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Editorial on the Research Topic

Computational Methods in Inferring Cancer Tissue-of-Origin and Cancer

Molecular Classification

The development of cancer therapeutics increasingly relies on the results of tissue-of-origin and
molecular classification. In the clinic, up to 5% of the cancer primary site is unclassified (CUP).
For clinicians, it is important to identify the sensitive patients and determine treatment. The main
option is empirical chemotherapy, which leads to a lower survival rate. Therefore, inferring cancer
tissue-of-origin is an urgent need to be solved. The key point is to detect the exact genetic events
associated with cancer formation, which usually contribute to cell proliferation and uncontrolled
metabolic changes. However, using only experimental approaches cannot provide a full view of the
genetic features in the era of big biomedical data. Although a series of computational methods have
been developed in this area, the accuracy is often insufficient for clinical use.

The molecular classification in cancer is useful in optimizing treatment policies. With data
accumulation, especially more and more single-cell sequencing data, the molecular classification
will be improved for various cancer types. As better biomarkers evolve, more efficient treatments
and new drugs will be developed.

This Research Topic gathered research articles and reviews representing not only the
computational methods for inferring the origins and molecular classification but also translational
studies for cancer treatment in hospitals. This collection of papers sheds light on the development
of cancer therapeutics, with a focus on the most cutting-edge computational applications in
cancer diagnosis.

The 19 published articles consist of 18 research papers and a regular review, which
comprehensively illustrates the use of computational methods in inferring cancer Tissue-of-Origin
and molecular classification in various cancer types, including but not limited to hepatocellular
carcinoma (HCC), Pancreatic cancer (PC), ovarian cancer (OC), glioma, gastric cancer (GC),
circulating tumor cells (CTCs), cervical cancer (CC), and endometrial cancer (EC).

Seven research articles introduce several different methods to capture gene signature (models)
for similar purposes. Li et al. first employed the limma R package to the got the top 5,000 significant
differentially expressed genes (DGEs) in HC. These DEGs were gathered into nine modules after
they underwent a weighted correlation network analysis (WGCNA). Then, six genes were screened
by univariate, LASSO, and multivariate Cox regression analysis, and they were validated as an
independent prognostic factor in survival analysis (Li et al.). Most of the bioinformatic approaches
in this study were implemented in the article of Zhang et al., whose aim was to develop a stemness

5
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index-based gene signature for lower-grade glioma (LGG).
Interestingly, the same research group developed an immune-
related signature for prognosis prediction and risk stratification
in LGG with data from The Cancer Genome Atlas (TCGA),
Genome Tissue Expression (GTEx), and Chinese Glioma
Genome Atlas (CGGA) (Zhang et al.). A similar study in CC
and EC was completed by Ding et al. Importantly, they validated
the gene signature with many methods, such as enrichment
analyses through GO, KEGG, and GSEA pathways, Kaplan-
Meier survival curve, ROC curves, and immune cell infiltration
(Ding et al.). Moreover, Pan et al. also demonstrated that gene
methylation can be utilized to classify gliomas as signatures.
They used advanced computational methods of Monte Carlo
feature selection (MCFS), incremental feature selection (IFS),
and support machine vector (SVM) to detect methylation
features related to glioma subclasses (Pan et al.). A back-to-
back study performed by Hou et al. illustrated the functions and
mechanisms of N6-methyladenosine (m6A) modification in the
development of PC. A six-m6A-regulator-signature related to
overall survival (OS) was identified by LASSO regression (Hou
et al.). Furthermore, Kieffer et al. established gene signatures by
combining transcriptomic and genomic data for high-grade OC.

Notably, three research articles elucidate the application
of machine learning in gene feature captivation. Using DNA
somatic mutation data, Liu et al. extracted genetic features
using the random forest algorithm and established a logistic
regression-based classifier. With the extracted matrix of features
from the functional 300 genes, the prediction accuracy can reach
up to 81% in 10-fold cross-validation. To reduce the workload
of CTCs counting and improve the automation level, He et al.
established a cell recognition program based on deep learning
to identify the CTCs. In their project, the CTCs images of
600 in-house patients were analyzed with python’s OpenCV
scheme for segmentation. Then, convolutional neural network
deep learning networks in machine learning algorithms were
implemented on 1,300 cells for training, and the others were
used for testing. The final specificity and sensitivity of recognition
reached 91.3 and 90.3%, respectively (He et al.). Qian et al.
provide a feature extraction algorithm based on Support Vector
Machines (SVM) for cancer lectins prediction with a fusion of
G-Gap dipeptide.

Three research articles focus on the development of
computational approaches. Zhu et al. exploited a prediction
model called MiRNA-Disease Association prediction
(BHCMDA) based on the Biased Heat Conduction (BHC)
algorithm to discover potentially associated miRNAs of diseases

by integrating known miRNA-disease associations, the disease
semantic similarity, the miRNA functional similarity, and the
Gaussian interaction profile kernel similarity. Zhao et al. created
a novel computational approach named multiplex biological
network (MON) by integrating protein interaction networks
(PINs), protein domains, and gene expression files. The new
approach was able to detect the essential proteins by extending
the random walk with a restart algorithm to the tensor (Zhao
et al.). To predict lung cancer recurrence after surgical resection,
Wu et al. established a convolutional neural network (CNN)
framework called DeepLRHE by analyzing histopathological
images of patients from the TCGA database, and the receiver
operating characteristic (ROC) curve (AUC) was 0.79.

Finally, the systematic review demonstrates in detail that
the CLDN18-ARHGAP fusion is a significant molecular
characteristic of diffuse GC, which is also an independent
prognostic risk factor (Zhang et al.).

All of the research articles and reviews in this Research Topic
use state-of-the-art sources about the origin and gene signatures
of different cancers, examining the available computational
methods and providing a guide for physicians.
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Isocitrate dehydrogenase (IDH) is an oncogene, and the expression of a mutated IDH

promotes cell proliferation and inhibits cell differentiation. IDH exists in three different

isoforms, whose mutation can cause many solid tumors, especially gliomas in adults.

No effective method for classifying gliomas on genetic signatures is currently available.

DNA methylation may be applied to distinguish cancer cells from normal tissues. In this

study, we focused on three subtypes of IDH-mutation gliomas by examining methylation

data. Several advanced computational methods were used, such as Monte Carlo feature

selection (MCFS), incremental feature selection (IFS), support machine vector (SVM),

etc. The MCFS method was adopted to analyze methylation features, resulting in a

feature list. Then, the IFS method incorporating SVM was applied to the list to extract

important methylation features and construct an optimal SVM classifier. As a result,

several methylation features (sites) were found to relate to glioma subclasses, which

are annotated onto multiple genes, such as FLJ37543, LCE3D, FAM89A, ADCY5,

ESR1, C2orf67, REST, EPHA7, etc. These genes are enriched in biological functions,

including cellular developmental process, neuron differentiation, cellular component

morphogenesis, and G-protein-coupled receptor signaling pathway. Our results, which

are supported by literature reports and independent dataset validation, showed that our

identified genes and functions contributed to the detailed glioma subtypes. This study

provided a basic research on IDH-mutation gliomas.

Keywords: isocitrate dehydrogenase, methylation, IDH-mutation, gliomas, multi-class classification
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INTRODUCTION

Isocitrate dehydrogenase (IDH) exists in three different isoforms.
IDH1 and DH2 catalyze the same reaction and use NADP+
as a cofactor instead of NAD+. IDH3 converts NAD+ to
NADH in the mitochondria. IDH is an oncogene, and the
expression of mutated IDH promotes cell proliferation and
inhibits cell differentiation. Mutant IDH-derived (R)-2HG is
a potential malignant substance and unwanted byproduct of
cellular metabolism. 2HG dehydrogenase (2HGDH) prevents
2HG from accumulating in cells, and its intracellular levels in
normal cells are maintained at <0.1mM. The transformation
induced by (R)-2HG is effective and reversible, suggesting
that inhibiting 2HG has efficacy in the treatment of IDH
mutant cancers. Mutations at Arg132 of IDH1 are present
in five of six secondary glioblastoma (GBM) subtypes, and
IDH mutations have been found in many other solid tumors
(Losman and Kaelin, 2013).

Glioma in adults includes three main categories, namely,
glioblastoma (GBM), astrocytoma, and oligodendroglioma. They
are determined by genetic and histologic features. IDH1 and
IDH2 mutations are generally detected in astrocytoma and
oligodendroglioma but not in the GBM subtype. Thus, IDH-
mutation is an important marker for glioma classification.
Different subtypes of glioma have different mutation patterns.
Mutations in ATRX and TP53 are usually identified in
astrocytomas with mutant IDH, but TRET promoter variations
and chromosome abnormality are generally identified in
oligodendrogliomas (O-IDH) (Cancer Genome Atlas Research
Network et al., 2015). Thus, A-IDH and O-IDH are two major
subtypes of IDH-mutant gliomas distinguished by co-occurring
genetic signatures and histopathology (Venteicher et al., 2017).

No effective method for classifying gliomas on genetic
signatures is currently available. By contrast, DNA methylation
is used to distinguish cancer cells from normal tissues (Delpu
et al., 2013). DNA methylation is a part of the normal epigenetic
modification with potential regulatory significance, such as
regulating gene expression patterns. In this study, we focused
on three subtypes of IDH-mutation gliomas by methylation
data, including astrocytomas with IDH mutations (A-IDH),
astrocytoma with IDH mutation and enriched HG (A-IDH-
HG), and oligodendrogliomas with IDH mutations (O-IDH).
Our analyzing procedures used several advanced computational
methods, like Monte Carlo feature selection (MCFS; Draminski
et al., 2008), incremental feature selection (IFS; Liu and
Setiono, 1998), and support machine vector (SVM; Cortes and
Vapnik, 1995), etc. A feature list was produced by applying
the MCFS method on the methylation data. Then, the IFS
method followed to extract important methylation features
by evaluating the performance of SVM on different feature
subsets that consisted of top features in the list. As a result,
we accessed some key methylation features (sites) related to
the classification of gliomas annotated onto multiple genes,
such as FLJ37543, LCE3D, FAM89A, ADCY5, ESR1, C2orf67,
REST, EPHA7, etc. Furthermore, we obtained several biological
functions related to the classification of glioma subtypes, which
are also related to genemethylation and corresponding functions,

such as cellular developmental process, neuron differentiation,
cellular component morphogenesis, and G-protein-coupled
receptor signaling pathway. We then validated these methylation
signatures, genes, and functions on an independent dataset. We
identified a group of methylation sites, genes, and functions by
using our screening analysis method. This study provided a basic
research on the detailed classification of A-IDH andO-IDH cases.

MATERIALS AND METHODS

Data Sources
We downloaded the methylation profiles of patients with IDH-
mutation glioma from GEO (Gene Expression Omnibus) under
accession numbers GSE90496 and GSE109379, which were
originally generated by Capper et al. (2018). The GSE90496
dataset was used as a training dataset, and the GSE109379 dataset
was used as an independent test dataset. The training dataset
had samples of 78 A-IDH subclasses, 46 high-grade astrocytoma
(A-IDH-HG) subclasses, and 80 1p/19q co-deleted O-IDH
subclasses. The test dataset had 94 A-IDH, 41 A-IDH-HG, and
83 O-IDH samples. The overlapped 42,383 methylation probes
between training and test datasets were used to encode IDH-
mutation glioma in each patient to investigate the methylation
difference among different IDH-mutation glioma subclasses.

Feature Selection
In this study, we first used MCFS (Chen et al., 2018a, 2019a,b;
Pan et al., 2018, 2019a,b; Li et al., 2019) to rank the input features,
and the ranked features were further selected through IFS (Zhang
et al., 2015; Zhou et al., 2015; Chen et al., 2017b,c, 2018b; Wang
et al., 2017; Li and Huang, 2018; Zhang T. M. et al., 2018) with a
supervised classifier SVM (Cortes and Vapnik, 1995).

MCFS is a supervised feature selection method based on
multiple decision trees (Draminski et al., 2008). We used it to
generate m bootstrap sample sets and t feature subsets from
original data. One decision tree was grown on the basis of each
combination of bootstrap sets and feature subsets. A total of m
× t decision trees was obtained. According to these trees, we
calculated relative importance (RI) score for each feature. The
main criterion is that the more frequent a feature is involved in
splitting nodes of growing the m × t trees, the more important
the feature will be; the accuracy of each decision tree is also
considered for evaluating the importance of this feature. In detail,
the RI score for one feature f is computed by

RIf =

m×t∑

τ=1

(wAcc)uIG(nf (τ ))(
no.in nf (τ )

no.in τ

)

v

,

where wAcc stands for the weighted accuracy, nf (τ ) represents
a node of f in decision tree τ , the information gain of nf (τ )
is denoted as IG(nf (τ )), no.in nf (τ ) stands for the number of
samples in nf (τ ), no.in τ indicates the number of samples in τ .
u and v are weighting factors, which were set to one in this study.
After accessing the RI scores of all features, we ranked them in a
list in terms of the decreasing order of their RI scores.

MCFS only ranked the input features but could not remove
redundant features. The feature selection by an arbitrary cutoff
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of RI score was not the best method. Thus, IFS, which is a feature
selection method with a supervised classifier, was further used to
identify the optimum number of features for classification. IFS
first generated a series of feature subsets with a step of 10 based on
the ranked features fromMCFS. The first feature subset consisted
of the top 10 features, the second feature subset comprised the
top 20 features, and so on. A supervised classifier was built
and evaluated on the samples consisting of the features from
each feature subset through 10-fold cross-validation. Lastly, we
selected the optimum feature subset with the best performance.

Supervised Classifiers
We integrated IFS with SVM. To compare the performance
baseline, we also evaluated the IFS with random forest (RF;
Ho, 1995) and repeated incremental pruning to produce error
reduction (RIPPER; Cohen, 1995).

SVM is a supervised classification algorithm based on
statistical theory (Cortes and Vapnik, 1995). It finds a hyperplane
with the maximummargin between two classes. SVM can handle
linear and non-linear data. For non-linear data, SVM first maps
the original data into a high-dimensional space by using kernels
in which new data can be linearly separable. SVM is designed
for binary classification, and one-vs.-the-rest strategy is used for
multi-class classification. Multiple SVMs are trained, and each
SVM is trained on positive samples from one class and negative
samples from the remaining classes. A new sample is assigned
a predicted class label corresponding to the highest probability
score from one SVM.

RF is a supervised meta-classifier based on multiple decision
trees (Ho, 1995). It grows multiple decision trees from bootstrap
sets, and each decision tree is trained on a randomly selected
feature subset. In contrast to SVM, RF can be directly applied to
multiclass classification.

RIPPER is a rule-based classifier that greedily produces
classification rules (Cohen, 1995). It first finds a good rule to
cover training samples as much as possible and then removes
the covered samples from the training set for mining the next
rule. RIPPER repeats the above process until all the samples are
covered by the produced classification rules.

To quickly implement above-mentioned three classification
algorithms, three tools “SMO,” “RandomForest,” and “JRip” in
Weka (Witten and Frank, 2005) were employed. Their default
parameters were used.

GO- and KEGG-Based Enrichment Analysis
To investigate whether the selected methylation probes were
significantly enriched onto certain biological functions, we
did the GO and KEGG enrichment analysis. The identified
methylation probes were mapped onto genes based on the probe
annotations of Illumina HumanMethylation450 BeadChip at
GEO under the accession number GPL13534. The genes were
enriched onto GO and KEGG terms by using hypergeometric
test. We used R function phyper to perform the hypergeometric
test. The KEGG database Release 86.0 was retrieved using
R/Bioconductor package KEGGREST (https://bioconductor.org/
packages/KEGGREST/) and the GO database with date stamp
of 2017-Nov01 was provided in R/Bioconductor package

org.Hs.eg.db (https://bioconductor.org/packages/org.Hs.eg.db/).
The hypergeometric test P-values were adjusted to obtain their
false discovery rate (FDR). The GO terms and KEGG pathways
with FDR smaller than 0.05 were considered as significant
and analyzed.

Performance Evaluation
We used a multiclass classifier to classify samples from A-IDH,
A-IDH-HG, and O-IDH and evaluated the trained classifiers by
using 10-fold cross-validation (Kohavi, 1995; Chen et al., 2017c,
2018b; Li et al., 2019; Zhang et al., 2019; Zhou et al., 2019)
on the training set. To further demonstrate the generalization
ability of model learning, we examined the trained classifiers
on an independent test set. We also considered Matthews
correlation coefficient (MCC; Matthews, 1975; Gorodkin, 2004;
Chen et al., 2017a; Zhao et al., 2018, 2019; Cui and Chen, 2019),
accuracies of individual classes, and overall accuracy to measure
model performance.

RESULTS

In this study, we adopted several advanced computational
methods to investigate the methylation profiles of patients with
three IDH-mutation glioma subclasses. The entire procedures are
illustrated in Figure 1.

We first ranked 42,383 features (e.g., methylation sites) as the
input by using MCFS. The RI scores of the input features are
given in Table S1. A total of 19,692 features have RI scores >0,
and the remaining 22,691 features have no any discriminative
ability to classify samples from A-IDH, A-IDH-HG, and O-IDH.
Thus, only 19,692 features were used for the tasks below.

Next, we evaluated the IFS with an SVM on the training set
by using 10-fold cross-validation. Table 1 shows that we yielded
the best MCC value of 0.977 when the top 750 features were
used, with an overall accuracy of 0.985. The accuracies on three
subclasses were 0.987, 0.957, and 1.000, respectively, indicating
the good performance of SVM based on top 750 features.
Figure 2B illustrates that the MCCs of SVMs changed with the
number of the involved features. To justify why we selected SVM
as the final classifier of IFS, we also evaluated the performance
of IFS with RF and RIPPER. In Table 1, Figures 2A,C, IFS with
RF yielded the best MCC value of 0.962 and an overall accuracy
of 0.975 when the top 1,330 features were used. The accuracies
on three subclasses were 0.987, 0.913, and 1.000, respectively.
RF used more features but yielded a lower performance than
SVM did. By contrast, the rule-based method RIPPER yielded
lower performance than SVM and RF did, thereby achieving the
MCC of 0.895 when the top 19,270 features were utilized. The
accuracies on three subclasses were also lower than those of SVM
and RF (see the last row ofTable 1). RIPPERwas worse than SVM
and RF because RIPPER is a rule-basedmethod that considers the
balance between detecting interpretable classification rules and
obtaining the high classification performance of “black-box.” The
performance corresponding to the number of features of SVM,
RF, and RIPPER is given in Table S2.

To further demonstrate the generalizability of our learned
models, we further evaluated the IFS with SVM, RF, and RIPPER
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FIGURE 1 | The entire procedures for investigating the methylation profiles of patients with three IDH-mutation glioma subclasses.

TABLE 1 | The 10-fold cross-validation performance of IFS with different

classifiers on the training set.

Classifier Number of

optimum

features

Accuracy Overall

accuracy

MCC

A-IDH A-IDH-HG O-IDH

SVM 750 0.987 0.957 1.000 0.985 0.977

SVM 20 1.000 0.913 1.000 0.980 0.970

RF 1,330 0.987 0.913 1.000 0.975 0.962

RIPPER 19,270 0.962 0.848 0.950 0.931 0.895

on the independent test set. Table 2 shows their performance on
the independent test set, where the same number of optimum
features identified on the training set was used for each classifier.
The MCCs yielded by SVM, RF, and RIPPER were 0.899, 0.907,
and 0.972, respectively. The three methods achieved a high
performance, demonstrating the generalizability of the trained
models. RIPPER yielded the lowest 10-fold cross-validation
performance on the training set, but it yielded the highest
performance on the independent test set. This result indicated
that the simple rule-basedmethod RIPPERmight not easily suffer
model overfitting compared with that of complicated classifiers
SVM and RF, but too many features were used in this classifier.

As mentioned above, SVM with top 750 features yielded
the best performance on the training set. However, when top

20 features were used, the SVM generated the MCC of 0.970,
which was only 0.007 lower than that obtained by the SVM with
top 750 features. Considering the efficiency of SVM, SVM with
top 20 features was a more proper choice. Its performance on
three classes is listed in Table 1, which was almost at the same
level compared with that of the SVM with top 750 features.
Furthermore, its performance on the test set is listed in Table 2,
which was still acceptable.

DISCUSSION

We found 750 optimal features for distinguishing A-IDH,
A-IDH-HG, and O-IDH with the help of SVM. However,
considering the efficiency, SVM with top 20 features was a more
suitable choice. Thus, it is believed that these 20 features were
extremely important. Here, we gave an extensive discussion on
these 20 features (Table 3), which were supported by previous
studies. In addition, we further identified a group of detailed
biological functions associated with different IDH-mutation
glioma subclasses.

Genes Associated With Glioma Subclasses
The top probe was cg04437966, marking gene FLJ37543. Also
known as C5orf64, such gene has been widely reported to
participate in tumorigenesis (Aschebrook-Kilfoy et al., 2015).
As for its potential contribution on distinguishing different
IDH subtypes, it has been reported to participate in multiscale
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FIGURE 2 | Performance of SVM, RF, and RIPPER that changed with the corresponding number of features. (A) RF performance, (B) RIPPER performance, and (C)

SVM performance.

TABLE 2 | The performance of IFS with different classifiers on the independent

test set.

Classifier Number of

features

Accuracy Overall

accuracy

MCC

A-IDH A-IDH-HG O-IDH

SVM 750 0.947 0.780 1.000 0.936 0.899

SVM 20 0.926 0.756 0.964 0.908 0.855

RF 1,330 0.968 0.756 1.000 0.940 0.907

RIPPER 19,270 0.957 1.000 1.000 0.982 0.972

modeling of oligodendrocytes in physical and pathological
conditions, but not other neural cell subtypes (Mckenzie et al.,
2017). Therefore, the expression level of such gene may actually
contribution to the subtyping processes.

The next probe was cg14159026, identifying gene BVES.
Encoding a specific member of the POP family of protein, such
gene has been widely reported to participate in cell adhesion
processes (Wada et al., 2001). As for its specific contribution on
IDH-dependent glioma subtyping, it has been reported that such
gene can participate in the development of different neural cells
and functionally related to IDH (Lord et al., 1997; Ton et al.,
2002). Therefore, although no direct reports confirmed its unique
classification potentials for glioma subtyping, it is reasonable for
us to regard such gene as a reference for IDH-dependent glioma
subtyping. Apart from such probe, another effective probe named
as cg17398252 is also designed to detect the methylation status of
such gene, further confirming above results.

The third probe was cg22519158, detecting the methylation
status of gene LCE3D. LCE3D is also a specific development
associated gene, participating in the formation of stratum
corneum (Bergboer et al., 2011). As for its potential relationship
with IDH and its contribution on such subtyping, it has been
reported that such gene is related to the expression of IDH and
different subtypes of glioma at methylation level, corresponding
with our results (Zhang M. et al., 2018).

FAM89A, as the following identified target gene is marked
by the fourth probe, named cg12450347. There are no detailed
reports on the biological functions of FAM89A. However, the
abnormal expression level of such gene has also been screened
out on some glioma gene expression profiling studies (Mascelli

TABLE 3 | Top features (methylation probes) and their targeting genes.

Rank Feature Targeting gene RI

1 cg04437966 FLJ37543 0.5637

2 cg14159026 BVES 0.4719

3 cg22519158 LCE3D 0.3781

4 cg12450347 FAM89A 0.3505

5 cg17482114 ADCY5 0.3397

6 cg08415493 ESR1 0.3244

7 cg12760041 C2orf67 0.3119

8 cg12930304 – 0.2875

9 cg26694713 REST 0.2846

10 cg04360458 REST 0.2591

11 cg17398252 BVES 0.2497

12 cg21552709 EPHA7 0.2374

13 cg20138711 ARHGEF3 0.2327

14 cg11902641 – 0.2271

15 cg03903398 MIR1275 0.2052

16 cg19681793 THBS2 0.1916

17 cg24215279 TPO 0.1889

18 cg05427966 EPHA7 0.1797

19 cg11235583 CLCNKB 0.1766

20 cg14158583 PVRL4 0.1739

et al., 2013; Xie et al., 2017). Therefore, our screened-out probe
definitely contributes to the IDH-dependent subtyping of glioma.

The next gene ADCY5, detected by probe cg17482114, is
an enzyme that interacts with RGS2 in humans. ADCY5 is
associated with various neurological syndromes in non-cancer
tissues and can cause chorea, a type of neurological syndrome
(Walker, 2016). The SNPs of ADCY5 are associated with elevated
fasting glucose and increased type 2 diabetes risk. The DNA
hypermethylation of ADCY5 induces a low mRNA expression
pattern in malignant tissue samples (Sato et al., 2013).

ESR1, detected by probe cg08415493, was also identified
to participate in IDH-dependent glioma subtyping. Encoding
an estrogen receptor, such gene has been widely reported
to participate in hormone related cell proliferation and
differentiation (Dalvai and Bystricky, 2010; Mascelli et al.,
2013). In glioma, such gene has been reported to be a specific
biomarker for glioma subtyping on expression and methylation
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level (Uhlmann et al., 2003). Considering that such gene has
also been identified to be functionally related to IDH, it is quite
reasonable to regard such gene as a potential marker for such
subtyping (Richardson et al., 2019).

C2orf67, as the target of probe cg12760041,was also identified
in this study. According to recent publications, such gene has
been reported to be effective as a serum metabolite measurement
parameter (Ohyama et al., 2016; Aibara et al., 2018). As for
the methylation status and expression pattern of such gene in
different glioma subtypes, it has been identified as one of the
potential markers reflecting the activation status of EGF signaling
pathway (Trang et al., 2010). Considering that different IDH-
dependent glioma subtypes have different EGF activation status
(Roth and Weller, 2014; Thorne et al., 2016), it is reasonable to
identify such gene and its targeted probe as one of the potential
markers for such IDH-dependent subtyping.

REST, targeted by probes named as cg26694713 and
cg04360458, is also predicted to participate in IDH-dependent
glioma subtyping. REST is actually a transcriptional regulatory
factor for neuronal genes (Zuccato et al., 2003). Apart from that,
REST has also been identified as a specific marker for glioma
subtyping due to its epigenetic alteration pattern (Zuccato et al.,
2003). In the same report, the mutation status of IDH has also
been validated to be functionally related to such methylation
alteration (Zuccato et al., 2003).

The next two probes, named as cg21552709 and cg05427966,
target Ephrin type-A receptor 7 (EPHA7). EPHA7, as a member
of the ephrin receptor superfamily, mediates developmental
events, particularly in the nervous system. During the embryonic
development of the central nervous system, Ephs and ephrins
have defined functions, such as axon mapping, neural crest
cell migration, hindbrain segmentation, synapse formation, and
physiological and abnormal angiogenesis. Eph and ephrins are
frequently overexpressed in different tumor types, including
GBM. An increased EphA7 expression is correlated with adverse
outcomes in patients with primary and recurrent glioblastoma
multiforme (Wang et al., 2008).

The next probe cg20138711 targetingARHGEF3was screened
out in our study, which were deemed to contribute to IDH-
dependent glioma subtyping. ARHGEF3 is a regulator for
RhoA and RhoB GTPases (Hilgers and Webb, 2005). According
to recent publications, mediating RhoA associated biological
processes, ARHGEF3 has been confirmed to interact with IDH
(Okada et al., 2003; Kloth et al., 2005) and has uniquemethylation
status in glioma (Northcott et al., 2009). Therefore, it is quite
reasonable to summary that such probe actually targets an
effective regulatory gene for IDH-dependent glioma subtyping.

Probe cg03903398 is another informant feature targeting
effective microRNA, coding gene named as MIR1275. MIR1275
is a functional microRNA coding gene, which has been directly
reported to participate in multiple sclerosis (MS; Angerstein
et al., 2012). As for its specific role for glioma subtyping,
similar with gene ARHGEF3, such microRNA participates in
TGF-beta signaling pathway (Yan et al., 2013) and has been
validated to have different methylation status together with
expression pattern in different IDH expression glioma subtypes
(Kondo et al., 2014).

The following four probes cg19681793 (targeting THBS2),
cg24215279 (targeting TPO), cg11235583 (targeting CLCNKB),
and cg14158583 (targeting PVRL4) have also been confirmed
to target effective genes with different methylation status in
different IDH-dependent glioma subtypes. Apart from above-
discussed eighteen probes, cg12930304 and cg11902641 were
also identified to be significant for subtyping. However, according
to the annotation, no actual genes are presented in such region,
which may be induced by incomplete annotation reference or
prediction redundancy. All in all, most genes corresponding

TABLE 4 | The significantly enriched GO/KEGG functions with FDR < 0.05.

GO/KEGG function FDR p-value

GO:0048731 system development 5.02E-05 3.18E-09

GO:0030154 cell differentiation 9.78E-05 1.88E-08

GO:0032502 developmental process 9.78E-05 2.13E-08

GO:0048869 cellular developmental process 9.78E-05 2.48E-08

GO:0007275 multicellular organism development 0.0001 4.69E-08

GO:0048856 anatomical structure development 0.0001 4.33E-08

GO:0048513 animal organ development 0.0002 1.06E-07

GO:0009653 anatomical structure morphogenesis 0.0003 1.98E-07

GO:0032501 multicellular organismal process 0.0003 1.92E-07

GO:0007399 nervous system development 0.0004 2.52E-07

GO:0048518 positive regulation of biological process 0.0005 3.44E-07

GO:0030182 neuron differentiation 0.0009 7.14E-07

GO:0048699 generation of neurons 0.0010 7.99E-07

GO:0022008 neurogenesis 0.0011 9.80E-07

GO:0051239 regulation of multicellular organismal

process

0.0028 2.61E-06

GO:0048468 cell development 0.0050 5.02E-06

GO:0009887 animal organ morphogenesis 0.0054 5.86E-06

GO:0048598 embryonic morphogenesis 0.0066 7.53E-06

GO:0000904 cell morphogenesis involved in

differentiation

0.0084 1.01E-05

GO:0050793 regulation of developmental process 0.0088 1.11E-05

GO:0001501 skeletal system development 0.0094 1.25E-05

GO:0051240 positive regulation of multicellular

organismal process

0.0108 1.51E-05

GO:0048534 hematopoietic or lymphoid organ

development

0.0117 1.70E-05

GO:0002520 immune system development 0.0124 1.95E-05

GO:0035295 tube development 0.0124 1.96E-05

GO:0000902 cell morphogenesis 0.0129 2.13E-05

GO:0048522 positive regulation of cellular process 0.0160 2.73E-05

GO:0009790 embryo development 0.0224 3.97E-05

GO:0009888 tissue development 0.0253 4.64E-05

GO:0007187 G-protein coupled receptor signaling

pathway, coupled to cyclic nucleotide second messenger

0.0352 6.91E-05

GO:0032989 cellular component morphogenesis 0.0352 6.92E-05

GO:0032736 positive regulation of interleukin-13

production

0.0356 7.21E-05

GO:0048871 multicellular organismal homeostasis 0.0418 8.73E-05

GO:0030097 hemopoiesis 0.0459 9.88E-05

GO:0046703 natural killer cell lectin-like receptor binding 0.0481 1.04E-05
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to top ranked probes can be confirmed to have differential
methylation patterns and corresponding contributions to A-IDH
and O-IDH cases, validating the reliability of our findings.

GO and KEGG Enrichment Associated With

Glioma Subclasses
The SVM with top 750 features yielded the best performance.
These 750 features (methylation probes) were mapped onto
genes, on which a GO and KEGG enrichment analysis was
performed. Table 4 lists the significantly enriched GO/KEGG
functions with FDR < 0.05. This section analyzed some of them.

Cellular development with hypergeometric test p-value of
2.48E-8 and FDR of 9.78E-5, is an important biological function
that can be a marker to classify different glioma subclasses. The
tyrosine kinase Fyn is an Src kinase family member essential
for normal myelination and implicated in oligodendrocyte
development (Ma et al., 2005). Fyn regulates oligodendroglial
cell development in oligodendroglioma, considering that the
neurogenesis of an adult brain is generally regulated by glial cells.

Neuron differentiation with hypergeometric test p-value of
7.14E-8 and FDR of 0.0009, can be another marker for classifying
different glioma subclasses. The suppression of NSC (neural
stem cells) differentiation and the promotion of its self-renewal
capacity are controlled by the upregulation of PLAGL2. The
inhibition of Wnt signaling partially restores the differentiation
capacity of PLAGL2-expressing NSC (Zheng et al., 2010).
These functions are consistent with a well-known hallmark of
glioblastoma, e.g., strong self-renewal potential and immature
differentiation state.

Cellular component morphogenesis with hypergeometric test
p-value of 6.92E-5 and FDR of 0.0352, varies in different
types of gliomas. Tumor cell metastasis mediated by abnormal
extracellular matrix (ECM) regulations contributes to the rapid
progression of GBM. As such, ECM may play an irreplaceable
role during the invasion of GBM (Ulrich et al., 2009). Thus,
cellular component morphogenesis may be a functional signature
for characterizing different subtypes of gliomas.

G-protein-coupled receptor signaling pathway with
hypergeometric test p-value of 6.91E-5 and FDR of 0.0352,
coupled to a cyclic nucleotide second messenger, is an important
pathway related to GBM. This pathway regulates glioma cells
by interfering with calcium signaling processes. Its components,
namely, P2Y1 and P2Y2 receptors, coexist in glioma C6 cells as
an effective molecular identity of P2Y receptors (Ulrich et al.,
2009). In terms of the specific role of this pathway in malignant
diseases, Rho GTPase activation and angiogenesis are two
typical pathological processes of the identified pathway to trigger
tumorigenesis. Therefore, our enriched pathway may be effective

and significant for the identification of different glioma subtypes
(O’hayre et al., 2014).

The qualitatively analyzed genes help distinguish different
glioma subclasses, and all the identified genes are supported
by recent literature and related independent expression profiles.
The functional enrichment of these genes further validates
the differential functional characteristics of gliomas. Therefore,
our new analysis method can help determine (methylation)
signatures for glioma subclasses and establish a basis for further
studying the detailed pathological mechanisms of these glioma
subtypes at multiple omics levels.
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Background: Nowadays, clinical treatment outcomes of patients with hepatocellular
carcinoma (HCC) have been improved. However, due to the complexity of the molecular
mechanisms, the recurrence rate and mortality in HCC inpatients are still at a high level.
Therefore, there is an urgent need in screening biomarkers of HCC to show therapeutic
effects and improve the prognosis.

Methods: In this study, we aim to establish a gene signature that can predict the
prognosis of HCC patients by downloading and analyzing RNA sequencing data and
clinical information from three independent public databases. Firstly, we applied the limma
R package to analyze biomarkers by the genetic data and clinical information downloaded
from the Gene Expression Omnibus database (GEO), and then used the least absolute
shrinkage and selection operator (LASSO) Cox regression and survival analysis to
establish a gene signature and a prediction model by data from the Cancer Genome
Atlas (TCGA). Besides, messenger RNA (mRNA) and protein expressions of the six-gene
signature were explored using Oncomine, Human Protein Atlas (HPA) and the
International Cancer Genome Consortium (ICGC).

Results: A total of 8,306 differentially expressed genes (DEGs) were obtained between
HCC (n = 115) and normal tissues (n = 52). Top 5,000 significant genes were selected and
subjected to the weighted correlation network analysis (WGCNA), which constructed nine
gene co-expression modules that assign these genes to different modules by cluster
dendrogram trees. By analyzing the most significant module (red module), six genes
(SQSTM1, AHSA1, VNN2, SMG5, SRXN1, and GLS) were screened by univariate,
LASSO, and multivariate Cox regression analysis. By a survival analysis with the HCC
data in TCGA, we established a nomogram based on the six-gene signature and multiple
clinicopathological features. The six-gene signature was then validated as an independent
prognostic factor in independent HCC cohort from ICGC. Receiver operating
January 2020 | Volume 10 | Article 1323116

https://www.frontiersin.org/article/10.3389/fgene.2019.01323/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01323/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01323/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01323/full
https://loop.frontiersin.org/people/821418
https://loop.frontiersin.org/people/821418
https://loop.frontiersin.org/people/813994
https://loop.frontiersin.org/people/813994
https://loop.frontiersin.org/people/758795
https://loop.frontiersin.org/people/758795
https://loop.frontiersin.org/people/757258
https://loop.frontiersin.org/people/757258
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liuyu8566@126.com
https://doi.org/10.3389/fgene.2019.01323
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01323
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01323&domain=pdf&date_stamp=2020-01-14


Li et al. Six-Gene Signature Predicts OS in HCC

Frontiers in Genetics | www.frontiersin.org
characteristic (ROC) curve analysis confirmed the predictive capacity of the six-gene
signature and nomogram. Besides, overexpression of the six genes at the mRNA and
protein levels was validated using Oncomine and HPA, respectively.

Conclusion: The predictive six-gene signature and nomograms established in this study
can assist clinicians in selecting personalized treatment for patients with HCC.
Keywords: hepatocellular carcinoma, overall survival, risk score, mRNA signature, weighted gene co-expression
network analysis
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignancies worldwide. The mortality rate of HCC ranks
second among all cancers, and HCC has a higher rate in
developing countries compared to developed countries (El-
Serag and Rudolph, 2007). Approximately 70% of HCC relapse
within 5 years after receiving resection or ablation (Cancer
Genome Atlas Research Network Electronic Address and
Cancer Genome Atlas Research, 2017). The main causes
leading to the poor prognosis are tumor metastasis and
postoperative recurrence (Budhu et al., 2006). Abnormal
expression of messenger RNAs (mRNAs) plays critical roles in
a variety of biological processes. Recent studies have documented
that mRNAs can function as potential biomarkers in cancer
prognosis (Wang et al., 2018). Therefore, there is an urgent need
in screening biomarkers of HCC to show therapeutic effects,
reduce mortality, and improve the prognosis. A routine
prognostic assessment tool for HCC patients was clinical
pathological staging. However, HCC is always with clinical
heterogeneity. For example, the clinical heterogeneity caused
by the simultaneous presence of two life-threatening diseases,
cancer and cirrhosis, often affects the effect of routine prognosis
assessment. In order to provide more clinically beneficial
treatment strategies for high-risk populations, there is an
urgent need to develop a new prognostic prediction model as a
supplement to the prediction outcomes of clinical staging.

During the last decades, gene sequencing and bioinformatic
analysis have been widely used to screen genetic alterations at the
genome level, which have helped us identify the differentially
expressed genes (DEGs) and functional pathways involved in the
progression of HCC. It was reported that epithelial cell adhesion
molecule (Yamashita et al., 2008), CD24 (Woo et al., 2008), and
TGF-beta (Coulouarn et al., 2008) were associatedwith the overall
survival (OS) ofHCC inpatients. However, false-positive rates in a
single cohort analysis make it difficult to obtain reliable results.
Thus, in the present study, we identify biomarkers of HCC by
extracting a dataset of HCC patients from the Gene Expression
Omnibus database (GEO). Then, we established a gene signature
for HCC in Cancer Genome Atlas (TCGA) and established an
integrated nomogram by combining multiple clinicopathological
factors including the gene signature. Subsequently, the six-gene
signature was verified in an independent external HCC cohort in
International Union of Cancer Genome (ICGC). Besides,
expression status of the six-gene signature in human HCC
tissues at the mRNA and protein levels was explored using the
217
Oncomine and the Human Protein Atlas (HPA) databases,
respectively. In summary, we aim to establish a genetic marker
and prognostic model that can predict the OS of HCC patients by
bioinformaticsmethods. And thismodel could assist physicians to
develop more individualized treatment plans.
MATERIALS AND METHODS

Data Source
The mRNA expression profile of HCC patients used to identify
differentially expressed genes was derived from GEO, which was
calculated on the Illumina HiSeq RNA sequencing (RNA-seq)
platform and contained 115 HCC tissues and 52 adjacent non-
tumor tissues (ANTTs) as of August 13, 2018 (GSE76427). The
training dataset with HCC mRNA expression profiles and
clinical information used to construct multi-gene signature was
obtained from TCGA. The validation dataset with mRNA
expression profile and clinical information used to verify the
multi-gene signature was downloaded from ICGC. The above
three databases are publicly available and open-access, and the
present study followed the data access policy and publishing
guidelines of these databases. Therefore, no local ethics
committee is required to approve this study.

Identification of DEGs Between HCC and
Non-Cancerous Tissues
Firstly, we obtained raw sequencing data for HCC mRNA
including 41,718 mRNA expression profiles from the GEO
database. Then, the DEG was calculated using the limma R
package (Ritchie et al., 2015). DEGs with absolute log2 fold
change (FC) > 1 and adjusted P value <0.05 were considered to
be included for subsequent analysis.

Co-Expression Gene Network Based On
RNA-Seq Data
The weighted correlation network analysis (WGCNA) was used
to construct the gene co-expression network (Langfelder and
Horvath, 2008). Firstly, to construct a gene expression similarity
matrix, we calculate the absolute value of the Pearson's
correlation coefficient between gene i and gene j:

Sij = (1 + cor(xi + yj))=2
�� ��,

where i and j represent the amount of expression of the i and j
genes, respectively. Then, the gene expression similarity matrix
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was converted into an adjacency matrix, and the network type is
signed. b is a soft threshold, which is actually the Pearson's
correlation coefficient b of each pair of genes (Horvath et al.,
2006). This step can strengthen strong correlation and weaken
weak correlation from the index level:

aij = (1 + cor(xi + yj))=2
�� ��b :

The next step was to convert the adjacency matrix into a
topological matrix. The topological overlap measure (TOM) was
used to describe the degree of association between genes:

TOM = om≠ijaimamj + aij

� �
= min (omaim +omajm) + 1 − aij

� �
:

TOM indicates the degree of dissimilarity between gene i and
gene j. We conducted hierarchical clustering of genes using 1-
TOM as a distance, and then used the method of dynamic cut
tree for module identification. The most representative gene in
each module was called the eigenvector gene, referred to as ME,
which represents the overall level of gene expression within the
module:

ME = princomp xqij
� �

,

where i represents the gene in module q and j represents the chip
sample in module q. We use Pearson's correlation between the
expression profile of a gene in all samples and the ME expression
profile of an eigenvector gene to measure the identity of the gene
in the module. We called it module membership (MM):

MMq
i = cor(xi, MEq)

where ME represents the expression profile of the i gene.

Functional Enrichment Analysis
Enrichment analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway for
genes in the most significant modules of the WGCNA analysis
was performed using the clusterProfiler R package (Yu
et al., 2012).

Definition of the Gene-Related
Prognostic Model
Univariate, the least absolute shrinkage and selection operator
(LASSO), and multivariate Cox regression analyses were used to
study the correlation between patient OS and gene expression
levels (Tibshirani, 1997). Firstly, we used univariate Cox
regression analysis to identify genes associated with OS, and
then applied LASSO Cox regression to further narrow the range
of HCC marker genes. After that, multiple Cox regression
analysis was applied to assess whether marker genes could be
an independent prognostic factor for patient survival. A multi-
gene marker-based prognostic risk score was established based
on a combination of regression coefficients from the multivariate
Cox regression model (b) multiplied by their expression levels.
Prognostic index (Pi) = (b * expression level of SQSTM1) + (b *
expression level of AHSA1) + (b * expression level of
VNN2) + (b * expression level of SMG5) + (b * expression
level of SRXN1) + (b * expression level of GLS). Taking the
Frontiers in Genetics | www.frontiersin.org 318
median risk score as a cutoff value, 365 HCC patients from
TCGA were divided into high- and low-risk groups. Kaplan–
Meier (KM) survival curves and time-dependent receiver
operational feature (ROC) curve analyses were made to assess
the predictive capacity of the model. Decision curve analysis
(DCA) curves were used to visually assess the clinical benefit of
the model. Besides, the prognostic model was validated in an
independent cohort from ICGC.

Prognostic Model Based on Six-Gene
Signature as an Independent Predictor
for OS
We used univariate and multivariate Cox regression analysis to
assess whether the prognostic model could be independent of
other clinicopathological variables (including age, gender, tissue
registration, pathological stage, T staging, and risk score) for
HCC patients. Clinical features were selected as an independent
variable, and OS was selected as the dependent variable to
calculate the hazard ratio (HR) and the 95% confidence
interval, two-sided P value.

Validation of the Six-Gene Signature Using
Multiple Databases
We used an online microarray database called Oncomine (http://
www.oncomine.org) to analyze the mRNA expression of the
gene signature between HCC tissues and normal liver tissues
(Rhodes et al., 2004). The threshold settings were as follows: P
value: 0.01; fold change: 2; gene rank: 10%. The datasets, sample
size, fold change, t test, and P value were all derived from studies
with statistical differences. In addition, immunohistochemical
images were downloaded from publicly available human protein
maps (http://www.proteinatlas.org) for comparison of protein
expression levels related to the gene signature (Uhlen et al.,
2010). We obtained an independent HCC cohort from ICGC,
extracted the expression levels of six-gene signature, and
compared the expression levels of six-gene signature between
HCC and non-tumor tissues using Wilcoxon signed-rank test
(two-sided P values, and P < 0.05 indicates significant
statistical differences).

Establishment and Evaluation of the
Nomograms for HCC Survival Prediction
Nomogram is an effective method for predicting the prognosis of
cancer patients by simplifying the complex statistical prediction
model into a profile chart for assessing the probability of OS in
individual patients (Park, 2018). In this study, we included all
independent clinical pathological prognostic factors selected
from Cox regression analysis to construct a nomogram which
can assess the OS probability of 1, 3, and 5 years in HCC patients.
The prediction probability of the nomogram was compared with
the observed actual probability by the calibration curve to verify
the accuracy of the nomogram. Overlapping the reference line
indicates that the model is accurate. ROC analysis was used to
compare the prediction accuracy between the nomogram of
combined model and the nomogram for each single clinical
pathological prognostic factor.
January 2020 | Volume 10 | Article 1323
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RESULTS

Study Process and Summary of
Patients' Information
Figure 1 is a flowchart for the entire work of this study. The
detailed construction process of the OS prediction model for
patients with HCC was shown in this chart. Patients' information
in the GEO, TCGA, and ICGC cohorts was shown in Table 1.

Identification of DEGS with Prognosis
Value in HCC
As shown in the volcano map (Figure 2A), a comparative
analysis of mRNA expression profiles between HCC tissues
(n = 115) and ANTTs (n = 52) identified 8,306 significantly
differentially expressed mRNAs (logFC > 1 or logFC < −1,
adjusted P < 0.05). Then, all DEGs were sorted in ascending
order according to the adjusted P value, and the top 5,000 genes
were selected and subjected to WGCNA, which constructed gene
co-expression modules that assign these genes to different
modules by cluster dendrogram trees (Figure 2B). Gene
numbers of each module in WGCNA are shown in Table 2.
The correlation coefficients between each co-expressed gene
module and the clinical features of HCC are shown in Figure
2C, and the module membership vs. gene significance analysis of
the nine HCC-related modules is shown in Figure 2D. Figures
2C, D show that the red module was not only with the largest
correlation coefficient regarding to OS time (0.25) but also with
the most significant module membership relevance to gene
Frontiers in Genetics | www.frontiersin.org 419
significance (module membership vs. gene significance: cor =
0.59, P = 1.2e−27). Thus, the red module was considered as the
most important module related to the prognosis of HCC. And
genes of the red module were extracted for GO and KEGG
analysis. GO analysis that showed the most significant biological
process (BP), molecular function (MF), and cellular component
(CC) were I-kappa B kinase/NF-kappa B signaling,
mitochondrial matrix, and cofactor binding, respectively
(Figure 2E). And KEGG analysis showed the key pathways
correlated with the HCC samples: carbon metabolism, fluid
shear stress and atherosclerosis, biosynthesis of amino acids,
arginine biosynthesis, and alanine–aspartate–glutamate
metabolism (Padjust < 0.05) (Figure 2F).

Constructing the Six-Gene Signature for
Risk Scoring and Survival Prediction
A differential gene expression analysis was conducted (Figure
2G), and 61 key genes were selected for further analysis in
TCGA. The entire process of extracting stable genes from the
61 prognostic-related genes in the HCC dataset from the TCGA
to build a survival prediction model is presented in Figure 3A.
To build a clinical survival prognostic model for HCC, we used
TCGA as a training dataset and applied the LASSO Cox
regression analysis to identify stable markers from 61 survival-
related candidates. By forcing the sum of the absolute values of
regression coefficients to be less than a fixed value, some
coefficients were reduced to zero, and then we used relative
regression coefficients to identify the most stable prognostic
FIGURE 1 | Overall flowchart of this study.
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markers and apply cross-validation to avoid overfitting of the
LASSO Cox model. Parameters for building multivariate COX
model are shown in Table 3, and six filter markers—SQSTM1,
AHSA1, VNN2, SMG5, SRXN1, and GLS—are associated with
high risk (HR > 1).

Then six genes were then applied to build a polygenic
signature for prognostic prediction based on the minimum
criteria. Subsequently, the risk score of each HCC patient from
the training set was calculated using the coefficients obtained
from the LASSO algorithm. To test the relationship between six
identified genes and the prognosis of HCC patients, we
constructed a prognostic model based on six-gene signature.
Then, 365 HCC patients with follow-up information were
divided into low-risk group and high-risk group according to
the median value of risk scores among all HCC patients in the
training set. Comparing the survival status and the six-gene
Frontiers in Genetics | www.frontiersin.org 520
expressions of the two groups, we found that the high-risk group
was with poor prognosis and with higher expression of the six
identified genes (Figure 3B).

Next, we proved our findings in the training set by validating
the prognostic prediction function of the six-gene signature in an
independent dataset from ICGC. We extracted microarray data
from 243 HCC patients with follow-up information from the
validation set and then calculated the risk score for each patient
by using the same formula in the training set. Taking the median
risk score as a cutoff value, the HCC patients in the validation set
were divided into high- (n = 122) and low-risk (n = 121) groups,
and the survival status and six-gene expressions were compared
between the two groups. A similar result to the training set was
obtained: the high-risk group was with poor prognosis and with
higher six-gene expression level than the low-risk group
(Figure 3C).
TABLE 1 | Patients' information in the GEO, TCGA, and ICGC cohorts.

Clinical characteristics Total %

GSE 76427 in GEO 115 100
Survival status Survival 92 80

Death 23 20
Age ≤65 years 65 56.5

>65 years 50 43.5
Gender Female 22 19.1

Male 93 80.9
Stage I 55 47.8

II 35 30.4
III 21 18.3
IV 3 2.5

TCGA 365 100
Survival status Survival 239 65.48

Death 126 34.52
Age ≤65 years 227 62.19

>65 years 138 37.81
Gender Male 246 67.40

Female 119 32.60
Histological grade G1 55 15.07

G2 175 47.95
G3 118 32.33
G4 12 3.29

Stage I 170 46.56
II 84 23.01
III 83 22.74
IV 4 1.10

T classification T1 180 49.32
T2 91 24.93
T3 78 21.37
T4 13 3.56

ICGC 232 100
Survival status Survival 189 81.47

Death 43 18.53
Age ≤65 years 90 38.79

>65 years 142 61.21
Gender Male 171 73.71

Female 61 26.29
Stage I 36 15.52

II 106 45.69
III 71 30.60
IV 19 8.19

Prior malignancy No 202 87.07
yes 30 12.93
January 2020 | Volume 10 | Article
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Kaplan–Meier and Time-Dependent ROC
Curves of Six-Gene Signature
The Kaplan–Meier survival curve was applied to present a
comparison of the OS of the two groups divided by the
median risk score. Besides, the area under the ROC curve
(AUC) of the time-dependent ROC curve was used to assess
Frontiers in Genetics | www.frontiersin.org 621
the prognostic ability of the six-gene signature, and a higher
AUC means the better the model performance. We found that
there was a significant difference on OS between the high- and
low- risk groups in the TCGA dataset (P < 0.0001) (Figure 4A).
The AUCs of the six-gene signature corresponding to 0.5, 1, 2, 3,
and 5 years of survival were 0.759, 0.761, 0.708, 0.681, and 0.692,
FIGURE 2 | ldentification of prognostic genes in hepatocellular carcinoma patients. (A) Volcano plot showing differentially expressed genes (DEGs) in hepatocellular
carcinoma samples. (B) Clustering dendrogram of genome-wide genes in hepatocellular carcinoma samples. (C) Correlation between modules and traits. Absolute
values of correlation coefficients between hepatocellular carcinoma status and modules greater than 0.15 were considered as hepatocellular carcinoma-related
modules. (D) Module membership in nine hepatocellular carcinoma-related modules. The red module was the most significant module. (E, F) GO and KEGG analysis
revealed the most significant biological process (BP), molecular function (MF), cellular component (CC), and pathways correlated with the high-risk group genes in the
red module. (G) Volcano plot revealed DEGs in the red module.
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respectively, suggesting that the prediction model had high
sensitivity and specificity (Figure 4C). As shown in the other
Kaplan–Meier curve (Figure 4B), the OS was significantly
increased in the low-risk group compared to the high-risk
group in the independent validation dataset from the ICGC
Frontiers in Genetics | www.frontiersin.org 722
dataset (P < 0.001). This result was consistent with our previous
findings in the training cohort in TCGA dataset. As shown in
Figure 4D, the AUCs of the six-gene signature model
corresponding to 0.5, 1, 2, 3, and 5 years of survival were
0.637, 0.681, 0.690, 0.700, and 0.684, respectively, further
confirming that the six-gene signature had high sensitivity and
specificity and can be used as a reliable predictor of OS in
HCC patients.

Prognostic Risk Scores were an
Independent Prognostic Factor from the
Other Clinicopathological Features
As shown in Figure 5, the risk score can be used as an
independent factor in predicting OS. Univariate and
multivariate Cox regression analyses were applied to assess
independent predictive values for the six-gene signature in
HCC patients. In the TCGA dataset, univariate Cox regression
suggested that risk scores, pathological staging, and T staging
FIGURE 3 | Signature-based risk score is a promising marker in the training and validation cohorts. (A) The process of building the signature containing six genes
most correlated with overall survival (OS) in the training set. The hazard ratios (HRs), 95% confidence intervals (CIs) calculated by univariate Cox regression, and the
coefficients calculated by multivariate Cox regression using LASSO are shown. (B, C) Risk score distribution, survival overview, and heatmap for patients in the
TCGA (B) and ICGC (C) datasets assigned to high- and low-risk groups based on the risk score.
TABLE 2 | Gene numbers of each module in WGCNA.

Module Number

Black 216
Blue 792
Brown 449
Green 379
Gray 1,345

Magenta 63
Pink 146
Red 280

Turquoise 907
Yellow 423
January 2020 | Volume 10 | Article 1323

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Li et al. Six-Gene Signature Predicts OS in HCC
had a prognostic value, while age, gender, and histological
grades were not associated with survival (Figure 5A). Then,
multivariate Cox regression analysis suggested that only risk
score was an independent prognostic factor associated with OS
(Figure 5C). Next, we again used univariate and multivariate
Cox regression analysis to validate whether the risk score can
be used as an independent prognostic indicator in an
independent HCC cohort from ICGC. Univariate Cox analysis
Frontiers in Genetics | www.frontiersin.org 823
suggested that risk score and pathological stage were associated
with OS (P < 0.05; Figure 5B). Multivariate Cox regression
analysis showed that risk scores, prior malignancy, and
pathological stage were associated with OS (P < 0.05;
Figure 5D). These results confirmed that risk scores based
on six-gene signature can be used as an independent predictor
of prognosis in HCC patients. Shown in the heat map
are the expression levels of the six-gene signature in low-risk
FIGURE 4 | Expression and survival analysis in training and validation datasets. (A, B) Kaplan–Meier overall survival (OS) curves for patients in the TCGA (A) and
ICGC (B) datasets assigned to high- and low-risk groups based on the risk score. Patients with a high risk score exhibited poorer OS in the training and validation
cohorts. (C, D) ROC curves showed the predictive efficiency of the risk signature for patients in the TCGA (C) and ICGC (D) datasets on the survival rate.
TABLE 3 | Parameters for building multivariate COX model.

Gene Co-ef HR HR.95%L HR.95%H P value

SQSTM1 0.001803 1.001805 1.000376 1.003236 0.013287
AHSA1 0.028803 1.029222 1.014274 1.044391 0.000114
VNN2 0.013683 1.013777 1.002275 1.025411 0.018759
SMG5 0.012785 1.012867 0.999704 1.026203 0.055423
SRXN1 0.122996 1.13088 1.022251 1.251051 0.016983
GLS 0.041246 1.042108 1.001332 1.084545 0.042835
January 2020 | Volume 10 | A
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and high-risk HCC patients and the distribution of
clinicopathological features between the low-risk and high-risk
groups. It is suggested that there were significant differences in
six-gene signature expression and OS between the high-risk
group and the low-risk group both in the TCGA (Figure 5E)
and ICGC (Figure 5F) datasets.

Subgroup Analysis of OS Based on
Multiple Classification Methods
As shown in Figure 6, the survival analysis was conducted after
risk score grouping based on six-gene signature expressions. We
explored the expression profiles of six genes in different TNM
stages, histological grades, viral hepatitis infection, BMI, and age
in TCGA. Risk score based on six-gene signature was proven to
be a potential marker for predicting OS in different subgroups,
including stages I–II of TNM (P = 0.012), stages III–IV (P <
0.0001), G1 and G2 (P = 0.009), G3 and G4 (P < 0.0001), viral
infection (P < 0.0001), BMI < 14 (P = 0.005), BMI(14–25) (P =
Frontiers in Genetics | www.frontiersin.org 924
0.003), BMI > 25 (P = 0.047), age < 65 (P = 0.003), and age > 65
(P < 0.001).

Validation of the Six mRNA Expressions
In the TCGA HCC cohort, all six genes were highly expressed in
HCC compared to that in adjacent non-tumor liver tissues. Next,
we aimed to further confirm the expression patterns of these six
genes in HCC tissues in the Oncomine database. Consistent with
our results in TCGA, the average expression levels of SQSTM1,
AHSA1, VNN2, SMG5, SRXN1, and GLS in HCC tissues were
significantly higher than those in normal liver tissues (Figures
7A–F). To determine the clinical relevance of the six genes'
expression, we analyzed the expression of the proteins encoded
by these six genes using clinical specimens from the HPA.
Relative to its expression level in normal liver tissue, SQSTM1
was strongly positive, while AHSA1 and GLS were moderately
positive in HCC tissues (Figures 7G–L). However, VNN2,
SMG5, and SRXN1 were not found on the website.
FIGURE 5 | Cox regression analyses of the association between clinicopathological factors and OS. (A–F) Univariate/multivariate Cox regression analyses and
heatmaps of the association between clinicopathological factors (including the risk score) and overall survival (OS) of patients in the TCGA (A, C, E) and ICGC
(B, D, F) datasets.
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Building a Nomogram to Predict OS in
HCC Patients
To establish a clinically applicable method for predicting the
survival probability of patients with HCC, we developed a
nomogram to predict the probability of the 1-, 3-, and 5-year
OS in the TCGA cohort. The predictors of the nomogram
included four independent prognostic factors (age, gender,
pathologic stage, and six-gene signature). Subsequently, we
constructed a nomogram that integrates clinical pathology
features with six-gene signature to predict survival probabilities
in HCC patients (Figure 8A). By calibration curve analysis, we
found that the 1-, 3-, and 5-year survival probabilities predicted
by the nomogram were closely related to the observed survival
probability, which confirmed the reliability of the nomogram
(Figure 8B).

Assessing the Accuracy of the
Nomograms by ROC Curves
Time-dependent ROC curve analysis was used to evaluate the
prediction accuracy of the integrated nomogram. The solid red
line represents the integrated nomogram. In Figures 9A–C, the
Frontiers in Genetics | www.frontiersin.org 1025
AUC of the integrated nomogram is the largest. Besides, all of
AUCs of the integrated nomogram in Figure 9 were above 0.77,
suggesting that nomograms constructed by integrated factors are
the best way to predict survival in HCC patients both for short-
term and long-term survival compared to models constructed by
a single prognostic factor. However, we also found that
integrated predictions of the 3- and 5-year AUC of the
integrated model are lower than that of 1 year, suggesting that
the short-term prediction ability of the nomogram may be
stronger than the long-term prediction ability. Besides, as
shown in Figures 9D–F, the net benefits as calculated are
plotted against the threshold probabilities of patients having 1-,
3-, and 5-year survival, and the results suggest that the net
benefits of the integrated model were better than other models.
DISCUSSION

Due to the complex molecular mechanisms, HCC remains one of
the most life-threatening malignancies in the world. Therefore,
prognostic biomarkers are urgently needed to predict the
FIGURE 6 | The six-gene-based risk score is a promising marker for overall survival (OS) in subgroups. Subgroup analysis of OS based on pathological staging
(A, B), grading (C, D), viral hepatitis (E), BMI (F–H), and age (I, J) of hepatocellular carcinoma (HCC) patients.
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outcome and to outline an individualized treatment plan for
HCC patients. With the development of gene sequencing
technology, some potential gene markers with predictive value
for HCC patients have been identified. However, the number of
such markers is still limited. In order to improve the prognosis of
HCC, it is urgent to screen out more biomarkers with higher
prediction accuracy in predicting prognosis.

In the present study, we identified potential gene biomarkers
by analyzing the gene expression profiles of a HCC cohort in
GEO. The DEGs between HCC samples and ANTTs were
Frontiers in Genetics | www.frontiersin.org 1126
identified. Then, univariate, LASSO, and multivariate Cox
analysis were used to further narrow the marker range and
establish a risk model for predicting HCC prognosis. Our
study found that high expression levels of six genes, including
SQSTM1, AHSA1, VNN2, SMG5, SRXN1, and GLS, were
associated with poor prognosis in HCC patients. We evaluated
the model performance using the ROC curve of the six-gene
signature. The results showed that the AUCs of the ROC curves
for 0.5-, 1-, 2-, 3-, and 5-year survival prediction models were
0.637, 0.681, 0.690, 0.700, and 0.684, respectively, suggesting the
FIGURE 7 | Differences in protein expression induced by six genes were verified in human tissue samples. (A–F) The mRNA expression levels of the six-gene
signature in human cancers (conducted in Oncomine database). (G–L) Human Protein Atlas immunohistochemistry using anti-SQSTM1, anti-AHSA1, and anti-GLS
antibodies. Normal liver (G–I) vs. tumor tissues (J–L).
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six-gene signature was with good survival prediction
performance. Then, we not only demonstrated that the six-
gene signature was an independent prognostic factor for HCC
patients superior to traditional clinicopathological factors but
also verified their survival prediction ability in an external HCC
cohort in ICGC. Thus, we believe that dividing HCC patients
into high-risk group and low-risk group by the six-gene-based
risk scoring model can be used for early prevention or detection
of HCC recurrence in high-risk population.

Nomograms are a tool commonly used for tumor disease
assessment to provide probabilistic predictions for individual
patients. In our study, we constructed a nomogram that can
predict the OS in HCC patients. The calibration curve indicates
that the survival rate predicted by the nomogram is basically
consistent with the actual observed survival rate in the dataset,
indicating that the nomogram had good predictive performance.
At the same time, we also proved that the use of the nomogram
constructed by the combined model has better predictive
performance than the nomogram constructed by a single HCC
risk factor.

There were six genes identified for constructing the predictive
model in this study. SQSTM1 is primarily involved in TNF
signaling and the innate immune system. AHSA1 is primarily
involved in ATPase activator activity. VNN2 is primarily
Frontiers in Genetics | www.frontiersin.org 1227
involved in hydrolase activity. SMG5 is primarily involved in
protein phosphatase 2A binding. And SRXN1 and GLS are
involved in oxidoreductase activity and glutaminase activity,
respectively. Combined with the results of GO and KEGG
analysis, these perceptions suggested that abnormalities in
energy metabolism and amino acid metabolism may play an
important role in HCC.

HCC is a heterogeneous tumor that occurs through multiple
pathway activations and molecular changes. Therefore,
molecular heterogeneity affects the efficacy of prognostic
evaluation by a single molecular marker. At the same time,
some studies found that low survival rates of HCC were
associated with strong cell proliferation and anti-apoptotic
gene expression. These processes often involved multiple genes.
And compared with single gene markers, multi-gene markers
were always with more accurate prediction capacity for HCC
(Lee et al., 2004). Bioinformatics methods were usually used to
establish multi-gene signature for predicting the prognosis of
HCC (Ye et al., 2003), and multi-gene signature is usually
established by strategies including training, testing, and
independent cross-validation (Roessler et al., 2010). Prediction
capacity of a gene signature was significantly improved by the
above strategies. It was reported that multi-gene signatures had a
good predictive effect on venous metastasis (Budhu et al., 2006),
FIGURE 8 | Construction of a nomogram for survival prediction. (A) Nomogram combining signature with clinicopathological features. (B) Calibration plot showing
that nomogram-predicted survival probabilities corresponded closely to the actual observed proportions.
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progression (Roessler et al., 2012), recurrence (Kurokawa et al.,
2004; Ho et al., 2006), and survival (Hoshida et al., 2013; Lim
et al., 2013; Villa et al., 2016) for HCC. Initial multi-gene
signatures often involved a large number of genes, and it
affected the clinical application of the signature. It is believed
that more user-friendly risk score models with a limited number
of genes should be established to predict the prognosis of HCC
patients (Kim et al., 2012). Recent study found a five-gene-based
signature for HCC including HN1, RAN, AMP3, KRT19, and
TAF9 (Nault et al., 2013). Now, it is believed that a combination
model based on clinical, pathological, and gene signature will be
more practical (Villanueva et al., 2011). At the same time,
microRNAs (miRNAs) such as miR-517a (Toffanin et al.,
2011), miR-125b (Li et al., 2008), and miR-26 (Ji et al., 2009)
have been found to be associated with prognosis of HCC. There
are also multiple gene markers based on multiple miRNAs and
lncRNA (Budhu et al., 2008; Jiang et al., 2008).

In recent years, the identification of prognostic gene signature
for HCC has been noted in many studies. For example, an eight-
gene signature with a 5-year survival prediction AUC of 0.770
containing eight protein-coding genes (DCAF13, FAM163A,
GPR18, LRP10, PVRIG, S100A9, SGCB, and TNNI3K) was
Frontiers in Genetics | www.frontiersin.org 1328
established (Qiao et al., 2019). Subsequently, a six-gene
signature (CSE1L, CSTB, MTHFR, DAGLA, MMP10, and
GYS2) with a 5-year survival prediction AUC of 0.718 was
established (Liu et al., 2019). In this study, we established a
prognostic model with higher 5-year survival prediction AUC
(0.772) based on a novel six-gene signature and further improved
the predictive power of the HCC survival prediction model. To
our knowledge, survival prediction models based on this six-gene
signature have not been reported yet. Compared with traditional
pathological staging and tissue grading, multi-gene signature of
HCC has the advantages of higher prediction accuracy, more
individualized test results, and reasonable sequencing costs.
Therefore, six-gene signature has good prospects in clinical
practice. In our study, we constructed and verified this six-
gene signature by three independent datasets. More reasonable
use of the biometric methods and mutual verification of multiple
independent datasets make our study have more reliable results.

However, there were some limitations in this study. For
example, the racial factors associated with sequencing samples
and some potential prognostic factors may be not included in the
model limited the predictive power of this model. In the future,
we plan to use more rational bioinformatics strategies to improve
FIGURE 9 | The time-dependent receiver operating characteristic (ROC) and decision curve analysis (DCA) curves of the nomograms. Time-dependent ROC curve
analysis evaluates the accuracy of the nomograms (A–C). The purple, red, yellow, green, or blue solid line represents the nomogram. The DCA curves can intuitively
evaluate the clinical benefit of the nomograms and the scope of application of the nomograms to obtain clinical benefits (D–F). The net benefits (Y-axis) as calculated
are plotted against the threshold probabilities of patients having 1, 3-, and 5-year survival on the X-axis. The gray dotted line represents the assumption that all
patients have 1-, 3-, and 5-year survival. The black solid line represents the assumption that no patients have 1-, 3-, or 5-year survival. The red, blue, yellow, green,
or purple solid line represents the nomograms.
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the model. In summary, our results suggest that the six-gene-
based prognosis model is a reliable tool for predicting OS in
patients with HCC, and the nomogram containing six-gene
signature can help to develop personalized HCC treatments in
clinical practice. The challenge in the future is how to apply
various genes signature reasonably in a particular stage of HCC.
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High-grade serous ovarian cancer is one of the deadliest gynecological malignancies
and remains a clinical challenge. There is a critical need to effectively define patient
stratification in a clinical setting. In this study, we address this question and determine
the optimal number of molecular subgroups for ovarian cancer patients. By studying
several independent patient cohorts, we observed that classifying high-grade serous
ovarian tumors into four molecular subgroups using a transcriptomic-based approach
did not reproducibly predict patient survival. In contrast, classifying these tumors
into only two molecular subgroups, fibrosis and non-fibrosis, could reliably inform
on patient survival. In addition, we found complementarity between transcriptomic
data and the genomic signature for homologous recombination deficiency (HRD) that
helped in defining prognosis of ovarian cancer patients. We also established that the
transcriptomic and genomic signatures underlined independent biological processes
and defined four different risk populations. Thus, combining genomic and transcriptomic
information appears as the most appropriate stratification method to reliably subgroup
high-grade serous ovarian cancer patients. This method can easily be transferred into
the clinical setting.

Keywords: HGSOC, fibrosis, mesenchymal, BRCA1/2, homologous recombination deficiency, prognosis

INTRODUCTION

Epithelial ovarian cancer is the fifth leading cause of cancer-related death among women, with
only 40% of patients achieving an average 5-year survival (Berns and Bowtell, 2012). Ovarian
cancers are predominantly classified by histological subtype (serous, endometrioid, mucinous,
clear cell or squamous), grade (low or high) and stage (early or advanced). Approximately 75%
of ovarian cancers are high-grade serous ovarian cancers. Standard treatment consists of surgical
cytoreduction combined with Taxanes- and platinum salts-based chemotherapy. Recently, targeted
therapies have also been included in treatment plans, such as anti-angiogenic drugs or poly-
ADP-ribose polymerase (PARP) inhibitors indicated for certain patients with BRCA1/2 mutations
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(Fong et al., 2009, 2010; Tutt et al., 2010; Gelmon et al., 2011;
Kaye et al., 2012; Ledermann et al., 2012; Liu et al., 2014; Oza
et al., 2015; Konecny and Kristeleit, 2016; McLachlan et al.,
2016; Miller and Ledermann, 2016). Novel targeted therapies
are being developed but their use remains limited, in part due
to their cost (Raja et al., 2012; Kmietowicz, 2015; Monk et al.,
2016; The Lancet, 2017). To increase the effectiveness of targeted
therapies, there is a need to develop accurate methods to define
novel patient stratifications that can be easily translated to the
clinical environment.

Ovarian cancers have a high frequency of homologous
recombination deficiency (HRD) due to germline or somatic
mutations in the BRCA1 or BRCA2 genes, methylation of
the BRCA1 or RAD51C promoter regions or other genetic
alterations (Rigakos and Razis, 2012; Muggia and Safra, 2014).
Patients carrying BRCA1/2 mutations have increased sensitivity
to platinum salts and longer survival than patients with no
BRCA1/2 mutations (Fong et al., 2009, 2010; Audeh et al.,
2010; Goundiam et al., 2015) and HRD sensitizes cells to PARP
inhibitors (Pujade-Lauraine et al., 2017). To assess HRD in
breast and ovarian cancer, the large-scale state transition (LST)
genomic signature can be used (Popova et al., 2012; Goundiam
et al., 2015). In addition to genomic characterization, previous
studies have identified distinct molecular subgroups of high-
grade serous ovarian cancers based on transcriptomic profiling
(Tothill et al., 2008; Cancer Genome and Atlas Research, 2011;
Mateescu et al., 2011; Sabatier et al., 2011; Bentink et al., 2012;
Verhaak et al., 2013; Konecny et al., 2014). Importantly, all
currently published studies observed one molecular subgroup,
referred to as Stromal, Fibrotic, Mesenchymal or Angiogenic,
that is invariably associated with poor patient survival (Tothill
et al., 2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013; Konecny et al., 2014). The first mechanism that
explains the Fibrotic/Mesenchymal subgroup, at least in part,
is regulation by the miR-200 family of microRNAs (Mateescu
et al., 2011; Batista et al., 2013, 2016). Genes inversely correlated
with expression of the miR-200 family constitute the fibrosis
signature that classifies ovarian cancers with mesenchymal
features (Mateescu et al., 2011; Batista et al., 2013, 2016).
Conversely, genes positively-correlated with miR-200 expression
constitute an oxidative stress signature that classifies the oxidative
stress ovarian cancer subgroup. This stress subgroup is associated
with a better prognosis and increased cancer cell chemosensitivity
(Leskela et al., 2011; Mateescu et al., 2011; Batista et al.,
2013, 2016; Brozovic et al., 2015). Notably, the accumulation
of miR-200 family members in ovarian tumors could be
used for early detection of the pathology, but determining
patient outcome through miR-200 expression remains highly
controversial, and a consensus is far from being achieved (Batista
et al., 2013; Muralidhar and Barbolina, 2015; Shi and Zhang,
2016). The ability to provide information on patient survival
remains a priority in the field but the number of molecular
subgroups required to define patient survival effectively is
unknown, impeding their use in clinical practice. In this study,
we address this question and define the optimal number of
ovarian cancer molecular subgroups for prognostic stratification
of patients.

MATERIALS AND METHODS

Clinical and Transcriptomic Data of
Ovarian Cancer Patients
Three cohorts of patients with high-grade serous ovarian
cancer were included in this study: Curie, AOCS and TCGA.
Curie cohort: Ovarian tumors were obtained from a cohort of
107 patients treated at the Institut Curie between 1989 and
2005. Clinical characteristics of the cohort have already been
described in Mateescu et al. (2011). For each patient, a surgical
specimen was taken, prior to any chemotherapeutic treatment,
for pathological analysis and tumor tissue cryopreservation.
The median patient age was 58 years old (with a range of
31–87 years). Ovarian carcinomas were classified according to
the World Health Organization histological classification of
gynecological tumors. The Curie transcriptomic dataset is from
Affymetrix Human Genome U133 Plus 2.0 arrays and is freely
available in the Gene Expression Omnibus1 under the accession
number, GSE26193. AOCS cohort: Clinical characteristics of
the 285 patients included in the AOCS cohort have been
previously described in Tothill et al. (2008), and transcriptomic
data, generated using Affymetrix Human Genome U133 Plus2.0
arrays, are freely available under the accession number, GSE9899.
TCGA cohort: Clinical characteristics of the 557 patients
included in the TCGA cohort, as well as transcriptomic data
generated using Affymetrix Human Genome U133A arrays, have
been previously described in Cancer Genome and Atlas Research
(2011) and can be downloaded from the NIH Genomic Data
Commons (GDC) data portal2. Most patients treated at Institut
Curie are from Caucasian origin and 91% of the patients, for
which the ethnicity variable is known in the TCGA cohort, are
also from Caucasian origin.

Description of Transcriptomic Signatures
Transcriptomic signatures defining the molecular classification
of ovarian cancers were retrieved from four original publications.
First, Tothill et al. (2008) identified 478 Affymetrix HG
U133 Plus 2.0 probe sets up-regulated in the C1 signature
and 2,230 probe sets up-regulated in the C2–C6 signature.
Second, Mateescu et al. (2011) identified 22 genes up-
regulated in the Stress/non-Fibrosis signature and 16 genes
up-regulated in the Fibrosis signature. Third, Bentink et al.
(2012) identified 100 Illumina probes up-regulated in the
M1 signature and 300 Illumina probes up-regulated in the
M2–M4 signature. Lastly, Verhaak et al. (2013) identified 37
genes up-regulated in the Mesenchymal signature and 63 genes
up-regulated in the Differentiated/Immunoreactive/Proliferative
signature. The different transcriptomic signatures coming
from these distinct studies are not overlapping in terms
of genes (as shown Supplementary Figures S1B,D),
enabling us to compare these different signatures as
distinct entities.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
2https://portal.gdc.cancer.gov
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TABLE 1 | Comparative description of clinical parameters in the AOCS, Curie, and TCGA cohorts.

AOCS Curie TCGA

Total number of patients 285 107 557

Age (year) Median 59 58 59

Range 22–80 31–87 26–89

Histotype

Serous 264 (92.6%) 82 (76.6%) 557 (100%)

Endometrioid 20 (7.02%) 8 (7.5%)

Adenocarcinoma 1 (0.4%)

Mucinous 8 (7.5%)

Other 9 (8.4%)

Figo Substage

I 24 (8.4%) 21 (19.6%)

II 18 (6.3%) 10 (9.35%) 24 (4.3%)

III 217 (76.1%) 59 (55.14%) 381 (68.4%)

IV 22 (7.7%) 17 (15.9%) 79 (14.2%)

Not applicable 4 (1.4%) 73 (13.1%)

Grade

1 19 (6.7%) 7 (6.5%)

2 97 (34%) 34 (31.5%) 57 (10.2%)

3 164 (57.5%) 66 (62%) 420 (75.4%)

Not applicable 5 (1.8%) 80 (14.4%)

Surgery

Full 84 (29.5%) 38 (35.5%) 90 (16.2%)

Partial 164 (57.5%) 69 (64.5%) 342 (61.4%)

Not applicable 37 (13%) 125 (22.4%)

Clinical response RC – complete response 51 (47.7%) 276 (49.6%)

RP – Partial response 22 (20.6%) 57 (10.2%)

S – Stability 7 (6.5%) 25 (4.5%)

P – Progression 11 (10.3%) 37 (6.6%)

Not applicable 285 (100%) 16 (15%) 162 (29.1%)

Signature D-I-M-P

Differentiated 30 (28%) 148 (26.6%)

Immunoreactive 26 (24.3%) 129 (23.2%)

Mesenchymal 31 (29%) 118 (21.2%)

Proliferative 20 (18.7%) 138 (24.8%)

Not applicable 285 (100%) 24 (4.3%)

Mateescu’s Signature

Stress 150 (52.6%) 51 (47.7%) 326 (58.5%)

Fibrosis 135 (47.4%) 56 (52.3%) 220 (39.5%)

Not applicable 11 (2%)

Tothill’s Signature

C1 83 (29.1%) 107 (19.2%)

C2–C6 168 (58.9%) 443 (79.5%)

Not applicable 34 (11.9%) 7 (1.3%)

Bentink’s Signature

M1 128 (23%)

M2–M4 422 (75.8%)

Not applicable 285 (100%) 7 (1.3%)

Lst Signature

Low LST 238 (42.7%)

High LST 303 (54.4%)

Not applicable 285 (100%) 16 (2.9%)

AOCS, Curie, and TCGA cohorts have previously been described in Tothill et al. (2008), Cancer Genome and Atlas Research (2011), and Mateescu et al. (2011), respectively.
For the Curie cohort, tumor samples were obtained from a cohort of ovarian carcinoma patients treated at the Institut Curie from 1989 to 2012. For each patient, a surgical
specimen was taken, prior to any chemotherapeutic treatment, for pathological analysis and tumor tissue cryopreservation. The median patient age was 58 years old
(with a range of 31–87 years). Ovarian carcinomas were classified according to the World Health Organization histological classification of gynecological tumors.
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Enrichment of Biological Processes in
Transcriptomic Signatures
Gene ontology (GO) enrichment analysis was performed using
the DAVID bioinformatics resources (Version 6.7)3. For each
signature tested, the 10 most significant biological processes
(based on p-value) were selected. Reduce and Visualize Gene
Ontology (REViGO) software (Supek et al., 2011; accessed
January 2017)4, with a parameter similarity of 0.5, was used to
summarize information by removing redundant GO terms.

Classification of High-Grade Serous
Ovarian Cancer From the TCGA Cohort
According to Different Transcriptomic
Signatures
High-grade serous ovarian cancers from the TCGA (Cancer
Genome and Atlas Research, 2011) were studied (see Table 1
for cohort description). Genes that comprise the C1–C6 (Tothill
et al., 2008), Stress/Fibrosis (Mateescu et al., 2011), and M1–
M4 (Bentink et al., 2012) signatures were applied to the TCGA
transcriptomic data. This allowed us to classify high-grade serous
ovarian cancers from the TCGA cohort according to Tothill’s,
Mateescu’s, and Bentink’s signatures, and compare them to the
Differentiated/Immunoreactive/Mesenchymal/Proliferative (D-
I-M-P) classification, initially generated from the TCGA dataset
(Verhaak et al., 2013). Briefly, we first performed the hierarchical
clustering shown in Figure 1A based on DIMP signature
using Euclidean distance and Ward’s agglomeration method.
To compare this DIMP classification with the others, we next
performed similar hierarchical clustering by applying each of
the other signatures (Tothill et al., 2008; Mateescu et al., 2011;
Bentink et al., 2012) on the TCGA transcriptomic dataset by using
same parameters (Euclidean distance and Ward’s agglomeration
method). Only genes specific of each signatures were kept for the
clustering. For the four signatures, each resulting dendrogram
tree was next cut into two subgroups for classifying patients into
two subgroups according to each signature (Stress/Fibrosis for
Mateescu classification, C1/C2–C6 for Tothill classification and
M1/M2–M4 for Bentink classification). By this way, for each of
the four classifications studied, we have been able to determine
to which subgroup each patient belongs, as show Figures 1A,B.
The distribution of ovarian cancers from TCGA across the four
signatures can be found in Table 1. Patient classification was
thus independent of patient survival and strictly based on tumor
molecular signature. We also aimed at comparing the association
of patient clinical features with two distinct classifications, i.e.,
classification in two subgroups based on Mateescu’s signature
and classification in four subgroups based on Verhaac’s signature
using Fisher’s exact test (as shown in Table 2). No correction was
applied to p-values.

Expression of miR-200 Family Members
The predictive value of the miR-200 family was evaluated
because this miRNA family was shown to be associated

3https://david.ncifcrf.gov
4http://revigo.irb.hr

with the stress (non-Fibrosis)/Fibrosis classification (Mateescu
et al., 2011; Batista et al., 2013, 2016). Indeed, genes that
are inversely correlated with the miR-200 expression compose
the “Fibrosis” signature and classify ovarian cancers with
mesenchymal features. Conversely, genes positively-correlated
with miR-200 expression constitute the non-Fibrosis (oxidative
stress) signature and classify the “non-Fibrosis” ovarian cancer
subgroup. Expression of the miR-200 family members (miR-141,
miR-200a, miR-200b, miR-200c, and miR-429) was determined
using the level 3 expression data from the TCGA data portal.
Groups of low or high microRNA expression were defined using
their median as a threshold to perform survival analysis.

Large-Scale State Transition (LST)
Genomic Signature of HRD
Cytoscan HD SNP-array (Affymetrix) data were processed using
the Genome Alteration Print (GAP) methodology to obtain
absolute copy number profiles (Popova et al., 2009). DNA index
was calculated as the averaged copy number. Based on the DNA
index, tumor ploidy was set as near-diploid (DNA index < 1.3)
or near-tetraploid (DNA index ≥ 1.3). Detection of HRD was
determined by the number of LST, as previously described
(Popova et al., 2012). Briefly, LST was defined as a chromosomal
breakpoint (change in copy number or major allele counts)
between adjacent regions of at least 10 Mb. The number of
LST were then calculated after smoothing and filtering out copy
number variant regions < 3 Mb. Tumors were segregated into
near-diploid or near-tetraploid subgroups. Based on two ploidy-
specific cut-offs (15 and 20 LST per genome in near-diploid and
near-tetraploid tumors, respectively) tumors were classified as
LST high (LSTHi, equal or above the cut-off) or LST low (LSTLo,
below the cut-off). LSTHi represents the HRD genomic pattern
and LSTLo corresponds to the non-HRD profile.

Statistical Analysis
All statistical analyses were performed in the R environment
(Versions 3.3.2, 3.4.0, and 3.6.1)5. Fisher’s exact test was
used to determine any association between classes of ovarian
cancers and clinical parameters. Overall survival (OS) and
disease-free survival (DFS) were investigated using the Cox
proportional hazards model and Kaplan-Meier curves through
the R packages, survival and survminer. To identify differences
between survival curves, p-values were assessed by the log-
rank test. P-values ≤ 0.05 were considered to be statistically
significant. To take into account multiple testing, p-values
were adjusted using the Benjamini-Hochberg procedure using
pairwise_survdiff function from R package Survminer.

Code Availability
R scripts used to generate panels of the Figures, Supplementary
Figures and Tables are provided within the data source file of the
paper, available with the doi: 10.6084/m9.figshare.11663232.

5https://cran.r-project.org
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FIGURE 1 | Overlap between transcriptomic signatures used for classification of high-grade serous ovarian cancers. (A) A heatmap from hierarchical clustering
applied on the TCGA cohort. Rows represent genes and columns represent patients. Clustering is based on the 100 genes of the D-I-M-P signature (Verhaak et al.,
2013) using Pearson distance and Ward’s agglomeration method. The color saturation shows the magnitude of the deviation from the mean for each gene, with red
and blue indicating expression values above or below the mean, respectively. Colored bars below the heatmap represent tumor classifications obtained from the four

(Continued)
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FIGURE 1 | Continued
transcriptomic signatures (Tothill et al., 2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak et al., 2013), as indicated. The red bars correspond to the
Mesenchymal, C1, Angiogenic or Fibrosis subgroup, according to the classification considered. The blue bars correspond to C2–C6, non-Angiogenic and Stress
subgroups. For the D-I-M-P signature, blue bars correspond to Immunoreactive, black correspond to Proliferative and purple bars correspond to Differentiated
subgroups. (B, Left) Principal Component Analysis (PCA) applied on transcriptomic data from the TCGA cohort, using the 100 genes composing the D-I-M-P
signature (Verhaak et al., 2013). The color code represents the four D-I-M-P molecular subgroups: Mesenchymal (red, N = 118), Differentiated (purple, N = 148),
Proliferative (black, N = 138) and Immunoreactive (blue, N = 129). (Middle and Right) Further PCA with subgroups highlighted using Fibrosis (red, N = 220) or Stress
(blue, N = 326) (Mateescu et al., 2011); C1 (red, N = 107) or C2–C6 (blue, N = 443) (Tothill et al., 2008); Angiogenic (M1, red, N = 128) or non-Angiogenic (M2–M4,
blue, N = 422) (Bentink et al., 2012) signatures, as indicated. (C) Barplots showing the number of patients according to each combination of classes among the four
classifications (Verhaak/Mateescu/Tothill/Bentink).

RESULTS

The Fibrosis Subgroup of High-Grade
Serous Ovarian Cancers Exhibits
Conserved Functional Pathways Across
Studies
Although the genes defining ovarian cancer molecular
subgroups were different across studies (Tothill et al., 2008;

Cancer Genome and Atlas Research, 2011; Mateescu et al.,
2011; Sabatier et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013; Konecny et al., 2014), we observed that some of
the identified functions were consistent across the fibrosis
subgroups (Supplementary Figures S1A,B). Following a
GO enrichment analysis on previously published ovarian
cancer transcriptomic signatures (Tothill et al., 2008; Cancer
Genome and Atlas Research, 2011; Mateescu et al., 2011;
Bentink et al., 2012; Verhaak et al., 2013), we found consistent

TABLE 2 | The association between transcriptomic signatures and clinical parameters.

