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Editorial on the Research Topic 
Beta-Cell Fate: From Gene Circuits to Disease Mechanisms

Diabetes represents a group of energy metabolism pathologies where the most common forms of the disease exhibit a polygenic and multifactorial aetiology (American Diabetes Association, 2005). Diabetes has truly reached worldwide epidemic proportions with 537 million people living with diabetes worldwide (International Diabetes Federation, 2021). While diabetes can be managed, for many people the onset of life-threatening complications including blindness, kidney failure, heart attacks, stroke, and lower limb amputation further exacerbates the impact on mortality and morbidity (6.7 million deaths related to diabetes complications were reported in 2021). The major difficulty is distinguishing from the plethora of modulations the ones directly responsible for disease initiation. To date it remains largely unknown what are the external factors and cellular signals leading to insulin-producing β-cells decay or dysfunction are and what molecular mechanisms and cellular processes characterize this transition. Identifying the mechanisms governing the onset and progression of these complex conditions is exceedingly challenging, due to their multifactorial environmental component and the intricate genetic susceptibility interaction. Nevertheless, the past decade registered important advances towards understanding these issues. Moreover, the role of the other pancreatic cell populations in the onset, progression, and treatment of diabetes started to be revealed (Chera and Herrera, 2016). These advances contribute towards a more comprehensive demultiplexing of the large diversity of diabetes mechanisms, which is expected to critically contribute to an unambiguous diabetes reclassification.
The aim of this Research Topic was to provide a snapshot of current studies focused on molecular circuits and cellular processes involved in the development, function, and dysfunction of β-cells, touching multiple aspects of islet niche and disease progression.
MOLECULAR LEVEL/NOVEL MOLECULAR PLAYERS
Both T1D and T2D have a complex polygenic and multifactorial aetiology, hence providing a highly variable cellular and molecular readout, even between genetically related individuals. Due to this intrinsic high level of complexity, caused by the overlap between environment and intricate genetic susceptibility, there are still not clearly defined molecular and cellular mechanisms of disease onset and progression. Conversely, monogenic disorders are caused by single gene defects occurring in all cells of the organism. Therefore, the characterization of the causative genes and their associated molecular mechanisms involved in monogenic diabetes onset contribute to understanding the complex non-inherited T1D or T2D disorders.
To date, the genetic predisposition for monogenic diabetes was mostly studied in populations from western countries. To bridge this gap, Zhong et al. analyzed the clinical and genetic characteristics of 200 diabetic patients from Northern China to map the monogenic diabetes prevalence and identify putative novel mutations responsible for MODY. The study pinpointed a heterozygous missense mutation in the coding region of FOXM1 (rs535471991) as a potentially pathogenic variant, most likely affecting the risk of MODY. In the same line, Lin et al. described a case of ABCC8-MODY, previously unreported in China.
Furthermore, by analyzing 160 Egyptian patients, Kassem et al. investigated the correlation between two SERPINB1 SNPs and type 2 diabetes risk. They revealed that SERPINB1 SNP rs152826 can potentially predict glycemic control in diabetic patients while suggesting that the AA genotype of this SNP can be associated with an overall better glycemic regulation. In contrast, the G allele might be a “risk allele” for poor glycemic control.
Although numerous human participants were recruited for genome-wide association studies (GWAS), the genome and environmental factors (lifestyle) variability usually confound datasets, especially when studying a complex trait like blood glucose homeostasis. Hence, meticulous animal model studies are still a critical tool in diabetes research allowing accurate manipulation of both environment and genetic variance. In an original research article, Aga, Hallahan et al. crossed normoglycemic lean inbred DBA mouse with the diabetes-prone New Zealand obese (NZO) strain to identify novel potential T2D genes by using positional cloning. Focused on the most prominent diabetes quantitative trait loci (QTL) Nidd/DBA on chromosome 4, this study identified Kti12, Osbpl9, Ttc39a, and Calr4 as potential T2D candidates.
Interestingly, the associated loci for T1D and T2D seem to be almost completely separated, despite a partially shared phenotype. However, some genes from the risk loci for T1D and T2D might actually interact in common networks in order to mutually regulate crucial pancreatic islet functions. In order to investigate this avenue, Kaur et al. used a dual systems genetics approach by analyzing 57 T1D and 243 T2D established GWAS loci. This study identified a number of novel plausible common candidate genes and pathways for T1D and T2D: nine genes in common T1D and T2D loci that harbor islet eQTLs in linkage disequilibrium with disease-associated variants (GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1, and HEMK1), and four genes in common T1D and T2D loci mutually regulated by palmitate and cytokines (ASCC2, HIBADH, RASGRP1, and SRGAP2).
Prolonged chronic hyperglycemia is a leading risk factor for developing micro- and macrovascular complications. Interestingly, some individuals do not develop these complications, despite long disease duration suggesting the involvement of protective mechanisms in these patients or, alternatively, the presence of risk factors in the patients that do progress to complications. Keindl et al. studied a panel of inflammatory markers in the plasma of long-term T1D patients with and without vascular complications and found that increased plasma level of a cytokine, soluble interleukin-2 receptor alpha (sIL-2R), was positively associated with the presence of vascular complications.
CELLULAR LEVEL/NOVEL CELLULAR PROCESSES
As also seen above, numerous alleles and mutations associated with increased risk of developing T1D or T2D diabetes (Fuchsberger et al., 2016) were identified in recent years, however cellular fate determination, identity, and function are also regulated at other levels, i.e. mRNA processing or protein folding, packing and sorting. Moss and Sussel summarise in a review the current knowledge on RNA-binding proteins, alternative-splicing events, and transcriptome-wide changes in RNA methylation landscape influencing specific functions of insulin-producing β-cells. As islet cells are mainly secretory cells handling a high amount of hormone production, there is strong pressure on the endoplasmic reticulum (ER) intrinsic folding capacity. This might lead to, for example, misfolded pro-insulin in β-cells triggering a physiological upregulation of the unfolded protein response (UPR) to restore homeostasis. Lenghel et al. discussed recent data addressing the role of UPR on the dedifferentiation or proliferation of β-cells, as well as in triggering inflammation at the islet level, and proposed possible therapies by using UPR for restoring β-cells homeostasis according to their stress level.
ISLET LEVEL/REGENERATIVE STRATEGIES
An increasing amount of recent studies suggest that diabetes is not only a β-cell disease, and several other islet cell types could also contribute to its physiopathology (Chakravarthy et al., 2017; Holst et al., 2017; Traub et al., 2017; Brissova et al., 2018; Cigliola et al., 2018; Rorsman and Huising, 2018; Furuyama et al., 2019; Cigliola et al., 2020; Nair et al., 2020). In a mini-review Bru-Tari et al. discussed recent work on islet cell heterogeneity and how this knowledge can be used to restore islet function and therefore to improve current β-cell replacement therapies. An alternative therapeutic strategy could be aimed at increasing the replication rate of insulin-producing β-cells (Nir et al., 2007), which is at very low levels in homeostatic islets. Along these lines, Jiang et al. studied the role of SNAPIN, a protein that interacts with SNARE complexes, in mediating β-cell proliferation. One potential approved drug with β-cell regenerative potential might be liraglutide, an analogue of glucagon-like peptide-1. Villalba et al. investigated the role of liraglutide on the restoration of β-cell mass in regards to neogenesis and transdifferentiation, although additional lineage-tracing studies will be required to clarify the origin of the cells involved in these processes.
PERSPECTIVES
A major goal of diabetes research is mapping the diverse specific cellular and molecular mechanisms leading to disease onset and progression. Advances in this area will lead to an improved diabetes classification and a more targeted management of the different diabetes subtypes. The need for this fine-tuned reclassification is clearly illustrated by the current high incidence of diabetes-related complications resulting from insufficient disease models supporting appropriate clinical decision-making. Better disease knowledge and, consequently, its improved management will help avoid unnecessary treatments, improve the patients’ quality of living, reduce costs and ultimately bend the mortality curve.
Thus, in our view, demultiplexing the pathophysiological mechanisms characterising diabetes will remain a key goal of diabetes research, which can be achieved by further 1) mapping associated genetic factors, including the mechanistic characterization and pathogenicity assessment of relevant genetic variants in different ethnic groups; 2) identifying key regulators controlling the cellular processes and molecular landscape leading to disease onset and complications; 3) developing top-notch cell and animal models for studying islet cell function, dysfunction, and extra-pancreatic confounding effects.
AUTHOR CONTRIBUTIONS
LG and SC drafted the editorial. KF, SG, and HS each contributed by revising and editing. LG, SG, HS, and SC handled the received manuscripts. All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.
FUNDING
This work was supported by funds from the Research Council of Norway (NFR 247577 (SC), 251041 (SC) and 314397 (SC); CoE 262613 (HS)); Novo Nordic Foundation (NNF15OC0015054 and NNF21OC0067325) to SC; Diabetesforbundets forskningsfond to LG, SC, and HS.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ACKNOWLEDGMENTS
We are grateful to the editors, authors, and reviewers for their contribution emphasizing new research avenues in this rapidly changing and challenging field.
REFERENCES
 American Diabetes Association (2005). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 28 Suppl 1, S37–S42. doi:10.2337/diacare.28.suppl_1.s37
 Brissova, M., Haliyur, R., Saunders, D., Shrestha, S., Dai, C., Blodgett, D. M., et al. (2018). α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cel Rep. 22 (10), 2667–2676. doi:10.1016/j.celrep.2018.02.032
 Chakravarthy, H., Gu, X., Enge, M., Dai, X., Wang, Y., Damond, N., et al. (2017). Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. Cel Metab. 25 (3), 622–634. doi:10.1016/j.cmet.2017.01.009
 Chera, S., and Herrera, P. L. (2016). Regeneration of Pancreatic Insulin-Producing Cells by In Situ Adaptive Cell Conversion. Curr. Opin. Genet. Dev. 40, 1–10. doi:10.1016/j.gde.2016.05.010
 Cigliola, V., Ghila, L., Thorel, F., van Gurp, L., Baronnier, D., Oropeza, D., et al. (2018). Pancreatic Islet-Autonomous Insulin and Smoothened-Mediated Signalling Modulate Identity Changes of Glucagon+ α-cells. Nat. Cel Biol. 20 (11), 1267–1277. doi:10.1038/s41556-018-0216-y
 Cigliola, V., Ghila, L., Chera, S., and Herrera, P. L. (2020). Tissue Repair Brakes: A Common Paradigm in the Biology of Regeneration. Stem Cells 38 (3), 330–339. doi:10.1002/stem.3118
 Fuchsberger, C., Flannick, J., Teslovich, T. M., Mahajan, A., Agarwala, V., Gaulton, K. J., et al. (2016). The Genetic Architecture of Type 2 Diabetes. Nature 536 (7614), 41–47. doi:10.1038/nature18642
 Furuyama, K., Chera, S., van Gurp, L., Oropeza, D., Ghila, L., Damond, N., et al. (2019). Diabetes Relief in Mice by Glucose-Sensing Insulin-Secreting Human α-cells. Nature 567 (7746), 43–48. doi:10.1038/s41586-019-0942-8
 Holst, J. J., Holland, W., Gromada, J., Lee, Y., Unger, R. H., Yan, H., et al. (2017). Insulin and Glucagon: Partners for Life. Endocrinology 158 (4), 696–701. doi:10.1210/en.2016-1748
 International Diabetes Federation (2021). IDF Diabetes Atlas. 10th Edn. Brussels, Belgium: International Diabetes Federation. 
 Nair, G. G., Tzanakakis, E. S., and Hebrok, M. (2020). Emerging Routes to the Generation of Functional β-cells for Diabetes Mellitus Cell Therapy. Nat. Rev. Endocrinol. 16 (9), 506–518. doi:10.1038/s41574-020-0375-3
 Nir, T., Melton, D. A., and Dor, Y. (2007). Recovery from Diabetes in Mice by β Cell Regeneration. J. Clin. Invest. 117 (9), 2553–2561. doi:10.1172/JCI32959
 Rorsman, P., and Huising, M. O. (2018). The Somatostatin-Secreting Pancreatic δ-Cell in Health and Disease. Nat. Rev. Endocrinol. 14 (7), 404–414. doi:10.1038/s41574-018-0020-6
 Traub, S., Meier, D. T., Schulze, F., Dror, E., Nordmann, T. M., Goetz, N., et al. (2017). Pancreatic α Cell-Derived Glucagon-Related Peptides Are Required for β Cell Adaptation and Glucose Homeostasis. Cel. Rep. 18 (13), 3192–3203. doi:10.1016/j.celrep.2017.03.005
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Ghila, Furuyama, Grey, Scholz and Chera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.









	
	ORIGINAL RESEARCH
published: 13 May 2020
doi: 10.3389/fendo.2020.00258






[image: image2]

Repurposed Analog of GLP-1 Ameliorates Hyperglycemia in Type 1 Diabetic Mice Through Pancreatic Cell Reprogramming

Adrian Villalba1, Silvia Rodriguez-Fernandez1, David Perna-Barrull1, Rosa-Maria Ampudia1, Laia Gomez-Muñoz1, Irma Pujol-Autonell1, Eva Aguilera2, Mireia Coma3, Mary Cano-Sarabia4, Federico Vázquez2, Joan Verdaguer5,6 and Marta Vives-Pi1,6*†


1Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain

2Endocrinology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain

3Anaxomics Biotech SL, Barcelona, Spain

4Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain

5Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, IRBLleida, University of Lleida, Lleida, Spain

6CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain

Edited by:
Simona Chera, University of Bergen, Norway

Reviewed by:
Quan Zhang, University of Oxford, United Kingdom
 Anabel Rojas, Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Spain

*Correspondence: Marta Vives-Pi, mvives@igtp.cat

†ORCID: Marta Vives-Pi http://orcid.org/0000-0003-3735-0779

Specialty section: This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology

Received: 13 January 2020
 Accepted: 07 April 2020
 Published: 13 May 2020

Citation: Villalba A, Rodriguez-Fernandez S, Perna-Barrull D, Ampudia R-M, Gomez-Muñoz L, Pujol-Autonell I, Aguilera E, Coma M, Cano-Sarabia M, Vázquez F, Verdaguer J and Vives-Pi M (2020) Repurposed Analog of GLP-1 Ameliorates Hyperglycemia in Type 1 Diabetic Mice Through Pancreatic Cell Reprogramming. Front. Endocrinol. 11:258. doi: 10.3389/fendo.2020.00258



Type 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. An ideal immunotherapy should combine the blockade of the autoimmune response with the recovery of functional target cell mass. With the aim to develop new therapies for type 1 diabetes that could contribute to β-cell mass restoration, a drug repositioning analysis based on systems biology was performed to identify the β-cell regenerative potential of commercially available compounds. Drug repositioning is a strategy used for identifying new uses for approved drugs that are outside the scope of the medical indication. A list of 28 non-synonymous repurposed drug candidates was obtained, and 16 were selected as diabetes mellitus type 1 treatment candidates regarding pancreatic β-cell regeneration. Drugs with poor safety profile were further filtered out. Lastly, we selected liraglutide for its predictive efficacy values for neogenesis, transdifferentiation of α-cells, and/or replication of pre-existing β-cells. Liraglutide is an analog of glucagon-like peptide-1, a drug used in patients with type 2 diabetes. Liraglutide was tested in immunodeficient NOD-Scid IL2rg−/− (NSG) mice with type 1 diabetes. Liraglutide significantly improved the blood glucose levels in diabetic NSG mice. During the treatment, a significant increase in β-cell mass was observed due to a boost in β-cell number. Both parameters were reduced after withdrawal. Interestingly, islet bihormonal glucagon+insulin+ cells and insulin+ ductal cells arose during treatment. In vitro experiments showed an increase of insulin and glucagon gene expression in islets cultured with liraglutide in normoglycemia conditions. These results point to β-cell replacement, including transdifferentiation and neogenesis, as aiding factors and support the role of liraglutide in β-cell mass restoration in type 1 diabetes. Understanding the mechanism of action of this drug could have potential clinical relevance in this autoimmune disease.

Keywords: beta cell regeneration, neogenesis, transdifferentiation, liraglutide, drug repositioning


INTRODUCTION

An essential requirement to cure type 1 diabetes is the recovery of β-cells lost after the autoimmune destruction. The pancreas can restore β-cells from different sources, after injury (1) or drug administration (2, 3) in mice, and upon pathophysiological conditions in humans (4). With the aim to develop new therapies for β-cell replacement, a repositioning analysis based on systems biology was performed to identify the regenerative potential of commercially available compounds.

Drug repositioning is a strategy for identifying new uses for approved drugs that are outside the scope of the medical indication. This approach uses a bioinformatics tool, based on networks of drugs, proteins, and diseases, which screens approved compounds that can be repurposed for other diseases (5). This has resulted in successful drug discovery for diseases (6) such as cancer (7) and Alzheimer's disease (8). Given that, we aimed to look for drugs that can induce β-cell replacement through α-cell to β-cell transdifferentiation (9), neogenesis from multipotent ductal progenitors (1), and/or replication of pre-existing β-cells (10). This resulted in the identification of liraglutide—an analog of glucagon-like peptide-1 (aGLP-1), a drug used in patients with type 2 diabetes (11), especially those with obesity (12).

GLP-1 is produced in the gut after food intake and acts by increasing insulin release. Liraglutide ameliorates insulin resistance in type 2 diabetes models (13, 14). Recently, GLP-1 has been shown to promote transdifferentiation from α-cells to β-cells (15, 16).

We report here that liraglutide ameliorates hyperglycemia in mice with type 1 diabetes by inducing insulin+glucagon+ cells and insulin-producing cells from the pancreatic ducts. This is the first description of an approved drug—identified by a repositioning—that promotes the generation of insulin-expressing cells from pancreatic ducts and ameliorates hyperglycemia in experimental type 1 diabetes.



MATERIALS AND METHODS


Systems Biology Analysis for Drug Discovery and Repositioning Analysis

The therapeutic performance mapping system is a top-down systems biology approach based on artificial intelligence and pattern recognition that integrates all available pharmacological knowledge to create mathematical models that simulate human pathophysiology in silico. The methodology employed has been previously described (17) and applied elsewhere (18, 19).

A manually curated list of proteins known to be involved in the mechanisms of β-cell regeneration—α-cell to β-cell transdifferentiation, neogenesis from ductal precursors, and β-cell replication—was obtained (Supplementary Table 1) and used for focusing the analysis toward β-cell regeneration in a human biological network context.

The human biological network created incorporated the available relationships (edges or links) between proteins (nodes) from a regularly updated in-house database drawn from public sources: KEGG (20, 21), REACTOME (22), INTACT (23), BIOGRID (24), HPRD (25), and TRRUST (26). All information of the key proteins defined during the molecular and the biological characterization and stored in relevant databases (drug targets, other diseases effectors, biomarkers…) was incorporated into the biological networks (27).

