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Modulating protein—protein interactions (PPls) with small drug-like molecules targeting it
exhibits great promise in modern drug discovery. G protein-coupled receptors (GPCRs) are
the largest family of targeted proteins and could form dimers in living biological cells through
PPIs. However, compared to drug development of the orthosteric site, there has been
lack of investigations on the druggability of the PPl interface for GPCRs and its functional
implication on experiments. Thus, in order to address these issues, we constructed a
novel computational strategy, which involved in molecular dynamics simulation, virtual
screening and protein structure network (PSN), to study one representative GPCR
homodimer (CXCR4). One druggable pocket was identified in the PPI interface and one
small molecule targeting it was screened, which could strengthen PPl mainly through
hydrophobic interaction between the benzene rings of the PPl molecule and TM4 of the
receptor. The PSN results further reveals that the PPl molecule could increase the number
of the allosteric regulation pathways between the druggable pocket of the dimer interface
to the orthostatic site for the subunit A but only play minor role for the other subunit
B, leading to the asymmetric change in the volume of the binding pockets for the two
subunits (increase for the subunit A and minor change for the subunit B). Consequently,
the screening performance of the subunit A to the antagonists is enhanced while the
subunit B is unchanged nearly, implying that the PPl molecule may be beneficial to
enhance the drug efficacies of the antagonists. In addition, one main regulation pathway
with the highest frequency was identified for the subunit A, which consists of Trp195534—
Tyr190FC2—Val196°5%5-GIN200%39-Asp2626-58-Cys28N-tem - revealing their importance in
the allosteric regulation from the PPl molecule. The observations from the work could
provide valuable information for the development of the PPI drug-like molecule for GPCRs.

Keywords: target, GPCR dimer interface, druggability, regulation mechanism, computation

Frontiers in Pharmacology | www.frontiersin.org 5

November 2019 | Volume 10 | Article 1310


https://creativecommons.org/licenses/by/4.0/
mailto:xmpuscu@scu.edu.cn 
https://doi.org/10.3389/fphar.2019.01310
https://www.frontiersin.org/article/10.3389/fphar.2019.01310/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01310/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01310/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01310/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01310/full
https://loop.frontiersin.org/people/794581
https://loop.frontiersin.org/people/731380
https://loop.frontiersin.org/people/795485
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://doi.org/10.3389/fphar.2019.01310
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.01310&domain=pdf&date_stamp=2019-11-07

Shen et al.

Druggability of CXCR4 Homodimer Interface

INTRODUCTION

In living cells, only a few proteins perform their biological
functions independently, and the vast majority (more than 80%)
of proteins function through interacting with other molecules
(Keskin et al., 2016; Wang et al., 2018b). It is estimated that
there are approximately 130,000 to 650,000 protein-protein
interactions (PPIs) in the human interactome (Venkatesan
et al, 2009; Sheng et al, 2015; Tortorella et al.,, 2016), and
targeting protein—protein interactions (PPIs) with small drug-
like molecules (Sheng et al., 2015; Shin et al., 2017; Han et al.,
2018) become one of the most promising methods in modern
drug discovery (Li et al., 2017; Tang et al.,, 2019a; Tang et al,,
2019b). If drugs could strengthen the PPI interaction or damage
it, the function of PPI will be inevitably influenced. With
increasing understanding of PPIs, significant progress has been
made for investigations on PPI small drug-like molecules (Wells
and McClendon, 2007; Jubb et al., 2012; Song et al., 2016; Shin
et al.,, 2017). It was observed that the PPI molecules commonly
have larger molecular weight, higher hydrophobicity, and lower
solubility than most of traditional drug molecules (Villoutreix
et al., 2012; Wang et al., 2018b). In previous studies, most of the
drugs bind a targeted protein and inhibit it to form functional
complexes with its binding partners, in turn influencing the
downstream signals. For example, small molecule LEDGINs
could block the interaction between HIV-1 integrase and human
LEDGF/p75 so that it could inhibit HIV replication(Reddy
et al,, 2014). The peptidemimics MAIT was found to inhibit the
migration of colorectal cells by disrupting APC-Asef interaction
(Jiang et al., 2017). Although researches on strengthening PPI
interaction are very limited with respect to inhibiting one, it is
also highly valuable for some specific proteins. For example, ISD
could strengthen the interaction between Nephl and ZO-1 so
that it could prevent podocyte injury and preserve glomerular
filtration function (Sagar et al., 2017).

G protein-coupled receptors (GPCRs) are the largest
membrane protein families with more than 800 members,
which play key roles in various signal transductions.
Approximate 50 percent of drugs target them (Rosenbaum
et al., 2009; Venkatakrishnan et al., 2013; Lao et al., 2017).
Monomers have long been recognized as functional units of
GPCR signaling (Whorton et al.,, 2007; Maurice et al., 2011).
However, recently increasing biochemical and biophysical
evidences have indicated that the GPCR dimers and oligomers
also exist in living biological cells (Ferré et al., 2014; Navarro
et al., 2018; Pediani et al,, 2018), which could significantly
affect the signal transduction process of GPCRs like receptor
activation, internalization, ligand binding and coupling with
G protein (Huang et al., 2013; Xue et al., 2015; Damian et al.,
2018). Some experimental works already found that positive or
negative cooperativity exists between the two subunits of the
GPCR dimer (Maurice et al., 2011). For example, when the
ligand binds to one of the subunits, it will increase or decrease
the binding affinity of another subunit to the ligand (Gherbi
et al., 2015; Liu et al., 2017). Therefore, the GPCR dimers
possess unique pharmacological profiles, being potential drug
targets for the discovery of novel drugs.

Chemokine receptors are members of family A GPCRs,
which regulate cell migration in development, immune system
function and inflammatory diseases, thus being important
therapeutic targets (Kufareva et al., 2014; Van Hout et al., 2018).
CXCR4 is one of 23 known human chemokine receptors, which
plays a key role in leukocyte trafficking, hematopoiesis, organ
development and cancer metastases (Zweemer et al., 2014). It
was revealed that CXCR4 is associated with more than 23 types
of cancers (Wu et al,, 2010; Nguyen et al., 2018). CXCR4 and
related CC chemokine receptor 5 (CCR5) are not only the key
regulators of signal transduction, but also involve in the entry
of HIV-1 virus as coreceptors of HIV-1 into leukocytes (Shaik
et al,, 2019). Several observations suggested that the dimer may
be the minimal functional units of the chemokine receptors and
CXCR4 was demonstrated to form homo- or hetero-dimers
(Percherancier et al., 2005; Munoz et al., 2012). In 2010, the
crystal structure of the CXCR4 homo-dimer (PDBID: 30DU)
was resolved (Wu et al,, 2010). Chemotaxis assay shows that
the migration index of T-REx-293 cells stably transfected with
CXCR4 gene changes with the oligomeric status of CXCR4,
indicating a correlation between the functions and the oligomeric
status of CXCR4 (Lao et al., 2017). These findings clearly indicate
that the polymerization of GPCRs could affect the structure
and the function of the receptors. Therefore, it is also valuable
to design small drug-like molecules targeting PPIs of GPCRs,
which are beneficial to their therapeutic effects, to enhance their
polymerization. However, the investigations on drug-like small
molecules targeting the interface to enhance PPIs have been
lacked so far. Thus, many questions have been remained to be
unclear. For example, is the PPI interface druggable for GPCRs
like CXCR4? What drugs could target the interface? How does the
drug regulate the dimerization and the structure of the receptor,
in turn influence its drug efficacy? In fact, these questions mainly
involve in microscopic structure changes of the receptor upon
the ligand bound the PPI interface. Therefore, it is highly desired
to introduce computational techniques to assist the experiments
to probe these issues.

Molecular dynamics (MD) simulation could acquire the
structural evolution of proteins at the atomic level. Therefore, it
become a powerful tool to study the structural and functional
mechanisms for biological systems (Xue et al., 2018), including
GPCRs. However, previous MD researches on GPCRs were
mainly focused on the GPCR monomers, including their
structures (Liang et al., 2017; Zhang et al., 2018a), interactions
with ligands (Bai et al, 2014; Sader et al., 2018), activation
mechanisms (Miao et al., 2015; Stanley et al., 2016), water
channels (Yuan et al.,, 2013; Yuan et al., 2015) and so on. In
contrast, the studies on GPCR oligomers by MD are very limited,
mainly concerning the self-assembly behavior (Provasi et al.,
2015), activation mechanisms (Kim et al., 2017), interaction of
dimers (Petersen et al., 2017). Recently, our group probed the
effect of the dimerization on the activation and ligand-binding
for some GPCRs (Wang et al., 2018a; Zhang et al., 2018b; Zhang
et al., 2019). Based on our previous studies on the mechanism
of GPCR dimers, we hope to further probe the druggability of
their PPI interfaces and its regulation mechanism on the drug
function of the receptor, using molecular dynamics simulation,
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virtual screening and protein structure network. Herein, we
selected the CXCR4 dimer (PDBID:30DU) as a representative
of the GPCR dimers, which is sole crystal-structure of the GPCR
dimers resolved for the chemokine receptors so far. Ultimately,
we screened one ligand, which could significantly enhance the
dimer interaction, and revealed its regulation mechanism on
the drug binding for the orthosteric site. The observations could
provide valuable information for the development of the GPCR
PPI drugs.

MATERIALS AND METHODS
Workflow

Figure 1 shows the entire workflow. Considering the protein
flexibility, 300 ns MD is first carried out for the crystal structure
of CXCR4 homo-dimer. Then, according to the root-mean-
square-deviation (RMSD) of residues of the dimer interface,
eight representative conformations are obtained through
clustering. The druggable pocket of the dimer interface is
identified by FTmap. Based on the pocket, ligands targeting
the PPI interface are screened, and then lus MD simulations
are performed for the four representative complexes of the
dimer bound by the PPI ligand. Finally, we discussed the
effect of the ligand on the dimerization and the screening
performance of the orthostatic site to antagonists, and revealed
its regulation mechanism.

Crystal Structure(30DU)

300ns MID  Clustering

Eight Representative
Conformations

FTmap

Druggable Pocket on
Dimer Interface

AutoDock

Protein-Ligand Complex

lus MID

Structure analysis
Energy analysis
PSN analysis

Virtual screening

ROC analysis

FIGURE 1 | Computational workflow.

System Preparation

X-ray crystal structure of CXCR4 dimer with a resolution of 2.5
A was obtained from PDB bank (PDBID: 3 ODU) (Wu et al,
2010). We removed ligands and other non-essential components
used for crystallizing and purification, including T4 lysozyme
(T4L) inserted between transmembrane (TM) helices V and
VI at the cytoplasmic side of the receptor, small isothiourea
derivative (IT1t). In addition, crystal water molecules outside the
receptor were also deleted. But the crystal water molecules inside
the receptor were retained. All protein residues were set to the
standard CHARMM protonation state under physiological pH.
The receptor was inserted into a palmitoyl-oleoyl-phosphatidyl-
choline (POPC) (Filizola et al., 2006) bilayer. Then, water
molecules were added to the system, which was described by
the TIP3P model. The whole system was neutralized with 0.15M
NaCl by CHARMM-GUI (Lee et al., 2015). According to the
tertiary structure information of the protein system, the two
subunits were manually added with two disulfide bonds between
Cys28N-term and Cys2747%, Cys1093%, and Cys186°°.

MD Simulation

All molecular dynamics simulations were performed by the
sander module of AMBER 16 (Case et al., 2016). The MD
trajectories were analyzed using the correlation analysis module
of AMBER 16 and VMD, as well as some other specific trajectory
analysis softwares. Ff14SB force field (Maier et al., 2015) was used
for the receptor and the lipid14 force field (Dickson et al., 2014)
was utilized for the POPC lipids. Twenty thousand step energy
minimization was performed to eliminate bad contacts in the
initial structures. After the minimization, the entire system was
heated from 0 K to 310 K within 250 ps, then 5 ns NVT pre-
equalization was performed at 310 K temperature. Finally, 300 ns
and 1 us simulations were carried out using the NPT ensemble at
300 K and 1 bar for the apo dimer system and the dimer bound
the PPI ligand, respectively. The cutoff distance of 10 A was set
for nonbonded interactions and the electrostatic interaction
was computed by the particle mesh Ewald (PME) algorithm
(Essmann et al., 1995). The SHAKE algorithm (Berendsen et al.,
1984) was used to constrain all hydrogen-containing bonds. The
time step was 2-fs and trajectories were saved at interval of 10 ps
for further analysis.

Clustering Analysis

For the last 200 ns trajectory of the apo dimer system, clustering
was carried out using the k-means algorithm (Han and Zhang,
2009; Li et al, 2014) embedded in the ptraj module of the
AmberTools package in terms of RMSD of the backbone atoms of
136 residues of TM5-TM6/TM5-TM6 interface (Wu et al., 2010).
Consequently, eight classes were obtained (vide in Supplement
1) and the center of each class was selected as a representative
conformation for subsequent analysis.

FTMap Analysis
FTmap analysis (Kozakov et al., 2015) was performed in order
to identify the druggable pocket in the dimer interface, using
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FTMap computational map server. The server probes small
molecule binding sites using CSM method (Dennis et al., 2002),
which places molecular probes on a protein surface to identify
the most favorable binding positions. The eight representative
structures from the clustering above were individually computed
using this server (www.ftmap.bu.edu). Pymol (Janson et al,
2016) was utilized to inspect visually the results.

Virtual Screening

A ligand set was constructed by a focused chemical compound
collection (iPPI-lib) with a total of 51,232 ligand molecules,
which was tuned to target PPIs. The PPI-specific database was
provided by MTiOpenScreen (Labbé et al., 2015). First, the
initial drug-like compounds containing 384,372 PubChem
molecules was selected and collected. Then PPI-HitProfiler
(Reynesetal., 2010) was used to select PPI-friendly compounds.
Finally, these molecules were aggregated by Cluster Molecule
Protocol (Accelrys Pipeline Pilot v8.5), resulting in 51,232
drug-like molecules in the final iPPI-lib. Approximately
4,000 molecules (including isomers) were obtained through
preliminary screening of MTiOpenScreen, and further docking
evaluations were performed using Autodock 4.2 (Morris et al.,
2009). All docking input files were prepared by AutoDockTools
1.5.6 (Sanner, 1999) package, and Lattice files for active sites
were generated by the AutoGrid 4.2. In order to cover the
ligand-binding site, the box site was set to 75 A x 75 A x 75 A
with 0.375 A spacing. The dockings with the flexible ligand and
the rigid receptor were performed by AutoDock 4.2. To ensure
the accuracy of the result, each ligand was done by 100 docking
calculations separately, and 1,000,000 energy evaluations were
carried out using Lamarck genetic algorithm for each docking
calculation. We selected the docking pose with the lowest
binding energy as the best binding mode for further analysis.
The ROC (Metz, 1978) plot was used to assess virtual screening
performance, which is a curve of true-positive rates versus
false-positive rates. They could be calculated in terms of the
following equations.

TP
PR:(TP+FN) (1)
PP
- (FP+1N) )

Where TP (true positive) and FN (false negative) refer to the
number of active substances in positive and negative classes,
respectively. FP (false positive) and TN (true negative) refer to the
number of decoys in positive and negative classes, respectively.
The AUC is the area under the receiver operating characteristic
curve (Hanley and McNeil, 1982). The larger AUC value, the
better the performance of the receptor in screening the active
molecules from the decoys. For example, when the AUC value is
0.5, it represents random screening. When the AUC value is 1, the
receptor has the strongest ability to screen the active molecules.
The AUC value could reflect the affinity of the receptor to a class

of active molecules in the ligand set. Therefore, it has been widely
used to characterize the performance of virtual screening.

MMPBSA

As accepted, molecular Mechanics Poisson-Boltzmann surface
area (MM/PBSA) (Sun et al.,, 2014; Sun et al., 2018; Wang et al.,
2019; Weng et al., 2019) is a versatile method to calculate the
binding free energy AGy;,giq between two molecules in terms of
equation (3).

Gbind.i.ng = Gcomplex - (Greceptor + Gliga.nd )

(3)

Herein, G gupien Greceptor 30 Giiganq denote the free energies of
the complex, receptor, and ligand, respectively, which could be
calculated by MMPBSA.py.MPI algorithm (Miller IIT et al., 2012)
of the SANDER module [vide equations (4)-(6)].

G=E,+G, —TS (4)
Ey=Ent+Eq+Epy (5)

G = Gpor T Gopsoly 6)

The gas phase energy (E,,,) is calculated by the internal energy

(E.)> the electrostatic interaction energy (E,) and van der
Waals interaction energy (E,q,) in equation (5). G, denotes the
solvation energy, which consists of polar solvation energy (G,
and the nonpolar solvation (G,,,,) [vide equation (6)]. G,
could be obtained by solving the Poisson-Boltzmann equation
while G, could be estimated by yxSASA. Herein, y uses 0.0072
kcal A2 value and SASA denotes the solvent-accessible area of the
molecular. The dielectric constants are set to be 1 for the receptor
interior and 80 for the external water. T represents absolute
temperature and S is the total conformational entropy. Similar
to many computational studies (Niu et al., 2017; Tu et al., 2018),
the contribution of entropy is not considered in the calculation of
free energy since we mainly concern with the relative change of
the binding energy, rather than its absolute value.

npsolv

Protein Structure Network

Protein structure network (PSN) (Kannan and Vishveshwara,
1999) could exhibit the structure of proteins as an interaction
network. In PSN;, residues are served as nodes. If the percentage of
interaction [vide equation (7)] between the two nodes is greater
than or equal to a given cutoff, the two nodes are connected to
one edge.

n;
I, =——=—=100 (7)

In equation (7), I; represents the percentage of interaction
between nodes i and j, and ; represents the pair number of side
chain atoms within a given distance cut-off range (the default

Frontiers in Pharmacology | www.frontiersin.org

November 2019 | Volume 10 | Article 1310


http://www.ftmap.bu.edu
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Shen et al.

Druggability of CXCR4 Homodimer Interface

cutoffis 4.5 A). N, and N; are the normalization factors of residue
i and j, respectively. Based on the network, we could gain insight
into inter-residue communication, which play a vital role for
proteins to execute their biological functions. Consequently,
PSN has been successfully applied to study unfolding, stability
and allosteric interaction (Brinda and Vishveshwara, 2005;
Vishveshwara et al., 2009; Gao et al., 2016).

In addition, the shortest paths between pairs of nodes could
be obtained through searching PSN by Dijkstra’s algorithm
(Dijkstra, 1959), which considers the PSN node inter-
connectivities and residue correlated motions. The dynamic
cross-correlation (DCC) (McCammon and Harvey, 1988) could
be evaluated along an MD trajectory, in which DCC values (C;)
are computed in terms of equation (8):

c - (n(e)-1)((5)-7)
oty = s =) ®

i and j denotes atoms or residues, and r,(t) and r,(t) are the
corresponding position vectors at time . ¥ means the ensemble
average over a period time. DCC could characterize the extent of
atom or residue movement correlations within a range from 1.0
to -1.0, where 1.0 indicates completely correlated displacements
and -1.0 denotes completely anti-correlated displacements. Cross
correlation analysis and PSN were performed using Wordom
software (Seeber et al., 2011).

RESULTS AND DISCUSSION

Prediction of the Druggable Pocket in the
Interface of the CXCR4 Dimer Based on
Representative Conformations

The crystal structure is not completely equal to the functional
conformation due to the flexibility of protein, which play a

crucial role in the protein function. Thus, we first performed
300 ns MD simulation to obtain representative conformations
for the apo dimer. Figure 2 shows the root-mean-square-
deviation (RMSD) of the backbone atoms with respect to its
crystal structure for the dimer. It can be seen that the RMSD
values present minor fluctuations after 100 ns. Thus, we used
the k-means algorithm to cluster the last 200 ns trajectories,
based on RMSD of the backbone atoms of 136 residues of the
dimer interface (Wu et al.,, 2010). Consequently, eight classes of
the conformations were obtained, as shown in Supplement 1.
Figure 3 shows the proportion of conformations for each class
and populations of the a and b classes are significantly higher

=
%)

frequency
=TT )
S =

cluster

FIGURE 3 | The proportion of the eight representative conformations
obtained by clustering in the last 200-ns trajectory for the apo CXCR4
dimer. One druggable pocket was identified by FTmap only for four types of
conformations a, b, d, and g.
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FIGURE 2 | Changes in RMSD values of backbone atoms for the apo CXCR4 dimer along with simulation time (left) and its distribution (right).
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than the other classes. The center of each class was selected as  present best binding. The ligands 1, 2, 3, and 4 correspond to
representative conformation to probe its druggability with the  the conformations a, b, d, and g, respectively. Table 1 lists
aid of FTmap method. Only one druggable pocket was identified ~ some important physicochemical properties calculated by the
in the dimer interface for the classes g, b, d, and g, which account SwissADME (Daina et al., 2017) for the four small molecules.
for 72% conformations of the last 200 ns trajectories, thus being It can be seen that their molecular weights are between 340 and
highly representative. Furthermore, the druggable pockets in the ~ 500. LogP values are between 3 and 5. LogS values are between -5
dimer interfaces are highly similar for the four classes, which ~ and -6. These properties are in line with those of the PPI drugs
are mainly involved in Trp195°%*, Val198°%, Phel99°* of the  reported. Furthermore, the four molecules satisfy “Rule-of-Five”
subunit A, Val197°%, GIn200>%¥, Phe201540, 1le259%%, Ser260%¢,  proposed by Lipinski (Lipinski et al., 1997; Lipinski, 2004), which
Ser263%%, and Leu267%% of subunit B. It was revealed from the  indicates MW<500, Log P<5, N or O <10, NH or OH<5, maybe
CXCR4 crystal structure that the residue Trp195>*, Val1975%,  potential drugs.

Val198>%, Phe201%4, and Leu267%% play an important role in the

dimerization of dimer (Wu et al., 2010). Thus, it can be assumed

that a ligand targeting the pocket could significantly influence

the dimerization of CXCRA4. TABLE 1 | Properties of the four ligands targeting the PPI interface.
Ligands MwW LogP” LogSc TPSA(AZ)" Lipinski®
Screening Potential Ligands to the (g/moly?
Druggable Pocket in the Dimer Interface CBMicro_026776(1) 84145 482  -564 2031 Yes
CHEMBL2133598(2)  400.51 464 -582  49.41

The ligand set was constructed by a focused chemical compound
collection (iPPI-lib) with a total of 51,232 ligand molecules,

(
CHEMBL2136779(3) 434.92 3.90 -5.05 71.94
. . . (
which were docked to the four representative conformations of

CHEMBL1895118(4) 439.56 4.43 -5.66 77.21

the a, b, d, and g classes. The complex with the lowest binding ZyO{ZC“’a: We’lgr?: iont
Ipia-water partition coerticient.

energy was selected as the best binding mode for each of the four .

R A cAqueous solubility.
classes. Consequently, four small molecules (vide in Figure 4) dTopological polar surface area.
were screened for the four representative conformations, which ~ Rule-of-five.

7

CBMicro_026776(1) CHEMBL2133598(2)

H
N
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- °° g
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FIGURE 4 | Chemical structural formulas of four ligands (ligand 1 binds to conformational a, ligand 2 binds to conformational b, ligand 3 binds to conformational d,
ligand 4 binds to conformational g).
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Effect of the Four Ligands on the the dimerization. Since our objective is to search the PPI ligand
CXCR4 Dimerization enhancing the dimerization, we only focused on the ligand 1 in
In order to probe the impact of the fourligands on the dimerization the following analysis.

of CXCR4, we further performed 1us MD simulation for the four

dimer conformations, the interfaces of which were docked by ~ Interaction Energy Between the Ligand 1
the individual ligand. The centroid distance and the contactarea ~ @and the CXCR4 Dimer

between the two subunits of the CXCR4 dimer were calculated ~ In order to estimate the interaction strength between the dimer
based on the 1 us trajectory, as shown in Figure 5. It can be seen ~ and the ligand, the binding free energy between them was
from Figure 5 that only the ligand 1 targeting the conformation  calculated using the MM-PBSA method, based on the last 100
a reduces the centroid distance between the two subunits and ~ ns trajectory, as shown in Table 2. The AGy;,g,, Value is -46.77
increases their contact area, suggesting enhanced dimerization. ~ kcal/mol and van der Waals interaction is main driving force, as
However, an opposite trend is presented for the conformations  judged from -46.18 kcal/mol of AE . In the other words, van der
b and d. For the conformation g, the two parameters change =~ Waals interaction devotes main contributions for the interaction
little. The observations indicate that the ligand 1 could enhance ~ between the CXCR4 dimer and the ligand 1.

the dimerization of CXCR4 while the ligands 2 and 3 disfavor To identify important residues contributed to the ligand
the dimerization. The ligand 4 only plays a negligible role in ~ binding, we decomposed the binding free energy into the
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FIGURE 5 | Variations of the contact area and the centroid distance between the two protomers along with simulation time for the CXCR4 dimer with and without
the ligand targeting the PPl interface (A) Corresponds to conformation a, (B) Corresponds to conformation b, (C) Corresponds to conformation d, (D) corresponds
to conformation g).
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TABLE 2 | The binding free energy (in kcal mol ') between the CXCR4 dimer and

the ligand 1.

Components Energy (kcal/mol)
AE 47 -46.18 + 2.86
AE, -3.28 +1.20
AE, ¢ 0.00 = 0.00
AEy -49.46 + 3.15
AG 0 -4.38 + 0.20
AGyg/ 7.07£1.11
AGgy? 2.69 +1.08
AGuiand —46.77 £ 2.82

aNon-bonded van der walls contribution from MM force field.

bNon-bonded electrostatic energy as calculated by the MM force field.
cInternal energy arising from bond, angle, and dihedral terms in the MM force
field.

dTotal gas phase energy.

eNonpolar contribution to the solvation free energy.

'Polar contribution to the solvation free energy calculated.

9Solvation free energy.

hBinding energy.

AEgas =AEy, + AE g, + AE,, AG,, = Aanso/v + AGpso/v' AGbmd/ng = AEgas +AGqy,

corresponding residue. Figure 6 shows residues with binding
energy less than -1 kcal mol?, including residues Phe2015,
11e204°4, and Phe264%%of the subunit A, residues Ile169*%,
Pro170%%, Ile173%¢2, Val198>¥, and Phel99°%%of the subunit
B. To identify important groups of the ligand contributed to
the binding, we also calculated the interaction between the
CXCR4 dimer and the ligand using protein-ligand interaction
analysis software (PLIP) (Salentin et al., 2015). Figure 7 shows
the interaction mode between the CXCR4 dimer and the ligand
1 before the simulation and after that. Herein, the snapshot of
the lowest energy in the last 100 ns MD trajectory was selected
as representative conformation for calculating the binding

mode after the simulation. It can be seen from Figure 7 that the
benzene ring of the small molecule devotes main contribution to
the hydrophobic interaction between the ligand and the dimer,
indicating the importance of the benzene group of the ligand in
enhancing PPI. A comparison of the interaction modes in Figure
7 indicates that TM5 mainly contributes to the binding before the
simulation while TM4 also devotes to the binding besides TM5
after 1us simulation. Thus, it should be the interaction between
TM4 and the ligand that drives the two subunits closer.

Effect of Ligand 1 on Drug Screening of
Orthosteric Site
Since the existing drugs targeting CXCR4 are mainly antagonists,
we, herein, focused the impact of the PPI ligand on the selectivity
of the orthosteric site to the antagonists. One ligand set was
constructed. The active molecules are extracted from the ZINC
database (Irwin et al, 2012), GPCR-ligand database (Okuno
etal., 2007) and PubChem database (Kim et al., 2015). The decoys
stem from the DUD-E database (Mysinger et al., 2012). The ratio
of decoys to the active molecules (N activity/N decoy) is 1:36.
Consequently, the ligand set contains 1,480 small molecules (40
antagonists and 1,440 decoys). The ligand set was docked to the
orthosteric site of the receptor (Wu et al., 2010; Venkatakrishnan
etal., 2013; Qin et al.,, 2015), which consists of Lys25!1%, Cys28122,
Arg30'%, Asp972%4, His113>%, Asp1714%, Cys186°%°, Asp187°2,
Asp262°8, Glu277728, His28172, and Glu2887-2. Figure 8 shows
the receiver operating characteristic (ROC) curve and the area
(AUC) under the ROC.

It can be seen that the screening performance of the subunit
A increases with the simulation time (AUC=0.4661 at 100 ns,
AUC=0.6711 at 500 ns, and AUC=0.7329 at 1,000 ns). However,
there is little change for the subunit B (AUC=0.6698 at 100 ns,
AUC=0.6612 at 500 ns, and AUC=0.6503 at 1 us). In addition, we

—
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FIGURE 6 | Per-residue decomposition of the binding free energy for the CXCR4 dimer.
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also compared the drug screening performance of the orthosteric
site between the CXCR4 dimer bound the PPI ligand and one
without the ligand, as shown in Figure 9. Similarly, the PPIligand
improves the screening performance of the subunit A but nearly
has no effect on the subunit B, exhibiting asymmetric regulation.
The asymmetric effect was also observed for the activation and
the ligand binding for some GPCR dimers (Han et al., 2009; Liu
etal., 2017).

In order to probe the origin of the asymmetric impact of the
PPI molecule on the ligand binding of the orthosteric site for the
two subunits, we calculated the pocket volumes of the orthosteric
sites of CXCR4, as shown in Figure 10. It is clear that the PPI
ligand significantly increases the volume of the orthosteric
pocket for the subunit A but plays a minor role in the subunit B,
which should contribute to the asymmetric screening.

The Allosteric Pathway for the Regulation
Impact of the PPl Molecule on the Ligand
Binding of the Orthosteric Site

In order to probe how the PPI molecule regulates the ligand
binding of the orthosteric site of the receptor, we used the protein
structure network to identify the allosteric pathway between the

druggable pocket in the dimer interface and the orthosteric site
of the two subunits. The residues consisted of the two types of the
binding pockets are served as the starting and ending nodes in the
PSN calculation, respectively, based on the last 100 ns equilibrium
trajectory. Table 3 lists the number of main pathways with
frequency higher than 30%. Compared to the dimer without the
PPI small molecule, the binding of the PPI molecule significantly
increases the number of the pathway for the subunit A while
there is little change for the subunit B. The observation suggests
that the PPI ligand enhances the role of the interface in regulating
the orthosteric site of the subunit A but only plays minor role
for the subunit B. As a result, the volume of the orthosteric
pocket is increased for the subunit A while the slight change is
observed for that of the subunit B. In order to identify important
residues in the allosteric regulation pathway, we searched the
shortest pathway with the highest frequency between the PPI
pocket and the orthosteric pocket for the subunit A. It can be
seen from Figure 11 that the pathway is composed of Trp195°34-
Tyr190E€2-Val196°3°-GIn200°>¥- Asp2626->8—Cys28N-term, As
revealed above, Trp195°3 is an important residue contributed
to the binding of the PPI ligand. Residue Tyr190F¢!? locates in
ECL2, which was revealed to be switch for the ligand binding
in the orthosteric site (Scarselli et al., 2007; Arkin et al., 2014).
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FIGURE 8 | Effects of the PPI ligand on the screening performance of the orthosteric site to the antagonists for the subunit A (top) and the subunit B (bottom).

Residue GIn200>* plays a specific role in the dimerization of
CXCR4 dimer (Altwaijry et al., 2017). The residues Cys27472
and Cys28Nt™ bind closely through disulfide bonds, which
play an important role in the formation of entrance to the ligand
binding pocket at orthosteric site (Wu et al., 2010; Pawig et al.,
2015). Residue Asp262¢* is an important residue for the binding
of orthosteric site ligands (Wu et al., 2010; Qin et al., 2015). It
can be seen that most of the residues composed of the allosteric
pathway are associated with the ligand binding, which should
be the reason why the PPI ligand significantly affect the ligand
binding pockets, in turn influence its screening performance to
the ligands. Although there is no report on the importance of the
residue Val196>%* of this pathway, our observations suggest that
the residue Val196°% is also important for the ligand binding of
the dimer and should be concerned by experiments. In addition,
we also searched the shortest pathway with the highest frequency
between the PPI pocket and the orthosteric pocket of the subunit
B, as shown in Supplement 2. The pathway is composed of
11269513 —Phe26450-[1e270513-11e265%41-Glu27772, only
Glu277728 of which was reported to be the pocket residue of the
orthosteric site (Wu et al., 2010; Venkatakrishnan et al., 2013; Qin
et al,, 2015). Compared to the pathway of the subunit A, there
are fewer residues involved in the ligand binding for that of the

subunit B, which should contribute to the observation above that
the PPI ligand plays a minor role in influencing the screening
ability of the subunit B to the antagonists.

CONCLUSIONS

PPIs offer a rich source of novel drug targets. As the largest
family of drug-targeted proteins, it was evidenced that GPCRs
could form the dimers through the protein-protein interaction.
Unfortunately, the drugs targeting the PPI interface of the
GPCR dimers have not been explored so far. In the work,
we utilized molecular dynamics simulation coupled with the
virtual screening and the protein structure network to probe the
druggability in the PPI interface of CXCR4 homodimer and its
regulation mechanism on the receptor structure and the drug
screening ability of the orthosteric site.

One druggable pocket is identified in the PPI interface. One
small molecule is screened from the PPI drug-like small molecule
dataset which could enhance the dimerization mainly through
hydrophobic interactions between the benzene rings of the PPI
molecule and TM4 of the receptor. The enhancement of PPI by
the small molecule changes the screening performance of the
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FIGURE 9 | Comparison of the screening performance for the orthosteric sites of the subunit A and the subunit B between the apo CXCR4 dimer (red lines) and the
CXCR4 dimer bound by the PPI ligand (purple lines).
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FIGURE 10 | Comparison of volumes for the orthosteric pockets of the subunit A and the subunit B between the apo CXCR4 dimer (red lines) and the CXCR4
dimer bound by the PPI ligand (purple lines).

two subunits to the antagonists targeting the orthosteric pocket. ~ volumes induced by the binding of the PPI molecule, which leads
One subunit exhibits an enhanced screening performance to the  to the significant increase in the pocket volume of the subunit A
antagonists while the minor change is observed for the other  but only plays a minor role for the subunit B.

subunit, exhibiting an asymmetric cooperativity. The structural The results of PSN reveal that the number of the regulatory
analysis indicates that the negative cooperativity should be  pathways from the PPI pocket to the orthosteric pocket is
attributed to the asymmetric change in the orthosteric pocket  significantly increased for the subunit A while a minor change
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TABLE 3 | The number of communication pathways between the binding pocket
of the dimer interface and the orthosteric binding pocket (frequency above 30%),
derived from the last 100 ns trajectory of the 1 us simulation.

2Docked-dimer bFree-dimer

Subunit A 78 56
Subunit B 79 77
aThe dimer docked by the PPl ligand.
bThe apo dimer.
orthosteric site .
(C28N-term Vi 65-35 | Y
4 Diéé“s / W1 955.34
A Y190ECL2
‘ Q2005 PPI site

FIGURE 11 | The shortest pathway with the highest frequency between the
druggable pocket on the dimer interface and the orthosteric site of subunit
A. The blue region represents the PPI pocket. The purple region represents
the orthosteric site of the subunit A. The green balls represent the residues
composed of the pathway.

is observed for the subunit B, which should contribute to the
asymmetric change of the binding pockets between the two
subunits. In addition, one main regulatory pathway from the PPI
binding site to the pocket of the subunit A is identified, revealing
that the PPI ligand molecule allosterically regulates the structural
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Aqueous solubility is an important physicochemical property of compounds in
anti-cancer drug discovery. Artificial intelligence solubility prediction tools have scored
impressive performances by employing regression, machine learning, and deep learning
methods. The reported performances vary significantly partly because of the different
datasets used. Solubility prediction on novel compounds needs to be improved, which
may be achieved by going deeper with deep learning. We constructed deeper-net
models of ~20-layer modified ResNet convolutional neural network architecture, which
were trained and tested with 9,943 compounds encoded by molecular fingerprints.
Retrospectively tested by 62 recently-published novel compounds, one deeper-net
model outperformed four established tools, shallow-net models, and four human experts.
Deeper-net models also outperformed others in predicting the solubility values of a
series of novel compounds newly-synthesized for anti-cancer drug discovery. Solubility
prediction may be improved by going deeper with deep learning. Our deeper-net models
are accessible at http://www.npbdb.net/solubility/index.jsp.

Keywords: aqueous solubility, deep learning, artificial intelligence, compounds, chemical, anti-cancer drug
discovery

INTRODUCTION

Aqueous solubility is an important physicochemical property of compounds in anti-cancer drug
discovery and development, impacting pharmacokinetic properties and formulations (1, 2). To
facilitate solubility assessment, a number of artificial intelligence (AI) solubility prediction tools
have been developed by employing regression and modeling (3, 4), machine learning (5-9), and
deep learning (10-12) methods. These tools have scored impressive performances with high R?
(e.g., 0.62-0.97) and low RMSE (e.g., 0.29-0.89) values (5, 13). However, the reported performances
vary significantly, even among the same tools, partly because of the different datasets used. For
instance, the reported R? and RMSE values of MOE software V2010.10 are 0.62 and 0.51 (8)
and those in a 2014 publication are 0.27 and 1.05 (14). The reported R> and RMSE values of
QikProp software V1.6, V2.1, and V3.2 are 0.9 and 0.8 (6), 0.95 and 0.63 (15), and 0.45 and 0.86
(8), respectively.

AT solubility prediction tools may be critically tested by newly-published novel compounds.
Tested by 62 novel compounds published since November 2017 (Methods section), four established
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tools MOE V2016.0802, QikProp QP18 and CIQPI18, and
AlogGPS V2.1 scored significantly lower R? (<0.2) and higher
RMSE (0.814-1.162) values (Results section) than the typically-
reported values (5, 6, 8, 14, 15). Our own-developed deep
learning model of typically-employed shallow-net architecture
(Methods section), trained and tested with 9,943 compounds,
also scored lower R? (0.307) and higher RMSE (0.739) values
(Results section). Hence, there is a need for improved solubility
prediction particularly on novel compounds to promote oral
anti-cancer drug development. In Al field, deep learning methods
with distinguished learning capabilities (16) [which has been
proved by prediction of CRISPR-Cpfl guide RNA activity
(17) and prediction of protein-ligand binding affinity (18)]
are useful for this task, but their potential has yet to be
fully realized.

The published deep learning solubility prediction models
are primarily shallow-nets (3-7 layers) (10-12). Deep learning
performances have been routinely enhanced by going deeper
(adding more layers to shallow-nets) (19-21). Although
performances can also be enhanced by going wider (22), it
may be practically easier to develop deeper-nets by tapping
into the well-established architectures that require fewer
parameters (19-21). The depth of deeper-nets or the width of
wider-nets is constrained by the limited number of compounds
with experimental solubility data. The architecture with
fewer parameters, convolutional neural networks (CNN),
is therefore preferred. A question is whether the superior
local-feature learning capability of CNN can adequately learn
molecular features of compounds. To fit with the local-
feature learning capability of CNN, compounds are better
represented by substructure-encoded molecular fingerprints
(23) instead of molecular descriptors used for solubility
prediction by previously-developed deep learning models
(10-12). Molecular fingerprints are vectors with individual
components encoding specific sub-structures of molecules.
Hence, the superior local-feature learning capability of CNN
is expected to be useful for capturing the key sub-structural
elements and their combinations contributing the solubility
of molecules.

We constructed N-layer CNN models (N 14, 20,
and 26) using 9,943 compounds and based on a residual
network (ResNet) architecture (20), which are significantly
deeper than the previously-developed 3-7 layers shallow-net
models (10-12). The solubility prediction capability of our
deeper-net models was tested by retrospective prediction of
the experimental solubility of 62 recently-published novel
compounds beyond the training and testing compounds. These
performances were compared with those of four established
tools, shallow-net models and four human experts. Our
deeper-net models and others were further tested by a real
anti-cancer drug discovery project with a series of novel
compounds newly-synthesized for discovering FLT3 inhibitors.
These compounds were considered difficult for solubility
estimation by medicinal chemistry experts, which are ideal
for rigorous test of solubility prediction models. Our models
are accessible at http://www.npbdb.net/solubility/index.jsp for
supporting broader tests.