Fibrosis/non-Fibrosis classification

Non-fibrosis Fibrosis p-value

Grade p = 0.67

G2 32 (11.6%) 25 (12.8%)

G3 245 (88.5%) 170 (87.2%)

Stage p = 0.01

II 20 (7.1%) 4 (2%)

III–IV 260 (92.9%) 195 (98%)

Debulking p = 0.05

Full 60 (24%) 28 (15.8%)

Partial 190 (76%) 149 (84.2%)

Platinum resistance p = 0.38

Sensitive 153 (75.7%) 99 (71.3%)

Resistant 49 (24.3%) 40 (28.8%)

Primary therapy outcome p = 0.02

Complete response 172 (74.5%) 101 (63.1%)

Partial response 59 (25.6%) 59 (37%)

BRCA1/2 mutation p = 0.11

No 269 (84.6%) 171 (78.8%)

Yes 49 (15.4%) 46 (21.2%)

BRCA1 methylation p = 1

No 278 (87.4%) 190 (87.6%)

Yes 40 (12.6%) 27 (12.4%)

RAD51C methylation p = 0.39

No 312 (98.1%) 210 (96.8%)

Yes 6 (1.9%) 7 (3.2%)

LST signature (HRD) p = 0.29

Low 147 (46.2%) 89 (41.2%)

High 171 (53.8%) 127 (58.8%)

Ploidy p = 0.20

2 104 (32.7%) 83 (38.4%)

≥ 4 214(67.3%) 133 (61.6%)

(Continued)
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TABLE 2 | Continued

D-I-M-P classification

D I M P p-value

Grade p = 0.28

G2 13 (10.1%) 9 (8.8%) 17 (17%) 18 (13.4%)

G3 116 (89.9%) 93 (91.2%) 83 (83%) 116 (86.6%)

Stage p = 0.007

II 5 (3.7%) 12 (11.5%) 1 (1%) 6 (4.5%)

III–IV 129 (96.3%) 92 (88.5%) 101 (99%) 126 (95.5%)

Debulking p = 0.03

Full 33 (26.8%) 17 (19.5%) 10 (11%) 28 (23.5%)

Partial 90 (73.2%) 70 (80.5%) 81 (89%) 91 (76.5%)

Platinum resistance p = 0.70

Sensitive 70 (70%) 54 (78.3%) 53 (74.7%) 73 (74.5%)

Resistant 30 (30%) 15 (21.7%) 18 (25.4%) 25 (25.5%)

Primary therapy outcome p = 0.15

Complete response 78 (69.6%) 60 (69%) 49 (62%) 85 (77.3%)

Partial response 34 (30.3%) 27 (31%) 30 (38%) 25 (22.7%)

BRCA1/2 mutation p = 0.05

No 118 (79.7%) 103 (79.8%) 94 (79.7%) 124 (89.9%)

Yes 30 (20.3%) 26 (20.2%) 24 (20.3%) 14 (10.1%)

BRCA1 methylation p = 0.15

No 127 (85.8%) 110 (85.3%) 101 (85.6%) 128 (92.8%)

Yes 21 (14.2%) 19 (14.7%) 17 (14.4%) 10 (7.2%)

RAD51C methylation p = 0.38

No 144 (97.3%) 124 (96.1%) 115 (97.5%) 137 (99.3%)

Yes 4 (2.7%) 5 (3.9%) 3 (2.5%) 1 (0.7%)

LST signature (HRD) p = 0.0002

Low 62 (41.9%) 43 (33.3%) 48 (40.7%) 82 (59.4%)

High 86 (58.1%) 86 (66.7%) 70 (59.3%) 56 (40.6%)

Ploidy p = 4.6e-5

2 71 (48.0%) 39 (30.2%) 46 (39.0%) 31 (22.5%)

≥ 4 77 (52.0%) 90 (69.8%) 72 (61.0%) 107 (77.5%)

Contingency table showing the association between Fibrosis/non-Fibrosis (two subgroups, Mateescu’s classification), or D-I-M-P subgroups (four subgroups, Verhaac’s
classification), and clinical parameters. Data are from the TCGA cohort and the number of patients and frequencies in the population are indicated. Debulking status was
defined as full when no macroscopic residue was detected after surgery or as partial otherwise. Response to primary therapy was considered as partial if the patient
indicated with partial response, stable disease or progressive disease, considering both surgery efficiency and sensitivity to chemotherapies. P-values are calculated using
Fisher’s exact test without correction and significant p-values are indicated in bold.

enrichment in particular pathways, including cell adhesion,
extracellular matrix organization, and response to wounding
(Supplementary Figure S1A). It is important to note that
this molecular ovarian cancer subgroup was named differently
across studies, and referred to as C1 (Tothill et al., 2008),
Fibrosis (Mateescu et al., 2011), Angiogenic (Bentink et al.,
2012), or Mesenchymal (Verhaak et al., 2013; Konecny et al.,
2014) subgroups, but they all possess similar biological
features (mainly fibrosis and mesenchymal properties)
(Supplementary Figure S1A). However, apart from Fibronectin
1 (FN1), the transcriptomic signatures did not show any
overlap in gene expression (Supplementary Figure S1B).
In contrast to the C1/Fibrosis/Angiogenic/Mesenchymal
signature, none of the others signatures, defining C2–C6
(Tothill et al., 2008), Oxidative stress (Mateescu et al.,
2011), Anti-angiogenic (M2–M4) (Bentink et al., 2012), or

Differentiated-Immunoreactive-Proliferative (Verhaak et al.,
2013; Konecny et al., 2014) high-grade serous ovarian cancer
subgroups, showed overlap in either gene expression or pathways
(Supplementary Figures S1C,D).

We next sought to test if the ovarian cancer patients
identified by these different transcriptomic signatures
were the same (Figure 1). To do so, we studied the
TCGA cohort (Cancer Genome and Atlas Research, 2011;
Table 1 for cohort description) and classified each patient
using the four transcriptomic signatures (Tothill et al.,
2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013). Unsupervised analyses, including hierarchical
clustering (Figure 1A) and Principal Component Analyses
(Figure 1B), confirmed that there was a significant overlap
between tumor classification in C1, Fibrosis, Angiogenic,
and Mesenchymal subtypes. Indeed, patients classified
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as Mesenchymal were also mainly classified as Fibrosis,
C1 and M1, while patients classified as Stress, C2–C6
and M1–M4 can be equally classified as Proliferative,
Immunoreactive or Differentiated (Figure 1C). Therefore,
these different gene signatures not only identified the
same biological characteristics (mesenchymal properties,
accumulation of extra-cellular matrix components, and pro-
angiogenic features) but also identified the same patients
(Figures 1A–C). Almost all patients (91.5%) defined as
Mesenchymal (using Verhaak’s signature) were also classified
as Fibrosis (using Mateescu’s signature). However, 26% of
non-Mesenchymal patients (using Verhaak’s signature)
were identified as Fibrosis (using Mateescu’s signature),
suggesting possible misclassifications. Interestingly, the
overall survival and disease-free survival of those discordant
patients (non-Mesenchymal/Fibrosis) were similar to the
Mesenchymal/Fibrosis defined patients, but significantly
different from non-Mesenchymal/non-Fibrosis patients
(Supplementary Figure S2). This suggests that these patients
could be classified as Fibrosis, as defined by Mateescu’s
signature. These observations show that high-grade serous
ovarian cancers can be divided into two major molecular
subtypes according to transcriptomic profiles: Fibrosis
and non-Fibrosis.

High-Grade Serous Ovarian Cancers
Stratified Into Two Subgroups Are
Associated With Stage, Debulking, and
Clinical Response to Treatment
We next questioned if stratification of ovarian cancers into
four molecular subgroups (such as D-I-M-P, based on Verhaak’s
classification) could be more informative regarding clinical
features than classification into two subgroups (Fibrosis and
non-Fibrosis) (based on Mateescu’s classification). The non-
Fibrosis and Fibrosis subgroups were significantly associated with
stages (p = 0.01), debulking (p = 0.05) and primary therapy
outcome (p = 0.02) (Table 2). However, they were not associated
with grade, ploidy, sensitivity to platinum, BRCA1/2 mutations
or BRCA1 or RAD51C promoter methylation (Table 2). LST
signature, which is linked to HRD status (Fong et al., 2009,
2010; Audeh et al., 2010; Popova et al., 2012; Goundiam et al.,
2015), was also not significantly associated with the Fibrosis and
non-Fibrosis subgroups (Table 2). The four D-I-M-P subgroups
showed a significant association with stage (p = 0.007) and
debulking (p = 0.03), but not with response to treatment. In
addition, D-I-M-P was associated with ploidy (p = 4.6e-5),
BRCA1/2 mutations (p = 0.05) and LST signature (p = 0.0002) but
not with grade, platinum resistance and primary therapy outcome

TABLE 3 | Stratification of high-grade serous ovarian cancers into two subgroups provides a prognostic value, independent of stage and debulking.

OS univariate analysis OS multivariate analysis

HR CI 95% inf CI 95% sup p-value HR CI 95% inf CI 95% sup p-value

Signature

Non-Fibrosis Ref Ref

Fibrosis 1.43 1.13 1.82 0.003 ** 1.22 0.95 1.57 0.12

Stage

II Ref Ref

III 2.49 1.17 5.29 0.02 * 2.39 0.97 5.87 0.06

IV 3.28 1.49 7.25 0.003 ** 2.82 1.11 7.18 0.03 *

Debulking

Full Ref Ref

Partial 2.01 1.37 2.94 0.0004 *** 1.90 1.27 2.82 0.002 **

Age

<59 years Ref

>59 years 1.2 0.96 1.55 0.11

Signature

D 1.48 1.03 2.14 0.04 * 1.23 0.83 1.80 0.30

I Ref Ref

M 1.67 1.13 2.47 0.01 ** 1.12 0.74 1.69 0.59

P 1.40 0.96 2.03 0.08 1.17 0.79 1.72 0.43

Stage

II Ref Ref

III 2.49 1.17 5.29 0.02 * 2.44 0.99 6.00 0.05

IV 3.28 1.49 7.25 0.003 ** 2.72 1.06 6.96 0.04 *

Debulking

Full Ref Res

Partial 2.01 1.37 2.94 0.0004 *** 1.92 1.29 2.86 0.001 **

(Continued)
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TABLE 3 | Continued

DFS univariate analysis DFS multivariate analysis

HR CI 95% inf CI 95% sup p-value HR CI 95% inf CI 95% sup p-value

Signature

Non-Fibrosis Ref Ref

Fibrosis 1.37 1.08 1.73 0.01 * 1.28 0.99 1.65 0.05

Stage

II Ref Ref

III 1.93 1.12 3.31 0.02 * 1.67 0.89 3.12 0.11

IV 2.48 1.35 4.54 0.003 ** 2.03 1.02 4.04 0.05 *

Debulking

Full Ref Ref

Partial 1.69 1.23 2.32 0.001 ** 1.54 1.11 2.13 0.01 *

Age

<59 years Ref

>59 years 0.95 0.75 1.2 0.7

Signature

D 1.32 0.94 1.86 0.11 1.19 0.84 1.72 0.35

I Ref Ref

M 1.41 0.97 2.04 0.07 1.14 0.76 1.69 0.53

P 1.23 0.87 1.74 0.24 1.12 0.78 1.63 0.54

Stage

II Ref Ref

III 1.93 1.12 3.31 0.02 * 1.73 0.93 3.24 0.09

IV 2.48 1.35 4.54 0.003 ** 2.11 1.06 4.21 0.03 *

Debulking

Full Ref Ref

Partial 1.69 1.23 2.32 0.001 ** 1.54 1.11 2.14 0.01 **

Cox proportional hazards regression was performed on Fibrosis/non-Fibrosis or D-I-M-P subgroups and evaluated for overall survival (OS, Top) and disease-free survival
(DFS, Bottom). These analyses were either: adjusted for stage and debulking status (multivariate, Right) or unadjusted (univariate, Left). Age at diagnosis was not taken
into account for multivariate analysis as it was not significant at univariate level. HR, hazard ratio; CI 95% inf, lower limit of the 95% confidence interval; CI 95% sup, upper
limit of the 95% confidence interval. Significant p-values are indicated in bold. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

(Table 2). These results suggest that defining Mesenchymal
ovarian cancers by applying the D-I-M-P signature is less
informative than the Fibrosis classification.

Stratification Into Two Ovarian Cancer
Subgroups Provides a Reliable
Prognostic Value for Patient Survival
Taking into account the association between transcriptomic
signatures and clinical parameters, we next investigated if
these different transcriptomic signatures could be utilized as
independent prognostic factors, compared to stage and debulking
status, the two major variables of patient outcome used in clinics.
Based on univariate analyses using the Cox regression model, we
observed that the Fibrosis/non-Fibrosis signature was indicative
of both overall survival (OS) and disease-free survival (DFS),
with a shorter survival for the Fibrosis patients (Table 3). In
contrast, while the D-I-M-P signature was indicative of overall
survival, it had no prognostic value for disease-free survival in
the univariate analysis (Table 3). In the multivariate analysis,
none of the transcriptomic stratifications (either into two or four
subgroups) were associated with overall survival, independent of
stage and debulking (Table 3). Still, the Fibrosis – non-Fibrosis

signature was the only one to be independent of stage and
debulking and to provide additive prognostic value for disease-
free survival (Table 3).

In the Kaplan-Meier survival analyses, Fibrosis patients
exhibited significantly shorter overall survival (Figure 2A, Top)
and disease-free survival (Figure 2A, Bottom) than non-Fibrosis
patients in the three independent cohorts analyzed (Curie,
AOCS, and TCGA). Classification using the D-I-M-P signature
was initially only performed in the TCGA cohort (Verhaak
et al., 2013). Therefore, we used unsupervised clustering to
identify the four D-I-M-P subgroups in the Curie and AOCS
cohorts (Figure 2B). The classification into those four subgroups
was prognostic factor for overall survival and disease-free
survival in the AOCS cohort, but not in the Curie and TCGA
cohorts (Figure 2C). This shows that the D-I-M-P signature
does not provide a systematic prognostic value for survival of
ovarian cancer patients, but the division into two molecular
subgroups, Fibrosis and non-Fibrosis, is discriminant and
reliable. Because the Fibrosis/non-Fibrosis signature was defined
by genes correlated- or anti-correlated with miR-200 expression
(Mateescu et al., 2011; Batista et al., 2013, 2016), we also
evaluated their prognostic value. No microRNA, separately or in
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FIGURE 2 | Continued
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FIGURE 2 | High-grade serous ovarian cancers stratified into two transcriptomic subgroups exhibit a reliable prognostic value of patient survival. (A) Kaplan-Meier
curves showing 10-year overall survival (OS, Top) and disease-free survival (DFS, Bottom) of patients with Fibrosis (red) or non-Fibrosis (black) ovarian cancers.
Patients from the Curie cohort (56 Fibrosis and 51 non-Fibrosis), the AOCS cohort (135 Fibrosis and 150 non-Fibrosis) and the TCGA cohort (220 Fibrosis and 326
non-Fibrosis) were analyzed, as indicated. P-values were calculated using the Log-rank test. (B) Heatmap and hierarchical clustering applied on the Curie (Left) and
AOCS (Right) cohorts. Rows represent genes and columns represent patients. Clustering is based on the 100 genes of the D-I-M-P signature (Verhaak et al., 2013)
using Euclidean distance and Ward’s agglomeration method. The color saturation shows the magnitude of the deviation from the mean for each gene, with red and
blue indicating expression values above or below the mean, respectively. (C) Kaplan-Meier curves showing 10-year overall survival (OS, Top) and disease-free
survival (DFS, Bottom) of ovarian cancer patients according to D-I-M-P classification. Patients from the Curie (N = 30 Differentiated, N = 26 Immunoreactive, N = 31
Mesenchymal, and N = 20 Proliferative), the AOCS (N = 25 Differentiated, N = 42 Immunoreactive, N = 102 Mesenchymal, and N = 60 Proliferative) and the TCGA
(N = 148 Differentiated, N = 129 Immunoreactive, N = 118 Mesenchymal, and N = 138 Proliferative) cohorts were analyzed. P-values were calculated using the
Log-rank test.

combination, was sufficient as a prognostic marker for patient
survival (Supplementary Figure S3), indicating that expression
of the miR-200 family is not an applicable surrogate marker of
patient outcome. In conclusion, stratification of ovarian cancer
patients into two subgroups using the Fibrosis/non-Fibrosis
signature provides a reliable prognostic value for patient survival,
but using the D-I-M-P signature or miR-200 family member
expression levels do not.

LST Genomic Signature Identifies
Ovarian Cancer With HRD
High-grade serous ovarian cancers were analyzed according to
the LST genomic signature allowing us to stratify patients into
two subgroups: high LST (LSTHi) for HRD tumors (303 tumors,
56%) or low LST (LSTLo) for non-HRD tumors (238 tumors,
44%). As expected, LSTHi ovarian cancers were associated
with BRCA1/2 mutations, BRCA1 or RAD51C promotor
methylation and showed increased sensitivity to platinum-based
chemotherapy (Table 4). In contrast, the LST signature was not
significantly associated with grade, debulking status or primary
therapy outcome (Table 4). Univariate analyses, using the Cox
regression model, showed that LST signature was indicative
of better survival for LSTHi patients (p = 5.4 × 10−10 for
overall survival and p = 1.7 × 10−5 for disease-free survival).
BRCA1/2 mutations were also associated with better patient
outcome (p = 1.8 × 10−4 for overall survival and p = 0.01 for
disease-free survival), but methylation of BRCA1 and RAD51C
promoter regions were not. In multivariate Cox analyses adjusted
for BRCA1/2 mutations, LSTLo patients remained significantly
associated with shorter disease-free survival (HR = 1.6, CI95%
[1.2–2.1], p = 3.9 × 10−4, with HR, Hazard Ratio and CI,
Confidence Interval) and overall survival (HR = 1.95, CI 95%
[1.5–2.5], p = 6.7 × 10−7), whereas the presence of a BRCA
mutation was not associated with disease-free survival (p = 0.34)
and much less associated with overall survival (p = 0.04). This
shows that using the LST signature is more efficient for predicting
survival of ovarian cancer patients than testing the presence of
BRCA1/2 mutations.

Genomic and Transcriptomic Signatures
Provide Additive Prognostic Values for
Ovarian Cancer Patient Survival
As shown above, the LST signature was significantly
associated with HRD and platinum-sensitivity. In contrast,

the Fibrosis/non-Fibrosis signature was linked to stage and
clinical response to treatment, suggesting these signatures could
be complementary. Performing Principal Component Analyses
(PCA) on the TCGA transcriptomic data (Verhaak et al., 2013),
we observed that the Fibrosis/non-Fibrosis signature did not
overlap with the LST signature (Figure 3A, Top) and this
lack of association was also statistically confirmed (p = 0.29,
Table 2). Interestingly, the two signatures were not associated
with the same principal components (PC): Fibrosis/non-Fibrosis
signature was found associated with PC2 (p < 2.2 × 10−16) while
the LST signature was found associated with PC1 (p = 2.1 × 10−6)
(Figure 3A, Bottom). We then investigated if, together, they
could provide additive value regarding prognosis. Interestingly,
the genomic (LST) and transcriptomic (Fibrosis-/non-Fibrosis)
signatures were complementary and defined four distinct patient
subgroups with significantly different survival (Figure 3B).
In other words, Fibrosis and non-Fibrosis patients could be
subdivided into LSTHi and LSTLo subgroups. As expected,
the Fibrosis subtype was associated with poor prognosis, in
particular when combined to LSTLo, the non-HRD status
(Figure 3B). Reciprocally, the non-Fibrosis patients were
characterized by a better outcome, especially when associated
with the LSTHi subgroup (Figure 3B). Pairwise comparison
showed that each subgroup was significantly different from
each other, in term of overall survival and disease-free survival
(apart from the LSTLo/non-Fibrosis subgroup in the disease-free
survival analyses) (Table 5). These data show that combining
genomic and transcriptomic signatures improved stratification
of high-grade serous ovarian cancers and provided a significant
additive prognostic value. These two signatures (genomic
and transcriptomic) were independent for predicting disease-
free survival (LST: HR = 1.7, CI 95% [1.3–2.2], p = 10−5;
Fibrosis/non-Fibrosis: HR = 1.4, CI 95% [1.1–1.8], p = 6 × 10−3

by multivariate Cox regression analysis) and overall survival
(LST: HR = 2.2, CI 95% [1.7–2.8]; p = 4 × 10−10; Fibrosis/non-
Fibrosis: HR = 1.5, CI 95% [1.2–2], p = 1 × 10−3). In contrast
to the Fibrosis/non-Fibrosis signature, the D-I-M-P and LST
signatures were significantly associated (p = 0.02, Table 2). The
multivariate Cox analysis adjusted for the D-I-M-P and LST
signatures showed that the two signatures were independent for
predicting overall survival (LST: HR = 2.16, CI 95% [1.7–2.8],
p = 2.3 × 10−9; DIMP: HR = 1.57, CI 95% [1.1–2.3], p = 0.02).
In contrast, only the LST signature was significantly associated
with the disease-free survival (LST: HR = 1.71, CI 95% [1.3–2.2],
p = 2.3 × 10−5), while D-I-M-P was not. In conclusion, these

Frontiers in Genetics | www.frontiersin.org 11 March 2020 | Volume 11 | Article 21941

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00219 March 13, 2020 Time: 17:19 # 12

Kieffer et al. Relevance of Molecular Data in Ovarian Cancers

TABLE 4 | Association between genomic signature and clinical parameters.

LSTLo LSTHi p-value

Grade p = 0.89

G2 27 (12.5%) 30 (11.8%)

G3 189 (87.5%) 224 (88.2%)

Stage p = 0.29

II 8 (3.7%) 16 (6.2%)

III–IV 210 (96.3%) 243 (93.8%)

Debulking p = 0.55

Full 39 (19.8%) 51 (22.4%)

Partial 158 (80.2%) 177 (77.6%)

Platinum resistance p = 0.0001

Sensitive 71 (56.3%) 124 (78.5%)

Resistant 55 (43.7%) 34 (21.5%)

Primary therapy outcome p = 0.07

Complete response 111 (65.3%) 164 (73.9%)

Partial response 59 (34.7%) 58 (26.1%)

BRCA1/2 mutation p = 2.0 × 10−15

No 229 (96.2%) 217 (71.6%)

Yes 9 (3.8%) 86 (28.4%)

BRCA1 methylation p = 1.9 × 10−19

No 238 (100%) 235 (77.6%)

Yes 0 (0%) 68 (22.4%)

RAD51C methylation p = 0.0008

No 238 (100%) 290 (95.7%)

Yes 0 (0%) 13 (4.3%)

Transcriptomic signature p = 0.29

Non-Fibrosis 147 (62.3%) 171 (57.4%)

Fibrosis 89 (37.7%) 127 (42.6%)

Ploidy p = 2.7 × 10−15

2 41 (17.2%) 150 (49.5%)

≥ 4 197(82.8%) 153 (50.5%)

Contingency table showing associations between the LSTLo/LSTHi subgroups and clinical parameters. Debulking status and response to primary therapy were defined
as in Table 2. These analyses were performed on the TCGA cohort. P-values were calculated using Fisher’s exact test and significant p-values are indicated in bold.

results demonstrate that combining genomic and transcriptomic
information is the most reliable method for stratifying high-grade
serous ovarian cancer patients.

DISCUSSION

Stratification of high-grade serous ovarian cancer patients
remains unclear. Previously, several ovarian cancer molecular
subgroups were identified according to transcriptomic signatures
(Tothill et al., 2008; Cancer Genome and Atlas Research, 2011;
Mateescu et al., 2011; Sabatier et al., 2011; Bentink et al.,
2012; Verhaak et al., 2013; Konecny et al., 2014) or genomic
(Fong et al., 2009, 2010; Audeh et al., 2010; Goundiam
et al., 2015). In this study, we define the optimal number
of ovarian cancer molecular subgroups with reproducible
prognostic value. The study of several independent cohorts
showed that classifying ovarian tumors into four molecular
subgroups, based on D-I-M-P signatures, does not reproducibly
inform on patient survival. In contrast, the subdivision of

patients into two molecular subgroups (Fibrosis/non-Fibrosis)
provided reliable prediction of patient survival. We also
identified a novel complementarity between transcriptomic
and genomic data. Indeed, transcriptomic profiling and HRD
status characterize specific biological processes and could
accurately reflect the different key components in ovarian tumors.
Furthermore, combining both genomic and transcriptomic
data identified four ovarian cancer patient subgroups with
distinct prognostic values and is, therefore, currently the most
appropriate method for stratifying high-grade serous ovarian
cancer patients.

Although several transcriptomic signatures in ovarian cancers
have been proposed (Tothill et al., 2008; Cancer Genome and
Atlas Research, 2011; Mateescu et al., 2011; Sabatier et al.,
2011; Bentink et al., 2012; Verhaak et al., 2013; Konecny et al.,
2014), there is no clear consensus for choosing a specific
one. This is mainly due to the lack of overlap in the gene
sets of these transcriptomic signatures (Tothill et al., 2008;
Cancer Genome and Atlas Research, 2011; Mateescu et al., 2011;
Sabatier et al., 2011; Bentink et al., 2012; Verhaak et al., 2013;
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FIGURE 3 | Combining genomic and transcriptomic signatures provide additive prognostic values for high-grade serous ovarian cancer patients. (A, Up) Principal
component analyses (PCA) applied on transcriptomic data from the TCGA cohort using Verhaak’s signature. On the left panel, the color code shows the non-Fibrosis
(blue, N = 326) and Fibrosis (red, N = 220) subgroups, using Mateescu’s signature (Mateescu et al., 2011). The right panel shows the same PCA representation but
subgroups are highlighted using the LST genomic signature (Popova et al., 2012). The color code represents LSTLo (blue, N = 238) and LSTHi (green, N = 303)
ovarian cancers. (Down) Contingency tables showing the repartition of patients regarding Mateescu or LST classification and the repartition against the two first
principal components. (B) Kaplan-Meier curves showing 10-year overall survival (OS, Left) and disease-free survival (DFS, Right), after stratification into four groups:
LSTLo/Fibrosis (red, N = 89), LSTLo/non-Fibrosis (green, N = 147), LSTHi/Fibrosis (blue, N = 127), and LSTHi/non-Fibrosis (black, N = 171). P-values are calculated
using the Log-rank test.

Konecny et al., 2014). The lack of overlap could be explained,
at least in part, by the heterogeneity in the techniques and
platforms used for detecting gene expression, and by the diversity
of unsupervised algorithms applied to molecular classifications.

There is a clearer consensus of molecular classifications in breast
cancer (Perou et al., 2000; Sorlie et al., 2001; Coates et al., 2015)
that could be due to the presence of confirmed biomarkers
(for example, hormonal receptors, and HER2 expression).
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TABLE 5 | Pairwise comparison of transcriptomic and genomic signatures for overall and disease-free survival.

LSTHi/Fibrosis LSTLo/Fibrosis LSTHi/Non-Fibrosis LSTLo/Non-Fibrosis

Overall Survival

LSTHi/Fibrosis –

LSTLo/Fibrosis 1.60 × 10−0.5 –

LSTHi/Non-Fibrosis 0.03 1.00 × 10−11 –

LSTLo/Non-Fibrosis 0.04 0.03 1.10 × 10−05 –

Disease Free Survival

LSTHi/Fibrosis –

LSTLo/Fibrosis 0.03 –

LSTHi/Non-Fibrosis 0.03 2.60 × 10−0.6 –

LSTLo/Non-Fibrosis 0.31 0.14 7.1 × 10−0.4 –

Differences in overall survival (Top) and disease-free survival (Bottom) between the four groups: LSTHi/Fibrosis, LSTLo/Fibrosis, LSTHi/Non-Fibrosis and LSTLo/Non-
Fibrosis. P-values are calculated using the Log-rank test and corrected for multiple testing using the Benjamini-Hochberg procedure.

The lack of consistency found in ovarian cancer classifications
highlights the importance of using appropriate methods for
stratifying high-grade serous ovarian cancer patients. Here, we
demonstrate that among the four transcriptomic signatures
analyzed (Tothill et al., 2008; Cancer Genome and Atlas Research,
2011; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013), patient stratification into two subgroups, defined
as the Fibrosis/non-Fibrosis signature (Mateescu et al., 2011),
exhibits the most reliable prognostic value for patient survival
compared to the others. We did observe a significant overlap
in patient classification by applying the different transcriptomic
signatures analyzed, but we also detected some differences
between classifications. Indeed, Mesenchymal patients defined by
the D-I-M-P signature (Verhaak et al., 2013) were all identified
as Fibrosis using Mateescu’s signature (Mateescu et al., 2011).
In contrast, some patients defined as non-Mesenchymal by the
D-I-M-P signature were defined as Fibrosis using Mateescu’s
signature, and they also exhibited poor survival. Based on the
survival-data analyses, these observations suggest that some
non-Mesenchymal patients should be considered Mesenchymal,
as determined by the Fibrosis signature. This could also be
explained by the non-exclusive attribution to a subtype using the
D-I-M-P signature (40% of the tumor samples could be assigned
to two distinct subtypes in Konecny’s study) (Konecny et al.,
2014) and/or by the spatial heterogeneity of signatures caused
by the different geographic areas of sampling. Importantly,
classifications tested in these studies (Tothill et al., 2008; Cancer
Genome and Atlas Research, 2011; Bentink et al., 2012; Verhaak
et al., 2013) were defined using a similar methodology (non-
supervised analysis), but the Fibrosis/non-Fibrosis signature
was identified through mechanistic studies based on miR-
200-dependent profiling (Mateescu et al., 2011; Batista et al.,
2016). This may explain the heterogeneity seen between our
signature and others. In addition, our observations indicated
that expression of miR-200 family members, either separately or
combined, was not sufficient to predict patient survival. There
has been a long-lasting controversy about the prognostic value
of miR-200 with a number of studies displaying divergent results
(Batista et al., 2013; Muralidhar and Barbolina, 2015). Recently,
a meta-analysis including 7 articles with available data (553

patients) was conducted (Shi and Zhang, 2016). It is important
to note that the populations included in those studies were
quite small (from 55 to 100 patients) compared to the TCGA
cohort studied here (557 patients). In that meta-analysis, higher
expression of the miR-200 family was significantly associated with
improved survival, predominantly due to the impact of miR-
200c. This association was stronger in the Asian population. The
discrepancies between this meta-analysis and our findings may
be due to several reasons: inclusion of less Asian patients in the
TCGA cohort, multiple small studies using different microarray
protocols and significant heterogeneity across studies in the
meta-analysis. This indicates that the prognostic value of using
expression of the miR-200 family lacks reliability. Nonetheless,
circulating miR-200s could still be good indicators for early
detection of ovarian cancers or dynamic markers to follow-up
during chemotherapy, as suggested in previous studies (Taylor
and Gercel-Taylor, 2008; Kan et al., 2012; Sarojini et al., 2012;
Kapetanakis et al., 2015; Pendlebury et al., 2017).

In addition to transcriptomic data, we have here provided
new insight into genomic signatures of ovarian cancers. LST,
defined as chromosomal breaks between adjacent regions of
at least 10 Mb, constitute a robust indicator of HRD status
(Popova et al., 2012; Goundiam et al., 2015). This classification
was initially defined in breast cancers (Popova et al., 2012).
Triple-negative breast carcinomas and high-grade serous ovarian
cancers have some genomic instability patterns in common,
providing a strong rationale for applying this LST signature
on ovarian cancers. We and others have shown the impact
of HRD on favorable response to platinum salts and overall
survival (Fong et al., 2009, 2010; Audeh et al., 2010; Popova
et al., 2012; Goundiam et al., 2015; Manie et al., 2016). Here,
we confirm the clear prognostic value of the LST signature
in high-grade serous ovarian cancers with better survival
demonstrated for LSTHi patients. Moreover, the interest for
this classification will probably increase with the inclusion
of PARP-inhibitors in routine clinical practice. Currently, the
same therapeutic strategy, a combination of platinum and
taxane-based chemotherapy, is used for all patients suffering
from high-grade ovarian cancers. In the last decade, anti-
angiogenic therapies and PARP-inhibitors were approved for
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treatment of high-grade ovarian cancers, with a significant but
limited impact on survival. This benefit on survival may be
hidden by the molecular heterogeneity in tumors that drives
either beneficial or deleterious response to treatments. Recent
findings suggest that transcriptomic signatures could help in the
identification of patients who will benefit from anti-angiogenic
therapies (Gourley et al., 2014; Kommoss et al., 2017). In that
context, we propose stratification of ovarian cancer patients that
could help identify different sensitivity to treatment. The duality
of our signature considering both the genomic HRD profile
(LST signature) and the transcriptomic microenvironment
features (Fibrosis/non-Fibrosis signature) provides compelling
data for new therapies targeting the microenvironment (Thibault
et al., 2014). There is a tendency to limit reimbursement of
expansive new therapies if there is no biomarker predicting
treatment response. We provide a reliable method to identify
and subgroup high-grade serous ovarian cancer patients by
combining genomic and transcriptomic information. Thus, our
proposition of stratification could be used as a biomarker
for some therapies that may help clinicians define the most
appropriate therapeutic strategy.
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The cancerlectin plays an important role in the initiation, survival, growth, metastasis,

and spread of cancer. Therefore, to study the function of cancerlectin is greatly

significant because it can help to identify tumor markers and tumor prevention,

treatment, and prognosis. However, plenty of studies have generated a large amount

of protein data. Traditional prediction methods have been unable to meet the needs of

analysis. Developing powerful computational models based on these data to discriminate

cancerlectins and non-cancerlectins on a large scale has been treated as one of the most

important topics. In this study, we developed a feature extraction method to identify

cancerlectins based on fusion of g-gap dipeptides. The analysis of variance was used

to select the optimal feature set and a support vector machine was used to classify the

data. The rigorous nested 10-fold cross-validation results, demonstrated that our method

obtained the prediction accuracy of 83.91% and sensitivity of 83.15%. At the same time,

in order to evaluate the performance of the classification model constructed in this work,

we constructed a new data set. The prediction accuracy of the new data set reaches

83.3%. Experimental results show that the performance of our method is better than the

state-of-the-art methods.

Keywords: cancerlectins, g-gap dipeptide, feature selection, analysis of variance, support vector machine

INTRODUCTION

Cell recognition is the central event of various biological phenomena. The combination of cell
surface molecular selectivity with other molecules is an important link in cell development and
differentiation, such as fertilization, embryogenesis, immune defense, pathogen infection, and
pathogenicity. Abnormal cell recognition may lead to diseases, such as defects in leukocyte and
platelet adhesion, which can lead to the recurrence of bacterial infections and mucosal bleeding,
respectively. In addition, abnormal cell recognition is considered to be the basis of uncontrolled cell
growth and movement, which is the characteristic of tumor transformation and metastasis (Sharon
and Lis, 1989).

Lectin is one of the cell recognition molecules. It is a biological molecule that specifically
recognizes and binds the carbohydrate components existing in other proteins (Kumar and Panwar,
2011). Most lectins have high specificity and selectivity in identifying sugar molecules present in
other proteins (Lis and Sharon, 1998). According to their affinity with monosaccharides, these
glycoproteins can be divided into five categories: mannose, N-acetylglucosamine, galactose/N-
acetylgalactosamine, fucose, and sialic acid, which represent a group of heterogeneous oligomeric
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proteins (Kumar and Panwar, 2011). It has been found that
lectins are involved to a variety of biological processes, such
as maintaining the dynamic balance of cell proliferation and
apoptosis, cell differentiation, cell adhesion and migration,
cell-extracellular matrix interaction, host-pathogen interaction,
cell-cell recognition, complement activation pathway, immune
defense, and regulation of inflammatory response (Lin et al.,
2015). Lectin molecules provide biological scripts to decipher
complex codes in sugar groups (Damodaran et al., 2008).
Therefore, lectins are often used as diagnostic and therapeutic
tools in many fields such as cell biology, biochemistry,
and immunology.

Cancerlectins are a group of lectins which are closely related to
cancer (Kumar and Panwar, 2011). Lectin participates in serum-
glycoprotein transformation and innate immune response, and
has a special correlation with the growth and metastasis of
tumors (Damodaran et al., 2008). Some evidences suggest that
tumor cell agglutinin is involved in cell interactions, such as
adhesion, cell growth, differentiation, metastasis and infection
of cancer cells (Lis and Sharon, 1998). Whether basic research
or clinical application, cancerlectins has been widely used in
cancer research (Lai et al., 2017). For example, sialic acid-bound
immunoglobulin lectin-9 is a neutrophil-specific expression that
binds to sugar molecules on the surface of cancer cells, regulates
immune response and promotes or inhibits tumor progression;
spiral hemagglutinin is an effective prognostic indicator of
colorectal cancer, etc. (Kumar and Panwar, 2011). The effect
of lectins on the immune system by altering the production of
various interleukins has beenwell-documented. There is also data
showing that some lectins down-regulate the activity of telomere,
thereby inhibiting angiogenesis (Choi et al., 2004; De Mejía
and Prisecaru, 2005). Cancerlectins can induce cytotoxicity,
apoptosis, and inhibit tumor growth by binding to receptors on
the surface of cancer cells. It can be used as a therapeutic method
for cancer treatment. Cancer is the second leading cause of death
in the world. Therefore, the screening of specific lectins from
a large number of lectins is of great significance not only for
the discovery of tumor markers and cancer treatment, but also
for better understanding and conquering cancer (Balachandran
et al., 2017).

A plenty of studies have generated a large amount of protein
data, using traditional biological experiments to predict and
analyze the function of proteins is not only time-consuming
but also laborious. Based on these data, it is one of the most
important topics to predict a cancerous substance by establishing
a powerful computational model to identify cancerous and non-
cancerous substances on a large scale. The description of the
characteristics of the protein sequence method contains a lot
of information, such as the chemical and physical properties
of amino acids, sequence characteristics, feature extraction
algorithm for classification algorithm which has great impact
on the design and the classification of results. Too few protein
sequence characteristics will result in the loss of important
information of protein sequence and affect the classification
results, and therefore dimension disaster, conversely, there is no
guarantee of the classification efficiency of the model. Therefore,
how to conduct efficient feature fusion and establish appropriate

mathematical expression methods and similarity measurement
standards is an important problem.

Feature Extraction Based on Sequence

Information
Nakashima et al. (1986) proposed amino acid composition
to study protein folding. One of the most basic algorithms
for extracting features of protein sequence is amino acid
composition, which represents the occurrence frequency of
each of the 20 common amino acids in the protein sequence
and converts the protein sequence into a 20-dimensional
feature vector. Yu et al. (2004) proposed using k peptide
component information to represent protein sequences. Feng
et al. (2013) proposed a Naïve Bayes-based method to predict
antioxidant proteins using amino acid compositions and
dipeptide compositions.

Feature Extraction Based on Physical and

Chemical Properties of Amino Acids
Bu et al. (1999) proposed an autocorrelation function algorithm,
which is a description method based on Amino Acid Residue
Index (Kawashima et al., 1999), for the study of protein structure
predetermination. Chou (2001) proposed the pseudo-amino
acid composition method, including sequence order information
other than amino acid composition.

Feature Extraction Based on Protein

Evolution Information
Evolutionary information is one of the most important
information of protein functional annotation in biological
analysis, reflecting the sequence conservation of amino acids at
each site of protein sequence in the evolutionary process (Xu
et al., 2015). Evolutionary information of proteins mainly relies
on positional specificity score matrix (PSSM) (An et al., 2016).

In the published research work, Kumar and Panwar (Kumar
and Panwar, 2011) integrated PROSITE domain information
with PSSM, developed a support vector machine model, and
obtained MCC value of 0.38 with an accuracy of 69.09%; Lin
et al. (2015) developed a sequence-based method to distinguish
cancerlectins from non-cancerlectins, and used ANOVA to select
the optimal feature subset. The accuracy of the method is 75.19%;
Zhang et al. (2016) proposed a classification model based on
random forest, the accuracy of the method is 70%; Lai et al.
(2017) proposed a new method of feature expression based on
amino acid sequence, and binomized it. In the jackknife cross-
validation, the accuracy is 77.48%. Han et al. (2014) proposed
a two-stage multi-class support vector machine combined with
a two-step optimal feature selection process for predicting
membrane protein types. Anh et al. (2014) propose a kernel
method, named as SSEAKSVM, predicting protein structural
classes for low-homology data sets based on predicted secondary
structures. Balachandran et al. (2018) proposed a support vector
machine (SVM)-based PVP predictor, called PVP-SVM, which
was trained with 136 optimal features. Runtao et al. (2018)
proposed a computational method based on the RF (Random
Forest) algorithm for identifying cancerlectins, and achieves a
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sensitivity of 0.779, a specificity of 0.717, an accuracy of 0.748.
Thesemethods have obtained quite good results, but the accuracy
still needs to be improved. In this work, we constructed a new
classification system of protein sequences, and the relatively
better result was obtained on the benchmark dataset and the
independent test dataset.

METHODS

Dataset
Data acquisition is the first step of data analysis. The benchmark
dataset is not only the database of algorithm learning, but
also the cornerstone of classification model. Constructing a
good benchmark data set also plays an important role in the
performance of classification model (Lin and Chen, 2010). In
order to compare objectively with the existing research results,
the dataset used in this work was widely used which was
constructed by Kumar and Panwar (Kumar and Panwar, 2011).

The benchmark dataset contains both positive and negative
samples. The original data were downloaded from the
CancerLectinDB database (Damodaran et al., 2008), removing
duplicated sequences and sequences without experimental
evidence, or containing non-standard amino acids, and 385
proteins were obtained to form a positive subset (Lin et al., 2015).
Using the keyword “lectins” search in UniProt database, deleting
the sequences labeled “similarity,” “fragment,” “hypothesis,”
and “possibility,” a negative subset containing 820 proteins was
constructed (Kumar and Panwar, 2011; Lin et al., 2015). If the
designed data sets contain highly similar sequences, misleading
results with high prediction accuracy will be obtained, thus
reducing the generalization ability of the model. In order to
remove homologous sequences from the benchmark dataset,
the CD-HIT program was employed with 50% as the sequence
identity cutoff to exclude any protein/peptide sequences with
more than 50% paired sequence in the benchmark dataset
(Lin et al., 2015). The benchmark datasetScan be formulated
as follows:

S = S+ ∪ S−

where the positive subset S+ contains 178 cancerlectin samples,
the negative subset S_contains 226 non-cancerlectin samples,
thus, the benchmark dataset Scontains 404 samples. The
benchmark dataset is available at https://github.com/hangslab/
cancerlectins.

Feature Extraction Method
When using the machine learning method, protein sequences
need to be transformed into numerical vectors representing
the characteristics of protein sequence. The extracted features
need not only to retain the sequence information of proteins to
the greatest extent, but also to have a greater correlation with
protein classification.

The sequence of amino acids in protein sequence is the basis
of protein biological function. The dipeptide composition is
the condition of k = 2 in the feature extraction method of

k-peptide composition (Yu et al., 2004; Lin and Chen, 2010).
The dipeptide composition can only reflect the correlation of
adjacent amino acids in protein sequence. Generally speaking,
the intrinsic properties of protein sequences may be precipitated
in higher-level residue relationships. In the tertiary structure
of proteins, the two amino acids separated from the original
sequence may be very close in space, which means that the
g-gap dipeptide composition (Sharma and Paliwal, 2008; Lin
et al., 2015) contains more information about protein sequences
than the dipeptide composition. In this paper, we developed a
feature extraction method of fusion g-gap dipeptide component,
Figure 1 is the flow chart of the model construction.

The g-gap dipeptide composition transforms each protein
sequence into a feature vector. For each g value, a 400-
dimensional feature vector (20∗20) will be generated. The range
of g is [0,9]. g = gh,gh = h,h ∈ [0, 9] is used to distinguish
the frequency of g-gap dipeptides with different values of g. We
transformed a cancerlectin or non-cancerlectin protein sample
P with L amino acids into an input vector of 4,000 dimensions,
defined as follows:

F4000 =
[
f 01 , · · · , f

0
400, f

1
1 , · · · f

1
400, · · · , f

gh
u , · · · , f 91, · · · , f

9
400

]T

where the f
gh
u is the frequency of the u-th (u = 1, 2, · · · , 400)

gh-gap dipeptide and calculated by

f
gh
u =

n
gh
u∑400

u=1 n
gh
u

where n
gh
u denote the number of the u-th gh-gap dipeptide in

a protein. Note that when g = 0, the g-gap dipeptide will
degenerate to the adjoining dipeptide composition.

The class labels corresponding to each feature vector are
represented by t, t ∈ {0, 1},1 represents positive sample and 0
represents negative samples. Finally, a 404∗4,000 feature matrix
was obtained.

Feature Selection
When the number of features is large, there may be unrelated
features, or interdependence between features, which easily leads
to the time-consuming process of analyzing features and training
models. The more the number of features, the more likely it is to
cause “dimension disaster,” the more complex the model will be,
and its generalization ability will decline. Feature selection can
eliminate irrelevant or redundant features, reduce the number
of features, improve the accuracy of the model and reduce
the running time. On the other hand, the model is simplified
by selecting truly relevant features, which makes it easy for
researchers to understand the process of data generation.

Influenced by the collinearity of sample features, the results of
linear discriminant analysis are poor (Lin et al., 2013), and the use
of binomial distribution will lead to a high-dimensional feature
vector (Yanyuan et al., 2018), which consumes a lot of computing
time and may lead to over-fitting. After comparison, the feature
selection method used in this paper is variance analysis (Lin
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FIGURE 1 | The flowchart of our method.

et al., 2015). The variance analysis decomposes the difference of
samples at the level of known influencing factors into intra-group
variance and inter-group variance. The intra-group variance
is not affected by the level of influencing factors, but mainly
sampling error. The variance between groups is influenced by the
level of factors, which is the essential difference between samples.
The characteristic variance is measured by calculating the ratio
F of variance between feature groups and variance within the
group. The F-value of the u-th feature in the benchmark dataset
is defined as follows:

F(u) =
S2A(u)

S2E(u)

where S2A(u) is the sample variance between groups, S2E(u) is the
sample variance within groups. They are given by:

{
S2A(u) =

SSA(u)
dfA

S2E(u) =
SSE(u)
dfE

where SSA(u) is sum of squares between groups and SSE(u) is sum
of squares within groups, which can be calculated by:






SSA(u) =
∑K

i=1mi

(∑mi
j=1 f

gh
u (i,j)

mi
−

∑K
i=1

∑mi
j=1 f

gh
u (i,j)

∑K
i=1 mi

)2

SSE(u) =
∑K

i=1

∑mi
j=1

(
f
gh
u

(
i, j

)
−

∑mi
j=1 f

gh
u (i,j)

mi

)2

where f
gh
u

(
i, j

)
is the frequency of the u-th gh-gap dipeptide of the

j-th sample in the i-th group; midenotes the number of samples
in the i-th group (herem1 = 178,m2 = 226).

dfA and dfE are degrees of freedom for the sample variance
between groups and the sample variance within groups,
respectively. They can be calculated by:

{
dfA = K − 1
dfE = N − K

where K and N are the number of groups (K = 2) and total
number of samples (N = 404), respectively.

When F < 1, the smaller the F value is, the smaller the
difference of the feature between the two groups is, the worse the
ability of the feature to recognize two kinds of proteins is; when
F > 1, the larger the F value is, the greater the difference of the
feature between the two groups is, the better the ability of the
feature to recognize proteins is. Each F value corresponds to a P-
value. The larger the F-value is, the smaller the P-value, that is,
the greater the difference of the feature between groups.

The larger the F value is, the better the discriminant ability
of the feature is. Therefore, all features can be sorted according
to their F values, and the number of optimal feature subsets can
be determined by incremental feature selection. The first feature
subset is the feature with the highest median value in ranking.
When the second highest value is added, a new feature subset is
generated. This process was repeated from the higher F to the
lower F value until all candidate features were added, therefore,
for each sample, 4,000 feature subsets will be generated. The ε-th
feature subset is composed of ε ranked gh-gap dipeptides and can
be expressed as (Lin et al., 2015):

Pε =
[
f
gh
1 , f

gh
2 , · · · , f

gh
ε

]T
, 1 ≤ ε ≤ 4, 000, 1 ≤ gh ≤ 9
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Normalization
In machine learning, normalization of feature data is an
important step. Because the characteristic information of protein
sequence transformation is dimensionless, data normalization is
used to facilitate the comparison and weighting of indicators
of different scales. The data normalization can improve
the convergence speed and the prediction accuracy of the
model. The data normalization method used in this paper
is MinMAXScaler, which normalizes each feature into [0,1]
interval. The normalization function as follows:

f
gh

∗

u =
f
gh
u − f

gh
u min

f
gh
u max − f

gh
u min

Support Vector Machine
In order to facilitate the comparison with the existing work,
support vector machine (SVM) (Kumar and Panwar, 2011; Lin
et al., 2015; Lai et al., 2017) is selected as the classifier in this
work. The basic idea of SVM is to find an optimal classification
hyperplane, whichmaximizes the interval between different types
of samples. Kernel functions include linear and Gaussian kernels.
In this paper, we use the radial basis function (RBF) (Cai et al.,
2002; Yu et al., 2003; An et al., 2016). In this work, the parameters
are tuned by the method of grid search-GridSearchCV (Liu et al.,
2014). Grid search finds the optimal parameter combination by
searching the specified parameter range exhaustively and gets
the model performance results of each group of parameters
combination. The search spaces for C is [10−3, 104]. The search
spaces for γ is [10−4, 105]. Finally, the optimal combination of
parameters [C, γ] is [1,1].

Nested Cross-Validation Test
An important purpose of model validation is to select the most
suitable model. A good model needs strong generalization ability
to unknown data. This step of model validation can reflect
the performance of different models for unknown data. In our
method, we select the cross-validation model (Metfessel et al.,
1993). Cross-checking divides the data set into two parts: training
set and test set. Training set is used for model training, and test
set is used to measure the prediction ability of the model. It can
effectively prevent model over-fitting, and effectively evaluate the
generalization ability of the model for data sets independent of
training data.

Because the feature dimension in this paper is higher
than 4,000, we chose nested cross-validation to prevent model
overfitting. The samples are randomly divided into 10 equal and
disjoint subsets in the external cycle of cross-validation. Nine of
them are in turn selected as training sets, and one test subset
is left, and then 10-fold cross-validation is carried out on the
training set in the internal cycle. The internal loop performs
feature selection and parameter optimization, and the external
loop test set performs model performance evaluation. In nested
cross-validation, the estimated true error is almost the same as
the result obtained on the test set.

FIGURE 2 | Prediction accuracy curve of feature subset.

Performance Assessment
The following indicators are used to evaluate the classification
performance of the model.

1. Accuracy: Correctly identify the proportion of samples in the
total sample.

Acc =
TP + TN

TP + TN + FP + FN

2. Sensitivity: The proportion of cancerlectins samples correctly
identified as cancerlectins.

Sn =
TP

TP + FN

3. Specificity: The proportion of non-cancerlectins samples
correctly identified as non-cancerlectins.

Sp =
TN

TN + FP

4. ROC curve

ROC curve is called “receiver operating characteristic curve”. The
ROC curve takes FPR as the horizontal axis and TPR as the
vertical axis.

The area under the ROC curve is AUC. AUC value is between
0 and 1, and the closer the AUC value is to 1, the better the
performance of the classifier is.

FPR =
FP

FP + TN

TPR =
TP

TP + FN
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TABLE 1 | F-value and P-value of features in optimal feature subset.

F-value P-value

L_R1 26.76446 3.63E-07

R_L4 24.81686 9.38E-07

Q_E0 20.28248 8.77E-06

I_D0 16.70216 5.28E-05

N_K3 16.34925 6.32E-05

N_D6 15.78628 8.40E-05

Q_P9 15.52386 9.61E-05

I_D4 15.23462 0.000111

D_N0 14.73123 0.000144

P_A1 14.28921 0.000181

N_D1 14.13802 0.000195

P_L5 13.87658 0.000223

L_P7 13.82865 0.000229

S_N5 13.69697 0.000245

A_L2 13.26494 0.000306

A_R2 12.96445 0.000357

L_P5 12.90963 0.000367

R_Q3 12.90722 0.000368

L_R8 12.702 0.000409

N_D3 12.40946 0.000476

N_G8 12.37352 0.000485

D_N7 12.2193 0.000526

D_N8 12.09143 0.000562

L_C0 11.94945 0.000605

N_V1 11.87518 0.000629

E_L5 11.79776 0.000655

Q_P1 11.78632 0.000659

Q_A0 11.54244 0.000748

L_E6 11.50195 0.000764

R_P4 11.4276 0.000794

P_L6 11.23968 0.000877

Q_M7 11.22643 0.000883

D_G0 11.22351 0.000884

S_P2 11.17902 0.000905

Q_L1 11.06357 0.000961

where TP (True positive) and TN (True negative) denote the
number of correctly predicted cancerlectins and the number
of correctly predicted non-cancerlectins, respectively; FN is the
number of the cancerlectins incorrectly predicted as the non-
cancerlectins and FP is the number of the non-cancerlectins
incorrectly predicted as the cancerlectins, respectively.

RESULTS

Prediction Performance
The protein sequence is represented by the fusion of g-gap
dipeptide features. After feature transformation, all protein
sequences are converted into a 404∗4,000 feature matrix. After
variance analysis, F-values of features are sorted in descending
order, and then feature selection and parameter optimization are
carried out in a nested cross validation.

FIGURE 3 | The ROC curve for cancerlectin prediction using the optimal 35

g-gap dipeptide.

As described in the feature extraction section, each sample
sequence is transformed into a 4,000-dimensional dipeptide
vector. Using too many low variance features to train prediction
models will be relatively time-consuming, and it is possible to
build over-fitting models. On the contrary, if the number of
characteristic peptides is too small, they can only describe some
properties of cancerlectins, even though each property may have
a high variance and contain extremely rich information. Both of
these conditions will lead to poor prediction results. The total
number of protein sequence samples in data sets is 404. In order
to build a reliable robust model, the number and accuracy of
features need to be considered simultaneously. From Figure 2,
it can be seen that the accuracy of feature subset increases slowly
after 35 dimensions, until the number of feature subsets increases
to 183 dimensions, the accuracy of model has small change
from the feature subset of 35 dimensions. The accuracy of the
first 183- dimensional model is 84% and that of the first 35-
dimensional model of feature subset is 83.91%. Finally, the top
35 g-gap dipeptides are selected. Therefore, 35 g-gap dipeptides
are selected as the optimal feature subset of the final classifier.

Feature Description
As can be seen from Table 1, the variance of L_R1 is the largest,
and the larger the variance, the smaller the P-value generally
accompanied. The variance of L_R1 is 26.76446, P-value is 3.63E-
07, Q_L1 variance is 11.06357, P-value is 0.000961. It can be seen
that each feature in the optimal feature subset is significant and
may play an important role in the classification and prediction
of cancerlectins.

As can be seen from Figure 3, the AUC of cancerlectin
prediction using the optimal 35 g-gap dipeptide is 0.9, it means
the classification performance of this classificationmodel is good.

Comparison With Existing Methods
In order to verify whether the classification model constructed in
this work is over-fitting, 30 cancerlectins sequences were selected
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TABLE 2 | Classification of new data.

ID Prediction results

1016841179 1

1016841154 1

1016841024 1

1016841005 1

560189093 1

720063203 1

727346123 1

469469047 0

403420575 1

385719187 1

384367986 1

388890228 1

1508736536 1

873090602 1

1022943309 1

974005177 1

392996940 0

385719190 1

1391723745 1

400260732 1

1370479176 1

1370451719 1

1034557774 1

768011769 1

768007991 1

768006291 0

1258501064 0

1272616377 1

1272616369 1

859066280 0

TABLE 3 | Comparison of classification results of new data.

Methods Acc (%)

CancerPred (Amino acid composition) (Kumar and Panwar, 2011) 70

CancerPred (Dipeptide composition) (Kumar and Panwar, 2011) 76.67

CancerPred [Split composition (2-part)] (Kumar and Panwar, 2011) 56.67

CancerPred [Split composition (4-part)] (Kumar and Panwar, 2011) 60

Our Method 83.3

from NCBI database which were newly stored after 2012. From
Table 2, prediction result 1 means correct classification, 0 means
wrong classification.We can see there are 25 cancerlectins in new
data were correctly predicted, the prediction accuracy of the new
data is 83.3%.

As can be seen from Table 3, the model in this work has
better classification performance on new data, that is, the model
generalization ability in this work is stronger.

Comparing our method with other published methods, as
shown in Table 4, the accuracy of the model obtained by our
method is higher than that of previous studies. Though the
specificity of our method is not much improved compared

TABLE 4 | Comparison with the results of existing classification models.

Method Sn (%) Sp (%) Acc (%)

Kumar and Panwar (2011) 68.00 69.90 69.09

Lin et al. (2015) 69.10 80.10 75.19

Damodaran et al. (2008) 75.28 80.53 77.48

Our method 83.15 80.87 83.91

with Lin et al. (2015) and Lai et al. (2017), the sensitivity is
greatly improved compared with the other three methods. The
classification model improves the ability of correct recognition
of cancer agglutinin samples, which shows that the classification
model in this paper is effective.

DISCUSSION AND CONCLUSIONS

Accumulated experimental evidences have shown that the
classification of cancerlectins has important theoretical and
practical significance for understanding its structural and
functional characteristics, identifying drug targets, discovering
tumor markers, and cancer treatment. More and more evidences
show that it is crucial to propose an effective computational
model to identify cancerlectins. In this paper, we developed a
method based on the feature extraction algorithm of fusing g-
gap dipeptide components to extract protein sequence features.
Our method improve the feature extraction algorithm of
protein sequence in cancerlectins prediction. We use the feature
extraction algorithm of fusing g-gap dipeptide components to
extract protein sequence features, which obtain an optimal
feature subset containing 35 features. The accuracy, sensitivity
and specificity are 83.91, 83.15, and 80.87% respectively. The
results are better than those of the published methods. We also
collect 30 new data form NCBI for predicted the performance of
our method, and the prediction accuracy is 83.3%. Experimental
results demonstrate that the performance of our method is better
than the state-of-the-art methods for predicting cancerlectins.

Although our method can improve the prediction accuracy,
it still has some limitations. Firstly, the benchmark dataset we
used is relatively small, so there are some gaps in the data,
and some specific attributes may be missing. Secondly, the
extraction of protein sequence feature information is a key step in
protein prediction. How to construct a better feature extraction
algorithm remains to be further studied. Third, we only focus
on the prediction of cancerlectin classification, how to choose a
better classifier is our future work.
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Objective: Despite several clinicopathological factors being integrated as prognostic
biomarkers, the individual variants and risk stratification have not been fully elucidated in
lower grade glioma (LGG). With the prevalence of gene expression profiling in LGG, and
based on the critical role of the immune microenvironment, the aim of our study was
to develop an immune-related signature for risk stratification and prognosis prediction
in LGG.

Methods: RNA-sequencing data from The Cancer Genome Atlas (TCGA), Genome
Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) were used.
Immune-related genes were obtained from the Immunology Database and Analysis
Portal (ImmPort). Univariate, multivariate cox regression, and Lasso regression were
employed to identify differentially expressed immune-related genes (DEGs) and establish
the signature. A nomogram was constructed, and its performance was evaluated by
Harrell’s concordance index (C-index), receiver operating characteristic (ROC), and
calibration curves. Relationships between the risk score and tumor-infiltrating immune
cell abundances were evaluated using CIBERSORTx and TIMER.

Results: Noted, 277 immune-related DEGs were identified. Consecutively, 6 immune
genes (CANX, HSPA1B, KLRC2, PSMC6, RFXAP, and TAP1) were identified as risk
signature and Kaplan–Meier curve, ROC curve, and risk plot verified its performance
in TCGA and CGGA datasets. Univariate and multivariate Cox regression indicated
that the risk group was an independent predictor in primary LGG. The prognostic
signature showed fair accuracy for 3- and 5-year overall survival in both internal (TCGA)
and external (CGGA) validation cohorts. However, predictive performance was poor
in the recurrent LGG cohort. The CIBERSORTx algorithm revealed that naïve CD4+

T cells were significant higher in low-risk group. Conversely, the infiltration levels of
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M1-type macrophages, M2-type macrophages, and CD8+T cells were significant higher
in high-risk group in both TCGA and CGGA cohorts.

Conclusion: The present study constructed a robust six immune-related gene signature
and established a prognostic nomogram effective in risk stratification and prediction of
overall survival in primary LGG.

Keywords: lower grade glioma, The Cancer Genome Atlas, Chinese Glioma Genome Atlas, immune-related
signature, prognosis

INTRODUCTION

Lower-grade gliomas (LGG) constitute the prevalent primary
malignances of the central nervous system, demonstrating great
intrinsic heterogeneity in terms of their biological behavior
(Ostrom et al., 2013; Zeng et al., 2018). So far, maximum
surgical resection combined with postoperative radiotherapy
and chemotherapy is the standard treatment for LGG. Despite
numerous efforts to improve the clinical outcome, more than half
of the LGG cases evolve and progress to therapy-resistant high-
grade aggressive glioma over time (Claus et al., 2015). Thus, it is
imperative to identify novel prognostic factors for LGG. Several
biomarkers, including the isocitrate dehydrogenase (IDH)
mutation, co-deletion of chromosome arms 1p and 19q (1p/19q
codeletion), and O-6-methylguanine-DNA methyltransferase
(MGMT) methylation have been integrated to the 2016 WHO
classification, to illustrate the histological features and guide
the therapeutic strategy (Hartmann et al., 2010; Wick et al.,
2013; Hainfellner et al., 2014; Louis et al., 2016). However,
these widely utilized biomarkers do not fully elucidate the
individual variants and properly address risk stratification
in LGG. Thus, it would only be reasonable to attempt to
integrate various methods, including gene expression profiles
that have gathered enormous attention, to further improve
stratification of LGG.

The immune microenvironment has been identified as playing
a critical role in tumor biology (Hanahan and Weinberg,
2011), and recently, numerous promising preclinical and clinical
immunotherapeutic treatments, including immune-checkpoint
inhibitors, active or passive immunotherapy, and gene therapy,
have been achieved in malignant gliomas (Mahmoodzadeh
Hosseini et al., 2015; Xu et al., 2015; Reznik et al., 2018;
Simonelli et al., 2018; Vismara et al., 2019), further establishing
the vital role of immunotherapy in the management of gliomas.
Hence, the molecular profiles of the immune components within
the tumor microenvironments represent tremendous value in
serving as prognostic biomarkers. Recently, several studies have
proposed immune gene expression-based signatures for risk
stratification and for predicting clinical outcomes in breast,
gastric, thyroid, and ovarian cancers (Ascierto et al., 2012; Kim
et al., 2018; Shen et al., 2019; Yang et al., 2019). In terms
of the prognostic value of an immune-related risk signature
in glioma, Cheng et al. (2016) revealed that not only did
the immune-related risk signature had prognostic significance
in the stratified patients for glioblastoma, but moreover the
immune status and local immune response could be illustrated

by the risk signature. However, implementation of an immune
gene expression-based signature has not been fully elucidated
in LGG.

In a previous study, Li and Meng (2019) identified an
immune-related long non-coding RNA (lncRNA) signature
based on 529 low-grade glioma cases. It was found that the
8-lncRNAs model could serve as an independent predictor
in low-grade glioma, not enrolling cases of grade III glioma.
However, the predictive accuracy of the lncRNA-based model
needed to be enhanced and the external validation was warranted.
Furthermore, the correlation between the immune-related model
and immune cell phenotypes was not illustrated. To our
knowledge, the latest version of Cell type Identification By
Estimating Relative Subsets Of RNA Transcripts (CIBERSORTx)
has been investigated as a highly sensitive and specific algorithm
set to reveal the immune landscape of 22 human immune cell
compositions in solid tumors (Newman et al., 2019) and thus
might provide new insights into potential therapeutic candidates
for the management of LGG.

In the present study, a large cohort of patients with primary
LGG from The Cancer Genome Atlas (TCGA) database and
normal control cases from the Genome Tissue Expression
(GTEx) database were employed to screen differentially expressed
immune-related genes (IRGs). After construction of the risk
signature based on the immune related genes, patients with
primary LGG with gene sequencing data from the Chinese
Glioma Genome Atlas (CGGA) database were adopted as
the external validation. In addition, the CIBERSORTx and
Tumor Immune Estimation Resource (TIMER) algorithm were
utilized to clarify the correlation between the risk signature
and the abundances of the infiltrative immune cells in
primary LGG samples.

MATERIALS AND METHODS

Acquisition of LGG Expression Profiles
From TCGA Datasets
The RNA-seq data (level 3) and clinical information of LGG
samples were collected from UCSC Xena1. Expression of genes
analyzed in normal tissues was collected using the Genome Tissue
Expression (GTEx) (Consortium, 2015; Gentles et al., 2015)
tool. Normalized gene expression was measured as fragments
per kilobase of transcript per million mapped reads (FPKM)

1http://xena.ucsc.edu/
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and log2-based transformation. Then, the “sva” package of R
software was utilized for the normalization of RNA expression
profiles and to remove the batch effects. Principal component
analysis (PCA) was used for detecting batch effects from the
GTEx and TCGA datasets.

Acquisition of Immune-Related Genes
A comprehensive list of IRGs was downloaded from the
Immunology Database and Analysis Portal (ImmPort) database2.
The list comprised a total of 2,498 IRGs, covering 17 immune
categories (Bhattacharya et al., 2014).

Inclusive and Exclusive Criteria of
Enrolled Patients for the Construction of
Risk Signature
The inclusive criteria of patients with LGG for model
construction were as follows: (1) only patients with primary
glioma were enrolled, (2) pathologic types of WHO II or III
grade, (3) complete clinicopathological parameters, (4) only
samples with RNA-sequencing data, (5) overall survival (OS) as
the primary endpoint, (6) minimum follow-up of 90 days. The
exclusive criteria included (1) patients with recurrent LGG, (2)
pathologic type was glioblastoma, (3) incomplete survival status
and clinical information.

Establishment of the Immune-Related
Risk Signature
Using the “survival” package in R, we employed univariate Cox
regression on IRGs and OS of primary LGG in the TCGA
database to identify survival-associated IRGs. Next, using the
“glmnet” package in R, the least absolute shrinkage and selection
operator (Lasso) regression model was selected to minimize the
over-fitting and identify the most significant survival-associated
IRGs in primary LGG. After testing for collinearity, stepwise
multivariate Cox regression analysis was performed to establish
the IRG-derived risk signature in primary LGG. The following
formula based on a combination of Cox coefficient and gene
expression was used to calculate the risk score (Lossos et al., 2004;
Chen et al., 2007; Hu et al., 2019):

Model:Risk score =
k∑

i=1

βiSi

where k, βi, Si represent the number of signature genes, the
coefficient index, and the gene expression level, respectively.

To stratify patients into low- and high-risk groups, the
optimum cutoff value for the risk score was determined using the
“survminer” package in R. In order to ensure the comparability
of the sample size between two groups, we set the min.prop
parameter = 0.3 in applying the “survminer” package. Next, the
Kaplan Meier survival curve and log-rank test was performed
to evaluate the survival rates between low- and high-risk
groups. The area under the receiver operating characteristic
(ROC) curve (AUC) was calculated using the “survival ROC”

2https://immport.niaid.nih.gov

package in R. In addition, the risk plot was illustrated using the
“pheatmap” package in R.

Identification of the Prognostic Factors
for OS in Primary LGG
All patients with primary LGG in TCGA were randomly
divided into the training and testing groups at a ratio of 7:3
using the “caret” package. Seven predominant clinical and
prognostic factors, including age, gender, grade, radiotherapy,
chemotherapy, IDH status, and the risk scores of the
immune-related signature were evaluated using univariate
and multivariate Cox regression analyses. Before that, we tested
the proportional hazards assumption (Therneau, 1994) by
Schoenfeld residuals analysis (Schoenfeld, 1982), using the
statistical script language R (R Development Core Team, 2014).
By employing “rms,” “foreign,” and “survival” R packages,
we formulated a nomogram consisting of relevant clinical
parameters and independent prognostic factors based on the
multivariate Cox regression analysis. The performance of the
prognostic nomogram was assessed by calculating Harrell’s
concordance index (C-index) (Harrell et al., 1996), the AUC
of the time-dependent ROC curve, and calibration curves of
the nomogram for 3-, and 5-year OS plotted to estimate the
accuracy of actual observed rates with the predicted survival
probability. Time-dependent ROC analyses were conducted by
“timeROC” R package.

External Validation of the Signature in
CGGA Datasets for Primary LGG
The prognostic capability of the immune-related risk signature
was externally validated using CGGA database. The RNA-seq
data and corresponding clinicopathological information were
obtained from the CGGA database3. The specific risk score for
each patient was calculated with the use of the prognostic gene
signature. Similarly, patients were divided into low- and high-
risk groups based on the constructed formula in TCGA database.
The optimal cutoff of risk scores for CGGA dataset kept the same
as that in primary TCGA cohorts. Survival curves for the low-
and high-risk groups were plotted using Kaplan-Meier analysis.
Next, the predictive accuracy of the signature was investigated
using ROC curves, and the performance of the nomogram was
also assessed by the time-dependent ROC curve and calibration.

Investigation of the Signature in Patients
With Recurrent LGG
For testing the prediction model in patients with recurrent
LGG, the main inclusion criteria were: (1) patients suffering
from recurrent glioma with histologically confirmed WHO II
or III grade, (2) evidence of tumor recurrence and complete
clinicopathological factors, (3) available recurrent glioma RNA-
sequencing profiling, (4) minimum follow-up of 90 days. The
exclusive criteria were as follows: (1) incomplete survival status
and clinical information, (2) primary LGG samples. Time-
dependent ROC curve and calibration plots were created to

3http://www.cgga.org.cn
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investigate whether the built model could effectively predict
survival in recurrent LGG.

Tumor-Infiltrating Immune Cell Analysis
To characterize the abundance of 22 immune cell types based
on the RNA-seq data in lower grade glioma tissues, the
CIBERSORTx web tool was applied4. Using a deconvolution
algorithm (Newman et al., 2019), CIBERSORTx computed
that the 22 cell types encompassed among others B cells,
T cells, natural killer (NK) cells, macrophages, and dendritic
cells (DCs). CIBERSORTx derived an empirical P-value for the
deconvolution of each case using Monte Carlo sampling, and
samples with P < 0.05 were adopted for analysis because of
high reliability of the inferred cell composition (Ali et al., 2016).
Therefore, cases with a P value of ≥0.05 were not retained
for subsequent analysis. For validating the accuracy of the
CIBERSORTx, TIMER (Tumor Immune Estimation Resource)
database was also employed to illustrate the abundance of six
immune cells containing B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells5. Subsequently, the
box plots were utilized to present the difference of infiltrative
immune cells, T cell activated and inhibitory receptors, and
macrophage associated molecules between high and low risk
groups using the “ggplot2” package. In addition, the Cox
regression model was also applied to calculate the hazard ratios
(HRs) of the abundance of immune cells between high-and
low-risk groups and illustrated by the forest plot.

Validation of Gene Expression in Cell
Lines and Glioma Tissues
The Cancer Cell Line Encyclopedia (CCLE) was generated
to provide a compilation of mRNA expression, copy number
variation, and preclinical datasets for mutations in various cancer
types. Details regarding the acquisition of mRNA expression
of six genes profiled by RNA-Seq were downloaded from the
data portal6 (Barretina et al., 2012). The genomic data were
utilized to analyze the mRNA expression status of the six immune
genes in LGG cell lines. Cell lines of LGG were identified
through six dedicated websites7,8,9,10,11,12. We only retained the
consistent LGG cell lines across six websites. Furthermore, the
level of protein expression for these six IRGs were confirmed
using immunohistochemistry data publicly available at http:
//www.proteinatlas.org/. This database was explored to verify
the gene-specific expression information across normal human
tissues, as well as LGG.

4https://cibersortx.stanford.edu/
5https://cistrome.shinyapps.io/timer/
6https://portals.broadinstitute.org/ccle
7https://web.expasy.org/cellosaurus/
8https://www.atcc.org/
9https://www.phe-culturecollections.org.uk/products/celllines/generalcell/search.
jsp
10http://igrcid.ibms.sinica.edu.tw
11https://cansarblack.icr.ac.uk/
12https://www.dsmz.de/

Statistical Analysis
All statistical analyses were conducted using R (version
3.6.0). The Wilcox test was used to screen statistically
differentially expressed genes and infiltrative immune cells.
Pearson’s chi-square tests were executed for the comparison of
categorical variables. Kaplan–Meier curve using the log-rank test
was used to evaluate the statistical significance of the survival
rates between different risk groups. The predictive accuracy
of the risk signatures were determined by ROC curves. The
proportional-hazards assumption was tested with Schoenfeld
residuals. Then, univariate and multivariate Cox regression
analysis were performed to evaluate significantly prognostic
factors. Finally, results of multivariate Cox regression analyses
were visualized with nomogram. Concordance index, time-
dependent ROC, and calibration were also important indicators
used to assess the nomogram. P value < 0.05 was considered
statistically significant.

RESULTS

Preparation of Glioma Datasets
The workflow of our study is delineated in Supplementary
Figure S1. A total of 916 patients who met the inclusion
criteria, including 432 patients with primary LGG from the
TCGA database, 353 patients with primary LGG from the
CGGA database, and 131 patients with recurrent LGG from
the CGGA database were obtained for further analysis. The
clinicopathological characteristics of patients from the two
databases are listed in Table 1.

Identification of DEGs
Before the identifying of DEGs, the normalization and batch
effects removal from GTEx and TCGA datasets was conducted
by “sva” package. As shown in Supplementary Figures S2A,C,
the normalization of the data was performed well by the “sva”
package. Additionally, the PCA plot found that TCGA and GTEx
datasets separated obviously (Supplementary Figures S2B,D).
To identify DEGs between the TCGA and GTEx databases,
we considered the absolute value of the log2-transformed fold
change (FC) > 1 and the adjusted P-value (adj.P) < 0.05 as the
threshold levels of significance. Compared to non-tumor tissues,
a total of 5,490 DEGs consisting of 2,718 upregulated and 2,772
downregulated genes were identified. The heatmap and volcano
plot of the DEGs are shown in Supplementary Figures S3A,B.
IMMPORT13 is a web server for acquiring immune gene lists.
From this set of DEGs, a total of 277 differentially expressed IRGs
were extracted. The heatmap of 277 differentially expressed IRGs
was shown in Figure 1A.

Identification of Prognostic IRGs
Based on the univariate Cox regression model (P < 0.05), a total
of 36 IRGs were discovered to be significantly associated with
OS. A forest plot of HR showed that 29 IRGs were risk factors,
whereas 7 IRGs were protective factors (Figure 2).

13http://immport.org
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TABLE 1 | Summary of risk scores and clinical pathological characteristics for
different cohorts.

Primary LGG

Internal External Recurrent LGG

Training Validation Validation

Cohort Cohorts Cohorts Investigation

TCGA TCGA CGGA CGGA

Characteristic (n = 304) (n = 128) (n = 353) (n = 131)

Age (y)1

≤40 152 (50%) 53 (41%) 189 (54%) 69 (53%)

>40 152 (50%) 75 (59%) 164 (46%) 62 (47%)

Gender

Male 175 (58%) 62 (48%) 205 (58%) 76 (58%)

Female 129 (42%) 66 (52%) 148 (42%) 55 (42%)

Grade

II 139 (46%) 66 (52%) 196 (56%) 32 (24%)

III 165 (54%) 62 (48%) 157 (44%) 99 (76%)

Radiation

No 109 (36%) 47 (37%) 59 (17%) 26 (20%)

Yes 195 (64%) 81 (63%) 294 (83%) 105 (80%)

Chemotherapy

No 134 (44%) 61 (48%) 147 (42%) 34 (26%)

Yes 170 (56%) 67 (52%) 206 (58%) 97 (74%)

IDH2 status

Wild-type 53 (17%) 27 (21%) 94 (27%) 31 (24%)

Mutation 251 (83%) 101 (79%) 259 (73%) 100 (76%)

Risk score

Low risk 209 (69%) 88 (69%) 248 (70%) 94 (72%)

High risk 95 (31%) 40 (31%) 105 (30%) 37 (28%)

1Age, Age at pathological diagnosis of glioma; 2 IDH, Isocitrate dehydrogenase.

Evaluation of IRGs With Prognostic Value
Considering collinearity and following refinement by the
Lasso, only 11 genes were remained in Lasso regression
from 36 significant prognosis associated IRGs in univariate
Cox regression model. Ultimately, a prognostic signature
comprisingsix IRGs, including calnexin (CANX), heat shock
protein family A (HSP70) member 1B (HSPA1B), killer cell
lectin like receptor C2 (KLRC2), proteasome 26S subunit,
ATPase 6 (PSMC6), regulatory factor X associated protein
(RFXAP), and transporter 1, ATP-binding cassette subfamily B
member (TAP1) was selected to construct a prediction model by
stepwise multivariate Cox regression analysis. Correspondingly,
the coefficients of the six genes were 0.38625, 0.18073, −0.27702,
−0.71285, −0.68077, and 0.34100. Ultimately, the hazard ratios
of the six genes were 1.4714, 1.1981, 0.7580, 0.4902, 0.5062, and
1.4064, respectively. The comprehensive risk score was imputed
as follows: (0.38625 × expression level of CANX) + (0.18073 ×
expression level of HSPA1B) + (−0.27702 × expression level of
KLRC2)+ (−0.71285× expression level of PSMC6)+ (−0.68077
× expression level of RFXAP) + (0.34100 × expression level of
TAP1). Optimal cutoff values for the risk scores were calculated
using the “survminer” package. Thus, patients were stratified into

low- (risk score < 1.28) and high-risk (risk score ≥ 1.28) groups.
In addition, the differential expression of six risk genes between
normal brain and LGG tissues were shown in Figure 1B.

Performance of Risk Signature in
Primary LGG From TCGA
Four hundred and thirty-two patients with primary LGG from
the TCGA database were included in subsequent survival
analyses and divided into low- and high-risk groups. Kaplan–
Meier plots indicated that patients with high-risk scores
presented a worse OS probability (Figure 3A). To verify the
diagnostic competence of the immune-related risk signature,
theAUC was calculated. The AUC of the ROC was 0.914,
indicating that the risk score literally played a significant
performance in the efficacy of this diagnosis (Figure 3B).
The heatmap demonstrated that KLRC2 exhibited the lowest
expression in the high-risk group, whereas CANX, HSPA1B,
PSMC6, RFXAP, and TAP1 had medium and high expression
levels (Figure 3C). Consecutively, patients appeared to have an
increased mortality rate with an increase in risk scores according
to the risk plot (Figure 3D).

Construction of Prognostic Signature in
Primary LGG From TCGA
Using the “caret” package, the 432 patients with primary LGG
in the TCGA dataset were randomly separated into training
and testing cohorts at a ratio of 7:3. Seven clinicopathological
parameters recorded as binary variables: age (≤40 vs. >40),
gender (male vs. female), grade (grade II vs. grade III),
radiotherapy (yes vs. no), chemotherapy (yes vs. no), risk
(low vs. high), and IDH status (wild-type vs. mutation)
were employed into further analyses, following testing of
the proportional hazards assumption with Schoenfeld residual
plots (Supplementary Figure S4). To evaluate the independent
prognostic force of the signature, both the univariable and
multivariable Cox proportion hazard regression models were
applied (Figures 4A,B). Results from univariable analysis showed
that risk (HR = 5.807, P < 0.001), age (HR = 3.029, P < 0.001),
grade (HR = 3.455, P < 0.001), radiation therapy (HR = 2.841,
P < 0.001), and IDH status (HR = 0.084, P < 0.001) had
prognostic value for OS in primary LGG. Likewise, the risk
group (HR = 2.383, P = 0.008), age (HR = 2.356, P = 0.005),
grade (HR = 2.233, P = 0.007) and IDH status (HR = 0.189,
P < 0.001) maintained their prognostic values in multivariable
stepwise cox regression analysis. Next, risk, age, gender, grade,
radiotherapy, chemotherapy, and IDH status were visualized in
the nomogram. Nomograms of 3- or 5-year OS in the cohort
are presented in Figure 4C. Then, the C-index for the training
group was 0.8642. The AUC of the nomogram was up to 0.88,
indicating the excellent ability to discriminate patients of poor
from patients of favored prognosis (Figure 4D). Meanwhile,
the calibration curve also manifested a satisfactory agreement
between predictive and observational values at the probabilities
of 3- and 5-year survival (Figures 4E,F). These results revealed
that the nomogram signified good accuracy in predicting the 3-
or 5-year survival of patient with LGG.
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FIGURE 1 | Heatmaps of differentially expressed genes between normal tissue and lower-grade glioma. (A) Heatmap demonstrating the differential expressed 277
immune-related genes. (B) Heatmap demonstrating the differential expressed six immune-related risk genes.
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FIGURE 2 | Forest plot of hazard ratios demonstrating the prognostic values of immune-related genes (IRGs). The dash line was used to mark the location of
HR = 1. The red box represents the adverse prognostic factor; Blue box represents the favorable prognostic factor.

Internal Validation of Prognostic
Signature in Primary LGG From TCGA
A total of 128 patients with primary LGG in the TCGA dataset
were randomly assigned in the internal cohort and the predictive
power of the signature was accordingly confirmed. Each of the
cases was divided into low- and high-risk groups. The C-index for
the internal validation group was 0.8309. Time-dependent ROC
analyses at 3- and 5-year were conducted to assess the prognostic
accuracy of the six-gene-based classifier. The 3- and 5-year AUC
were 0.836 and 0.761, respectively (Figure 5A). The calibration
curve also manifested a satisfactory agreement between predictive
values and observational values at the probabilities of 3- and
5-year survival (Figures 5B,C).

External Validation of Prognostic
Signature in Primary LGG From CGGA
To determine whether the six-gene prognostic signature had
similar prognostic value in different populations, its prediction
performance was validated in another 353 primary LGG
samples with RNA-seq transcriptome data and corresponding
clinicopathological information from the CGGA database. The
primary LGG samples were divided into two groups according
to the cutoff value (<1.28 vs. ≥1.28). Consistent with the
above findings, the Kaplan-Meier survival curves revealed a
significant difference in OS between the low- and high-risk
groups (Figure 6A). The AUC was 0.727, showing a fair

prognostic power of the model (Figure 6B). To evaluate the
prognostic accuracy of the model, time-dependent ROC analysis
was conducted, with the AUC for 3, and 5-year survival being
0.836 and 0.798, respectively (Figure 6C). The C-index for the
CGGA group was 0.7555. The calibrations plot for survival
probability at 3- or 5-year showed an optimal consensus between
the prediction and observation in both the external validation and
training cohorts (Figures 6D,E).

Investigating the Application of Six
Genes Based Signature in Recurrent
LGG
Next, we investigated the feasibility of the six -immune-gene
related risk signature in recurrent LGG. According to inclusive
and exclusive criteria, 131 patients with recurrent LGG were
enrolled for further analysis. Risk scores were calculated using
the same formula and yielded similar results on Kaplan-
Meier survival curves as those observed for primary LGG
(P < 0.05; Supplementary Figure S5A). However, the AUC
value was only 0.550, indicating a poor prognostic power in
recurrent LGG (Supplementary Figure S5B). The C-index for
the recurrent LGG group was 0.6135. Then, the AUC for 3-,
and 5-y OS predictions for the recurrent cohort was 0.631, and
0.638, respectively (Supplementary Figure S5C). Meanwhile, the
verification of the recurrent LGG cohort using the calibration plot
was not satisfactory (Supplementary Figures S5D,E).
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FIGURE 3 | Development of risk score based on the six immune-related gene signature of patients with primary LGG in TCGA. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with primary LGG in the TCGA cohort. (B) ROC curve with an AUC of 0.914, indicating
that risk score plays a significant performance in the efficacy of this diagnosis. (C) Heatmap demonstrating the distribution of the six immune-related gene
expression in the TCGA cohort. (D) Risk plot presenting each point sorted based on risk score, representing one patient. Blue, and red represent patients with low-
and high-risk, respectively.
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FIGURE 4 | Construction of prognostic signature in primary LGG from TCGA. Univariate (A) and multivariable Cox proportion hazard regression for OS (B) of primary
LGG in training group. (C) A nomogram consisting of risk score and other clinical indicators for predicting 3-, and 5-year OS of primary LGG. (D) Time-dependent
ROC for 3-, and 5-year OS predictions for the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3-year (E),
and 5-year (F) overall survival of patients. Blue line indicates actual survival.
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FIGURE 5 | Internal validation of prognostic signature in primary LGG from
TCGA. (A) Time-dependent ROC curve based on the six genes based risk
score for 3-, and 5-year OS probability in the internal validation cohort.
Calibration plot for internal validation of 3-year (B), and 5-year (C) OS of
patients.

The Association Between Risk Score and
Clinicopathological Parameters
Subsequently, we analyzed the relationship between the six-
gene signature and clinicopathological parameters (age, gender,
grade, radiotherapy, chemotherapy, and IDH mutation status)
in LGG. In terms of grade and IDH status, patients of grade
III or of the IDH wild type had higher risk scores than those
with grade II or of the IDH mutant type, consistent with the
findings in patients with primary LGG from CGGA. Moreover,
data of patients with primary glioma from TCGA revealed that
older patients had significantly higher risk scores than those of
younger. Risk scores were also comparable across recurrent LGG
in CGGA, with results revealing a preference for higher levels
of risk scores in males. However, no significant difference was
observed between the IDH wild and mutant groups in recurrent
LGG (Supplementary Figures S6A,C).

Correlation of the Risk Score With
Tumor-Infiltrating Immune Cells
By applying the CIBERSORTx algorithm to RNA-seq data,
the relative proportions of 22 immune cell subsets of LGG
were acquired. Consecutively, 432 cases of primary LGG in
the TCGA dataset, 351 cases of primary LGG in the CGGA
dataset were enrolled for further analysis after the filter criteria
with P value < 0.05 via CIBERSORTx algorithms. As shown
by bar plot in Figure 7A, the abundance of the 22 infiltrative
immune cells by using CIBERSORTx were significantly different
between high-risk and low-risk groups in primary LGG cohorts.
Among them, the macrophage M2 was the most significant
enrichment of immune cells. Subsequently, as shown in the
box plots (Figure 7B), the infiltration levels of CD8+T cells,
resting memory CD4+T cells, follicular helper T cells, regulatory
T cells, activated NK cells, monocytes, macrophages (M0, M1,
M2), activated DCs, resting mast cells, and neutrophils were
significantly higher in high-risk group than that in low-risk
group. On the contrary, the infiltration levels of naïve CD4+T
cells, and resting DCs were significantly higher in low-risk
group. The differential abundance of the 22 infiltrative immune
cells were summarized in Table 2. Furthermore, to validate the
infiltrative abundance of immune cells in CIBERSORTx, the
TIMER database was enrolled. As shown in Figure 7C, the B cells,
CD4+T cells, CD8+T cells, DCs, macrophages, and neutrophils
were all significantly higher in the high-risk group. To further
investigate the prognostic values of the infiltrative immune
cells, the univariate Cox proportion hazard regression models
were applied. Results from Cox regression analysis showed that
high abundance of Tregs, neutrophils, M2-type macrophages
were significantly associated with unfavorable survival outcome
(P < 0.001, P < 0.001, P = 0.012, respectively). Conversely, high
abundance of macrophage M1 (HR = 0.203, P < 0.001), and
activated DCs (HR = 0.416, P < 0.001) were identified as the
protective factors in primary LGG (Figure 7D).