Artificial neural networks (ANNs) are supervised algorithms that identify relations between proteins (e.g., drug targets) and clinical elements of the network (18, 19) by inferring the probability of the existence of a specific relationship between two or more protein sets. This is based on a validation of the predictive capacity of the model toward the truth table, a selected collection of known input (drug targets)–output (indications) relationships defined through specific scientific literature search and hand-curated assignment of proteins to the conditions included in the biological effector database (17). The learning methodology used consisted of an architecture of stratified ensembles of neural networks as a model, trained with a gradient descent algorithm to approximate the values of the given truth table. The neural network model used was a multilayer perceptron (MLP) neural network classifier. The MLP gradient descent training depends on randomization initialization and, to avoid random errors, 1,000 MLPs are trained with the training subset and the best 100 MLPs are used. In order to correctly predict the effect of a drug independently of the number of targets, different ensembles of neural networks are trained for different subsets of drugs according to their number of targets (drugs with one target, two targets, three targets…). Then, the predictions for a query drug are calculated by all the ensembles and pondered according to the number of targets of the query drug (the difference between the number of targets of the query and the number of targets of the drugs used to calculate each ensemble is used to ponder the result of each ensemble). A cross-validation with the truth table information showed that the accuracy of the described ANNs to reproduce the indications compiled in DrugBank (28, 29) is 81.23% for those drugs with all targets in the human biological network. ANNs were used to screen the predicted relationship of 6,605 different drugs toward the β-cell regeneration molecular definition. The repurposed drug candidates were sorted and selected by its relationship with β-cell regeneration mechanisms.



Mice and Diabetes Induction

NOD mice, immunodeficient NOD.SCID-IL2Rγ−/− (NSG) mice, and C3HeB/FeJ mice were bred in our own facility. The NOD and NSG mice were kept under specific pathogen-free conditions. The NSG model was selected for its lack of an adaptive immune system, resulting in the absence of autoimmunity, and allowing to determine the raw effect of the drug. Type 1 diabetes was induced in NSG mice at 8–14 weeks of age by a single i.p. injection of streptozotocin (STZ, 150 mg/kg) (Sigma-Aldrich). Type 1 diabetes was confirmed at 48–72 h post-STZ injection, after either two successive 2-h fasting blood glucose levels higher than 250 mg/dl or with one higher than 300 mg/dl. The mice were euthanized by cervical dislocation. All animal studies were approved by the institutional animal ethics committee.



Treatment With aGLP-1

Immediately after type 1 diabetes diagnosis, the NSG mice (n = 12 mice/group) were treated with liraglutide (Victoza®, Novo Nordisk A/S), injected (s.c.) daily up to 30 days, following the dosage of 0.3 mg/kg at day 1, 0.6 mg/kg at day 2, and 1 mg/kg from day 3 onwards as described (30). After the withdrawal of the liraglutide treatment, the mice were maintained for 5 days. The control group (n = 6 mice) received phosphate-buffered saline (PBS). Blood glucose was determined twice weekly, after 2 h of fasting, throughout the study.



Intraperitoneal Glucose Tolerance Test and Insulin Tolerance Test

Intraperitoneal glucose tolerance test (IPGTT) was performed in fasting conditions in the three groups: (1) diabetic NSG mice responding to liraglutide after 15 days of treatment (Lira, n = 3), (2) untreated diabetic and hyperglycemic NSG mice (T1D, n = 3), and (3) healthy and normoglycemic NSG mice (sham, n = 3). At point 0, basal glucose level was determined. The mice were subsequently given an i.p. injection of 2 mg of glucose (Sigma-Aldrich) per gram of body weight and glycemia was measured after 15, 30, 60, 120, and 210 min. Insulin tolerance test (ITT) was performed in fasting conditions in 8-week-old and normoglycemic NOD mice and C3HeB/FeJ mice injected s.c. with insulin (0.5 U/kg, n = 3) or liraglutide (1 mg/kg, n = 3). Glycemia was determined after 15, 30, and 60 min.



Immunofluorescence Staining and Histometric Analysis

Immunofluorescence staining was performed to identify pancreatic insulin-producing cells in a minimum of three mice per condition. Briefly, the pancreas were harvested and snap-frozen in an isopentane/cold acetone bath. A minimum of eight cryostat sections (5 μm) from every organ were sequentially stained by indirect immunofluorescence with antibodies to insulin, glucagon, CK19 (Sigma-Aldrich), or Pdx1 (Abcam) and FITC- or TRITC-labeled secondary antibodies (Sigma-Aldrich) as described (31). The nuclei were stained with Hoechst (Invitrogen). The samples were observed in a fluorescence microscope and analyzed (ImageJ Software) (32). For histometric analysis, six mice per group were used. To determine the β-cell counts, one section every 150 μm of tissue was sampled as described (33), resulting in 12–16 sections per pancreas. The β-cell mass was calculated by multiplying the relative insulin+ area per total pancreas weight, and the β-cell number as well as the insulin+ aggregates were calculated by manually counting the nuclei within the insulin+ area and extrapolating to the whole organ as previously described (34). The β-cell size was assessed by dividing the insulin+ area per total nuclei (34). The intensity of fluorescence was measured in arbitrary units using Fiji (32).

To determine the insulin+glucagon+ cells, pancreas from three mice from each group were analyzed (T1D, Lira 48 h, Lira, post-Lira, and sham). Briefly, 12 non-overlapping pancreatic cryostat sections from each mouse were stained for insulin and glucagon. A minimum of 72 islets per mouse was considered and the percentage of islets that contained bihormonal cells was determined. To assess ductal insulin+ cells, pancreas from four mice from each group were analyzed (T1D, sham, and Lira). Briefly, four non-overlapping pancreatic cryostat sections from each mouse were stained for CK19 and insulin. A minimum of 23 ductal areas per section was considered and the percentage of ducts that contained insulin+ cells was determined. To prove the colocalization of insulin and glucagon in islet cells and insulin and CK19 in ductal cells, confocal microscopy was performed using an Axiobserver Z1 (Zeiss) and by analyzing 1-μm sections.



In vivo Tracking of Liraglutide

Liraglutide was conjugated to AlexaFluor750 (AF750, Invitrogen) using a standard method (Thiol-Reactive Probes, Invitrogen). In vivo and ex vivo near-infrared fluorescence imaging was performed (Pearl Impulse imaging system, LI-COR) in NOD mice anesthetized with ketamine (50 mg/kg) and xylazine (5 mg/kg) at 15 and 60 min after the s.c. administration of 1 mg/kg of AF750-liraglutide in 50 μl of PBS. At the end of each checkpoint, spleen, stomach, fat, heart, liver, pancreas, lungs, kidney, salivary glands, thymus, and bladder were imaged ex vivo. Fluorescent signal intensity was semi-quantitatively assessed: the levels were normalized by subtracting the background and represented as a relative index of fluorescence in each organ per gram of tissue.



Islets and β-Cell Line

Islets from young non-diabetic NOD mice (n = 7) were obtained from pancreas digested with collagenaseP (2.5 mg/ml in PBS; Sigma-Aldrich), after having been injected through the common bile duct, resected, and incubated at 37°C for 30 min. The pancreas was dissociated and the islets were hand-picked. Groups of 50 islets were cultured in a medium of high (10 mM, RPMI-1640, Biowest) or normal glucose concentration (6.1 mM, Ham F-10, Gibco) as described (35), both in basal conditions—culture media—and by adding liraglutide at 1,000 nM for 48 h.

The β-cell line NIT-1 (ATCC) (36) was cultured (35) with liraglutide at 10, 100, and 1,000 nM for 12, 24, and 48 h. Viability was assessed with annexin V (AnnV) PE (Immunotools) and 7-amino-actinomycin D (7aad) labeling (BD Pharmingen) and analyzed with FACS Canto II (BD Biosciences).



Gene Expression Analysis

To determine the effects of liraglutide on gene expression, quantitative RT-PCR was performed. Briefly, RNA was isolated from islets using RNeasy Micro Kit (Qiagen) and reverse-transcribed with a cDNA Reverse-Transcription Kit (ThermoFisher Scientific). cDNA synthesis was performed using random hexamers (0.5 mg/ml, BioTools) and reverse transcriptase Moloney–murine–leukemia–virus (200 U/ml, Promega). Targeted cDNA was pre-amplified with TaqMan PreAmp MasterMix (ThermoFisher Scientific). Quantitative RT-PCR assays were performed with TaqMan universal assay (ThermoFisher Scientific) on a LightCycler®480 (Roche) using the following TaqMan assays: Ins2 (Mm00731595_gH), Gcg (Mm00801714_m1), Ki67 (Mm01278617_m1), and Il17a (Mm00439618_m1). The expression for each gene of interest was normalized to that of the housekeeping gene Gapdh (Mm99999915_g1), as described in the 2−ΔCt method (37). Values from islets were normalized using their respective basal controls and represented as a ratio (relative gene expression).



Effect of Liraglutide on NIT-1 Cell Line

NIT-1 cells were stained with anti-CD44 BV786 (BD Biosciences), anti-class I major histocompatibility complex (MHC) eFluor-450 (eBioscience), anti-CD14 PE, and anti-CD49b FITC (Immunotools). Viability was assessed with AnnV PE (Immunotools) and 7aad (BD Biosciences) as detailed above. Median fluorescence intensity and viability were determined using flow cytometry (LSR Fortessa, BD Biosciences). Corresponding fluorescence minus one staining was used as control. The data were analyzed using FlowJo (Tree Star Inc).



Statistical Analysis

Prism 7.0 (GraphPad Software Inc.) was used to perform the statistical analyses. For comparisons of unpaired data, a non-parametric Mann–Whitney test was used. The statistical tests applied to each data set are specified in each figure legend.




RESULTS


Liraglutide Is a Repurposed Candidate for β-Cell Regeneration

A total of 28 non-synonymous repurposed drug candidates showed a p < 0.05 (predicted value ≥76.075%), and 16 were selected as type 1 diabetes treatment candidates in the context of pancreatic β-cell regeneration. Drugs with poor safety profile were further filtered out. Lastly, we selected liraglutide (predicted value of 96.88%) that fulfilled all the criteria and had a novel, potentially beneficial mechanism toward β-cell regeneration.



Liraglutide Improves Hyperglycemia in Diabetic Mice

We determined the effect of liraglutide in immunodeficient NSG mice because of their absence of autoimmunity and low phenotypic heterogeneity. Type 1 diabetes was induced in NSG mice by a single STZ injection. All mice showed disease symptoms at 48–72 h after administration. A total of 50% (six of 12) of the treated NSG mice were responders to liraglutide according to the improvement of blood glucose levels during treatment. The remaining six mice did not have decreased blood glucose levels in any way. No differences in terms of initial fasting glycemia (mg/dl) were found between the responder (346.8 ± 72.5, mean ± SD) and the non-responder (397.7 ± 57.71) mice. The NSG mice with diabetes partially recovered normoglycemia during liraglutide administration until day 30 (Lira responders) when compared to the non-treated mice (T1D) (Figure 1A). After treatment withdrawal, all mice became hyperglycemic. A statistical difference between the treated and the control groups was observed when analyzing the area under the curve (AUC) after 15 days of treatment (Figure 1B). The response of the NSG mice to liraglutide after an acute increase in blood glucose levels showed that the treated diabetic mice (Lira) recovered normoglycemia at 210 min after glucose injection similarly to the non-diabetic group, whereas the diabetic non-treated mice remained hyperglycemic (>400 mg/dl, T1D) (Figure 1C). Significant differences found between the treated and the non-treated mice demonstrate that insulin production and secretion improve by the effect of this aGLP-1. The analysis of AUC showed an intermediate response to glucose stimulation in the liraglutide-treated group (Figure 1D). To elucidate whether liraglutide acts in a similar manner as insulin administration, an ITT was performed in normoglycemic NOD mice. The group treated with insulin displayed a reduction in glycemia after 30 min that was maintained until 60 min. By contrast, the liraglutide-treated group displayed an increase in glycemia until 30 min, which was normalized at 60 min similarly to the insulin-treated animals (Figure 1E). Despite that no significant differences were observed, the opposite tendency between both groups observed in the AUC (Figure 1F) revealed that liraglutide and insulin do not act similarly. To determine the effect of the genetic background, the acute effect of liraglutide was also determined on the C3HeB/FeJ strain. The results showed an insulinotropic effect of liraglutide in this strain of mice (Supplementary Figure 1) with a tendency to differ at the endpoint (60 min) in comparison to insulin.
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FIGURE 1. Effect of liraglutide in diabetic immunodeficient NOD.SCID-IL2Rγ−/− (NSG) mice. (A) Two-hour fasting blood glucose levels (mg/dl) in mice rendered diabetic by a single dose of streptozotocin (150 mg/kg) and then treated with daily s.c. injections of liraglutide (Lira responders, circles) and phosphate-buffered saline (T1D, squares) from day 0 to 30 (dashed line). The filled area corresponds to normoglycemia levels in mice. (B) Area under the curve (AUC) of the graph in (A) at day 15, when all animals remain alive. Results are mean ± SD, and differences were found between groups (**p < 0.01, Mann–Whitney test). (C) Intraperitoneal glucose tolerance test in diabetic NSG mice treated with daily s.c. liraglutide for 15 days (Lira, dashed line), non-treated diabetic animals (T1D, continuous line), and normoglycemic mice (sham, dotted line). Statistical differences were found between Lira and T1D groups (+p < 0.05, ++p < 0.01, + + +p < 0.001, Mann–Whitney test) and in both groups when compared to sham (dotted line) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Mann–Whitney test). The filled area corresponds to normoglycemia levels in mice. (D) AUC of the graph in (C). The results are mean ± SD, and differences were found between groups (**p < 0.01, ****p < 0.0001, Mann–Whitney test). (E) Insulin tolerance test performed in normoglycemic mice injected with Lira (1 mg/kg, dashed line) or insulin (0.5 U/kg, continuous line). (F) AUC of the graph in (E). The results are mean ± SD; no statistical differences were found between groups.




Liraglutide Transiently Increases the β-Cell Mass

The β-cell mass of the NSG mice after 7–15 days of treatment with liraglutide significantly increased when compared to that of the diabetic non-treated mice, although they did not reach normal levels (Figure 2A). This effect was lost 5 days after withdrawal. In this sense, an increase in β-cell number was detected during the treatment in comparison to T1D and post-treatment groups (Figure 2B). These alterations were maintained even with normalized values to body weight or pancreatic tissue (Supplementary Table 2). Similarly, the percentage of islets emerging from ducts was increased both during treatment and after therapy removal (Figure 2C). These alterations were not related to changes in either β-cell size (Figure 2D) or insulin fluorescence intensity (33) (Figure 2E).
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FIGURE 2. Effect of liraglutide in the endocrine pancreas of diabetic immunodeficient NOD.SCID-IL2Rγ−/− (NSG) mice. (A) β-cell mass (mg), (B) β-cell number, (C) percentage of budding islets (arising from ducts), and (D) β-cell size (μm2) from NSG mice rendered diabetic by streptozotocin and treated with phosphate-buffered saline (T1D), with daily s.c. injections of liraglutide during 7–15 days (Lira), 5 days after the withdrawal of the liraglutide treatment (post-Lira) and normoglycemic mice (sham). The results are mean ± SD, and differences were found between groups (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Mann–Whitney test). (E) Intensity of fluorescence of insulin staining in 5-μm cryostat pancreatic sections of NSG mice. The intensity was measured for all the islets analyzed per animal, and the mean of the intensities of all the islets is represented as a symbol. The results are mean ± SD, and no statistical differences were found between groups (Mann–Whitney test).




Liraglutide Induces Endocrine Cell Rearrangement in the Pancreas

The histological analysis revealed the presence of bihormonal cells (insulin+glucagon+) in the islets of NSG mice at the beginning of the treatment with liraglutide but not after 7–15 days or withdrawal (Figure 3). A total of 48.14 ± 1.53% of islets contained bihormonal cells, and the percentage of insulin+glucagon+ cells in relation to the total number of beta cells in the islets was 11.38 ± 2.97%. No bihormonal cells were detected in the other groups. Confocal microscopy images prove the colocalization of insulin and glucagon in the same cell (bihormonal cells) (Supplementary Figure 2).
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FIGURE 3. Assessment of the effect of liraglutide in the induction of bihormonal insulin+ glucagon+ cells. Triple immunofluorescence staining of 5-μm cryostat pancreatic sections for α-cells (glucagon, green) and β-cells (insulin, red) in immunodeficient NOD.SCID-IL2Rγ−/− mice rendered diabetic by streptozotocin and treated with phosphate-buffered saline (T1D), or with liraglutide for 48 h (Lira 48 h), for 7–15 days (Lira) and after withdrawal of liraglutide at day 30 (post-Lira). Normoglycemic mice were included as control (sham). The white arrows in Lira 48 h staining depict bihormonal cells. The nuclei in all pictures were stained with Hoechst (blue). The scale bar indicates 5 μm.


Moreover, the pancreatic sections of the NSG mice treated for 7–15 days and after withdrawal revealed the existence of insulin+ bodies emerging from ducts and without resembling the classical islet shape (Figure 4A). Between 23 and 47 ducts (CK19+) were analyzed in every pancreatic section. The percentage of ducts that contained insulin+ cells was 50.83 ± 7.31% in mice treated with liraglutide (Lira group), whereas no ducts with insulin+ cells were detected in normoglycemic mice (sham group, 0%) or untreated T1D mice (T1D, 0%). The ducts that contained insulin+ cells were analyzed and, in these ductal areas, 82.85 ± 4.37% of doble-positive CK19+ insulin+ cells were found. Interestingly, the ductal areas positive for insulin in mice treated with liraglutide were detected from 48 h to the end of the treatment and even 5 days after the withdrawal (Figure 4B, white arrows). Confocal microscopy images prove the colocalization of insulin and CK19 in the same cell (Supplementary Figure 3). These insulin+CK19+ cells were glucagon-negative (Figure 4C). Moreover, we assessed the expression of the β-cell marker Pdx1 in ductal cells, identifying a subpopulation of Pdx1+ cells in pancreatic ducts from treated animals (white arrow, Figure 4D).
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FIGURE 4. Assessment of the effect of liraglutide in the induction of insulin-expressing ducts. (A) Staining for β-cells in the pancreas of immunodeficient NOD.SCID-IL2Rγ−/− (NSG) mice rendered diabetic by streptozotocin and treated with phosphate-buffered saline (PBS; T1D), or with liraglutide for 48 h (Lira 48 h), for 7–15 days (Lira) and after the withdrawal of liraglutide at day 30 (post-Lira). The Lira and post-Lira groups show the presence of neo-islets emerging from the ducts. Normoglycemic mice were included as control (sham). (B) Staining for ductal cells (CK19, green) and β-cells (insulin, red) in the same groups than in (A). The white arrow depicts a CK19+ duct that is positive for insulin expression. (C) Staining for glucagon (green) and insulin (red) in ductal cells of animals treated with liraglutide for 7–15 days (Lira). (D) Staining for Pdx1 (green) and insulin (red) in the ductal part of diabetic NSG mice treated with PBS (T1D) or liraglutide for 7–15 days (Lira). The white arrows depict positivity for both Pdx1 and insulin in the ducts. The nuclei in all pictures are stained with Hoechst (blue). The scale bar in all pictures indicates 50 μm.


