHo or local density techniques, or diffusion tensor imaging
(Shukla et al., 2011b) may provide empirical tests of the local
overconnectivity hypothesis applies at best to the coarsest spa-
tial scales included under the vague umbrella term of “local
connectivity.” At these relative coarse scales, the mixed pattern
of our findings (with regions of both atypically increased and
decreased connectivity) does not support general local overcon-
nectivity in ASD. This compares with a study by Anderson et al.
(2011) who found no general overconnectivity for connections
at a distance below 25 mm in adolescents and adults with ASD.
As measures were collapsed across the whole brain in this latter
study, such non-finding can be reconciled with regionally spe-
cific effects in both directions (increased and reduced), as detected
in our study. Note that the conclusion in the study by Ander-
son et al. (2011) of short-distance connections not being strongly
informative for machine learning classification (ASD vs. TD) may
be due to the mentioned whole brain approach and does not
rule out predictive power for region-specific local connectivity
patterns.

The finding of robust and extensive overconnectivity in striate
and extrastriate visual cortex, at scales above 6 mm, is intriguing
in view of potential local biases in visual perception, supported
thus far mainly by findings from behavioral studies (Dakin and
Frith, 2005; Mottron et al., 2006). Unusual profiles of visual per-
ception have been observed in many studies (as reviewed in
Simmons et al., 2009). Remarkable are islets of superior abili-
ties in visual search (O’Riordan, 2004), associated with increased
functional connectivity during visual search performance (Keehn
et al., 2012). In a meta-analysis, Samson et al. (2012) found overall
greater activity in ASD groups compared to TD control groups
in posterior brain regions for a variety of visual processing tasks
(from studies using face, object, and word stimuli), including
occipitotemporal regions, for which local overconnectivity was
detected in the present study. Greater activation and increased
local connectivity could be directly related, as increased sponta-
neous BOLD signal correlations in visual cortex (as detected in
our ReHo and density analyses) may also enhance BOLD signal
changes in response to a task (as in the studies reviewed by Samson
et al., 2012). Indeed, effects of resting state signal fluctuations on
amplitude of stimulus-induced response have been observed in
a number of fMRI and electrophysiological studies (as reviewed
in Northoff et al., 2010). Specifically with respect to visual cor-
tex, Liu et al. (2011) reported that local BOLD correlations were
positively associated with amplitude of response to simple visual
stimuli.

Conversely, regions that consistently (across different analy-
sis pipelines) showed local underconnectivity in ASD included
posterior cingulate cortex and medial prefrontal lobe. Both of
these belong to a system that has been found active during the
resting state and is considered a “default mode network” (DMN;
Raichle et al., 2001). Several fcMRI studies have examined the
DMN in ASD, with the overall consistent finding of reduced
connectivity between DMN nodes, such as posterior cingulate and
medial prefrontal cortices (Monk et al., 2009; Assaf et al., 2010;
von dem Hagen et al., 2012). The present findings suggest that
such reduced long-distance connectivity between regions of the
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DMN is accompanied by local underconnectivity within these
regions. This is consistent with a recent finding by Lynch et al.
(2013) who observed underconnectivity in children with ASD
between posterior cingulate gyrus and neighboring regions (pre-
cuneus, retrosplenial cortex). Notably, this latter study as well
as the one by Monk et al. (2009) found that underconnectiv-
ity within the DMN was accompanied by atypically increased
functional connectivity of DMN regions with regions outside
this network, such as medial and lateral temporal cortices. Our
finding may also be consistent with atypically reduced con-
nectivity in bilateral precuneus observed by Di Martino et al.
(2013) in children with ASD. Note, however, that this latter
finding compares only indirectly to ours, as Di Martino et al.
(2013) tested degree centrality, which is a graph theory con-
struct reflecting both short- and long-distance connectivity of each
node.

A further finding that was overall stable across analysis pipelines
was an asymmetry of reduced connectivity in left, but increased
connectivity in right anterior prefrontal regions. The asymmet-
ric effects in anterior prefrontal cortex may be related to a recent
finding of right-hemisphere shifts of functional networks in ASD
(Cardinale et al., 2013). Expanding on a few previous studies
(e.g., Boddaert et al., 2003; Eyler et al., 2012) that had suggested
greater right-hemisphere participation in language-related pro-
cessing in ASD, the study by Cardinale et al. (2013) indicated that
such right-hemisphere shifts may be a pervasive feature of func-
tional brain organization in ASD, applying to many functional
networks, including non-verbal ones and those with participa-
tion of anterior prefrontal cortices. Such rightward shifts may
be associated by atypically increased local connectivity in right
compared to left prefrontal cortex in ASD, as observed in the pat-
tern of group differences detected in our study. However, such
potential links need to be considered with caution, given that this
asymmetric pattern of group differences was solely found in ante-
rior prefrontal cortex, whereas the rightward shifts observed by
Cardinale et al. (2013) occurred in widely distributed functional
networks.

Local connectivity abnormalities, as detected in our study, may
relate to recent evidence suggesting reduced functional differen-
tiation of cerebral cortex. Shih et al. (2011) first reported such
reduced functional differentiation in posterior superior tempo-
ral sulcus in children and adolescents with ASD. Neighboring
subregions were found to be less differentiated, both in the tem-
poral domain (with respect to BOLD time series) and in the
spatial domain (with respect to whole brain connectivity pat-
terns). Analogous findings for primary motor cortex have been
reported by Nebel et al. (2012) who observed that functional
differentiation between lower limb and trunk regions vs. upper
limb and hand regions was reduced in children with ASD. Find-
ings from these two studies may be consistent with a general
model of reduced network segregation in ASD, as proposed in
two studies by Rudie et al. (2012, 2013). Reduced network segre-
gation, accompanied by impaired local functional differentiation,
may relate to findings of regional local overconnectivity. For
example, reduced differentiation in posterior superior temporal
sulcus, as reported by Shih et al. (2011), is equivalent to atypically
increased correlations in neighboring voxels, and thus corresponds

to local overconnectivity in ASD in this region, as detected by
us in analyses at coarser spatial scales (Figures 1F,I). On the
other hand, local underconnectivity could reflect reduced inte-
gration within specialized functional networks, such as the DMN,
as discussed above. However, these potential links across stud-
ies remain speculative, as long as direct comparisons of local
connectivity and network segregation in the same cohort are
unavailable.

Our results also compare in interesting ways to a recent
magnetoencephalography (MEG) study by Khan et al. (2013),
who reported reduced local functional connectivity within the
fusiform face area in response to face and house stimuli in ado-
lescents with ASD. This may at first glance appear at odds with
our findings of overconnectivity in fusiform gyrus in some of
the analyses. However, note that the cited MEG study oper-
ationalized “local connectivity” by testing the phase–amplitude
coupling between alpha and gamma bands, which presum-
ably reflects inhibitory connectivity. This differs fundamentally
from physiological mechanisms boosting correlations of the
BOLD signal, which likely rely primarily on excitatory connec-
tivity. Ours and the findings from Khan et al. (2013) may thus
well be compatible, indicating increased excitatory and reduced
inhibitory local connectivity in inferior occipitotemporal regions,
respectively.

CHALLENGES AND CONCLUSIONS
We found that local connectivity was atypical in adolescents with
ASD, with overconnectivity – mostly in occipital and posterior
temporal regions – accompanied by underconnectivity in cingu-
late and medial frontal sites. While the consistency of findings
across different analysis pipelines and in low-motion subsamples
was reassuring, many challenges remain for a full understanding
of local connectivity, both at the methodological and concep-
tual levels. Methodologically, limits of spatial and temporal
resolution may best be approached in future studies combining
hemodynamic and electrophysiological techniques. However, a
spatial resolution adequate for the in vivo study of cytoarchitec-
tonic anomalies, which may affect local connectivity in ASD, is
unlikely in the foreseeable future and there is a need for mech-
anistic models that will allow a prediction of effects that can be
detected with fMRI, based on post mortem findings on cellular
organization.

Although only a first step in this direction, our findings indi-
cate that local connectivity at a relatively coarse spatial scale is
aberrant in ASD. However, the patterns of these aberrations were
inconsistent with previous simple hypotheses about “local over-
connectivity contrasting with long-distance underconnectivity”
(as described in the Introduction), suggesting instead region-
ally specific abnormalities of local connectivity, whose functional
significance (e.g., in the visual system) is only beginning to emerge.
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Similar behavioral deficits are shared between individuals with autism spectrum disorders
(ASD) and their first-degree relatives, such as impaired face memory, object recognition,
and some language aspects. Functional neuroimaging studies have reported abnormalities
in ASD in at least one brain area implicated in those functions, the fusiform gyrus (FG).
High frequency oscillations have also been described as abnormal in ASD in a separate
line of research. The present study examined whether low- and high-frequency oscillatory
power, localized in part to FG and other language-related regions, differs in ASD subjects
and first-degree relatives.Twelve individuals with ASD, 16 parents of children with ASD, and
35 healthy controls participated in a picture-naming task using magnetoencephalography
(MEG) to assess oscillatory power and connectivity. Relative to controls, we observed
reduced evoked high-gamma activity in the right superior temporal gyrus (STG) and reduced
high-beta/low-gamma evoked power in the left inferior frontal gyrus (IFG) in the ASD group.
Finally, reductions in phase-locked beta-band were also seen in the ASD group relative
to controls, especially in the occipital lobes (OCC). First degree relatives, in contrast,
exhibited higher high-gamma band power in the left STG compared with controls, as well
as increased high-beta/low-gamma evoked power in the left FG. In the left hemisphere,
beta- and gamma-band functional connectivity between the IFG and FG and between STG
and OCC were higher in the autism group than in controls. This suggests that, contrary to
what has been previously described, reduced connectivity is not observed across all scales
of observation in autism. The lack of behavioral correlation for the findings warrants some
caution in interpreting the relevance of such changes for language function in ASD. Our
findings in parents implicates the gamma- and beta-band ranges as potential compensatory
phenomena in autism relatives.

Keywords: magnetoencephalography, gamma-band, beta-band, oscillations, functional connectivity, Granger

causality, fusiform gyrus, endophenotype

INTRODUCTION
High-frequency brain activities have a central role in various nor-
mal functions (Buzsaki and Draguhn, 2004), including sensory
binding (Rodriguez et al., 1999), temporal regulation of neuronal
activity during synaptic plasticity (Traub et al., 1998), memory
processing (Fell et al., 2001), and large-scale integration (Varela
et al., 2001). Several suggestions have been proposed to define the
role of gamma-band oscillations (30 Hz and higher) as a corre-
late of auditory awareness (Makeig and Jung, 1996; Yordanova
et al., 2002) or encoding mental representations (Tallon-Baudry
and Bertrand, 1999). Moreover, the correlation between gamma
synchronization and hemodynamic responses reconciles common
findings in fMRI and brain electrophysiology (Niessing et al.,
2005). Particularly, gamma-band has been associated with face
processing, notably in the fusiform gyrus (FG; Zion-Golumbic
and Bentin, 2007; Gao et al., 2013). In autism spectrum disorders
(ASD), impairments of gamma oscillations have been previously
described in auditory (Wilson et al., 2007; Gandal et al., 2010) and
visual domains (Grice et al., 2001; Brown et al., 2005; Milne et al.,

2009; Isler et al., 2010; Stroganova et al., 2012), suggesting a link
between high-frequency oscillations and perceptual dysfunction.
We have also established that these deficits are seen in adult first-
degree relatives, suggesting that such impairment constitutes an
autism endophenotype (Rojas et al., 2008, 2011; McFadden et al.,
2012). Lower frequency oscillatory activity has also been described
as affected in autism, such as impaired mu wave suppression
during action observation (Oberman et al., 2005).

Autism is defined by a triad of core impairments in social
interaction, communication, and behavioral flexibility (American
Psychiatric Association, 2000). Communication deficits include
individual with autism’s difficulty using spoken language and ges-
tures, inability to initiate and sustain appropriate conversation and
use of inappropriate, repetitive language (Lord et al., 2000). The
severity of language impairment is highly variable in autism, rang-
ing from highly verbal to essentially non-verbal (Tager-Flusberg
et al., 2009), and it remains the best-known indicator of prognosis
in affected individuals (Venter et al., 1992). Within the language
domain, problematic pragmatic language use has been repeatedly
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documented among relatives (Losh et al., 2008). Among language
impairments, word processing is particularly affected in ASD
(Walenski et al., 2008). To examine the prediction of altered lexi-
cal processing, we tested subjects with autism on a picture-naming
task, in which subjects named pictures of objects. Two major areas
in the human brain are responsible for language (Binder et al.,
1997): Broca’s area (localized to left inferior frontal gyrus, or IFG)
which is involved in language production, and Wernicke’s area
(localized in the superior temporal gyrus, STG) which is thought
to be implicated in language processing. Other brain structures
may also play a role in language. Among them, the FG has been
initially studied as being a part of the visual system specialized
in facial recognition (Fusiform Face Area; Kanwisher et al., 1997)
because of the importance of face processing to successful social
functioning. Its additional role in language processing, called the
visual word form area (McCandliss et al., 2003), highlights its rel-
evance for language studies. Interestingly, individuals with ASDs
show atypical functional lateralization, with reduced left hemi-
sphere and/or reversed patterns of cortical activation in linguistic
experiments (Just et al., 2004; Flagg et al., 2005; Wang et al., 2006;
Frye and Beauchamp, 2009).

Hypoactivity in the FG (Schultz et al., 2000) and IFG (Groen
et al., 2010) areas has been reported in individuals with autism,
suggesting that there should be physiological signatures under-
lying autism-related language impairments. The objective of
this study was to compare gamma-band oscillations in the FG,
STG, and IFG, language-related areas of control participants to
patients with autism and first-degree relative of persons with
ASD during a picture-naming task. Based on prior findings
from simple auditory and visual processing experiments, as
well as face perception experiments, we expected to observe
reduced phase-locked, or evoked gamma-band activity in both
the autism group and in parents of individuals with autism com-
pared to controls. Increases in non-phase-locked, or induced
gamma-band activity have also been reported in autism (e.g., see
Brown et al., 2005; Rojas et al., 2008). We therefore separately
analyzed the evoked and induced gamma-band activity in the
study.

Building upon previous studies, we found some differential
activation in the gamma- and beta-band range in people with
autism compared to their first-degree relatives. Patterns of acti-
vation were opposite, as parent brains were over-activated while
autistic brains showed under-activation. The connectivity analyses
and results add to the existing literature by extension to an object
naming task and examination of both individuals with autism and
first-degree relatives.

MATERIALS AND METHODS
SUBJECTS
Participants were 12 persons with ASD, 16 parents of a child with
ASD (PASD), and 35 controls (Table 1). One-way ANOVAs were
used to examine demographic variables (age) for significant differ-
ences. No significant group differences were present at p > 0.05 for
any of these group characteristics. For ASD subjects, diagnosis was
based on convergence of clinical judgment by experimenters using
DSM-IV criteria (American Psychiatric Association, 2000), and
research reliability trained on the Autism Diagnostic Interview,

Table 1 | Participants characteristics.

Measure Controls ASD Parents p-value

Age (mean years ± SD) 34.2 ± 11.9 28.3 ± 13.3 37.9 ± 5.9 0.082

Handedness score 0.62 ± 0.53 0.35 ± 0.79 0.74 ± 0.41 0.202

Revised (ADI-R; Lord et al., 1994), and the Autism Diagnostic
Observation Schedule (ADOS; Lord et al., 2000). Each of the 16
PASD group subjects had a single child who met the same criteria
for ASD as the ASD group participants. The PASD group sub-
jects were not biologically related to the study participants in the
ASD group. The healthy comparison subjects had no personal
history of developmental, psychiatric, or neurologic disorders,
and no family history of developmental disorders. All subjects
signed informed consent to participate in the study consistent
with the guidelines of the Colorado Multiple Institution Review
Board.

Handedness was assessed in all subjects using the Annett
Handedness Questionnaire (Annett, 1985). Handedness score
means were 0.62 ± 0.53, 0.35 ± 0.79, and 0.74 ± 0.41 for
healthy controls, ASD subjects and PASD, respectively (Table 1).
One-way ANOVA (SPSS version 21 – IBM Corp, Armonk, NY,
USA) revealed no difference among groups: F(2, 54) = 1.65,
p = 0.202.

STIMULI AND EXPERIMENTAL DESIGN
The stimuli consisted of 192 black and white line art images
from the International Picture Naming Project database1, which
includes items from the Peabody Picture Vocabulary Test (PPVT;
Dunn, 1997), Snodgrass and Vanderwart (1980) and other sources.
The pictures represent simple objects such as a shovel or an air-
plane. Trials consisted of periods of picture stimuli lasting for
1200 ms, followed by a central fixation cross for a random inter-
stimulus interval between 3000 and 5000 ms. Picture stimuli were
presented by an LCD projector onto a screen located 45 cm in front
of the subject and subtended an average of 7.27◦ horizontal visual
angle and 6.02◦ vertical visual angle. Subjects were instructed to
sub-vocalize (whisper) the name of the object depicted in the
image they had just seen as soon as the fixation cross appeared
(i.e., after the picture was removed) and received practice trials
until they understood the instructions. Sub-vocalization was used
instead of overt naming to reduce motion and muscle artifact in
the MEG data. The entire recording session lasted approximately
16 min.

MEG DATA ACQUISITION AND PRE-PROCESSING
We employed a Magnes 3600 WH whole-head MEG device (4-D
Neuroimaging, San Diego, CA, USA), which comprises 248 first-
order axial-gradiometer sensors in a helmet-shaped array. Five
head position indicator coils attached to the subject’s scalp were
used to determine the head position with respect to the sensor
array. The locations of the coils with respect to three anatomi-
cal landmarks (nasion and pre-auricular points) and two extra

1http://crl.ucsd.edu/experiments/ipnp/
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non-fiducial points, as well as the scalp surface were determined
with a 3D digitizer (Polhemus, Colchester, VT, USA). Identify-
ing the three fiducial points on an SPM standard head model
established the coordinate transformation between MEG and the
standard MRI template used for the volume conductor in source
modeling.

The MEG signals were acquired in a 0.1–200 Hz bandwidth
and sampled continuously at 508 Hz and 24-bit quantization.
MEG data pre-processing was conducted using the 4-D Neu-
roimaging software, Fieldtrip2 and Statistical Parametric Mapping
SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK)
implemented in Matlab (2009b; MathWorks, Inc., Natick, MA,
USA). Eye movement and blink artifacts were corrected using
independent components analysis using the FastICA algorithm
(Hyvarinen, 1999). Epochs were then defined of 1200 ms dura-
tion, with a baseline of −200 to 0 ms pre-stimulus onset and
1000 ms post-stimulus. Epochs were baseline corrected to remove
any DC offset and those trials contaminated by excessively large
MEG amplitudes (±3000 fT) were rejected from further analy-
sis. An average of 119 (±25) artifact free epochs was obtained for
source analysis.

MEG SOURCE ANALYSIS AND SOURCE SPACE STATISTICS
Source analysis was performed in Matlab (2009b; MathWorks,
Inc., Natick, MA, USA) using the SPM8 toolbox (Statistical Para-
metric Mapping; Wellcome Department of Cognitive Neurology,
London, UK). Following co-registration of the MEG fiducials with
the SPM8 standard template, leadfields were computed using a
single shell volume conductor model. Source localization was
then performed using a cortically constrained group minimum
norm inversion with multiple sparse priors (Litvak et al., 2011),
on all subjects’ data pooled together from the three groups, which
resulted in a common source space images across subjects. The
cortical surface used was a standard MNI space surface with 20484
vertices supplied within SPM8. Source analysis was performed on
the 35–120 Hz passband between 100 and 250 ms.

Source space images were submitted to GLM-based statistical
analysis using a one-sample t-test across subjects in all three groups
to find a common set of activated regions for subsequent spectral
analyses. Several active brain regions were obtained (Table 2),
where activity during the task survived multiple comparison cor-
rection, using a false discovery rate (FDR) of q < 0.05. Among all
active regions, we focused on the FG, the inferior frontal gyrus, the
STG, and the occipital lobe (OCC) for further ROI-based analy-
ses for three reasons: (1) their relevance to language function,
(2) the engagement of visual structures in this specific task, and
(3) leadfield correlation is high among closely spaced regions and
induces artificial correlation in source waveforms derived from
such locations. A limited set of widely spaced ROI is therefore
more appropriate given these correlations.

SOURCE WAVEFORMS, SPECTRAL ANALYSES, AND FUNCTIONAL
CONNECTIVITY
Regional time-courses were created via source-space projection
(Tesche et al., 1995) from dipoles within each region of interest: left

2http://fieldtrip.fcdonders.nl

Table 2 | List of brain regions that were significantly active (FDR

q < 0.05) from source analyses of the 35–120 Hz band between 100

and 250 ms post-stimulus.

Region Side MNI coordinates T value

Pre-cuneus R 4 −70 36 32.78

L −7 −74 42 32.12

Cuneus R 10 76 38 32.62

L −10 −68 42 31.25

Inferior temporal gyrus area

(includes fusiform gyrus)

R 54 −34 −26 11.18

L −48 −56 −14 18.78

Pre-central gyrus R 42 −14 48 15.81

Post-central gyrus R 44 −26 46 13.96

Superior temporal gyrus R 50 −44 16 11.18

L −50 −44 18 16.92

Basal forebrain R 22 10 −18 12.87

L −24 8 −18 12.87

Inferior frontal gyrus R 42 28 16 12.18

L −42 24 18 12.24

Inferior frontal orbital L −34 40 −14 9.71

Lobe occipital Superior R 22 −80 40 26.90

L −18 −80 34 25.88

Superior frontal gyrus R 20 −8 64 6.69

L −20 −6 66 6.70

Regions in bold print were selected for ROI based analyses.

and right FG, IFG, STG, and OCC. We computed the lead field and
its pseudoinverse and then we created current source waveform
(Ross et al., 2000). Montreal Neurological Institute (MNI) coordi-
nates described in Table 2 were used for this step. Afterward, from
those source-space projections were computed time-frequency
transforms using a Morlet wavelet decomposition with wave num-
ber linearly increasing from 3 to 12 across the frequency range
of 10–110 Hz, on the epochs from −200 to 800 ms. For each
subject, evoked and induced power, relative to the 200 ms pre-
stimulus baseline, were calculated, along with the phase-locking
factor (PLF; Tallon-Baudry et al., 1996), a measure of inter-trial
phase-consistency (also sometimes referred to as intertrial coher-
ence). Mass univariate, non-parametric statistical analyses were
performed across the entire time-frequency space, corrected for
multiple comparisons using cluster size metrics at FWE < 0.01.
Fieldtrip’s cluster-based correction for multiple comparisons uses
Monte Carlo randomization to compute a sampling distribution
for cluster sizes. Our threshold for cluster formation was set to
p = 0.01 and the number of permutations set to 1000 (Maris and
Oostenveld, 2007).

In order to evaluate directional functional connectivity between
our regions of interest in the frequency domain, we computed fre-
quency domain Granger causality using the Fieldtrip connectivity
analysis functions (Oostenveld et al., 2011), which first involved
an autoregressive model fit to the data using the bsmart matlab
toolbox (Cui et al., 2008). For these analyses, we downsampled
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the data to 250 Hz for better model order estimation and submit
the data to detrenting, differencing, and pre-whitening. Then, we
estimated the model order to be 15 (60 ms) using ARfit toolbox
for Matlab (Schneider and Neumaier, 2001). Group comparisons
of Granger spectra were analyzed between regions of interest and
between the two hemispheres, and corrected for multiple compar-
isons using the FDR method on the overall set of comparisons,
q < 0.1.

BEHAVIORAL TESTING
Since we did not measure spoken responses due to concern over
excessive motion, the PPVT was performed and scored indepen-
dently outside of the scanner, on a separate day following the
MEG session, as a proxy indication of picture naming perfor-
mance. The 192 items presented in the scanner contained 62
pictures from the PPVT items. A Kruskal–Wallis one-way analysis
of variance was applied to test for statistical differences between
groups.

RESULTS
SOURCE ANALYSIS RESULTS
Table 2 presents the regions that were significantly active from the
source analyses of the 35–120 Hz band between 100 and 250 ms.
Indeed, those brain regions included mainly visual and language
areas. Among them, the four cortical regions of interest to us
during this task (FG, STG, IFG, and OCC) that were selected for
source space projections and time-frequency analyses are depicted
in Figure 1.

TIME-FREQUENCY RESULTS
Fusiform gyrus
For the left FG, the evoked power was significantly higher in the
PASD group, relative to the controls, for high beta/low gamma-
band activity centered around 35 Hz and from around 580–700 ms
post-stimulus onset (Figure 2). No differences in PLF or induced
power were observed for the FG. No difference between the
ASD group and both other ones were found in either left or
right FG.

FIGURE 1 | Regions of interest from within source analysis results.

Gamma (35–120 Hz) activation maps 100–250 ms after stimulus
presentation (FWE, p < 0.05) across all participants. FG, fusiform gyrus;
STG, superior temporal gyrus; IFG, inferior frontal gyrus; OCC, occipital
lobe. All four clusters used to define our ROIs are depicted in this slice, but
the exact location of the MNI coordinate used is listed inTable 2.

Superior temporal gyrus
In the left STG, no significant differences were observed between
the HC and ASD groups, but there was a significant increase in
high-gamma evoked power for the PASD group relative to controls
between 570 and 630 ms post-stimulus (Figure 3). No differences
in PLF or induced power were seen for the left STG. In the right
hemisphere STG, there was a significant decrease in high-gamma
evoked power peaking at 900 ms in the ASD group compared to
controls. No differences in PLF or induced power were observed
in the right STG between groups.

Inferior frontal gyrus
For left IFG, there was a significant decrease in evoked power of
the high beta/low gamma-band between 630 and 720 ms post-
stimulus in the control group compared to the autism group
(Figure 4). No other significant differences were observed, for
any measures within the right IFG and for PLF or induced power
in the left IFG.

Occipital lobe
In both left and right OCC (Figure 5), PLF but not evoked/induced
power was significantly reduced in the ASD group in the beta band
around 200 (for the right) and 300–400 ms (left). No difference
between the parents and controls was found in any measures and
any hemispheres.