In addition, we also investigated the differential expressions of
the T-cells activated and inhibitory receptors, and macrophage
associated molecules between the high and low risk groups.
As shown in Supplementary Figure S7, the T cells activation
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FIGURE 6 | External validation of the six gene signature in primary LGG inform the CGGA dataset. (A) Kaplan-Meier survival curves of the six gene signature of
patients with primary LGG in the CGGA cohort. (B) ROC curve for assessing diagnostic competence of the risk score in the CGGA cohort. (C) ROC curves for 3-,
and 5-year OS predictions for the six gene signature in the external validation cohort. Calibration curves for predicting probabilities of 3-year (D), and 5-year (E) OS
of patients in external validation.
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FIGURE 7 | Correlation of the risk score with infiltrative immune cells. (A) Barplot showing the percentages of 22 infiltrative immune cells calculated by CIBERSORTx
between high-and low-risk groups in primary LGG from TCGA and CGGA cohorts (high-risk, 232 samples; low-risk, 551 samples); (B) Boxplot showing the
differential abundance of 22 infiltrative immune cells calculated by CIBERSORTx between high-and low-risk group in primary LGG; (C) Boxplot showing the
differential abundance of six infiltrative immune cells by TIMER database between high-and low-risk group in primary LGG; (D) Forest plot of hazard ratios
demonstrating the prognostic values of 22 immune cells calculated by CIBERSORTx in primary LGG. The dash line was used to mark the location of HR = 1. The
red box represents the adverse prognostic factor,and the blue box represents the favorable prognostic factor.
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TABLE 2 | The differential abundances of 22 infiltrative immune cell types between
high-and low-risk groups of with primary LGG as calculated by CIBERSORTx.

Mean Mean

Immune cell type (high risk) (low risk) Difference P value

B cells naive 0.050 0.045 0.005 0.126

B cells memory 0.021 0.018 0.003 0.819

Plasma cells 0.015 0.007 0.008 0.179

T cells CD8 0.073 0.035 0.037 0.000

T cells CD4 naive 0.007 0.010 −0.003 0.001

T cells CD4 memory resting 0.107 0.083 0.024 0.001

T cells CD4 memory activated 0.011 0.006 0.004 0.539

T cells follicular helper 0.040 0.034 0.007 0.001

T cells regulatory (Tregs) 0.008 0.005 0.003 0.016

T cells gamma delta 0.016 0.007 0.009 0.167

NK cells resting 0.029 0.030 −0.001 0.298

NK cells activated 0.040 0.030 0.009 0.009

Monocytes 0.170 0.153 0.017 0.033

Macrophages M0 0.025 0.007 0.018 0.000

Macrophages M1 0.024 0.010 0.013 0.000

Macrophages M2 0.415 0.306 0.109 0.000

Dendritic cells resting 0.015 0.017 −0.003 0.001

Dendritic cells activated 0.006 0.005 0.000 0.000

Mast cells resting 0.055 0.039 0.015 0.021

Mast cells activated 0.069 0.054 0.015 0.170

Eosinophils 0.020 0.017 0.003 0.673

Neutrophils 0.016 0.011 0.005 0.001

associated genes containing CD40L, GITR, 4-1BB, OX40, CD27,
ICOS, and CD28 were significant higher in high-risk group. T
cells inhibition associated genes containing CTLA4, PD-L1, PD-1,
CD80, CD244, TIM3, BTLA, CD160 were also significant higher
in high-risk group. Moreover, macrophage chemo-attractant
and phagocytosis related genes containing CSF1, CSF1R, CCL2,
CCR2, andCXCR4were also significant higher in high-risk group.

Six Genes Based Signature Expression
Analysis in Databases
The expression of the six genes were queried from CCLE14.
Results were sorted according to tumor type. The mRNA
expression of CANX, HSPA1B, PSMC6, and TAP1 was high
in gliomas, whereas that of KLRC2 was low (Supplementary
Figures S8A–F). The expression of the six genes in 14 LGG cell
lines is illustrated in Table 3. The Human Protein Atlas database
was used to explore the protein expression levels of these six genes
and results are shown in Supplementary Figure S9.

DISCUSSION

Emerging evidence has demonstrated that the immune
microenvironment plays an essential role in tumor biology,
and recently, numerous inspiring clinical trials have established
the role of immunotherapy in gliomas. Thus, immune related
biomarkers show great potential in risk stratification and in

14https://portals.broadinstitute.org/ccle

exerting prognostic value. In previous studies, immune-gene
related signatures have been identified as independent prognostic
factors in several solid tumors (Ascierto et al., 2012; Kim et al.,
2018; Shen et al., 2019; Yang et al., 2019), revealing that the
immune status and local immune response could be illustrated
by the risk signatures employed. However, the prognostic
value and the association between immune status and risk
signatures have not been fully elucidated in LGG. In the current
study, 277 immune-related DEGs were identified. After Lasso
regression and multicox analysis, six immune genes (CANX,
HSPA1B, KLRC2, PSMC6, RFXAP, and TAP1) were identified
as components of the risk signature to divide LGGs into low-
and high-risk groups. Subsequently, KM curve, ROC curve
and risk plot analyses verified that the six-based risk signature
performs well in stratifying the risk groups of primary LGG
in TCGA and CGGA datasets. Furthermore, in univariable
analysis, the risk group, age, grade, radiation therapy and IDH
status exhibited their predictive value regarding OS in primary
LGG. Correspondingly, in multivariable stepwise cox regression
analysis, with the exception of radiation therapy showing
borderline significance, all other factors retained their prognostic
values. Consecutively, it was found that the prognostic signature
showed fair accuracy regarding the 3- and 5-year OS in the
internal (TCGA) and external (CGGA) validation cohorts.
However, predictive performance was poor in the recurrent
LGG cohort.

At first, it was shown that the IRG-based risk signature could
function as a proper index in stratifying risk groups in LGG.
Similar to our study, Shen et al. (2019) also found that an
immune gene based signature could significantly stratify patients
into different risk groups in ovarian cancer. Correspondingly,
another study also revealed that the immune-related gene
signature was capable of stratifying patients into responder and
non-responder groups in human breast cancer, with the odds
ratios of the immune-related risk signature making it the most
significant predictor of pathological complete remission (odd
ratio: 4.6, 95% confidence interval: 2.7 to 7.7, P < 0.001) (Sota
et al., 2014). Second, we found that the risk group, age, grade,
radiation therapy and IDH status had predictive values for OS
in primary LGG. According to National Comprehensive Cancer
Network guidelines, the prognostic values of age (≤40 years
vs. >40 years), tumor grade (II vs. III), and IDH status (wild-
type vs. mutation) have been well-established in clinical practice
(National Comprehensive Cancer Network, 2019). Compared
with the above mentioned well-established clinicopathological
prognostic factors, the risk group remained an independent
prognostic value in univariate and multivariate cox regression
analysis. In accordance with the present findings, Qian et al.
(2018) also found that patients identified as high-risk by the IDH
associated immune signature exhibited unfavorable prognosis
in LGGs. The prognostic value of the local immune signature
was also verified in glioblastomas. Risk scores were significantly
associated with poor OS and progression-free survival (Cheng
et al., 2016). Surprisingly, receiving or not radiation therapy was
associated with OS in univariate analysis, but the relationship was
borderline significant in multivariate analysis. In addition, the
prognostic value of chemotherapy was also insignificant in our
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TABLE 3 | List the expression of the six genes in 14 LGG cell lines.

Gene expression (TPM)

Cell lines CANX HSPA1B KLRC2 PSMC6 RFXAP TAP1 RRID

H4 448.522 22.6035 0.0220068 15.7311 2.2642 34.2997 CVCL_1239

HS683 355.23 15.2679 0.278926 14.4031 3.26084 51.7626 CVCL_0844

KG1C 363.096 13.9961 0.113268 18.5451 3.64382 26.4942 CVCL_2971

LN215 288.476 26.108 2.48677 14.8853 4.68699 87.4974 CVCL_3954

LN235 235.629 27.8249 0.0447866 17.1381 4.57199 19.3359 CVCL_3957

LN319 271.245 21.0797 0 20.656 3.41301 17.9863 CVCL_3958

LNZ308 169.63 17.2783 0 22.7476 3.24888 17.519 CVCL_0394

NMCG1 264.062 16.9103 0.0049317 14.6614 2.81961 37.3184 CVCL_1608

SF268 272.357 27.68 0.0245476 9.43665 1.16183 31.9634 CVCL_1689

SNU738 144.254 17.2946 0.0770556 12.636 1.80947 31.244 CVCL_5087

SW1088 290.749 23.2654 0.0473503 17.416 4.36785 29.0014 CVCL_1715

SW1783 351.565 27.6688 0.0224892 18.6383 2.55953 33.8329 CVCL_1722

TM31 134.804 7.78124 0.0414412 21.8484 5.08505 60.5928 CVCL_6735

U178 220.836 8.10508 0.552537 17.0014 1.73231 37.2859 CVCL_A758

analysis. Our result is likely to be related to the undefined timing
of radiation therapy (postoperative or palliative treatment), and
differences in radiation dose or frequency. To our knowledge,
numerous trials have investigated the prognostic values of
chemotherapy and radiotherapy in gliomas, as well as their
significant contribution in improving survival. The RTOG 9802
trial evaluated radiotherapy followed by adjuvant procarbazine,
CCNU, and vincristine (PCV) chemotherapy in 251 patients with
low-grade glioma and showed an improvement in median OS
with the addition of PCV from 7.8 to 13.3 years (HR = 0.59;
P = 0.002) (van den Bent, 2014). In the CATNON trial, the
5-year survival in patients with anaplastic glioma receiving
combined chemo-radiotherapy was significant higher than that in
patients receiving radiotherapy alone (55.9 vs. 44.1%, HR = 0.65;
P = 0.0014) (van den Bent et al., 2017). The lack of prognostic
values of chemotherapy and radiotherapy in our study, might be
owing to several reasons: (1) undefined chemotherapy strategy
(pre-radiotherapy or concurrent or adjuvant chemotherapy);
(2) undefined chemotherapy regimens in the TCGA datasets;
(3) undefined radiation regimens (postoperative or palliative
treatment strategy, differences in radiation dose or frequency).
Therefore, new trials are encouraged to further develop and verify
our risk signature in standard treatment cohorts.

Emerging evidence have confirmed the prognostic values of
immune genes in various cancers (Patel et al., 2013; Surmann
et al., 2015; Yang et al., 2015; Ling et al., 2017; Ding et al., 2018).
In current study, six IRGs were identified as the risk signature.
Among them, CANX, HSPA1B, and TAP1 were shown to be
risk-associated genes, whereas KLRC2, PSMC6, and RFXAP were
identified as protective genes. They have been reported to be
involved in the regulation of immune response. Calnexin, an
essential endoplasmic reticulum (ER) chaperone protein, plays
a vital role in the synthesis of HLA class I surface antigen
complex. Calnexin was revealed to inhibit the proliferation and
activation of CD4+T and CD8+T cells, and it may impair
the function of T cells by upregulating the expression of PD-
1 in oral squamous cancer (Chen et al., 2019). Consistent

with our results, it was found that decreased expression of
CANX was associated with favorable survival outcome (Patel
et al., 2013) and served as a biomarkers for tumor response
in glioblastoma (Demeure et al., 2016). TAP1, an essential
component of the major histocompatability complex (MHC)
class I antigen-presenting pathway. It was found to be associated
with tumor immune escape and prognosis (Leone et al., 2013).
Ling et al. (2017) found that the expression of TAP1 was
significantly associated with infiltrative general T cells (CD3+),
CD8+ cytotoxic T cells, M1-type macrophages, and M2-type
macrophages, and the expression of TAP1 could serve as an
independent prognostic factor in colorectal cancer. In term
of HSP70, encoded by HSPA1B, has emerged as a promising
antitumor target in various cancer. Recently, it is also revealed
that HSP70 may serve as a diverse immunoregulatory factors
by acting as a cytokine in antigen presentation, DC maturation,
the activities of NK cells, and myeloid-derived suppressor cells
(Jego et al., 2019). Correspondingly, it was illustrated that up-
regulation of HSPA1B was associated with poor outcomes in
hepatocellular carcinoma (Yang et al., 2015). Comparatively,
the investigations of KLRC2 in cancer research is rare. To our
knowledge, as a transmembrane activating receptor in NK cells,
KLRC2 is expressed in most NK cells and subsets of CD8+T
cells (Wischhusen et al., 2005; Borrego et al., 2006). PSMC6, as
a critical component of 26S-proteasome complex, involving in
numerous pathways: antigen presentation (Livneh et al., 2016),
cell proliferation and migration (Guo and Dixon, 2016). Zhu
et al. (2018) demonstrated that PSMC6 may involve in the
downstream of silencing cat eye syndrome critical region protein-
1 in targeting the proliferation of TAM in glioma. RFXAP, as a
vital transcription factor for major histocompatibility complex
(MHC) class II. It was revealed to downregulate the expression
of MHC class II in DCs (Ding et al., 2015) and macrophages
(Wu et al., 2019), resulting inhibition of CD4+T cells infiltration
(Surmann et al., 2015). It was associated with survival outcomes
in solid tumors (Surmann et al., 2015; Ding et al., 2018). Overall,
the prognostic values of the six risk genes have been exploited
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in various cancers, and their contribution to immune regulations
were mainly concentrated on antigen presenting cells and effector
T lymphocytes. Hence, further investigation is warranted to
illustrate the correlations between risk groups and infiltrative
immune cells in primary LGG.

The immune microenvironment has been identified as playing
a critical role in tumor biology (Hanahan and Weinberg,
2011). Numerous studies have exploited the critical roles of
infiltrative immune cells in glioma (Perus and Walsh, 2019; Wang
et al., 2020). In current study, it was found that the M2-type
macrophage was significantly enriched in primary LGG. Despite
the glioma was defined as “cold tumor” with very little infiltrative
immune cells, the proportions of macrophage can still constitute
up to 30–50% in the TME of glioma (Guadagno et al., 2018).
Additionally, the predictive values of immune cells have been
extensively investigated. It was demonstrated that high levels
of M2-type macrophages (marked as CD204 or CD206) (Ding
et al., 2014), neutrophils (Liang et al., 2014), Tregs (Iwata et al.,
2019) were defined as the adverse prognostic factors in glioma.
Conversely, high levels of M1-type macrophages (Ding et al.,
2014), CD8+T cells (Kmiecik et al., 2013) were identified as
protective factors in glioma. Likewise, our results also revealed
that elevated abundance of M2-type macrophages, neutrophils,
and Tregs were associated with adverse survival outcomes. On
the contrary, increased abundance of M1-type macrophages, and
CD8+T cells were associated with favorable survival outcomes.
As mentioned above, the six risk genes can not only have intrinsic
roles in tumor growth and apoptosis (i.e., Guo and Dixon,
2016; Chen et al., 2019; Jego et al., 2019), but also serve as the
immune-regulatory factors via antigen-presenting cells (APCs)
and effector T lymphocytes (Borrego et al., 2006; Surmann et al.,
2015; Ling et al., 2017; Zhu et al., 2018; Chen et al., 2019; Wu et al.,
2019). Hence, it is worthwhile to explore the relationship between
the risk groups and infiltrative immune cells in primary LGG.
Interestingly, it was found that the abundance of macrophages,
activated DCs, NK cells, CD8+T cells were significantly higher,
while that of naïve CD4+T cells were significantly lower in
high-risk group. Moreover, our results also demonstrated that
high riskscores were associated with aggressive tumor subtypes,
rapid proliferation and shorter survival time. Therefore, we
hypothesized that malignant proliferation in high-risk patients
may be accompanied with elevated tumor mutation burden
and increased necrosis and apoptosis, which lead to continuous
exposure of neoantigens and subsequent activation of the
immune response. Consequently, high levels of infiltrative APCs
and effector cells (including NK, CD4+T, and CD8+T) were
observed in TME of primary LGG. Correspondingly, our results
in Supplementary Figure S6 also illustrated that macrophage
associated chemo-attractant molecules and T cell activating
receptors were significant higher in high-risk group. Meanwhile,
as a compensation response to increased immune activation
(Perus and Walsh, 2019), the expressions of inhibitory molecules
containing CTLA-4, PD-1, PD-L1, TIM-3, etc. (Wherry and
Kurachi, 2015) were relatively higher in high-risk group.
Noteworthy, it is necessary to clarify the positive relationship
between riskscores and increased infiltrative immune cells. The
aggressive phenotypes determined by the dysregulation of the

six risk genes was fluctuated with the proportions of immune
cells in TME, indicating that these genes may involve in the
process of neoantigen presence and trigger the immune response.
Considering that tumor cell is the large group of the antigen-
presenting cells, 14 LGG cells lines were employed to validate
the expression of six risk genes. It is obvious that all the six risk
genes were commonly expressed, even some were high expressed
in LGG cell lines. Further in vivo and in vitro experiments are
warranted to investigate the mechanisms of six genes in LGG and
the communications with immune cells in TME.

Our study, however had several limitations that should be
addressed. First, because of the retrospective design and despite
strict inclusive and exclusive criteria, selection and recall bias
are unavoidable; Second, due to lack of complete chemotherapy
and radiotherapy regimens in the current study, their prognostic
values could not be fully elucidated. Third, although the 1p19q
codeletion status constitutes a vital prognostic factor in clinical
practice, such information was unavailable in the TCGA datasets
and hence, was not employed in our prognostic signature. Fourth,
although the six-based genes risk signature indicated a fair
predictive ability for 5-year survival, more key factors are still
needed to be brought into analysis. This is owing to the poor
performance in predicting the survival outcome in recurrent
LGG. Thus, it is reasonable to aim to utilize more factors into
building a prognostic model that could enable risk stratification
of recurrent LGG. Fifth, as molecular mechanism have not been
investigated in the current study, it is necessary to explore the
underlying mechanisms behind the risk scores and poor survival
outcomes of LGG in further in vitro or in vivo experiments. Sixth,
the “sva” package was applied in current study to remove the
batch effects of Level 3 data from TCGA and GTEx. Despite the
two groups separated obviously, however, several outliers can be
found in the PCA plots. It should be noted that the reasons of
several outliers may be caused by the insufficient batch effect
removal of Level 3 data by “sva” (Wang et al., 2018) or others such
as different parts of brain tissues or lacking reference of normal
controls in TCGA, all of them warranting further investigations.

CONCLUSION

In this study, we demonstrated that a six immune-related genes
based risk signature might be effective in risk stratification and in
serving as an independent prognostic factor of the overall survival
in patients with primary LGG. Further in vitro and in vivo
experiments are warranted to explore the underlying mechanisms
behind immune genes and survival outcome in primary LGG.
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FIGURE S1 | The flowchart of the project.

FIGURE S2 | The normalization and batch effect removal from TCGA and GTEx
datasets. (A) Box plots illustrated the data distributions from TCGA and GTEx
datasets before normalization. (B) PCA plot illustrated the cluster of the samples
from TCGA and GTEx datasets before batch effect removal. (C) Box plots
illustrated the data distributions from TCGA and GTEx datasets after
normalization. (D) PCA plot illustrated the cluster of the samples from TCGA and
GTEx datasets after batch effect removal.

FIGURE S3 | (A) Heatmaps showing that the 5,490 differentially expressed genes
(DEGs) can effectively distinguish tumors from non-tumor tissues after integrated
analysis. (B) Volcano plot presenting DEGs between LGG and non-tumor tissues.
Red dots, and green dots represent up-regulated genes, and down-regulated
genes, respectively.

FIGURE S4 | Schoenfeld residual plots showing P value of all factors were
greater to 0.05.

FIGURE S5 | Investigating the application of six genes based signature in
recurrent LGG. (A) Kaplan-Meier plot for overall survival based on risk score of the
six gene based signature of recurrent LGG patients in CGGA cohort. (B) ROC
curve based on the risk score for diagnostic competence verification of recurrent
LGG patients in CGGA cohort. (C) Time-dependent ROC curve based on the six
genes based risk score for 3-, and 5-year overall survival probability of recurrent
LGG patients in CGGA cohort. Calibration curve for predicting probabilities of
patients’ 3-year (D), and 5-year (E) overall survival of recurrent LGG
patients in CGGA cohort.

FIGURE S6 | Association between risk score and clinical-pathological
parameters. Association between risk score and age, gender, grade, radiotherapy,
chemotherapy, and IDH mutation status of primary LGG patients in TCGA cohort
(A), in CGGA cohort (B), while patients of recurrent LGG patients in CGGA cohort
are shown in (C).

FIGURE S7 | The differential expressed T cell associated activated and inhibitory
genes, macrophage chemo-attractant and phagocytosis related genes between
high and low risk groups in primary LGG.

FIGURE S8 | Expression data were sorted by the tumor type. The expression of
the CANX (A), HSPA1B (B), KLRC2 (C), PSMC6 (D), RFXAP (E), and TAP1 (F) in
Cancer Cell Line Encyclopedia.

FIGURE S9 | Number of patients with staining (A). The typical protein expression
of six genes of immunohistochemistry (IHC) images in LGG tissue and paired
non-tumor samples (B). Data was queried from the human protein atlas
(https://www.proteinatlas.org/).
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The identification of essential proteins can help in understanding the minimum

requirements for cell survival and development. Ever-increasing amounts of

high-throughput data provide us with opportunities to detect essential proteins

from protein interaction networks (PINs). Existing network-based approaches are limited

by the poor quality of the underlying PIN data, which exhibits high rates of false positive

and false negative results. To overcome this problem, researchers have focused on the

prediction of essential proteins by combining PINs with other biological data, which has

led to the emergence of various interactions between proteins. It remains challenging,

however, to use aggregated multiplex interactions within a single analysis framework to

identify essential proteins. In this study, we created a multiplex biological network (MON)

by initially integrating PINs, protein domains, and gene expression profiles. Next, we

proposed a new approach to discover essential proteins by extending the random walk

with restart algorithm to the tensor, which provides a data model representation of the

MON. In contrast to existing approaches, the proposed MON approach considers for

the importance of nodes and the different types of interactions between proteins during

the iteration. MON was implemented to identify essential proteins within two yeast PINs.

Our comprehensive experimental results demonstrated that MON outperformed 11

other state-of-the-art approaches in terms of precision-recall curve, jackknife curve, and

other criteria.

Keywords: identification of essential proteins, protein interaction network, tensor, multiplex biological networks,

random walk, Markov chain, gene expression, yeast

INTRODUCTION

Essential proteins are necessary for the survival of living organisms. The identification of essential
proteins can help us to understand the basic requirements of living organisms, and it can also
play an important role in drug design (Dubach et al., 2017), genetic disease diagnosis (Zeng
et al., 2017), and drug synergy prediction in cancers (Li et al., 2018). Traditional experimental
approaches, such as gene knockouts (Narasimhan et al., 2016), RNA interference (Inouye, 2016),
and Knockout Sudoku (Baym et al., 2016), are time-consuming and costly. Over the last few
decades, high-throughput technologies have produced a tremendous amount of protein interaction
network (PIN) data that provide us with new opportunities to detect essential proteins through
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the use of computational approaches. A number of network
topology-based centrality approaches have been proposed to
predict essential proteins, and these approaches include Degree
Centrality (DC) (Hahn and Kern, 2004), Information Centrality
(IC) (Stephenson and Zelen, 1989), Closeness Centrality
(CC) (Wuchty and Stadler, 2003), Betweenness Centrality
(BC) (Joy et al., 2005), Subgraph Centrality (SC) (Estrada
and Rodriguez-Velazquez, 2005), and Neighbor Centrality
(NC) (Wang et al., 2011).

Unfortunately, these approaches are often plagued by noise
and errors, which can result in biases and low confidence in
protein–protein interaction (PPI) networks. To provide accurate
prediction results, the integration of different types of biological
data has become an important and popular strategy. A number
of approaches have been developed to facilitate the prediction of
essential proteins by combining PINs with multisource biological
data. For example, Gene Ontology (GO) annotations were
used as a bioinformatics tool to predict essential proteins in
several single-cell PINs, such as those from Escherichia coli,
Saccharomyces cerevisiae, and Drosophila melanogaster (Hsing
et al., 2008). A prediction model called integrating orthology
with PPI network (ION) (Peng et al., 2012) was proposed to
infer essential proteins by integrating orthologous information
and the topological characteristics of PINs. In the United
complex Centrality (UC) (Li et al., 2015) method, protein
complexes were also combined with the topological features of
PINs to detect essential genes. After analyzing the correlations
between domain characteristics and essential proteins, Peng et al.
(2015) designed an approach named unite domain and network
centrality (UDoNC) for the prediction of essential proteins in
yeast PINs. Li et al. (2012) and Zhang et al. (2013) developed two
types of prediction models called prediction of essential proteins
centrality (PeC) and co-expression weighted by clustering
coefficient method (CoEWC) to infer essential proteins by
fusing gene expressions and topological characteristics of PINs,
respectively. In our previous studies, we proposed a prediction
method called predictive model based on overlapping essential
modules (POEM) (Zhao et al., 2014) to measure the essentiality
of proteins by detecting overlapping essential modules based on
the modularity of essential proteins. Lei et al. (2018) designed a
method called AFSO_EP for the prediction of essential proteins
based on the artificial fish-swarm algorithm. In this method,
the network topology, gene expression, GO annotation, and
subcellular localization information were utilized. ZhangW. et al.
(2019) proposed a new method to discover essential proteins,
named predicting essential proteins by integrating network
topology, expression profile, GO annotation and subcellular
localization (TEGS), based on integrating network topology, gene
expression profiles, GO annotation information, and protein
subcellular localization information. In the fusing the dynamic
PPI networks (FDP) approach Zhang F. et al. (2019), active PINs
were constructed first and then they were fused into a final
network according to the networks’ similarities. Finally, a new
approach for identification of essential proteins was proposed by
considering orthologous property and topological properties in
the network.

A common characteristic and limitation of these approaches,
however, is that they complete the prediction of essential

proteins using only a single network of relationships between
proteins. Currently, PINs are not the only large-scale network
datasets, as protein–DNA interactions and signaling-regulatory
pathway interaction data are also stored in dedicated databases
(Valdeolivas et al., 2019). Additionally, other interactions such
as the co-expression network established from gene expression
profiles and the co-annotation network constructed from GO
annotations can be derived. Each interaction data source has
its own meaning or relevance and can play a different role in
the prediction of essential proteins. These approaches mentioned
above classically aggregated multiple interaction networks into
a single and unique network, which tends to dismiss the
topologies and features of the individual interaction networks.
The convention of representing different types of interactions
in a system with a single type of link is no longer a panacea
for network science (De Domenico et al., 2015). The multiplex
network offers us an alternative, in that it is a collection of
networks sharing the same nodes; however, the edges belong
to different categories or represent interactions of different
natures (Didier et al., 2015). More recently, various applied
studies have been adapted to multiplex networks. Valdeolivas
et al. (2019) extended the Random walk algorithm to multiplex
networks by building an nL × nL heterogeneous matrix in
which n and L represent the number of nodes and layers of the
multiplex network, respectively. Wang et al. (2018) compressed
the multiple networks into two feature matrices and performed
conserved functional modules detection by multi-view non-
negativematrix factorization. In a newly proposed link prediction
algorithm (Samei and Jalili, 2019) for multiplex networks,
both intra-layer information and inter-layer information are
combined based on layer relevance. In our previous work, we
constructed a multilayer protein network and applied it for the
detection of protein complexes (Li et al., 2016) and for the
prediction of protein functions (Zhao et al., 2016a). In this
study, we propose a tensorial framework to represent the newly
constructed multiplex biological network, and we aim to apply
it for the identification of essential proteins by extending the
random walk with restart algorithm. Our experimental results
demonstrated that our proposed MON approach outperformed
six types of centrality approaches, including DC (Hahn and
Kern, 2004), IC (Stephenson and Zelen, 1989), CC (Wuchty and
Stadler, 2003), BC (Joy et al., 2005), SC (Estrada and Rodriguez-
Velazquez, 2005), and NC (Wang et al., 2011) and five types of
network topological features and biological data sources fusion-
based approaches such as PeC (Li et al., 2012), CoEWC (Zhang
et al., 2013), POEM (Zhao et al., 2014), ION (Peng et al., 2012),
and FDP (Zhang F. et al., 2019).

MATERIALS

To estimate the performance of MON, we used it to identify
essential proteins in the PIN of Saccharomyces cerevisiae that
was derived from the database of interacting proteins (DIP)
(Xenarios et al., 2002) and Gavin datasets (Gavin et al., 2006).
The PINs from Saccharomyces cerevisiae, which have been well-
characterized by a number of studies, are the most complete and
comprehensive. After removing self-interactions and repeated
interactions, the DIP dataset finally obtained 5,093 proteins and
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TABLE 1 | Details of two yeast protein interaction networks.

Dataset Proteins Interactions Essential

proteins

Expressed

proteins

DIP 5,093 24,753 1,167 4,985

Gavin 1,855 7,669 714 1,927

24,743 interactions, and the Gavin dataset consisted of 1,855
proteins and 7,669 interactions. The domain data for building
the multiplex biological network was downloaded from the Pfam
database (Punta et al., 2011). The gene expression profile (Tu
et al., 2005) of the yeast was derived from GSE3431 in the GEO
(Gene Expression Omnibus) that contained the expression values
of 6,776 genes at 36 moments, where 4,985 and 1,827 of these
genes were located in the DIP and Gavin PINs, respectively. The
gene coverage rates of the two PINs in gene expression profile
were all >95% (DIP: 4,985/5,093 = 97.88%, Gavin: 1,827/1,855
= 98.49%). Information on orthologous proteins was obtained
from the InParanoid database (Östlund et al., 2009) (Version 7)
that consisted of a collection of pairwise comparisons between
100 whole genomes. A benchmark set of essential proteins from
Saccharomyces cerevisiae that consisted of 1,285 essential proteins
was derived from the MIPS (MIPS: analysis and annotation of
proteins from whole genomes in 2005) (Mewes et al., 2006),
saccharomyces genome database (SGD) (Cherry et al., 2011),
and database of essential genes (DEG) (Zhang and Lin, 2008)
databases. Among the 5,093 proteins in the DIP network, 1,167
proteins were essential and 3,526 proteins were non-essential.
In the Gavin dataset, the number of essential proteins and non-
essential proteins was 714 and 1,141, respectively.Table 1 lists the
details of the two yeast PINs.

METHODS

The outline for the entire MON approach includes (1)
establishing a multiplex biological network by integrating the
topology of PINs, protein domains, and gene expression profile,
(2) extending the random walk with restart algorithm to the
tensor model corresponding to the multiplex biological network,
and (3) sorting proteins in descending order, with the top K
of these proteins being exported. The flowchart for the MON
approach is provided in Figure 1.

Construction of Multiplex Biological

Networks
For our purpose, we consider a multiplex biological network G
= (G1, G2,. . . , GL), where Gi

= (V, Ei) represents the network of
the layer of i. V = {v1, v2,..., vn} is a set of sharing proteins for all
layers in G, and Ei = {ei1, ei2,..., eim} is a set of interactions at i-th
layer in the multiplex biological network G.

In this study, we constructed a multiplex biological network
G = (G1, G2, G3) by integrating PINs, gene expression profiles,
and protein domain information. In the first layer, a co-neighbor
network (CN) was established through the analysis of the
topology characteristics of PINs, while in the second layer, a co-
structure network was constructed according to the correlation
analysis based on the protein domain information. In the third

layer, a co-expression network was related to the property of
co-expression derived from time course gene expression profiles.

Co-neighbor Network G1

The CN was established by exploring common neighbors
between pairs of proteins. Intuitively, the greater number of
common neighbors that the two proteins possess, the more
credible the interactions between these two proteins will be. If
two proteins pi and pjinteract with each other in PINs and share
at least one common neighbor, they will connect to each other
within the CN. The weight of interaction between pi and pj can
be calculated by the following formula:

e1(i, j) =

{
|Ni

⋂
Nj|

2

(|Ni|−1)×(|Nj|−1)
, if |Ni

⋂
Nj| > 0

0 , otherwise
(1)

where Ni and Nj represent the direct neighbors set of pi and pj,
respectively, and Ni ∩ Nj denotes the common neighbors set for
protein pi and protein pj.

Co-structure Network G2

Domains are sequential and structural motifs that are found
independently in different proteins and act as the stable
functional blocks of proteins. Based on this, we created the co-
structure network based on data from protein domains. First,
we analyzed the importance of proteins relative to the domains
based on the association between proteins and domains. Given a
protein pi, its domain score P_D can be calculated as follows:

P_D(Pi) =

|D|∑

j=1

1

NPj
× tij (2)

In Equation (2),D is a list of distinct categories of domains related
to all proteins. NPj is the number of proteins that contain the
domain dj. If the protein pi contains the domain dj, tij is assigned
the value of 1. Otherwise, tij is set to 0. Finally, the P_D score of
pi can be normalized and calculated as follows:

P_D(pi) =

P_D(pi)− min
1≤j≤|P|

(P_D(pj))

max
1≤j≤|P|

(P_D(pj))− min
1≤j≤|P|

(P_D(pj))
(3)

From the above equation, we can easily determine that the value
of P_D falls into the interval [0, 1]. From this perspective, the
P_D score of a protein can be interpreted as its probability
of becoming an essential protein. Moreover, previous studies
(Stephenson and Zelen, 1989) have indicated that essential
genes or proteins tend to form essential modules through their
interactions. We assumed that the essential probabilities of
proteins mentioned above were independent of each other. The
probability (or weight) of interaction between two proteins pi and
pj in the co-structure network can be calculated as follows.

e2(i, j) = P_D(pi)× P_D(pj) (4)
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FIGURE 1 | The flowchart of MON method. A multiplex biological network G = (G1, G2, G3) is constructed with integration of protein interaction networks (PINs), gene

expression profile, and protein domain information, firstly. And then, a restart vector is established according to orthologous proteins and module scores of proteins.

Based on these, the random walk with restart algorithm is applied to score and rank essential proteins.

Co-expression Network G3

The Pearson’s correlation coefficient (PCC) was adopted to
evaluate the co-expression probability of a pair of proteins based
on gene expression profiles. Let g(pi, j) denote the expression
value of the gene pi at the j-th time point, and then for a pair of
genes pi and pj, the correlation between them can be calculated
as follows:

PCC(pi , pj) =
n

∑
g(pi , k)g(pj , k)−

∑
g(pi , k)

∑
g(pj , k)√

n
∑

g(pi , k)
2
− (

∑
g(pi , k))

2
√
n

∑
g(pj , k)

2
− (

∑
g(pj , k))

2
(5)

Two proteins were regarded as co-expressed if they
interacted with each other in the original PINs and their
correlation coefficient was not zero. The weight of interaction

between pi and pj in the co-expression network was
set to the absolute value of their correlation coefficient.
Specifically, e3 (i, j)= |PCC (pi, pj)|.

Random Walk With Restart on Multiplex

Biological Networks
To study the multiplex network systematically, it is
necessary to develop a precise mathematical model
and appropriate tools. In this paper, we represent the
newly constructed multiplex biological network G using
the tensor model and extend the random walk with
restart algorithm.
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Let T = (tijk) ∈ R
n×n×m denote the three-order adjacency

tensor corresponding to the multiplex biological network G =

(G1, G2, G3), where n and m are the number of proteins and
categories of interactions between proteins, respectively. Each
element of T is defined as follows:

tijk =

{
ek(i, j) , if (pi, pj) ∈ Ek

0 , otherwise
(6)

Here 1 ≤ i, j ≤ n, 1 ≤ k ≤ m (m = 3) and ek (i,
j) represents the weight of interaction between pi and pj
at the k-th layer. We can thus extend the random walk
with restart algorithm from a two-dimensional matrix to the
tensor for scoring proteins. Studies show that the structural
characteristics of different layers in multiplex networks are
indeed correlated to each other (Jalili et al., 2017). Based on
this, we propose that considering the importance of different
types of interactions can enhance the performance for the
discovery of essential proteins. Our statistics revealed mutually
reinforcing relationships between important or key nodes
with different types of links pointed to them in multiplex
biological networks. Let the vectors x = [x1, x2, . . . , xn]

T
∈

R
n and y = [y1, y2, . . . , yn]

T
∈ R

n denote important
scores of proteins and different categories of interactions
between proteins, respectively. We formally described the
relationships between x and y based on the tensor T using the
following equation:

x = f (T, x, y), y = g(T, x) (7)

The most critical task for us was to design reasonable functions
f and g and to calculate y and z, respectively. We now propose
the idea to define a higher-order Markov chain by normalizing
the tensor. This leads to two probability transition tensors T(1)

=

(t(1)ijk) ∈ R
n×n×l andT(2)

= (t(2)ijk) ∈ R
n×n×l that are calculated

as follows:

t
(1)
i,j,k

=






ti,j,k
n∑

i=1
ti,j,k

if
n∑

i=1
ti,j,k > 0

1/n otherwise

(8)

t
(2)
i,j,k

=






ti,j,k
m∑

k=1

ti,j,k

if
m∑
k=1

ti,j,k > 0

1/m otherwise

(9)

We can then easily obtain the following formulas:

0 ≤ t
(1)
i,j,k

≤ 1,

n∑

i=1

t
(1)
i,j,k

= 1 (10)

0 ≤ t
(2)
i,j,k

≤ 1,

m∑

k=1

t
(2)
i,j,k

= 1 (11)

Equations (8) and (9) can be interpreted as the transition
probabilities of two third-order Markov chains (Xt)t∈N and
(Yt)t∈N, respectively.

t
(1)
i,j,k

= P[Xt = i|Xt−1 = j,Yt = k] (12)

t
(2)
i,j,k

= P[Yt = k|Xt = i,Xt−1 = j] (13)

If the last state was the i-th node, then the next state is the j-th

node through the k-th type of interaction with probability t
(1)
i,j,k

.

Similarly, t
(2)
i,j,k

can be considered as the probability of selecting the

k-th type of interaction from the j-th node to the i-th node. For
the calculation of the random variables X and Y, the above two
equations are deduced according to the total probability formula
as follows:

P[Xt = i] =

n∑

j=1

m∑

k=1

t
(1)
i,j,k

× P[Xt−1 = j,Yt = k] (14)

P[Yt = k] =

n∑

i=1

n∑

j=1

t
(2)
i,j,k

× P[Xt = i,Xt−1 = j] (15)

P[Xt−1 = j,Yt = k] represents the joint probability distribution
of Xt−1 and Yt , and P[Xt = i,Xt−1 = j] denotes the joint
probability distribution of Xt−1 and Xt . Considering the steady
state of the Markov chain, we can obtain the following formulas:

xi = lim
t→∞

P[Xt = i], (1 ≤ i ≤ n) (16)

yk = lim
t→∞

P[Yt = k], (1 ≤ k ≤ m) (17)

It is very difficult to calculate X and Y due to their coupling
to each other and the observation that they contain two joint
probability distributions in Equations (14) and (15). In this study,
we assumed that the random variables X and Y were completely
independent of each other. Thereafter, we could obtain these
following formulas:

P[Xt−1 = j,Yt = k]=P[Xt−1 = j]P[Yt = k] (18)

P[Xt = i,Xt−1 = j]=P[Xt = i]P[Xt−1 = j] (19)

Based on the above assumption and the fact that t continues to
infinity, Equations (16) and (17) could be deduced as:

xi =

n∑

j=1

m∑

k=1

t
(1)
i,j,k

xjyk, i = 1, 2, . . . n (20)

yk =

n∑

i=1

n∑

j=1

t
(2)
i,j,k

xixj, k = 1, 2, . . .m (21)

Based on this, we designed the proper solutions for the functions
f and g. Therefore, the random walk with restart algorithm in the
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multiplex biological network case could be described as follows:

Xt = α × T(1)
× Xt−1Yt−1 + (1− α)× RV (22)

Yt = T(2)
× Xt

2 (23)

The restart vector, RV, represents the initial probability
distribution. α is the restart probability. The overall framework
of randomwalk with restart onmultiplex biological networks can
be illustrated by Algorithm 1.

Algorithm 1 | Random walk with restart in multiplex biological networks

Input: A multiplex biological network G; Restart vector RV; Stopping threshold ∂

Output: A vector representing the score of nodes X

Step 1. Construct two transition probability tensors T (1) and T (2) using Equations

(8) and (9)

Step 2. Initialize X0 = 1/n, Y0 = 1/m

Step 3. Let t = 1

Step 4. Calculate Xt = α × T (1)
× Xt−1 × Yt−1 + (1-α) × RV

Step 5. Calculate Yt = T (2)
× Xt

2

Step 6. If ||Xt - Xt−1 || + ||Yt -Yt−1 || < ∂, then let X = Xt, Y = Yt and terminate the

algorithm. Otherwise, let t = t + 1, and then go to Step 4.

Step 7. Output X

Identification of Essential Proteins
Thus far, the framework for assessing the importance of proteins
in multiplex biological networks has been established. Now,
we describe the MON approach that was designed for the
identification of essential proteins from multiplex biological
networks. Algorithm 2 details the MON approach.

Based on a user-specified output number of top-ranking
proteins, K, our approach first constructed the multiplex
biological network G by integrating PINs, gene expression,
and protein domains. Then, considering the conservative and

modular features of proteins, a vector DR = [dr1, dr2, . . . drn]
T

was initialized using the follow equation:

Algorithm 2 | MON

Input: A PIN network, protein domain, gene expression, ortholog data sets,

module scores of proteins, and parameter K

Output: Top K proteins sorted by pr in descending order

Step 1. Construct a multiplex biological network G according to Equations (1)–(5)

Step 2. Calculate initial vector DR

Step 3. pr = Algorithm1(G, dr, ǫ)

Step 4. Sort proteins by the value of pr in descending order

Step 5. Output top K of sorted proteins

FIGURE 2 | The analysis of parameters α and β on DIP dataset. The figure shows the effect of parameter α and β on the performance of MON on DIP dataset. Six

panels represent prediction accuracy of MON in each top percentage of ranked proteins by setting different values of α and β, ranging from 0 to 1. (A) Top 100, (B)

Top 200, (C) Top 300, (D) Top 400, (E) Top 500, (F) Top 600.
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FIGURE 3 | The analysis of parameters α and β on Gavin dataset. The figure shows the effect of parameter α and β on the performance of MON on Gavin dataset.

The optimum of α and β for Gavin dataset is 0.3 and 0.2, respectively. (A) Top 100, (B) Top 200, (C) Top 300, (D) Top 400, (E) Top 500, (F) Top 600.

dr(pi) = β × C_S(pi)+ (1− β)×M_S(pi) (24)

In the above equation, C_S(pi) and M_S(pi) represent
conservative score and modular score of the protein pi,
respectively. Conservative score of the protein pi is derived from
information from orthologous proteins and is defined as follows
(Zhao et al., 2016b):

C_S(pi) =
N(pi)

max
1≤j≤|V|

(N(pj))
(25)

where N(pi) denotes the number of homologous proteins that pi
contains in reference organisms. The modular scores of proteins
are output scores of the POEM approach with normalization
processing (Zhao et al., 2014). Next, we applied the random
walk with restart algorithm to the multiplex biological network
G and generated a score vector pr. Finally, proteins were sorted
in descending order according to pr, with the top K of them
being exported.

RESULTS AND DISCUSSION

To evaluate the essential nature of proteins in PINs, they were
ranked in descending order based on their ranking scores

that were computed by our MON model and by the 11
other competing essential protein prediction approaches, which
included DC (Hahn and Kern, 2004), IC (Stephenson and Zelen,
1989), CC (Wuchty and Stadler, 2003), BC (Joy et al., 2005),
SC (Estrada and Rodriguez-Velazquez, 2005), NC (Wang et al.,
2011), PeC (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM
(Zhao et al., 2014), ION (Peng et al., 2012), and FDP (Zhang
F. et al., 2019). After this, the top 100, 200, 300, 400, 500, and
600 ranked proteins were selected as candidates for verification
as essential proteins. According to the set of known essential
proteins, the number of true essential proteins was determined
to assess the performance of each approach. Here, we represent
the results for the DIP dataset, in detail, and those for the Gavin
dataset, in brief.

Effects of Parameters α and β
In this study, we introduced two self-defined parameters as α and
β. The parameter α (0 < α < 1) was used to control the weight
of two scores at step 4 of Algorithm 1. The parameter β (0 <

β < 1) was adopted to adjust the contribution of conservative
scores and modular scores of proteins in Equation (24). To
study the effects of parameters α and β on the performance of
our MON approach, we evaluated the identification accuracy
by setting different values for α and β. Figures 2, 3 reveal the
comparative results in the DIP and Gavin datasets when the
parameters α and β possessed different values between 0 and
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FIGURE 4 | Comparison of the percentage of essential proteins detected by MON and 11 other previously proposed methods. The proteins in protein–protein

interaction (PPI) network are ranked in the descending order based on their ranking scores computed by MON, Degree Centrality (DC), Information Centrality (IC),

Closeness Centrality (CC), Betweenness Centrality (BC), Subgraph Centrality (SC), Neighbor Centrality (NC), PeC, CoEWC, POEM, ION, and FDP. Then, top 100, 200,

300, 400, 500, and 600 of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins, the percentage of

true essential proteins is used to judge the performance of each method. The figure shows the percentage of true essential proteins predicted by each method in each

top percentage of ranked proteins. The digits on bars denote the percentage of proteins predicted by each method.

1, respectively. We selected top 100, top 200, top 300, top
400, top 500, and top 600 candidate proteins as detected by
MON, respectively. The identification accuracy was evaluated by

the percentage of true essential proteins in the top candidates.
Figure 2 indicates that MON achieves the highest prediction
accuracy when α is 0.3 and β is 0.5. Figure 3 shows that the
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FIGURE 5 | Precision-recall (PR) curves of MON and 11 other existing centrality methods. The proteins ranked in top K (cutoff value) by each method (MON, DC, IC,

SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP) are selected as candidate essential proteins (positive data set), and the remaining proteins in PPI network are

regarded as candidate non-essential proteins (negative data set). With different values of K selected, the values of precision and recall are computed for each method.

The values of precision and recall are plotted in PR curves with different cutoff values. (A) Shows the PR curves of MON, DC, IC, SC, BC, CC, and NC. (B) Shows the

PR curves of MON and other five methods: PeC, CoEWC, POEM, ION, and FDP.

FIGURE 6 | Jackknife curves of the 12 methods. The x-axis represents the proteins in protein–protein interaction (PPI) network ranked by MON and 11 other

methods, ranked from left to right as strongest to weakest identification of essentiality. The Y-axis is the percentage of essential proteins encountered moving left to

right through the ranked. The areas under the curve for MON and the 11 other methods are used to compare their prediction performance. In addition, the 10 random

assortments are also plotted for comparison. (A) Shows the comparison results of MON, DC, IC, SC, and DC. (B) Represents the comparison results of MON, BC,

CC, and NC. (C) Illustrates the comparison results of MON and other five methods: PeC, CoEWC, POEM, ION, and FDP.

optimum values for α and β for the Gavin dataset are 0.3 and
0.2, respectively.

Comparison With 11 Other Approaches
To validate the performance of our MON approach, we made
comprehensive comparisons of MON to the 11 other competing
essential protein identification approaches. Proteins were ranked
in descending order according to their scores obtained from
each approach. Several of the top predicted proteins were viewed
as essential proteins. Then, by comparing to the benchmark

set, we determined how many of these candidate proteins
were true essential proteins. Figure 4 reveals the percentage of
essential proteins detected by MON and the 11 other prediction
approaches within the yeast PIN.

As shown in Figure 4, it is clear that MON allows for a
higher predictive performance than that of the other competitive
centrality methods. For the top 100 candidate proteins and the
top 200 candidate proteins, the prediction accuracy of the MON
approach was >86%. MON exhibited improvements of 70.91,
38.10, 31.87, 25.65, 21.51, and 26.45% compared to the values
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achieved by NC, which possessed the highest prediction accuracy
among the six network topology-based centrality methods (DC,
IC, BC, CC, SC, and NC) when selecting from the top 100

Table 2 | Common and different proteins predicted by MON and other competing

methods ranked in top 100 proteins.

Methods

(Mi)

|MON∩Mi| Non-essential

proteins

in {Mi – MON}

Percentage of non-essential

proteins in {Mi – MON}with low

MON (%)

DC 8 54 88.89

IC 8 56 89.28

SC 8 63 92.06

BC 4 56 87.5

CC 7 59 89.83

NC 25 42 92.96

PeC 56 22 81.82

CoEWC 54 24 83.33

POEM 62 14 92.96

ION 54 19 52.63

FDP 48 8 75

The table shows the common and the difference between MON and 11 other competing

methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP) when predicting

top 100 proteins. |MON∩Mi | denotes the number of proteins predicted by both MON and

one of the 11 other methods Mi. {Mi – MON} represents the set of proteins detected by

Mi while ignored by MON. |Mi – MON| is the number of proteins in set {Mi – MON}. The

last column describes the percentages of different non-essential proteins with low MON

score (<0.45) in top 100 proteins.

to top 600 proteins. In particular, when selecting the top 200
proteins, the accuracy of MON in predicting essential proteins
was still close to 90%, and this was higher than that of DC,
IC, BC, CC, SC, NC, CoEWC, PeC, POEM, and ION for
predicting the top 100 proteins. Compared to FDP, which
obtained the best prediction accuracy of all 11 competitive
approaches, the performance of MON was improved by 5.62,
6.10, 7.62, 3.21, 2.73, and 6.52% from the top 100 to top 600
proteins, respectively.

Validated by Precision-Recall Curves
Additionally, the precision-recall (PR) curve was adopted to
evaluate the overall performance of MON and the other 11
approaches. First, the proteins in PINs were ranked in a
descending order based on the scores obtained from each
approach. Next, the top K proteins were selected and placed into
the positive set (candidate essential proteins), while the rest of the
proteins were stored in the negative set (candidate non-essential
proteins). The cutoff parameter of K ranged from 1 to 5,093.
Based on different selected values ofK, the values of precision and
recall were calculated by each approach. Finally, the PR curves
were plotted according to values of precision and recall when K
changed from 1 to 5,093. Figure 5A shows the PR curves ofMON
and six topology-based centrality methods (DC, IC, BC, CC, SC,
and NC). Figure 5B illustrates the PR curves for MON and the
other five approaches (PeC, CoEWC, POEM, ION, and FDP).
Figure 5 indicates that the PR of MON is clearly higher than that
of all competing approaches.

FIGURE 7 | Comparison of the percentage of essential proteins out of all the different proteins between MON and 11 other methods. Different proteins between two

prediction methods are the proteins predicted by one method while neglected by the other method. The figure shows how many of the different proteins between MON

and 11 other previously proposed methods: DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP are essential. The red dash line represents the percentage

of essential proteins detected by MON while ignored by Mi, and the blue solid line denotes the percentage of essential proteins predicted by Mi and not by MON.
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Validated by Jackknife Methodology
A further comparison between the novel approach MON and
the 11 other competing approaches (DC, BC, CC, SC, IC, NC,
UDoNC, PeC, CoEWC, POEM, ION, and FDP) was performed
by adopting the jackknife methodology (Holman et al., 2009).
The areas under the jackknife curve for each approach were
used to evaluate their accuracy in identifying essential proteins.
Additionally, 10 random assortments were also depicted for
this comparison. Figure 6 illustrates the comparison results
where the horizontal axis represents the proteins ranked in
descending order according to their scores calculated by each
approach and the vertical axis is the percentage of essential
proteins related to ranked proteins. Figure 6A shows the
comparison results between MON and three topology-based
centrality methods (DC, IC, and SC). Figure 6B represents
the comparison results between MON and three centrality
methods (BC, CC, and NC). Figure 6C indicates the comparison
results between MON and the remaining five approaches (PeC,
CoEWC, POEM, ION, and FDP). As shown in Figure 6, it
is clear that the jackknife curve for MON is evidently better
than that of the 11 previously proposed approaches. Moreover,
MON and the 11 other competing approaches had all achieved
improved identification performance compared to that of
randomized sorting.

Analysis of the Differences Between MON

and Other Approaches
To analyze why and how MON obtains high performance
for the identification of essential proteins, we investigated
the relationship and differences between MON and the
11 other competitive approaches by detecting a small
fraction of proteins. For each approach, the top 100
proteins were selected and compared. The number of top
100 identified proteins ranked by each approach is listed
in Table 2.

First, we compared MON to DC, BC, CC, SC, IC,
NC, PeC, CoEWC, POEM, ION, and FDP by statistically
analyzing the number of proteins that were commonly
detected by MON and any of the 11 other competitive
approaches. The number of common and different proteins
between MON and any of the other competing approaches
is shown in Table 2. In Table 2, |MON

⋂
Mi| represents

the number of overlapping proteins identified by MON and
by a centrality measure Mi. {Mi – MON} denotes the set
of proteins predicted by Mi and not by MON, and |Mi–
MON| is the number of proteins predicted by Mi and not
by MON.

As illustrated in Table 2, among the top 100 proteins, the
proportions of overlapping proteins identified by both MON and
DC, BC, CC, SC, and IC are all <10%, while the proportions of
overlapping proteins detected by both MON and NC and FDP
are not more than 50%. The proportion of common proteins
predicted by both MON and PeC, CoEWC, POEM, and ION
is <65%. Such a small overlap between proteins identified by
MON and the 11 other approaches indicates that MON provides
a special approach that is different from that of the other

Table 3 | Functional annotations of top 10 predicted essential proteins by MON.

Proteins Essentiality Go Term Categories

YDL147W True GO:0006511 BP

GO:0008541, GO:0034515 CC

YFR004W True GO:0016579, GO:0043161 BP

GO:0004843 MF

GO:0005829, GO:0008541,

GO:0034515

CC

YPR108W True GO:0006511 BP

GO:0005198 MF

GO:0008541 CC

YDL097C True GO:0043248, GO:0006511 BP

GO:0005198 MF

GO:0008541, GO:0034515 BP

YER012W True GO:0010499, GO:0043161 BP

GO:0005789, GO:0034515 CC

YKL145W True GO:0006511, GO:0045899 BP

GO:0016887 MF

GO:0008540 CC

YFR052W True GO:0006511 BP

GO:0008541, GO:0034515 CC

YHR200W False GO:0006511 BP

GO:0005198 MF

GO:0008540 CC

YOR261C True GO:0006511 BP

GO:0008541, GO:0034515 CC

YGR232W False GO:0006508 BP

GO:0005829 CC

The Table shows results of functional annotation for top 10 proteins predicted by the MON

approach. BP, MF, and CC denote biological process, molecular function, and cellular

component, respectively.

Table 4 | Percentage of essential proteins identified by MON and 11 other

competitive methods based on Gavin dataset.

Methods Top

100 (%)

Top

200 (%)

Top

300 (%)

Top

400 (%)

Top

500 (%)

Top

600 (%)

DC 46.00 41.00 38.33 39.50 40.20 41.83

IC 44.00 40.00 39.33 40.25 41.40 41.83

SC 37.00 38.50 39.67 39.50 38.40 36.83

BC 44.00 38.50 37.33 36.25 35.40 36.67

CC 41.00 39.50 39.00 38.25 37.80 38.00

NC 55.00 63.00 60.67 57.50 55.80 51.67

PeC 73.00 72.00 67.67 64.00 59.40 56.83

CoEWC 74.00 69.50 66.67 63.00 58.20 54.67

POEM 81.00 75.50 69.33 66.75 62.00 58.83

ION 77.00 77.00 73.67 70.50 65.80 62.83

FDP 89.00 81.50 75.67 70.25 67.00 63.17

MON 90.00 80.00 74.67 71.25 66.80 62.67

This table shows the comparison of the percentage of essential proteins predicted by

MON and 11 other competitive methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM,

ION, and FDP) based on protein–protein interaction data from Gavin. Since the total

number of ranked proteins in Gavin is 1,855.
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approaches. The third column in Table 2 denotes the number
of non-essential proteins among different proteins predicted by
Mi but not by MON. We further analyzed these non-essential
proteins that were identified by the 11 other approaches, and we
found that more than 87% of these non-essential genes that were
predicted by six network topology-based centrality measures
(DC, IC, BC, CC, SC, and NC) possessed very low MON ranking
scores (<0.45). Similarly, more than 50% of the non-essential
proteins predicted by PeC, CoEWC, POEM, and ION possessed
very low MON ranking scores (<0.45).

Second, we analyzed the essentiality of different proteins
detected by MON and by other competing approaches. Figure 7
shows the percentage of essential proteins in all of the various
predicted proteins that were detected by MON and the 11
other competitive approaches. In Figure 7, the red dash line
represents the percentage of essential proteins detected by MON
while ignored by Mi, and blue solid line denotes the percentage
of essential proteins predicted by Mi and not by MON. The
experimental results shown in Figure 7 illustrate that among
these different proteins, the proportion of essential proteins
identified by the MON approach is significantly higher than
that predicted by the other approaches. In this study, we chose
two representative approaches (BC and POEM) as examples to
analyze. The former exhibited the largest number of protein
differences compared to our MON approach, and the POEM
approach possessed the smallest difference compared to the
MON approach. Compared to BC, for all of the top 100 predicted
proteins, there were 96 different proteins identified by our MON
approach. Among these 96 different proteins identified by MON,
93.75% were essential, while only 41.67% proteins predicted by
BC were essential. As another example, there were 22 different
proteins detected by either MON or by POEM. Among these
different proteins, MON could predict more than 95% of the

essential proteins, while POEM only discovered <64% of the
essential proteins. The comparable results between MON and
the other competitive approaches (DC, CC, SC, IC, NC, PeC,
CoEWC, and ION) indicate that the proposed MON approach
can identify more essential proteins than the other approaches.

Additionally, we selected top 10 identified candidate proteins
by our approach as examples to analyze their functional
annotations. To this purpose, GO Term (Ashburner et al., 2000)
was adopted to characterize these candidate essential proteins,
including molecular function (MF), biological process (BP), and
cellular component (CC). Table 3 shows the results of functional
annotation for these 10 proteins. Out of all the 10 candidate
proteins, eight proteins were true essential proteins. And all
proteins were annotated in terms of BP, MC, and CC.

Prediction Performance of MON Based on

the Gavin Dataset
To further test the performance of the proposed approach, we
also performed discovery for essential proteins using the Gavin
dataset. The ranking scores for proteins were computed using
MON (α = 0.3, β = 0.2) and 11 other existing competitive
approaches (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM,
ION, and FDP). The percentage of essential proteins in the
top 100, 200, 300, 400, 500, and 600 proteins ranked by these
approaches are listed in Table 4. The jackknife curves of each
approach are illustrated in Figure 8. All of these experimental
results indicate that MON still outperforms the 11 other
competitive approaches, using the Gavin dataset. Specifically,
when selecting the top 100 ranked proteins, MON resulted in
95.65, 104.55, 143.24, 104.55, 119.51, 63.64, 23.29, 21.62, 11.11,
16.88, and 1.12% improvements compared to the results obtained
from DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, ION, and
FDP, respectively.

FIGURE 8 | Jackknife curves of MON and 11 other competitive methods based on Gavin dataset. The prediction performance of MON and 11 other existing

competitive methods (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM, ION, and FDP) based on protein–protein interaction data from Gavin are validated by the

jackknife method. (A) Shows the Jackknife curves of MON, DC, IC, SC and BC. (B) Shows the Jackknife curves of MON, CoEWC, ION, NC and CC. (C) Shows the

Jackknife curves of MON, PeC, POEM and FDP.
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CONCLUSION

The detection of essential proteins is helpful for understanding
the minimum requirements for cell survival and development.
Many computational approaches have been proposed that
integrate PINs and multi-omics data, and this has led to the
identification of multiple interactions or links between proteins.
Despite the advances in these approaches, designing efficient
algorithms to fuse these multisource biological data remains
challenging. A simple strategy is to aggregate a collection of
heterogeneous data into a single network; however, this strategy
can result in substantial information loss. Studies indicate that
different types of biological data sources that possess inherent
structural characteristics are correlated to each other. Moreover,
high-throughput multi-omics biological data exhibit different
degrees of quality and can play various roles in the prediction
of essential proteins. The multiplex biological network provides
an alternative means to address these problems. In this study, we
constructed a multiplex biological network by combining PINs
with multi-source biological information, and proposed a new
essential proteins prediction approach named MON. In MON,
we express the multiplex biological network in the tensor model
and extend the randomwalk with restart algorithm by simulating
a higher-order Markov chain. Additionally, the conservative
and modular features of essential proteins are both taken into
account to improve the performance of MON. The experimental
results from two yeast PINs demonstrate that MON performs
better than 11 other state-of-the-art approaches for predicting
essential proteins.
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Recent studies have indicated that microRNAs (miRNAs) are closely related to sundry
human sophisticated diseases. According to the surmise that functionally similar
miRNAs are more likely associated with phenotypically similar diseases, researchers
have proposed a variety of valid computational models through integrating known
miRNA-disease associations, disease semantic similarity, miRNA functional similarity,
and Gaussian interaction profile kernel similarity to discover the potential miRNA-disease
relationships in biomedical researches. Taking account of the limitations of previous
computational models, a new computational model based on biased heat conduction
for MiRNA-Disease Association prediction (BHCMDA) was proposed in this paper,
which can achieve the AUC of 0.8890 in LOOCV (Leave-One-Out Cross Validation)
and the mean AUC of 0.9060, 0.8931 under the framework of twofold cross validation,
fivefold cross validation, respectively. In addition, BHCMDA was further implemented
to the case studies of three vital human cancers, and simulation results illustrated
that there were 88% (Esophageal Neoplasms), 92% (Colonic Neoplasms) and 92%
(Lymphoma) out of top 50 predicted miRNAs having been confirmed by experimental
literatures, separately, which demonstrated the good performance of BHCMDA as well.
Thence, BHCMDA would be a useful calculative resource for potential miRNA-disease
association prediction.

Keywords: miRNA-disease association, bipartite graph network, biased heat conduction, clustering algorithm,
integrated similarity

INTRODUCTION

MicroRNAs (miRNAs) are a class of endogenous regulatory non-coding RNAs found in eukaryotes
which are about 20 to 25 nucleotides in length. They were normally considered to be negative gene
regulators which suppressed the expression of messenger RNAs (mRNAs) and inhibited the protein
translation of target genes (Meister and Tuschl, 2004). However, some studies had confirmed that
miRNAs could also play a positive regulatory role (Jopling et al., 2005). In recent years, the studies
about the miRNA-disease associations have attracted more and more attentions in consideration of
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miRNAs having been identified to play a vital role in many
important biological processes including cell proliferation, cell
development, cell differentiation, cell apoptosis, cell metabolism,
cell aging, cell signal transduction, cell viral infection and so on
(Xu et al., 2004; Cheng et al., 2005; Miska, 2005; Cui et al., 2006;
Bartel, 2009). For example, mir-31 and mir-335 were proved to
be effective inhibitors of breast cancer (Tavazoie et al., 2008;
Valastyan et al., 2009; Png et al., 2011). miR-122 inhibited cell
proliferation and tumorigenesis in certain breast cancer patients
by targeting IGF1R (Wang et al., 2012). In addition, researchers
discovered that the expression of miR-126 in the blood of patients
with Crohn’s disease was significantly higher than normal people
(Paraskevi et al., 2012). Moreover, the levels of miR-134 and mir-
27b were found to be significantly lower in lung tumors than that
in normal tissues, which demonstrated that they were associated
with lung cancer (Hirota et al., 2012). Therefore, discovery of
disease-related miRNAs is significant for the diagnosis, treatment
and prevention of complex human diseases.

Up to now, based on the concept that functionally associated
miRNAs are more likely related with phenotypically similar
disease, a great number of computational models have been
proposed to predict potential associations between diseases and
miRNAs. For instance, Jiang et al. (2010) raised a hypergeometric
distribution-based computational model through adopting
miRNA-target interactions. Shi et al. (2013) developed a
computational model by concentrating on the functional
interlinkage between diseases and miRNAs and implementing
random walk on the protein-protein interaction network.
Mork et al. (2014) proposed a computational model called
miRPD by integrating protein-disease associations and miRNA–
protein associations for prediction of miRNA-Protein-Disease
associations. Xuan et al. (2013) presented a computational
method named HDMP to infer potential disease-related miRNAs
based on weighted k most similar neighbors. Chen et al. (2012)
developed the global network similarity-based prediction model
called RWRMDA by applying random walk to the functional
similarity network of miRNA-miRNA to search for potential
associations between miRNAs and diseases. However, all these
models mentioned above cannot be utilized to predict miRNAs
associated new diseases while there are no known miRNA-
target associations, since these models rely heavily on known
miRNA-target interactions. In recent years, deep learning has
been increasingly used to solve many problems, providing
an important solution to improve related performance in the
field of bioinformatics (Le et al., 2017, 2018). Therefore, in
order to solve this problem, Chen and Yan (2014) developed
a semi-supervised model called RLSMDA on the basis of
regularized least squares, in which negative samples were
not required. Zou et al. (2015) introduced two prediction
models such as KATZ and CATAPULT to infer potential
microRNA-disease associations based on machine learning
method. Chen et al. (2016b) put forward a computational model
called WBSMDA which was effective for both novel diseases
without any known related miRNAs and novel miRNAs without
any known associated diseases. Luo et al. (2017) proposed a
prediction model named KRLSM to infer potential or missing
miRNA-disease associations through integrating miRNA space

and disease space into a total miRNA-disease space based on
Kronecker product. Chen et al. (2018b) raised a decision tree
learning-based model called EGBMMDA, which could serve
as a valuable complement to the experimental approach for
discovering potential miRNA-disease connections.

Different from above mentioned prediction models, in this
paper, a new calculative model called BHCMDA based on Biased
heat conduction (BHC) was developed for prediction of potential
miRNA-disease association, in which, known miRNA-disease
associations, disease semantic similarity, miRNA functional
similarity and Gaussian interaction profile kernel similarity were
integrated first, and then, the BHC algorithm was adopted to
compute both the resources eventually received by miRNAs
starting from the miRNA nodes and the resources eventually
received by diseases starting from the disease nodes. BHC
algorithm is a kind of personalized recommendation algorithm
(Liu et al., 2011). Its process is like the transfer of heat in
the binary network between the users and the objects. Because
the influence of the user’s degree and the object’s degree are
considered into the process of heat transfer, the accuracy of
recommending the object that the user is interested in is
improved. The transfer process is shown in Figure 1. Figure 1A
shows a binary network of users and objects. Figure 1B shows
the process of object O1 and object O2 receiving resources
from users. Figure 1C shows the process of user U1 receiving
the resource from the objects. Finally, we averaged these two
kinds of resources received by miRNAs and diseases to predict
potential miRNA-disease associations. Moreover, in order to
evaluate the performance of BHCMDA, twofold cross-validation
(twofold CV), fivefold cross-validation (fivefold CV) and leave-
one-out cross-validation (LOOCV) were implemented. As a
result, BHCMDA could achieve reliable AUCs of 0.8890, 0.9060,
and 0.8931 in LOOCV, twofold CV and fivefold CV separately.
Furthermore, case studies of esophageal neoplasms, colonic
neoplasms and lymphoma were taken to evaluate BHCMDA as
well. The simulation results showed that there were 44, 46, and
46 out of top 50 predicted miRNA-disease associations for these
three kinds of vital diseases, respectively. Hence, it is obvious
that BHCMDA has good performance on prediction of potential
miRNA-disease associations.

MATERIALS AND METHODS

MiRNA-Disease Associations
First, we downloaded the known miRNA-disease associations
from the HMDD V2.0 database, which consisted of 5430
experimentally verified miRNA-disease associations including
383 diseases and 495 miRNAs (Li et al., 2013). Based on these
known miRNAs-disease associations, an adjacency matrix A can
be obtained according to the following formula:

aij =


1 : if there is known assocaitionbetween the miRNA mi

and the disease dj
0 : otherwise (1)
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FIGURE 1 | The heat transfer process of biased heat conduction (BHC) algorithm. (A) A binary network of users and objects. (B) The process of objects receiving
resources from users. (C) The process of users receiving resources from objects.

MiRNA Functional Similarity
Moreover, based on the assumption that functionally similar
miRNAs are more likely associated with phenotypically similar
diseases, the miRNA functional similarity scores can be obtained
through adopting the modus put forward by Wang et al. (2010).
For simplicity, we downloaded the miRNA functional similarity
scores from http://www.cuilab.cn/files/images/cuilab/misim.zip
directly and utilized these miRNA functional similarity scores
to construct a miRNA functional similarity matrix FS, in which,
the entity FS(i, j) indicated the functional similarity between the
miRNAs mi and mj.

Disease Semantic Similarity Model I
Furthermore, for all these 383 diseases obtained previously, we
downloaded their MeSH descriptors from the MeSH database1,
and based on these MeSH descriptors, each disease D could be
described by a Directed Acyclic Graph (DAG) such as DAG(D) =
(D, T(D), E(D)) (Chen, 2015; Chen et al., 2016a; Huang et al.,
2016), in which, T(D) indicated the node set containing node D
and its ancestor nodes, and E(D) denoted the edge set involving
the direct edges which linked the parent nodes to the child nodes.
Hence, based on the concept of DAG, the semantic value of the
disease D could be obtained according to the following formula:

DV1 (D) =
∑

d∈T(D)

D1D
(
d
)

(2)

Here, D1D(d) represented the contribution of the node d in T(D)
to the semantic value of the disease D, which could be obtained
according to the following formula:

D1D
(
d
)
= 1 ifd = D

D1D
(
d
)
= max

{
1× D1D

(
d
′
)
|d
′

∈ chiledren of d
}

if d 6= D

(3)

Here, 1 denoted the semantic contribution factor. From
formula (3), it is easy to see that for the disease D, its contribution
to the semantic value of itself is equal to 1, while for any

1http://www.ncbi.nlm.nih.gov/

other disease d in T(D), as the distance from d to D increases,
the contribution of d to D will decrease. Hence, based on the
assumption that similar diseases are inclined to share larger parts
of their DAGs, the semantic similarity between two disease di and
dj could be obtained according to the following formula:

SS1
(
i, j
)
=

∑
t∈T(di)∩ T(dj)

(
D1di (t)+ D1dj (t)

)
DV1

(
di
)
+ DV1

(
dj
) (4)

Disease Semantic Similarity Model II
From above formula (3), it is easy to see that the diseases in the
same layer of DAG(D) will make the same contribution to the
semantic value of D. Moreover, for diseases in the same layer of
DAG(D), it is reasonable to assume that the diseases appeared
in less DAGs will be more specific than those diseases appeared
in more DAGs (Chen et al., 2018a). Hence, in order to protrude
the contribution of these more specific diseases, the contribution
of the node d in T(D) to the semantic value of the disease D
could be obtained according to the following formula as well
(Chen et al., 2015):

D2D(d) = −log
[

the number of DAGs containing d
the number of diseases

]
(5)

Based on above formula, the semantic value of the diseaseD could
be obtained according to the following formula as well:

DV2(D) =
∑

d∈T(D)

D2D
(
d
)

(6)

Hence, the semantic similarity between two diseases di and dj
could be obtained according to the following formula as well:

SS2(i, j) =

∑
t∈T(di)∩ T(dj)

(
D2di (t)+ D2dj (t)

)
DV2

(
di
)
+ DV2

(
dj
) (7)

Gaussian Interaction Profile Kernel
Similarity for Diseases
According to the assumption that functionally similar miRNAs
tend to be more associated with similar diseases, we can further
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construct the Gaussian interaction profile kernel similarity
for diseases by using known miRNA-disease associations. For
convenience, let IP(di) denote the ith row of the matrix A,
then the Gaussian interaction profile kernel similarity between
two diseases di and dj could be obtained according to the
following formula:

KD
(
i, j
)
= exp

(
−γdIP

(
di
)
− IP

(
dj
)2
)

(8)

Here, the parameter γd is utilized to control the kernel bandwidth
and can be obtained through the normalization of the original
bandwidth γ

′

d as follows:

γd =
γ
′

d

( 1
n
∑n

i=1(IP(dj)2)
(9)

Gaussian Interaction Profile Kernel
Similarity for miRNAs
In a way similar to that of the Gaussian interaction profile kernel
similarity for diseases, the Gaussian interaction profile kernel
similarity between two miRNAs mi and mj could be obtained
according to the following formula:

KM
(
i, j
)
= exp

(
−γmIP (mi)− IP

(
mj
)2
)

(10)

Here, IP(mi) denotes the ith column of the matrix A, and the
parameter γm is utilized to control the kernel bandwidth and can
be obtained through the normalization of the original bandwidth
γ
′

m as follows:

γm =
γ
′

m

( 1
m

∑m
i=1(IP(mi)2)

(11)

Integrated Similarity for miRNAs and
Diseases
Based on above formulas, for any two diseases di and dj, we can
obtain an integrated similarity between them according to the
following formula:

SD(i, j) =

{
SS1(i,j) +S S2(i,j) 2 di and djhas semantic similarity
KD

(
i, j
)

otherwise (12)

Moreover, in a similar way, for any two miRNAs mi and mj, we
can obtain an integrated similarity between them according to the
following formula:

SM(i, j) =
{
FS
(
i, j
)
miandmjhas functional similarity

KM
(
i, j
)

otherwise (13)

BHCMDA
According to the assumption that functionally similar miRNAs
are more likely associated with phenotypically similar diseases
(Liu et al., 2011), as illustrated in the following Figure 2,
we developed a novel computational model called BHCMDA
based on the BHC algorithm to predict potential miRNA-disease
associations through combining the previously constructed

adjacency matrix A, the integrated miRNA similarity matrix SM
and the integrated disease similarity matrix SD according to the
following steps:

Step 1: For convenience, let the M = {m1, m2, . . . . . .mn} and
D = {d1, d2, . . . . . .dq} represent all the miRNAs and diseases
collected previously, then we can obtain an n × q dimensional
adjacency matrix A, an q × q dimensional integrated diseases
similarity matrix SD, and an n × n dimensional integrated
miRNAs similarity matrix SM according to the above formulas,
respectively. Moreover, based on these newly obtained two kinds
of matrices such as A and SM, we can further construct a new
n × q dimensional miRNA-disease association adjacency matrix
A′ as follows:

a
′

ij =


1 : If aij = 1

max
mt∈Mij

SM(i, t) : If max
mt∈Mij

SM(i, t) > 0

0 : otherwise (14)

Here, Mij is the set of miRNA nodes that satisfy: " mt ∈

Mij, there are atj = 1 and SM (i, t) > δ, where δ is a threshold
parameter with value between 0 and 1. In this paper, we will
set δ = 0.29 according to our simulation results. Thereafter,
as illustrated in the following Figure 3A, based on the new
adjacency matrix A′, we can construct a bipartite miRNAs-
diseases network.

Step 2: As illustrated in Figure 3B, let miRNAs and diseases
represent the Object nodes and the User nodes respectively, then
after implementing the BHC algorithm on the newly constructed
bipartite miRNAs-diseases network, for any given disease dj in D,
the final resources f (dj) received by dj can be obtained according
to the following formula while we started from the miRNA nodes:

f (dj) =
n∑

i=1

a
′

ij × f (mi)

d(mi)
(15)

Here, f (mi) is the initial resource of the miRNA mi in
M, which is set to 1, and d(mi) represents the degree
of the miRNA node mi in the newly constructed bipartite
miRNAs-diseases network.

Step 3: As illustrated in Figure 3C, let diseases and miRNAs
represent the Object nodes and the User nodes, respectively, then
after implementing the BHC algorithm on the newly constructed
bipartite miRNAs-diseases network, for any given miRNA mi
in M the final resources f (mi)′ received by mi can be obtained
according to the following formula while we started from the
disease nodes:

f (mi)
′
=

1
d(mi)γ

×

q∑
j=1

a
′

ij × f (dj)

d(dj)
(16)

Here, d(dj) represents the degree of the disease node dj in the
newly constructed bipartite miRNAs-diseases network, and γ is
a parameter to adjust the impact of d(dj). In this paper, we set
γ = 0.001 according to our simulation results.

Step 4: Similar to above step 1, based on these newly
constructed two kinds of matrices such as A and SD, we can
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FIGURE 2 | Flow chart of BHCMDA model to predict the potential miRNA-disease associations.

FIGURE 3 | Diagram of implementing the biased heat conduction (BHC) algorithm on the newly constructed bipartite miRNAs-diseases network. (A) The newly
constructed bipartite miRNAs-diseases network, (B) let miRNAs and diseases represent the Object nodes and the User nodes respectively while implementing the
BHC algorithm on the newly constructed bipartite miRNAs-diseases network, (C) let diseases and miRNAs represent the Object nodes and the User nodes
respectively while implementing the BHC algorithm on the newly constructed bipartite miRNAs-diseases network.

also construct another new n × q dimensional miRNA-disease
association adjacency matrix A′′ as follows:

a
′ ′

ij =


1 : If aij = 1

max
dt∈Dij

SD(i, t) : If max
dt∈Dij

SD(i, t) > 0

0 : otherwise (17)

Here, Dij is the set of disease nodes that satisfy: " dt ∈ Dij,there
are ajt = 1 and SD(i, t) > η, where η is a threshold parameter with
value between 0 and 1. In this paper, we set η = 0.13 according to
our simulation results. Thereafter, as illustrated in the following

Figure 3A, based on the new adjacency matrix A′′, we can
construct another new bipartite miRNAs-diseases network.

Step 5: Similar to above step 2, after implementing the BHC
algorithm on the newly constructed bipartite miRNAs-diseases
network, for any given miRNA mi in M, the final resources
f (mi)′′ received by mi can be obtained according to the following
formula while we started from the disease nodes:

f (mi)
′′
=

q∑
j=1

a
′ ′

ji × f (dj)′

d(dj)
(18)
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Here, f (dj)′ is the initial resource of the disease dj in D, which is
set to 1, and d(dj) represents the degree of the disease node dj in
the newly constructed bipartite miRNAs-diseases network.

Step 6: Similar to above step 3, after implementing the BHC
algorithm on the newly constructed bipartite miRNAs-diseases
network, for any given

disease dj in D, the final resources f (dj)′′ received by dj can
be obtained according to the following formula while we started
from the miRNA nodes:

f (dj)′′ =
1

d(dj)γ
×

n∑
i=1

a
′ ′

ji × f (mi)
′ ′

d(mi)
(19)

Here, d(mi) represents the degree of the miRNA node mi in the
newly constructed bipartite miRNAs-diseases network, and γ is
a parameter to adjust the impact of d(dj). In this paper, we set
γ = 0.001 according to our simulation results.

Step 7: Finally, based on above formulas, the association score
between miRNA mi and disease dj can be calculated as follows:

S
(
i, j
)
=

( f (mi)
′

+ f (dj) ′′)
2

(20)

RESULTS

Performance Evaluation
In order to evaluate the predictive performance of BHCMDA,
twofold cross-validation, fivefold cross-validation and LOOCV
were implemented separately based on the known miRNA-
disease associations downloaded from the HMDD V2.0 database.
In LOOCV, every known miRNA-disease association takes turns
to act as the test sample and the rest of known miRNA-
disease associations serve as training samples. Moreover, all these
miRNA-disease pairs having no known associations play the role
of candidate samples, then we can obtain the ranking of each test
sample with all candidate samples according to their predicted
scores after implementing BHCMDA. If the rank of the test
sample is higher than the given threshold, it will be considered
as a correct prediction. In the framework of fivefold cross-
validation, all known miRNA-disease associations are randomly
divided into five equal groups without overlap first, then each
group acts as test samples in turn and the other four groups
serve as training samples. Besides, all these miRNA-disease pairs
having no known associations play the role of candidate samples.
After the scores of candidate samples and the test samples
have been calculated, we take turns to compare the score of
each test sample with the scores of candidate samples. If the
rank of the test sample exceeds the given threshold, it will be
thought as a successful prediction. Furthermore, the receiver-
operating characteristics (ROC) curve can be painted to assess the
performance of BHCMDA by computing false positive rate (FPR,
1-specificity) and true positive rate (TPR, sensitivity) on the basis
of varying thresholds (Le et al., 2019). Here, sensitivity means
the percentage of positive test samples whose rankings exceed
the given threshold, while 1-specificity denotes the percentage
of candidate samples with rankings under the given threshold.

Then, area under the ROC curves (AUCs) can be calculated to
evaluate the predictive performance of BHCMDA, the larger the
value, the better the prediction performance of BHCMDA.

As a result, BHCMDA can achieve reliable AUCs of
0.8890, 0.9060, and 0.8931 under the frameworks of global
LOOCV, twofold cross-validation and fivefold cross-validation
respectively. Moreover, we compared BHCMDA with two kinds
of state-of-the-art models such as RLSMDA (Chen and Yan,
2014) and WBSMDA (Chen et al., 2016b). As illustrated in
the Figure 4, RLSMDA and WBSMDA can achieve AUCs of
0.8507 and 0.7802 under the frameworks of global LOOCV
respectively, which are inferior to the BHCMDA’s AUCs. Besides,
as shown in the Figure 5, under the twofold cross-validation
framework, the AUCs of RLSMDA and WBSMDA are 0.8470
and 0.6658 respectively, indicating that the AUCs of BHCMDA is
higher than RLSMDA and WBSMDA. What’s more, as illustrated
in the Figure 6, RLSMDA and WBSMDA can achieve AUCs
of 0.8498 and 0.7337 under the frameworks of fivefold cross-
validation respectively, which are also lower than the BHCMDAs’
AUCs. In conclusion, it is obvious that BHCMDA has better
performance than RLSMDA and WBSMDA in miRNA-disease
association prediction.

Case Studies
In order to further assess the predictive performance of
BHCMDA, we conducted case studies of three kinds of human
diseases such as esophageal neoplasms, colonic neoplasms and
lymphoma, and the predicted results were verified by evidences
illustrated in HMDD v3.02, dbDEMC 2.03, dbDEMC (Yang et al.,
2010) and miR2Disease (Jiang et al., 2008), respectively.

Esophageal neoplasms is the eighth common cancer in the
world according to the pathological characteristics (He et al.,
2012). As the tumor grows, the patient may suffer from difficult
or painful swallowing, coughing up blood and weight loss. The
number of men having esophageal cancer are three to four times
than that of women, and the survival rates are low (Enzinger and
Mayer, 2003). The main treatment for esophageal neoplasms is
cisplatin-based chemotherapy, but the chemotherapy reaction is
difficult to detect. Therefore, the earlier the esophageal tumor
is found, the more helpful it will be in the cancer treatment
(Xie et al., 2013; Wan et al., 2016). A large number of miRNAs
have been confirmed to be associated with esophageal neoplasms.
For instance, the overexpression of hsa-miR-17 cluster can
promote the growth of esophageal tumor cell. In addition, hsa-
let-7 can server as the prognostic biomarker for weighing the
response to chemotherapy (Liao et al., 2014; Xu et al., 2014).
While implementing BHCMDA to predict associated miRNAs of
esophageal neoplasms, there are 9 out of the top-10 and 44 out of
the top-50 predicted miRNAs having been verified to be related
with esophageal neoplasms according to confirmations provided
by dbDEMC and dbDEMC 2.0, respectively (see Table 1).

Colonic neoplasms is a common malignant tumor which
poses a huge threat to human lives in the world (Jemal
et al., 2011; Ogata-Kawata et al., 2014). It is reported that

2http://www.cuilab.cn/hmdd
3http://www.picb.ac.cn/dbDEMC
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FIGURE 4 | Performance comparisons between BHCMDA, LRLSLDA, and WBSMDA in LOOCV.

FIGURE 5 | Performance comparisons between BHCMDA, LRLSLDA, and WBSMDA in twofold cross-validation.
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FIGURE 6 | Performance comparisons between BHCMDA, LRLSLDA, and WBSMDA in fivefold cross-validation.

TABLE 1 | Top 50 potential Esophageal Neoplasms-related miRNAs predicted by BHCMDA and confirmations for these predicted associations provided by the
dbDEMC and dbDEMC 2.0.

miRNA Evidence miRNA Evidence

hsa-mir-17 dbDEMC hsa-mir-302c dbDEMC

hsa-mir-18a dbDEMC 2.0 hsa-mir-602 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-612 dbDEMC 2.0

hsa-mir-629 dbDEMC 2.0 hsa-mir-657 unconfirmed

hsa-mir-93 dbDEMC 2.0 hsa-mir-376c dbDEMC 2.0

hsa-mir-324 dbDEMC hsa-mir-367 dbDEMC 2.0

hsa-mir-19b dbDEMC 2.0 hsa-mir-153 dbDEMC

hsa-let-7d dbDEMC hsa-mir-302e dbDEMC

hsa-mir-185 dbDEMC 2.0 hsa-mir-30c dbDEMC 2.0

hsa-mir-638 unconfirmed hsa-mir-302d dbDEMC 2.0

hsa-let-7f dbDEMC 2.0 hsa-mir-16 dbdemc 2.0

hsa-mir-601 unconfirmed hsa-mir-429 dbDEMC 2.0

hsa-mir-1 dbDEMC 2.0 hsa-mir-106b dbDEMC 2.0

hsa-let-7i dbDEMC 2.0 hsa-mir-583 dbDEMC

hsa-let-7e dbDEMC hsa-mir-125b dbDEMC 2.0

hsa-let-7g dbDEMC hsa-mir-660 dbDEMC

hsa-mir-637 dbDEMC 2.0 hsa-mir-557 dbDEMC 2.0

hsa-mir-218 dbDEMC 2.0 hsa-mir-600 unconfirmed

hsa-mir-608 unconfirmed hsa-mir-611 unconfirmed

hsa-mir-596 dbDEMC 2.0 hsa-mir-654 dbDEMC 2.0

hsa-mir-615 dbDEMC hsa-mir-662 dbDEMC 2.0

hsa-mir-622 dbDEMC hsa-mir-769 dbDEMC

hsa-mir-518c dbDEMC 2.0 hsa-mir-215 dbDEMC 2.0

hsa-mir-301a HMDD3.0 hsa-mir-335 dbDEMC 2.0

hsa-mir-302b dbDEMC hsa-mir-221 dbDEMC 2.0
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TABLE 2 | Top 50 potential Colonic Neoplasms-related miRNAs predicted by BHCMDA and confirmations for these predicted associations provided by the dbDEMC,
dbDEMC 2.0, HMDD3.0 and miR2Disease.

miRNA Evidence miRNA Evidence

hsa-mir-324 unconfirmed hsa-mir-146b dbDEMC 2.0

hsa-mir-222 dbDEMC 2.0 hsa-mir-601 dbDEMC 2.0

hsa-mir-301a dbDEMC 2.0 hsa-mir-7 dbDEMC 2.0

hsa-mir-638 dbDEMC 2.0 hsa-mir-637 dbDEMC 2.0

hsa-mir-200a unconfirmed hsa-mir-526a dbDEMC 2.0

hsa-mir-210 dbDEMC 2.0 hsa-mir-515 unconfirmed

hsa-mir-133a dbDEMC 2.0 hsa-mir-27a dbDEMC 2.0

hsa-mir-93 dbDEMC 2.0 hsa-mir-331 HMDD3.0

hsa-mir-185 dbDEMC 2.0 hsa-mir-148a dbDEMC 2.0

hsa-mir-367 dbDEMC 2.0 hsa-mir-195 dbDEMC 2.0

hsa-mir-219 unconfirmed hsa-mir-520h dbDEMC 2.0

hsa-mir-520a HMDD3.0 hsa-mir-153 dbDEMC 2.0

hsa-mir-196a dbDEMC 2.0 hsa-mir-199b dbDEMC 2.0

hsa-mir-199a 23292866 hsa-mir-30b dbDEMC 2.0

hsa-mir-297 dbDEMC 2.0 hsa-mir-26a dbDEMC

hsa-mir-608 dbDEMC 2.0 hsa-mir-181b dbDEMC 2.0

hsa-mir-449b dbDEMC 2.0 hsa-mir-520e dbDEMC 2.0

hsa-mir-34c miR2Disease hsa-mir-602 dbDEMC 2.0

hsa-mir-215 dbDEMC 2.0 hsa-mir-512 HMDD3.0

hsa-mir-375 dbDEMC 2.0 hsa-mir-194 dbDEMC 2.0

hsa-mir-25 dbDEMC 2.0 hsa-mir-95 dbDEMC 2.0

hsa-mir-34b dbDEMC hsa-mir-612 dbDEMC 2.0

hsa-mir-429 dbDEMC 2.0 hsa-mir-526b dbDEMC 2.0

hsa-mir-203 dbDEMC 2.0 hsa-mir-657 dbDEMC 2.0

hsa-mir-518b dbDEMC 2.0 hsa-mir-135a dbDEMC 2.0

about half of colonic neoplasms patients may die of metastatic
disease in five years from diagnosis (Parkin et al., 2005; Drusco
et al., 2014). Therefore, early diagnosis of colon cancer is of
great significance in improving the patients’ survival rate. In
the recent years, investigators have verified a few miRNAs
related with colonic neoplasms. Take Mir-199a-3p (the 3p
arm of the pre-miRNA for miR-199a) as an example, it is
highly expressed in colonic neoplasms tissues, resulting in
significantly reduced survival rate of patients (Wan et al., 2013).
In addition, tumor specimens illustrated highly significant and
large multiple differential expressions of levels of some miRNAs,
including mir-1, mir-31, mir-133a, mir-135b and others (Sarver
et al., 2009). While implementing BHCMDA to discern the
potentially relevant miRNAs of colonic neoplasms, there are 8
out of the top-10 and 46 out of the top-50 predicted miRNAs
having been validated to be related with colonic neoplasms by
confirmations provided by dbDEMC, dbDEMC 2.0, HMDD3.0
and miR2Disease, respectively (see Table 2).