MATERIALS AND METHODS

Data Collection and Processing

A total of 10,166 compounds with experimental aqueous
solubility value were collected from ChemIDplus database (24)
and Pubmed (9, 25, 26) literature search up to November
2017. Another 62 recently-published novel compounds with
experimental aqueous solubility value (Supplementary Figure 1,
6 representative compounds in Figure 1) were collected from
PMC database (27-31) search using keyword combination
of “novel”, “new,” and “solubility” and under the following
criteria: published between November 2017 and May 2018, and
solubility measured at room-temperature and around pH 7.0.
For the 10,166 compounds, their SMILES strings (which encode
sub-structures), InChIKeys (chemical structure identifiers) and
aqueous solubility values were collected from the searched
sources. For the 62 novel compounds, their structures were
drawn from literature-reported structures by using ChemDraw
18.0 and then converted to the SMILES strings by using
RDKit!. Solubility S values in different units (e.g., pg/mL,
mg/mL, and mg/L) were converted to mol/L and transformed
into logS (in logarithmic units) values. The SMILES strings
were converted to canonical SMILES strings for consistency by
using Open Babel (32). Duplicates were removed by InChIKeys
comparisons. The canonical SMILES of the remaining non-
redundant 9,943 compounds (Supplementary Table 1, the basic
physical properties detailed in Supplementary Table 2) and
the 62 novel compounds were converted into the Pubchem
molecular fingerprints (which encode sub-structures by 881 bits)
using PaDEL (33).

Established Tools and a Deep Learning
Model of Typically-Employed Shallow-Net

Architecture for Solubility Prediction
Solubility  prediction performances were comparatively
evaluated with respect to four established software tools
[MOE V2016.0802%, QikProp 2018-4 QP18 and CIQP18°, and
AlogGPS V2.1 based on an artificial neural network method (5)].
The deep learning model was developed based on a typically-
employed shallow-net deep neural network (DNN) architecture
for solubility prediction (11), which is a 4 hidden-layers DNN
(Supplementary Figure 2) with the network architecture and
parameter sets re-constructed based on the literature descriptions
(11) with the following minor variations: the activation function
was changed from SReLU to ReLU and the compounds were
represented by pubchem molecular fingerprints instead of fp6
molecular fingerprints. The numbers of nodes of the hidden
layers are 512, 1,024, 2,048, and 4,096. The parameters of L2
regularization and dropout regularization are 0.001 and 0.5. The
9,943 compounds were randomly divided into 90% training and
10% testing datasets for training the DNN model.

Uhttp://www.rdkit.org/
Zhttp://www.chemcomp.com/index.htm
3 https://www.schrodinger.com/QikProp
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FIGURE 1 | The molecular structures and experimental solubility S values of six recently-published novel compounds.
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Development of Deep learning Models of
Deeper-Net Architecture for Solubility

Prediction

The deeper-net models were based on the ResNet architecture
(20) with the usual matrix forms of the ResNet layers, filters
and feature maps replaced by vector forms. The numbers of
layers N are 14, 20 (Figure 2), and 26 (Supplementary Figure 3)
(N-1 CNN layers and 1 fully-connected layer). The vector
forms were used because the inputs are 881-dimensional vectors
(Pubchem fingerprints) instead of matrices of image pixel values.
These CNN models were trained by the 10-fold cross validation
method used for the development of two shallow-net deep
learning solubility prediction models (10, 12). In the 10-fold cross
validation method, the 9,943 compounds were randomly divided
into 10 sets of approximately equal sizes, with each set used
once as a testing dataset, and the remaining 9 sets as training
dataset for training the CNN models. The CNN hyperparameters
were optimized based on the overall performance of the 10
training/testing datasets. These hyperparameters include loss
function, kernel sizes, number of filters, stride lengths, number
of fully-connected hidden layers, number of neurons of the
fully-connected layer, activation function, optimizer, learning
rate, weight initialization, regularization, batch size, and epochs.
Multiple activation functions (Sigmoid, ReLU, Softmax) were
evaluated in both activation layers and the activation arguments
of all forward layers. The weight initialization was uniform. L2
regularization was added by small amounts of L2 weight decay.
A solubility value regression model was trained by least squares
fit (<R = —(1 = (L5 (i = 7)*/ X (i = 9)°)) between
the predlcted (i) and experlmental (y:) solubility values of the
n training compounds as the loss function of the output of our
deeper-net models.

Performance Evaluation Metrics
The solubility prediction performances of the developed deep
learning models were assessed by two metrics used in the

evaluation of previously-developed shallow-net deep learning
models (10, 12). One is the R? value, where R is the Pearson
correlation coefficient defined by:

RI—1_ Y i — i)’

Z?z_ol (i _7)2

The second is the root mean squared error RMSE defined by:
i i =)’

n

RMSE =

where ; is the predicted and y; is experimental solubility values
of the training compounds.

In statistics, R?, the coefficient of determination, is the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s). It is a statistical
measure used in a regression model to indicate that how well
the model fits the data. Theoretically, it denotes a goodness-of-
fit indicator that can vary from -oc to 1. The closer the R? value
is to 1, the better the model fits the data, and vice versa. The
other metric, RMSE, is the square root of the average of squared
errors. It is a statistical measure of the differences between the
values predicted by a model and the true values. RMSE is always
non-negative, and the value closer to 0 indicates the better fit to
the data.

Chemical Synthesis and Experimental

Aqueous Solubility Determination

In one of our drugs discovering projects toward antitumor
therapeutics, a series of novel FLT3 inhibitors were designed
and synthesized using the structure-based drug design methods.
The aqueous solubilities (pH = 7) of these compounds were
measured using the modified shake flask method and RP-HPLC
(34, 35). Each compound was added into a 1.5 mL Eppendorf
tube containing Milli-Q water (1 mL) to form the precipitates at
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FIGURE 2 | The architecture of the 20-layer CNN ResNet-like deep learning model. (A) A CNN ResNet-like deep learning model with 20 parameter layers. The
“conv1d x,y” is a 1D convolution layer with x kernel sizes and vy filters. And the curvy arrows are the shortcut connections. The shortcut connection with a parameter
layer increases dimensions. The different color means different layer class in the architecture. “Green” means the first layer, “white” means the last layer, “gray” means
the parameter layer of the shortcut connection, and the others mean the residual layers. The color change of the residual layers from purple to blue to yellow indicates
the tensor dimension change from 9 to 18 to 36. (B) The shortcut connection in the architecture of CNN ResNet-like deep learning model. Shortcut connections
simply perform identity mapping by skipping one or more layers (20). Their outputs are added to the outputs of the stacked layers without extra parameter and

computational complexity.
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25°C. Then the mixture was subjected to a solubility-equilibrium
stage. The tube was shook at 300 rpm at 25°C for 24 h. The
precipitate was separated by centrifugation at 23,000 g for 20 min.
Subsequently, 0.25mL of supernatant was transferred into a
1 mL Eppendorf tube, and it was centrifuged again with the
same settings used above. The supernatant was then used for
HPLC analysis. An Agilent 1260 Infinity LC system (Agilent
Technologies, Inc., Santa Clara, California) was used. For HPLC
conditions, a ZORBAX SB-C18 column (5 M, 4.6 x 150 mm;
Agilent), a flow rate of 0.8 mL/min for mobile phase, a UV
wavelength of 250 nM and a column temperature of 30°C were
used. The sample was injected automatically by a mechanical
arm and separated by a constant mixture of methanol/PBS (pH
5.6), 90:10. For each compound, a standard curve consisting of
four concentrations was established. The synthetic methods of all
but compound SC5 and SC6 have been published in literatures
(36-39). The synthetic methods of SC5 and SC6 are described in
Supplementary Method 1.

RESULTS

The Training of the Deeper-Net Models and
Solubility Prediction Performance

Evaluation

Using 9,943 compounds and 10-fold cross validation method,
three deeper-net models of 14-, 20-, and 26-layer were developed.
The ranges and the optimal hyperparameter values for the 20-
layer model (which is the top performing model based on the
loss function R? values) are given in Supplementary Table 3.
The 10-fold cross validation performances of the 14-, 20-, and
26-layer models are R* = 0.72-0.78, 0.74-0.79, and 0.72-0.79,
and RMSE = 0.988-1.144, 1.006-1.112, 1.015-1.151, respectively
(detailed in Supplementary Table 4). In spite of different depths,
these models performed similarly well, possibly because the
superior predictive capability of these deeper-net models cannot
be fully tested by 1-fold (1/10) testing datasets. The test by novel
compounds may be better for probing the predictive capabilities.
The reported 10-fold cross validation performances of the two
previously-developed shallow-net models are R? = 0.86-0.92 and
0.90-0.92, and RMSE = 0.58-0.79 and 0.45-0.50, respectively
(10, 12), which are substantially better than those of our deeper-
net models. It is noted that our datasets (testing 994 compounds,
training 8,949 compounds) are significantly larger than those of
the two previously-developed shallow-net models (testing 102—
287 and 129-154 compounds, training 923-2,586 and 1,161-
1,537 compounds, respectively) (10, 12). Caution is needed
in a direct comparison of the performance statistics of these
models. The significantly more diverse testing datasets may partly
contribute to the lower performance statistics. But the more
diverse training datasets likely lead to more robust prediction
capability than the less diverse training datasets. Because of the
inaccessibility of the previously-published shallow-net models,
it is impossible to test these models on a common set of
diverse compounds. Therefore, these models were tested on
the 62 newly-published novel compounds and a series of novel

compounds from our anti-cancer drug discovery project with
solubility measured for the first time in this work.

Prediction of the Solubility Values of
Literature-Reported Novel Compounds by
the Deeper-Net Models in Comparison
With the Established Tools and
Shallow-Net Models

The solubility prediction capability of our deeper-net models
was tested by the 62 newly-published novel compounds. We
also trained 1-layer DNN model, 6-layer DNN model, and
8-layer ResNet-like model as our shallow-net models. The
testing results of these models are included in Table 1, and
the predicted logS values of these models with respect to
experimental logS values are in Supplementary Table 5. Based
on the R?> and RMSE values, the 20-layer deeper-net model
(R? = 0.412, RMSE = 0.681) performed substantially better
than all the other models including the four established
tools and the shallow-net models (R? in the range of <0.2
to 0.307, RMSE = 0.739-0.982). The R?> and RMSE values
of four established tools, shallow-net and deeper-net deep
learning models were evaluated by the bootstrap sampling
method. The mean, standard deviation and 95% confidence
interval of R? and RMSE values for 10,000 bootstrap samples
of 62 recently-published novel compounds were detailed in
Supplementary Table 6. Judged by the percent of predicted logS

TABLE 1 | Performance on the logS prediction of 62 recently-published novel
compounds?.

Model R? RMSE PCT-10-fold® (%)
Established tools

MOE V2016.0802 <0.2 0.908 74.2
QikProp 2018-4 QP18 <0.2 0.926 69.4
QikProp 2018-4 CIQP18 <0.2 1.162 54.8
AlogGPS V2.1 0.160 0.814 77.4
Shallow-net deep learning model of a

typically-employed architecture for

solubility prediction

4-layer DNN model 0.307 0.739 80.7
Shallow-net deep learning models developed

in this work

1-layer DNN model 0.086 0.849 72.6
6-layer DNN model 0.264 0.762 79.0
8-layer ResNet-like model <0.2 0.982 66.1
Deeper-net deep learning models developed

in this work

14-layer ResNet-like model 0.133 0.827 74.2
20-layer ResNet-like model 0.412 0.681 82.3
26-layer ResNet-like model 0.075 0.854 77.4

aThe performance of the established tools, and the shallow-net and deeper-net deep
learning models in the prediction of experimental logS values of 62 recently-published
novel compounds. The best performance values are in bold font.

b Percent of predicted logS value within 10-fold of experimental value.
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TABLE 2 | Performance on the solubility category prediction?.

Percent of 62 compounds with
correct classification (%)

Human expert or established tool

Deep learning model Percent of 62 compounds with

correct classification (%)

Expert 1 6.5
Expert 2 8.1

Expert 3 11.3
Expert 4 74.2
MOE V2016.0802 91.9
QikProp 2018-4 QP18 85.5
QikProp 2018-4 CIQP18 87.1
AlogGPS V2.1 82.3

4-layer DNN model 79.0
1-layer DNN model 79.0
6-layer DNN model 82.3
8-layer ResNet-like model 80.7
14-layer ResNet-like model 87.1
20-layer ResNet-like model 85.5
26-layer ResNet-like model 83.9

aThe performance of human experts, the established tools, and the shallow-net and deeper-net deep learning models in the prediction of solubility category of 62 recently-published
novel compounds. The solubility categories are practically insoluble or insoluble (<0.1 g/L), slightly soluble (0.1-10 g/L), soluble (10-100 g/L), and freely soluble (=100 g/L).

SC1 S =3.0723E-02 SC2

SC4

S = 1.0491E-01

values measured for the first time by this work.

8 P S N-NH N A

4
M W CQ NM s
NC CN NC NH, N T =

S = 3.1743E-02
H
"o O
/©/ \©:/<N h
HaCO
HN
(@]

FIGURE 3 | The molecular structures and experimental solubility S values (in mg/mL) of the five synthetic novel compounds for a drug discovery project with solubility

SC3 S = 6.0746E-02

SC5 S = 1.9714E-02

values within 10-fold of experimental value, all but one model
achieved high performances (66.1%), suggesting the usefulness
of both established tools and deep learning models for accessing
solubility categories. Nonetheless, the 20-layer deeper-net model
substantially outperforms all other models. These suggested
that going deeper with deep learning at appropriate depth
may give rise to significantly improved solubility prediction on
novel compounds. The lower R? and RMSE values of the 26-
layer model (R? = 0.075, RMSE = 0.854) over the 20-layer
model indicated signs of overfitting in going further deeper
beyond ~20-layer.

Comparison With Human Experts in
Coarse-Grained Classification of the
Solubility Categories of the

Literature-Reported Novel Compounds

Four human experts in medicinal chemistry were selected from
the China Pharmaceutical University using the criterion of a
recent machine vs. human comparative solubility prediction

study (9), ie., a human expert is someone with medicinal
chemistry expertise working or studying in a university.
These four experts include one assistant professor and three
PhD students. They were tasked to conduct coarse-grained
classification of the aqueous solubility of the 62 novel compounds
at room temperature into one of the following categories:
practically insoluble or insoluble (<0.1 g/L), slightly soluble
(0.1~10 g/L), soluble (10~100 g/L), and freely soluble (>100
g/L). The classification performance of these four experts
together with those of the established tools, and shallow
and deeper-net models are in Table 2. All tools and models
achieved high classification accuracies of 79.0-91.9%, which
significantly outperformed the human experts (6.5-74.2%).
These indicated the more superior capability of both established
tools and deep learning models over human experts in
coarse-grained classification of the solubility categories on
novel compounds. However, no definite conclusion could be
deduced on which was better between the established tools
and the deep learning models. No improving trend was
found with the increasing of the deep learning models’ depth.
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It seemed that the coarse-grained classification method was
not discriminative enough to differentiate the capabilities of
the established tools and deep learning models as revealed
by the more quantitatively-precise evaluations of R?> and
RMSE values.

Solubility Prediction of a Series of Novel
Compounds From a Real Anti-cancer Drug

Discovery Project

A series of 17 novel compounds were synthesized by using
the method described in Supplementary Method 1 and the
published literatures (36-39) for discovering FLT3 inhibitors.
These compounds are structurally novel based on SciFinder
search. They are difficult for solubility estimation based on
our surveys with medicinal chemistry experts. The solubility
values of these 17 compounds (Supplementary Figure 4) were
experimentally measured using the method described in the
Methods section. We were unable to determine the exact
solubility values for 12 compounds because they are insoluble
below 1.0000E-2 mg/mL in neutral water. Hence, only the
remaining five compounds (Figure 3) with exact experimental
solubility values were used for testing our deeper-net models
and other models. Partly because of the novelty and low
number of compounds, the R? values of all models are well
below statistically meaningful values. Hence only the RMSE
values and the percent of predicted logS values within 10-fold
of experimental value were used for performance evaluation
(Table 3). Judged by the RMSE values, the deeper-net models
substantially outperformed all other models, with the 26-
layer model as the best one in spite of minor level of
overfitting. This further indicated the advantage of going deeper
for improved solubility prediction. Judged by the percent of
predicted logS values within 10-fold of experimental value, the
majority of the models (including 14- and 20-layer deeper-
net models) achieved equally good performances (60%) with
the 26-layer model as the best one (80%). This again showed
that both the established tools and deep learning models
are useful for rough estimation of the solubility values of
novel compounds.

DISCUSSIONS

Like successful applications of deep learning methods in
other fields (19-21), the superior learning capability of
deeper-net models may be exploited to improve solubility
prediction of novel compounds, including those compounds
considered by medicinal chemistry experts as difficult for
solubility estimations. To better explore the learning capability
of deeper-net architectures, the molecular representations
of the compounds may be selected for conforming to
these architectures. Specifically, the superior local-feature
learning capability of the CNN architectures may be better
exploited by wusing the substructure-encoded molecular
fingerprints for representing compounds. Our studies
consistently scored the substantially better solubility prediction

TABLE 3 | Performance on the logS prediction of 5 novel compounds?.

Model RMSE PCT-10fold® (%)
Established tools

MOE V2016.0802 2.293 <20
QikProp 2018-4 QP18 2.717 20
QikProp 2018-4 CIQP18 2.308 20
AlogGPS V2.1 1.073 60
Shallow-net deep learning model of a typically-employed
architecture for solubility prediction

4-layer DNN model 1.325 60
Shallow-net deep learning models developed in

this work

1-layer DNN model 1.502 60
6-layer DNN model 1.494 40
8-layer ResNet-like model 1.646 60
Deeper-net deep learning models developed in

this work

14-layer ResNet-like model 0.982 60
20-layer ResNet-like model 0.811 60
26-layer ResNet-like model 0.689 80

aThe performance of the established tools, and the shallow-net and deeper-net deep
learning models in the prediction of experimental logS values of 5 novel compounds
(quantitative values measured in this work). The best performance value is in bold font.

b Percent of predicted logS value within 10-fold of experimental value.

performances of the deeper-net deep learning models on
novel compounds than the established tools and shallow-
net models. Nonetheless, the prediction performance of the
deeper-net models on novel compounds is affected by the
limited number of 9,943 compounds for training these models.
Solubility prediction capability of the deeper-net methods
may be further enhanced with the expanded experimental
solubility data and by means of algorithm development.
Our novel approach may find broader applications in the
development of high-performance deep learning models for the
prediction of various pharmacodynamic, pharmacokinetic, and
toxicological properties.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related
death and has an extremely poor prognosis. Thus, identifying new disease-associated
genes and targets for PDAC diagnosis and therapy is urgently needed. This requires
investigations into the underlying molecular mechanisms of PDAC at both the systems
and molecular levels. Herein, we developed a computational method of predicting cancer
genes and anticancer drug targets that combined three independent expression
microarray datasets of PDAC patients and protein-protein interaction data. First,
Support Vector Machine-Recursive Feature Elimination was applied to the gene
expression data to rank the differentially expressed genes (DEGs) between PDAC
patients and controls. Then, protein-protein interaction networks were constructed
based on the DEGs, and a new score comprising gene expression and network
topological information was proposed to identify cancer genes. Finally, these genes
were validated by “druggability” prediction, survival and common network analysis, and
functional enrichment analysis. Furthermore, two integrins were screened to investigate
their structures and dynamics as potential drug targets for PDAC. Collectively, 17 disease
genes and some stroma-related pathways including extracellular matrix-receptor
interactions were predicted to be potential drug targets and important pathways for
treating PDAC. The protein-drug interactions and hinge sites predication of ITGAV and
ITGA2 suggest potential drug binding residues in the Thigh domain. These findings
provide new possibilities for targeted therapeutic interventions in PDAC, which may have
further applications in other cancer types.

Keywords: pancreatic ductal adenocarcinoma, drug targets, support vector machine-recursive feature elimination,
protein-protein interactions, structural dynamics, integrins
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
malignant solid tumors (Bailey et al., 2016). PDAC is difficult to
treat due to the stage of diagnosis, severe cachexia and poor
metabolic status, the resistance of cancer stem cells (CSCs) to
current drugs, and the marked desmoplastic response that
facilitates growth and invasion, provides a physical barrier to
therapeutic drugs, and prevents immunosurveillance (Al Haddad
and Adrian, 2014). PDAC is also a drug-resistant disease, and the
response of pancreatic cancer to most chemotherapy drugs is
poor. Until now, most of research effort in PDAC has been
directed at identifying the important disease-driving genes and
pathways (Waddell et al., 2015). These studies have shown that
KRAS, CDKN2A, TP53, and SMAD4 are the four most common
driver genes in PDAC (Carr and Fernandez-Zapico, 2019). With
the development of multi-omics data, a series of new regulators
that are strongly correlated with survival have been proposed to
be PDAC biomarkers (Rajamani and Bhasin, 2016; Mishra et al.,
2019), including genes (e.g., IRSI1, DLL1, HMGA2, ACTNI1, SKI,
B3GNT3, DMBT1, and DEPDCIB) and IncRNAs (e.g., PVT1 and
GATAG6-AS). The integrated transcriptomic analysis of five
PDAC datasets identified four-hub gene modules, which were
used to build a diagnostic risk model for the diagnosis and
prognosis of PDAC (Zhou et al., 2019). Integrated genomic
analysis of 456 PDAC cases identified 32 recurrently mutated
genes that aggregate into 10 pathways: KRAS, TGF-B, WNT,
NOTCH, ROBO/SLIT signaling, G1/S transition, SWI-SNF,
chromatin modification, DNA repair, and RNA processing
(Bailey et al., 2016). Previous treatments for pancreatic cancer
have focused on targeting some of these PDAC-associated
pathways, including TGFf (Craven et al., 2016), PI3K (Conway
et al., 2019), Src (Parkin et al., 2019), and RAF—MEK—ERK
(Kinsey et al, 2019) and NFAT1-MDM2-MDMX (Qin et al,
2017) signaling, as well as cell-cell communication within the
tumor microenvironment (Shi et al., 2019). The discovery of
novel drug targets provides extremely valuable resource towards
the discovery of drugs. Although the human genome comprises
approximately 30,000 genes, proteins encoded by fewer than 400
are used as drug targets in disease treatments. A range of
therapeutic targets in PDAC have been proposed, including
suppressing the abovementioned genes and pathways (Tang
and Chen, 2014). However, the current drug targets for PDAC
will not be 100% effective due to the heterogeneous nature of the
disease. To tackle this challenge, a complete understanding of the
molecular mechanism of PDAC is urgently needed.

Improving PDAC therapy will require a greater knowledge of
the disease at both the systems and molecular levels. At the
systems level, protein-protein interaction (PPI) networks provide
a global picture of cellular function and biological processes
(BPs); thus, the network approach is used to understand the
molecular mechanisms of disease, particularly in cancer (Conte
et al, 2019; Sonawane et al., 2019). Some proteins act as hub
proteins that are highly connected to others, thus cancer drug
targets can be predicted by hubs in PPI networks (Li et al., 2018;

Lu et al, 2018; Zhu et al.,, 2019). However, there are some
conflicting results that suggest disease genes or drug targets
have no significant degree of prominence (Mitsopoulos et al.,
2015), but higher betweenness, centrality, smaller average
shortest path length, and smaller clustering coefficient (Zhao
and Liu, 2019). Recent advances in systems biology have led to a
plethora of new network-based methods and parameters for
predicting essential genes (Li et al., 2019), disease genes, and drug
targets (Csermely et al,, 2013; Vinayagam et al., 2016; Zhang
et al., 2017; Fotis et al., 2018; Liu et al., 2018). Additionally, the
structural annotation of PPI networks that has highlighted key
residues has enriched the fields of both systems biology and
rational drug design (Kar et al., 2009; Winter et al., 2012). The
prediction of binding sites, allosteric sites, and genetic variations
based on systems-level data is critical for suggesting therapeutic
approaches to complex diseases and personalized medicine
(Duran-Frigola et al.,, 2013; Yan et al., 2018). Combined with
PPI network analysis, molecular docking studies of target genes
can further help to find drug molecules and protein-drug
interactions for lung adenocarcinoma (Selvaraj et al., 2018).

Together with advances in “-omics” data, including gene
expression and PPI data, machine learning (ML), and artificial
intelligence (AI) techniques are powerful tools that can assess
gene and protein “druggability” from such massive and noisy
datasets (Kandoi et al., 2015; Zhavoronkov, 2018). As the most
used ML method, support vector machine (SVM) has been used
for cancer genomic classification or subtyping, which may be
useful for obtaining a better understanding of cancer driver genes
and discovering new biomarkers and drug targets (Huang et al.,
2018). ML-based methods have been applied to study PDAC for
different purposes. By applying ML algorithms to proteomics
and other molecular data from The Cancer Genome Atlas
(TCGA), two subtypes of pancreatic cancer can be classified
(Sinkala et al., 2020). A meta-analysis of PDAC microarray data
could help predict biomarkers that can be used to build Al-based
computational predictors for classifying PDAC and normal
samples (Bhasin et al, 2016), as well as predicting sample
status (Almeida et al., 2020). To predict and validate novel
drug targets for cancer, including PDAC, a ML-based classifier
that integrates a variety of genomic and systems datasets was
built to prioritize drug targets (Jeon et al., 2014).

In this study, we developed a computational framework that
integrates various types of high-throughput data, including
transcriptomics, interactomics, and structural data, for the
genome-wide identification of therapeutic targets in PDAC. A
novel centrality metric, referred to as SVM-REF and Network
topological score (RNs), was proposed for the identification of
disease genes and drug targets. This method incorporates gene
expression and network topology information from ML and PPI
analyses. Moreover, the predicted genes were validated by
“druggability” prediction, survival, and comparative network
analyses, as well as functional enrichment analysis. Finally, the
structural and dynamic properties of two integrins ITGAV and
ITGA2) as drug targets were investigated. The workflow of these
methods is shown in Figure 1.
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FIGURE 1 | The computational pipeline proposed in this work included three steps. Overall, a machine learning method was used to identify DEGs in PDAC, which
were then combined with two parameters of the PPI network to define a new score that predicted disease genes and drug targets in PDAC. All potential targets
were then further verified by other bioinformatics analyses and investigated by a “druggability” analysis of structural and dynamic properties.

MATERIALS AND METHODS
Identification of DEGs

In this study, three independent PDAC expression microarray
datasets with 184 pancreas samples (95 cancer and 89
nonmalignant samples) were used. The datasets were obtained
from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). Details of each dataset are listed in Table 1. The
GSE15471 dataset included 36 PDAC samples and matching
normal pancreas samples from pancreatic cancer patients in
Romania (Badea et al., 2008). There were also matched samples
in the GSE28735 dataset, which contains gene expression profiles
of 45 matched pairs of pancreatic tumor and adjacent non-tumor
tissues from PDCA patients in Germany (Zhang et al., 2012;
Zhang et al., 2013). The GSE71989 dataset contained expression
profiles of eight normal pancreas and 14 PDAC tissues (Jiang
et al., 2016). The normalized data were downloaded from GEO
and then analyzed to identify DEGs using t-tests, with p-values
adjusted by the Benjamini-Hochberg method. Only genes with
adjusted p-values < 0.01 and |[FC| > 1.5 were chosen as DEGs.

TABLE 1 | Information on the included GEO datasets.

Accessions Platforms Samples References
(tumor vs.
non-tumor
tissues)
GSE15471  Affymetrix Human Genome 36 vs. 36 (Badea et al., 2008)
U133 Plus 2.0 Array
GSE28735  Affymetrix Human Gene 1.0 45vs. 45  (Zhang et al., 2012;
ST Array Zhang et al., 2013)
GSE71989  Affymetrix Human Genome 14vs. 8  (Jiang et al., 2016)

U133 Plus 2.0 Array

Gene Prioritization Pipeline
Disease genes and drug targets usually have large degree in PPI
networks, but there is no single network parameter that can
accurately predict them (Li et al., 2016). Protein targets do not
exert their function in isolation; rather they are affected by
interactions within their PPI network, which are governed by
protein localization and environment. In the same way,
topological information from PPI networks alone is not
enough to identify disease genes and drug targets without
biological information. To overcome these limitations, we
developed a new three-step pipeline to identify cancer-related
genes that may be candidate drug targets in PDAC. The pipeline
integrated information from gene expression data and local and
global topological characteristics of genes in PPI networks.
Step 1: For each gene expression dataset, we employed SVM
methods based on a Recursive Feature Elimination (SVM-RFE)
algorithm (Guyon et al., 2002), which is an embedded method to
specifically deal with gene selection for cancer classification
(Bolon-Canedo et al., 2014), rank DEGs, and select the most
relevant features (Jeon et al.,, 2014). SVM-RFE can remove
redundant features (genes) to generalize performance,
implement backward feature elimination, search an optimal
subset of genes, and provide a ranking for each gene. We
ranked genes by SVM-RFE score (R,), according the following
formula:

R = (1+n)—r,-,
n
where 7 is the number of DEGs and r; is the rank of gene i.
Step 2: A PPI network of DEGs was constructed with the
STRING database (von Mering et al., 2003; Szklarczyk et al.,
2017) using scores > 0.9. The topological parameters degree and
shortest path length for each gene in the PPI network were
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calculated. The degree (K) of a node in the PPI network is the
number of links attached to that node, which is one of the
measures of centrality of a node in the network. The average path
length (L) of node v in the network is the average length of the
shortest paths between v and all other nodes and was defined as:

Lv _ 23#5(1/’ i) ,
n-1
where &(v,i) is the length of the shortest path between nodes v
and I, and n is the node number in the network.
Step 3: Finally, we incorporated Network topological
properties into R, and defined a new score (RNs) for each gene as:

L*R;
RNs = ——.

Accordingly, this new RNs score (SVM-RFE and Network
topological score) considers the cancer status of each gene by
including information about gene expression and two levels of
topological features in PPI networks, namely, degree K indicates
the importance of the node, while the shortest path length L
shows the effects from other nodes. The code for gene
prioritization is freely available on GitHub for download at:
https://github.com/CSB-SUDA/RNs.

PPI Network Analysis

Once the PPI network was constructed, two other analyses were
performed. The first analysis was the calculation of two commonly
used centrality parameters: betweenness and closeness centrality.
The betweenness centrality (BC) (Freeman, 1977) of node v was
defined as:

5 8ivj
i#jizv,jzv
ij

BC, =

where g;,; is the number of the shortest paths from i to j that pass
through node v, and g;; is the number of shortest paths from i to j.

The closeness (CC) of node v is the reciprocal of the average
shortest path length, which was calculated as:

. n-1
B Evéia(v, 1) '

Proteins are often incorporated into modules that can be
shared between several different cellular activities. The second
analysis was module detection of PPIs by integrating a Gaussian
network (GN) algorithm (Newman and Girvan, 2004) and
functional semantic similarity (Wang et al., 2007). In general,
this involved using the GN algorithm to detect the module of PPI
networks, and then applying functional semantic similarity to
filter links. Thus, the genes in the detected modules not only had
topological similarity, but also functional similarity.

cc,

Survival Analysis

To evaluate the prognostic value of candidate genes, a survival
analysis was performed using data from the human protein atlas
(Uhlen et al., 2017), which contains gene expression data and
clinical information of 176 pancreatic cancer patients. P-values <
0.01 were considered significantly correlated with overall survival.

Functional Enrichment Analysis

Functional enrichment analysis, including cellular component
(CC), molecular function (MF), and BP, from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of
genes was performed using the R package cluster Profiler (Yu
et al., 2012). Terms with adjusted p-value < 0.05 were
considered significant.

Structural Modeling and

“Druggability” Analysis

The protein structures of potential drug targets were retrieved
from the Protein Data Bank (PDB) if they were available. The
Swiss model (Waterhouse et al., 2018) and I-TASSER (Roy et al.,
2010) were used for the structural modeling of genes if protein
structures were unavailable. We choose the Swiss model when
the sequence similarity between searched models was >30%;
otherwise, we used I-TASSER, which predicts protein structure
using modeling by iterative threading assembly. Based on model
structures, Fpocket (Le Guilloux et al., 2009) was used to detect
druggable pockets and calculate “druggability” scores, which
were based on several physicochemical descriptors on a
genomic scale. The pocket with the highest score in the entire
PDB was defined as the reference druggable score. The score of
each pocket was classified as: 0.0-0.5: non-druggable; 0.5-0.7:
druggable; and 0.7-1.0: highly druggable.

Molecular Docking and GNM Modeling

To study the interactions and binding mode of small molecules
with the potential drug targets, molecular docking was
performed using AutoDock 4.2 (Khodade et al, 2007). The
target, drug, and related disease information were collected
from the Drug Bank database (Version 5.0) (Wishart et al.,
2018) and the Therapeutic Target Database 2020 (Wang et al.,
2020). A normal mode analysis of the GN model (GNM) was
performed to investigate collective dynamics via the DynOmics
online tool (Danne et al., 2017). The default cutoff distance of 7.3
A between GNM model nodes was used.

RESULTS AND DISCUSSION

Identification of Disease Genes and Drug
Targets in PDAC

From the three datasets GSE28735, GSE71989, and GSE15471,
we identified 3,079, 1,225, and 2,257 DEGs between PDAC and
adjacent tissues, respectively. The top 10 genes with the smallest
p-values are marked in Figure 2. In GSE28735, 1,724 genes
showed increased expression in PDAC tissues, while 1,355 genes
showed decreased expression (Figure 2A). In GSE71989, 766
genes were upregulated and 459 genes were downregulated in
PDAC tissues compared with normal tissues (Figure 2B). In
GSE15471, 1713 genes were overexpressed, while 544 genes
showed decreased expression in tumor tissues (Figure 2C).
Together, there were 313 common DEGs between PDAC and
adjacent tissues in all three datasets (Figure 2D).
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Additionally, we evaluated gene expression as an input feature
for ML and selected the most relevant genes for PDAC using
SVM-RFE (Almeida et al., 2020), which provided a ranking for
the genes. Then, each DEG was assigned an R, value (see
Materials and Methods), which was used to further rank all
genes. As an illustration, the top 100 R, values of the DEGs in
each dataset are listed in Table S1. This shows that there is little
overlap of results between the different datasets. This means that
calculating R, based on SVM-RFE can provide information for
classification, but not enough for ranking.

The DEGs were next mapped to the STRING database, which
yielded a PPI network with 144 genes and 440 links (Figure 3).
Then, degree and shortest path length of each gene in the
network were calculated. Finally, we ranked the genes
according to our designed score RNs, which integrated these
two topological parameters and was based on gene expression
profile. The top 20 genes predicted based on at least two datasets
were considered potential drug targets. As shown in Table 2 and
Table S2, eight genes (ADAM10, TIMP1, MATN3, PKM, APLP2,
ACTNI, CALU, and VCAN) were identified in all three datasets,
and nine genes (LGALSI, ITGA2, BST2, MFGES, ITGAV, EGF,
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APOLI, ALB, and MSLN) were identified in two of three datasets.
We propose that genes predicted by at least two datasets could
serve as disease genes and/or drug targets. Taken together, 17
genes predicted by RNs score are listed in Table 3, and most have
been previously reported to be PDAC-associated genes. There
are only four that have not been previously associated with
PDAC. This suggests that our metric RN is useful for identifying
novel disease genes and drug targets.

It is also useful to compare our results predicted by RNs with
other common network parameters. The genes predicted by
calculating betweenness and closeness centrality are also listed
in Table S2. Among our 20 predicted potential drug targets, six
and nine were also found by betweenness and closeness
centrality, respectively. Notably, ADAM10, ACTNI1, and
TIMPI were in all three lists, which suggested they had
important roles in PDAC. Moreover, two other genes (ITGAV
and ITGA2) were in the top 20 of two datasets, which suggested
they should be investigated. Overall, compared with the top 20
genes predicted by these two common network parameters, our
RNs parameter identified more extracellular matrix (ECM)
proteins, including integrins and collagens. The other

Frontiers in Pharmacology | www.frontiersin.org 33

April 2020 | Volume 11 | Article 534


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Yan et al.

Drug Targets of PDAC

COL1DAY R
Py seremnyCOLSA1 TP M?G/EB
ITGBS | TRAK
COL6A3 B - ‘ o
coL h
W callat, / i AROL1 e .
COL1A2 il o, e TRIO
LM LGALS1 GRPR
COL1A1 P (S S S
P MGAV- . . M . EN1 CHRM3
ITGA? 1GAY b o
2D ACTNA EDNRA ©CL20
ok SPARC J
BGN
CCNAZ LAMES LAMCZ 3DCH OLRI ol ANKAT
e e PLAU IGFBP3
WINT2
NEKZ MR PLAUR
== i MMP12Z ITGAS EPS8
ITGB4 -
W A,
TRX2 o MEAPS 4 MMP14 ﬁ@ [i E@F}, wrs
NDCB0 .‘ - - g S100A10
Lox EPH TRIP10
AL
ks PDGFRAB PiPNIZ ADAMIT2 BRKCT
PLAT
EFNB2 1 CEACAMG PYGB
MMPS LYZ
ENTPD3 BRiiG
TNFAIPS CTSS
ENTPD1 ARPC1B o APt i
CTNNA1 BST? @ in three datasets
. TPz MX1 XAFL
ACTB SLPI = .
s L cots N Fez @ intwo datasets
COHY e STATH
enoz “h y 2 in one datasets
IL2RG AT
KIF1A w LRRFIP1 e e
KiF11
HK1 KLFS EPHX2 ECM1 MAPAKA HSD1786
KIFZ HK2 PPARG CRAT LGALS38P BIRC3 AOX1
FIGURE 3 | Potential drug targets in the PPI network. The genes that were predicted by our pipeline are marked with red labels. The node size denotes the average
RNs of the gene in two or three datasets.

TABLE 2 | Identified potential drug targets for PDAC.

In three ADAM10, TIMP1, MATNS, PKM, APLP2, ACTN1, CALU, VCAN
datasets

In two of LGALST1, ITGA2, BST2, MFGES, ITGAV, EGF, APOL1, ALB, MSLN
three

datasets

In only one COL5A1, CTNNAT, MX1, COL1A2, COL6A3, SPARC, IFI27,
dataset SDC1, FN1, PLAU, PLAUR, IGFBP3, FBN1, COL1A1, COL3A1,

ITGB5, ITGA5, MX2

interesting finding was that four common genes (ALB, EGF,
ITGA2, and VCAN) were identified by isolating the nodes with
large degrees (hubs) in PPI network construction based on other
PDAC GSE datasets (Lu et al., 2018).

Survival analysis was also performed to evaluate whether the
expression of our 17 identified candidates was related to the
prognosis of PDAC. Using Kaplan-Meier analysis with the log-
rank test for 176 pancreatic cancer patients from the human
protein atlas (Uhlen et al., 2017), we found that higher expression
levels of 11 genes were significantly correlated with decreased
overall survival (p < 0.01, Figure 4). For the eight genes identified
in all three datasets, five (ADAMI10, PKM, APLP2, CALU, and
VCAN) were associated with poor prognosis when highly
expressed. The other six highly expressed genes (LGALSI,
ITGA2, BST2, ITGAV, APOLI, and MSLN) associated with

poor prognosis that were identified in two of three datasets are
shown in Table 2. Accordingly, the survival analysis showed
significant prognostic values for most of the predicted genes.

Characterization of Predicted Drug
Targets for PDAC
Table 3 shows the genes predicted above shortlisted based on our
RN criteria. After searching the drug bank, these 17 predicted
genes were classified into two types: 11 genes were drug targets,
while six were non-drug targets. We also annotated drug targets
in the drug bank by their related drugs and diseases. It should be
noted that MSLN was the only proven drug target for PDAC, and
there are many drugs that inhibit ALB. Thus, we concluded that
these two genes had been studied widely and would not give us
more insight regarding discovering new targets. Considering the
potential of other predicted genes as drug targets for PDAC, we
performed functional and “druggability” annotations for all.
Among the 15 genes, 11 (ADAM10, TIMP1, EGF, APLP2,
ITGAV, VCAN, ITGA2, PKM, APOLI, ACTNI, and BST2)
have been reported to be contributing factors in PDAC
invasion, growth, or metastasis, which indicated that our
pipeline had good performance for finding potential drug
targets for PDAC.

The protease ADAMI0 was predicted as the highest ranked
gene, and it has been reported that ADAMIO influences the
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TABLE 3 | List of prioritized protein targets with their drug target information and “druggability” features.