BEHAVIORAL RESULTS
All participants were asked to complete the PPVT language
test. Figure 6 shows the scores for each group. Compari-
son between groups did not yield any statistical difference,
according to a Kruskall–Wallis test (p = 0.50). There were
no significant correlations between PPVT performance and
either early or late high-gamma-band PLF, evoked or induced
power, or those measures in the beta-band, even at uncorrected
p < 0.05.

ALTERED FUNCTIONAL CONNECTIVITY IN THE AUTISM GROUP
Left inferior frontal gyrus to left fusiform
Increased directional connectivity was observed between the left
IFG to the left FG (Figure 7, top and horizontal slice) for the
autism group compared to the control group. This increase was
significant across the high-beta and low gamma frequencies after
correction for multiple comparisons (FDR, q < 0.1).

Left superior temporal gyrus to left occipital lobe
As found between left IFG and FG, there was stronger connectivity
in the group of autism participants compared to the controls from
the left STG to the left OCC (Figure 7, bottom and right horizontal
slice). This was statistically significant within the full beta-and
gamma-band ranges.

No other significant differences in connectivity within or
between hemispheres, for any frequency, were found among
groups. We also observed no significant correlations between the
connectivity data and the PPVT.

DISCUSSION
Our results, if replicated, suggest that altered high- and low-
frequency brain oscillations in regions involved in object and
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FIGURE 2 | Fusiform gyrus evoked power time-frequency results. Grand
average evoked power is shown for each group (three top rows) for the left
fusiform gyrus (FG). T -statistic maps are shown in the two bottom rows that

illustrate contrasts between controls (CTL) and ASD (row 4) and CTL and
parents (PASD; row 5). Masked t -score results represent cluster-corrected
findings at p < 0.01.

FIGURE 3 | Superior temporal gyrus evoked power time-frequency

results. Grand average evoked power is shown for each group (three top
rows) for the left and right superior temporal gyrus (STG). T -statistic maps are

shown in the two bottom rows that illustrate contrasts between controls
(CTL) and ASD (row 4) and CTL and parents (PASD; row 5). Masked t -score
results represent cluster-corrected findings at p < 0.01.
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FIGURE 4 | Inferior frontal gyrus evoked power time-frequency results.

Grand average evoked power is shown for each group (three top rows) for the
left inferior frontal gyrus (IFG). T -statistic maps are shown in the two bottom

rows that illustrate contrasts between controls (CTL) and ASD (row 4) and
CTL and parents (PASD; row 5). Masked t -score results represent
cluster-corrected findings at p < 0.01.

FIGURE 5 | Occipital lobe PLF time-frequency results. Grand average PLF
are shown for each group (three top rows) for the left and right occipital lobe
(OCC). T -statistic maps are shown in the two bottom rows that illustrate

contrasts between controls (CTL) and ASD (row 4) and CTL and parents
(PASD; row 5). Masked t -score results represent cluster-corrected findings at
p < 0.01.
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FIGURE 6 | Comparison of PPVT performance scores across group

subjects. No significant difference was observed (p = 0.50).

language-related processes are a notable characteristic of autism,
and that first-degree relatives share some of those differences. The
findings appeared to be regionally and temporally specific in the
context of the current task and sample.

CHANGES IN OSCILLATORY POWER AND OVER-CONNECTIVITY IN
AUTISM
Converging evidence from across many studies and a variety of
experimental paradigms suggests a gamma-band deficit in ASD
(Grice et al., 2001; Brown et al., 2005; Wilson et al., 2007; Rojas
et al., 2008, 2011; Gandal et al., 2010; McFadden et al., 2012;
Wright et al., 2012; Gao et al., 2013), which has been proposed
as a biomarker of autism (Uhlhaas et al., 2010).

In the STG, decreased high-gamma band activity was found.
Using auditory-verbal stimulus material, we have already reported
similar STG activation trends within autism (Wilson et al., 2007)
albeit at a lower gamma-band frequency range of 30–50 Hz.
In a language context, both structural and functional differ-
ences in the STG have been described in previous autism studies
(Herbert et al., 2002; Harris et al., 2006; Hubbard et al., 2012).
Altered gamma-band responses have also previously been reported
in the STG of children with autism in response to simple,
pure tone auditory stimulation (Gandal et al., 2010). In the
left IFG, we also found decreased evoked power in the low-
gamma band in autism compared to controls. Alterations in
oscillations patterns in those language-network structures may
be related to language impairments observed in people with
autism.

We also note that the low gamma-band findings extended to
the beta-range. Indeed, impaired beta-band oscillations have pre-
viously been observed in children with ASD compared to healthy
controls (Stroganova et al., 2007, 2012). The delineation between
the end of one band and beginning of the next is relatively arbi-
trary, so it is not unexpected to find that high beta and low
gamma changes would be present. Additionally, beta-band oscilla-
tory activity is independently known to be responsive to language
stimuli (Hirata et al., 2004).

In the OCC, reduced beta PLF was found in both left and right
sides of subjects with autism. The presence of those abnormalities

in early visual responses is consistent with previous neurophysi-
ological research on face processing (Dawson et al., 2005). Using
MEG (Kylliainen et al., 2006), also reported differences in the pro-
cessing of faces and other complex objects (motorbikes) at 100 ms
in ASD children matched with typically developing controls. Those
results and our study showing an impaired oscillation pattern
related to object naming in autism suggest that visual brain activity
may partly reflect general visual processing differences observed in
this population (Jemel et al., 2006).

The observed changes in the STG and IFG occurred later in
the post-stimulus window than the early phase-locked changes
observed for the OCC. This is in accordance with the involve-
ment of the occipital areas in visual functions, whereas the left FG
(Binder et al., 1997; Balsamo et al., 2006) and the STG (Heath et al.,
2012) have been reported as active during semantic processing at
latter stages in the process of picture naming. A previous MEG
study on picture naming reported visual and semantic processing
around 0–150 and 275–400 ms after stimulus presentation (Levelt
et al., 1998). Our differences were found between 600 and 900 ms,
the timing of which suggests a role in early semantic or covert
speech processes.

The autism group exhibited stronger functional connectivity
from anterior to posterior language and visual areas compared
with the control and parent groups, which may partially explain
the impaired activation we found in that group in those regions.
This finding is suggestive of differences in long-range neu-
ral synchronization present in our patient group. Alteration of
long-range connectivity is an often reported finding in autism
(Courchesne and Pierce, 2005). For example, reduced non-
directional functional connectivity between anterior and posterior
speech areas has been reported previously (Just et al., 2004). Our
current result, however, does not support the underconnectiv-
ity theory. It should be noted that, apart from our finding of
overconnectivity, other evidence also suggest overconnectivity in
autism, such as a recent study showing enhanced functional exci-
tation from occipital to frontal areas (Dominguez et al., 2013).
In another recent paper, individuals with Asperger syndrome
had higher, not lower, fractional anisotropy than controls in
a diffusion tensor study of white matter (Roine et al., 2013).
Together, these findings suggest that both underconnectivity and
overconnectivity can be observed in autism relative to control
subjects.

The range of oscillations where ASD people exhibited higher
connectivity included both beta and gamma frequencies. Liter-
ature reports that gamma rhythms are prevalent in local visual
response synchronization, but more distant coherence occurring
during multimodal integration between parietal and temporal cor-
tices uses rhythms in the beta range (Roelfsema et al., 1997). Since
gamma-band activity is phase-amplitude coupled to lower fre-
quency alpha- and theta-band oscillations, it is possible that the
higher connectivity we observe in the gamma-range is a direct
effect of the increased connectivity in the beta band between
the same regions. A recent MEG paper reported that reduced
high-gamma connectivity between the FG and other brain areas
was related to decreased local connectivity, as assessed by phase-
amplitude coupling to low frequency oscillations in those areas
(Khan et al., 2013). One difference between this study and ours
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FIGURE 7 | Granger causality results. Granger spectra show functional
connectivity between regions of interest with significant differences between
the ASD and control groups. GC, Granger causality; FG, fusiform gyrus; STG,
superior temporal gyrus; IFG, inferior frontal gyrus; OCC, occipital lobe. The

title reading from left to right (e.g., IFG–FG) indicates the direction of
causation. Significant group differences are shown with green asterisks (FDR,
q < 0.1). Brain slices in the middle row illustrate location of those brain areas
and flux of information (arrows) between them.

was the involvement of the FG relative to the task. In the paper
reporting underconnectivity (Khan et al., 2013), the stimuli were
faces; in ours, all of the stimuli were non-face objects. Thus,
FG might be differentially affected in autism in a task specific
manner.

The PPVT scores were not significantly different between
the ASD and control groups. Together with the oscillatory and
connectivity changes, this might suggest that the increase in

communication between language and visual areas could pro-
vide a compensatory mechanism for coping with language and/or
object naming difficulties. We also did not find any significant
relationships between our groups’ performance on the behavioral
language task and on their gamma-related results. This indicates
that this paradigm might not well-suited to study language pro-
cesses per se in autism, but is perhaps more relevant to issues in
early visual perception and object recognition. Consistent with
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this, for example, a previous study reported FG activation dur-
ing color naming (Price and Devlin, 2003). Finally, we note
that although we have speculated concerning language deficits
in autism, there is no behavioral evidence for such deficits in
our sample. A more severely affected sample might be nec-
essary to establish a relationship, if any, between oscillatory
power changes, connectivity, and language deficits in people with
autism.

A POTENTIAL COMPENSATORY/PROTECTIVE MECHANISM IN
FIRST-DEGREE RELATIVES
In the FG, evoked power revealed an increase in late high-beta/low-
gamma band activity in the PASD group compared to controls.
Similarly, we recently published evidence of gamma-band over-
activation in the FG in autism first-degree relatives using language
stimuli delivered in the auditory modality (McFadden et al., 2012).
This increase also extended to the beta-band. Indeed, parents of
children with autism show evidence of several areas of differ-
ence in common with persons with ASD, such as face memory
and object recognition (Wallace et al., 2010), social cognition and
working memory (Gokcen et al., 2009), and executive function,
the latter being also shared by unaffected siblings (Wong et al.,
2006). At the functional level, our group has recently published
the evidence of differences in neural patterns associated with
phonological processing in first-degree relatives (Wilson et al.,
2012).

In the STG, increased activation in the high-gamma band was
found in the left hemisphere of parents. Here again, we have
already reported similar STG activation trends within autism
relatives (McFadden et al., 2012) albeit at a lower gamma-band
frequency range of 30–50 Hz. This finding is opposite to what
we found in the ASD group. Such differential findings have
been reported previously in autism subjects and relatives, such
as intact verbal IQ in relatives while probands generally exhibit
lower levels relative to performance IQ (Schmidt et al., 2008).
In this context, it is possible that the observed over-activity in
language-related regions is either a compensatory or protective
mechanism.

CONCLUSION
Our findings of altered beta and gamma oscillations in people
with ASD is consistent with a change in neural synchrony, which
adds to a growing literature on gamma-band deficits across a
number of simple sensory and complex cognitive tasks. The find-
ings suggest that such oscillatory changes may also be relevant to
higher order visual object processing and possibly to some lan-
guage functions, at least in the context of object naming. The
lack of similarity between the probands and the parents repre-
sents a challenge to the endophenotype interpretation. Alternative
explanations include a compensatory or protective mechanism in
the first-degree relatives. Impaired connections between posterior
and anterior regions of the brain may be a marker of language
and/or visual processing differences in autism, but future stud-
ies of language impaired individuals with autism will be needed
to clarify a specific role, if any, for altered intra-hemispheric
connectivity in the language processing deficits observed in the
disorder.
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Alterations in interregional neural connectivity have been suggested as a signature of
the pathobiology of autism. There have been many reports of functional and anatomical
connectivity being altered while individuals with autism are engaged in complex cognitive
and social tasks. Although disrupted instantaneous correlation between cortical regions
observed from functional MRI is considered to be an explanatory model for autism,
the causal influence of a brain area on another (effective connectivity) is a vital link
missing in these studies. The current study focuses on addressing this in an fMRI study
of Theory-of-Mind (ToM) in 15 high-functioning adolescents and adults with autism and
15 typically developing control participants. Participants viewed a series of comic strip
vignettes in the MRI scanner and were asked to choose the most logical end to the story
from three alternatives, separately for trials involving physical and intentional causality.
The mean time series, extracted from 18 activated regions of interest, were processed
using a multivariate autoregressive model (MVAR) to obtain the causality matrices for
each of the 30 participants. These causal connectivity weights, along with assessment
scores, functional connectivity values, and fractional anisotropy obtained from DTI data for
each participant, were submitted to a recursive cluster elimination based support vector
machine classifier to determine the accuracy with which the classifier can predict a novel
participant’s group membership (autism or control). We found a maximum classification
accuracy of 95.9% with 19 features which had the highest discriminative ability between
the groups. All of the 19 features were effective connectivity paths, indicating that causal
information may be critical in discriminating between autism and control groups. These
effective connectivity paths were also found to be significantly greater in controls as
compared to ASD participants and consisted predominantly of outputs from the fusiform
face area and middle temporal gyrus indicating impaired connectivity in ASD participants,
particularly in the social brain areas. These findings collectively point toward the fact that
alterations in causal connectivity in the brain in ASD could serve as a potential non-invasive
neuroimaging signature for autism.

Keywords: autism, effective connectivity, fMRI, classification, machine learning, theory-of-mind

INTRODUCTION
A biological origin for autism spectrum disorders (ASD) had
been proposed even in the earliest published accounts of the
disorder (Kanner, 1943; Asperger, 1944). Despite several decades
of research since then, a focal neurobiological marker for autism
has been rather elusive. Brain imaging techniques in the last
decade, particularly functional and structural MRI, have pointed
to disrupted cortical connectivity as a defining neural feature
of ASD (Kana et al., 2011; Just et al., 2012). Neuroimaging
studies have reported functional under connectivity (weaker
synchronization of activated brain areas) between frontal and
posterior brain areas (Just et al., 2004, 2007; Villalobos et al.,
2005; Kana et al., 2006, 2007, 2009; Koshino et al., 2008; Mason
et al., 2008; Solomon et al., 2009; Damarla et al., 2010; Jones
et al., 2010; Mizuno et al., 2011; Schipul et al., 2011), and intact
or increased functional connectivity within relatively posterior

brain areas (Villalobos et al., 2005; Kana et al., 2006; Damarla
et al., 2010; Kana et al., under review). Similar findings have
also been reported during task-free resting state in autism
(Cherkassky et al., 2006; Assaf et al., 2010; Murdaugh et al.,
2012). Furthermore, diffusion tensor imaging (DTI) studies
have reported disruptions in anatomical connectivity in ASD
(Barnea-Goraly et al., 2004, 2010; Alexander et al., 2007; Keller
et al., 2007; Jou et al., 2011; see Travers et al., 2012 for a review).
Although there is converging evidence for connection abnormal-
ities, the neural connectivity model of ASD is based primarily
on functional connectivity, with some contributing evidence
from white matter integrity. While the insights gained from
these models are valuable, functional connectivity is a method
for assessing zero-lag correlations, and does not provide insight
into the time-lagged relationships and direction of such causal
influence.
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Effective connectivity, on the other hand, refers to the influ-
ence one neural system exerts over another with respect to a given
experimental context (Buchel and Friston, 2000), thus helping
uncover more information about how brain areas communicate.
Effective connectivity can provide information about the trans-
fer of information from one node to another, and differentiate
between top-down vs. bottom-up effects. Thus, effective con-
nectivity findings have enriched models of cognitive function by
emphasizing the dynamic and interactive nature of neural instan-
tiations (McIntosh et al., 2010). Studying such interactions is
important not only for understanding typical brain functioning,
but also is critical in learning more about diseases. Considering
relatively consistent reports of disruptions in functional connec-
tivity in ASD, it is perhaps a logical and valuable next step to study
how information transfer is accomplished in ASD brains. Of par-
ticular interest is to explore the information transfer among brain
areas that are part of a team to perform higher-order cognitive
and social functions, which people with ASD particularly struggle
with.

Understanding the information transfer, or the lack of it,
between specific nodes in the brain may help uncover the neu-
ral bases of behavioral and social problems in ASD. It should
be noted that only four previous studies have examined effec-
tive connectivity between brain regions in ASD (Bird et al., 2006;
Wicker et al., 2008; Shih et al., 2010; Shen et al., 2012). These
studies only permit limited inferences as they used a small num-
ber of regions and made prior assumptions about the underlying
connectional architecture. This is because they used confirmatory
methods such as dynamic causal modeling (Friston et al., 2003)
and structural equation modeling (McIntosh and Gozales-Lima,
1994) in their studies. In contrast, the present study applies mul-
tivariate autoregressive (MVAR) modeling for obtaining Granger
causality between a large number of brain regions. This is an
exploratory technique which does not make any prior assump-
tions about the underlying connectional architecture. In addition,
it is capable of obtaining condition-specific causal influences
between a large number of brain regions using relatively shorter
time series. According to the principle of Granger causality, the
directional causal influence from time series X to time series Y
can be inferred if past values of time series X help predict the
present and future values of the time series Y (Granger, 1969).
MVAR models have been used to characterize the predictive rela-
tionship between the time series from different brain regions
in many previous studies (Roebroeck et al., 2005; Abler et al.,
2006; Deshpande et al., 2008, 2009b; Sathian et al., 2011). But
according to many recent studies, the spatial variability of the
hemodynamic response is considered to be of vascular origin,
and hence confounding the Granger causal estimates obtained
from raw fMRI time series (David et al., 2008; Deshpande et al.,
2010b). Removing the smoothing effect of the hemodynamic
response function (HRF) will increase the effective temporal
resolution of the signal in addition to accounting for the inter-
subject and inter-regional variability of the HRF (Handwerker
et al., 2004). This can be accomplished using blind hemodynamic
deconvolution methods where in the underlying hidden neuronal
variable for the fMRI time series can be estimated. We employed
this approach in this study by deconvolving the hemodynamic

response from fMRI time series using a Cubature Kalman fil-
ter (CKF) (Havlicek et al., 2011). Subsequently, these hidden
neuronal variables were input into the MVAR model to obtain
directional connectivity measures.

Investigating the directional interactions among brain areas
in ASD could supplement functional connectivity findings, and
potentially may serve as a neural signature for the disorder.
Thus, connection abnormalities at anatomical, functional, and
causal levels may be considered for potential diagnosis of ASD
and/or to supplement the behavior-based diagnosis. However,
such attempts will need to test and validate the diagnostic util-
ity of connection abnormalities in ASD. Questions pertaining to
diagnostic utility may be best answered through pattern classifi-
cation analyses using sophisticated machine learning algorithms
(Deshpande et al., 2010a; Weygandt et al., 2011; Shinkareva et al.,
2013). In this regard, earlier studies have used pattern recogni-
tion and machine learning algorithms reliably in classification.
Craddock et al. (2009) showed that by using resting state func-
tional connectivity metrics as features in SVM based machine
learning classifier, Major Depressive Disorder (MDD) patients
were successfully distinguished from healthy controls. In another
study, the treatment type provided to patients with MDD was
accurately identified using SVM classifier based on the effective
connectivity measures (Deshpande et al., 2009a). A pattern recog-
nition approach using structural networks as biomarkers was
proposed (Marquand et al., 2013) for classification of Parkinson’s
Disorder. This method of analysis accurately predicted the diag-
nosis in patients with Parkinson disorders. A study by Mirowski
and colleagues (2009) showed that machine learning classifiers
can be successfully used in prediction of seizures in patients with
epilepsy. Given the success of pattern recognition and classifi-
cation methods based on machine learning techniques in other
fields and contexts, they could potentially prove to be useful
to correctly identify participants with ASD after replication and
fine tuning. In these lines, diagnostic information (although
preliminary) has been obtained from even short fMRI BOLD
sequences, such as characterization of subject age (Dosenbach
et al., 2010), classification of dementia (Chen et al., 2011), and
autism (Anderson et al., 2011; Murdaugh et al., 2012; Wang et al.,
2012). For a neurodevelopmental disorder such as ASD, which
is currently diagnosed solely by behavioral observation and in-
person interviews by clinicians, classification by brain imaging
signatures could be applied to gain more accurate (and per-
haps earlier) diagnosis of the disorder. Classification studies have
utilized a wide range of data sources to differentiate partici-
pants into ASD and TD groups, including functional connectivity
(Anderson et al., 2011; Murdaugh et al., 2012; Wang et al., 2012),
voxel based morphometry (Uddin et al., 2011; Calderoni et al.,
2012), fMRI activation patterns (Coutanche et al., 2011), EEG
(Duffy and Als, 2012), and DTI (Ingalhalikar et al., 2011). Yet,
none of these methods are currently employed to diagnose the
disorder. Issues remain regarding generalizability, such as whether
the classification techniques can still be accurately applied to
younger children. When other disorders also show functional
connectivity and resting state abnormalities, such as schizophre-
nia (Lawrie et al., 2002; Meyer-Lindenberg et al., 2005; Garrity
et al., 2007) and ADHD (Tian et al., 2006; Cubillo et al., 2010),
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it begs the question about the specificity of these metrics to ASD.
However, notably, effective connectivity markers have not been
used in classification of ASD individuals. In this regard, effec-
tive connectivity could be an additional data source utilized to
add to classification of ASD participants, potentially providing
sufficient information to serve as a biomarker for the disorder.
In other words, effective connectivity could contribute signifi-
cantly to the global connectivity-based neural characterization of
ASD. Also, whereas traditional statistical analyses can uncover sig-
nificant group differences in brain activation and connectivity,
classification analyses can serve to identify brain imaging signa-
tures which are not only able to separate or distinguish the groups,
but also predict the group membership of a new subject.

In the current study we explored the causal influences between
brain regions that may underlie the processing of theory-of-mind
(ToM) in young adults with ASD and typically developing (TD)
control participants. The original fMRI study on ToM was pub-
lished earlier (Kana et al., 2012), reporting findings of brain
activity, functional connectivity and white matter integrity. In the
current study, we obtained causal connectivity between 18 brain
regions activated in the ToM task in our previous publication
(Kana et al., 2012). We used these causal connectivity weights
along with the following metrics from our previous study—
assessment scores, functional connectivity values and fractional
anisotropy (FA) obtained from DTI data—as features for clas-
sification. We employed recursive cluster elimination to select
important features and a support vector machine (SVM) classi-
fier to classify participants into ASD and TD based on the entire
feature set. This paper is novel in that it takes into consideration
different aspects of brain connectivity, instead of a single index,
to characterize the nature of brain functioning in individuals with
ASD for classification purposes.

METHOD
PARTICIPANTS
Fifteen adolescents and young adults with high-functioning ASD
(mean age: 21.14 years) and 15 age-and-IQ-matched individuals
with typical development (TD) (mean age: 22.18 years) par-
ticipated in this fMRI study. Functional connectivity, structural
connectivity, behavioral data, and brain activation measures from
the same participants were reported elsewhere (Kana et al., 2012).
All participants were required to have an IQ of 80 or above mea-
sured by the Wechsler Abbreviated Scale of Intelligence (WASI).

The participants with ASD were recruited from the University
of Alabama ASD Clinic and surrounding service providers. The
study was approved by the Institutional Review Board of the
University of Alabama at Birmingham, and all participants pro-
vided informed consent for their participation in the study.
Participants with ASD had received a previous diagnosis of an
ASD based on Autism Diagnostic Interview (ADI-R) symptoms,
and Autism Diagnostic Observation Schedule (ADOS). Eight of
the 15 ASD participants in this study had received a diagno-
sis of Asperger’s Disorder. The TD participants were recruited
through newspaper advertisements and through the University of
Alabama at Birmingham’s Psychology 101 course subject pool.
They were screened through a parent-report (for participants
younger than 18 years) or self-report history questionnaire to rule
out neurological disorders, such as ASD, ADHD, or Tourette’s
Disorder, that could potentially confound the results. All partici-
pants completed the Autism Spectrum Quotient (AQ) question-
naire (Baron-Cohen et al., 2001b), and the Reading the Mind in
the Eyes (RME) test (Baron-Cohen et al., 2001a). Demographic
information about the participants is shown in Table 1.

EXPERIMENTAL PARADIGM AND IMAGING PARAMETERS
The stimuli consisted of a series of black and white comic strip
vignettes (adapted from Brunet et al., 2000) depicting scenarios
that demand either a physical causal attribution or an inten-
tional causal attribution to arrive at a logical ending. The first
part of the vignette was presented for 5 s and the participants’
task was to choose a logical ending to the story from the three
choices in the second panel presented for 6 s. The entire vignette
remained on the screen for a total of 11 s. The experiment was
designed in an event-related format. All data were collected using
a Siemens 3.0 Tesla Allegra head-only scanner (Siemens Medical
Inc., Erlangen, Germany). For functional imaging, a single-shot
gradient-recalled echo-planar pulse sequence was used for rapid
image acquisition (TR = 1000 ms, TE = 30 ms, flip angle = 60
degrees). Seventeen adjacent oblique-axial slices were acquired
in an interleaved sequence with 5 mm slice thickness, 1 mm slice
gap, a 24 × 24 cm2 field of view (FOV), and a 64 × 64 matrix,
resulting in an in-plane resolution of 3.75 × 3.75 × 5 mm3. More
information on the experimental paradigm and imaging param-
eters for the 3D MPRAGE structural MRI data and diffusion
weighted echo-planar imaging data can be found in Appendix A
(for further details, please refer to Kana et al., 2012).

Table 1 | Demographic information of the ASD and TD control participants.

Autism Control

N = 15 N = 15 Group difference

Mean Range SD Median IQR Mean Range SD Median IQR t-value p-value

Age 21.14 16–29 0.99 20.08 5 22.28 16–34 1.08 21.83 3.3 0.77 0.44

VIQ 104.8 74–139 5.02 102 31 113.93 98–127 2.2 116 14 1.66 0.11

PIQ 107.7 73–129 4.33 106 25 107.2 89–124 2.48 108 6 0.11 0.92

FSIQ 106.93 80–140 4.84 105 35 112 96–128 2.24 113 13 0.94 0.35

MIE 19.07 15–24 0.7 20 4 21.6 18–24 0.55 22 4 2.84 0.01

AQ 26.5 9–38 2.04 29 12 14.06 4–22 1.45 14 9 5.47 <0.001
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DATA ANALYSES
Head motion correction and regions of interest (ROI) definition
Within-group brain activation was examined for the whole group
(ASD + TD) of participants (see Kana et al., 2012). Functional
ROIs were defined on the group activation map for the whole
group (ASD + TD) for the contrast (Intentional Causality +
Physical Causality) vs. Fixation, so that it best represented the
study. Because head motion can impact connectivity analyses
(Satterthwaite et al., 2012; Van Dijk et al., 2012), a conservative
threshold of 0.5 mm was set for head motion in any direction.
In addition, the root mean square (RMS) values of head motion
were measured in three translational directions (x, y, and z) and
three rotations (pitch, roll, and yaw) for each individual partici-
pant in the study (see Appendix B Table B1). We examined group
differences in head motion on this data using a Mann-Whitney U
Test, which is a non-parametric test and may be more appropriate
in case assumptions about normality of sample distributions are
not met.