There are two types of lymphoma, one is Hodgkin
Lymphomas (HL) and the other is non-Hodgkin Lymphomas
(NHL). HL is a more common form of lymphoma and it
is difficult to be diagnosed at an early stage (Coiffier, 2006;
Xie et al., 2012). NHL is a heterogeneous malignant tumor
originating from lymphoid hematopoietic tissue and it is mainly
treated by local radiotherapy and chemotherapy (Coiffier,
2006). An example of miRNAs related with lymphoma is
miR-125b. By inhibiting miR-125b-5p (The 5p arm of the

pre-miRNA for mir-125b), lymphoma cells will be sensitive
to anticancer drugs such as bortezomib (Manfè et al., 2013).
Besides, the overexpressed miR-142-5p (the 5p arm of the
pre-miRNA for miR-142) which was found in gastric MALT
lymphoma played a vital role in the pathogenesis of this
cancer (Saito et al., 2012). Furthermore, the upregulation of
miRNA hsa-mir-9, hsa-mir-34a, hsa-mir-183, hsa-mir-215
and down-regulation of hsa-mir-30b were all relevant to
lymphoma’s development based on experimental literatures.
While implementing BHCMDA to infer the potentially
relevant miRNAs of Lymphoma, there are 10 out of the
top-10 and 46 out of the top-50 predicted miRNAs having
been confirmed to be associated with Lymphomas by
confirmations provided by dbDEMC 2.0 and the recent
experimental literatures with relevant PMIDs, respectively
(see Table 3).

DISCUSSION

In recent years, a growing number of computational models have
been proposed to find underlying miRNA-disease associations.
In this article, we put forward a prediction model called
BHCMDA based on the BHC algorithm to discover potential
associated miRNAs of the diseases by integrating known miRNA-
disease associations, the disease semantic similarity, the miRNA
functional similarity, and the Gaussian interaction profile kernel
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TABLE 3 | Top 50 potential Lymphomas-related miRNAs predicted by BHCMDA and confirmations for these predicted associations provided by the dbDEMC 2.0 and
the recent experimental literatures with relevant PMIDs.

miRNA Evidence disease Evidence

hsa-mir-145 dbDEMC 2.0 hsa-mir-652 dbDEMC 2.0

hsa-mir-34a dbDEMC 2.0 hsa-mir-221 dbDEMC 2.0

hsa-mir-29b dbDEMC 2.0 hsa-mir-185 dbDEMC 2.0

hsa-mir-9 dbDEMC 2.0 hsa-mir-596 dbDEMC 2.0

hsa-mir-106b dbDEMC 2.0 hsa-mir-608 dbDEMC 2.0

hsa-let-7a dbDEMC 2.0 hsa-mir-223 dbDEMC 2.0

hsa-mir-125b dbDEMC 2.0 hsa-mir-557 dbDEMC 2.0

hsa-mir-183 dbDEMC 2.0 hsa-mir-192 dbDEMC 2.0

hsa-mir-205 dbDEMC 2.0 hsa-mir-602 dbDEMC 2.0

hsa-mir-30b dbDEMC 2.0 hsa-mir-181b dbDEMC 2.0

hsa-mir-29a dbDEMC 2.0 hsa-mir-214 dbDEMC 2.0

hsa-mir-93 dbDEMC 2.0 hsa-let-7c dbDEMC 2.0

hsa-mir-199a dbDEMC 2.0 hsa-let-7i dbDEMC 2.0

hsa-mir-324 unconfirmed hsa-mir-612 unconfirmed

hsa-mir-143 dbDEMC 2.0 hsa-mir-657 dbDEMC 2.0

hsa-mir-106a dbDEMC 2.0 hsa-mir-142 23209550

hsa-let-7b dbDEMC 2.0 hsa-mir-222 dbDEMC 2.0

hsa-mir-30e dbDEMC 2.0 hsa-let-7d dbDEMC 2.0

hsa-mir-638 dbDEMC 2.0 hsa-mir-153 dbDEMC 2.0

hsa-mir-215 dbDEMC 2.0 hsa-mir-367 dbDEMC 2.0

hsa-mir-637 dbDEMC 2.0 hsa-mir-518c unconfirmed

hsa-mir-195 dbDEMC 2.0 hsa-mir-622 dbDEMC 2.0

hsa-mir-598 dbDEMC 2.0 hsa-mir-583 dbDEMC 2.0

hsa-let-7e dbDEMC 2.0 hsa-mir-600 dbDEMC 2.0

hsa-mir-615 unconfirmed hsa-mir-601 dbDEMC 2.0

similarity. In order to estimate the prediction performance
of BHCMDA, LOOCV, twofold cross-validation and fivefold
cross-validation were implemented, respectively. Moreover,
three different kinds of case studies were conducted as well.
Simulation results from both case studies and cross-validations
demonstrated that BHCMDA had splendid performance in
prediction of potential miRNA-disease associations.

There are a few reasons to explain the reliable performance
of BHCMDA. In the first place, the data used to predict
potential miRNA-disease associations obtained from HMDD
V2.0 in this model is rich and reliable. In addition, BHCMDA
not only integrates the disease semantic similarity and the
miRNA functional similarity with the Gaussian interaction
profile kernel similarity, but also applies a clustering algorithm
based on the integrated data, which makes the basic data
richer and more accurate. In the end, BHC algorithm has the
ability to recommend unpopular products. We averaged the
predicted data obtained by using BHC algorithm, which made the
prediction more reliable.

Whereas there still exist some limitations in BHCMDA. For
instance, the quantity of known miRNA-disease associations
is still not adequate. In addition, we developed BHCMDA
according to the assumption that functionally similar miRNAs
are more likely associated with phenotypically similar diseases,
which may bring about bias to miRNAs related with more known
diseases. Obviously, all these limitations in BHCMDA deserve
further study and need to be improved in the future.
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Objective: As a prevalent and infiltrative cancer type of the central nervous system,
the prognosis of lower-grade glioma (LGG) in adults is highly heterogeneous. Recent
evidence has demonstrated the prognostic value of the mRNA expression-based
stemness index (mRNAsi) in LGG. Our aim was to develop a stemness index-based
signature (SI-signature) for risk stratification and survival prediction.

Methods: Differentially expressed genes (DEGs) between LGG in the Cancer Genome
Atlas (TCGA) and normal brain tissue samples from the Genotype-Tissue Expression
(GTEx) project were screened out, and the weighted gene correlation network analysis
(WGCNA) was employed to identify the mRNAsi-related gene sets. Meanwhile, the
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses
were performed for the functional annotation of the key genes. ESTIMATE was used to
calculate tumor purity for acquiring the correct mRNAsi. Differences in overall survival
(OS) between the high and low mRNAsi (corrected mRNAsi) groups were compared
using the Kaplan Meier analysis. By combining the Lasso regression with univariate and
multivariate Cox regression, the SI-signature was constructed and validated using the
Chinese Glioma Genome Atlas (CGGA).

Results: There was a significant difference in OS between the high and low mRNAsi
groups, which was also observed in the two corrected mRNAsi groups. Based on
threshold limits, 86 DEGs were most significantly associated with mRNAsi via WGCNA.
Seven genes (ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5, LRRC25, and SP100)
were selected to establish a risk signature for primary LGG. The ROC curves showed
a fair performance in survival prediction in both the TCGA and the CGGA validation
cohorts. Univariate and multivariate Cox regression revealed that the risk group was
an independent prognostic factor in primary LGG. The nomogram was developed
based on clinical parameters integrated with the risk signature, and its accuracy for
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predicting 3- and 5-years survival was assessed by the concordance index, the area
under the curve of the time-dependent receiver operating characteristics curve, and
calibration curves.

Conclusion: The SI-signature with seven genes could serve as an independent
predictor, and suggests the importance of stemness features in risk stratification and
survival prediction in primary LGG.

Keywords: lower grade glioma, The Cancer Genome Atlas, Chinese Glioma Genome Atlas, stemness indices-
related signature, prognosis

INTRODUCTION

Lower grade glioma is one of the prevalent and infiltrative types
of primary malignant intracranial tumors in adults, the main
components of which are diffuse low-grade and intermediate-
grade gliomas (Ceccarelli et al., 2016; Ostrom et al., 2018).
Despite comprehensive regimens that involve maximum surgical
resection and subsequent radiotherapy and chemotherapy, the
prognosis of LGG has not improved in the past four decades
(Claus et al., 2015). Due to the great intrinsically biological
and clinical heterogeneity, the overall survival (OS) of LGG
estimates a range from 1 to 15 years, and the response to standard
treatment varies from person to person (Cancer Genome
Atlas Research et al., 2015). Although the histopathological
classification of LGG has traditionally used to predict clinical
outcomes, there remains a high intraobserver and interobserver
variability, and is often hard to accurately predict outcomes
even within the same grade (Coons et al., 1997; van den Bent,
2010). Therefore, it is imperative to search for novel molecular
biomarkers for LGG genetic classification. Recently, the 2016
WHO brain tumor classification established the molecular
markers for subclassification, including the chromosomal 1p
and 19q (chr1p/19q) co-deletion, the isocitrate dehydrogenase
(IDH) mutation, and the histone 3 mutational status. However, it
seems that these widely utilized biomarkers have provided useful
but insufficient prediction for risk stratification of patients with
LGG, especially in genetically heterogeneous populations. Thus,
novel prognostic parameters are urgently needed to develop
and improve the stratification of LGG with the use of multiple
advanced molecular platforms.

The complexity and heterogeneity of glioma cells is
not only related to its genetic polymorphisms, but also
to the characteristics of the microenvironment, such as
stemness features and oncogenic and tumor suppressive
pathways (Venteicher et al., 2017; Dirkse et al., 2019). Recent
advancements have revealed that the populations of glioma
stem-like cells are associated with the radio- and chemo-
resistance, and with prognosis and tumor recurrence (Yi
et al., 2016; Roos et al., 2017). To our knowledge, stemness
features have been extracted by the novel stemness indices,
including DNA methylation-based stemness index (mDNAsi),
mRNA expression-based stemness index (mRNAsi) (Malta
et al., 2018). Besides, Pan et al. (2019) developed a 13-gene
prognostic signature based on mRNAsi, which suggested the
stemness of cancer stem cells (CSCs) and the unfavorable
prognosis. However, no study has previously attempted

to identify the prognostic and predictive value of stem
cell-related genes in LGG.

The scores of mRNAsi in LGG were computed using a one-
class logistic regression machine learning algorithm (OCLR), and
Tathiane et al. found a strong relationship between mRNAsi
and prognosis of glioma, which provided new insights into
stratification tumors with distinct clinical outcomes (Malta et al.,
2018). However, that study mainly focused on comprehensive
pan-cancer analysis. Despite the significant association observed
between mRNAsi and OS, however, it was investigated based
only on the level of bulky tumor. It is reasonable to take the
tumor purity into account in order to further investigate the
prognostic value of the stemness index in tumor parenchyma.
In addition, a series of genes related to mRNAsi have not been
analyzed in detail, and their biological function is also unknown.
Meanwhile, the univariable and multivariable survival analyses
of predominant clinicopathological factors (age, gender, IDH
status, radiation, and chemotherapy status, etc.) and genes related
to mRNAsi have not been explored in different cohorts. In
order to identify the genes related to mRNAsi, the weighted
gene correlation network analysis (WGCNA) was employed. This
method takes the interrelation of genes into account for structure
generation, instead of regarding genes as single entities. WGCNA
has been applied to identify trait-related preserved modules for
discovering the key genes (Zhang and Horvath, 2005; Langfelder
and Horvath, 2008; Liang et al., 2019).

In addition, the ESTIMATE (Estimation of Stromal and
Immune cells in MAlignant Tumor tissues using Expression data)
algorithm is one of the most common methods to calculate
the tumor purity, and is based on scores related to the level
of immune cells infiltration and stromal cells in tumor tissues
(Yoshihara et al., 2013). In the current study, the primary
purpose was to identify the prognostic value of high- and low-
score groups based on the mRNAsi or mRNAsi/purity in a
Kaplan-Meier survival analysis. Next, differentially expressed
genes (DEGs) were screened from The Cancer Genome Atlas
(TCGA) database and the Genotype-Tissue Expression (GTEx)
database. Subsequently, the WGCNA was applied for identifying
the hub gene clusters and for selecting the stemness indices
associated key genes in LGG. Meanwhile, the Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was employed for function annotation. Finally, the
stemness-index associated gene signature was established and
validated in the TCGA database and the Chinese Glioma Genome
Atlas (CGGA) database, which were used for internal and
external validation, respectively.
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MATERIALS AND METHODS

Data Source
The high-throughput RNA-seq data of 529 patients with LGG
from the TCGA database and 1,152 normal brain tissue samples
from the GTEx project were downloaded from the University
of California Santa Cruz (UCSC) Xena website1. The gene
expression profiles were quantified by fragments per kilobase
of transcript per million mapped reads (FPKM) normalized
estimation and log2-based transformation. Next, DEGs were
selected by the “limma” package of R software under the threshold
of absolute value of the log2-transformed fold change (FC) > 1
and the adjusted P-value (adj.P) < 0.05. Besides, the ComBat
method was performed to remove the batch effects using the R
package “sva.”

Acquisition of Stemness Index Based on
RNA-Seq
Malta et al. (2018) provided a novel analysis for an oncogenic
dedifferentiation evaluation that considered the mRNAsi. The
mRNAsi scores of the LGG samples were calculated when a one-
class logistic regression machine learning algorithm (OCLR) was
applied to LGG datasets from TCGA. The gene expression-based
stemness index was represented using β values ranging from zero
(no gene expression) to one (complete gene expression). The
mRNAsi was obtained from the multiplatform analysis based on
this previous research.

Weighted Gene Correlation Network
Analysis for Building Stemness-Index
Associated Preserved Modules
The WGCNA was developed to discover the correlations among
genes by constructing significant modules. The WGCNA analysis
was performed by the “WGCNA package” for R (version 1.61)2

(Langfelder and Horvath, 2008).
Initially, the LGG transcriptome in the TCGA database was

taken as a data source. The correlation of the expression levels of
5490 DEGs was analyzed with high precision and accuracy, which
was a prerequisite for a WGCNA network development. Next,
a parameter β was set based on the correlations of each DEG,
which contributed to achieve a scale-free co-expression network.
Next, the “blockwiseModules” function was carried out for
constructing the network and detecting modules. Furthermore,
the relationship between the modules and mRNAsi score was
investigated, and the preserved module was determined by the
top ranked modules with the strongest connections.

Finally, the key genes from the preserved module were
explored. The Inclusive criterion for screening key genes
was as follows: correlation (cor.) Gene GS > 0.5 and cor.
Gene MM > 0.8 (Pan et al., 2019). Gene significance (GS)
was calculated to measure the correlation between genes and
sample traits (the values of mRNAsi), and Module Membership
(MM) was used to assess the correlation between gene

1https://xena.ucsc.edu/
2https://cran.r-project.org/web/packages/WGCNA/index.html

expression profiles and module eigengene. The associations
among eigengenes, MM, and sample traits were assessed by
Pearson’s correlation.

Evaluation and Bioinformatics Analysis
of Key Genes
The different expression levels of each key gene were visualized
in a heatmap, which was retrieved from the normal tissue and
tumor tissue. In addition, the interactions among key genes
was visualized in a heatmap based on correlations. Moreover,
the identification of the functional annotation was another vital
step in the exploration of the potential mechanism of key
genes. Thus, gene ontology (GO) enrichment analysis (Gene
Ontology Constorium, 2015 and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000; Wanggou
et al., 2016) signaling pathways were performed on a list
of key genes. The visualization of results was implemented
with the R “ggplot2” package. A P value < 0.05, and a false
discovery rate (FDR) < 0.05 were considered to determine
statistical significance.

Inclusive and Exclusive Criteria of
Enrolled Patients for the Construction of
the Risk Signature
Inclusion criteria included: (1) patients who suffered from
primary LGG (except for recurrent LGG), (2) complete
clinicopathological feature, (3) diagnosed with WHO grade II or
III glioma, (4) the RNA-sequencing data of samples was available,
(5) the OS was set as the primary endpoint, and (6) patients with
a minimum follow-up of 90 days.

The exclusive criteria were as follows: (1) patients with a
pathological diagnosis of recurrence LGG, (2) patients who
suffered from brain tumors other than LGG, and (3) absent
survival status and clinicopathological parameters.

Survival Analysis of mRNAsi
ESTIMATE, an algorithm based on a web tool3 provided
information for the purity of the tumor tissue calculation
(Yoshihara et al., 2013). The data of mRNA expression-
based stemness index was calculated for each sample, and
the Kaplan Meier analysis for samples with the high and low
mRNAsi set was carried out. In view of the effects of tumor
purity on the corresponding mRNAsi, the corrected mRNAsi
(mRNAsi/tumor purity) was included. From another perspective,
the survival rate between the high and low mRNAsi groups
was re-compared using a Kaplan Meier analysis based on the
corrected mRNAsi scores.

Construction of a Prognostic Signature
A univariate Cox regression analysis was performed by the
"survival" package in R to identify genes that are highly associated
with and crucial for survival. The prognostic key genes were
then further optimized by the least absolute shrinkage and
selection operator (LASSO) regression model, using the R

3https://bioinformatics.mdanderson.org/estimate/
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package "glmnet." After completing the variable selection and
the shrinkage of prognostic key genes, a stepwise multivariate
Cox regression analysis was performed to generate the risk score
model. The following formula was built based on the coefficients
and expression levels for each gene.

Model : Riskscore =
k∑

i=1

βiSi

Where k indicates the number of signature genes, β is
equal to the coefficient index, and Si represents the expression
level of key genes.

Afterward, using the "survminer" package in R (Li et al., 2019),
the optimum cutoff value was obtained, and the primary LGG
patients in the TCGA database were clustered into high-risk and
low-risk groups. The gap of survival rates between the two groups
was tested by the Kaplan–Meier analysis. The time dependent
ROC was plotted in order to determine whether the risk score
can accurately predict the survival status. Finally, the expression
distributions of signature genes were shown in a heatmap using
the “ComplexHeatmap” R package. The risk plot showed that
the LGG patients in the TCGA database sorted by the rank of
corresponding risk score.

Prognostic Value of the
Seven-Gene-Based Signature
The patients suffering from primary LGG in the TCGA dataset
were randomly categorized into the training group (accounting
for 70%) and internal validation group (accounting for 30%) by
using the "caret" package4. The risk scores and the corresponding
clinical variants, including age, gender, grade, radiotherapy,
chemotherapy, and IDH status were subjected to univariate
and multivariate Cox model. Subsequently, proportional
hazards assumption for different variables (Therneau, 1994)
was examined by the scaled Schoenfeld residuals (Schoenfeld,
1982; R Development Core Team, 2014). In order to achieve the
clinical application of survival prediction model, a prognostic
nomogram was then constructed based on the outcomes of
the multivariate Cox regression analysis (method = “enter”).
Using the "rms," "foreign," and "survival" R packages, the
nomogram was plotted based on the prognostic signature
and six clinicopathology factors for the purpose of predicting
3-, and 5-OS of LGG. Furthermore, the concordance index
(C-index) (Harrell et al., 1996) was employed to quantify
predictive accuracies by using “survival” and “pec” package.
Using the "timeROC" package of R, the time-dependent ROC
curve was performed to estimate the prognostic power of the
nomogram. To compare the accuracy and discrimination of
different models (containing model 1: SI-risk signature; model 2:
mRNAsi; model 3: corrected mRNAsi; model 4: six predominant
clinic-pathological factors; model 5: model 4+ SI-risk signature),
the net reclassification improvement (NRI) and the integrated
discrimination improvement (IDI) were applied by using
“survIDINRI” package (Pencina et al., 2008). Calibration

4https://cran.r-project.org/web/packages/caret

curves were employed to evaluate the agreement between the
observed and the predicted probability (3- and 5-years OS) in the
nomogram. The bootstrap method with 1,000 resamples were
utilized to evaluate both discrimination and calibration.

External Validation of the Prognostic
Signature
Another primary LGG of gene expression information and
related predominant clinical and prognostic factors were
downloaded from the CGGA platform5. A total of 353 samples
were enrolled for external validation of the risk signature.
The samples were uniformly divided into two distinct groups
according to the same cutoff value (1.495), and the Kaplan–
Meier analysis was employed to assess the high-risk and low-
risk groups. Afterward, the ROC curve analysis was used to
assess the discriminatory power of the risk score in the external
validation set. Further, a heatmap was generated to show the
gene expression distributions of signature genes in the CGGA
database, and the risk plot showed the distribution of the LGG
patients according to their individual risk score. Similarly, the
C-index, the time-dependent ROC curves, and calibration curves
(bootstrap method with 1,000 resamples) were compared to
determine the performance of the risk signature.

Cancer Cell Line Encyclopedia (CCLE)
and Protein Expression Verification
The mRNA expression of seven genes profiled by RNA-Seq
extracted from database available at The Cancer Cell Line
Encyclopedia (CCLE)6 (Barretina et al., 2012). This portal covers
genomic and expression data for more than 1000 cell lines
from various tumors. The expression level of seven genes were
analyzed in different types of cancer including LGG using
CCLE. Cell lines of LGG were preliminary confirmed through
six dedicated websites7 and only the consistent LGG cell lines
be retained. In addition, the protein expression levels of the
seven genes between glioma tissue and normal control were
analyzed using Human Protein Atlas database8, and the data were
visualized using immunohistochemistry staining.

Statistical Analysis
The statistical analysis in our exploratory study was carried out
using the R software (version 3.6.0)9. For differentially expressed
gene selection, the Wilcoxon test was performed. The OCLR
method was implemented with the “gelnet” package1 with default
parameters (Sokolov et al., 2016). Pearson’s chi-square tests and
Kruskal–Wallis tests were used to detect the variables difference.
An analysis of the distinctness of survival between the two risk
groups was illustrated by the Kaplan–Meier curve (Klein and
Moeschberger, 1997) with the Wilcoxon logrank test using the

5http://cgga.org.cn/
6https://portals.broadinstitute.org/ccle
7https://web.expasy.org/cellosaurus/, https://www.atcc.org/, https://www.
pheculturecollections.org.uk/products/celllines/generalcell/search.jsp, http:
//igrcid.ibms.sinica.edu.tw, https://cansarblack.icr.ac.uk/, https://www.dsmz.de/
8http://www.proteinatlas.org/
9https://www.r-project.org/
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R package KMsurv. The univariate Cox regression analysis and
multivariate Cox regression analysis were performed to assess
the association between the factors and OS (Therneau, 2015).
A p< 0.05 was deemed as statistically significant.

RESULTS

Data Processing
Identification of DEGs
The overview of the stemness index-related signature
development and validation workflow is summarized in Figure 1.
A total of 774 patients with primary LGG were enrolled in the
generation of the stemness indices-associated risk signature, and
the clinicopathological characteristics are listed in Table 1. The
RNA-seq data (level 3) of 1,152 normal brain tissue samples
and 529 LGG samples from GTEx projects and the TCGA were
screened by the limma package. Before the identification of
DEGs, the normalization and batch effect removal were tested.
As illustrated in Supplementary Figures S1A,C, it performed
well in normalization. Correspondingly, TCGA and GTEx
samples separated obviously (Supplementary Figures S1B,D).
Altogether, using the cutoff of significance of the absolute value
of the log2-transformed fold change (FC) > 1 and the adjusted P
value (adj.P) < 0.05, the differential expression analysis between
1,152 normal control samples and 529 LGG identified a cohort
of 5,490 DEGs, of which 2,718 were upregulated and 2,772 were
downregulated (Supplementary Figures S2A,B).

mRNAsi Mining
Gene expression-based stemness indices for LGG were extracted
by the one-class logistic regression machine learning algorithm
(OCLR) (Malta et al., 2018). A cohort of LGG samples stratified
by the mRNAsi, which is based on the stemness index model,
were utilized for the integrative analyses.

WGCNA: Construction the Correlation
Matrix of mRNAsi and Module Eigengene
Values
Data Acquisition
Using the TCGA database, a WGCNA network was constructed
by the WGCNA package for the purpose of identifying stemness
indices-related modules. The LGG transcriptome in the TCGA
database was employed as the primary source for the analysis.
Afterward, a global view of RNA-seq data analysis specific to LGG
were provided by the WGCNA.

After data preprocessing, a correlation analysis of 5,490 DEGs
was conducted, and the soft threshold power of β was 5 (scale-free
R2 = 0.9) to assure a scale-free topology model (Supplementary
Figure S3A). A total of 5,490 DEGs were screened for further
analysis according to the exclusion criteria.

Next, a clustering analysis on this basis for LGG identified
a total of eleven diverse modules (module size ≥ 50 and cut
height ≥ 0.25) in the network (purple, turquoise, black, brown,
magenta, green, red, yellow, blue, pink, and gray). Genes in
the same color module demonstrated common gene expression
patterns (Supplementary Figure S3B).

Identification of Modules Associated With Stemness
Indexes of LGG
Fold enrichment > 1 and p < 0.05 was regarded as the
statistical threshold of significance for mRNAsi associated
modules selection. There were ten sets of genes (modules)
identified that were significantly associated with mRNAsi. The
purple, brown, magenta, red, and gray modules were correlated
negatively with mRNAsi (MEpurple:r = −0.094, P = 0.04,
MEbrown:r =−0.77, P = 3E−100, MEmagenta:r =−0.27, P = 4E−10,
MEred:r = −0.11, P = 0.01, MEgray:r = −0.13, P = 0.005).
The turquoise, black, yellow, blue, and pink modules were
correlated positively to mRNAsi (MEturquoise:r = 0.29, P = 3E−11,
MEblack:r = 0.15, P = 0.001, MEyellow:r = 0.36, P = E−16,
MEblue:r = 0.6, P = 4E−49, MEgray:r = 0.37, P = 2E−17) (Figure 2
and Supplementary Figure S3).

The module-trait relationships showed that the brown module
was most significantly related to mRNAsi, with the highest
correlation value (r = −0.77, P = 3E−100). Thus, the brown
module was selected for subsequent analyses to explore key genes.

Based on the threshold limits (cor. gene GS> 0.5 and cor. gene
MM> 0.8), 86 out of 748 hub genes were identified after selection
in the brown module.

Analysis and Functional Annotation of
Key Genes in the Brown Module
Analysis of Key Genes in the Brown Module
The expression values of each key gene were retrieved from
the normal control tissue and tumor tissue, which were
visualized as heatmap (Supplementary Figure S4A). The
heatmap showed that most of the key genes had median
expression levels in tumor tissue, whereas CD74 Molecule
(CD74), major histocompatibility complex, class I, E (HLA-E),
major histocompatibility complex, class II, DR Alpha (HLA-
DRA), major histocompatibility complex, class II, DR Beta 1
(HLA-DRB1), complement C1q B chain (C1QB), complement
C1q A chain (C1QA), and complement C1q C chain (C1QC)
exhibited the higher expression in samples from cancer patients.
The correlation analyses between key genes were also visualized
as a heatmap (Supplementary Figure S4B).

Functional Annotation of Genes Related to mRNAsi
The Gene ontology enrichment analysis was executed for
further describing the function of the key genes. In total 30
GO biological processes consisting of 10 biological processes
(BP) terms (regulation of leukocyte activation, etc.), 10 cellular
components (CC) terms (secretory granule membrane, etc.), and
10 molecular functions (MF) terms (peptide binding, etc.) were
enriched (Figure 3A).

In addition, KEGG signaling pathway analysis indicated
that the key genes were significantly enriched in 30 pathways,
and several pathways were immune-related, such as antigen
processing and presentation and cell adhesion molecules
(CAMs) (Figure 3B). The above results suggest the potential
regulatory mechanism of mRNAsi-associated genes in the
development of LGG.

Frontiers in Genetics | www.frontiersin.org 5 May 2020 | Volume 11 | Article 441104

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00441 May 5, 2020 Time: 12:51 # 6

Zhang et al. Stemness-Index Signature in LGG

FIGURE 1 | Flowchart presenting the process of establishing the stemness index-related signature.

Survival Analysis of mRNAsi
After calculating the mRNAsi for all LGG samples, a cohort
of 447 patients with LGG were classified into either a high
mRNAsi score group or a low mRNAsi score group, using the
optimum cutoff value of 0.354. The survival curves showed
that the OS values were significantly different between the two
groups (P = 9.676E−4), based on Kaplan-Meier survival analysis
(Supplementary Figure S5A).

Considering the interferences of tumor purity, the corrected
mRNAsi (mRNAsi/tumor purity) was adopted. By applying
ESTIMATE (Yoshihara et al., 2013), the tumor purity was
calculated in any given LGG sample.

Similar results were also observed when the Kaplan-Meier
survival analysis was applied to all the 463 samples based on
corrected mRNAsi. There was a significant difference in OS
between high mRNAsi score group and low mRNAsi score group
(P = 5.019E−4) (Supplementary Figure S5B).

Identification of Key Prognostic Genes in Primary
LGG
To find out the prognostic value of stemness-index associated
genes, 86 key genes were tested by univariate Cox regression
analysis. It was found that 80 genes were significantly associated
with OS in primary LGG. Surprisingly, all prognostic key genes
were identified as risk factors (Figure 4).

Construction of Stemness-Index Associated
Prognostic Signatures
Taking co-linearity into account, 80 key prognosis-related
genes were subjected to LASSO Cox regression. A set
of 11 key genes were then included in the subsequent
analysis with non-zero regression coefficients. Next, 7 key
genes were filtered and optimized for constructing a risk
signature when implementing the stepwise multivariable Cox
regression analysis (Table 2). The 7 key genes contained
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TABLE 1 | Clinicopathological characteristics of primary LGG patients from the
TCGA and CGGA databases.

Characteristic Training
cohort

Internal
validation
cohorts

External
validation
cohorts

TCGA
(n = 297)

TCGA
(n = 124)

CGGA
(n = 353)

Age (Y)a

≤40 136 (46%) 63 (51%) 189 (54%)

>40 161 (54%) 61 (49%) 164 (46%)

Gender

Male 168 (57%) 65 (52%) 205 (58%)

Female 129 (43%) 59 (48%) 148 (42%)

Grade

I 144 (52%) 54 (44%) 196 (56%)

II 153 (48%) 70 (56%) 157 (44%)

Radiation

No 99 (37%) 53 (43%) 59 (17%)

Yes 198 (63%) 71 (57%) 294 (83%)

Chemotherapy

No 133 (45%) 58 (47%) 147 (42%)

Yes 164 (55%) 66 (53%) 206 (58%)

IDHb Status

Wild-type 53 (18%) 26 (21%) 94 (27%)

Mutation 244 (82%) 98 (79%) 259 (73%)

Risk score

Low risk 209 (70%) 80 (65%) 264 (75%)

High risk 88 (30%) 44 (35%) 89 (25%)

aAge, Age at pathological diagnosis of glioma. b IDH, Isocitrate dehydrogenase.

ArfGAP with dual PH domains 2 (ADAP2), arachidonate
5-lipoxygenase activating protein (ALOX5AP), apolipoprotein
B mRNA editing enzyme catalytic subunit 3C (APOBEC3C),
Fc fragment of IgG receptor and transporter (FCGRT), G
protein subunit gamma 5 (GNG5), leucine rich repeat containing
25 (LRRC25), and SP100 nuclear antigen (SP100). Finally,
a risk score formula was developed based on the seven key
genes along with their individual coefficients and expression
level, which was defined as follows: (−0.88603 × expression
level of ADAP2) + (0.416964 × expression level of ALOX-
5AP) + (0.914674 × expression level of APOBE-
C3C) + (−0.73585 × expression level of FCGRT) + (0.631697
× expression level of GNG5) + (−0.64501 × expression
level of LRRC25) + (0.745358 × expression level of
SP100).

Evaluation of Survival Predicts the Accuracy of
Seven-Gene-Based Signature
The robustness of the seven stemness-index associated genes
was validated by evaluating the ability of stratifying the high-
or low-risk group in TCGA datasets. Patients with primary
LGG were dichotomized into high- (risk score ≥ 1.495) or low-
risk group (risk score < 1.495) based on the optimal cutoff
values. The Kaplan–Meier survival curve analysis showed that
different risk groups by this risk scoring system were significantly

linked with OS (Figure 5A). Next, the 1y-, 3y-, and 5y-AUC
of the time-dependent ROC were 0.899, 0.875, and 0.778,
respectively (Figure 5B), confirming the satisfactory prediction
efficiency of the seven-gene stemness index-based signature in
OS. Furthermore, as observed in the heatmap, FCGRT and
GNG5 had the highest expression levels, whereas LRRC25, SP100,
ALOX5AP, ADAP2, and APOBEC3C exhibited low and medium
expression levels (Figure 5C). Consecutively, the distribution of
risk scores and survival status showed that patients with a risk
score of 1.495 or higher generally had poorer survival when
compared with another group (Figure 5D).

Prognostic Value of the Seven Gene-Based Signature
A cohort of 421 patients with primary LGG in the TCGA database
were classified into training set (n = 297) and internal validation
set (n = 124) randomly at a ratio of 7:3. In consideration of the
prognostic value of the stemness-index associated signature, the
risk score was set as a potential factor and explored by the
univariable and multivariable Cox regression analysis. The forest
plot of the univariable Cox regression analysis, based on 6
clinicopathologic features showed that risk group (HR = 6.648,
p < 0.001), age (HR = 3.573, p < 0.001), grade (HR = 2.864,
p < 0.001), radiation therapy (HR = 2.137, p = 0.014), and
IDH status (HR = 0.143, p < 0.001) were prognostic elements
associated with OS (Figure 6A). Next, the results revealed that
risk (HR = 4.545, p < 0.001), age (HR = 3.399, p < 0.001), and
IDH status (HR = 0.330, p < 0.001) were statistically significant
in multivariable Cox regression analyses (Figure 6B).

Based on the above results, the nomogram was established
for predicting primary LGG 3- and 5-years survival, which
integrated both the unique risk score and clinicopathologic
variables (Figure 6C). The C-index of the nomogram was 0.8701
(95% CI; 0.8358–0.9044). The area under the curves (AUCs) of
the 3- and 5-years OS predictions for the constructed nomogram
were 0.905, and 0.837 in the training set, respectively (Figure 6D).
Meanwhile, the calibration curves for this nomogram were
developed and plotted in Figures 6E,F.

In addition, the comparison of the accuracy and
discrimination in five models were conducted. The c-indexes
of five models were 0.775, 0.658, 0.615, 0.852, and 0.870,
respectively (Figure 7A). Moreover, as shown in Table 3, when
defined the model 1 as the reference, the continuous NRI
for the 1y-, 3y-follow ups were significant lower in mRNAsi
group (model 2) with NRIs were -0.598 (P = 0.01) and -0.548
(P = 0.022). Correspondingly, the continuous NRI for the 1y-,
3y-follow ups were also significant lower in corrected mRNAsi
group (model 3), with NRIs were -0.663 (P < 0.001) and -0.508
(p < 0.001). Conversely, the 1y-, 3y-NRI were significantly
improved in model 4 and model 5 with NRIs were 0.458
(P = 0.016), 0.317 (P = 0.028), 0.708 (P < 0.001), and 0.433
(P < 0.001). Furthermore, the comparison between the model
4 and model 5 was also conducted. The 1y-, 3y-NRIs were
also significant higher in model 5 (comprising all the seven
factors in nomogram).

Moreover, the 3y-, 5y IDI were significantly decreased in
model 2 (IDI = -0.146 and -0.189). The 1y-, 3y-IDI were
significantly decreased in model 3 (IDI = -0.063 and -0.178) with
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FIGURE 2 | The analysis of the weighted gene correlation network analysis (WGCNA) modules showed that there were ten sets of genes (modules) significantly
associated with mRNAsi. The purple, brown, magenta, red, and gray modules were correlated negatively with mRNAsi.

borderline significance in 5y-IDI (P = 0.056). Conversely, the 1y-,
3y-IDI were significant higher in model 4 (IDI = 0.084 and 0.165).
Interestingly, 1y-, 3y-, 5y-IDI were all significant improved in
model 5. In terms of the comparison of IDI between model 4 and
model 5, despite the IDI were all improved, however, the P values
could not reach the levels of significance.

Internal Validation of Seven-Gene Stemness-Index
Associated Prognostic Signature
Meanwhile, the clinical predictive model was evaluated in an
internal validation set. The C-index was 0.8474 (95% CI; 0.7081–
0.7971), the area under the curves (AUC) for 3 and 5-years-
survival were 0.915 and 0.828, respectively (Figure 7B). Taking
the calibration curves for the nomogram-probability of 3-years

survival (Figure 7C) and 5-years survival (Figure 7D) together,
the seven-gene signature was capable of predicting the OS of
primary LGG patients with high efficiency.

Development and External Validation of the
Prognostic Signature
According to the same cut-off value, the external validation
set of 353 patients in the CGGA platform was employed
and divided into high-risk cohort (n = 89) and low-risk
cohort (n = 264). Similar procedures were conducted to assess
the performance of the stemness-index associated signature.
Using the Kaplan-Meier curve analysis, the high-risk cohort
also showed a significantly poorer prognosis than the low-
risk cohort (P = 6.924E−13) (Figure 8A). The 1y-, 3y-,
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FIGURE 3 | Gene Ontology (GO) and KEGG pathway analyses. In total, 30 GO biological process consisting of 10 biological processes (BP) terms, 10 cellular
components (CC) terms, and 10 molecular functions (MF) terms were enriched (A). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (B).
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FIGURE 4 | Forest plot showing the hazard ratios from the univariate Cox regression analysis.

5y-AUC in the external validation set were 0.708, 0.727,
and 0.725, respectively (Figure 8B). In accordance with
the risk plot in the TCGA database, In accordance with
the risk plot in the TCGA database, there was an inverse
relationship between risk score and survival (Figure 8C).

Subsequently, the AUCs for 3- and 5-years OS were 0.798,
and 0.74, respectively (Figure 8D). The C-index in the external
validation set was 0.7526. The calibration curves for the
nomogram 3- and 5-year survival probabilities are shown in
Figures 8E,F, respectively.
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TABLE 2 | Results of the seven key genes in the multivariable Cox regression analysis.

Genes Coef HR HR.95L HR.95H P-value

ADAP2 −0.886027724 0.412290235 0.22399138 0.758882942 0.004423098

ALOX5AP 0.416963664 1.517347377 1.10755058 2.07877013 0.009433367

APOBEC3C 0.914673555 2.495960324 1.783799483 3.492442955 9.47E-08

FCGRT −0.735850888 0.479097627 0.294704586 0.778863129 0.002997479

GNG5 0.631697047 1.880799678 1.385572452 2.553029562 5.09E-05

LRRC25 −0.645008868 0.52465789 0.315056856 0.873702304 0.01318087

SP100 0.745358173 2.107196041 1.21584173 3.652017402 0.00789528

Evaluation of the Correlation Between Clinical
Parameters and Signature
The relationship between the clinicopathological features (age,
gender, grade, radiotherapy, chemotherapy, and IDH mutation
status) and the seven-gene-based signature was explored. Older
patients, patients of grade III, and IDH wild type tended to
have higher risk scores than the younger, grade II, and the
IDH mutant type patients, respectively in the TCGA database
(Supplementary Figure S6A). As for the CGGA database, the
risk scores of patients with IDH1 mutant type, and grade II
were lower than IDH1 wild type, and grade III, respectively
(Supplementary Figure S6B).

Expression Analysis of Seven Genes From Cancer
Cell Line Encyclopedia (CCLE) and Human Protein
Atlas Database
To validate the mRNA expression of seven genes, the expression
levels of ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5,
LRRC25, and SP100 in various human tumors and 14 LGG cell
lines from the CCLE were determined (Supplementary Figure
S7 and Table 4). As shown in Supplementary Figure S7, the
mRNA expression of APOBEC3C, FCGRT, GNG5, and SP100 was
elevated in glioma, whereas the expression of ADAP2, ALOX5AP,
and LRRC25 was low. To further explore the expression patterns
of the seven genes in tissue level, the Human Protein Atlas
database was employed to analyze the differential expression
between glioma tissue and normal control, and the protein
expression was evaluated using immunohistochemistry data as
shown in Supplementary Figure S8. Consistent with the RNA-
seq data, the protein expression levels of FCGRT, and GNG5
were upregulated in tumor tissues when compared with the
normal controls.

DISCUSSION

In previous studies, the risk stratification of the stemness
index has been investigated in pan-cancer cohorts. However,
the comprehensive prognostic value of the stemness index
has not been exploited in LGG. In addition, the function
annotation of the stemness index-associated genes and the
prognostic value of the risk signature have not been investigated.
In the current study, significant differences were found in
survival between low- and high mRNAsi (mRNAsi/purity) score
groups in the Kaplan Meier curve. Moreover, the detail of

stemness indices-related modules and genes were identified
after the application of WGCNA. A total of 86 key genes
were screened according to the threshold limits, which were
most significantly correlated with stemness-index. Next, for the
enrichment analysis of the brown module, GO terms consisting
of “regulation of leukocyte activation,” “positive regulation
of cytokine production,” and “neutrophil degranulation” were
ranked at the top of the list. In addition, KEGG pathway
results such as CAMs, natural killer cell mediated cytotoxicity,
and antigen processing and presentation were also obtained.
Next, after the application of univariate Cox regression analysis,
LASSO Cox regression model, and multiCox analysis, seven key
genes (ADAP2,ALOX5AP,APOBEC3C, FCGRT,GNG5, LRRC25,
and SP100) were enrolled as vital elements in stemness index-
related signature. Furthermore, age, grade, radiotherapy, IDH
status, and risk group were significantly associated with OS
in the univariable Cox regression analysis; however, only age,
IDH status, and risk group were significantly correlated with
OS for primary LGG patients by applying the multivariate Cox
regression analysis.

In the first part, it was found that the mRNAsi was significantly
associated with OS in primary LGG, which was consistent
with a previous study in pan-cancer cohorts (Malta et al.,
2018). However, it should be noticed that the population of
bulky tumor includes tumor cells, immune cells, and stromal
cells. Taking the tumor purity into account may accurately
reflect the actual stemness characteristic in tumor parenchyma.
Moreover, ESTIMATE is one of the most common algorithms
for quantifying tumor purity and composition of stromal and
immune cells. Hence, the concept of the corrected mRNAsi
(mRNAsi/tumor purity) was adopted to reduce the interference
of non-tumor tissue (Malta et al., 2018; Lian et al., 2019; Pan
et al., 2019). Of note, after employing the survival analysis, the
significant survival difference in OS was still observed between
high- and low- score groups based on the corrected mRNAsi
(mRNAsi/tumor purity), which was consistent with the results
from a previous study of bladder cancer (Pan et al., 2019).
Additionally, the comparisons of the accuracy and discrimination
among three models (model 1, model 2, and model 3) were
conducted. Interestingly, the constructed risk signature in
current study was superior to the mRNAsi and corrected mRNAsi
in predicting the overall survival of LGG. To our knowledge,
there is no previous study investigating the improvements of
the accuracy and discrimination between mRNAsi and corrected
mRNAsi. Further pan-cancer analyses are warranted.
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FIGURE 5 | Construction of a risk score based on the seven stemness indices-related gene signature in the TCGA cohort. (A) Kaplan-Meier analysis of OS for
low-risk and high-risk patients in the training cohort. Additionally, the table indicating the number at risk for each group at corresponding time points. (B) The
time-dependent receiver operating characteristics (ROC) curve for 1-, 3-, and 5-year OS predictions for stemness-index related risk signature. (C) Heatmap showing
the distribution of the expression of the seven genes of the stemness index in the TCGA cohort. (D) Risk plot presenting each point sorted based on risk score,
representing one patient. Green and red points represent patients with low- and high-risk, respectively.
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FIGURE 6 | Development of a prognostic stemness indices-related gene signature for primary low-grade glioma (LGG). (A) Univariable Cox regression analysis for
the training cohort. (B) Multivariable Cox regression analysis for the training cohort. (C) A nomogram including risk score and other clinical features for predicting 3-
and 5-years overall survival (OS) of primary LGG. (D) Time-dependent receiver operating characteristics (ROC) curve analysis for 3- and 5-years OS predictions for
the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3- (E) and 5-year (F) OS of primary LGG patients in
the TCGA database.
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FIGURE 7 | (A) The calculation of the C-indexes in five models. (B–D) Internal validation of a prognostic stemness index-related gene signature for primary LGG. (B)
Time-dependent ROC curve of the seven-gene-based risk score for 3- and 5-year OS probability in the internal validation cohort. Calibration plot for internal
validation of 3- (C) and 5-year (D) OS of primary LGG patients.

TABLE 3 | Comprehensive comparison of the accuracy and discrimination in five models.

Index Model 1 vs. Model 2 Model 1 vs. Model 3 Model 1 vs. Model 4 Model 1 vs. Model 5 Model4 vs. Model 5

IDI (1 year) −0.037 (p = 0.274) −0.063 (p = 0.02) 0.084 (p = 0.002) 0.108 (p < 0.001) 0.025 (p = 0.186)

Continuous NRI (1 year) −0.598 (p = 0.010) −0.663 (p < 0.001) 0.458 (p = 0.016) 0.708 (p < 0.001) 0.422 (p = 0.032)

IDI (3 year) −0.146 (p = 0.040) −0.178 (p = 0.006) 0.165 (p = 0.014) 0.214 (p < 0.001) 0.049 (p = 0.102)

Continuous NRI (3 year) −0.548 (p = 0.022) −0.508 (p < 0.001) 0.317 (p = 0.028) 0.433 (p < 0.001) 0.508 (p = 0.032)

IDI (5 year) −0.189 (p = 0.044) −0.211 (p = 0.056) 0.122 (p = 0.158) 0.177 (p = 0.018) 0.055 (p = 0.292)

Continuous NRI (5 year) −0.530 (p = 0.078) −0.366 (p = 0.058) 0.157 (p = 0.274) 0.410 (p = 0.036) 0.398 (p = 0.106)

Model 1: only the SI−risk signature was enrolled in the prognostic factor; Model 2: mRNAsi was enrolled in the prognostic factor; Model 3: corrected mRNAsi was
enrolled in the prognostic factor; Model 4: age, gender, grade, radiation therapy, chemotherapy, and IDH status were enrolled in the prognostic factors; Model 5: age,
gender, grade, radiation therapy, chemotherapy, IDH status, and risk group were enrolled in the prognostic factors. NRI, net reclassification improvement; IDI, integrated
discrimination improvement.
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To gain insights into the biological functions of key genes
in WGCNA, it was found that the key genes were mainly
enriched in infiltration, inflammation, and immune-related
pathways, which were critically involved in the initiation and
progression of glioma (Balkwill and Mantovani, 2001; Shacter
and Weitzman, 2002; Mantovani et al., 2008; Michelson et al.,
2016; Mostofa et al., 2017). Several studies have explored
the prognostic value of host inflammatory cells, such as
neutrophils in glioma. The role of neutrophils in glioma has
two sides, mainly depending on the maturation and activation
state. For example, the series of infiltrating neutrophils have
the ability of contributing to glioma infiltration and pro-
tumoral activity by secreting elastase (Iwatsuki et al., 2000).
Circulating neutrophil-induced immunosuppression can
promote tumor growth by secretion of arginase I (Sippel
et al., 2011). On the other side, it has been found that the
activation of neutrophils have an anti-tumor effect through
antibody-dependent cellular cytotoxicity (Hafeman and
Lucas, 1979; Fanger et al., 1989). Apart from making use
of the migration of neutrophils, anti-cancer drugs can be
delivered to the inflamed brain in glioma patients after
surgery, which may reduce the recurrence of glioma (Xue
et al., 2017). Moreover, recent evidence has revealed that the
potential role of phagosomes in tumorigenesis via different
mechanisms including its engagement in the autophagy pathway
(Kim and Overholtzer, 2013).

Several studies have focused on the role that stemness features
play in survival outcomes in human cancers. Similar to our
study, using 763 primary medulloblastoma patients from the
Gene Expression Omnibus (GEO) datasets, Lian and colleagues
identified and validated a stemness-related gene expression
signature to effectively stratify patients with Sonic hedgehog
medulloblastoma into different OS groups (HR = 1.80, 95%
confidence interval: 1.45–2.24, P = 1.10E−07) (Lian et al., 2019).
In terms of LGGs, age (≤40 years vs. > 40 years), tumor grade
(II vs. III), and IDH status (wild-type vs. mutation) are well-
established and widespread prognostic biomarkers in clinical
practice (Ricard et al., 2012; Cancer Genome Atlas Research
et al., 2015; Zeng et al., 2018; National Comprehensive Cancer
Network, 2019).

In the present study, a seven-gene signature based on the
mRNAsi was built to predict the prognosis of LGG. After
the univariate and multivariate analysis, the stemness index-
related gene signature, age, and IDH status were identified as
independent prognostic markers for predicting OS in primary
LGG patients. To our surprise, receiving radiation therapy
and chemotherapy or not was not associated with OS in the
multivariate analysis. The reason might be the undefined and
inconsistency treatment protocols, including the duration of
treatment, cycles of chemotherapy, total or fraction radiation
dose, and combined treatment regimens. Moreover, numerous
clinical trials have provided evidence for the adoption of
chemotherapy and radiotherapy in gliomas and confirmed
the OS benefit in adjuvant therapy. The Radiation therapy
oncology group (RTOG) 9802 trial showed that radiotherapy
combined with adjuvant procarbazine, 3 CCNU, and vincristine
(PCV) chemotherapy substantially improves the median OS

from 7.8 to 13.3 years (HR = 0.59; P = 0.002) in low-
grade glioma patients older than 40 years or who did not
undergo total tumor resection (van den Bent, 2014). Additionally,
despite the six clinic-pathological factors comprised model
performed fairly in predicting OS, however, integrating the risk
signature further improve the c-index as well as the significant
enhancements of 1y- and 3y-NRI. Thus, new prospective
studies are necessary to further verify the prognostic value of
the stemness index-associated risk signature in primary LGG
patients who receive a combined standard approach of surgery,
radiotherapy, and chemotherapy.

Among the seven genes, ALOX5AP, APOBEC3C, GNG5, and
SP100 were identified as risk-associated genes, whereas ADAP2,
FCGRT, and LRRC25 were confirmed as protective genes.
Regarding the risk-associated genes, APOBEC3C was discovered
as a vital member of the APOBEC family that encodes the
APOBEC3C (apolipoprotein B mRNA editing enzyme catalytic
subunit 3C, or A3C), clustered in the human chromosome
22 (Jarmuz et al., 2002). Some investigations have shown that
the expression of APOBEC3C played a positive role in the
invasiveness and prognosis of breast cancer (Zhang et al., 2015;
Wang et al., 2019), hepatocellular carcinoma (Yang et al., 2015),
and prostate cancer (Kawahara et al., 2019). Taking into account
investigations on the role of GNG5 in carcinogenesis, Orchel et al.
(2012) found that GNG5 may play a vital role in pathogenesis
or progression of endometrial cancer. In addition, it has been
revealed that GNG5 involved in PI3K-AKT and Wnt signaling
pathway, and associated with reduced E-cadherin expression in
invasive breast cancer (Alsaleem et al., 2019). ALOX5AP is one
of the essential genes in the production of leukotrienes from
arachidonic acid via encoding the ALOX5AP.Consistent with
our results, Wu et al. (2018) found that high expression of
ALOX5AP is associated with poor survival outcome in esophageal
carcinoma. Additionally, ALOX5AP also involved in a risk model
to serve as a prediction of osteosarcoma metastasis (Dong
et al., 2019). It is known that the nuclear autoantigen SP100
participates in various biological processes, such as cellular gene
expression, differentiation, and cell growth (Everett et al., 2006).
It was found that high expression of SP100 was associated
with poor cell differentiation in laryngeal cancer (Li et al.,
2010). Moreover, the expression of SP100 could regulate the
transcriptional activity of ETS1 and further influence the cell
invasion in breast cancer (Yordy et al., 2004). Regarding the
role of SP100 in glioma, previous study revealed that SP100 was
overexpressed in glioblastoma cells and involved in the regulation
of glioblastoma cell proliferation and migration (Held-Feindt
et al., 2011). With regards to the protective genes of FCGRT, it has
been found to be responsible for encoding neonatal Fc receptor
(FcRn), which participates in the transport and homeostasis of
immunoglobulin as well as anti-tumor immunity (Roopenian
and Akilesh, 2007; Ward and Ober, 2009). The expression of
FcRn in immune cells, particularly in antigen presenting cells, is
associated with its involvement in antigen presentation and cross-
presentation that contributes to its shape anti-tumor properties.
Studies showed that FcRn-expressed dendritic cells (DCs) are
critical for the number and activation of CD8 + T-cells and are
associated with prognosis in colorectal carcinoma (Baker et al.,
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FIGURE 8 | External validation of a prognostic stemness index-related gene signature for primary low-grade glioma (LGG). (A) Kaplan-Meier analysis of OS for
low-risk and high-risk patients in the external validation cohort. Additionally, the table indicating the number at risk for each group at corresponding time points. (B)
The time-dependent receiver operating characteristics (ROC) curve for 1-, 3-, and 5-years OS predictions for the nomogram compared with actual observations. (C)
The heatmap shows the expression of the seven genes between two risk groups in the CGGA cohort. (D) Time-dependent ROC for 3- and 5-years OS predictions
for the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3- (E) and 5-year (F) OS of primary LGG patients
in the CGGA database.
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TABLE 4 | List the expression of the seven genes in 14 LGG cell lines.

Gene ADAP2 ALOX5AP APOBEC3C FCGRT GNG5 LRRC25 SP100 ACTB RRID

Gene expression (TPM)

H4 −3.234 −2.279 4.977 0.095 4.544 −4.032 3.775 10.664 CVCL_1239

HS683 −2.058 −0.673 4.300 2.101 6.059 −6.675 3.185 11.276 CVCL_0844

KG1C −1.336 −1.609 6.160 0.334 5.218 −5.833 3.823 9.971 CVCL_2971

LN215 −3.879 −1.422 4.532 3.533 6.074 −7.049 4.243 10.537 CVCL_3954

LN235 −5.352 −1.489 4.216 3.967 6.028 −13.000 2.936 11.236 CVCL_3957

LN319 −4.063 −4.098 4.875 4.220 6.443 −13.000 1.443 9.752 CVCL_3958

LNZ308 −4.406 −3.171 2.872 0.317 7.113 −6.339 2.853 11.534 CVCL_0394

NMCG1 −3.648 −4.420 5.862 3.947 5.529 −8.266 2.392 11.488 CVCL_1608

SF268 −4.211 −1.512 0.554 3.739 6.236 −8.445 2.833 11.989 CVCL_1689

SNU738 −4.872 0.014 3.532 −3.016 6.417 −13.000 1.792 11.811 CVCL_5087

SW1088 −5.636 −2.916 5.441 1.140 6.274 −13.000 3.756 11.187 CVCL_1715

SW1783 −3.378 −1.839 4.975 2.773 5.975 −13.000 2.574 11.152 CVCL_1722

TM31 −2.523 −1.341 4.058 3.116 6.403 −8.164 1.793 10.397 CVCL_6735

U178 −3.724 −0.034 5.055 −3.648 5.367 −6.019 3.714 11.720 CVCL_A758

2013). The downregulation of FcRn is correlated with reducing
maturation and activation of natural killer cells that in turn
increase lung metastasis in an FcRn-depleted environment in
mice (Castaneda et al., 2018). The protein encoded by ADAP2
is a GTPase-activating protein and increases the stability of
microtubules. The investigation about the role of ADAP2 in solid
tumor is rare. Only one study found the expression of ADAP2 was
markedly decreased in in vivo tumors without further validation
about the function or mechanism (Laukkanen et al., 2015).
Correspondingly, the prognostic value of LRRC25 has not been
investigated in solid tumors. Hoffman et al. found that the
expression of LRRC25 was significantly associated with the risk
of breast cancer (Hoffman et al., 2017). Further investigations are
warranted to explore the mechanisms of LRRC25 in glioma.

Several limitations should be noticed in the current
study. First, the stemness index-related signature and the
nomogram developed were able to accurately predict survival
outcome in primary LGG. Nonetheless, the validation in
cellular experiments, and animal and tissue models warrants
further investigation. Second, due to an absence of 1p19q
characterization in the TCGA datasets, the status of 1p19q
co-deletion was not investigated by the univariate and
multivariate Cox regression analysis and was not employed for
the establishment of prognostic nomogram. Third, considering
a lack of standard treatment strategies in the TCGA and
CGGA databases, the effectiveness of the seven-gene signature
in primary LGG patients who received standard treatment
needs to be further verified in well-designed prospective
clinical investigations.

CONCLUSION

Our study identified a novel gene signature based on seven
genes relevant to the stemness index and developed a prognostic
nomogram composed of the gene signature and clinical
prognostic factors that effectively predict overall survival in

primary LGG patients. ALOX5AP, APOBEC3C, GNG5, SP100,
ADAP2, FCGRT, and LRRC25 might be candidate prognostic
biomarkers in primary LGG.
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FIGURE S1 | The normalization and batch effect removal from TCGA and GTEx
datasets. (A) Box plots illustrated the data distributions from TCGA and GTEx
datasets before normalization. (B) PCA plot illustrated the cluster of the samples
from TCGA and GTEx datasets before batch effect removal. (C) Box plots
illustrated the data distributions from TCGA and GTEx datasets after
normalization. (D) PCA plot illustrated the cluster of the samples from TCGA and
GTEx datasets after batch effect removal.

FIGURE S2 | (A) Heatmaps showing that the 5,490 differentially expressed genes
(DEGs) can effectively distinguish tumors from non-tumor tissues after integrated
analysis. (B) Volcano plot presenting DEGs between LGG and non-tumor tissues.

Red dots, and green dots represent up-regulated genes, and down-regulated
genes, respectively.

FIGURE S3 | Weighted gene correlation network analysis for building
stemness-index associated preserved Modules. (A) Determination of soft
threshold for adjacency matrix, and plots of mean connectivity versus soft
threshold. (B) Clustering results of WGCNA modules. The horizontal axis indicates
modules with different colors.

FIGURE S4 | Analysis of key genes in the module brown. (A) The heatmap
showing that the differentially expressed levels of the key genes between the
normal control tissue and tumor tissue. (B) The heatmap of the correlation
analysis among key genes.

FIGURE S5 | (A) Kaplan-Meier survival analysis of mRNAsi. (B) Kaplan-Meier
survival analysis of corrected mRNAsi. Additionally, the table indicating the number
at risk for each group at corresponding time points.

FIGURE S6 | Association between risk score and clinical-pathological
parameters. Association between risk score and age, gender, grade, radiotherapy,
chemotherapy, and IDH mutation status of primary LGG patients in TCGA cohort
(A), in CGGA cohort (B).

FIGURE S7 | The mRNA expression level of ADAP2 (A), ALOX5AP (B),
APOBEC3C (C), FCGRT (D), GNG5 (E), LRRC25 (F), and SP100 (G) in different
types of human cancers.

FIGURE S8 | The protein expression level of immunohistochemistry (IHC) images
collected from the Human Protein Atlas database of the risk genes between
glioma tissue and normal control (ADAP2 was not available).
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The Graves’ disease is an autoimmune disease highly associated with thyroid cancer.
The Graves’ ophthalmopathy (GO) is a special Graves’ disease with inflammatory
ophthalmopathy being a typical extrathymic complication. GO is caused by the
formation of orbital fat and extraocular muscle fibrosis due to the inflammation of
orbital connective tissues. Thus, controlling extraocular muscle fibrosis is critical for
the prognosis of GO. The objective of this study is to identify and experimentally
validate key genes associated with GO and explore their potential function mechanisms
especially on extraocular muscle fibrosis. Specifically, we first created a GO mouse
model, and performed RNA sequencing on the extraocular muscles of fibrotic GO
mice and controls. SRC was identified as the most significant unstudied differentially
expressed gene between GO mice and controls. Thus, we conducted a few in vitro
analyses to explore the roles and functions of SRC in GO, for which we selected
primary cultured orbital fibroblast (OF) as the in vitro cell line model. It is known that
myofibroblast (MFB), which expresses α-SMA, is an important target cell in the process
of fibrosis. Our experiment suggests that TGF-β can induce the transformation from OF
to MFB, however, the transformation was inhibited by silencing the SRC gene in OF.
In addition, we also inhibited TGF-β/Smad, NF-κB, and PI3K/Akt signaling pathways to
analyze the interaction between these pathways and SRC. In conclusion, the silence of
SRC in OF can inhibit the transformation from OF to MFB, which might be associated
with the interaction between SRC and a few pathways such as TGF-β/Smad, NF-κB,
and PI3K/Akt.

Keywords: SRC gene, extraocular muscle fibrosis, graves’ ophthalmopathy (GO), orbital fibroblast (OF),
myofibroblast (MFB), α-smooth muscle actin (α-SMA)

INTRODUCTION

The Graves’ ophthalmopathy (GO), also called infiltrative exophthalmos, is one type of Graves’
disease with great prevalence (Tsai et al., 2015). About 25–50% of the Graves’ disease patients
have varying degrees of GO (Jiskra, 2017). However, the pathogenesis of GO is still unclear. At
present, many researches consider it as an autoimmune disease (Burch and Wartofsky, 1993). The
symptoms in its early stage mainly include inflammation and edema, while that in the late stage
is retrobulbar fibrosis (Heufelder, 1999). Fibrosis of extraocular muscles causes the loss of normal
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contractile function of muscle tissue, which leads to the
limitation of eyeball movement. Patients may suffer from
diplopia, strabismus and even compression of optic nerve lead
to blindness, which seriously affects their life quality. At present,
there is no good treatment for GO and the medication usually
cannot prevent the occurrence of advanced extraocular muscle
fibrosis. Therefore, it is of great clinical importance to study the
pathogenesis of extraocular fibrosis of GO and develop effective
prevention and treatment strategies.

Previous studies have suggested that the thyrotropin receptor
(TSHR) of orbital fibroblasts (OF), which can regulate thyroid
function, plays a pivotal role in GO (Weetman, 2000). In addition
to thyroid epithelial cells, TSHR can be detected in extraocular
muscle tissue and fat tissue in orbit (Krieger et al., 2016),
and the concentration of TSHR in extraocular muscle tissue of
GO patients is significantly higher than that of healthy people
(Gillespie et al., 2012). Thus, TSHR has been considered as
important disease targets in GO (Iyer and Bahn, 2012). The acting
mechanism of TSHR is related to various active factors in the
process of orbital autoimmune response caused by thyroid orbital
autoantigen, which may transform OF to myofibroblast (MFB),
a type of cell expressing α-smooth muscle actin (α-SMA; Dik
et al., 2016). A few previous studies suggest that the emergence
of MFB is the key step in the process of fibrosis (Saika et al.,
2016), and the continuous accumulation of MFB or the defect
of apoptosis process will lead to the progressive development of
fibrosis (Huang and Susztak, 2015).

As another important factor for transforming OF to MFB,
transforming growth factor-β (TGF-β) also plays a critical role
in the fibrotic diseases of various organs and tissues (Shen
et al., 2015). In fact, TGF-β is recognized as the starting hub
of the formation and development of fibrosis, which has been
widely studied. For example, Steensel et al. (2009) found that
the expression level of TGF-β1 mRNA in the orbital tissue of
GO patients was twice that of normal people. In addition, TGF-
β significantly promotes the proliferation and transformation OF
into MFB (Heufelder and Bahn, 1994; Koumas et al., 2003), and
regulates the expression of TSHR (Valyasevi, 2001).

At present, researches on GO mechanism are mainly focused
on its immunological pathogenesis (Antonelli et al., 2014;
Rapoport and McLachlan, 2014; Chen et al., 2015). Recent studies
suggest that genes, oxidative stress and other factors may also
affect the pathogenesis of GO (Chng et al., 2014; Wang et al.,
2015). For example, many genes were abnormally expressed in
GO (Chen et al., 2014; Pei et al., 2018), and research shows that
gene polymorphism also affects the occurrence and development
of GO (Hooshang et al., 2015; Yang et al., 2017). Studies on these
aspects can provide a more comprehensive understanding of the
pathogenesis of GO. However, a deep exploration on abnormally
expressed genes, antioxidant stress, and their acting mechanisms
on extraocular fibrosis is more or less ignored, especially at
the late stage of the disease. In addition, though it is known
that the genetic mechanism of translation and transcription of
susceptibility genes in GO patients may cause the self-immune
response to TSHR (Brand and Gough, 2010), the mechanism
of extraocular fibrosis in the late stage of GO patients has not
been clarified. Finally, although it has been found that some

molecular mechanisms and signal pathways may be involved in
the pathogenesis of GO (Wang, 2014; Tong et al., 2015; Xiao-Ling
et al., 2017), the regulation and interaction of these molecular
mechanisms need to be further studied, and the role of these
molecular mechanisms and signal pathways in GO extraocular
muscle fibrosis is unclear.

In this study, we established a GO mouse model by genetic
immunization (Sajad et al., 2013), and selected OF as the cell
model for in vitro study of GO extraocular muscle fibrosis (Lim
et al., 2014). Specifically, we first used GO mouse extraocular
muscle to screen out key genes for GO extraocular muscle
fibrosis, among which SRC has not been studied according
to literature mining. We then studied the role of SRC in
GO extraocular muscle fibrosis using the in vitro cell model,
and its interaction with a few signaling pathways including
PI3K/Akt/NF-κB signaling pathway, TGF-β/Smad signaling
pathway, and so on. This study provides a new direction for
the mechanism of GO development. It also provides a new idea
for finding effective intervention targets for the treatment of
extraocular muscle fibrosis in GO, which might be of importance
clinical significance.

MATERIALS AND METHODS

Mouse Model of Graves’ Orbitopathy
BALB/c female mice (with age 8–10 weeks) were purchased
from Animal Experimental Center of Harbin Medical University.
Animals were housed under conventional conditions in cages
with filter top lids and food made available ad libitum. For
immunization, BALB/c mice were anesthetized for injection with
50 µL plasmid (1 mg/mL) into each biceps femoris (thigh)
muscle. A single injection with the needle entered deep (3–4 mm)
into the thigh muscle was performed, with slow release of plasmid
into the muscle. Great care was taken to ensure reproducibility of
the injection protocol in all immunizations. Injection and in vivo
electroporation were performed four times at 3-week intervals
using an ECM830 square wave electroporator with 7-mm caliper
electrodes at 200 V/cm. Application of the current was in ten-
20 ms square wave pulses at 1 Hz. All animals were maintained
in Specific Pathogen Free and procedures were conducted under
Harbin Medical University regulations of accepted standards of
humane animal care.

Cloning and Preparation of Plasmid DNA
The multi-system expression plasmid pTriEx-1.1 Neo was used
as a vector and purchased from the BioVector NTCC. Human
TSHR A-subunit (amino acid residues 22–289) was amplified for
cloning. TSHR A-subunit cDNA region was cloned into BamHI
and NotI restriction sites in pTriEx-1.1 Neo by amplification
from pcDNA3.1-human TSHR plasmid using forward primer 5′-
CGCGGATCCATGAGGCGATTTCGGAGG-3′. The cDNA was
excised and subcloned into BamHI and NotI-digested pTriEx-
1.1 NeopTriEx-1.1 Neo vector. The plasmids, termed pTriEx-
1.1 Neo-TSHR A-subunit was fully sequenced in strands. All
plasmids were grown in E. coli XL-1 Blue cells in LB medium in
cultures. Purified plasmid concentrations were measured using a
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spectrophotometer, resuspended at 1 mg/mL in sterile water, and
stored at −80◦C. Single plasmid preparations were used for the
entire set of injections for the group of animals.

Screening of Differentially Expressed
Genes
Three groups of extraocular muscle tissues were entrusted to
SeqHealth Tech Co., Ltd., Wuhan, China for RNA Sequencing.
The cuff norm was used to quantify the expression levels for each
gene normalized by reads per kb of RPKM reads (1). RPKM≥ 0.5
was defined as a mapped gene. The mapped genes were then used
to calculate the difference of RPKM values and the fold changes
between GO mice samples and control group samples. A value
of p < 0.05 and log FC > 1 were classified as a differentially
expressed gene (DEG). Map all differentially expressed genes to
the various terms of the Gene Ontology database1, calculate the
number of genes for each term, and then apply a hypergeometric
test to find out the difference compared to the entire genome
background. Significantly enriched GO entries in the expressed
genes. Using Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway2 saliency enrichment analysis, hypergeometric tests
were used to find Pathway that was significantly enriched in
differentially expressed genes compared to the entire genomic
background. After making KO annotations for genes, statistics
are based on the KEGG metabolic pathways they participate in.
A value of p < 0.01 was defined as significant enrichment.

RPKM =
total exon reads

mapped reads (millions)× exon length (KB)

P = 1−
m−1∑
i=0

(
m
i

)(
N −M
n− i

)
(
N
N

)
Cell Culture and Transfections
Primary culture was performed on OFs for BALB/c mice. The
cells were cultured in Dulbecco’s Modified Eagle’s Medium
(Corning, United States), supplemented with 10% fetal bovine
serum (ExCell Bio, Uruguay), and maintained at 37◦C in a
humidified environment containing 5% CO2. For transfection,
the cells were plated into 6-well plates with 2.5 × 105cells/well.
Once the cells were 70–90% confluent, SRC mimics or NC
mimics were transfected into the OFs using Lipofectamine R©

3000 reagent (Thermo Fisher Scientific, United States),
according to the manufacturer’s protocol. SRC mimics (5′-
GCGGCUGCAGAUUGUCAAUTTAUUGACAAUCUGCAGCC
GCTT-3′) and its scramble control (5′-ACGUGACACGU
UCGGAGAATT-3′) were designed and chemically synthesized
by Shanghai GenePharma Co. Ltd. For Inhibitor treatment,
24 h after seeding, the medium was removed and replaced
with Oxymatrine (5 mg/mL, cat. no. HY-N0158), JSH-23
(50 µmol/l, cat. no. HY-13982) and PI3K-IN-1 (25 µmol/l,

1http://www.geneontology.org/
2http://www.genome.jp/kegg/

cat. no. HY-12068) or equal amounts of DMSO and incubated
for 24h at 37◦C. Inhibitors purchased from MedChemExpress,
United States. Serum−starved for 24 h, and then treated with
human recombinant TGF-β1 (PeproTech, United States). The
concentration of TGF-β1 is 10 µg/L and treated for 24 h.

Immunofluorescent Staining
For Immunofluorescent (IF) staining, the cells grown on the
slides were fixed with 4% paraformaldehyde for 30 min at
4◦C, then blocked with 5% bovine serum album in for 1 h
at room temperature and incubated with primary antibodies
overnight at 4◦C. The next day, the slides were washed with PBS,
and incubated with goat anti-rabbit IgG H&L FICT secondary
antibodies (1:1000; cat. no.ab6717; Abcam, United Kingdom)
and DAPI (Beyotime Biotechnology, China) for 2 h at room
temperature. Fluorescence microscopy images were obtained
with a research fluorescence microscope equipped with a digital
camera. The following primary antibodies were used: Anti-
alpha smooth muscle antibody (1:200; cat. no. ab5694; Abcam,
United Kingdom) and Anti-Collagen I antibody (1:500; cat. no.
ab34710; Abcam, United Kingdom).

Real-Time Quantitative PCR
Total RNA was extracted from OFs with TRIzol R© reagent
(Thermo Fisher Scientific, United States). A total of 1 µg RNA
was transcribed into cDNA using transcriptor first Strand cDNA
Synthesis Kit (Roche Diagnostics GmbH, Germany) for mRNA
according to the manufacturer’s protocol. The expression levels
of the genes were detected by qPCR. qPCR was performed using
the SYBR Green (Roche Diagnostics GmbH, Germany) dye
detection method. The thermocycling conditions were as follows:
95◦C for 10 min; followed by 40 cycles of 95◦C for 15 s; and
60◦C for 60 s. The following primers were used: Acta2 forward,
5′-GACGCTGAAGTATCCGATAGAA-3′ and reverse, 5′-
AATACCAGTTGTACGTCCAGAG-3′; Col1a1 forward, 5′-TGA
ACGTGGTGTACAAGGTC-3′ and reverse, 5′-CCATCTTTAC
CAGGAGAACCAT-3′; Src forward, 5′-CTATGTGGAGCGGA
TGAACTAT-3′ and reverse, 5′-ATTCGTTGTCTTCTATGAGC
CG-3′; Pik3r1 forward, 5′-AAACAAAGCGGAGAACCTATTG-
3′ and reverse, 5′-TAATGACGCAATGCTTGACTTC-3′; Nfkb1
forward, 5′-CAAAGACAAAGAGGAAGTGCAA-3′ and reverse,
5′-GATGGAATGTAATCCCACCGTA-3′; Smad3 forward,5′-AT
TCCATTCCCGAGAACACTAA-3′ and reverse, 5′-TAGGTCCA
AGTTATTGTGTGCT-3′. Primers were designed and chemically
synthesized by Sangon Biotech Co. Ltd., Shanghai, China.

Western Blotting
Cells were lysed in RIPA buffer supplemented with complete
Protease Inhibitor Cocktail tablets (Roche Diagnostics GmbH,
Germany) and Phosphatase Inhibitor Cocktail tablets (Roche
Diagnostics GmbH, Germany) for 30 min on ice. Protein
lysates (30 µg) were subjected to 8% SDS-PAGE (Beyotime
Biotechnology, China) and transferred to PVDF membrane.
Subsequent to blocking with 5% non-fat milk in 0.05% TBS-
Tween-20 (v/v) for 1 h at room temperature, the membranes were
incubated with the appropriate primary antibodies overnight
at 4◦C. The secondary antibodies were horseradish peroxidase
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FIGURE 1 | GO mice model and Pathological images. (A) control mice and appearance of head region of hTSHR-A subunit plasmid-immunized mouse undergoing
chemosis; (B) control mice normal thyroid and GO mice hypothyroid gland; (C) control mice H&E staining performed normal extraocular muscles and GO mice
extraocular muscles showing interstitial inflammatory infiltrate; and (D) GO mice Masson’s Trichrome-stained section of orbital muscle to show fibrosis in extraocular
muscles and control mice did not show fibrosis.

(HRP)-conjugated goat anti-mouse IgG (cat. no. ZB-2305;
1:2500; ZSJQ-BIO, China) and HRP-conjugated goat anti-rabbit
IgG (cat. no. ZB-2301; 1:2500; ZSJQ-BIO, China). The secondary
antibodies were incubated for 1 h at room temperature. Protein
detection was performed using an enhanced chemiluminescence
substrate (Thermo Fisher Scientific, United States) prior to
exposure to film. Primary antibodies used were as follows:
Anti-alpha smooth muscle antibody (1:2500; cat. no. ab5694;
Abcam, United Kingdom), Anti-Collagen I antibody (1:5000;
cat. no. ab34710; Abcam, United Kingdom), TIMP-1 antibody
(1:1000; cat. no. NB100-74551; Novus Biologicals, United States),
Phospho-NF-κB p65 (ser536)(93H1) Rabbit mAb (1;1000;
cat. no.#3033; Cell Signaling Technology, United States),
NF-κB p65(D14E12)XP Rabbit mAb (1;1000; cat. no.#8242;
Cell Signaling Technology, United States), Phospho-Smad2
(ser465/467)/Smad3(ser423/425)(D27F4) Rabbit mAb (1;1000;
cat. no.#8828;Cell Signaling Technology, United States),
Smad2/3(D7G7)XP Rabbit mAb (1;1000; cat. no.#8685;Cell
Signaling Technology, United States), Anti-PI3 Kinase p85 alpha
(phospho Y607) antibody (1:1000; cat. no. ab182651; Abcam,
United Kingdom), PI3 Kinase p85 (19H8) Rabbit mAb (1;1000;
cat. no.#8242; Cell Signaling Technology, United States).

Measurement of ROS Level in Cells
The cells (density: 2.5 × 105 cells/well.) were grown in a 6-
well plate. After that, DCFH2− (10 µM) and the culture were
combined; they were subjected to incubation for 30 min at 37◦C.
Warm PBS was used to wash the cells, and generation of reactive
oxygen species (ROS) was ascertained from intracellular 2′,7′-
dichlorofluorescein (DCF) production that was the result of 2′,7′-
dichlorodihydrofluorescein (DCFH2) oxidation. A fluorescence
enzyme-labeled instrument was employed to determine the level
of DCF fluorescence in 488 nm excitation wavelength and
525 nm emission wavelength. ROS kit was purchased from Soleil
Technology Co. Ltd.

RESULTS

HTSHR A-Subunit Plasmid-Immunized
Mice
We initially challenged nine mice with hTSHR A-subunit plasmid
by the Moshkelgosha protocol (Sajad et al., 2013). They were
weighed weekly before the start of immunization. Animals
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FIGURE 2 | Thyroid function and Antibody. (A) control mice and GO mice total serum T4 values; (B) control mice and GO mice killed at 6 and 15 weeks after end of
immunization; (C) control mice and GO mice total serum TSH values; and (D) control mice and GO mice total serum TSAb values. *P value < 0.05 compared with
control group; **P value < 0.01 compared with control group.

similarly immunized with pTRiEx1.1 neo (n = 9) did not lead
to any visible changes in their health or to any histologic
manifestations in thyroid and orbital tissue and were used
as the control group. As a result, animals in the experiment
group showed extraorbital changes with typical signs of acute
orbital congestion (chemosis; Figure 1A). The finding of severe
sickness prompted us to initially examine thyroid histology
by hematoxylin–eosin (H&E) staining, which showed typical
pattern of hypothyroidism, with most follicles characterized by
thinning of epithelial cells (Figure 1B). In contrast, the H&E
examination of thyroid glands of mice in the control group
showed normal appearance. We next examined the H&E staining
on orbital tissues. While the controlled mice showed normal
appearance, the animals immunized with hTSHR A-subunit
plasmid showed histologic signs of orbital pathology, and
interstitial inflammatory infiltrate into extraocular muscle, which
was extended into the muscle tissue and isolating individual fibers
(Figure 1C). These symptoms are similar to those described
in patients with active GO (Boschi et al., 2005). The hTSHR
A-subunit plasmid-in vivo electroporation model in female
BALB/c mice is recognized for robust antibody responses to
TSHR, which persists for months after end of immunization
(Zhao et al., 2011). The model therefore gave us the opportunity
to evaluate the long-term effect of ongoing anti-TSHR immune
response on orbital pathology. Finally, the H&E examination
of orbital tissue was characterized predominantly by orbital

muscle fibrosis, which by Masson’s Trichrome staining exhibited
extensive deposition of glycosaminoglycans with pericellular
fibrosis in retrobulbar tissue (Figure 1D). Histologic analysis
of the orbital tissue also showed disease heterogeneity in the
experiment group with expansion of adipose tissue. None of the
animals immunized with control plasmids showed any orbital
pathology or disease.

We evaluated thyroid function in the above animals
undergoing GO in serum obtained 15 weeks after the end
of immunization. Total T4 measurements in mice undergoing
experimental thyroid autoimmunity are commonly used for
assessment of endocrine status during the course of disease
(Gilbert et al., 2006). The animals showed a trend toward
lower T4 values, correlating with the findings of hypothyroid
glands by histology (Figure 2A). Importantly, the animals in
the experiment group showed significant weight gain during
the course of immunizations, conferring hypothyroid status
(Figure 2B). In addition, the animals showed high levels of
TSH (Figure 2C), and the determination of anti-TSHR antibody
subtypes showed that the animals are highly positive for
TSAbs (Figure 2D).

We performed immunohistochemical staining on the GO
mice and control mice. Compared with controlled mice, we
detected positive signals on TGF-β, α-SMA and Col-1, and
immunohistochemical staining of extraocular muscles for GO
mice (Figure 3).
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FIGURE 3 | Immunohistochemical staining. The immunohistochemical staining of extraocular muscles in GO mice and control mice.
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FIGURE 4 | DEGs based on RNA-Seq. (A) DEGs shown in a heat map, MA Plot of DEGs and Statistics of DEGs Up-Down; (B) GO enrichment map of up- and
down-regulated genes; (C) KEGG enrichment map of up- and down-regulated genes.
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FIGURE 5 | Validation of DEGs. (A) Up- and down-regulated genes in PPI; (B) Validation of DEGs by q-PCR.

Screening of DEGs Based on RNA-Seq
We performed differentially expressed gene (DEG) analysis
between GO mice and the controls. Specifically, the extraocular
muscle tissues of three GO mice and three control mice
were undergone RNA sequencing (RNA-Seq). The genes with
transcript per million mapped (RPKM) values <0.5 were
removed, and the remaining genes were kept for DEG analysis
using DESeq2. A gene with adjusted p < 0.05 and | log FC|
> 1 was classified as a DEG. A DEG is up-regulated if its
logFC > 1 and down-regulated if logFC < −1. Based on
this definition, there were 2079 up-regulated and 1483 down-
regulated genes. These 3562 DEGs were regarded as candidate
genes for further study, and their expression levels were shown
in a heat map in Figure 4A. We studied the functions of the
DEGs by their enrichment on Gene Ontology terms and KEGG

pathways using the hypergeometric test. A term/pathway of
p < 0.01 was defined as significant enrichment. The significantly
enriched Gene Ontology terms and KEGG pathways were shown
in Figures 4B,C, respectively. As can be seen from Figure 4B,
the top enriched Gene Ontology terms for up-regulated genes
include synapse and neuron related function, while the top
enriched Gene Ontology terms for down-regulated genes are
mainly mitochondria-related functions. Similarly as shown in
Figure 4C, the top enriched KEGG pathway for up-regulated
genes is nicotine addition, while that for down-regulated genes
is oxidative phosphorylation.

Validation of DEGs by q-PCR
We embedded the 3562 differentially expressed genes into the
protein interaction network (STRING), and finally selected five
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FIGURE 6 | Orbital fibroblasts and myofibroblast. (A) Primary culture orbital fibroblasts for BALB/c mice for IF staining; (B) OF and TGF-β to induce OF for Electron
Microscope.

genes including DLG4, SRC, PRKCA, GRIN1, and NDUFA2 with
degree greater than 10 (Figure 5A). We then used q-PCR to
validate the mRNA levels of five DEGs in extraocular muscle
tissues of both GO mice and controls (Figure 5B). As can be
seen, the expressions of four genes (DLG4, SRC, PRKCA, and
GRIN1) were consistent between q-PCR and RNA-Seq, among
which we could not find any GO-related research on SRC by
PubMed search. Thus, we selected SRC as the candidate gene for
further experiments.

TGF-β Induces OF and SRC Gene
Silencing OF Transformation
The primary culture of OFs for BALB/c mice was shown in
Figure 6. The serum was starved for 24 h, and then treated with
human recombinant TGF-β1. We selected 5, 10, and 20 µg/L of
TGF-β to induce OF cells for 6, 12, 24, and 48 h respectively,
and tested the expression levels of α-SMA, Col-1and Timp-1.
The expression was the highest when treated with 10 µg/L for
24 h (Figure 7A), so we chose 10 µg/L TGF-β1 treated for
24 h for further analysis. SRC mimics were transfected into
the OFs using Lipofectamine R© 3000 reagent, obtaining the OF
with the SRC gene knockdown. The OF with SRC knockdown
was further verified by Q-PCR. Furthermore, we can see that
Acta2 expression was also reduced in TGF-b-induced OF with
SRC gene knockdown (Figure 7B). Western blot results also
showed that the expression levels of α-SMA, Col-1, and Timp-1
were reduced in the SRC gene knockdown group compared with
the control group, and TGF-β-induced OF transformation was
inhibited (Figure 7C).

For inhibitor treatment, 24 h after seeding, the medium was
removed and replaced with the TGF-β/Smad pathway inhibitor
Oxymatrine (5 mg/mL), the NF-κB inhibitor JSH-23(50 µmol/L)
and the PI3K inhibitor PI3K-IN-1(25µmol/L) to block the TGF-
β/Smad, NF-κB, and PI3K/Akt signaling pathways, respectively.

And an equal amount of DMSO was used as a control and
incubated at 37◦C for 24 h. Interestingly, we found that the
Acta2 expression was also reduced after TGF-β induction in
OFs after inhibitor treatment (Figure 8A). The Western blot
results also showed that compared with the control group, the
expression of α-SMA, Col-1, and Timp-1 decreased, and TGF-
β induced OF transformation was inhibited (Figure 8C). We
further detected the expression of Smad3, Nfkb1, Pik3r1, and
Akt1 in the SRC knockdown group by q-PCR (Figure 8B). The
western blot results also suggested that SRC knockdown inhibited
the phosphorylation of SMAD2/3, NF-κB p65, and PI3K p85
proteins (Figure 8D).

ROS Level in Cells
We tested the ROS generation in each group. DCFH2−
(10 µM) and the culture were combined, which were subjected
to incubation for 30 min at 37◦C. A fluorescence enzyme-
labeled instrument was employed to determine the level of
DCF fluorescence. As can be seen from Figure 9, the use of
inhibitors and SRC gene knockdown can significantly inhibit
ROS production during TGF-b-induced OF transformation.

DISCUSSION

We adopted the GO mouse model construction method proposed
by Moshkelgosha, which is known to have a high GO mice
formation rate of 75% and repeatable (Sajad et al., 2013). Fifteen
weeks after the end of immunization, GO mice developed
extraocular muscle fibrosis. We then killed the GO mice, obtained
the extraocular muscle tissue and thyroid tissue of mice for
pathological staining, and detected the serum T4, TSH, TSAb of
the mice to evaluate the thyroid function. By comparing with
the control group, we determined that the GO mice produced
in this experiment had the changes of thyroid function and the
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FIGURE 7 | TGF-β1 induces the transformation from OF to MFB. (A) Western blot for TGF-β1 concentration and time; (B) Src and Acta2 expression in SRC gene
knockdown group by q-PCR; and (C) the expression levels of α-SMA, Col-1, and Timp-1 in the SRC gene knockdown group by Western blot.
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FIGURE 8 | Signaling inhibitors. (A) Acta2 expression after Signaling inhibitors by q-PCR; (B) the expression of Smad3, Nfkb1, Pik3r1, and Akt1 in the SRC gene
knockdown group by q-PCR; (C) the expression of α-SMA, Col-1, and Timp-1 after Signaling inhibitors by western blot; (D) the phosphorylation of SMAD2/3, NF-κB
p65 and PI3K p85 proteins in SRC gene knockdown group by western blot.
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FIGURE 9 | Measurement of ROS level. The ROS generation of each group.

fibrosis of extraocular muscles. We identified the differentially
expressed genes between the extraocular muscles of GO mice
and those of the controls, among which SRC was selected as a
candidate gene that may cause the extraocular muscle fibrosis.
Steensel et al. (2009) showed that the expression of TGF-β1
mRNA in the orbital tissue of GO patients was twice that of
normal people. In addition, by detecting the expression level
of TGF-β1 in muscle, it was found that the expression level of
TGF -β1 in mice with fibrosis was much higher than that in the
control group. Thus, it was speculated that TGF-β1 could induce
the differentiation of α-SMA protein into MFBs by inducing
fibroblasts to express α-SMA, and then induces the occurrence
of muscle fibrosis (Liu et al., 2016). Our results confirmed this
speculation. Through immunohistochemical analysis, we can see
that TGF-β1 expression was higher in extraocular muscle tissue of
GO mice in controls. In addition, the expressions of α-SMA and
Col-1 were also higher in GO mice than in controls, suggesting
that the fibroblast in extraocular muscle of GO mice has begun to
change in function and phenotype, and orbital tissue has a large
number of extracellular matrix (ECM) accumulation. Moreover,
the protrusion of the eyeball can be seen in all GO mice, and the
Masson staining of the extraocular muscle can also confirm the
fibrosis of the extraocular muscle tissue.