To determine if liraglutide effects could be due to the accumulation in the pancreas, its biodistribution was assessed. The in vivo tracking of AF750-liraglutide showed an affinity for several organs including the pancreas that was higher at 15 min (Figure 5A) than at 60 min (Figure 5B), revealing an acute effect.
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FIGURE 5. Tracking of AF750-labeled liraglutide in prediabetic NOD mice and determination of gene expression in islets of Langerhans. (A) Histogram of ex vivo fluorescent signal relative to the grams of tissue of several organs from NOD mice at 15 min and (B) at 60 min after a s.c. injection of AF750-labeled liraglutide. The results are mean ± SEM of three independent experiments. (C,D) Ratio of relative gene expression of the selected genes in isolated islets of Langerhans after 48 h of 1,000-nM liraglutide treatment (n ≥ 3) in relation to basal conditions analyzed by qRT-PCR in conditions of normoglycemia and hyperglycemia. Gene expression was normalized to Gapdh. The bars show the mean ± SD of the log2 of fold change using basal transcription as standard value.


To further investigate the short-term effects of liraglutide, the expression of specific genes was assessed in islets from healthy NOD mice (three to four per group) cultured with or without liraglutide for 48 h in normal and high glucose concentrations. Previously, and in order to discard autoreactive insulitis in the islets, the expression of Il17a was assessed and found negative (data not shown). After exposure to liraglutide, a trend to upregulate Gcg and to downregulate Ki67 was observed both at doses of 6.1 mM glucose (Figure 5C) and 10 mM glucose (Figure 5D). Finally, after exposure to liraglutide, the insulin gene (Ins2) appeared upregulated in normal glucose concentration conditions and slightly downregulated in high glucose concentration conditions.



Liraglutide Alters Membrane Molecule Expression in NIT-1 Cell Line

NIT-1 cell viability remained unaffected by liraglutide (10, 100, and 1,000 nM) at both 12 and 48 h (Figure 6A) but showed a deleterious effect on the NIT-1 cell line at 100 and 1,000 nM during 24 h (Figure 6A). Interestingly, liraglutide increased the expression of adhesion molecules such as CD49b, CD44 (Figure 6B), and CD14, a receptor of the innate immunity, and reduced the expression of MHC class I.
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FIGURE 6. Effect of liraglutide in the NIT-1 β-cell line. (A) Percentage of viable NIT-1 cells (annexin V PE−, 7aad−) after 12, 24, and 48 h of co-culture with increasing liraglutide concentrations (10, 100, and 1,000 nM) and control condition (*p < 0.05, Mann–Whitney test). (B) Median of fluorescence intensity for CD49b, CD44, CD14, and MHC class I surface expression (*p < 0.05, Mann–Whitney test).





DISCUSSION

Drug repositioning is an attractive strategy for identifying new uses for approved drugs. The algorithm of this method was fed with target proteins known to be involved in β-cell restoration processes—(i) α-cell to β-cell transdifferentiation (9), (ii) neogenesis from multipotent ductal progenitors (1), and (iii) self-replication of pre-existing β-cells (10)—and resulted in the identification of liraglutide as a repurposed drug. As mentioned, liraglutide is an aGLP-1 used to treat type 2 diabetes (11, 12). A recent clinical trial demonstrates that liraglutide reduced HbA1c and insulin requirements in patients with long-standing type 1 diabetes (38). Moreover, it has been described that liraglutide improves β-cell function in alloxan-induced diabetic mice (39).

Our data show that liraglutide improves hyperglycemia, even reaching normoglycemia, in NSG mice. This model was selected for its lack of an adaptive immune system, resulting in immunodeficiency, and absence of autoimmunity. This fact allows us to determine the effect of the drug without autoimmunity interferences and reduced heterogeneity. The amelioration of hyperglycemia was also observed upon glucose stimuli (IPGTT) in diabetic mice treated with liraglutide, whereas diabetic non-treated mice remained hyperglycemic. By contrast, the administration of liraglutide to normoglycemic NOD mice resulted in a weak and transient increase of glycemia levels, as opposed to the effects of insulin administration. Taken together, these results indicate that liraglutide ameliorates hyperglycemia both in fasting and fed conditions but acting differently to insulin. The acute effect of liraglutide on a different mouse strain was insulinotropic as expected. These differences between NOD and C3 mice could be due, at least in part, to genetic differences in the structure and the size of the endocrine pancreas in both strains, specifically in the α- and β-cell mass (40). Another influencing factor should be the islet leukocyte infiltration, a feature of the NOD model, which promotes an inflammatory microenvironment, thus affecting insulin metabolism. The acute effect of liraglutide on a different mouse strain—C3 mice were normoglycemic and free of insulitis—was insulinotropic as expected. The NOD mice are also normoglycemic, but they display islet leukocyte infiltration despite no signs of overt diabetes having been observed at 8 weeks of age. The observation of spontaneous insulitis is restricted to mice with a diabetogenic genetic background, specifically NOD and NOR strains, and CD-1 outbred mice (31). The C3 mice display non-diabetogenic genetic background, do not develop spontaneously autoimmune diabetes, and may have diabetes that can be induced by STZ treatment (41). In NOD mice, insulitis promotes an inflammatory microenvironment, thus causing β-cell stress and metabolic abnormalities (42, 43). Liraglutide administered to NOD mice may also impair insulin secretion at this stage because of the inflammatory environment in this strain.

Intriguingly, the effect was transient as previously described (30). This effect correlated with the transitory increase in the β-cell mass, confirming that insulin secretion induced by liraglutide (11) is not the only event that contributes to the restoration of normoglycemia. This increase is not due to β-cell hyperplasia but by an increase in the number of insulin+ cells and the formation of neo-islets emerging from ducts. Thus, it is reasonable to speculate that the continuous presence of liraglutide is required for the maintenance of islet β-cell mass by promoting the main mechanism responsible for the improvement of blood glucose levels in treated mice, at least during the first 30 days of treatment stages. Elucidating the mechanisms of action of liraglutide in diabetic mice with diabetogenic background will contribute to the design of β-cell regenerative strategies.

To further explore the regeneration mechanism, we then searched for processes described in any of the pathways that liraglutide was predicted to act on. Suggesting transdifferentiation, transient bihormonal cells were found within the islets, a feature of α-cell to β-cell conversion detected after β-cell loss (44). Because glycemia normalization occurs almost immediately after the first injections, newly formed insulin+ cells with an α-cell origin could contribute to glucose homeostasis. Our results fit well with the recent demonstration that exendin-4, another aGLP-1, also induces bihormonal cells as a consequence of transdifferentiation (16). Other drugs that induce this type of transdifferentiation also cause extreme islet hyperplasia during the early stages of administration (3), but this fact has not been observed with liraglutide, thus suggesting that liraglutide might act through different pathways. Bihormonal cells detected at 48 h after administration agreed with an increase in both insulin and glucagon transcripts in islets treated in vitro with liraglutide. Although hormone colocalization per se is not a demonstration of a real conversion from α-cell to β-cell, it is logical to speculate that these cells correspond to emergent β-cells. In mice, α-cells can become insulin-expressing cells after β-cell ablation, thus promoting diabetes recovery. Recent results confirm that human α-cells are able to secrete insulin and reverse diabetes, but surprisingly, these cells express α-cell markers (45). Nevertheless, to prove that liraglutide induces a real conversion from glucagon-producing cells into insulin-producing β-cells—as reported with GLP-1 peptide (16), it would be of interest to perform lineage tracing experiments with transgenic models.

Furthermore, during the treatment and even after removal of liraglutide, insulin+ bodies were found to be emerging from CK19+ ductal cells that expressed insulin. Whether these neo-islets emerged from specific multipotent progenitors remains to be explored, but it has been proposed that early transdifferentiation promotes later neogenesis from ducts (3, 46). Further experiments are required in order to confirm this, given that the cell population identified in the ductal part are Neurogenin3+ progenitors that underwent epithelial-to-mesenchymal transition to differentiate into β-like cells (9, 47). Neo-islets have also been reported in human pancreas (48), including those from patients with type 1 diabetes (49), but this is the first demonstration of insulin+ cells with a ductal origin caused by liraglutide. Pdx1, a mature β-cell and endocrine progenitor marker, also depicted a ductal population. Because GLP-1 receptor is also expressed in ductal cells (50), insulin expression could be induced by liraglutide in these cells. These results suggest that the role of this drug in ameliorating hyperglycemia follows a mechanism that is non-exclusive to β-cells and has other players involved, such as islet insulin+glucagon+ cells and ductal insulin-expressing cells. The herein reported findings go beyond the previously reported beneficial effect of liraglutide in β-cell function, both in vivo (39) and in vitro in terms of insulin secretion (51). However, neogenesis from ducts was not reported in a previous study due to differences in dosage, disease induction, and especially lineage tracing issues (39). It is difficult to assess which insulin-producing cell types are quantitatively contributing to the improvement of hyperglycemia. First, despite the fact that the percentage of bihormonal cells at 48 h is almost 11% of total insulin+ cells, these data reflect a specific stage, and it is still unknown how many insulin+ cells are arising from transdifferentiation throughout the treatment. Indeed it is reasonable to speculate that ductal insulin+ cells are participating in insulin secretion, but it remains to be investigated if they are glucose responsive. Finally, both a decrease in the percentage of budding islets and the fact that liraglutide is an insulinotropic agent may explain the transient effect in the glycemia after withdrawal.

Taking these observations together, we propose a two-step simultaneous mechanism of β-cell regeneration (Figure 7): first, an early, acute, and transient transdifferentiation mechanism from α-cell to β-cell (3, 38) and, second, an early and permanent neogenic process of insulin+ cells from the ducts. After withdrawal, the first mechanism seems to be suppressed—probably after the loss of insulin+ cell identity—while the second one persists.
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FIGURE 7. Proposed model of Lira-induced β-cell regeneration. The islets displaying their physiological conditions are depleted from most β-cells when treated with streptozotocin, while the ductal part of the pancreas remains unaffected. We propose that liraglutide can induce a regeneration process in two steps. The first one, triggered at least 48 h after the treatment, consists in the transdifferentiation from mature α-cells into new insulin-expressing β-like cells. During the second step, while β-cell mass seems to be partially recovered, neo-islets formed by insulin-expressing β-like cells from CK19+ cells in the ductal part of the pancreas arise from the ducts.


In conclusion, liraglutide, a repurposed compound, ameliorates hyperglycemia in experimental type 1 diabetes. Our results point to β-cell replacement, including transdifferentiation and neogenesis, as aiding factor. Liraglutide could be a candidate to restore β-cell mass in combined therapies, together with an immunomodulatory strategy to arrest autoimmunity.
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Aims: Serine protease inhibitor B1 (SerpinB1) is a neutrophil elastase inhibitor that has been proved to be associated with type 2 diabetes mellitus and pancreatic β-cell proliferation. In this study, we investigated 2 SERPINB1 SNPs, rs114597282 and rs15286, regarding their association with diabetes risk and various anthropometric and biochemical parameters in Egyptian type 2 diabetic patients.

Materials and Methods: A total of 160 subjects (62 control and 98 type 2 diabetic patients) participated in this study. Various anthropometric and biochemical parameters were assessed. Genotyping assay for the two SNPs was done using TaqMan genotyping assays. The association of rs15286 variants with risk of diabetes, various biochemical parameters, and glycemic control in diabetic patients was assessed.

Results: All genotyped subjects were found to be homozygous TT for SERPINB1 rs114597282. All genotype variants of SERPINB1 rs15286 were found in our Egyptian subjects with A being the minor allele. The SNP rs15286 was not found to be associated with risk of diabetes. The AA genotype was found to be associated with lower fasting plasma glucose, lower HbA1c%, and better β-cell function and glycemic control in diabetic patients. The G allele was associated with poor glycemic control.

Conclusions: The genotypes AA, AG, and GG of SERPINB1 gene SNP rs15286 are all represented in the studied sample; however, it is not associated with risk of diabetes. Genotype AA of SNP rs15286 is associated with better glycemic control and better β-cell function in diabetic patients, while the G allele potentially represents the “risk allele” of poor glycemic control.

Keywords: serpinB1, type 2 diabetes mellitus, β-cell dysfunction, insulin resistance, hepatokines, gene polymorphism


INTRODUCTION

Diabetes mellitus (DM) is a complex multifaceted metabolic disorder. Unfortunately, its global prevalence is growing at an alarming rate especially in middle- and low-income countries (1). The number of people suffering DM globally has risen from about 108 million in 1980 to nearly 422 million in 2014 (2), with a further expected increase to about 630 million people worldwide by the year 2045 (1). Type 2 DM is the most common type of DM, and genetic-predisposition accounts for nearly 60–90% of the susceptibility to its development (3). During the natural course of the disease, insulin resistance and β-cell loss or dysfunction are potential drivers for the various metabolic abnormalities associated with type 2 DM (3, 4). When the functional insulin-secreting β-cell mass is compromised, the normal physiological glucose homeostasis is disrupted and type 2 DM manifests (5).

Accordingly, vigorous efforts have been exerted over the past years to develop strategies which would help to compensate and/or expand functional β-cells. Among those approaches was the identification of factors/mediators capable of inducing proliferation and expansion of preexisting functional β-cells (5, 6). That approach attracted much interest especially that β-cell expansion and compensation capabilities have been reported in various conditions associated with insulin resistance such as obesity (7, 8) or pregnancy (9). Interestingly, in this regard, El-Ouaamari and coworkers highlighted the integrative cross talk between the liver and pancreatic β-cells via the secretion of hepatocyte-derived factor(s) in response to insulin resistance which induces β-cell proliferation (10).

Among these hepatocyte-derived factors, serine protease inhibitor B1 (serpinB1; serpin family B member 1) has been identified to play an important role in that process of β-cell compensation in response to insulin resistance (11). Interestingly, serpinB1 was also previously reported to act as a neutrophil elastase inhibitor (12), and improving glucose tolerance and insulin sensitivity was found to be associated with such inhibition (13). Additionally, a recent report sheds light on the possible association of serpinB1 with insulin sensitivity in healthy adults (14). It is noteworthy that serpinB1 is not the only serpin which could be associated with insulin sensitivity. Long before, the visceral adipose tissue-derived serpin—Vaspin—was also identified as an interesting insulin-sensitizing adipokine (15), with a putative interplay with other mediators in compensatory mechanisms for insulin resistance in type 2 DM (16).

Nevertheless, genetic variants of the SERPINB1 gene and their possible implication into β-cell dysfunction and reduced β-cell compensation in diabetic patients have not been investigated (17). Just one family has been identified with a possibly damaging SERPINB1 variant associated with diabetes (11). Thus, knowing that genome-wide association studies have revealed several genetic variants related to compromised β-cell function to be associated with type 2 DM (18, 19), as well as the extra layer of complexity in different ethnic populations (20), this inspired us to investigate if genetic variants of SERPINB1 are associated with diabetes risk, glycemic control, and β-cell dysfunction in Egyptian type 2 diabetic patients. According to our knowledge, this is the first report investigating the association of SERPINB1 genetic variants with type 2 DM.



MATERIALS AND METHODS


Study Population and Anthropometric Measurements

This study was approved by the ethical committee of the National Institute of Diabetes and Endocrinology—General Organization for Teaching Hospitals and Institutes (NIDE—GOTHI) under number IDE00203, and informed consent was obtained from every enrolled subject. The study was carried out in accordance with the Declaration of Helsinki recommendations and regulations (21). A total of 160 subjects were enrolled in the study; 62 non-diabetic healthy control subjects and 98 patients with type 2 DM. The definition of a non-diabetic was a subject who has a fasting plasma glucose (FPG) level lower than 110 mg/dl and has no family history of type 2 DM. All the control subjects were not receiving any dietary supplements or medications and were not suffering any health problems. The 98 patients with type 2 DM were recruited from the outpatient clinic of the National Institute of Diabetes and Endocrinology (NIDE). These 98 patients were further classified into diabetics with good glycemic control (HbA1c ≤ 7%) and diabetics with poor glycemic control (HbA1c > 7%) as described previously (22) for odds ratio calculations. The characteristics of all the study subjects are summarized in Table 1. The exclusion criteria included renal or hepatic disease, thyroid dysfunction, acute or chronic inflammatory disease, type 1 DM, ischemic cardiovascular disease, cancer, acute or chronic infections, alcohol or drug abuse, and any hematological disorder. Subjects taking hormonal therapy were also excluded.


Table 1. Clinical and laboratory characteristics of the studied groups.
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All the study subjects underwent physical examination and detailed history and laboratory investigations. Anthropometric measures included waist-to-hip ratio (WHR) and body mass index (BMI); body weight and standing height were measured in light clothing without shoes. The BMI was calculated as weight divided by squared height (kg/m2). Waist circumference was measured to the nearest 0.1 cm at the narrowest point between the lowest rib and the uppermost lateral border of the iliac crest, while the hip was measured at its widest point.



Blood Sampling

All the blood samples were drawn after overnight fasting, and the samples were divided into four aliquots. The first aliquot of blood was collected on plain vacutainer tubes for serum preparation used for the assay of the lipid profile, as well as C-peptide levels. The second aliquot of blood was collected on vacutainer tubes containing sodium fluoride for measuring fasting plasma glucose (FPG). The third and fourth aliquots of blood were collected on vacutainer tubes containing sodium EDTA for measuring glycated hemoglobin (HbA1C%), and for subsequent DNA extraction from whole blood. Afterward, serum samples were divided into aliquots and stored at −80°C for subsequent assays.



Laboratory Analyses

FPG and serum biochemical parameters including triglycerides (TG), total cholesterol (TC), and high-density lipoprotein-cholesterol (HDL-C) were measured using Spectrum Diagnostics kits (Egypt). Low-density lipoprotein cholesterol (LDL-C) levels were calculated by Friedewald's equation (23). HbA1C% was determined using ion-exchange high-performance liquid chromatography (HPLC) by the Bio-Rad D-10 system (Bio-Rad Laboratories, Hercules, CA, USA).