Eighteen ROIs were identified: supplementary motor area
(SMA), left and right inferior frontal gyrus (LIFG, RIFG), left and
right precentral cortex (LPRCN, RPRCN), left and right middle
temporal gyrus (LMTG, RMTG), right superior temporal gyrus
(RSTG), left and right inferior parietal lobule (LIPL, RIPL), left
and right fusiform gyrus (LFFG, RFFG), left and right supe-
rior parietal lobule (LSPL, RSPL), left and right middle occipital
gyrus (LMOG, RMOG), and left and right temporal parietal junc-
tion (LTPJ, RTPJ). A sphere was defined for each cluster (with a
radius ranging from 8 to 12 mm) that best captured the cluster
of activation in the contrast map for each group. The radius was
selected to specifically encompass as much of the activation clus-
ter as possible, without including surrounding (not significantly
activated) areas. Selecting ROIs of the same radius or utilizing
anatomically defined ROIs may entail those ROIs not encom-
passing the entire cluster of activation, or may include tissue
that is not significantly active for the task. As a result, extract-
ing time courses from ROIs defined in these ways may result in
time series variability that does not reflect the cognitive task being
processed.

The effective connectivity model
Let l fMRI time series be represented as X(t) =
[x1(t)x2(t) . . . xl(t)]. Below, we present a model linking
observed fMRI time series to underlying latent neuronal
variables. A dynamic state-space model can be described as
follows.
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Where h is the hidden neuronal state variable, u is the exoge-
nous input and θ represents the HRF parameter variables. f is the
function which links the current neuronal state to the previous
neuronal states, exogenous inputs and parameters. The subscript
T indicates continuous time and the superscript l indicates the
number of time series in the model. P, Q, and R are the zero mean

Gaussian state noise vectors. The observation equation links the
state to observation variables as given below.

xl(t) = m(h̃l
t) + εt−1 (2)

where ε is the measurement noise, t is discrete time and m
is the measurement function which links the state variables to
measurement variables. The exogenous inputs u, which is the
experimental boxcar function, and xl(t) are the inputs to the
model. As demonstrated before, using the CKF (Havlicek et al.,
2011), the hidden neuronal variables can be estimated success-
fully. The CKF performs very efficient joint estimation of the
hidden neuronal state variables and parameters. In addition, since
Eq. 1 represents a continuous time model, the neuronal variables
can be estimated with a highly improved temporal resolution
up to 10 times smaller than the TR. When the hidden neuronal
state variables hl(t) are input into the MVAR model, we get the
following equation.
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where p is the model order estimated by the Akaike/Bayesian
information criterion (Deshpande et al., 2009b), a represent the
model coefficients and e represents the error of the MVAR model.
From the above equation it can be observed that a(0) repre-
sents the instantaneous influences between the time series, and
the Granger causal influences between them is indicated by a(j),
j = 1 . . . . p. Both terms are used in the model because including
both instantaneous and causal terms in the model minimizes the
“leakage” of instantaneous correlation into causality (Deshpande
et al., 2010c). The multivariate model we have used is less sensitive
to the effects of missing variables than the traditionally used pair-
wise bivariate models (Kuś et al., 2004). Also, since we included all
18 regions which were activated in the effect of interest, it guar-
anteed to a certain level that all regions involved in the task were
indeed included in the model.

Effective connectivity analysis
Mean time series from 18 activated regions were obtained for
each of the 15 participants with ASD and the 15 typical con-
trol participants. Using the boxcar function corresponding to
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“intentional causality” as the exogenous input, hidden neuronal
variables corresponding to normalized mean fMRI time series
were obtained and input into the MVAR model. The Granger
causal relationships between the 18 regions for each participant
(ASD and TD) were obtained. The number of coefficients in the
MVAR model is equal to k2p (k is the number of time series and
p is the model order) (Kuś et al., 2004). This must be smaller
than the number of time points in each time series. We had 18
ROI time series, each of length 460. Since we used a first order
model, k2p = 324 which is less than 460. Therefore, we were able
to estimate the model.

Classification using support vector machine
The statistical separation of neural signatures (e.g., t-test) does
not guarantee generalizability or predictive power of those sig-
natures for diagnosis. Therefore, in this study, we also used
machine learning approaches for identification of metrics which
can accurately classify individuals with ASD from individuals
with typical development. A Recursive Cluster Elimination based
Support Vector Machine (RCE-SVM) (Deshpande et al., 2010a)
was used in this study to classify the participants based on granger
causal path weights between the 18 ROIs, functional connectivity
z-scores for all pairs of the 18 ROIs, assessment scores (AQ and
RME scores) and FA values for the white matter tract extending
into the temporal lobe as the input features. The functional con-
nectivity, assessment and DTI FA values were obtained from our
prior study (Kana et al., 2012).

Our choice of SVM for classification was motivated by its
wide applicability as a machine learning approach (Vapnik, 1995)
for classification in many different fields (Wang, 2005). Previous
studies have demonstrated that using discriminatory features
enhances SVM classification (Craddock et al., 2009). Therefore,
to enhance the performance of the SVM classifier, filtering and
wrapper methods for feature selection have been used. Filtering
methods are based on extraction of features that are statistically
different between classes. They can be extracted using statistical
tests such as a t-test. The wrapper approach is based on itera-
tively eliminating features to minimize the prediction error. RCE
is one of the wrapper methods that is an iterative process were
the feature selection and classification steps are embedded with
each other. The main steps of the RCE-SVM algorithm, shown in
the flowchart in Figure 1, are the cluster step, the SVM scoring
step and the RCE step. Initially, the features that were input into
the classifier were divided into training and testing data sets. Fifty
such splits were carried out in order to ensure the generalizabil-
ity of the results. In the clustering step, k-means algorithm (Yang
et al., 2003) was used to cluster the training data into n clusters.
The number of clusters was first set to the number of features,
and was progressively decreased by one until there were no empty
clusters. The n obtained by this iteration served as the initial n for
the RCE-SVM loop.

In the SVM scoring step, each cluster was scored based on
its ability to differentiate the two categories by applying linear
SVM. In order to rate the clusters, the training data was ran-
domly partitioned into 10 non-overlapping subsets of equal sizes
(10 folds). Using 9 subsets, the linear SVM was trained and per-
formance was calculated using the remaining subset. Different

FIGURE 1 | A flow-chart depicting the Recursive Cluster Elimination

based Support Vector Machine (RCE-SVM) procedure.

possible partitions were taken into account by repeating the clus-
tering and cross validation procedure 50 times. For each of these
50 repetitions, the classification accuracy of SVM was ascertained
using the test data. The average value of this accuracy, taking into
account the repetitions and all the folds was assigned as the score
of the cluster. The bottom 10% of low score clusters were elimi-
nated in the RCE step. The remaining features were merged and
the value of n was decreased by 10% and the cluster step, the SVM
scoring step and the RCE step were repeated again in an itera-
tive manner. After each iteration, the performance of the classifier
was assessed using the testing data and lesser number of features
compared to the earlier iteration. When the number of clusters
was equal to two, the procedure was stopped. Complete separa-
tion of testing and training data in this algorithm eliminates bias
in performance accuracy (Kriegeskorte et al., 2009). The accuracy
at every RCE-SVM loop was calculated as a mean value of accu-
racy obtained over 50 repetitions of each loop and each train-test
split, using the feature clusters of test data available at the cor-
responding loop and split. The statistical significance of mean
accuracies was calculated by estimating the p-values of a bino-
mial null distribution B(η,ρ), η being the number of participants
and ρ is the probability of accurate classification as in previous
studies (Pereira et al., 2009). Only accuracies whose p-values were
less than 0.05 after correcting for multiple comparisons using
Bonferroni method were considered as statistically significant.

The causal connectivity weights obtained from the MVAR
model, the behavioral assessment scores, the functional con-
nectivity z-scores for each ROI pair, and DTI FA metrics for
each of the 30 subjects (15 ASD and 15 TD) were input into the
RCE-SVM classifier to determine the accuracy with which the
classifier can predict a novel subject’s group membership (autism
or control).
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FIGURE 2 | Graph showing classification accuracy, sensitivity

and specificity obtained by simultaneously using the

following features: behavioral scores, functional connectivity,

effective connectivity and fractional anisotropy obtained

from DTI. The X-axis shows number of clusters/number of
features and the Y-axis, the performance (classification accuracy,
sensitivity and specificity). ∗ indicates significance (p < 0.05
corrected).

RESULTS
The main results of this study are summarized as follows: (1) The
effective connectivity path weights were able to successfully clas-
sify participants by diagnosis with 95.9% accuracy. These path
weights were the most discriminative features among all the dif-
ferent metrics used in classification; (2) Effective connectivity
paths most important for classification were significantly reduced
(p < 0.05) in ASD participants compared to typical control par-
ticipants; and (3) The paths that were among the top ranked
features in the classification analysis were found to be negatively
correlated with the AQ and positively correlated with the RME
test scores.

The first set of results pertains to a pattern classification
analysis involving several indices of connectivity (functional con-
nectivity, effective connectivity, white matter integrity) and per-
formance accuracy in this ToM task. In this analysis, utilizing 2
feature clusters comprised of 19 metrics, the classification accu-
racy reached a maximum accuracy of 95.9% (specificity 94.8%,
and sensitivity 96.9%). It should be noted that all of the 19 fea-
tures were effective connectivity paths. Figure 2 demonstrates the
increase in performance of classification with decreasing number
of features (and removal of uninformative features). The p-values
for all the accuracy values shown in Figure 2 can be seen in
Table 2.

Second, the causal connectivity weights of the 19 paths which
led to maximum accuracy of 95.9% showed clear separation
between participants with autism (blue) and typical control par-
ticipants (green) as shown in Figure 3, with these paths showing
significantly (p < 0.05 corrected using Bonferroni method for 18
paths; for one of the paths p < 0.05 uncorrected) weaker connec-
tivity in participants with ASD compared to TD controls. Many of
these connections are between regions that are part of the social
brain network (LTPJ, RTPJ, LFFG, RFFG, LMTG, RMTG, RIFG)
which may prove critical in accomplishing the ToM task used in
this study. It is noteworthy that there may be other paths which

Table 2 | Classification accuracy values and the corresponding

p-values obtained at each step of the RCE algorithm.

Accuracy p-Value

0.625 0.100244
0.672 0.049369
0.724 0.008062
0.754 0.002611
0.778 0.002611
0.792 0.000715
0.805 0.000715
0.815 0.000715
0.82 0.000162
0.835 0.000162
0.855 2.97 × 10−05

0.854 2.97 × 10−05

0.862 2.97 × 10−05

0.876 2.97 × 10−05

0.892 4.22 × 10−06

0.906 4.22 × 10−06

0.906 4.22 × 10−06

0.925 4.34 × 10−07

0.932 4.34 × 10−07

0.939 4.34 × 10−07

0.945 4.34 × 10−07

0.953 2.89 × 10−08

0.959 2.89 × 10−08

are significantly different between the groups. Here, we restrict
ourselves to finding the statistical separation of features which
have the highest ability for predicting the diagnosis of a given sub-
ject. We do so primarily because we are interested in features with
predictive ability rather than those which just “differ” between
the groups. Please refer to Appendix B Figures B1, B2 in order
to gain a qualitative understanding of the functional and effective
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FIGURE 3 | Mean of nineteen paths which was most important for

giving maximum classification accuracy for autism and control groups.

All paths had significantly decreased connectivity (p < 0.05 corrected using

Bonferroni method for 18 paths; for one of the paths p < 0.05 uncorrected) in
the Autism group as compared to controls. The bars represent standard
errors.

FIGURE 4 | The nineteen paths whose effective connectivity

values were top-ranked features for classification of the two

groups (Autism and Controls) with the maximum accuracy

(Left panel: participants with autism; and right panel: control

participants). The width of the arrows represents the path
strength and the color of the path indicates its rank obtained
during classification with 1 being the most significant and 19
being the least significant.

connectivity paths, respectively, between all 18 ROIs in both ASD
and TD groups.

The 19 effective connectivity paths which were most important
in classification are shown in Figure 4. The left panel shows these
paths in ASD participants and the right panel in control partici-
pants. The width of the arrows illustrates the path weight in the
corresponding group and the color represents the rank of the path
obtained during classification.

Third, a correlation analysis was also performed between the
features that were ranked highest in classification and gave rise
to maximum accuracy, and assessment scores (AQ and RME).
Given that the top-ranked features are not guaranteed to have
normal distribution, we used Spearman’s non-parametric corre-
lation method to determine whether the top-ranked features were
correlated with behavior. This analysis (including all participants
in the study) revealed a significant negative correlation between

several effective connectivity paths and the AQ scores as well as
a significant positive correlation between effective connectivity
paths and RME scores (see Table 3 for specific paths, correlation
and p-values). These results suggest that as autism symptom
severity increased, the effective connectivity of the top-ranked
paths decreased; and as the theory-of-mind ability increased,
effective connectivity of the top-ranked paths also increased. This
provides a second-level test of the behavioral relevance of the top-
ranked paths, which is to be expected given the fact that diagnosis
was based on behavioral symptoms. As a cautionary note, these
results should not be construed as a general discovery regard-
ing brain connectivity features in autism which correlate with
behavioral symptoms.

Neuroimaging data, especially brain connectivity analyses are
prone to be influenced by head motion and signal quality. We
conducted several different measures to make sure that our data
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Table 3 | Paths correlated with Autism Quotient (AQ) scores and Reading Mind in Eye (RME) scores.

Paths correlated with Autism Quotient (AQ) scores Paths correlated with Reading Mind in Eye (RME) scores

Source region → Sink region p-Value Correlation coefficient Source region → Sink region p-Value Correlation coefficient

LMTG → LTPJ 0.0003 −0.6137 LMTG → LTPJ 0.0311 0.3941
LMTG → RIFG 0.0007 −0.5837 LMTG → RIFG 0.0183 0.4279
LMTG → RMTG 0.0001 −0.6466 LMTG → RMTG 0.0455 0.3679
LMTG → RMOG 0.0006 −0.5901 LMTG → RMOG 0.0325 0.3912
LFFG → RIFG 0.0061 −0.4889 LFFG → RIFG 0.0428 0.3723
LMTG → LSMA 0.0006 −0.5930 LMTG → LSMA 0.0421 0.3734
RFFG → RTPJ 0.0028 −0.5274 RFFG → RTPJ 0.0373 0.3819
LFFG → RMTG 0.0119 −0.4531 LFFG → RMTG 0.0151 0.4395
RFFG → RMOG 0.0098 −0.4642 RFFG → RMOG 0.0035 0.5169
RFFG → LSPL 0.0187 −0.4266 RFFG → LSPL 0.0417 0.3741
LMTG → RSTG 0.0391 −0.3785 LIPL → RSPL 0.0082 0.4735
LMTG → RTPJ 0.0319 −0.3926 LFFG → LMOG 0.0213 0.4186

RFFG → RSPL 0.0425 0.3727

The paths in red were correlated with both AQ and RME.

and the reported results were not influenced by quality related
issues. First, the root mean square (RMS) values for each subject
and each head motion parameter were obtained (see Appendix
B Table B1). The RMS values were then submitted to a non-
parametric Mann-Whitney U test, which also revealed no sig-
nificant difference in motion in x [U(28) = 66, Z = −1.929, p =
0.06], y [U(28) = 93, Z = −0.809, p = 0.42], and z [U(28) = 96,
Z = −0.684, p = 0.49] translational directions. Nor was there a
significant group difference in rotation in pitch [U(28) = 68, Z =
−1.846, p = 0.06], roll [U(28) = 107, Z = −0.228, p = 0.82],
and yaw [U(28) = 93, Z = −0.809, p = 0.42]. These results indi-
cate that there were no statistical differences in head motion
between the two groups, assuming a p-value threshold of 0.05.
However, there was a non-significant trend (p = 0.06) for trans-
lation in x direction and the degree of rotation in pitch to differ
between the groups.

Further, we obtained the mean value of frame wise displace-
ment (FD) for each subject as a quality control (QC) metric
and investigated whether they correlated with any of the 19
top-ranked paths obtained from classification across the entire
sample. The instantaneous motion of the head was expressed
as a scalar quantity using the formula, FDi = |�dix| + |�diy| +
|�diz| + |�αi| + |�βi| + |�γi|, where �dik = d(j − 1)k − dik and
k is any of the 3 translational parameters (x, y, z) or rotational
parameters (α, β, γ). We converted the rotational displacements
from degrees to millimeters by calculating displacement on the
surface of a sphere of radius 50 mm, assuming that the approxi-
mate mean distance from the center of the head to the cerebral
cortex is 50 mm. The above procedure of calculating FD and
correlating its mean with connectivity metrics obtained from
individual subjects has been recommended recently for either
confirming or ruling out the influence of head motion on con-
nectivity measures (Power et al., 2012; Satterthwaite et al., 2012;
Van Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al.,
2013). The QC-connectivity Spearman’s correlations and cor-
responding p-values indicating their statistical significance are
shown in Table 4. It is evident that none of the QC-connectivity
correlations were statistically significant (p > 0.05). Given these

Table 4 | The Spearman’s correlation between mean frame wise

displacement (our quality control metric) and the Granger causality

weights for the top ranked 19 paths.

Source region → Sink region p-Value Correlation coefficient

LMTG → LTPJ 0.869 −0.031
LMTG → RIFG 0.958 0.010
LIPL → RSPL 0.984 −0.003
LMTG → RMTG 0.701 −0.073
LIPL → RMTG 0.547 0.115
LMTG → RMOG 0.856 −0.035
LFFG → RIFG 0.309 0.192
LMTG → LSMA 0.741 −0.063
LMOG → LPRCN 0.827 0.042
LMTG → RSTG 0.725 −0.067
RFFG → RTPJ 0.599 0.099
LMTG → RTPJ 0.827 −0.042
LMTG → LPRCN 0.665 −0.083
LFFG → LMOG 0.702 −0.073
RFFG → RSPL 0.322 −0.187
LFFG → RMTG 0.623 0.094
RFFG → RMOG 0.404 −0.158
RFFG → LTPJ 0.703 −0.073
RFFG → LSPL 0.866 0.032

The paths shown in the table are ordered according to the rank obtained during

classification with 1 being the most significant and 19 being the least significant

(first path is Rank −1 and the last path is Rank −19).

evidence, any significant group differences for imaging metrics
was probably not due to head motion. We did not use the scrub-
bing method described in Power et al. (2012), where removal
of certain parts of the time series (scrubbing) creates an artifi-
cial discontinuity in the data. This may not be a problem while
using Pearson’s correlation coefficient as zero-lag synchronization
in the data does not depend on the temporal ordering in the
data as long as the correspondence between the variables being
examined is preserved. However, other methods which are sen-
sitive to temporal ordering in the data cannot use scrubbing.
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Granger causality is one such method which is indeed sensitive
to temporal ordering in the data and hence we did not use
scrubbing.

Differences in signal to noise ratio (SNR) can also impact
Granger causality estimates (Nalatore et al., 2007) when the
SNR is low. On the other hand, when SNR = 2, which is typ-
ically the case for task-based fMRI, we have previously showed
using simulations that Granger causality estimates are accurate in
the absence of hemodynamic variability (which is the case here
since we deconvolved the hemodynamic response) (Deshpande
et al., 2010b). We calculated effective SNR of the deconvolved
fMRI time series by estimating the variance of the entire decon-
volved signal, i.e., the hidden neuronal variable, and divided it
by the variance of the deconvolved signal during non-stimulation
phases. We then populated the SNRs of each ROI in autism and
control groups to two different samples and performed a non-
parametric Wilcoxon ranksum to find statistical differences. The
SNR was significantly higher (p < 0.05, z-value = 20.1) in the
ASD group (SNR = 4.13 ± 0.01) as compared to the control
group (SNR = 3.2 ± 0.03). The SNRs for both groups were
high enough so that SNR differences between the groups will
not impact Granger causality. SNR has an impact on Granger
causality only when the SNR is low.

DISCUSSION
The goals of this study were: (1) to investigate effective connec-
tivity among brain areas during intentional causal attribution
in ASD and (2) to utilize machine learning techniques to clas-
sify participants based on effective connectivity weights from this
study, and behavior assessment scores, functional connectivity,
and fractional anisotropy obtained from DTI data from our previ-
ous study (Kana et al., 2012). Using SVM based classification, we
found that the causal connectivity path weights had the highest
discriminative power to separate groups by diagnosis with high
accuracy. It was uncovered that the top-ranked causal connec-
tivity paths were also significantly weaker between social brain
regions in young adults with ASD as compared to their TD peers
and correlated with the ASD symptom severity (AQ) scores and
theory-of-mind ability as measured by the RME test.

An application of characterizing brain connectivity patterns is
to test whether such patterns can differentiate individuals with
ASD from typically developing control participants such that the
diagnostic label of a new participant can be determined based
on imaging data. Thus, in this study we conducted a classifica-
tion analysis using the effective connectivity measures, functional
connectivity values, fractional anisotropy obtained from DTI data
and the causal attribution task performance scores to get a fair
assessment of which metric possesses the highest discriminative
power. A maximum classification accuracy of 95.9% was obtained
with 2 clusters and 19 features, all of these being effective connec-
tivity paths. These results suggest that significantly weaker causal
influence between brain regions during ToM processing in ASD is
sufficient to separate adults with ASD from typical control partic-
ipants. The discriminative patterns found in this study using SVM
may have clinical applications in the long-run. Accurate separa-
tion of ASD adults from TD peers may provide potential value
for clinicians, particularly in cases when behavioral observation
and clinical interviews are not sufficient enough to determine a

diagnosis. The key finding of differences in the causal influence of
brain regions for ToM in ASD in this study adds to the relatively
limited literature on effective connectivity in ASD. In addition,
while previous studies explored effective connectivity in ASD dur-
ing language processing, facial and emotional processing, and
imitation, the current study examined effective connectivity in the
context of a ToM task, which has not been studied in ASD to date.
The current study expands what we know about inferring mental
states in ASD, and provides insight into the causal relationships
of brain regions during ToM processing. In addition, this study,
to our knowledge, is the first to use effective connectivity mea-
sures for classification purposes in ASD. While this method will
require some fine tuning, validation in a larger sample, and repli-
cation through multiple studies to be applied within clinical
settings, the causal relationships between brain areas related to
ToM holds promise for separating individuals with ASD from
typical controls or from other disorders. Nevertheless, the cur-
rent study marks the first attempt at using effective connectivity
measures as inputs for a classification analysis of ASD subjects,
therefore marking the first step in the direction of more accurate
classification of the disorder.

Weaker effective connectivity of the 19 top-ranked paths found
in participants with ASD in this study involved paths and regions
that are found to be part of the social brain network. Several
nodes, such as the TPJ, MTG, RIFG, IPL, FFG, and SMA have
been associated with processing theory-of-mind, face processing,
and the mirror neuron system. These findings are in line with
previous studies of effective connectivity in ASD (Wicker et al.,
2008; Shih et al., 2010). Our results also include significant func-
tional alterations in social brain and visuospatial brain regions
(e.g., TPJ, IFG, IPL, FFG, etc.) seen previously in functional con-
nectivity findings (Kana et al., 2006, 2009, 2012; Just et al., 2007;
Koshino et al., 2008; Mason et al., 2008), suggesting some con-
sistency in disrupted connectivity across different modalities of
connectivity and providing further support for disrupted connec-
tivity accounts of ASD (Just et al., 2004; Kana and Just, 2011;
Schipul et al., 2011; Kana et al., 2012). The findings here sup-
plement the functional connectivity results in our previous study
utilizing the same ToM stimuli, where ASD participants displayed
significantly reduced functional connectivity between temporal
and frontal regions, and weaker connectivity between networks
made up of ventral premotor regions and TPJ (Kana et al., 2012).
Our results in the current study further these previous findings by
illustrating the directionality of connectivity. We found that, for
ToM processing in TD participants, significantly stronger (com-
pared to ASD group) causal connections existed among the 19
top-ranked paths which included the nodes that are associated
with social cognition. So, here we find that the critical regions
of the social brain are not as well coordinated with others, that
they should be sharing information with, in participants with
ASD. This lack of synchrony and reduced flow of information may
represent a critical problem of bandwidth (maximal rate of data
transfer supported by a communication channel) in ASD, where
some information is getting by, but at a much lower rate than
what would be needed for complex ToM connections (Just et al.,
2012).

In a correlation analysis using assessment measures and effec-
tive connectivity paths for the entire sample of participants, we
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found the paths that were among the top ranked features in the
classification analysis were correlated with AQ and RME scores.
While the AQ showed significant negative correlation, the RME
showed significant positive correlation with connectivity paths.
Similarly, participants with better ToM skills had stronger effec-
tive connectivity during this causal attribution task. It should
be noted that most of these connection paths involved informa-
tion transfer to different regions mainly from the temporal lobe
(LMTG, and bilateral FFG). While FFG has been associated with
face processing and processing socially salient stimuli (Schultz,
2005), middle and superior temporal areas have been found to
be involved in social cognition, especially in taking intentional
stance, as seen in the current study, on social scenarios (Mosconi
et al., 2005). The correlations found in our study reveal how social
abilities such as ToM skill can influence information transfer in
the brain. In addition, it also points out that severe autism symp-
toms may have a neural basis in reduced causal brain connectivity
from the temporal lobe. As noted earlier, the correlation analy-
sis was performed across the entire sample and we restricted it
to the top-ranked 19 paths because we feel that the covariance
of a brain imaging based metric with a behavioral assessment

score is clinically meaningful only if the imaging metric under
consideration has the power to predict the diagnostic label of a
new subject. Therefore, there may very well be other connectiv-
ity paths in the brain which may be correlated with behavior (but
which lack the discriminative ability) which we have not discussed
here.