As the target and effector OF autoimmune response, OF can
be cultured to serve as an in vitro GO model. The transformation
from OF to MFB is a key step in the process of fibrosis (Saika
et al., 2016), and the expression of α-SMA is a key marker for the
transformation (Dik et al., 2016). In this study, we used TGF-β1
to induce the transformation from OF to MFB and to create a cell
model of extraocular fibrosis for in vitro analyses. The expression
of α-SMA was used to evaluate the fibrosis and the expression
of COL-1 and TIMP-1 reflected the accumulation of ECM. Our
results showed that the OF cell lines without SRC knockdown
was transformed to MFB under the action of TGF-β1, which
expresses a high level of α-SMA, and also produces a high level
of ECM. In contrast, the transformation induced by TGF-β1was
inhibited with SRC knockdown, as indicated by significant low
expression of α-SMA, COL-1 and TIMP-1, and less accumulation
of ECM. This indicates that SRC gene plays an important role in
the fibrosis of go extraocular muscles.

It is worth noticing that we used an inhibitor Oxymatrine to
inhibit TGF-β/Smad signaling pathways. In addition to restrain
Smad2 and Smad3 phosphorylation, Oxymatrine also restrain the
TGF-β1 induced transformation from OF to MFB, as indicated
by the low express of α-SMA, Col-1, and TIMP-1. The results
confirmed the role of TGF-β/Smad signaling pathway in the
process of GO extraocular muscle fibrosis, consistent with the
findings of Van Steensel L studies (Steensel et al., 2009). In
addition, Smad2 and Smad3 phosphorylation were inhibited
in OFs with SRC silencing, suggesting that SRC might be
involved in the functioning of TGF-β/Smad signaling pathway
in developing GO.

NF-κB is a kind of nuclear factor, which can promote
direct or indirect activation of inflammatory factors, chemokines,
inflammatory and TGF-β gene expression (Chen et al., 2012).
Thus, it plays an important role in the development of
extraocular muscle fibrosis. The results showed that JSH-
23, an NF-κB inhibitor, could inhibit the TGF-β1 induced
transformation from OF to MFB, which was indicated by
relatively reduced expressions of α-SMA, COL-1 and TIMP-
1. But the silencing of SRC can inhibit the phosphorylation
of NF-κB, indicating that SRC could play a role in the
process of GO extraocular muscle fibrosis by affecting the
NF-κB signaling pathway. It is kown that PI3K/Akt signaling
pathway plays a key role in TSH induced IL-1ra in GD (Li
and Smith, 2014), and it is believed that PI3K/Akt pathway
can increase the synthesis of HA by OFs (Xiao-Ling et al.,
2017). Therefore, our study tried to determine the relationship
between the SRC gene and the PI3K/Akt signaling pathway,
which is a major upstream component of NF-κB. PI3K/Akt
is thought to be involved in the pathogenesis of GO. By
using the PI3K inhibitor PI3K-IN-1, we demonstrated that
TGF-β1 induced transformation into MFB was also inhibited,
with relatively reduced expressions of α-SMA, Col-1 and
Timp-1. SRC silencing can also restrain the phosphorylation
of PI3K and Akt, showing that SRC might affect the role
of PI3K/Akt signal pathway in the process of external
muscle fibrosis.

In addition, previous studies showed that the production
of a large number of ROS can activate inflammatory signaling
pathways like PI3K/Akt/NF-κB, and promote the expression
of type I collagen fibers and TGF-β1, ultimately promoting
the occurrence of fibrosis (Cohen-Naftaly and Friedman, 2011;
Grochot-Przeczek et al., 2012). Interestingly, SRC can positively
promote the production of ROS (Nakashima et al., 2017; Walter
et al., 2017), and the rise of ROS induced by different stimuli
can further promote the activity of SRC in cells (Kopetz et al.,
2009). On the contrary, antioxidants can inhibit the activation of
SRC activity by inhibiting ROS production (Fu et al., 2014). In
our study, intracellular ROS production was detected, suggesting
that the OF with SRC silencing produced fewer ROS during TGF-
β1 induced transformation than the control group. The results
further demonstrated the role of ROS in the process of GO
extraocular muscle fibrosis.

Based on the studies, we believe that SRC is involved in the
ROS mediated oxidative stress process, causing the activation
of PI3K/Akt/NF-κB signaling pathway and leading to the
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occurrence of GO extraocular muscle fibrosis. In addition, SRC
also plays a role in the development of GO involved in TGF-
β/Smad signaling pathway. The results provide a new direction
for the study of mechanisms behind GO as well as a potential new
intervention target for treating GO patients.
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Background: The recent clinical success of immunotherapy represents a turning point

in cancer management. But the response rate of immunotherapy is still limited. The

inflamed tumor microenvironment has been reported to correlate with response in tumor

patients. However, due to the lack of appropriate experimental methods, the reason why

the immunotherapeutic resistance still existed on the inflamed tumor microenvironment

remains unclear.

Materials and Methods: Here, based on single-cell RNA sequencing, we classified

the tumor microenvironment into inflamed immunotherapeutic responsive and inflamed

non-responsive. Then, phenotype-specific genes were identified to show mechanistic

differences between distant microenvironment phenotypes. Finally, we screened for

some potential drugs that can convert an unfavorable microenvironment phenotype to a

favorable one to aid current immunotherapy.

Results: Multiple signaling pathways were phenotypes-specific dysregulated.

Compared to non-inflamed microenvironment, the expression of interleukin signaling

pathways-associated genes was upregulated in inflamed microenvironment. Compared

to inflamed responsive microenvironment, the PPAR signaling pathway-related genes

and multiple epigenetic pathways-related genes were, respectively, suppressed and

upregulated in the inflamed non-responsive microenvironment, suggesting a potential

mechanism of immunotherapeutic resistance. Interestingly, some of the identified

phenotype-specific gene signatures have shown their potential to enhance the efficacy

of current immunotherapy.

Conclusion: These results may contribute to the mechanistic understanding of

immunotherapeutic resistance and guide rational therapeutic combinations of distant

targeted chemotherapy agents with immunotherapy.

Keywords: immunotherapy, tumor microenvironment, immunotherapeutic resistance, molecular targeted agents,

personalized medicine
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INTRODUCTION

Although immunotherapy has revolutionized tumor
treatment, it still has some limitations (Larkin et al., 2015).
For example, the success of adoptive cell therapy (ACT)
on hematological malignancies cannot be reproduced on
solid tumors (Newick et al., 2017). The responsive rate
of immune checkpoint inhibitors (CPIs) varies by tumor
type, from 45% for melanoma (Daud et al., 2016; Ribas
et al., 2016) to only 12.2% for head neck squamous cancer
(HNSC) (Abril-Rodriguez and Ribas, 2017; Darvin et al.,
2018).

To better understand the reasons for these limitations, a
number of studies tried to investigate the effect of tumor
microenvironment (TME) phenotype on immunotherapy and
suggested that TME phenotype (broadly categorized as being
inflamed or non-inflamed) (Binnewies et al., 2018; Galon
and Bruni, 2019) was a critical factor responsible for these
limitations (Ji et al., 2012; Peng et al., 2015; Spranger
et al., 2015; Chen et al., 2016; Kortlever et al., 2017).
However, for the lack of appropriate experimental methods,
a systematic understanding of how inflamed TME forms and
why therapeutic resistance still exists on inflamed TME has
been constrained. Here, to better understand the role of TME
phenotypes to aid current immunotherapy, we systematically
analyzed pan-cancer molecular characteristics of inflamed
TME and further delved into the mechanistic differences
between inflamed responsive TME and inflamed non-responsive
TME. Importantly, part of our results has been supported
in recent reports (Chowdhury et al., 2018; Wang J. et al.,
2019).

Together, these results have profound prospects in
clinical application, including identifying multiple potential
immunotherapeutic targets, providing mechanistic insights
into immunotherapeutic resistance in inflamed TME, and
screening for some potential immunophenotypic regulation
drugs to guide rational combination of chemotherapy agents
with immunotherapy.

METHODS

Pan-Cancer Samples and Clinical Cohorts

Treated by Immunotherapy
RNA sequencing data across 19 The Cancer Genome Atlas
(TCGA) tumor types were downloaded from the Gene
Expression Omnibus (GEO) database with accession number
GSE62944 (Rahman et al., 2015). The updated clinical data
were downloaded from TCGAbiolinks (Colaprico et al.,
2016; Silva et al., 2016; Mounir et al., 2019). Published
RNA sequencing data (Riaz et al., 2017) of 101 clinical
tumor samples treated by anti-CTLA4 and anti-PD1
were downloaded from the GEO database with accession
number GSE91061. The raw count data of RNA sequencing
were normalized and quantitated by the edgeR package
(Robinson et al., 2010).

Identifying Immune Cell Signature From

Integrated Single-Cell RNA Sequencing

Data
In order to analyze the TME of different tumor types and increase
the diversity of non-immune cell to obtain robust immune cell
markers, we applied the Seurat integration pipeline (Butler et al.,
2018) to integrate two single-cell RNA sequencing data sets,
respectively, from the Puram’s HNSC cohort (GEO accession
number: GSE103322) (Puram et al., 2017) and Tirosh’s melanoma
cohort (GSE72056) (Tirosh et al., 2016). A CCA algorithm
(Butler et al., 2018) derived from machine learning was used
to identify anchors of cells from different tumor types for the
purpose of unbiased single-cell data integration (Stuart et al.,
2019). Annotations of immune cells referred to the original
literature and cell marker database (Tirosh et al., 2016; Puram
et al., 2017; Zhang et al., 2019). Immune cell gene signatures
(GSs) were defined based on the following criteria: (1) the
proportion of signature expression in immune cells (CD8T cell,
CD4T cell, B cells, macrophage, mast cell, dendritic cell, NK cell)
should be >0.6; (2) the percent of GS expression in non-immune
cells (myocytes, tumor cells, endothelial, fibroblast) should be
<0.3; (3) adjusted P < 0.001; (4) log (fold change)>0 (compared
to non-immune cells and other immune cell clusters).

Unsupervised Clustering Algorithm to

Determine TME Subtypes of Tumor

Samples
Immune cell markers identified in single-cell RNA sequencing
analysis were used as an input for the gene set variation analysis
(GSVA) algorithm (Hänzelmann et al., 2013) to calculate the
immune score for each immune cell. Then, tumor samples
were classified into high-immune score (inflamed), intermediate
immune score, and low-immune score (non-inflamed) based
on the unsupervised clustering pattern. This method has been
proven as an efficient way to indirectly evaluate the phenotypes
of TME (Wang et al., 2018). By using optCluster (Sekula et al.,
2017) to evaluate the internal and stability indexes of the
seven clustering algorithms (clara, diana, hierarchical, kmeans,
model, pam, and sota), the optimal number and the algorithm
of clustering were determined. Finally, the Clara algorithm
and three groups were selected as the most robust clustering
parameters. To avoid the unfavorable bias of confounding
factors, we excluded intermediate immune score samples in
further analysis.

Identification of Altered Signaling

Pathways
Differentially expressed genes (DEGs) were identified by edgeR
package (Robinson et al., 2010) with a negative binomial
distribution algorithm; P < 0.05 and an absolute value of log2-
fold change >1.5 were considered as statistically significant.
Then, we annotated these DEGs with ClusterProfile (Yu et al.,
2012) and RectomePA (Yu and He, 2016) package according to
KEGG and Rectome pathway databases. Gene set enrichment
analysis (GSEA) was used to provide a systematic view into
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FIGURE 1 | Overall design of this study.

molecular pathway alternation (Subramanian et al., 2005).
ToPASeq package was used to provide topology-based pathway
analysis (Ihnatova and Budinska, 2015).

Screening for Potential Phenotype

Transformation Drugs
To discover potential drugs aiding current immunotherapy,
we calculated the connectivity score (Lamb et al., 2006) of
multiple drugs to evaluate whether it is promising to promote the
transformation of favorable TME phenotypes. This analysis was
carried on PharmacoGx packages (Smirnov et al., 2015).

Statistical Analysis
To assess the prognostic significance of TME subtypes, we used
a Cox test to calculate its hazard ratio. Then, Kaplan–Meier
curves and log-rank test were used to assess the differences in
the 5 years’ and all years’ overall survival times between inflamed
and non-inflamed subtypes. Pearson’s chi-square test and Fisher’s
exact test were used to calculate the P-value for the discrete
variable. A P < 0.05 was regarded as statistically significant.

RESULTS

Integration of Single-Cell RNA Sequencing

Data Sets
The overall design of this study was shown in Figure 1. As
mentioned above, the responsive rate of immunotherapy varies
by tumor type. To understand the factors that contribute to the
differences in susceptibility to immunotherapy, we integrated
two single-cell RNA sequencing datasets, respectively, from head
and neck squamous carcinoma (HNSC) and melanoma, which
were characterized by different immunotherapeutic sensitivity
(∼45% response rate for melanoma Daud et al., 2016; Ribas
et al., 2016, significantly higher than the 12.2% of HNSC
Wang B. C. et al., 2019).

The integration result is shown in Figures 2A–C; tumor cells
from HNSC and melanoma exhibited significant heterogeneity.
Nevertheless, immune cells from different tumor types were
integrated into corresponding immune cell clusters. These results

suggested that immune cells from distant tumor types might
have a relatively similar transcriptomic pattern, which may
explain the reason why immunotherapy was always accompanied
by a pan-cancer therapeutic effect. The heterogeneity of
immunotherapeutic efficacy across distant tumor types may
be mainly derived from different tumor cells and their tumor
immune microenvironment characteristics, such as immune
cell composition.

For instance, B cells are increasingly valued for their
important role in immunotherapeutic resistance (Petitprez et al.,
2020). As shown in Figure 2D, the proportion of B cells in
melanomawas significantly higher than that of HNSC (P< 0.001,
Supplementary Table 1).

Pan-Cancer Prognostic Significance of

TME Subtypes
To classify TME phenotypes across distant tumor types, immune
cell GSs were identified in the above single-cell data. Then,
we classified TCGA pan-cancer samples into three TME
subtypes based on the unsupervised clustering pattern of GS,
each assigned as high-immune score (inflamed), intermediate
immune score, or low-immune score (non-inflamed; Figure 3A).
As shown in Figure 3B, the proportions of TME subtypes
varied greatly among the different types of tumors. Next, we
examined the association of this classification with the overall
survival time of tumor patients. Consistent with previous reports
from immunohistochemistry (Dubsky et al., 2019), favorable
prognostic roles of inflamed TME were observed in most tumor
types (such as SKCM, UCEC, etc.). Unexpectedly, as reported in
a number of previous reports, an unfavorable prognostic role of
inflamed TME was also observed in some tumor types, such as
LGG (Zhang et al., 2017) (Figures 3C–F).

Molecular Characteristics of Inflamed or

Non-inflamed TME Across Multiple Tumor

Types
To further investigate mechanistic differences between inflamed
and non-inflamed TME, we compared gene expression profiles
between inflamed and non-inflamed TME. As shown in
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FIGURE 2 | Integrated single-cell RNA sequencing analysis revealed the microenvironment heterogeneity of distant tumor types. (A) The t-SNE plot displays

immunological and non-immunological cells in the tumor microenvironment. Each dot represents a cell and color represents different types of cells. (B) The color was

coded according to tumor types. (C) The expression of cell markers across different cell clusters. (D) The composition of cells in HNSC and melanoma.

Figure 4A, non-inflamed TME-specific genes (upregulated
genes in non-inflamed TME) were related to the GPCR
signaling pathway, neuronal system, and keratinization.

Inflamed TME-specific genes (upregulated genes in inflamed
TME) were related to interferon (IFN), multiple interleukin-
related pathways including interleukin-4, interleukin-13,
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FIGURE 3 | Pan-cancer prognostic role of identified TME subtypes. (A) The global infiltration characteristics of distant TME subtypes. (B) The proportion of TME

subtypes in different cancer types. (C,D) Forest plot for the association between identified TME subtypes and overall survival time of patients. (E,F) All years or 5 years

overall survival time of inflamed (High) and non-inflamed (Low) TME. Tumor types were represented by TCGA. Standard abbreviations: LAML, acute myeloid leukemia;

BLCA, bladder urothelial carcinoma; LGG, brain lower grade glioma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; KICH, kidney chromophobe;

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung

squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous

melanoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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FIGURE 4 | Pan-cancer gene functional annotation of TME phenotype associated genes. (A) Gene function of upregulated genes in non-inflamed TME. (B) The

function of inflamed TME associated genes. The number under abbreviation represents the number of differently expressed genes (DEGs).

and interleukin-10 signaling, CD28 costimulatory molecule
family including PD-1, and CTLA-4-associated signaling
pathways (Figure 4B). The topology-based pathway analysis

demonstrated that interleukin-related pathways, interferon-
related pathways, the NLRP3 inflammasome, Toll-like
receptor, mitochondria, CD28 costimulation, and B cell
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FIGURE 5 | Identification of phenotype-specific genes. (A) Heatmap of distant TME subtypes determined by unsupervised clustering algorithm. (B,C) TME subtypes

correlated with the response to immunotherapy. (D) The volcano plot of differently expressed genes based on an RNA sequencing analysis of inflamed responders vs.

inflamed non-responders. Red and green dots, respectively, represented upregulated genes and downregulated genes in inflamed responders. (E) The network plot

showing common genes shared by top functional terms of upregulated genes in inflamed non-responders.

activation-related pathways were also activated in inflamed TME
(Supplementary Table 5).

TME Phenotypes Correlated With the

Immunotherapeutic Sensitivity
To better understand the association between TME phenotypes
and the response to immunotherapy, we reproduced our
TME classification in a published clinical melanoma cohort
treated by immune CPIs (Riaz et al., 2017) (Figure 5A). This
reproduction was performed based on immune GSs identified

in the above single-cell RNA sequencing analysis with the same
clustering parameter.

As expected, inflamed tumors were the most sensitive to
CPI (CR+PR rate: 32.6% in inflamed vs. 3.2% in non-inflamed,
P = 0.015, Supplementary Table 2) (Figure 5B), but only a
percentage (CR rate: 8.7%, CR+ PR rate: 32.6%) of these patients
were responsive to CPI (Figure 5C).

To further offer mechanistic insights into CPI resistance in
inflamed TME, we identified several DEGs in inflamed non-
responders vs. inflamed responders (Figure 5D). These GSs of
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TME phenotype may serve as potential targets for improving
current immunotherapy.

For instance, CLDN18 was the signature of inflamed
responsive TME. Therapy that directly targets on CLDN18 has
shown its potential to improve the efficacy of ACT in treating
solid tumors (Micke et al., 2014). On the other side, inhibiting
the signature of inflamed non-responsive TME may be another
promising way. Here, SIGLEC5 was significantly overexpressed
in inflamed non-responders, and its family member SIGLEC15
has been proven as an efficient target to enhance antitumor
immunity (Wang J. et al., 2019).

We also analyzed the correlation between TME status and
known ICB response biomarkers. The inflamed TME was
characterized by higher expression of PDCD1, CTLA4, CD28,
(PD-L1) CD274, PD-L2, and lower tumor mutation burden than
non-inflamed TME (Supplementary Figures 3, 4).

Mechanistic Differences Between Inflamed

Responsive TME and Inflamed

Non-responsive TME
Then, gene functional annotation analysis was used to
understand the role of TME phenotype-specific genes. As
shown in Figure 6A, genes upregulated in inflamed and
responsive tumors enriched on complement cascade and bile
metabolism. GSEA also confirmed that multiple metabolism
associated pathways except for oxidative stress induced
senescence were upregulated in this type of TME, including
bile salt and bile acid metabolism, glucose metabolism, ethanol
oxidation, glyoxylate metabolism, and glycine degradation
(Figure 6E).

In terms of inflamed non-responsive tumors, signaling
pathways, such as IL-13, IL-4, IL-10, and IL-1 cytokines-
related signaling pathways and oxygen exchange pathway
were upregulated, which are also downregulated in
inflamed responders (Figures 5E, 6B). Interestingly, the
expression of CTLA-4 pathway-related genes did not differ
between inflamed responders and inflamed non-responders
(Supplementary Table 4).

The topology-based pathway analysis demonstrated that the B
cell activation pathway, non-canonical NF-kB pathway, NOTCH
signaling pathways, PD-1 signaling, bile acid, and bile salt
metabolism-related pathways were inhibited in inflamed non-
responders (Supplementary Table 6).

These results suggested that tumor hypermetabolism might
confer resistance to immunotherapy.

Finally, for a more systematic understanding of the
resistant mechanism, we applied GSEA to investigate the
alternation of molecular pathways across four dimensions
(epigenetic modification, immune or other associated signaling
pathway, metabolism).

As shown in Figure 6C, multiple epigenetic signaling
pathways were upregulated in inflamed non-responders, which
suggested a mechanism of immunotherapeutic resistance as
observed by others (Mondello et al., 2020; Olino et al., 2020).

In terms of inflamed responders, multiple carcinogenesis
signaling pathways, except for the PPAR pathway, were

downregulated (Figures 6D,F), which suggested a mechanism of
therapeutic resistance and potential target for therapy. In line
with this hypothesis, recent studies illustrated that PPAR agonists
appeared to improve the therapeutic sensitivity of ACT and CPI
therapy (Chowdhury et al., 2018; Saibil et al., 2019).

A deeper analysis of differentiating the patient population
between different ICB treatments demonstrated that 135/980
(13.78%) pathways enriched on the CTLA-4 cohort were
also enriched on the PDCD1 cohort (135/673, 20.06%)
(Supplementary Figure 1). The shared pathways enriched on
two cohorts were associated with glucuronidation, interleukin-10
signaling, O2/CO2 exchange in erythrocytes, post-translational
phosphorylation, and metabolism of bile acids and bile salts
(Supplementary Figure 2A). Genes dysregulated in the CTLA-4
cohort tended to be associated with epigenetic modification
including epigenetic regulation of gene expression, HATs
acetylate histones, HDAC deacetylates histones, transcriptional
regulation by small RNAs, and gene silencing by RNA
(Supplementary Figure 2B). Genes dysregulated in the
PDCD1 cohort tended to be associated with PPAR active
gene expression, glucose metabolism, extracellular matrix
organization, GPCR ligand binding, and signaling by retinoic
acid (Supplementary Figure 2C).

Screening for Potential Favorable TME

Phenotype Transformation Drugs
Immunotherapy combined with chemotherapy is receiving
increasing interest as a promising strategy to improve the
deficiencies of current immunotherapy (Wargo et al., 2015).
However, it is not completely clear how best to incorporate
chemotherapy with immunotherapy. Here, we calculated the
genomic connectivity score of 1,288 kinds of drugs to identify
potential phenotype transformation drugs that could induce
systemic favorable transcriptomic alternation, including from
non-inflamed TME to inflamed TME, or from inflamed non-
responsive TME to inflamed responsive TME. The drug-genomic
perturbation database records genomic changes following
multiple drug treatments. Analysis combining these drug-
induced genomic changes with identified phenotypic genomic
differences can help us find potential drugs that could convert
unfavorable TME to favorable TME.

Mercaptopurine (6-MP) was identified as the most promising
drug that might promote the transformation of inflamed
responsive TME phenotype (Table 1). Interestingly, although
some reports have shown that 6-MP can enhance the vaccine-
dependent antitumor immunit y (Kataoka et al., 1984; Kataoka
and Oh-hashi, 1985), it seems to be forgotten after that. But
there are increasing interests trying to use 6-MP as a drug of
immune disorders, such as autoimmune hepatitis (Hübener et al.,
2016), inflammatory bowel disease (Present et al., 1989), etc.
This may be because 6-mercaptopurine is widely recognized
as an immunosuppressive agent, but our findings implicated
that immunomodulatory may be a more accurate definition of
such drugs. Our results indicated that further clinical studies
are needed to assess the value of the combination of 6-MP with
current immunotherapy.
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FIGURE 6 | Biological processes correlated with identified DEGs in inflamed responders. (A) Detailed function annotation of upregulated genes in inflamed

responders (compared to inflamed non-responders). (B) Functional annotation of downregulated genes in inflamed responders (compared to inflamed

non-responders). (C–F) GSEA shows four dimensions of the molecular function of DEGs across inflamed responders. Running enrichment score >0 means this

pathway is upregulated in inflamed responders; running enrichment score <0 means this pathway is downregulated in inflamed responders.

DISCUSSION

Molecular stratification of TME phenotypes is paving the

way for a better understanding of immunotherapeutic

heterogeneity. Here, based on immune GSs developed
from integrated single-cell RNA sequencing analysis, we
systematically analyzed the molecular characteristics of
inflamed TME across multiple cancer types and provided
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TABLE 1 | Screening for potential favorable TME phenotype transformation drugs.

Potential drugs that convert “non-inflamed” TME to “inflamed” TME Potential drugs that convert “inflamed nonresponsive” TME to “inflamed

responsive” TME

Drugs Connectivity P-Value Drugs Connectivity P-Value

Clofibrate 0.803 0.021 Mercaptopurine 0.817 0.028

Metronidazole 0.637 0.002 Valdecoxib 0.309 0.040

Zalcitabine 0.605 0.028 5253409 0.292 0.006

Gabexate 0.585 0.012 Astemizole 0.290 0.039

S-propranolol 0.581 0.007 Isoconazole 0.283 0.003

Ifenprodil 0.580 0.044 Pizotifen 0.279 0.011

Sulfapyridine 0.578 0.027 Econazole 0.278 0.003

Succinylsulfathiazole 0.570 0.042 Orciprenaline 0.267 0.006

mechanistic insights into immunotherapeutic resistance in
inflamed TME.

Some of the identified mechanistic differences have been
supported by recent reports. Examples highlighted by these data
include the upregulation of epigenetic signaling pathways and
the downregulation of PPAR-signaling pathways in inflamed
non-responsive tumors. These dysregulated pathways may be
potential targets for improving the sensitivity to immunotherapy.
Importantly, these results are in line with prior publications,
which have provided some evidence that inhibition of epigenetic
modification (Mondello et al., 2020) or activation of PPAR
signaling pathways (Chowdhury et al., 2018; Saibil et al., 2019)
might be a promising way to overcome therapeutic resistance to
immune checkpoint blockade or ACT.

Our results also revealed the molecular characteristics of
inflamed TME shared by different tumor types. These results
demonstrated that inflamed TME was related to enhanced
cytokine expression (interferon and IL-4,−13, and−10).
Interestingly, these cytokines, except for interferon, were also
upregulated in inflamed non-responders, which suggested a dual
role of these interleukins. These results are in line with prior
published reports (Mannino et al., 2015; Wang et al., 2016). For
example, IL-10 is widely recognized as an immunosuppressive
cytokine, but there is increasing evidence that it has a dual role
in antitumor immunity. Blocking or activation of IL-10 has been
proven as an efficient way to enhance antitumor immunity in
different aspects (Ni et al., 2015; Naing et al., 2018). According
to our results, we believe that TME phenotypes should be
considered as a key factor in further study design to illuminate
the remaining mysteries of IL-10.

In addition, our results have far-reaching clinical implications
including the identification of multiple potential molecular
targets for developing novel immunotherapy and combination
therapeutic strategies. For instance, the success of ACT cannot
be reproduced on solid tumors due to the obstacle of its
microenvironment. Therefore, rather than directly targeting
on whole solid tumors, selectively targeting the inflamed and
responsive TME might be another easier therapeutic way. As
expected, this hypothesis is supported by a recent report.
CLDN18, a signature of inflamed and responsive TME, has been
proven as an efficient target for improving the efficacy of current
ACT on solid tumors (Micke et al., 2014).

Except for targeting on inflamed and responsive TME,
examples highlighted by our data also included inhibiting the
signature of inflamed non-responsive TME to reverse therapeutic
resistance. For example, SIGLEC15, a signature of inflamed and
non-responsive TME, has shown its power in blocking immune
escape. Interestingly, its antitumor immunity enhancement
effect is independent of the PD-1/PD-L1 axis, suggesting that
it may be an ideal target to aid current anti-PD-1 therapy
(Wang J. et al., 2019).

Finally, based on a drug-genomic perturbation database,
we identified some drugs that were promising for promoting
the transformation from an unfavorable TME phenotype to a
favorable one.

In conclusion, our result provided an important view for
understanding how inflamed TME and inflamed resistant TME
form. This evidence has important clinical implications and may
help guide rational combination immunotherapy.
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Pancreatic cancer (PC) has a very poor prognosis and is usually diagnosed only at an
advanced stage. The discovery of new biomarkers for PC will help in early diagnosis and
a better prognosis for patients. Recently, N6-methyladenosine (m6A) RNA modifications
and their regulators have been implicated in the development of many cancers. To
investigate the functions and mechanisms of m6A modifications in the development
of PC, 19 m6A regulators, including m6A-methyltransferases (ZC3H13, RBM15/15B,
WTAP, KIAA1429, and METTL3/14), demethylases (FTO and ALKBH5), and binding
proteins (YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, HNRNPC, and HNRNPA2B1) were
analyzed in 178 PC tissues from the cancer genome atlas (TCGA) database. The
results were verified in PC cell lines Mia-PaCa-2, BXPC-3, and the control cell line
HDE-CT. The m6A regulators-based sample clusters were significantly related to
overall survival (OS). Further, lasso regression identified a six-m6A-regulator-signature
prognostic model (KIAA1429, HNRNPC, METTL3, YTHDF1, IGF2BP2, and IGF2BP3).
Model-based high-risk and low-risk groups were significantly correlated with OS and
clinical traits (pathologic M, N, and clinical stages and vital status). The risk signature
was verified as an independent prognostic marker for patients with PC. Finally, gene
set enrichment analysis revealed m6A regulators (KIAA1429, HNRNPC, and IGF2BP2)
were related to multiple biological behaviors in PC, including adipocytokine signaling,
the well vs. poorly differentiated tumor pathway, tumor metastasis pathway, epithelial
mesenchymal transition pathway, gemcitabine resistance pathway, and stemness
pathway. In summary, the m6A regulatory factors which related to clinical characteristics
can be involved in the malignant progression of PC, and the constructed risk markers
may be a promising prognostic biomarker that can guide the individualized treatment of
PC patients.

Keywords: m6A regulators, pancreatic cancer, prognostic model, biomarker, clinical traits

Abbreviations: FDR, false discovery rate; GSEA, gene set enrichment analysis; HPDE6-C7, human pancreatic duct epithelial
cells; m6A, N6-methyladenosine; OS, overall survival; PC, pancreatic cancer; ROC, receiver operator characteristic curve;
TCGA, the cancer genome atlas; YAP1, yes-associated protein 1.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal malignant
neoplasms and has become one of the leading causes of cancer-
related deaths in developed countries (Ilic and Ilic, 2016). About
85% of PCs are adenocarcinoma, and less than 5% are pancreatic
endocrine tumors (Wolfgang et al., 2013). There are usually no
noticeable symptoms in the early stages of PC. When symptoms
are specific enough to suggest PC, the disease might have reached
an advanced stage. By the time of diagnosis, PC has often spread
or metastasized to other parts of the body (Mohammed et al.,
2014). With the development of medical techniques, PC can be
diagnosed by ultrasound or computed tomography combined
with blood tests and examination of tissue samples (biopsies).
However, screening the general population for the early stage
of the disease is not effective (Welinsky and Lucas, 2017).
Pancreatic cancer can be treated with surgery, chemotherapy,
targeted therapy, radiotherapy, palliative care, immunotherapy,
or a combination of these based on the cancer stage (Mcguigan
et al., 2018). With the current treatment methods pancreatic
adenocarcinoma has a very poor prognosis: only 25% of patients
with PC survive one year and 5 year-overall survival (OS) is
lower than 5% (Ansari et al., 2015). Current treatment and
diagnostic methods are not enough for the management of
PC. Therefore, key goals for PC research are to develop novel
prognostic markers, improve the early diagnostic rate, and find
new targets for molecular targeted therapy. N6-methyladenosine
(m6A), a potential biomarker, is a chemical modification present
in multiple RNA species, which take part in various biological
processes in cancer (Liu et al., 2018).

N6-methyladenosine regulators are involved in more than
60% of all RNA [messenger (mRNA), transport RNA (tRNA),
and ribosomal RNA (rRNA)] modifications, which is an intense
area of research for post-transcriptional regulation including
translation, mRNA splicing, and mRNA stability (Yu et al., 2018).
The level of modification of transcripts with m6A is regulated
by methyltransferases, binding proteins and demethylases (Koh
et al., 2019). The methyltransferases (including ZC3H13, RBM15,
RBM15B, KIAA1429, METTL3/14, and WTAP), act as “writers,”
and add the methyl group to the nitrogen on the sixth carbon
of the aromatic ring of an adenosine residue (Meyer and Jaffrey,
2017). The cellular m6A status is reverted by demethylases
(FTO, and ALKBH5; called “erasers”), and is recognized by
m6A-binding proteins (HNRNPC, YTHDF1/2/3, YTHDC1/2,
IGF2BP1/2/3, and HNRNPA2B1; called “readers”) (Zaccara et al.,
2019). N6-methyladenosine, a potential biomarker, is a chemical
modification present in multiple RNA species, which take part
in various biological processes in cancer (Liu et al., 2018). The
dysregulation of m6A regulators is involved in the occurrence
and development of multiple cancers, including bladder cancer,
prostate cancer, head and neck squamous cell carcinoma,
gastric cancer, breast cancer, hepatocellular carcinoma, and
colorectal cancer (Hong, 2018). For example, METTL14 which
suppresses colorectal cancer progression via regulating m6A-
dependent miR-375/yes-associated protein 1 (YAP1) pathway, is
downregulated in colorectal cancer tissues and cell lines (Chen
et al., 2020). FTO, a key m6A demethylase, is up-regulated

in human breast cancer and is significantly associated with
poor survival rates (Niu et al., 2019). FTO mediates m6A
demethylation in the 3’UTR of BNIP3 mRNA and induces its
degradation via an YTHDF2 independent mechanism, which
indicates that FTO can serve as a novel potential therapeutic
target for breast cancer (Niu et al., 2019). It has also been
reported that IGF2BP2 regulates lncRNA DANCR through m6A
modification, and IGF2BP2 and DANCR jointly promote the
stemness-like characteristics of cancer and the pathogenesis
of PC (Hu et al., 2019). Although more and more studies
have shown that m6A regulatory factors play a crucial role in
the pathogenesis and development of cancer, the fundamental
relationship between m6A regulatory factors and PC remains
unclear (Xia et al., 2019). The construction of prognostic signal
based on m6A regulators that predicting the prognosis of PC will
be helpful for prediction, prevention and personalized treatment.

This study used ConsensusClusterPlus to find that m6A
regulators were closely related to PC OS rates in different clusters.
Furthermore, lasso regression was used to identify a six-gene
signature model (KIAA1429, HNRNPC, METTL3, YTHDF1,
IGF2BP2, and IGF2BP3). Most of the genes identified were
consistent with previous data (Taketo et al., 2018). For example,
the m6A eraser ALKBH5, which was indicated as a potential
therapeutic target for PC, was downregulated in PC cells and
immortalized human pancreatic duct epithelial (HPDE6-C7)
cells (He et al., 2018). Immunohistochemistry (IHC), western
blots, and RT-qPCR were used to detect the expression of
METTL3 in PC, and the results showed that METTL3 protein
and mRNA levels were significantly higher in tumor samples than
in paracancer samples. Down-regulation of METTL3 reduced
the proliferation, invasion and migration of PC cell lines (Xia
et al., 2019). While it is known that m6A plays important
roles in different types of cancers, the available clinical trait-
related m6A regulator studies in PC are insufficient. Single-gene
analysis are used to predict prognosis and to guide therapy in
cancer. However, RNA-Seq is helpful for the construction of a
prediction model using multiple genes. Here, we analyzed the
gene signatures in different PC cell lines and identified clinical
trait-related m6A regulators in PC. Additionally, potential related
enrichment pathways of m6A regulators might be useful to
further study their mechanisms of action.

MATERIALS AND METHODS

Data Sources
RNA-seq transcriptome data, the corresponding clinical data, and
large-scale cancer patient information for 178 patients with PC
were obtained from the cancer genome atlas (TCGA) database1.
The m6A regulator genes include ZC3H13, RBM15/15B,
KIAA1429, METTL14, YTHDC1/2, WTAP, METTL3, FTO,
ALKBH5, YTHDF1/2/3, HNRNPA2B1, IGF2BP1/2/3, and
HNRNPC. The corresponding clinical data include age at initial
pathologic diagnosis (patients were aged 35–88), documented
alcohol history (yes or no), alcoholic exposure category (daily

1https://cancergenome.nih.gov/

Frontiers in Genetics | www.frontiersin.org 2 July 2020 | Volume 11 | Article 522147

https://cancergenome.nih.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00522 July 10, 2020 Time: 10:57 # 3

Hou et al. The Biomarker of Pancreatic Cancer

drinker, weekly drinker, occasional drinker, social drinker, and
non-drinker), anatomic neoplasm subdivision (body of pancreas,
head of pancreas, tail of pancreas, and other parts), family
history of cancer (yes or no), gender (male and female), history
of chronic pancreatitis (yes or no), history of diabetes (yes or
no), count of lymph nodes examined (from 1 to 57), neoplasm
histologic grade (G1, G2, and G3), pathologic M (M represents
tumor metastasis, including M0, M1,and MX), pathologic N (N
represents tumor lymph node metastasis, including N0, N1, N2,
and NX), pathologic T (T represents tumor size, including T1,
T2, T3,T4, and TX), pathologic stage (Stages I, II, III, and IV),
vital status (alive or dead).

We systematically searched for PC gene expression datasets
that were publicly available and reported full clinical annotations.
we download data from GSE28735 “Microarray gene-expression
profiles of 45 matching pairs of pancreatic tumor and adjacent
non-tumor tissues from 45 patients with pancreatic ductal
adenocarcinoma” to validate the reliability of the built model. The
raw data from the microarray datasets generated by Affymetrix
and Illumina were downloaded from the Gene Expression
Omnibus2.

Protein–Protein Interactions Network
Construction and Correlation Analysis
The STRING database3 was used for analyzing the protein–
protein interactions (PPI) among m6A regulators. The
association among different m6A regulators was revealed
by Spearman correlation coefficient with R package.

Cell Lines and Cell Culture
Two PC cell lines (Mia-PaCa-2 and BXPC-3) and one control
cell line (HDE-CT) were purchased from China Center for Type
Culture Collection (CCTCC, Shanghai, China). HDE-CT is a
normal human pancreatic cell line and is cultured in DMEM
medium (Corning, NY, United States) supplemented with 10%
fetal bovine serum (GIBCO, South America, NY, United States).
Mia-PaCa-2 with a KRAS mutation and BXPC-3 with wild type
KRAS are human PC cell lines. Mia-PaCa-2 was cultured in
DMEM medium with 10% fetal bovine serum, and BXPC-3 was
cultured in RPMI-1640 medium with 10% fetal bovine serum. All
cell lines were maintained in 5% CO2 atmosphere at 37◦C.

RNA Extraction and qRT-PCR Verification
Total RNA of the four PC cell lines (Mia-PaCa-2 and BXPC-
3) and HDE-CT were extracted with an RNA extraction kit
(QIAGEN) according to the manufacturer’s instructions. Briefly,
1 × 107 cells were collected and lysed for 10 min, genomic
DNA was removed with an adsorption column, the samples
were washed once with 75% ethyl alcohol and twice with wash
buffer, and the samples were resuspended in RNA-grade enzyme-
free water. Total RNA was reversely transcribed into cDNA and
used to perform quantitative real-time PCR (qRT-PCR) with
SYBR Premix ExTaq (TaKaRa). GAPDH was used as a reference

2https://www.ncbi.nlm.nih.gov/geo/
3http://string-db.org

gene. Primers (Table 1) were synthesized by Sangon Biotech
(Shanghai, China).

Consensus Clustering for PC Tissues
Pancreatic cancer tissues with expression information for
m6A regulator genes (ZC3H13, RBM15, RBM15B, KIAA1429,
YTHDC1, YTHDC2, METTL3, METTL14, WTAP, FTO,
ALKBH5, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2,
IGF2BP3, HNRNPA2B1, and HNRNPC) were clustered with a
hierarchical agglomerative consensus. Clustering was based on
Ward’s linkage and Euclidean distance methods. Unsupervised

TABLE 1 | The list of RNA molecules that were assessed on the cell lines (note:F
forward, R reverse).

Primer name Primer sequence (from 5′ to 3′)

ZC3H13-F GATCAGTTAAAGCGTGGAGAAC

ZC3H13-R CTCTCTGTCGTGTTCATATCGA

FTO-F GTTCACAACCTCGGTTTAGTTC

FTO-R CATCATCATTGTCCACATCGTC

ALKBH5-F GCAAGGTGAAGAGCGGCATCC

ALKBH5-R GTCCACCGTGTGCTCGTTGTAC

KIAA1429-F GCAACTTCAGGCATTAAGTTCA

KIAA1429-R GTATTGCCTTGTCGAATCTGTC

METTL14-F CAGGCTGGCTCACAGTTGGAC

METTL14-R TTCCACCTCTTCCTCCACCTCTG

METTL3-F CTTCAGCAGTTCCTGAATTAGC

METTL3-R ATGTTAAGGCCAGATCAGAGAG

RBM15-F GGCTGCCTGAGGAGAGTGGAG

RBM15-R CGGCTACTGCTCAATTCTGGACTG

RBM15B-F ATCTTTCAGAGTACGCTCAGAC

RBM15B-R CTAGGATATGCATAGACGTGGG

WTAP-F CTGACAAACGGACCAAGTAATG

WTAP-R AAAGTCATCTTCGGTTGTGTTG

YTHDC1-F AGTGACTCTGGTTCTGAATCTG

YTHDC1-R CTGGTTTGATCTTTTCGGACAG

YTHDC2-F GAGAATTGGGCTGTCGTTAAAG

YTHDC2-R TGAAGCAGGATGAAATCGTACT

YTHDF2-F ACTTCTCAGCATGGGGAAATAA

YTHDF2-R TATTCATGCCAGGAGCCTTATT

YTHDF3-F TCAACCACCACAACCACAGCAG

YTHDF3-R TGAAGCACTGACAGGTACAACACC

IGF2BP1-R GGGGTGGAATATTTCGGATTTG

IGF2BP1-F GATGAAGGCCATCGAAACTTTC

IGF2BP2-F GATGAACAAGCTTTACATCGGG

IGF2BP2-R GATTTTCCCATGCAATTCCACT

IGF2BP3-F GAGGCGCTTTCAGGTAAAATAG

IGF2BP3-R AATGAGGCGGGATATTTCGTAT

YTHDF1-F ATGACAATGACTTTGAGCCCTA

YTHDF1-R AGGGAGTAAGGAAATCCAATGG

HNRNPA2B1-F GCTTAAGCTTTGAAACCACAGA

HNRNPA2B1-F GCTTAAGCTTTGAAACCACAGA

HNRNPC-F ACAGATCCTCGCTCCATGAACTCC

HNRNPC-R TTCTGCCATCCTCTCCTGCTACAG

GAPDH-F CTGCACCACCAACTGCTT

GAPDH-R TTCTGGGTGGCAGTGATG
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clustering methods use the proportion of ambiguous clustering
(PAC) to infer optimal K (K-means) in order to identify and
classify patients for further analysis (Lock and Dunson, 2013).
Cluster analysis was performed using the ConsensusClusterPlus
R package with cycle computation for 1000 times to ensure the
stability and reliability of the classification (Wilkerson and Hayes,
2010). The Kaplan–Meier method was used for the OS analysis
in different clusters.

Lasso Regression for PC Tissues
Lasso is a regression analysis method that performs both
variable selection and regularization in order to enhance the
prediction accuracy and interpretability of the statistical model
it produces. The best subset selection and the connections
between lasso coefficient estimates can be identified to construct
a prognostic model (Alhamzawi and Ali, 2018). Lasso regression
was constructed to examine the relationship between gene
signatures and PC risk. Further, clinical characteristics associated
with OS were analyzed in patients with PC using Cox regression
(including univariate and multivariate models) and the Kaplan–
Meier method to evaluate the availability of the prognostic model.
Pheatmap R package was used to correlate clinical data with the
risk score (high or low).

Gene Set Enrichment Analysis for
KIAA1429, HNRNPC, and IGF2BP2 in PC
Tissues
Gene set enrichment analysis (GSEA) is widely used to analyze
genome or proteome data, linking disease phenotypes with
many different functional gene sets. The 178 patients with PC
were divided into high expression groups and low expression
groups according to the median expression values of KIAA1429,
HNRNPC, and IGF2BP2. Two groups of TCGA data were
analyzed by GSEA. Gene set enrichment analysis was also
conducted in different sample risk groups based on the LASSO
regression model. The 178 patients with PC were divided into
high risk score group and low risk score group according to the
median value of risk score.

Transient Transfection and Cell
Proliferation Assay
The cells Mia-PaCa-2 and BXPC-3 were seeded in 6-well plates
at 30–50% density. Transient transfection was performed with
Lipo-fectamine 3000 reagents according to the manufacturer’s
instructions (Invitrogen, United States). For all the experiments,
cells were collected at 24–48 h after transfection. After
transfection, the cells were seeded in 96-well plates and cultured
for 1–3 days according to 5000/well. On the indicated days,
the CCK8 reagent (Sigma, St. Louis, MO, United States) was
added, and the cells were incubated for 2 h at 37◦C. The
absorbance at 450 nm for each sample was measured using
a microplate reader of Bio-Tek ELx800 (United States). For
the colony formation assay, After transfection for 48 h, cells
were used to measure DNA synthesis with a Cell-LightTM EdU
imaging detecting kit (RiboBio, Guangzhou, China) according to
the manufacturer’s instructions.

Statistical Analysis
Gene expression data of FPKM form is used as input. WilcoxTest
is used to get the p value for different expression between
different clusters. The relationships between clusters or different
risk score groups were analyzed using the Chi-square test. In all
cases, p < 0.05 was considered statistically significant. Spearman
correlation coefficient was calculated for the molecular pairing
between m6A regulator genes. The student’s t-test in SPSS 13.0
(SPSS Inc., Chicago, United States) was used to assess the
expression differences between HDE-CT and PC cancer cells.
Each experiment was repeated at least three times. Benjamini-
Hochberg for multiple testing, and false discovery rate (FDR)
were calculated to correct the p-value in GSEA.

RESULTS

Consensus Clustering for PC Tissues
Based on the Expression of m6A
Regulators
To determine whether the expression levels of m6A regulators
were associated with PC prognosis, the TCGA PC cohort
was clustered into different groups by consensus expression of
m6A regulators with the ConsensusClusterPlus R package. Gene
signatures of m6A regulators in PC are shown in Supplementary
Table S1. When the consensus matrix k value was equal
to 2, there was no crossover between PC samples (Figure 1A,
Supplementary Figure S1 and Supplementary Table S2). The
OS difference between different clusters was calculated by
the Kaplan–Meier method and log-rank test (Figure 1B and
Supplementary Table S2). A heatmap was generated to visualize
the expression pattern of m6A regulators between different
clusters (Figure 1C). The expression levels of RBM15B (p = 0.037),
HNRNPC (p = 0.001), METTL14 (p = 0.007), METTL3
(p = 0.005), YTHDC1 (p = 0.049), KIAA1429 (p = 0.010),
ALKBH5 (p = 3.50E-06), YTHF2 (p = 0.038), HNRN p A2B1
(p = 0.003), IGF2BP1 (p = 1.22E-11), IGF2BP2 (p = 1.10E-05),
and IGF2BP3 (p = 2.34E-27) showed a significant dysregulation
in tumor samples between different clusters.

The Interaction and Correlation Among
the m6A Regulators
The relationship between m6A regulators were further supported
by the correlation analysis. Some highly correlated (|correlation
coefficient| ≥ 0.5, p < 0.05) m6A regulator pairs were identified,
including IGF2BP2 and IGF2BP3, IGF2BP2 and ALKBH5,
YTHDC1 and YTHDC2, YTHDC1 and METTL14, YTHDC1
and ZC3H13, YTHDC2 and METTL14, YTHDC2 and ZC3H13,
YTHDC2 and YTHDF3, METTL14 and FTO, METTL1 and
ZC3H13, METTL14 and YTHDF3, FTO and ZC3H13 (Figure 2
and Supplementary Table S3). The interactions among the 19
m6A regulators are shown in Figure 3A. All m6A regulators have
interactions in the same network. The results of the interaction
network showed that IGF2BP1 and IGF2BP3, WTAP and
KIAA1429, HNRNPC and HNRNPA2B1, WTAP and ZC3H13,
METTL14 and METTL3, KIAA1429 and ZC3H13, METTL14
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FIGURE 1 | Consensus clustering and heatmap. (A) Consensus clustering for PC tissues based on the expression of m6A regulators (k = 2). (B) The overall survival
in cluster 1 was significantly shorter than that in cluster 2. (C) Expression differences of m6A RNA methylation regulators in pancreatic cancer based on TCGA data.
Red and green represent relatively high or low expression, respectively. *p < 0.05, **p < 0.01, and ***p < 0.001.

and WTAP, WTAP and METTL3, METTL14 and KIAA1429,
METTL3 and KIAA1429 have high combined score (>0.99).

Gene Signature of m6A Regulators in PC
Cell Lines
The expression of m6A regulators, including the m6A
methyltransferases, the demethylases, and the m6A-binding
proteins were analyzed by qRT-PCR in the PC cell lines, Mia-
PaCa-2 and BXPC-3, and the control cell line HDE-CT. The
results showed that some m6A regulators were differentially
expressed in PC and control cell lines (Figure 3B).

Lasso Regression Identified the
Six-Gene Signature Prognostic Model
In order to determine the optimal prognostic model, lasso
regression was performed using the glmnet R package. Lasso

regression is a generalized linear model, and the adjustment
degree of lasso regression complexity is controlled by lambda.
The optimal six-gene signature prognostic model was identified
when log (lambda) was between −2 and −3 (Supplementary
Figures S2A,B), where the coefficient of KIAA1429 was 0.28,
the coefficient of HNRNPC was 0.34, the coefficient of METTL3
was −0.11, the coefficient of YTHDF1 was −0.37, the coefficient
of IGF2BP2 was 0.28, and the coefficient of IGF2BP3 was 0.04.
According to the median risk score, patients were divided into
low- and high-risk groups (Supplementary Table S4). There was
a significant difference in the OS rate between the two groups,
and the OS rate of the high-risk group was significantly lower
than that of the low-risk group (Figure 4A, p = 5.286e-04).
A Receiver Operating Characteristiccurve (ROC) was used to
evaluate the prediction efficiency of the prognostic signature. The
prognostic signature model showed good prediction efficiency
with the value of the area under the ROC curve (AUC) equal
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FIGURE 2 | Co-expression of m6A regulator genes.

to 0.796 (Figure 4B). Additionally, the KM plotter showed that
the six selected m6A regulators were significantly related with
OS according to OncoLnc4 (Figure 4C). Importantly, the heat
map shows the expression of the six selected m6A regulators and
clinicopathological variables in the high- and low-risk groups.
Significant differences were found for the neoplasm histologic
grade, pathologic M stage, pathologic N stage, pathologic stage,
and vital status between high- and low-risk groups (Figure 5 and
Supplementary Table S5).

The Effect of m6A Regulators on PC
Prognosis
To investigate the effect of m6A regulators on PC prognosis,
we performed Cox univariate (Figure 6A) and multivariate

4http://www.oncolnc.org/

analysis (Figure 6B). The six-gene signature was consistent
with the single-factor analysis of genes using Cox regression.
The univariate analysis revealed that age at initial pathologic
diagnosis [hazard ratio (HR): 1.031; 95% confidence interval
(CI): 1.009–1.053 p = 0.006], neoplasm histologic grade
[hazard ratio (HR): 1.289; 95% confidence interval (CI): 1.000–
1.662; p = 0.035], pathologic N stage [hazard ratio (HR):
631; 95% confidence interval (CI): 1.074–2.477; p = 0.022],
pathologic T stage [hazard ratio (HR): 1.877; 95% confidence
interval (CI): 1.174–3.002; p = 0.009] pathologic stage [hazard
ratio (HR): 1.425; 95% confidence interval (CI): 0.983–2.064;
p = 0.022], and risk score [hazard ratio (HR): 30.024; 95%
confidence interval (CI): 8.884–171.416; p < 0.001] were
correlated significantly with a poor OS (Figure 6A). The
multivariate analysis revealed that age at initial pathologic
diagnosis [hazard ratio (HR): 1.033; 95% confidence interval
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FIGURE 3 | The relationship of m6A regulators in pancreatic cancer (PC) tissues. (A) Protein–protein interaction network of m6A regulator proteins. (B) Gene
signature of m6A regulators in PC cell lines. *p < 0.05, **p < 0.01, and ***p < 0.001.

(CI): 1.012–1.054; p = 0.002], pathologic N stage [hazard
ratio (HR): 1.831; 95% confidence interval (CI): 1.045–3.210;
p = 0.035], and risk score [hazard ratio (HR): 65.955; 95%

confidence interval (CI): 13.308–326.879; p < 0.001] were
correlated significantly with a poor OS (Figure 6B). The
factor of risk score based on the optimal six-gene signature
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FIGURE 4 | Lasso regression identified a six-gene signature prognostic model. (A) Overall survival analysis of the high risk score and low risk score groups. (B) ROC
curve was used to evaluate the prediction efficiency of the prognostic signature. (C) Kaplan–Meier (KM) survival curve of KIAA1429, HNRNPC, METTL3, YTHDF1,
IGF2BP2, and IGF2BP3 in pancreatic cancer.

prognostic model was significant both at univariate and
multivariate analyses.

GSEA Analysis Provided Insight Into
Pathways of m6A Regulators
According to the coefficient of m6A regulators in the six-gene
signature prognostic model and OS analysis, the GSEA result of
HNRNPC showed that it is significantly related to phospholipase-
c mediated cascade, type II diabetes mellitus, signaling by
FGFR, downstream signaling of activated FGER, calcium
signaling pathway, signaling by FGFR in disease, adipocytokine
signaling pathway, vascular smooth muscle contraction, and
metastasis. The GSEA result of IGF2BP2 showed that it is
significantly related to metastasis, CREBBP targets, docetaxel
resistance, hypoxia, BRCA1 targets, base excision repair, TAP63
pathway, etoposide sensitivity, epithelial mesenchymal transition,

gemcitabine resistance, cisplatin resistance, gefitinib resistance,
tumor differentiated well vs. poorly, and SFRP2 targets. The
GSEA result of KIAA1429 showed that it is significantly related
to CD5 targets, stemness, ubiquitin mediated proteolysis, YY1
targets, UV response via ERCC3, metastasis, EIF4 pathway,
downregulation of SMAD2-SMAD3-SMAD4 transcriptional
activity, EZH2 targets, ERBB1 receptor proximal pathway,
BMI1 targets, signaling by hippo, and oncogenesis by Met
(Supplementary Table S6). Some interesting pathways are shown
in Figure 7. It’s not containing GSEA analysis for METTL3,
IGF2BP1, and IGF2BP3. We did it, but there were no significant
results for METTL3, IGF2BP1, and IGF2BP3.

We conducted GSEA analysis in different sample risk score
groups based on the LASSO regression model. The GSEA
result showed that it is significantly related to cancer survival,
oncogenesis by met, gemcitabine resistance, response to UV,
HOXC6 targets cancer, recurrent liver cancer, WTAP targets,
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FIGURE 5 | The heatmap of sample risk groups and related pancreatic cancer clinical characteristics. Age at initial pathologic diagnosis (patients were aged 35–88),
alcohol history documented (yes or no), alcoholic exposure category (daily drinker, weekly drinker, occasional drinker, social drinker, and non-drinker), anatomic
neoplasm subdivision (body of pancreas, head of pancreas, tail of pancreas, and other parts), family history of cancer (yes or no), gender (male and female), history
of chronic pancreatitis (yes or no), history of diabetes (yes or no), count of lymph nodes examined (from 1 to 57), neoplasm histologic grade (G1, G2, and G3),
pathologic M (M represents tumor metastasis, including M0, M1,and MX), pathologic N (N represents tumor lymph node metastasis, including N0, N1, N2, and NX),
pathologic T (T represents tumor size, including T1, T2, T3,T4, and TX), pathologic stage (Stages I, II, III, and IV), vital status (alive or dead). *p < 0.05 and **p < 0.01.
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FIGURE 6 | Risk factor analyses for pancreatic cancer (PC). (A) Univariate analysis of risk factors for PC. (B) Multivariate analysis of risk factors for PC. Age at initial
pathologic diagnosis (>60 vs. <60), anatomic neoplasm subdivision (body of pancreas, head of pancreas, tail of pancreas, and other parts), gender (male vs.
female), count of lymph nodes examined (>17 vs. <17), neoplasm histologic grade (G1, G2, and G3), pathologic M (M represents tumor metastasis, including M0,
M1,and MX), pathologic N (N represents tumor lymph node metastasis, including N0, N1, N2, and NX), pathologic T (T represents tumor size, including T1, T2,
T3,T4, and TX), pathologic stage (Stages I, II, III, and IV), risk score (high risk score group vs. low risk score group).

tumor differentiated well vs. poorly, epithelial mesenchymal
transition, hypoxia pathway, TGFB1 targets, cancer meta
signature, and so on (Supplementary Table S7). Some interesting
pathways are shown in Supplementary Figure S3, and those
pathways closely related with tumorigenesis and development.

The Independent Verification by GEO
The different expression of m6A regulators between cancer
tissue and normal tissue, including the m6A methyltransferases,
the demethylases, and the m6A-binding proteins were analyzed
based on the independent verification by GEO (Supplementary
Figure S4 and Supplementary Table S8). In view of some
similarities of identified different genes in TCGA data and GEO
data, it is believed that the prognostic m6A regulators might not
just be due to chance. For example, the overlapping genes that
are significant were including RBM15B, KIAA1429, ALKBH5,
YTHDF1, IGF2BP 2/3, and HNRNPC. Furthermore, the testing
dataset based on GEO showed the different expression of m6A
regulators in PC and validate the reliability of the built model
based on TCGA. The optimal six-gene signature prognostic
model was validated. According to the median risk score, patients
from GEO were divided into low- and high-risk score groups

(Supplementary Table S9). There was a significant difference in
the OS rate between the two groups, and the OS rate of the high-
risk score group was significantly lower than that of the low-risk
score group (Supplementary Figure S5, p = 0.0012).

Experimental Validation
The inhibition of KIAA1429, HNRNPC, and IGF2BP2,
respectively, significantly suppressed the proliferation abilities
of PC cells based on CCK8 (Figure 8A). The EdU assay further
showed that KIAA1429, HNRNPC, and IGF2BP2 inhibitors
reduced DNA replication in both Mia-PaCa-2 and BXPC-3
cells (Figure 8B).

DISCUSSION

Treatment for PC has improved considerably, for example
surgery with high success and lower complication rate is better
than ever before, novel drug combinations (chemotherapy, target
therapy, and immunotherapy) have been shown to improve
survival rate, and advances in radiation therapy have achieved
less toxicity; however, many researchers are focused on early
diagnosis and prompt treatment as PC is still one of the deadliest
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FIGURE 7 | Gene set enrichment analysis (GSEA) for KIAA1429, HNRNPC, and IGF2BP2. (A) GSEA enriched the adipocytokine signaling pathway of HNRNPC.
(B) GSEA enriched the well vs. poorly differentiated tumor pathway of IGF2BP2. (C) GSEA enriched the tumor metastasis pathway of IGF2BP2. (D) GSEA enriched
the epithelial mesenchymal transition pathway of IGF2BP2. (E) GSEA enriched the gemcitabine resistance pathway of IGF2BP2. (F) GSEA enriched the stemness
pathway of KIAA1429.

solid malignancies (Chu et al., 2017). The development of multi-
omics has given us a better understanding of the fundamental
genetics of PC. These advancements provide hope, but the
survival rate of patients with PC is still poor (Cid-Arregui and
Juarez, 2015). Biological functions of m6A were not studied
extensively until around 2012, when major progress was made
in the transcriptome profiling of m6A through antibody-based
immunoprecipitation and high-throughput sequencing (Gan
et al., 2019). Moreover, m6A regulators were shown to be related
with the development of cancer (He et al., 2019). The process of
m6A modification is reversible through the regulation of m6A
methyltransferases, demethylases, and binding proteins. A series
of m6A regulators have been described (Dominissini et al.,
2012), including ZC3H13, RBM15/15B, KIAA1429, METTL14,
YTHDC1/2, WTAP, METTL3, FTO, ALKBH5, YTHDF1/2/3,
HNRNPA2B1, IGF2BP1/2/3, and HNRNPC (Lee et al., 2014).
Therefore, it is necessary to explore the influence of m6A
regulators on PC.

Recent studies have found that the m6A modification, when
the related enzyme is abnormal, plays various roles in a series
of human diseases such as neurological disorders, cancer, and
embryonic developmental retardation (Wu et al., 2019). Both
coding RNAs and some non-coding RNAs, such as lncRNA,
microRNA, tRNA, and rRNA and RNA splice body, were
regulated by an m6A modification before and after transcription

(Yen et al., 2019). N6-methyladenosine modification is closely
related to the metabolic processes of RNAs, for example, RNA
processing, RNA transfer from the nucleus to the cytoplasm,
RNA translation, RNA decay, and the biogenesis of RNA (Liang
et al., 2020). The dynamic modification of RNA as a way
of regulating genetic information is a new field of study, so
there is still a lot of work to be done to understand the
underlying mechanisms. Recently, a number of studies have
found that m6A modifications are associated with cancer, having
functions such as helping tumor stem cells to self-renew,
promoting the growth and proliferation of cancer cells, and
resisting radiotherapy or chemotherapy (Mao et al., 2019). All
this evidence indicates that m6A regulators may be a target
for cancer treatment (Bi et al., 2019; Ianniello et al., 2019).
The regulation of m6A modifications is a collaboration between
methyltransferases, demethylases, and binding proteins. The
functions of these proteins in stem cell differentiation, stomach
cancer, lung cancer, osteosarcoma, liver cancer, colorectal cancer,
leukemia, neuroblastoma, renal cell carcinoma, and breast cancer
have been extensivelyreported (Feng et al., 2019; Jin et al.,
2019). For example, YTHDF1-deficient mice show an elevated
antigen-specific CD8+ T cell antitumor response compared with
wild-type mice, which indicated that durable neoantigen-specific
immunity is regulated by mRNA m6A methylation through
the m6A-binding protein YTHDF1 (Han et al., 2019). It was
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FIGURE 8 | Proliferation abilities validation. (A) CCK8 analysis of growth curve in Mia-PaCa-2 and BXPC-3 cells transfected with control and si-RNAs. (B) The EdU
assay of DNA replication in both Mia-PaCa-2 and BXPC-3 cells transfected with control and si-RNAs. *p < 0.05, **p < 0.01, and ***p < 0.001.

also reported that some drugs with antitumor activity, such as
R-2-hydroxyglutarate (R-2HG), inhibited proliferation/survival
of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA
signaling (Su et al., 2018). METTL3 which is independently of
METTL14, binds to chromatin, and locates the transcription
initiation site of active genes. The promoter bounding METTL3
induces m6A modification in the coding region of the relevant
mRNA transcription and enhances its translation by alleviating
ribosomal stalling. The gene regulated by METTL3 in this way is
necessary for acute myeloid leukemia, suggesting that METTL3
may be a therapeutic target for acute myeloid leukemia (Barbieri
et al., 2017). The researchers also found that that m6A mRNA
demethylation by FTO increases melanoma growth and decreases
response to anti-PD-1 blockade immunotherapy (Yang et al.,
2019). Knockdown of FTO increased the methylation of m6A in
the intrinsic genes of key primary melanoma cells such as PD-
1 (PDCD1), CXCR4, SOX10, and so on, leading to increased
attenuation of RNA in m6A reader YTHDF2, suggesting that
FTO inhibition combined with anti-PD-1 blocking may abate the
resistance of melanoma immunotherapy (Yang et al., 2019).

TCGA, a landmark cancer genomics project, described more
than 20,000 primary cancers at the molecular level and matched
normal samples of 33 cancer types. TCGA generated more
than 2.5 petabytes of genome, epigenome, transcriptome and
proteome data. The data has already lead to improvements in our
ability to diagnose, treat, and prevent cancer (Blum et al., 2018).
N6-methyladenosine RNA methylation regulators can lead to
malignant progression and impact the prognosis of many kinds of

cancer based on the TCGA database. For example, the lasso Cox
regression model was applied to identify three m6A regulators
in bladder cancer. The risk signature was constructed as follows:
0.164FTO - (0.081YTHDC1 + 0.032WTAP), which indicated
that the three m6A regulators identified might be promising
prognostic biomarkers to guide personalized treatment for
patients with bladder cancer (Chen et al., 2019). Another
study has built up a robust m6A regulators-based molecular
signature that predicts the prognosis of patients with head
and neck squamous cell carcinoma with high accuracy, which
might provide important guidance for therapeutic strategies.
The results revealed that the expression levels of YTHDF1,
METTL3, KIAA1429, YTHDF2, RBM15, METTL14, ALKBH5,
FTO, WTAP, and HNRNPC were significantly upregulated
in head and neck squamous cell carcinoma samples, while
YTHDC2 was remarkably downregulated (Zhao and Cui, 2019).
In addition, a study identified two subgroups of gastric cancer
(cluster1 and 2) by applying consistency clustering to the m6A
regulators. Compared with the cluster1 subgroup, the prognosis
of the cluster2 subgroup was poorer, and most of the 13 major
m6A regulators were highly expressed in cluster2. This finding
provides clues to understand epigenetic modifications of RNA
in gastric cancer (Su et al., 2019). However, the prognostic
role of m6A regulators in PC is poorly understood. In the
present study, we are the first to show, by applying consensus
clustering to m6A regulators, that there are two subgroups of PC
(cluster1 and 2). The cluster2 subgroup correlates with a poorer
prognosis, which suggests that m6A regulators may be promising
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prognostic biomarkers for PC. Furthermore, the lasso regression
analysis identified a six-gene signature prognostic model
(KIAA1429, HNRNPC, METTL3, YTHDF1, IGF2BP2, and
IGF2BP3). These results agree with the results of previous studies.
The major function of IGF2BP2 is to regulate cell metabolism
(Huang et al., 2018). However, our results suggest that lncRNA
DANCR is a novel target for IGF2BP2 through m6A modification
in PC, and that it promotes cancer stemness-like properties and
PC pathogenesis. Mechanistically, IGF2BP2 serves as a reader
for the m6A modified DANCR (at adenosine 664), and the
definite interaction site provides a novel target for PC therapy
(Hu et al., 2019).

We did GSEA for KIAA1429, HNRNPC, and IGF2BP2.
Many enrichment pathways were significantly related to cancer
pathogenesis. We focused on some important events, for
example, pathways of oncogenesis by Met, EIF4 pathway,
downregulation of SMAD2-SMAD3-SMAD4 transcriptional
activity, EZH2 targets, stemness, well vs. poorly differentiated
tumor, epithelial mesenchymal transition, UV response via
ERCC3, and metastasis. The identified pathways were consistent
with reported data. The importance of m6A in the response to
ultraviolet DNA damage was demonstrated, and the findings
support that m6A RNA serves as a beacon for the selective,
rapid recruitment of DNA polymerase κ to damage sites
to facilitate repair and cell survival (Xiang et al., 2017).
Meanwhile, many studies show that m6A-related genes work on
stemness regulation in tumor relapse. For example, METTL3
was identified as a regulator for terminating murine naïve
pluripotency. METTL3 knockout preimplantation epiblasts
lead to early embryonic lethality, because it is associated
with stability of key naïve pluripotency-promoting transcripts
(Geula et al., 2015). Epithelial mesenchymal transition (EMT),
as an important cellular program during tumor migration,
invasion and metastasis, is also regulated by m6A mRNA
methylation. N6-methyladenosine-sequencing and functional
studies confirm that YTHDF1 mediates m6A-increased
translation of Snail mRNA (a key transcription factor of
EMT) (Lin et al., 2019). Interestingly, the process of m6A
mRNA methylation was also regulated by cytokines (Li et al.,
2017). The TGFβ pathway plays roles in disease through
the intracellular effectors SMAD2 and SMAD3. SMAD2/3
promotes binding of the m6A methyltransferase complex to
a subset of transcripts involved in early cell fate decisions.
These aspects of m6A methyltransferase signaling could have
far-reaching implications in the treatment of many cancers
(Bertero et al., 2018).

In conclusion, this study is the first to identify and profile
the gene signatures of clinical trait-related m6A regulatory
genes in PC. We also developed a six-gene signature prognostic
model, which might play a crucial role in determining the
clinical progression of PC. With the development of m6A-
sequencing and methylated RNA immunoprecipitation, m6A
regulatory genes might serve as promising molecular biomarkers
for monitoring many kinds of cancers and providing important
guidance for selecting therapeutic strategies.
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FIGURE S1 | Consensus clustering for pancreatic cancer (PC) tissues. (A)
Consensus clustering for PC tissues based on the expression of m6A regulators
(k = 3). (B) Consensus clustering for PC tissues based on the expression of m6A
regulators (k = 4). (C) Consensus clustering cumulative distribution function (CDF)
for k = 2–4. (D) Relative change in area under CDF curve for k = 2–4.

FIGURE S2 | (A,B) Lasso regression complexity was controlled by lambda using
the glmnet R package.

FIGURE S3 | Gene set enrichment analysis (GSEA) for high risk score vs. low risk
score group. (A) GSEA enriched the liver cancer survival pathway. (B) GSEA
enriched the cancer meta signature. (C) GSEA enriched the tumor differentiated
well vs. poorly pathway. (D) GSEA enriched the epithelial mesenchymal transition
pathway. (E) GSEA enriched the oncogenesis by MET. (F) GSEA enriched the
hypoxia pathway.

FIGURE S4 | Expression differences of m6A RNA methylation regulators in
pancreatic cancer based on GEO data. Red and green represent relatively high or
low expression, respectively. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE S5 | Lasso regression validation. (A) Lasso regression complexity was
controlled by lambda using the glmnet R package. (B) Overall survival analysis of
the high risk score and low risk score group based on GEO data.

TABLE S1 | Gene signatures of m6A regulators in pancreatic cancer.

TABLE S2 | Sample cluster based on m6A regulators in pancreatic cancer.

TABLE S3 | PPI network of those m6A regulators in pancreatic cancer.

TABLE S4 | Lasso regression was constructed examining the relationship
between gene signature and pancreatic cancer risk.

TABLE S5 | The clinical features of pancreatic cancer and clusters based on
consensus clustering method.

TABLE S6 | Gene sets enriched in pancreatic cancer by GSEA analysis based on
expression of m6A regulators (IGF2BP2,KIAA1429, and HNRNPC).

TABLE S7 | Gene sets enriched in pancreatic cancer by GSEA analysis in different
sample risk groups based on the LASSO regression model.

TABLE S8 | Gene signatures of m6A regulators and different expression in
pancreatic cancer using GEO.

TABLE S9 | Lasso regression was constructed examining the relationship
between gene signature and pancreatic cancer risk verified by GEO data.
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Patients with carcinoma of unknown primary (CUP) account for 3–5% of all cancer
cases. A large number of metastatic cancers require further diagnosis to determine
their tissue of origin. However, diagnosis of CUP and identification of its primary site
are challenging. Previous studies have suggested that molecular profiling of tissue-
specific genes could be useful in inferring the primary tissue of a tumor. The purpose
of this study was to evaluate the performance somatic mutations detected in a tumor
to identify the cancer tissue of origin. We downloaded the somatic mutation datasets
from the International Cancer Genome Consortium project. The random forest algorithm
was used to extract features, and a classifier was established based on the logistic
regression. Specifically, the somatic mutations of 300 genes were extracted, which
are significantly enriched in functions, such as cell-to-cell adhesion. In addition, the
prediction accuracy on tissue-of-origin inference for 3,374 cancer samples across 13
cancer types reached 81% in a 10-fold cross-validation. Our method could be useful
in the identification of cancer tissue of origin, as well as the diagnosis and treatment
of cancers.

Keywords: somatic mutation, machine learning, random forest, patients with carcinoma of unknown primary,
tissue of origin

INTRODUCTION

Researches have proved that hepatitis C virus (HCV) and hepatitis B virus (HBV) are the main
causes of liver cancer, and liver cancer can be primary or metastatic, where metastatic liver cancer
accounts for 5% (Hu and Ludgate, 2007; Lin et al., 2013). Studies have shown that Epstein–Barr
virus (EBV) infection is one of the important causes of nasopharyngeal carcinoma (Hui et al.,
1998; Krishna et al., 2006). Tsai et al. (1996) carried out numerous experiments and found that
EBER1 expression is abundant in primary nasopharyngeal carcinoma, which may metastasize to
lymph nodes. Numerous studies have shown that Helicobacter pylori (HP) is associated with gastric
cancer (Farinati et al., 1993; Gonzaga et al., 2002; Geng and Zhang, 2017). Gastric cancer is one of
the most common malignant diseases in the world, where metastasis often occurs, and there are
histological differences between primary and metastatic gastric cancer (Wang et al., 2008). In most
cases, viruses are a major cause of cancer. Metastatic cancer brings great adversity to the follow-up
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diagnosis and treatment. Some biomarkers are related with
metastasis of cancer. Chen et al. (2016) carried out researches
on the differential expressed proteins and found two biomarkers
related with lung adenocarcinoma. Xiuping et al. (2016) found
that NTN4 is associated with breast cancer cell migration and
invasion via regulation of epithelial–mesenchymal transition–
related biomarkers. Differentially expressed genes between
metastatic tissue samples and nonmetastatic tissue samples
can be molecular biomarkers for gastric cancer metastasis
(Li et al., 2016).

In clinical diagnosis, metastatic cancer is a common
phenomenon and a great challenge for determination of the
primary site of a tumor. In all cases of cancer diagnoses, 3–5% of
patients are confirmed as carcinoma of unknown primary (CUP)
(Shaw et al., 2007). Cases of CUP are usually heterogeneous and
can make diagnosis and treatment of pathological and clinical
cases difficult (Rizwan and Zulfiqar, 2010). In the recent years,
immunohistochemistry was a crucial method for classification of
cancer and identify the primary site of a tumor and made great
contributions to CUP identification (Huebner et al., 2007; Voigt,
2008; Centeno et al., 2010; Kandalaft and Gown, 2015; Janick
et al., 2018). However, immunohistochemistry is labor-intensive
and applicable to small-scale sample data, and it is difficult to
overcome the bottleneck in classification accuracy.

Computed tomography (CT) and positron emission
tomography are good medical imaging tools for identifying
cancer tissue and predicting the primary site of a tumor (Fencl
et al., 2007; Kwee et al., 2010; Fu et al., 2019). CT and PET
identify tumors with an accuracy of 20–27% and 24–40%,
respectively (Ambrosini et al., 2006). Obviously, the prediction
performance is too poor to reach a satisfying degree. Moreover,
medical images usually generate large-scale data, and limitations
of image processing technology also bring about great difficulty
in application. Identification of tissue origin utilizing medical
imaging still remains conservative.

Recently, the use of molecular profiling has become a
popular method to infer the primary site of a tumor.
In addition, the combination of machine learning method
and molecular profiling has been proven to be better than
the utilization of immunohistochemistry for undifferentiated
or poorly differentiated tumors (Oien and Dennis, 2012).
Combination of methylation and copy number variation can
contribute to cancer classification and tissue origin identification
(Hoadley et al., 2014). Küsters-Vandevelde et al. (2017) suggested
that metastatic behavior of a tumor is closely associated with
specific copy number variations, as the methylation profile
of meningeal melanocytic metastatic tumor was found to be
similar as to that of the primary site. Although metastasis
of cancer occurs, methylation and copy number variation
are still in accordance with those of the primary origin.
Particularly, gene expression data were frequently used in
identification of the primary site of a tumor (Erlander et al.,
2004; Qu et al., 2007; Gross-Goupil et al., 2012; Greco, 2013;
Hainsworth et al., 2013). Erlander et al. (2011) proved that
the value of gene expression detected in metastasis is the
same as that detected in the primary origin when metastatic
cancer occurs. Centeno et al. (2010) carried out numerous

experiments with the proposed hybrid model, which utilized
immunohistochemistry and gene expression profiling, and
obtained classifier accuracies of 89, 88, and 75% for cross-
validation datasets, independent test sets, and institutional
independent test sets, respectively. Rosenwald et al. (2010)
gained an accuracy of 85% on prediction of the primary site
of cancer with the use of the KNN algorithm and micro-RNA
quantitative reverse transcription–polymerase chain reaction
test. Bloom et al. (2004) explored a method based on the
artificial neural network with gene expression profiling to
infer the tumor origin and thus aid in making a correct
pathological diagnosis.

Somatic mutation data can also be utilized to identify tissue
origin. Sheffield et al. (2016) revealed that mutation of the
IDH1 gene in patients with cholangiocarcinoma can be used
to infer the primary site of the malignant tumor. Dietlein
and Eschner (2014) and Lawrence et al. (2014) explored a
method using mutation spectra to predict the primary site
of cancer and obtained a specificity of 79%, showing that
the enrichment of mutation in tumor-specific genes can be
effective for primary tissue tracing. Relatively comprehensive
research was conducted by Marquard et al. (2016), using
somatic mutation data, base substitution frequency, trinucleotide
base substitution frequency, and copy number aberrations.
The best results with accuracy of 87.6% were obtained
using a combination of copy number status, trinucleotide
context base substitution frequencies, and somatic point
mutations. However, it is complicated that each cancer was
trained with a classifier. Moreover, the best performance
was achieved using three molecular profiling, in which data
collection is challenging.

Use of copy number variation, methylation, and gene
expression to predict the primary site of a tumor has been a
hot spot. However, research of predicting tissue origin using
mutation data has made little progress. This current study
proposed a new method using somatic mutation data to

TABLE 1 | Distribution of samples with 13 cancers.

Cancer Types Samples

Type Abbreviation Primary Metastasis

Biliary tract cancer BTCA 310 0

Chronic myeloid disorders CMDI 136 0

Colorectal cancer COCA 317 4

Gastric cancer GACA 708 0

Brain lower-grade glioma LGG 508 0

Liver cancer LIRI 258 0

Soft tissue cancer LMS 67 0

Malignant lymphoma MALY 152 89

Skin cancer MELA 183 0

Nasopharyngeal cancer NACA 21 0

Pancreatic endocrine neoplasms PAEN 87 2

Renal cancer RECA 432 0

Skin adenocarcinoma SKCA 52 48

Total 3,219 155
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predict the primary site of cancer. The International Cancer
Genome Consortium (ICGC), together with machine learning
methods could improve the predictive performance. Here,
the random forest algorithm (Sandri and Zuccolotto, 2006)
was selected as a gene selection algorithm, and the logistic
regression algorithm (Zhang et al., 2014; Pranoto et al., 2015)
was utilized to establish a classifier. Performance evaluation
was judged by metrics, such as accuracy and specificity.
Functional annotation and enrichment of specific gene set were
settled by R packages.

MATERIALS AND METHODS

Data Preparation
We downloaded the somatic mutation data from ICGC database
version 281. The format of the gene name was Ensembl

1https://dcc.icgc.org/releases/release_28/

Gene ID. A total of 19,730 samples were obtained. We
duplicated the samples according to chromosomal features,
locus in chromosome, donor-id, and gene-affected. Sample data
of 57 types of cancer were preliminarily extracted. Somatic
mutation data cannot identify the primary site of some cancers.
Samples with primary and metastasis of 13 types of common
cancers were used to predict tissue origin (Table 1). Data were
further filtered, and we generated an S × G matrix, where S
represents the number of samples and G represents the number
of genes included.

Feature Selection
As mutation detection of tissue-specific gene is time consuming
and costly, a balance between performance and number of genes
used is necessary. Existing feature selection algorithms such as
Lasso and Principal Component Analysis (PCA) (Malhi and
Gao, 2005; Muthukrishnan and Rohini, 2016) have been largely
used as a tool for feature processing. Here, we used the random

FIGURE 1 | Workflow of cancer tissue origin identification using somatic mutation data.
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forest algorithm (Breiman, 2001; Sandri and Zuccolotto, 2006)
for feature selection. It can handle a large number of input
features and assess their importance, and its learning process is
fast. Tt is a type of ensemble learning algorithm and is composed
of a CART (classification and regression tree). In each tree, √g
was used, where g denotes the gene number. The process of
feature selection was explained by the splitting of nodes. The Gini
index was used to determine which feature should be selected as
most important and was calculated by the following Eq. 1:

Gini
(
p
)
=

K∑
k=1

pk(1− pk) = 1−
K∑

k=1

p2
k (1)

In a node, p denotes the weight represented as frequencies of
cancers, k denotes the total cancer number, and the weight of k-th
cancer is denoted by pk. We calculated feature importance scores
of the i-th gene in a node, which was represented by a decrease in
the Gini index value. This was calculated by Eq. 2:

VIM(Gini)
im = GIm − GIl − GIr (2)

M was used as the set of nodes. m denotes a node in M. Thereafter,
we selected the i-th gene for splitting. Split subnodes have their
own Gini index. We calculated the Gini index before node m
splitting, denoted as VIM(Gini)

im , and Gini index of two subnodes

FIGURE 2 | Functional annotation of the top 500 genes.
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FIGURE 3 | Overall average accuracy using logistic regression classifier with 10-time 10-fold cross-validation.

TABLE 2 | Performance metric of training dataset using top 500 genes.

Cancer Precision Recall F1 score Support Specificity

BTCA 0.6288 0.6331 0.6308 245.0000 0.9626

CMDI 0.9789 0.8921 0.9335 114.0000 0.9991

COCA 0.6479 0.7700 0.7036 250.0000 0.9573

GACA 0.8556 0.8265 0.8408 570.0000 0.9627

LGG 0.9315 0.9178 0.9246 400.0000 0.9883

LIRI 0.9390 0.9362 0.9376 207.0000 0.9949

LMS 0.9981 0.9796 0.9888 54.0000 1.0000

MALY 0.9944 0.9893 0.9918 196.0000 0.9996

MELA 0.8851 0.9147 0.8996 143.0000 0.9934

NACA 0.9018 0.6118 0.7275 17.0000 0.9996

PAEN 0.7150 0.7738 0.7431 80.0000 0.9906

RECA 0.9294 0.9077 0.9184 339.0000 0.9901

SKCA 0.9251 0.8259 0.8726 85.0000 0.9978

Average 0.8552 0.8445 0.8548 2, 700.0000 0.9883

Accuracy 0.8671 NA NA NA NA

after splitting denoted as GIl and GIr , respectively. The bigger the
VIM(Gini)

im , the more important the i-th gene.

VIM(Gini)
ti =

∑
m∈M

VIM(Gini)
im (3)

T was used as a set of trees, and t denotes the t-th tree. Equation 3
shows the importance of the i-th gene in the t-th tree. Thereafter,
we calculated the importance of the ith gene in all trees, and the
sum was represented as Eq. 4 depicts:

VIM(Gini)
i =

T∑
t=1

VIM(Gini)
ti (4)

Finally, importance scores of each feature in all trees were
averaged by weight. The importance of each gene sorted
according to their averaged importance score. We selected the top
n genes by importance score, where n was a flexible value set to
obtain the best classification performance.
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Logistic Regression Classifier
We used the logistic regression algorithm to construct a classifier
(Zhang et al., 2014; Pranoto et al., 2015). Logistic regression uses
the sigmoid function to represent the probability of a sample
being labeled as a certain category, and prediction of tissue origin
can be explained as a one-to-many classification problem. In this
process, one type of cancer was considered positive, and other
types were considered negative. Thereafter, the probability of the
sample was predicted as one cancer type and other cancer types,
respectively. After a series of similar procedures, we obtained
the probability of a sample being predicted as each cancer. The
prediction function was calculated by Eq. 5:

hθ (x) =
1

1+ e−θT x
(5)

where hθ(x) denotes the probability of a sample being predicted
as one cancer type (positive), or other cancer types, (negative). θT

is a matrix of parameters used to determine the best model. θ is
computed by the negative log-likelihood loss function. The loss
function was calculated by Eq. 6:

J (θ) = −
1
m

[ m∑
i=1

y(i)loghθ

(
x(i)
)

+

(
1− y(i)

)
log

(
1− hθ

(
x(i)
))]
+

λ

2m

n∑
j=1

θ2
j (6)

where loghθ

(
x(i)) and log

(
1− hθ

(
x(i))) represent the log loss

when a sample is labeled positive and negative, respectively. m
represents the number of samples, and n denotes the number

FIGURE 4 | Receiver operating characteristic curve and AUC of 13 types of cancer.
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of features. And L1 regularization term was also used. The best
θ was determined by minimizing the loss function based on
gradient descent.

Evaluation Metric
We used accuracy, precision, recall, and F1 score as the metric
for performance evaluation. True positive (TP) and false positive
(FP) represent samples whose true label are positive and negative,
respectively, were predicted as positive, whereas true negative
(TN) and false negative (FN) represent samples, whose true label
was negative and positive, respectively. These were predicted as
negative. Accuracy was used to measure the overall performance
and was calculated by Eq. 7. Precision demonstrates the ability
of classifier to distinguish positive and negative samples and was
calculated by Eq. 8. Recall represents the ability of the classifier
to recognize all positive samples and was calculated by Eq. 9. F1
score was the harmonic average value of precision and recall and
is calculated by Eq. 10. Because there is class imbalance in sample
distribution in this study, ROC (receiver operating characteristic)
curve and AUC (area under the curve) were also used to evaluate
classification performance.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1 score =
2TP

2TP+ FP+ FN
(10)

Functional Annotation
We utilized the Gene Ontology enrichment analysis database (Ye
et al., 2006; Waardenberg et al., 2016) to annotate the function of
the gene used in the model, shown in Figure 3. The R package
gogadget and clusterProfiler (Nota, 2016; Yu et al., 2012) were
used for gene visualization and clustering.

RESULTS

Workflow
The complete process for predicting the primary site of a tumor is
shown in Figure 1, which can be divided into three parts. First, we
obtained the somatic mutation data from the ICGC database and
carried out data preprocessing such as filled null value and filtered
invalid data. A matrix of features was generated for follow-up
handling. Thereafter, we built a gene selection model using the
random forest algorithm. Genes were selected with 10-time cross-
validation. Finally, we constructed the classifier by utilizing the
logistic regression algorithm, and the final matrix feature was fed
into the classifier. The results were obtained with 10-time 10-
fold cross-validation, and model performance was analyzed by
the evaluation metric.