Afterward, serum C-peptide levels were determined using the human C-peptide ELISA kit (DRG, USA). The homeostasis model assessment of β-cell function (HOMA2-β%) and insulin resistance (HOMA2-IR) was calculated from FPG (mg/dl) and fasting C-peptide (ng/ml) levels using an online HOMA2 calculator/algorithm (24). HOMA2 models were calculated using C-peptide to avoid interference of insulin in patients treated by insulin. All ELISA procedures were done according to the manufacturer's instructions using the ChroMate microplate reader (Awareness Technology, USA).



DNA Extraction and Genotyping Assay

The extraction of DNA from 150 μL whole blood (collected on EDTA anticoagulant) was done using the commercially available Quick DNA Miniprep Kit (Zymo Research, USA) according to the manufacturer's instructions, then the extracted DNA was quantified using a Quawell micro-volume spectrophotometer (USA).

Genotyping was done for 2 SERPINB1 polymorphism, namely, SERPINB1 rs114597282, which is a missense mutation with a C/T substitution (previously determined as a possibly damaging variant for SERPINB1 gene) (11). The other SNP was SERPINB1 rs15286, which is a transition A/G SNP (in the 3′UTR region of SERPINB1). Genotyping was done using TaqMan® SNP Genotyping assays with the following IDs: C_151309206_10 for rs114597282 and C____950920_1 for rs15286 using the TaqMan Universal Master Mix No UNG (Thermo Fisher Scientific, USA). Genotyping was done using a StepOnePlus thermal cycler (Applied Biosystems, USA). 20 ng of genomic DNA for each sample was genotyped using 10 μL (2×) TaqMan® Universal Master Mix, 0.5 μL (40×) TaqMan® SNP genotyping assay, and DNAse/RNAse-Free water (Gibco, Life Technologies, USA) to a total volume of 20 μL reaction using default genotyping settings with appropriate negative control.



Statistical Analysis

All results were expressed as mean ± standard error of mean (S.E.M). The Kolmogorov–Smirnov test was done to evaluate the distribution of various variables. The independent-sample t-test and Mann–Whitney U-test were used appropriately according to the data distribution for comparison between non-diabetic control and type 2 DM groups. The genotype distribution was validated to follow the Hardy–Weinberg equilibrium (HWE) using an online calculator (25), and the chi-square (χ2) test was used to compare allele frequency distributions of various genotypes in the studied groups. Finally, binary logistic regression analysis was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) to investigate the possible association of rs15286 variants with type 2 DM or with glycemic control status. Kruskal–Wallis or one-way ANOVA tests were used appropriately according to the distribution of data for comparison between the levels of various parameters in various genotypes (3 groups) followed by Dunn's test for Kruskal–Wallis as multiple-comparison post hoc tests. General linear modeling (GLM), followed by Bonferroni post hoc test for multiple comparisons, was used to control for covariates such as age, gender, and BMI, and p-values were calculated after correction for these covariates. Any non-normally distributed data was logarithmically transformed before performing GLM. All statistical analyses were performed using Windows-based SPSS statistical package (SPSS version 17.0, SPSS Inc, Chicago, IL). P-values ≤ 0·05 were considered significant.




RESULTS


Clinical Laboratory Data of the Study Subjects

As shown in Table 1, this study included 160 subjects; 62 subjects (42 females and 20 males) who were apparently healthy volunteers served as the control group. The type 2 DM group consisted of 98 patients (46 females and 52 males). The mean age of the control group was 38.2 ± 1.1 years, while that of the type 2 DM group was 49.1 ± 1.1 years. The duration of diabetes was 8.39 ± 0.74 years. The body mass index was significantly elevated in the type 2 DM group as compared to the control group. However, the waist–hip ratio (WHR) was almost equal in both groups. In addition, FPG, HbA1C%, and lipid profile including TG, TC, LDL-C, and even LDL-C/HDL-C and TC/HDL-C were all significantly elevated in type 2 DM as compared to the control group.

As for β-cell function indices, C-peptide was significantly decreased in type 2 DM patients as compared to control subjects (0.84 ± 0.054 ng/ml and 3.81 ± 0.26 ng/ml, respectively, p < 0.001). Moreover, HOMA2-β% was also severely diminished in type 2 diabetic patients as compared to the control group (17.9 ± 1.2% and 213.6 ± 11.3%, respectively, p < 0.001) (Table 1).



Association of SERPINB1 rs15286 Variants With Type 2 DM Risk

As for the SERPINB1 SNP rs114597282, 100% of the subjects either control or type 2 DM were found to have a homozygous TT genotype, which unfortunately hindered further processing or studying of any association of such SNP.

The distribution and the alleles' frequencies of the rs15286 SNP of SERPINB1 are shown in Table 2. The observed distribution frequency of various alleles followed the Hardy–Weinberg equilibrium. The AA genotype represents the minor genotype in both control and type 2 DM groups with 4.8 and 6.1%, respectively, with a total of 5.625% of all subjects. On the other hand, GG was the major genotype in the genotyped subjects (60% in control and 67% in type 2 DM patients) with a total of 64.375% of all subjects. As for the AG genotype, it represented 35.5% in the control group and 26% in the diabetic group with an overall 30% of the subjects. In addition, the A allele represents the minor allele with 40% in control and 33.6% in the diabetic subjects, with a total of 35.625% of the studied subjects. The 2 groups did not differ significantly regarding the distribution of various genotypes (p-value = 0.479) and the frequency of A allele (p-value = 0.324) or G allele (p-value = 0.731). Moreover, the various genotypes, A allele or G allele, were not found to be associated with the risk of DM (OR = 0.655, CI = 0.322–1.332, p-value = 0.242; OR = 0.741, CI = 0.338–1.623, p-value = 0.454; OR = 0.799, CI = 0.14–4.54, p-value = 0.800, respectively). All ORs (95% CI) were adjusted for age, gender, and BM.


Table 2. Association of SERPINB1 rs15286 variants with risk of type 2 DM.
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Anthropometric and Biochemical Parameters' Levels in Various Genotypes of SERPINB1 rs15286 SNP

In order to study the levels of various parameters in the genotyped samples, we compared the levels of various anthropometric and biochemical parameters among the genotype variants in both control and type 2 DM groups. As shown in Table 3, all parameters failed to reach a significant difference among AA, AG, and GG genotypes in the control group. On the other hand, in the diabetic group, these genotypes showed a significant difference for FPG, HbA1C%, and HOMA2-β% (p-values = 0.008, 0.006, and 0.004, respectively).


Table 3. Association of SERPINB1 rs15286 variants with various anthropometric and clinical characteristics of the studied subjects.
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In order to gain further insight into the difference of these parameters' levels among various genotypes of diabetic patients, we compared the levels among these parameters pair-wise. Figure 1A showed that genotype AA is significantly associated with lower FPG as compared to both AG and GG genotypes (FPG AA: 141 ± 7.5 mg%, AG: 224.8 ± 13.8 mg%, and GG: 209.8 ± 9.1 mg%, p-value = 0.008). Similarly, HbA1C% was significantly lower in the AA genotype than both AG and GG genotypes but failed to reach a significant increase in GG (HbA1C%: AA: 6.6 ± 0.3%, AG: 8.97 ± 0.3%, and GG: 8.4 ± 0.3%, p-value = 0.006) as shown in Figure 1B. Interestingly, HOMA2-β% showed significant elevation in the AA genotype as compared to both AG and GG genotypes (HOMA2-β% AA: 32.8 ± 4.7%, AG: 14.4 ± 1.7, and GG: 18 ± 1.5, p-value = 0.004) as shown in Figure 1C. It is noteworthy that even after adjustment for age, gender, and BMI, genotype AA subjects remained relatively significantly different from the AG genotype regarding FPG, HbA1C%, and HOMA2-β% levels (adjusted p-values were 0.014, 0.057, and 0.003, respectively) and also from the GG genotype (adjusted p-values were 0.035, 0.23, and 0.011, respectively).
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FIGURE 1. Association of SERPINB1 rs15286 variants with various parameters in type 2 DM. (A) FPG, (B) HbA1C%, and (C) HOMA2-β%. The top and bottom whiskers represent the minimum and maximum values, while the band inside the box represents the median. *Significantly different from genotype AA at p < 0.05. **Significantly different from genotype AA at p < 0.01, assessed by the Kruskal–Wallis test followed by Dunn's post hoc test.


Moreover, we studied the association of the various genotypes with the glycemic control status in the genotyped diabetic patients. We found that there is a significant difference in the distribution of the various genotypes (AA, AG, and GG) between the good and the poor glycemic control of diabetic patients (p-value = 0.002). On the other hand, there was no significant association between good glycemic control and the AA or AG genotype, i.e., the A allele (OR = 0.627; CI = 0.233–1.691; p-value = 0.357). Interestingly, there was a significant association between the AA genotype and prediction of good glycemic control (OR = 10.324, CI = 1.088–97.965; p-value = 0.042). Actually, these last OR and CI are the same for the AG or GG genotype, i.e., the G allele and the poor glycemic control in diabetic patients. All ORs and CIs are shown before and after adjustment for age, gender, and BMI in Table 4.


Table 4. Association of SERPINB1 rs15286 variants with the glycemic control status of type 2 DM.
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DISCUSSION

In this study, we assessed two SERPINB1 gene SNPs in control and type 2 DM patients and investigated their association with the risk of diabetes and other anthropometric and biochemical parameters. The first SNP was SERPINB1 rs114597282, which is a missense mutation with a C/T substitution. The other one was SERPINB1 rs15286 which is a transition A/G SNP in the 3′UTR region of the SERPINB1 gene. For SNP rs114597282, all our subjects, either control or diabetic patients, were of TT genotype, which did not allow any further analyses for this SNP. As for the other SNP rs15286, various genotypes, namely, AA, AG, and GG, were expressed in both control and diabetic subjects with AA being the minor genotype, while GG was the major genotype in both studied groups. However, we failed to find an association with the distribution of these genotypes with the risk of diabetes. Interestingly, we found that diabetic subjects having a rs15286 AA genotype showed lower levels of FPG and HbA1C%, as well as higher HOMA2-β% compared to other genotypes. Moreover, there exists a significant association of genotype AA with the prediction of good glycemic control in diabetic patients, an association not found with the A allele alone. Meanwhile, our results showed a positive association between the G allele and the prediction of poor glycemic control. This indicates that type 2 diabetic patients' carriers of the AA genotype may potentially have better control over their blood glucose levels and better β-cell function than other genotypes of this SERPINB1 SNP. On the other hand, those who are carriers of a G allele are at risk of poor glycemic control.

SerpinB1, also known as a monocyte neutrophil elastase inhibitor, is a protease inhibitor that regulates several inflammatory responses (26). Lately, serpinB1 has been associated with insulin signaling in 2 ways. First, neutrophil elastase was found to be associated with hepatic and adipose tissue insulin resistance and its deletion may improve insulin sensitivity (13). Second, EL-Ouaamari and coworkers could prove serpinB1 as a novel liver-derived secretory protein that promotes proliferation of human and mouse β-cells (11). Since then, a couple of reports tried to study the possible association of serpinB1 with insulin sensitivity or with type 2 DM (14, 27). However, still the genetic variants of the SERPINB1 gene and their association with diabetes have not been studied.

Accordingly, we decided to study two SERPINB1 SNPs and their association with various anthropometric and biochemical parameters in type 2 DM in comparison to control subjects. One of these SNPs was introduced by EL Ouaamari et al., namely, rs114597282, as a possibly damaging variant (11). However, we failed to find the various variants in our genotyped subjects as 100% of our subjects were homozygous TT. This comes in accordance with a previous reported frequency of 1.7% among African Americans and 0.01% among Europeans according to the 1,000 Genomes database. This may well explain that we failed to get any other variants from our 160 total subjects. Accordingly, further investigations are warranted on a larger sample size and in different populations to study this SNP in association with diabetes or even other diseases.

As for the other SNP rs15286, to our knowledge, this is the first report concerning this SNP for SERPINB1 especially in DM. Our genotyped samples showed the 3 genotypes with AA being the minor genotype representing 5.6% of total subjects, AG representing 30% of the total subjects, and GG being the major one with 64.4% of total subjects. These results approached genotype frequencies from the 1,000 Genomes database, where the overall distribution of the genotypes in all populations were AA 7% (was 5.6% in our study), AG 37% (was 30% in our study), and GG 56% (was 64.4% in our study). The A allele represents the minor allele with 36.25% in the studied groups as compared to the minor allele frequency (MAF) of 25% and the G allele of 75% from the 1,000 Genomes phase 3 database. This is the first report about the frequency of this genotype in the Egyptian population which approaches the distribution of several other populations. This SNP requires further association studies on other populations and in other diseases.

In fact, the distribution and frequency of these genotypes failed to be associated with the risk of diabetes. However, we found that the AA genotype was significantly associated with lower FPG and HbA1C% in diabetic patients. This finding implies that although this SNP genotype is not predictive of developing diabetes, individuals with AA genotypes are potentially less hyperglycemic and exhibit easier control on their diabetes, This was further confirmed with the positive association of the AA genotype and the good glycemic control in diabetic patients, while carriers of one G allele are under risk of poor glycemic control. We also observed that the presence of one A allele is not enough to reach a significant association with such good glycemic control. These findings may prove important in several ways. First, further studies should be conducted to explore if the patients with the AA genotype are less prone or, alternatively, patients with the G allele are more prone to diabetic complications which are mostly caused by hyperglycemia and associated glucotoxicity (28). Second, the AA patients may require lower doses of oral hypoglycemic or even insulin treatment to avoid possible hypoglycemia associated with excessive insulin or OHA dosing. Third, although more population-based studies are required, for SERPINB1 SNP rs15286 so far, we can consider the G allele as the “bad allele” or the “risk allele.” Diabetic patients who are carriers of the G allele are under risk of poor glycemic control and should be closely monitored for their hyperglycemia. However, clinical trials are warranted to test these hypotheses.

Another interesting finding in this study is the higher HOMA2-β% associated with the AA genotypes in comparison to other genotypes. SerpinB1 has been portrayed as a β-cell-protective hepatokine. Whether the AA genotype may provide enhanced/better protection than other genotypes is a question that warrants further investigations especially in prediabetic patients. It is noteworthy that this is the first study that explores the association of a SERPINB1 SNP variant with β-cell function in diabetic patients.

Nevertheless, this study faced several limitations that we have been aware of. First, further studies with larger samples representable of the different ethnic populations are warranted. Second, our failure to find various variants of the SNP rs114597282 constrained our capability to further study this SNP. In fact, although this study was limited by its relatively small sample size, our results demonstrate the interplay of SERPINB1 SNP rs15826 with glycemic control in diabetic patients and shed light on the possible implication of SERPINB1 gene polymorphism in diabetes pathogenesis, as well as the risk for developing diabetic complications.

In conclusion, to the best of our knowledge, this is the first report to show that the SERPINB1 gene has the SNP rs15286 variant of all genotypes expressed in the Egyptian population, with the A allele as the minor allele of about 35% of the population. However, these genotypes are not associated with risk to diabetes. The AA genotype of this SNP is associated with an overall better glycemic control and better β-cell function in diabetic patients. The G allele can be considered as the “risk allele” for poor glycemic control in diabetic patients. Conclusively, SERPINB1 SNP rs15826 can potentially predict glycemic control in diabetic patients and can enhance better treatment options for these patients based on their genotypes. In addition, this study opens the door for further studies to investigate the possible association between other SERPINB1 gene variants and susceptibility for diabetes and/or diabetic complications in different ethnic populations. Furthermore, further research is required to study the effect of these SNPs on the serum levels of serpinB1, which may explain the better glycemic control associated with various genotypes. Finally, further studies are warranted to further elucidate the clinical impact of rs15286 variants on diabetic patients' treatment regimen in Egyptian as well as other populations.
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Robust endocrine cell function, particularly β cell function, is required to maintain blood glucose homeostasis. Diabetes can result from the loss or dysfunction of β cells. Despite decades of clinical and basic research, the precise regulation of β cell function and pathogenesis in diabetes remains incompletely understood. In this review, we highlight RNA processing of mRNAs as a rapidly emerging mechanism regulating β cell function and survival. RNA-binding proteins (RBPs) and RNA modifications are primed to be the next frontier to explain many of the poorly understood molecular processes that regulate β cell formation and function, and provide an exciting potential for the development of novel therapeutics. Here we outline the current understanding of β cell specific functions of several characterized RBPs, alternative splicing events, and transcriptome wide changes in RNA methylation. We also highlight several RBPs that are dysregulated in both Type 1 and Type 2 diabetes, and discuss remaining knowledge gaps in the field.
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INTRODUCTION

The highly specialized insulin-producing β cell population is located within the pancreatic islet of Langerhans (Figure 1). In humans and other vertebrates, β cells respond to changes in circulating blood glucose levels by secreting insulin. Coupled with the function of the other islet endocrine cell types, β cells help to maintain blood glucose homeostasis; loss or dysfunction of the β cell population results in diabetes. Over the last several decades, substantial research efforts have been directed toward understanding the gene regulatory networks required for the formation and function of the islet cell populations. This has included developmental studies in model organisms that have identified the key transcription factors required to make and maintain functional β cell populations. In addition, translational research approaches in human subjects, including Genome Wide Association Studies (GWAS) and other large sequencing efforts, have identified numerous alleles and mutations associated with increased risk of developing either Type 1 (T1D) or Type 2 (T2D) diabetes, many of which cause β cell dysfunction. Despite these efforts, there remain many gaps in our understanding of the mechanisms that regulate β cells and the pathways that contribute to their pathogenesis in diabetes.
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FIGURE 1. RNA-binding protein (RBP) mediated RNA regulation in the pancreatic β cell. I nsulin-secreting β cells reside in the islets of the pancreas along with several other endocrine cell types (α, δ, and PP cells). RBPs (green) are present in both the nucleus and the cytoplasm of cells and bind to RNA (blue) to perform a variety of functions. RBPs binding to introns and exons of pre-mRNAs contribute to alternative splicing. RBPs can also write, read, and erase methylation modification on mRNAs in RNA methylation. RBPs can also facilitate the transport of RNAs between the nucleus and cytoplasm and throughout the cell. RBP binding to the UTRs can alter mRNA stability and translation. Illustration created with BioRender.