In conclusion, this study provides preliminary evidence to
support a hypothesis that metrics based on directional brain con-
nectivity obtained from a task engaging social brain areas may
provide highly discriminative features for predicting whether a
given subject has ASD or not. Studies involving larger sample size,
and replication of these findings across multiple studies would be
required to fully test the extent of this hypothesis and investigate
its clinical implications.
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APPENDIX A
IMAGE ACQUISITION
Structural Imaging: Acquisition of initial high-resolution T1-
weighted scans was done using a 160-slice 3D MPRAGE volume
scan with TR = 200 ms, TE = 3.34 ms, flip angle = 78, field
of view (FOV) = 25.6 cm, matrix size = 256 × 256 and slice
thickness = 1 mm.

Diffusion tensor imaging: A diffusion-weighted, single-shot,
spin-echo, echo-planar imaging (EPI) sequence (TR = 4400 ms,
TE = 85 ms, bandwidth = 1860 Hz/voxel, FOV = 240 mm and
128 × 128 matrix size, resulting in an in-plane resolution of
1.87 × 1.87 × 3 mm) was used to collect the images. Thirty-two
3 mm thick slices were imaged (no slice gap) with no diffu-
sion weighting (b = 0 s/mm2) and with diffusion weighting
(b = 1000 s/mm2) gradients applied in 12 orthogonal directions.
Twenty-four images of each slice by gradient direction combina-
tion were acquired and averaged to produce the final diffusion
imaging data set.

DATA ANALYSIS
The brain activation data were analyzed using Statistical
Parametric Mapping (SPM8) software (Wellcome Department
of Cognitive Neurology, London, UK). Images were corrected
for slice acquisition timing, motion-corrected, normalized to the
Montreal Neurological Institute (MNI) template, resampled to
2 × 2 × 2 mm voxels, and smoothed with an 8-mm Gaussian ker-
nel to decrease spatial noise. We performed statistical analysis on
individual and group data by using SPM8’s implementation of the
general linear model (Friston et al., 1995). Within-group activa-
tion was analyzed for the ASD group, TD group, and for the whole
group (ASD + TD) of participants. Activation data was ana-
lyzed for all trials with separate regressors defined for intentional
causality, physical causality, and fixation baseline conditions. The
within-group analyses used a cluster size of 80 mm3 determined
by 10,000 Monte Carlo simulations at an uncorrected p value of
0.001. According to Lieberman and Cunningham (2009), simula-
tions can implicate cluster size thresholds that produce the best
balance between Type I and Type II error. The between-group
analyses used a cluster threshold of 10 contiguous voxels at an
uncorrected p value of 0.005, as the effects did not survive a more
conservative statistical threshold.

ROIs were defined on the group activation map for the whole
group (ASD + TD) for the contrast Intention + Physical vs.
Fixation, so that it best represents the study. Eighteen ROIs were
identified: supplementary motor area (SMA), left and right infe-
rior frontal gyrus (LIFG, RIFG), left and right ventral premotor
cortex (LPMv, RPMv), left and right middle temporal gyrus
(LMTG, RMTG), right superior temporal gyrus (RSTG), left and
right inferior parietal lobule (LIPL, RIPL), left and right fusiform
gyrus (LFFG, RFFG), left and right superior parietal lobule (LSPL,
RSPL), left and right middle occipital gyrus (LMOG, RMOG),
and left and right temporal parietal junction (LTPJ, RTPJ). A
sphere was defined for each cluster (with a radius ranging from 8
to 12 mm) that best captured the cluster of activation in the con-
trast map for each group. The activation time-course extracted
for each participant over the activated voxels within the ROI

originated from the normalized and smoothed images that were
low-pass filtered and had the linear trend removed.

APPENDIX B

Table B1 | Root mean square values of head motion.

Translation Rotation

X Y Z Pitch Roll Yaw

ASD

1 0.1456 0.1073 0.2415 0.0024 0.0013 0.0020

1 0.1234 0.0910 0.1028 0.0010 0.0013 0.0017

1 0.1009 0.1698 0.2096 0.0036 0.0023 0.0012

1 0.1521 0.2020 0.1704 0.0013 0.0015 0.0009

1 0.1216 0.1725 0.2679 0.0031 0.0014 0.0015

1 0.1090 0.1473 0.3443 0.0037 0.0011 0.0018

1 0.0639 0.0863 0.2077 0.0027 0.0013 0.0005

1 0.1082 0.0714 0.2311 0.0024 0.0012 0.0014

1 0.2747 0.2213 0.3942 0.0074 0.0023 0.0030

1 0.0426 0.0893 0.1033 0.0019 0.0006 0.0006

1 0.0788 0.1224 0.4748 0.0026 0.0010 0.0015

1 0.0527 0.1589 0.2260 0.0016 0.0012 0.0007

1 0.0322 0.2459 0.1560 0.0016 0.0004 0.0004

1 0.0452 0.0832 0.2903 0.0033 0.0009 0.0010

1 0.1833 0.5282 0.5859 0.0064 0.0027 0.0023

TD

2 0.1191 0.0812 0.1415 0.0013 0.0022 0.0020

2 0.0657 0.1096 0.2497 0.0017 0.0022 0.0013

2 0.0998 0.0743 0.2858 0.0025 0.0009 0.0013

2 0.0965 0.1360 0.3082 0.0023 0.0016 0.0013

2 0.0231 0.1937 0.2289 0.0025 0.0010 0.0006

2 0.3144 0.3258 0.4231 0.0056 0.0021 0.0044

2 0.0376 0.1298 0.1110 0.0018 0.0003 0.0007

2 0.0359 0.1012 0.2624 0.0012 0.0010 0.0006

2 0.0381 0.1800 0.1977 0.0022 0.0023 0.0011

2 0.0281 0.0762 0.1060 0.0015 0.0008 0.0006

2 0.0433 0.0745 0.1944 0.0018 0.0006 0.0009

2 0.0969 0.1548 0.2143 0.0015 0.0023 0.0011

2 0.0566 0.0831 0.1272 0.0018 0.0006 0.0010

2 0.0564 0.1403 0.2922 0.0018 0.0022 0.0014

2 0.0828 0.2080 0.1962 0.0016 0.0012 0.0011
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FIGURE B1 | Connectivity maps showing Granger causality path weights for all possible connections between 18 ROIs. Top: Autism, Bottom: Controls.
(A) posterior to anterior paths, (B) anterior to posterior paths, (C) left to right paths, (D) right to left paths.
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FIGURE B2 | Connectivity maps showing z-scores of functional connectivity path weights obtained using Pearson’s correlation for all possible

connections between 18 ROIs. Top: Autism, Bottom: Controls. (A) anterior–posterior paths, (B) bilateral paths.
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Characterizing the nature of developmental change is critical to understanding the
mechanisms that are impaired in complex neurodevelopment disorders such as autism
spectrum disorder (ASD) and, pragmatically, may allow us to pinpoint periods of plasticity
when interventions are particularly useful. Although aberrant brain development has
long been theorized as a characteristic feature of ASD, the neural substrates have been
difficult to characterize, in part due to a lack of developmental data and to performance
confounds. To address these issues, we examined the development of intrinsic functional
connectivity, with resting state fMRI from late childhood to early adulthood (8–36 years),
using a seed based functional connectivity method with the striatal regions. Overall, we
found that both groups show decreases in cortico-striatal circuits over age. However,
when controlling for age, ASD participants showed increased connectivity with parietal
cortex and decreased connectivity with prefrontal cortex relative to typically developed
(TD) participants. In addition, ASD participants showed aberrant age-related connectivity
with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform
gyrus, inferior and superior temporal gyri). In sum, we found prominent differences in
the development of striatal connectivity in ASD, most notably, atypical development of
connectivity in striatal networks that may underlie cognitive and social reward processing.
Our findings highlight the need to identify the biological mechanisms of perturbations in
brain reorganization over development, which may also help clarify discrepant findings in
the literature.

Keywords: autism, fMRI, resting state, functional connectivity, striatum, development

INTRODUCTION
A recent focus in autism research is the differences in functional
connectivity in autism spectrum disorder (ASD). Early studies
suggested that functional connectivity was altered in ASD during
tasks examining executive function (Koshino et al., 2005, 2008;
Just et al., 2007; Mostofsky et al., 2009), language (Just et al., 2004;
Kana et al., 2006), face processing (Kleinhans et al., 2008), social-
emotion processing (Welchew et al., 2005; Rudie et al., 2012b),
selective attention (Keehn et al., 2013), and visuomotor coordina-
tion (Mizuno et al., 2006; Mostofsky et al., 2009). These findings
have led to the strong hypothesis that ASD is a “disorder of abnor-
mal brain connectivity” (Belmonte et al., 2004; Frith, 2004; Just
et al., 2004; Geschwind and Levitt, 2007; Hughes, 2007; Minshew
and Williams, 2007; Ecker et al., 2013), with the predominant the-
ory being that hypo-connectivity, was core to the pathophysiology
of the disorder. However, results from task-related functional con-
nectivity studies have been mixed as reports indicate both hypo-
and hyper- functional connectivity in ASD relative to typically
developing (TD) individuals (Muller et al., 2011).

Examining resting state functional connectivity may help
address some of the discrepant findings, as it provides a mea-
sure of intrinsic functional connectivity without the task-related
differences that confound comparisons across different age and
clinical groups. However, similar to the task-based literature,

much of the prior resting state connectivity research testing indi-
viduals with ASD has suggested overall decreases in intrinsic
connectivity (Cherkassky et al., 2006; Kennedy and Courchesne,
2008; Monk et al., 2009; Assaf et al., 2010; Jones et al., 2010;
Weng et al., 2010; Anderson et al., 2011; Dinstein et al., 2011;
Ebisch et al., 2011; Gotts et al., 2012; Rudie et al., 2012a; Mueller
et al., 2013; Tyszka et al., 2013; von dem Hagen et al., 2013),
while some others have found increases (Noonan et al., 2009; Di
Martino et al., 2011; Delmonte et al., 2013; Lynch et al., 2013;
Uddin et al., 2013a; Washington et al., 2013). Taken together,
these findings suggest that the nature of connectivity differences
in ASD is not yet fully characterized. Inconsistent findings in
functional connectivity might be due to many important differ-
ences between various studies (e.g., data acquisition and analysis,
small sample sizes, diagnostic criteria). It is especially likely that
differences in age ranges and a lack of examination of develop-
mental changes contribute to conflicting reports in the literature
(for review, see Uddin et al., 2013b). In general, developmen-
tal work in ASD is limited, with a few prior studies examining
age-related change in gray matter (Langen et al., 2009; Greimel
et al., 2013), structural connectivity (Kleinhans et al., 2012),
behavior (Luna et al., 2007), task modulated brain function
(Schulte-Ruther et al., 2013), and resting state connectivity with
the default mode network (Wiggins et al., 2011). The majority
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of these studies report atypical trajectories in ASD. Given that
(1) typical connectivity develops substantially, with connectivity
patterns changing well into adulthood (Fair et al., 2009; Hwang
and Luna, 2011), (2) group differences may manifest differently
at different time points over the lifespan, and (3) ASD is char-
acterized as a disorder of abnormal and delayed development in
the brain, there is a strong possibility that functional connec-
tivity matures differently in ASD. Thus, examining age-related
changes in brain connectivity is crucial to understanding the neu-
ral basis of ASD. Importantly, there is a need to clarify the nature
of developmental change (Figure 1). For example, developmental
abnormalities can be classified as arrested (a lack of development)
(Figure 1C), or atypical (a deviating developmental trajectory)
(Figures 1D–F). In addition, it is important to know if regions
show intact development in ASD (Figure 1A), or no develop-
mental changes, but show persistent disorder effects (Figure 1B).
Characterizing these patterns is essential to understanding the
progression of the disorder and for identifying time points of
plasticity and/or vulnerabilities.

One particularly understudied topic in the ASD literature is
differences in connectivity with the striatum, an important sub-
cortical region associated with a number of core cognitive and
affective functions (Postuma and Dagher, 2006) that are atyp-
ical in ASD-including social reward processing. The striatum,
which includes the caudate, putamen, and nucleus accumbens
bilaterally, has extensive connections to cortex and cerebellum
via the thalamus. Prior studies of functional connectivity during

rest in typical adults have revealed a number of functionally dis-
tinct but overlapping cortico-striatal circuits (Di Martino et al.,
2008; Kelly et al., 2009b; Furman et al., 2011) that underlie core
motor, cognitive, affective, and reward processes. Important for
the current study, neuroimaging research has found structural
and functional differences in ASD in the striatum. Structural
neuroimaging studies have shown differences in striatal volume
in both children and adults with ASD, specifically in the cau-
date nucleus (Stanfield et al., 2008; Langen et al., 2009; Qiu
et al., 2010; Estes et al., 2011). Functional neuroimaging studies
demonstrate striatal activation differences in children, adoles-
cents, and adults with ASD (in separate studies) during tasks of
sensorimotor control and higher order cognition (Schmitz et al.,
2006; Takarae et al., 2007; Shafritz et al., 2008), social process-
ing (Dapretto et al., 2006; Masten et al., 2011; Weng et al., 2011;
Delmonte et al., 2012), and reward processing (Scott-Van Zeeland
et al., 2010; Delmonte et al., 2012). Diffusion tensor imaging
studies have previously shown decreased white matter connectiv-
ity between striatum and prefrontal cortex ASD relative to TD
(Langen et al., 2011) or no group differences in adults (Delmonte
et al., 2013). With regards to functional connectivity with stria-
tum, most prior research has suggested hyper-connectivity. For
example, Turner et al. (2006) found increased and more diffuse
functional connectivity between the caudate nucleus and corti-
cal areas such as prefrontal cortex, premotor areas, and parietal
cortex in adults with ASD during a task of visuomotor coordina-
tion. Di Martino et al. (2011) reported increased cortico-striatal

FIGURE 1 | Schematic of predicted models of age-related change in ASD

and TD. The ASD group is depicted with dashed lines and the TD with solid
lines. (A) Both groups display age-related change, but do not differ in
trajectories suggesting intact development in ASD. (B) Stable disorder effects
that persist over development, with no age-related changes. (C) TD group

shows age-related change, but ASD group remains unchanged, suggesting a
developmental arrest or delay. (D) Both groups display differential
developmental trajectories that converge into adulthood (Equifinality). (E,F)

Both groups display differential developmental trajectories that diverge in
adulthood (Multifinality).
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resting state connectivity in children with ASD relative to TD
children and TD adults, and Delmonte et al. (2013) showed
increased resting state connectivity between striatum (specifi-
cally caudate and nucleus accumbens) and prefrontal cortex in
adults during rest. Di Martino et al. (2011) also reported aberrant
as well as increased cortico-striatal connectivity in ASD chil-
dren relative to TD children and TD adults. These differences
were widespread but included limbic regions such as the insula
and face processing regions such as the superior temporal cor-
tex. Another prior resting state study reported hypo-connectivity
between the ventral striatum and the temporal lobe in children
with ASD (Abrams et al., 2013). Taken together, these findings
suggest that striatal connectivity is atypical in ASD, and may
be predominantly characterized by hyperconnectivity with cor-
tical areas. To date, no study has examined the development
of striatal functional connectivity in ASD from childhood to
adulthood.

The current study utilized resting state fMRI, expanding on
previous work (Di Martino et al., 2011), to explore the develop-
ment of the functional connectivity of the striatum in ASD and
TD. We predicted that TD individuals would show decreasing
cortico-striatal connectivity over development, consistent with
previous literature (Supekar et al., 2009; Dosenbach et al., 2010).
Given prior evidence of relative hyper-connectivity with striatum
in both children and adults (Di Martino et al., 2011; Delmonte
et al., 2013), we predicted that ASD individuals would overall
show increased connectivity relative to typical individuals when
controlling for age. We also predicted that ASD individuals would
show both deviant and arrested development in connectivity with
areas that change typically, especially with regions of the striatum
known to support cognitive (dorsal caudate) and affective (ven-
tral striatum) circuits, which may contribute to known behavioral
impairments of the disorder. We did not have any directional
hypotheses for age related differences in striatal connectivity
between ASD and TD given the lack of prior developmental
research in this area.

MATERIALS AND METHODS
PARTICIPANTS
Forty-two ASD and 48 TD participants between the ages of 8
and 36 were tested. There were no differences in age (p = 0.88)
and IQ (above 80; p = 0.81) between groups. Participants were
recruited through the University of Pittsburgh Autism Center of
Excellence (ACE) subject core (HD#055748). Participants were
diagnosed with ASD using the Autism Diagnostic Interview (ADI;
Lord et al., 1994) and Autism Diagnostic Observation Schedule-
G (ADOS; Lord et al., 2000). Participants and/or their legal
guardians provided consent and assent prior to being enrolled
in the study, which was approved by the Internal Review Board
at the University of Pittsburgh. The ASD group met cut-offs
for autism on the ADI (except one individual in section D)
and cut-offs for either autism or spectrum disorder on the
ADOS, and an expert clinician confirmed diagnosis. Individuals
were excluded from the ASD group if they reported concus-
sions, vision problems, drug abuse, epilepsy, meningitis, and/or
encephalitis. There were no effects of age on ADI scores or the
ADOS social or final scores (p’s > 0.05, Bonferroni corrected for

multiple comparisons) though there was a significant effect of
age on the ADOS communication score (t = 3.422, p = 0.002),
increasing in severity with age. TD participants were recruited
through the Autism Center for Excellence (Pittsburgh, PA) subject
core. Exclusion criteria included learning disabilities and psychi-
atric disorders (individual and first-degree relative). All partic-
ipants were screened for MR safety (absence of any metal and
claustrophobia). See Table 1 for full description of participant
demographics.

PROCEDURE
All scans were conducted at the Neuroscience Imaging Center
at the McGowan Institute for Regenerative Medicine at the
University of Pittsburgh on a Siemens Allegra 3T MRI scanner.
Participants first completed six runs of face and car memorization
and recognition tasks. Next, we acquired Magnetization-prepared
rapid gradient echo (MPRAGE) and DTI sequences prior to the
final resting state scan. The participants watched a movie of their
choice during structural scans in order to reduce the potential
for head movement. During the resting state scan, participants
were instructed to lie in the scanner with their eyes closed but to
remain awake. Functional images were obtained using a gradient
echo, echo-planar imaging (EPI) sequence sensitive to blood-
oxygen-level-dependent (BOLD) contrast (TR = 1500 ms, TE =
25 ms, flip angle = 70◦, 29 4 mm slices axial slices, voxel size =
3.1 × 3.1 × 4, 200 volumes per run, FOV = 200 mm), inter-
leaved slices MPRAGE sequences (TR = 2100 ms, TE = 3.93 ms,
flip angle = 7◦, 176 1 mm axial slices, voxel size = 1.1 × 1.1 ×
1.1) were used to obtain structural images, prior to functional
imaging.

fMRI PREPROCESSING
Each participant’s resting scan data were motion corrected using
AFNI (Cox, 1996), using the first volume as a reference. To
correct for signal corrupted by physiological noise, Physiologic
EStimation by Temporal Independent Component Analysis
(PESTICA v2.0) (Beall and Lowe, 2007) was used to create res-
piration and cardiac estimators, and apply impulse response
function retrospective correction of physiological motion effects
(IRF-RETROICOR) (Beall, 2010). These estimates were then
filtered temporally based on the empirically derived default win-
dows of 48–85 bpm for cardiac and 10–24 bpm for respiration
and adjusted for dithering. Resulting images were then slice time
corrected, aligned to the MPRAGE using FLIRT in FSL (Smith
et al., 2004) and, scaled to the mean of each voxel. We used
Freesurfer’s automated segmentation program (Fischl et al., 2002)
to segment gray matter, white matter, ventricles and non-brain
tissue (NBT) in each participant’s MPRAGE scan. These anatom-
ical parcellations were used to extract signal from white matter,
ventricles and NBT in the resting state fMRI scans. Using mea-
sures of head movement obtained from motion correction, we
averaged translation and rotation values in the x, y, and z direc-
tions to calculate root mean square (RMS) of linear and angular
precision. Next, using the ANATICOR program in AFNI (Jo et al.,
2010), we reduced noise and artifacts from hardware, the draining
vessel effect, and motion in each gray matter voxel by regressing
out the following nuisance variables: (1) motion regressors for
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Table 1 | Demographic information.

ASD (n = 41) TD (n = 48)

Males, n (%) 35 (85) 41 (85)

Right handed, n (%) 36 (88) 46 (96)

t-test

Mean (SD) Minimum Maximum Mean (SD) Minimum Maximum p-value

Age (years) 17.28 (6.10) 9.33 33.90 17.08 (6.41) 8.39 36.38 0.88

Full scale IQ 111 (12) 86 131 111 (10) 86 130 0.81

Verbal IQ 108 (11) 83 132 108 (11) 88 132 0.91

Performance IQ 112 (12) 86 128 110 (10) 86 132 0.65

ADOS

Communication 4 (1) 2 8 –

Social 8 (2) 5 12 –

Total 12 (3) 7 19 –

ADI

Social 21 (5) 8 28 –

Communication 16 (4) 9 25 –

RRB 6 (2) 2 12 –

Abnormal 3 (1) 0 5 –

ADOS, Autism Diagnosis Observation Schedule; ADI, Autism Diagnostic Interview; SD, Standard Deviation; ASD, Autism Spectrum Disorder; TD, Typical

Development. IQ, Intelligence Quotient; RRB, Restricted Repetitive Behaviors.

the standard 6 parameters, (2) local white matter regressors aver-
aged from white matter voxels within a spherical mask (radius =
30 mm) centered at each gray matter voxel of interest, (3) ventricle
signal regressors, and (4) NBT regressors. There were no signifi-
cant differences in head motion across age (P = 0.15) or between
groups (P = 0.25). Data were subsequently bandpass filtered at
0.009 Hz < f < 0.08 Hz and voxels were spatially smoothed using
a 5 mm full width at half maximum Gaussian kernel. Structural
scans (MPRAGE) were warped to a standard template space using
a template brain from the Montreal Neurological Institute (MNI,
Montreal, Canada) using FSL’s non-linear registration procedure
(FLIRT and FNIRT), and resulting warp coefficients were saved.
Preprocessed fMRI data were spatially aligned and normalized to
each participant’s warped MPRAGE scan using FSL’s non-linear
registration procedure (FNIRT). Further, using the methods pro-
posed by Power et al. (2012), we calculated frame-wise displace-
ment (FD) and RMS variance of the temporal derivative of the
time-series (DVARS). FD and DVARS values were used to identify
volumes in the fMRI time series to remove from data analy-
sis. There were no differences in FD between groups or across
age (Figure S1) (p’s > 0.05). Using the same threshold as Power
et al. (2012) we removed volumes where FD exceeded 0.5 mm
and DVARS exceeded 0.5% signal change. There were no signifi-
cant differences between groups (t = 0.656, p = 0.513) or across
age (t = −1.449, p = 0.151) for the number of volumes removed
(TD: mean 26.08 ± 10.02, ASD: mean 30.66 ± 9.38).

STRIATAL VOLUME ANALYSIS
Given prior research suggesting that the structural development
of the striatum differs in ASD relative to TD, we obtained volu-
metric measurements from the caudate, putamen, and nucleus

accumbens, and the whole brain using Freesurfer’s automated
segmentation tool (Fischl et al., 2002). We entered these values
into linear regression models with age and age2 as continuous
variables, and diagnosis as a categorical variable. We chose to
model both linear and quadratic functions of age given prior
evidence that striatal structures show both linear and quadratic
changes over development (Langen et al., 2009). We also exam-
ined whether striatal volume differed as a function of age or
diagnosis therefore potentially introducing a confound. We found
no age or diagnosis, group main effects or interactions on striatal
volume for any of the six striatal structures even at an uncorrected
threshold of p < 0.05.

fMRI DATA ANALYSIS
We used functionally distinct seed regions of interest (ROI) in
striatum, bilaterally, including the dorsal caudate (DC), infe-
rior and superior ventral striatum (VSi, VSs), dorsal-caudal and
dorsal-rostral putamen (dcP, drP), and ventral rostral putamen
(vrP) as previously defined in the literature (Di Martino et al.,
2008) (Table 2). Prior research using these seed regions has
demonstrated increased connectivity in ASD children relative to
TD children and adults, suggesting that developmental differ-
ences might exist (Di Martino et al., 2011). Striatal ROI’s were
manually inspected against each participant’s warped MPRAGE
to ensure that they all fell within the boundaries of the striatal
regions that they represented. In each participant’s resting scan
images, using single value decomposition in AFNI (1dSVD), we
extracted the first principal component vector in the time series
for each of the 12 ROIs using AFNI (Cox, 1996). In order to
ensure that the first component time series was the most repre-
sentative of all of the voxels in the seed, we correlated this time
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Table 2 | Coordinates for striatal seed regions in left and right

hemisphere in MNI space.

Striatal seed x y z

DC ±13 15 9

dcP ±28 1 3

drP ±25 8 6

vrP ±20 12 −3

VSi ±9 9 −8

VSs ±10 15 0

DC, Dorsal Caudate; dcP, dorsal caudal Putamen; drP, dorsal rostral Putamen;

vrP, ventral rostral Putamen; VSi, Ventral Striatum inferior; VSs, Ventral Striatum

superior.

series with the average time series of each seed. Across partici-
pants and across all seed ROI’s, the correlation values were above
r = 0.99. We then correlated each first component vector with
time series in every voxel in the brain. Resulting whole brain cor-
relation maps were Z-transformed (Fisher r to z transformation)
and entered into group-level regression models with diagnosis
(ASD, TD) as a categorical factor and age as a continuous factor,
controlling for sex. We also ran regression analyses to examine any
non-linear relationships with age, including a quadratic model of
age (age2), given prior research suggesting that striatal volume in
ASD showed both quadratic and linear change with age (Langen
et al., 2009). We generated maps of regions that exhibited positive
and negative connectivity for each seed as a function of age within
group (ASD, TD) as well as age by group interactions. We used a
group inclusive mask, masking for regions that overlapped across
all participants (Figure S2). To correct for multiple comparisons
(family-wise error correction), we ran a Monte-Carlo simulation
to determine cluster size at a voxel threshold of p = 0.005, and a
cluster threshold of p = 0.004. We chose the value for the clus-
ter threshold based on a Bonferroni correction for multiple seed
regions (p = 0.05/12 seeds = 0.004).