Data
We obtained the somatic mutation data from ICGC version
28 database for gene selection and tumor classification. Allelic
mutations in somatic mutation data can be A/G, C/T, C/A, and so
on. Because of limited information and tools, we treated all allele
mutations as mutations and counted the number of mutations.
And we counted the number of mutations of each sample. The
sample distribution of each cancer is shown in Table 1. A total of
3,219 primary samples and 155 metastatic samples were used to
model training and included 13 types of cancer.

Genes Used to Infer Cancer Tissue of
Origin
The role of relative genes was discussed in context of molecular
function, biological processes, and cellular components. Figure 2
shows functional annotation of the top 500 genes selected
using the random forest algorithm. Genes were found to enrich
cell–cell adhesion, regulation of ion transmembrane transport,
modulation of chemical synaptic transmission, forebrain
development, and so on. Among these, gene enrichment
evidently concentrated on the recognition and adhesion between
cells and neurotransmitter conduction. Abnormal proteins
that resulted from gene mutations can cause abnormal cell
adhesion or differentiation, as well as abnormal neurotransmitter
conduction or abnormal neural cell differentiation. Meanwhile,
gastric cancer and brain lower-grade glioma account for a
high proportion in all samples. Jiang et al. (2004) research
the frequency and nature of mutations of the CDH1 gene
in gastric cancer, and proved that the mutation accounts
for gastric cancer. The APC gene has been found to play an
important role in the pathogenesis of soft tissue tumors (Kuhnen
et al., 2000). Birnbaum et al. (2012) explored the role of the
APC gene in colorectal cancer, by investigating 183 cases,
and found point mutations in 73% of these cases. Mutation
of the IDH1 gene leads to a reduction in cell survival and
proliferation, as well as further invasion of human gliomas

TABLE 3 | Performance metric of test dataset using top 500 genes.

Cancer Precision Recall F1 score Support Specificity

BTCA 0.6429 0.6000 0.6207 15.0000 0.9675

CMDI 1.0000 1.0000 1.0000 5.0000 1.0000

COCA 0.7059 0.7500 0.7273 16.0000 0.9673

GACA 0.8148 0.7097 0.7586 31.0000 0.9638

LGG 0.9412 1.0000 0.9697 32.0000 0.9854

LIRI 0.9412 0.8889 0.9143 18.0000 0.9934

LMS 1.0000 1.0000 1.0000 2.0000 1.0000

MALY 1.0000 1.0000 1.0000 9.0000 1.0000

MELA 1.0000 0.8889 0.9412 9.0000 1.0000

NACA 1.0000 1.0000 1.0000 2.0000 1.0000

PAEN 0.3333 1.0000 0.5000 1.0000 0.9881

RECA 0.9583 0.9583 0.9583 24.0000 0.9931

SKCA 0.7143 1.0000 0.8333 5.0000 0.9878

Average 0.8501 0.9074 0.8633 169.0000 0.9890

Accuracy 0.8639 NA NA NA NA
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FIGURE 5 | Classification accuracy on each cancer by using 500 chosen genes based on logistic, svm, and knn, respectively.

by malignant tumor cells (Cui et al., 2016). Mutation of the
IDH1 gene has been proved to be the driving oncogenic factor
of and has an impact on most brain lower-grade gliomas of
different genetic pathways (Ohno et al., 2013; Pieper et al., 2014;
Ohka et al., 2017).

According to research carried out on patients with liver
cancer from China and southern Africa, a mutational hotspot
at codon 249 of the p53 tumor suppressor gene has been
identified (Hsu et al., 1993), and HBV and aflatoxin B1 (AFB1)
are known synergistic risk factors. Zheng et al. (2005) explored
the role of mutation of the DNA polymeraseβ (polβ) gene in
human nasopharyngeal cancer and its relationship with EBV.
Zhao (2001) carried out investigation on the mutation of the
ras gene and what role they played in HP infection. They
determined the infection of HP through serological examination.
The results showed that 28 of 43 cases existed with mutations

in codon 12 and a mutation rate of 65.12% (Zhao, 2001).
Supplementary Figure 1 also shows the relationship between
gene mutations and cancers. Therefore, we concluded that
viral infections could lead to gene mutations and result in
cancer. In this study, somatic mutation data were utilized to
identify the primary site of a tumor based on machine learning
methods, which can contribute to the further diagnosis and
treatment of cancer.

Performance Evaluation
Figure 2 compares the accuracy with a different number of genes
used in the classifier. Because of gene sequencing and mutation
detection being costly and time consuming, we selected 100
and 1,000 as the minimum and maximum number of genes,
respectively. And we carried out a large number of experiments,
with 100 genes selected as the interval. The highest accuracy

Frontiers in Genetics | www.frontiersin.org 8 July 2020 | Volume 11 | Article 674168

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00674 July 12, 2020 Time: 18:6 # 9

Liu et al. Cancer Tissue-of-Origin by SNP Data

was obtained when using the top 500 genes. These results are
shown in Figure 3 with 10-time 10-fold cross-validation. The
average accuracy is 86.71%, and precision, recall, and F1 score
are presented in Table 2. The ROC curve and AUC of 13 types
of cancer are shown in Figure 4. Most curves are close to 100%,
and the area of each cancer is very close to 1 except BTCA
(biliary tract cancer). The micro-average and macro-average are
0.99, which show the prediction value of each dimension and
the average of all areas. Combining the metrics of prediction
accuracy, ROC, AUC, and so on, our model had the worst
overall prediction performance at biliary tract cancer and the best
overall prediction performance at malignant lymphoma. Liver
cancer, nasopharyngeal cancer, and gastric cancer are caused
by HBV, HCV, EBV, and HP, respectively. The performance
of our model on nasopharyngeal cancer was comparatively
poor. In general, our model can obtain considerable prediction
performance with the use of mutation data, which is great
help in identification of the primary site of a tumor, follow-up
diagnosis, and treatment.

In this study, the metastatic samples were used as test dataset.
We carried out experiments by using 500 chosen genes with use
of the model trained by training dataset. An average classification
accuracy is 86.39%, as shown in Table 3. Although the model
performed poorly on Pancreatic endocrine neoplasms (PAEN),
the overall classification accuracy is satisfying. In this condition,
we considered that little error on classification is tolerable.

Some experiments were also conducted by using other
algorithm with 500 selected genes. The average classification
accuracy values of using k-nearest neighbor (knn) and
support vector machine (svm) are 62.66 and 85.27%,
respectively, lower than 86.71% obtained by using the
method proposed in this study. As Figure 5 clearly shows,
the classification accuracy on each cancer of using logistic
algorithm was significantly higher than using knn. The
overall performance of logistic is also better than svm.
Therefore, the method proposed in this study can provide
better prediction performance.

Mean Value of Number of Somatic
Mutations on Each Cancer
We mapped the number of somatic mutations in each cancer, as
shown in Supplementary Figure 1. Columns represent cancers,
and rows represent genes. The number of mutations is colored on
a logarithmic scale. Also, we used the color bar to show difference
in values. The color of rectangles in the heat map represents the
relative log number of mutations per gene in each cancer type.
Cancers distributed in clusters along the vertical axis had similar
values in the number of mutations. Genes also cluster on the
horizontal axis, based on the association between cancers.

DISCUSSION

Viruses have been proven an important cause of cancer
(Tsai et al., 1996; Lin et al., 2013; Geng and Zhang, 2017).
Achieving effective identification of the primary site of a tumor
caused by viruses or other factors plays a vital role in the

follow-up diagnosis and treatment. Existing research shows
that molecular profiling can be used to predict the primary
site of a tumor. In this study, somatic mutation data were
used to determine cancer tissue origin. Samples of 13 types
of cancer were used with 3,374 samples used for feature
extraction. The selected top 500 genes with mutation data
were selected based on the feature importance score and was
trained in the proposed classifier with 10-time 10-fold cross-
validation. An average accuracy of 86.71% was obtained with
use of machine learning algorithms, random forest algorithm,
and logistic regression, utilized for gene selection and cancer
classification, respectively.

Our model can achieve considerable performance in
prediction of the primary site of common cancers caused by
a virus or other factors. However, prediction performances
on biliary tract cancer and nasopharyngeal carcinoma are
discouraging. According to the sample distribution in Table 1,
poor performance on nasopharyngeal carcinoma may be
attributed to the small quantity of samples tested for this
carcinoma. The reason for poor classification of the biliary tract
cancer requires further research because of a lack of evidence.
Therefore, we infer that there are shortcomings in using
mutation data alone to identify the primary site of some cancers,
but our model can obtain considerable overall performance. This
positively affects the follow-up diagnosis and treatment.

CONCLUSION

As a large number of patients have CUP, tracing the primary
site of a tumor has been a long-term challenge. Molecular
profiling of tissue-specific genes is available from public database
or medical institutions. We conducted experiments using
somatic mutation data based on machine learning algorithms.
Results showed that the proposed method is beneficial to the
diagnosis and treatment of patients with unknown primary
sites. However, the model does not perform well on all cancers.
This motivates for further research on the identification of
tissue origin of more common cancers. And research on
performance of combination of somatic mutation data and
other molecular profiling will be considered in our future
work. Currently, the proposed method can achieve considerable
performance and will help in the progress of the follow-
up study.
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Cervical cancer and endometrial cancer remain serious threats to women’s health.
Even though some patients can be treated with surgery plus chemoradiotherapy
as a conventional option, the overall efficacy is deemed unsatisfactory. As such,
the development for new treatment approaches is truly necessary. In recent years,
immunotherapy has been widely used in clinical practice and it is an area of great
interest that researchers are keeping attention on. However, a thorough immune-
related genes (IRGs) study for cervical cancer and endometrial cancer is still lacking.
We therefore aim to make a comprehensive evaluation of IRGs through bioinformatics
and large databases, and also investigate the relationship between the two types of
cancer. We reviewed the transcriptome RNAs of IRGs and clinical data based on
the TCGA database. Survival-associated IRGs in cervical/endometrial cancer were
identified using univariable and multivariable Cox proportional-hazard regression analysis
for developing an IRG signature model to evaluate the risk of patients. In the end,
this model was validated based on the enrichment analyses through GO, KEGG, and
GSEA pathways, Kaplan-Meier survival curve, ROC curves, and immune cell infiltration.
Our results showed that out of 25/23 survival-associated IRGs for cervical/endometrial
cancer, 13/12 warranted further examination by multivariate Cox proportional-hazard
regression analysis and were selected to develop an IRGs signature model. As a
result, enrichment analyses for high-risk groups indicated main enriched pathways
were associated with tumor development and progression, and statistical differences
were found between high-risk and low-risk groups as shown by Kaplan-Meier survival
curve. This model could be used as an independent measure for risk assessment
and was considered relevant to immune cell infiltration, but it had nothing to do with
clinicopathological characteristics. In summary, based on comprehensive analysis, we
obtained the IRGs signature model in cervical cancer (LTA, TFRC, TYK2, DLL4, CSK,
JUND, NFATC4, SBDS, FLT1, IL17RD, IL3RA, SDC1, PLAU) and endometrial cancer
(LTA, PSMC4, KAL1, TNF, SBDS, HDGF, LTB, HTR3E, NR2F1, NR3C1, PGR, CBLC),
which can effectively evaluate the prognosis and risk of patients and provide justification
in immunology for further researches.

Keywords: immune-related genes, cervical cancer, endometrial cancer, TCGA, prognostic model

Frontiers in Genetics | www.frontiersin.org 1 July 2020 | Volume 11 | Article 725172

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00725
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00725
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00725&domain=pdf&date_stamp=2020-07-21
https://www.frontiersin.org/articles/10.3389/fgene.2020.00725/full
http://loop.frontiersin.org/people/939011/overview
http://loop.frontiersin.org/people/575484/overview
http://loop.frontiersin.org/people/707905/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00725 July 18, 2020 Time: 19:29 # 2

Ding et al. Immune-Related Genes Signatures Model

INTRODUCTION

Cervical cancer is the fourth most commonly occurring cancer
in women worldwide (Yang et al., 2019), for which a major
cause is chronic infection with high-risk HPV types (HPV
types 16 and 18) (Cohen et al., 2019). This condition is
considered the leading cause of death and disability for women,
although progress has been made for diagnostic methods and
treatment in recent years in the context of improved test panels
that provide detailed screening around the world. In 2018,
approximately 570,000 patients were diagnosed with cervical
cancer and 31,000 died from it globally (Bray et al., 2018).
In Japan, it has been estimated that there are 13,000 new
cases and 3,500 deaths associated with cervical cancer each
year (Ishikawa et al., 2020). The 5-year survival rate can be
encouraging for local cervical cancer, as approximately 75–
85% after effective treatments such as surgery. However, the
5-year survival rate for recurrence is approximately 15% (Liu
et al., 2019b). Histopathologically, squamous cell carcinoma
accounts for about 80–85% and adenocarcinoma about 15–
20% (Yang et al., 2019). Traditionally, a patient may be
treated with surgical removal of the lesions and adjacent
lymph nodes in combination with cycles of radiotherapy and
chemotherapy (Cosper et al., 2019). Recently, immunotherapy
has been increasingly used in clinical settings (Crusz and Miller,
2020) and has now becomes one of the important areas of
cancer research.

Endometrial cancer is another very common gynecological
tumor, ranking as the sixth cause of cancer incidence in women
following breast cancer, colorectal cancer, lung cancer, cervical
cancer, and thyroid cancer (Bray et al., 2018). Statistics show
that the incidence of endometrial cancer is second only to
cervical cancer (Feng et al., 2019; Zhou and Ling, 2019) among
gynecological malignancies in China. The survival rate for
endometrial cancer varies with tumor progression; there was a big
difference in 5-year survival rate by 83–97% in localized to 43–
67% in stage III, and finally only 13–25% in stage IV (Liu, 2019).
Traditional treatment options including surgery, radiotherapy,
and chemotherapy can be effective for the condition in early
stages but advanced diseases are not significantly responsive
(Miller et al., 2020). As novel immunotherapies are being used
to treat endometrial cancer (Grywalska et al., 2019), a new option
is now available for doctors (Lynam et al., 2019).

Immunotherapies for cancer have attracted more and more
attention from scientific researchers (Irvine and Dane, 2020). In
recent years, traditional modalities have found more limitations
to the treatment of cancer. Immunotherapies have provided more
opportunities to modern precision medicine and personalized
medicine (Martin et al., 2020). In fact, many immunotherapeutic
methods have been applied in clinical practice, such as the
typical immune checkpoint inhibitor that targets programmed

Abbreviations: AUC, An area under the ROC curve; FDR, false discovery
rate; GO, gene ontology; GSEA, Gene Set Enrichment Analysis; HPV, human
papillomavirus; IRGs, immune-related genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes; OS, overall survival; ROC, Receiver Operating Characteristic
curve; TCGA, The Cancer Genome Atlas; TFs, transcription factors; TIMER,
Tumor IMmune Estimation Resource.

cell death protein 1 (PD-1) for lung cancer (Gainor et al.,
2020) and breast cancer (Barroso-Sousa et al., 2020), as well as
CD19-specific CART (Shen et al., 2019) immune cell therapy
for leukemia (June et al., 2018). In addition, immunotherapies
are also widely used to treat gynecological tumors (Rubinstein
and Makker, 2020). Existing studies on immunotherapy for
cervical cancer focus mainly on human papillomavirus vaccine,
immune checkpoint inhibitors, and adoptive cellular therapy.
The main biological mechanism of the human papillomavirus
vaccine is the viral vectors expressing HPV-16 or -18 (E6 or
E7) to stimulate the body’s immune response to malignant
cells. These vaccines can be divided into two categories –
prophylactic and therapeutic. Currently, there are three clinically
available prophylactic human papillomavirus vaccines – Gardasil,
Cervarix, and Gardasil 9 – that were approved by the U.S.
Food and Drug Administration (FDA) in 2006, 2009, and
2016, respectively (Matanes and Gotlieb, 2019). Therapeutic
human papillomavirus vaccine is also an important part of
vaccine research, including live vector, nucleic acid, protein,
whole cell, and combinatorial vaccines. However, although
there are some promising vaccine candidates (Vici et al.,
2016; Yang et al., 2016; Kim, 2017), there are currently
no vaccine products available for human use. For immune
checkpoint inhibitors, anti-programmed death 1 (PD-1) and
anti-programmed death ligand 1 (PD-L1) immunoglobulin, as
an important representative, have been the focus of research,
and many drugs, such as pembrolizumab and nivolumab,
have achieved encouraging results and were approved by the
FDA (Wang and Li, 2019). At present, studies on adoptive
cellular therapy in cervical cancer are insufficient. While some
scholars have confirmed the efficacy of human papillomavirus-
targeted tumor-infiltrating T lymphocytes (TILs) in cervical
cancer (Stevanovic et al., 2015), they still face many problems.
The main challenge lies in how to effectively identify the
tumor-associated antigens (TAAs) from individual patients and
how to amplify the TILs while inducing a targeted immune
response to these tumor sites, which became the focus in
subsequent studies. Compared to immunological studies on
cervical cancer, studies on endometrial cancer are relatively
few and mainly focus on the immune checkpoint inhibitors.
Studies have shown that PD-1 and PD-L1 are expressed in
80% of primary endometrial carcinoma patients and almost
100% of metastatic tumors (Mo et al., 2016), The inhibitor
pembrolizumab was FDA-approved for use in microsatellite
instability-high (MSI-H) or mismatch repair (MMR)-deficient
endometrial carcinoma patients (Le et al., 2017). Studies (Maskey
et al., 2019) have shown that the number of CD4+ and
CD8+ lymphocytes is not similar between normal cervical cells
infected by HPV and cervical cancer cells, and this difference
becomes more complicated for epithelial and stromal layers
in cervical tissues. Based on a study of endometrial cancer,
it was (Zhou and Ling, 2019) found that the survival rate
correlated with the number of cytotoxic T lymphocytes. Despite
the fact that in vivo and in vitro experiments are performed
during plenty of studies on immune cell changes in gynecologic
tumors, a more comprehensive and specific immune mechanism
is still unclear.
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As modern high-throughput sequencing technology is being
improved and rapid growth is achieved in computer science
(Ma et al., 2019), more and more free of charge, large-scale,
and comprehensive gene transcriptomics as well as relevant
clinical databases are available, which makes it possible to provide
comprehensive analyses of genetic molecular biomarkers in a
more accurate and fast fashion. These molecular biomarkers play
an important role in predicting the prognosis of patients and
evaluating their risk levels. Therefore, we hope to further explore
those data that provide details in immune related genes (IRGs) for
patients with cervical cancer and those with endometrial cancer.
Beyond that, efforts will also be made to evaluate and predict the
prognosis of patients using these molecular biomarkers or other
gene signatures. By combining the gene expression profiles and
clinical data of IRGs with bioinformatics statistical methods, we
obtained and analyzed those IRGs signatures and then verified
them in patients with cervical cancer and those with endometrial
cancer. These results will provide us a basic idea for follow-up
and in-depth studies on these IRGs, thus laying foundation for
precise and individualized medical treatment.

MATERIALS AND METHODS

Clinical Samples and Data Acquisition
For cervical and endometrial cancers, transcriptome RNA-
sequencing data from FPKM file as well as clinical data were
downloaded from The Cancer Genome Atlas (TCGA) database
containing 3 non-tumor samples and 304 tumor samples from
patients with cervical cancer, and 35 non-tumor samples and
543 tumor samples from those with endometrial cancer. All
clinical data and transcriptome data did not correspond exactly
because the clinical data were not completely provided, leading
to exclusion from the subsequent analyses. Immune-related
genes (IRGs) were derived from the Immunology Database and
Analysis Portal (ImmPort) system (Bhattacharya et al., 2014)
which was continuously updated and maintained to provide
immune-related data that had endorsement by scholars. These
resulting genes were thought to be involved in human’s immune-
related activities.

Differential Gene Analysis and
Enrichment Analysis
All of these genes, including immune-related genes (IRGs)
and all transcriptome RNA-sequencing genes that were
differentially expressed in normal and tumor samples, were
screened in association with cervical and endometrial cancer,
respectively, through R-Limma package (R version 3.6.1), and
the screening criteria were met based on false discovery rate
(FDR) < 0.05 and log2 |fold change| > 1. Functional enrichment
analyses through GO and KEGG pathways were conducted
for differentially expressed IRGs using the online database
webgestalt (Liao et al., 2019)1.

1http://www.webgestalt.org/

Identification of Survival-Associated
IRGs
We extracted the clinical data of overall survival (OS) time and
survival state corresponding to cervical cancer and endometrial
cancer, respectively, and the transcriptome of IRGs combined
with corresponding clinical data to perform survival analysis
and thus identify survival-associated IRGs using univariate Cox
proportional hazard regression. To meet the screening criteria,
p < 0.05 and p < 0.01 were defined for cervical cancer and
endometrial cancer, respectively. Since many different IRGs
were found for endometrial cancer, which was not helpful
for subsequent analyses, more appropriate screening criteria
should be followed.

Screening of Transcription Factors (TFs)
and Construction of Networks
Three hundred and eighteen transcription factors (TFs) were
downloaded from the cistrome online database2 to figure out the
differential genes in cervical and endometrial cancer, respectively,
in a similar way used for IRG selection, using R-limma package
(R version 3.6.1). The selection criteria were defined as false
discovery rate (FDR) < 0.05 and log2 |fold change| > 1.
Subsequently, the differentially expressed TFs and selected
survival-associated IRGs were used to establish regulatory
networks by Pearson correlation analysis with correlation
coefficient > 0.4 at p < 0.001 after which the regulatory networks
were imported into the cytospace software (version 3.7.2) for
visual procedures.

Establishment and Evaluation of the IRG
Signature Model
The survival-associated IRGs were further screened to establish
the IRGs signature model, which was examined by multivariate
Cox proportional-hazard regression analysis. This model would
be used for subsequent evaluation and analysis of risk measures
for the patients’ risk values after assigning these patients into
high-risk and low-risk groups. The risk score for each patient was
computed using the formula as follows:

risk score = 6n
k=1Coe f ∗k Xk

where Coefk represents the coefficient and Xk represents the
expression level of each IRG. Subsequently, the validity of the
IRGs signature model was evaluated by analyzing the difference
between high- and low-risk groups using the Kaplan-Meier
survival curve, Receiver Operating Characteristic (ROC) curve
and heatmap. Similarly, Gene Set Enrichment Analysis (GSEA)
was applied to compare signaling pathways and biological
processes between high and low risk groups by GSEA (version
4.0.3) software. The landscape of genetic alterations across these
IRGs in the signature model was examined through the online
database cbioportal3.

2http://www.Cistrome.org/
3https://www.cbioportal.org/
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Evaluation of IRGs’ Signature Model
Along With Clinicopathological
Characteristics and Tumor-Infiltrating
Immune Cells
Whether the patient risk score could be used as an independent
prognostic measure was further evaluated by univariate and
multivariate Cox proportional-hazard regression analyses. The
tumor infiltrating immune cell index were download from the
online Tumor IMmune Estimation Resource (TIMER) (Li et al.,
2017)4, which provided detailed information about infiltrating
immune cells including B cells, T cells, macrophages, neutrophils,
and dendritic cells. Acceptable compatibility between these data
and TCGA database is maintained; that is why the information
thereof has been widely used in scientific researches in recent
years. Therefore, it is helpful for us to further understand the
changes of immune cells in tumor tissues. The relevance between
risk scores and infiltrating immune cells was investigated herein
using Pearson correlation analysis.

Statistical Analysis
All data were processed using the R software (version 3.6.1). The
independent samples t-test was used to evaluate the relationship
between risk scores and clinicopathological characteristics, and
P < 0.05 was considered statistically significant. For Kaplan-
Meier survival curves, the log-rank test was performed to
demonstrate if there could be significant difference in OS between
groups. Univariate and multivariate Cox proportional-hazard
regression analyses were used to access the association between
risk scores and OS. The area under the ROC curve (AUC) was
measured for indicating the accuracy of prognosis as shown by
the IRG signature model. All these analyses were performed at a
significance level of P < 0.05.

RESULTS

Identification of Differentially Expressed
IRGs
Based on the results derived from the R software, we
found that there were 3192 differentially expressed genes
in cervical cancer, including 1833 upregulated and 1359
downregulated; and 5665 differentially expressed genes in
endometrial cancer, including 3316 upregulated and 2349
downregulated. A total of 2498 immune-related genes (IRGs)
are described in the Immunology Database and Analysis Portal
(ImmPort). We extracted differentially-expressed IRGs common
to the TCGA and the ImmPort, which yielded 88 upregulated
and 117 downregulated for cervical cancer, along with 226
upregulated and 171 downregulated for endometrial cancer.
During enrichment analyses for these differentially expressed
IRGs, the cervix-related genes were mainly found to be involved
in “response to stimulus,” “biological regulation,” and “cell
communication” for GO enrichment, and “cytokine-cytokine
receptor interaction,” “Ras signaling pathway,” and “MAPK

4https://cistrome.shinyapps.io/timer/

signaling pathway” as shown in Kyoto Encyclopedia of Genes and
Genomes (KEGG). In comparison, endometrial cancer related
genes showed biological processes in a similar manner, as they
were also mainly involved in “biological regulation,” “response
to stimulus,” and “cell communication” for GO enrichment, and
“cytokine-cytokine receptor interaction,” “chemokine signaling
pathway,” and “PI3K-Akt signaling pathway” as shown in Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Figure 1). The
above findings suggested that these IRGs were strongly associated
with the development, progression and invasion of tumors.

Identification of Survival-Associated
IRGs
From the previous step, we obtained the differentially expressed
IRGs. However, in our clinical studies, we paid more attention
to the IRGs that were associated with the survival and prognosis
of patients because these genes may be the key biomarkers
for evaluating patients. During further screening, we obtained
25 survival-associated IRGs for cervical cancer and 23 for
endometrial cancer, respectively (Figures 2A,B).

Identification of Differentially Expressed
TFs and Construction of IRGs-TFs
Regulatory Network
Progress has been made for researches on the change of DNA
transcription factors (TFs) level in tumors, which is always
the important direction for biological processes. By establishing
the matrix for these TFs corresponding to the gene expression
profiles, we found that there were 47 upregulated and 28
downregulated TFs in cervical cancer, as well as 44 upregulated
and 53 downregulated TFs in endometrial cancer (Figure 3).
The gene expression profiles were then extracted for survival-
associated IRGs and differential expression TFs, respectively,
to construct the IRGs-TFs regulatory network. As shown in
the network diagram, the network for cervical cancer tissues
was formed by 13 TFs and 10 IRGs. Similarly, 17 TFs and 9
IRGs formed the regulatory network for endometrial cancer. We
found the IRG LTA in the regulatory network for both cervical
cancer and endometrial cancer. As shown in the regulatory
network, TFs STAT1 and FOXP3 were involved in regulatory
relationship with multiple IRGs for cervical cancer, while IRGs
PGR and LTA were associated with multiple TFs for endometrial
cancer (Figures 2C,D). Both STAT1 and STAT2 are important
members of the family of signal transducer and activator of
transcription (STAT), but STAT1 plays the more important
role (Verhoeven et al., 2020). Current studies have proven
that STAT1 is an important activating mediator of type I and
type II interferon (IFN), participating in the body’s immune
defense response against foreign pathogens and other viruses
(Zhang et al., 2017). The biological function of STAT1 is still
controversial and unclear. Studies of breast (Hou et al., 2018)
and ovarian cancer (Tian et al., 2018) found that STAT1 is
overexpressed in malignant tumors and plays an oncogenic
role. However, studies on colorectal cancer (Crncec et al., 2018)
and other breast cancers (Varikuti et al., 2017) found that
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FIGURE 1 | GO and KEGG enrichment result for IRGs in CESC and UCEC. (A) GO enrichment analysis for CESC, the vertical axis represents the number of
differentially expressed IRGs. (B) GO enrichment analysis for UCEC, the vertical axis represents the number of differentially expressed IRGs. (C) Volcano of KEGG
enrichment result for CESC. (D) Volcano of KEGG enrichment result for UCEC.
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FIGURE 2 | Forest plot of survival-associated IRGs and IRGs-TFs regulatory network. (A) Survival-associated IRGs in cervical cancer. (B) Survival-associated IRGs in
endometrial cancer, red dots represent high-risk genes (HR > 1), and green dots represent low-risk genes (HR < 1). The IRGs-TFs regulatory network in cervical
cancer (C) and endometrial cancer (D). The blue ellipse represent TFs, the triangle and taper represent IRGs, red/green represent high-Risk IRGs/low-Risk IRGs,
red/green lines represent TFs positive/negative regulation IRGs.

TAT1 may act as a tumor suppressor. Even a recent meta-
analysis of TAT1 in multiple types of tumors reported that the
prognostic factor of STAT1 still depends on cancer type (Zhang
et al., 2020). From this IRG–TF regulatory network, we can
see that in cervical cancer, STAT1 positively regulates low-risk
IRGs (PSME2, LTA, and PTPN6), but STAT1 positively regulates
high-risk IRGs (OAS1) in endometrial cancer, suggesting that
transcription factor STAT1 may play different biological roles in
these two types of cancers. The functional role of transcription
factor FOXP3 is also unclear in existing studies. On the one
hand, FOXP3 can act as a tumor suppressor in breast cancer
(Zuo et al., 2007), ovarian cancer (Zhang and Sun, 2010),
colon cancer (Li et al., 2013), and gastric cancer (Ma et al.,
2013), but it can act as an oncogene in non-small cell lung
cancer (Yang et al., 2017), lung adenocarcinoma (Li et al.,
2016), and thyroid cancer (Chu et al., 2015). From this IRG–
TF regulatory network, we can see that in cervical cancer,
FOXP3 positively regulates low-risk IRGs (LTA and PTPN6) and

positively regulates low-risk IRGs (LTA) in endometrial cancer,
suggesting that FOXP3 may act as a tumor suppressor in these
two types of cancers.

Establishment and Evaluation of the
IRGs Signature Model
Since different IRGs expression profiles may indicate the
differences in disease condition among patients, it is of
significance to establish the IRGs’ prognosis signature model for
patient risk evaluation. In this way, the IRGs’ prognosis signature
models were established for cervical cancer and endometrial
cancer, respectively (Supplementarys Table S1, S2). Patients
were divided into a high-risk group and a low-risk group
according to the median risk score. Calculation based on the
IRGs prognosis signature model resulted in 147 and 147 patients
assigned to high-risk and low-risk subsets, respectively, for those
with cervical cancer, and similarly 255 and 255 patients to two
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FIGURE 3 | The heatmap for differentially expressed TFs in cervical cancer and endometrial cancer. N represent normal, T represent tumor or cancer. (A) Cervical
cancer. (B) Endometrial cancer.
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FIGURE 4 | The evaluation of IRGs signature model in cervical cancer and endometrial cancer. Kaplan-Meier survival curves for cervical cancer (A) and endometrial
cancer (B). AUC for cervical cancer (C) and endometrial cancer (D). The distribution and survival status of patients with risk score in the cervical cancer (E,G) and
endometrial cancer (F,H). The heatmap for IRGs in cervical cancer (I) and endometrial cancer (J).

subsets for those with endometrial cancer. Statistical evaluation
was subsequently made to analyze this model by performing
the comparison of Kaplan-Meier survival curves, evaluation

of ROC curves, and drawing of distribution plots of patients
at high/low risk. All these suggested that the IRGs signature
model could be considered appropriate to evaluate the clinical

Frontiers in Genetics | www.frontiersin.org 8 July 2020 | Volume 11 | Article 725179

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00725 July 18, 2020 Time: 19:29 # 9

Ding et al. Immune-Related Genes Signatures Model

FIGURE 5 | Genetic alteration landscape of IRGs in gene signatures model of CESC and UCEC. (A) Genetic alteration in the TCGA-CESC cohort (191 samples).
(B) Genetic alteration in the TCGA-Pan Cancer Atlas cohort (278 samples). (C) Genetic alteration in the TCGA-UCEC cohort (242 samples). (D) Genetic alteration in
the TCGA-Pan Cancer Atlas cohort (509 samples).
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FIGURE 6 | GSEA and relationships between IRGs and tumor infiltrating immune cells index in CESC and UCEC. (A) GSEA results of high risk group in cervical
cancer. (B–F) GSEA results of high risk group in endometrial cancer. (G–L) GSEA results of low risk group in endometrial cancer. (M) Relationships between risk
score of IRGs model in cervical cancer and tumor infiltrating immune cells index. (N,O) Relationships between risk score of IRGs model in endometrial cancer and
tumor infiltrating immune cells index.
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FIGURE 7 | Univariate and Multivariate Cox regression analysis of clinical characteristics for CESC (A,B) and UCEC (C,D).

prognosis of patients, with the exception of the moderately
AUC (Figure 4).

Multiple Evaluation of IRGs’ Signature
Model Combined With Clinicopathology,
Gene Expression Profiles, GSEA, and
TIMER
The biological characteristics regarding clinicopathology were
also part of our considerations, including age, cancer stage,
body mass index (BMI), and (TNM) stage, etc. We found the
risk score resulted from the IRGs’ signature model could be
satisfactory as an independent statistical measure to evaluate the
risk levels of patients. As an exception, the IRGs signature model
for endometrial cancer developed the following independent
clinical measures for risk levels evaluation, including age, cancer
stage, and tumor pathological grades. Statistical difference was
observed in clinicopathological characteristics among many IRGs
expression profiles. Based on the online database cbioportal,

datasets of TCGA-CESC/TCGA-UCEC cohort and TCGA-
PanCancer Atlas were applied (310 samples in CESC vs. 297
samples in PanCancer Atlas; 548 samples in UCEC vs. 529
samples in PanCancer Atlas). Only samples harboring both
mutations and CAN data were included. In terms of CESC, IRGs
were altered in 69 (36%) of 191 queried samples (TCGA-CESC)
(Figure 5A), as compared with those altered IRGs detected in 88
(32%) of 278 queried samples (PanCancer Atlas) (Figure 5B). In
terms of UCEC, IRGs were changed in 80 (33%) of 242 queried
samples (TCGA-UCEC) (Figure 5C), compared with 192 (38%)
of 509 samples (PanCancer Atlas) (Figure 5D). GSEA analysis in
cervical cancer revealed that the high-risk group was significantly
associated with the TGF-beta signaling pathway (NES = 2.059,
FDR = 0.017) (Figure 6A), but no pathway was significantly
relevant to the low risk group. However, the GSEA analysis
in endometrial cancer showed that these pathways including
erbb-signaling-pathway (NES = 2.099, FDR = 0.028), cell-cycle
(NES = 2.195, FDR = 0.034), axon-guidance (NES = 2.106,
FDR = 0.038), pancreatic-cancer (NES = 2.049, FDR = 0.039),
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TABLE 1 | Relationships between the expressions of the IRGs and the clinicopathological characteristics in cervical cancer.

Id Age Stage Grade M N T BMI

t(p) t(p) t(p) t(p) t(p) t(p) t(p)

LTA −1.168 (0.293) 0.527 (0.608) −1.462 (0.148) 1.984 (0.103) 0.07 (0.945) 0.668 (0.529) −2.633 (0.010)

TFRC −0.149 (0.886) 0.811 (0.431) 1.066 (0.290) 1.004 (0.364) −1.127 (0.271) −7.596 (1.456e− 04) 0.948 (0.347)

TYK2 0.31 (0.766) −0.047 (0.963) −0.252 (0.802) −0.764 (0.500) 0.503 (0.618) 1.611 (0.162) −0.068 (0.946)

DLL4 1.257 (0.235) −0.259 (0.798) 0.038 (0.970) −0.065 (0.952) 0.846 (0.403) −0.818 (0.452) 0.249 (0.804)

CSK 0 (1.000) −1.261 (0.224) −0.23 (0.819) 1.887 (0.138) 0.102 (0.919) 2.566 (0.050) 1.782 (0.081)

JUND 0.721 (0.492) 1.523 (0.153) 0.764 (0.448) −0.819 (0.472) −0.067 (0.947) −0.473 (0.659) −1.485 (0.142)

NFATC4 1.557 (0.156) 0.66 (0.520) 0.178 (0.859) −0.846 (0.458) −0.016 (0.987) 0.933 (0.396) −1.993 (0.050)

SBDS −0.446 (0.669) −0.019 (0.985) 0.643 (0.522) 0.884 (0.438) −0.667 (0.511) −0.676 (0.535) 1.376 (0.176)

FLT1 0.348 (0.736) −0.347 (0.733) −0.478 (0.634) 0.6 (0.588) −0.068 (0.946) −1.14 (0.298) −0.061 (0.952)

IL17RD 0.521 (0.617) −0.709 (0.490) −0.475 (0.636) 0.46 (0.670) 0.734 (0.467) 3.091 (0.004) −2.338 (0.022)

IL3RA 4.431 (1.404e− 04) 0.905 (0.378) −1.234 (0.221) 0.094 (0.930) −0.918 (0.365) 1.262 (0.261) −2.366 (0.020)

SDC1 −2.491 (0.034) 0.228 (0.823) 2.122 (0.038) 1.035 (0.370) −1.724 (0.098) −2.498 (0.048) 1.131 (0.261)

PLAU −0.922 (0.394) −1.368 (0.189) −0.344 (0.732) 1.174 (0.314) 0.517 (0.609) −0.892 (0.416) 2.693 (0.010)

riskScore −1.076 (0.312) 0.154 (0.880) 1.254 (0.215) 1.864 (0.103) −0.695 (0.495) −1.819 (0.138) 0.182 (0.856)

t, t-value of student’s t-test; P, P-value of student’s t-test.

and small-cell-lung-cancer (NES = 1.932, FDR = 0.048) were
significantly relevant to the high risk group (Figures 6B–F),
and graft-versus-host disease (NES = −1.916, FDR = 0.031),
type-I-diabetes-mellitus (NES = −1.886, FDR = 0.034), allograft-
rejection (NES = −1.989, FDR = 0.038), autoimmune-thyroid-
disease (NES =−1.917, FDR = 0.038), hematopoietic-cell-lineage
(NES = -1.831, FDR = 0.046), and asthma (NES = −1.928,
FDR = 0.048) to the low risk group (Figures 6G–L). Finally, we
evaluated the relationship between the IRG signature model and
immune cell infiltration and thereby found that the infiltration
of neutrophils was negatively correlated with the IRGs signature
model for cervical cancer. However, the infiltration of B cells
and neutrophils was positively correlated with this model for
endometrial cancer (Figures 6M–O).

DISCUSSION

Many pre-existing scientific researches have demonstrated that
the occurrence and progression of tumors are strongly related
to immune cells and chemokines in the human body (Han
et al., 2019; Rosenthal et al., 2019), which can be verified
through the mechanism of immune escape (Luo et al.,
2019). In some diseases and tumor biological processes, the
changes of these immune biomarkers are clear and even can
be predicted in the immune microenvironment (Silva-Santos
et al., 2019). However, data on systematic and comprehensive
molecular mechanisms in genome-wide profiling are limited for
cervical cancer and endometrial cancer. Therefore, our study
is designed to explore which types of IRGs show changes
or may be going to change in patients with cervical cancer
and endometrial cancer. Furthermore, we also investigated
whether these differences could properly predict the clinical
prognosis of patients and help to demonstrate the relationship
between these IRGs and clinicopathological characteristics.
This provides relevant information for us to develop better

understanding on the biological changes of cervical and
endometrial cancer.

Cancer cells have been shown to accumulate in inflammatory
microenvironments, usually in the early stage of tumorigenesis
(Hanahan and Weinberg, 2011); thus, it is genuinely helpful
to identify differentially expressed IRGs in tumor tissues.
Unfortunately, such studies on cervical cancer and endometrial
cancer are rare. In this context, we extracted and calculated
these differentially expressed IRGs for cervical cancer and
endometrial cancer, respectively, resulting in a total of 146
differentially expressed IRGs that were shared by these two
tumor types. Transcription factors (TFs), which also play a very
important role in the human body, have been shown to regulate
gene transcription at the nucleic acid level, thus affecting the
expression of proteins (Lambert et al., 2018). After extraction
and calculation of these differentially expressed TFs, 49 TFs were
shared by these two diseases. Co-occurrence of differentially
expressed IRGs and TFs is of great significance to guide our
subsequent studies and those shared IRGs and TFs may suggest
similar biological processes in both tumor types.

After that, enrichment analyses through GO and KEGG
pathways were performed for these differentially expressed
IRGs. The results showed genes were mainly enriched in the
pathways including “cytokine-cytokine receptor interaction,”
“Ras signaling pathway,” and “MAPK signaling pathway” for
cervical cancer and the pathways including “cytokine-cytokine
receptor interaction,” “chemokine signaling pathway,” and “PI3K-
Akt signaling pathway” for endometrial cancer, indicating
a possible relationship of these IRGs with tumor-associated
development, progression, and invasion. Subsequently, we
made further screening to select survival-associated IRGs. To
investigate the relationship between these differentially expressed
survival-associated IRGs and differentially expressed TFs, the
regulatory network was constructed for these survival-associated
IRGs and differentially expressed TFs, respectively. We found
that the IRG LTA appeared in the regulatory network for both
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TABLE 2 | Relationships between the expressions of the IRGs and the clinicopathological characteristics in endometrial cancer.

Id Age Stage Grade BMI Pregnancies Tamoxifen Pharmaceutical Diabetes Hypertension Radiation

t(p) t(p) t(p) t(p) t(p) t(p) t(p) t(p) t(p) t(p)

LTA 0.908
(0.364)

2.775
(0.006)

−0.665
(0.507)

0.584
(0.561)

0.051
(0.959)

−0.384
(0.714)

0.354
(0.725)

0.351
(0.726)

−0.705
(0.481)

−0.26
(0.795)

PSMC4 −1.329
(0.184)

−2.344
(0.020)

−4.647
(5.004e−06)

−0.321
(0.749)

−1.626
(0.106)

−0.153
(0.882)

0.062
(0.951)

0.022
(0.982)

−1.175
(0.241)

−1.446
(0.150)

KAL1 −2.104
(0.036)

−1.024
(0.307)

−1.559
(0.120)

−2.168
(0.032)

−0.839
(0.403)

−1.101
(0.313)

−0.397
(0.693)

−0.536
(0.593)

0.088
(0.930)

−0.509
(0.611)

TNF −2.04
(0.042)

−1.555
(0.122)

−1.91
(0.057)

0.44
(0.661)

−0.712
(0.477)

−0.886
(0.410)

−1.937
(0.058)

−1.535
(0.127)

−0.468
(0.640)

0.647
(0.518)

SBDS −0.653
(0.514)

−3.11
(0.002)

−7.062
(6.468e−12)

1.414
(0.162)

−0.376
(0.707)

1.142
(0.294)

−0.28
(0.780)

2.266
(0.024)

2.271
(0.024)

−1.578
(0.115)

HDGF −3.582
(3.826e−04)

−3.583
(4.11e−04)

−8.674
(6.483e−17)

1.154
(0.251)

−1.512
(0.132)

−0.69
(0.515)

−1.805
(0.076)

1.174
(0.242)

0.528
(0.597)

−1.28
(0.201)

LTB −1.397
(0.163)

−0.288
(0.773)

−0.715
(0.475)

0.823
(0.413)

0.72
(0.472)

−0.882
(0.411)

−0.218
(0.828)

0.306
(0.760)

0.951
(0.342)

1.553
(0.121)

HTR3E 0.9
(0.369)

−1.025
(0.307)

−1.06
(0.290)

−1.06
(0.290)

1.053
(0.293)

0.511
(0.611)

0.873
(0.383)

1.017
(0.310)

0.814
(0.416)

−0.98
(0.328)

NR2F1 1.173
(0.242)

0.118
(0.906)

−1.776
(0.077)

0.858
(0.393)

0.953
(0.341)

0.511
(0.626)

1.934
(0.056)

0.24
(0.811)

0.876
(0.382)

0.023
(0.982)

NR3C1 −1.703
(0.090)

−3.071
(0.002)

−5.572
(4.443e−08)

1.248
(0.216)

−0.612
(0.541)

−1.169
(0.286)

−1.606
(0.113)

−0.234
(0.815)

0.705
(0.481)

−1.204
(0.230)

PGR 4.139
(4.121e−05)

5.709
(2.527e−08)

8.551
(3.876e−16)

−4.745
(5.258e−06)

0.449
(0.654)

4.321
(0.003)

4.974
(3.228e−06)

−2.129
(0.035)

−1.698
(0.090)

0.865
(0.387)

CBLC −1.752
(0.081)

−1.01
(0.314)

−1.915
(0.056)

−0.431
(0.667)

−0.266
(0.790)

−0.331
(0.750)

−0.139
(0.890)

0.031
(0.976)

1.097
(0.273)

0.107
(0.915)

riskScore 1 (0.318) −1 (0.319) −1 (0.318) −1 (0.318) 1 (0.318) 1 (0.318) 1 (0.318) 1 (0.318) 1 (0.318) −1 (0.319)

t, t-value of student’s t-test; P, P−value of student’s t-test.
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FIGURE 8 | The difference between IRGs expression profile and clinicopathological characteristics in CESC (A–F) and UCEC (G–O). Show part only.
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cancers. Previous studies have shown that the role of LTA
varies with patient’s condition. In patients with breast cancer,
LTA can be used as a possible tumor marker to evaluate the
prognosis (Kohaar et al., 2009). In contrast, in the study of
gastric cancer (Mou et al., 2015), the occurrence of gastric
cancer is related to the genetic variation of LTA. However, no
sufficient data is available to draw a comprehensive picture to
characterize this gene, and additional studies are needed to make
further demonstration.

In living organisms, biological processes are often
characterized by involvement in various genes, multiple
courses, and continuous biological responses; therefore, it is
difficult to predict and explain condition changes and prognosis
with a single or a small number of gene expression profiles.
In this case, an overall analysis of “gene signatures” involving
different genes provide us with a good method for predicting
the prognosis of patients. As early as in 2007, scholars (Chen
et al., 2007) used a gene signature model to evaluate the clinical
prognosis of non-small cell lung cancer (NSCLC), and the
results demonstrated high reliability of this method. Since then,
this kind of multigene signature model has been applied more
frequently in other diseases, for example, ovary cancer (An et al.,
2018), lung cancer (Liu et al., 2019a), colon cancer (Mo et al.,
2019), lung adenocarcinoma (Wang et al., 2019), and colorectal
cancer (Zhou et al., 2019). Based on these findings, we decided
to establish an IRGs signature model for cervical cancer and
endometrial cancer to evaluate the prognosis of patients.

For the establishment of gene signature models, 25/23
survival-associated IRGs were selected for cervical cancer and
endometrial cancer, respectively. As a result, 13 IRGs in
cervical cancer and 12 IRGs in endometrial cancer were found
appropriate to establish the model. We used the two IRGs
signature models to calculate the risk levels for each patient
and found the differences in Kaplan-Meier survival curves were
statistically significant between high- and low-risk groups for
both cervical cancer (p = 6.464e-9) and endometrial cancer
(p = 1e-11). In terms of survival and death, statistics of patients
were also significantly different between high- and low-risk
groups. These data obtained from evaluation models suggested
that the IRGs’ signature model may be a good way to assess the
risk levels of patients; however, the area under the ROC curve
(AUC) moderately only reached to about 0.738 in cervical cancer
and 0.777 in endometrial cancer.

Exploring the relationship between clinicopathological
characteristic and patient prognosis can provide us with more
valuable information. Based on univariate and multivariate
Cox regression analyses, we found the risk score resulted from
the IRGs signature model could be considered an independent
statistical measure to evaluate the overall survival (OS) in
patients with cervical cancer (P < 0.001) (Figures 7A,B). Similar
findings were obtained for the risk score resulted from the
IRG signature model for endometrial cancer (Figures 7C,D),
where independent clinical measures included age (P < 0.001),
cancer stage (P < 0.001), tumor pathological grade (P < 0.001),
the use of estrogen antagonist tamoxifen (Gaber-Wagener
and Marth, 2020) (P < 0.05), and radiation therapy (Mirza,
2020) (P < 0.05). These results were highly consistent with

previous studies (Casablanca et al., 2019; Trojano et al., 2019;
Wu et al., 2019).

We then examined the correlation between the risk score
and clinicopathological characteristics of the patients. However,
there was no statistical difference in either the risk score
proved by the IRGs’ signature model or the clinicopathological
characteristics between patients with cervical cancer and
those with endometrial cancer, but statistical difference was
observed in the IRG expression profiles and clinicopathological
characteristics (Tables 1, 2, Figure 8 and Supplementary
Table S3) for which further investigation could be considered.
GSEA analysis for cervical cancer indicated that the high-
risk group was significantly associated with the TGF beta
signaling pathway, while in endometrial cancer the results
showed relevance to erbb signaling pathway, cell cycle, axon
guidance pathway, pancreatic cancer, and small-cell lung cancer.
These pathways were associated with tumor development and
progression, suggesting that these molecular pathways were likely
to be activated in high-risk groups. Thus, the validity of this IRGs
signature model for predicting risk scores was well established.

By evaluating the relationship between the risk score provided
by the IRGs’ signature model and immune cell infiltration, we
found that neutrophil infiltration was negatively correlated with
risk scores in cervical cancer; however, the infiltration of immune
B cells and neutrophils were positively correlated with risk scores
in endometrial cancer. Studies (Dong et al., 2019) have shown
that the ratio of neutrophils to lymphocytes is an independent
measure to determine prognosis and lymph node metastasis in
endometrial cancer (Aoyama et al., 2019). It is also reported that
(Wisdom et al., 2019) neutrophils can increase the resistance
of tumor cells to radiation therapy, and neutrophil-lymphocyte
ratio can be considered as a predictor in stage IVB or recurrent
cervical cancer patients treated by chemotherapy. Neutrophil-
lymphocyte ratio ≥ 3.6 has been identified as an independent
predictor of poor oncologic outcomes with respect to OS
(Farzaneh et al., 2019; Ittiamornlert and Ruengkhachorn, 2019).
These data suggest that the relationship between the risk score
provided by the IRG signature model and neutrophil infiltration
is well-established. The determination for B lymphocytes still
requires data due to lack of relevant studies on cervical and
endometrial cancers.

CONCLUSION

In conclusion, our analyses for this IRG signature model still leave
some limitations for us to improve. First of all, in cervical and
endometrial cancer, there are different pathological types, but no
different pathological type models have been developed yet. As
such, there might be differences for some special pathological
types. Second, we just selected immune-related genes to establish
the IRG signature model, whereas in the human body, the
occurrence and progression of cancer or other diseases is a
comprehensive process that involves nucleic acid transcriptome,
proteomics, minerals, and other important elements. As the
present study focuses on transcriptome of RNA, there may exist
a certain selection bias in this model. Third, our model lacks
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independent databases for verification which is why we are very
careful to draw these conclusions. At last, these models are
provided with in vivo and in vitro experimental data. Although
the model developed by us has some shortages, we still hope
to provide new ideas and guidance for future researches in the
treatment of cervical cancer and endometrial cancer.
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Background: Gastric cancer (GC) is the third leading fatal cancer in the world and

its incidence ranked second among all malignant tumors in China. The molecular

classification of GC, proposed by the The Cancer Genome Atlas (TCGA), was added

to the updated edition (2019) of WHO classification for digestive system tumor. Although

MSI and EBV subtypes appeared as ever-increasingly significant roles in immune

checkpoint inhibitor therapy, the underlying mechanisms are still unclear.

Methods: We systematically summarized the relationship between EBV, d-MMR/MSI-H

subtypes and clinicopathological parameters in 271 GC cases. Furthermore,

GSE62254/ACRG and TCGA-STAD datasets, originated from Gene Expression

Omnibus (GEO) and TCGA respectively, were analyzed to figure out the prognosis related

molecular characteristics by bioinformatics methods.

Results: Patients with MSI subtype had better prognosis than the MSS subtype (P

= 0.013) and considered as an independent biomarker by the univariate analysis (P =

0.017) and multivariate analysis (P = 0.050). While there was no significant difference

between EBV positive and negative tissues (P = 0.533). The positive prognostic

value conferred by MSI in different cohorts was revalidated via the clinical analysis of

GSE62254/ACRG and TCGA-STAD datasets regardless of race. Then key gene module

that tightly associated with better status and longer OS time for MSI cases was obtained

from weighted gene co-expression network analysis(WGCNA). NUBP2 and ENDOG

were screened from the gene cluster and oxidative phosphorylation, reactive oxygen

species(ROS) and glutathione metabolism were analyzed to be the differential pathways

in their highly expressed groups.

Conclusions: Our results manifested the significant prognostic value of MSI in Chinese

GC cohort and comparisons with other populations. More opportunities to induce

apoptosis of cancer cells, led by the unbalance between antioxidant system and ROS

accumulation, lay foundations for unveiling the better prognosis in MSI phenotype

through the bioinformatics analysis.

Keywords: gastric cancer, microsatellite instability, Epstein-Barr virus, prognosis, bioinformatics analysis
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INTRODUCTION

Gastric cancer (GC), a highly heterogeneous disease, is the third
most common cause of cancer-related death worldwide with a
particular high incidence and mortality in Asia (1). Although
the operation, chemotherapy and radiotherapy were widely used,
the therapeutical efficacy was still such limited for some patients.
The advent and development of next-generation sequencing
(NGS) has revolutionized our understanding of its pathogenesis
and molecular alterations. TCGA had presented four distinct
subtypes-Epsterin-Barr virus (EBV), microsatellite instability
(MSI), chromosomal instability(CIN) and genome stable(GS)
through comprehensive molecular evaluation of 295 primary
gastric cancer (2–4). Recognition of molecular subtypes can
indeed help to establish a new paradigm of cancer therapeutics
especially as the development of immunotherapy. Nevertheless,
each molecular subtype had divergent response and therapeutical
effects to immunotherapy. Impressive results from some clinical
trials have demonstrated that solid tumors with MSI phenotype
had more significant responses to anti-PD1 inhibitors than
that with Microsatellite Stable (MSS) in patients who failed
conventional therapy and GC was one of them (5–7). Compared
with GS and CIN, metastatic GC patients with the MSI and
EBV subtype manifested a dramatic response to PD1 inhibitor
(8). Furthermore, GC patients with MSS status could benefit
from 5-FU-based adjuvant chemotherapy in TNM stage II–
III (9). Therefore, correct evolution of EBV infection and MSI
status could be served as a potential biomarker for anti-PD1/PD-
L1 targeted therapy and 5-FU based traditional chemotherapy
in GC.

High-Microsatellite Instability (MSI-H) phenotype has
been widely acknowledged to be the predictive factor for
immunotherapy as its high PD-L1 expression. Some researchers
has represented that MSI is an independent predictive factor
while others observed that there are no significant difference of
prognosis between divergent MSI status (10–16). The complex
interactions that involved in the p53 signal pathways or E2F/DP1
transcription factors may largely contribute to the outcome
(17–19). It also has been revealed that the EBV infection may be
connected with the GC carcinogenesis at an early stage though
the exact mechanism is still unclear. Enhanced understanding
of the clinicopathological and prognostic implications of
these molecular subtypes will assist to acquire the reasonable
evaluation of the biological behavior of tumors. In fact,
considerable literatures have investigated the relations between
MSI phenotype and their prognosis but the conclusion is still
in the air (15). So did the similar condition in EBV subtype.

Abbreviations: GC, Gastric Cancer; MSI, Microsatellite Instability; TCGA,

The Cancer Genome Atlas; EBV, Epstein-Barr virus; EBVaGC, Epstein-

Barr virus associated gastric cancer; TCGA-STAD, Stomach adenocarcinoma

samples in The Cancer Genome Atlas; GEO, Gene Expression Omnibus;

ACRG, Asian Cancer Research Group; MSS, Microsatellite Stable; WGCNA,

Weighted Gene Co-expression Network Analysis; ROS, Reactive Oxygen Species;

MMR, Mismatch Repair; d-MMR/MSI-H, Mismatch Repair deficiency/High-

Microsatellite Instability; p-MMR/MSI-L, MMR-proficient/Low-Microsatellite

Instability; KEGG, The Kyoto Encyclopedia of Gene and Genomes; GO, Gene

ontology; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation

Analysis; OXPHOS, Oxidative Phosphorylation System; FPKM, Fragments Per

Kilobase per Million.

For example, Ahn et al. and Setia et al. separately revealed a
significant survival advantage for EBV associated gastric cancer
(EBVaGC), whereas Genitsch et al. showed that there was no
association between EBV infection and clinical outcome of GC
patients (10, 20, 21).

Moreover, results from Shen et al. manifested that EBV+
patients had a poorer OS than EBV- patients (12). The
discrepancies may be due to a number of factors, such as different
ethnic background of the enrolled patients or multiple methods
for detecting the presence of EBV/MSI alteration. Hence, more
robust tools for detection of EBV/MSI phenotype and better-
tailored investigation should be applied to elucidate the real
contributions of them to prognosis in various regions.

Since most aforementioned data about MSI and EBV (+)
GC are derived from studies of western population, little
investigations have reported for Chinese cohorts. In this study,
we adopted the most widely used methods to identify EBV
infection (EBV–encoded RNA by in situ hybridization) and
Mismatch Repair deficiency/High-Microsatellite Instability (d-
MMR/MSI-H) status (joint application of immunohistochemical
staining & PCR-based MSI testing according to NCI panel)
in 279 Chinese GC patients. Then, the clinicopathological
characteristics and prognostic significance of EBV+ and MSI
were in-depthly explored in present study. In addition, the
data derived from TCGA and GEO had been used to compare
the clinical differences among diverse cohorts. The associated
molecular mechanisms were also analyzed by utilization of
the bioinformatics.

MATERIALS AND METHODS

Patients and Samples
A total of 279 consecutive cases with gastric cancer were
included at our institution. For each patient, all available archives
including clinical data, hematoxylin and eosin (H&E)-stained
slides and formalin-fixed paraffin embedded (FFPE) blocks were
collected in this study. These patients were treated with surgical
resection of primary gastric tumors between April 2010 and
December 2015. Those diagnoses were confirmed by routine
pathological examination after surgery. Ethics approval was
obtained from the Ethics Committee of Xin Hua Hospital
Affiliated to Shanghai Jiao Tong University School of Medicine.
None of the patients received preoperative radiotherapy or
chemotherapy. Pathologic parameters of all cases were reassessed
according to the 4th edition of WHO classification for stomach
tumors. The follow-up time was from initial diagnosis to
September 2017 (range from 3 to 89 months).

Data Collection
Refer to our data size, the clinical information and expression
profiling of GSE62254 about 300 samples was downloaded
from Gene Expression Omnibus (GEO) database and about
315 samples from TCGA (The Cancer Genome Atlas). The
expression profiling of TCGA was downloaded from the UCSC
Xena browser (http://xena.ucsc.edu/) and FPKM normalized.
Their corresponding clinical information obtained from the
online tool cbioportal (http://www.cbioportal.org/). All cases
had determined subtypes but overall survival (OS) time of
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four cases and the AJCC pathological tumor stage of two
cases were not available. Thus, 309 cases were analyzed for the
clinicopathological characteristics and prognostic significance.

MMR Immunochemistry (IHC) and EBV in

situ Hybridization (ISH)
One representative FFPE block of the cancer region in each
case was chosen for IHC and ISH analysis. Unstained 4-
um thick tissue sections were tested by IHC antibodies to
MLH1 (Clone M1, ready-to-use; Roche), PMS2 (Clone EPR3947,
ready-to-use; Roche), MSH2 (Clone 219-1129, ready-to-use;
Roche) and MSH6 (Clone 44, ready-to-use; Roche) for detection
of MMR status, as well as chromogenic ISH with EBV-
encoded RNA (EBER, Ventana) probe to prove EBV infection,
using Benchmark automated staining device (Ventana Medical
Systems, Roche, Switzerland) according to the manufacturer’
instructions. All IHC and ISH stained sections were reviewed and
scored independently by two professional digestive pathologists
(WLF and WRF) without knowledge of previous clinical or
pathological parameters.

The slides were evaluated as follows: at least one of the MMR
proteins (MLH1, MSH2, MSH6, and PMS2) with complete loss
of nuclear reactivity in tumor cells but consistently preserved
nuclear staining in background non-tumor cells was taken as d-
MMR(aberrant expression). When the tumor cells demonstrated
intact nuclear immunostaining of all four MMR proteins,
the tumor was judged as p-MMR (normal expression). For
EBER, tumors with strong blue-black nuclear staining were
considered positive.

DNA Extraction and MSI Analysis
Total DNA was isolated from FFPE tumor and paired normal
tissue samples though the DNA extraction kit (TIANGEN,
Beijing, China) following the manufacturer’s recommendation
and was used for subsequent multiplex fluorescent PCR. MSI
status was assessed with the amplification of six mononucleotide
repeat markers (BAT25, BAT26, NR21, NR24, MONO27, and
NR 27) described either in NCI (National Cancer Institute) -
or Promega- panel. In addition, the final panel also contained
one gender loci (Amel) and two pentanucleotide repeat markers
(Peta C and Peta D) as internal controls. Co-amplification of
these targets was performed on ABI 7500 using a 25 µl reaction
volume advised by MSI-testing reagent kit (SINOMDgene,
Beijing, China). The PCR conditions were carried out according
to the operation protocols. Fluorescent PCR products were
analyzed by capillary electrophoresis using an ABI 3500DX
Genetic Analyzer (Applied Biosystems) and Genemaker software
2.0 (SINOMDgene, Beijing, China).

Tumors with instability at two ormore of these 6markers were
defined as MSI-H, while those without instability or showing
instability at only one marker were classified as MSS and Low-
Microsatellite Instability(MSI-L) tumors, respectively.

Construction of Weighted Gene
Co-expression Network
To identify the key module that most associated with the
OS time and status in 51 MSI cases and then investigate

the underlying molecular connections, the weighted gene co-
expression network analysis(WGCNA) was performed on the
TCGA-STAD dataset (22). The variances of all genes were
calculated and approximately top 6,000 genes were performed by
use of the WGCNA R package.

To identify co-expressed genes, WGCNA use the soft
thresholding power to determine the correlations between genes
via the Sigmoid or Exponential function. In this study, the soft
thresholding procedure was firstly performed to set the cutoff to
identify the modules. Secondly, in order to identify the adjacent
gene modules, the topological overlap dissimilarity measure
(TOM) was used to calculate the correlation among genes. The
hierarchical clustering was constructed and the minimum size
was appropriately set tomeet the different datasets’ need. Thirdly,
connecting modules to the external clinical traits could show us
the key module that most associated with the OS time and status
traits. After the key module had been identified, genes were put
into the GO and KEGG enrichment analysis.

Identification of the Hub Genes
After acquiring the module-trait relationships, the critical
module was emerged. The pink module was obtained from the
WGCNA that consisted of 250 nodes and 1,081 edges. This edge
file was put into the Cytoscape software and constructed the gene
co-expression network. The top five genes were NUBP2, CTU1,
ENDOG, SSNA1, and BCL7C that the GS> 0.14 andMM> 0.75.
But in the further validation in the GSE62254 dataset, the CTU1
was not detected. Therefore, only four genes were considered
the hub genes to be manifested and we selected the NUBP2 and
ENDOG as the typical hub genes to be in-depth functionally
analyzed in TCGA-STAD dataset.

Function Enrichment Analysis
After the key module was identified, genes were analyzed by The
Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene
ontology (GO). The clusterprofiler package in R software was
used to realize these two gene enrichment analysis and the P <

0.050 (23).

Gene Set Enrichment Analysis (GSEA) and
Gene Set Variation Analysis (GSVA)
To probe the function of NUBP2 and ENDOG in the dataset and
elucidate their role in the good prognosis of MSI phenotype well,
all MSI cases were divided into NUBP2 or ENDOG high and
low expression groups according to the median expression. The
GSEA software downloaded from http://software.broadinstitute.
org/gsea/ and annotated gene set c2.cp.kegg.v7.0.symbols.gmt.
The top five significant pathways that derived from GSEA (P
< 0.05) were shown in one graphic. GSVA was carried out in
the high and low expression by the GSVA R package that also
annotated gene set c2.cp.kegg.v7.0.symbols.gmt.

Statistical Analysis
Clinicopathological parameters between groups were assessed for
differences using the Pearson’s X2 test, Yate’s correction or Fisher’s
exact test. The Kaplan-Meier method (and the log-rank test) as
well as Cox’s proportional hazards regression model were used

Frontiers in Oncology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 1269192

http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cai et al. MSI Subtype in Gastric Cancer

FIGURE 1 | The detection of MMR, MSI and the survival analysis in different cohorts. (A) The negative control staining of MLH1 (a), PMS2 (b), MSH2 (c), and MSH6

(d). Complete loss of nuclear expression of MLH1 (e), PMS2 (f), MSH2 (g), and MSH6 (h) in tumor cells but preserved nuclear staining in background non-tumor

cells(aberrant expression). The expressions of MLH1 (i), PMS2 (g), MSH2 (k), and MSH6 (l) in tumor cells are intact (normal expression) (B) The MSI-PCR testing

results of MSI-H. (C) Survival analysis of d-MMR/MSI-H on the prognosis of gastric cancer in our study. (D,E) Survival analysis of MSI subtype in TCGA-STAD and

GSE62254/ACRG cohort.
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TABLE 1 | The relationship between EBV and d-MMR/MSI-H subtypes and clinicopathological parameters in 271 gastric cancers.

EBV d-MMR/ MSI-H

(+) (–) P (+) (–) P

Median age 61 65 70.5 64

Age (%) >65 4 (44.4) 122 (46.6) 1.000 19 (67.9) 107 (44) 0.017

≦65 5 (55.6) 140 (53.4) 9 (32.1) 136 (56)

Gender (%) Male 6 (66.7) 176 (46.4) 1.000 13 (46.4) 169 (69.5) 0.014

Female 3 (33.3) 86 (53.6) 15 (53.6) 74 (30.5)

Location (%) GEJ-cardia 2 (22.2) 27 (10.3) 0.248 1 (3.6) 28 (11.5) 0.197

Non-GEJ-cardia 7 (77.8) 235 (89.7) 27 (96.4) 215 (88.5)

Location (%) Antrum 4 (44.4) 150 (57.3) 0.674 20 (71.4) 134 (55.1) 0.099

Non- antrum 5 (55.6) 112 (42.7) 8 (28.6) 109 (44.9)

Size (%) <5 3 (33.3) 110 (28.6) 0.862 8 (28.6) 105 (43.2) 0.137

≧5 6 (66.7) 152 (71.4) 20 (71.4) 138 (56.8)

Differentiation (%) Well-moderate 1 (11.1) 45 (10.7) 0.980 3 (10.7) 43 (17.7) 0.505

Poor 8 (88.9) 217 (89.3) 25 (89.3) 200 (82.3)

Lauren (%) Intestinal 3 (33.3) 119 (45.4) 0.707 13 (46.4) 109 (44.9) 0.874

Nonintestinal 6 (66.7) 143 (54.6) 15 (53.6) 134 (55.1)

T (%) T1-T3 8 (88.9) 180 (68.7) 0.355 26 (92.9) 162 (47.2) 0.000

T4 1 (11.1) 82 (31.3) 2 (7.1) 81 (52.8)

N (%) N0 4 (44.4) 53 (20.2) 0.181 14 (50) 43 (17.7) 0.000

N+ 5 (55.6) 209 (79.8) 14 (50) 200 (82.3)

M (%) M0 8 (88.9) 259 (98.9) 0.127 28 (100) 239 (98.4) 1.000

M1 1 (11.1) 3 (1.1) 0 (0) 4 (1.6)

TNM (%) I–II 5 (55.6) 97 (37) 0.436 19 (67.9) 83 (34.2) 0.000

III–IV 4 (44.4) 165 (63) 9 (32.1) 160 (65.8)

WHO (%) Medullary 3 (33.3) 3 (1.1) 0.000 2 (7.1) 4 (1.6) 0.119

Non-medullary 6 (66.7) 259 (98.9) 26 (92.9) 239 (98.4)

WHO (%) Papillary-tubular 3 (33.3) 143 (54.6) 0.359 19 (67.9) 128 (52.7) 0.127

Non-papillary-tubular 6 (66.7) 119 (45.4) 9 (32.1) 115 (47.3)

The bold values indicate significant difference and P < 0.05.

for univariate survival analysis. Multivariate survival analysis was
performed by Cox’s proportional hazards regression model. The
performance of the model was evaluated by applying the area
under curve of receiver operating characteristic (auROC). Overall
survival (OS) was defined as the interval between diagnosis and
date of death or last-documented contact with patient. The cut-
off value of NUBP2 and ENDOG was determined by the X-
tile software (24). A two-sided P-value < 0.05 was regarded as
statistically significant and all statistical calculations were done
using STATA 10.1(stata corp., College Station, TX, USA) or R
software(version 3.5.3).

RESULTS

Prognosis and Potential Predictive Value of
d-MMR/MSI-H Status in Different Cohorts
Of the 279 GC cases, the definite results of both IHC staining
and MSI-testing were made in 275 cases. But four cases were
detected to have the inconsistent results. Nuclear negative
expression of MLH1, PMS2, MSH2, and MSH6 was seen in
27 (10.0%), 27 (10.0%), 1 (0.3%), and 1 (0.3%) in the rest of

271 cases, respectively. The normal and aberrant expression of

MMR proteins were displayed in Figure 1A. MSI-PCR analysis

revealed 28 cases of MSI-H, 2 MSI-L and 241 MSS. During this
experiment, 27 cases showed instability at all six microsatellite
loci and one case presented instability at five microsatellite loci
except the Bat-6 (Figure 1B). Taken together, there were 28 cases
with d-MMR/MSI-H and 243 cases with MMR-proficient/Low-
Microsatellite Instability/Microsatellite stable (p-MMR/MSI-
L/MSS) in 271cases. The detail was summarized in Table 1.
Kaplan-Meier analysis and univariate analysis indicated that OS
of GC patients with the d-MMR/MSI-H phenotype was better
than that of patients with the p-MMR/MSI-L or MSS phenotype
(P= 0.013) in the Figure 1C and Table 2. It was characterized by
elderly age (P = 0.017), female (P = 0.014), without lymph node
involvement (P < 0.0001), the lower depth of tumor invasion
(P < 0.0001) and early TNM stage (P < 0.0001). We collected
approximately 315 stomach adenocarcinoma from TCGA and
described their clinical features as in theTable 3. Of the 315 cases,
after six cases with undetermined subtype were removed, there
were 50 MSI-H samples and the other 259 cases were considered
as the MSI-low/MSS. The Kaplan-Meier survival analysis also
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TABLE 2 | Univariate and multivariable analysis of overall survival in 271 gastric cancer.

Univariate analysis Multivariable analysis

P

(log-rank

test)

P

(Cox’s test)

HR 95% CI P

(Cox’s test)

HR 95% CI

d-MMR/MSI-H status (Yes vs. No) 0.013 0.017 2.73 1.20–6.23 0.050 2.33 1.00–5.43

EBV (+ vs. –) 0.533 0.534 0.75 0.31–1.85

Age 0.000 0.003 1.03 1.01–1.05 0.000 1.04 1.02–1.06

Sex (male vs. female) 0.092 0.093 1.39 0.95–2.95

Location (antrum vs. nonantrum) 0.424 0.422 0.86 0.59–1.25

Size (<5 vs. ≧5) 0.078 0.080 1.41 0.96–2.07

Differentiation (well-moderate vs. poor) 0.226 0.228 1.39 0.82–2.35

Lauren (intestinal vs. nonintestinal) 0.003 0.004 1.78 1.20–2.64 0.302 1.31 0.78–2.21

WHO (poorly cohesive components vs. remant) 0.000 0.000 2.04 1.40–2.97 0.130 1.48 0.89–2.46

pT stage (T1 + T2 vs. T3 + T4) 0.000 0.000 2.61 1.79–3.81 0.065 2.44 0.95–6.32

pN stage (N0 vs. N+) 0.002 0.003 2.35 1.34–4.12 0.360 0.65 0.26–1.63

M stage (M0 vs. M1) 0.467 0.476 0.49 0.07–3.51

TNM (I + II vs. III + IV) 0.000 0.000 3.86 2.39–6.23 0.003 3.47 1.55–7.77

indicated that patients with MSI phenotype had better prognosis
than MSS among all different races which included Asian, White,
Black or African American(P = 0.045) (Figure 1D). Then the
GSE62254, derived from the ACRG research also illustrated
the similar results. Among the 300 samples in dataset, 68
cases were MSI-H which also has a better correlation with
prognosis (P = 0.003) (Figure 1E). The performance of the
Cox’s proportional hazards regression model was determined
by applying the Receiver Operating Characteristic (ROC) curve
analysis. The Area Under the Curve (AUC) value was 0.791.
Therefore, this model has the predictive value for prognosis and
was feasible.

Clinical and Prognostic Features of EBV in
Different Cohorts
The incidence of EBV-positive GC in the 271 cases with
consistent results was 3% (8/271). It has more frequent presence
of EBV positive cases at GEJ/cardia-portion (P = 0.043) and
medullary carcinoma (P < 0.0001) than EBV (–) cases (Table 1).
Unlike d-MMR/MSI-H status, EBV infection itself by contrast
was not prognostic factor in predicting OS of GC patients (P
= 0.533, Figure 2A). In TCGA-STAD and GSE62254 dataset,
29 and 18 samples were detected to be EBV (+), respectively.
The survival analysis also observed that it had no significant
difference between EBV (–) and EBV(+) cases (P = 0.795, P =

0.867, Figures 2B,C). The EBER positive and negative case were
displayed in Figure 2D.

Identification of the Key Module That
Associated With OS Time and Status and
Its Annotation in MSI Sample
In MSI subtype of GC, samples were clustered to detect the
outliers while we did not delete any samples by average linkage
method. The clinical trait data also could be input and the color

representation of traits combined with the sample dendrogram
(Figure 3A). The determination of soft-threshholding powers is
the critical step to process this analysis. It was picked by the
specific function in the WGCNA package and β = 9 was the
most appropriate power to construct the adjacency (R2

= 0.870;
Figure 3B). The ME dissimilarity threshold was set at 0.3 and
twelvemodules weremanifested for this group (Figure 3C). Then
we got the primary module separation and the dissimilarity of
module eigengenes (ME) was calculated to merge the similar
modules to form the merged dynamic tree (Figure 3D). Through
connecting the gene module to clinical traits, pink module
was highly negatively correlated with the status and also pink
module had the longest survival. It represented these genes
were most associated with good prognosis in the heatmap
(Figure 3E). Then all genes were shown in the heatmap accoring
to the MSI and MSS subtype in the pink module (Figure 4A).
Meanwhile, the heatmap was also drawn for all genes in OS
time and status (Supplementary Figures 2A,B). GO enrichment
indicated that genes cluster to mitochondrial protein formation
and ncRNA process (Figure 4B). These processes occurred in
mitochondria and ncRNA may confer to the mitochondrial
circle DNA (Figure 4C). There were lots of unknown molecular
functions and GO enrichment could not be manifested by the
clusterprofiler R package (Supplementary Figure 1B). Thus, the
activity should be further detected by the hub genes to probe the
alterations in the mitochondria.

The Determination of the Hub Genes and
Validation
The edge file, acquired from theWGCNA, put into the Cytoscape
and genes were analyzed in the pink module (Figure 4D).
According to the genes with high intra-modular connectivity
ranked by the software, NUBP2, CTU1, ENDOG, SSNA1, and
BCL7C could be considered as the hub genes. Also, these CTU1,
ENDOG, SSNA1, and BCL7C had relative high GS and MM.
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TABLE 3 | The relationship between MSI subtype and clinicopathological

parameters in 309 gastric cancers in TCGA.

d-MMR/MSI-H

(–) (+) P

Number 259 50

Median age

Age (%) ≤65 124 (47.9) 14 (28.0) 0.015

>65 135 (52.1) 36 (72.0)

Gender (%) Male 177 (68.3) 26 (52.0) 0.039

Female 82 (31.7) 24 (48.0)

Location (%) Non-cardia 188 (72.6) 45 (90.0) 0.015

Cardia 71 (27.4) 5 (10.0)

Location (%) Non-antrum 173 (66.8) 20 (40.0) 0.001

Antrum 86 (33.2) 30 (60.0)

Race (%) NA 32 (12.4) 13 (26.0) 0.068

White 165 (63.7) 25 (50.0)

Asian 52 (20.1) 11 (22.0)

Black 10 (3.9) 1 (2.0)

T (%) T1–T3 191 (73.7) 31 (62.0) 0.129

T4 68 (26.3) 19 (38.0)

N (%) N0 70 (27.0) 19 (38.0) 0.217

N+ 185 (71.4) 31 (62.0)

NX 4 (1.5) 0 (0.0)

M (%) M0 227 (87.6) 46 (92.0) 0.564

M1 18 (6.9) 3 (6.0)

MX 14 (5.4) 1 (2.0)

Stage (%) I–II 108 (41.7) 27 (54.0) 0.147

III–IV 151 (58.3) 23 (46.0)

NUBP2 (%) Low 184 (71.0) 25 (50.0) 0.006

High 75 (29.0) 25 (50.0)

ENDOG (%) Low 151 (58.3) 12 (24.0) <0.001

High 108 (41.7) 38 (76.0)

The GS of NUBP2 was relative lower but its MM was such
high that could not be neglected. As they were selected from
the MSI samples in TCGA-STAD, hub genes were validated
by the GSE62254/ACRG dataset. In GSE62254 dataset, CTU1
could not be observed and only the other four hub genes were
used to be further analyzed to assist us to uncover the specific
activity that tightly associated with the good prognosis in MSI
samples. NUBP2 and ENDOG had significant difference between
MSI and MSS subtype in TCGA-STAD. But the expression of
BCL7C and SSNA1 had no significant difference in these two
subtypes (Figure 4E). There were 68 MSI samples in GSE62254.
Others were considered the MSS phenotype. Then we found that
the four hub genes highly expressed in MSI samples and had
more significant difference than that was in MSS in GSE62254
(Figure 4F). Then all samples were divided into high and low
expression group according to the appropriate cutoff value of
these hub genes. The expression of NUBP2 (P = 0.006) and
ENDOG (P < 0.001) had significant difference between MSI and
MSS subtypes (Table 3).

GSEA and GSVA for the Hub Genes
GSEA and GSVA were conducted to further shed light on the
function of hub genes by comparing the differential expression
group. According to the median expression of NUBP2, CTU1,
ENDOG, SSNA1, and BCL7C, all cases were divided into the high
and low expression group. Based on the nominal P < 0.050 and
the normalized enrichment score (NES), top five KEGGpathways
were illustrated in ENDOG and NUBP2 highly expressed
group (Supplementary Figures 3A,B). It more inclined to
enrich in oxidative phosphorylation, glutathione metabolism
and DNA repair. The common HALLMARK gene sets were
reactive oxygen species pathway, oxidative phosphorylation,
MYC targets and DNA repair that characterized by the
mitochondrial impairment and oxidant stress (Figures 5A,B).
The GSVA for NUBP2 and ENDOG made similar conclusions as
well (Figures 5C,D and Supplementary Figures 3C,D). CTU1,
BCL7C, and SSNA1 were carried out the same analysis and
shown in Supplementary Figures 4, 5. It could be concluded
that both the cell impairment and anti-impairment associated
pathways existed in this group. Nevertheless, the expression of
MYC and CASP3, encoding the caspase3, was higher in MSI
than it was in MSS samples in TCGA-STAD and GSE62254
(Figures 5E–H). Therefore, oxidative phosphorylation and
reactive oxygen species pathways facilitate the apoptosis and
had significant difference between MSI and MSS subtype. In
addition, we performed the GSEA in GSE62254/ACRG in which
the samples derived from Samsung Medical Center (Asian
ethnicity) for status and the differential expression of hub genes
(Supplementary Figures 6A–C). The results were similar with
that performed in TCGA-STAD dataset and consistent with the
above investigations as well (Supplementary Figure 6D).

DISCUSSION

The immune checkpoint therapy has become the most dazzling
star in recent years since it has revealed the therapeutic efficacy
inmelanoma (25). The ever-increasingly comprehensive research
also enhanced it to be the hotpoint in different cancer types.
Nevertheless, not all types of cancer could actually benefit from
the immunotherapy while not all patients had response for the
determined effective cancer (26). Under this circumstance, the
identification and well understanding of the subtypes greatly
assisted to improve the efficacy of the anti-PD1 therapy. The
recent proposal of TCGA molecular classification broadened
our view of GC molecular characteristics by highlighting four
main subtypes that summarized the western population. Then
the Asian Cancer Research Group (ACRG) also came up with
a molecular classification by analyzing the expression profiling
of Asian population. Both of these two classifications involved
the MSI and EBV phenotype. Investigations had confirmed that
immune checkpoint blockade gained the better efficacy in MSI
and EBV associated GC (27–30). The discovery of correlations
between this classification and differential therapeutic response
reaffirmed that clinical-relevance of each subtype was caused by
distinct molecular mechanism of GC. Nonetheless, the clinical
course of immunotherapy related EBV (+) or MSI-H GC is
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FIGURE 2 | The detection of EBV infection and its survival analysis. (A) Survival analysis of EBV(+)gastric cancer in our study. (B,C) The survival analysis in

TCGA-STAD and GSE62254/ACRG cohort for the same parameters. (D) The negative probe control of ISH in EBV+ infection cases (a) HE, and (d) ISH. One case

with EBV-negativity (b) HE, and (e) ISH. One case with EBV-positivity (c) HE, and (f) ISH.

not fully understood. As far as we concerned, current data
that concentrate on the associations of EBV infection and MSI
phenotype with clinical parameters and outcome of GC was
relatively scarce in East-Asia. To address it, our retrospectively
analysis of the EBV infection and MSI status were chosen
based on reliable detection methods in a cohort of Chinese GC
patients(n= 279).

Currently, PCR combined with capillary electrophoresis
and IHC was routinely performed to detect the MSI (31,
32). In this study, an integrated testing panel containing
the mononucleotides of BAT-25, BAT-26, NR21, NR24 and
MONO27 were carried out in these 279 cases. Meanwhile, IHC
was also adopted to test the four MMR associated proteins

MLH1, MSH2, MSH6, and PMS2. Studies often focused on the
consistency rate of these two methods varied a lot (91.2–97.8%)
(33, 34). Previously, investigations indicated the proportion of
d-MMR/MSI-H was ∼8.2–44.5% in different cohort while the
incidence was 10.3% (28/271) in our study. It reconfirmed that
D-MMR/MSI-H GCwas related to older age, female, lower depth
of tumor invasion, without frequency of lymph node metastasis
and lower TNM stage, but was not consistent with tumor size,
distal location, medullary carcinoma and intestinal subtype that
previously reported. Even so, there was still a trend toward higher
rates of antrum-located location, large size (≧ 5), medullary
carcinoma and papillary-tubular type seen in our d-MMR/MSI-
H GC. Scientists reported that MSI-H was significantly related
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FIGURE 3 | Weighted Correlation Network analysis was performed to construct the correlation between gene module and the clinical traits to find the key module that

tightly associated with the prognosis. (A) Clustering the dendrogram of 51 MSI samples and the combination with its clinical traits. (B) Screening out the

soft-thresholding power through scale independence and mean connectivity. (C) Clustering of the modules and set the criteria to merge the similar modules. (D) The

dynamic cut tree after merging the similar modules. (E) The heatmap for module-trait relationships in DGC samples. The pink module was the key module with good

status and long survival.
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FIGURE 4 | GO enrichment for the pink module and identification of the hub genes. (A) Heatmap for the expression pattern of all genes in pink module at MSI and

MSS phenotype. (B,C) The biological process and cellular component for the pink module in GO annotations. (D) The coexpression network for the genes in pink

module and identification of the hub genes. (E) The expression of NUBP2, ENDOG, SSNA1 and BCL7C that had been log2 normalized in TCGA-STAD dataset in MSI

(N = 51) and MSS group (N = 264). (F) The validation of NUBP2, ENDOG, SSNA1 and BCL7C expression that had been log2 normalized in GSE62254/ACRG in MSI

(N = 68) and MSS group (N = 232). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Frontiers in Oncology | www.frontiersin.org 10 July 2020 | Volume 10 | Article 1269199

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cai et al. MSI Subtype in Gastric Cancer

FIGURE 5 | Gene set enrichment analysis (GSEA) and gene set variation analysis(GSVA) for the NUBP2 and ENDOG in TCGA-STAD. (A,B) The top five gene

sets(according to the enrichment score) enriched in the high expression of single hub gene for HALLMARK gene sets. (A) NUBP2; (B) ENDOG. (C,D) The heatmaps

of differentially expressed pathways for single hub gene through the calculation of GSVA. (E,F) The log2 normalized expression of MYC and CASP3 in MSI and MSS

samples in TCGA-STAD dataset. (G,H) The log2 normalized expression of MYC and CASP3 in GSE62254 dataset. ****P < 0.0001.
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with higher survival at 15 years of follow-up and an independent
prognostic factor that reminded us its predictive role relied
on further prolonged follow-up. Besides that, we collected the
expression profiling of GC tissues and corresponding clinical
traits from TCGA (n = 315) and GEO (GSE62254/ACRG). The
cohort consisted of Asian, Black or African American, Native
Hawaiian or other Pacific island and white in the TCGA-STAD
dataset. In 2014, TCGA did not investigate the significant OS
differences between MSI and other subtypes. But it had a better
prognosis in this TCGA dataset which was downloaded by
us. This was reconfirmed in Asian population involved in the
GSE62254/ACRG by Kaplan-Meier analysis.

At present, EBV infection could be tested by several methods,
such as polymerase chain reaction (PCR), electron microscopy,
southern blot hybridization, IHC and ISH that was considered as
the gold-standard test. Due to limited sample size (3%), EBVaGC
was just associated with proximal location and medullary
carcinoma, but not with reported characteristics of male
predominance in this study. Additionally, consistent with some
previous research, it was also found that this subtype could not
reflect a long-term survival (12). It made the identical conclusion
from the TCGA-STAD and GSE62254. During this process, we
have also observed that these two situations (EBV positive and
d-MMR/MSI-H status) are virtually mutually exclusive in line
with previous reports though both of these subtypes showed a
good response to immunotherapy (2, 3, 10, 12, 21). Obviously,
the distinct PD-L1 associated expression profile owed by them
need to be further studied.

The different prognostic influence between EBV and MSI
subtypes was worthful to be explored as their common efficacy
to immune checkpoint blockade. Nevertheless, the MSS subtype
could respond to the immunotherapy with EBV infection and
there were little cases with both MSI and EBV phenotype (30).
It means that at least two distinct molecular mechanisms exist
in these two subsets and the immunotherapy can be controlled
based on this. Some recent investigations have reported the
clinical characteristics for the status of EBV infection in GC.
There was approximately average 10% EBV positive cases in
GC samples worldwide (35, 36). For Latvia GC population,
EBV positivity was a favorable prognostic factor in GC while
it had no significant difference in other relative large cohort
(37). Not only the intrinsic alterations of MSI and EBV
infected cells but also the tumor microenvironment (TME)
contributes to these clinical characteristics to some extent. On
the one hand, the metabolic differences manifested that lipid
metabolism was evident in MSI tissues as the fatty acid synthase
(FASN) increased in colorectal cancer is associated with MSI
(38, 39). Sirt1, the critical histone deacetylase that cross the
mitochondrial metabolism and DNA damage repair, correlated
with MSI (40). Meanwhile, some fatty acid biosynthesis related
enzymes FASN and PLA2G4A decreased in EBVaGC and could
lead to the worse survival. Similarly, EBV infection could
make the metabolic reprogramming and it is the foundation
of the poor clinical prognosis in GC patients (41). On the
other hand, the discrepancy of tumor microenvironment was
another controversial topic and may interpret the molecular
mechanism. Recently, bioinformatics analysis come up with

the TMEscore and Immunoscore which also could be consider
as a prognostic and predictive tool for GC by a large scale
microarray data (42–44). During the process of accessing
the tumor purity, higher TMEscore was associated with a
good prognosis and characterized by the response to virus
and IFNγ that was consistent with the features of MSI in
latest researches (42). Furthermore, the activation of immune
response commonly observed in MSI and EBV subtypes and
immunomicroenvironment appears complicated and play a role
in metabolic reprogramming as well. Of note, T cell metabolism
could not be easily ignored as it involved in the IFN-γ and fatty
acid synthesis in the TME (45).