Although much of the research to date has been focused on transcriptional regulation, β cell identity and function are also regulated at the level of mRNA, similar to many other cell types and organ systems. Throughout their life cycle, mRNA molecules undergo extensive processing events to transition from a pre-mRNA molecule to a mature mRNA. These events not only include addition of a 5′-cap and 3′-poly-A tail, but also splicing of introns, nucleotide modification, stability, and subcellular localization (Licatalosi and Darnell, 2010; Figure 1). RNA-binding proteins (RBPs) are responsible for coordinating the events in the lifecycle of an mRNA. Over the past few years, several groups have begun to probe the function of specific RBPs in organogenesis and disease. Many studies have focused on the mis-regulation of mRNAs and RBP function in the context of diabetic complications (adipose, liver, muscle, retina, etc.), rather than specific changes in the β cells (Nutter and Kuyumcu-Martinez, 2018). In the pancreas, only a few groups have delved into the world of RNA regulation, often focusing on a single splicing target or RBP. In this review, we will highlight these studies describing RBP functions, transcriptome wide changes in RBP expression, alternative splicing, and RNA methylation, with a specific focus on regulation of mRNAs in the pancreatic islet population. This is a rapidly emerging field that will undoubtedly provide a unique perspective on a complex disease and will ultimately push the boundaries of therapeutic treatments for diabetes.


RNA-Binding Proteins in the β Cell

Several hundred RBPs have been identified (Hentze et al., 2018), each with the potential of having hundreds of targets within a cell (Keene, 2007; Hogan et al., 2008; Lukong et al., 2008; Blanchette et al., 2009; Li et al., 2014). Some RBPs have ubiquitous expression, while others are transiently expressed during development or restricted to a specific cell type (Gerstberger et al., 2014). Like many other proteins, RBPs are categorized by several modular domains. RBPs recognize RNA targets through a binding domain, in the form of an RNA recognition motif (RRM), K-homology (KH) domain, and RNA-binding zinc-finger (ZnF) domains, or can bind independent of sequence through a double-stranded RNA module (dsRBD) (Lunde et al., 2007). Additionally, RBPs have a variety of enzymatic and/or signaling domains that allow for functional activity (Lunde et al., 2007).

The role of RBPs in the formation and function of pancreatic endocrine cells is only beginning to be appreciated. Only a small number of known RBPs have been studied in the β cell, but as new transcriptomics data becomes available from both healthy and diseased islets, their role in β cell biology will become more apparent. Recently, several studies have identified RBPs that are enriched in pancreatic islet cells and become dysregulated under stress (Juan-Mateu et al., 2017; Jeffery et al., 2019; Ramos-Rodriguez et al., 2019). Stressors including chronic hyperglycemia (Puri and Hebrok, 2012; Brereton et al., 2014), exposure to pro-inflammatory cytokines (Ortis et al., 2010), and palmitate (saturated fatty acid) (Cnop et al., 2014) can result in changes in cellular and molecular identity. In a model of human β cells (EndoC-βH1), treatment with cell stressors (including cytokines, hypoxia, altered lipids, and high and low levels of glucose) also induced dysregulation of many RBPs (Jeffery et al., 2019).

Islet endocrine cells have a specific assemblage of RBPs that perform a variety of functions. Re-analysis of whole transcriptomic RNA-Sequencing (RNA-Seq) data from several human tissues (Eizirik et al., 2012) revealed that human islets share a notable number of RBPs with the brain, and β cells in particular are enriched for many “neuron specific” RBPs (Juan-Mateu et al., 2017; Alvelos et al., 2018). This is not surprising since, despite their disparate developmental origins, neurons and β cells share a large number of transcriptional networks (van Arensbergen et al., 2010). While it is clear that there are a whole host of RBPs expressed in mature insulin-secreting β cells (summarized in Table 1), there remains poor understanding about the role of RBP regulation in the developing pancreas (Baralle and Giudice, 2017). Additionally, the majority of these studies to date are limited to in vitro analysis of RBP requirements and molecular function. RBPs regulate several classes of RNAs, including both coding (mRNA) and non-coding (ncRNA) RNAs. A recent comprehensive review has discussed the critical role of RBPs Dicer and Argonaut in the regulation of miRNAs for β cell function and in T2D (Eliasson and Esguerra, 2020). Here we will provide a brief survey of the expression and function of several prominent RBP families that regulate mRNAs in pancreatic β cells.


TABLE 1. RNA-Binding Proteins (RBPs) in the Pancreatic β Cell.
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Hu and Embryonic Lethal Abnormal Vision-Like Protein Family (HuD/ELAVL4)

The Hu/ELAV family of RBPs bind to AU-rich elements (AREs) in the 3′UTR of mRNAs and can modulate transcript stability and translation (Hinman and Lou, 2008). Hu/ELAV proteins bind to the AREs through three RRMs (Okano and Darnell, 1997). HuR/ELAVL1 is ubiquitously expressed, while the other three family members (HuB/ELAVL2, HuC/ELAVL3, HuD/ELAVL4) are most highly expressed in neurons (Hinman and Lou, 2008). However, a few recent studies have identified roles for one of these family members, HuD/ELAVL4, in the β cell (Lee et al., 2012; Kim et al., 2014; Hong et al., 2020). Normally, HuD expression is (1) glucose dependent; (2) regulated through insulin receptor (INSR) signaling; and (3) acts as a feedback mechanism that regulates translation of the Preproinsulin2 (Ins2) mRNA (Lee et al., 2012). Rodents encode two prepronsulin (Ins) genes; however, interaction between HuD and the preproinsulin1 (Ins1) transcript was not reported. Insulin is secreted from β cells in response to high levels of glucose. Circulating insulin can then bind the insulin receptor (INSR) on the surface of β cells and, through the PI3K/AKT pathway, the transcriptional repressor FOXO1 is phosphorylated. Phosphorylation of FOXO1 de-represses transcription of HuD. The HuD protein then binds the 5′UTR of Ins2 mRNA and decreases Ins2 translation, maintaining plasma insulin homeostasis. Consistently, HuD–/– mice displayed higher insulin levels and improved glucose tolerance, whereas transgenic mice overexpressing HuD had lower insulin levels and were glucose intolerant, reportedly due to less readily releasable insulin pools (Kim et al., 2014). It has also been demonstrated that nuclear HuD is increased under ER stress resulting in decreased intracellular insulin biosynthesis and decreased plasma insulin homeostasis (Yoo, 2013). In addition to regulating Ins2 translation, HuD also regulates the translation of two genes encoding proteins important for β cell survival in stress conditions. Autophagy-related Gene 5 (ATG5) is a protein that can mediate stress induced β cell death (Fujimoto et al., 2009). HuD binds to AREs in the 3′UTR of Atg5 and enhances the assembly of polysomes to increase ATG5 protein levels. HuD also modulates β cell function through mitochondrial dynamics and stabilizing the mitochondrial gene Mitofusin2 (Mfn2), which encodes a protein which mediates mitochondrial fusion and metabolism, and is an inhibitor of apoptosis in β cells (Baltrusch, 2016; Hong et al., 2020). Taken together, it is clear that RNA regulation by HuD is required for proper function and survival of pancreatic β cells through multiple mechanisms and pathways.



Polypyrimidine-Tract-Binding Protein (hnRNP1/PTB/PTBP1)

The polypyrimidine-tract-binding proteins (PTBs) are a group of RBPs that function through binding-mediated modifications in target mRNA (Wollerton et al., 2001; Mitchell et al., 2003; Auweter et al., 2007) to either recruit or block other trans-acting factors. PTB has four RRM domains each with specific consensus binding sequences that all bind stretches of pyrimidines (Sawicka et al., 2008). Additionally, PTBs can shuttle between the nucleus and the cytoplasm (Perez et al., 1997; Kamath et al., 2001; Li and Yen, 2002). PTB proteins have been implicated in the regulation of several RNA metabolism events including alternative splicing (Garcia-Blanco et al., 1989), polyadenylation (Lou et al., 1999; Castelo-Branco et al., 2004), mRNA stability (Wollerton et al., 2004), and translation (Jang and Wimmer, 1990). In the pancreas, PTB proteins have been shown to regulate insulin mRNA (human INS and rodent Ins1 and Ins2) (Tillmar et al., 2002; Tillmar and Welsh, 2002; Fred et al., 2010, 2011, 2016) and insulin secretory granule biogenesis (Knoch et al., 2004, 2006). Specifically, the binding of PTB to INS/Ins mRNA increases in response to increased glucose and hypoxia (Tillmar et al., 2002; Tillmar and Welsh, 2002; Fred et al., 2011). Mutations in the INS/Ins 3′UTR or decreases in PTB expression by RNAi both result in decreased insulin and reporter expression respectively (Tillmar et al., 2002; Fred et al., 2016). Furthermore, binding of PTB to the 5′UTR of INS mRNA correspond to cap-independent translation of insulin mRNA (Fred et al., 2011). In addition to changes in PTB binding, T-cell restricted intracellular antigen 1-related protein (TIAR) also increases binding to INS mRNA during glucose stimulation (Fred et al., 2010). These proteins cooperate to regulate INS mRNA stability and biosynthesis (Fred et al., 2010). While cap-independent INS mRNA translation only accounts for a small portion of total translation, it can contribute 40–100% of insulin biosynthesis during stress conditions (Fred et al., 2011). In healthy β cells, transient increase in glucose levels increases PTB binding to 3′UTR promoting mRNA stability and 5′UTR promoting modest levels of cap-independent translation. However, prolonged high glucose exposure results in decreased PTB protein and ultimately decreased insulin biosynthesis (Fred et al., 2010). This is in part due to increased levels of miR-133a which targets PTB mRNA and could explain the mechanism for hyperglycemia-induced β cell dysfunction (Fred et al., 2010).

In addition to binding INS/Ins mRNA directly, PTB has been shown to bind and regulate components of the insulin secretory granules in response to changes in blood glucose levels. During glucose stimulated insulin secretion (GSIS), newly synthesized insulin granules preferentially undergo exocytosis (Gold et al., 1982; Halban, 1982) and this 2010process is impaired in T2D. New secretory granules are synthesized in response to glucose stimulation in the β cell, partially through regulation of PTB. Upon β cell stimulation (glucose or GLP-1), PTB is translocated from the nucleus to the cytoplasm (Knoch et al., 2004, 2006), where this process not only promotes stability of insulin mRNA (as described above), but also increases the stability of several insulin secretory granule proteins (Knoch et al., 2004). PTB translocation results from phosphorylation by PKA downstream of GLP-1 receptor and is cAMP-dependent (Knoch et al., 2006). The activated and cytosolic PTB is then able to bind and stabilize mRNAs that code for secretory granule proteins with putative PTB binding sites in the 3′UTR. Furthermore, knockdown of PTB by RNAi results in decreased expression of target mRNAs and secretory granules (Knoch et al., 2004). Taken together, glucose/GPL-1 dependent stimulation of β cells results in cytoplasmic translocation of PTB where it can act to stabilize insulin mRNA and components of the insulin secretory granule. In light of these findings, it is evident that PTB expression and activation represents a critical component in regulating GSIS.



Neuro-Oncological Ventral Antigens (NOVA1, NOVA2)

The Neuro-oncological ventral antigens (NOVA) are a family of two RBPs (NOVA1 and NOVA2) that account for approximately 700 alternative splicing events in neurons (Ule et al., 2005, 2006; Licatalosi et al., 2008; Zhang et al., 2010) and have been implicated in regulating alternative polyadenylation (Licatalosi et al., 2008). Both NOVA proteins bind to YCAY consensus sequences in target mRNAs through three hnRNPK-homology (KH)-type RNA binding motifs (Buckanovich and Darnell, 1997; Yang et al., 1998; Jensen et al., 2000). The positions of NOVA binding relative to the alternative splice site determines exon inclusion versus exclusion; exon inclusion is correlated with NOVA downstream binding (Ule et al., 2006; Zhang et al., 2010). Both NOVA1 and NOVA2 are expressed in the pancreatic β cell (Villate et al., 2014; Juan-Mateu et al., 2017) and in vitro studies suggest they contribute to alternative splicing (Eizirik et al., 2012; Villate et al., 2014; Juan-Mateu et al., 2017). Knockdown of Nova1 by RNAi in FACS-purified rat β cells resulted in changes in alternative splicing of 4961 isoforms and impaired GSIS (Villate et al., 2014). In INS-1E cells and MIN6 cells, knockdown of Nova1 disrupts insulin secretion through changes in alternative splicing of key exocytosis factors PLCβ1 and Snap25, and decreases in voltage-dependent Ca2+ current (Villate et al., 2014). NOVA1 has also been shown to regulate alternative splicing of the insulin receptor (INSR), suggesting that NOVA1 is required to promote exon 11 inclusion and expression of the INSR-B form of the receptor (Villate et al., 2014). Additionally, NOVA1 has been implicated in T1D and cytokine-induced apoptosis (Eizirik et al., 2012; Villate et al., 2014). In both cytokine-treated β cells and Nova1 knockdown β cells, apoptosis increases through the upregulation of pro-apoptotic protein, Bim (Barthson et al., 2011; Villate et al., 2014). Similarly, Nova1 is decreased in β cells treated with cytokines (Villate et al., 2014). Bim is regulated by FOXO3a, however phosphorylation of FOXO3a inhibits it’s function (Sunters et al., 2003; Zhang et al., 2011). In Nova1 knockdown β cells, FoxO3a expression is increased but phosphorylation is decreased, allowing for the subsequent upregulation of Bim. Similarly, NOVA2 has been shown to regulate β cell survival. NOVA2/Nova2 knockdown in INS-1E, EndoC-βH1, and sorted rat β cells resulted in increased apoptosis (Juan-Mateu et al., 2017). Together these studies have identified several roles for NOVA RBPs in the function and survival of pancreatic β cells.



RNA Binding FOX Homologue (RBFOX1, RBFOX2, RBFOX3)

The RBFOX family of RBPs contains three highly conserved members – RBFOX1, RBFOX2, and RBFOX3. RBFOX RBPs all contain an RRM that recognizes the specific (U)GCAUG sequence in target mRNAs to promote alterative splicing and other RNA metabolic functions (Jin et al., 2003; Ponthier et al., 2006). Rbfox2 is nearly ubiquitously expressed across cell types and throughout development, whereas Rbfox1 and Rbfox3 are considerably more cell type specific or only transiently expressed. The functions of the RBFOX proteins have been studied primarily in neurons and muscle tissue, and their activity is often required for development and maturation of these cell types (Gehman et al., 2012; Wei et al., 2015; Jacko et al., 2018). During pancreas development, scRNA-Seq reveals that Rbfox2 is detectable throughout the embryonic (E15.5 and E18.5) mouse pancreas and hESC-derived pancreatic endocrine cells (Krentz et al., 2018). This dataset also shows that Rbfox3 appears to be transiently expressed specifically within the Neurog3+ endocrine progenitor population at E15.5 (Krentz et al., 2018). Rbfox1 is not detectable in embryonic E15.5 or E18.5 mouse pancreas or within the hESC-derived endocrine cells (Krentz et al., 2018). Similarly in the adult pancreas, RNA-Seq on intact islets revealed high expression of Rbfox2; whereas Rbfox1 and Rbfox3 were barely detectable. Further analysis of the individual sorted mouse endocrine cells determined that Rbfox2 is expressed in α, β, and δ cells; with its highest expression in the β cell population (DiGruccio et al., 2016). Within this dataset, Rbfox1 is undetectable in any of the endocrine populations, whereas Rbfox3 expression can be found in δ cells. Consistently, scRNA-Seq in adult islets show that the majority of endocrine cells express Rbfox2, whereas Rbfox3 is predominantly restricted to δ cells and Rbfox1 is undetectable (DiGruccio et al., 2016; The Tabula Muris Consortium et al., 2018). Consistent with the mouse studies, bulk sequencing of human islets and other human tissues identified expression of both RBFOX2 and RBFOX3, but not RBFOX1 in whole islets (Juan-Mateu et al., 2017). Paradoxically, this group proceeded to knockdown Rbfox2 and Rbfox1 in rat INS1-E cells and suggested that both proteins regulate insulin content and insulin secretion through the alternative splicing of genes involved in actin regulation (Juan-Mateu et al., 2017). It is possible that there will be redundant functions of the highly conserved Rbfox family of RBPs in endocrine cells; however, it remains to be determined how their coordinated, transient and/or compensatory expression impacts endocrine cell development and function in disease states.



Serine/Arginine (SR)-Rich Proteins (SRSF1, SRSF3, SRSF6)

The serine/arginine (SR)-rich proteins are a large family of RBPs characterized by their serine/arginine rich domain and an RRM (Shepard and Hertel, 2009). SR proteins are involved in several aspects of RNA metabolism including both constitutive and alternative splicing events (Zhou and Fu, 2013). SR proteins can interact with core components of the spliceosome (U1 and U2 snRNPs) to promote or inhibit splice site usage. Additionally, SR proteins function in regulating mRNA transport and translation (Zhong et al., 2009). While the function of SR proteins in other cell types and systems have been reviewed extensively (Shepard and Hertel, 2009; Zhong et al., 2009; Zhou and Fu, 2013), relatively little is known about their role in β cells.

Nearly all members of the SR protein family are expressed in the mouse pancreas (The Tabula Muris Consortium et al., 2018) and several of these SR proteins become dysregulated in diabetes (Jeffery et al., 2019). In pancreatic endocrine cells, several SRSF proteins interact with the long non-coding RNA Paupar to influence the alternative splicing of Pax6 to confer differential genomic binding of the PAX6 transcription factor (Kiselev et al., 2012; Singer et al., 2019). β cells express a higher ratio of the shorter PAX6 isoform lacking the 5a exon while α cells predominantly express the longer PAX6 5a isoform (Singer et al., 2019). Together, the differential expression in healthy vs. diabetic endocrine cells and function of SR proteins in mediating transcription factor function make SR proteins an interesting candidate for evaluating the role of RBPs in the onset of diabetes. Of note, the only functional studies of this family of RBPs have been on SRSF3 and many of the SR proteins themselves undergo cell type specific and stress induced alternative splicing, leaving extensive opportunity to evaluate their β cell specific functions in healthy and diabetic states.




Changes in RNA Regulation During Diabetes

Until recently, attempts to identify the genetic causes of T1D and T2D have predominantly relied on GWAS to identify single nucleotide polymorphisms (SNPs) and associated gene expression changes that could contribute to disease. Although these approaches have successfully identified a number of causative candidate alleles, they overlook altered splicing events that may affect gene function rather than expression levels. Furthermore, it is now apparent that differences in co- and posttranscriptional processing such as alternative splicing and N6-methyladenosine (m6A) modifications, can more effectively differentiate between T2D β cells than transcriptomics alone (De Jesus et al., 2019).