Gene RNs Drug Drug(s)* Disease(s)” PDB DS
targets*
ADAM10 5.34 Yes XL784 Solid tumor/cancer, Breast 6BE6 0.694
cancer
TIMP1 4.79 No NA NA 1LQN 0.839
EGF 4.77 Yes Sucralfate, Tesevatinib, Alpha-Aminobutyric Acid, Oral mucositis, Vulnerary template: 5GJE 0.968
Cholecystokinin
MATN3 3.31 No NA NA template: 6BXJ 0.545
CALU 3.17 No NA NA template: 2Q4U 0.677
APLP2 3.12 Yes Zinc, Zinc acetate, Zinc chloride NA 5TPT 0.912
ITGAV 3.08 Yes Abituzumab, Colorectal cancer, Solid tumour/ 3IE 0.663
Levothyroxine cancer
VCAN 3.05 Yes Hyaluronic acid NA template: 4CSY NA
LGALS1 3.03 Yes Thiodigalactoside, 1,4-Dithiothreitol, Mercaptoethanol, NA 3W59 NA
Artenimol
ITGA2 3.027 No NA NA Templates: 3K71, 4NEH, 0.672
3K6S
ALB 2.85 Yes Gadobenate Dimeglumine, Glycyrrhizic acid, Patent Blue, Hemophilia, Schizophrenia 4BKE 1.000
(365 drugs)
PKM 2.82 Yes Pyruvic acid, Pain, Renal cell carcinoma; 6GG5 0.996
L-Phospholactate, 2-Phosphoglycolic Acid, et al.
MFGE8 2.54815 No NA NA template: 4DEQ NA
APOL1 2.52 Yes Zinc, Zinc acetate, Zinc chloride NA template: 5J2L 0.503
ACTN1 2.45 Yes Copper, Human calcitonin NA template: 4D1E 0.673
BST2 2.31 No NA NA 3MQB 0.821
MSLN 2.0 Yes Amatuximab Ovarian/Pancreatic cancer 4F3F 0.727
*YES” means drug target, and “NO” means non-drug target; *’NA” means no drug and disease information, or no druggable pockets.
VCAN CALU PKM APLP2
1.00- 1.00- 1.00- 1.00-
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FIGURE 4 | Kaplan-Meier survival curves of overall survival from the human protein atlas datasets for potential drug targets divided by high (red) or low (green)
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progression and metastasis of cancer cells, as it promotes PDAC
cell migration and invasion (Gaida et al., 2010). Inhibiting
ADAMI10 could be a novel approach for natural killer (NK)
cell-based immunotherapy (Pham et al., 2017). Tissue inhibitor
of metalloproteinases-1 (TIMP-1) correlated with tumor
progression, and elevated levels of TIMP-1 in tumor tissue and
peripheral blood were associated with poor clinical outcomes in
numerous malignancies, including PDAC (Prokopchuk et al.,
2018). The third gene was epidermal growth factor (EGF), which
was a common disease gene for many cancers, and EGF
mutations were associated with PDAC (Grapa et al., 2019).
Amyloid precursor-like protein 2 (APLP2) affects the actin
cytoskeleton and also increases PDAC growth and metastasis
(Pandey et al., 2015). ITGAV (Villani et al, 2019), VCAN
(Skandalis et al., 2006), and ITGA2 (Nones et al., 2014) are
matrix proteins that have been shown to contribute to pancreatic
cancer cell migration, invasion, and metastasis. PKM2 is one of
the isoforms of pyruvate kinase muscle isozyme (PKM) and
promotes the invasion and metastasis of PDAC through the
phosphorylation and stabilization of PAK2 (Cheng et al., 2018).
The final three genes, APOLI (Liu et al., 2017), ACTNI
(Rajamani and Bhasin, 2016), and BST2 (Grutzmann et al.,
2005) have previously been reported to be effective biomarkers
for PDAC.

Although 11 genes were already known drug targets,
“druggability” annotations based on protein structures can
improve our knowledge and understanding of the mechanisms
of proteins as drug targets. The “druggability” of proteins is a
measure of their ability to bind drug-like molecules based on

molecular shapes. For the “druggability” of all 17 genes, we first
obtained their structural modes by retrieved data from the PDB
database or homology modeling. The PDB codes of proteins or
their templates are listed in Table 3. Then, Fpocket was used to
compute all possible pockets and their corresponding
“druggability score” (DS). The “druggability” of the protein
was defined as the DS of the highest scoring pocket. As
expected, most of the predicted proteins were druggable (DS >
0.5), except VCAN, IGALS1, and MFGES. ALB had the largest
DS (1.00), which can partially explain why so many ALB
inhibitors exist. Among the six non-drug targets, TIMPI,
ITGA2, and BST2 were predicted as highly druggable (DS >
0.5), which meant that these three genes had the structural
abilities to be drug targets. In particular, the non-drug target
ITGA2 had a larger DS than ITGAV, suggesting that a more
detailed structural comparison between these two integrin
proteins is needed.

Identification of Functional Modules

and Pathways

Within PPI networks, cancer targets interact with different
modules to perform biological functions. A module within a
network is defined a set of nodes that are densely connected
within subsets of the network but may not all directly interact
with each other. To get further insight into the topological and
biological functions of potential targets, we performed module
detection in the PPI network using a GN algorithm and
functional semantic similarity. As shown in Figure 5, we

CALU
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APLP2 1O
LTBP1 ITGA3
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MATN3 mGAY TPM4 COL1A1
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FIGURE 5 | Four modules were discovered within PPl networks. Genes that were predicted in at least two datasets are marked red, while genes that were
predicted in only one dataset are marked blue.
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identified four modules (the pink, yellow, green, and blue nodes)
and labeled the genes that were predicted in at least two datasets
(red) or in only one dataset (blue). Except PKM and ACTNI, 15
of the 17 predicted genes were detected by the modular analysis
and are included in these four modules. The top module (pink)
was formed of 19 genes, including the most of our predicted
genes (12/17, ADAM10, CALU, ALB, APLP2, MSLN, LGALS]I,
TIMP1, MATN3, VCAN, EGF, MFGES, and APOLI). Most of
these genes have been previously reported as disease genes in
PDAC or drug targets in other cancers. Another three predicted
genes were included in two other modules, while ITGAV and
ITGA2 were detected in the second largest module (yellow).
Although there were only two predicted genes, this module
deserves more attention, as it primarily contains two types of
gene targets: integrins (ITGA5, ITGA3, ITGB5, ITGA2, and
ITGAV) and collagens (COL6A3, COLI1AI, COLIAI,
COL10A1, COL5A1, COL1A2, and COL3AI). Research into
integrins and collagens and their interactions may provide
more insights into the molecular mechanisms of PDAC.

We next performed an enrichment analysis on genes in the
PPI network (Figure 6 and Table 4). The genes were enriched for
the GO terms related to extracellular structure and matrix, such
as extracellular structure and matrix organization in BP, ECM in
CC, and ECM structural constituent and binding in MF. Table 4
shows the top 10 most significantly enriched KEGG pathways.
Most of the pathways are associated with cancer, such as ECM-

receptor interaction, focal adhesion, and proteoglycans in cancer.
Moreover, integrins were enriched in most of the carcinogenesis-
associated pathways, such as focal adhesion, which play essential
roles in important BPs, including cell motility, proliferation, and
differentiation. Interestingly, several altered molecular pathways
were identified, which suggests that genes in the secondary
module were involved in these pathways. These modules and
pathways not only contained integrins, but also another group of
collagens. In particular, two predicted integrins (ITGAV and
ITGA2) were involved in nine out of the top 10 pathways, while
the top four pathways (ECM-receptor interaction, focal
adhesion, proteoglycans in cancer, and human papillomavirus
infection) also contained collagens, especially COLIAI and
COL1A2. Except for these pathways, the list of integrins and
collagens was used to define the traditional cancer-related PI3K/
AKT pathway. It was previously known that collagen is a major
component of the tumor microenvironment that participates in
cancer fibrosis, which can influence tumor cell behavior through
integrins (Xu et al., 2019). Our results indicated that ITGAV,
ITGA2, and their interactions with COLIAI and COLIA2 may
play important roles in PDAC, suggesting they could serve as
potential drug targets. For example, the predicted genes and their
interactions were highlighted in the ECM-receptor interaction
pathway (Figure S1). This systems biology evidence of gene
cluster- and pathway-based distributions suggested that targeting
several key genes together could be a more promising approach.
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TABLE 4 | Top 10 enriched KEGG pathways (integrins and collagens are

marked in bold).

KEGG term Gene(s) Count  Adjust
p-value
ECM-receptor COL1A1, COL1A2, COL6A3, COMP, 15 2.62E-11
interaction FN1, ITGA2, ITGAS, ITGA5, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2,
SDC1, SDC4
Focal adhesion ACTB, ACTN4, ACTN1, BIRC3, 20 2.67E-11
COL1A1, COL1A2, COL6A3, COMP,
EGF, FLNA, FN1, ITGA2, ITGA3,
ITGAS, ITGAV, ITGB4, ITGB5,
LAMB3, LAMC2, PDGFRB
Proteoglycans  ACTB, COL1A1, COL1A2, FLNA, 19 2.97E-10
in cancer FN1, ITGA2, ITGAS, ITGAV, ITGBS,
LUM, MMP9, MSN, PLAU, PLAUR,
SDC1, SDC4, EZR, WNT2, WNT5A
Human CCNA2, COL1A1, COL1A2, 23 4.12E-10
papillomavirus COLG6A3, COMP, EGF, FN1, HLA-F,
infection ITGA2, ITGAS, ITGAS, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2, MX1,
PDGFRB, PKM, PRKCI, STATT,
WNT2, WNT5A
Regulation of ACTB, ACTN4, ACTN1, CFL1, 17 8.45E-10
actin CHRM3, EGF, FN1, ITGA2, ITGAS,
cytoskeleton ITGAS, ITGAV, ITGB4, ITGB5, MSN,
PDGFRB, EZR, ARPC1B
Arrhythmogenic ACTB, CTNNAT1, ITGA2, ITGA3, 9 1.25E-05
right ventricular  ITGAS, ITGAV, ITGB4, ITGB5, JUP
cardiomyopathy
(ARVC)
PI3K-Akt COL1A1, COL1A2, COL6A3, COMP, 17 3.87E-05
signaling EGF, EPHA2, FN1, IL2RG, ITGA2,
pathway ITGA3, ITGAS, ITGAV, ITGB4,
ITGBS5, LAMBS3, LAMC2, PDGFRB
Amoebiasis ACTN4, ACTN4, ACTN1, COL1A1, 9 1.03E-04
COL1A2, COL3A1, FN1, CXCLS8,
LAMBS3, LAMC2
Hypertrophic ACTB, ITGA2, ITGAS, ITGAS, ITGAV, 8 3.01E-04
cardiomyopathy ITGB4, ITGB5, TPM4
(HCM)
Small celllung  BIRC3, CKS2, FN1, ITGA2, ITGA3, 8 3.01E-04

cancer

ITGAV, LAMB3, LAMC2

ITGAV and ITGA2 as Potential Drug
Targets for PDAC

By combining SVM-RFE, PPI network, and survival analysis, 11
out of 17 candidate genes have been predicted as biomarkers in
pancreatic cancer patients. Among them, two integrins of
ITGAV and ITGA2 were further screened as two potential
drug targets according to the following evidences: 1) Both
ITGAV and ITGA2 are involved in all PDAC-related pathways
include ECM-receptor interaction and focal adhesion pathways,
suggesting that ITGAV and ITGA2 may play an important role
in PDAC progression; 2) Based on the druggability criteria,
ITGAV and ITGA2 have relatively high DS. In addition,
ITGAV is already a drug target for other cancer. Due to the
structural similarity, ITGA2 can also be considered as a potential
drug target; 3) Current experimental data suggest that several
other integrins are overexpressed in various cancer types, being

involved in tumor progression through tumor cell invasion and
metastases. For example, the therapeutic potential of ITGA5 in
the PDAC stroma has been proved efficacy (Kuninty et al., 2019).
Collectively, our data together with some know results point
towards ITGAV and ITGA2 as two potential drug targets for
PDAC. Thus, the emerging understanding of their structural
properties will guide the development of new strategies for
anticancer therapy.

Integrins are transmembrane receptors that are central to the
biology of many human pathologies. Classically, integrins are
known for mediating cell-ECM and cell-cell interaction, and they
have been shown to have an emerging role as local activators of
TGEF-f, influencing cancer, fibrosis, thrombosis, and
inflammation (Raab-Westphal et al., 2017). Integrins are
composed of o and B subunits to form a complete signaling
molecule. Their ligand binding and some regulatory sites are
extracellular and sensitive to pharmacological intervention, as
proven by the clinical success of seven drugs that target integrins
(Hamidi et al.,, 2016). Although peptides and small molecules are
generally designed to target integrin o3 dimers, the individual
integrin ¢ subunits may also be therapeutic targets. ITGAV
always bind with five 8 subunits that form receptors for
vitronectin, cytotactin, fibronectin, fibrinogen, and laminin.
ITGAV has mostly been investigated for its role in malignant
tumor cells and tumor vasculature (Xiong et al., 2001; Xiong et al,
2009). ITGAV recognizes the Arg-Gly-Asp (RGD) sequence in a
wide array of ligands at the interface between the o and B subunits
(Xiong et al., 2002). ITGA2 forms with f; and belongs to the
collagen receptor subfamily of integrins (Emsley et al., 2000).

The structure of ITGAV was taken from chain A of the x-ray
structure of complete integrin oVf; (PDB code: 3IJE). It
contains a B-propeller domain of seven 60-amino-acid repeats,
and three other domains including the Thigh, Calf-1, and Calf-2
domains (Figure 7A). The PDB repository contains no crystal
structure for full-length ITGA2. The highest sequence similarity
between ITGA2 and searched models (PDB code: 5ES4) was
28%, so we employed I-TASSER to generate a composite model
of ITGA2 based on several templates. A subsequent analysis of
the structure of ITGA2 revealed similar domain structures with
ITGAV but with the addition of an I domain (Emsley et al., 1997)
and a WKrm GfFKR helix tail, which may suggest more drug-
targeting possibilities for ITGA2. Based on the structures of
ITGAV and ITGA2, Fpocket was used to detect their druggable
pockets. For ITGAV, there were two highly druggable pockets,
both located within the B-propeller domain. The largest
druggable pocket was located on the outer side of the S-barrel,
consisted of Vall92, Lys104, Alal89, Aspl132, Vall188, Alal89,
Aspl67, Leul30, GIn187, Glul90, Lys135, Vall37, and Gln131,
and had a DS of 0.663 (Figure 7A). The second largest druggable
pocket was located at the hole of the B-barrel, consisted of Trp93,
Leulll, Gln156, Phel59, Pro110, Ala96, Phe21, Tyr406, Tyr224,
and Phe278, and had a DS of 0.599 (Figure S2A). For ITGA2,
only one highly druggable pocket was found at the B-propeller
domain and had a DS of 0.92. This pocket consisted of His416,
Phel62, His414, Serl59, Phel56, Leu417, Serl61, Val409,
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FIGURE 7 | Structures and dynamics of ITGAV and ITGA2. (A) The structure of ITGAV including the -propeller, Thigh, Calf-1, and Calf-2 domains, and the most
druggable pocket (purple), which is located along the outer side of the B-barrel. (B) The binding poses by docking Levothyroxine into the most druggable pocket of
ITGAV. Levothyroxine and interacting residues are represented as colored sticks. (C) The structure of ITGA2 including the /-, B-propeller, Thigh, Calf-1, and Calf-2
domains, and the most druggable pocket (purple), which is located at the hole of the B-barrel; the binding pose with Levothyroxine and this pocket is shown in (D).
(E) The shapes of first and second GNM modes of ITGAV. The minimum of the shapes indicate the hinge region, which corresponds to the structure in dark blue.
Mode 1 predicts Asn455, Serd71, Arg553, and Gly594 within the Thigh domain are hinge sites (red arrows). (F) The shape of the first GNM mode of ITGA2, where
the region of Phe681 to Ser737 within the Thigh domain was predicted to contain hinge sites (red circle).

Leu396, Lys411, Leul58, GInl57, Leu394, Alal60, Leu4l7, To determine residues that play a key role in the global
Aspl55, Asp392, Val381, Gly415, and Ser413 (Figure 7B). dynamics of ITGAV and ITGA2, we performed a GNM analysis.

Despite progress in the development of drugs that target =~ GNM analysis provides information on the mechanisms of
different integrins, there are only two clinical approved drugs in ~ collective movements intrinsically accessible to the structure,
the drug bank for ITGAV (Levothyroxine and Antithymocyte  which usually enable structural changes relevant to function
immunoglobulin) (Table 3). Thymoglobulin is a polyclonal ~ (Bahar et al., 2010). The most discriminative feature in
antibody, while Levothyroxine is currently the only approved  dynamic analysis is hinge prediction, which are expected to be
small molecule that targets ITGAV. The small ligand  sites for drug development (Sumbul et al,, 2015). We predicted
Levothyroxine was docked to the two druggable pockets in  hinges sites by the minima of corresponding GNM slow modes.
ITGAV to study the stability of the complex and protein-drug ~ By applying GNM to ITGAV (Figure 7E), GNM mode 1
interactions. When docked to the largest druggable pocket,  highlights the hinge region located in the Thigh domain,
Levothyroxine formed hydrogen bonds with Aspl67, Thr134,  especially at Asn455, Ser471, Arg553, and Gly594, which are
Lys135, and Val192, and a hydrophobic interaction with Ala189,  located at the interface between the Thigh and Calf-1 domains.
and the binding free energy was —8.3 kcal/mol (Figure 7C). For ~ We also note that the f-propeller domain became the major
the other pocket, hydrogen bonds were formed between  hinge region in GNM mode 2, while 11e286, Asn287, Asp352,
Levothyroxine and Phe21, Trp93, Ala96, and Prol10 with the = Phe377, Ser389, Thr413, Asp414, Pro421, and Tyr436 have
binding free energy of —10.08 kcal/mol (Figure S2B). We further ~ minimal fluctuations. Hinge sites located at the B-propeller
docked Levothyroxine to ITGA2 at its druggable pocket. The  domain in GNM mode 2 may correspond to pocket sites, as
binding free energy of —9.09 kcal/mol suggested a good  the first and second largest druggable pockets were within the -
interaction between ITGA2 and Levothyroxine, with the  propeller domain. For ITGA2 (Figure 7F), both GNM modes 1
potential binding sites at Phel62, Lys411, Asp392, and Leul58  and 2 highlighted the same hinge regions within the 3-propeller
(Figure 7D). domain and the Thigh domain, with critical positioning of
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Phe681 to Ser737. Accordingly, our GNM modeling suggested
that both the S-propeller domain and the Thigh domain play
important roles in modulating the collective movements of
ITGAV and ITGA2. The B-propeller domain has been
indicated to be a druggable domain by pocket detection. Here,
some hinge sites located within the Thigh domain offer other
reasonable starting points for inhibitor design.

CONCLUSIONS

In this study, we developed a computational framework that
integrated ML (SVM-RFE), biomolecular networks (PPI network
analysis), and structural modeling analysis (homology modeling,
molecular docking, and GNM modeling) to help future drug
targets for PDAC. The core of the new method was that we
defined a new score, termed RNs, based on cancer-related
information from gene expression data and topological
information obtained from PPI network analysis. Research
using three GEO datasets (GSE28735, GSE71989, and
GSE15471) vyielded 17 genes (ADAMI10, TIMP1, MATNS3,
PKM, APLP2, ACTNI, CALU, VCAN, LGALSI, ITGA2, BST2,
MFGES8, ITGAV, EGF, APOLI, ALB, and MSLN) that were
predicted to be potential drug targets. The survival and
“druggability” analysis of these genes showed that most of the
identified genes had poor survival associations and good DS
values, further providing evidence that they can be used as
therapeutic targets in PDAC. The important roles of integrins
as well as their interactions with collagens were highlighted by
combining network modules and KEGG pathway analysis, in
term of four pathways, ECM-receptor interaction, focal adhesion,
proteoglycans in cancer, and human papillomavirus infection
pathways. By focusing on ITGAV and ITGA2, we identified
druggable pockets, drug binding sites, and hinge sites that are
potential sites for designing small molecules. In summary, this
new methodology will provide new avenues for discovering drug
targets in PDAC and other cancers.

Of course, our method in this work has some limitations.
Firstly, our method only used SVM-REF to the gene expression
data to rank the DEGs. With the growth of other omics data, we
need to apply our method by including more kinds of data, such as
RNA-Seq data for PDAC (Raphael et al., 2017), which will make
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Renal cell carcinoma (RCC) is the most common type of kidney cancer. Increasingly
evidences indicate that extracellular vesicles (EVs) orchestrate multiple processes in
tumorigenesis, metastasis, immune evasion, and drug response of RCC. EVs are lipid
membrane-bound vesicles in nanometer size and secreted by almost all cell types into
the extracellular milieu. A myriad of bioactive molecules such as RNA, DNA, protein,
and lipid are able to be delivered via EVs for the intercellular communication. Hence,
the abundant content of EVs is appealing reservoir for biomarker identification through
computational analysis and experimental validation. EVs with excellent biocompatibility
and biodistribution are natural platforms that can be engineered to offer achievable drug
delivery strategies for RCC therapies. Moreover, the multifaceted roles of EVs in RCC
progression also provide substantial targets and facilitate EVs-based drug discovery,
which will be accelerated by using artificial intelligence approaches. In this review,
we summarized the vital roles of EVs in occurrence, metastasis, immune evasion,
and drug resistance of RCC. Furthermore, we also recapitulated and prospected the
EVs-based potential applications in RCC, including biomarker identification, drug vehicle
development as well as drug target discovery.

Keywords: renal cell carcinoma, extracellular vesicles, exosomes, biomarkers, drug targets, drug vehicles,
artificial intelligence, machine learning

INTRODUCTION

Renal cell carcinoma, or RCC for short, is one of the most common type of urological cancers
that represents ~90% of all kidney malignancies (1). According to updated data provided by the
World Health Organization, over 400,000 people were diagnosed with kidney cancer worldwide
in 2018, accounting for nearly 3% of all cancers (2). It has been estimated that there will be about
74,000 new cases and 15,000 deaths associated with kidney cancer in the United States in 2020
(3). The 5-year survival rate among RCC patients increased for decades due to the improvement
of early-detection techniques and targeted-therapies. The current overall 5-year survival rate of
RCC is 75%, decreasing to 70% among patients with regional metastases and 12% among patients
with distant metastases (4). Still around one-third of patients diagnosed with RCC had metastases
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(5). The most common metastatic sites of RCC are lungs, bone,
brain, lymph node, and liver might also be involved (6). Surgery is
the mainstay curative treatment for localized RCC (7). However,
around 40% RCC patients will suffer tumor recurrence after
curative surgical resection (8). For patients who present with
metastatic RCC or relapses after local therapy, typically require
systemic treatment. The current landscape of systemic therapies
are consist of small molecule kinase inhibitors, cytokines, and
monoclonal antibodies, including checkpoint inhibitors, which
have been tested as first-line or second-line therapies (9).

Extracellular vesicles (EVs) are nanometer sized vesicles
composed of a lipid bilayer membrane packaging a wealth of
bioactive molecules such as RNA, DNA, protein, and lipid.
Currently, EVs can be broadly divided into two main types based
on the mechanism of biogenesis: one is exosomes which originate
from the endosomal system and another one is microvesicles
that directly shed from the plasma membrane (10). As Thery
et al. mentioned in a review, both exosomes and microvesicles
may be co-isolated due to the overlapping characteristics
between these two forms of EVs and the limitations of current
isolation methods. Therefore, the term exosomes is generally
used in literatures to designate a mixed population of EVs
without adequate characterization of the intracellular origin (11).
Hereafter, we chose to use the generic term “EVs” in this review
independent of the term used in the original articles.

With the nanoscale size and double-layered lipid membrane
appropriately protecting the cargoes from degradation, EVs
stably exist in blood, urine, saliva, and many other kinds of
biological fluids. Accumulating evidences indicate that EVs traffic
between donor and recipient cells are fundamental phenomenon
of the intercellular information exchange, especially in tumor
microenvironment (TME). EVs within TME are emerging as
crucial contributor to carcinogenesis, angiogenesis, premetastatic
niche (PMN) formation, dysfunction of immune system and
the dissemination of anti-cancer drugs resistance, adding
novel dimension to the complexity of TME (12). Thus, the
contents of tumor-derived EVs may be applied as abundant
sources to biomarker discovery identified by experimental and
computational methods. In addition, EVs with naturally excellent
biocompatibility and biodistribution are ideal materials to be
exploited or engineered which may offer us achievable drug
delivery strategies for cancer therapies (13). Furthermore, it is
increasingly clear that mechanisms of EVs biogenesis, secretion
and uptake could also provide promising targets for cancer
therapy (14).

The past decades have witnessed unprecedented research
progresses of EVs, especially for the roles of EVs in different
malignant tumors. Nevertheless, to the best of our knowledge,
few researchers paid close attention to the roles of EVs in
urological malignancies, especially for RCC (15-22). There is
still no comprehensive summary highlighting the EVs-based
potential applications in RCC either. Hence, this review serves
to introduce the latest research progresses in the burgeoning
field of EVs, recapitulate the multifaceted functions of EVs in
RCC progression. Accordingly, we will also give a perspective
of the potential applications of EVs in RCC identified by both
experimental and computational methods.

BIOLOGICAL FEATURES OF EVS AND
RESEARCH TECHNIQUES

Biogenesis, Secretion and Uptake of EVs
The biogenesis of two EVs subtypes are different as shown in
Figure 1. Diameter of microvesicles range from 50 to 1,000 nm
but can up to 10 um in the case of oncosomes, which refers
to cancer cells-derived microvesicles that contain oncogenic
molecules (10, 23). Microvesicles are generated through the
direct budding and fission of the cytoplasmic membrane
then released into the extracellular space (24). Exosomes
originate from multivesicular bodies (MVBs) within endosomal
system, ranging from 30 to 150 nm. The endosomal membrane
invaginate intraluminal vesicles (ILVs) in the lumen during the
mature process of early endosomes into late endosomes or MVBs.
The endosomal sorting complex required for transport (ESCRT)
machinery plays critical role in this process (10, 25). Moreover,
members of the Rab GTPases family, including Rab27a/b, Rab11,
and Rab35, are essential coordinators for MVBs trafficking
and exosomes secretion (26, 27). The last step of secretion
requires the fusion of MVBs with plasma membrane. This
process primarily is mediated by soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNAREs) and
synaptotagmin family members to release ILVs as exosomes (28).
Several studies have also found that Ca?* may be involved in the
activation of SNARESs (29, 30).

Once secreted into the extracellular milieu and absorbed by
recipient cells, EVs cargoes can be transmitted to recipient cells
to induce functional responses and confer new properties then
result in phenotypic changes (10). This EVs-mediated interaction
requires docking at the plasma membrane of recipient cells via
several mediators such as clathrin, tetraspanins, and integrins to
activate surface receptors and signaling pathways, being followed
by vesicle endocytosis or membrane fusion of recipient cells
(10, 31-33). The secretion processes of EVs are evolutionarily
conserved among eukaryotes, bacteria, and archaea, which lay
the foundation for interspecies transfer of genetic molecules via
EVs (34). However, the whole process of exosomes biogenesis and
secretion may be influenced by the heterogeneity of donor and
recipient cells, different physiological or pathological conditions,
making the detailed mechanisms remains elusive (35, 36).

EVs Composition

Diverse bioactive molecules such as RNA, DNA, proteins, and
lipids can be packaged into EVs and secreted out of cell
membrane at both local regional and systemic levels (37). A
“routine passenger” of EVs is RNA. Both mRNA and microRNA
(miRNA) could be loaded and transported through EVs then
functioned in recipient cells (38-40). Besides, numerous long
non-coding RNA (IncRNA) could also be transferred via EVs,
inducing signals and phenotypes changes in a variety of cells
in TME (41, 42). Furthermore, more than 1,000 circular RNA
(circRNA) were identified in EVs derived from human serum.
Interestingly, several circRNAs were highly enriched in EVs
compared to the donor cells, which may provide more achievable
applications in biomarker discovery (43, 44). Other RNA species
were also detected in EVs by RNA deep sequencing analysis,
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FIGURE 1 | Schematic diagram of the biological features of EVs. (A) Biogenesis, secretion and uptake of EVs. During the process of early endosome mature into
MVBs, the endosomal membrane invaginate ILVs in the lumen of donor cells, which mediated by the ESCRT machinery. MVB fuse with cell surface and release ILVs
as exosomes or degrade in lysosomes. Protein members of Rab GTPases, SNAREs, and synaptotagmin family play vital roles in MVBs trafficking and exosomes
secretion. Microvesicles originate from the plasma membrane of donor cells directly. There are three ways to uptake EVs and induce biological functions in recipient
cells: fusion with membrane of recipient cells directly, internalization by endocytosis, or activation of ligand-receptor signaling. (B) Representative structure and
composition of EVs. EVs are nanometer sized vesicles composed of a lipid bilayer membrane. Size of exosomes range from 30 to 150 nm, Diameter of microvesicles
range from 50 to 1,000 nm but can up to 10 um in the case of oncosomes. EVs package various bioactive molecules such as RNA, DNA, proteins, and lipids.

Transmembrane including integrins and tetraspanins are also contained in EVs.

including transfer RNA, ribosomal RNA and piwi-interacting
RNA (44, 45).

The presence of DNA within EVs also provide novel insights
into the cellular homeostasis and open another intriguing mode
of intracellular communication (46). It has been reported that
EVs secretion removed various length of chromosomal DNA
fragments which were harmful to normal human cells (47).
Moreover, studies demonstrated that retrotransposon elements,
oncogene amplifications, and other functional DNA fragments
that reflected the genetic status of the parent tumor cells were
found in EVs (48, 49). Notably, these transposable elements could
be encapsulated and transferred from tumor cells to normal

cells (50). Thereby it can be inferred that tumor-derived EVs
may function as novel mediators of horizontal gene transfer and
make contribution to tumor evolution in local or systematical
level (51).

As a consequence of the biogenesis, EVs derived from
different cell types contain substantial cytosolic proteins, such
as Rab GTPase, SNAREs, and Annexins (52). Tetraspanins is
a highly conserved family of transmembrane proteins which
have been found in EVs from diverse cell types. It is believed
that tetraspanins interact or coordinate with other proteins and
involve in membrane compartmentalization (53). Members of
this family, including CD9, CD63, and CD81, consist part of
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the most abundant proteins in EVs, thus commonly be used
as protein markers for EVs characterization (54). In addition,
increasing evidences have demonstrated the presence of several
transporters and enzymes in EVs with full activity (55-57). Thus,
it can be inferred that the change of EVs components can be
connected with the in vivo fate of drugs.

EVs Isolation and Characterization

Since research field of EV's has achieved high-speed development
in the past few decades, many techniques have been used to
isolate and characterize EVs. At present, the frequently used
techniques for EVs isolation can be summarized into five broad
categories: differential ultracentrifugation (UC), polymer-based
precipitation, particle size-based techniques, immunological
capture, and microfluidic techniques (58). As one of the most
traditionally and widely used method, differential UC is suitable
for most sources of EVs, even though it is laborious, time-
consuming, and inaccessible. Several commercial isolation kits
are developed based on above theories and techniques to
isolate EVs more efficiently and precisely. However, according
to results of a recent benchmark study, a large quantity of
non-vesicular contaminants may be co-isolated by these kits.
While the purity of EVs isolated by differential UC was much
higher than commercial kits (59). More recently, microfluidic-
based platforms have generated heightened interest. Based on
specific capture of the surface marker or the specific size and
density of EVs subsets, microfluidic-based platform can provide
advantages such as low consumption, ready portability, with
high throughput, and high precision (60). Since there is still
no consensus on a “gold standard” method for EVs isolation
and purification, comparison study is still needed to analyze the
parameters of EVs isolated by different methods. According to a
global survey in 2015 conducted by the International Society for
Extracellular Vesicles (ISEV), around 81% of respondents chose
differential UC as their primary isolation method, around 59% of
respondents used a combination methods of differential UC with
other techniques (61). In terms of EV's characterization, multiple
techniques based on biophysics and molecular biology have been
developed and applied. Three of the most common methods
are western blotting for identification of specific protein marker,
electron microscopy for detection of structural information and
nanoparticle tracking analysis for quantification of EVs size and
concentration, respectively. Generally speaking, two or more
complementary methods are necessary to assess the results of
separation methods as ISEV recommended (62).

ROLES OF EVS IN RCC

EVs is employed by tumor cells to deliver bioactive molecules
directing to not only tumor cells but also tumor-associated
cells including fibroblasts, endothelial cells, immune cells, and
cancer stem cells (CSCs) (63, 64). Reciprocally, EVs derived from
non-tumor cells also have influence on tumor progression in
TME. Therefore, these multidirectional communications via EV's
make TME becoming a more complex network, which draw
accumulating attention of researchers in recent years. Herein we
reviewed the latest studies about roles of EVs in carcinogenesis,

cancer metastasis, immune evasion, and drug resistance of RCC
(Figure 2).

Tumorigenesis

EVs secreted by different cells in TME may make contributions
to RCC progression and development. Jiang et al. revealed
that EVs secreted by RCC cell line OS-RC-2 could inhibit
hepaCAM expression, a tumor suppressor frequently lost in
various types of human cancers, and promote cell proliferation
in a p-AKT-dependent pathway (65). By use of cell culture and
nude mice xenograft model, Du et al. claimed that EVs released
by human Wharton’s jelly mesenchymal stem cells induced HGF
expression, activated AKT and ERK1/2 signaling pathways, then
promoted the proliferation and aggressiveness of RCC cells both
in vitro and in vivo (66). By using next-generation sequencing,
Song et al. found the levels of EVs-contained miR-30c-5p in
RCC cell lines 786-O and ACHN were significant lower than that
in human renal proximal tubular cell line HK-2. Consistently,
the expression pattern of miR-30c-5p was significant different
in urinary EVs from healthy controls and patients of clear cell
RCC (ccRCC), which is the predominant RCC type. Heat-shock
protein 5 was identified as a direct target of miR-30c-5p. Gain-
of-function study showed that overexpression of miR-30c-5p
inhibited ccRCC progression both in vitro and in vivo (67).
Considered together, these data suggest that EVs may transfer
various cargoes between heterogeneous cells within TME, initiate
the critical regulation of the tumorigenesis to support the growth
of RCC cells.

Hypoxia is one of the distinguishing features of TME in
many solid tumors including RCC. Carbonic anhydrase IX
(CAIX), a cellular hypoxia biomarker that overexpress in RCC
with von Hippel-Lindau (VHL) gene mutation, is involved in
proliferation and transformation of RCC cells (68). It has been
revealed that abundant CAIX proteins were detected in EVs
released from RCC cell lines. Result of in vitro angiogenesis
assays demonstrated that hypoxic RCC cells could release EVs
containing CAIX and promote the migration and tube formation
abilities of human umbilical vein endothelial cells (69). Several
researchers have also provided direct evidences that hypoxia not
only regulated the tumorigenic potential of epithelial cells, but
also contributed to EVs production of tumor cells in response
to low pH and oxidative stress (70, 71). Wang et al. reported that
acute hypoxia condition induced by CoCl, treatment upregulated
miR-210 expression in EVs which derived from both normal
renal cells and RCC cells, especially for metastatic RCC cell
line (72). Interestingly, EVs secreted by hypoxic cells are more
easily absorbed by hypoxic cells (73). Hitherto, there is limited
knowledge about the mechanism of how hypoxia orchestrate
the biogenesis and secretion of EVs. Nevertheless, it can be
concluded that hypoxia-induced EVs derived from stromal and
tumor cells are crucial mediator in the process of tumorigenesis
and TME rebuilding.

Tumor Metastasis

Recent years, numerous investigations have revealed the
significant influence of EVs on both regional and distant
metastatic processes, including coagulation, vascular leakiness,
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FIGURE 2 | Schematic diagram of the biological features of EVs. (A) Circulating EVs in blood contain potential biomarkers of RCC. (B) Circulating EVs in urine contain
potential biomarkers of RCC. (C) RCC-derived EVs and mesenchymal stem cells-derived EVs promoted the tumorigenesis of RCC cells. (D,E) Migration ability of RCC
cells and angiogenesis of human umbilical vein endothelial cells and could be improved by hypoxic RCC cells released EVs containing CAIX, CD103-positive or
CD105-positive RCC CSCs-derived EVs. (F) RCC cells-derived EVs and RCC CSCs-derived EVs facilitated the immunosuppression of immune cells. (G) Sunitinib
treatment induced RCC cells secreted EVs delivering INcARSR to increase the drug resistance of RCC cells.

reprogram of stromal recipient cells, and formation of PMN
(74). However, the roles of EVs in RCC metastasis are still
need to be unraveled. It has been shown that MMP-9 and
CXCR-4 are closely associate with tumor metastasis and highly
express in different cancer types. Chen et al. revealed that
expression levels of these two proteins were upregulated after
co-cultured RCC cell line 786-O with EVs shed from itself,
which resulted in the improvements of the migration and
invasion abilities and suppression of the adhesion ability (75).
Camussis team identified a subset of tumor-initiating cells
expressing mesenchymal stem cell marker CD105 from human
RCC specimens in a previous work. They found that EVs
released by renal CD105% CSCs could trigger angiogenesis both
in vitro and in vivo, and enhanced the lung metastases induced
by injection of renal tumor cells intravenously. Furthermore,
mRNAs and miRNAs implicating in tumor progression and
metastasis were identified through molecular characterization of
EVs (76). Subsequently, Camussi et al. reported that renal CSCs-
derived EVs could stimulate persistent phenotypical changes in
mesenchymal stem cells in vitro and support the tumor growth

and vascularization when co-injected with RCC cells in vivo (77).
Their conclusions unveiled that EVs shed from a subtype of renal
CSCs may play critical roles in the TME modification, PMN
formation, and metastasis of RCC in lung, which is one of the
most common site of RCC metastasis.

Recently, Wang et al. demonstrated that CD103% CSCs,
another subtype of renal CSCs, could release EVs enwrapping
miR-19b-3p and deliver to RCC cells to initiate epithelial-
mesenchymal transition (EMT) via suppressing the expression
of PTEN. Quantitative detection of expression changes of EMT
markers such as N-cadherin, Vimentin and Twist showed that
CD103" CSCs EVs derived from RCC patients with lung
metastasis presented significant effects on EMT. Notably, results
of flow cytometry quantification also showed that the ratio of
CD103% EVs over total EVs was higher in blood samples of
RCC patients with lung metastasis than non-metastasis patients
(78). Therefore, it can be inferred that EVs-contained CD103
may be involved in the organotropism of RCC. Additionally,
previous work suggested that tetraspanins and integrins were
also associated with metastasis organotropism (79, 80). Typically,
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integrins a¢ and a, were closely relevant to lung and liver
metastases, respectively (33). Since lung and liver are common
sites for RCC metastasis, we can believe that integrins ag and
ay may present in RCC-derived EVs and address these EVs
to specific organs. Hence these endogenous surface molecules
of EVs provide us crucial clues to understand the complex
mechanism of tumor metastasis. It will be promising to develop
indicators of metastatic prognosis and selective target-binding
therapeutics for RCC treatment through unraveling the functions
these transmembrane proteins.