Furthermore, as a secondary analysis, we excluded all par-
ticipants over the age of 25, as we had fewer participants who
exceeded this age, and reran the whole brain group analysis. We
thus report resulting significant clusters that showed main effects
of age or age2, main effect of diagnosis group (controlling for
age), and age by diagnosis group interaction, across all partic-
ipants in regions that remained significant when we excluded
participants over the age of 25 (in order to ensure that our age
effects were not driven by the older participants). For the regions
that showed an age by diagnosis interaction, average beta values
were extracted for each individual and entered into linear regres-
sion models using the lm function in R (R Core Team, 2012) to
determine the direction of the developmental slope of each group.
To assess the effect of autism diagnosis on connectivity, we ran
separate regression models on the ASD group with age and ADI
scores as independent variables (controlling for sex) in each of
our resulting significant clusters. Lastly, given the recent discus-
sions in the literature regarding the optimal methods of motion
correction (e.g., Power et al., 2013; Satterthwaite et al., 2013), we
reran our analyses without the motion censoring procedure and
covaried FD at the group level.

RESULTS
For the analyses that included the quadratic function of age, we
found no significant clusters. Therefore, all results reported below
are based on regression models that included only linear rela-
tionships with age. We also did not find any significant effects
of ADI scores on connectivity (all p’s > 0.05). Lastly, we did not
find differences in which clusters were significant when covary-
ing FD at the group level. Therefore, we report our findings when
employing the scrubbing procedure described previously.

Our results were consistent with previous work on striatal
connectivity and development. Collapsed across groups and age,
we found patterns of positive correlations between the striatal
seeds and a distributed set of cortical areas. Overall, connec-
tivity patterns were similar to previously published research
in TD adults (Di Martino et al., 2008) (Figures S3, S4).
Independent of diagnostic group, we found decreases with age
in connectivity between striatal seeds and a wide set of stri-
atal and cortical regions including prefrontal, temporal and
parietal cortices, and cerebellum (Figures 2, 3). Below, for
each striatal seed, we first report clusters that showed a main
effect of diagnosis group when controlling for age, to estab-
lish regions that show differences in ASD relative to TD overall
(Figure 4, Table 3). We then report clusters that showed sig-
nificant group by age interactions (Figures 5, 6, and Figure S5,
Table 4).

DORSAL CAUDATE (DC)
The DC has extensive connections with dorsal and lateral aspects
of cortex involved in inhibitory control, working memory, and
task switching.

Group differences: We found no group differences between the
DC when controlling for age.

Whole brain group × age interaction: We found significant
age by diagnosis interactions in connectivity between the left DC
and right fusiform gyrus. TD individuals exhibited a significant
decrease in connectivity with age, and ASD individuals showed
increased connectivity with age.

DORSAL CAUDAL AND ROSTRAL PUTAMEN (dcP, drP)
The dorsal putamen is involved in primary motor control includ-
ing motor selection and execution.

dcP
Group differences: We found a main effect of diagnosis group
in connectivity between the left dcP and the left superior medial
gyrus, and between the right dcP and the left middle frontal gyrus.
In both clusters, TD individuals exhibited increased connectivity
relative to ASD.

drP
Group differences: With the left drP, the ASD group showed
increased connectivity with the right superior and inferior pari-
etal lobule, and decreased connectivity with the left superior
medial, superior frontal, and inferior frontal gyri. With the right
drP, the ASD group demonstrated decreased connectivity with the
right parahippocampal gyrus, and increased connectivity with the
superior occipital gyrus.
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FIGURE 2 | Statistical maps depicting linear effects of age with right

hemisphere seeds. For all analyses, we used a Monte Carlo simulation for
cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105
voxels) (AFNI; 3dClustSim). Slices were generated using AFNI software. Blue

denotes areas that decreased with age, and orange denotes areas that
increase with age. L, Left; R, Right; DC, Dorsal Caudate; dcP, dorsal caudal
Putamen; drP, dorsal rostral Putamen; vrP, ventral rostral Putamen; VSi,
Ventral Striatum inferior; VSs, Ventral Striatum superior.

Whole brain group × age interaction: We found no whole
brain age group by diagnosis interactions with either the dcP or
the drP.

VENTRAL ROSTRAL PUTAMEN (vrP)
The ventral rostral putamen is implicated in cognitive control and
executive function, with connections to the anterior cingulate,
and regions of the insula.

Group differences: Collapsed across age, the ASD group
showed increased connectivity between the left vrP and right
superior parietal lobule, and decreased connectivity between the
right vrP and the right inferior frontal gyrus, relative to TD.

Whole brain group × age interaction: There were significant
age by diagnosis interactions in connectivity between the left vrP
and the left medial temporal pole, the right fusiform gyrus, and
the right superior temporal gyrus. We also found an interac-
tion between the right vrP and the right inferior temporal gyrus.
The ASD group showed increased connectivity with age, and the
TD group showed significant decreases with age in all clusters

except the superior temporal gyrus, which showed no change
over development in the ASD group and a significant decrease
in connectivity in the TD group.

INFERIOR AND SUPERIOR VENTRAL STRIATUM (VSi AND VSs)
The ventral striatum, which has connections to medial aspects
of the prefrontal cortex, and other areas of the limbic system, is
strongly implicated in reward-related processing.

VSi
Group differences: We found a significant group difference
between the Right VSi and the right anterior cingulate cortex.

Whole brain group × age interaction: Age by diagnosis group
interactions were evident in connectivity from both VSi seeds to
the bilateral cerebellum (Lobule VI and Lobule VIIa, Crus I). In
addition, we found an interaction between the left VSi and the
right amygdala and right fusiform gyrus, and between the right
VSi and the left supplementary motor area. The ASD partici-
pants showed significant increases with age whereas TD showed
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FIGURE 3 | Statistical maps depicting linear effects of age with left

hemisphere seeds. For all analyses, we used a Monte Carlo simulation
for cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105
voxels) (AFNI; 3dClustSim). Slices were generated using AFNI software.

Blue denotes areas that decreased with age, and orange denotes areas
that increase with age. L, Left; R, Right; DC, Dorsal Caudate; dcP,
dorsal caudal Putamen; drP, dorsal rostral Putamen; vrP, ventral rostral
Putamen; VSi, Ventral Striatum inferior; VSs, Ventral Striatum superior.

decreases with age except with the right fusiform gyrus, where the
ASD group showed no change with development.

VSs
Whole brain group × age interaction: There were significant
age by diagnosis group interactions between both VSs seeds and
the cerebellum (Lobules VI and VIIa, Crus I), precuneus, and
right inferior temporal gyrus. The ASD group showed increased
connectivity with age, whereas the TD group showed decreased
connectivity with age.

DISCUSSION
We examined striatal resting state functional connectivity across
the ages of 8–36 years in individuals diagnosed with ASD, rela-
tive to typically developing individuals. Using previously defined
striatal seed ROIs (Di Martino et al., 2008), we identified con-
nections associated with each seed, respectively, and examined
changes in connectivity patterns across age and between diag-
nosis groups. To the best of our knowledge this study is the

first to examine striatal functional connectivity in ASD across
development, from late childhood to adulthood. Thus, our
results provide a novel understanding of the development of
functional connectivity with the striatum in ASD and iden-
tify connectivity patterns that parallel and deviate from typical
development.

Patterns of striatal functional connectivity in both individ-
uals with ASD and TD individuals were consistent with previ-
ous studies utilizing the same seed regions in both child and
adult populations separately (Di Martino et al., 2008, 2011;
Kelly et al., 2009b; Furman et al., 2011). In general, we noted
a dorsal to ventral and medial to lateral gradient, where more
dorsal seeds in striatum were significantly connected to dor-
sal and lateral aspects of cortex, and ventral areas of striatum
connected to more medial and ventral cortical regions. This
is consistent with purported cognitive/affective divisions previ-
ously identified in cortico-striatal circuits using the same seed
regions (Di Martino et al., 2008). Collapsed across diagnostic
groups, we found decreases in connectivity between all striatal
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FIGURE 4 | Between diagnosis group statistical map grouped by

striatal region. For all analyses, we used Monte Carlo simulation for
cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105
voxels) (AFNI; 3dClustSim). Slices were generated using Analysis of
Functional NeuroImages (AFNI) software. Regions showing increased
connectivity in ASD relative TD are depicted in red and regions showing
increased connectivity in TD relative to ASD are depicted in green. See

(Continued)

FIGURE 4 | Continued

Table 3 for cluster coordinates and connections to specific seed regions.
(A–E) Regions connected with the dorsal rostral putamen (drP). (F–G)

Regions connected with the dorsal caudal putamen (dcP). (H–I) Regions
connected with the ventral rostral putamen (vrP). (J) Regions connected
with the inferior ventral striatum (VSi). L, Left Hemisphere. R, Right
Hemisphere.

seeds and various cortical areas across age, consistent with stud-
ies of typical development, which may reflect necessary decreases
in striatal influence over cortical function, supporting the emer-
gence of long-range cortico-cortico connectivity in adulthood
(Fair et al., 2007, 2009; Kelly et al., 2009a; Supekar et al., 2009;
Dosenbach et al., 2010). As developmental changes that occur
in typically developing individuals are often interpreted as nec-
essary for maturation into adulthood, regions that show similar
age-related change with TD suggest intact development in ASD.
Thus, deviations from typical maturation may indicate develop-
ment of compensatory connections or impairments that persist
into adulthood.

Stable disorder effects (i.e., connections that are atypical in
ASD independent of age) were noted with only the putamen
and the inferior ventral striatum seeds, and suggest that posterior
connections (superior and inferior parietal lobule) are increased,
whereas anterior connections (anterior cingulate and superior,
middle, and inferior frontal gyri) are decreased in ASD. Previous
resting state functional connectivity studies using the striatum
did not find differences in the posterior parietal cortex, and dif-
ferences with the prefrontal cortex have been in the opposite
direction with ASD individuals (both children and adults) show-
ing increased striatal-prefrontal connectivity relative to typicals
(Turner et al., 2006; Di Martino et al., 2011; Delmonte et al.,
2013) with some studies reporting no differences (Kennedy and
Courchesne, 2008; Tyszka et al., 2013). Discrepant findings previ-
ously might have been specific to the age groups tested, whereas
the present study controlled for age-related changes when exam-
ining group differences. We suggest that there are differences in
network connectivity in ASD that is characterized by both hypo-
and hyper- connectivity in a region specific manner. Although
the behavioral implications of these findings are unclear, these
novel results highlight atypical connectivity patterns that are
unchanged with development (see Figure 1B). One caveat to the
interpretation of these group level findings in relation to prior
results must be highlighted. We did not include the average global
time series as a nuisance regressor (GSR), as prior studies did due
to our use of the PESTICA program to estimate and remove the
effects of physiological noise, as well as the recent evidence in
the literature regarding the potential spurious correlations that
may arise when using GSR with seed based resting state analy-
ses in both typical (Saad et al., 2012), and ASD samples (Gotts
et al., 2013). A recent resting state study in children with ASD
suggested that GSR does not significantly alter resting state results
(Di Martino et al., 2013), although those findings were specific to
a different measure of connectivity [network centrality—which
may be less affected by GSR (Yan et al., 2013)] than the seed based
correlations used in the current study. Although differences in
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Table 3 | Regions showing a significant main effect of diagnosis group, controlling for age.

Region Volume Center mass Mean SEM Max intensity

Seed Cluster X Y Z

R VSi Left anterior cingulate cortex 1056 3 −26.4 20.9 0.1752 0.0011 −0.2132

R dcP Left middle frontal gyrus 1376 17.5 −65.8 6.9 0.1611 0.0017 −0.2035

L dcP Left superior medial gyrus 1816 10.7 −66.1 3 0.1682 0.002 −0.2207

R drP Right parahippocampal gyrus 1296 −26 11.4 −30.4 0.1742 0.0018 −0.2283

Right superior occipital gyrus 896 −22.3 62.4 46.7 0.1906 0.0016 0.2202

L drP Right superior parietal lobule 3032 −18 60.6 49.2 0.175 8.70E-04 0.2178

Left inferior parietal lobule 2160 34.9 50.2 51.6 0.1916 0.0012 0.2457

Left superior medial gyrus 1016 1.8 −64.8 5.5 0.1715 0.0024 −0.224

Left superior frontal gyrus 944 11.5 −38.4 47.5 0.1693 0.0017 −0.2155

Left inferior frontal gyrus 880 41.3 −49.3 −12.4 0.1878 0.0018 −0.2279

R vrP Right inferior frontal gyrus 1200 −51.4 −37.4 −8.4 0.207 0.0013 −0.2524

L vrP Right superior parietal lobule 1640 −16.9 66.4 50.1 0.182 0.0014 0.2337

L, Left; R, Right; DC, Dorsal Caudate; dcP, dorsal caudal Putamen; drP, dorsal rostral Putamen; vrP, ventral rostral Putamen; VSi, Ventral Striatum inferior; VSs, Ventral

Striatum superior.

Negative max intensity values indicate that TD showed increased connectivity relative to ASD. Positive max intensity values indicate that ASD showed increased

connectivity relative to TD.

preprocessing is a limitation in our ability to compare our results
to previous findings, nonetheless, we estimated and removed
physiological noise without the potential confounds of GSR. As
it is vital that results be comparable in the literature, and future
developmental work in ASD should consider both GSR and
non-GSR approaches in analysis and interpretation.

The predominant goal of the current study was to identify
regions that showed age-related differences from late childhood
to adulthood in ASD relative to TD. Within the majority of clus-
ters that showed age by diagnosis group interactions, the TD
individuals showed significant developmental decreases, whereas
the ASD group showed increases with age, suggesting deviating
developmental trajectories into adulthood. Similar to the direc-
tion of results in the current study, prior research has suggested
that maturation of white matter connectivity is aberrant in ASD
relative to TD in a similar fashion in roughly the same age range
(10–40), with ASD participants showing increased white matter
integrity in subcortical to cortical projection tracts across age,
whereas TD participants showed decreased white matter con-
nectivity (Kleinhans et al., 2012). It is possible that age-related
differences in structural connectivity in subcortical-cortical tracts
underlie the functional differences noted in the present study.

Notably, age by diagnosis interactions revealed that the con-
nectivity between striatum and superior aspects of the cerebel-
lum, specifically with regions VI and VIIa (including Crus I) were
decreased in TD participants but increased in ASD. These dif-
ferences in the development of cerebellar connectivity are not
surprising given the convergence of evidence targeting the cere-
bellum as a locus of abnormality in ASD (Courchesne et al., 1988;
Nowinski et al., 2005; for review see Fatemi et al., 2012). The cere-
bellum has extensive connections with cortical and subcortical

brain regions, including bidirectional connections with striatum
(Habas et al., 2009; Krienen and Buckner, 2009; Strick et al.,
2009; Bostan and Strick, 2010). Studies have previously shown
that individuals with lesions in cerebellar areas including lobules
VI and VIIa demonstrate cognitive impairments such as motor
control and planning, attention, sensory integration, language,
and affective processes (Habas et al., 2009; Krienen and Buckner,
2009; Stoodley et al., 2010), all of which are known to be affected
in ASD. Furthermore, structural MRI research has found reduced
overall cerebellar as well as reduced regional gray matter vol-
ume in children, adolescents and adults with ASD (Hashimoto
et al., 1995; Bauman and Kemper, 2005; Stanfield et al., 2008;
Riva et al., 2013). Functional MRI research has demonstrated
atypical cerebellar activation during motor control (Muller et al.,
2001; Allen et al., 2004; Mostofsky et al., 2009), and atten-
tion (Allen and Courchesne, 2003) in children, adolescent and
adults with ASD separately. Finally, functional connectivity find-
ings suggest reduced connectivity between cerebellum and motor
execution areas (e.g., sensorimotor and supplementary motor
cortices) in children with ASD (Mostofsky et al., 2009). These
findings highlight a potential developmental deficit where initial
hypoconnectivity relative to TD may be later compensated with
relative hyperconnectivity in adulthood, specifically in more ven-
tral aspects of striatum that are involved in reward processing (VSi
and VSs). As we did not find any significant correlations with
our cerebellar clusters and ADI scores, further work will have to
explore the behavioral implications of the aberrant development
of cerebellar connectivity in ASD. It is important to note one lim-
itation with our cerebellar results; due to differences in head size
between participants, we were unable to acquire complete cov-
erage of cerebellum across all participants. Therefore, our results
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FIGURE 5 | Representative graph depicting most significant region

that showed an age by diagnosis group interactions with ventral

striatum (VSs and VSi). For all analyses, we used a Monte Carlo
simulation for cluster correction (voxel-wise p < 0.005, cluster-level
p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Z-transformed correlation
coefficients are displayed on the y-axis and age in years on the x-axis

of each graph. Title of each graph describes the seed region and the
relevant connecting cluster. Triangles and solid lines are TD participants,
squares and dashed lines are ASD participants. L, Left; R, Right; VSi,
Ventral Striatum inferior; VSs, Ventral Striatum superior; TD, Typical
Development; ASD, Autism Spectrum Disorder. See Table 4 for cluster
coordinates. See Figure S5 for all graphs.
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FIGURE 6 | Representative graph depicting most significant region

that showed an age by diagnosis group interactions with caudate

and putamen (DC, drP, vrP). For all analyses, we used a Monte Carlo
simulation for cluster correction (voxel-wise p < 0.005, cluster-level
p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Z-transformed correlation
coefficients are displayed on the y-axis and age in years on the x-axis
of each graph. Title of each graph describes the seed region and the

relevant connecting cluster. Partial R2 values of the regression lines for
each group are depicted on each graph (R2

ASD and R2
TD). Triangles and

solid lines are TD participants, squares and dashed lines are ASD
participants. L, Left; R, Right; DC, Dorsal Caudate; drP, dorsal rostral
Putamen; vrP, ventral rostral Putamen; TD, Typical Development; ASD,
Autism Spectrum Disorder. See Table 4 for cluster coordinates. See
Figure S5 for all graphs.
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Table 4 | Regions showing significant Age × Diagnosis Group Interactions.

Region Volume No. Voxels Center mass Maximum Intensity ASD Rˆ2 TD Rˆ2

Seed Cluster X Y Z

L DC Right fusiform gyrus 1752 219 −34.5 3.6 −38.9 0.0254 0.2247** 0.3456***

R drP Right inferior temporal gyrus 1296 162 −37.4 1.7 −42.2 0.0265 0.08304* 0.2872***

L vrP Left medial temporal pole 1192 149 28.2 −13.7 −36.8 0.0294 0.1446** 0.2713***

Right fusiform gyrus 1128 141 −35.8 3.2 −45.1 0.0261 0.1556** 0.2585***

Right superior temporal gyrus 912 114 −55.9 7 −3.6 0.0328 0.0372 0.2445***

R vrP Right inferior temporal gyrus 1024 128 −38.1 3.1 −44.1 0.0244 0.1551** 0.2022**

L VSi Left cerebellum, lobule VI 4464 558 32.2 58.7 −27.4 0.0305 0.2433*** 0.4331***

Left cerebellum, lobule VI 1384 173 8.2 76.2 −26.8 0.0272 0.1905** 0.2116***

Right cerebellum, lobule VI 1040 130 −15.9 70.7 −22.3 0.0241 0.1866** 0.1588**

Right amygdala 912 114 −26.5 −1.6 −23 0.0299 0.2456*** 0.1401**

Right fusiform gyrus 840 105 −35.6 47.4 −7.3 0.0268 −0.0040 0.4629***

R VSi Left cerebellum, lobule VI 3344 418 17.6 55.8 −16.4 0.031 0.1205* 0.3287***

Right cerebellum, lobule VI 2128 266 −15.3 65.9 −22.3 0.0272 0.1976** 0.1996***

Left cerebellum, lobule VI 1904 238 36.6 53.6 −28.1 0.0301 0.1436** 0.371***

Left cerebellum, lobule VIIIa 1456 182 3.4 70.8 −33.6 0.0266 0.3367*** 0.1173*

Left supplementary motor area 1104 138 5.1 7.1 69.1 0.0261 0.1789** 0.2765***

L VSs Left cerebellum, lobule VI 5192 649 34.7 54.9 −30.7 0.0349 0.2705** 0.4721***

Right precuneus 2104 263 −4.5 52.9 58.4 0.0292 0.1429** 0.2224**

Right inferior temporal gyrus 2088 261 −37.7 3.4 −44.5 0.0333 0.2006** 0.3412***

R VSs Left cerebellum, crus I 2752 344 40.6 55.8 −29.5 0.0304 0.09309* 0.4372***

Left medial temporal pole 1528 191 29 −14.1 −37.1 0.0296 0.1208* 0.3211***

Left fusiform gyrus 1248 156 35.8 75.6 −17.3 0.0285 0.08311* 0.2785***

Right cerebellum, lobule VI 856 107 −19.9 59.4 −29.9 0.0253 0.3396*** 0.1681**

*p < 0.05; **p < 0.01; ***p < 0.001. L, Left; R, Right; DC, Dorsal Caudate; dcP, dorsal caudal Putamen; drP, dorsal rostral Putamen; vrP, ventral rostral Putamen;

VSi, Ventral Striatum inferior; VSs, Ventral Striatum superior.

were limited to the anterior and superior portions of the cere-
bellum. It is possible that there are connectivity differences with
inferior aspects of the cerebellum that we were unable to detect.

The inferior and superior temporal gyri (ITG and STG) and
the fusiform gyrus (FG) also showed age by diagnosis group
interactions, mainly demonstrating increased connectivity with
age in ASD, and decreased in TD. Two clusters suggested devel-
opmental arrests or delays in ASD (showing no change with age),
and significant decreases with TD; connectivity between the left
vrP and the superior temporal gyrus, and the left VSi and the
right fusiform gyrus. Structural abnormalities of the temporal
gyri gray matter have also been reported in children, adolescents,
and adults with ASD, which may contribute to differences in the
development of connectivity with temporal regions (Jou et al.,
2010; Toal et al., 2010). ITG and FG connectivity differences were
found in connections with both dorsal and ventral aspects of the
striatum. The ITG and FG, which are components of the ventral
stream visual pathway with direct connections to occipital cortex,
are largely implicated with face processing, face recognition, and
in discrimination of facial expression, including affective inter-
pretation, which may be affected in ASD (Sergent et al., 1992;

Kanwisher et al., 1997; Apps et al., 2012; Prochnow et al., 2013).
Exaggerated ITG activation and reduced FG activation during
face perception in young adults with ASD has also previously been
reported (Schultz et al., 2000; Coutanche et al., 2011). The STG
has previously been implicated in social communication abnor-
malities in ASD (Frith, 2001; Wang et al., 2007; Pelphrey et al.,
2009; Hubbard et al., 2012). Therefore, abnormalities in striatal
connectivity with the temporal cortex may underlie social and/or
social reward deficits.

We also found a significant age by group interaction between
the inferior ventral striatum and the amygdala. Several prior stud-
ies have reported altered activation in and reduced connectivity
with the amygdala in association with social perception deficits in
ASD (e.g., Kleinhans et al., 2008; Pelphrey and Carter, 2008; Sato
et al., 2012), although these findings were with the ITG and not
striatum. Given the role of the ventral striatum in reward-related
processing and its extensive connections to the amygdala, it is
possible that aberrant functional connectivity between striatum
and amygdala underlies deficits in social rewards in ASD, which
may increase in a compensatory fashion over development (e.g.,
Delmonte et al., 2012; Sepeta et al., 2012).
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This is the first study to examine age related change in func-
tional connectivity with striatum in ASD compared to typical
development. We identified a number of connections, with a
range of brain regions, showing atypical development from late
childhood to adulthood. Importantly, we found that social pro-
cessing regions such as ITG, STG, and FG, and cerebellar regions
implicated in cognitive and motor functions demonstrated a
decrease in connectivity over development in TD, but an increase
in ASD. As these are novel findings, replication will be necessary,
especially given recent debates in the literature regarding method-
ological considerations related to head motion (e.g., Power et al.,
2012; Satterthwaite et al., 2013; Yan et al., 2013), and the removal
of nuisance variables such as physiological noise and/or the global
signal e.g., when analyzing resting state data. In addition, it is
likely that larger sample sizes, wider age ranges, and longitudinal
data are needed to replicate these findings, and perhaps identify
patterns that the current study may not have had the power to
detect, including correlations with symptoms of ASD, identifying
regions that show developmental delays, and non-linear trajec-
tories. Despite these limitations, our findings were robust and
highlight the important notion that examining the progression of
ASD over development is crucial for identifying the neural bases
of ASD and how they relate to behavioral impairments in the
disorder.
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Figure S1 | Scatter plot of mean FD values across groups. Mean

framewise displacement (FD) values for each participant on Y-axis and age

in years is depicted on the X-axis. TD participants are in open circles and

ASD participants in filled circles. TD, Typical Development; ASD, Autism

Spectrum Disorder. There were no significant differences in FD between

groups or across age p > 0.05.

Figure S2 | Mask of overlapping voxels across all participants.

Figure S3 | Statistical maps depicting connectivity with striatal seeds in

the left hemisphere across all participants, controlling for age. For all

analyses, we used a Monte Carlo simulation for cluster correction

(voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI;

3dClustSim). Slices were generated using AFNI software. L, Left; DC,

Dorsal Caudate; dcP, dorsal caudal Putamen; drP, dorsal rostral Putamen;

vrP, ventral rostral Putamen; VSi, Ventral Striatum inferior; VSs, Ventral

Striatum superior.

Figure S4 | Statistical maps depicting connectivity with striatal seeds in

the right hemisphere across all participants, controlling for age. For all

analyses, we used a Monte Carlo simulation for cluster correction

(voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI;

3dClustSim). Slices were generated using AFNI software. R, Right; DC,

Dorsal Caudate; dcP, dorsal caudal Putamen; drP, dorsal rostral Putamen;

vrP, ventral rostral Putamen; VSi, Ventral Striatum inferior; VSs, Ventral

Striatum superior.