Alternative Splicing

Messenger RNA splicing occurs co-transcriptionally to remove introns from the pre-mRNA. This process is carried out by the spliceosome and is coordinated by a series of RBPs. In addition to removing introns, splicing machinery can also vary mRNAs through alternative exon and splice site usage, referred to as alternative splicing. Over 90% of human genes undergo alternative splicing, which more than quadruples the number of potential gene products (Fairbrother et al., 2002; Johnson et al., 2003). Recent work comparing transcriptomes of T2D diabetic and healthy donors identified dysregulation of 26% of alternative splicing events (Jeffery et al., 2019). The highest proportion of alternatively spliced genes in this study function in gene regulation. For example, the authors observed dysregulation of the alternative splicing regulators such as SRSF RBPs, which could each regulate hundreds of splicing events within the β cell. Stress induction of the EndoC-βH1 β cell line supported findings from human diabetic islets, showing a decrease in splicing regulators. Moreover, removal of the stress restored splicing factor expression and changes in transcriptome wide splicing events. Additionally, in a model of T1D, cytokine exposure of FAC sorted rat β cells resulted in differential expression of more than 20 RBPs involved in alternative splicing and changes in alternative splicing of cytokine regulated genes (Ortis et al., 2010). These groups all suggest that changes in the splicing landscape as well as changes in β cell differentiation markers, may be a mechanism of stress response to avoid apoptosis during the onset of diabetes, making the study of alternative splicing regulation in the β cell critical for not only understanding the pathogenesis of the disease but also in designing innovative treatment plans.

The onset of T2D and accelerated dysfunction of β cells has also been attributed to many environmental factors, including the disruption of circadian sleep/wake cycles (Gale et al., 2011). Although the disruption of circadian sleep/wake cycles has traditionally been associated with mRNA oscillations, a recent study implicates the RBP Thyroid Hormone Receptor-Associated Protein3 (THRAP3) as a regulator of alternative-splicing. This study demonstrated that THRAP3 regulated circadian clock-dependent alternative splicing by binding to and regulating alternative splicing of key exocytosis factors (Marcheva et al., 2020).

In addition to transcriptome wide changes in alternative splicing, several groups have explored the alternative splicing of specific genes involved in β cell development, function, and survival. Of note, several Maturity Diabetes of the Youth (MODY) and T2D associated genes such as HNF-1α, GCK, and TCF7L2 have splicing variants (Prokunina-Olsson et al., 2009). While TCF7L2 isoforms are not significantly altered in T2D (Prokunina-Olsson et al., 2009), both HNF-1α and GCK diabetes associated alleles result in alternative splicing variation (Cappelli et al., 2009; Lorini and D’Annunzio, 2009), and isoforms of HNF-1α are associated with differential efficiency in insulin gene regulation (Harries et al., 2006; Cappelli et al., 2009). T2D associated alterations in alternative splicing of HNF-1α and several other β cell genes are also reviewed by Dlamini et al. (2017). Based on recent findings in large transcriptomic analyses, this field is likely to grow dramatically.



m6A RNA Methylation

N6-methyladenosine (m6A) methylation is one of the most prevalent post-transcriptional RNA modifications and is regulated by a set of RNA-binding proteins – writers, readers, and erasers (Figure 1; Zhang et al., 2019). These modifications are introduced by a group of specialized methyltransferases (“writers”) including METTL3 and METTL14. The m6A modifications can confer differential stability, changes in alternative splicing, subcellular localization, and translation efficiency (Zhang et al., 2019). The m6A modifications are often bound by a group of RBPs called readers to perform these differential functions. Finally, a third group of RBPs, including FTO (Fat Mass and Obesity-associated gene), are referred to as erasers and can remove m6A marks. A recent review by Zhang et al. (2019) details the current knowledge on mechanism and function of m6A methylation.

With respect to the β cell, a recent publication by De Jesus et al. (2019) describes the differential m6A methylation observed in T2D. RNA-Seq analysis and fluorescent labeling of human T2D islets compared to healthy controls revealed differential expression of key m6A modulators (METTL3, METTL14, ALKBH5, and YTHDF1). This finding was supported by an independent study showing decreased Mettl3/14 expression in diabetic db/db mice and type 2 diabetes patients (Wang et al., 2020). The decreased expression of m6A writers (METTL3 and METTL14) resulted in differential methylation of 6,078 sites in 4,155 genes (FDR < 0.05). The hypomethylation of genes in the T2D islets are associated with cell-cycle progression, insulin secretion, and the insulin/IGF-AKT-PDX1 pathway. This study also replicated T2D phenotypes and the m6A methylome in METTL3 or METTL14 deficient EndoC-βH1 cells and Mettl14 β-cell-specific knockout mice. Another group generated a similar β cell specific knockout of Mettl14 in mice and observed that these mice display glucose intolerance, decreased GSIS and decreased β cell mass due to β cell death under normal conditions (Liu et al., 2019). These phenotypes are exaggerated in mice fed a high fat diet (Liu et al., 2019). Together these studies indicate a role for METTL14 and m6A modifications in the function and survival of β cells.

In the context of pancreas development, m6A writers (METTL3/14) are critical for β cell expansion and maturation but appear to be dispensable for the differentiation and maturation of other endocrine cell types (Wang et al., 2020). Wang et al. (2020) also showed that in the developing pancreas loss of Mettl3 or Mettl14 from endocrine progenitors independently results in hyperglycemia around weaning, but that loss of both methyltransferases results in significant hyperglycemia and hypo-insulinemia by 2-weeks of age. This functional defect is in part due to decreased proliferation and increased cell death, similar to what had been observed in the previously described β cell specific knockout mice. Additionally, using RNA-Seq and m6A Me-RIP-Seq, the authors concluded that Mettl3/14 directly regulates the β cell maturation factor, MAFA, to promote stability. Other groups have also studied the effects of m6A modifications, particularly in adipogenesis, that could contribute to the pathogenesis of T2D (Gerken et al., 2007; Chu et al., 2008; Ben-Haim et al., 2015; Shen et al., 2015; Wood et al., 2016).

As a counterpoint to the m6A writers METTL3/14, FTO is an m6A eraser. FTO is expressed in a variety of cell and tissue types including endocrine cells (Taneera et al., 2015; DiGruccio et al., 2016; The Tabula Muris Consortium et al., 2018). Whole body knockouts and nervous system specific knockouts of Fto in mice result in postnatal growth deficiencies (Gao et al., 2010), however, its specific function in β cells is debated. In T2D human islets, FTO expression is reduced (Kirkpatrick et al., 2010; Taneera et al., 2018) and the FTO gene has decreased DNA methylation (Dayeh et al., 2014). Several groups have investigated the functional role of FTO in pancreatic islets using different experimental models. Overexpression of FTO in rat INS-1 cells appeared to affect first wave insulin secretion (Russell and Morgan, 2011), whereas overexpression in mouse MIN6 cells resulted in the inhibition of GSIS without changes in insulin gene expression (Fan et al., 2015). Given the discrepant results of these studies, in addition to the caveats associated with overexpression studies, perhaps the more relevant functional assessment was the use of siRNA knockdown to deplete FTO in an engineered human insulin secretion reporter rat β cell line (GRINCH) (Taneera et al., 2018). In these experiments, depletion of FTO resulted in decreased insulin mRNA expression and insulin secretion (Taneera et al., 2018).

While these emerging studies are beginning to highlight the relevance of m6A RNA methylation in β cell function, and the potential contribution of alterations in this RNA modification to the onset of diabetes, the underlying mechanism and direct targets of m6A methylation and demethylation that contribute to the observed functional changes have yet to be determined. Future studies of the islet cell-specific changes in RNA modifications that result from defects in the m6A pathway will provide critical new information about the regulation of islet function in normal and disease conditions.




DISCUSSION

Traditionally, endocrine cells have been molecularly defined by their cell-specific transcriptomes. Furthermore, validation of human diabetes GWAS studies have relied primarily on gene expression changes associated with disease. More recently, however, large scale high-throughput sequencing efforts have revealed the previously unappreciated importance of co- and post-transcriptional RNA regulation in the specification and function of differentiated cells. These high-resolution sequencing technologies have not only identified changes in expression levels, they have unveiled numerous RNA modifications and alternative splicing events within each of the islet endocrine cell populations and in individual β cells. This discovery has prompted investigation into the many RBPs that are expressed in the pancreatic islet and those that become dysregulated in β cells undergoing stress conditions that mimic diabetes (Table 1). Each of these RBPs can have hundreds of targets and affect multiple pathways within a cell in both physiological and pathophysiological conditions (Keene, 2007; Hogan et al., 2008; Lukong et al., 2008; Blanchette et al., 2009; Li et al., 2014), making their potential impact on cellular identity and function pervasive. This also implies that there are many more layers of regulation in the β cell, particularly mediated by RBPs, that have yet to be explored. The knowledge gained from understanding regulation of β cell development and function at the level of mRNA modifications could be immensely useful to optimize protocols to generate insulin-secreting β-like cells from human stem cells (Hrvatin et al., 2014), which is currently a promising method of replacing β cell loss in T1D. Furthermore, characterization of dysregulated splicing events could open therapeutic opportunities to correct specific mRNAs using antisense oligonucleotide (ASO) technologies. ASOs are small synthetic nucleotide sequences that can target specific mRNA transcripts to target and eliminate anomalous splice variants (Schoch and Miller, 2017). Treatment with ASOs has become increasingly promising for treating neurodegenerative diseases (Schoch and Miller, 2017) and could be an innovative mechanism to correct aberrant splicing defects occurring in T2D β cells. Overall, the study of RBPs and RNA modifications are primed to be the next frontier of mechanisms that regulate β cell formation, function, and in the development of novel therapeutics.
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Maturity-onset diabetes mellitus of the young (MODY) is a monogenic diabetes characterized by autosomal dominant inheritance. Its atypical clinical features make diagnosis difficult and it can be misdiagnosed as type 1 or type 2 diabetes. Fourteen subtypes of MODY have been diagnosed so far, of which MODY12 is caused by mutation of the ABCC8 (ATP Binding Cassette Subfamily C Member 8) gene, which is rarely reported in China. This paper reports a Chinese family of MODY12 caused by a rare missense mutation on the ABCC8 gene, which has not been reported to be associated with MODY in China or in other countries, with the aim of increasing clinicians' awareness and attention to the disease.
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INTRODUCTION

Monogenic diabetes refers to a specific type of diabetes resulting from monogenic mutation, of which the most common type is maturity-onset diabetes of the young (MODY). MODY is an autosomal dominant hereditary disease leading to dysfunction of the pancreatic β-cells. Since its discovery, mutations have been identified for at least these 14 genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABCC8 [ATP Binding Cassette Subfamily C Member 8], KCNJ11, and APPL1) for MODY (1–3). A very high prevalence of family members carry the mutated gene, and patients in the same family have similar clinical manifestations. About 80% of MODY is previously misdiagnosed as type 1 or type 2 diabetes (4–6) because it is a relatively rare condition and there is low awareness of the clinical phenotype and availability of testing. Its atypical clinical features are the main cause of its misdiagnosis, and the diagnosis relies more on genetic testing, which is expensive for the average wage-earner and is not covered by all medical insurance institutions at present. Correct diagnosis of MODY is essential for optimizing treatment, prognosis, and genetic counseling. At present, related research on MODY is relatively scarce in China. Here, we report a family of MODY12, which is caused by a rare missense mutation.



FAMILY

The 1999 World Health Organization diagnostic criteria were used to diagnose diabetes mellitus (DM) or impaired glucose tolerance (IGT) (7). The family has a family history of three generations of diabetes (Figure 1). A total of nine people have been diagnosed with diabetes or impaired glucose tolerance, of whom three had been diagnosed before the age of 45 years, and the earliest diagnosed age is 12 years old.


[image: Figure 1]
FIGURE 1. Pedigree of family with diabetes.



The Proband (III1)

Male, 12 years old, Han ethnicity. He was admitted to hospital on January 4, 2019, because of polyuria, polydipsia, polyphagia, weight loss for half a year, binocular photophobia, and lacrimation for 2 weeks. There were no obvious causes for the above symptoms, and he had accompanying weight loss of 11 kg for half a year, but had ignored it. Two weeks ago, because of binocular photophobia, tearing, pain, and blurred vision, he visited a local hospital. There, it was found that his fasting blood glucose was 17.1 mmol/L and that he was positive for urine ketone bodies, which was considered type 1 diabetes viral keratitis. He was transferred to our hospital for further treatment.


Personal History

He was the first child of a 25-year-old woman with spontaneous term delivery at week 34 of an uneventful pregnancy; his birth weight was 2,700 g. When he was 3 months old, he received hyperbaric oxygen therapy for 4 months because of motor system developmental delay. At 1 year old, his growth and development were satisfactory as children of the same age. His intelligence is normal.



Family History

His grandmother was hospitalized when she was 80 years old for pancreatic cancer, where it was found that her blood sugar was elevated, but she eventually died from respiratory failure caused by infection.



Physical Examination

Height, 173 cm; weight, 70 kg; body mass index (BMI), 23.39 kg/m2, regular pulse (86 beats per min), blood pressure (BP), 125/79 mmHg; waist circumference, 83 cm. He had binocular conjunctival hyperemia and edema. He had no buffalo hump, moon face, skin purple striae, or centripetal obesity. Cardiopulmonary examination showed no abnormality. Biochemical analysis revealed normal liver and kidney function, triglyceride (TG) of 1.16 mmol/L, total cholesterol (CHOL) of 5.82 mmol/L, and low-density lipoprotein cholesterol (LDL-C) of 4.04 mmol/L. His glycated hemoglobin A1c (HbA1c) level was 13.0%. C-peptide (0 min) was 0.438 nmol/L (chemiluminescent; reference range, 0.37–1.47 nmol/L), and C-peptide (120 min) was 1.440 nmol/L. He was negative for anti-glutamic acid decarboxylase (GAD) and anti-insulin autoantibodies. Urine microalbumin was 8.0 mg/L (reference range, 0–30 mg/L). Color ultrasound revealed left popliteal artery intimal–medial thickness and atherosclerotic plaque formation at the proximal part of the right subclavian artery. The optic fundi revealed no hemorrhages or exudates, and the fundal vessels were unremarkable. Neuroelectromyography was normal. He was put on combination therapy with basal (glargine) insulin and recombinant human insulin (RI) to control blood sugar; anti-viral eyedrops and other treatments improved his condition. After 1 week, his glycemic control had improved remarkably, with the vast majority of both fasting (4.2–6.1 mmol/L) and postprandial (6.2–10.0 mmol/L) glucose values within the target range. He had no hypoglycemia reaction, and his review for urine ketone bodies was negative. For better compliance, we changed the insulin combination therapy to mixed recombinant human insulin lispro injection (50R) (12 U daily) after discharge. After 4 months, his body weight gradually increased by about 8 kg (height, 176 cm). On May 16, 2019, we reviewed blood sugar (BS, 0–60–120 min) (no hypoglycemic drugs): 6.10–9.60–11.0 mmol/L, and C-peptide (0–60–120 min): 1.530–3.080–3.130 nmol/L. Biochemical analysis revealed growth hormone of 3.490 ng/ml (reference range, 0.077–10.8 ng/ml). Therefore, we attempted to discontinue insulin therapy and started treatment with 1.0 g/days metformin combined with diet and exercise therapy because of overweight. His glucose fluctuations were within the 6–10 mmol/L range. Reviewing his medical history and adolescent onset, his ketosis had a predisposing factor of viral keratitis, his blood sugar was easily controlled, he had good islet β-cell function, and he was negative for anti-GAD and anti-insulin autoantibodies. Based on the above, MODY was highly suspected. Accordingly, we conducted further investigations on his family.




The Proband's Father (II4)

He is 55 years old; Han ethnicity. BMI, 28.03 kg/m2; waist circumference, 96 cm. BP, 135/82 mmHg. Oral glucose tolerance test (OGTT, 0–120 min): BS, 6.1–11.8 mmol/L; C-peptide, 1.010–4.200 nmol/L. HbA1c, 6.3%. TG, 2.20 mmol/L; CHOL, 5.51 mmol/L; LDL-C, 1.30 mmol/L; liver and kidney function, normal. At present, he is on diet and exercise treatments; his blood sugar is well-controlled.



The Proband's Mother (II5)

She is 45 years old; Han ethnicity. BMI, 23.18 kg/m2; waist circumference, 78 cm. BP, 115/75 mmHg. OGTT (0–120 min): BS, 4.3–10.6 mmol/L; C-peptide, 1.000–4.150 nmol/L. HbA1c, 5.4%. At present, her diabetes is treated with diet and exercise; her blood sugar is well-controlled.



The Proband's Grandmother (I2)

Deceased; Han ethnicity. When she was 80 years old, she was found to have high blood sugar due to duodenal tubulopapillary adenocarcinoma (late stage). She was not examined further, and was not treated with anti-diabetic therapy. She subsequently died from obstructive jaundice, metabolic encephalopathy, and multiple organ failure.



The Proband's Uncle (II3)

He is 59 years old; Han ethnicity. BMI, 29.75 kg/m2; waist circumference, 98 cm. BP, 135/82 mmHg. OGTT (0–120 min): BS, 5.2–8.6 mmol/L; C-peptide, 1.020–4.760 nmol/L. HbA1c, 6.2%. At present, his diabetes is treated with diet and exercise; his blood sugar is well-controlled.



The Proband's Uncle (II6)

He is 48 years old; Han ethnicity. He was diagnosed with diabetes 5 years ago, and his diabetes is treated irregularly with glipizide; his blood sugar is generally under control, with no spontaneous ketosis tendency. BMI, 23.18 kg/m2; waist circumference, 82 cm. BP, 120/78 mmHg. He refused examination for HbA1c and C-peptide.



The Proband's Aunt (II7)

She is 40 years old; Han ethnicity. BMI, 22.60 kg/m2; waist circumference, 73 cm. BP, 110/70 mmHg. OGTT (0–120 min): BS, 3.6–11.2 mmol/L; C-peptide, 0.571–3.23 nmol/L. HbA1c, 5.5%. At present, her diabetes is treated with diet and exercise; her blood sugar is well-controlled.



The Proband's Grandmother (I4)

She is 76 years old; Han ethnicity. She has a history of sequelae of cerebral infarction and hypertension for 5 years. BMI, 18.26 kg/m2; waist circumference, 69 cm. BP, 110/80 mmHg. OGTT (0–120 min): BS. 4.7–13.2 mmol/L; C-peptide, 0.59–4.51 nmol/L. HbA1c, 5.4%. At present, her diabetes is treated with diet and exercise to control blood sugar and with amlodipine to control BP, both of which are well-controlled.



The Proband's Grandfather (I3)

He is 77 years old; Han ethnicity. He has had hypertension for 10 years. BMI, 25.96 kg/m2; waist circumference, 92 cm. BP, 140/80 mmHg. OGTT (0–120 min): BS, 4.4–9.0 mmol/L; C-peptide, 0.488–3.67 nmol/L. HbA1c, 5.4%. At present, his diabetes is treated with diet and exercise; his blood sugar is well-controlled.