Immune Evasion
In the past decade, the deep comprehension of communication
between the immune cells and malignant tumor cells in TME
has become a popular research field. Emerging investigations
advocated that EVs are active players in this scenario (81).
However, this interaction can be hijacked by tumor cells to
facilitate immune evasion and stick many anti-cancer therapeutic
strategies. Studies showed that the activation of T cells and the
differentiation processes of monocytes to dendritic cells (DC
cells) were both impaired by EVs derived from renal CD105™"
CSCs (82). This immune inhibitory effect was mediated by HLA-
G, an antigen highly overexpressing in RCC and facilitating to
immunosuppression (83). HLA-G blockade markedly relieved
the inhibitory effect of EVs on DC cells differentiation. It has
also been verified that EVs purified from RCC cell line ACHN
contained Fas ligand and contributed to apoptosis of Jurkat T
lymphocyte and immune evasion of RCC cells. These effects
could be rescued by soluble Fas treatment (84). Natural killer
(NK) cells are crucial player in the innate immune system,
possessing strong abilities to control and kill tumor cells. Xia
et al. found that EVs derived from primary RCC cells contained
TGEF-, a major immunosuppressive cytokine. Co-culturing these
EVs with NK cells exacerbated the dysfunctions of NK cells
in a TGF-B/SMAD-dependent manner (85). Furthermore, Diao
et al. elucidated that Hsp70 protein was more enriched in
EVs than that in whole-cell lysates of Renca cells which is a
cancer cell line of murine kidney. EVs-contained Hsp70 triggered
the phosphorylation of Stat3 through regulating TLR2-MyD88
pathway and impeding the activity of the myeloid-derived
suppressor cells (86). Considered together, these conclusions
suggest that RCC cells may secrete EVs to interfere the immune
system and support evasion of innate immune surveillance.
Potential drug targets or biomarkers of the immunotherapy can
be developed by clarifying the detailed mechanism of intercellular
communication between cancer cells and immune cells.
Immunotherapy is one of the most promising therapeutic
approach in multiple cancer types including RCC. Immune
checkpoint protein inhibitors, especially antibodies against
programmed cell death-1 (PD-1) and its ligand programmed
death-ligand 1 (PD-L1), have elicited anti-cancer effects and
long-lasting alleviation in melanoma, lymphoma, bladder cancer,
non-small-cell lung cancer, RCC, and many other malignancies
(87). However, only limited subset of patients exhibited durable
response to immunotherapies. The total respond rate of anti-
PD-1/PD-L1 therapy is merely around 10-30% (88). Previous
studies have identified EVs-contained PD-L1 in diverse sources,

including plasma of head and neck cancer glioblastoma, and
melanoma patients as well as culture medium of breast cancer
cell lines (89-94). A recent work demonstrated that EVs could
support tumor growth by carrying PD-L1 and suppressing T
cell activation in draining lymph nodes. Genetic blockade of
EVs-contained PD-L1 induced long-term and systemic anti-
tumor effects (95). Most recently, several novel methods were
developed to quantitate the PD-L1 level in EVs. These newly
approaches were higher in sensitivity, time-saving, and easily
operated compared with ELISA-based canonical methods (96,
97). However, to the best of our knowledge, yet still no research
focus on the PD-L1 in RCC-derived EVs. Above findings
enlighten us that inhibition of EVs-contained PD-L1 may be
an alternative therapy for RCC treatment, especially for RCC
patients that are resistant to anti-PD-L1 antibodies. Meanwhile,
EVs-carried molecules represented by PD-L1 may serve as
reliable biomarkers for immunotherapies.

Drug Resistance

Accumulating evidences corroborate that EVs make non-
negligible contributions to the resistance of anti-cancer drugs.
The horizontally intercellular transmit of drug resistance are
mediated by EVs cargoes including drug-efflux transporters,
miRNAs, IncRNAs (98). Corcoran et al. established and
characterized docetaxel-resistant variants of two prostate
cancer cell lines by a serial assays including cross-resistance,
morphology, multi-category phenotypes, and EVs secretion.
They revealed that EVs released from docetaxel-resistant
prostate cancer cells subverted sensitive cells to docetaxel-
resistant phenotype through the involvement of EVs delivering
multidrug resistance protein 1. Consistent results were presented
when co-cultured docetaxel-sensitive prostate cancer cells with
serum-derived EVs from prostate cancer patients before and
after commencing docetaxel treatment (99). As a vital organ for
the elimination and reabsorption of therapeutic drugs, kidney
contain various drug transporters in proximal tubules. Thereby
the variability of renal drug transporters will impact the processes
of drug disposition (100). However, there is still no study focus
on the drug resistance in RCC mediated by EVs-contained
drug transporters.

Since several receptor tyrosine kinases relevant to
angiogenesis and homeostasis of TME are overexpressed
predominantly due to inactivation of VHL gene in ccRCC,
inhibitors targeted receptor tyrosine kinases such as sunitinib
have become the one of first-line therapies for RCC treatment
(101). However, the clinical benefit of sunitinib treatment in
ccRCC patients is limited due to inherent or acquired resistance.
As such, the biological basis for resistance to sunitinib therapy
and the clinical approach in this setting is of heightened interest
of investigators (102). Qu et al. obtained sunitinib-resistant
RCC cells through cycles of sunitinib treatment to nude mice
with serial xenografts. Then IncRNA required for sunitinib
resistance in RCC was identified by three rounds of screening
sequentially. Firstly, IncRNA expression profiles between
parental and sunitinib-resistant RCC cells was compared by
IncRNA microarray. Then they established patient-derived
xenograft models of RCC and mimic sunitinib therapy. Eight
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IncRNA candidates were consequently selected to loss-of-
function analysis by RNAi in sunitinib-resistant RCC cells.
LncARSR was eventually identified as a highly abundant IncRNA
in sunitinib-resistant ccRCC cells, which could favor sunitinib
resistance via competitively binding both miR-34 and miR-449
to improve AXL and c-MET expression. More interestingly,
IncARSR could be secreted and delivered via EVs to transform
the phenotype of recipient cells from sunitinib-sensitive to
sunitinib-resistant and lead to the dissemination of sunitinib
resistance (103). Overall, it is valuable to clarify the various
mechanisms of anti-cancer drugs resistance mediated by EVs,
which may further help us to identify desirable biomarkers that
can be used in drug response and identify novel targets to restore
therapeutic approaches.

CLINICAL IMPLICATIONS OF EVS IN RCC

Recent years, many reviews have summarized the clinical
implications of EVs in a variety of cancer types. Since the
composition of the original cells can be reflected in the cargoes
of EVs in a real-time mode, the initial interest of clinical
implications is to find vital biomarkers from this favorable
reservoir. EVs are natural nanoscale vesicles as ideal engineering
platform owing to their unique advantages such as low toxicity
and long-term stability in biofluids (104). EVs-based drug target
discovery is also draw considerable attention of researchers due
to recent findings. Moreover, RCC is still a malignant tumor
with unpredictable progression, limited effective therapies and
poor clinical prognosis. The progresses of clinical application
of EVs in RCC is also relatively lag behind than that in other
cancer types. Accordingly, the demonstrated and conceivable
clinical implications of EVs in RCC will be discussed here from
following aspects.

EVs-Derived Biomarkers for RCC

Owing to the encapsulation by vesicle membrane, the bioactive
molecules within EVs are free from degradation by exogenous
nucleases or proteases and stable in biological fluids (15).
These abundant content which may be reliable biomarkers
for prediction of RCC progression have been extensively
investigated. Previously, Zhao et al. reported that the expression
level of miR-210 was differentially higher in primary RCC tissues
of 32 patients than non-tumor renal parenchymas. Results of
receiver operating characteristic (ROC) analysis also showed that
ccRCC patients and healthy individuals could be discriminated
by the average level of cell-free miR-210 in serum (105). They
assessed expression levels of three miRNAs (miR-210, miR-1233,
and miR-15a) in serum-derived EVs in a follow-up work. Results
of ROC analysis showed that it was feasible to use miR-210
and miR-1233 but not miR-15a as diagnostic biomarkers (106).
Consistently, a recent study confirmed the expression level of
miR-210 in serum-derived EVs was significantly higher in RCC
patients than healthy controls (72). Similarly, expression level
of miR-224 was also overexpressed in cancer tissues of ccRCC
patients (107, 108). The level of serum EVs-contained miR-224
was significantly correlated with progression-free survival (PFS)
or overall survival (OS) of ccRCC patients (109). Moreover, a

study evaluated the possibility of miRNAs from plasma-derived
EVs for RCC prognosis by RNA sequencing. Results of Kaplan-
Meier analysis confirmed the correlations of three miRNAs with
OS of RCC patients, including miR-let-7i-5p, miR-26a-1-3p, and
miR-615-3p (110).

Urine as a dynamic biofluid is also a promising source for
RCC biomarker development rather than a waste product of
body. Urinary EVs can be released from every renal epithelial cell
type facing the urinary tract. Therefore, the cargoes of urinary
EVs may be accessibly real-time signals for renal dysfunction.
However, only few researchers attempted to find bioactive
molecules from urinary EVs and these snapshots need to be
further characterized (18). Study reported that combinations
of urinary EVs-derived miRNAs (miR-449a, miR-34b-5p, or
miR-486-5p with miR-126-3p) had the power to distinguish
healthy controls, patients with benign renal tumors, and patients
with early-stage or advanced ccRCC (111). It has also claimed
that the level of miR-30c-5p within the urinary EVs was
significantly decreased in c¢cRCC patients but not in other
urological malignancies samples (67). In addition, differential
levels of miR-150 and miR-205 were found in EVs isolated from
786-O and HK-2 cell lines (112). Our previous work showed
that the lost expression of organic cation transporter 2 were
partly due to the downregulation by miR-489-3p and miR-630.
Interestingly, miR-489-3p and miR-630 were more abundant in
EVs than donor cells (113, 114). Therefore, these findings of
fundamental work may also have translational value to provide
clues for RCC biomarker discovery in a certain extent.

In addition to miRNAs, other content of EVs also have
potential to be developed as biomarkers for RCC. As mentioned
above, IncARSR was elucidated as a mediator of the transmission
of sunitinib resistance, which could be enwrapped and delivered
through EVs. Qu et al. further revealed that circulating IncARSR
could be utilized as indicator to predict sunitinib response in
RCC patients (103). Moreover, Palma et al. reported that the
mRNA levels of GSTAI, CEBPA, and PCBDI genes in urinary
EVs were lower in RCC patients than that in control subjects and
this pattern backed to normal level after 1 month of nephrectomy
(115). In 2012, Boccio et al. established a hyphenated micro LC-
Q-TOEF-MS platform to profile the lipid repertoire of human
urinary EVs. A comparative analysis for lipid content in urinary
EVs purified from RCC patients and healthy subjects was
performed for the first time (116). Similarly, a proteomics study
in 2013 reported that the protein composition of urinary EVs
was substantially different in RCC patients and control subjects.
Results presented for the first time that considerable number of
proteins were significantly enriched in RCC patients, including
Ceruloplasmin, Podocalyxin, Dickkopf related protein 4, MMP9
and CAIX (117). A recent work reported that Azurocidin was
highly enriched in EVs isolated from tumor tissues of ccRCC
patients than adjacent normal tissues. Importantly, Azurocidin
content was also significantly higher in serum EVs from ccRCC
patients compared to healthy controls (118). These tentative
work provided valuable indications for exploiting potential
mRNA, lipid, and protein biomarker for RCC from urinary
EVs. Taken together, it can be concluded that multiple EVs
cargoes derived from different kinds of biofluids are promising
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non-invasive biomarkers for early diagnosis and treatment of
RCC. The potential biomarkers derived from EVs which have
been validated in clinical samples of RCC are listed in Table 1.

EVs-Based Drug Vehicles and Targets in
RCC

The biological characteristics make EVs can be harnessed
as vehicles for therapeutic agents to improve curative effect.
Numerous clinical and preclinical trials have suggested that these
EVs-based drug vehicles and therapies are promising, feasible
and well-tolerated (119-121). There are two basic approaches
to load cargoes into EVs: exogenous loading and endogenous
loading. Exogenous modification can be achieved after collection
of EVs, with encapsulation of small molecules, proteins, and
RNAs into or onto EVs via diverse methods including co-
incubation, electroporation, and sonication (121). Tian et al.,
developed a tumor-targeting EVs from mouse immature DC
cells expressing a well-characterized EVs membrane protein
(Lamp2b) fused to integrin ay-specific iRGD, which is a new
tumor-homing and penetrating peptide. After loaded with
doxorubicin via electroporation, this delivery platform showed
high efficiency in tumor-targeting and doxorubicin delivery to
integrin ay-positive breast cancer cells both in vitro and in
vivo (122). Wan et al. developed a nucleolin-targeting aptamer
AS1411 which covalently conjugated to cholesterol-PEG and
anchored onto membrane of mouse DC cells. Subsequently, EV's
were obtained from this modified DC cell model and loaded with
paclitaxel by sonication. Results of cancer treatment in xenograft
nude mice showed that engineered EVs enhanced therapeutic
efficacy with low systemic toxicity (123). We can believe that
along with the detailed mechanism of EVs-mediated metastasis
organotropism are being clarified, EV's are promising material to
achieve drug-targeting delivery for cancer treatment. However,
the immune responses are need to be considered seriously.
Additionally, the production yield is also a challenge for applying
engineered EVs in tumor-targeting delivery.

Alternatively, cargo of EVs can be endogenously loaded
through genetically manipulating the donor cells to overexpress
bioactive molecules and employed as EVs-based vaccines or
imaging tools. With significant higher level in surface of RCC
cells than normal renal cells, RCC-associated antigen G250 could
be served as one of the therapeutic targets (124). EVs containing
G250 or other RCC-specific antigens may be novel approaches
to develop EVs-based cancer vaccines for RCC treatment. It has
been shown that modified RCC cells released EV's expressing both
glycolipid-anchored-IL-12 and G250, which efficiently promoted
the proliferation of antigen-specific cytotoxic T lymphocytes and
enhanced cytotoxic effects (125). Notably, there is a risk of mixing
pathogens such as viruses with EVs since these nanometric
vesicles have similar biophysical properties (126). Hence a
standard operating procedure is very necessary when isolate EV's
as cancer vaccine. By combining a Cre recombinase-based system
with high-resolution fluorescence imaging techniques, Zomer
et al. realized the visualization of intracellular EVs exchange
within local and distant tumor sites in vivo. Results showed
that less malignant tumor cells presented heightened migratory

ability after taken up the EVs released by highly malignant
tumor cells (127). Moreover, several other molecular imaging
strategies have also been utilized to monitor and determine
the biodistribution of EVs in vivo, including bioluminescence,
nuclear, and magnetic resonance imaging techniques (128).
These interesting findings and advanced techniques make it
clear that EVs-based modification can be used to achieve the
phenocopying of tumor cells and visualize cancer development
process in vivo in the future.

Drugs targeting vital steps in formation, release or uptake
of EVs may also be served as effective adjuvants for cancer
treatment. Datta et al. utilized quantitative high throughput
screen assay to find active compounds targeting the formation
and release of EVs in prostate cancer cells. Totally five and six lead
compounds were validated as potent inhibitors and activators,
respectively (129). In another review, two groups of candidate
drugs were broadly classified according to the mechanisms of
modulating EVs biogenesis or secretion. One is compounds
that specifically inhibit EVs trafficking, including calpeptin,
manumycin A, and Y27632. Another group is compounds
that specifically disrupt lipid metabolism, including pantethine,
imipramine, and GW4869 (130). Interestingly, Ortiz et al.
identified that reserpine, a commonly used anti-hypertensive
drug since 1955, could alter the fusion process of lipid membrane
and then inhibit PMN formation that was induced by melanoma-
derived EVs. Their findings indicated that tumor-derived EVs
could “educate” healthy cells to facilitate tumor metastasis.
Meanwhile agents like reserpine can interfere this education
process and play a defensive role on EVs uptake. Thus, it is
valuable to repurpose these drugs as adjuvant treatment for
metastatic cancer therapy (131). More recently, sulfisoxazole, an
oral antibacterial drug approved by US FDA, was screened out
as inhibitor of EVs secretion in breast cancer cells. Through
targeting endothelin receptor A, sulfisoxazole promoted the
degradation of ESCRT-dependent MVB, suppressed biogenesis
and secretion of EV’s, as well as significantly inhibited the growth
and metastasis of breast cancer cells without notable toxicity
(132). These important findings enlighten us drug repurposing
can be harnessed as approaches to block EVs functions in
tumor progression.

Potential Application of Artificial
Intelligence in EVs Research

Artificial intelligence (AI) refers to the simulation of human
intelligence in machines. AI approaches have the potential to
enhance the qualitative interpretation of cancer imaging by
expert clinicians in three main tasks: computer-aided detection
of tumor sites, characterization of intra-tumor heterogeneity and
variation, as well as temporal monitoring of tumor changes
(133). As a specific subset of Al approaches, machine learning
(ML) are able to interpret complex data and leverage the
detailed information to make accurate prediction or decision.
Studies have demonstrated that deep learning frameworks can be
applied to distinguish major subtypes of RCC using histological
or computed tomography images (134, 135). Similarly, ML
algorithms also have the power to analyze a substantial
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TABLE 1 | EVs derived potential biomarkers with clinical significance for RCC.

Type EVs EVs cargoes Analysis method Cohorts Clinical significance Year References
source
Lipid Urine LysoPE etc. 196 microLC-Q-TOF- 8 ccRCC patients, 8 48 differential lipidomes (22 upregulated 2012 (116)
differential signals MS HS and 26 downregulated in RCC)
INncRNA Plasma Circulating InNcARSR gRT-PCR 71 advanced ccRCC Differentiated ccRCC patients from healthy 2016 (103)
patients, 32 HS controls; High INcARSR levels in
pre-therapy correlated with PFS
independent of clinical characteristics
mRNA Urine GSTA1, CEBPA, Microarray, 46 RCC patients (33 Significant lower in ccRCC patients than 2016 (115)
PCBD1 qRT-PCR with ccRCC), 22 HS HS and increased to normal level 1 month
after nephrectomy
miRNA Plasma miR-let-7i-5p, RNA-sequencing, 44 and 65 metastatic Low levels correlated with poor OS of 2017 (110)
miR-26a-1-3p, gRT-PCR RCC patients for mRCC patients, independent of age,
miR-615-3p screening and validate gender, tumor grade, stage at diagnosis,
cohort, respectively coagulative necrosis, or sarcomatoid
differentiation
Serum miR-1233, miR-210 gRT-PCR 82 ccRCC patients, 80  Both significant higher in ccRCC patients 2018 (106)
HS than HS independent of gender, age, or
ccRCC grade
Serum miR-210 Microarray, 45 pre-operative and Significant higher in ccRCC patients than 2019 (72)
gRT-PCR 35 post-operative HS, and in pre-operative than
ccRCC patients, 30 HS  post-operative samples
Serum miR-224 gRT-PCR 108 ccRCC patients High level correlated with shorter PFS, 2017 (109)
CSS and OS of ccRCC patients
Urine miR-126-3p Microarray, 81 ccRCC patients, 33 Differentiated ccRCC patients from HS 2016 (111)
gRT-PCR HS
Urine miR-126-3p combined  Microarray, 81 ccRCC patients, 33 Differentiated ccRCC patients from HS
miR-449a agRT-PCR HS
Urine miR-126-3p combined  Microarray, 81 ccRCC patients, 33 Differentiated ccRCC and small renal
miR-34b-5p qRT-PCR HS masses (pT1a, <4 cm) patients from HS,
respectively
Urine miR-126-3p combined  Microarray, 24 benign renal tumor Differentiated benign patients from HS
miR-486-5p gRT-PCR patients, 33 HS
Urine miR-30c-5p RNA-sequencing, 70 early-stage ccRCC Significant lower in early-stage ccRCC 2019 67)
gRT-PCR patients, 30 HS patients than HS
Protein Urine Matrix LC-MS/MS, 9 ccRCC patients, 9 Significant higher in ccRCC patients than 2013 (117)
metalloproteinase 9, western blotting HS HS
Ceruloplasmin,
Podocalyxin, Dickkopf
related protein 4,
Carbonic anhydrase IX
Urine Aquaporin-1, LC-MS/MS, 9 ccRCC patients, 9 Significant lower in ccRCC patients than
Extracellular matrix western blotting HS HS
metalloproteinase
inducer, Neprilysin,
Dipeptidase 1,
Syntenin-1
Serum CD103 Flow cytometry 76 and 133 metastatic Higher ratio of CD103* EVs over total EVs 2019 (78)
or non-metastatic in samples of metastatic patients than
ccRCC patients, non-metastatic patients
respectively
Serum Azurocidin LC-MS/MS 19 ccRCC patients, 10 Significant higher in ccRCC patients than 2018 (118)
HS HS
Tissue Azurocidin LC-MS/MS 20 paired tumor and Significant higher in ccRCC patients than

adjacent normal tissues
of ccRCC patients

HS

amount of images that are produced by EVs purification and
characterization processes. Studies showed that these biophysical
parameters of EVs could be assessed by ML algorithms to

identify the subpopulation of EVs or even further predict
the original donor cells (136, 137). Due to the incredible
amount of EVs and the need for downstream analysis during
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each study, multiparameter results of EVs characterization are
particularly amenable to ML algorithms. A preliminary work of
Borgovan et al. reported that ML algorithms could distinguish
the heterogeneous EVs derived from blood samples with healthy
or leukemic phenotypes based on data sets collected from a
nanoparticle tracking analysis, thus improved the accurate of EV's
classification (138).

At present, one of the most challenges in the field of
biomarker discovery is how to decipher the huge amount of
garbled information within EVs. AI approaches are becoming
trustworthy solutions to this given problem as they are able to
modelize complicated network and leverage valuable information
within observed data to accurately estimate and predict new
samples. Early in 2003, Won et al. had identified five protein
biomarkers of serum by using a mass spectrometry-based protein
profiling and AI analysis and then successfully differentiated
RCC from healthy subjects and other urological diseases (139).
Moreover, Zheng et al. developed a novel diagnosis tool to predict
early-stage RCC patients which depended on a biomarker cluster
that was identified by serum metabolomics method and ML
algorithms (140). Meanwhile, unprecedentedly massive data of
EVs are also being generated by various “omics” technologies
including genomics, transcriptomics, proteomics, metabolomics,
glycomics, and lipidomics (141). Several online databases have
been established to categorize the RNAs, lipids, proteins, and
metabolites within EV's, which have been summarized in Table 2
(142-151). These integrative resources will favor researchers to
outline the landscape of EVs in cancer progression and identify
relevant biomarkers more quickly and more accurately.

Integrating EVs-derived biomarkers with ML algorithms to
analyze patterns in massive data sources such as gene expression,
protein expression, or digital pathology data may obtain a higher
diagnostic efficacy of the diagnosis. Chen et al. profiled four
surface biomarkers including HER2, GPC-1, EpCAM, and EGFR
from serum-derived EVs through DNA points accumulation
for imaging in nanoscale topography. They implemented

an integrated platform combining EVs identification with
quantitative analysis and accurately differentiated pancreatic
cancer and breast cancer from unknown samples (152).
Additionally, advanced techniques such as microfluidic make it
possible to separate EVs on a single chip. In a previous study, Ko
et al. developed a multichannel microfluidic platform combining
with ML algorithms that specifically isolated EVs from clinical
plasma samples, quantitatively detected the RNA profile inside of
EVs, and distinguished pancreatic cancer patients with healthy
controls (153). They subsequently exploited another workflow
that integrated a magnetic capture system with RNA sequencing
and ML algorithms. This system purified a subpopulation of
EVs and identified a panel of 11 miRNAs from EVs which
could classify distinct cancer states in a transgenic mouse
model (154). Thus, it is also a feasible strategy to combine
upstream isolation methods with downstream ML algorithms to
realize the development of “on-a-chip” platform for systemically
purification and determination of EVs-derived biomarkers.
Moreover, Al approaches promises to make great strides in
almost all stage of drug discovery, including target validation,
biomarker identification, and analysis of clinical trial information
(155). Since the drug data sets are becoming dynamic,
heterogeneous and large scale, state-of-the-art AI approaches
such as deep learning and innovative modeling methods provide
new answers to efficacy and safety evaluations of drug candidates
based on big data modeling and analysis (156). Donner et al.
reported a novel method for computational drug repositioning
by taking advantage of neural network. They revealed previously
unnoticed functional relationships between different compounds
based on denoise gene expression data rather than structural
similarity (157). Hence AI approaches can build bridges between
abundant data sources from high-throughput experiments with
gene expression profiles and massive drug candidates. The
information of EVs content is also increasingly rich in data.
Meanwhile the downstream effects of EV's in cancer progression
are non-linear. It is reasonable to assume that the ability of Al

TABLE 2 | EVs related online databases.

Database Publish date Overview Update date References

EVmMIiRNA 2019 Comprehensive miRNA expression profiles in 462 EVs small 2019 (142)
RNA-sequencing datasets from 17 tissues/diseases

EVpedia 2013 High-throughput datasets of EVs components (proteins, RNAs, and lipids) 2013 (143)
from prokaryotic and eukaryotic EVs

EV-TRACK 2017 Experimental parameters of EV-related studies 2019 (144)

ExoCarta 2009 Identified contents (protein, mMRNA, miRNA, and lipids) of exosomes in 2016 (145)
multiple organisms from 286 studies

exoRBase 2018 Exosomal RNA (circRNA, IncRNA, and mRNA) derived from 2019 (146)
RNA-sequencing data analyses of human blood

Exosome Gene Ontology 2015 GO annotations of human exosomal proteins 2015 (147)

Annotation Initiative

Plasma Proteome Database 2014 Annotation of 318 identified proteins of EVs from plasma 2014 (148)

Urinary Exosome Protein 2004 Mass spectrometry data of 1,160 proteins derived from urinary exosomes 2009 (149, 150)

Database isolated from healthy human volunteers

Vesiclepedia 2012 Compendium of molecular data (lipid, RNA, and protein) identified in 2019 (151)

different classes of EVs from 1,254 studies
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to mining valuable information presents new opportunities for
novel target identification and validation for EVs-based anti-
cancer therapies. Therapeutic Target Database (TTD, http://db.
idrblab.org/ttd/) has been established to integrate information
of early drug candidates and therapeutic targets that contain
expanded knowledge of target regulators such as miRNAs,
transcription factors and other interacting proteins (158).
Database with molecular information about drugs such as
DrugBank (https://www.drugbank.ca/) include comprehensive
data of the influence of hundreds drugs on metabolite levels,
gene expression levels and protein expression levels, enabling
us to find more connections of EVs content changes with
drugs (159). Altogether, these important approaches may provide
novel research tools to fundamental studies of EVs biology and
translational studies of EVs-based therapies. Clearly, more work
is need to be deployed in this scenario to figure out the completed
mechanisms of EVs biogenesis, secretion and uptake, which may
reward us valuable drug targets by using advanced Al approaches.

PROSPECTS

EVs are attracting increasing attention in cancer research due
to its various roles in intracellular communication during
cancer progression. However, RCC is relative unnoticed in
this research hotspot compared with other cancer types. In
this review, we recapitulated the roles and clinical implications
of EVs in RCC. Diverse bioactive molecules carried by EVs
regulate almost all processes of RCC, such as tumorigenesis,
metastasis, immunosuppression, and drug resistance. Due to
the unique function of kidney in urinary system, both blood
and urine are valuable biofluids with abundant EVs, which are
readily accessible sources for biomarkers discovery. Moreover,
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Background: miRNAs and genes can serve as biomarkers for the prognosis and therapy
of cervical tumors whose metastasis into lymph nodes is closely associated with disease
progression and poor prognosis.

Methods: R software and Bioconductor packages were employed to identify differentially
expressed MiRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R
detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from
the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was
established to select prognostic miRNA biomarkers. Online tools such as TargetScan and
miRDB predicted target genes, and overlapping DEGs and target genes were defined as
consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment and Gene Ontology (GO) function annotations were performed to discemn
the potential functions of consensus genes. STRING and Cytoscape screened key genes
and constructed a regulatory network.

Results: A combination of four miBRNAs (down-regulated miR-502 and miR-145, up-
regulated miR-142 and miR-33b) was identified as an independent prognostic signature
of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG
pathways and 19 GO function annotations including the cAMP signaling pathway, the
plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The
module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and
WDHD1 are key genes that significantly correlate with cervical cancer lymph node
metastasis.

Conclusions: This study demonstrates that a four-miRNA signature can be a prognostic
biomarker, and seven key genes are significantly associated with lymph node metastasis
in cervical cancer patients. These MiIBNAs and key genes have the potential to be
therapeutic targets for cervical cancer. Among them, two miBNAs (miR-502 and miR-33b)
and two key genes (PTPRC and CDHS5) were first reported to be potential novel
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biomarkers for cervical cancer. The current study further characterizes the progression of
lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel
diagnostic indicator and therapeutic targets for future clinical treatments.

Keywords: cervical cancer, miRNA, key gene, prognostic signature, lymph node metastasis

INTRODUCTION

Worldwide, cervical cancer is the fourth most common female
malignancy with an extremely high morbidity and mortality rate
(Cohen et al.,, 2019). According to the World Health
Organization (WHO), there were 569,874 new cases of cervical
tumors in 2018, accounting for 3.2% of all new cancer cases in
that same year (Bray et al., 2018). Most cervical tumors are
attributed to recurrent HPV infections. Aberrant expression of
oncoproteins encoded by HPV genetic material, such as E6 and
E7, partially leads to epigenetic instability, which affects the
carcinogenesis and metastasis of cervical cancer (Doorbar, 2006).
MicroRNAs (miRNAs) are associated with the development
of a wide range of cancers, including cervical cancer (Park et al.,
2017). miRNAs are a group of non-coding, single-stranded RNA
molecules that are approximately 22 nucleotides (nt) in length
and encoded by endogenous genes (Bartel, 2004; Chen and Kang,
2015). Abnormally expressed miRNAs regulate various
biological processes such as apoptosis, proliferation, and
metabolism (Zhang et al., 2007; Lee and Dutta, 2009).
Moreover, miRNA dysregulation plays a critical role in cancer
progression and metastasis in multiple cancers, including
cervical cancer (Gomez-Gomez et al., 2013; Huang et al.,
2017). For example, Yao et al. (Yao et al., 2018) demonstrated
that decreased expression of HPGD by miR-146b-3p induced
proliferation, migration, and anchorage-independent growth of
cervical cancer cells by activating the STAT3 and AKT signaling
pathways. This indicated that miRNAs may be clinically
applicable as potential biomarkers and therapeutic targets.

Abbreviations: AUC, area under the curve; BP, biological process; CC, cellular
component; CDH5, cadherin 5; CEA, carcinoembryonic antigen; CI, confidence
interval; Coef, partial regression coefficient; CXCL12, C-X-C motif chemokine
ligand 12; CXCR4, C-X-C motif chemokine receptor 4; CXCR7, C-X-C motif
chemokine receptor 7; DAVID, Database for Annotation, Visualization, and
Integrated Discovery; DEGs, differentially expressed genes; DEMs, differentially
expressed miRNAs; EMT, epithelial-mesenchymal transition; Exp (Coef), relative
risk; FDR, false discovery rate; GDF15, growth differentiation factor 15; GEO,
Gene Expression Omnibus; GO, gene ontology; HMGA2, high-mobility group
AT-hook 2; HR, hazard ratio; IGF1, insulin like growth factor 1; IGF1R, insulin
like growth factor 1 receptor; KEGG, Kyoto Encyclopedia of Genes and Genome;
LNM, lymph node metastasis; MALATI1, metastasis-associated lung
adenocarcinoma transcript-1; MCODE, Molecular Complex Detection; MF,
molecular function; Pol {, DNA translation synthesis polymerase ; PPI,
protein-protein interaction; PTPRC, protein tyrosine phosphatase receptor type
C; qRT-PCR, quantitative real-time polymerase chain reaction (reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)); RAD51B,
RADS51 paralog B; REV3L, recovery protein 3 like; Se (Coef), standard error of
regression coefficient; siRNA, small interfering RNA; STRING, Search Tool for the
Retrieval of Interacting Genes; TCGA, The Cancer Genome Atlas; TNM, tumor
node metastasis; WDHD1, WD repeat and HMG-box DNA binding protein 1.

Tumor metastasis is the leading cause of death for most
cervical cancer patients. It generally involves complex processes
such as extracellular matrix degradation, lymphangiogenesis,
angiogenesis, clonal growth at secondary sites, etc. (Zhang
et al., 2015). The metastasis and invasion of tumor cells
through blood and lymph nodes are crucial processes in the
progression of cervical cancer (Dai et al., 2017). Newly formed
lymphatic vessels are comprised of endothelial cells that are not
tightly connected. Therefore, cervical cancer cells can easily
invade this endothelial layer and metastasize to lymph nodes
(Zhang et al., 2015). In addition, the poor prognosis of cervical
cancer patients is correlated with high invasiveness and diffuse
lymph node metastasis (Wang et al., 2016). Lymph node
metastasis is the main metastatic pathway and the most critical
factor in the prognosis and recurrence of cervical cancer cases
(Huang and Fang, 2018). However, a detailed understanding of
the specific signatures and molecular mechanisms of lymph node
metastasis is lacking. Therefore, the search for a reliable
lymphatic signature is important in determining malignant
metastasis, and it also provides information that can guide the
clinical treatment of cervical tumor patients.

Many have proposed conducting a large-scale systematic
analysis of miRNAs, genes, and clinical data using
bioinformatics to further characterize the functions of miRNAs
and genes in certain disease states, clarify their potential as
disease-related signatures, and discover new disease biomarkers
and drug targets (Liang et al., 2017). Researchers can obtain
tumor data from public databases and conduct differential
expression, survival, and prognosis analyses as well as target
gene prediction and functional characterization using R language
(Sepulveda, 2020), TargetScan (Agarwal et al., 2015), miRDB
(Wong and Wang, 2015), DAVID (Huang et al., 2009), etc. With
these tools, tumor biomarkers can be screened, and their
mechanism of action can be further elucidated. For example,
Liang et al. (Liang et al, 2017) identified a three-miRNA
signature (miR-145, miR-200c, and miR-218-1) that is a
prognostic factor of cervical tumors by conducting Cox
univariate and multivariate analyses on differentially expressed
miRNAs screened from clinical samples in TCGA database.

In this study, we conducted a multi-step analysis using
various R language packages on clinical samples downloaded
from the TCGA (Tomczak et al., 2015) and GEO (Barrett et al.,
2007) databases to identify DEMs and DEGs. A Cox
proportional hazard regression model was then established to
determine potential prognostic biomarkers from the available
DEMs. Subsequently, the target genes of the miRNAs biomarkers
were predicted by the TargetScan and miRDB online tools and
the consensus genes were further determined based on overlap
between DEGs and these target genes. Finally, MCODE (Bader
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and Hogue, 2003) software in Cytoscape (Shannon et al., 2003)
was used to identify key genes related to lymph node metastasis
caused by early-stage cervical tumors. Together, the prognostic
miRNAs and key genes mined in this study will provide new
insights in elucidating the molecular mechanisms of cervical
cancer and contribute to finding new therapeutic targets and
prognostic biomarkers for cervical cancer patients.

MATERIALS AND METHODS

Data Preparation and Differential
Expression Analysis

The expression profiles and clinical data for 310 samples were
obtained from TCGA (https://portal.gdc.cancer.gov/) database
on July 27, 2018. These samples included 307 primary solid
cervical cancer tissue samples and three normal tissue samples.
Even though this study used many more cancer samples than
normal samples, previous studies by Yang et al. (2019), Zeng
et al. (2018), etc. have demonstrated that appropriate prognostic
models with diagnostic indicators and clinically significant
therapeutic targets can be obtained with similar unbalanced
sample sets. DEMs were analyzed using the edgeR (Robinson
et al,, 2010), gplots (Li S. et al,, 2020), and limma (Ritchie et al.,
2015) R language packages (Version 3.5.1) according to the
screening criteria of |log2FC| > 1 and P, < 0.05. The
GSE7410 expression profile data from 24 samples were
obtained from the GEO (https://www.ncbi.nlm.nih.gov/geo/)
database. The samples included 19 early-stage cervical tumor
tissues with lymph node metastasis and five healthy cervical
tissues. DEGs were analyzed using GEO2R based on the
screening criteria of |log2FC| > 1 and P, < 0.05.

Establishment of a Cox Proportional
Hazard Regression Model

The Cox proportional hazard regression model (George etal., 2014)
was established to analyze the association between DEMs and
overall survival. The survival package was used in the univariate
and multivariate Cox analyses of DEMs (Liang et al., 2017).
miRNAs with P < 0.05 as calculated by the univariate Cox
analysis were considered strongly correlated with overall patient
survival. The multivariate Cox analysis used stepwise regression to
screen a prognostic model based on the Akaike information
criterion (AIC) value (Vrieze, 2012), where the model with the
smallest AIC value contains the smallest number of miRNAs that
best predict cervical cancer patient prognosis. miRNAs with P <
0.05 as calculated by the multivariate Cox analysis were considered
as independent prognostic factors.

Prognostic Model Construction

Using the results of the multivariate Cox analysis, the risk score
was calculated as follows: Risk Score = Exp (miRNA) x 3, + Exp
(miRNA,) x B, +... + Exp (miRNA,) x B,. The patients were
divided into low- and high-risk groups based on their median
risk score. A risk score curve was plotted to demonstrate the risk
score differences according to the model. A survival status map

was plotted to demonstrate the survival status of each sample. A
heatmap was plotted to demonstrate the expression level
differences of the four prognostic miRNAs in the low- and
high-risk groups. A survival curve was plotted to demonstrate
the 5-year survival in high- and low-risk groups. And an ROC
curve of the model was constructed to determine its predictive
ability. A model with an AUC value larger than 0.7 possesses a
strong prediction function.

Target Gene Prediction

TargetScan and miRDB predicted the target genes of miRNAs
obtained from the multivariate Cox analysis. Target genes that were
predicted by both tools were considered target genes of those
miRNAs. And the consensus genes were further obtained from
the overlap between DEGs related to lymph node metastasis and
candidate target genes from the prognosis miRNAs.

KEGG Pathways and GO Function
Annotation Enrichment Analysis

To further understand the underlying biological significance of
DEMs and DEGs, DAVID (https://david.ncifcrf.gov/) produced
KEGG pathway (Kanehisa and Goto, 2000) enrichment and GO
functional annotations (Ashburner et al., 2000) of the consensus
genes using P < 0.05 as a demarcation criterion. The pathways or
annotations with the smallest P-value or the largest count value
were considered as key KEGG pathways and GO function
annotations. GO function annotations include three parts:
biological process (BP), cellular component (CC), and molecular
function (MF).

PPl Network Construction and Module
Analysis

STRING (http://string-db.org) (Szklarczyk et al.,2017) analyzed the
consensus genes and obtained protein interaction data. Proteins
with a minimum required interaction score greater than or equal to
0.400 were selected to construct the PPI (protein-protein
interaction) network, and nodes with network interruption were
hidden. The combined score was imported into Cytoscape software
(Version 3.7.1, https://cytoscape.org/). The Molecular Complex
Detection (MCODE) plug-in in Cytoscape calculated the
MCODE score and selected the significant modules of key genes
using the screening criteria of Degree Cut-off = 2, Haircut on, Node
Score Cut-off = 0.2, k-core = 2, and Max. Depth = 100. Moreover,
the logFC value of genes in the interaction network was also
imported into Cytoscape to show the up/down regulation status.

Network Visualization

Regulatory relationship data were imported into Cytoscape along
with miRNAs, key genes, consensus genes, key KEGG pathways,
and GO functional annotations. The visualization network was
performed with Cytoscape to explore the potential regulatory
relationship among them.

Analysis Procedure

Figure 1 shows the analysis procedure of the data mining
processes that was used to screen tumor biomarkers and key
genes in this study. It was based on the extensive use of R
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language and various online analytical tools. We first obtained
DEMs and DEGs using R language and GEO2R, respectively, by
analyzing cervical cancer-related miRNAs and gene expression
profiles downloaded from TCGA and GEO databases. A
prognostic model was constructed via Cox analysis to detect key
miRNAs to form a best-available prognostic signature whose target
genes were predicted by TargetScan and miRDB. Subsequently, we
performed KEGG pathway and GO annotation analyses using
DAVID to clarify the function of the consensus genes from the
overlap between DEGs and the predicted target genes of key
miRNAs. Furthermore, STRING and MCODE selected key genes
among consensus genes. Finally, we constructed a miRNAs-Genes-
Pathways and Annotations network to elucidate potential
regulatory mechanisms. The approach described here is a feasible
protocol to identify potential tumor biomarkers and key genes.