Figure S5 | All graphs showing age by group interactions. For all analyses,

we used a Monte Carlo simulation for cluster correction (voxel-wise

p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI; 3dClustSim).

Z-transformed correlation coefficients are displayed on the y-axis and age

in years on the x-axis of each graph. Title of each graph describes the seed

region and the relevant connecting cluster. Triangles and solid lines are TD

participants, squares and dashed lines are ASD participants. L, Left; R,

Right; DC, Dorsal Caudate; drP, dorsal rostral Putamen; vrP, ventral rostral

Putamen; TD, Typical Development; ASD, Autism Spectrum Disorder. See

Table 4 for cluster coordinates.
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Converging theories and data suggest that atypical patterns of functional and structural
connectivity are a hallmark neurobiological feature of autism. However, empirical studies
of functional connectivity, or, the correlation of MRI signal between brain regions, have
largely been conducted during task performance and/or focused on group differences within
one network [e.g., the default mode network (DMN)]. This narrow focus on task-based
connectivity and single network analyses precludes investigation of whole-brain intrinsic
network organization in autism. To assess whole-brain network properties in adolescents
with autism, we collected resting-state functional connectivity MRI (rs-fcMRI) data from
neurotypical (NT) adolescents and adolescents with autism spectrum disorder (ASD). We
used graph theory metrics on rs-fcMRI data with 34 regions of interest (i.e., nodes)
that encompass four different functionally defined networks: cingulo-opercular, cerebellar,
fronto-parietal, and DMN (Fair et al., 2009). Contrary to our hypotheses, network analyses
revealed minimal differences between groups with one exception. Betweenness centrality,
which indicates the degree to which a seed (or node) functions as a hub within and between
networks, was greater for participants with autism for the right lateral parietal (RLatP) region
of the DMN. Follow-up seed-based analyses demonstrated greater functional connectivity
in ASD than NT groups between the RLatP seed and another region of the DMN, the
anterior medial prefrontal cortex. Greater connectivity between these regions was related
to lower ADOS (Autism Diagnostic Observation Schedule) scores (i.e., lower impairment) in
autism.These findings do not support current theories of underconnectivity in autism, but,
rather, underscore the need for future studies to systematically examine factors that can
influence patterns of intrinsic connectivity such as autism severity, age, and head motion.

Keywords: autism, resting-state functional connectivity, default mode network, intrinsic network organization,

graph theory, functional MRI

INTRODUCTION
Atypical patterns of functional and structural connectivity are
proposed to be a hallmark neurobiological feature of autism
(Belmonte et al., 2004; Just et al., 2004; Courchesne and Pierce,
2005; Cherkassky et al., 2006). Most theories and data point
to a pattern of underconnectivity, particularly for long-distance
connections such as interhemispheric or anterior–posterior intra-
hemispheric connections (Belmonte et al., 2004; Just et al., 2004;
Anderson et al., 2011; Dinstein et al., 2011). Some also suggest an
increase in local connections at the expense of long-distance con-
nections (Courchesne and Pierce, 2005; Courchesne et al., 2007;
Rippon et al., 2007). Recent findings, however, offer mixed support
and suggest a more complex picture of connectivity differences
in autism with evidence for both hypo- and hyper-connectivity
for short- and long-distance connections, depending partly on
the specific experimental and analytic methods used and age

of the participants (e.g., Courchesne et al., 2007; Noonan et al.,
2009; Khan et al., 2013; Lynch et al., 2013; review, Müller et al.,
2011).

Structural connectivity findings, indexed by measures of white
matter integrity from diffusion tensor imaging (DTI) (e.g., frac-
tional anisotropy, or FA) or white matter volumes from structural
MRI, reveal atypical connectivity patterns in autism but do not
support general underconnectivity in autism. Rather, findings sug-
gest developmentally increased white matter volume (Courchesne
et al., 2001; Hazlett et al., 2006), particularly radiate white matter
bundles supporting interhemispheric and cortico-cortical connec-
tions (Herbert et al., 2004) and increased FA in infants and young
children with autism (e.g., Ben Bashat et al., 2007; Wolff et al.,
2012), whereas later in development (e.g., adolescents and adults),
FA is decreased (e.g., Barnea-Goraly et al., 2004; Lee et al., 2007;
Nair et al., 2013).
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Studies of functional connectivity, or the correlation in
signal between brain regions, largely have supported the
underconnectivity theory when functional connectivity has been
assessed in the context of a task (review, Müller et al., 2011).
This pattern of reduced long-distance connectivity (e.g., between
regions of different hemispheres or lobes) is seen across domains
of function including tasks involving language processing (e.g.,
Just et al., 2004; Kana et al., 2006), executive function (e.g., Just
et al., 2007), and social processing (e.g., Mason et al., 2008; Kana
et al., 2012; , but see Murphy et al., 2012), but notably these tasks
also resulted in reduced activation in the autism spectrum disor-
der (ASD) group as compared to the neurotypical (NT) group.
Thus, while informative, task-based functional connectivity anal-
yses may reflect differences in performance during a task and may
not reflect differences in intrinsic functional organization of the
brain.

Task-independent studies of the “resting” brain provide a
window with which to examine intrinsic functional network orga-
nization. As first noted by Biswal et al. (1995), even in the absence
of a specific task, fluctuations in brain signal are temporally
correlated within regions that are part of the same functional
network. These large-scale functional networks can be identified
using data-driven ICA (independent component analysis) analy-
ses (e.g., Damoiseaux et al., 2006) or seed-based analyses (e.g., Fox
et al., 2005) and are thought to reflect regions that have a history
of co-activation. Indeed, differences in the organization or con-
nection strength within these regions are related to developmental
changes (e.g., Fair et al., 2009), training (Lewis et al., 2009), and
individual differences, for example in memory (Wang et al., 2010),
math abilities (Emerson and Cantlon, 2012), and face process-
ing (Zhu et al., 2011), suggesting intrinsic network connectivity is
behaviorally relevant.

There has been considerable divergence across studies
in regards to the status of resting-brain functional connectivity in
ASD. Like task-based studies, many studies of the resting brain in
ASD (or those in which the task is used as a regressor of no interest)
have revealed reduced functional connectivity in ASD, particu-
larly for long-range connections (Cherkassky et al., 2006; Kennedy
and Courchesne, 2008; Ebisch et al., 2011; Tsiaras et al., 2011;
Murdaugh et al., 2012; Rudie et al., 2012; Washington et al., 2013).
However, unlike task-based studies, a number of studies report
findings that are inconsistent with a general theory of undercon-
nectivity (e.g., Monk et al., 2009; Müller et al., 2011; Tyszka et al.,
2013), and in some cases hyper-connectivity in ASD groups has
been reported (Mizuno et al., 2006; Turner et al., 2006; Noonan
et al., 2009; Di Martino et al., 2011; Shih et al., 2011; Lynch et al.,
2013).

In sum, extant data suggest a general underconnectivity theory
in autism is likely not the full story. Possibly, the age of the par-
ticipant, the context in which connectivity is assessed (e.g., resting
vs. task), and the specific networks examined may result in differ-
ent findings between groups. Further, recent studies suggest that
head motion may lead to systematic, spurious correlations which
could mimic some of the same patterns of connectivity differences
reported between autism and NT groups (Power et al., 2011). An
incomplete picture of how each of these factors contributes to
functional connectivity in autism still remains. One additional

contributing factor is that most previous studies only focused on
the strength of correlations within a single network rather than
examining network organization with graph theoretical metrics.
Recent advances in graph theory (or complex network) analy-
ses for resting-state functional connectivity MRI (rs-fcMRI) data
allow for characterization of whole-brain intrinsic network orga-
nization (e.g., review, Rubinov and Sporns, 2010; Bullmore and
Bassett, 2011). Specifically, rather than focusing on the strength
of region–region correlations, graph theory methods can exam-
ine the topological properties of each region within the context
of all other regions of interest. For example, graph theory met-
rics can include measures of the integration (global efficiency,
average path length), segregation (local efficiency, clustering coef-
ficient), and centrality (betweenness centrality) of networks. Thus,
these metrics can provide a more robust test of the theory of
reduced long-distance and increased local connectivity by testing
differences in measures of whole-brain network integration and
segregation.

In the current study, we assessed whole-brain network proper-
ties in a group of adolescents with and without autism by using
graph theory and seed-based analyses on rs-fcMRI data with
functionally defined regions of interest. The functional regions
of interest included 34 regions identified from previous meta-
analyses (Dosenbach et al., 2006; Fair et al., 2009) that encompass
four different functionally defined networks: cingulo-opercular
(CO), cerebellar (C), fronto-parietal (FP), and default mode
(DMN; Fair et al., 2009). These networks were chosen because
previous research with these same networks has demonstrated a
developmental pattern of progressive increases in long-distance
connectivity between nodes of the same network and concurrent
decreases in connectivity between anatomically proximal nodes of
distinct networks (Fair et al., 2008, 2009). Furthermore, functions
associated with these networks have all been implicated in autism
(e.g., reviews, Di Martino et al., 2009; Minshew and Keller, 2010).
Thus, examining these networks allows for a more rigorous test of
the hypothesis of reduced long-distance and increased local con-
nectivity in autism, across multiple networks that support varied
functions.

MATERIALS AND METHODS
PARTICIPANTS
All participants gave written, informed consent and parental
consent was obtained for participants under 18 years of age as
approved by the Committee on the Use of Humans as Exper-
imental Subjects (COUHES) at the Massachusetts Institute of
Technology. Participants were compensated monetarily for their
time. Participants were part of a multi-site study involving three
visits for TD adolescents and four for the ASD group but only
the resting-state functional MRI data are presented in the cur-
rent study. Participant IQ was measured using the Kaufman Brief
Intelligence Test (KBIT-2).

AUTISM SPECTRUM DISORDER PARTICIPANTS
We collected resting-state functional MRI data from 22 male ado-
lescents and young adults (14–20 years; mean 17.3 ± 2.2 years;
all male) with a clinical diagnosis of ASD or Asperger’s dis-
order. Diagnosis was confirmed using a combination of the
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Table 1 | Demographic and head motion information for NT and ASD groups and those ASD participants excluded due to excessive head motion.

NT (N = 14) ASD (N = 14) ASD-excluded

(N = 7)

NT vs. ASD

(p-value)

ASD vs. ASD-excluded

(p-value)

Age 17.7(1.8) 17.8(1.9) 15.8(2.5) 0.81 0.05

Full Scale IQ 119(9.6) 116.9(13.7) 98.3(24.4) 0.59 0.04

Verbal IQ 118(13.1) 116.3(15.1) 97(24.9) 0.75 0.04

Non-verbal IQ 115(10.3) 112.5(13.1) 99.7(27.3) 0.57 0.17

Motion outliers 2.2(3.8) 1.8(2.8) 45.9(17.3) 0.73 <0.0001◦

ADOS Combined N/A 9.5(1.3) 16.2(2.8) N/A 0.02

ADOS Comm. N/A 3(2) 4.2(2.3) N/A 0.28

ADOS Social N/A 6.5(2.8) 12(5.1) N/A 0.007

Note: Data are mean (SD). Age is in years. IQ was measured using the Kaufman Brief Intelligence Test-2. ADOS Comm is the communication subscale. p-Value is
based on a t-test comparing groups. ◦This difference is circular because these groups were created based on differences in motion outliers.

Autism Diagnostic Observation Schedule (ADOS) Module 3 or
4 (administered to the participant; Lord et al., 2000) and the
Social Communication Questionnaire (SCQ; completed by the
parent of the participant; Corsello et al., 2007). The SCQ is a
questionnaire designed to screen for autism and all included
ASD participants received an SCQ score greater than the sug-
gested cut-off for ASD of 15 (mean 21.6; 16–28). All partici-
pants reached criteria for Autism or spectrum from the ADOS
except 1 who was subsequently removed from the analyses.
Seven participants were excluded from the analyses because of
excessive movement artifact (see below for description) result-
ing in a final sample of 14 participants with ASD (Table 1).
Information about co-morbid diagnoses and current medica-
tions were obtained through a phone screen with either the
participant or parent if the participant was a minor. This infor-
mation was not available for 2 of the 14 ASD participants.
Six of the 12 participants reported use of medications associ-
ated with symptoms of neuropsychiatric disorders [ADHD (4),
depression/anxiety (3), psychosis (2)]. Only two participants,
however, reported any co-morbid neurological disorders and
these were obsessive–compulsive disorder (1) and attention deficit
hyperactivity disorder (2).

NEUROTYPICAL PARTICIPANTS
Twenty-three NT participants (14–20 years; all male) per-
formed a resting-state scan. Participants were excluded if they
reported any psychiatric or neurological disorders on a self-
report screening questionnaire, which was filled out either by
the participant or the parent. To screen for the presence of
autism or autistic-like traits in the typical population, the
participant’s parents completed the SCQ screening described
above. One participant who was no longer a minor com-
pleted the Autism Spectrum Quotient (AQ; Woodbury-Smith
et al., 2005). No included participants received scores above the
suggested threshold for autism screening. One was excluded
due to excessive movement. Of the 22 remaining participants,
14 were matched as closely as possible to the ASD group on
age. IQ scores did not differ significantly between groups (see
Table 1).

MRI DATA ACQUISITION
Participants came to the Athinoula A. Martinos Imaging Center
at the McGovern Institute for Brain Research at MIT for MRI
data collection on a 3T Siemens Magnetom Tim Trio Scanner.
We collected a structural MPRAGE image (128 sagittal slices,
TE = 3.39 ms, TR = 25 ms, voxel size 1.3 mm × 1 mm × 1.3 mm)
and a resting-state functional MRI scan (67 sagittal slices,
TE = 30 ms, TR = 6000 ms, # of TRs = 64, voxel size = 2.0 mm
isotropic) as part of a 90-min battery of tasks examining social
processing that are not presented here. The last scan of the bat-
tery was the resting-state scan for which we asked participants
to remain still with eyes open and fixated on a cross in the cen-
ter of the screen. We chose a 6 s TR for the resting-state scan in
order to achieve high spatial resolution with whole-brain coverage
because previous work has demonstrated that array coils provide
the biggest increases in temporal signal to noise ratio (tSNR) at
high spatial resolutions (Triantafyllou et al., 2011). While this TR
is unusually long, a study by Van Dijk et al. (2010), showed that
there was no significant difference in the correlation strengths
between the resting-state networks when compared between a TR
of 2.5 and 5 s.

FUNCTIONAL MRI PREPROCESSING
All data were analyzed using SPM81, Nipype (Gorgolewski et al.,
2011), the CONN functional connectivity toolbox ver 13e2

(Whitfield-Gabrieli and Nieto-Castanon, 2012), and in-house
Matlab (The Mathworks, Natick, MA, USA) scripts. All resting-
state volumes were corrected for differences in the timing of slice
acquisition. Functional data were realigned to the mean of all
functional volumes in the timeseries using a 6◦ rigid spatial trans-
formation, which provided the spatial deviation for each timepoint
for translational (x, y, z) and rotational (roll, pitch, yaw) directions
of movement. Functional data were then smoothed with a Gaus-
sian smoothing kernel of 6 mm full-width half maximum, and
normalized into standard Montreal Neurological Institute (MNI)
space using non-linear transformations.

1www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/conn/
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ANALYSES OF HEAD MOTION
The artifact detection toolbox (ART)3 was used to examine outliers
in global signal and movement for each participant. Timepoints
were marked as outliers if global signal exceeded three standard
deviations of the mean or if movement exceeded 1 mm (across
translational and rotational directions) of scan-to-scan deviation.
Participants for whom greater than 20% of the run was marked
as an outlier were removed from the analyses (seven ASD; one
NT). Head motion has been shown to result in spurious pat-
terns of correlations (both increased and decreased; e.g., Power
et al., 2011). Thus to examine whether groups differed as a func-
tion of head motion we used between-group t-tests to test for
differences in (1) the total number of outliers and (2) the sum
across all volumes of the absolute value of the deviation (in
mm) from the reference volume (i.e., the realignment parame-
ters) for each of the six possible motion directions (i.e., x, y, z,
roll, pitch, yaw). Using between group t-tests, we also examined
whether those participants who were excluded from the analyses
due to excessive head motion were systematically different from
those included in terms of age, IQ, or autism severity (Table 1).
No significant differences in head motion between groups were
present for either the number of outliers (see Table 1) or realign-
ment parameters in any of the six directions [x: t(24) = −0.56,
p < 0.58; y: t(24) = −0.58, p < 0.57; z: t(24) = 1.1, p < 0.28;
roll: t(24) = 0.85, p < 0.41; pitch: t(24) = 0.18, p < 0.86, yaw:
t(24) = 1.7, p < 0.11). However, the ASD participants who were
excluded due to excessive head motion had significantly lower Ver-
bal Composite IQ scores, and higher (worse) social impairments
as measured by the ADOS Reciprocal Social Interaction subscale
and autism severity as measured by the Combined ADOS Com-
munication and Reciprocal Social Interaction subscales. Excluded
participants also showed a trend toward significantly younger ages
(Table 1).

FUNCTIONAL CONNECTIVITY ANALYSES
To minimize the effects of head motion, whole-brain voxel-wise
regression analyses were run for each seed region of interest with
the six motion parameters from realignment and their temporal
derivatives and each outlier timepoint entered separately as noise
covariates. Additionally, using the aCompCor method (Behzadi
et al., 2007) to account for physiological noise, covariates were
included with a principal components analysis (PCA)-reduction
(three dimensions) of the signal from white matter and CSF voxels
based on each individual’s unique segmented white matter and
CSF masks. The residual datasets were then temporally filtered
(0.01 < f < 0.08) to focus analyses to the low-frequency oscillations
characteristic of resting-state networks.

Whole-brain regression analyses were computed for each of
the 34 seed regions of interest (Fair et al., 2009; Table 2) on the
preprocessed, “clean” datasets for each participant. These anal-
yses resulted in a correlation value in each voxel for each of
the 34 seed regions. Normalized correlation values were created
by a Fishers r-to-z transform and used in subsequent anal-
yses. Averaging the normalized correlation coefficients within
each group for each region pair created correlation matrices

3http://www.nitrc.org/projects/artifact_detect/

for each of the 34 regions of interest (ROI). Two-way between
group (ASD vs. NT) t-tests were run for each of the 561
ROI–ROI pairs to examine whether differences in connectivity
strength between groups were present and specific to particu-
lar networks. False discovery rate (FDR; q < 0.05) was used
to correct for multiple comparisons for the ROI–ROI compar-
isons.

Graph theory analyses were computed using the CONN func-
tional connectivity toolbox. The unweighted ROI-to-ROI corre-
lation matrices were first thresholded at a cost value of k = 0.15.
Cost is a measure of the proportion of connections for each ROI
in relation to all connections in the network. Rather than deter-
mining a fixed correlation value as a threshold (e.g., r = 0.1), using
a cost threshold allows for roughly the same number of connec-
tions across participants by varying the correlation threshold for
each participant to achieve the fixed cost threshold. When cost is
equated across participants, direct comparisons across groups of
network property differences can be made. Small world properties
are observed in the range of costs 0.05 < k < 0.34, where global
efficiency is greater than that of a lattice graph and local efficiency
is greater than that of a random graph (Achard and Bullmore,
2007). A cost threshold of .15 has also been demonstrated to pro-
vide a high degree of reliability when comparing session-specific
estimates of graph theoretical measures across repeated runs or
sessions (e.g., global efficiency r = 0.95, local efficiency r = 0.9;
Whitfield-Gabrieli and Nieto-Castanon, 2012). We employed both
one- and two-sided cost thresholds. In a one-sided cost thresh-
old only positive correlations are considered, whereas two-sided
includes both positive and negative correlations. To confirm that
our findings generalize beyond these specific parameters, data
were examined at a cost threshold of 0.05, 0.1, 0.2, and 0.25
and compared to the findings with our a priori cost threshold
of 0.15.

The specific measures of interest were those of integration
(global efficiency), segregation (local efficiency), and central-
ity (betweenness centrality). Between-group t-tests were used to
compare network measures between groups with a FDR correc-
tion of q < 0.05. Global efficiency is calculated as the average
of the inverse of the shortest path length between each ROI (or
node) and all other ROIs. The shortest path length is defined as
the fewest number of connections (or correlations) between two
nodes. Thus, a network with high global efficiency would be one
in which nodes are highly integrated so the path between nodes
is consistently short. With cost kept constant, this measure can be
thought of as reflecting global, long-distance connections within
the brain. Local efficiency is calculated as the average inverse of
the shortest path length between the neighbors of any given node
(or ROI). In other words, local efficiency measures the extent to
which nodes are part of a cluster of locally, interconnected nodes.
Finally, we examined a measure of centrality, betweenness cen-
trality, which measures the fraction of all shortest path lengths
in a network that pass through a given node. Thus, if a node is
directly connected to many other nodes in the network it will have
a shorter overall path length and function as a hub within and
between networks. For more details on graph theoretical mea-
sures see Bullmore and Bassett (2011) or Rubinov and Sporns
(2010).
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Table 2 | Seed regions of interest.

Number Network Hemi Region X V Z

1 Cingulo-opercular L Anterior prefrontal cortex anterior insula/frontal −28 51 15

2 Cingulo-opercular L Operculum −35 14 5

3 Cingulo-opercular L Anterior thalamus dorsal anterior cingulate/medial superior −12 −15 7

4 Cingulo-opercular L Frontal cortex −1 10 46

5 Cingulo-opercular R Anterior prefrontal cortex anterior insula/frontal 27 50 23

6 Cingulo-opercular R Operculum 36 16 4

7 Cingulo-opercular R Anterior thalamus 10 −15 8

8 Cerebellar L Inferior cerebellum −19 −78 −33

9 Cerebellar L Lateral cerebellum −32 −66 −29

10 Cerebellar R Inferior cerebellum 18 −80 −33

11 Cerebellar R Lateral cerebellum 31 −61 −29

12 Default L Inferior temporal −61 −33 −15

13 Default L Lateral parietal −47 −67 36

14 Default L Parahippocampal gyrus −22 −26 −16

IS Default L Superior fronta −14 38 52

16 Default R Inferior temporal 65 −17 −15

17 Default R Lateral parietal 53 −67 36

18 Default R Parahippocampal gyrus 25 −26 −14

19 Default R Superior frontaanterior medial prefrontal 17 37 52

20 Default R Cortex 1 54 21

21 Default L Posterior cingulate cortex −2 −36 37

22 Default R Retrosplenial cortex ventromedial prefrontal 3 −51 8

23 Default L Cortex −3 39 −2

24 Fronto-parietal L Inferior parietal lobe −51 −51 36

25 Fronto-parietal L Intraparietal sulcus −31 −59 42

26 Fronto-parietal L Dorsolateral prefrontal cortex −43 22 34

27 Fronto-parietal L Frontal −41 3 36

28 Fronto-parietal L Precuneus −9 −72 37

29 Fronto-parietal R Inferior parietal lobe 51 −47 42

30 Fronto-parietal R Intraparietal sulcus 30 −61 39

31 Fronto-parietal R Dorsolateral prefrontal cortex 43 22 34

32 Fronto-parietal R Frontal 41 3 36

33 Fronto-parietal R Precuneus 10 −69 39

34 Fronto-parietal LR Mid cingulate cortex 0 −29 30

These regions of interest and coordinates are taken directly from Fair et al. (2009). Number corresponds to the number listed in Figure 1.

RESULTS
LARGELY TYPICAL NETWORK ORGANIZATION IN ASD
Comparison of normalized correlation matrices between groups
revealed minimal differences, which do not survive correction for
multiple comparisons. Similarly network analyses revealed largely
typical patterns of connectivity in the ASD group as compared to
the NT group. Contrary to our hypotheses we found no differ-
ences in measures of global or local efficiency. Only betweenness
centrality, which indicates the degree to which a seed (or node)
functions as a hub within and between networks, was significantly

different between groups and it was greater for participants with
autism for the right lateral parietal (RLatP) seed of the DMN
(t(26) = 3.52; p < 0.027 FDR-corrected) only. This metric was only
significantly different when both positive and negative correlations
were used in the cost threshold. When only positive correla-
tions were considered, greater betweenness centrality in RLatP
remained larger in ASD than NT groups but not significantly
(t(26) = 1.57, p < 0.13). This finding suggests both correlations
and anti-correlations (i.e., negative correlations) drove differ-
ences between groups. This effect held when examining higher
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cost thresholds (k = 0.2 and 0.25) but not lower (k = 0.1 and
0.05).

EXPLORATION OF RIGHT LATERAL PARIETAL SEED CONNECTIVITY
PATTERNS
Comparison of the 34 × 34 matrix of normalized correlation
values between seed regions for each group suggests the higher
betweenness centrality in ASD may be due to (1) greater long-
distance connectivity within the default mode network [RLatP–
anterior medial prefrontal cortex (aMPFC)] and (2) greater neg-
ative correlations with regions in cerebellar and control networks
in participants with ASD (Figure 1). However, these ROI-to-
ROI differences were not significant when controlling for multiple
comparisons. To further investigate how differences in connec-
tivity resulted in the difference in centrality between groups we
conducted within- and between-group t-tests on correlation maps

using the RLatP region as a seed region (Figure 2, Table 3). These
maps demonstrate significantly greater functional connectivity in
the ASD than NT group within medial prefrontal cortex using
a FWE cluster correction of p < 0.05. The NT group showed
higher connectivity between the RLatP seed and cerebellar ton-
sils [a region previously associated with the default mode network
(Fox et al., 2005)]. Examination of correlation maps within each
group suggests these regions of between-group differences are not
driven only by negative correlations in one group.

Our findings of greater connectivity within long-distance
regions of the default mode network and greater centrality in
autism were surprising and thus we explored whether variance
in RLatP connectivity was related to autism severity, as measured
by the ADOS, IQ, or age. No significant relationships were seen for
autism severity or IQ and betweenness centrality measures for the
RLatP, although there was a trend toward reduced centrality with

FIGURE 1 | Correlation matrices for neurotypical (A) and ASD (B) groups.
Normalized correlation coefficients are reported for each of the 34 × 34 ROI
correlations by group. These are organized by network based on Fair et al.
(2009) (CO, cingulo-opercular; C, cerebellar; DMN, default mode network; FP,
fronto-parietal). Each row is labeled with a number which corresponds to 1 of

34 seed regions (seeTable 2 for a list by number). Comparison of these
matrices resulted in no significant differences between groups, when
corrected for multiple comparisons. The right lateral parietal seed region (#17)
of the DMN is identified with an arrow because that region showed a
significant effect of group on centrality measures.