Genetic Analysis

The combination of negative autoantibodies for type 1 diabetes with inappropriately low C-peptide levels and a family history of diabetes or abnormal glucose tolerance prompted the molecular investigation for MODY. After obtaining informed consent, a venous blood (5 ml) was collected from the proband (III1) as well as his families and placed in an anti-coagulant tube containing ethylenediaminetetraacetic acid (EDTA).

DNA was extracted from the venous blood collected from the patient as well as from the patient's families using the QIAamp DNA Blood Midi kit (Qiagen, Germany), The quantity/quality of the DNA preparations was assessed using a NanoDrop 1000 spectrophotometer (Thermo Fisher, USA).

Exome enrichment was performed using the IDT xGenExome ResearchPanelv1.0 (Integrated DNA Technologies, Coralville, lowa, USA) and 150 base pair, paired end sequencing was performed using an Illumina HiSeq 4000 platform (San Diego, CA, USA). Mean sequencing depth and nucleotides with >20X sequencing depth were 159x and 99.61%, respectively. The raw sequencing reads were aligned by the We-Health BioMedical Technology (Shanghai, China) using the Burrows–Wheeler Aligner (BWA) and SAMtools. Polymorphic variants that showed >0.5% allele frequency in general populations were filtered out (based on the 1000 genomes database). The SIFT, PolyPhen2, MutationTaster were used to assist in predicting the functional impact of identified missense variants (8, 9).

The next-generation sequencing data were analyzed for mutations in known MODY-related gene (included the genes for HNF4A, GCK, HNF1A,PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABCC8, KCNJ11, and APPL1). The sequencing data revealed a heterozygous missense mutation: c.C4544T (p.T1515M), in exon 37 of the ABCC8 gene of the proband (III1) that was derived from his mother (II5). The amino acid changed from threonine to methionine (Figure 2); no mutations were detected for the remaining 13 genes. For the heterozygous mutation c.C4544T (p.T1515M) of the ABCC8 gene detected in III1, we verified I3, I4, II4, II5, II6, II7, II8, II9, III1, and III2 using Sanger sequencing and found that III1, II5, II6, II7, and I4 all had the same mutation of the ABCC8 gene.


[image: Figure 2]
FIGURE 2. Gene_sequencing results of proband and his family.


Oligonucleotides flanking the genomic locations of identified variantswere designed using the Primer3Plus browser. Polymerase chainreactions (PCR) was performed with the following primers: 5′-CACCCCACAGGACTGAACAG-3′ and 5′- ATCTGCTCCACTCACAGCAC-3′. PCR products were sequenced bi-directionally using Big Dye Terminatorchemistry v3.1 and sequenced using an ABI 3730XL sequencer (AppliedBiosystems/Life Technologies, Carlsbad, CA, USA). Sequences were reviewed manually and compared using CodonCode Aligner to reference sequences: ABCC8(NM_000352).

This study was approved by the Ethics Committee of Hainan General Hospital. All subjects gave written informed consent in accordance with the Declaration of Helsinki.




DISCUSSION

Monogenic diabetes is a special type of diabetes caused by a single gene mutation or defect; it is genetically and clinically heterogeneous, and includes MODY, neonatal diabetes, congenital hyperinsulinemia, and Wolcott-Rallison syndrome (10). First-degree relatives of a MODY family member carrying genetic mutations for the 2 most common MODY subtypes, i.e., GCK-MODY2 or HNF1α-MODY3, could have 95% risk of developing diabetes (11), and patients in the same family are more likely to have similar clinical presentations. MODY is the most common form of monogenic diabetes (1–3, 12, 13). Previous studies agree that the diagnostic criteria of MODY are: (i) autosomal dominant inheritance, (ii) insulin independence within 2 years of onset, (iii) at least one family member diagnosed with diabetes before the age of 25 years, (iv) combined with islet β-cell dysfunction (14).

The identification of a MODY subtype is crucial for the choice of adequate treatment. However, with the maturing of genetic testing technology in recent years, an increasing number of patients with MODY discovered by genetic testing do not fully meet the above diagnostic criteria, and their clinical manifestations tend to be more diverse. Strict adherence to the above criteria may result in missed diagnosis of a large number of patients with MODY. A study from the UK has shown that a significant number of patients with MODY have a primary diagnosis of diabetes and the MODY diagnosis could be confirmed only by performing molecular genetic testing (15), which may lead to inappropriate treatment such as insulin and/or insulin sensitization treatment (16). Therefore, when the onset of diabetes in young patients is not typical type 1 or type 2 diabetes, it should prompt molecular investigation for MODY.

The ABCC8 gene is located on chromosome 11p15.1 and encodes the sulfonylurea receptor 1 (SUR1) subunit of the ATP-sensitive potassium (KATP) channel in the pancreatic β-cell, which is involved in the electrical activity of the plasma membrane, thereby regulating insulin secretion (17). ABCC8 gene mutations can cause a variety of phenotypes, resulting in overactivity or underactivity of the KATP channel, resulting in abnormal glucose metabolism. In 2012, Bowman et al. first reported that MODY12 is caused by ABCC8 gene mutation, and its clinical manifestations are diverse, may be associated with overweight or obesity, and are usually with no significant hypertriglyceridemia and hypercholesterolemia. Further, such families may also have neonatal diabetic patients (18, 19). As sulfonylureas specifically bind to the SUR1 subunit and shut down the channel to release insulin in a non–ATP-dependent manner, this type of MODY is sensitive to sulfonylureas.

Initially, the present case was misclassified with type 1 diabetes because of his young age and ketosis, despite the negative islet β-cell autoantibodies. The possibility of considering the case as MODY was supported by the presence of diabetes within three generations, the stable C-peptide levels, and the obvious signs of overdose on relatively small insulin doses, which led to overweight. The characteristics of the family are: the proband's age is <25 years old with insulin deficiency, and his ketosis had precipitating factors and was easily eliminated. The diabetes-related antibodies (islet cell antibody [ICA], tyrosine phosphatase-like protein antigen-2 antibody [IA2A], glutamic acid decarboxylase antibody [GADA]) were negative, and a follow-up visit after 4 months on the regimen showed that his glycemic control had remarkably improved, with the vast majority of both fasting and postprandial glucose values within the target range and HbA1c of 5.7%; islet β-cell function was significantly improved, and even the overweight and insulin resistance appeared. All three generations in the family have diabetes or impaired glucose tolerance with autosomal dominant inheritance. In summary, our evidence supports the diagnosis of MODY. Genetic testing verified the presence of the ABCC8 gene mutation (ABCC8: NM_000352: exon37: c.C4544T: p.T1515M) in the proband (III1), his mother (II5) and three maternal relatives (II6, II7, I4) with diabetes or impaired glucose tolerance with similar figures and islet β-cell function, but not in the other relatives (II8, II9, III1) who do not have diabetes or impaired glucose tolerance, suggesting that the above mutation and diabetes have obvious co-segregation in the family. In addition, the proband's uncle (II6) had early-onset diabetes and took glipizide for it without spontaneous ketosis. This mutation (ABCC8: NM_000352: exon37: c.C4544T: p.T1515M) can lead to the conserved amino acid residues of this site being replaced by different amino acids throughout the evolution process, resulting in congenital hyperinsulinemia (20), and it has been suggested that congenital hyperinsulinemia caused by ABCC8 gene mutation can develop into MODY (21, 22), but since then, there has been no report of MODY12 caused by the above mutation. The SIFT score, PolyPhen2 score, and Mutation Taster score was 0, 1, and 1, all suggesting that it is damaging to the protein function. Based on the above predictions, the mutation is considered pathogenic. Therefore, we speculate that this mutation site is the cause of diabetes or impaired glucose tolerance in the proband (III1), his mother (II5), and the three maternal relatives (II6, II7, I4), where the type of diabetes is considered MODY12. I3, II3, and II4 also have diabetes or impaired glucose tolerance, but unlike the proband, they do not have the above mutation, and have characteristics such as central obesity or overweight, insulin resistance, diabetes diagnosed at age >50 years, and whose diagnosis is more prone to type 2 diabetes, which are quite different from the proband (Table 1).


Table 1. Clinical characteristics of family members with disease.

[image: Table 1]

The prevalence of MODY subtypes varies widely between countries and ethnic groups. More than 80% of Caucasian patients with MODY are MODY3 or MODY2 (15, 23), but only 7.2–36.7% of Asian patients with MODY are diagnosed as MODY2 or MODY3 (24–27). In China, epidemiological research of MODY is in its infancy, and the distributions of different MODY subtypes are not so clear. Further genes related to MODY are likely to be found, as most patients with MODY have unknown mutations; this group is defined as MODYX. MODYX might be responsible for 80–90% of MODY in China, which is quite different from other populations (25, 26, 28, 29). A lack of awareness of MODY, as well as its similar clinical features to other types of diabetes, means that clinicians cannot often easily distinguish MODY from type 1 or type 2 diabetes without genetic testing, which may lead to misdiagnosis. In the present case, the proband was diagnosed with type 1 diabetes due to early onset (12 years old) with ketosis, the obvious signs of overweight on relatively small doses of insulin, significantly improved islet β-cell function, and even the appearance of insulin resistance. After family investigation and genetic testing, we revised the diagnosis of type 1 diabetes to MODY12, and attempted to discontinue insulin therapy and started treatment with 1.0 g/day metformin combined with diet and exercise therapy. The proband's blood glucose is well-controlled, and he has not gained any more weight. His relatives (II5, II6, II7, I4) with the same ABCC8 gene mutation as the proband have similar habius, no central obesity, BMI within the 18–24 kg/m2 range, mildly elevated blood glucose, and similar islet β-cell function. At present, they only require diet and exercise therapy. Therefore, the identification of a MODY subtype is crucial for the choice of adequate treatment. In the present case, verification of the diagnosis by genetic testing enabled the discontinuation of insulin therapy, which had produced obvious adverse effects, such as increased bodyweight.

In conclusion, we report a case of MODY12 caused by a single nucleotide mutation of cytosine to thymine at position 4,544 of the ABCC8 gene. This mutation has not been reported to be associated with MODY in China or in other countries. It is a rare missense ABCC8 gene mutation (dbSNP ID: rs769989185, and has not been reported in ClinVar database: https://www.ncbi.nlm.nih.gov/clinvar/), which might be useful for individualized selection of appropriate treatment and for genetic consulting. The described case also highlights the clinical expression of diabetes related to the ABCC8 gene and underlines the value of genetic testing in young patients presenting with non-autoimmune diabetes.
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Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL), Nidd/DBA on chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin. Phenotypical characterization of congenic mice carrying 13.6 Mbp of the critical fragment of DBA mice displayed severe hyperglycemia and impaired glucose clearance at week 10, decreased glucose response in week 13, and loss of β-cells and pancreatic insulin in week 16. To identify the responsible gene variant(s), further congenic mice were generated and phenotyped, which resulted in a fragment of 3.3 Mbp that was sufficient to induce hyperglycemia. By combining transcriptome analysis and haplotype mapping, the number of putative responsible variant(s) was narrowed from initial 284 to 18 genes, including gene models and non-coding RNAs. Consideration of haplotype blocks reduced the number of candidate genes to four (Kti12, Osbpl9, Ttc39a, and Calr4) as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. In conclusion, the integration of comparative analysis of multiple inbred populations such as haplotype mapping, transcriptomics, and sequence data substantially improved the mapping resolution of the diabetes QTL Nidd/DBA. Future studies are necessary to understand the exact role of the different candidates in β-cell function and their contribution in maintaining glycemic control.

Keywords: type 2 diabetes, β-cell loss, insulin, positional cloning, transcriptomics, haplotype


INTRODUCTION

Type 2 diabetes (T2D) arises from a complex interplay of multiple genetic and environmental factors that contribute to inadequate insulin secretion, insulin resistance, or both (American Diabetes Association, 2005; Tallapragada et al., 2015). A high percentage of obese people become diabetic, and the majority will at least experience insulin resistance and some degree of β-cell dysfunction (Kahn et al., 2006). Genetic predisposition accounts for differences in T2D susceptibility; so called “protective” gene variants mitigate the progression of the disease either through increased insulin sensitivity or secretion, while susceptibility variants can otherwise predispose an individual to β-cell failure and loss (McCarthy and Zeggini, 2009). Genome-wide association studies (GWAS) typically utilize genetic variants in the human population in the search for novel pathogenic genes. Despite the enormous numbers of human participants recruited for GWAS, diversity in the genome and environmental influences typically confound datasets, particularly for complex traits such as blood glucose or insulin concentrations. Thus, carefully controlled animal studies which allow for the precise manipulation of both environment and genetic variance remain a critical tool in T2D research.

In the past, individual crossbreeding approaches of inbred strains that vary in their predisposition to T2D have been useful for the identification of diabetes risk genes. However, with advances in bioinformatics and increasing capacity to deal with large and complex datasets, particularly involving the availability of genome-wide sequence coverage of common laboratory mouse strains, it has been advantageous to perform multiple crosses in parallel. We have recently carried out a collective diabetes cross (Vogel et al., 2018) using four lean inbred mouse strains (B6, DBA, C3H, and 129P2), each with varying susceptibility to T2D, to be individually crossbred with the obese and diabetes-prone New Zealand obese (NZO) mouse. This strategy addresses the current gaps in the knowledge of the genetic basis for T2D. It confers several advantages, including the ability to use haplotype maps for higher resolution positional cloning (Schwerbel et al., 2020).

The NZO mouse is an inbred strain that portrays a phenotype reminiscent of the human metabolic syndrome, displaying hyperphagia, severe obesity, insulin resistance, dyslipidemia, vascular disease, β-cell failure, and hyperglycemia (Kluge et al., 2012). With respect to islet dysfunction, NZO males display a more severe phenotype than females, and this gender difference is largely attributed to the protective effect of female sex hormones, in particular, estrogen (Vogel et al., 2013; Lubura et al., 2015). DBA mice, in contrast, are lean and normoglycemic. However, when obesity is induced with the introduction of either leptin or leptin receptor knockout mutations (lep-ob and lep-db, respectively), both male and female DBA mice develop a diabetes-like phenotype due to β-cell failure, indicating the presence of diabetes risk genes in the DBA genome (Leiter, 1981; Chua et al., 2002).

Here, we focus on the diabetes quantitative trait loci (QTL) Nidd/DBA on chromosome 4 which we identified as most prominent diabetes QTL in the NZOxDBA cross (Vogel et al., 2018). In the past, several QTL have been identified in the mid-region of mouse chromosome 4 in the proximity of the leptin receptor gene (Lepr) relating to hyperglycemia and hypoinsulinemia (Leiter et al., 1998; Plum et al., 2002; Scherneck et al., 2009; Davis et al., 2012; Kluge et al., 2012). In each case, the presence of a single allele from a lean, non-diabetic donor strain was able to produce a strong diabetogenic phenotype on an obese background. More specifically, the mice developed chronic hyperglycemia accompanied by pancreatic β-cell loss. Despite the fact that this trait has appeared repeatedly in crossbreeding experiments over the last 19 years, the responsible variant has yet to be identified. Variants in the gene Zfp69 were previously hypothesized to be responsible for the diabetogenic effects of this locus (Scherneck et al., 2009). However, results obtained from subsequent characterization of Zfp69-tg mice suggested that Zfp69 alone was not sufficient to trigger the hyperglycemic phenotype observed for the Nidd/SJL QTL (Scherneck et al., 2009; Chung et al., 2015). Here, we describe the QTL Nidd/DBA, a diabetogenic allele which was contributed by DBA and enhanced hyperglycemia and β-cell loss. In order to re-address the issue of which variants on chromosome 4 are responsible for this trait, Nidd/DBA recombinant congenic lines were generated on an NZO background. In the process of this investigation, cross-strain (NZO, B6, 129P2, DBA, and C3H) comparisons and bioinformatic approaches have been utilized in order to identify putative T2D genes.



MATERIALS AND METHODS


Animals

Female NZO mice from our own colony (NZO/HIBomDife: German Institute of Human Nutrition, Nuthetal, Germany) and male DBA (DBA/2J: maintained in-house with breeders originating from Jackson Lab, Maine, United States) were crossed. Generation and phenotypical characterization of backcross mice were performed, as previously described (Vogel et al., 2018). Recombinant congenic mice were bred by repeated backcrossing of mice positive for the Nidd/DBA locus with NZO.

All congenic mice were maintained on chow diet (Ssniff, Soest, Germany; maintenance diet for rats and mice, product no. V153xR/M-H) containing 36% protein, 11% fat, and 53% carbohydrates. The animals were kept in accordance with EU Directive 2010/63/EU guidelines for the care and use of laboratory animals. All experiments were approved by the ethics committee of the State Agency of Environment, Health, and Consumer Protection (State of Brandenburg, Germany) under the permit numbers V3-2347-21-2012, 2347-10-2014, and 2347-13-2018.



Genotyping of Nidd/DBA Mice by KASP and Microsatellite Markers

Genomic DNA was extracted from mouse tail-tips using the Invisorb Genomic DNA Kit II (STRATEC Molecular GmbH, Berlin, Germany), following the manufacturer’s instructions. Kompetitive allele-specific PCR (KASP) genotyping of N2 backcross mice was performed by LGC genomics (LGC group, Teddington, United Kingdom; Vogel et al., 2018). Recombinant congenic mice containing the Nidd/DBA locus were genotyped with KASP assays or by PCR with oligonucleotide primers obtained from Sigma (Sigma-Aldrich, Munich, Germany), and the microsatellite length was determined by non-denaturing polyacrylamide gel electrophoresis (Supplementary Table 1).



Blood Glucose and Plasma Insulin

Random blood glucose was determined in the morning between 7 and 10 am with a Contour glucometer (Bayer, Leverkusen, Germany). Plasma insulin levels were determined by Mouse Ultrasensitive Insulin ELISA kit (Alpco, Salem, United States).



Oral Glucose Tolerance Test

Oral glucose tolerance tests (oGTTs) were performed at 6 and 12 weeks of age. Animals were fasted for a period of 6 h and received 2 mg glucose (Glucosteril® 20%, Fresenius Kabi, Bad Homburg, Germany) per gram of body weight by oral gavage, subsequently. At the indicated time points, blood glucose and plasma insulin were obtained from the tail tip.



Fasting-Refeeding Experiment

Fasting and refeeding experiments were performed at 13 weeks of age. After a 16 h overnight fasting period, blood glucose levels were determined and blood samples were collected. Subsequently, mice were refed for 2 h, and blood glucose levels and blood samples were collected.



Endpoint Organ Collection

Mice were fasted 6 h before sacrifice. Blood was obtained by heart puncture with a 0.29 G needle attached to 0.5 M ethylenediaminetetraacetic acid (EDTA) coated syringes. Plasma was extracted by centrifugation (10,000 × g, 15 min, 4°C). Tissues were extracted and snap-frozen in liquid nitrogen. All tissue samples were stored at −80°C.