RESULTS

miRNA and Gene Differential Expression

Analyses
A total of 110 DEMs were obtained after analyzing miRNA
expression profiles from TCGA with R language using P,g4; < 0.05

Consensus genes

Gons 1
ofielyz e
J/ C D

KEGG pathways and GO Key genes selection using

annotations analysis STRING and MCODE in
using DAVID Cytoscape

U

Network: MiRNAs-Genes-Pathways and Annotations

FIGURE 1 | Analysis procedure of the data mining process used to screen tumor biomarkers and key genes in this study. It includes specific bioinformatics

and [log2FC| > 1 as screening criteria. Among them, 64 miRNAs
were significantly down-regulated, and 46 miRNAs were
significantly up-regulated (Table S1). At the same time, 1840
DEGs related to early cervical cancer lymph node metastasis
were identified by analyzing the GSE7410 expression profile with
GEO2R using P,q; < 0.05 and [log2FC| > 1 as screening criteria.
Among them, 1,298 genes were significantly down-regulated,
and 542 genes were significantly up-regulated (Table S2). The
volcano map illustrates the significant differences and
distribution of the fold change in DEMs and DEGs (Figure 2).

miRNA-Based Signature Identification as a
Prognostic Biomarker

A total of 15 miRNAs related to patient survival were obtained
from 110 DEMs using univariate Cox analysis (P < 0.05)
(Table 1). Four miRNAs related to patient prognosis (miR-
502, miR-142, miR-145, and miR-33b) were further screened
from the above 15 miRNAs by multivariate Cox analysis
(Table 2). Among them, miR-502 and miR-145 were down-
regulated, and miR-142 and miR-33b were up-regulated in
cervical cancer tissues. The multivariate Cox analysis
demonstrated that these four miRNAs could be used as
independent prognostic factors in cervical cancer (P < 0.05).
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TABLE 1 | Univariate analysis of cervical cancer patients.

miRNA HR z P
miR-502 0.47295993 —4.710714692 2.47E-06
miR-142 0.726460896 -3.311319458 0.000928571
miR-362 0.634317782 —3.089446858 0.002005296
miR-101-2 0.70026668 —2.832903633 0.004612729
miR-101-1 0.699830285 —2.831809241 0.004628545
miR-145 0.753658772 —2.628062686 0.008587269
miR-1468 0.71581814 -2.570507809 0.010154954
miR-204 0.852831645 —2.377156425 0.017446688
miR-140 0.633673302 —2.368455333 0.017862537
miR-33b 0.803090114 -2.212258218 0.026948828
miR-126 0.700379333 —2.186430538 0.028784121
miR-218-1 0.815625887 -2.121987729 0.033838769
miR-504 0.757023197 —2.003615093 0.045111308
miR-99a 0.879776376 -1.986775064 0.046947329
miR-331 0.691475709 -1.965107538 0.049401792
Bolded miRNAs are the prognostic miRNAs.

TABLE 2 | Multivariate analysis of cervical cancer patients.

Coef Exp (Coef) Se (Coef) z P
miR-502 -0.676 0.509 0.156 -4.33 1.50E-05
miR-142 -0.297 0.743 0.106 -2.82 0.0049
miR-145 -0.29 0.748 0.101 -2.87 0.0042
miR-33b -0.209 0.811 0.101 -2.07 0.0382

Application of a Cox Proportional Hazard
Regression Model in Disease Prognosis
The prognostic model consisting of four miRNAs was
constructed by multivariate cox analysis. The formula of the
model was defined as follows: Risk score = (Exp (miR-502) x
(-0.676) + Exp (miR-145) x (-0.290) + Exp (miR-142) x
(—0.297) + Exp (miR-33b) x (-0.209)). The survival risk score

based on the four miRNAs was calculated by the model formula
and divided patients into low- (154 samples) and high-risk (153
samples) groups according to their median risk score. The risk
score curve demonstrates that the risk score of individuals in the
low-risk group is small and consistent while the risk score of
individuals in the high-risk group is larger and rises significantly
(Figure 3A top). The survival status map demonstrates that
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individuals in the low-risk group have low mortality rates, and
individuals in the high-risk group have a short survival time
(most survived for less than 5 years) (Figure 3A middle). The
heatmap demonstrates that low miRNA expression levels are
associated with high-risk scores, and high miRNA expression
levels are associated with low-risk scores (Figure 3A bottom).
These all demonstrate the reliability of the prognostic model in
classifying high- and low-risk groups. And the survival curve
demonstrates that the survival rate in the low-risk group is
notably higher than in the high-risk group (P = 3E-06; low-
risk group: 80.3%, 95% CI = 71.3-90.4%; high-risk group: 51.6%;
95% CI = 41.6-64.0%) (Figure 3B). The time-dependent ROC
curve analysis indicates that this prognostic model has a high
level of credibility, sensitivity, and specificity with an AUC value
of 0.766 (Figure 3C).

Target Gene Prediction for the Four
Prognostic miRNAs

The prediction results combined with TargetScan and miRDB
identified 267 target genes of miR-502, 423 target genes of miR-
145, 370 target genes of miR-142, and 279 target genes of miR-
33b (Figure S1). After excluding 111 repetitive target genes co-
regulated by multiple miRNAs, 1,228 target genes of the four
prognostic miRNAs were obtained. Moreover, 94 consensus
genes (Table 3) were identified from the overlap between 1840
DEGs (Table S3) and 1228 target genes (Table S4).

KEGG Pathway and GO Function
Annotation Details of Consensus Genes
Enrichment analyses produced 7 KEGG pathways and 19 GO
function annotations from the consensus genes using the
screening criteria of P < 0.05 (Figure 4). Consensus genes

enriched in each pathway or function annotations were
showed in Table S5. KEGG pathways involving insulin
secretion, cAMP signaling, adrenergic signaling in
cardiomyocytes, leukocyte transendothelial migration, etc. were
mainly enriched. Among them, the insulin secretion pathway
had the smallest P-value, and this pathway is associated with five
consensus genes (P = 1.05E-03). The cAMP signaling pathway
had the largest number (count = 6) of involved consensus genes,
and its P-value was 3.87E-03. BP GO annotations involved in
neuron migration, positive regulation of the G2/M mitotic cell
cycle transition, extracellular matrix disassembly, cell adhesion,
etc. were mainly enriched. The annotation with the smallest P-
value in the BP involved neuron migration (P = 2.07E-03), and it
correlated with five consensus genes. The largest number of
related consensus genes involved cell adhesion (count = 7), and
its P-value was 3.03E-02. And GO annotations in CC involving
the plasma membrane, actin cytoskeleton, postsynaptic density,
etc. were mainly enriched. The annotation with the smallest P-
value in the CC was an integral component of the plasma
membrane (P = 6.92E-03), and it involved 15 consensus genes.
The largest number of linked consensus genes involved the
plasma membrane (count = 28), and its P-value was 4.33E-02.
Furthermore, GO annotations in MF involving heparan sulfate
6-O-sulfotransferase activity were mainly enriched and had a P-
value of 1.98E-02 and two associated consensus genes.

Identification of Key Modules Using a
Cluster Analysis of Protein-Protein
Interactions

The interaction network presents protein-protein interactions,
the strength of the interactions within the protein modules
(Figure 5A), and up/down regulation conditions of the
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TABLE 3 | Consensus genes of four prognostic miRNAs discovered in the overlap between predicted target genes and DEGs related to cervical cancer lymph node metastasis.

miRNA Consensus Genes

miR-502 ATP1A2 DLGAP2 FILIPTL C12orf54 TLR6
DAPK1 DCLKA1 DONSON SLIT3 WDHD1
FBN2 DCUN1D5 CHST11 SLC7A14 LAMA3
BCL7A CDH5 ZNF471 CNTN2 PLXNA4
COL10A1 DOK6 GLP1R PGM5 SYNPO2
EML6 MLLT6 ACSS3 HS6ST2 NUDT10
RCC2 PHOX2B SAMD4B

miR-142 GDNF ZFPM2 TRIM36 NBEA IGF1
FOXO4 FAM199X HDLBP TMTCA GK
BNC2 REV3L SLC2A13 PDLIM5 SP2
TNRC18 SACS ST6GALNAC3 EGLN3 RTN1

miR-145 MMP16 ITGBLA1 SEMAGA ACTB HS6ST1
REV3L ZFP14 SLC38A11 TNFRSF11B PAQR9
ST6GALNAC3 TUFTAH ARHGAP6 CREB3L2 GATC
HTRA1 KLHL3 TPM3 KCNA6 GXYLTH
EBFA1 HTR1F RAD51B ZRANB3 SLITRK4
RAPGEF4 DGKB

miR-33b LRP8 PRAMEF17 GPR173 SEMAT7A MMP16
ATP1A2 TENM3 CACNA1C DSC3 SECISBP2L
HMGB3 PTPRB ABHD2 GDNF PTPRC
CMTR2 CXCL12 PRICKLE2 ARMCS8

26.GO-CC plasma membrane-  [INNEGES
25.GO-CC integral component of plasma membrane- [ NEGNINGNGGE
24 GO-BP cell adhesion- [NNENEGNG
23.KEGG Pathway cAMP signaling pathway- [ ENENENN
22,GO-CC proteinaceous extracellular matrix- [N
21.GO-CC postsynaptic density- [ IR

20.KEGG Pathway Adrenergic signaling in cardiomyocytes-
19.GO-BP neuron migration-

18.KEGG Pathway Insulin secretion-

17.GO-BP axon guidance-

16.KEGG Pathway Axon guidance-

15.KEGG Pathway Leukocyte transendothelial migration-

14 KEGG Pathway Dilated cardiomyopathy-

13.KEGG Pathway Hypertrophic cardiomyopathy (HCM)-

12.GO-BP extracellular matrix disassembly-

11.GO-BP regulation of insulin secretion-

10.GO-BP adult locomotory behavior-

09.GO-BP neural crest cell migration-

08.GO-BP negative chemotaxis-

07.GO-BP semaphorin-plexin signaling pathway-

06.GO-BP positive regulation of G2/M transition of mitotic cell cycle-
05.GO-BP sympathetic nervous system development-

04.GO-BP positive regulation of dopamine secretion-

03.GO-BP heparan sulfate proteoglycan biosynthetic process, enzymatic modification-
02.GO-MF heparan sulfate 6-O-sulfotransferase activity-

01.GO-BP postganglionic parasympathetic fiber development-

PValue

0.04
0.03
0.02
001

20
Gene count

FIGURE 4 | Bar graph illustrating the enrichment analysis. The abscissa represents the number of consensus genes involved in KEGG pathways or GO function
annotations. The ordinate represents items of the primary KEGG pathways or GO function annotations.

involved genes (Figure 5B). It consists of 52 nodes and 59 edges.
Two important modules with MCODE scores greater than 2.0
were screened by MCODE and included seven key genes:
CXCLI12, IGF1, PTPRC, and CDHS5 (Figure 5C); RAD5I1B,
REV3L, and WDHDI! (Figure 5D). Among them, CXCLI2,
IGF1, CDH5, RAD51B, and REV3L were significantly down-
regulated while WDHDI and PTPRC were notably up-regulated.
It is worth to note that we also performed topology parameters
analysis of PPI and obtained the same seven key genes above

regulat

(Figure S2). The readers who are interested in this process can
read the supplementary TopologyParametersAnalysis.doc.

Visualization Network of MiRNAs-Genes-
Pathways and Annotations
The visualization network demonstrated that seven key genes are

ed by four miRNAs and are involved in seven key KEGG

pathways and GO functional annotations (Figure 6). WDHDI
and CDHS5 are regulated by miR-502; RAD51B and REV3L are
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regulated by miR-145; REV3L and IGFI are regulated by miR-
142; and CXCLI12 and PTPRC are regulated by miR-33b. The
enrichment analysis of the consensus genes showed that there
was no key gene enrichment in the key KEGG pathways, while
CXCL12, IGF1, CDH5, and PTPRC were involved in the key GO
functional annotations. Specifically, CXCL12 was enriched in
neuron migration and cell adhesion of BP. CDH5 was enriched
in cell adhesion of BP. IGFI, together with CDH5 and PTPRC,
were enriched in the plasma membrane of CC. PTPRC was
enriched in the integral component of the plasma membrane
of CC.

DISCUSSION

Cervical carcinoma is one of the most common malignancies in
females. Approximately 90% of cervical cancers occur in low-
and middle-income countries. Lymph node metastasis and
recurrence are the main manifestations in cervical cancer
patients with a poor prognosis (Cohen et al, 2019). miRNAs
collectively regulate thousands of human cancer-related, protein-
coding genes and regulate many important biological processes
that facilitate cancer development (i.e. cell growth, invasion, and
apoptosis) (Lu et al., 2005). Therefore, miRNAs have become a
hotspot of tumor research in the past decade. To identify novel
and reliable prognostic biomarkers and important regulatory
genes related to cervical cancer and lymph node metastasis, this
study first identified 110 DEMs and 1840 DEGs, separately, from
expression profiling and clinical data uploaded into TCGA and
GEO databases, respectively. Next, a cancer prognosis model
based on four prognostic miRNAs (miR-502, miR-145, miR-142,
and miR-33b) was established using univariate Cox, multivariate
Cox, and survival analyses. Subsequently, 1,228 target genes were
predicted using TargetScan and miRDB, and 94 consensus genes
were obtained from the overlap of DEGs and predicted target
genes. Finally, seven key genes related to lymph node metastasis
(i.e. CXCLI2, IGF1, PTPRC, CDH5, RAD51B, REV3L, and
WDHDI) were identified using STRING and Cytoscape.

According to the prognostic model, the expression levels of
miR-502 and miR-145 were down-regulated, and the expression
levels of miR-142 and miR-33b were up-regulated in cervical
cancer. Among these four miRNAs, miR-145 and miR-142 have
been reported that they were related to cervical cancer in
previous experimental studies.

Previous studies have shown that the down-regulation of
miR-145 is closely related to cervical cancer and its lymph node
metastasis. Azizmohammadi et al. (2017) used qQRT-PCR and a
multivariate Cox analysis to demonstrate that the expression of
miR-145 is reduced in cervical cancer tissues. They also showed
that reduced expression of miR-145 is related to lymph node
metastasis (P = 0.02), advanced Federation International of
Gynecology and Obstetrics (FIGO) stage (P = 0.007), and
vascular invasion (P = 0.026), which confirms miR-145’s
potential as a prognostic biomarker for the early detection of
cervical cancer (Azizmohammadi et al., 2017). Ma et al. (2019)
demonstrated that miR-145 is also down-regulated in cervical

tumor cells, and up-regulation of miR-145 reduces cell
proliferation by directly suppressing its target gene, FSCN1. Shi
et al. (2012) also showed miR-145 is decreased in cervical cancer
cells, and increasing miR-145 expression enhances chemo-
sensitivity and inhibits invasion and migration by enhancing
p53. The above experimental results are consistent with our
prediction that the expression of miR-145 is suppressed in
cervical cancer cells.

While our prognostic model predicted that miR-142
expression is increased, existing experimental studies illustrated
that miR-142 expression is decreased in cervical cancer cells. Li
et al. (2017) revealed that when compared with normal tissue,
miR-142 expression is lower in cervical cancer cells and
correlates with a poor prognosis. Deng et al. (2015)
demonstrated that miR-142-3p is down-regulated in cervical
tumors. The overregulation of miR-142-3p inhibits the
expression of its target gene, FZD7, and further halts the
proliferation and invasion of cervical cancer (Deng et al.,
2015). Xia et al. (2018) reported that Metformin, an anti-
cancer drug, up-regulates miR-142-3p expression in cervical
cancer cells. They also showed that Metformin inhibits the
invasion and migration of tumor cells by decreasing the
sponge effect of MALATI, up-regulating the expression of
miR-142, and down-regulating the expression of the target
gene, HMGA2 (Xia et al,, 2018). These three studies showed
that miR-142 is a tumor suppressor gene. Thus, the decreased
expression of miR-142 in cervical cancer cells is contrary to our
results from the data mining calculation that shows an increase
in its expression. We do not know the reason(s) for this
contradiction, but it should be clarified in the future.

Although no experiment has demonstrated a correlation
between miR-502 and miR-33b in cervical cancer, studies have
shown that the down-regulation of miR-502 and up-regulation
of miR-33b are involved in other types of cancer. Sun et al. (2014)
demonstrated that miR-502, which is down-regulated in breast
cancer cells, suppresses early apoptosis by targeting TRAF2 and
restraining the NF-xB signaling pathway. Furthermore, Li et al.
(2009) demonstrated that the activation of NF-kB results in a
lower tumor grade, larger tumor volume, higher invasiveness,
and increased metastasis in cervical cancer tissues. Therefore,
miR-502 may affect cervical cancer lymph node metastasis by
participating in the NF-kB signaling pathway. Zhang et al. (2019)
showed that the up-regulation of miR-33b inhibits the Wnt/f3-
catenin signaling pathway by decreasing ZEB1 expression and
promoting endometriosis. Although endometriosis is a common
and benign disease, it has similar characteristics to malignancies
including cell proliferation, invasion, metastasis, and recurrence.
Also, Ramachandran et al. (2012) showed that abnormal
activation of the Wnt/B-catenin pathway is common in
cervical tumors, which may enhance proliferation and prevent
apoptosis of cervical cancer cells. Therefore, up-regulation of
miR-33b may affect the proliferation and apoptosis of cervical
cancer cells by inhibiting the Wnt/B-catenin signaling pathway.
To summarize, miR-502 and miR-33b might be involved in
cervical cancer formation through distinctive ways as explained
above, but such speculation needs to be experimentally validated.

Frontiers in Pharmacology | www.frontiersin.org

66

May 2020 | Volume 11 | Article 544


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

MIRNA Signature of Cervical Cancer

To date, one computational paper exploring the relationship
between cervical cancer and the expression of miRNA through
data mining has been published. Liang et al. (2017) constructed a
three-miRNA signature containing miR-145, miR-200c, and
miR-218-1 by processing miRNA data from TCGA database.
Their study demonstrated that the expression of miR-145 is
significantly decreased in cervical tumor tissues. Furthermore,
they found that the expression levels of miR-142 and miR-33b
are up-regulated (Liang et al., 2017). This study provided results
consistent with ours regarding the expression levels of miR-145,
miR-142, and miR-33b. It is worth noting that although the
expression of miR-142 was experimentally shown to be down-
regulated in cervical cancer cells, as we mentioned previously,
this earlier computational study circumstantially confirms the
results of our research.

According to our predictions, among the seven key genes
involved in early-stage cervical cancer lymph node metastasis,
CXCLI12,1GF1,RAD51B, REV3L, and CDH5 are down-regulated,
and WDHDI and PTPRC are up-regulated. Table 4 compares
the expression of these seven key genes in cervical cancer, other
cancers, and lymph node metastasis as reported in previous
experimental studies and our calculated results. The decreased
expression of CXCLI2 in cervical cancer cells and its role in
lymph node metastasis was confirmed in previous experiments
(Yadav et al,, 2016), and the decreased expression of IGFI and
the increased expression of WDHDI were also experimentally
validated in cervical cancer cells but only in lymph node
metastasis of other cancers (Serrano et al., 2006; Kiimmel
et al., 2007; Huang et al., 2008; Zhou et al, 2016; Liu et al,,
2019). Interestingly, the expression of RAD51B is also decreased
in cervical cancer cells, but experiments showed that its
expression is increased in other cancer lymph node metastases
(Cheng et al, 2016; Hang et al, 2016). In addition, REV3L
expression is increased in cervical cancer cells and lymph node
metastases of other cancers in the laboratory, which is
inconsistent with our prediction results (Yang et al., 2015; Zhu
etal., 2016). Finally, PTPRC and CDH5 have not been previously
reported to be associated with cervical cancer or its lymph node
metastasis. While experiments demonstrate that PTPRC
expression is increased in other cancers and their lymph node
metastases (Collette et al., 2007; Camacho et al., 2018), CDH5 is
up-regulated in other cancers but down-regulated in lymph node
metastasis of colorectal cancer (Tacconi et al., 2015; Hung et al.,
2016; Higuchi et al., 2017).

TABLE 4 | The expression of key genes reported from previous experimental studies.

CXCL12 is the ligand for the G-protein coupled receptor-like
chemokine (C-X-C motif) receptors 4 and 7. It affects many
cellular processes such as immune monitoring, inflammatory
response, tumor growth, and metastasis (Colamussi et al., 2001;
Yadav et al.,, 2016). Yadav et al. (2016) demonstrated that
CXCLI2 expression is absent in cervical cancer. They also
illustrated that CXCLI2 silencing enables cells to evade
apoptosis and leads to the progression and metastasis of
cervical cancer (Yadav et al., 2016). Meanwhile, Miiller et al.
(2001) reported that CXCR4 is usually highly expressed in tumor
tissues, and the CXCR4/CXCL1I2 axis could prevent breast tumor
lymph-node metastasis and lung metastasis when CXCR4 is
neutralized. Thus, CXCLI2 can act as a tumor suppressor in
lymph node metastasis of cervical and other cancers, and it might
inhibit tumor progression through the CXCR4/CXCLI12 axis.

IGF1 is a cytokine that mediates cell growth and development
(Macaulay, 1992). Serrano et al. (2006) reported low serum IGF1
expression in cervical cancer cells, and reduced expression of
IGFI1 is associated with an increased risk of cervical cancer.
Huang et al. (2008) showed that lower levels of IGFI can
effectively predict survival in patients with cervical cancer.
Furthermore, they found that a combination of increased
carcinoembryonic antigen (CEA) levels and decreased IGFI
levels is significantly associated with an increased risk of death
and could accurately predict patients with a poor prognosis.
Though no experiment is available to confirm that IGFI is
involved in cervical cancer lymph node metastasis, Kiimmel
et al. (2007) reported that in breast tumor patients, plasma
IGF1 expression is increased after dose-intensified
chemotherapy, and they showed a more prominent increase in
IGF1 expression in patients with positive lymph nodes than
other patients. WDHDI, also known as ANDI, is involved in
signal transduction, pre-mRNA processing, replication,
transcription, cytoskeleton assembly, chromosome assembly,
etc. (Park et al.,, 2012). Zhou et al. (2016) showed that
WDHDI is up-regulated in primary human keratinocytes and
spontaneously immortalized human foreskin keratinocytes cells
expressing oncogene E7 in HPV-induced carcinogenesis. They
also showed that WDHDI can increase E7-induced Gl
checkpoint abolition and duplication. They further
demonstrated that the polyploidy ratio of cells expressing E7 is
significantly reduced after knocking down WDHDI with siRNA
(Zhou et al., 2016). Although the role of WDHDI in cervical
cancer lymph node metastasis has not been explained, Liu et al.

CXCL12 IGF1 WDHD1 RAD51B REV3L PTPRC CDH5
Cancer v v A v A A v A
LNM vy v A A A A v

A up-regulated in cervical cancer, agreed with our calculated result.

v down-requlated in cervical cancer, agreed with our calculated result.

A up-regulated in cervical cancer, disagreed with our calculated result.

A up-regulated in other cancers, agreed with our calculated result in cervical cancer.
V down-regulated in other cancers, agreed with our calculated result in cervical cancer.
A up-regulated in other cancers, disagreed with our calculated result in cervical cancer.
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(Liu et al., 2019) found that miR-494 can inhibit EMT and lymph
node metastasis of cholangiocarcinoma (CCA) cells by targeting
overexpressed WDHDI. In summary, IGFI and WDHDI are
likely connected with cervical cancer lymph node metastasis.

RAD5IB is one of the RAD51 gene families involved in
homologous recombination-mediated DNA repair (Thacker,
2005; Nagathihalli and Nagaraju, 2011). Hang et al. (2016)
demonstrated that RAD5IB is a tumor suppressor gene in
cervical cancer cells, which is consistent with our prediction.
They further showed that the miRNA binding sites of RAD51B
genetic variants in cervical cancer cells may increase tumor
susceptibility, and RAD5IB is vital in gauging the cervical
cancer risk of individuals and improving the effectiveness of
preventive intervention (Hang et al., 2016). Currently, there are
no reports that demonstrate RAD51B affects cervical cancer
lymph node metastasis, but Cheng et al. (2016) showed that
the overexpression of RAD5IB in gastric cancer cells is
significantly associated with lymph node metastasis (P =
0.001), advanced stage (P = 0.009), and invasive differentiation
(P = 0.022), and it may act as a potential signature for early
detection and poor prognosis. RAD5IB expression in gastric
cancer with lymph node metastasis is contrary to our prediction:
it tended to represent the particularity of RAD51B expression in
cervical cancer lymph node metastasis. The specific reasons for
this contradiction need to be further clarified.

REV3L encodes the protein representing the catalytic sub-unit
of Pol¢, and inhibiting REV3L expression enables cancer cells to
tolerate DNA damage and stunted growth (Knobel et al., 2011).
Yang et al. (2015) showed that overexpression of REV3L
promotes proliferation and colony formation and inhibits
cervical cancer cell sensitivity to cisplatin. Thus, REV3L could
be a potential therapeutic target for cervical cancer treatment.
Zhu et al. (2016) also showed that REV3L is significantly up-
regulated in esophageal squamous cell carcinoma tissues, and it
positively correlates with lymph node metastasis (P <0.05) and
clinical stage (P < 0.05). Additionally, overexpression of REV3L
increases the expression levels of cyclin D1 and survivin, which
work together to promote the growth and invasion of esophageal
cancer cells (Zhu et al.,, 2016). These results demonstrate that
REV3L is closely linked to cervical cancer lymph node metastasis.
However, these REV3L experimental results are inconsistent with
the inferences obtained from our data mining analysis. The
specific reasons behind this contradiction need to be clarified.

PTPRC, also known as CD45, is a key regulator of cell growth,
differentiation, mitosis, and carcinogenic transformation
(Rheinlidnder et al., 2018). Camacho et al. (2018) showed that
PTPRC is significantly overexpressed in head and neck squamous
cell cancer cells, and tumor samples overexpressing PTPRC have
significantly higher tumor-infiltrating lymphocytes (TIL) scores
than tumor samples expressing low levels of PTPRC, leading to a
poorer prognosis. Collette et al. (2007) noted that the expression of
PTPRC plays a critical role in determining the signal transduction
and proliferation response of human myeloma cells to growth
factors such as IL-6 and IGFI1. IL-6 and IGF1 separately induced
CD45+ and CD45- myeloma cell colony formation through the
MAPK/ERK signaling pathway in which CD45 is critical for

myeloma proliferation (Collette et al., 2007). In addition, many
experimental studies reported that the MAPK/ERK signaling
pathway is crucial in cervical cancer formation. For example, Li
et al. (2018) demonstrated that MAPK/ERK signaling pathway
activation promotes cervical cancer cell proliferation. Tao et al.
(2018) illustrated that miR-497 acts as a tumor suppressor by
blocking the MAPK/ERK signaling pathway in cervical cancer
cells. Furthermore, Wang et al. (2020) showed that the anti-
cancer drug sclareol targets the MAPK/ERK signaling pathway
and induces cervical cancer cell apoptosis and cell cycle arrest.
Therefore, considering these observations, we can speculate that
PTPRC and IGFI may negatively regulate the occurrence and
development of cervical cancer and its lymph node metastasis by
affecting the MAPK/ERK signaling pathway.

CDHS5, also known as VE-cadherin, represses endothelial cell
apoptosis and participates in endothelial cell growth contact
inhibition (Cavallaro et al., 2006). Abnormal CDH5 was found in
cancer cells. Hung et al. (2016) and Higuchi et al. (2017)
demonstrated that CDH5 is over-expressed in lung cancer and
gastric cancer, respectively. However, Tacconi et al. (2015)
demonstrated that CDH5 is down-regulated in colorectal
cancer, and is negatively associated with its lymph node
metastasis. They found that up-regulated VEGFC/VEGFR3
reduces CDH5 expression, enhances permeability, and
increases trans-endothelial migration. Thus, it promotes
lymphatic vessel density and colorectal cancer lymph node
metastasis (Tacconi et al., 2015). Furthermore, Chaudary et al.
(2011) demonstrated that suppressing the over-expression of
VEGFC/VEGFR3 in cervical cancer cells inhibits proliferation
and cervical cancer lymph node metastasis. We suspect that the
over-expression of VEGFC/VEGFR3 restrains CDH5 in cervical
cancer cells and further promotes lymph node metastasis. But
this assumption needs to be further studied.

Table 3 shows that eight targeting relationships are available
between four prognosis miRNAs and seven key genes.
Specifically, miR-502 targets WDHDI and CDH5, miR-145
targets REV3L and RAD5IB, miR-142 targets REV3L and
IGF1, and miR-33b targets CXCLI12 and PTPRC. Among these
relationships, miR-145-REV3L and miR-142-IGF1 have been
reported previously. Chen et al. (2019) demonstrated that miR-
145 can directly regulate the expression of REV3L in esophageal
squamous cell carcinoma (ESCC) cells using a dual luciferase
reporter assay and Western blot analysis. Also, low levels of miR-
145 augmented REV3L mRNA and protein expression in ESCC.
Xiong et al. (2018) showed that eight out of 12 target gene
prediction programs including TargetScan and miRDB predicted
the miR-142-IGF1 relationship. Subsequently, they suggested
that decitabine exerts its therapeutic effect on hepatocellular
carcinoma by inhibiting miR-142 DNA methylation, which
enhances miRNA expression and further down-regulates the
target genes of miR-142-5p such as IGFI (Xiong et al., 2018). To
summarize, the above studies demonstrated target/regulatory
relationships between miR-145-REV3L and miR-142-IGF1.
The remaining six regulatory relationships have yet to be
reported, which might lay the foundation for future research
on cervical and other cancers with lymph node metastasis.
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In the key KEGG pathways and GO functional annotations of
key gene enrichment, it had been reported that cell adhesion and
integral component of the plasma membrane were closely related
to tumor proliferation and metastasis. For example, Mierke
(2008) showed that the integrity of the endothelial barrier is
preserved by a complex balance of cell adhesion factors. Once the
integrity is compromised, tumor cells can metastasize through
blood vessels or lymphatic channels (Mierke, 2008). More
importantly, Zheng et al. (2017) suggested that the CXCR4/
CXCLI12 axis plays a role in reducing the adhesion ability of
colon cancer cells by regulating the Akt and IGF1R signaling
pathways. Therefore, the key gene CXCLI2, enriched in cell
adhesion, may lead to cervical cancer lymph node metastasis by
affecting cell-cell adhesion. In addition, protein components of
the cell membrane are involved in cell signal transduction, cell
interaction, and other important steps in the process of cancer
cell metastasis (Lund et al.,, 2009). Most of the key molecules
involved in the signaling pathway are distributed in the cell
membrane. PTPRC, as a transmembrane tyrosine phosphatase, is
expressed in all leukocytes, and it is involved in lymphocyte
immunity against tumor cells (Tchilian et al., 2001). Therefore,
we speculate that PTPRC, which is enriched in an integral
component of the plasma membrane, may be an important
signal molecule in cervical cancer metastasis. Moreover, it may
be involved in a new approach to studying the mechanism of
cervical cancer lymph node metastasis.

CONCLUSION

By data-mining differentially expressed miRNAs and genes along
with other clinical information in a multi-step analysis, we
obtained a prognostic model of cervical cancer with lymph
node metastasis containing four miRNAs and seven genes. We
showed that four miRNAs (miR-502, miR-145, miR-142, and
miR-33b) are independent and common prognostic biomarkers
for patients with cervical cancer, and seven proteins (CXCLI2,
IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHDI) are key
genes significantly related to lymph node metastasis. Among
them, miR-145, miR-142, CXCL12, IGF1, and WDHDI have
been confirmed, while miR-502, miR-33b, PTPRC, and CDH5
are reported, here, for the first time. Also, the expression levels
and/or roles of miR-142, miR-33b, RAD51B, REV3L, and CDH5
in cervical cancer lymph node metastasis need further
clarification. In summary, our study may improve our
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New drug discovery has been acknowledged as a complicated, expensive, time-
consuming, and challenging project. It has been estimated that around 12 years and
2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug
development pipeline. How to reduce the research cost and speed up the development
process of new drug discovery has become a challenging, urgent question for the
pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a
powerful, and promising technology for faster, cheaper, and more effective drug design.
Recently, the rapid growth of computational tools for drug discovery, including anticancer
therapies, has exhibited a significant and outstanding impact on anticancer drug design,
and has also provided fruitful insights into the area of cancer therapy. In this work, we
discussed the different subareas of the computer-aided drug discovery process with a
focus on anticancer drugs.

Keywords: anti-cancer, CADD, drug discovery, Al, computational methods

INTRODUCTION

Up to now, cancer remains a global and serious public health challenge. It is estimated that there are
more than 200 different types of cancer, generally named according to the tissue where the cancer
was recognized for the first time. Cancer is considered to be one of the significant causes for death in
the 21st century and the most critical obstacle for the increase of global life expectancy. According to
an analysis by the world health organization (WHO) in 2015, cancer is the second leading cause of
death for patients younger than 70 years old in 91 countries and the third or fourth leading cause of
death among 22 other countries (Yan et al., 2019). Moreover, a global increase of 18.1 million new
cancer cases and 9.6 million cancer-related deaths have been reported in a previous study (Bray
et al., 2018), especially 70% of the death caused by cancer occur in low-income and middle-income
countries. The fast growth of the cancer incidence and mortality has turned out to be global health
challenges. How to reduce the cancer-related death rate has attracted significant attention from the
government, society, medical industry, as well as scientific communities, expecting the rapid
development of effective and safe drugs for cancer treatment.

Despite of the impressive progress in biotechnologies and further understandings of the disease
biology, the development of new, practical and innovative small molecule drugs remains an
arduous, time-consuming, and expensive project, which requires collaborations from many
expertise in multidisciplinary fields, including medicinal chemistry, computational chemistry,
biology, drug metabolism, clinical research, etc. Furthermore, it has been illustrated that the

Frontiers in Pharmacology | www.frontiersin.org 72

May 2020 | Volume 11 | Article 733


https://www.frontiersin.org/articles/10.3389/fphar.2020.00733/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00733/full
https://loop.frontiersin.org/people/929048
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shuguang.yuan@siat.ac.cn
https://doi.org/10.3389/fphar.2020.00733
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00733
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00733&domain=pdf&date_stamp=2020-05-20

Cui et al.

Computational Drug Discovery

successful discovery and development of a new drug costs 12
years, and expensive investment (Kapetanovic, 2008). Thus,
novel drug development strategies with a reduced cost of time
and money, as well as an enhanced efficiency are in high
demand, which would contribute to a significant improvement
in global health and life expectancy. Since the successful
development of HIV protease inhibitor Viracept in the USA in
1997, which was the first drug design fully driven by its target
structure (Kaldor et al., 1997), computational methods have
served as an essential tool in drug discovery projects and have
been a cornerstone for new drug development approaches. This
makes the drug developmental process faster and cheaper.
Recently, the fast growth in computational power, including
massively parallel computing on graphical processing units
(GPUs), the continuous advances in artificial intelligence (AI)
tools (Chan et al, 2019; Yang et al, 2019), have translated
fundamental research into practical applications (Zhavoronkov
et al., 2019) in the drug discovery field. This attracted
considerable attention for their outstanding performance on
providing new promising perspectives and solutions to
overcome life-threatening diseases.

In this review, we aim at providing an overview of different
subjects of the computational-method-aided new drug discovery
processes in general, and anti-cancer therapy discovery in
particular. We reviewed some of the most representative
examples and clarified fundamental principles by exploring
studies on anticancer drug designs with the help of

Target identification

Drug Discovery and Development Pipeline

computational methods. A workflow of computational drug
discovery is explained in Figure 1.

ANTI-CANCER DRUG TARGET
PREDICTION

Human contains approximately 30,000 genes, among which
around 6,000 to 8,000 sites are estimated as potential
pharmacological targets. However, less than 400 encoded
proteins have been proved to be effective for drug development
until now (Drews, 2000; Chen et al., 2016). Cancer, compared to
many other human diseases, now has a plethora of potential
molecular targets for therapeutic development (Lazo and
Sharlow, 2016). Traditional drug discovery mainly follows the
paradigm of “one molecule - one target - one disease”, without
considering the interactions between drugs and proteins.
However, an important fact that many complex diseases are
relevant to a variety of target proteins (Hopkins, 2008;
Yamanishi et al., 2008; Chen et al., 2012) has been overlooked.
Furthermore, unexpected drug functions derived from oft-targets
are an accidental and uncontrollable activities because of the
“poly-pharmacological” properties of certain drugs, which might
result in undesirable side effects. Those are particularly
pronounced for cancer drugs. On the other hand, there are
some positive examples that benefit from the different pathways
targeted by one given molecule. For example, sildenafil (viagra)

FIGURE 1 | A workflow for drug discovery: from target identification to drug approval.
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was developed to treat angina, but now it is used for erectile
dysfunction therapy (Ghofrani et al., 2006). There are several
drugs, including anticancer drugs, whose corresponding target
proteins (both primary and non-target) remain yet unidentified
or unknown (Takarabe et al., 2012). Furthermore, some
attractive and potentially effective cancer targets remain
outside of the scope of pharmacological regulation. Some of
these targets such as phosphatases, transcription factors, and
RAS family members have been described as undruggable, as
they lack effective enzymatic active sites (Lazo and Sharlow,
2016). To make the full use of known drugs to treat new
indications, the characterization of all potential new ligand
binding sites has been illustrated as a key point in drug
repositioning and repurposing. Therefore, new and highly
qualitative bioinformatic target prediction methods are
required for the accurate prediction of drug targets.

Up to now, a wide range of drug target interactive web
servers has been established, providing a series of drug-target
databases and prediction tools (see Tables 1 and 2).
Moreover, various computational approaches have been
used to study potential interactions between proteins and
drugs. In particular, network-based models and ML-based
models have emerged as important tools. A review by Chen
et al. summarizes several available computational models for
this application (Chen et al., 2016). Interestingly, a method
proposed by Campillos et al. that uses the similarity of drug
side effects to determine whether multiple drugs could
interact with the same target proteins attracted our
attention (Campillos et al., 2008). Based on this research,

TABLE 1 | Drug-target database.

Databases Websites

DrugBank https://www.drugbank.ca/

TTD http://bidd.nus.edu.sg/group/ttd/ttd.asp
MATADOR http://matador.embl.de/

SuperTarget http://insilico.charite.de/supertarget/
TDR targets http://tdrtargets.org/

PDTD http://www.dddc.ac.cn/pdtd/

ChEMBL https://www.ebi.ac.uk/chembldb
STITCH http://stitch.embl.de/

BindingDB http://www.bindingdb.org/

CancerDR http://crdd.osdd.net/raghava/cancerdr/
DCDB http://www.cls.zju.edu.cn/dcdb/

TABLE 2 | Computational tools for target prediction.

Computational tools Websites

SEA https://omictools.com/sea-2-tool
Pharmmapper http://www.lilab-ecust.cn/pharmmapper/
Chemmapper https://omictools.com/chemmapper-tool
Tide http://sysbio.molgen.mpg.de/tide

DINIES http://www.genome.jp/tools/dinies/
SuperPred http://prediction.charite.de/

SwissTarget Prediction http://www.swisstargetprediction.ch/

Takarabe et al. took advantage of the US FDA's adverse event
reporting system (AERS) to define the pharmacological
similarity of all potential medicines and developed a novel
system to predict large-scale interactions between unknown
drug-targets (Takarabe et al., 2012). Notably, AERS was
employed to predict interactions between drugs and targets
for the first time. In 2010, Klipp et al. summarized several
available computational models for network-based drug-
target prediction (Klipp et al., 2010). Moreover, various
biological data settings, including structures of bioactive
compounds, sequences of target proteins, and information
of ligand-target interactions, have been combined. A series
of machine learning-based approaches have been
demonstrated as efficient tools in detecting relationships
among drug structures and corresponding target proteins
from a large amount of data, such as supervised learning
method (Srivastava et al., 2014), bipartite graph learning
method (Li and Chen, 2013), bipartite local model (Yildirim
et al,, 2007), and so on. A recent review by Mayr et al.
compared the predictive performance of deep learning with
other prediction approaches for multiple drug targets in the
comparative studies of composite target prediction methods.
As a result, feed-forward neural networks were identified
with better performance in drug target prediction than other
methods (Mayr et al., 2018).

As above, since a large number of compounds and vigorous
efforts are abandoned and wasted due to the oft-target effects
during the classical drug development procedure, a greatly
enhanced development of target prediction in new drug
exploration exhibited attractive advantages and further
expansion in this area are still highly desirable

STRUCTURE-BASED DRUG DISCOVERY

Structure-based strategy relies on the known structural
information to define the interaction effect between bioactive
compounds and the corresponding receptors. (Wang et al,
2000). With the development of biomolecular spectroscopic
technologies such as X-ray crystallography and nuclear
magnetic resonance (NMR), remarkable progress has been
made in this field, leading to considerable improvements in
our structural understanding of the drug target. Taking
advantages of the three-dimensional structure of the proteins,
new ligands could be rationally designed to trigger therapeutic
effects. Hence, structure-based design (SBD) could provide
critical insights into new drug design and development via
discovering and optimizing the initial lead compounds (Prada-
Gracia et al,, 2016; Lu et al., 2018a). The high affinity ligand
regulates validated drug targets selectively to influence specific
cellular activities, ultimately achieving the desired
pharmacological, and therapeutic effects (Urwyler, 2011).
Capoten (captopril), the first ACE (angiotensin-converting
enzyme) inhibitor, was one of the first successful examples of
using structural information to optimize drug designs in the
1980s (Anthony et al., 2012). Since this study, structure-based
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drug development started to serve as a novel and powerful
algorithm and technique to promote faster, cheaper, and more
effective drug development. In the past decade, extensive efforts
have been made to promote the strategy of SBD, more and more
successful applications played important roles in new medical
research (Debnath et al., 2019; Hong et al., 2019; Mendoza et al.,
2019; Itoh, 2020; Tondo et al., 2020).