FIGURE 2 | Whole-brain functional connectivity maps with the right

lateral parietal (RLatP) region (green) as a seed region are shown for the

ASD group (A) and neurotypical group (B). Between-group comparisons
(C) revealed one region of significantly greater connectivity from the RLatP

seed in the ASD than NT group (yellow) which was the medial prefrontal
cortex. The NT group showed greater connectivity between the RLatP seed
and regions within the cerebellum (blue) than the ASD group. All maps are
thresholded at p < 0.001, FWE cluster corrected at p < 0.05.
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Table 3 | Functional connectivity from the right lateral parietal seed region.

Group region Hemi X y z T k

Neurotvpical

Lateral parietal lobe R 50 −70 36 21.28 2818

Posterior cingulate L −2 −34 46 7.76 2091

Lateral parietal lobe L –38 −74 40 8.74 1321

Parahippocampal gyms L –12 −36 −16 6.54 319

Superior temporal sulcus R –46 −32 −6 5.77 293

Superior frontal gyrus L –38 54 22 5.46 225

Middle frontal gyrus R 26 32 40 6.87 210

Posterior insula R 38 −28 16 6.06 196

anterior superior temporal sulcus L –50 10 −34 5.78 85

Superior frontal gyrus R 28 66 10 6.06 81

Cerebellar tonsils R 10 −40 −38 6.03 75

Parahippocampal gyrus R 26 −30 −14 6.08 72

Brainstem/pons R 2 −28 −26 8.06 65

Autism spectrum disorder

Superior frontal gyrus R 38 14 50 11.65 7006

Lateral parietal lobe R 50 −62 22 18.56 3246

Lateral parietal lobe L –42 −74 38 11.95 1867

Posterior cingulate R 12 −26 34 9.23 1710

Superior temporal sulcus L –54 −40 −4 10.29 552

Superior temporal sulcus R 46 −36 −6 6.65 263

Superior frontal gyrus L 40 58 0 8.41 211

Neurotvpical > autism spectrum disorder

Cerebellum L –24 −40 −50 5.09 127

Cerebellar tonsils R 8 −42 −38 5.65 123

Autism spectrum disorder > neurotypical

Anterior medial prefrontal cortex R 6 46 30 4.26 151

Regions were identified using p < 0.001, and FWE-cluster-correction of p < 0.05. Coordinates are given in MNI space. T-values from the peak voxel of the cluster and
size (k) of the cluster are given. Clusters are organized by size.

age in the ASD group only [r(13) = −0.48, p < 0.086). Because the
aMPFC was a region that showed significantly increased connec-
tivity with RLatP in ASD in whole-brain analyses, we examined
whether the strength of connectivity between the RLatP seed and
the aMPFC seed was correlated with ADOS scores, IQ, or age.
We found a negative correlation between the ADOS combined
social-communication subscale and RLatP to aMPFC connectivity
[r(13) = −0.56, p < 0.046), which was driven by the commu-
nication subscale [r(13) = −0.67, p < 0.012), suggesting lower
connectivity within long-distance regions of the default mode
network is related to more severe autism (Figure 3). No other
correlations reached significance.

DISCUSSION
Overall, these data are consistent with recent studies suggesting
largely typical patterns of functional connectivity in individuals
with autism (Tyszka et al., 2013). Although network organization
across four functional networks was examined, this relatively

high-functioning group of adolescent males demonstrated only
one significant difference in graph theoretical metrics of network
organization: namely, betweenness centrality of the RLatP region
of the DMN. Follow-up whole-brain voxel-wise analyses with the
RLatP region as a seed region revealed greater connectivity in ASD
to another region of the DMN, the aMPFC, as compared to NT
controls.

Of the four functional networks examined in the current study,
the DMN is the most consistently implicated in autism – though
that may be largely due to a bias in the number of studies inves-
tigating this network alone. The DMN comprises a set of regions
showing deactivation during goal-directed tasks, higher metabolic
activity during rest, and relative activation during tasks requir-
ing internally directed thought or social processing (e.g., Gusnard
and Raichle, 2001). In autism, however, these regions do not
show the typical pattern of deactivation during goal-directed
tasks (Kennedy et al., 2006; Murdaugh et al., 2012) and show
reduced activation during tasks of social-cognitive processing (e.g.,

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 573 | 248

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00573” — 2013/9/19 — 15:46 — page 8 — #8

Redcay et al. Functional network organization in autism

FIGURE 3 | Functional connectivity between the right lateral parietal

and anterior medial prefrontal cortex regions in the default mode

network is negatively correlated with ADOS communication scores in

the ASD group. Higher scores indicate greater impairment.

Gilbert et al., 2009; Murdaugh et al., 2012, but see Dufour et al.,
in press). Furthermore, many previous studies have found a pat-
tern of reduced DMN functional connectivity in ASD, particularly
between long-distance frontal and parietal regions (Kennedy and
Courchesne, 2008; Monk et al., 2009; Assaf et al., 2010; Weng et al.,
2011; Murdaugh et al., 2012; Rudie et al., 2012; von dem Hagen
et al., 2013, but see Lynch et al., 2013). Thus, while findings of
atypical engagement of the DMN in autism is not new, the finding
of greater functional connectivity between RLatP and medial pre-
frontal regions of the default mode network in ASD is inconsistent
with many previous studies.

There are (at least) two factors that may account for differ-
ences between our study and previous studies finding reduced
connectivity between groups. First, we matched groups on
head motion parameters and used two measures to account for
uncorrected head motion in subsequent analyses. While some
previous studies demonstrated no significant differences in head
motion between groups, four of the seven studies that showed
reduced functional connectivity in the DMN did not compare
head motion across groups. Differences in head motion between
groups is a critical factor as previous studies have suggested that
head motion may account for systematic and spurious correla-
tions, particularly in reducing long-distance correlations while
increasing short-distance correlations (Power et al., 2011). It
remains unclear if “accounting” for head motion in the analysis
is sufficient to eliminate group differences that may be due to
motion.

Second, our final sample consisted of quite high-functioning
individuals with autism. Many previous studies reporting reduced
functional connectivity had, on average, slightly higher ADOS
scores and lower IQs. Further, within the current study a
significant relationship was found between functional con-
nectivity between RLatP and MPFC and ADOS combined
social-communication (and communication) scores, with greater
impairment relating to lower functional connectivity. Taken
together, these findings suggest lower-functioning autism may
result in patterns of reduced connectivity. However, we offer
caution in this interpretation because this relationship is counter-
intuitive in the context of the current study. The ASD group
had significantly greater connectivity than the NT group, which

suggests that more severe autism should be related to greater
connectivity, but instead the reverse is true. These data suggest a
possible non-linear relationship between autism severity and func-
tional connectivity in autism but this has yet to be systematically
examined.

Systematically examining how level of functioning impacts
connectivity patterns is especially challenging because lower-
functioning individuals tend to have more motion artifact, and, as
discussed above, head motion differences alone can lead to a pat-
tern of reduced long-distance connectivity. In the current study,
we used stringent criteria to exclude participants with excessive
head motion and while this only resulted in loss of data from one
NT participant, seven participants with ASD were removed from
data analyses. These seven were significantly different from the rest
of the ASD group not only because they moved more during the
scan but also because they were younger, had higher ADOS scores
(i.e., were more impaired), and had lower verbal and composite
IQ scores. Thus, a significant, but necessary, challenge for further
research is to characterize the functional significance of resting-
state networks when head motion is equated across groups (Deen
and Pelphrey, 2012), such as in the current study.

Although less common, this is not the first study to report
hyper-connectivity within the default mode network in autism.
Two previous studies also reported increased connectivity in ASD
within default mode regions (Monk et al., 2009; Lynch et al., 2013),
and for one (Lynch et al., 2013) this increased connectivity was
found between frontal and parietal DMN regions similar to the
current study. Specifically, Lynch et al. (2013) examined func-
tional connectivity from regions within posteromedial cortex in
7–12-year-old children and reported greater connectivity in ASD
from retrosplenial cortex, a region just inferior to the poste-
rior cingulate and part of the default mode network, to several
other regions including the aMPFC (though this particular con-
nection was reduced in the ASD sample in Monk et al., 2009).
Additionally, connectivity between posterior cingulate and several
lateral and medial temporal regions showed greater connectivity
in the ASD than NT groups – a finding similar to Monk et al.
(2009).

The study of Lynch et al. (2013) was among the first to exam-
ine DMN connectivity during a resting baseline in young children
with ASD. As such, they suggested the relatively novel finding of
hyper-connectivity within the default mode network (and from
posteromedial cortex to regions outside of the DMN) may be
due to a developmental change in the pattern of connectivity
differences between ASD and NT groups. This developmental
story is consistent with other theories of connectivity in autism
(e.g., Courchesne and Pierce, 2005; Pelphrey et al., 2011) as well
as evidence of age-related changes in brain differences between
autism and control groups (Redcay and Courchesne, 2005). In
other words, whereas findings from older children and adults
reveal reduced brain size, reduced measures of white matter
integrity (e.g., FA) or reduced functional connectivity, findings
from younger children reveal larger brain size (e.g., Courchesne
et al., 2001; Hazlett et al., 2006), higher FA values (Wolff et al.,
2012), and increased functional connectivity (Lynch et al., 2013).
However, the current findings of DMN hyper-connectivity was in
a sample of adolescents and the Monk et al. (2009) study was in
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adults. Thus, age-related differences may not completely account
for patterns of increased functional connectivity within the default
mode network.

While further research is needed to disentangle the factors con-
tributing to relatively typical or increased connectivity in autism,
we find the increased connectivity between the RLatP and aMPFC
regions of the DMN in the current study intriguing. These regions
play an important role in social processes that are atypical in indi-
viduals with autism, including mental state judgments of others
(i.e., theory of mind) and of one’s self (i.e., introspection) (e.g.,
Baron-Cohen et al., 1985; Frith and Happe, 1999; Saxe and Kan-
wisher, 2003; Saxe et al., 2006; Senju et al., 2009). While the medial
prefrontal cortex plays a general role in mentalizing (Whitfield-
Gabrieli et al., 2011), portions of RLatP cortex may play a more
specific role in thinking about others thoughts and beliefs, or the-
ory of mind (e.g., Saxe and Kanwisher, 2003; Saxe et al., 2006).
Meta-analyses suggest the RLatP region of the default mode is at
least partially overlapping with the right temporoparietal junction
(RTPJ) often reported in studies of theory of mind processing
(e.g., Schilbach et al., 2008; Spreng and Mar, 2012). Beyond social-
cognitive processing, the RLatP lobe is also associated with shifts of
spatial attention (Corbetta and Shulman, 2002), semantic process-
ing (Binder et al., 1999), and narrative comprehension (e.g., Mar,
2011), all of which have been implicated as atypical in individuals
with autism. Thus, greater connectivity within right parietal cortex
could indicate less functional specialization of this region in ASD,
similar to findings of right posterior temporal cortex (e.g., Shih
et al., 2011). However, the current data do not directly address that
hypothesis.

A notable limitation in this study, which claims minimal differ-
ences in functional connectivity between groups, is a small sample
size. Nonetheless, the current findings of greater connectivity

within the DMN in ASD adds to the small, growing body of
literature suggesting inconsistent support for an underconnectiv-
ity theory of autism. A second limitation is the restricted range
of high-functioning participants with autism who were able to
complete the scan with minimal motion artifact. Even within
this narrow range, a correlation was seen between a greater level
of communicative impairment and lower functional connectiv-
ity between RLatP and medial prefrontal cortex and a trend
toward increasing age and reduced betweenness centrality in ASD.
Finally, a third limitation is the inclusion of data from partici-
pants currently on medication as some medications may affect the
strength or patterns or brain activation; however, the sample is
too small to determine whether medication had any systematic
effects on functional connectivity. These data underscore the need
for developmental studies of functional connectivity in high- and
low-functioning individuals with autism in which head motion is
tightly matched between groups.
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Neuroimaging technologies and research has shown that autism is largely a disorder of
neuronal connectivity. While advanced work is being done with fMRI, MRI-DTI, SPECT and
other forms of structural and functional connectivity analyses, the use of EEG for these
purposes is of additional great utility. Cantor et al. (1986) were the first to examine the
utility of pairwise coherence measures for depicting connectivity impairments in autism.
Since that time research has shown a combination of mixed over and under-connectivity
that is at the heart of the primary symptoms of this multifaceted disorder. Nevertheless,
there is reason to believe that these simplistic pairwise measurements under represent
the true and quite complicated picture of connectivity anomalies in these persons. We
have presented three different forms of multivariate connectivity analysis with increasing
levels of sophistication (including one based on principle components analysis, sLORETA
source coherence, and Granger causality) to present a hypothesis that more advanced
statistical approaches to EEG coherence analysis may provide more detailed and accurate
information than pairwise measurements. A single case study is examined with findings
from MR-DTI, pairwise and coherence and these three forms of multivariate coherence
analysis. In this case pairwise coherences did not resemble structural connectivity,
whereas multivariate measures did. The possible advantages and disadvantages of
different techniques are discussed. Future work in this area will be important to determine
the validity and utility of these techniques.

Keywords: autism spectrum disorders, EEG/MEG, connectivity analysis, coherence analysis, sLORETA, granger

causation analysis

INTRODUCTION
Autistic Spectrum Disorders (ASD) are a heterogeneous group
of pervasive developmental disorders including Autistic Disorder,
Childhood Disintegrative Disorder, Pervasive Developmental
Disorder-Not Otherwise Specified (PDD-NOS), and Asperger
Disorder. Children with ASD demonstrate impairment in social
interaction, verbal and nonverbal communication, and behaviors
or interests (DSM-IV-TR; APA, 2000). ASD may be comorbid
with sensory integration difficulties, mental retardation or seizure
disorders. Children with ASD may have severe sensitivity to
sounds, textures, tastes, and smells. Cognitive deficits are often
associated with impaired communication skills. Repetitive stereo-
typed behaviors, perseveration, and obsessionality, common in
ASD, are associated with executive deficits. Executive dysfunction
in inhibitory control and set shifting have been attributed to ASD
(Schmitz et al., 2006). Seizure disorders may occur in one out of
four children with ASD; frequently beginning in early childhood
or adolescence (NIMH, 2006).

Research reviewing the epidemiology of autism (Center for
Disease Control and Prevention; CDC, 2009) reported between
1 in 80 and 1 in 240 children in the United States diagnosed with

the disorder. A report of just 3 years ago (CDC, 2009) suggested a
prevalence of 1 in 110, and as high as 1 in 70 boys. In their most
recent report, the CDC (2012) suggests that the rate has risen to 1
in 88. ASDs are five times more likely in boys for which it is seen
in 1 out of 54 male children. According to Blaxill (2004), the rates
of ASD were reported to be <3 per 10,000 children in the 1970s
and rose to >30 per 10,000 in the 1990s. This rise in the rate of
ASD constituted a 10-fold increase over a 20 year interval in the
United States. These findings make accurate assessment of autistic
individuals and their underlying neurophysiology a priority.

EEG ASSESSMENT IN AUTISM
Multiple neuroimaging studies have demonstrated brain anoma-
lies in autistics compared to healthy controls (McAlonan et al.,
2004; Page et al., 2006). The electroencephalogram (EEG) was one
of the earliest techniques used to investigate the neurobiology of
autism (Minshew, 1991). The recognition of a high instance of
EEG abnormalities and of seizure disorders in the autistic popu-
lation was among the earliest evidence of a biologic basis for the
disorder (Minshew, 1991). Moreover, the EEG is a premiere tool
to assess neural dysfunctions related to autism and seizures due
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to its’ noninvasive nature, availability and utility in detailing these
types of difficulties.

Recent analyses have estimated the prevalence of seizure disor-
ders in autistic series at anywhere from 20 to 46%. Based on recent
analyses, the prevalence of seizure disorders in autistic series is
estimated at about 36% (Danielsson et al., 2005; Hughes and
Melyn, 2005; Hara, 2007; Parmeggiani et al., 2007). In fact, it has
been reported that the autistic population has about 3- to 22-
fold increased risk of developing seizure disorders as compared
to the normal population (Volkmar and Nelson, 1989). Sub-
clinical seizure activity or paroxysmal discharges occur in an even
higher proportion of autistics, but the significance of these remain
uncertain (Hughes and Melyn, 2005; Parmeggiani et al., 2007).
Ray et al. (2007) have suggested that the initial phase of corti-
cal spikes may relate to underlying intracranial foci. Other work
has suggested that EEG spikes may reflect underlying morpho-
logical brain abnormalities (Shelley et al., 2008) and/or metabolic
disturbances (Kobayashi et al., 2006).

In a recent study, Parmeggiani et al. (2010) demonstrated that
in a large inpatient sample 58% of adults with autism aged 20 or
older had experienced epilepsy or a seizure during their lifetime.
For these reasons, experts in the field have recommended the use
of routine and sleep EEGs in the evaluation of autistic disorders,
especially when there has been regression or there are signs of pos-
sible seizures. In fact, seizure detection has been the primary role
of the EEG for decades. When EEG assessment is processed and
analyzed with the most advanced techniques it can be invaluable
for screening for possible seizures, evaluation of autistic disorders,
and assessing the neurophysiological challenges of children with
ASD. While brain structural imaging may reveal interesting find-
ings, assessment of regional brain dysfunction is more revealing
and usually requires functional brain imaging techniques. This
would include techniques such as functional MRI, PET, single
photon emission computed tomography, magnoencephalography
(MEG), and even EEG. Some of these techniques require sedation
or injection of radioactive material so as to make participation
difficult for a typical autistic child. EEG, however, appears to be
the most clinically available and again least invasive of these tech-
niques. Further, it has been found that unique patterns of regional
dysfunction could be discerned through the quantitative analysis
of the EEG.

QUANTITATIVE EEG FINDINGS AND ASD
A review of the existing literature identified 14 studies that
used quantitative techniques to analyze differences in EEG
(QEEG) activity between children with ASD and normal con-
trols with conflicting results. Two studies showed decreased delta
frontally (Dawson et al., 1982; Coben et al., 2008), while one
found increased activity in the delta frequency range (Murias
et al., 2007). Two studies reported increased generalized delta or
described “slowing” (Cantor et al., 1986; Stroganova et al., 2007).
Two studies showed theta increases (Small et al., 1975; Coben
et al., 2008), while one study reported reduced theta (Dawson
et al., 1982). By contrast, findings have been quite consistent
within the alpha through gamma frequency range. All studies
reported reduced alpha power (Dawson et al., 1982; Cantor et al.,
1986) and increased beta (Rossi et al., 1995; Chan and Leung,

2006; Coben et al., 2008) and gamma power (Orekhova et al.,
2006). Multiple studies report a lack of hemispheric differences
in QEEG spectral power in autistic samples compared to findings
of hemispheric differences in normal controls. Autistic children
showed decreased power asymmetry when compared to normal
or mentally handicapped controls (Dawson et al., 1982; Ogawa
et al., 1982). Three studies investigated cortical connectivity in
ASD samples using QEEG coherence measures, with all report-
ing reduced connectivity, especially over longer distances (Cantor
et al., 1986; Lazarev et al., 2004; Coben et al., 2008). One con-
cern has been that sample sizes by and large have not been large
enough to allow for investigation of the observed inconsistencies
in findings reported above.

In the largest study of its’ kind, we (Coben et al., 2013)
included a total of 182 children, 91 on the autistic spectrum
and 91 healthy controls. Findings indicated an absolute delta
deficit over frontal and central brain regions and theta excesses
over frontal, temporal and posterior regions for the ASD sam-
ple. There were significant relative theta excesses over frontal and
temporal regions, alpha and beta excesses over multiple regions.
Interestingly, cluster analytic techniques were used and able to
delineate qeeg subtypes of ASD. Furthermore, a discriminant
function analysis was able to correctly identify ASD children
at a rate of 95%. Despite power subtypes having been shown,
VARETA (di Michele et al., 2005) revealed similar sources of acti-
vation including temporal, posterior cortical and various limbic
regions. These findings raise the likelihood that the study of neu-
ronal networks in autism may lead to a greater understanding
of ASD than localization of brain activity. Power asymmetry and
coherence findings were also significant consistent with evidence
supporting the notion of frontal hypercoherence and anterior to
posterior temporal hypocoherences. These findings suggest that
the brain dysfunction in autistic disorders is often bilateral and
impacts both anterior and posterior axes. Alternatively, one could
view the brain dysfunction in autism as an abnormality in con-
nectivity that disrupts function in multiple regions (Minshew
and Williams, 2007). This would suggest that such connectivity
impairments are prevalent in autistic children. This is consistent
with the findings of Coben et al. (2008). Such an interpreta-
tion is also supported by the literature suggesting that autism is
primarily a disorder of neural connectivity.

AUTISM AS A DISORDER OF NEURAL CONNECTIVITY
There is increasing evidence that the cardinal disruptions in
autism are represented by disruptions in brain connectivity
(Courchesne and Pierce, 2005; Minshew and Williams, 2007;
Mak-Fan et al., 2012). There is mounting evidence of head
enlargement as a result of brain overgrowth early in life (first 1–2
years) (Courchesne et al., 2001, 2003) as a result of enhancements
in frontal white matter and minicolumn pathology (Casanova
et al., 2002; Herbert et al., 2004; Carper and Courchesne, 2005;
Vargas et al., 2005). This overgrowth, then, leads frontal over-
connectivity (Courchesne and Pierce, 2005; Coben and Myers,
2008; Rinaldi et al., 2008) which interferes with the normal devel-
opmental trajectory. This disruption, theoretically, then halts the
natural developmental progression in which anterior to pos-
terior brain regions would enhance their synchronization and
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specialization of fucntions (Damasio, 1989; Supekar et al., 2009).
This pattern, in fact, was observed in our data above showing
frontal hypercoherence and bilateral temporal hypocoherences
(Coben et al., 2013).

Other data support this hypothesis as well. For example, Mak-
Fan et al. (2012) examined changes in diffusivity with age within
frontal, long distant, longitudinal and interhemispheric tracts
across ages 6–14. Their findings showed that while typically devel-
oping controls change and evolve on such measures children with
autism did not. This suggests that such connectivity difficulty
exist and persist in such children. More specifically, frontal and
local (short neuronal paths) hyperconnectivity has been shown to
be present in autistic samples (Wass, 2011; Li et al., 2014). In addi-
tion, there is other recent data showing hypoconnectivity in long
distance and posterior to anterior or temporal regions in autistics.
Isler et al. (2010) have shown low interhemispheric coherence in
visual evoked potentials in such children. Studies of functional
connectivity related to visuospatial processing and the social-
emotional processing networks have also shown reduced connec-
tivity compared to healthy controls (Ameis et al., 2011; McGrath
et al., 2012; von dem Hagen et al., 2013). Similarly, low functional
connectivity has been shown to relate to poor language processing
in autistic children (Kana et al., 2006). Many of these studies used
3-dimensional imaging techniques such as MRI, fMRI or DTI
(diffusion tensor imaging). Interestingly, EEG/QEEG studies of
coherence have shown similar findings. Coben et al. (2013) have
recently shown findings consistent with frontal hypercoherence
and bilateral posterior-temporal hypocoherences. Similarly, high
frontal coherence has been observed in other studies (Coben and
Padolsky, 2007; Murias et al., 2007). In addition, EEG technol-
ogy has been able to demonstrate long range, anterior to posterior
and temporal hypocoherences (Murias et al., 2007; Coben et al.,
2008). All of these coherence findings have been based on mea-
surements between pairs of electrodes. There is reason to believe
that more advanced statistical approaches to EEG coherence may
provide more detailed and accurate information.

PAIRWISE vs. MULTIVARIATE COHERENCE ESTIMATES
Traditionally and historically EEG coherence estimates have
arisen from cross correlations between pairs of electrodes (Bendat
and Piersol, 1980). Such a calculation is often performed within
a given frequency range and is normalized for amplitude or mag-
nitude. As such the following equation serves as the operational
definition:

τ2
xy( f ) =

(
Gxy( f )

)2

(
Gxx( f )Gyy( f )

) (1)

Where: Gxy( f ) = cross power spectral density and
Gxx( f ) and Gyy( f ) = auto power spectral densities
The final normalized coherence value is given by Equation (2):

τ2
xy( f ) = r2

xy + q2
xy

GxxGyy
(2)

Where: r2
xy = real cospectrum and q2

xy = imaginary quadspectra
Gxx( f ) and Gyy( f ) = as in Equation (1)

Phase: 159.1549 tan − 1(q/r)/fc
Where: r and q = as in Eq.2; fc = center frequency of filter
For a more detailed explanation or discussion of these please

see Otnes and Enochson (1972) and Thatcher et al. (1986). These
concepts have been used and applied commonly. In fact, a search
in Google Scholar for “EEG coherence pairs” revealed more than
14,500 citations. While this approach has been commonly used
in the past, there are certain limitations in its application and
accuracy. First, there is a confound in pairwise coherence mea-
surements, namely the notion of electrode distance. It has been
observed that the further the distance between electrodes the
lower their coherence value will be regardless of their functional
connectivity, with distances as long as at least 5 cm. (Nunez,
1994; Nunez and Srivinasan, 2006; Thatcher et al., 2008). Pairwise
coherence measures for nearby electrodes are biased by volume
conduction, to a degree that varies as a function of inter-electrode
distance such that physically closer pairs manifest higher coher-
ence values. While statistical corrections have been offered for
these concerns (Nunez et al., 1997; Barry et al., 2005), multivariate
approaches that may eliminate this problem should be desired.

Other reasons for concern include a vast array of possible
comparisons (171 comparisons in one frequency band), and that
many of these pairs do not correspond to known neuronal path-
ways. Lastly, pairwise coherence estimates are not precise in their
anatomical locations as there is a presumption of a two dimen-
sional and not a 3-dimensional space (Black et al., 2008). It
has further been observed that multivariate strategies to assess
coherence metrics are more accurate and effective than their pair-
wise counterparts (Kus et al., 2004; Barry et al., 2005; Pollonini
et al., 2010). For example, Duffy and Als (2012) used principal
components analysis of coherences (multivariate approach) and
demonstrated the ability to distinguish between children with
autism and neurotypical controls.