As the good prognosis was such evident for MSI, it was
appealing to explore the critical factors that associated with the
longer survival. The WGCNA provide the pink module that
could be considered as the key one with the better status and
longest overall survival in MSI samples. Genes predominantly
enriched in mitochondria or ribosome and played a role in
the process of ncRNA, mitochondrial translation elongation or
termination and mitochondrial gene expression. As amount of
unknown molecular functions in these modules, the specific
function of this module was probed by the hub genes to detect
the concrete activity to ensure the OS for MSI cases. Apparently,
not only the mitochondria associated proteins but also the genes
involved the MSI conditions. Mitochondrial activities need to be
in-depth studied and may uncover the origins of MSI.

The fetched five hub genes by WGCNA, NUBP2, CTU1,
ENDOG, SSNA1, and BCL7C were illustrated by Cytoscape.
They were revalidated by the GSE62254/ACRG and had more
significant difference in MSI cases than MSS. Then NUBP2 and
ENDOGwas the top two genes close to the centrality could reflect
the activity of this module in mitochondria to largely extent.
Oxidative phosphorylation, reactive oxygen species pathway,
MYC targets, glutathione metabolism and DNA repair were the
obvious pathways that tightly associated with the high expression
of hub genes and the alteration of mitochondrial translation.
On the basis of these parts, we could conclude that the better
prognosis associated with the function of mitochondrial proteins
that mainly played a great part in oxidant phosphorylation,
ROS pathway and MYC targets as the apoptosis was increasing.
Actually, the glutathione metabolism, base excision repair and
DNA repair reflected the activity of antioxidant response and
anti-impairment. But weigh the two factors, high expression of
apoptosis associated gene determined that the injury factors play
a dominant role in MSI subtype.

Until now, rare investigations reported the relationships
between the MSI phenotype and mitochondrial activity.
Mitochondrial microsatellites instability (mtMSI) was easier to
be ignored than the nuclear MSI. As the alterations emerged
in mitochondrial matrix according to the GO annotation, the
ncRNA process and DNA replication initiation had a great
probability to represent the mitochondrial DNA variations.
Considerable investigations had revealed its links with the
prognosis of colorectal cancer while rare researches involved
in GC (46). Though the function of mitochondrial DNA
is less powerful than the nuclear DNA, it is convenient to
regulate the oxidative phosphorylation system (OXPHOS) (47).
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NUBP2, the nucleotide binding protein 2, encodes adenosine
triphosphate (ATP) and metal-binding protein that modulate
the iron-metabolism that was essential for ATP production and
mitochondrial metabolism (48). It was the essential component
that could assemble the iron-sulfur clusters through the
process of cytosolic iron-sulfur cluster assembly (CIA) outside
of the mitochondria (49, 50). Compared with the hypoxic
microenvironment, the upregulation of NUBP2 indicated the
normoxia and ensure the oxidative phosphorylation in the MSI
samples in GC. The normal activity of oxidative phosphorylation
decreased the tumor cell atypia and its malignancy that lead
to the better prognosis. ENDOG, the Endonuclease G, was the
nuclear encoded gene and its corresponding protein mainly
localized in mitochondria. This protein is capable of initiating
the mitochondrial DNA replication by generating the RNA
primers (51, 52). On the one hand, it was the downstream
effector of caspase-3 and facilitated the Myc-induced genetic
instability and apoptosis (53, 54). On the other hand, ENDOG
regulate the mRNA alternative splicing of hTERT (52, 55). As
the non-active splice variant hTERT increased, the activity of
telomerase is suppressed and lead to the short telomere which
acquired the replicated senescence for tumor cells (56). On the
basis of these reasons, tumor cells have more opportunities
and prone to be induced apoptosis and cell senescence in
MSI subtype.

CONCLUSIONS

Taken together, we classified the clinical characteristics of
MSI and EBV in Chinese GC cohort to some extent with
the limited cases. Combining with the public datasets, we
summarized that MSI could serve as a prognostic factor for
good survival while it had no significant difference in EBV
associated cases. The prognostic value tightly associated with the
oxidative phosphorylation system, reactive oxygen species and
MYC targets pathways through the modulation of mitochondria.
The glutathione metabolism and DNA repair were also active
but the antioxidant response could not resist the accumulation of
ROS and genetic instability that contribute to more opportunities
for cell apoptosis in MSI samples. Based on these discoveries,
some attractive strategies of up regulating the ENDOG orNUBP2
could be utilized to increase the oxidative phoshorylation for
MSS subtype which could imitate the easily apoptotic effects.
Certainly, more experimental and clinical trials should apply

to optimize and achieve the potential to acquire the similar
prognostic effects like MSI in other subtypes.
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Cancer is a one of the severest diseases and cancer classification plays an important role

in cancer diagnosis and treatment. Some different cancers even have similar molecular

features such as DNA copy number variant. Pan-cancer classification is still non-trivial at

molecular level. Herein, we propose a computational method to classify cancer types by

using the self-normalizing neural network (SNN) for analyzing pan-cancer copy number

variation data. Since the dimension of the copy number variation features is high, the

Monte Carlo feature selection method was used to rank these features. Then a classifier

was built by SNN and feature selection method to select features. Three thousand six

hundred ninety-four features were chosen for the prediction model, which yields the

accuracy value is 0.798 and macro F1 is 0.789. We compared our model to random

forest method. Results show the accuracy and macro F1 obtained by our classifier are

higher than those obtained by random forest classifier, indicating the good predictive

power of our method in distinguishing four different cancer types. This method is also

extendable to pan-cancer classification for other molecular features.

Keywords: cancer classification, pan-cancer, self-normalizing neural network, copy number variation, feature

selection

BACKGROUND

Cancer is a one of the severest diseases which cause abnormal cell growths or tumors that
metastasize to other parts of human body (Mayer et al., 2017). There are around 8 million
human deaths related to cancer each year (Wild et al., 2014). Cancer classification is important
for cancer diagnosis and drug discovery and can help improving treatment of patients and their
life quality (Lu and Han, 2003). To decrease the effect of cancer to human health, tremendous
research has been done to the cancer diagnosis and treatment, among which molecular-feature-
based cancer classification is an important perspective. Due to the drop in the cost of sequencing
technology in recent years, the output of sequencing data has increased dramatically. This provides
adequate data for cancer analysis. Copy number variance (CNV) has also been shown to be
associated with different cancers (Greenman et al., 2007; Wang et al., 2013). Some different
cancers even have similar CNV patterns and mechanisms (Hoadley et al., 2018). We focus
on CNV data analysis in this study. We aim to find out an applicable computational method
to classify different cancer types. At present, some machine learning models are widely used
in data analysis. Some models have been used to analyze the CNV data for cancer analysis
(Ostrovnaya et al., 2010; Ding et al., 2014). The utility of machine learning in revealing
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relationships between recurrent constitutional CNVs and cancers
shows CNV data analysis is applicable to multi-type of cancers
with a significant molecular component.

Deep learning has recently been widely used in computational
scientific areas such as computer vision, natural language
processing, computational biology (LeCun et al., 2015;
Najafabadi et al., 2015; Angermueller et al., 2016; Sultana
et al., 2020). The essence of deep learning algorithms is the
domain independent idea of using hierarchical layers of learned
abstraction to efficiently accomplish a complicated task. It uses
many layers of convolutional or recurrent neural networks.
The feed-forward neural network (FNN) is suitable for data
without sequential features. However, there are some drawbacks
of the FNNs. For instance, internal covariate shift (Ioffe and
Szegedy, 2015) might causes the low training speed and poor
generalization (Bengio et al., 1994; Pascanu et al., 2012, 2013).
FNNmight leads to invalid gradient too (Klambauer et al., 2017).
Therefore, normalization is used and the self-normalizing neural
network (SNN) (Klambauer et al., 2017) is proposed to overcome
these short backs. SNNs make it possible for deep network
applications on general data such as sequencing CNV data and
SNNs have yielded the best results on some drug discovery and
astronomy tasks.

In this study, we use a SNN-based prediction model to
classify and analyze cancer patients with four cancers (LUAD,
OV, LIHC, and BRCA). The data we used come from CNV data
of The Cancer Genome Atlas (TCGA) (Grossman et al., 2016).
We integrate a method which was used by Pan et al. (2018)
to identify atrioventricular septal defect in Down syndrome
patients to build our prediction model. Since the CNV data
has a very high dimension, feature selection method is applied
to identify important CNV features. Then a deep SNN model
is trained based on these CNV features to perform pan-
cancer classification. The normally used classification algorithm
random forest (Cutler et al., 2012) is also used to compare with
our model for its predictive ability in four different types of
patient samples.

METHODS

Data Retrieval and Preprocessing
We download and collate the copy number variation data
of 518 Lung adenocarcinoma (LUAD) patients, 597 Ovarian
serous cystadenocarcinoma (OV) patients, 372 Hepatocellular
carcinoma (LIHC) patients and 597 Breast cancer (BRCA)
patients from TCGA database (Grossman et al., 2016), including
the information of the copy number variation of probes.
We use GISTIC2.0 (Mermel et al., 2011) to analyze the
data. GISTIC2.0 can identify the key drivers of somatic
copy number alterations (SCNAs) by the frequency and
magnitude of mutation events. By using GISTIC2.0, we can
select more important copy number variant genes, and then
model the molecular information data of cancer patients
more precisely. From the result generated form GISTIC2.0,
we get a table which has 23,109 features. A series of
discrete values is used to represent the specific type of copy
number variation.

Approach for Cancer Classification
Feature Analysis
Since the dimensions of the CNV features are high, in order
to avoid over-fitting, we need to select some features that
can effectively classify patients. Therefore, we employed Monte
Carlo Feature Selection (MCFS) (Draminski et al., 2008) and
Incremental Feature Selection (IFS) methods as we used these
two method before (Pan et al., 2018).

Monte Carlo Feature Selectionmethod is proposed to improve
a feature ranking obtained from an ensemble of decision trees.
The general idea is to select s subset of the original d features,
each with m features randomly selected. We repeat the selection
process for s times, so that s feature subsets and a total of t×s tree
classifier was obtained. Each feature f is assigned a score called
relative importance (RIf ) which is assigned greater to feature f if
it contributes more in the classification using the tree classifiers.
RI of f is estimated by the Equation (1):

RIf =

∑s∗t

τ=1
(wAcc)u

∑
nf (τ )

IG(nf (τ ))

(
no. in nf (τ )

no. in τ

)v

(1)

wAcc is the weighted accuracy and IG(nf (τ )) is the information
gain of node nf (τ ). no.in nf (τ ) is the number of patients in nf (τ )
and no.in τ is the number of patients in tree τ . u and v are a fixed
real number.

The wAcc is defined by Draminski as Equation (2):

wAcc =
1

c

∑c

i = 1

nii

ni1+ni2+ . . .+nic
(2)

In Equation (2), c is the number of classes and nij is the number
of patients from class i that are classified as class j. The IG(nf (τ ))
is defined by Equation (3):

IG
(
nf (τ )

)
= Entropy (T)−Entropy

(
T, f

)
(3)

In Equation (3), T is the class label of node nf (τ ), Entropy(T) is
the entropy of the frequency table of T and Entropy (T, f ) is the
entropy of the frequency table of the two variables T and f.

We used the MCFS method of Draminski and obtained a
ranked feature list according to their RI values evaluate by the
algorithm, which can be defined as Equation (4).

F =
[
f1, f2, . . . , fM

]
(4)

And in Equation (4) M means the 23,109 CNV features.
Then we aimed to select a subgroup of CNV features to

build a classification model. Therefore, in order to avoid training
all CNV feature sets, we used Incremental Feature Selection
method on previous obtained feature list. We first determine the
approximate feature interval from which we can find optimal
features. We defined CNV feature subsets as S11, S

1
2, . . . , S

1
l
, where

S1i = f1, f2, . . . , fi∗k, i.e., and the ith feature subset had the first i
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FIGURE 1 | Incremental feature selection (IFS) curves derived from the IFS method and SNN algorithm. IFS curve with X-values from 50 to 5,000.

FIGURE 2 | Incremental feature selection (IFS) curves derived from the IFS method and SNN algorithm. IFS curve with X-values of 2501–4,999 for SNN algorithm.

times k features in the original M CNV feature list. Classification
model was built by using features in each feature subset of
corresponding patient samples in dataset. To estimate the CNV
feature interval, we tested performances of different classification
model based on different subsets. The feature subset was selected
when it had the best performance.

Classification Methods
We need an algorithm to classify pan-cancer patients based on
the selected subset of CNV features. Here, neural network SNN
was used and RF method was applied for comparison.

(a) Self-Normalizing Neural Network Algorithm

SNN is proposed to enable high-level abstract representations
through keeping neuron activations converge toward zero mean
and unit variance (Klambauer et al., 2019). Klambauer et al.

proposed a Scale ELU (SELU) function as activation function.

selu (x) = λ

{
x, x > 0

αex − α, x≤0
(5)

where scale λ = 1.0507 and α = 1.6733 (see Klambauer et al.,
2017 for details on the derivation of these two parameters).

By using the Banach fixed-point theorem, Klambauer et al.
prove that activations close to zero mean and unit variance
that are propagated through many network layers will converge
toward zero mean and unit variance. A specific method to
initialize SNNs and alpha dropout (Klambauer et al., 2017) are
also proposed to make SNNs have a fixed point at zero mean
and unit variance. In this study, the SNN classifiers those we
constructed have three hidden layers with 200 hidden nodes of
each layer.

(b) Random Forest Algorithm
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FIGURE 3 | Confusion matrix from pan-cancer classification by using SNN and features selection.

FIGURE 4 | Incremental feature selection (IFS) curves derived from the IFS method and RF algorithm. IFS curve with X-values from 50 to 5,000.

The random forest (RF) method is a supervised classification
and regression algorithm (Cutler et al., 2012). The RF method
builds multiple decision trees and merges them together to get a
more accurate prediction. It adds additional randomness to the
model when it growing the trees. Instead of searching for the

most important feature when splitting a node, it searches for the
best feature among a random subset of features. This generally
results in a better model. The RF method has been widely
used in machine learning area and is applied here to compare
our model.
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Performance Evaluation
Since pan-cancer classification is a multi-classification problem,
we use accuracy (ACC) to measure the performance. There are
also precision and recall to measure performance in a binary
classification problem. One measurement closely related to these
two values is F-score, which is a comprehensive indicator of
precision and recall. That means, F-score is a parameter used
to adjust the ratio of these two parts. When this parameter
is 1, it degenerates into a harmonic average called F1-score.
The multi-classification evaluation was split into multiple binary
classification problems, and each F1-score was calculated. The
average of the F1 scores was defined as Macro F1. To evaluate
prediction of SNN classifier, we performed a 10-fold cross-
validation (Kohavi, 1995; Chen et al., 2017, 2018).

RESULTS

To evaluate the best features for discriminating four types of
cancer samples, a MCFS method was used to rank all features
according to their RI values by using Monte Carlo method and

decision trees. We selected the top 5,000 CNV features and
applied IFS method.

After using MCFS for CNV feature sorting, we obtained
two feature subset series. For the first CNV feature subsets,
the parameter k is set to 10. That means, the i-th feature
subset contains the first 10 times i features in the original CNV
feature list. We constructed an SNN-based classification model
on each feature subset, performed a 10-fold cross-validation
and calculated its accuracy and macro F1 values. To show the
changes of accuracy and macro F1 values, an IFS curve was
generated as Figure 1. In Figure 1, the accuracy and macro f1
values are the Y axis and the number of features is the X axis. Both
curves become stable after number of features >2,500 and them
reached acceptable values. Therefore, we selected the number
interval as [2,500, 4,999] for classifier to select the best number
of features.

The following CNV feature subset is constructed by using
the number of features in the number interval [2,500, 4,999].
By testing all of these subsets, we obtained the corresponding
accuracy and macro F1 values. We also plotted the IFS curves
to show these values in Figure 2. The best accuracy and macro

FIGURE 5 | Chemokine signaling pathway from KEGG has the highest counts for selected feature genes.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 August 2020 | Volume 8 | Article 766209

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Li et al. Pan-Cancer Classification With Neural Network

F1 values were generated when using the first 3,694 features to
construct the SNN-based classification model. Thus, these first
3,694 genes were select for the final model. In the meantime, we
used RFmethod as a comparison. The RF generated accuracy and
macro F1 are much lower than the SNN one, which proves the
efficiency of the deep SNN classifier. Therefore, we obtained the
best feature subset and the optimal SNN-based model. Its ACC
is 0.798 and the corresponding macro F1 is 0.789. Figure 3 is
confusion matrix and shows the good classification result from
our model.

We also implemented the RF algorithm to construct a
classifier on the CNV features subset obtained from the IFS
method and evaluate each classifier through a 10-fold cross-
validation test. Since the fast speed of RF method, which
promised all CNV feature sets were tested. In order to
compare the classification feature selection results, the IFS
curves of accuracy and macro F1 were plotted in Figure 4.
It can be seen that the optimal accuracy value is 0.689 and
the macro F1 is 0.667 when using the first 1,693 features
in the CNV feature list. Therefore, the first 1,693 features
and RF algorithms can construct the best RF classification
model. It can be seen that the accuracy and macro F1
obtained by the best RF classifier are much lower than
those obtained by the best SNN-based classification model.
That means our SNN-based model is effective in pan-cancer
classification analysis.

DISCUSSION

DNA copy number variation is a straight-forward mechanism,
which provides insight into genomic instability and structural
dynamism in cancer researches. We applied Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
to the first 200 selected features and checked whether these
were significant pathway information as shown as Figure 5. The
highest counts are on the Chemokine signaling pathway, where
chemoattractant proteins play an important role in controlling
leukocyte migration during development, homeostasis, and
inflammation. These processes are closely related to the
occurrence and development of various cancers.

CONCLUSIONS

In this study, we use machine learning method for CNV-based
pan-cancer classification. Considering the high dimension of
data, MCFS and IFS are used to classify four different cancer
patients effectively. And the feature subsets generated from IFS
method are classified by integrating SNN method. Comparison
experiments show that our SNN-based classification method has
significant advantages over random forest in cancer classification.
We demonstrate the advantages and potential of this method for
copy number variant data. We suggest that this model can be
extended and transferred to other pan-cancer classification fields.
For future research, we will improve the models of other complex
and large-scale data and expand our training data sets to further
improve classification results.
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Circulating tumor cells (CTCs) derived from primary tumors and/or metastatic tumors are
markers for tumor prognosis, and can also be used to monitor therapeutic efficacy and
tumor recurrence. Circulating tumor cells enrichment and screening can be automated,
but the final counting of CTCs currently requires manual intervention. This not only
requires the participation of experienced pathologists, but also easily causes artificial
misjudgment. Medical image recognition based on machine learning can effectively
reduce the workload and improve the level of automation. So, we use machine
learning to identify CTCs. First, we collected the CTC test results of 600 patients.
After immunofluorescence staining, each picture presented a positive CTC cell nucleus
and several negative controls. The images of CTCs were then segmented by image
denoising, image filtering, edge detection, image expansion and contraction techniques
using python’s openCV scheme. Subsequently, traditional image recognition methods
and machine learning were used to identify CTCs. Machine learning algorithms are
implemented using convolutional neural network deep learning networks for training.
We took 2300 cells from 600 patients for training and testing. About 1300 cells were
used for training and the others were used for testing. The sensitivity and specificity of
recognition reached 90.3 and 91.3%, respectively. We will further revise our models,
hoping to achieve a higher sensitivity and specificity.

Keywords: circulating tumor cells (CTCs), imFISH, machine learning, image segmentation, CNN network

INTRODUCTION

The metastasis of cancers is a complex and multistage process. The circulating tumor cells (CTCs)
are the “seeds” shed from the primary tumor and/or metastatic lesions and rooted in a new “soil”
transferred by the circulatory system (Paget, 1989). Circulating tumor cell is an intermediate stage
of cancer metastasis, correlated with cancer aggressiveness and the likelihood of metastasis, and
therefore can be used to predict disease progression and survival on a real-time basis by liquid
biopsy (Lindsay et al., 2017; Praharaj et al., 2018; Anand and Roszik, 2019; Baek et al., 2019; Maly
et al., 2019; Marcuello et al., 2019; Pan et al., 2019; Riebensahm et al., 2019). The molecular subtypes
of CTCs, not only the CTCs count, are interrelated with the prognosis (Banys-Paluchowski et al.,
2015; Cristofanilli et al., 2019; Dong et al., 2019; Stefanovic et al., 2019). What’s more, the PD-L1
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expression in CTCs is correlated with the response to
immunity inhibitors (Kloten et al., 2019). PD-L1+/EMT+
CTCs were associated with significantly poorer survival after
curative surgery, showing that PD-L1 expression and Epithelial
Mesenchymal Transition (EMT) of CTCs are negative survival
predictors for Non-small cell lung cancer (NSCLC) patients
(Janning et al., 2019; Manjunath et al., 2019). Pre-treatment PD-
L1+ CTCs are usually associated with a bad prognosis in patients
treated with PD-1 inhibitors in NSCLC, such as nivolumab
(Guibert et al., 2018).

The liquid biopsies worked as an ongoing monitoring system
to assess tumor heterogeneity, and make it possible to detect a
single CTC or clusters of cells (Wan et al., 2017; Merker et al.,
2018; Praharaj et al., 2018; Asante et al., 2020). The breakthrough
for CTC-detection is the application of immunomagnetic CTC
enrichment combined with flow cytometry, which is still the
“gold” standard of CTC-detection (Racila et al., 1998). However,
this method that lack of the cancer specific markers still remains
lots of limitation (Grover et al., 2014; Ferreira et al., 2016;
Gabriel et al., 2016; Keller et al., 2019). Thus, the multi-
marker immunofluorescence staining is required for recognize
CTCs. Antibodies against chromosome 8 centromere duplication
(CEP8)/chromosome 17 centromere duplication (CEP17) are
used to mark the rapidly dividing tumor cells; antibodies against
CD45 as typical leukocytes filaments, as well as 4′,6-diamidino-
2-phenylindole (DAPI) for labeling nuclears (Koudelakova et al.,
2016; Lu et al., 2017; Liu et al., 2018; Lee et al., 2019).
Although there are great advantages in enrichment technology,
the automatic recognition of CTCs still remains problems.
Manual identification is very time-consuming and unreliable.
With the continuous deepening of the application of CTCs
recognition in various cancer diseases, the demand for rapid
and automatic identification and counting methods of CTCs is
increasing. Several studies have reported the automated screening
process (Nagrath et al., 2007; Yang et al., 2018). Kraeft et al. (2004)
performed a fluorescence-based automated microscope system,
REIS, for cell detection. This scanning can quantify the number
of cells reliably and reproducibly and categorize positive cells
based on the marker expression profile. Ligthart et al. (2011)
redefined the CTCs by computer algorithms after the manual
counting. The stricter definition, with the standard deviation
of the signal in the CK-PE channel, the peak signal value in
both the DNA-DAPI and CD45-APC channels and the size of
the objects used as classifier, was well validated CTC by clinical
outcome using a perfectly reproducing automated algorithm.
Mingxing et al. reported an automated CTC enumeration
(Zhou et al., 2017). All images with different colors were
transferred to a grayscale image and the grayscale images were
used to identify the position and outline of cells. However,
despite the widely accepted, these classification methods still
remain subjective, as the rules are set artificially. The fixed
conditions may not identify the morphologically heterogeneous
CTCs integrally. What’s more, different technologies usually use
different antibodies, making comparison and standardization
across different platforms challenging (Marcuello et al., 2019).

With the maturity of artificial intelligence (AI) recent years,
machine learning become an exciting field for research. The

U.S. Food and Drug Administration (FDA) has approved several
commercial products using machine-learning algorithms in the
medical diagnosis and research. The cardiovascular MRI analysis
software of Arterys was the world’s first internet platform for
medical imaging, AI powered and FDA cleared. This software is
able to analyze multiple, multi-period MR images to determine
blood flow in heart and main vessels. The cloud platform
will enable software to collect and analyze the vast amount of
cardiovascular data from MR scanners in real time, which will
speed up doctors’ diagnosis. This artificial machine is consistent
and tireless and is able to identify characters beyond human
perception, which provided a substantial interest in the field
of medical research, specifically medical images (Dominguez
et al., 2017; Erickson et al., 2017; Lundervold and Lundervold,
2019; Maier et al., 2019). Many algorithms are developed for
selecting the best weights for features, involving neural networks
(Hornik et al., 1989), decision trees (Quinlan, 1986), support
vector machines (Cristianini and Shawe-Taylor, 2000), the naïve
Bayes (Lowd and Domingos, 2005), k-nearest neighbors (Zhou
and Chen, 2006), and deep learning (McBee et al., 2018;
Wainberg et al., 2018; Zou et al., 2019). Deep learning, as well
as deep neural network learning, refers to the use of neural
networks with more than 20 layers, able to integrate vast datasets,
learn arbitrarily complex relationships and incorporate existing
knowledge. Convolutional neural networks (CNNs) is a powerful
algorithm for advancing biomedical image analysis as it assumes
that the input layer has a geometric relationship, such as the rows
and columns of images (Anthimopoulos et al., 2016; Poplin et al.,
2018). It has been successfully applied in the cancer diagnosis
and nuclei or tissue identification (Le et al., 2017, 2018; Le et al.,
2019). Xing et al. (2015) present a novel method for automated
nucleus segmentation powered by CNNs. The features involved
in the images are considered as a part of the search process,
and there is no need to limit the features compared to the
traditional machine learning methods, which will eliminate the
bias created subjective. Here, we apply deep learning to the
recognition of CTCs in order to reduce the artificial errors and
improve accuracy.

MATERIALS AND METHODS

Patients and Samples Preparation
A cohort of 600 patients with cancers were enrolled in
this study during 2018–2019, which was approved by the
ethics committee of Chifeng Municipal Hospital. The clinical
pathological characteristics of patients including age, gender,
CTC number, and cancer type are summarized in Table 1. Four
milliliter of peripheral venous blood was routinely collected
for every patient. The first 2 ml blood samples obtained
after puncture was discarded in order to avoid the skin
epithelial cells contamination. Then the blood was placed in
anticoagulation tubes and store at room temperature. The test
was completed within 24 h.

All the 600 patients were divided into two parts according to
the collecting date. The earlier 300 patients we collected were
used as the training data, the others were used as the independent
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TABLE 1 | Clinical pathological characteristics.

Clinicopathologic variable Category Clinical level

Age Mean 65(11–90)

Gender Male 256

Female 141

Unknown 203

Samples type Peripheral blood 100%

CTC number Mean 7.8(0–185)

Cancer type Lung cancer 158(26.3%)

Liver cancer 12(2.0%)

Gastrointestinal cancer 45(7.5%)

Breast cancer 70(11.7%)

Carcinoma of thyroid 1(0.2%)

NPC 9(1.5%)

Other 305(50.8%)

testing data. Thousand three hundred cells images in the earlier
received 300 patients were selected to build the CTC recognition
model, which will be further tested by the 1000 cells images of the
test dataset. There was no cross part between the two datasets in
order to avoiding the over-fitting.

Enrichment and imFISH Identification of
CTCs
The Cyttel method was used to isolate and enumerate CTCs.
The peripheral blood was first centrifuged at 600 g for 5 min
to get the precipitation and then washed by CS1 buffer (Cyttel
Biosciences Co. Ltd., Beijing, China). Then the red blood cells
were lysed by CS2 buffer (Cyttel). After centrifuged at 600 g
for 5 min, the precipitate was washed by CS1 buffer. Then
the cells were incubated completely with anti-CD45 monoclonal
antibody-conjugated beads (Cyttel) for 20 min. Three milliliter
separation medium was used to separate the beads and the CTCs
by gradient centrifugation at 300 g for 5 min. Then the upper rare
cell layer was centrifuged at 600 g for 5 min and re-suspended
by CS1. The tube was put on a magnetic stand for 2 min. After
smeared, fixed and dried, cells were used to perform the imFISH.

The slides were fixed, dehydrated and then dried at room
temperature. 10 µl CEP-8/CEP-17 antibody was added to the cells
and the slides were placed in a hybridization and denatured for
1.5 h at 37◦C. The probe was eluted and the slides were washed
twice in 2× SSC. Then the CD45 fluorescent antibody was added
to the sample area and the slides were put in a wet box and
incubate for 1 h at 33◦C. After incubation, CD45 fluorescent
antibody was aspirated and 10 µl mounting media containing
DAPI was added to the sample area. After mounted, the cells can
be observed and counted under a fluorescence microscope.

The Manual Interpretation Standard of
CTCs Counting
After imFISH, lots of images were acquired with different
fluorescent colors. Usually, manual counting is the “gold
standard,” but it’s a time consuming and exhausted procession.
The Manual interpretation standard of CTCs counting is: (1)

Eliminates the aggregation, superposition and interference of
nucleus or impurity, (2) DAPI positive, (3) CD45 negative, and
(4) Three or more than three CEP-8+/CEP-17+ signal points. It
will be regarded as one signal point if the distance between two
signal points is smaller than the diameter of one point.

The Image Segmentation Method Was
Used to Segment Single Nucleus and
Give Labels of Cells Instead of Manual
Since the obtained microscopic image is very huge, the algorithm
will be limited by the memory and cannot be executed normally
on a conventional computer. We first selected part of the image
containing one CTC cell and several non-CTC cells around to
perform the following test. The chosen resolution is 2728× 2192.

The openCV package of python was used to process the
CTCs images, including conversion of color and morphological
transformations.

(1) The RGB image was converted to the gray image;
(2) The derivatives were calculated using the OpenCV

function Sobel from an image;
(3) Morphological transformations operations based on the

image shape.

The Morphological package of python was used to segment
the images of CTCs by image denoising, image filtering, edge
detection, image expansion and contraction.

Nuclei were segmented in the blue channel (DAPI), and the
proportion of red in the red channel was detected based on
the position of the nucleus. The nucleus with proportion of red
higher than 30% was defined as having a common leukocyte
antigen. The orange channel was used to detect the number of
CEP8+ chromosomes and the green channel was used to detect
the number of centromere probes extracted by CEP17+. Different
cell types were distinguished by different colors (Figure 1).

The CNN Deep Learning Method Was
Used for CTCs Identification
With the development of AI, machine learning has been wildly
used in the procession of medical images. Deep learning is a big
improvement on artificial neural networks, allowing higher-level
feature extraction and better data prediction with more layers.
After segmentation, CNN network were used to identify CTC
cells in single nucleus. Finally, it enters the output layer and
output the result, i.e., CTCs or non-CTCs.

Our CNN model was built based on AlexNet, which was
first introduced in 2012 (Krizhevsky et al., 2012). The network
consists of eight weighted layers (Figure 2); the first five layers
are convolution layers, and the remaining three layers are full
connection layers. The output of the last full connection layer
is the input of the 1000 dimensional softmax values, which will
generate the distribution network of two types of labels.

The five-fold cross validation was used to prevent overfitting
and select hyper-parameters of the model. The best cross-
validation score was obtained by searching the hyper-parameter
space round and round. The final hyper-parameters involved in
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FIGURE 1 | The imFISH result and the segmentation of chromosome and nuclear. (A–C) The imFISH result of CEP-8, CD45 and DAPI; (D) The merge of panels
(A–C); (E) The CTCs were identified by openCV segmentation method and marked in red box; (a–c) The CEP-8 signal points were identified by openCV
segmentation method and marked in red box.

our model are activation function, kernel regularizer type and
regularization factor. The workflow is shown below:

(1) The grid was defined on 3-dimensions with each
of these maps for hyper-parameter sets, e.g., hyper-
parameters = (activation function, kernel regularizer type,
regularization factor); activation function = (“softmax,”
“ReLU,” “tanh”); kernel regularizer type = (“l1,” “l2”);
regularization factor = (“0.01,” “0.02”);

(2) The range of possible values were defined of each
dimension;

(3) All the possible configurations were searched for
establishing the best one.

Evaluation Criteria for Classification
Models
After segmentation, some performance evaluation criteria (Xie
et al., 2019) were involved in to evaluate the performance of the
classification model, such as sensitivity (Se or recall), specificity
(Sp), precision, F1 score and area under the receiver operating
characteristic curve (AUC).

Se(recall) =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

precision =
TP

TP + FP
(3)

F1 =
2× precision× recall
precision+ recall

(4)

In the equations, TP stands for the number of positive CTC
cells which are correctly recognized as positive CTC cells. FP
stands for the number of negative CTC cells that are incorrectly
recognized as positive CTC cells. FN stands for the number
of positive CTC cells incorrectly recognized as negative CTC
cells. TN stands for the number of negative CTC cells correctly
recognized as negative CTC cells (Table 2).

RESULTS

Patient Characteristics
A total of 600 patients were enrolled in this study from January
2017 to June 2019. The average age is 65 years old. Patients with
lung cancer count 26.3% of all patients, and the next is breast
cancer and gastrointestinal cancer (Table 1).
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FIGURE 2 | The layers of the CNN model. The first five layers are convolution layers, and the remaining layers are full connection layers.

Three Sub-Images Were Required for
Manual Counting
We performed imFISH for all the 600 patients and required
2300 images of CTCs cells. Every image was divided into 3 or
4 channels with different color. The orange channel represented
the chromosome 8 with CEP8+ (Figure 1A), the green channel

represented the centromere of chromosome 17 with
CEP17+ (Supplementary Figure S1), the red channel
represented the white cell with CD45+ (Figure 1B),
the blue channel represented the nuclei with DAPI+
(Figure 1C). The mergence was shown in Figure 1D.
We then manually labeled all these sub-images according
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TABLE 2 | Confusion matrix definitions.

Confusion Matrix Prediction

Positive Negative

True Positive True positive (TP) False Negative (FN)

Negative False positive (FP) True Negative (TN)

to the standard. Among our results, 316 patients
are CTCs positive.

The Segmentation of Nuclear and
Identifying CTCs by OpenCV
Segmentation Method
In order to avoid the artificial error and save costs, we performed
the traditional image identification method for CTCs counting
(Figure 1). The nucleus was separated in the blue channel
(DAPI) (Figure 1E), and the red proportion of the red channel
was detected according to the location of the cell nucleus. The
proportion higher than 30% was defined as the number of the
CEP8 chromosome detected by the common antigen orange
channel of white blood cells (Figures 1A–C), the number of
centromeric probes detected by the green channel, such as CEP17
(Supplementary Figure S1).

After segmentation of nuclear, we used openCV segmentation
method to identify CTC cells from single nucleus regions in
1000 testing dataset by the manual interpretation standard of
CTCs counting. After identification and judgment, 645 cells of
700 negative nuclei were recognized as CTC negative. About
278 cells of 300 positive nuclei were recognized as CTC
negative. The sensitivity and specificity were 93.7 and 92.1%,
while the precision and F1 score reached 83.6 and 88.4%,
respectively (Table 3).

We also applied the region-based image segmentation
algorithm such as watershed algorithm in the segmentation
process. The watershed algorithm was implemented the by
watershed function in OpenCV (python 3.6 and OpenCV 4.1.1).
In this method, optimal threshold value was used respectively
in binaryzation process by setting THRESH_OTSU mode. The
traditional watershed algorithm was sensitive to noise and the
accuracy was lower than our segmentation method on CTC
negative data set in size of 100 (Supplementary Table S3).

The Hyper-Parameters Selected for
Evaluating the CNN Method
We used GridSearchCV class in scikit-learn by providing
a dictionary of hyper-parameters to determine the hyper-
parameters of the model. After the cross-validation process,
activation function was set to ReLU, kernel regularizer type was
set to l2 and regularization factor was set to 0.01 as shown in
Table 4 with the best performance. Further, the hyper-parameters
we selected were used to construct the model on the whole
training dataset.

TABLE 3 | The confusion matrix of the models for test dataset.

Method Confusion Matrix Prediction

Positive Negative

openCV True Positive 281 19

Negative 55 645

ALexNet True Positive 271 29

Negative 61 639

TABLE 4 | Tuning of the hyper-parameters of AlexNet.

Activation function Kernel regularizer type Regularization factor

0.01 0.02

softmax l1 0.93 0.91

l2 0.93 0.92

ReLU l1 0.96 0.94

l2 0.96 0.94

tanh l1 0.94 0.93

l2 0.94 0.93

The underline value shows the best result of AUC value in the tuning process of the
hyper-parameters of AlexNet.

The Identification of CTCs by CNN
Method
We got 2300 nuclei of 600 patients by segmentation process.
Figure 3 showed the whole flowchart of the experiment. About
1300 nuclei were used for training, the left 1000 were used
for testing. We use the same images for testing. 639 cells of
700 negative nuclei were recognized as CTC negative and 271
cells of 300 were recognized as CTC positive. The sensitivity
and specificity were 90.3 and 91.3%, while the precision
and F1 score reached 81.6 and 85.7%, respectively (Table 3
and Figure 4).

Before that, we also compared the performance of AlexNet
model with others, such as ResNet and Xception. All of
them have close AUC values (Figure 4), but the AlexNet
was less time-consuming in the training and test process
(Supplementary Table S1).

DISCUSSION

This study showed a method for CTC counting powered by
machine learning. The use of machine learning for image
interpretation can capture important image features, reduce
errors caused by manually setting interpretation standards,
and save time and labor costs. Although this method shows
a higher sensitivity and specificity in CTC counting, it is
slightly worse than the first method for the data used in
this study. Actually, we have analyzed that the main reason
is that there are fewer positive samples for training, and the
algorithm cannot extract features of more positive samples.
In addition, some pictures in the group were excluded
due to quality problems. Unfortunately, the CTC images
included in the group doesn’t cover the whole film, but a
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FIGURE 3 | The flowchart of the whole experiment.

FIGURE 4 | The ROC curve of AlexNet, ResNet and Xception model.

picture just focused on a certain CTC-positive cell under the
microscope, which results in that the machine learning method
has no advantage in recognition speed compared with the
traditional image recognition method. Enlarging the scope of
images and collected more samples is also that need to be
improved in the future.

Deep learning has already been shown to be suitable
for detection of CTCs because of the high sensitivity and
specificity in CTC counting. We had changed the filter size
and number in all convolution layers in order to find the
best CNN parameters. We found different filter size and
number will influence the results largely. We changed filter
number from range 5 to 128 in our training process. We
found that the training result was not convergence when the

number was less than 16. It showed that the range of the
feature number of the image is about 32–128. We tried to
increase the filter size from 5 to 20, but the result was not
changed a lot and the convergence speed even became slower
when the filter size higher than 10. From this process, we
summarized that the feature size in CTCs could not be greater
than 10 pixels. Furthermore, there are many appropriately AI
models such as VGG, InceptionV1-4. We will apply them
on the CTCs dataset to establish a more suitable model in
the later testing.

Circulating tumor cell is an important marker for early
screening and prognosis of tumors. In addition, CTCs,
originating from the primary tumor, may be more effective
for tumor tissue tracing and molecular classification. Image
recognition can only obtain the characteristics of the cell
surface. If strict tissue tracing is required, other molecular
biological experimental data such as the isolation of CTC
cells and single cell sequencing may be required. Besides,
in this study, we also evaluated the performance of AlexNet
model in variant types of cancers. Supplementary Table S2
and Figure S2 showed that our model presents a better
performance in Lung cancer than Gastrointestinal cancer and
Breast cancer. One of the reasons may be that the training
data size of Lung cancer (158) is much larger than those of
Gastrointestinal cancer (45) and Breast cancer (70). Further,
postoperative recurrence may occur in approximately 45%
of patients, even after complete resection of NSCLC (Yano
et al., 2014). These proteins, especially epithelial proteins,
such as EpCAM, PIK3CA, AKT2, TWIST, and ALDH1,
may have more activities (Hanssen et al., 2016), which
will lead more influence in the morphology of cells and
affecting the recognition performance thereby. Therefore, the
multi-image omics, including CT images, HE staining, and
immunohistochemical images, as well as the sequencing data,
may be urgently needed at this stage.
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CONCLUSION

In the present study, we established a CTC cell recognition
software based on deep learning. In order to make it
more practical, we collected samples from the real world,
instead of using the public databases. We performed the
CTC enrichment and imFISH experiments and screened the
fluorescence images according to the figure’s quality. In order to
improve the efficiency, we used the machine instead of doing
manual screening. First, the python’s package was used to do
image segmentation. The obtained recognition sensitivity and
specificity are 93.7 and 92.1%, respectively. In addition, the
recognition sensitivity and specificity can also reach to 90.3 and
91.3%, respectively using CNN instead of manual intervention.
In the future studies, we will focus on the improvement
of the accuracy and sensitivity with a more suitable deep
learning model, promoting this technology to the clinic as
soon as possible.
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It is critical for patients who cannot undergo eradicable surgery to predict the risk of lung
cancer recurrence and metastasis; therefore, the physicians can design the appropriate
adjuvant therapy plan. However, traditional circulating tumor cell (CTC) detection or
next-generation sequencing (NGS)-based methods are usually expensive and time-
inefficient, which urge the need for more efficient computational models. In this study,
we have established a convolutional neural network (CNN) framework called DeepLRHE
to predict the recurrence risk of lung cancer by analyzing histopathological images of
patients. The steps for using DeepLRHE include automatic tumor region identification,
image normalization, biomarker identification, and sample classification. In practice, we
used 110 lung cancer samples downloaded from The Cancer Genome Atlas (TCGA)
database to train and validate our CNN model and 101 samples as independent test
dataset. The area under the receiver operating characteristic (ROC) curve (AUC) for
test dataset was 0.79, suggesting a relatively good prediction performance. Our study
demonstrates that the features extracted from histopathological images could be well
used to predict lung cancer recurrence after surgical resection and help classify patients
who should receive additional adjuvant therapy.

Keywords: lung cancer, recurrence, hematoxylin and eosin staining, histopathological image, convolutional
neural network

INTRODUCTION

Lung cancer accounts for 13% of newly diagnosed cancer incidences worldwide, resulting in 1.4
million deaths annually (Travis et al., 2011). According to the American Joint Committee on Cancer
(AJCC), the TNM staging system is widely used for describing the anatomical extent of the disease
on the basis of the assessment of three components: the extent of the primary tumor (T), presence
and extent of regional lymph node metastasis (N), or presence of distant metastasis (M). The
current TNM staging system is relatively accurate in defining the tumor stage. The recurrence rates
of lung cancer patients in TNM stages I, II, and III are 34, 55, and 74%, respectively.
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As is known to us all, the first-line treatment plan for a
cancer patient is surgical removal of the primary tumor if there
is no metastasis. However, the 5-year survival rate of postsurgical
patients with early-stage lung cancer is only 54%, which is
significantly worse than that of patients with breast cancer
(∼90%) (Kaplan et al., 2016; Meng et al., 2018; Sun et al., 2019).
One key factor leading to the poor postsurgical outcome for lung
cancer patients is the loss of pulmonary function. Lobectomy
leads to the loss or compromise of limited pulmonary function.
On the other hand, wedge resections, which largely depend on
the surgical resection margin, can save lung parenchyma but
are associated with a nearly twofold increase in local cancer
recurrence. It is crucial to decide the type of surgery to be
performed because the 2-year survival rate in patients with local
recurrence will drop to about 20% (Hung et al., 2009).

To alleviate the risk of surgical-related recurrence risk and
increase the survival rate of postsurgical lung cancer patients,
some invasive or non-invasive techniques have been used in
clinical practice. First, the detection of circulating tumor cells
(CTCs) at the time of surgery may represent an approach
for identifying patients at a high risk of recurrence. A recent
study indicated that the detection of pulmonary venous CTCs
(PV-CTCs) at surgical resection could be used to evaluate
future relapse (Chemi et al., 2019). Second, a few types of
genomic alterations could be utilized to evaluate the risk
of lung cancer recurrence owing to the strong association
between genetic instability and tumorigenesis (Chan and Hughes,
2015). Next-generation sequencing (NGS) has a better testing
performance with compatibility of low-input DNA. The National
Comprehensive Cancer Network guideline of non-small-cell lung
cancer recommended biomarkers favorable for target therapies
such as epidermal growth factor receptor (EGFR) mutation
(Couraud et al., 2014; Xu et al., 2016). Plasma and urine
EGFR mutation levels could be used to predict the response of
chemotherapy (Reckamp et al., 2016). NGS-based liquid biopsy
is complemented with traditional tissue biopsy, which might be
a promising strategy in the molecular profiling of lung cancer
in the future. Furthermore, circulating tumor DNA and tissue
assay might be combined to better predict lung cancer recurrence
(Reckamp et al., 2016).

Since the rapid rise in the incidence and mortality of
lung cancer, many researchers have shifted their focus on
advanced discovery of novel diagnostic approach and predictive
markers of metastasis, therefore, to assist clinical professionals
to design individualized therapy for patients. Cancer recurrence
following surgery or chemotherapy for lung cancer is a
significant failure of local treatment as well as reduces the
patient outcomes. Currently, cancer immunotherapy has been
applied to cancer therapy. It has been recognized as adjuvant
therapy for patients do not qualify for surgical intervention.
The novel approach can be used to identify driver genes and
predictive genes. For example, we have explained some lung
cancer-specific gene mutation, gene sequencing, and biomarkers.
PD-1 is an antibody against program death receptor and
has been approved for second-line therapy of squamous cell
carcinomas (Beer et al., 2002). Moreover, many preclinical
trials demonstrated that combined traditional strategy and

novel gene therapy may have improved patient overcome
(Weiner et al., 2012).

Compared with other techniques, visual inspection of
histologically stained slices is considered standard and used
by pathologists to evaluate tumor stage, subtype, metastatic
location, and prognosis (Fischer et al., 2008). With the absence of
definitive pathological features, microscopic assessment requires
experienced pathologists to evaluate stained slices. This process
could be quite challenging and time-consuming for pathologists,
and the results also depend on the quality of hematoxylin and
eosin (H&E)-stained slices. Furthermore, accurate interpretation
of an H&E image could be difficult because the distinction
among different types of lung cancer is relatively unclear
(MacConaill, 2013). To assist pathologists, deep learning tools
have been developed to interpret the whole-slide image (WSI),
which is helpful for developing an appropriate treatment
plan and predicting survival outcomes. Yu et al. combined
conventional image processing techniques with machine learning
algorithms such as random forest, support vector machine, and
naïve Bayes classifier to achieve acceptable prediction accuracy
for lung cancer subtypes (Yu et al., 2016). The area under
the receiver operating characteristic (ROC) curve (AUC) was
approximately 0.75 in distinguishing two subtypes of lung cancer
(Blumenthal et al., 2018). Furthermore, deep learning has also
been successfully applied to the subtype classification of multiple
cancers such as breast cancer, bladder cancer, and lung cancer
(Zachara-Szzakowki et al., 2015; Araujo et al., 2017). The AUC
reached approximately 0.83 by using The Cancer Genome Atlas
(TCGA) dataset (Zachara-Szzakowki et al., 2015). Convolutional
neural network (CNN) approach is not only used in cancer
field, but it has been used in biochemical field as well. CNN
has also served as a powerful approach to identify specific
proteins located in electron transport chain, achieving good
sensitivity (0.83%), specificity (94.4%), and accuracy (92.3%).
This study demonstrated that the CNN approach can also be
used in understanding the biochemical mechanism of important
proteins such as electronic (Le et al., 2017, 2019). The same study
team also used CNN to identify fertility related protein, which
also received good sensitivity, specificity, and accuracy. Fertility-
related proteins have critical function in reproductive organs and
hormone-related fertility (Le, 2019). In fact, deep learning-based
annotations of medical images are now close to, if not better than,
those of pathologists for many types of cancers at present. With
the development of image segmentation techniques (Simon et al.,
2018), the WSI has been widely used for nuclei identification,
tissue segmentation, and epithelial tissue identification in several
cancers such as renal cancer, bladder cancer, and breast cancer
(de Bel et al., 2018).

In this study, we established a novel machine learning
framework to predict lung cancer recurrence by using the H&E-
stained histopathological images. We first patched the H&E WSI
into images of the size 512 × 512 pixels, which were then subject
to a few image preprocessing steps such as image quality control
and normalization. We then established a lung cancer tumor
region prediction model and a cancer recurrence prediction
model on the basis of the patched images. The prediction results
based on patched images of a WSI were then combined to
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evaluate the recurrence risk of a lung cancer patient. Our model
is cost-effective and could meet large clinical demands.

MATERIALS AND METHODS

Data Preparation
Hematoxylin and eosin images and clinical data of lung
cancer were downloaded from TCGA database1, which is a
landmark cancer genomics program that characterized thousands
of primary cancers and matched normal samples spanning
many cancer types. The labels that matched H&E images
downloaded from TCGA contained information about metastasis
and recurrence, and H&E image with SVS format was analyzed
by the Python package OpenSlide. H&E images from those
patients with the risk of metastasis and recurrence were
labeled as “1” and “0” for those without metastasis and
recurrence (Figure 1A).

1https://portal.gdc.cancer.gov/repository/

Image Preprocessing
To predict cancer recurrence and metastasis, tumor regions
were annotated with the help of an expert pathologist by visual
assessment. The morphology, color, and size of the nucleus of
tumor cells are shown inside of tumor region, with the blue solid
dotted lines representing the boundary of tumor (Figure 1B). For
image preprocessing, each WSI was divided into computationally
memory-affordable tiles of 512 × 512 pixels as input dataset. For
noise reduction, Python’s OpenCV (version 4.1.1) package was
applied to remove blank or blurred spaces in tumor region and
to help reduce non-association interference in model training
process. The non-association region was calculated as the ratio
of the blank area or blurred spaces to the total area. The defined
threshold of ratio was used to remove false-positive structures
by definitive cutoff threshold. Further analysis of segmentation
of H&E slice was performed by image de-noising, filtering, edge
detection, expansion, and contraction techniques with OpenCV
package (Figure 2A).

The performance of the computational technique for H&E-
stained tissue image analysis is compromised by variable

FIGURE 1 | The flowchart of this study. (A) The whole-slide images (WSIs) of lung cancer downloaded from The Cancer Genome Atlas database. (B) Construction
of a dataset consisting of annotated WSIs split by non-overlapping 512 × 512 pixels windows. (C) Color normalization. (D) Convolutional neural network (CNN)
model training. (E) Heat map and classification of a testing sample. Each tile from the test image was classified by trained CNN, and the results were finally
aggregated per slide to extract the heat map.
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FIGURE 2 | Color normalization of H&E slices. (A) The de-noising process applied to regions that have large blank spaces in the tumor regions. (B) The deep
convolutional Gaussian mixture model (DCGMM) used for color normalization. The left column represents original images, and the right column represents imaging
after color normalization.

image colors due to H&E reagent concentration, staining
process, and absorption caused by tissue fixation and staining
method. To remove potential influenced variables, multiple color
normalization (CN) approaches have been established (Vahadane
et al., 2016), and unsupervised generative neural networks were
applied in our study for performing stain-CN based on deep
convolutional Gaussian mixture models (DCGMMs) in the
stained H&E images (Shen et al., 2017; Wang et al., 2017;
Qaiser et al., 2018; Simon et al., 2018). The DCGMM represents
parameters of a fully CNN that are combined with the GMM
parameters to optimize CN (Figure 2B).

The Convolutional Neural Network +

ResNet Model
In our study, Tensorflow 2.0.0 package was applied to conduct
our model. To be specific, CNN was used effectively to identify
tumor diagnoses by analyzing H&E-stained slices. CNNs are
the most popular deep learning models for processing color
images. The CNN deep learning network includes the input layer,
intermediate hidden layer, and output layer. The intermediate
hidden layer consists of multiple convolutional layers and pooling

layers followed by more fully connected layers. The CNN could
adapt and extract the feature hierarchy and classify images by
error back propagation, which is a relatively effective gradient
descent algorithm to update the weights connecting its inputs to
the outputs during the training process.

After being transformed from the input layer, the image data
were trained sequentially into the convolution layer composed of
32 n × n convolution kernels (e.g., n = 5) and the pooling layer
for dimensional reduction through the ReLU excitation layer.
The data were output to complete the entire feature extraction
process afterward. Then, the data entered the second and third
intermediate hidden layers, respectively. After the entire process
was completed, all the features were extracted completely.

Batch normalization layer was then applied with the CNN to
improve the generalization ability of the network and to expedite
the training for higher learning rate. Increasing the number
of layers of a deep CNN after reaching a certain depth could
not improve the classification performance further, resulting in
slower network convergence and worse classification accuracy
due to the disappearance gradient problem.

ResNet was introduced to deal with this problem. The
difference between residual and ordinary networks is the
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introduction of jump connection that can make the information
of the previous residual block flow into the next one unimpeded,
improve the information flow, and also avoid the disappearance
gradient problem and the degradation caused by over depth of
the network. Suppose there is a large neural network called big
NN and its input is x and its output activation value is A[l].
After increasing the depth of the network, adding two additional
layers to the network, and receiving the final output as A[l +
2], these two layers could be regarded as a residual block with
a shortcut connection, and the activation function used in the
whole network is relu. The function of relu is written by g(x).
Linear function is written by W ∗ A + B. We can get A[l +
2] = g(Z[L + 2] + A[l]), where Z[L + 2] = W[l + 2] ∗ A[l +
1] + B[l + 1]. If W[l + 2] = 0, B[l + 1] = 0, we can know A[l
+ 2] = g(A[I]) then. When A[l] ≥ 0, A[l + 2] = A[l]. This is
equivalent to establishing the linear relationship between A[l] and
A[l+ 2], when W and B is 0. It is equivalent to neglecting the two
neural layers behind A[l] and realizing the linear transfer of the
interlayer. The model itself can tolerate the deeper network, and
this extra residual block will not affect its performance, and the
relations are shown in Figure 3.

In fact, the residual network is composed of several shallow
networks, and a shallow network could avoid the appearance of
the vanishing gradient problem during training, thus accelerating
the convergence of the network.

Heat Map Generation
The probability maps were generated from the tumor region for
high metastasis score detection (Figure 1E). The color in the
probability map as shown in Figure 4B indicates the predicted
metastasis score by pixels in the tumor region. The red color
represents a high score, and blue color indicates a low score.
H&E images were scanned by a 512× 512 window in a step-wise
manner, and results were obtained by the CNN model at each

window. We applied the results on the pixels that were included
in the window. We summed up all the values that pass the pixel
and determined their average value, which was the predicted
metastasis score of the pixel. The probability to recurrence and
metastasis of every pixel was turned into color value with clear
probability visualization. The probability value was mapped in
the range of (0, 1) to RGB color from pure blue color (0, 0, 255) to
pure red color (255, 0, 0) linearly. As a result, the red pixel image
represents as a lower risk of metastasis; meanwhile, the light blue
pixels represent no risk of metastasis, as shown in Figure 4B.

The WSI was divided into tiles, and each tile gets a probability
result by model prediction during window sliding. Results of
all tiles were integrated by fusion algorithm and computed as
the final probability results for a specific slide. The average
probability of top n windows was defined as identification
score. Identification score predicted the risk of recurrence and
metastasis with specific cutoff threshold. Scores higher than
threshold were interpreted as positive results, whereas the top
number value served as a hyper-parameter and is decided by
cross-validation.

Hyper-Parameter Tuning by
Cross-Validation
A fivefold cross-validation was applied to prevent overfitting and
to select hyper-parameters of the model for selecting the hyper-
parameter space with best cross-validation score. The hyper-
parameters that we tried to use in our model are activation
function, patch, and top number. Our workflow is shown in the
following three steps:

(1) Defining a grid on three dimensions with each of these maps
for a hyper-parameter; for example, n = (activation function,
patch, top number).

(2) For each dimension, defining the range of possible values.

FIGURE 3 | The ResNet network workflow.
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FIGURE 4 | Receiver operating characteristic (ROC) and heat map on The Cancer Genome Atlas (TCGA) training data. (A) ROC curve of test data with the
512 × 512 pixel image. (B) Heat map of the tumor region applied in the convolutional neural network (CNN) model by using TCGA dataset. We also obtained the
heat map given by the model shown in B. From the heat map, we found that the color of suspected tumor area was red and that the color of normal area was partial
blue. The results were consistent as we have considered.

(3) Searching for all the possible configurations and waiting for
the results to establish the best one.

Performance Evaluation Criteria
Several well-established performance evaluation criteria were
employed to evaluate the performance of the classification
model, including sensitivity (Se) or recall, specificity (Sp),
precision, and the AUC.

Se =
TP

TP+ FN

Sp =
TN

TN+ FP

Precision =
TP

TP+ FP

F1 =
2× precision× recall

precision+ recall

In the equations, TP stands for the number of images correctly
recognized as positive samples. FP stands for the number of
images that were incorrectly recognized as positive samples.
FN stands for the number of images incorrectly recognized as

negative samples. TN stands for the number of images correctly
recognized as negative samples. We indicate TP, FP, TN, and TP
by confusion matrix as shown in Table 1.

RESULTS

Clinical Characteristics of Training
Dataset
A total of 110 H&E images of lung cancer patients with metastasis
or recurrence information were downloaded from TCGA, and
the available datasets were selected with required condition with
data type of slide image, data format of SVS, primary site for

TABLE 1 | Confusion matrix definitions.

Confusion matrix Prediction

Positive Negative

True Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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bronchus and lung, and white ethnicity (Table 2). The average
age of the selected patient cohort was 54 years, and 68% of
the patients have metastasis or recurrence. We labeled data to
positive with new_tumor_event_type of Distant Metastasis and
Locoregional Recurrence. At the same time, we labeled data to
negative with tumor_status of Tumor Free.

Data Pre-treatment
The 110 H&E images with corresponding clinical data
downloaded from TCGA are all in SVS format. Whole images
could not be used as the input data for the network. Hence, we
segmented them into tiles with a 512 × 512 pixel size from the
110 H&E images in which tumor regions were annotated in the
WSIs by the expert pathologist. The tiles with a low amount of
information (e.g., more than 70% of the surface was covered by
background) were removed. Thereafter, a template image was
selected by an expert pathologist. Then we trained the DCGMM
by using this template image. After training, we applied the
model on the H&E image on the upper row of the compared
color normalized image down the row (Figure 1C). The results
are shown in Figure 2B.

Model Construction and
Hyper-Parameter Selection
DeepLRHE model was constructed with ResNet network and
top five selection algorithm of WSI (Figure 1D). We used
GridSearchCV class in scikit-learn by providing a dictionary
of hyper-parameters to determine the hyper-parameters of the
model. The hyper-parameters we selected are shown as follows:

Top number = [5, 3]

Patch = [100, 150, 200]

Activation function = [softmax, relu, tanh].

After the cross-validation process, activation function is set
to relu, patch number is set to 150, and top number is set to
5 as shown in Table 3, in which performance is the best (the
AUC value reached a maximum value of 0.84). We used selected
hyper-parameters to construct the DeepLRHE model on whole
110 training dataset.

TABLE 2 | Clinical characteristics.

Clinical variable Category Clinical level

Age Mean 54 (31–83)

Gender Male 62

Female 47

Unknown 1

Samples type H&E 1

Metastasis and recurrence period Tumor Free 35

Loco regional recurrence 15

Distant metastasis 60

Cancer subtype Adenocarcinoma 58

Squamous carcinoma 52

TABLE 3 | Tuning of the hyper-parameters.

Activation function Patch Top number

5 3

softmax 100 0.79 0.73

150 0.82 0.75

200 0.82 0.78

relu 100 0.81 0.74

150 0.84 0.78

200 0.83 0.80

tanh 100 0.73 0.6

150 0.76 0.67

200 0.77 0.69

TABLE 4 | The confusion matrix of the model for test dataset.

True Prediction Total

High risk Low risk

High risk 49 9 58

Low risk 14 29 43

Total 63 38 101

Performance Evaluation on Test Dataset
Another 101 H&E images were downloaded with their clinical
information in different project from train dataset in TCGA. The
datasets were available on TCGA in condition with data type of
slide image, data format is SVS, and primary site of bronchus and
lung and ethnicity is not reported (this condition is different from
that of the training dataset). The trained model was applied on
those data and obtained the confusion matrix below and ROC
curve in Figure 4A.

The performance evaluation results were calculated from
the confusion matrix in Table 4. The results showed that the
sensitivity and specificity of the model were 0.84 and 0.67,
respectively. The precision and F1 score reached 0.78 and 0.81,
respectively, in the independent test dataset. In the meantime, the
model achieved 0.79 AUC score. The AUC value on independent
test dataset was lower compared with AUC value (0.79 vs.
0.84) of fivefold cross-validation method on train dataset. The
performance evaluation from independent test dataset was
more convincing.

DISCUSSION

Machine learning algorithms have been widely used in clinical
practice. They can map unstructured information into a
structured form as well as enable automatic identification and
extraction of relevant information. Such an automated system
enables us to significantly reduce time-consuming diagnostic
procedures. With a dramatic improvement in the affordability
of the testing, it has also brought challenges pertaining to
the evaluation of effectiveness and accuracy of gene testing,
which could affect diagnosis and subsequent therapy. Therefore,
machine learning algorithms have been a hot topic and a
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dynamically changing area in the recent years. Therefore, these
models require human experts to encode the domain knowledge
through feature engineering. However, the results of such models
are still controversial and time dependent.

Recently, multilayer NNs or deep learning has been applied
to gain insights from heterogeneous clinical data. The major
difference between deep learning and conventional NN is
the number of hidden layers as well as their capability to
learn meaningful abstractions of the input. Deep learning
has been applied to process aggregated clinical documents
(imaging, pathological slices from biopsy, and other reports).
Several studies have used deep learning to predict disease
prognosis from medical documentation; for example, one
study used a four-layer CNN to predict congestive heart
failure and chronic obstructive pulmonary disease that showed
promising performance. CNN is a powerful algorithm for
advancing biomedical images and analysis (Makowski and
Hayes, 2008; Shackelford et al., 2013). It can be applied for
pathological image analysis tasks such as tumor detection and
quantification of cellular features by using either general staining
slices or in combination with immunohistological markers
(Mogi and Kuwano, 2011; Morris et al., 2013). Computerized
image processing histopathological analysis system has been
impressive in the prognostic determination of various tumors
and even precancerous lesions in the esophagus (Chiang et al.,
2016). Recent studies showed that many histological features
are associated with survival outcomes. Deep learning tumor
detection allows for tumor size calculation and shape estimation.
Tumor size and shape are a well-established prognostic marker
for lung cancer, and the boundary of the tumor region has
been reported to be associated with a poor local prognosis
marker as well (Esteva et al., 2017). Furthermore, most tumor-
related features including the tumor area, perimeter, convex
area, and filled area of the tumor region were associated with
poor survival outcome (Popin et al., 2018). Extracting tumor
features from H&E were usually conducted by experienced
experts; however, the extraction process is subject to human
bias and is time-consuming. CNNs, as the most popular
deep learning model for imaging processing, could directly
handle multidimensional color image and extract the regional
boundary of the pixels. Moreover, CNNs can retain parameters
during imaging processing as well as effectively identify similar
images.

In this study, to identify tumor regions, the pathological
images were divided into 512 × 512 pixel patches to classify
as tumor, non-malignant, or white categories using the CNN

model. The CNN model was trained on image patches that
were downloaded from TCGA database for lung squamous cell
carcinoma (LUSC). Moreover, we compared the performance of
our model on the test set with the performance of experienced
pathologists. Our results reached an 81% AUC score. Moreover,
our model has strong generalizability for learning comprehensive
tissue and cell morphological changes that could be used as an
auxiliary approach to make a pathological diagnosis for different
types of cancers. Also, our results suggest that deep learning
of histopathological imaging features can predict the prognosis
of lung cancer patients, thereby assisting health professionals to
make precision treatment plans.

Our study has several limitations. TCGA images exclusively
composed of lung adenocarcinoma (LUAD) cells, LUSC cells, or
normal lung tissues. However, several images contain features
that the model has not been trained to recognize, making
the classification task more challenging. For example, we
observed several non-specific features including blood vessels,
inframammary cell infiltration, and necrotic regions in the lung
tissue as well as bronchial cartilage and fibrous scars. Moreover,
this study did not include an independent set to validate our
model, which may have compromised the accuracy of the results.

Overall, here, we established a novel deification model
for pathological diagnoses. This model interpreted predictions
through convolutional natural language and visual attention
that could help pathologists to analyze histological slices. Our
model could allow diagnostic consistency and establish cost-
effective systems to meet large clinical demands with less manual
intervention and time efficiency by analyzing precise pixels
objectively. Future studies are necessary to testify its performance
for other types of cancers such as gastrointestinal cancers.
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Objective: The objective of this study was to summarize the clinicopathological

characteristics of the CLDN18-ARHGAP fusion gene in gastric cancer patients.

Background: TheCLDN18-ARHGAP26 fusion gene is one of themost frequent somatic

genomic rearrangements in gastric cancer, especially in the genomically stable (GS)

subtype. However, the clinical and prognostic meaning of the CLDN18-ARHGAP fusion

in gastric cancer patients is unclear.

Methods: Studies that investigated CLDN18-ARHGAP fusion gastric cancer patients

were identified systematically from the PubMed, Cochrane, and Embase databases

through the 28th of February 2020. A systematic review and meta-analysis were

performed to estimate the clinical significance of CLDN18-ARHGAP fusion in patients.

Results: A total of five eligible studies covering 1908 patients were selected for

inclusion in the meta-analysis based on specified inclusion and exclusion criteria. Several

fusion patterns were observed linking CLDN18 and ARHGAP26 or ARHGAP6, with the

most common type being CLDN18/exon5-ARHGAP26/exon12. The survival outcome

meta-analysis of the CLDN18-ARHGAP fusion gene showed that it was associated

with overall survival outcomes in gastric cancer (HR, 2.03, 95% CI 1.26–3.26, P

< 0.01, random-effects). In addition, diffuse gastric cancer had a greater proportion of

CLDN18-ARHGAP fusions than intestinal gastric cancer (13.3%, 151/1,138 vs. 1.8%,

8/442; p < 0.001). Moreover, gastric cancer patients with the CLDN18-ARHGAP fusion

gene are more likely to be female or have a younger age, lymph node metastasis and

advanced TNM stages.

Conclusion: The CLDN18-ARHGAP fusion is one of the molecular characteristics of

diffuse gastric cancer and is also an independent prognostic risk factor for gastric cancer.

In addition, it is also related to multiple clinical characteristics, including age, sex, lymph

node metastasis and tumor stage. However, the mechanism of the CLDN18-ARHGAP

fusion gene and potential targeted therapeutic strategies need further exploration.

Keywords: gastric cancer, fusion gene, CLDN18-ARHGAP, survival, therapy
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INTRODUCTION

Recurrent chromosomal translocations have been implicated in
multiple tumor types. It has been demonstrated that frequent
fusion genes are involved in oncogenesis and progression as
driver events. The Philadelphia chromosome is well reported
as the first cancer-associated chromosomal rearrangement,
resulting in the BCR-ABL fusion, which was also identified as
a diagnostic feature and therapeutic target of chronic myeloid
leukemia patients. Thereafter, oncologic fusion genes were
frequently identified in leukemia, lymphoma and sarcoma, but
with a relatively low incidence rate in epithelial tumors (1). For
epithelial tumors, the most well-known fusion gene is the EML4-
ALK gene, which was detected in∼5–10% of non-small cell lung
cancer patients (2, 3).

Regarding gastric cancer, The Cancer Genome Atlas (TCGA)
project proposes the molecular classification of gastric cancers
and divides them into four separate subtypes, and the CLDN18-
ARHGAP26 fusion gene is highly enriched in the genomically
stable (GS) subtype (4). Histologically, the majority of GS
subtype cancers were the diffuse type according to the Lauren
classification, with common somatic mutations located in the
CDH1 and RHOA genes. It is notable that CLDN18-ARHGAP
fusions were mutually exclusive with RHOA mutations in the
classification of TCGA (4). A subsequent functional study
indicated that the introduction of the CLDN18-ARHGAP26
fusion to tumor cells can direct the loss of the epithelial
phenotype, epithelial-mesenchymal transition, and inhibition
of the RHOA signaling pathway and contribute to tumor
invasiveness in cancer cell lines (5). Our study group previously
used a whole-genome sequencing approach to characterize the
genomic features of signet ring cell gastric cancer and identified
frequent CLDN18-ARHGAP fusions (6). More importantly,
we linked multiple clinical characteristics with CLDN18-
ARHGAP28/6 fusions, including the proportion of signet ring
cell content, TNM stage, and poor prognosis with the current
chemotherapy strategy (6). These findings were quickly validated
by an independent Japanese study (7, 8). Meanwhile, a further
Korean study found that the CLDN18-ARHGAP fusion gene
can promote the invasion and migration capacity of gastric
cancer cells (9). However, there is a lack of studies systematically
evaluating the clinicopathological characteristics and prognostic
meaning of CLDN18-ARHGAP fusions in gastric cancers.

Therefore, in this meta-analysis and systematic review, we
will systematically summarize and assess the clinical significance
and advances of the CLDN18-ARHGAP fusion gene in gastric
cancer. The primary endpoint of the present study is the
survival outcomes of patients with the CLDN18-ARHGAP fusion
gene, and other endpoints are the relationship of the CLDN18-
ARHGAP fusion gene with tumor-related clinicopathological
characteristics, such as age, sex, tumor location and tumor stage.

Abbreviations: TCGA, The Cancer Genome Atlas; NOS, Newcastle–Ottawa

Scale; SD, standard deviation; OR, odds ratio; MD, mean difference; HR,

hazard ratio; CI, confidence intervals; GRAF, GTPase Regulator Associated with

Focal Adhesion Kinase; EMT, Epithelial-Mesenchymal Transition; PDX, Patient-

Derived Xenograft; RT-PCR, reverse transcription-polymerase chain reaction;

FISH, Fluorescence in situHybridization.

METHODS

Search Strategy
We searched the Web of Knowledge, PubMed, Embase and
Cochrane Collaborative Center Register of Controlled Trials
databases on the 28th of February 2020 by using the terms
“gastric cancer,” “gastric carcinoma,” “gastric neoplasm,”
“stomach cancer,” “stomach carcinoma,” “stomach neoplasm,”
“CLDN,” “claudin,” “ARHGAP,” “Rho GTPase-activating
protein,” “oligophrenin-1-like” and “OPHN1L” and strictly
restricted search results to titles, abstracts and keywords. We
also searched previously published meta-analyses and systematic
reviews. All of those articles were independently screened by
two authors (WH Zhang and SYZ) based on the inclusion and
exclusion criteria of the study. Because the studies included in
this meta-analysis have been published, ethical approval was not
needed from ethics committees. The results of this study were
reported according to the PRISMA statement (10).

Study Selection
Those studies that reported the relationship between the
CLDN18-ARHGAP fusion gene and the clinicopathological
characteristics or survival outcomes of gastric cancer patients
were included. The exclusion criteria included the following: (1)
mixed benign disease of the stomach; (2) articles in languages
other than English; and (3) incomplete data or duplicated data.
For studies with more than one article and with duplicated data,
only the article with the most complete data was included for
analysis in this study.

Data Extraction and Quality Assessment
Data from the included studies were independently extracted
by two authors (WH Zhang and QQ Hou). For each study, we
recorded the following information: name of the first author, year
of publication, country of the study, study design, time period
of the study and examined method for the CLDN18-ARHGAP
fusion gene. Furthermore, the following clinicopathological
characteristics were also extracted and included in the present
study: fusion types of the CLDN18 and ARHGAP genes, age
(years), sex (male or female), tumor location (upper third of
stomach), tumor stage (T stage, N stage and TNM stage) and
survival outcomes between CLDN18-ARHGAP fusion-positive
and CLDN18-ARHGAP fusion-negative patients. The patients
were divided into a CLDN18-ARHGAP fusion-positive group
and a CLDN18-ARHGAP fusion-negative group according to the
status of the expression of CLDN18-ARHGAP26/6 fusions.

The quality assessment of the included studies was evaluated
by two authors (WH Zhang and QQ Hou) independently.
Retrospective studies were assessed by the Newcastle–Ottawa
Scale (NOS), which is a 9-point scale (11). Studies with NOS
scores lower than 6 were deemed moderate or low-quality
studies. Any disagreements regarding the quality assessment were
resolved by discussion with supervisors (H Xu and JK Hu).

Statistical Analysis
This study was performed according to the Cochrane guidelines
(12). For studies that only reported the medians and ranges
for continuous variables, the data were converted to means and
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standard deviations (SDs) with the method reported by Hozo
et al. (13). Categorical variables are presented as ratios and
were analyzed by the Mantel-Haenszel method, and continuous
variables are presented as the mean ± SD and were analyzed
by the inverse variance method. The odds ratio (OR) and
mean difference (MD) were used to evaluate dichotomous and
continuous data, respectively. The hazard ratio (HR) was used
to evaluate survival outcomes. The OR, HR and MD were
reported with 95% confidence intervals (CIs). Heterogeneity
among studies was assessed by the I2 value. According to the
I2 value, the studies were determined to have low (I2 < 30%),

moderate (30–50%) or considerable (I2 ≥ 50%) heterogeneity.
Begg’s test was used to assess publication bias. For the survival
analysis, we updated the survival information to Jan 2019 of
our previous study (all 829 patients, Shu et al.) (6). In addition,
individual survival information from the TCGA cohort was
also updated according to a recent report from the TCGA
research network (14). Survival information from other studies
was extracted with the method reported by Tierney et al. by
Engauge Digitizer software (Version 11.2) (15). A P-value < 0.05
was considered statistically significant for the present study. All
of the statistical analyses were performed by R software (http://

FIGURE 1 | PRISMA flow chart.

Frontiers in Oncology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 1214233

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
http://www.R-project.org/


Zhang et al. CLDN18-ARHGAP Fusion in Gastric Cancer

www.R-project.org/) with the “survival,” “survminer,” “ggplot2,”
“meta,” and “metafor” packages.

RESULTS

General Characteristics
We retrieved 395 records with 128 duplicates. After reading
the titles and abstracts, 26 articles remained for reassessment
according to their full texts. After reading the full texts of these
articles, we included five studies that presented the relationship
of clinicopathological characteristics and survival outcomes with
CLDN18-ARHGAP fusion gene status (Figure 1, PRISMA Flow
Diagram). We also evaluated the quality of all included studies
with the Newcastle-Ottawa Scale, and the results showed that all
studies had a score ≥ 6.

All 5 studies were from four countries (United States, Japan,
Korea and China) and were published between 2014 and 2019.
Finally, a total of 1,908 patients were included in the present
study: 151 (7.9%) patients in the CLDN18-ARHGAP fusion-
positive group and 1,757 (92.1%) patients in the CLDN18-
ARHGAP fusion-negative group. General characteristics of those
included five studies were summarized in Table 1. There were
several fusion types in CLDN18-ARHGAP fusion gene gastric
cancer patients. Also, the fusion types from the five reported
studies between CLDN18 and ARHGAP genes are presented in
Table 2.

The CLDN18/exon5-ARHGAP26/exon12 fusion was the
most common fusion pattern among present reports and is
clearly understood. In addition, the mutation counts between
the CLDN18-ARHGAP fusion-positive and CLDN18-ARHGAP
fusion-negative patients in cohorts of Shu et al. and TCGA

were analyzed (Supplementary Tables 1, 2). However, there was
no overlap of the significant mutation counts gene between
CLDN18-ARHGAP fusion-positive and -negative patients in
the Shu and TCGA cohorts. Different pathological subtypes
and the sample size difference of the two cohorts may be
the reasons for the results. However, the study of Shu et al.
was based on the whole genome sequencing, so we cannot
analyze the RNA expression level between fusion positive
and negative patients. Therefore, we analyzed copy number
variation in the cohort of Shu et al. (Supplementary Table 3)
and the RNA expression level (Supplementary Table 4) in the
TCGA cohort between CLDN18-ARHGAP fusion-positive and
CLDN18-ARHGAP fusion-negative gastric cancer patients.

In the meta-analysis of clinicopathological characteristics, the
CLDN18-ARHGAP fusion gene-positive group hadmore patients
with a younger age (MD: −5.85, 95% CI: −11.22 to −0.48, p
= 0.03), a lower proportion of male patients (OR: 0.40, 95% CI
0.23–0.70, p = 0.001), patients with a more advanced N stage
(OR: 3.41, 95% CI 2.00–5.82, p < 0.001) and patients with a
more advanced TNM stage (OR: 3.07, 95% CI 1.56–6.05, p =

0.001) than the CLDN18-ARHGAP fusion gene-negative group
(Table 3). However, tumor location (p = 0.43) and T stage (p
= 0.07) were not significantly different between the two groups.
Moreover, we found that diffuse gastric cancers had a greater
proportion of CLDN18-ARHGAP fusion genes than intestinal
gastric cancers (13.3%, 151/1,138 vs. 1.8%, 8/442; p < 0.001).

Survival Analysis
CLDN18-ARHGAP fusion-positive gastric cancer patients had
significantly poorer overall survival outcomes than CLDN18-
ARHGAP fusion-negative patients in the meta-analysis (HR:

TABLE 1 | Characteristics of studies reported clinicopathological characteristics between CLDN18-ARHGAP fusion and gastric cancers.

Study Country Period Samples Lauren Type CLDN18-ARHGAP

Fusion positive

Tumor

stage

Examine

methods

NOS# Special

Characteristics

N = (%) N = (%)

DGC* IGC NA All DGC IGC

Nakayama

et al. (7)

Japan 2006–2015 146 136

(93.2)

10 (6.8) NA 22 (15.1) 22 (16.2) 0 (0.0) I–IV Fusion-FISH,

RNA-seq

7 Young age

Patients (≤40)

Shu et al. (6) China 2009–2014 829 358

(43.2)

154

(18.6)

317

(38.2)

73 (8.8) 55 (15.4) 2 (1.3) I–IV WGS, RT-PCR 8 Fusion related to

the proportion of

SRCC

Tanake et al.

(8)

Japan 2000–2013 254 172

(67.7)

82

(32.3)

0 26 (10.2) 22 (12.8) 4 (4.9) I–IV RT-PCR, FISH 6 Fusion-positive

DGCs E-cad

expression

Yang et al. (9) Korea 2003–2017 384 384

(100.0)

0 0 17 (4.4) 17 (4.4) 0 I–IV RT-PCR, RNA

seq

6 Fusion related to

H. pylori

infections

TCGA (4) United State NM 295 88

(29.8)

196

(66.4)

11 (3.7) 13 (4.4) 10 (11.4) 2 (1.0) I–IV WGS or

RNA-seq

8 Fusion related to

GS tumors

*Included mixed type.
#NOS, The Newcastle-Ottwa Scale (11).

DGC, diffuse gastric cancer; IGC, intestinal gastric cancer; TCGA, The Cancer Genome Atlas; WGS, whole-genome sequence; RNA-seq, RNA sequence; RT-PCR, reverse

transcription-polymerase chain reaction; FISH, fluorescence in situ hybridization, SRCC, signet ring cell cancer; GS, genomically stable; NA, not applicable; NM, not mentioned.
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TABLE 2 | The CLDN18-ARHGAP fusion models in reported studies.

Study Number of Fusion Mode Numbers

CLDN18-ARHGAP fusion (%)

Nakayama et al. (7) 22 CLDN18/exon5 ARHGAP26/exon10 18 (81.8)

ARHGAP26/exon 12

CLDN18/exon5 ARHGAP6/exon2 2 (9.1)

CLDN18/exon5 ARHGAP42/exon7 1 (4.5)

CLDN18/exon5 ARHGAP10/exon8 1 (4.5)

Shu et al. (6) 73 CLDN18/exon5 ARHGAP26/exon12 58 (79.5)

CLDN18/exon5 ARHGAP26/exon10 7 (9.6)

CLDN18/exon4 ARHGAP26/exon11 1 (1.4)

CLDN18/exon5 ARHGAP6/exon2 7 (9.6)

Tanake et al. (8) 26 CLDN18/exon5 ARHGAP26/exon12 24 (92.3)

CLDN18/exon5 ARHGAP26/exon10 1 (3.8)

CLDN18/exon5 ARHGAP6/exon2 1 (3.8)

Yang et al. (9) 17 CLDN18 ARHGAP26 13 (76.5)

CTNND1 ARHGAP26* 2 (11.8)

ANXA2 MYO9A* 2 (11.8)

TCGA (4) 13 CLDN18/exon5 ARHGAP26/exon12 10 (76.9)

CLDN18/exon5 ARHGAP26/exon10 1 (7.7)

CLDN18/exon5 ARHGAP6/exon2 2 (15.4)

TCGA, The Cancer Genome Atlas.

*Also known as RhoGAP domain-containing fusions.

TABLE 3 | The Meta-analysis of clinicopathological characteristics between patients with CLDN18-ARHGAP fusion positive and negative patients.

Characteristics Included

Study

CLDN18-ARHGAP

Fusion (+)

N = (%)

CLDN18-ARHGAP

fusion (–)

N= (%)

Test of Heterogeneity Meta-analysis

χ2 I2 (%) p-value OR or MD 95% CI p-value

Age (years) (4, 6, 8) 112 1177 8.76 77 0.01 −5.85 −11.22 to −0.48 0.03

Gender (Male) (4, 6–9) 61/151 (40.4) 1,107/1,668 (66.4) 8.51 53 0.07 0.40 0.23–0.70 0.001

Tumor Location (Upper) (4, 6–9) 31/151 (20.5) 621/1,668 (37.2) 14.19 72 0.007 0.68 0.27–1.75 0.43

T stage (T2–T4) (4, 6–8) 116/134 (86.6) 1,131/1,301 (86.9) 0.63 0 0.89 1.76 0.96–3.22 0.07

N stage (N+) (4, 6–8) 110/134 (82.1) 902/1,301 (69.3) 3.33 10 0.34 3.41 2.00–5.82 <0.001

TNM stage (III–IV) (4, 6, 7,

9)

120/151 (79.5) 1,046/1,668 (62.7) 7.66 48 0.10 3.07 1.56–6.05 <0.001

95% CI, 95% confidence interval; MD, mean difference; OR, odds ratio.

2.03, 95% CI 1.26–3.26, p < 0.01, random effects) (Figure 2A),
and the survival results in the meta-analysis were relatively stable
in the sensitivity analysis (Figure 2B). Because there were only
4 studies included in the survival analysis, publication bias was
only evaluated by Begg’s test. The results demonstrated that there
was no publication bias according to Begg’s test with continuity
correction (p= 0.555).

In addition, we acquired updated individual survival
information from the cohort of Shu et al. and the TCGA cohort.
Therefore, the survival difference between CLDN18-ARHGAP
fusion-positive and CLDN18-ARHGAP fusion-negative patients
was evaluated in these two cohorts (Figures 3A,B). A significant
survival difference was found between the CLDN-ARHGAP
fusion gene-positive and CLDN-ARHGAP fusion gene-negative
groups with the combination of the data from the two cohorts

(p < 0.001) (Figure 3C). In addition, the Cox proportional
hazards model was used to present the independent prognostic
risk factors in the merged data of the Shu and TCGA cohorts
(Table 4). In multivariate survival analysis, positive CLDN18-
ARHGAP fusion (HR: 1.365, 95% CI 1.031–1.809, p= 0.030) and
TNM stage (stage III vs. stage I, HR: 3.018, 95% CI 1.763–5.164,
p < 0.001; stage IV vs. stage I, HR: 7.155, 95% CI 4.083–12.538, p
< 0.001) were independent prognostic risk factors.

DISCUSSION

In the present study, a total of 5 cohort studies reported
the presence of CLDN18-ARHGAP fusions and its relationship
with clinicopathological characteristics and survival outcomes
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FIGURE 2 | Meta-analysis of survival outcomes between CLDN18-ARHGAP fusion-negative and CLDN18-ARHGAP fusion-positive gastric cancer patients. (A)

Survival outcomes of the CLDN18-ARHGAP26 fusion gene (positive vs. negative); (B) sensitivity analysis of the included studies.

in gastric cancer patients. Multiple clinical characteristics were
observed to be correlated with the frequency of CLDN18-
ARHGAP fusions. Finally, significant enrichment of CLDN18-
ARHGAP fusions was observed in female patients and patients
with a younger age, diffuse gastric cancer by Lauren classification
and more advanced tumor stages (N stage and TNM stage),
but CLDN18-ARHGAP fusions were not related to the primary
tumor location. Most importantly, the CLDN18-ARHGAP fusion
was significantly related to poor survival outcomes in the meta-
analysis (HR: 2.03, 95% CI 1.26–3.26, p < 0.01, random effects).
Meanwhile, in the survival analysis with the combination of
individual data from the Shu et al. and TCGA cohorts, the
CLDN18-ARHGAP fusion was an independent prognostic risk
factor for overall survival outcomes (HR: 1.365, 95% CI 1.031–
1.809, p= 0.030).

The CLDN18-ARHGAP fusion gene is formed by
chromosomal rearrangements of the CLDN18 and ARHGAP
genes, mainly CLDN18-ARHGAP26 and CLDN18-ARHGAP6
fusions. CLDN18-ARHGAP26/6 contains a nearly full coding
region of CLDN18 and the conserved domain of ARHGAP26/6.
Functionally, the CLDN18 gene encodes the claudin-18 protein,
which forms tight junctions in epithelial cells. The CLDN18-
ARHGAP fusion protein may disrupt the structure of the
wild-type CLDN18 protein, which may impact the cellular
adhesion of cancer cells. The ARHGAP26 gene encodes the
ARHGAP26 protein, a member of the Rho GTPase activating
the protein, which is also known as the GTPase regulator
associated with focal adhesion kinase (GRAF). GRAF not only
regulates the activity of RHOGAP family proteins (16) but also
coordinates membrane remodeling, which is necessary for the

CLIC/GEEC endocytic pathway (17). Regev et al. suggested that
the GRAF protein may play a role in the maintenance of the
normal epithelial phenotype, the depletion of which can induce
a neoplastic transformation-related epithelial-mesenchymal
transition (EMT)-like process (18). For the fusion proteins of
CLDN18-ARHGAP, the large segment of ARHGAP fuses to the
carboxy terminus of CLDN18 and retains the carboxy-terminal
GAP domain, which may affect ARHGAP’s regulation of the
RHOA pathway and/or the epithelial phenotype of gastric cancer
cells. Several studies have indicated that the introduction of
the CLDN18-ARHGAP26 fusion in cancer cells can increase
their migration and invasion ability (5, 6), which can partially
explain the advanced tumor stages in CLDN18-ARHGAP
fusion-positive patients.

In the TCGA gastric cancer cohort, the CLDN18-
ARHGAP26/6 fusion was enriched in patients with the
genomically stable subtype, which has higher frequency of lower
third tumors, patients with a younger age and more diffuse
histological subtype tumors (4). In our previous study, we
found that the CLDN18-ARHGAP26/6 fusion was significantly
associated with the proportion of signet ring cancer cells and
tumor stage (6). Tanaka et al. also observed a higher frequency
of CLDN18-ARHGAP26/6 fusions in diffuse gastric cancers than
in intestinal gastric cancers (22/172, 12.8% vs. 4/82, 4.8%) (8).
In the present study, we found a significant difference in the
frequency of the CLDN18-ARHGAP fusion gene between diffuse
gastric cancer and intestinal gastric cancer (13.3%, 151/1,138
vs. 1.8%, 8/442; p < 0.001). Therefore, the CLDN18-ARHGAP
fusion may be an important molecular characteristic of diffuse
gastric cancer.
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FIGURE 3 | Individual overall survival outcomes of CLDN18-ARHGAP26/6

fusion gastric cancer patients in the Shu et al. and TCGA cohorts. (A) Overall

survival outcomes in the Shu et al. cohort; (B) overall survival outcomes in the

TCGA cohort; (C) overall survival outcomes in the two cohorts.