Molecular Docking

Molecular docking is a typical structure-based protocol in
rational drug design by studying and predicting the binding
patterns and interaction affinities among the ligand and receptor
biomolecules (Ferreira et al., 2015). It could be categorized as
rigid docking and flexible docking according to the flexibility of
the ligands involved in the computational process (Halperin
et al,, 2002; Dias and De Azevedo, 2008). The rigid docking
method is a binding model which only considers the static
geometrical, physical, and chemical complementarity between
the ligand and the target proteins, while ignores the flexibility
and the induced-fit theory (Salmaso and Moro, 2018). In general,
the rigid docking, which is fast and highly effective, is applied to
the high throughput virtual screening with a large number of
small-molecule databases to be time-efficient. While the flexible
docking method considers more detailed and accurate
information. With the rapid improvement of computing
resources and efficiency, flexible docking methods developed
continuously and became more easily accessible. There are
different types of software available for docking, such as Glide,
FlexX, DOCK, AutoDock, Discovery Studio, Sybyl, etc.

The molecular docking process is mainly composed of three
steps. First, the structures of small molecules and target proteins
should be prepared in advance. In this step, abundant
experimentally solved structures are available in the open access
PDB database (http://www.rcsb.org), which can be used to
understand many physiological processes based on the crystal
structures, and also for homologous template models if docking
structures are of interest. Second, it can act as an engine for
predicting conformations, orientations, and positional spaces in
the ligand binding site (Mathi et al., 2018). Conformational search
algorithms carry out this task to predict the conformations of
binary complexes by applying the methods of systematic and
stochastic search. Systematic search techniques include: (i)
Exhaustive search; (ii) Fragmentation; (iii) Conformational
Ensemble. On the other hand, stochastic methods include: (i)
Monte Carlo (MC) methods; (ii) Tabu search methods; (iii)
Evolutionary Algorithms (EA); (IV) Swarm optimization (SO)
methods (Ferreira et al., 2015). Finally, these programs evaluate
the putative binding-free energy, which associates the scoring
function to determine which compounds are more likely to bind
to targets during the molecular docking (Huang et al., 2010).
There are four essential types of scoring functions, including: (i)
Consensus scoring functions (ii) Empirical scoring functions; (iii)
Knowledge-based scoring functions; (iv) Force-field based scoring
functions (Kortagere and Ekins, 2010). Furthermore, new scoring
capabilities have been developed, for example (i) machine learning
technologies; (ii) interactive fingerprints; (iii) quantum
mechanical scores (Yuriev et al., 2015).

Structure-Based Pharmacophore Mapping
With the development in the past decades, the pharmacophore
mapping method has been considered as one of the most useful
technology during the process of drug discovery. All kinds of
structure-based approaches have been conducted to improve
pharmacophore modeling, which has been widely used for
virtual screening, de novo design as well as lead optimization
(Yang, 2010; Lu et al.,, 2018a). The structure-based
pharmacophore (SBP) is another useful method. Based on the
availability of ligand structures, SBP modeling methods can be
cataloged into two types: target-ligand complex-based methods
and target-binding site-based (without ligand) methods (Pirhadi
et al,, 2013). The approach based on the target-ligand complex can
conveniently locate the ligand-binding pocket of the protein and
assess the main ligand-protein interactions. This is exampled by
LigandScout (Wolber et al., 2006), Pocket v.2 (Chen and Lai, 2006),
and GBPM (Ortuso et al., 2006). It is worth noting that they cannot
be used to the situations where ligands are unknown. The
macromolecule (without ligand)-based method implemented in
Discovery Studio (Lu et al., 2018b) is an obvious example which is
not dependent on the ligands and the receptor-ligand interactions.
The LUDI program (Bohm, 1992) defines the interactions within
the binding site as pharmacological characteristics. Although this
purely SBP method has the advantage of describing the entire
interaction capability of a binding pocket, the main limitation of
this method is that the derived interaction maps typically involve
many unprioritized interaction features.

LIGAND-BASED DRUG DISCOVERY

Similarity Searching

The main principle and motivation behind the ligand-based
approaches in drug discovery is a concept known as molecular
similarity; based on this principle, molecules tend to perform
similar biological effects due to the high structural similarity
(Zhavoronkov et al., 2019). In other words, ligand-based drug
discovery methods rely on the structural information of the active
ligand that interacts with the target protein, and such a compound
with interesting biological properties can be used as a query
template in identifying and predicting new chemical entities
with similar properties. Since only the structure of the known
active small molecules are required, this methodology is
considered as an indirective protocol for drug discovery. It offers
an option when the 3D target protein structure is unknown or
cannot be predicted. Hence, this approach is commonly applied to
screen novel ligands with interesting biological activities in silico
and to optimize the biological activities of ligands to improve drug
pharmacokinetics including Adsorption, Distribution,
Metabolism, Excretion, Toxicity (ADMET) properties.

This simple and most widely used technique is based on
molecular descriptors. Physicochemical properties (e.g.,
molecular weight, logP, Energy of high occupied molecular
orbital (EHOMO), Energy of lowest unoccupied orbital
(ELUMO), charges), as well as 2D fingerprint and 3D shape-
similarity searches can be introduced as coordinates to represent
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the reference compounds. The 2D fingerprint (Molprint2D and
Unity 2D) and 3D shape similarity methods (MACCS),
extended-connectivity fingerprints (ECFP), rapid overlay of
chemical structures (ROCS), and Phase Shape, are more often
used for molecular representation in virtual screening (Rush
et al., 2005). For example, Bologa et al. (2006) applied 2D
fingerprint and 3D shape-similarity methods to identify novel
agonists of the estradiol receptor family receptor GPR30 (Bologa
et al.). Furthermore, both methods have been successfully
applied in virtual screenings, and both technology have
exhibited better performance against a number of targets than
docking methods in terms of the scalability and computational
time. However, the main problem of the similar methods is their
preference for input molecules and the difficulty in deciding
which input structures to be used (Hu et al., 2012).

Ligand-Based Pharmacophore Mapping
Another more precise approach in comparison with the molecular
descriptors is the pharmacophore-based approach, in which a
pharmacophore model (PH4) is developed based on a group of
active compounds. The IUPAC (International Union of Pure and
Applied Chemistry) pointed out that a pharmacophore is “a
collection of spatial and electronic characteristics necessary to
ensure optimal supramolecular interactions with specific
biological targets and to trigger (or block) their biological
reactions” (Buckle et al, 2013). Thus, structural overlap of key
molecular features derived from active compounds or a binding site
in space are used as a pattern to represent the most probable
chemical characteristics. The newly identified molecules that match
and show a high complementation to the developed
pharmacophore are likely to be active against the target protein of
interests. Therefore, they can be selected as candidates for more
further investigations. This approach has become a key
computational strategy to promote and guide drug discoveries in
the absence of macromolecular structures (Chao et al., 2007).

The process of pharmacophore modelling can be summarized as
following: (i) Selection of a training set of ligands (active and inactive
compounds). (ii) Molecular preparation (low energy conformations).
(iii) Ligand alignment/superimposition and pharmacophore model
generation. (iv) Validation of pharmacophore models (Chiang et al,,
2009). Ligand-based pharmacophore modeling highly depends on the
availability of a good training set of compounds manifesting the same
binding mode.

QSAR Modeling

QSAR (Quantitative Structure Activity Relationship) is another
ligand-based approach that relies on analyzing the biological
activities of drugs using various molecular descriptors (MDs) or
fingerprints (FPs). These models mathematically describe how
the activities response to the targets according to the ligand's
structural characteristics. QSAR was obtained by calculating the
correlations between the properties of the ligand binding agent
and the biological activity measured by experiments. Different
ML and deep learning (DL) approaches have also been applied to
develop QSAR models (Mendenhall and Meiler, 2016): including
Support Vector Machine (SVM), Random Forest (RF),

Polynomial Regression (PR), Multi Linear Regression (MLR),
Artificial Neural Network (ANN). Unlike the pharmacophore
models, QSAR models can measure biological activities
quantitatively and can even find positive or negative effects
according to certain characteristics of the molecule on its activity.

QSAR has been applied to many other molecular design
purposes, such as predicting the new molecule analog activity,
optimizing lead, and predicting new structural leads in drug
discovery. In the classical 2D-QSAR approaches, the biological
activity is related to physical and chemical features consisting of
steric, electronic, and hydrophobic characters of drugs, and the
relationships are represented as mathematical equations (Hansch
and Fujita, 1964). More advanced 3D-QSAR approaches, such as
comparative molecular field analysis (Cramer et al., 1988) and
molecular similarity indexes in a comparative analysis (Klebe
et al., 1994), are based on the force field calculations. The
structural information of molecules is needed, and developed
models are represented in 3D contour maps facilitating the
visualization and interpretation.

USING MD SIMULATION TO FIND NEW
DRUG BINDING SITES

Many important biological events rely on the information of
protein-ligand complex interactions. The recognition and
characterization of LBP is the key to understand the function of
endogenous ligands and synthetic drug molecules. GPCRs perform
an important role in a variety of physiological processes. GPCRs are
a class of commonly used targets in drug discovery (Conn et al.,
2009). Recent discovery indicated that beside binding to orthosteric
sites, ligands could bind to different allosteric sites that are far away
from the targeted binding pockets (Tautermann, 2014; Flock et al.,
2015; Devree et al, 2016). Unfortunately, the position of such
allosteric pocket is unclear without the information of
experimental structures, and predicting the existence of such sites
could facilitate the discovery of new drugs (Tautermann, 2014). A
recent overview described the progresses in important
computational tools for the prediction of functional sites, such as
3DLigandStie (http://www.sbg.bio.ic.ac.uk/~3dligandsite/),
COACH-D (http://yanglab.nankai.edu.cn/COACH-D/), or
SiteMap (https://www.schrodinger.com/sitemap), and many
others. However, these reported tools often create multiple
possible ligand binding sites, and sometimes it is not easy for the
user to confirm which active pocket is real one for the compound
binding. To overcome this limitation, methods based on molecular
dynamics (MD) have been developed in recent years. For example,
the supervised MD is an efficient approach for precise sampling and
the identification of ligand-binding sites (Sabbadin and Moro, 2014;
Deganutti et al.,, 2015; Cuzzolin et al,, 2016). The conventional long-
timescale MD has also been successfully applied for new drug
binding sites (Chan et al., 2018). Similarly, a study by Chan et al.
(2020) reported that an additional sodium ion, which located in the
vicinity of the orthosteric binding site, by MD simulations (Chan
et al., 2020). MD could also be applied for the recognition of the
allosteric sites involved in protein kinases (Tong and Seeliger, 2015),
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Ras proteins (Hancock, 2003), and Staphylococcus aureus Sortase A
(Mazmanian et al., 1999). As above, information obtained from MD
predictions provides new opportunities of drug discovery.

ARTIFICIAL INTELLIGENCE IN ANTI-
CANCER DRUG DISCOVERY

Computational drug design has successfully promoted the discovery
of several new anticancer drugs, which has become a milestone in
this area. Gefitinib (Muhsin et al., 2003), Erlotinib (Grunwald and
Hidalgo, 2003), Sorafenib (Wilhelm et al., 2006), Lapatinib (Wood
et al,, 2004), Abiraterone (Jarman et al., 1998), Crizotinib (Butrynski
et al,, 2010) are all approved drugs that have been discovered based
on computational drug methods. Until now, the anticancer drug
research is rapidly progressing: computational, and AI methods are
generating new promising results. As an example, SR13668 is
optimized from indole-3-carbinol (I3C) using PH4 design.
SR13668 has shown a strong effect on different cancers in phase I
(Chao et al, 2007). Recently, Rodrigues et al. have successfully
identified a potent inhibitor for 5-lipoxygenase by using machine
learning (ML)-based method which was developed from
physicochemical and pharmacophore characteristics (Reker et al,
2014; Rodrigues et al., 2018). With the arrival of Al the design of
anticancer drugs in silico has undergone unprecedented changes,
and state-of-the-art deep learning approaches have the potential to
produce the excellent chemical properties needed for new molecules
(Gomez-Bombarelli et al., 2018). Similarly, Jann et al. have
developed the first ML-based anti-cancer compound generator
using variational autoencoders (VAEs) and have demonstrated

that the compound production may be selective toward molecules
with high predicted inhibition to a specific cancer (Born et al., 2019).
This implied that models could be developed to yield drug
candidates with highly desired efficacy (ICsy) against a target of
interest. This breakthrough could transform the design of anticancer
drugs in silico by taking advantage of the bimolecular features of the
disease to improve the success rate of lead compound discovery.

SUCCESSFUL STORIES OF
COMPUTATIONAL DRUG DISCOVERY

Computational methods have proved to play an essential role in
modern drug discovery. Since computational methods could cover
almost all stages of the drug discovery pipeline, the applications of
computational methods in anticancer drug discoveries have shown
great advantages in terms of the required investment, resources, and
time. More recently, computational methods have become a potent
and powerful tool in several successful cases of anticancer drug
development. Herein, we list several successful applications of
computational methods for small molecule drugs, which have been
applied to cancer treatment or are at later stages in the clinical trial.

The development of Crizotinib is a successful example of applying
structure-based design techniques (Cui et al., 2011; Kung et al., 2015).
Crizotinib has been considered as a selective and potent cMet/ALK
dual inhibitor, which was approved by FDA in 2011 (Cui et al., 2013).
c-Met, also known as HGFR (hepatocyte growth factor receptor), and
its corresponding natural ligand HGF (hepatocyte growth factor) play
a critical role in different cell activities (Christensen et al., 2005). The
over-expression of c-Met protein has been often detected in human
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SCHEME 1 | Successful applications of computational methods in anti-cancer drug discovery.
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cancers (including SCLC and NSCLC) (Bottaro et al., 1991; Liu et al,,
2008), and abnormal function of c-Met signaling was observed in
various solid and blood tumor cancers. Thus, c-MET is an attractive
and promising oncology target.

The investigation started with evaluating a series of 3-substituted
indolin-2-ones, a potent class of kinase inhibitors, indolin-2-one
derivatives for ¢-MET inhibition. Among the derivatives,
compound 1 (PHA-665752, Scheme 1) showed strong activity
against the c-MET autophosphorylation process and the
corresponding biological activations both in vitro and in vivo.
However, the bad drug-like characteristics of compound 1 (PHA-
665752) limited its further study. The co-crystal structure analysis of
compound 1 with the kinase domain of c-MET elucidated the key
inhibitor binding site, presenting opportunities for more efficient
drug designs. In combination with re-designing the central rings of
compound 1 (PHA-665752), a new set of 5-substituted 3-
benzyloxy-2-aminopyridine series has been developed. Among
these newly designed derivatives, compound 2 displayed
promising inhibition against c-MET. It is noted that lipophilic
efficiency (LipE) was employed as the parameter for the binding
effectiveness to monitor the progress of optimization. To further
improve the c-Met inhibitory potency, a docked structure of
compound 2 with the c-Met kinase domain was carried out to
guide the application of structure-based design techniques.
Followed by optimization of 3-benzyloxy group, the functional
group at 5-position of the 2-aminopyridine, and examination of
the chiral center, crizotinib (PF-02341066) with effective tumor
growth inhibition and good drug performance has been achieved
(see Scheme 1A). Moreover, Crizotinib has demonstrated
remarkable clinical efficacy on ¢-MET gene amplification against
lung cancer, lymphoma, and esophageal cancers (Cui et al., 2011;
Lennerz et al., 2011; Schwab et al., 2014).

In 2012, Axitinib (AG-013736) was approved by the FDA as as a
new therapy for advanced renal cell carcinoma (Meadows and
Hurwitz, 2012) to treat VEHG. Axitinib was developed with a
structure-based drug design strategy and served as an inhibitor by
binding to the VEGF kinase domain in the DFG-out conformation
(Kania, 2009; Kania et al.,, 2016). The VEGF (vascular endothelial
growth factor) family functions as important regulators of many
signaling networks which involves in angiogenesis. VEGF signaling
was identified in tumor cells, and the VEGF signaling plays a crucial
role in the development of malignant diseases. As the key receptors
of VEGF, VEGFRSs serve as ligands in the VEGF signaling network.
The VEGF receptors are known as a class of the tyrosine kinases
(RTKs), including VEGFR-1 (also called FLT1), VEGFR-2 (also
called FLK1 and KDR) and VEGFR-3 (also called FLT4). Blocking
the action of VEGFRs with a pan kinase inhibitor against VEGFR-1,
VEGEFR-2, and VEGFR-3 has been proved to be an efficient way of
anti-angiogenic drug development.

During the developmental process, the crystal structure of
phosphorylated construct (p-VEGFR2A50), the resolved
structures of inhibitor-VEGFR2A50 (unphosphorylated kinase)
complexes, and robust SAR provided important guidance to the
rational drug design (Kania, 2009). Combining with the complex
structure information, a collection of compounds has been
evaluated, generating pyrazoles 3 and benzamide 4 as the starting

point for the drug design. Further efforts have been made by the
modeling of pyrazole 3 into the ligand-free p-VEGFR2A50
structure to modify the conformation of pyrazole 3 further,
leading to the generation of indazole compounds as novel kinase
inhibitors. Among these derivatives, compound 5 with a styryl
functional group at the 3-position of the indazole ring was
identified to exhibit potent inhibitory effect (Ki of 0.3 nM), with
a high level of LipE and LE. The crystal structure of VEGFR2A50
with compound 5 revealed the detailed enzyme-ligand mode,
showing the indazole core binding to the “open” DFG-in
conformation of VEGFR2A50. Superimposing the other two
VEGFR2A50-inhibitor co-crystal complex structures
demonstrated a more precise 3D structure of the key binding
sites for the induction of the DFG-out conformation. Inspired by
the superposition result, a chimera design protocol was applied for
the subsequent design to capture the above described inhibitor
interactions, giving access to 6-sulfur linked indazole compound 6
and the corresponding amide analogs. Further studies on the
overlay of VEGFR2A50 bound co-crystal structures of benzamide
4 and indazole 6 demonstrated that an additional amide group on
the orthosteric site of S-phenyl group would help to make the two
important hydrogen bonds with the hydrogen bonding groups
from Glu885 and Aspl046 of VEGFR2A50 and provide highly
potent inhibitors. Further applying the truncation strategy
generated axitinib (AG-013736) (see Scheme 1B), which
exhibited a remarkable improvement on cellular potency,
desirable physiochemical, and PK properties. Very recently,
axitinib (Inl ta®), in combination with pembrolizumab
(KEYTRUDA), was approved as the first-line anticancer drug
against renal cell carcinoma (RCC)(Atkins et al., 2018).

Heat shock protein 90 (HSP90) has direct and essential effects
on the correct performance of different proteins with their
activation, conformation, stabilization, and localization
functions, whose alterations are associated with cancer
development. Thus, HSP90 has become a promising target for
cancer treatment (Whitesell and Lindquist, 2005; Pearl and
Prodromou, 2006; Sharp and Workman, 2006; Workman et al.,
2007). The biological functions of HSP90 have been identified.
Its crystal structures indicated that HSP90 has four functional
domains: a middle domain, an N-term domain, ATP/ADP-
binding domain, and a C-term dimerization domain (Pearl and
Prodromou, 2006). Based on the structural information of
HSP90, a high-throughput screening was conducted which
generated the active drug inhibitor: compound 7 (CCT018159)
(Cheung et al., 2005; Smith et al., 2006; Sharp et al., 2007). The
subsequently obtained co-crystal structure of HSP90-compound
7 (CCT018159) complex revealed that further modification of
compound 7 (CCT018159) by replacing or adding certain
functional groups could improve the pharmacokinetic
properties. Moreover, replacing the methyl group to an amide
group (VER-49009), changing pyrazolyl ring to isoxazole
aromatic ring (VER-50589), and modifying some other
chemical groups (see Scheme 1C) led to a potent effect in
animal cancer models. Followed by toxicology and safety
evaluation, Luminespib (NVP-AUY922) has been proved to be
a strong HSP90 inhibitor which is now in clinical trials. More
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TABLE 3 | The list of FDA-approved anticancer drugs in recent 3 years from the National Cancer Institute database.

Name Chemical Structure

Therapeutic area

Target and functiuon

Year of Approval

Alpelisib

Cladribine j\
] &

Darolutamide il /k/ — “
W W N/\/"/>\©\>N
HN—N
Entrectinib . /Og
\N
N/ />
Q
Erdafitinib =
N
bt 7\ /
\\\N .
. \
\
Fedratinib G/\/“ /\I
Hydrochloride \O\NJ\( N/Q\f /k
H H Q//\N
Selinexor \ or

Zanubrutinib \//<

Abemaciclib NN N
\/O ~ ‘ u)l\/ ?/
%
Apalutamide W° '
/NWNY \ e
Binimetinib i '
</N P | N
WS PN
/ o
Dacomitinib

Breast cancer

Hairy cell leukemia

Prostate cancer

Non-small cell lung cancer
and Solid tumors

Urothelial carcinoma

Myelofibrosis

Multiple myeloma

Mantle cell ymphoma

Breast cancer

Prostate cancer

Melanoma

Non-small cell lung cancer

PI3K inhibitor

Adenosine deaminase inhibitor

Androgen receptor inhibitor

Tyrosine kinase inhibitor

FGFR tyrosine inhibitor

Tyrosine kinase inhibitor

Nuclear export inhibitor

Bruton's tyrosine kinase inhibitor

Cyclin-dependent kinase inhibitor

Androgen receptor inhibitor

MEK1 and MEK2 inhibitor

Oral kinase inhibitor

2019
(Markham, 2019a)

2019
(Bryson and Sorkin,
1993)

2019
(Markham and
Duggan, 2019)
2019
(Al-Salama and
Keam, 2019)

2019
(Markham, 2019b)

2019
(Zhang et al., 2014)

2019
(Syed, 2019)

2019
(Syed, 2020)

2018
(Kim, 2017b)

2018
(Al-Salama, 2019)

2018
(Shirley, 2018)

2018
(Sidaway, 2018)

(Continued)
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TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval
Duvelisib a o Chronic lymphocytic PI3K Kinase inhibitor 2018
leukemia (CLL) and follicular (Blair, 2018)
b . A lymphoma (FL)
/ N /
”\/I“
Encorafenib Colorectal cancer and BRAF Kinase inhibitor 2018
Melanoma (Shirley, 2018)
Gilteritinib o e Acute myeloid leukemia Tyrosine kinase inhibitor 2018
Fumarate O\ Q (Dhillon, 2019)
o
gevoe
r S
o NH,
Glasdegib o Acute myeloid leukemia Hedgehog pathway inhibitor 2018
Maleate " A =" (Shaik et al., 2019)
Cr—O
N N
/
lobenguane | Pheochromocytoma Radioactive therapeutic agent 2018
131 y " (Giammarile et al.,
- \( : 2008)
NH;
Ivosidenib //" Acute myeloid leukemia Isocitrate dehydrogenase-1 (IDH1) inhibitor 2018
7 | (Dhillon, 2018)
| ﬁ\ ,
~J ' pue
F N
Solid tumors Tropomyosin-related kinase (Trk) inhibitor 2018

Larotrectinib >N
N\
Sulfate s
N’

(Gajdosik, 2017)

Lorlatinib Non-small cell lung cancer Tyrosine kinase inhibitor 2018
(Su et al., 2019)
Talazoparib Breast cancer Poly (ADP-ribose) polymerase (PARP) inhibitor 2018 (Eskiler, 2019)
Tosylate
Acalabrutinib . Chronic lymphocytic Bruton's tyrosine kinase inhibitor 2017
@NN N N leukemia, small lymphocytic (Markham and
— ﬁ lymphoma, and mantle cell Dhillon, 2018)
N\~ =
d d lymphoma
HN \N /
(Continued)
Frontiers in Pharmacology | www.frontiersin.org 80 May 2020 | Volume 11 | Article 733


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Cui et al.

Computational Drug Discovery

TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval
Brigatinib ‘\,,< Non-small cell lung cancer Anaplastic lymphoma kinase (ALK) and epidermal 2017
n\r,.\ 8 growth factor receptor (EGFR) kinase inhibitor (Markham, 2017a)
L
N/@[ 6 NN
S |
/“\)
Copanlisib (\o Follicular lymphoma Phosphoinositide 3-kinase (PI3K) inhibitor 2017
Hydrochloride °\/\/”Q (Markham, 2017b)
<“/ ~ o
N.
Enasidenib Acute myeloid leukemia Isocitrate dehydrogenase-2 inhibitor 2017
Mesylate (Gras, 2017)
HO’
Midostaurin Acute myeloid leukemia Synthetic indolocarbazole multikinase inhibitor 2017
(Kim, 2017a)
O
Neratinib N Breast cancer Receptor tyrosine kinases (RTKs), Human 2017
Maleate ‘ P o epidermal growth factor receptor 2 (HER2; ERBB2), (Kotecki et al.,
N and Human epidermal growth factor receptor 2019)
(EGFR) inhibitor
CrI NH
H &N
\N/\/YN AN
| I _
Jo
Niraparib RN © Recurrent epithelial ovarian, ~ Poly (ADP-ribose) polymerase (PARP) inhibitor 2017
Tosylate fallopian tube and primary (Mittica et al., 2018)
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N ([T
~ NH
Ribociclib Breast cancer Cyclin-dependent kinase (CDK) inhibitor 2017
(Syed, 2017)

7 “‘

N\ n\(N\ N o
AN

¥

¢

We further manually screened the database to remove drugs that do not directly target cancer. Drugs for ameliorating conditions related to cancer or limiting side effects of cancer therapies
are not listed in this short list. We then identified the FDA label of the drugs in the shortlist by searching in the U.S. National Library of Medicine database “DailyMed”. The FDA approval date,

drug function, and therapeutic area are retrieved from DailyMed database.

recently, Luminespib, a drug in phase one clinical trials,
exhibited positive results for patients with ALK rearrangements
(Felip et al., 2018). Luminespib (NVP-AUY922) also exhibited
potent anti-tumor activity in lung adenocarcinomas targeting
EGFR exon 20 insertion mutations and cellular models in a
confirmatory clinical trial (Jorge et al., 2018; Piotrowska et al.,
2018). Moreover, Luminespib (NVP-AUY922) serves as one of

the components in anticancer combination therapies, which are
now at different stages of clinical trials (Garcia-Carbonero et al.,
2013; Rong and Yang, 2018). To depict how computational drug
discovery facilitates to the development of anticancer drugs, we
listed the FDA-approved anticancer drug in recent 3 years which
was obtained from National Cancer Institute database (Heller,
1951) in Table 3.
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CONCLUSION AND PERSPECTIVE

Cancer has become a tangible threat to human health. About 9.6
million people are estimated to die from the various forms of
cancer each year, according to a statistic report (Collaborators,
2019). Cancer has become the second-largest disease that causes
human death (Reimann et al., 2020). However, developing a new
drug molecule costs 12 years and 2.7 billion USD on average
(Hauser et al, 2017). The drug development for cancer even
becomes more complicated, especially considering the molecular
pharmacology is still not well understood. Hence, the discovery
and development of new drugs is considered very expensive and
time-consuming. In this respect, computational methods could be
constructive for performing different tasks including protein-
interaction network analysis, drug-target prediction, binding site
prediction, virtual screening, and many others. All these
innovative methods could considerably facilitate the anti-cancer
drug discovery. In recent years, with the advance of Al, more
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Pharmacological Relevance: Paclitaxel (PTX) is currently the only botanical drug that
can control the growth of cancer cells. Paclitaxel is widely used in the treatment of breast
cancer, ovarian cancer, uterine cancer, non-small cell lung cancer and other cancers.

Aim: Folate receptor and integrin o435 are highly expressed on the surface of human breast
cancer cells MCF-7. Folic acid and arginine-glycine-aspartate (Arg-Gly-Asp, RGD) tripeptide
sequence have a high affinity for folate receptor and integrin o3, respectively. To enhance
the effect on breast cancer, we constructed the folate acid and RGD peptide dual-targeted
(MSNs-NH»-FA-RGD) drug-carrier based on mesoporous silica nanoparticles.

Methods: The structure of mesoporous nanocarriers was characterized by Fourier
transform infrared spectroscopy, nitrogen adsorption-desorption analysis, transmission
electron microscopy, laser particle size analyzer, and thermogravimetric analysis.
Paclitaxel was chosen as the model drug. The targeting-ability was verified by
observing the uptake of mesoporous carriers loaded with rhodamine in MCF-7, MCF-
10A, and Hel a cells using a fluorescence microscope. The cytotoxicity of the blank carrier
MSNs-NH,-FA-RGD and the efficacy of the drug carrier PTX@MSNs-NH»-FA-RGD were
assessed by cell experiments.

Results: The characterization showed successful construction of a dual-targeted
mesoporous silica nanocarrier. Obvious differences were detected in the fluorescence
intensity of the three cell lines. The results of the pharmacological tests indicated that the
blank nanoparticles do not cause any apparent toxicity on these cells. The IC5q of free PTX
and PTX@MSNs-NH»-FA-RGD on MCF-7 cells line treated for 48 h were 35.25+2.57
ng-mli”" and 22.21+3.4 ng:-ml™" respectively, which indicated that the inhibitory efficacy of
PTX@MSNs-NH»-FA-RGD on MCF-7 was 1.6 times than that of free PTX.

Conclusions: The dual-targeted nanocarrier MSNs-NH,-FA-RGD could target breast
cancer cells, and sever as a potential candidate in future of drug development.

Keywords: mesoporous silica, active targeted, folic acid, RGD peptide, MCF-7 cells, paclitaxel
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INTRODUCTION

Breast cancer seriously harms women's health. Statistics show
that 1.2 million women worldwide suffer from breast cancer each
year, and 500,000 women die from breast cancer (Raviv, 2004).
In recent years, the patient population has shown a trend of
being younger. Traditional chemotherapy exposes many issues,
such as poor specificity by chemotherapeutics, drug resistance
caused by repeated and large doses of multi-drugs, and side
effects to normal tissues. Fortunately, the treatment has received
widespread attention in the medical community. Many
researchers have put a lot of effort into targeted treatment
field. With in-depth research, nanocarriers are found to play
an increasingly important role in targeted therapy. Owing to
passive or active targeted delivery of drugs, the nanocarriers have
shown great potential in improving drug concentration and
bioavailability in tumor sites (Darvishi and Farahmand, 2017).
Mesoporous silica nanoparticles (MSNs) are unique among
numerous inorganic nanomaterials due to their good
biocompatibility, high load capacity, and uniform adjustable
pore size (Song et al., 2007; Kazuki et al., 2013). By modifying
the surface of MSNs with different substances and groups, the
MSNss carrier can be endowed with the ability of targeting and
stimulate-responsive, avoiding the early leakage of drugs and
increasing the concentration of drugs at the lesion sites. The
surface of MSNs could also be easily functionalized with a variety
of targeted groups, such as antibody (Zhang et al., 2015; Tao
et al., 2016), protein (Pourjavadi and Tehrani, 2016), peptides,
and small molecules (Alejandro et al., 2014). Kazuki et al (Kazuki
et al, 2013) wrapped the peptide Ac-(VKVS),E-NH, on the
surface of MSNs. The conformation of Ac-(VKVS),E-NH,
changed in different pH environments, controlling the
exposure and coverage of the mesoporous orifice, thereby the
carrier system showed pH-dependent release behavior. Xue et al.
(2011) utilized the supramolecular force between benzimidazole

and B-cyclodextrin, choosing fluorescent dye Hoechst 33342 as
model cargo, to construct a cyclodextrin-based silica pH
controlled release system. This carrier exhibits an acid-
responsive ability to release drugs and induce cancer cell
apoptosis in human pancreatic cancer cell PANC-1.
Martinez-Carmona et al., (2018) modified the targeted ligand
plant lectin concanavalin (ConA) on MSNs to enable the
nanocarrier to specifically recognize human osteosarcoma
cells. Tian et al, (2016) utilized iron-binding glycoprotein
(Tf) not only as an entrant into the target sites but also as a
blocking agent to inhibit the release of the drug before entering
the tumor cells. He et al., (2012) functionalized MSNs with
nucleic acid sequence polyadenylic acid and loaded with
coralyne and near-infrared photothermal dye indocyanine
green (ICG), constructing a nano-therapy platform combining
chemical and photothermal therapy.

Folic acid receptors (FR) and integrin o, f3; have the
characteristic of expression specificity, that is, they are highly
expressed on the surface of tumor cells but not expressed on the
surface of normal cells. RGD peptide is a type of short peptide
containing arginine-glycine-aspartate (Arg-Gly-Asp, RGD)
peptide sequence, which is the smallest unit that can be
recognized by integrin o,f3; (Hee Dong et al., 2010; Porta
et al, 2013). Folic acid (FA) and RGD peptides have strong
affinity for FR and integrin o,f35, so FA and RGD peptides are
often used as targeted modification groups. There have been
studies on separately grafting FA or RGD peptide onto
mesoporous silica carriers. In this experiment, for the first
time, we grafted both FA and RGD peptide on the surface of
MSNs as shown in Figure 1, constructing a dual-targeting
nanocarrier MSNs-NH,-FA-RGD. Modifying folic acid groups
(NHS-PEG-FA) and RGD peptide groups (NHS-PEG-RGD)
onto the surface of MSNs endows the carrier with the ability to
actively target cancer sites, and the PEG long chains enhance the
in vivo stability of the carrier.
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FIGURE 1 | Schematic illustration of preparation process of MSNs-NH,-FA-RGD.
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Paclitaxel (PTX) is a tetracyclic diterpenoid compound with
potent effects on cancers, such as breast cancer, colon cancer,
bronchial cancer, and endometrial cancer. PTX could specifically
bind to different sites of the tubules and aggregate the
microtubules, thereby inhibiting the normal reorganization of
the microtubule network and interfering with the cell mitosis. It
is one of the most energetic anti-tumor drugs since doxorubicin
(Ren et al., 2005). However, PTX has low bioavailability and
extremely poor solubility (water solubility of 0.006 g-L™'), which
brings some difficulties to clinical application (Lv et al., 2014).
We chose PTX as a model drug to evaluate the drug loading of
MSNs-NH,-FA-RGD@PTX. Loading PTX of nanometer-sized
into MSNs-NH,-FA-RGD would not only solve the problem of
poor solubility but also significantly improve bioavailability. FR
and integrin o4 f3; are highly expressed on the surface of MCF-7
cells but not on the surface of human normal breast epithelial
cells MCF-10A, and human cervical cancer cells HeLa only
express FR on the surface (Shen et al,, 2011). Cell experiments
were used to evaluate the biocompatibility, anti-cancer efficacy
and cellular uptake of nanocarriers.

MATERIALS AND METHODS

Materials

Cetyltrimethylammonium bromide (CTAB), 3-aminopropyltrietho
xysilane (APTES), tetraethylorthosilicate (TEOS), and rhodamine
(RhB) were purchased from Aladdin Chemical Reagents (Shanghai,
China,). Folic acid polyethylene glycol succinimidyl activated ester
(FA-PEG-NHS, PEG= 2000) and RGD tripeptide polyethylene
glycol succinimidyl activated ester (RGD-PEG-NHS, PEG= 2000)
were purchased from Pengshuo Biotechnology Co., Ltd (Shanghai,
China). Paclitaxel (purity > 98 %) was purchased from Ruifensi Co.,
Ltd (Chengdu, China). Lysotracker green DND-22 was obtained
from Invitrogen Life Technologies Corporation (Tianjing, China).
Other reagents and solvents were provided by Dingguo reagent
company (Beijing, China). All the chemical reagents used in this
experiment were of analytical grade and used without
further purification.

Characterization

The mesoporous structure and morphology of the nanoparticles
were characterized by transmission electron microscopy (TEM)
(Tecnai G2 F30, USA) at an accelerated voltage of 300 kV. The
dispersing agent is water and the dispersions are stabile in 12 h.
Nitrogen adsorption-desorption analysis at 77 K was carried out
on an adsorption analyzer (ASAP 2460, Micromeritics, USA).
Zeta potential and particle diameter experiments were performed
at 25 °C using Malvern ZetaSizer Nano-S90. The Fourier
transform infrared (FTIR) spectra were obtained on an FTIR
spectrometer (Nexus, Thermo Nicolet, USA). Thermogravimetric
analysis (TGA) was performed by a Thermo Gravimetric Analyzer
(STA8000, Perkin Elmer, USA) under N, atmosphere at a heating
rate of 10 °C-min"". All fluorescence spectra were obtained on a

fluorescence microscope (Hitachi F-7000 FL Spectrophotometer).

Preparation of MSNs-NH,-FA-RGD

3 g CTAB was solubilized in 1440 ml of deionized water in three-
necked flask heated to 80°C in an oil bath. Then the temperature
of the CTAB solution was adjusted to 80°C before adding 10.5 ml
sodium hydroxide aqueous solution (2.0 mol-L'"), followed by
dropwise addition of 15 ml TEOS under vigorous stirring. After 2
h, the resultant product was collected by filtration using a suction
pump and rinsed with ethanol. To remove the surfactant
template CTAB, the product was calcined at 550°C for 4 h in a
muffle furnace to obtain MSNs.

The introduction of aminopropyl groups through the post-
grafting process was conducted by dispersing 0.9 g MSNs in 90
ml toluene, followed by the addition of 434 ul APTES. The mixture
was refluxed and stirred at 90°C in an oil bath for 6 h, followed by
centrifugation with 10000 rpm for 15 min and washing with ethanol
and distilled water at room temperature. The resultant product was
dried to a constant weight under vacuum to obtain MSNs-NH,.

An equivalent of 40 mg of NHS-PEG-FA was dispersed by
ultrasonication in 50 ml dimethyl sulfoxide (DMSO), and the pH
of the system was adjusted to be alkaline by triethylamine. Then,
200 mg of MSNs-NH, was mixed in DMSO by then magnetic
stirring for 4 h. The solids were collected by centrifugation and
washing with ethanol. After drying under a vacuum atmosphere,
MSNs-NH,-FA was obtained. MSNs-NH,-FA-RGD was
synthesized similarly. 200 mg of MSNs-NH,-FA was dispersed
in DMSO-triethylamine with 40 mg of NHS-PEG-RGD. After 4
h, the reaction product was collected by centrifugation, washing,
and vacuum drying.

Preparation of Drug-Loaded Nanocarriers
10 mg PTX and 20 mg MSNs-NH,-FA-RGD were ultrasonically
dispersed in 20 ml absolute ethanol and magnetically stirred for
24 h at room temperature to load the drug. Subsequently, the
PTX-loaded MSNs-NH,-FA-RGD (denoted as PTX@MSNs-
NH,-FA-RGD) was collected by suction filtration, with the
surface adsorbed PTX washed away by phosphate-buffered
saline (PBS) (pH=7.4). PTX@MSNs-NH,-FA-RGD were
collected after vacuum drying.10 mg drug-loaded particles was
placed in a volumetric flask with methanol, followed by
sonication for 1 h and analysis by high-performance liquid
chromatography (HPLC). Drug loading rate (%) and
entrapment rate (%) were calculated by HPLC at maxima
wavelength of 229 nm using the following equation which was
quoted from the Pharmacopoeia of the People's Republic of
China:

Drug loading rate = (W, = W,)/ W unocarriers X 100 %

Encapsulation rate = (W, — W,)/ W, x 100 %

where W;, W, and W,0carriers represented the weight of PTX
added, the weight of PTX in supernatant and the weight
of nanocarriers.
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RhB-Labeled Nanocarriers

RhB was used as a guest molecule to evaluate the ability of
targeting tumor sites because of its fluorescence properties. 200
mg of MSNs-NH,, MSNs-NH,-FA, and MSNs-NH,-FA-RGD
nanoparticles were mixed in the ethanol solution of RhB (0.4
mg-ml"') for 4h. After centrifugation for 15 min at room
temperature with 10000 rpm, the solid particles were dried in
vacuum to constant weight. The RhB-labeled mesoporous silica
nanoparticles were termed as RhB@MSNs-NH,, RhB@MSNs-
NH,-FA, RhB@MSNs-NH,-FA-RGD, respectively.

Cell Culture

The cell culture tests were performed using HeLa, MCF-7, and
MCE-10A cells purchased from the American Type Culture
Collection (Manassas, VA, USA). MCF-7 cells and HeLa cells
were cultured in RPMI 1640 medium with 10% heat-inactivated
fetal bovine serum (FBS). MCF-10A cells were cultured in
DMEM/F12 medium with 5 % horse serum, 10 pg-ml" insulin,
20 ngml' EGF, 100 ngml"' cholera toxin, and 0.5 ug-ml"
hydrocortisone. All cells were cultivated in an incubator with
5 % CO, at 37°C.