MULTIVARIATE APPROACHES TO COHERENCE ANALYSIS
Multivariate, advanced statistics models, have rarely been applied
to the issue of coherence in the autistic brain. With these new
advances in analytic methods it is hoped that we will come closer
to understanding these dynamic phenomena. Hudspeth (1994)
was one of the first to investigate a multifactorial representation
of EEG covariance. He and his students obtained multichannel
EEG data and computed all combinations and similarities and
differences among the waveforms to produce a triangular cor-
relation matrix for each subject. The correlation matrices were
then factored with principal components analysis to obtain three
eigenvectors and the weighting coefficients required to project
each of the waveforms into a 3-dimensional geometric repre-
sentation of the cortical surface of the brain. When processed
in this way, this integration of factored data reduces the redun-
dancy in the EEG waveforms and patterns and correspond to
known neural network pathways. This is the predecessor of Duffy
and Als (2012) with enhanced complexity. The first three prin-
ciple components are summed to create a 3-dimensional rep-
resentation of these multivariate coherences. When EEG data is
represented in this way, the resulting eigenimages reveal similar-
ities and differences across systems in the brain often grouped
together by cortical function or neuronal systems. Deviations
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from these expected relationships points to dysfunctional aspects
of coherence. EEG data is gathered based on the classic 10–20
international system/electrode configuration (Jasper, 1958). In
this system of analysis, these points in space are redrawn in
3-dimensional space based on each locations’ multidimensional
relationship with all other locations based on horizontal, sagittal
and coronal views. As such, connectivity patterns are determined
by the inter-relationships among all combinations of inputs and
are thus considered multivariate or multi-source in nature.

A clinical example of this is now presented below in Figure 1.
This is based on an EEG recording performed with a 12 year old
girl diagnosed with autism with her eyes open and fixed on a
spot directly in front of her. Her most prominent clinical feature
included very limited social skills. The EEG data was consistent
with a mu rhythm (Kuhlman, 1978) that does not suppress to
movement or observation of social scenes (Oberman et al., 2007)
and is, thus, considered indicative of mirror neuron dysfunc-
tion (Oberman et al., 2005). This system of coherence assessment
was created by Hudspeth (2006) and is contained within the
NeuroRep QEEG Software system. The method of calculation
has been described above as these eigen images can be viewed
as an image in 3-dimensional space representing the functional
proximity or coherence among the various electrodes based on
the 10/20 International EEG recording system (Niedermeyer and
Lopes da Silva, 2004). As such, electrode positions that are closer
in proximity reflect greater hypercoherences and electrodes that
are further apparent are indicative of greater hypocoherences. As
may be seen in Figure 1 this analysis reveals a pattern of mixed
hypo and hypercoherences with prefrontal and parietal-posterior
temporal regions being hyperconnected among themselves and
large regions of hypocoherences across much of the right hemi-
sphere but especially from posterior frontal to posterior temporal
regions.

sLORETA FUNCTIONAL CONNECTIVITY
Standardized low-resolution brain electromagnetic tomography
(sLORETA) is a method of probabilistic source estimation of
EEG signals in standardized brain atlas space utilizing a restricted
inverse solution (Pascual-Marqui et al., 1994, 2002). sLORETA

has been used to examine EEG sources in depression (Pizzagalli
et al., 2003), epilepsy (Zumsteg et al., 2006), and evaluating tem-
poral changes associated with differential task specific default net-
work activity (Cannon and Baldwin, 2012). Recently, sLORETA
and fMRI were shown to localize DMN regions with comple-
mentary accuracy (Cannon et al., 2011). Recent statistical and
theoretical advances have led to the use of this technology in the
measurement of source coherences (Pascual-Marqui, 2007).

There has been rigorous discourse over the localization accu-
racy of low-resolution electromagnetic tomography (LORETA)
and its evolution toward standardized low-resolution electro-
magnetic tomography (sLORETA) (Pascual-Marqui et al., 1994;
Pascual-Marqui, 2002). The most important issue at hand for
any EEG localization or functional neuroimaging technique is
the fact that none of these methods localize the “true” source,
rather they model the source with probabilistic techniques. This
includes all methods that utilize statistical/mathematical mod-
eling, including functional magnetic resonance imaging (fMRI)
and magnetoencephalography (MEG) (Knyazev, 2013). Thus,
when using sLORETA in this fashion, we do operate under cer-
tain assumptions/restrictions. First, we are restricted to cortical
gray matter; including the hippocampus and the computations
and source estimations are restricted by geometric constraints.
Additionally, in the most basic sense it would be optimal to
evaluate the source estimates provided by sLORETA to an indi-
vidual’s specific MRI scan, thus we utilize a standardized MRI
from the Montreal Neurological Institute with 6340 5 mm3 voxels
and with it the potential error (Collins et al., 1994). In the local-
ization of EEG sources, recent works have shown the sLORETA
and LORETA methods to improve and even outperform other
methodologies in accuracy (Grech et al., 2008; SaeidiAsl and
Ahmad, 2013) with the addition of regularization parameters.
Additionally, standardized LORETA is not a modification of the
original LORETA, rather it does not utilize the Laplacian operator,
instead it utilizes standardized current density.

Importantly, for this particular single case study we extrap-
olated CSD for each frequency range to enter into bivariate
procedures to compute the person correlation coefficient for the
mean total relative current source density for each of the ROIs

FIGURE 1 | NeuroRep Multivariate Connectivity analyses showing eigen

images in the horizontal place across delta, theta, alpha, and beta

frequencies. Observable features include; (1) right hemisphere (temporal)

hypocoherences across all frequency bands, (2) hypercoherences in the alpha
band over prefrontal regions, and (3) right parietal-posterior temporal
hypercohences in the theta and alpha frequency bands.
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included in this study. For larger sample sizes, each frequency
domain can be analyzed and the results do not correspond to
issues with excessively high correlations in neuroimaging stud-
ies as reported in Vul et al. (2009), rather it appears that task and
subjective mental activity are important to understanding func-
tional coupling that occurs within and between networks in the
human brain (Cannon and Baldwin, 2012). The basis for using
a correlation procedure is that functional relationships between
groups of neurons within the brain can exist, even if the struc-
tural relationships are unknown. We have evaluated the use of
correlations using two neuroimaging methods (sLORETA/fMRI)
with accurate results in the default network (Cannon et al., 2011,
2012). In any experiment utilizing discrete or distributed sources
of the EEG volume conduction is a formidable concern. In short,
volume conduction decreases as a function of distance from a cur-
rent source at zero phase lag; however, if volume conduction is a
problem in any sense then phase lag differences must be near zero
and remain near zero independent of distance (Kauppinen et al.,
1999; Thatcher et al., unpublished manuscript).

The distributed source localization problem and its solution as
computed by sLORETA can be stated as (Pascual-Marqui, 2002;
Liu et al., 2005)

� = KJ + c1 (3)

Where � is an N × 1 vector containing the scalp electric poten-
tials measured from NE electrodes on the scalp, J is a 3M ×
1 vector representing current sources at M locations within the
brain volume, with three orthogonal components per location
and c being a common reference. K is the lead filed matrix repre-
senting the system transfer coefficients from each source to each
measuring point (Pascual-Marqui, 2002). Regularization using
a zero-order Tikhonov-Philips cost function permits a unique
solution to Equation (1) (Hansen, 1994)

min
J

{‖� − KJ‖2 + α ‖J‖2} (4)

Where α is the regularization parameter using the L-curve
method. The source estimation is then derived as

Ĵ = T� (5)

where
T = KT[KKT + αI]−1 (6)

Substituting (3) into (5) yields

Ĵ = TKJ = KT[KKT + αI]−1KJ = RJ (7)

where R is the resolution matrix, defined as

R = KT[KKT + αI]−1K (8)

The resolution matrix illustrates a map from the authentic source
activity to the estimated activity, with R being an identity matrix.
Thus, the basic functional concept of sLORETA is to normalize
the estimation using a block-by-block inverse of the resolution
matrix using (8)

Ĵ
T
l (Rll) − 1Ĵl (9)

where Ĵl is a 3 × 1 vector of the source estimate at the lth voxel and
Rll is a 3 × 3 matrixcontaining the lth diagonal block of the reso-
lution matrix. sLORETA was shown to give the best performance
in terms of localization error and ghost sources, with different
noise levels (Grech et al., 2008).

METHODS
A region of interest (ROI) file with the MNI coordinates for the
15 seed points for the center voxel within Brodmann Area (BA)
regions was constructed (see Table 1). These ROIs were selected
apriori based on their known involvement in the mirror neuron
system and social perceptual networks. Each of the ROI values
consisted of the mean current source density from each ROI seed

Table 1 | ROIs for this study: in the table from left to right are the x, y, and z MNI coordinates for center voxel, Lobe, structural nomenclature

and Brodmann Area.

X-MNI Y-MNI Z-MNI Lobe Structure Brodmann area

50 20 15 Frontal lobe Inferior frontal gyrus 45

30 25 −15 Frontal lobe Inferior frontal gyrus 47

45 35 20 Frontal lobe Middle frontal gyrus 46

25 55 5 Frontal lobe Superior frontal gyrus 10

20 45 −20 Frontal lobe Superior frontal gyrus 11

40 −5 10 Sub-lobar Insula 13

25 −75 10 Occipital lobe Cuneus 30

45 −20 −30 Temporal lobe Fusiform gyrus 20

5 −45 25 Limbic lobe Posterior cingulate 23

0 20 20 Limbic lobe Anterior cingulate 33

20 −10 −25 Limbic lobe Parahippocampal gyrus 28

10 −50 35 Parietal lobe Precuneus 31

5 30 20 Limbic lobe Anterior cingulate 24

45 −55 −15 Temporal lobe Fusiform gyrus 37

40 15 −30 Temporal lobe Superior temporal gyrus 38

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 45 | 257

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Coben et al. EEG connectivity in autism

Table 2 | Results for the sLORETA correlation analyses.

Correlations

BA45 BA47 BA46 BA10 BA11 BA13 BA30 BA20 BA23 BA33 BA28 BA31 BA24 BA37 BA38

BA45 Pearson correlation 1 0.584 0.940 0.381 0.358 0.977* 0.553 0.922 0.782 0.547 0.712 0.927 0.531 0.802 0.607
Sig. (2-tailed) 0.416 0.060 0.619 0.642 0.023 0.447 0.078 0.218 0.453 0.288 0.073 0.469 0.198 0.393
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA47 Pearson correlation 0.584 1 0.817 0.968* 0.967* 0.413 0.909 0.728 0.910 0.883 0.976* 0.804 0.889 0.739 0.993**

Sig. (2-tailed) 0.416 0.183 0.032 0.033 0.587 0.091 0.272 0.090 0.117 0.024 0.196 0.111 0.261 0.007
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA46 Pearson correlation 0.940 0.817 1 0.670 0.644 0.848 0.723 0.918 0.896 0.783 0.886 0.962* 0.773 0.823 0.820
Sig. (2-tailed) 0.060 0.183 0.330 0.356 0.152 0.277 0.082 0.104 0.217 0.114 0.038 0.227 0.177 0.180
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA10 Pearson correlation 0.381 0.968* 0.670 1 0.994** 0.185 0.829 0.533 0.781 0.896 0.891 0.630 0.906 0.559 0.941
Sig. (2-tailed) 0.619 0.032 0.330 0.006 0.815 0.171 0.467 0.219 0.104 0.109 0.370 0.094 0.441 0.059
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA11 Pearson correlation 0.358 0.967* 0.644 0.994** 1 0.167 0.871 0.546 0.800 0.845 0.898 0.633 0.858 0.597 0.951*

Sig. (2-tailed) 0.642 0.033 0.356 0.006 0.833 0.129 0.454 0.200 0.155 0.102 0.367 0.142 0.403 0.049
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA13 Pearson correlation 0.977* 0.413 0.848 0.185 0.167 1 0.434 0.882 0.678 0.361 0.572 0.858 0.342 0.760 0.450
Sig. (2-tailed) 0.023 0.587 0.152 0.815 0.833 0.566 0.118 0.322 0.639 0.428 0.142 0.658 0.240 0.550
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA30 Pearson correlation 0.553 0.909 0.723 0.829 0.871 0.434 1 0.806 0.951* 0.609 0.946 0.826 0.619 0.890 0.952*

Sig. (2-tailed) 0.447 0.091 0.277 0.171 0.129 0.566 0.194 0.049 0.391 0.054 0.174 0.381 0.110 0.048
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA20 Pearson correlation 0.922 0.728 0.918 0.533 0.546 0.882 0.806 1 0.937 0.522 0.858 0.989* 0.515 0.970* 0.779
Sig. (2-tailed) 0.078 0.272 0.082 0.467 0.454 0.118 0.194 0.063 0.478 0.142 0.011 0.485 0.030 0.221
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA23 Pearson correlation 0.782 0.910 0.896 0.781 0.800 0.678 0.951* 0.937 1 0.685 0.978* 0.958* 0.686 0.951* 0.946
Sig. (2-tailed) 0.218 0.090 0.104 0.219 0.200 0.322 0.049 0.063 0.315 0.022 0.042 0.314 0.049 0.054
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA33 Pearson correlation 0.547 0.883 0.783 0.896 0.845 0.361 0.609 0.522 0.685 1 0.807 0.642 1000** 0.439 0.824
Sig. (2-tailed) 0.453 0.117 0.217 0.104 0.155 0.639 0.391 0.478 0.315 0.193 0.358 0.000 0.561 0.176
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA28 Pearson correlation 0.712 0.976* 0.886 0.891 0.898 0.572 0.946 0.858 0.978* 0.807 1 0.908 0.810 0.866 0.990*

Sig. (2-tailed) 0.288 0.024 0.114 0.109 0.102 0.428 0.054 0.142 0.022 0.193 0.092 0.190 0.134 0.010
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA31 Pearson correlation 0.927 0.804 0.962* 0.630 0.633 0.858 0.826 0.989* 0.958* 0.642 0.908 1 0.635 0.946 0.839
Sig. (2-tailed) 0.073 0.196 0.038 0.370 0.367 0.142 0.174 0.011 0.042 0.358 0.092 0.365 0.054 0.161
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA24 Pearson correlation 0.531 0.889 0.773 0.906 0.858 0.342 0.619 0.515 0.686 1000** 0.810 0.635 1 0.437 0.830
Sig. (2-tailed) 0.469 0.111 0.227 0.094 0.142 0.658 0.381 0.485 0.314 0.000 0.190 0.365 0.563 0.170
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA37 Pearson correlation 0.802 0.739 0.823 0.559 0.597 0.760 0.890 0.970* 0.951* 0.439 0.866 0.946 0.437 1 0.807
Sig. (2-tailed) 0.198 0.261 0.177 0.441 0.403 0.240 0.110 0.030 0.049 0.561 0.134 0.054 0.563 0.193
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA38 Pearson correlation 0.607 0.993** 0.820 0.941 0.951* 0.450 0.952* 0.779 0.946 0.824 0.990* 0.839 0.830 0.807 1
Sig. (2-tailed) 0.393 0.007 0.180 0.059 0.049 0.550 0.048 0.221 0.054 0.176 0.010 0.161 0.170 0.193
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).
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and one single voxel (its nearest neighbor) for total voxel size
10 mm. The resulting file produced the average current source
density for each frequency domain across multiple EEG segments
for all subjects for each seed (ROI). The CSD data for each fre-
quency band were organized into Microsoft Excel spreadsheets
and then entered into SPSS 19 for analysis. sLORETA images cor-
responding to the estimated neuronal generators of brain activity
within each given frequency range were calculated (Frei et al.,
2001). This procedure resulted in one 3D sLORETA image for
this single subject for each frequency range. We entered each fre-
quency domain into the analysis for an N of 4 (delta 0.5–4.0 Hz;
theta 4–8 Hz; alpha 8–12 Hz, and beta 12–32 Hz). The sequence of
steps involved in generating the sLoreta source coherence image is
presented in Figure 2.

The findings for this same case as described above are pre-
sented in Figure 3. The most apparent findings from this analysis
seem to be regions that are overconnected with each other and
that these regions often involve close neighbors or regions of close
proximity (see Table 2). These include most profoundly regions
of the anterior cingulate that are completely (R = 1.0) hyper-
connected to each other and not to any other ROI. ROIs in and
around the right frontal lobe (11, 10, 46, 47) also seem to form
a loop of highly connected activity while their connections to
other regions are quite limited. The fusiform gyrus is highly con-
nected to the posterior cingulate and pre-cuneus, but again not to
other ROIs. What is missing is a link between the fusiform gyrus,
superior temporal gyrus, insula and inferior frontal regions that

forms the social perceptual system (Pelphrey et al., 2004). This
important neuronal system appears to be underconnected in this
case.

EFFECTIVE CONNECTIVITY AS MEASURED BY GRANGER
CAUSALITY
One of the critiques of other coherence methods has been that
they are largely based on the concept of correlation or similarity.
Even sLORETA coherence is still the similarity between sources
of EEG activity. An advanced statistical technique for investi-
gated directed causation that uses multiple autoregressive analyses
is Granger causality and it’s related concepts of partial directed
coherences (Seth, 2010). Granger causality analysis (GCA) is a
method for investigating whether one time series can correctly
forecast another (Bressler and Seth, 2010). Granger causality
(GC) is a data-driven approach based on linear regressive mod-
els and requires only a few basic assumptions about the original
data statistics. Recently in neuroscience applications, GC has been
used to explore causal dependencies between brain regions by
investigating directed information flow or causality in the brain. It
uses the error prediction of autoregressive (AR) or multi-variant
autoregressive (MAR) models to estimate if a brain process is a
Granger-cause of another brain process.

METHODS
To perform such an analysis on this same EEG data stream as
used in the two examples above, we utilized the SIFT (Source

FIGURE 2 | Procedure to examine the associations between the center

voxel within a specified Brodmann Area (BA) and its nearest neighbor

(10 mm3). Listed in the figure from top to bottom are the steps used to
process EEG data and create the correlation maps between regions of
interest (ROIS). In short, EEG data must be processed first with careful

attention given to artifact contamination and its potential influence across all
steps of the sLORETA procedures. The next step is to create the sLORETA
files in order to extract the CSD at specified ROIs. Finally, using any statistical
program the correlations between the ROID, or networks of interest can be
contrasted for functional associations.
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FIGURE 3 | Each of the 15 ROIs for this case study are represented in a

different color. The lines indicate significant correlations between the
colored ROI and other regions. The color of the line is the same as the ROI
in relation to its functional connectivity with other ROIs.

Information Flow Toolbox) toolbox from EEGLAB v.12 (Delorme
et al., 2011). A key aspect of SIFT is that it focuses on esti-
mating and visualizing multivariate effective connectivity in the
source domain rather than between scalp electrode signals. This
should allow us to achieve finer spatial localization of the net-
work components while minimizing the challenging signal pro-
cessing confounds produced by broad volume conduction from
“neural” sources to the scalp electrodes. From our eyes open
resting EEG data we have virtually epoched this stream into
1-s segments. Independent Component Analysis was then used
to extract unique, independent components from the data. To
fit multiple component dipoles and determine their locations
DIPFIT toolbox was then applied. Then by investigating the
dipole locations and the components topographical maps, only
good “neural” components that are related to neural process in
the brain have been included for further processing. These data
were then fit into a MAR model using Vieira-Morf algorithm.
For our data the model and after some trials and errors and
model validation process, the MAR model order has been set to
5. In addition, the frequency band of interest has been selected
from 1 to 30 Hz and the most obvious connectivity measure was
Grager-Geweke Causality (GGC).

These methods of operation are summarized in Figure 4. This
takes the EEG data from sensory to source space via indepen-
dent component analysis and dipole localization. This diminishes
the issue of volume conduction (see Astolfi et al., 2007; Akalin
Acar and Makeig, 2013). Once dipole localization has been per-
formed, these data are subjected to MVAR and Granger Causality

(GC) analysis as presented above. Within a reasonable range of
values, changes in model order may show little effect on the spec-
tral density (and by extension coherence) (e.g., see Florian and
Pfurtscheller, 1995). Our model order has been based on Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) criteria to maximize model effects. Statistically, the criti-
cal issue for GC is the ratio between the number of independent
observations (i.e., samples) and the model complexity (i.e., num-
ber of parameters). If the number of observations is large relative
to the number of parameters then the model order selection cri-
teria are still valid. If the number of observations is small, then
we might run into problems with AIC and other asymptotic
estimators, but there are corrections for that (corrected akaike
information criterion). In our data set (case epoching), we have
plenty of data available and the ratio of observations [total data
samples within a time window (x trials)] to parameters is >40
suggesting that we have a valid model using AIC (Burnham,
2004).

RESULTS
Our findings for this case are presented in Figure 5. This, again
demonstrates regions of over and under-connectivity. There
appear to be several regions of heightened causality whose major
influence is only toward close neighbors. This includes regions
of the prefrontal cortex, anterior cingulate, and bilateral inferior
parietal lobules. In each instance, these regions are somewhat iso-
lated from each other and other important ICs as well. What
is also clear is that there are long connections throughout the
right hemisphere that are largely under-connected. These span as
far away as the cuneus to the inferior frontal gyrus and include
regions of the temporal lobes and underlying areas such as the
fusiform gyrus and superior temporal gyrus.

COMPARISON OF COHERENCE TECHNIQUES
While it has not been shown, a pairwise coherence analysis of
this case has shown very few significant coherence anomalies. The
ones that are present include frontal hypocoherence and bilateral
occipital-temporal hypocoherences. This is the opposite of what
is shown in the multivariate analyses. All forms of multivariate
analysis shown have suggested a combination of local hyperco-
herence and long distance hypocoherence across right frontal to
posterior temporolimbic regions. This, in this case, clearly shows
a difference between pairwise and multivariate estimates.

Comparing these to know structural connectivity was pos-
sible in this case in the form of MR-DTI analysis within this
same system of concern (mirror neuron system). This suggests
the presence of prefrontal and anterior cingulate hyperconnectiv-
ity and dramatic hypoconnectivity from frontal to temporolimbic
regions. Comparing this to the multivariate analyses is interesting
as there is similarity across all of these. The resemblance of these
measures of functional connectivity to the reality of structural
connectivity in this case is seen in its’ greatest detail in multi-
variate measures that localize to source space (sLoreta, SIFT GC).
As such, one limitation of the first method (Hudspeth NREP) is
that it does not source localize activit prior to generating eigenim-
ages of sensory covariances. GC has certain possible advantages
including measuring the degree, directionality of connectivity,
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FIGURE 4 | SIFT/Granger (GGC) causality sequence of processing.

FIGURE 5 | SIFT/Granger (GGC) causality brain image. Levels of greater connectivity are shown with thicker lines and brighter colors. Direction of causality
is indicated by the key in the upper left hand corner. ICs and their localization are listed as part of Table 3.

reciprocal influences and localization to regions that are deeper
than is possible with sLoreta. It should be recalled that these
observations are based on theory and one a single case study.
Clearly, much more research is needed in this area of study.

DISCUSSION
Neuroimaging technologies and research has shown that autism is
largely a disorder of neuronal connectivity. While advanced work

is being done with fMRI, MRI-DTI, SPECT and other forms of
structural and functional connectivity analyses, the use of EEG
for these purposes is of additional great utility. Cantor et al.
(1986) were the first to examine the utility of pairwise coher-
ence measures for depicting connectivity impairments in autism.
Since that time research has shown a combination of mixed over
and under-connectivity that is at the heart of the primary symp-
toms of this multifaceted disorder. Nevertheless, there is reason
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Table 3 | SIFT/GCC maximal values between ICs.

From

To

1 2 3 5 8 9 10 15 18 19

1 0.57 0.50 0.59 0.21 0.22 0.89 0.14 0.36 0.12

2 0.36 0.49 1.51 0.26 0.10 0.50 0.15 0.11 0.28

3 0.04 1.09 0.15 0.52 0.1 0.28 0.10 0.24 0.80

5 0.85 1.31 0.39 0.13 0.09 0.34 0.31 0.05 0.84

8 0.61 0.51 0.82 0.2 0.38 0.99 0.29 1.04 0.13

9 0.24 0.29 0.24 0.08 0.28 0.48 1.22 0.29 0.17

10 1.35 0.35 0.46 0.19 0.72 0.19 0.38 0.92 0.48

15 0.30 0.26 0.41 0.11 0.34 1.07 0.87 0.30 0.15

18 0.39 0.08 0.74 0.11 1.18 0.26 1.87 0.17 0.29

19 0.40 0.66 2.08 2.39 0.31 0.19 1.32 0.18 0.72

Independent components included: 1 (Brodmann area (BA) 32; Anterior

Cingulate), 2 (BA 10; Middle Frontal Gyrus), 3 (BA 40; Inferior Parietal Lobule),

5 (BA 10; Middle Frontal Gyrus), 8 (BA 37; Fusiform Gyrus), 9 (BA 19; Lingual

Gyrus), 10 (BA 40; Inferior Parietal Lobule), 15 (BA 22; Superior Temporal Gyrus),

18 (BA 18; Cuneus), and 19 (BA 10; Middle Frontal Gyrus).

to believe that these simplistic pairwise measurements under rep-
resent the true and quite complicated picture of connectivity
anomalies in these persons. We have presented three different
forms of multivariate connectivity analysis with increasing levels
of sophistication. These all seem able to capture the complex-
ity of such cases and certainly moreso than pairwise estimates
have. There does appear to be a value in using measures that
localize the source of EEG activity and judge coherence from
these sources. Further, the promise of using MVAR advanced sta-
tistical methods to judge effective connectivity and causation is
exciting.

Clearly, there is much work to be done to further the scientific
underpinnings of these approaches. Future work should extend
these forms of analysis to greater sample sizes of autistic children
and adults to judge their validity and utility. Comparing findings
from autistics to other diagnostic and typically developing sam-
ples will be crucial. Lastly, the true value of any form of assessment
for autistic children may be in it’s applicability to further treat-
ment outcomes for these children. Coben (2013) has shown that
such metrics may be used to engineer more effective treatment
plans than traditional neurofeedback with impressive outcomes
as a result. It is hoped that advancements with such assessment
techniques will further sharpen such treatment successes and
decrease durations of treatment.
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