It is well reported that the diffuse subtype has a significantly
poorer prognosis than the intestinal subtype of gastric cancer
according to the Lauren classification, probably because of
the more advanced tumor stages and potential resistance to
traditional chemotherapy regimens of diffuse gastric cancers (19).

We previously reported the prognostic value of the CLDN18-
ARHGAP26/6 fusion, which is a risk factor for overall survival
and confers postoperative chemotherapy resistance (6). The
present study summarized the survival outcomes of previously
reported studies focused on the CLDN18-ARHGAP fusion gene.
Thereafter, the survival outcome meta-analysis showed that
patients with CLDN18-ARHGAP fusion have a significantly
poorer prognosis than patients without CLDN18-ARHGAP
fusion. Due to the enrichment of the CLDN18-ARHGAP fusion
in patients with more advanced stages, it is important to assess
the factors independently associated with the CLDN18-ARHGAP
fusion. Multivariate analyses of individual data from the Shu
and TCGA cohorts presented a significant association of the
CLDN18-ARHGAP fusion status with poor treatment outcomes
after adjusting for tumor stage, indicating that the CLDN18-
ARHGAP fusion is an independent prognostic factor for gastric
cancers. In addition, it is necessary to mention that some of the
included studies were not traditional clinical studies, and limited
follow-up durations (such as that in the TCGA cohort) may
increase the bias risk in the survival analysis above.

According to a previous study (6), gastric cancer patients
with the CLDN18-ARHGAP26/6 fusion gene cannot obtain
survival benefits from 5-FU/oxaliplatin-based chemotherapy,
which may partially explain the poor prognosis of CLDN18-
ARHGAP fusion patients. However, no other study analyzed
the relationship between the CLDN18-ARHGAP26 fusion gene
and chemotherapy drug therapeutic sensitivity. Mechanistically,
resistance to these chemotherapy drugs was observed after
the introduction of the CLDN18-ARHGAP26/6 fusion into cell
lines (6). Because no reported gastric cancer cell lines carry
CLDN18-ARHGAP26/6 fusions according to the Cancer Cell
Line Encyclopedia database (20, 21), patient-derived xenograft
(PDX) and organoid models may be the breakthrough point for
future research to help validate drug resistance, screen fusion-
targeted drugs, and guide personalized therapy (22–24). Yan
et al. described a gastric cancer organoid model that can be used
to assess the efficacy of chemotherapy (25). Unfortunately, no
patient with CLDN18-ARHGAP26 fusion was captured in their
gastric cancer organoid bank. Nakayama et al. established two
CLDN18-ARHGAP26 fusion-positive cell lines from 125 gastric
cancer PDXs (26). Collectively, these results suggest that the
establishment of PDX and organoid models can help researchers
conduct drug sensitivity screening and explore personalized
medicine applications for therapy response testing in the future.

Specifically, the aberrant activation of claudin-18 splice
variant 2 (claudin-18.2) was detected in multiple types of cancer
compared with its limited expression in normal tissues. The rate
of claudin-18.2-positive patients wasmore than 80% according to
a Japanese study on gastric cancer, andmore than 40% of patients
had moderate-to-strong expression (≥ 2+ membrane staining
intensity in≥ 40% of tumor cells) in both the primary tumor and
metastatic lymph nodes (27). Claudin-18.2 has been considered
a novel druggable target for some epithelial tumors (28).
Indeed, a chimeric monoclonal antibody drug has been recently
developed (i.e., zolbetuximab, formerly known as IMAB362),
which induces the immune-mediated lysis of CLDN18.2-positive
cancer cells by activating immune effector mechanisms (29).
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TABLE 4 | Univariate and Multivariate survival analysis of CLDN18-ARHGAP26/6 fusion gene in TCGA and Shu cohort.

Characteristics Univariate Analysis Multivariate Analysis

OR 95% CI P-value OR 95% CI P-value

Age (years) <65 vs. ≥65 1.14 0.877–0.959 0.136 1.343 1.125–1.603 0.090

Gender Male vs. Female 1.042 0.868–1.252 0.658 0.988 0.817–1.195 0.900

Tumor location Upper vs. Other 0.973 0.810–1.168 0.769 0.868 0.722–1.044 0.134

T stage T2 vs. T1 3.119 0.960–10.130 0.058

T3 vs. T1 3.953 1.253–12.470 0.019

T4 vs. T1 6.455 2.073–20.100 0.001

N stage N1 vs. N0 1.999 1.379–2.897 <0.001

N2 vs. N0 2.453 1.733–3.471 <0.001

N3 vs. N0 3.94 2.888–5.376 <0.001

TNM stage II vs. I 1.29 0.725–2.294 0.386 1.339 0.753–2.385 0.32

III vs. I 2.864 1.668–4.889 <0.001 3.018 1.763–5.164 <0.001

IV vs. I 6.669 3.825–11.628 <0.001 7.155 4.083–12.538 <0.001

CLDN18-ARHGAP26/6 fusion Positive vs. Negative 1.629 1.247–2.127 <0.001 1.365 1.031–1.809 0.03

OR, odds ratio; 95% CI, 95% confidence interval.

*Only TNM stage entered into the Cox regression model due to the potentially confounding effect.

Clinical trials evaluating the safety and efficacy of zolbetuximab
for claudin-18.2-positive cancer patients are ongoing. The up-
to-date evidence is promising but remains to be validated by
high-quality clinical trials (30, 31). We also noticed that there is
an ongoing clinical trial, which is focused on safety and efficacy
of anti-claudin18.2 chimeric antigen receptor t-cell (CAR-T)
immunotherapy in patients with advanced gastric cancer or
pancreatic cancer (ClinicalTrials.gov Identifier: NCT03159819).
The final results of the anti-claudin-18.2 CAR-T immunotherapy
as a new anti-tumor targeted immunotherapy study are highly
anticipated. Considering that a higher claudin-18.2 positive rate
was observed in patients with the diffuse subtype of gastric cancer
than in those with the intestinal type (57.5 vs. 39.0%) (27),
an unsolved and important question is whether the CLDN18-
ARHGAP fusion gene is correlated with claudin-18.2 protein
expression and thus is suitable for zolbetuximab treatment, which
requires solid clinical evidence.

According to previous studies, whole-genome sequencing,
RNA sequencing, reverse transcription-polymerase chain
reaction (RT-PCR) and fluorescence in situ hybridization (FISH)
are all effective methods for the detection of CLDN18-ARHGAP
fusions. Once the clinical significance of the CLDN18-ARHGAP
fusion has been proven and potential target treatment regimens
have been determined, establishing a stable and effective
detection method for this fusion gene is particularly important.
Considering the preservation of tumor tissue as well as the
stability and economic cost of the examination, FISH may be the
first choice for promotion in clinical practice. In addition, RNA
in situ hybridization techniques may be useful in the detection
of fusion genes. However, the sensitivity and specificity of the
detection of fusion genes by such methods should be validated
by clinical studies. In addition, oncogenic fusion circRNAs
(f-circRNAs) derived from cancer-associated chromosomal
translocations exhibit properties of tumor-promoting cellular
transformation, cell viability and resistance to treatment (32, 33).
Consistently, f-circRNAs derived from SLC32A2-ROS1 and
EML4-ALK fusion genes, which have been determined as

biomarkers for the use of targeted drugs in lung cancer, were
also demonstrated to impact cell migration, invasion and cell
proliferation in lung cancer cells (34, 35). More importantly,
the f-circRNAs of EML4-ALK can be detected in the plasma of
EML4-ALK-positive NSCLC patients (36). These results suggest
the following: (1) f-circRNAs are involved in the mechanism
of tumorigenesis, progression and therapy resistance; and (2)
cell-free f-circRNAs could be a novel “liquid biopsy” biomarker
to monitor the status of fusion genes in a noninvasive way.
Therefore, we speculate and propose the following hypothesis:
f-circRNAs of the CLDN18-ARHGAP fusion gene exist and
can affect tumor function or act as a potential “liquid biopsy”
biomarker for targeted drugs (e.g., zolbetuximab).

The present study also has some limitations. (1) This study
only included five retrospective studies. Therefore, selection bias
and quality deviation are likely among these studies, which
may have an influence on the results of the meta-analysis. (2)
The detection methods varied among the included studies. The
potential false positive and false negative rates of CLDN18-
ARHGAP fusion in the included studies may have influenced the
results of the meta-analysis. (3) In addition, the limited follow-
up duration of the included studies was another limitation of
the presented studies. (4) Although previous studies successfully
demonstrated that the CLDN18-ARHGAP26 fusion gene can
induce EMT, the loss of the epithelial phenotype, and cell-
cell and cell-extracellular matrix adhesion, as well as increase
the invasion ability and resistance to chemotherapy drugs in
cancer cell lines (5, 6), the specific molecular mechanisms by
which CLDN18-ARHGAP26 regulates downstream molecules
and pathways remain unclear. As different fusionmodes generate
various fusion proteins, it is difficult to design and develop
antibodies to specifically target these fusion proteins, which
may hinder mechanistic investigation of the CLDN18-ARHGAP
fusion gene. Furthermore, large sample size multicenter studies
are expected to validate the clinical significance and prognostic
meaning of the CLDN18-ARHGAP26 fusion gene in gastric
cancer patients.
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CONCLUSIONS

The CLDN18-ARHGAP fusion gene is characterized as one of
the features of diffuse gastric cancer. The CLDN18-ARHGAP
fusion gene is correlated with advanced tumor stages in gastric
cancer, as well as poor survival outcomes. Although CLDN18-
ARHGAP fusion can increase the invasion and migration
ability of gastric cancer cells in vitro, the molecular mechanism
remains to be elucidated. Furthermore, the early detection
of the CLDN18-ARHGAP fusion and targeted drugs for this
fusion may potentially improve the survival outcomes of gastric
cancer patients.
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Cancer is a complex disease with a high rate of mortality. The characteristics of tumor

masses are very heterogeneous; thus, the appropriate classification of tumors is a critical

point in the effective treatment. A high level of heterogeneity has also been observed in

breast cancer. Therefore, detecting the molecular subtypes of this disease is an essential

issue for medicine that could be facilitated using bioinformatics. This study aims to

discover the molecular subtypes of breast cancer using somatic mutation profiles of

tumors. Nonetheless, the somatic mutation profiles are very sparse. Therefore, a network

propagation method is used in the gene interaction network to make the mutation profiles

dense. Afterward, the deep embedded clustering (DEC) method is used to classify the

breast tumors into four subtypes. In the next step, gene signature of each subtype

is obtained using Fisher’s exact test. Besides the enrichment of gene signatures in

numerous biological databases, clinical and molecular analyses verify that the proposed

method using mutation profiles can efficiently detect the molecular subtypes of breast

cancer. Finally, a supervised classifier is trained based on the discovered subtypes to

predict the molecular subtype of a new patient. The code and material of the method are

available at: https://github.com/nrohani/MolecularSubtypes.

Keywords: cancer molecular subtypes, breast cancer, machine learning, somatic mutations, clustering, tumor

classification

1. INTRODUCTION

Breast cancer is a heterogeneous disease at themolecular and clinical levels; thus, the effectiveness of
a treatment is hugely different based on the tumor characteristics. This heterogeneity is a challenge
for tumor classification to reach an appropriate clinical outcome. To solve this problem, many
researchers have developed numerous methods to classify tumor masses, such as histopathological
classification based on the morphological characteristics or immunohistochemical (IHC) markers
such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) (Elston, 1999; Perou et al., 2000; Sørlie et al., 2001; Hu et al., 2006; Hofree et al.,
2013; Ali et al., 2014; List et al., 2014). Moreover, Sorlie et al. have used hierarchical clustering on
the gene expression data that led to the identification of significant breast cancer subtypes (Perou
et al., 2000). The high cost of gene expression analysis for many genes was a significant obstacle
in applying this method. To overcome this issue, the researchers have reduced the gene list to a
relevant gene signature for breast cancer subtypes detection. Parker et al. (2009) have presented
biomarker genes that can efficiently detect molecular subtypes. These genes could be an excellent
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alternative to whole transcriptome microarray analysis. The
subtypes found by these genes are known as PAM50 subtypes.
Diversity of gene expression data in the subtypes is an indicator
for the clinical prognosis of the patients, such as survival outcome
(Sørlie et al., 2003).

In some studies, the microarray-based breast cancer
classification has been considered as the gold standard
(Peppercorn et al., 2007). However, the microarray-based
methods cannot classify tumors consistently, due to the dynamic
nature of gene expression data (Pusztai et al., 2006; Gusterson,
2009; Weigelt et al., 2010).

Some studies have recently identified cancer subtypes based
on somatic mutation profiles of tumors (Vural et al., 2016;
Zhang et al., 2018b; Kuijjer et al., 2018). Somatic mutations are
more stable and have critical functions in cancer development
and progression (Vural et al., 2016; Kuijjer et al., 2018).
Moreover, investigating somatic mutation profiles can aid in
cancer diagnosis and treatment due to the vast number of
clinical guidelines based on single gene mutation (Kuijjer
et al., 2018). Therefore, the classification of cancers based on
the mutation profiles can help identify subtypes of patients
and their treatments (Pusztai et al., 2006; Gusterson, 2009;
Weigelt et al., 2010; Kuijjer et al., 2018). On the other side,
with the development of new sequencing technologies, genome
sequencing has become an appropriate tool for diagnostic
purposes. Therefore, tumor classification based on somatic
mutation profiles and application of the results in the clinical
decisions can be crucial in the personalized medicine (Kuijjer
et al., 2018).

Some studies have merged different kinds of the molecular
data for breast cancer classification. Curtis et al. (2012) have
developed a method to classify breast cancer by integrating
genome and transcriptome data of 2,000 breast cancer patients.
Based on the impact of somatic copy number alterations (CNAs)
on the transcriptome, they have introduced new subtypes for
breast cancer. Furthermore, Ali et al. (2014) have classified
breast cancer into ten subtypes based on the combination of
CNAs and gene expression data. In another study, List et al.
(2014) have proposed a machine learning-based method that
merges the gene expression and DNAmethylation data for breast
cancer classification. In a novel study, Hofree et al. (2013) have
proposed a network stratification algorithm to classify tumors by
fusing somatic mutation profiles with gene interaction network
and have identified four subtypes for breast cancer. As somatic
mutations are often sparse, it is sometimes challenging to predict
cancer subtypes using somatic mutations. Therefore, previous
studies have used othermolecular information beside the somatic
mutation data to detect cancer subtypes (Hofree et al., 2013).

In the most previous works, conventional clustering methods
have been used to classify tumors; however, numerous innovative
clustering methods have been proposed recently with various
capabilities, which may help identify cancer subtypes. Moreover,
the number of clusters typically has been determined using the
silhouette criterion, which may lead to biologically meaningless
clusters. In addition to the mentioned issues, the discovered
clusters using somatic mutations are not analyzed extensively in
previous works. In this study, the novel subtypes are presented

using analysis of the somatic mutations and CNAs data from 861
breast tumors in the cancer genome atlas (TCGA) database (The
International Cancer Genome Consortium, 2010). We used the
network propagation method for smoothing somatic mutation
profiles besides the gene interaction network; then, we used
deep embedded clustering (DEC) (Xie et al., 2016) to find new
breast cancer subtypes. Moreover, we used novel metrics such as
AUMF (Maddi et al., 2019) and MMR (Brohee and Van Helden,
2006) for finding the best number of clusters. Afterward, the
biological features of discovered subtypes were analyzed. Finally,
a supervised model was trained to predict the breast cancer
subtype of new patients. Also, the random forest (RF) was used
to find the most important genes for classification.

2. MATERIALS AND METHODS

2.1. Extracting and Smoothing Data
We used somatic mutation profiles collected by Zhang et al.
(2018b). They have obtained somatic mutation data of 861 breast
tumors from TCGA. A gene is recognized altered if at least one
of the following conditions satisfies:

• It has a non-silent somatic mutation.
• It is a well-defined oncogene or tumor suppressor.
• It happens within a CNA.

The somatic mutation profiles are sparse, that is, in each tumor,
the number of mutated genes is relatively small compared to the
total number of genes (Hofree et al., 2013; Zhang et al., 2018a). In
most machine learning techniques, sparse data cannot train the
model well (Zhang et al., 2018a), so data need to be smoothed.
One of the most effective solutions for smoothing data is the
network propagation (Hofree et al., 2013). By combining somatic
mutation profiles and gene interaction networks, we can obtain
profiles that are not sparse. Here, the protein–protein interaction
(PPI) information in the STRING database (Szklarczyk et al.,
2016) was used to create a gene interaction network. For this
purpose, the Homosapiens PPI network was obtained from the
STRING database. Then, the gene interaction network was
created from the PPI network by mapping proteins to genes.
The mutation profile of each tumor was integrated with the gene
interaction network. In fact, the entire vertices of the network
were labeled based on the mutation profile of each tumor. If a
gene is mutated, the corresponding vertex is labeled one, and
zero otherwise.

Then, in the network propagation process, a random walk
with restart was applied on the networks as Equation (1).

Di+1 = αDiA+ (1− α)D0, i = 0, 1, 2, ... (1)

The adjustment parameter α controls the amount of distance that
a mutation can be propagated in the network. The optimal value
of α varies for each network (in this study, it is subjectively set
to 0.4). The network propagation process iterates until Di+1 is
converged (i.e., ||Di+1−Di|| < 1×10−6).D0 is the original profile
of tumor mutations, which is a k × n matrix (k is the number
of tumors and n is the number of genes). Di is the modified
profile of mutations in the ith iteration. Matrix A is computed
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by A = H × D, where H = [hij] is the adjacent matrix of the
network and D = [dij] is a diagonal matrix, such that:

dij =

{
1∑
j hij

If i = j

0 Otherwise
(2)

After the convergence, Di+1 was considered as the propagated
mutation profile that has values between zero and one.

2.2. Clustering Method
To cluster propagated mutation profiles, we used DEC method
(Xie et al., 2016). Suppose we have n tumors with the feature
vectors xi in space X with m dimension that should be grouped
to k clusters with centers µj, j = 1, . . . , k. Instead of clustering
the data in the initial space X, the data are mapped to the latent
feature space Z by a nonlinear function fθ :X → Z, where θ is a
set of trainable parameters. Usually, in order to avoid the curse of
dimensionality, the dimension of Z is less than m. A deep neural
network can be used to implement fθ , because of its theoretical
function approximation characteristics (Hornik, 1991), and the
capabilities in learning features (Bengio et al., 2013).

DEC is an iterative method, which learns cluster assignments
and feature embedding simultaneously. In each iteration, the
cluster centers {µj ∈ Z}kj=1 as well as parameters θ are updated.

This algorithm consists of two parts:

1. Parameter initialization using a stacked auto-encoder (SAE)
(for θ) (Suk et al., 2015) and k-means algorithm (for
centroids).

2. Parameter optimization that contains the alternative iteration
of two steps: calculation of the auxiliary target distribution
function, and updating the parameters using minimization of
the Kullback–Leibler divergence (KLD).

In the initialization phase, the SAE is used to learn the feature
embedding in an unsupervised manner. The SAE in this paper
consists of two auto-encoders. Every auto-encoder has two layers
as follows:

u = f (w1(Dropout(x))+ b1)y = g(w2(Dropout(u))+ b2) (3)

where Dropout function (Baldi and Sadowski, 2013) randomly
sets some of input elements to zero, f is the encoder function, g
is the decoder function, wi is the weight of ith layer, and bi is the
bias of ith layer. The parameter set θ = {w1,w2, b1, b2} is learned
in order to minimize the loss function ||y − x||22. After learning
the first auto-encoder, the output of encoder (u) is regarded as
the input of the second auto-encoder.When the SAE was trained,
the feature vector xi could be embedded to the latent feature zi by
applying the first and second encoders on it.

Next, a clustering layer is added after the encoder layers to
cluster the latent features. The cluster centers (µj) are initialized
by running k-means on the latent features. The weights of the
clustering layer were initialized by cluster centers.

In the optimization part, the latent features and clustering
assignments are improved using alternating two following steps.

In the first step, the latent feature (zi) is softly assigned to cluster
center (µj) with probability qij:

qij =
(1+ ||zi − µj||

2)−1

∑
j′ (1+ ||zi − µj′ ||

2)−1
(4)

In the second step, the KLD between soft assignment distribution
(qij) and an auxiliary distribution (pij) is calculated.

KLD(P||Q) =
∑

i

∑

j

pij log
pij

qij
(5)

The auxiliary distribution is defined as:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

(6)

where fj =
∑

i qij are the soft cluster frequencies. Then,
the cluster center (µj) and latent feature (zi) are updated
in order to minimize the KLD using the stochastic gradient
descent (Bottou, 2012).

These two steps are iterated until the convergence. The
convergence criterion is satisfied when the assigned clusters to
samples in two subsequent iterations are changed in <0.001
portion of data.

We tuned hyperparameters of the model, and the best number
of neurons in the stacked auto-encoder layers was 514, 500,
200, 500, and 514, respectively. Moreover, the best number of
neurons for clustering layer was found to be 4. The scheme
of the method is presented in Figure 1. Also, the code and
material of the method are available at: https://github.com/
nrohani/MolecularSubtypes.

2.3. Finding the Best Number of Clusters
The clustering method requires the number of clusters (k) as the
input. For selecting the best number of clusters, the clustering
algorithm was implemented with different values of k. There are
some appropriate criteria to compare results and choose the best
number of clusters.

An approach to find the number of clusters is to evaluate the
clustering based on microarray-based classes (PAM50) (Parker
et al., 2009) as the prior information. For this purpose, a weighted
bipartite graph G was formed, where the nodes of one part
were the clusters of PAM50, represented by pi symbols, and the
nodes of another part were the discovered clusters, represented
by cj symbols. We weighted the edge (pi, cj), represented by vij,
which shows the number of tumors shared between the clusters
pi and cj. Moreover, the vertices pi and cj were labeled by the
their sizes, represented by li and kj, respectively. Figure 2 shows
the general scheme of such graph. After creating the graph,
the following metrics were calculated in order to find the best
number of clusters:

PPV =

∑K
j=1maxi vij

∑L
i=1

∑K
j=1 vij

(7)
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FIGURE 1 | The scheme of MSDEC (discovering Molecular Subtypes by using Deep Embedded Clustering). 1: The gene interaction network is obtained from

STRING, and the nodes in the network are labeled based on the mutation profile of tumors. Applying random walk on this network yields propagated mutation

profiles. 2: The propagated mutation profiles are mapped to a latent space. 3: A clustering layer is appended after encoder layers. The cluster centroids are initialized

using k-means. 4: The tumors are clustered using the auxiliary target distribution. 5: The Kullback–Leibler divergence (KLD) and reconstruction loss are calculated,

and the parameters are updated to minimize KLD and reconstruction loss.

FIGURE 2 | Bipartite graph between the method to be evaluated and PAM50.

SN =

∑L
i=1maxj vij
∑L

i=1 li
(8)

ACC =

√

SN × PPV (9)

Brohee and Van Helden (2006) have introduced these criteria.
ACC is the geometric mean of PPV and SN; thus, it is more
comprehensive than PPV and SN.

Another important criterion is the MMR (Brohee and
Van Helden, 2006). For calculating this criterion, graph G was
made, and the weights on the edges (vij) were calculated based on
the threshold θ and the affinity score NA(pi, cj) as follows:

vij =

{
NA(pi, cj) NA(pi, cj) ≥ θ

0 (pi, cj) < θ

(10)
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NA(pi, cj) =
|pi ∩ cj|

2

|pi||cj|
(11)

MMR was defined as follows:

MMR =

∑
vij∈Matchw(P ,C,θ) vij

|P|
(12)

whereMatchw(P , C, θ) is the maximum weighted matching of G.
The discussed criteria compare the methods qualitatively.

Another approach for comparison is the quantitative evaluation.
We constructed a graph similar to the graph made for
computing MMR. Then, we ignored the weight of the edges. Let
Match(P , C, θ) to be the maximum non-weighted matching of
this graph. Maddi et al. (2019) have introduced the following set
of criteria:

N+

p = |{pi | ∃cj, NA(pi, cj) ≥ θ , (pi, cj) ∈ Match(P , C, θ)}|

(13)

N+

c = |{cj | ∃pi, NA(pi, cj) ≥ θ , (pi, cj) ∈ Match(P , C, θ)}|
(14)

Precision+ =

N+
p

|P|
(15)

Recall+ =
N+
c

|C|
(16)

F −measure+ =
2× Precision+ × Recall+

Precision+ + Recall+
(17)

F − measure+ is the harmonic mean of Precision+ and Recall+;
thus, F − measure+ is more meaningful than Precision+ and
Recall+. All the mentioned criteria are in the [0, 1] range.

One of the most comprehensive criteria in this issue is the
AUMF (Maddi et al., 2019), which combines qualitative and
quantitative attitudes. In fact, in this criterion the area under
the curve (MMR + Fmeasure+, θ) is considered as a clustering
measure called AUMF, which is in the [0, 2] range.

We executed DEC with the different numbers of clusters, and
the results show that the best number of clusters is four (see
Supplementary Figures 1, 2). Also, to evaluate the performance
of the DEC method, this method was compared with other
popular and common clustering methods such as hierarchical
clustering (HC), k-means clustering, and spectral clustering
(SPC) (Von Luxburg, 2007). DEC achieved better performance
in comparison with other clustering methods.

2.4. Supervised Classification for New
Tumors
Using the discovered breast cancer subtypes, we labeled each
tumor with its discovered subtype and proposed a supervised
classifier to understand how accurate the subtypes of new breast
tumors can be predicted based on their somatic mutations. With
this classifier, one can predict the subtype of a new patient using
the somatic mutation profile as input. Five common machine
learning classifiers were executed, namely, RF, support vector

machine (SVM), multi-layer perceptron (MLP), naïve bayes
(NB), and k-nearest neighbors (KNN) to classify the tumors into
k subtypes {Ci}

k
i=1.

Due to the best results of RF (see section 3.6) in the supervised
classification of tumors as well as its efficient application in
feature selection, the RF was used to find important genes for
classification. After training the RF, the importance of features
can be calculated by considering the effect of using the features
in reducing loss function (in this study, we used the Gini index
as the loss function). In other words, the feature importance
is the average reduction in loss function that induced by that
feature. Then, the features with the importance of more than 0.01
were selected. The selected genes have the highest importance in
detecting breast cancer subtypes.

3. RESULTS

After clustering tumors usingMSDECmethod, four clusters were
obtained with the following sizes:

• Subtype 1 (Primary subtype): 182 tumors,
• Subtype 2 (Progressive subtype): 82 tumors,
• Subtype 3 (Proliferous subtype): 499 tumors,
• Subtype 4 (Perilous subtype): 98 tumors.

Figure 3 shows the illustration of the MSDEC subtypes. To
visualize the tumors based on their mutation profile in a 2D
space, we used principal component analysis (PCA) and obtained
the first two principal components. Therefore, each tumor with a
vector of length n representing the mutation status of the genes
can be mapped to a 2D space using the first and second principal
components. In Figure 3, the tumors are colored based on their
assigned subtypes using MSDEC. It can be seen that the subtypes
assigned by MSDEC are highly separable in this space. Precisely,
all the tumors belonging to Proliferous subtype (green circles) are
located at left, then Primary tumors (purple circles) are located
at the right of them. The Perilous tumors are placed at the left
side of Primary tumors. Moreover, Progressive tumors are settled
at the right of the figure. The location of each subtype is specified
and can be separated easily from the other subtypes. This figure
shows that MSDEC subtypes have high separability.

To further investigate the discovered subtypes, we conducted
the following evaluations.

3.1. Finding the Gene Signature for Each
Subtype
One of the efficient evaluations is finding influential genes in
each subtype. This evaluation is essential in two ways. First, it
is possible to examine the biological significance of the clustering
method; second, these genes can be considered as the candidates
for the therapeutic purposes in each subtype’s patients. For this
purpose, the Fisher’s exact test was used to find each subtype’s
gene signature. In the gene signature list, the top 50 genes
with the p-value lower than 0.05 were considered and shown
in Supplementary Figures 3–6. By investigating the top genes,
one can conclude that the subtypes’ key genes are different; thus,
these genes can be suitable clues for choosing the treatment for
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FIGURE 3 | Visualization of MSDEC subtypes based on the somatic mutation profile of tumors. The axes are the first two principal components of propagated

mutation profiles.

the patients in each subtype. The gene interaction subnetwork of
each subtype is obtained by enriching the subtype’s gene signature
into STRING database. The subnetwork of each subtype is
illustrated in Supplementary Figure 7.

Many vital genes were found in the gene signature of the
Primary subtype. One of them is CDH1, which produces E-
cadherin protein. This protein is responsible for cell adhesion.
Lacking E-cadherin allows the cancer cells to detach quickly
and spread over the body and metastasize1. CBFB is another
significant gene for Primary subtype. It encodes a transcription
factor, which makes a complex by attaching to RUNX12. This
complex can transcriptionally repress the oncogenic NOTCH
signaling pathway (Malik et al., 2019). TBX3 is a substantial
gene in Primary subtype, which is needed for normal breast
development3. Previous studies have shown that TBX3 leads to
cell proliferation and suppresses apoptosis. TBX3 is regarded as
a biomarker for breast cancer and has high importance in breast
cancer diagnosis and treatment (Yarosh et al., 2008; Krstic et al.,

1Genetics Home References, CDH1 gene, URL: https://ghr.nlm.nih.gov/gene/

CDH1#normalfunction (accessed March 7, 2020).
2Genetics Home References, CBFB gene, URL: https://ghr.nlm.nih.gov/gene/

CBFB#synonyms (accessed March 7, 2020).
3Genetics Home References, TBX3 gene, (Yarosh et al., 2008).

2016). Another important gene in Primary subtype is CTCF,
which encodes a transcription factor called zinc-finger. Studies
have indicated that the mutation in CTCF is associated with the
onset of breast cancer, prostate cancer, and Wilms’ tumors (Oh
et al., 2017), suggesting that this subtype mainly contains the
tumors in early stages.

Many important genes such as ERBB2, TP53, BRAF, and
GNAS are presented in the gene signature of the Progressive
subtype. One of the driver genes in breast cancer is ERBB2,
which is an indicator of tumor invasion (Revillion et al.,
1998). Mutations and overexpression of this oncogene show
the tendency of a tumor mass to become invasive, which may
lead to the poor prognosis. The BRAF gene encodes a protein
that helps transmit chemical signals from outside the cell to
the cell’s nucleus. This protein is responsible for regulating cell
growth, proliferation, differentiation, migration, and apoptosis.
Somatic mutations in this oncogene are prevalent in numerous
cancers such as breast cancer, leading to the growth of cancerous
cells4. The TP53 gene also is mutated in about 20 − −40% of
breast cancer patients. It is useful to note that the mutation

4Targeted Cancer Care, BRAF gene, URL: http://targetedcancercare.massgeneral.

org/My-Trial-Guide/Diseases/Breast-Cancer/BRAF.aspx (accessed March 7,

2020).
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frequency is higher in patients with recurrent breast cancer
(Norberg et al., 2001). Another essential gene for Progressive
subtype is GNAS. The GNAS gene encodes the stimulatory alpha
subunit of the G protein complex, which triggers a complicated
network of signaling pathways that affect multiple cell functions
by regulating the activity of hormones. This gene is known to be
mutated in 0.74% of all cancers such as breast invasive ductal
carcinoma, colon adenocarcinoma, lung adenocarcinoma, and
rectal adenocarcinoma, in which invasive breast carcinoma has
the highest frequency of mutations5. Therefore, the Progressive
subtype is more invasive because its significant genes are
mostly mutated in invasive cancers. The probability of the poor
prognosis and metastasis may be high in this subtype.

The Proliferous subtype contains many important genes, such
as NOTCH, KRAS, PTEN, and WHSC1L1. The NOTCH family
genes, including NOTCH1,NOTCH2,NOTCH3, and NOTCH4,
are highly expressed in breast cancer patients. These genes
play an important role in the differentiation, proliferation,
and cell cycle (Wang et al., 2011). About 80% of cancers
have estrogen receptors, which are treated with anti-estrogen
drugs. One of the leading causes of death in such patients
is their resistance to anti-estrogen drugs. Estrogen pathways
have a positive association with anti-estrogen drug resistance
in ER-positive breast cancers by suppressing NOTCH1 (Hao
et al., 2010). The KRAS gene produces the K − Ras protein,
which affects cell proliferation, differentiation, and apoptosis6.
The mutations of KRAS cause the production of abnormal
K − Ras protein that leads to uncontrolled cell proliferation.
Somatic mutations in this oncogene are substantial in different
cancers, including breast cancer, papillary thyroid carcinoma
(PTC), oral squamous cell carcinoma (OSCC), and gastric cancer
(Sanaei et al., 2017).WHSC1L1 provides instructions for making
histone − lysineN − methyltransferase NSD3 enzyme. It may
involve in carcinogenesis, which is amplified in several cancers
such as lung cancer and head and neck cancer7. Previous studies
have suggested a close relation betweenWHSC1L1 mutation and
breast cancer initiation and progression. The mutatedWHSC1L1
is regarded as a candidate target for the treatment of breast cancer
(Liu et al., 2015). PTEN gene encodes a tumor suppressor, which
suppresses rapid and uncontrolled cell division. It also controls
cell migration and adhesion. Somatic mutations of PTEN lead to
the uncontrolled growth and division of cancerous cells. These
mutations are involved in breast cancer (Zhang et al., 2013).
Previous studies have shown that mutation in PTEN is a factor
of resistance to trastuzumab (Herceptin) drug, which is used for
the treatment of breast cancer8.

Many essential genes are found among the gene signature
of Perlious subtype such as MYC, ITSN1, KDM5C, and TEP1.
One of the critical regulators of cell growth, proliferation,

5My Cancer Genome, GNAS gene, URL: https://www.mycancergenome.org/

content/gene/gnas (accessed March 7, 2020).
6Genetics Home References, KRAS gene, URL: https://ghr.nlm.nih.gov/gene/

KRAS (accessed March 7, 2020).
7Cancer Genetics Web, NSD3 gene, URL: http://www.cancerindex.org/geneweb/

WHSC1L1.htm (accessed March 7, 2020).
8Genetics Home References, PTEN gene, URL: https://ghr.nlm.nih.gov/gene/

PTEN#conditions (accessed March 7, 2020).

metabolism, differentiation, and apoptosis isMYC. Mutations of
this gene have many roles in the development and progression
of breast cancer, activation of oncogenes, and inactivation
of tumor suppressors (Xu et al., 2010). TEP1 is one of the
telomeres length genes that is linked with cancer (Pellatt
et al., 2013). Previous studies have provided evidence for the
relation of mutations in TEP1 and breast cancer (Savage et al.,
2007). ITSN1 provides instructions for making a cytoplasmic
membrane-associated protein. It is associated with the actin
cytoskeleton reconstruction in breast cancer (Xie et al., 2019).
KDM5C controls the transcription and chromatin remodeling
regulation. TCGA has identified KDM5C mutation as a cancer
driver mutation in the genes encoding the histone demethylases.
Studies on oncometabolite have shown that the KDM5C is
involved in cancer-related metabolic reprogramming and the
tumor suppression (Chang et al., 2019). Thus, mutations of
this oncogene are associated with tumor progression. It is
mutated in 0.22% of all cancers, such as breast invasive ductal
carcinoma, lung adenocarcinoma, prostate adenocarcinoma,
and high-grade ovarian serous adenocarcinoma. Among these
cancers, mutations of KDM5C are the most prevalent in invasive
breast carcinoma9.

3.2. Survival Analysis
We used Kaplan–Meier estimator (Kleinbaum and Klein, 2012)
for survival analysis in each subtype, which is shown in Figure 4.
The horizontal axis is the time after diagnosis, and the vertical
axis represents the percentage of patients. The percentage of
patients that are survived after specific days are plotted, and
colored lines link the patients with the same subtype. The lower
plot of survival demonstrates the more hazardous subgroup
of people.

It was mentioned in section 3.1, that Progressive subtype is
invasive, due to the set of significant genes in this subtype. This
issue is consistent with survival analysis. It can be seen that the
Progressive subtype has the lowest survival.

Moreover, the cox hazard regression was computed for
further survival analysis. The diagram of cox hazard regression
is presented in Supplementary Figure 8. To examine the
significance of subtypes in predicting the patient’s survival, chi-
squared test was used, which shows that subtype is an essential
feature in cox hazard regression (p = 0.00475). This analysis
indicates that MSDEC subtypes have a significant correlation
with the hazard rate.

3.3. Protein Complexes Analysis
We investigated the essential protein complexes in each subtype
because most of the cell activities are carried out by protein
complexes. The gene signature of each subtype was entered to the
iRefWeb (Turner et al., 2010) website; then, the sorted complexes
of each subtype were obtained (see Supplementary Tables 1–4).
More information on these complexes is available in the
CORUM database (Ruepp et al., 2009). Figures 5A–D visualizes
five protein complexes in the Primary, Progressive, Proliferous,

9My Cancer Genome, KDM5C gene, URL: https://www.mycancergenome.org/

content/gene/kdm5c (accessed March 7, 2020).
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FIGURE 4 | Kaplan–Meier survival diagram. Each line shows the percentage of survived patients with a subtype of breast cancer after a specific time.

and Perilous subtypes, respectively. The nodes of these graphs
represent the proteins that are involved in five complexes,
which are obtained from CORUM database (Ruepp et al., 2009).
The interactions between proteins were obtained from STRING
database (Szklarczyk et al., 2016) and were shown by the edges
in these graphs. The numbers beside the nodes represent the
complexes that the protein are cooperating in them. Moreover,
the nodes are colored based on their complexes.

One of the notable complexes in the Primary subtype is
the p27 − cyclinE − CDK2 complex, which contains two
CDK2 and CDKN1B genes. This complex is involved in
cell cycle regulation, cell cycle control, and DNA processing.
One of the crucial regulators of the cell cycle is CDKN1B,
which inhibits G1/S by clinging to CDK2 and suppressing it.
Overexpression of CDKN1B gene in specific cancer cells prevents
DNA replication and tumorigenesis, whereas its deficiency plays
an inhibitory role in human cancers and decreases the chance for
developing breast, prostate, colon, lung, and esophagus cancers
(Xu et al., 2007).

BRCC complex includes the genes BRCA1, BRCA2, BRCC3,
RAD51, and BRE, which is among the influential complexes
in the Progressive subtype. The function of the BRCA1 gene
in DNA repair and cell cycle control in response to DNA
damage is regulated by other complexes. Interaction of BRCA1
with RAD51 has a direct impact on the double-strand breaks

of DNA (Christou and Kyriacou, 2013). Not only has ERCC
complex a direct interaction with TP53 in the destruction of
DNA, but also it causes the displacement of DNA. Recently,
the expressions of two new members of the complex, namely
BRCC36 and BRCC45, have been discovered in breast cancer cells
(Dong et al., 2003).

The set of TBL1X, HDAC3, and NCOR2 genes together make
the SMRT complex, which plays a vital role in Proliferous tumors.
The SMRT complex is both an activator and a suppressor of
the estrogen receptor-α (ER − α), which its overexpression in
breast cancer can make therapeutic outcomes more complicated.
The activity of this complex inhibits the regulated cell death
using the genes involved in apoptosis. This complex activates
the anti-apoptotic genes and suppresses the pro-apoptotic genes.
Thus, by activating multiple pathways, this complex leads to
the progression and proliferation of breast cancer with declining
apoptosis (Blackmore et al., 2014).

ESR1 − MDM4 complex that is consisted of two genes ESR1
and MDM4 proteins is essential in the Perlious subtype. The
estrogen hormone receptor ESR1 is a nuclear hormone receptor
that is expressed in approximately 70% of patients with breast
cancer (Stanford et al., 1986). The expression of MDM4 gene is
positively correlated with the expression of ERα in primary breast
tumors. Also, ERα enhances the expression of MDM2 (Baunoch
et al., 1996).
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FIGURE 5 | The protein–protein interaction (PPI) networks of protein complexes in discovered subtypes. The proteins assigned to the same complex are shown with

the same color and labeled with the same number. (A) Five protein complexes in Primary subtype. (B) Five protein complexes in Progressive subtype. (C) Five protein

complexes in Proliferous subtype. (D) Five protein complexes in Perilous subtype.

3.4. Clinical Examination
We investigated the relationship between each subtype and
the clinical features such as ER status, PR status, HER2

status, TP53 status, and histopathological subtypes using the
chi-squared test. The contingency tables of these analyses
are shown in Supplementary Figures 9–13. The MSDEC
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subtypes have a significant correlation with the mentioned
clinical features.

Supplementary Figure 9 shows the relation of the ER status
with the MSDEC subtypes (p < 2.2E − 16 by chi-squared test
and p = 1E− 06 by Fisher’s exact test). By considering the results
of two tests, it can be concluded that the ER status of tumors is not
significantly independent of theMSDEC subtypes. Thus,MSDEC
subtypes are related to this clinical factor.Moreover, it can be seen
that the majority of tumors in Primary and Proliferous subtypes
are mostly ER-positive.

The contingency table in Supplementary Figure 10, shows
the relationship of the PR status with MSDEC subtypes. The p-
values of the chi-squared test and Fisher’s exact test on this table
were 2.2E− 16 and 1E− 06, respectively. Therefore, the MSDEC
subtypes are not significantly independent of the PR status of
patients. The rate of PR positive is higher than PR negative in
the Primary and Proliferous subtypes, while most tumors in the
Progressive and Perlious subtypes are PR negative.

The contingency table in Supplementary Figure 11, was
constructed to examine the association of HER2 status with
the MSDEC subtypes. The p-values of the chi-squared test and
Fisher’s exact test in this table were 1.445E − 07 and 1E − 06,
respectively, which indicate a significant relationship between the
clinical status of HER2 and the MSDEC subtypes. It can also be
carefully deduced from this table that the Primary and Proliferous
subtypes are significant HER2 negative.

The contingency table that indicates the relation of
the TP53 status with MSDEC subtypes is shown in
Supplementary Figure 12. The p-values of the chi-squared
test and Fisher’s exact test on this table were 2.2E−16. Therefore,
the MSDEC subtypes are not significantly independent of the
TP53 mutations in patients. One of the interesting points in this
table is the low rate of TP53 mutations in Proliferous and Primary
subtypes, which indicates a noninvasive and better diagnostic
status for Primary and Proliferous tumors. Thus, the Primary and
Proliferous subtypes include tumors that have a better prognosis.
In the Progressive and Perilous subtypes, the mutations pattern
of TP53 is reversed, and its mutated state is more prevalent than
its wild type.

We examined the association of the MSDEC subtypes
with the histopathological subtypes. The distribution of
these two variables in relation to each other is shown in
Supplementary Figure 13, which has p = 0.0001615 by the
chi-squared test and p = 5.4E − 05 by the Fisher’s exact test. As
a result, there is strong evidence for the significant correlation
between the two types of classification.

On the whole, the characteristics of the MSDEC subtypes can
be summarized as follows.

Primary and Proliferous subtypes are consisted of tumors that
are ER+ and PR+. The higher rate of PR positive than PR
negative in the Primary and Proliferous subtypes indicate that
most tumors in these two subtypes are luminal tumors. It can also
be carefully deduced from the Supplementary Figure 11 that the
Primary and Proliferous subtypes are significantly negative for
HER2. These tumors have wild-type TP53, and one of their most
significant genes is CDH1.

Moreover, Progressive and Perilous subtypes mostly contain
tumors that are PR−. TP53, ERBB2, BRCA1, and MYC are the
significant genes in Progressive and Perilous subtypes. Mutations
of the BRCA1 and MYC genes exacerbate breast cancer (Xu
et al., 2010). Additionally, high rate of TP53 mutations in these
subtypes suggest that the Progressive and Perilous subtypes may
have poor diagnostic status.

3.5. Comparison Between MSDEC and
PAM50 Subtypes
We compared the MSDEC subtypes from somatic mutation
with PAM50 subtypes obtained from micro-array data; thus,
the following evaluations were conducted to investigate their
similarities and differences.

The contingency table in Supplementary Figure 14 shows
the intersection of tumors between the MSDEC subtypes and
PAM50 subtypes. It is noteworthy that this table is not static
since the assignment of tumors to PAM50 subtypes changes
dynamically (Pusztai et al., 2006; Gusterson, 2009; Weigelt et al.,
2010; Vural et al., 2016). The dependency of these two clusterings
was evaluated by using chi-squared test, which yielded p < 2.2E−
16, and Fisher’s exact test, which led to p = 1E − 06. Moreover,
the composition for each subtype with ER+/–, PR+/–, HER2+/–,
and TP53 (mutated/wild type), and the PAM50 is visualized in
Figures 6A,B, respectively.

Among the PAM50 subtypes, luminal A and luminal B are
HER2 negative and ER positive. These tumors have a good
prognosis and long survival. These subtypes are most similar
to Primary and Proliferous subtypes due to the status of ER,
HER2, and based on their prognosis and survival. Moreover,
Primary and Proliferous tumors have wild-type TP53. One of
their most significant genes is CDH1, which is highly expressed
in the luminal A and luminal B subtypes, while it has low
activity in HER2 − positive and basal − like subtypes (Zaha
et al., 2019). However, the higher rate of PR positive than PR
negative in the Primary and Proliferous subtypes may differ from
LuminalB tumors.

Moreover, basal − like and HER2 subtypes mostly contains
tumors that are PR−, which suggest that these two subtypes are
more similar to Progressive and Perilous tumors. TP53, ERBB2,
BRCA1, and MYC are the significant genes in Progressive and
Perilous subtypes. Mutations of the BRCA1 and MYC genes
exacerbate breast cancer (Xu et al., 2010). The MYC gene is
highly expressed in the basal − like subtype of breast cancer,
which is being targeted for treatment in these patients. Given
the poor diagnostic status and high rate of TP53 mutations in
the basal − like and HER2 subtypes, one can conclude that the
Progressive and Perilous subtypes are related to the basal − like
and HER2 subtypes (Xu et al., 2010).

To sum up, the Primary and Proliferous mostly contain
luminal A and luminal B tumors, while the majority of tumors
in Progressive and Perilous subtypes are HER2 − positive and
basal − like. It is noteworthy that although the majority of
tumors in Primary and Proliferous are luminal A and luminal B,
numerous HER2 − positive and basal − like tumors are
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FIGURE 6 | The composition of ER+/-, PR+/-, HER2+/-, and mutant or

wild-type TP53 in MSDEC and PAM50 subtypes. (A) The number of tumors

with ER+/-, PR+/-, HER2+/-, and mutant or wild-type TP53 in each MSDEC

subtypes. (B) The number of tumors with ER+/-, PR+/-, HER2+/-, and mutant

or wild-type TP53 in each PAM50 subtypes.

included in these two subtypes. A similar issue is true for
Progressive and Perilous subtypes. Thus, the MSDEC subtypes
are not fully matched with PAM50 subtypes. It is worth
mentioning that PAM50 subtypes were obtained by clustering
microarray data, whereas the MSDEC subtypes are the results
of clustering the mutation profiles. Since applying different
unsupervised methods on different features yield different
results, it is obvious that the MSDEC and PAM50 subtypes are
not the same.

To compare the separability of subtypes identified by MSDEC
and PAM50, we visualized the PAM50 subtypes in 2D space.
To this aim, we used PCA to reduce the dimension of data
and colored the tumors based on their subtypes. For the sake
of simplicity in comparing subtypes identified by MSDEC and
PAM50, we first applied PCA on the mutation profile of tumors,

used the first two principal components to visualize the tumors,
and colored them based on the PAM50 subtypes. Figure 7A
shows the illustration of the PAM50 subtypes based on somatic
mutation. One can figure out by the comparison of Figures 3A,
7 that the location of tumors are the same in these figures,
while having different color scheme, one based on MSDEC and
another based on PAM50 subtypes. In spite of Figure 3 that
shows high separation in the MSDEC subtypes, the PAM50
subtypes in Figure 7A do not have favorable separation and
all the subtypes seems to be mixed up in 2D space. Moreover,
since PAM50 is clustering tumors based on gene expression,
we plotted the tumors on the 2D space based on the first
two principal components of the gene expression profiles to
have a fair notion of the visualization of PAM50 subtypes.
Figure 7B shows the illustration of PAM50 clusters based on
gene expression. Same as in Figure 7A, the other illustrations
of PAM50 subtypes in Figure 7B does not demonstrate high
separability.

Moreover, we computed the silhouette criterion for assessing
MSDEC and PAM50 clustering quantitatively. The silhouette
criterion measures the difference between the similarity of a
tumor to its own cluster (cohesion) compared to its similarity
to other clusters (separation). The value of this criterion ranges
from −1 to +1. The higher the silhouette, the better tumors
are matched to their own clusters rather than other clusters.
For a tumor i in cluster Ck, the silhouette value is computed as
formula 18.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(18)

where a(i) and b(i) are the cohesion and separation values for
tumor i, which are calculated as follows:

a(i) =
1

|Ck| − 1

∑

j 6=i,j∈Ck

d(i, j) (19)

b(i) = min
l 6=k

1

|Cl|

∑

j∈Cl

d(i, j) (20)

d(i, j) is the Euclidean distance between tumors i and j.
The silhouette criterion for a clustering method is computed
by averaging the s(i) values over all tumors. This criterion
demonstrates that how tightly are the tumors in a cluster and
how far are the tumors in diverse clusters. Therefore, this can
be a measure for assessing the appropriateness of clustering
methods. The computed silhouette criterion for MSDEC was
0.07011, while the computed silhouette criterion for PAM50
clusters based on gene expression and mutation profiles was
0.00956 and−0.00577, respectively. Comparison of the silhouette
for MSDEC and PAM50 shows that MSDEC yields more
appropriate subtypes.

3.6. Evaluation of Supervised Methods
Five classifiers, namely, RF, SVM, MLP, KNN, and NB, were
compared using tenfold cross-validation. In tenfold cross-
validation, the whole set of tumors was randomly divided into
ten subsets with almost the same size. Then, one subset was
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FIGURE 7 | Visualization of PAM50 subtypes based on somatic mutation and gene expression profiles of the tumors. (A) Visualization based on somatic mutation

profiles. The axes are the first two principal components of the propagated mutation profiles. (B) Visualization based on gene expression profiles. The axes are the first

two principal components of gene expression profiles.

put aside, and the model was trained with nine other subsets
and evaluated with the remaining subsets. This process was
repeated, such that each of the ten subsets was considered as
the test data once. In this study, the tenfold cross-validation was
repeated 100 times, and the average performance of the model
was reported. The performance of the model was measured
by standard evaluation criteria such as Accuracy, Sensitivity,
Precision, F-measure, and AUC.

Accuracy =

∑k
i=1

TPi+TNi
TPi+TNi+FPi+FNi

k
(21)

Precision =

∑k
i=1 TPi∑k

i=1(TPi + FPi)
(22)

Recall =

∑k
i=1 TPi∑k

i=1(TPi + FNi)
(23)

F −measure =
2 · Precision · Recall

Precision+ Recall
(24)

where TPi, TNi, FPi, and FNi stand for the number of True
Positives, True Negatives, False Positives, and False Negatives
of class {Ci}

k
i=1. Since the values of Accuracy, Precision, Recall,

and F-measure are dependent on the value of a threshold, we
also evaluated methods using AUC, which is the area under the
receiver operating characteristic (ROC) curve. The ROC curve
plots True Positive Rate (TPR) vs. False Positive Rate (FPR). For
each class i, AUCi is the area under the curve plotting TPRi vs.
FPRi. Moreover, AUC for all classes is the area under the ROC
curve of all classes, which is plotted with two approaches, namely,
micro_average and macro_average. In micro_average, the ROC

curve plots TPRmicro vs. FPRmicro, while in macro_average, the
ROC curve plots TPRmacro vs. FPRmacro. AUC criterion indicates
the efficiency of methods independent of the threshold value.

TPRi =
TPi

TPi + FNi
(25)

FPRi =
FPi

FPi + TNi
(26)

TPRmacro =

∑k
i=1 TPRi

k
(27)

FPRmacro =

∑k
i=1 FPRi

k
(28)

TPRmicro =

∑k
i=1 TPi∑k

i=1 TPi + FNi

(29)

FPRmicro =

∑k
i=1 FPi∑k

i=1 FPi + TNi

(30)

According to Supplementary Figure 15, NB method has the
worst performance, and SVM, KNN, and MLP have average
performances. The best method with regard to all criteria is the
RF with AUC of 99%, Accuracy of 86%, Precision of 90%, Recall
of 85%, and F-measure of 87%, which has achieved great results.
It can be concluded that the discovered subtypes by MSDEC
method are separable; also, these subtypes can be predicted only
by receivingmutations of 16 important genes for new tumors that
were obtained using RF. The 16 important genes is as follows:
AKT2,CARD11, EIF4A2, FLNA,HNF1A, IDH2, LAMA1, LTBP1,
MAP2K1,NCOR2,NOS2, PPP1R12A, PTPRU, SMC1A,TPR, and

Frontiers in Genetics | www.frontiersin.org 12 November 2020 | Volume 11 | Article 553587252

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rohani and Eslahchi MSDEC

UPF3B. The mutational frequency of 16 important genes in each
subtype is shown in Supplementary Figure 16. Figure 8 shows
the ROC curves of the RF classifier for each subtype. The value of
AUC is excellent for each subtype and very close to one. However,
the value of AUC for the Proliferous subtype is equal to one,
which indicates that the model fits well on the tumors of the
Proliferous subtype.

3.7. GSEA Enrichment
To find a family of genes that are related to cancer, we enriched
the gene signature of each subtype (see Supplementary Material)
by Gene Set Enrichment Analysis (GSEA) tool (Subramanian

et al., 2005). We recognized that the most of these genes belong
to transcription factor and protein kinase gene families, which are
known to be associated with the progression of breast cancer. The
results are described in Supplementary Figures 17–20. Besides,
Figure 9 shows the GSEA enrichment of 16 important genes,
obtained using RF. It verifies that many of these genes are the
most important genes in cancer.

4. DISCUSSION

Cancer is a heterogeneous disease; so, accurate classification
of cancer is crucial to find the appropriate treatment. Recent

FIGURE 8 | Area under the ROC curves of the random forest (RF).

FIGURE 9 | GSEA enrichment of 16 important genes. The numbers show how many of important genes are incorporated in each family.
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advances in molecular biology have provided high-quality and
diverse data for the researchers. Recently, somatic mutation has
attracted much attention in molecular cancer subtypes detection
because it is more stable than other types of data and is commonly
used for cancer treatment due to a large number of guidelines
for single-gene mutations. In this study, the novel breast cancer
molecular subtypes were presented using the profile of somatic
mutations. Four discovered subtypes were obtained using
network propagation with DEC. To analyze the characteristics of
tumors in each subtype, we conducted numerous experiments,
including finding gene signatures, protein complexes, gene
families, and clinical features.

The results show that the Primary and Proliferous subtypes
are mainly ER+, PR+, HER2−, and wild-type TP53; however,
they have different important gene signature and protein
complexes. Also, both of these subtypes contain the early
stage and noninvasive tumors; the tumors in Primary have
a higher probability of survival. Moreover, Progressive and
Perlious subtypes are mainly PR− and have mutated TP53 gene.
Numerous tumor suppressors and oncogenes were found in
the gene signature of these two subtypes suggesting that these
subtypes contain invasive tumors. It is noteworthy that these
subtypes are different in terms of crucial protein complexes
and gene signature. Moreover, the Perlious tumors have a lower
probability of survival.

The RF classification algorithm was used for supervised
classification to detect subtypes for new breast cancer patients.
Also, 16 critical genes were identified using RF that can be
used for detecting breast cancer subtypes of new tumors.
Consequently, the MSDEC subtypes obtained from somatic
mutations were clinically meaningful and provide an informative

insight into molecular subtype diagnosis and suggesting efficient
clues for cancer treatment.

For future research, we intend to use the proposed method
to detect subtypes of other cancers, such as glioblastoma.
Moreover, we aim to use other data such as gene expression
and methylation features of tumors for finding more appropriate
subtypes. Furthermore, we propose to examine the importance of
each data in detecting cancer subtypes.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://github.com/nrohani/MolecularSubtypes.

AUTHOR CONTRIBUTIONS

NR and CE conceived the analysis. NR implemented the method,
calculated the results, and wrote the manuscript. CE helped to
improve the paper. Both authors have read and approved the final
manuscript.

ACKNOWLEDGMENTS

All authors thank Farzaneh Rami and Fatemeh Ahmadi
Moughari for their helpful comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.553587/full#supplementary-material

REFERENCES

Ali, H. R., Rueda, O. M., Chin, S.-F., Curtis, C., Dunning, M. J., Aparicio, S. A.,

et al. (2014). Genome-driven integrated classification of breast cancer validated

in over 7,500 samples. Genome Biol. 15:431. doi: 10.1186/s13059-014-0431-1

Baldi, P., and Sadowski, P. J. (2013). “Understanding dropout,” in Advances in

Neural Information Processing Systems (Lake Tahoe, NV), 2814–2822.

Baunoch, D., Watkins, L., Tewari, A., Reece, M., Adams, L., Stack, R., et al. (1996).

MDM2 overexpression in benign and malignant lesions of the human breast.

Int. J. Oncol. 8, 895–899. doi: 10.3892/ijo.8.5.895

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review

and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.

doi: 10.1109/TPAMI.2013.50

Blackmore, J. K., Karmakar, S., Gu, G., Chaubal, V., Wang, L., Li, W., et al. (2014).

The smrt coregulator enhances growth of estrogen receptor-α-positive breast

cancer cells by promotion of cell cycle progression and inhibition of apoptosis.

Endocrinology 155, 3251–3261. doi: 10.1210/en.2014-1002

Bottou, L. (2012). “Stochastic gradient descent tricks,” in Neural Networks: Tricks

of the Trade, eds G. Montavon, G. B. Orr and K. R. Müller (Berlin; Heidelberg:

Springer), 421–436.

Brohee, S., and Van Helden, J. (2006). Evaluation of clustering algorithms

for protein-protein interaction networks. BMC Bioinformatics 7:488.

doi: 10.1186/1471-2105-7-488

Chang, S., Yim, S., and Park, H. (2019). The cancer driver genes IDH1/2,

JARID1C/KDM5c, and UTX/KDM6A: crosstalk between histone

demethylation and hypoxic reprogramming in cancer metabolism. Exp.

Mol. Med. 51, 1–17. doi: 10.1038/s12276-019-0230-6

Christou, C., and Kyriacou, K. (2013). BRCA1 and its network of interacting

partners. Biology 2, 40–63. doi: 10.3390/biology2010040

Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning,

M. J., et al. (2012). The genomic and transcriptomic architecture of

2,000 breast tumours reveals novel subgroups. Nature 486, 346–352.

doi: 10.1038/nature10983

Dong, Y., Hakimi,M.-A., Chen, X., Kumaraswamy, E., Cooch, N. S., Godwin, A. K.,

et al. (2003). Regulation of BRCC, a holoenzyme complex containing BRCA1

and BRCA2, by a signalosome-like subunit and its role in dna repair.Mol. Cell

12, 1087–1099. doi: 10.1016/S1097-2765(03)00424-6

Elston, C. W. (1999). Pathological prognostic factors in breast cancer. Crit. Rev.

Oncol. Hematol. 31, 209–223. doi: 10.1016/S1040-8428(99)00034-7

Gusterson, B. (2009). Do’basal-like’breast cancers really exist? Nat. Rev. Cancer 9,

128–134. doi: 10.1038/nrc2571

Hao, L., Rizzo, P., Osipo, C., Pannuti, A., Wyatt, D., Cheung, L. W., et al.

(2010). Notch-1 activates estrogen receptor-α-dependent transcription via

ikkα in breast cancer cells. Oncogene 29, 201–213. doi: 10.1038/onc.2

009.323

Hofree, M., Shen, J. P., Carter, H., Gross, A., and Ideker, T. (2013). Network-

based stratification of tumor mutations. Nat. Methods 10, 1108–1115.

doi: 10.1038/nmeth.2651

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural Netw. 4, 251–257. doi: 10.1016/0893-6080(91)90009-T

Hu, Z., Fan, C., Oh, D. S., Marron, J., He, X., Qaqish, B. F., et al.

(2006). The molecular portraits of breast tumors are conserved

across microarray platforms. BMC Genomics 7:96. doi: 10.1186/1471-

2164-7-96

Frontiers in Genetics | www.frontiersin.org 14 November 2020 | Volume 11 | Article 553587254

https://github.com/nrohani/MolecularSubtypes
https://www.frontiersin.org/articles/10.3389/fgene.2020.553587/full#supplementary-material
https://doi.org/10.1186/s13059-014-0431-1
https://doi.org/10.3892/ijo.8.5.895
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1210/en.2014-1002
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1038/s12276-019-0230-6
https://doi.org/10.3390/biology2010040
https://doi.org/10.1038/nature10983
https://doi.org/10.1016/S1097-2765(03)00424-6
https://doi.org/10.1016/S1040-8428(99)00034-7
https://doi.org/10.1038/nrc2571
https://doi.org/10.1038/onc.2009.323
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1186/1471-2164-7-96
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rohani and Eslahchi MSDEC

Kleinbaum, D. G., and Klein, M. (2012). “Kaplan-meier survival curves and the

log-rank test,” in Survival Analysis, eds M. Gail, K. Krickeberg, J. M. Samet, A.

Tsiatis and W. Wong (New York, NY: Springer), 55–96.

Krstic, M., MacMillan, C. D., Leong, H. S., Clifford, A. G., Souter, L. H.,

Dales, D. W., et al. (2016). The transcriptional regulator TBX3 promotes

progression from non-invasive to invasive breast cancer. BMC Cancer 16:671.

doi: 10.1186/s12885-016-2697-z

Kuijjer, M. L., Paulson, J. N., Salzman, P., Ding, W., and Quackenbush, J. (2018).

Cancer subtype identification using somatic mutation data. Br. J. Cancer 118,

1492–1501. doi: 10.1038/s41416-018-0109-7

List, M., Hauschild, A.-C., Tan, Q., Kruse, T. A., Baumbach, J., and Batra,

R. (2014). Classification of breast cancer subtypes by combining gene

expression and DNA methylation data. J. Integr. Bioinformatics 11, 1–14.

doi: 10.1515/jib-2014-236

Liu, L., Kimball, S., Liu, H., Holowatyj, A., and Yang, Z.-Q. (2015). Genetic

alterations of histone lysine methyltransferases and their significance in breast

cancer. Oncotarget 6, 2466–2482. doi: 10.18632/oncotarget.2967

Maddi, A. M., Moughari, F. A., Balouchi, M. M., and Eslahchi, C. (2019). CDAP:

An online package for evaluation of complex detection methods. Sci. Rep. 9,

1–13. doi: 10.1038/s41598-019-49225-7

Malik, N., Yan, H., Moshkovich, N., Palangat, M., Yang, H., Sanchez, V.,

et al. (2019). The transcription factor CBFB suppresses breast cancer

through orchestrating translation and transcription. Nat. Commun. 10, 1–15.

doi: 10.1038/s41467-019-10102-6

Norberg, T., Klaar, S., Lindqvist, L., Lindahl, T., Ahlgren, J., and Bergh, J.

(2001). Enzymatic mutation detection method evaluated for detection of

P53 mutations in cdna from breast cancers. Clin. Chem. 47, 821–828.

doi: 10.1093/clinchem/47.5.821

Oh, S., Oh, C., and Yoo, K. H. (2017). Functional roles of CTCF in breast cancer.

BMB Rep. 50, 445–453. doi: 10.5483/BMBRep.2017.50.9.108

Parker, J. S., Mullins, M., Cheang, M. C., Leung, S., Voduc, D., Vickery, T., et al.

(2009). Supervised risk predictor of breast cancer based on intrinsic subtypes.

J. Clin. Oncol. 27, 1160–1167. doi: 10.1200/JCO.2008.18.1370

Pellatt, A. J., Wolff, R. K., Torres-Mejia, G., John, E. M., Herrick, J. S., Lundgreen,

A., et al. (2013). Telomere length, telomere-related genes, and breast cancer

risk: the breast cancer health disparities study. Genes Chromos. Cancer 52,

595–609. doi: 10.1002/gcc.22056

Peppercorn, J., Perou, C. M., and Carey, L. A. (2007). Molecular subtypes in breast

cancer evaluation and management: divide and conquer. Cancer Invest. 26,

1–10. doi: 10.1080/07357900701784238

Perou, C.M., Sørlie, T., Eisen, M. B., Van De Rijn, M., Jeffrey, S. S., Rees, C. A., et al.

(2000). Molecular portraits of human breast tumours. Nature 406, 747–752.

doi: 10.1038/35021093

Pusztai, L., Mazouni, C., Anderson, K., Wu, Y., and Symmans, W. F. (2006).

Molecular classification of breast cancer: limitations and potential. Oncologist

11, 868–877. doi: 10.1634/theoncologist.11-8-868

Revillion, F., Bonneterre, J., and Peyrat, J. (1998). ERBB2 oncogene in human

breast cancer and its clinical significance. Eur. J. Cancer 34, 791–808.

doi: 10.1016/S0959-8049(97)10157-5

Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo,

G., et al. (2009). Corum: the comprehensive resource of mammalian protein

complexes–2009. Nucleic Acids Res. 38, D497–D501. doi: 10.1093/nar/gkp914

Sanaei, S., Hashemi, M., Eskandari, E., Hashemi, S. M., and Bahari, G.

(2017). KRAS gene polymorphisms and their impact on breast cancer risk

in an iranian population. Asian Pac. J. Cancer Prevent. 18, 1301–1305.

doi: 10.22034/APJCP.2017.18.5.1301

Savage, S., Chanock, S., Lissowska, J., Brinton, L., Richesson, D., Peplonska, B., et al.

(2007). Genetic variation in five genes important in telomere biology and risk

for breast cancer. Br. J. Cancer 97, 832–836. doi: 10.1038/sj.bjc.6603934

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001).

Gene expression patterns of breast carcinomas distinguish tumor subclasses

with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98, 10869–10874.

doi: 10.1073/pnas.191367098

Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al.

(2003). Repeated observation of breast tumor subtypes in independent

gene expression data sets. Proc. Natl. Acad. Sci. U.S.A. 100, 8418–8423.

doi: 10.1073/pnas.0932692100

Stanford, J. L., Szklo, M., and Brinton, L. A. (1986). Estrogen receptors and breast

cancer. Epidemiol. Rev. 8, 42–59. doi: 10.1093/oxfordjournals.epirev.a036295

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,

M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.

102, 15545–15550. doi: 10.1073/pnas.0506580102

Suk, H.-I., Lee, S.-W., Shen, D., Initiative, A. D. N. (2015). Latent feature

representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct.

Funct. 220, 841–859. doi: 10.1007/s00429-013-0687-3

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,

et al. (2016). The string database in 2017: quality-controlled protein–protein

association networks, made broadly accessible. Nucleic Acids Res. 45, D362–

D368. doi: 10.1093/nar/gkw937

The International Cancer Genome Consortium (2010). International network of

cancer genome projects. Nature 464, 993–998. doi: 10.1038/nature08987

Turner, B., Razick, S., Turinsky, A. L., Vlasblom, J., Crowdy, E. K., Cho,

E., et al. (2010). iRefWeb: interactive analysis of consolidated protein

interaction data and their supporting evidence. Database 2010:baq023.

doi: 10.1093/database/baq023

Von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17,

395–416. doi: 10.1007/s11222-007-9033-z

Vural, S., Wang, X., and Guda, C. (2016). Classification of breast cancer patients

using somatic mutation profiles and machine learning approaches. BMC Syst.

Biol. 10:62. doi: 10.1186/s12918-016-0306-z

Wang, J., Fu, L., Gu, F., and Ma, Y. (2011). Notch1 is involved in migration

and invasion of human breast cancer cells. Oncol. Rep. 26, 1295–1303.

doi: 10.3892/or.2011.1399

Weigelt, B., Baehner, F. L., and Reis-Filho, J. S. (2010). The contribution

of gene expression profiling to breast cancer classification, prognostication

and prediction: a retrospective of the last decade. J. Pathol. 220, 263–280.

doi: 10.1002/path.2648

Xie, C., Xiong, W., Li, J., Wang, X., Xu, C., and Yang, L. (2019). Intersectin 1

(ITSN1) identified by comprehensive bioinformatic analysis and experimental

validation as a key candidate biological target in breast cancer. OncoTargets

Ther. 12, 7079–7093. doi: 10.2147/OTT.S216286

Xie, J., Girshick, R., and Farhadi, A. (2016). “Unsupervised deep embedding for

clustering analysis,” in International Conference on Machine Learning (Vienna),

478–487.

Xu, J., Chen, Y., and Olopade, O. I. (2010). MYC and breast cancer. Genes Cancer

1, 629–640. doi: 10.1177/1947601910378691

Xu, S., Abbasian, M., Patel, P., Jensen-Pergakes, K., Lombardo, C. R.,

Cathers, B. E., et al. (2007). Substrate recognition and ubiquitination of

SCFSKP2/CKS1 ubiquitin-protein isopeptide ligase. J. Biol. Chem. 282, 15462–

15470. doi: 10.1074/jbc.M610758200

Yarosh, W., Barrientos, T., Esmailpour, T., Lin, L., Carpenter, P. M., Osann,

K., et al. (2008). TBX3 is overexpressed in breast cancer and represses

P14ARF by interacting with histone deacetylases. Cancer Res. 68, 693–699.

doi: 10.1158/0008-5472.CAN-07-5012

Zaha, D. C., Jurca, C. M., Bungau, S., Cioca, G., Popa, A., Sava, C., et al. (2019).

Luminal versus non-luminal breast cancer CDH1 immunohistochemical

expression. Rev. Chim. 70, 465–469. doi: 10.37358/RC.19.2.6936

Zhang, H.-Y., Liang, F., Jia, Z.-L., Song, S.-T., and Jiang, Z.-F. (2013). PTEN

mutation, methylation and expression in breast cancer patients. Oncol. Lett. 6,

161–168. doi: 10.3892/ol.2013.1331

Zhang,W., Flemington, E. K., and Zhang, K. (2018a). Driver gene mutations based

clustering of tumors: methods and applications. Bioinformatics 34, i404–i411.

doi: 10.1093/bioinformatics/bty232

Zhang, W., Ma, J., and Ideker, T. (2018b). Classifying tumors by

supervised network propagation. Bioinformatics 34, i484–i493.

doi: 10.1093/bioinformatics/bty247

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Rohani and Eslahchi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 15 November 2020 | Volume 11 | Article 553587255

https://doi.org/10.1186/s12885-016-2697-z
https://doi.org/10.1038/s41416-018-0109-7
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.18632/oncotarget.2967
https://doi.org/10.1038/s41598-019-49225-7
https://doi.org/10.1038/s41467-019-10102-6
https://doi.org/10.1093/clinchem/47.5.821
https://doi.org/10.5483/BMBRep.2017.50.9.108
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.1002/gcc.22056
https://doi.org/10.1080/07357900701784238
https://doi.org/10.1038/35021093
https://doi.org/10.1634/theoncologist.11-8-868
https://doi.org/10.1016/S0959-8049(97)10157-5
https://doi.org/10.1093/nar/gkp914
https://doi.org/10.22034/APJCP.2017.18.5.1301
https://doi.org/10.1038/sj.bjc.6603934
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1073/pnas.0932692100
https://doi.org/10.1093/oxfordjournals.epirev.a036295
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1007/s00429-013-0687-3
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1038/nature08987
https://doi.org/10.1093/database/baq023
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1186/s12918-016-0306-z
https://doi.org/10.3892/or.2011.1399
https://doi.org/10.1002/path.2648
https://doi.org/10.2147/OTT.S216286
https://doi.org/10.1177/1947601910378691
https://doi.org/10.1074/jbc.M610758200
https://doi.org/10.1158/0008-5472.CAN-07-5012
https://doi.org/10.37358/RC.19.2.6936
https://doi.org/10.3892/ol.2013.1331
https://doi.org/10.1093/bioinformatics/bty232
https://doi.org/10.1093/bioinformatics/bty247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	ComputationalMethods in Inferring Cancer Tissue-of-Origin and Cancer MolecularClassification, Volume I
	Table of Contents
	Editorial: Computational Methods in Inferring Cancer Tissue-of-Origin and Cancer Molecular Classification
	Author Contributions
	Funding

	Screening of Methylation Signature and Gene Functions Associated With the Subtypes of Isocitrate Dehydrogenase-Mutation Gliomas
	Introduction
	Materials and Methods
	Data Sources
	Feature Selection
	Supervised Classifiers
	GO- and KEGG-Based Enrichment Analysis
	Performance Evaluation

	Results
	Discussion
	Genes Associated With Glioma Subclasses
	GO and KEGG Enrichment Associated With Glioma Subclasses

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	An Integrated Model Based on a �Six-Gene Signature Predicts Overall Survival in Patients With Hepatocellular Carcinoma
	Introduction
	Materials and Methods
	Data Source
	Identification of DEGs Between HCC and Non-Cancerous Tissues
	Co-Expression Gene Network Based On RNA-Seq Data
	Functional Enrichment Analysis
	Definition of the Gene-Related �Prognostic Model
	Prognostic Model Based on Six-Gene Signature as an Independent Predictor �for OS
	Validation of the Six-Gene Signature Using Multiple Databases
	Establishment and Evaluation of the Nomograms for HCC Survival Prediction

	Results
	Study Process and Summary of �Patients&apos; Information
	Identification of DEGS with Prognosis Value in HCC
	Constructing the Six-Gene Signature for Risk Scoring and Survival Prediction
	Kaplan&ndash;Meier and Time-Dependent ROC Curves of Six-Gene Signature
	Prognostic Risk Scores were an Independent Prognostic Factor from the Other Clinicopathological Features
	Subgroup Analysis of OS Based on Multiple Classification Methods
	Validation of the Six mRNA Expressions
	Building a Nomogram to Predict OS in HCC Patients
	Assessing the Accuracy of the Nomograms by ROC Curves

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	Clinical Interest of Combining Transcriptomic and Genomic Signatures in High-Grade Serous Ovarian Cancer
	Introduction
	Materials and Methods
	Clinical and Transcriptomic Data of Ovarian Cancer Patients
	Description of Transcriptomic Signatures
	Enrichment of Biological Processes in Transcriptomic Signatures
	Classification of High-Grade Serous Ovarian Cancer From the TCGA Cohort According to Different Transcriptomic Signatures
	Expression of miR-200 Family Members
	Large-Scale State Transition (LST) Genomic Signature of HRD
	Statistical Analysis
	Code Availability

	Results
	The Fibrosis Subgroup of High-Grade Serous Ovarian Cancers Exhibits Conserved Functional Pathways Across Studies
	High-Grade Serous Ovarian Cancers Stratified Into Two Subgroups Are Associated With Stage, Debulking, and Clinical Response to Treatment
	Stratification Into Two Ovarian Cancer Subgroups Provides a Reliable Prognostic Value for Patient Survival
	LST Genomic Signature Identifies Ovarian Cancer With HRD
	Genomic and Transcriptomic Signatures Provide Additive Prognostic Values for Ovarian Cancer Patient Survival

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Identification of Cancerlectins Using Support Vector Machines With Fusion of G-Gap Dipeptide
	Introduction
	Feature Extraction Based on Sequence Information
	Feature Extraction Based on Physical and Chemical Properties of Amino Acids
	Feature Extraction Based on Protein Evolution Information

	Methods
	Dataset 
	Feature Extraction Method
	Feature Selection
	Normalization
	Support Vector Machine
	Nested Cross-Validation Test
	Performance Assessment

	Results
	Prediction Performance
	Feature Description
	Comparison With Existing Methods

	Discussion and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Novel Immune-Related Gene Signature for Risk Stratification and Prognosis of Survival in Lower-Grade Glioma
	Introduction
	Materials and Methods
	Acquisition of LGG Expression Profiles From TCGA Datasets
	Acquisition of Immune-Related Genes
	Inclusive and Exclusive Criteria of Enrolled Patients for the Construction of Risk Signature
	Establishment of the Immune-Related Risk Signature
	Identification of the Prognostic Factors for OS in Primary LGG
	External Validation of the Signature in CGGA Datasets for Primary LGG
	Investigation of the Signature in Patients With Recurrent LGG
	Tumor-Infiltrating Immune Cell Analysis
	Validation of Gene Expression in Cell Lines and Glioma Tissues
	Statistical Analysis

	Results
	Preparation of Glioma Datasets
	Identification of DEGs
	Identification of Prognostic IRGs
	Evaluation of IRGs With Prognostic Value
	Performance of Risk Signature in Primary LGG From TCGA
	Construction of Prognostic Signature in Primary LGG From TCGA
	Internal Validation of Prognostic Signature in Primary LGG From TCGA
	External Validation of Prognostic Signature in Primary LGG From CGGA
	Investigating the Application of Six Genes Based Signature in Recurrent LGG
	The Association Between Risk Score and Clinicopathological Parameters
	Correlation of the Risk Score With Tumor-Infiltrating Immune Cells
	Six Genes Based Signature Expression Analysis in Databases

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A Novel Computational Approach for Identifying Essential Proteins From Multiplex Biological Networks
	Introduction
	Materials
	Methods
	Construction of Multiplex Biological Networks
	Co-neighbor Network G1
	Co-structure Network G2
	Co-expression Network G3

	Random Walk With Restart on Multiplex Biological Networks
	Identification of Essential Proteins

	Results and Discussion
	Effects of Parameters α and β
	Comparison With 11 Other Approaches
	Validated by Precision-Recall Curves
	Validated by Jackknife Methodology
	Analysis of the Differences Between MON and Other Approaches
	Prediction Performance of MON Based on the Gavin Dataset

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	BHCMDA: A New Biased Heat Conduction Based Method for Potential MiRNA-Disease Association Prediction
	Introduction
	Materials and Methods
	MiRNA-Disease Associations
	MiRNA Functional Similarity
	Disease Semantic Similarity Model I
	Disease Semantic Similarity Model II
	Gaussian Interaction Profile Kernel Similarity for Diseases
	Gaussian Interaction Profile Kernel Similarity for miRNAs
	Integrated Similarity for miRNAs and Diseases
	BHCMDA

	Results
	Performance Evaluation
	Case Studies

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Prognostic Value of a Stemness Index-Associated Signature in Primary Lower-Grade Glioma
	IntroDuction
	Materials and Methods
	Data Source
	Acquisition of Stemness Index Based on RNA-Seq
	Weighted Gene Correlation Network Analysis for Building Stemness-Index Associated Preserved Modules
	Evaluation and Bioinformatics Analysis of Key Genes
	Inclusive and Exclusive Criteria of Enrolled Patients for the Construction of the Risk Signature
	Survival Analysis of mRNAsi
	Construction of a Prognostic Signature
	Prognostic Value of the Seven-Gene-Based Signature
	External Validation of the Prognostic Signature
	Cancer Cell Line Encyclopedia (CCLE) and Protein Expression Verification
	Statistical Analysis

	Results
	Data Processing
	Identification of DEGs
	mRNAsi Mining

	WGCNA: Construction the Correlation Matrix of mRNAsi and Module Eigengene Values
	Data Acquisition
	Identification of Modules Associated With Stemness Indexes of LGG

	Analysis and Functional Annotation of Key Genes in the Brown Module
	Analysis of Key Genes in the Brown Module
	Functional Annotation of Genes Related to mRNAsi
	Survival Analysis of mRNAsi
	Identification of Key Prognostic Genes in Primary LGG
	Construction of Stemness-Index Associated Prognostic Signatures
	Evaluation of Survival Predicts the Accuracy of Seven-Gene-Based Signature
	Prognostic Value of the Seven Gene-Based Signature
	Internal Validation of Seven-Gene Stemness-Index Associated Prognostic Signature
	Development and External Validation of the Prognostic Signature
	Evaluation of the Correlation Between Clinical Parameters and Signature
	Expression Analysis of Seven Genes From Cancer Cell Line Encyclopedia (CCLE) and Human Protein Atlas Database


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Exploring the Role of SRC in Extraocular Muscle Fibrosis of the Graves' Ophthalmopathy
	Introduction
	Materials and Methods
	Mouse Model of Graves' Orbitopathy
	Cloning and Preparation of Plasmid DNA
	Screening of Differentially Expressed Genes
	Cell Culture and Transfections
	Immunofluorescent Staining
	Real-Time Quantitative PCR
	Western Blotting
	Measurement of ROS Level in Cells

	Results
	HTSHR A-Subunit Plasmid-Immunized Mice
	Screening of DEGs Based on RNA-Seq
	Validation of DEGs by q-PCR
	TGF- Induces OF and SRC Gene Silencing OF Transformation
	ROS Level in Cells

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	Analysis of Gene Signatures of Tumor Microenvironment Yields Insight Into Mechanisms of Resistance to Immunotherapy
	Introduction
	Methods
	Pan-Cancer Samples and Clinical Cohorts Treated by Immunotherapy
	Identifying Immune Cell Signature From Integrated Single-Cell RNA Sequencing Data
	Unsupervised Clustering Algorithm to Determine TME Subtypes of Tumor Samples
	Identification of Altered Signaling Pathways
	Screening for Potential Phenotype Transformation Drugs
	Statistical Analysis

	Results
	Integration of Single-Cell RNA Sequencing Data Sets
	Pan-Cancer Prognostic Significance of TME Subtypes
	Molecular Characteristics of Inflamed or Non-inflamed TME Across Multiple Tumor Types
	TME Phenotypes Correlated With the Immunotherapeutic Sensitivity
	Mechanistic Differences Between Inflamed Responsive TME and Inflamed Non-responsive TME
	Screening for Potential Favorable TME Phenotype Transformation Drugs

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Gene Signature and Identification of Clinical Trait-Related m6A Regulators in Pancreatic Cancer
	Introduction
	Materials and Methods
	Data Sources
	Protein–Protein Interactions Network Construction and Correlation Analysis
	Cell Lines and Cell Culture
	RNA Extraction and qRT-PCR Verification
	Consensus Clustering for PC Tissues
	Lasso Regression for PC Tissues
	Gene Set Enrichment Analysis for KIAA1429, HNRNPC, and IGF2BP2 in PC Tissues
	Transient Transfection and Cell Proliferation Assay
	Statistical Analysis

	Results
	Consensus Clustering for PC Tissues Based on the Expression of m6A Regulators
	The Interaction and Correlation Among the m6A Regulators
	Gene Signature of m6A Regulators in PC Cell Lines
	Lasso Regression Identified the Six-Gene Signature Prognostic Model
	The Effect of m6A Regulators on PC Prognosis
	GSEA Analysis Provided Insight Into Pathways of m6A Regulators
	The Independent Verification by GEO
	Experimental Validation

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data
	Introduction
	Materials and Methods
	Data Preparation
	Feature Selection
	Logistic Regression Classifier
	Evaluation Metric
	Functional Annotation

	Results
	Workflow
	Data
	Genes Used to Infer Cancer Tissue of Origin
	Performance Evaluation
	Mean Value of Number of Somatic Mutations on Each Cancer

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Prognostic Implications of Immune-Related Genes' (IRGs) Signature Models in Cervical Cancer and Endometrial Cancer
	Introduction
	Materials and Methods
	Clinical Samples and Data Acquisition
	Differential Gene Analysis and Enrichment Analysis
	Identification of Survival-Associated IRGs
	Screening of Transcription Factors (TFs) and Construction of Networks
	Establishment and Evaluation of the IRG Signature Model
	Evaluation of IRGs' Signature Model Along With Clinicopathological Characteristics and Tumor-Infiltrating Immune Cells
	Statistical Analysis

	Results
	Identification of Differentially Expressed IRGs
	Identification of Survival-Associated IRGs
	Identification of Differentially Expressed TFs and Construction of IRGs-TFs Regulatory Network
	Establishment and Evaluation of the IRGs Signature Model
	Multiple Evaluation of IRGs' Signature Model Combined With Clinicopathology, Gene Expression Profiles, GSEA, and TIMER

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	The Better Survival of MSI Subtype Is Associated With the Oxidative Stress Related Pathways in Gastric Cancer
	Introduction
	Materials and Methods
	Patients and Samples
	Data Collection
	MMR Immunochemistry (IHC) and EBV in situ Hybridization (ISH)
	DNA Extraction and MSI Analysis
	Construction of Weighted Gene Co-expression Network
	Identification of the Hub Genes
	Function Enrichment Analysis
	Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA)
	Statistical Analysis

	Results
	Prognosis and Potential Predictive Value of d-MMR/MSI-H Status in Different Cohorts
	Clinical and Prognostic Features of EBV in Different Cohorts
	Identification of the Key Module That Associated With OS Time and Status and Its Annotation in MSI Sample
	The Determination of the Hub Genes and Validation
	GSEA and GSVA for the Hub Genes

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Pan-Cancer Classification Based on Self-Normalizing Neural Networks and Feature Selection
	Background
	Methods
	Data Retrieval and Preprocessing
	Approach for Cancer Classification
	Feature Analysis
	Classification Methods
	Performance Evaluation


	Results
	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	A New Method for CTC Images Recognition Based on Machine Learning
	Introduction
	Materials and Methods
	Patients and Samples Preparation
	Enrichment and imFISH Identification of CTCs
	The Manual Interpretation Standard of CTCs Counting
	The Image Segmentation Method Was Used to Segment Single Nucleus and Give Labels of Cells Instead of Manual
	The CNN Deep Learning Method Was Used for CTCs Identification
	Evaluation Criteria for Classification Models

	Results
	Patient Characteristics
	Three Sub-Images Were Required for Manual Counting
	The Segmentation of Nuclear and Identifying CTCs by OpenCV Segmentation Method
	The Hyper-Parameters Selected for Evaluating the CNN Method
	The Identification of CTCs by CNN Method

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis From Histopathology Images
	Introduction
	Materials and Methods
	Data Preparation
	Image Preprocessing
	The Convolutional Neural Network + ResNet Model
	Heat Map Generation
	Hyper-Parameter Tuning by Cross-Validation
	Performance Evaluation Criteria

	Results
	Clinical Characteristics of Training Dataset
	Data Pre-treatment
	Model Construction and Hyper-Parameter Selection
	Performance Evaluation on Test Dataset

	Discussion
	Data Availability Statement
	Author Contributions
	References

	The Significance of the CLDN18-ARHGAP Fusion Gene in Gastric Cancer: A Systematic Review and Meta-Analysis
	Introduction
	Methods
	Search Strategy
	Study Selection
	Data Extraction and Quality Assessment
	Statistical Analysis

	Results
	General Characteristics
	Survival Analysis

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Classifying Breast Cancer Molecular Subtypes by Using Deep Clustering Approach
	1. Introduction
	2. Materials and Methods
	2.1. Extracting and Smoothing Data
	2.2. Clustering Method
	2.3. Finding the Best Number of Clusters
	2.4. Supervised Classification for New Tumors

	3. Results
	3.1. Finding the Gene Signature for Each Subtype
	3.2. Survival Analysis
	3.3. Protein Complexes Analysis
	3.4. Clinical Examination
	3.5. Comparison Between MSDEC and PAM50 Subtypes
	3.6. Evaluation of Supervised Methods
	3.7. GSEA Enrichment

	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