Cell Uptake and Location

Collect HeLa, MCF-7, and MCF-10A cells in the logarithmic
growth phase and seed them in 96 wells at a density of 6 x 10%
6 x 10%, and 1.5 x 10° cells/ml. After the cells were incubated for 24
h, aspirate the medium. The cells were incubated with RhB@MSNs-
NH,, RhbB@MSNs-NH,-FA, and RhB@MSNs-NH,-FA-RGD (20
ug-ml™) for 4 h. Each well was washed three times with cold PBS to
remove the nanoparticles not internalized into the cells and then the
cell morphology was fixed with 4% paraformaldehyde for 5 min.
Subsequently, the nucleus was stained with DAPI for 5 min, while
lysosomes were identified using the dye named Lysotracker.
Fluorescence microscopy of fluorescein-labeled cells was
performed with an Imaging System equipped with three Led
Lights Cubes (BioFlux 1000Z, USA, Fluxion Biosciences).

In Vitro Toxicity Test of Blank Carrier

The CCK- 8 method was used to determine the toxicity of the
blank nanocarrier MSNs-NH,-FA-RGD to MCE-7 cells. Collect
MCEF-7 cells in the logarithmic growth phase and seed them in 96
wells at a density of 6 x 10* cells/ml. After the cells were
incubated for 24 h, we aspirated the medium and added 100 pl
of complete medium containing different concentrations of
MSNs-NH,-FA-RGD (concentrations of 20, 40, 80, and 160
ugml') to each well. Cultivate MCE-7 cells in a constant
temperature incubator for 24 h or 48 h. Measure the
absorbance of each well at 450 nm by micro plate reader
(Thermo scientific, USA) and calculate the inhibition rate.

In Vitro Antitumor Drug Efficacy

Collect MCF-7 cells in the logarithmic growth phase and seed
them in 96 wells at 6 x 10* cells/ml. Configure the complete
medium for PTX@MSNs-NH,-FA-RGD and free PTX to

different concentrations (based on the PTX concentration as a
quantitative basis, and set the concentration gradient to 10, 30,
100, 300, 1000 ng-ml'). After culturing MCF-7 cells for 24 h,
aspirate the medium and add complete medium with different
concentrations of PTX mentioned above. Cultivate MCF-7 cells
in constant temperature incubator for 24 h and 48 h. Measure the
absorbance of each well at 450 nm by a microplate reader
(Thermo scientific, USA) and calculate the inhibition rate.

RESULTS AND DISCUSSION

Preparation and Characterization of
MSNs-NH,>- FA-RGD Nanocarrier
TEM images showed that the MSNs and MSNs-NH,-FA-RGD
nanoparticles were spherical, with smooth surface and even
distribution (Figures 2A, B). After modification, the ordered
mesopores could still be directly observed from Figure 2B, which
proved that modified process would not affect the mesoporous
structure of them. The laser particle size analyzer showed that the
average particle sizes of MSNs and MSNs-NH,-FA-RGD were
188.6 nm (PDI= 0.267) and 204.1 nm (PDI= 0.269), respectively
(Figure 2C). Zeta potential of MSNs in distilled water was -18.4 +
4.30 mV. Because of the amino group on the surface, zeta potential
of MSNs-NH,, was reversed to 25.6 = 3.8 mV after the process of
amination. Due to the PEG long chains on the targeted group
covering the positive charge of MSNs-NH,, the positive potential of
MSNs-NH,-FA, and MSNs-NH,-FA-RGD have decreased to
244 + 7.36 mV and 22.9 £ 3.9 mV, respectively (Figure 2D).
Figure 3A showed the FT-IR spectra of a) MSNs, b) MSNs-
NH,, ¢) MSNs-NH,-FA, and d) MSNs-NH,-FA-RGD. As
shown in curve (a), the strongest absorption peak at 1083
cm™ was the symmetric stretching vibration peak of Si-O-Si.
3400 cm™' and 1640 cm™" were the stretching vibration peak
and bending vibration peak of Si-OH, respectively, indicating
that there were hydroxyl groups with different bonds and
states on the surface of SiO,. In the curve (b), the stretching
vibration peak of the methylene group at 2926 cm™ and the
bending vibration peak of the amino group at 1470 cm™" both
indicated that the amination process was successful. In the
curve (c), the C=0 vibration absorption peak and the O=C-N-
H absorption peak at 1737 cm™* and 1556 cm ™ indicated that
FA was grafted on the surface. The new absorption peak at
1538 cm! in curve (d) was assigned to the amide bond which
was affected by the RGD peptide and shifted to the direction of
short wave number. The process of modification was
quantified by TGA analysis. Figure 3B showed the
thermograms of a) MSNs, b) MSNs-NH,, ¢) MSNs-NH,-FA,
and d) MSNs-NH,-FA-RGD. According to analysis of Pyris
software, the weight loss from room temperature to 800°C of
MSNs, MSNs-NH,, MSNs-NH,-FA, and MSNs-NH,-FA-
RGD were 4.4%, 14.51%, 19.04%, and 24.37%, respectively.
Weightlessness in different temperature ranges represents
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potential of MSNs, MSNs-NH,, MSNs-NH,-FA, and MSNs-NH,-FA-RGD in deionized water.
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different meaning (Pourjavadi and Tehrani, 2014). Take
MSNs as an example, the weight loss below 200°C was
2.03%, causing by absorbed water in the air, and the
proportion of this part of weightlessness can be directly read
on the graph through the software. The weightlessness
between 200°C and 800°C could be attributed to the
removal of organic groups. The weightlessness of MSNs
above 200°C was 2.37 %, which could be indicated as the
incomplete removal of CTAB. After deducting the proportion
of CTAB and absorbed water, the weightlessness between 200°
C to 800°C of MSNs-NH,, MSNs-NH,-FA, and MSNs-NH,-
FA-RGD were 10.30%, 14.17%, and 18.56%, respectively. And
the graft ratios of the amino group, FA, and RGD peptide were
about 7.93%, 3.87%, and 4.39%.

Figure 4 showed the nitrogen adsorption-desorption isotherms
and the corresponding pore size distributions of the MSNs, MSNs-

NH,, MSNs-NH,-FA, and MSNs-NH,-FA-RGD. Textural
parameters were listed in Table 1. It could be observed that the
adsorption amount of N, increased slowly when P/P, was less than
0.25 from the adsorption isotherms of MSNs, because the
adsorption of N, on the surface of the sample channel occurred
in single-molecule and multi-molecular layers. When P/P, was
between 0.25-0.4, the adsorption amount of N, raised sharply. A
steep platform peak was observed on the adsorption isotherm curve
with the reason that N, could cause capillary condensation in the
sample channel at low temperature, indicating that there was
ordered mesoporous structure and uniform pore size distribution
in the MSNs sample. When P/P, was between 0.4-0.95, the curve
was relatively flat, due to the adsorption of N, on the outer surface.
When P/P, was more than 0.95, the curve appeared a small jump,
the reason was that the capillary condensation caused by the pores
between the particles. With the introduction of FA and RGD
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peptide, the relative pressure value P/P,, of the steep peak decreased,
and the specific surface area, pore volume and pore size of MSNs-
NH,, MSNs-NH,-FA, and MSNs-NH,-FA-RGD also decreased,
proving that the amino group, NHS-PEG-FA and NHS-PEG-RGD
covered on the surface of MSNs.

Drug Loading Efficiency

In order to estimate the ability of drug-loading of MSNs-NH,-
FA-RGD, PTX was chosen as the model drug. The loading and
entrapment efficiency were estimated at 18.7% and
85.2%, respectively.

In Vitro Cytotoxicity of Blank Nanoparticles
A safe and effective nanocarrier system is a prerequisite to in vivo
therapy. Therefore, we explored the in vitro cytotoxicity of

TABLE 1 | The nitrogen adsorption-desorption parameters of different
functionalized MSNs samples.

Samples Surface area Pore size Pore volume
(m®/g) (nm) (cm®/g)
MSNs 1203.41 3.77 1.13
MSNs-NH, 659.34 3.09 0.51
MSNs-NH.-FA 514.86 3.07 0.40
MSNs-NH,-FA-RGD 426.68 3.03 0.40
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FIGURE 5 | Cell viability of MCF-7 cells incubation with MSNs-NH,-FA-RGD
at different concentrations (ug-mi™') after 24 h and 48 h.

MSNs-NH,-FA-RGD nanoparticles. As shown in Figure 5,
MSNs-NH,-FA-RGD did not show any cytotoxicity compared
with the blank control group at any of the concentrations used,
even incubated after for 48 h, demonstrating that MSNs-NH,-
FA-RGD nanoparticles had excellent cytocompatibility.

Cell Uptake Assay

Firstly, we evaluated the cytotoxic potential of MSNs-NH,,
MSNs-NH,-FA, and MSNs-NH,-FA-RGD at 20 pg-ml” in
HeLa, MCF-7, and MCF-10A cells for 24 h. The above three

blank nanoparticles did not exert any apparent toxicity on the
viability of these cells from Figure 6.

As shown in Figure 7, the three nanocarriers RhB@MSNs-
NH,, RhB@MSNs-NH,-FA, RhB@MSNs-NH,-FA-RGD
showed no red RhB fluorescence in MCF-10A cells, indicating
that MCF-10A cells hardly took up these three nanocarriers.
Because of an excessive amount of FR on the surface, HeLa cells
could specifically uptake the nanocarriers modified with FA
groups. As shown in Figure 8, the red fluorescence
representing nanocarriers coincided with the green lysosome
region, proving that RhB@MSNs-NH,-FA and RhB@MSNs-
NH,-FA-RGD were endocytosed and distributed in the
cytoplasm of HelLa cells, but the fluorescence was not
significantly different. There was no obvious fluorescence in
the RhB@MSNs-NH, group. Figure 9 showed that compared
with RhB@MSNs-NH,, RhB@MSNs-NH,-FA, and RhB@
MSNs-NH,-FA-RGD showed obvious red fluorescence in
MCE-7 cells, and RhB@MSNs-NH,-FA-RGD had the strongest
fluorescence intensity in them. This indicated that targeted
modification with FA and RGD peptides enhanced the
enrichment of nanocarriers in MCF-7 cells, and the double-
targeted effect of modification was better, fully highlighted the
advantages of receptor-mediated targeting.

In Vitro Antitumor Drug Efficacy

Figure 10 showed the inhibition rate of MCE-7 cells by PTX
and PTX@MSNs-NH,-FA-RGD at different concentrations
after 24 h and 48 h. MSNs-NH,-FA-RGD had no significant
inhibitory effect on MCEF-7 cells, therefore the toxic effects of
PTX@MSNs-NH,-FA-RGD on MCEF-7 cells were all from
PTX. The experimental results showed that both free PTX
and PTX@MSNs-NH,-FA-RGD showed inhibitory effects on
MCE-7 cells, and the inhibitory effects were concentration-
dependent and time-dependent. At 24 h of incubation, the
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FIGURE 6 | Cell viability of Hela (A), MCF-7 (B) and MCF-10A (C) cells after 24 h incubation with MSNs-NH,, MSNs-NH,-FA and MSNs- NH,-FA-RGD at 20
pg-mi,
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inhibitory effects of PTX@MSNs-NH,-FA-RGD and free PTX
on MCF-7 cells did not show significant difference (P> 0.05).
But after 48 h, it could be clearly seen that PTX@MSNs-NH,-
FA-RGD had stronger inhibitory effect on MCF-7 cells. The
ICs of free PTX and PTX@MSNs-NH,-FA-RGD on MCF-7
cells line treated for 48 h were 35.25 + 2.57 ng-ml ™' and 22.21 +
3.4 ng-ml’, respectively, which indicated that the inhibitory
efficacy of PTX@MSNs-NH,-FA-RGD on MCF-7 was 1.6
times than that of free PTX.
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FIGURE 7 | Fluorescence microscopy images of MCF-10A cells incubation with RnB@MSNs-NH,, RhB@MSNs-NH,-FA, and RhB@MSNs-NH,-FA-RGD for 4 h.
Blue fluorescence field: nucleus; green fluorescence field: cytoplasm; red fluorescence field: a dye used to label nanocarriers. Scale bar: 20 um.

CONCLUSION

Based on the verification of a series of chemical and cell
experiments, we synthesized FA and RGD dual-targeted
nanocarrier MSNs-NH,-FA-RGD. RhB@MSNs-NH,-FA-RGD
exhibited excellent fluorescence property in vitro. The
fluorescence microscopy experiment illustrated that RhB@
MSNs-NH,-FA-RGD had a higher cellular uptake by MCEF-7
cells and HeLa cells than MCF-10A cells via receptor-mediated

OVERLAY

FIGURE 8 | Fluorescence microscopy images of Hela cells incubation with RhB@MSNs-NH,, RhB@MSNs-NH,-FA, and RhB@MSNs-NH,-FA-RGD for 4 h. Blue
fluorescence field: nucleus; green fluorescence field: cytoplasm; red fluorescence field: a dye used to label nanocarriers. Scale bar: 20 um.
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FIGURE 9 | Fluorescence microscopy images of MCF-7 cells incubation with RnB@MSNs-NH,, RhB@MSNs-NH,-FA, and RnB@MSNs-NH,-FA-RGD for 4 h. Blue
fluorescence field: nucleus; green fluorescence field: cytoplasm; red fluorescence field: a dye used to label nanocarriers. Scale bar: 20 um.
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FIGURE 10 | Cytotoxicity for free PTX and PTX@MSNs-NH,-FA-RGD at different concentrations (ng-mi™") against MCF-7 cells evaluated at 24 h (A) and 48 h (B).
(**p < 0.01, *p < 0.05 as compared with the data of control group; **o < 0.01, *o < 0.05 when PTX group compared with PTX@MSNs-NH,-FA-RGD at the same

concentration).

endocytosis. In addition, The ICs; of free PTX and PTX@MSNs-
NH,-FA-RGD for 48h were 35.25 + 2.57 ng~ml'1 and 22.21 £ 3.4
ng-ml™, respectively. The killing capacity of PTX@MSNs-NH,-
FA-RGD to MCEF-7 cells was 1.6 times than that of free PTX,
indicating that PTX@MSNs-NH,-FA-RGD had higher
antitumor activity. The animal experiments are under going.
These results indicated that MSNs-NH,-FA-RGD could target
breast cancer cells, and sever as a potential candidate in future of
drug development.
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Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has
been proved to exhibit promising anti-cancer effects on a variety of cancers. Our
previous study investigated the potential anti-cancer properties in pancreatic cancer (PC),
and demonstrated that nigericin could inhibit the cell viabilities in concentration- and
time-dependent manners via differentially expressed circular RNAs (circRNAs). However,
the knowledge of nigericin associated with long non-coding RNA (IncRNA) and mRNA
in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying
mechanism from the perspective of INcCRNA and mRNA.

Methods: The continuously varying molecules (INncRNAs and mRNAs) were
comprehensively screened by high-throughput RNA sequencing.

Results: Our data showed that 76 INcRNAs and 172 mRNAs were common differentially
expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics
analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and
trans-regulation predictions and protein-protein interaction (PPI) network, were applied
to annotate the potential regulatory mechanisms among these coding and non-coding
RNAs during the nigericin anti-cancer process.

Conclusions: These findings provided new insight into the molecular mechanism of
nigericin toward cancer cells, and suggested a possible clinical application in PC.

Keywords: nigericin, high-throughput sequencing, long non-coding RNA, bioinformatics, pancreatic cancer

INTRODUCTION

Ductal adenocarcinoma of the exocrine pancreas, commonly known as pancreatic cancer (PC), is
a highly aggressive malignancy with few effective therapies. At the time of diagnosis, —20% of PC
patients are considered eligible for surgery and of these, about a half undergoes successful resection
(1). But unfortunately, a majority of patients with PC are diagnosed at advanced stages, at which
patients can hardly receive surgical RO resection (2) with a 5-years survival rate of 3% and a median
survival of <6 months (3-5). In spite of significant advances in surgical care, chemotherapy and
radiotherapy, no effective systemic therapy for the aggressive pathology of this cancer is available.
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One of the reasons for the treatment failures is due to resistance
to chemotherapy or radiotherapy (6). Thus, novel therapeutic
agents are needed to treat PC and improve the overall survival
of patients with this disease.

Up to date, standard treatments for cancer involve
chemotherapy with anti-tumor antibiotic. Adriamycin, an
orally administered DNA alkylating agent, has been the
most potent chemotherapy applied in clinic, in addition to
surgical excision. Bleomycin had been emerged as another vital
chemotherapeutic agent in many types of cancer, including
Hodgkin lymphoma (7), testicular cancer (8), and squamous-
cell carcinoma (9). In the previous study, we firstly identified
salinomycin as a novel identified cancer stem cells (CSCs)
killer in gastric cancer cells (10). Afterwards, we also found
that salinomycin could specifically target on cisplatin-resistant
colorectal cancer cells by accumulating reactive oxygen
species (11). Recently, Moxifloxacin and ciprofloxacin induced
cell apoptosis and S-phase arrest via ERK activation in PC
(12). Similar anti-cancer influences of antibiotic on PC cells
were found also in recent literatures. In 2012, Yadav et al.
demonstrated that gatifloxacin possessed anti-proliferative
activity against PC cell lines by causing S/G2 phase cell cycle
arrest without induction of apoptosis through p21, p27, and
p53 dependent pathway (13). They also investigated the effect
of moxifloxacin and ciprofloxacin on survival and proliferation
of PC cell lines, and found that both were able to suppress
the proliferation of PC cells and induce apoptosis through the
similar mechanism (12).

Nigericin is a monocarboxylic polyether antibiotic potassium
ionophore that is widely used as a coccidiostatic agent in
chickens (14). In 1972, the effects of nigericin on intracellular
pH, glycolysis, and K* concentration of ehrlich ascites tumor
cells were firstly reported (15). Since then, emerging evidence
confirmed the promising anti-cancer activity of nigericin in a
variety of cancers, including prostate cancer (16), nasopharyngeal
carcinoma (17), bladder cancer (18), chronic lymphocytic
leukemia cells (19), and lung cancer (20). In 2004, Vaupel
et al. reported that nigericin could inhibit breast cancer stem
cells at least 100 times more effectively than paclitaxel in
mice (21). Zhou et al. demonstrated that nigericin could
suppress the colorectal cancer metastasis through inhibition of
epithelial-mesenchymal transition (EMT) (22). Recently, our
study explored the circular RNA (circRNA) expression profiles
after nigericin exposure on PC cells through bioinformatics
method, and discussed the potential function of nigericin in PC
(23). However, our knowledge of nigericin, which correlates with
long non-coding RNA (IncRNA) and mRNA in PC, has not been
studied yet.

In this study, we attempted to ascertain the specific
activities of nigericin on human PC cell lines and investigate
its possible molecular mechanism in PC. The continuously
varying molecules (IncRNAs and mRNAs) were displayed by the
high-throughput sequencing. Through analyzing the aberrant
expressions of IncRNAs and mRNAs as well as their potential
relationships, the molecular mechanisms of nigericin treatment
on PC were discussed.

MATERIALS AND METHODS

Cell Culture and Reagents

Human PC cell lines (PANC-1) were purchased from Shanghai
Institute of Biochemistry and Cell Biology at the Chinese
Academy of Sciences (Shanghai, China). Cells were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (FBS, Gibco) at 37°C
in a humidified incubator containing 5% CO,. Cells were in the
logarithmic phase of growth for all experiments. Nigericin was
purchased from Sigma Aldrich (USA). The stock solutions (100
mmol/L) were prepared with dimethyl sulfoxide (DMSO) and
stored at —20°C.

High-Throughput RNA Sequencing
Analysis

PANC-1 cells were exposed to a proper concentration of
nigericin (5 pmol/L) according to the results of 50% inhibitory
concentration (IC50) for different time periods (0, 8, 16, or
32h), and then total RNA was extracted from cells, respectively.
The quantity and integrity of total RNAs were measured by
the NanoDrop™ ND-2000 (Thermo Fisher Scientifc, Scotts
Valley, CA, USA) and Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA), respectively. IncRNAs and
mRNAs were quantitatively analyzed by Shanghai OE Biotech
(Shanghai, China). After removal of ribosomal RNA and then
constructing a library, a high-throughput RNA sequencing was
performed. The clean reads were aligned to the reference genome
by Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/manual.
shtml). For unmapped reads, the junctions were picked out
using back-splice algorithm. Finally, IncRNAs and mRNAs were
verified with software developed by Shanghai OE Biotech, which
were considered as the reference sequence for further analysis.

Differentially Expressed IncRNA and mRNA

Screen and Clustering Analysis

Differentially expressed IncRNAs and mRNAs were detected
by the negative binomial distribution test based on the DESeq
package. These IncRNAs and mRNAs with statistical significance
were screened with p < 0.05, false discovery rate (FDR) <0.05
and fold change (FC) more than 2.0. Difference integration
analysis (Venn analysis) was used to show the often characteristic
elements among these 3 compared groups (0 vs. 8h, 0 vs. 16h,
0 vs. 32h). The common differentially expressed IncRNAs and
mRNAs were showed in pies with different colors. The non-
supervised hierarchical clustering of the differentially expressed
IncRNAs and mRNAs was used in the form of heat map to display
the expression patterns of the differential IncRNAs and mRNAs
between different groups.

Quantitative Real-Time Polymerase Chain
Reaction (QRT-PCR) Validation

Total RNA from cell lines was extracted using Trizol solution
(Invitrogen, USA) and converted into cDNA by using M-MLV
reverse transcriptase (Invitrogen, USA). The quantities and
qualities of isolated RNAs were evaluated using absorbance
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measurements at 260 and 280 nm. Then reverse transcription
(RT) was performed in a 20 pl reaction system using the
ReverAid First Stand cDNA Synthesis (Thermo Scientific,
Mountain View, CA, USA). RT-PCR with SybGreen I (Generay
Bio Co., Shanghai, China) was performed using the 7500
real-time PCR system (Applied Biosystems, Hayward, CA,
USA) with the follow program: initial denature at 95°C for
10 min, followed by 40 cycles of 95°C for 10 s and 60°C for 60s.
B-actin was used as control. Results were harvested in three
independent wells. The sequences of primers were listed as
follows: LINC00667:6 (F: 5CCCGACTTTTTGATGCAGGC3';
R: 5’CCCGACTGTTTCCTACCCAC3’), Lnc-HMGN1-1:12 (F:
5 GATCATGGCTCTCTCTGCCA3'; R: 5’ AGCTGTTACATA
CGGCCCAC3'), Lnc-LRRC24-2:1 (F: 5GATTCGCTGGAC
GATCGCA3; R: 5’CCTGTAAAGGGAACGCGTCA3'), Lnc-
AC007952.1.1-3:1 (F: 5'GCGAGAAAGGTTTTCGCCTC3';
R:  5’ACAATAGGAGGTGCCACACA3'), Lnc-CCNBIIPI-
12 (F: 5TGTCCCTTGGGAAGGTCTGA3; R: 5CCCG
TTCTCTGGGAACTCAC3'), GADD45A (F: 5 GAGAGCAGAA
GACCGAAAGGA3'; R: 5"CACAACACCACGTTATCGGG?'),
HBP1 (F: 5TCATCACCATTGGAAGGAGGA3'; R: 5"TTGCAC

CATCCCAAATCATCA3), SESN2 (F: 5'AAGGACTACC
TGCGGTTCG3’; R 5CGCCCAGAGGACATCAGTG3'),
KIF20A (F: 5'TTGAGGGTTAGGCCCTTGTITA3; R

5GTCCTTGGGTGCTTGTAGAAC3'), TOP2A (F: 5 ACCAT
TGCAGCCTGTAAATGA3; R: 5GGGCGGAGCAAAATAT
GTTCC3'), and B-actin (F: 5’ CCTGTACGCCAACACAGTGC3';
R: 5’ ATACTCCTGCTTGCTGATCC3').

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analysis

GO analysis was conducted to construct meaningful annotations
of genes and gene products in a wide variety of organisms
through DAVID database (http://david.abcc.nciferf.gov). Our
GO analysis provided the ontology of defined terms which
represented gene product properties, and covered three domains:
cellular components, biological process and molecular function.
The top 10 enriched GO terms, which were derived from
the common differentially expressed mRNAs and ranked by
enrichment score, were presented. KEGG pathway analysis was
also adopted to map differentially expressed mRNAs in different
biological pathways. The top 20 enriched pathways among
the four groups ranked by enrichment score were calculated
and shown.

IncRNA-mRNA Co-expression Network

To elucidate the potential functions of differentially expressed
IncRNAs and explore the relationships between common
differentially expressed IncRNAs and mRNAs, the IncRNA-
mRNA co-expression network was constructed. For each
differentially expressed IncRNA, we calculated the Pearson
Correlation of its expression value with the expression value
of each differentially expressed mRNA. It was considered to
be correlated when the P-value of the correlation coefficient of
IncRNAs and mRNASs’ expression value was not higher than 0.05,

and the absolute value of correlation was not <0.7. A total of 66
IncRNAs and mRNAs were selected to generate the network map.

Cis- and Trans-Regulation Predictions

As previous studies defined, a cis-regulator is the one that
exerts its functions on the neighboring genes which were
located at the same chromosome. IncRNAs are showed that
they can regulate gene expressions in a cis-manner (24, 25).
The cis-regulation regions in this study were identified by the
following procedures. For each common differentially expressed
IncRNA, we identified the mRNAs as “cis-regulated mRNAs”
when: (1) the mRNAs loci were within 100k windows up- and
downstream of the given IncRNA. (2) the Pearson Correlation of
IncRNA-mRNA expression was statistically significant (p-value of
correlation <0.05).

For trans-regulation prediction, we focused on the manner
that IncRNAs played their functions via transcription factors
(TFs). The TF-IncRNA and TF-IncRNA-gene network were
constructed, respectively. For each differentially expressed
IncRNAs, the coding genes co-expressed with them were
calculated, and the significance of the gene enrichment in each
TF entry was calculated using the hypergeometric distribution
test method. The result of the calculation returned a p-
value that was enriched for significance. A small p-value
indicated that gene has been enriched in the TF entry. We
calculated the intersection of IncRNAs co-expressed gene sets
with target gene sets of transcription factor/chromatin regulated
complex, and calculated the degree of enrichment of the
intersection through hypergeometric distribution method. Then
we obtained the TFs which were significantly associated with
IncRNAs, and identified possible transcription factor/chromatin
regulated factors that might play a combined regulatory role
with IncRNAs. Subsequently, we used the analysis results of
hypergeometric distribution to visualize the network diagram.
Through the hypegeometric distribution calculation, each
IncRNA got multiple TF-IncRNA relationship pairs, and each TF-
IncRNA pair was the results of enrichments of multiple genes.
According to the p-value from small to large sort, the top 200 lines
of regulatory relationships were used to construct the TF-IncRNA
binary relationship network, and the top 10 lines of regulatory
relationships were applied to construct the TF-IncRNA-gene
ternary relationship network.

Protein-Protein Interaction (PPI) Network

Construction

The Search Tool for the Retrieval of Interacting Genes (STRING,
http://string.embl.de/) database was used to construct the PPI
network of the common differentially expressed mRNAs. The
PPI network was subsequently visualized using Cytoscape.
Confidence score >0.7 was set as the cut-off criterion, and
Molecular Complex Detection (MCODE) was conducted to
screen modules of PPI network with degree cutoff = 2, node
score cutoff = 0.2, k-core = 2, and max. depth = 100. In
addition, a sub-network was constructed by selecting several
candidate mRNAs.
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Statistical Analysis

Statistically significant differences among groups were estimated
by the Student’s t-test using SPSS 19.0 software (SPSS Inc.). P <
0.05 was considered to be statistically significant.

RESULTS

Differentially Expressed IncRNA and mRNA

Profile by Sequencing

The global expression profile of IncRNAs at 4 different time
points (0, 8, 16, and 32 h) was determined by a custom sequencing
platform. In total, 118,314 IncRNAs were detected, and hundreds
of IncRNAs showed differential expressions in each group of
different time points (Figure 1A). Three compared groups were
set according to the nigericin-treated time points (0 vs. 8h,
0 vs. 16h, 0 vs. 32h). Compared to the 0h group, 538 days-
regulated IncRNAs (more than 2 folds) were found in 8h, of
which 301 IncRNAs were up-regulated and 237 ones were down-
regulated. Similarly, 408 IncRNAs were differentially expressed
in 16 h group with 291 up-regulated and 117 down-regulated
ones, compared to the 0 h group. With the change of treatment
time at 32 h, 387 differential IncRNAs were up-regulated, and 159
ones were down-regulated. All differentially expressed IncRNAs
with statistical significance were selected with p < 0.05, FDR <
0.05, and FC > 2.0 (Figures 1B,C). Venn analysis was used to
determine the common differentially expressed IncRNAs among
the three compared groups. Our data confirmed that 76 common
dys-regulated IncRNAs including 49 up-regulated and 27 down-
regulated ones might participate in the process of nigericin
damage (Figures 1D,E). To systematically predict the function
of IncRNAs, IncRNA subgroup analyses were performed. These

IncRNAs were widely distributed on all chromosomes except for
sex chromosome X (Figure 2A). Moreover, we adapted specific
probes for these IncRNAs to classify several kinds of IncRNAs.
Among these dys-regulated IncRNAs, there were 71.1% sense-
overlapping, 23.7% intergenic, 1.3% intronic, 1.3% bidirectional,
1.3% antisense, and 1.3% undefined (Figure 2B).

Besides, the global expression profile of mRNAs was also
observed. Among the 98,121 coding transcripts examined,
hundreds of coding transcripts were differentially expressed at
different time points (Figure 3A). Three compared groups were
also set as described above. A total of 2,468 mRNAs exhibited
significant differential expression between the 0 and 8 h group,
in which 1,282 mRNAs were up-regulated and 1,186 ones were
down-regulated. For 0 vs. 16h group, 616 mRNAs were up-
regulated and 1,000 ones were down-regulated. Similarly, for 0 vs.
32h group, 918 mRNAs were up-regulated and 1,082 ones were
down-regulated (Figures 3B,C). All the differentially expressed
mRNAs with statistical significance were screened with p < 0.05,
FDR < 0.05, and FC > 2.0. Venn analysis was also used to
determine the common differentially expressed mRNAs among
the three compared groups (0 vs. 8h, 0 vs. 16 h, and 0 vs. 32h).
The results showed that 172 mRNAs were common up-regulated
and 85 ones were down-regulated (Figure 3D). As shown in
Figure 3E, the common dys-regulated mRNAs were evaluated by
the hierarchical clustering analysis.

Validation of Sequencing Data by gRT-PCR
To ensure that our results were reliable, we assessed the
expressions of 5 IncRNAs and 5 mRNAs between the 0 and 32h
group by qRT-PCR. Our results showed that the LINC00667:6
and Inc-HMGN1-1:12 were both up-regulated at 32 h, compared
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FIGURE 2 | Distribution and classification of the common differentially expressed IncRNAs. (A) The circos plot showed the distribution of INcRNAs on human
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indicated the 76 common differentially expressed INcRNAs with fold change > 2.0, p < 0.05 and FDR < 0.05. (B) These 76 common differentially expressed INcRNAs
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to the 0 h group, whereas other 3 IncRNAs (Inc-LRRC24-2:1, Inc-
AC007952.1.1-3:1, and Inc-CCNB1IP1-1:2) were down-regulated

(Figure 4A, *P < 0.05). Meanwhile, we also chose 5 random

cancer-related genes for mRNA detection, and found that
GADD45A, HBP1, and SESN2 were significantly up-regulated,
whereas KIF20A and TOP2A were down-regulated, compared to
the 0 h group (Figure 4B, *P < 0.05). These data were consistent

well with the sequencing data, which demonstrated the high
reliability and validity of the sequencing expression results.

GO and KEGG Pathway Analysis

According to the common differentially expressed mRNAs
among the three compared groups (0 vs. 8h, 0 vs. 16h,
0 vs. 32h), the GO biological processes classification was

Frontiers in Oncology | www.frontiersin.org

100

July 2020 | Volume 10 | Article 1282


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Xu et al.

Nigericin Treatment in Pancreatic Cancer

1000+

100+

104

LncRNA Fold Change »

1000+

100+

104

mRNA Fold Change

FIGURE 4 | Validation of sequencing data by qRT-PCR. (A) The expressions of 5 INcRNAs between the 0 and 32 h group were detected by gRT-PCR. (B) The
expressions of 5 mMRNAs between the 0 and 32 h group were also determined by gRT-PCR (*P < 0.05).
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calculated. The top 10 GO biological processes such as uridine
catabolic process, nucleotide catabolic process and regulation
of interleukin-6 biosynthetic process were involved in the
nigericin damage. Meanwhile, the top 10 cellular components
and molecular functions were also analyzed and presented
in Figure 5A. KEGG pathway analysis for the common
differentially expressed mRNAs was used to elucidate the
pathways related to these mRNAs. Our data showed that
differentially expressed mRNAs were significantly enriched
in top 20 KEGG signaling pathways, including Aldosterone-
regulated sodium reabsorption, Circadian rhythm, Mismatch
repair, Drug metabolism-other enzymes, TNF signaling pathway,
Transcriptional misregulation in cancers, TGF-beta signaling
pathway, PI3K-Akt signaling pathway and so on (Figure 5B).

The corresponding p-value and enrichment score of the top
20 enrichment pathways were shown in Figure 5C. Using the
results of KEGG enrichment analysis of genes, the network
between all KEGG pathways and their corresponding genes
was analyzed. One hundred sixty-nine pathways and 94
genes were included, and some genes involved in multiple
KEGG pathways could be found to provide auxiliary reference
for selection of candidate genes. For instance, PRKCA was
found to participate in 60 KEGG pathways, including mTOR
signaling pathway, PI3K-Akt signaling pathway, MicroRNAs in
cancer, Choline metabolism in cancer, Wnt signaling pathway,
MAPK signaling pathway, Pancreatic secretion, VEGF signaling
pathway, Ras signaling pathway, Pathways in cancer and so
on (Figure 6).
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FIGURE 5 | GO and KEGG pathway analysis of the common differentially expressed mRNAs. (A) GO analysis was conducted and covered three domains: cellular
components, biological process and molecular function. The top 10 enriched GO terms were presented. (B) KEGG pathway analysis was also adopted and the top
20 enriched pathways were calculated and shown. (C) P-value and enrichment score of the top 20 enriched pathways were included and shown.

Construction of Coding and Non-coding

Co-expression Network

Common differentially expressed mRNAs (five up-regulated
and five down-regulated ones, respectively), which were proved
to implicate in multiple biological processes including cell
cycle, apoptosis, angiogenesis and metastasis, were selected to
build this network (Figure 7). The network implied a complex

relationship that one gene could correlate with multiple IncRNAs
and one IncRNA might also regulate numerous mRNAs in
different ways. As shown in Figure 7, up-regulated Inc-AGRN-
2_9 was positively correlated with HBP1, GADDA45A, SIK1, and
SESN2, and negatively associated with TOP2A, CKAP2, while
these mRNAs were implicated in apoptosis. Meanwhile, down-
regulated SSX2IP, which was involved in tumorigenesis and
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metastasis, was negatively correlated with Inc-SMARCA4-1_2,  The co-expression network might imply the potential regulatory
Inc-EIF2A-3_1, Inc-SLC25A3-3_1, Inc-ANGPTL1-6_1, mechanisms between IncRNAs and mRNAs in the nigericin

Inc-ARHGEF2-3_4, Inc-CDK5R1-5_1, and LINCO00667_6.  anti-cancer process.
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FIGURE 7 | Construction of coding and non-coding co-expression network. (A) Common differentially expressed mRNAs (five up-regulated and five down-regulated
ones, respectively) were selected to construct the network with their co-expressed common differentially expressed INcRNAs. The network consisted of 66 nodes and
221 connections. (B) The cis result of the coding and non-coding co-expression network.

Cis-Regulating Function Prediction of
IncRNAs

We constructed the correlated expression networks to elucidate
the relationship between the common differentially expressed
IncRNAs and their co-expressed adjacent coding genes. Among

all the 76 common differentially expressed IncRNAs, only
6 IncRNAs were found to own neighboring protein-coding
genes, and these 6 IncRNAS’ potential cis-regulation networks
were described in Figure 8A. However, each IncRNA had only
one nearby coding gene. For example, Inc-AGRN-2_3 and
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MPVI17L, Inc-AGRN-2_9 and MPV17L, Inc-AL669831.1-11_4
and LOC102724984, Inc-C90rf82-2_1 and ADAMTSI, Inc-GLI1-
2_4 and KIF5A, Inc-SLC25A3-3_1 and UNC50 were shown in
Figure 8B. The networks might furnish valuable clue for these
IncRNAs with nearby coding genes.

Trans-Regulation of IncRNAs (TF-IncRNA
and TF-IncRNA-Gene Network)

Despite the prevalence of IncRNA-mediated cis-regulation,
examples of trans-acting IncRNAs have also been reported
(25, 26). For trans-regulation prediction, we constructed a co-
expression network combined by these common differentially
expressed IncRNAs with TFs. With a threshold of P < 0.01 and
FDR < 0.01, the top 200 closest relationships were selected,
while we constructed a TF-IncRNA binary network. The network
showed that 44 up-regulated IncRNAs were found to correspond
to 31 TFs, and 27 down-regulated IncRNAs corresponded to
12 TFs (Figures 9A,B). Moreover, we introduced target genes
to build TF-IncRNA-gene ternary network. 10 up-regulated
IncRNAs correspond to 3 TFs and 283 target genes, while six
down-regulated IncRNAs were found to associate with 3 TFs and
125 target genes (Figure 10). Interestingly, up to 14 dys-regulated
IncRNAs were regulated by 5 TFs, such as MYC, TAF1, E2F4,
STAT1, and STAT?2. The results implied that these TFs might also
participate in the nigericin anti-cancer damage.

PPl Network Construction

As shown in Figure 11, a total of 152 genes of the 257 common
differentially expressed genes were filtered into the PPI network
containing 152 nodes and 644 edges. The nodes with high degrees
were defined as hub proteins in the PPI networks and degree
>10 was set as the cut-off criterion. In this network, a total of
12 nodes were selected as hub proteins, including TOP2A, MYC,
ANAPCI1, FBXW7, KIF20A, MTOR, CREB1, EXO1, MELK,
NEDD4L, RACGAPI1, and HERC2. The most significant hub
proteins were TOP2A (degree = 40) and MYC (degree = 21).
This network exhibited the interactions among these genes which
might play a significant role in the nigericin treatment.

DISCUSSION

Recently, the anti-cancer effect of nigericin has drawn increasing
attentions, and its molecular mechanisms toward cancer cells
were gradually discovered. A newly study by Yakisich et al.
demonstrated that nigericin might be used in a co-therapy model
of lung cancer in combination with other chemotherapeutic
agents (27). Coincidentally, our lab also implied that Wnt/p-
catenin signaling might have an essential role in colorectal
cancer progression, and nigericin exerted anti-cancer effects
on colorectal cancer cells by directly targeting the P-catenin
destruction complex (28). Furthermore, our recent study has
proved the potential toxicity of nigericin on human PC, and
revealed the molecular mechanism of nigericin toward PC
cells from the perspective of circRNA (23). However, the
knowledge of nigericin needs to be further elucidated from
multiple perspectives.

Along with the deepening of research on PC, numerous
IncRNAs have shown to be essential for the tumorigenesis and
progression by serving as tumor oncogenes or suppressors. In
2016, Li et al. found that long non-coding RNA metastasis-
associated lung adenocarcinoma transcript 1 (MALATI)
could facilitate the advanced progression of PC by promoting
autophagy in vitro (29). IncRNA myocardial infarction-
associated transcript (MIAT) was found remarkably increased
in PC tissues and cell lines, and PC patients with high MIAT
levels had poor prognosis than those with low MITA levels
(30). In contrast, Lnc-PCTST might exhibit as a potential tumor
suppressor in PC, which inhibited cell proliferation, invasion,
tumorigenesis and EMT by modulating TACC-3 (31). To further
explore the anti-cancer mechanism of nigericin, we used high-
throughput and bioinformatics methods to predict the changes
of coding and non-coding RNAs when cells were exposed to
the drug.

Firstly, the global expression profile of IncRNAs and mRNAs
for four different nigericin-treated time points was determined
by a custom sequencing platform. By venn analysis, our data
confirmed that 76 common dys-regulated IncRNAs including 49
up-regulated and 27 down-regulated ones might participate in
the process of nigericin damage. These IncRNAs were widely
distributed on all chromosomes except for sex chromosome X.
Meanwhile, the common differentially expressed mRNAs among
the 3 compared groups were also found, in which 172 mRNAs
were common up-regulated and 85 ones were down-regulated.
Subsequently, we chose 5 random IncRNAs and 5 cancer-related
genes for PCR detection between the 0 and 32h group. The
data were consistent well with our sequencing data, which
demonstrated the high reliability and validity of the sequencing
expression results. Of these common differentially expressed
mRNAs, GADD45A was found to be variously expressed in cell
lines derived from PC, and adenoviral-mediated expression of
GADD45A (Ad-G45a) in these cells resulted in apoptosis via
caspase activation and cell-cycle arrest in the G2/M phase (32).
HMG-box transcription factor 1 (HBP1) had been described as
a negative regulator of the Wnt/p-catenin signaling in many
cancers, including breast cancer (33), osteosarcoma (34), glioma
(35), and colorectal carcinoma (36). A recent study by Chan
also indicated that HBP1 acted as a direct downstream target of
FOXO1, and potently suppressed the phenotypes of oral cancer
(37). Besides, other 3 validated genes (SESN2, SIK1, and KIF20A)
were also proved to influence the proliferation, migration and
invasion of PC cells (38-41). These results might provide clues
to the potential mechanisms of nigericin in PC.

Next, we conducted GO and KEGG pathway analyses to
uncover the roles of these common differentially expressed
mRNAs after nigericin treatment. The top 10 GO biological
processes such as uridine catabolic process, nucleotide catabolic
process and regulation of interleukin-6 biosynthetic process were
found in the nigericin damage. Meanwhile, the differentially
expressesd mRNAs were significantly enriched in top 20
KEGG signaling pathways, including Aldosterone-regulated
sodium reabsorption, Circadian rhythm, Mismatch repair,
Drug metabolism-other enzymes, TNF signaling pathway,
Transcriptional misregulation in cancers, TGF-beta signaling
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pathway, PI3K-Akt signaling pathway and so on. Moreover, the
network between all KEGG pathways and their corresponding
genes was also analyzed. These nigericin-related pathways have
been also reported in PC. For example, the PI3K/Akt signaling
pathway is related with PC metastasis. Tanno et al. showed
that increased insulin-like growth factor I receptor expression
induced by active Akt markedly enhanced the invasiveness of
human PC cells (42). A recent review from Murthy et al.
also described the role of PI3K signaling in PC development
and progression (43). In 2014, Zhu et al. provided valuable
baseline information regarding the TGF-f pathway in PC,
which could be utilized in targeted therapy clinical trials (44).
These involved non-coding RNAs (IncRNAs and mRNAs) and
GO/KEGG analyses might partly explain the phenomena that
nigericin had the anti-cancer properties.

To better understand the mechanisms of nigericin in PC
cells, we built the co-expression network between IncRNAs

and mRNAs. The network implied a complex relationship
that one gene could correlate with multiple IncRNAs and one
IncRNA might also regulate numerous mRNAs in different
ways. For instance, up-regulated Inc-AGRN-2_9 was positively
correlated with HBP1, GADD45A, SIK1, and SESN2, and
negatively associated with TOP2A, CKAP2, while these mRNAs
were implicated in tumorigenesis (32, 37-41, 45). The co-
expression network might imply the potential regulatory
mechanisms between IncRNAs and mRNAs in the nigericin
anti-cancer process.

It has been known that IncRNAs can cis-regulate the co-
expressed and nearby coding genes (24). In this study, we
constructed a cis-regulated network with the criterion that
coding genes located at 100k bp upstream and downstream
of IncRNAs on the chromosome. Our results showed that
6 of 76 common differentially expressed IncRNAs possessed
cis-regulated genes, and each of the 6 IncRNAs only had
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one neighboring protein-coding gene. For example, we found
that Inc-AGRN-2_3 and Inc-AGRN-2_9 shared the same cis-
regulated gene MPV17L, which indicated that these two
IncRNAs might play a similar role. Lnc-C90rf82-2 1 cis-
regulated ADAMTS1, and Masui et al. also suggested that
ADAMTSI was a potential biomarker to detect early-stage PCs
(46). UNC50 has long been recognized as a Golgi apparatus
protein in yeast, and is involved in nicotinic receptor trafficking
in Caenorhabditis elegans. In 2015, Fang et al. found that
UNC50 was correlated with G1/S transition and proliferation in
hepatocellular carcinoma via the influencing epidermal growth

factor receptor trafficking (47). Interestingly, our data showed
that UNC50 was involved with the nigericin damage, which could
be cis-regulated by Inc-SLC25A3-3_1. These results revealed the
prevalence of IncRNA-mediated cis-regulations on nearby genes
during the nigericin damage.

On the other hand, previous reports have indicated that
IncRNAs are capable of binding to a specific site or sequence,
including TFs, to achieve trans-regulation functions. We
constructed a TF-IncRNA binary network combined by these
common differentially expressed IncRNAs with TFs. The network
showed that 44 up-regulated IncRNAs were found to correspond
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to 31 TFs, and 27 down-regulated IncRNAs corresponded to
12 TFs. Furthermore, we introduced target genes to build
TF-IncRNA-gene ternary network. 10 up-regulated IncRNAs
correspond to 3 TFs and 283 target genes, while 6 down-regulated
IncRNAs were found to associate with 3 TFs and 125 target genes.
Interestingly, up to 14 dys-regulated IncRNAs were regulated by
5 TFs, such as MYC, TAF1, E2F4, STAT1, and STAT2. Recent
evidence strongly suggests that these 5 TFs potentially regulate
the expression of target genes in PC or other cancers. For
instance, Valenti et al. found that Mutp53 and E2F4 proteins
formed a transcriptional repressive complex that assembled onto
the regulatory regions of BRCA1 and RAD17 genes inhibiting
their expressions in head and neck squamous cell carcinoma
(48). Guerrero-Zotano et al. identified 18 of the 20 E2F4 target
genes, and suggested a potential benefit of adjuvant CDK4/6
inhibitors in patients with ERT breast cancer who failed to
respond to preoperative estrogen deprivation (49). STAT1, which
is a member of the family of signal transducers and transcription
activators, corresponded to lymph node metastasis, advanced
stage, tumor dedifferentiation and poor prognosis in patients
with PC (50). A study from Seshacharyulu et al. also confirmed
STAT1 as a key regulator through down-regualtion of MUC4
in PC (51). Thus, our cis- and trans-regulation predictions
might provide a deep insight into the involved IncRNAs in
nigericin treatment.

Finally, a PPI network with common differentially expressed
genes, in which 12 hub proteins were identified, including
TOP2A, MYC, ANAPCI1, FBXW?7, KIF20A, MTOR, CREBI,
EXO1, MELK, NEDD4L, RACGAP1, and HERC2. The most
significant hub proteins were TOP2A and MYC. TOP2A could
induce tumor development and progression in many cancer
types, including PC (52), prostate cancer (53) and breast cancer
(54). In 2016, a phase II study by Tarpgaard et al. found
that metastatic colorectal cancer (mCRC) patients, who were
refractory to treatment with oxaliplatin-based chemotherapy,
had TOP2A gene amplification in their tumor cells (55).
Similarly, human estrogen receptor-positive breast cancer cells
typically displayed elevated levels of Myc protein due to
overexpression of MYC mRNA (56). Other studies had also
identified the abnormal expression of MYC-binding protein
(MYCBP) during tumorigenesis in multiple types of cancer,
such as gastric cancer (57), colon cancer (58), and PC (59).
Therefore, this core PPI network exhibited the associations
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Esophageal adenocarcinoma (EAC) is a deadly cancer with high mortality rate, especially
in economically advanced countries, while Barrett's esophagus (BE) is reported to be a
precursor that strongly increases the risk of EAC. Due to the complexity of these diseases,
their molecular mechanisms have not been revealed clearly. This study aims to explore the
gene signatures shared between BE and EAC based on integrated network analysis. We
obtained EAC- and BE-associated microarray datasets GSE26886, GSE1420,
GSE37200, and GSE37203 from the Gene Expression Omnibus and ArrayExpress
using systematic meta-analysis. These data were accompanied by clinical data and
RNAseq data from The Cancer Genome Atlas (TCGA). Weighted gene co-expression
network analysis (WGCNA) and differentially expressed gene (DEG) analysis were
conducted to explore the relationship between gene sets and clinical traits as well as to
discover the key relationships behind the co-expression modules. A differentially
expressed gene-based protein—protein interaction (PPI) complex was used to extract
hub genes through Cytoscape plugins. As a result, 403 DEGs were excavated,
comprising 236 upregulated and 167 downregulated genes, which are involved in the
cell cycle and replication pathways. Forty key genes were identified using modules of
MCODE, CytoHubba, and CytoNCA with different algorithms. A dark-gray module with
207 genes was identified which having a high correlation with phenotype (gender) in the
WGCNA. Furthermore, five shared hub gene signatures (SHGS), namely, pre-mRNA
processing factor 4 (PRPF4), serine and arginine-rich splicing factor 1 (SRSF1),
heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-Box Helicase 9 (DHX9),
and origin recognition complex subunit 2 (ORC2), were identified between BE and EAC.
SHGS enrichment denotes that RNA metabolism and splicosomes play a key role in
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esophageal cancer development and progress. We conclude that the PPl complex and
WGCNA co-expression network highlight the importance of phenotypic identifying hub
gene signatures for BE and EAC.

Keywords: bioinformatics analysis, Barrett's esophagus, hub gene signature, esophageal adenocarcinoma,
weighted gene co-expression network analysis, protein-protein interaction

INTRODUCTION

Esophageal cancer is a deadly cancer considering its high
mortality rate, with 572,034 newly diagnosed cases and 508,585
deaths in 2018 (Bray et al., 2018). Esophageal cancer is classified
into two subcategories: esophageal adenocarcinoma (EAC; distal
esophagus) and esophageal squamous cell carcinoma (ESCC;
proximal esophagus). It starts from the esophageal epithelium,
the innermost layer of the esophagus (Rustgi and El-Serag, 2014).
Esophageal cancer is a very complex disease, as its various
subtypes have different risk factors, time trends, and
geographic patterns (Analysis et al., 2017) (Montgomery et al.,
2014; Lordick et al., 2016). According to the geographic
variation, EAC is more common in economically advanced
regions than in low-income countries (Chai et al., 2019). The
common risk factors of EAC are age, male sex, obese,
gastroesophageal reflux disease (GERD), cigarette smoking,
and diet (low in vegetables and fruits). Cook et al. (2014)
report some common symptoms like vomiting/nausea and
heartburn in EAC and GERD. Besides, Barrett's esophagus
(BE) is considered as a precursor for EAC. BE is a metaplastic
transformation from the normal squamous mucosa of the
esophagus to a columnar lining; its presence conveys a 30-40-
fold increased risk of EAC (Schneider and Corley, 2015). The
tumor development is a step-by-step process that comprises
constant changes from erosive esophagitis to non-dysplastic
BE, low-grade dysplasia, high-grade dysplasia, adenocarcinoma
in situ, and finally invasive adenocarcinoma (Anaparthy and
Sharma, 2014). Due to poor prognosis, over 40% of patients are
diagnosed with high-grade dysplasia. Additionally, the 5-year
survival rate is less than 20% despite the advances in diagnosis
and treatment (Tramontano et al., 2017). Certainly, surgical
therapy has improved the patient's survival yet it is not suitable
for advanced-stage cancer patients (Davies et al., 2014).

Thus, it is essential to discover biomarkers that can lead to the
discovery of medication. Microarray analysis of gene expression
profiles is a common practice for identifying key hub genes and
key pathways (Wei et al,, 2018; Sadhu and Bhattacharyya, 2019).
In the current era of integrated bioinformatics, acquiring data is
not an issue; rather, normalization seems to be a tough job
(Campain and Yang, 2010). Considering all of these notions, we
designed an integrated study to find key hub genes associated
with BE and EAC. First, we extracted BE- and EAC-associated
microarray datasets from the Gene Expression Omnibus (GEO)
and ArrayExpress using systematic meta-analysis as well as
RNA-seq data from TCGA. Preprocessing and normalization
were conducted for further analysis. DEGs were identified using
linear models for microarray data (LIMMA) algorithm. Meta-

analysis was performed using a network analysis tool. We
analyzed functional and pathway enrichment of DEGs.
Additionally, a protein-protein interaction (PPI) network was
constructed to study the associations between the DEGs and to
recognize target genes using different modules of Cytoscape
software. Weighted gene co-expression network analysis
(WGCNA) was conducted by the construction of the co-
expression network to find a correlation between modules and
clinical traits. Furthermore, clinically significant modules were
identified. Finally, key hub genes were identified and validated
using immunohistochemistry and survival analysis.

MATERIALS AND METHODS

Data acquisition, Preprocessing, and
Normalization

The microarray datasets were systematically extracted from the
GEO' (Edgar et al,, 2002) and the ArrayExpress® database (Brazma
etal,, 2003). The gene expression profiles based on RNA-sequencing
were additionally obtained from The Cancer Genome Atlas
(TCGA)’ (Zhu et al, 2014). The framework of this study is
shown in Figure 1. For microarray profiles, we selected four
datasets (GSE26886, GSE1420, GSE37200, and GSE37201)
available by October 2019 (Kimchi et al., 2005; Silvers et al., 20105
Wang et al,, 2013; Lin et al., 2015). The GEO accession number,
sample size, description, platform, expression data, and references
are extracted from each identified dataset (Table 1). The TCGA
portal was accessed in October 2019, 184 esophageal cancer samples
were retrieved. The tab-delimited text (.txt) files of microarray
datasets were obtained from the GEO database. The Network
Analyst (NA) web interface for integrative biological network
analysis was employed for background correction preprocessing,
normalization, probe identification, and meta-analysis of the
datasets (Xia et al.,, 2015). The input files were prepared as per the
description of the tool (first line #Name (sample ID); second line
#class (sample type); genes in the rows and samples in the columns).
We applied two different methods to normalize the datasets: first,
variance stabilizing normalization (VSN), which improves DEG
detection and reduces false-positive errors (Konishi, 1985), and
second, quantile normalization, which can make two distributions
equal in statistical methods (Hansen et al., 2012). The processed
datasets were used for subsequent microarray meta-analysis.

" http://www.ncbi.nlm.nih.gov/geo
*https://www.ebi.ac.uk/arrayexpress/
*https://portal.gdc.cancer.gov/

Frontiers in Pharmacology | www.frontiersin.org

114

July 2020 | Volume 11 | Article 881


http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/arrayexpress/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Nangraj et al.

BE and EAC Hub Genes

Data acquisition
GEO + Array Express + TCGA

Preprocessing and Normalization
+ quantile normalization

Differential gene expression
Limma algorithm

Meta-analysis

Combined effect size (ES)

PPI Network Construction
STRING

Identification of Hub module

analysis; TCGA, The Cancer Genome Atlas; PPI, Protein-protein interaction.

Variance stabilizing normalization (VSN) ‘ Co-expression network +

MCODE +CytoHubba +CytoNCA

FIGURE 1 | Schematic flow diagram of the study. GEO, Gene Expression Omnibus;

WGCNA analysis

Identify modules

\ /
Pearson’s correlation analysis
between modules +
clinical traits
\
\/
Identification of clinically
significant module

Module eigengenes +
gene significance

,,
.

Hub gene identification
WGCNA and PPI network

Enrichment analysis
GO terms + Pathways
Validation
Survival analysis + IHC

IHC, Immunohistochemistry; WGCNA, weighted gene co-expression network

DEG Identification and Meta-Analysis

Differential gene expression analysis was performed with the R
package LIMMA (linear models for microarray data), which is
embedded in NA (Ritchie et al., 2015). Each gene expression was
calculated based on the false discovery rate (FDR; p < 0.05) using the
Benjamini-Hochberg method and ¢-test. In addition, the microarray

meta-analysis between EAC and BE samples was performed using
combined effect size (ES). The combined ES is the difference between
two group means divided by standard deviation, which is
comparable across different studies. It can be calculated by two
types of models, namely fixed-effect models (FEM) and random-
effect models (REM). In FEM, the calculated effect size in each study

TABLE 1 | Relevant information about selected microarray datasets.

GSE Acc. No. of Platform Description Country PMID

No. Samples

GSE26886 21 vs 20 AHG-U133 Plus  Gene expression profiling of Barrett's esophagus, adenocarcinoma, esophageal squamous Germany 23514407
2.0 Array epithelium, and squamous cell carcinoma

GSE1420 8vs 8 AHG-U133A Array  Barrett's esophagus, Barrett's-associated adenocarcinomas and normal esophageal epithelium USA 15833844

GSE37200 15vs 31 AHG-U133A Array  Gene expression profiling of Barrett's esophageal tissues and esophageal adenocarcinoma USA 26068949

GSE37201 22 AHG-U133A Array  Barrett's esophageal tissues and esophageal adenocarcinoma USA 20332323

AHG, Affymetrix Human Genome.
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is supposed to arise from an original true effect size plus
measurement error. In REM, each study further contains a
random effect that can incorporate unknown cross-study (different
platforms) heterogeneities in the model. The FEM or REM can be
chosen based on statistical heterogeneity estimated using Cochran's
Q tests (Cochran, 1950). The method typically gives a lower number
of DEGs but more confidence (Selvaraj et al., 2018).
Cochran's Q test equation:

k
X =N
Cochran’s Q test equation : T = k(k — 1) le
>SXi(k-X;-)
i1
where k is the number of samples; X - ; is the column total for the
™ sample; b is the number of genes; X; - is the row total for the i
gene; N is the grand total.

Gene Ontology and Pathway Enrichment
Analysis

We used ClueGO v2.5.3, a Cytoscape” plugin, for function and
pathway enrichment analysis of DEGs (Bindea et al., 2009; Kohl
etal., 2011). A list of DEGs or hub genes were provided as input
into ClueGO with select specific parameters, for example,
species, such as Homo sapiens, ID type—Entrez gene ID,
different enrichment functions—biological process or cellular
component or molecular function or KEGG pathways, for the
analysis. Each enrichment was calculated based on the
Bonferroni method (kappa score 0.96; cutoff value p < 0.005).

PPI Network Construction and Module
Extraction

The search tool for retrieval of interacting genes/proteins
(STRING)® (Szklarczyk et al,, 2017) is a database that is used to
construct the PPI network. Currently, the database consists of
18,838 human proteins with 25,914,693 core network interactions.
In this study, we constructed the PPI network from identified DEGs
using the STRING interactome. The highest confidence interaction
score was set to 0.9, which reduces the number of false-positive
interactions (Bozhilova et al., 2019). Molecular complex detection
(MCODE) is a Cytoscape plugin used to identify the finest clusters.
MCODE calculates accurate correlation levels as well as identifying
essential PPI network modules (Shannon et al., 2003). In addition,
other add-ins of Cytoscape, namely, CytoHubba and CytoNCA,
were employed to discover the highest linkage hub genes in the
network (Chen et al.,, 2009; Tang et al., 2015).

WGCNA Analysis

The WGCNA package was employed to construct a gene co-
expression network using a variant set of genes (12,701 genes).
The analysis was performed based on the package instructions
(Langfelder and Horvath, 2008). The connection strength between

each pair of nodes was calculated using the adjacency matrix a;;.

*https://cytoscape.org/
®https:/string-db.org/

Zjj = [cor (b, by) |a; = Zy

While vectors (bi and bj) were expression values for genes,
Pearson's correlation coefficient of gene i and j and a;; were
represented as the connection strength between genes. The soft-
thresholding power of f = 9 was used to ensure scale-free
topology. The hierarchical clustering of the weighting
coefficient matrix was used to define the modules. The
functional modules in the co-expression network with defined
genes, the topological measure (TOM) indicating the
concurrence in shared adjacent genes, was calculated as

IROA; A+ Ay
min(K,K;) +1- A

TOMi, j =
i

where A is the weighted adjacency matrix described in the above
formula. TOM-based dissimilarity measures with a minimum
size of 100 for the gene dendrogram and average linkage
hierarchical clustering were performed, and similar expression
profiles were divided into the same gene modules using the
dynamic tree cut package.

Identification of Clinically Significant
Modules

Eigengene and gene significance methods were used to identify
modules that were correlated with clinical traits of the GSE37200
microarray data set. The first principal component of each gene
module and the expression of the module eigengene were defined
as representative of the whole gene set and were described in the
first eigengene module. The association between module
eigengenes and clinical trait was used to calculate and identify
the significant clinical module. Second, the gene significance was
described as a mediated p-value of each gene in the linear
regression between expression and clinical traits. Furthermore,
the module significance was described as the average the gene
significance of all genes associated with the module. The average
absolute gene significance was defined as module significance. It
was calculated to incorporate clinical traits into a co-expression
network (Langfelder and Horvath, 2008).

Survival Analysis and Validation of SHGS
The SHGS were identified from the modules of WGCNA and the
PPI network using an interactive Venn diagram. The R package
survival was employed to calculate Kaplan-Meier (KM) survival
plots with hazard ratio (HR) and log-rank tests of hubs, which was
implemented in the OSeac® (consensus survival analysis for EAC)
web interface. OSeac retrieved the gene expression profiles and
clinical data including TNM (Stage I, II, III, and IV), gender (male
and female), race (White, Black, and African American), and grade
(G1, G2, G3, and GX) of 198 patients from TCGA and GEO. We
analyzed the overall survival rate of the shared gene signature as an
input and obtained the plot from the tool (Wang et al, 2020). The
Human Protein Atlas” was used to validate the immunohistochemistry
of SHGS (Uhlén et al., 2005; Uhlen et al., 2017).

Shttp://bioinfo.henu.edu.cn/EAC/EACList.jsp
7 https://www.proteinatlas.org/
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RESULTS

Physiognomies of Selected Studies

We collected a total of 682 studies from the GEO and
ArrayExpress database up to October 2019. In all, 678 datasets/
studies that did not satisfy the inclusion criteria were excluded.
Finally, four potential studies were selected (Supplementary
Figure 1). Among the four selected studies, three were
conducted on the Affymetrix human genome U133A platform
and one was performed on the Affymetrix human genome U133
plus 2.0 platform, which included 125 samples in total chosen in
this study. In each study, EAC samples were compared with the
adjacent BE samples. The dataset GSE37200 was used to
construct a co-expression network with the relevant clinical
trait information. After preprocessing and normalization, the
GSE37200 dataset with 22,284 genes was further processed, and
variant genes (12,701) were selected for WGCNA studies.

Identification of DEGs and Enrichment
Analysis

In total, 403 DEGs were obtained through microarray meta-
analysis, which include 169 downregulated and 234 upregulated
genes. A heatmap is a simple yet effective way to compare the
content of multiple major gene lists. Major DEGs across all the
datasets were represented in red, orange, and yellow in a
heatmap. Gray indicates that the respective gene is not present
in the gene list (Supplementary Figure 2). Table 2 illustrates the
top 10 upregulated and downregulated DEGs. Monocyte
differentiation antigen CD14 (CD14), ribose 5-phosphate
isomerase A (RPIA), tumor necrosis factor superfamily
member 11 (TNESF11), plexin D1 (PLXND1), major histo-
compatibility complex, class II DM beta (HLA-DMB), and

TABLE 2 | Top ten up- and downregulated genes.

spliceosome-associated factor 3, and U4/U6 recycling protein
(SART3) were highly expressed upregulated genes, whereas
fucosyltransferase 2 (FUT2), SECIS binding protein 2 like
(SECISBP2L), COP9 signalosome subunit 4 (COPS4), gelsolin
(GSN), and glutathione peroxidase 3 (GPX3) were highly
expressed downregulated genes. According to the gene
ontology (GO) terms BP, MF, and CC, downregulated genes
were significantly enriched in the mitotic cell cycle process, sister
chromatid segregation, antigen processing, presentation of
peptide antigen via MHC class I, chromosomal region, and
MHC class I protein binding, whereas retinol dehydrogenase
activity and fucosyltransferase activity were highly enriched in
upregulated genes associated with EAC (Figures 2A-C). In
KEGG, pathway enrichment demonstrated that the
upregulated genes were enriched for viral myocarditis, cell
cycle, DNA replication, and AGE-RAGE signaling pathways in
diabetic complications. Downregulated genes were associated
with pathways involved in fatty acid degradation,
glycosphingolipid biosynthesis, and amino sugar and
nucleotide sugar metabolism (Figure 2D).

WGCNA and Clinically Significant Module
Identification

A dendrogram of samples (GSE37200) with clinical trait was
clustered using the average linkage method and Pearson's
correlation method (Figure 3A). Co-expression analysis was
carried out to construct the co-expression network. In this study,
the power of 8 = 9 (scale-free R* = 0.95) was selected as the soft-
thresholding parameter to ensure a scale-free network (Figure 3B).
A dendrogram of all differentially expressed genes was clustered
based on a dissimilarity measure (1-TOM) (Supplementary Figure
3). A total of 39 modules were identified through hierarchical

S.No. Gene Gene name Combined ES P-value
Upregulated genes

1 CD14 Monocyte differentiation antigen CD14 1.2948 4.98E-08
2 RPIA Ribose 5-phosphate isomerase A 1.1376 4.63E-08
3 TNFSF11 Tumor necrosis factor super family member 11 1.1229 3.66E-08
4 PLXND1 Plexin D1 1.1223 3.60E-08
5 HLA-DMB Major histo-compatibility complex, class I, DM beta 1.1168 3.97E-08
6 SART3 Spliceosome associated factor 3, U4/U6 recycling protein 1.1142 4.06E-08
7 OSBPL3 Oxysterol binding protein like 3 1.1119 4.79E-08
8 PRAF2 PRA1 domain family member 2 11117 4.61E-08
9 PILRB Paired immunoglobin like type 2 receptor beta 1.1078 4.67E-08
10 RGS16 Regulator of G protein signaling 16 1.1064 4.79E-08
Downregulated genes

1 FUT2 Fucosyltransferase 2 -1.1095 4.67E-08
2 SECISBP2L SECIS binding protein 2 like -1.111 4.52E-08
3 COPS4 COP9 signalosome subunit 4 -1.1148 4.79E-08
4 GSN Gelsolin -1.117 4.04E-08
5 GPX3 Glutathione peroxidase 3 -1.1185 3.87E-08
6 ADH1A Alcohol dehydrogenase 1A (class I), alpha polypeptide -1.1271 4.39E-08
7 CORO2A Coronin 2A -1.2074 4.67E-08
8 ACADS Acyl-CoA dehydrogenase short chain -1.2157 3.57E-08
9 RCAN2 Regulator of calcineurin 2 -1.2172 5.07E-08
10 CLEC3B C-type lectin domain family 3 member B -1.2316 3.73E-08

*Combined ES, Cochran's combination test of random effect model (REM) or effect size (ES).
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FIGURE 2 | Gene ontology and pathway enrichment analysis. (A) Biological process analysis. (B) Cellular component analysis. (C) Molecular function analysis.

clustering. Light green (eigengene value = 0.41), dark gray
(eigengene value = 0.62) and Sienna3 (eigengene value = 0.46)
modules appeared to have the highest association with age, gender,
and ethnicity. There was no module-trait relationship associated
with tumor stage, denoted as NA in Figure 3C. Therefore, the dark
gray module having the highest association with gender was selected
as the clinically significant module for further analysis. There were
207 phenotypic genes identified in the dark-gray module (Figure
3D). In Supplementary Figure 4, the hierarchical clustering
dendrogram of the eigengene network represents the relationships
among the modules and the clinical trait weight.

Identification and Validation of Hub Genes

The PPI network was constructed with 403 DEGs using the
STRING database. The interactive relationships between the key
genes in the whole network were determined using the Cytoscape
plugins (MCODE, Cytoscape, and CytoHubba). There are two
clusters: 82 nodes and 938 edges in cluster 1, and 20 nodes and
168 edges in cluster 2, which were identified from MCODE based

on a scoring system (cutoff k-score = 12). In addition, the data were
imported into another plugin, CytoHubba, which helped to identify
104 key genes through five different calculation methods, namely,
EPC, MCC, DMNC, MNC, and Stress. Then, the two clusters were
imported into the CytoNCA plugin, which helped to identify 40 key
genes using five different algorithms, namely, betweeness, closeness,
degree, eigenvector, and subgraph. We securely conceive that the
key genes are the intersections between the PPI network and the
dark-gray module with 207 genes (Supplementary Table 1) highly
correlated with phenotype (gender) from the WGCNA analysis
(Figures 4A, B). Finally, five SHGS, namely, pre-mRNA processing
factor 4 (PRPF4), serine and arginine rich splicing factor 1 (SRSF1),
heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-
box helicase 9 (DHX9), and origin recognition complex subunit 2
(ORC2), are identified between BE and EAC. Pathway enrichment
demonstrated that all the SHGS are involved in the metabolism of
RNA, and its molecular functional terms include cell cycle, DNA
binding, DNA topoisomerase binding, pre-mRNA splicing, and
RNA helicase activity (Figure 5).
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Survival Analysis and
Immunohistochemistry

Kaplan-Meier plots demonstrated that the prognostic impact of the
SHGS was identified from modules of the PPI network complex and
WGCNA. The results revealed that high expression of HNRNPM
and SRSF1 was associated with poor overall survival of BE and EAC
patients (p < 0.05). Moreover, high expression of PRPF4, DHX9,
and ORC2 was correlated with longer overall survival of BE and
EAC patients (Figure 6). In addition, we plotted a gender-based
survival curve to determine the correlation of WGCNA modules.
The hazard ratio (HR) and 95% confidence interval were as follows
in males: PRPF4 (HR =1.08; 95%CI - 0.46 + 2.48; p = 0.865); SRSF1
(HR =3.08; 95%CI - 1.49 + 6.37; p = 0.002); HNRNPM (HR =3.295;
95%CI - 1.54 + 7.02; p = 0.002); DHX9 (HR =1.39; 95%CI - 0.64 +
248; p = 0.404); ORC2 (HR =1.25; 95%CI - 0.58 + 2.72; p = 0.564).
Further, in female cases PRPF4 (HR =0.39; 95%CI - 0.03 £ 3.8%; p =
0.421); SRSF1 (HR =1.49; 95%CI - 0.20 + 10.79; p = 0.689);
HNRNPM (HR =8.06; 95%CI - 0.82 + 79.01; p = 0.073); DHX9
(HR =0.38; 95%CI - 0.04 + 3.89; p = 0.424); ORC2 (HR =3.24; 95%
CI-0.20 + 51.91; p = 0.4061). The results clearly demonstrated that
the high expression of SHGS correlated to the poor prognosis of
male compared to female. Furthermore, immunohistochemical
slides of the Human Protein Atlas database indicated that the
protein expressions of SHGS were drastically higher in cancerous
tissues compared with in adjacent normal tissues, as shown in
Figure 7. Therefore, these SHGS were all key genes that play an
initiative role and might have a tendency to co-express.

DISCUSSION

EAC is an obstinate type of cancer, which has a high mortality
rate because of poor prognosis, metastatic rate, and treatment
resistance (Tatarian and Palazzo, 2019). EAC usually arises from
a premalignant variation in the lining of the esophagus known as
BE (Thrift, 2016). Unfortunately, the treatment and diagnosis of
EAC and BE are limited due to the lack of precise molecular
targets. Therefore, we designed this study to explore SHGS
between EAC and BE to improve the diagnosis and prognosis
status of the patients. There are numerous advanced technologies
that can quantify the enormous amount of transcripts in a
parallel manner. Microarray and data mining are well-known
approaches for cancer biomarker discovery (Selvaraj et al., 2019).
Nevertheless, a single microarray dataset is not enough to deal
with this obstinate disease. However, a comprehensive analysis of
a number of microarray datasets with different platforms can
assist with identifying the molecular mechanism of EAC and BE.
Therefore, we selected four different microarray datasets to
identify SHGS and the associated pathways between BE and
EAC. Moreover, WGCNA is a powerful tool for searching
effective biological mechanisms and key genes from gene
expression microarrays. It provides module construction and
correlation analysis within the gene expression data to determine
the associations between genes. It also elucidates the biological
significance of a gene module to provide insights into molecular
and pathological characteristics in many diseases. All these
characteristics make it a robust, reliable, and significant
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method for analysis of large-scale data. There is no prior research
employing WGCNA to do gene co-expression network analysis
with BE and EAC. To explore SHGS, we decided to construct a
gene co-expression network with relevant clinical trait
information from the GSE37200 dataset.

Phenotype variants like age, gender, and ethnicity are factors that
are intensively involved in the prognosis and diagnosis of BE and
EAC (Ford et al,, 2005; Runge et al., 2015). EAC usually appears at

the later stage of life, but it may start at a young age in the form of
BE. Earlier studies have reported that male patients with BE are at
low risk of malignant progression and predominantly die due to
causes other than EAC (Sikkema et al., 2010). There are studies
reported that there is a marked male prevalence of EAC with a
male-to-female ratio of 9:1 due to sex hormone factors. Androgen
exposure may increase the risk of EAC compared to estrogen (Xie
and Lagergren, 2016; Kim et al., 2016). Furthermore, geographically
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FIGURE 6 | The prognostic value of hub genes in BE and EAC patients (Kaplan—Meier plot).

White people, especially White Americans, are at higher risk than
other ethnicities (Schneider and Corley, 2015). A comprehensive
study from January 2006 to December 2017 reported that high risk
of male patients with esophageal diseases in the province of
Madinah in Saudi Arabia is due to a variety of factors, including
inflammatory disorders, infection, and neoplastic condition (Albasri
et al,, 2019). In addition, genomic analysis by restriction fragment
length polymorphism indicated that the highest frequencies of Y-
chromosomal haplogroups are associated with BE and EAC in
White males (Westra et al., 2020). Recent case—control studies
demonstrate that gastroesophageal reflux disease in male patients
is highly associated with the development of BE in Germany
(Schmidt et al., 2020). These reports supported the present results,
indicating that predicted dark gray modules with the highest
association with gender must have a clinically significant module.
Two types of biological materials, namely, GO and KEGG
pathway data, are key to understanding the disease mechanism.
CD14 acts as a co-receptor with toll-like receptors (TLRs) to
identify evading pathogens and improve the immune system. It
is reported that TLRs 1-10 are expressed in the normal
esophagus and that there is a high association of TLRs 4, 5,
and 9 with BE and EAC (Kauppila and Selander, 2014).
TNEFSF11 is a key regulator of interactions between T cells and
dendritic cells, which regulate the T-cell-dependent immune
response and enhance bone-resorption in hypercalcemia of
malignancy (Luan et al., 2012). Somja et al. (2013) observed
that both metaplastic and malignant lesions of the esophagus are
infiltrated by regulatory T cells. They concluded that soluble

factors secreted by epithelial cells during the EAC or BE
influence tumor progression through tolerogenic dendritic
cells, which can be a potential therapeutic tool. In addition,
different cohort studies have reported that GSN is a serum
glycoprotein biomarker used as a diagnostic tool for EAC and
BE (Shah et al, 2015; Shah et al, 2018). Glycosphingolipid
biosynthesis is an important pathway that can produce cell-
surface glycans. These glycans are altered in the development
from BE into EAC, with specific changes in lectin binding
patterns. This binding is a key marker in endoscopic
visualization of high-grade dysplastic lesions (Bird-Lieberman
et al,, 2012). These reports suggest that the predicted GO terms
and pathways of DEGs are highly associated with EAC and BE.

We have identified five different SHGS (PRPF4, SRSFI,
HNRNPM, DHX9, and ORC2) between EAC and BE. PRPF4,
SRSF1, and HNRNPM are U4/U6 small nuclear ribonucleoprotein
Prp4, serine and arginine-rich splicing factor 1, and heterogeneous
nuclear ribonucleoprotein M coding genes, respectively. These
genes play an important role in pre-mRNA splicing and
spliceosome assembly (Bertram et al., 2017). Pre-mRNA splicing
is key to the pathology and has a substantial role in generating
multiple oncogenic and tumor-suppressor proteins after the post-
transcriptional process. Splicing is of different types such as amino
acid addition, exon skipping, frame shift, intron retention, promoter
usage, truncated C-terminus, and 5’-SS, which have various clinical
applications including proliferation, metastasis, drug resistance, and
radiotherapy (Guo et al., 2015; Di et al,, 2019). In addition, there are
studies reporting splicing signatures associated with the prognosis of
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FIGURE 7 | Immunohistochemistry of the five hub genes based on the Human Protein Atlas. (A) Protein levels of PRPF4 in normal tissue (staining: high; intensity:
strong; quantity: >75%). (B) Protein levels of SRSF1 in normal tissue (staining: high; intensity: strong; quantity: >75%). (C) Protein levels of SRSF1 in tumor tissue
(staining: high; intensity: strong; quantity: >75%). (D) Protein levels of HNRNPM in normal tissue (staining: high; intensity: strong; quantity: >75%). (E) Protein levels of
DHX9 in normal tissue (staining: high; intensity: strong; quantity: >75%). (F) Protein levels of ORC2 in normal tissue (staining: not detected; intensity: low; quantity:

esophageal cancer (Lin et al., 2018; Mao et al,, 2019). Through the
splicing mechanism, PRPF4, SRSF1, and HNRNPM regulate the cell
proliferation, migration, and invasion in different cancers, including
lung cancer (Choi, 2012; Chang and Lin, 2019), breast cancer

(Anczukow et al., 2015; Sun et al, 2017; Park et al., 2019),
cutaneous squamous cell carcinoma (Zhang et al., 2018),
hepatocellular carcinoma (Tu et al, 2019), esophagus dysplasia
(Varghese et al,, 2015; Fitzgerald et al,, 2018), gastric cancer (Wu
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etal., 2019), cervical cancer (Dong et al., 2019), and Ewing's sarcoma
(Passacantilli et al., 2017).

DHXY9 is an ATP-dependent RNA helicase A coding gene
involved in DNA replication, transcriptional activation, post-
transcriptional RNA regulation, mRNA translation, and RNA-
mediated gene silencing (Capitanio et al., 2017). Knockdown of
ATP-dependent RNA helicase inhibited the expression of -
catenin, c-Myc, and cyclin D1 in esophageal cancer cells through
suppressing the Wnt/B-catenin signaling pathway (Ma et al,
2017). In addition, ATP-dependent RNA helicase was reported
to dysregulate distinct steps of mRNA and pre-ribosomal RNA
metabolism in cancer cells (Awasthi et al., 2018). ORC2 is an
origin recognition complex subunit 2 coding gene binding
origins of replication (Shen et al, 2012). It can bind to
different histone trimethylation proteins and stabilize leucine-
rich repeat and WD repeat-containing protein 1 (LRWD1)
through protecting it from ubiquitin-mediated proteasomal
degradation (Chan and Zhang, 2012). Studies demonstrated
that increased expressions of certain histone-mediated proteins
correlate with advanced TNM stages, tumor grade, metastatic
potential, and decreased overall and disease-free survival of
patients with esophageal cancer (Schizas et al, 2018). This
supportive information enhances the understanding of why the
predicted DHX9, HNRNPM, ORC2, PRPF4, and SRSF1 genes
are highly correlated to EAC and BE progression and act as
potential biomarkers for diagnosis as well as prognosis.

CONCLUSION

This network pharmacology-based study provides new insights
into BE and EAC patients for their diagnosis and prognosis. The
results of microarray dataset-based PPI networks and WGCNA
exhibited that the dark-gray module had the maximum
association with EAC and BE, with the identification of five
SHGS, namely PRPF4, SRSF1, HNRNPM, DHX9, and ORC2.
The WGCNA-based gene co-expression network indicated that
the relationships between co-expressed genes and clinical trait
(gender of the patient) were associated with the progression of
esophageal cancer. SHGS enrichment denotes that the RNA
metabolic and spliceosome pathways play an essential role in
the development and progress of esophageal cancer. Survival
analysis demonstrates that the high expression of HNRNPM and
SRSFI in esophageal cancer might be a poor prognostic marker.
The co-expression modules were established to preserve a
reliable expression relationship independent of phenotype and
may share similar biological functions. This approach shares the
limitations of other data mining methods: the results of WGCNA
can technically be biased due to tissue contamination or artifacts.
To enhance the reliability of the WGCNA results, immuno-
histochemical data from the Human Protein Atlas were used for
confirmation. However, we could not obtain all the related IHC
data of tumor and adjacent normal samples for each gene due to
the database constraint. These findings may support new
therapeutic targets and potential useful for the advancement of
prognostic biomarker evaluation.
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