Isolation of Pancreatic Islets

Islets were obtained from mouse pancreas following the protocol, as previously described (Kluth et al., 2015).



Glucose-Stimulated Insulin Secretion in Primary Islets

Glucose-stimulated insulin secretion (GSIS) was performed, as described (Kluth et al., 2019). Briefly, 30 isolated and 24 h recovered islets were equilibrated in Krebs-Ringer buffer for 30 min under low glucose (2.8 mM) conditions and transferred into perifusion chambers (PERI5-115, Biorep Technologies Inc., Miami Lakes, FL, United States) with a continuous flow of 100 μl/min. GSIS was measured continuously under low (2.8 mM) and high glucose (20 mM) conditions and finally with low glucose for indicated periods. Fractions were collected in 2–3 min intervals. Insulin levels were measured using Mouse Ultrasensitive Insulin ELISA (Alpco) and normalized to residual insulin.



Total Pancreatic Insulin

For detection of the pancreatic insulin content, whole pancreas was homogenized in ice-cold acidified ethanol (0.1 mol/L HCl in 70% ethanol) and incubated for 24 h at 4°C. After centrifugation (16,000 × g, 10 min), insulin was detected in 5 μl of the supernatant fraction using the Mouse High Range Insulin ELISA (Alpco) according to the manufacturer’s instructions.



Immunohistochemistry and Immunofluorescence Staining

Embedded pancreatic sections were stained for insulin with the monoclonal mouse antibody K36AC10 (Sigma-Aldrich) by overnight incubation in a humid chamber at 4°C. For immunofluorescence staining, the secondary antibody 546 Alexa (Thermo Fisher Scientific Inc., Massachusetts, United States) and DAPI were applied at room temperature for 30 min. Next, biotinylated secondary antibody was applied and left at room temperature for 30 min. Subsequently, sections were treated with DAB substrate (DAB + Substrate Chromogen System, Agilent Technologies Inc.) for 2.5 min. Following staining of nuclei with hematoxylin and draining of the sections were performed in a Leica ST5020 Multistainer (Leica Biosystems, Wetzlar, Germany). For morphometric analysis, pancreatic sections were scanned with the MIRAX MIDI scanner (Carl Zeiss MicroImaging GmbH, Jena, Germany) and viewed with the MIRAX Viewer 1.12 software. Fluorescence images were examined with the confocal microscope Leica TCS SP8 (Leica Biosystems, Nussloch GmbH, Germany) and quantified by using the ImageJ software package [v1.52; Wayne Rasband (NIH)].



Linkage Analysis

Genome-wide scan of N2 mice (NZOxDBA, n = 288 males/299 females) was performed, as previously described (Vogel et al., 2018). In brief, genetic map, genotyping errors, and linkage between individual traits and genotypes were assessed with the software package R/qtl (version 1.04-8) using the expectation maximization (EM)-algorithm and 1,000 permutations (Broman et al., 2003).



Haplogroup Analysis

Haplogroup analysis was performed, as described (Schallschmidt et al., 2018). In brief, mouse single nucleotide polymorphism (SNPs) were used from the Wellcome Trust Sanger Institute Database.1 The chromosomal region was dissected into intervals of 250 kb to determine the frequency of polymorphic SNPs between the mouse strains. A window of 250 kb exceeding the threshold of 100 SNPs was defined as polymorphic according to the assumption (B6 = NZO ≠ DBA). For the total number of SNPs between parental strains, SNPs were compared to the C57BL/6J as reference.



RNA Isolation

Isolation of total RNA from islets of Langerhans was performed with the Micro RNA Isolation RNAqueous® Kit (Life Technologies™, Darmstadt, Germany). Lysis of islet cells was initially carried out by a 10-s ultrasonic pulse (Branson Sonifier 450, G. Heinemann Ultraschall‐ und Labortechnik, Schwäbisch Gmünd, Germany). All further steps were carried out according to the manufacturer’s instructions.



Genome-Wide mRNA Gene Expression

Whole-genome RNA-deep sequencing was performed by LGC Genomics (LGC Group). First, for data processing, adapters were trimmed and reads were filtered for quality using the wrapper Trim Galore and Cutadapt. Second, FastQC was utilized to check quality of samples, and finally, alignment of reads to reference genome was performed with HISAT2, and fragments per kilobase of transcript per million mapped reads (FPKM) values for transcripts have been determined by Cufflinks.



Analysis of Putative Transcription Factor Binding Sites

For the identification of putative transcription factor binding sites (TFBSs) within the promotor region of differentially expressed genes, genetic variants (SNPs/Indels) between the parental strains NZO and DBA (Wellcome Trust Sanger Institute Database; REL-1505) were combined with position weight matrices (PWM) from the JASPAR database (Mathelier et al., 2014). TFBSs were predicted by R version 4.0 and the package TFBS tools (Tan and Lenhard, 2016).



Statistics

Data, if not indicated otherwise, are presented as mean ± standard error of the mean (SEM). Statistical analyses were performed by either unpaired t-test, one-way ANOVA, or two-way ANOVA (with or without Bonferroni post-tests), as appropriate. GraphPad Prism 8 software (GraphPad, San Diego, United States) was utilized for simultaneous graph creation and statistical analysis. Significance levels were set for p < 0.05 (*), 0.01 (**), and 0.005 (***).




RESULTS


Nidd/DBA, a Diabetes QTL, Contributed by DBA

Male parental NZO and DBA mice were characterized on a 45% kcal high-fat diet (HFD) until the age of 16 weeks. The mice were phenotyped for metabolic traits relating to obesity and diabetes according to a standardized protocol that was established for the DZD collective diabetes cross (Vogel et al., 2018). NZO males, in contrast to DBA mice, developed overt diabetes, incidentally the average male blood glucose reading at the earliest time point measured (week 6) was >16.6 mM and all mice reached severe hyperglycemia (Figure 1A) combined with body weight loss by the endpoint of 16 weeks (data not shown). This heterogeneity observed between the two strains provided the basis for the subsequent investigation of QTL arising from the cross of both inbred strains. Since the trait blood glucose also scattered widely in the backcross population of NZO and DBA [(NZOxDBA)N2, Figure 1A], we assume that genetic variations are causal for the effect.
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FIGURE 1. Localization of susceptibility loci on chromosome 4. (A) Distribution of blood glucose levels in the (NZOxDBA)N2 cohort at the age of 6 (DBA, n = 16; N2, n = 282; NZO, n = 28) and 10 (DBA, n = 16; N2, n = 219; NZO, n = 27) weeks in comparison to the parental NZO and DBA strains. (B) Genome-wide linkage analysis for the traits blood glucose, plasma insulin, and total pancreatic insulin revealed a single quantitative trait loci (QTL) on chromosome 4. The analysis was performed with data from male mice of the (NZOxDBA)N2 population at 16 weeks of age. The horizontal line indicates the threshold of significance (p < 0.01). (C) Effect sizes of traits associated with the QTL Nidd/DBA in the (NZOxDBA)N2 cohort. The critical region of Nidd/DBA was defined within a region of 46 Mbp on chromosome 4, defined by border SNP markers rs3692661 and rs3674038. Blood glucose (N/N, n = 103; N/D, n = 103), plasma insulin (N/N, n = 83; N/D, n = 52), and total pancreatic insulin (N/N, n = 80; N/D, n = 58) of homozygous (N/N) vs. heterozygous (N/D) N2 male mice for the critical region of the QTL. Data are presented as means ± SEM and were analyzed with Student’s t-test. **p < 0.01; ***p < 0.005.


Indeed, in the (NZOxDBA)N2 population, a major QTL for elevated blood glucose, reduced plasma insulin concentrations, and low levels of total pancreatic insulin was localized to chromosome 4 with logarithm of the odds (LOD) scores of 8, 3.7, and 6, respectively (Figure 1B). This locus was designated Nidd/DBA (non-insulin dependent diabetes from DBA). As mice heterozygous for NZO/DBA (N/D) had an increased propensity toward hyperglycemia and low circulating and pancreatic insulin compared to homozygous NZO/NZO (N/N) allele carriers (Figure 1C), we concluded that the DBA genome contributed the diabetogenic gene.



Characterization of the QTL Nidd/DBA

To analyze the phenotype conferred by the Nidd/DBA locus and to narrow down the critical region, recombinant congenic mice harboring one (RCS-I, Nidd/DBA.13.6N/D) or two diabetogenic (Nidd/DBA.13.6D/D) alleles from DBA on chromosome 4 (103.9–117.5 Mbp) on the NZO background were characterized and compared to homozygous NZO (Nidd/DBA.13.6N/N) controls (Figure 2A). From week 10 onward, blood glucose values were significantly higher in Nidd/DBA.13.6D/D mice compared to controls (Figure 2A). At the endpoint (16 weeks of age), approximately two-thirds (66.6%) of the Nidd/DBA.13.6D/D group was diabetic, as determined by blood glucose levels >16.6 mM and a stagnation or even drop in body weight, compared to 37.5% diabetic Nidd/DBA.13.6N/D and 8.3% Nidd/DBA.13.6N/N mice. Likewise, we observed an impaired glucose tolerance during oGTTs in homozygous Nidd/DBA allele carriers compared to controls. This effect worsened progressively from week 6 to week 12 (Figure 2B). However, the corresponding plasma insulin levels during the oral glucose tests were similar between the different groups (Figure 2C).
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FIGURE 2. Diabetes traits of Nidd/DBA mice. (A) Male mice carrying 13.6 Mbp of chromosome 4 from NZO or DBA (N/N, N/D, and D/D) on the NZO background were characterized for the development of body weight (left panel), blood glucose (middle panel), and prevalence of diabetes (blood glucose >16.6 mM; right panel) on chow diet until 16 weeks of age. (B) Blood glucose and (C) insulin levels with corresponding area under the curve (AUC, right panels) during oral glucose tolerance test (oGTT) in male congenic mice at week 6 and week 12 (N/N, n = 12–19, N/D, n = 16–35, D/D, n = 12–20). (D) Blood glucose and insulin levels in 13-week-old Nidd/DBA mice after 16 h overnight fast and 2 h-refeeding (N/N, n = 6–8, N/D, n = 8–11, D/D, n = 4–5). Data are presented as means ± SEM and were analyzed by one-way ANOVA (AUC: B–D) or two-way ANOVA (A–C). *
p < 0.05; **
p < 0.01; ***
p < 0.0005; N/N, Nidd/DBAN/N
 mice; N/D, Nidd/DBAN/D
 mice; D/D, Nidd/DBAD/D
 mice.


To further estimate glucose homeostasis and insulin sensitivity, we performed fasting-refeeding experiments in congenic mice at the age of 13 weeks. In the fasting state (16 h fasting), homozygous DBA mice had already higher blood glucose levels than heterozygous and homozygous NZO mice, whereas circulating insulin levels were identical between the different groups (Figure 2D). After 2 h refeeding, the homozygous Nidd/DBA.13.6N/N
 and heterozygous Nidd/DBA.13.6N/D
 mice showed significantly higher blood glucose and insulin levels compared to the corresponding fasting state. Although the homozygous Nidd/DBA.13.6D/D
 mice were hyperglycemic already in the fasting state, the mice were still able to secrete significantly more insulin under re-fed conditions (Figure 2D). Moreover, in isolated islets of 13-week-old Nidd/DBA.13.6D/D
 and Nidd/DBA.13.6N/N
 mice, we tested the capacity for GSIS. During the challenge, Nidd/DBA.13.6D/D
 and Nidd/DBA.13.6N/N
 islets displayed equivalent basal (2.8 mM media glucose concentration) insulin secretion capacity. In response to 20 mM glucose, Nidd/DBA.13.6D/D
 islets showed a tendency toward a reduced insulin secretion without reaching significance. No differences in the insulin secretion capacity were obtained in islets of 6 weeks old mice (Figure 3).
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FIGURE 3. Insulin secretion in Nidd/DBA islets ex vivo. Glucose-stimulated insulin secretion (GSIS) in primary islets of 6 (n = 3) and 13 weeks old homozygous NZO (N/N, n = 4), heterozygous (N/D, n = 6), or homozygous DBA (D/D, n = 3) allele carriers for the Nidd/DBA locus (RCS-III, Nidd/DBA.6.3) with corresponding AUC (right panel). Data are presented as means ± SEM and were analyzed by one-way ANOVA.




Nidd/DBA Mice Exhibited Marked β-Cell Loss and Islet Destruction

As we observed higher blood glucose concentrations in Nidd/DBA.13.6D/D mice, we isolated the pancreas of congenic mice at different time points to monitor the islet morphology. As shown in Figure 4A and Supplementary Figure S1, at 16 weeks of age, the islet area, as well as the number of islets, was significantly reduced in homozygous Nidd/DBA.13.6D/D mice compared to heterozygous allele carriers and tendentially also to homozygous controls (Nidd/DBA.13.6N/N), assuming in combination with the hyperglycemic phenotype that Nidd/DBA.13.6D/D mice exhibited a marked loss in pancreatic β-cells. Immunofluorescent staining of pancreatic islets with an insulin specific antibody additionally highlighted the loss of β-cells in Nidd/DBA.13.6D/D mice (Figure 4B) with a gradual loss from week 6 to week 16. In order to validate the data obtained by immunohistochemistry, we determined the insulin content of total pancreas by immunoassay of acidic ethanol extracts (Figure 4C). A significant decrease of the insulin content in Nidd/DBA.13.6D/D mice was detected at the age of 16 weeks. Thus, a gradual decrease in total pancreatic insulin appeared to accompany the increase in fasting plasma glucose levels combined with a fall in fasting plasma insulin levels (Figure 4C).
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FIGURE 4. Nidd/DBA mice exhibited marked β-cell loss and islet destruction. (A) Quantification of islet area (left panel) and islet number/section (right panel) at the indicated time points in male Nidd/DBAN/N (N/N), Nidd/DBAN/D (N/D), and Nidd/DBAD/D (D/D) mice (n = 3–8 animals/genotype). (B) Representative images of pancreatic sections of male Nidd/DBA (RCS-I) mice stained for insulin (green). Nuclei were stained with DAPI (blue); Scale bar: 100 μm. (C) Pancreatic insulin content in congenic mice (RCS-I) at the age of 16 weeks (n = 5–7) and 6 h fasting blood glucose and insulin values in RCS-I mice at different time points (N/N, n = 5–19, N/D, n = 6–35, D/D, n = 10–20). Data are presented as means ± SEM and were analyzed by one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.0005.




Fine Mapping of the Critical Diabetogenic Interval of Nidd/DBA

The region spanning 13.6 Mbp of the Nidd/DBA harbors 284 genes including 139 annotated genes, 78 gene models, and 67 non-coding RNAs (Yates et al., 2020). To identify the responsible gene variant(s), additional recombinant congenic lines, each carrying a distinct region of the initial Nidd/DBA locus, were generated by further backcrossing to NZO (Figure 5A). The characterization of these mice indicated that more than two-thirds of the heterozygous allele carriers of each line developed a diabetic phenotype at the endpoint of 16 weeks, compared to 33.3% diabetic Nidd/DBAN/N mice (Figure 5B). Heterozygous mice of each line developed hyperglycemia compared to normoglycemic controls, and the body weight already started to drop (Figure 5C). Thus, a 3.3 Mbp fragment with 61 genes including 28 annotated genes, 18 gene models, and 15 non-coding RNAs (Yates et al., 2020), comprising the diabetogenic allele, was defined to be located between 108.1 Mbp (rs233757491) and 111.4 Mbp (rs32727600).
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FIGURE 5. Combined approach of haplotype and gene expression analysis in islets for the identification of DBA-specific gene variants within the Nidd/DBA locus. (A) Generation of congenic mice carrying different fragments of the QTL Nidd/DBA. (B) Diabetes prevalence (blood glucose >16.6 mM, week 16), (C) body weight, and blood glucose development in congenic mice carrying one heterozygous DBA allele for the Nidd/DBA locus compared to homozygous NZO controls. (D) Haplotype map of single nucleotide polymorphisms (SNPs) within the critical region of Nidd/DBA (108.8–111.4 Mbp). Black line: total number of SNPs (all SNPs annotated for the B6 reference genome with calls for NZO and DBA). Red line: SNPs according to B6 = NZO ≠ DBA. (E) QTL was dissected into windows of 250 kb. Red boxes indicate 100 SNPs per window polymorphic according to B6 = NZO ≠ DBA. Location of genes within the critical Nidd/DBA interval with a differential expression in pancreatic islets of 6 weeks old congenic mice (N/N ≠ D/D) and position of genes with non-synonymous coding variants between the parental strains NZO and DBA (REL-1505-GRCm38). (F) Genes within the critical Nidd/DBA interval displaying a differential expression in pancreatic islets of congenic mice (RCS-I, Nidd/DBA.13.6). Expression was analyzed via RNA-sequencing (n = 4). Genes with differential expression in pancreatic islets and location within a polymorphic Nidd/DBA haplotype block are indicated in red. Data are presented as means ± SEM and were analyzed with Student’s t-test (F) or one-way ANOVA (C). *p < 0.05; **p < 0.01; ***p < 0.001.


Within the collective diabetes cross project, a backcross population of the NZO and B6 strain was conducted, where no QTL on chromosome 4 with similarities to the Nidd/DBA locus was defined. Thus, the causal gene variant(s) may be common between the NZO and B6 strain but different to DBA. According to this hypothesis, a haplotype map of the putative critical region on chromosome 4 was created based on NZO/HiltJ, DBA/2J, and C57BL/6J (B6) SNP information (Keane et al., 2011; Yalcin et al., 2011). A graphical representation of the polymorphic regions found in the Nidd/DBA locus is shown in Figure 5D, where several clusters of variants can be identified across the entire region. In total, 18 genes (11 annotated genes, one gene model, three processed pseudo genes, and three non-coding RNAs) were found to be unique for the DBA strain but different to NZO and B6.

Moreover, gene expression profiles of pancreatic islets were generated from congenic mice carrying the initial 13.6 Mbp fragment (RCS-I) of the Nidd/DBA locus. Six genes within the critical region were differentially expressed in pancreatic islets of homozygous Nidd/DBAD/D mice compared to homozygous Nidd/DBAN/N controls (Figure 5F), whereby only Kti12, Osbpl9, and Ttc39a are also located in a polymorphic haplotype block (Figure 5E). As the complete NZO and DBA genomic sequence is publicly available, we also screened for sequence variations in genes located within the polymorphic Nidd/DBA haplotype block. In total, two non-synonymous SNPs (Table 1) in association with Ttc39a [rs28150999; missense variant (P169L)] and Calr4 (rs219833914; frameshift variant) were found to be common between NZO and B6 but different to DBA (Table 1; Figure 5E).



TABLE 1. Summary of genetic variants in the critical region of Nidd/DBA, common between the New Zealand obese (NZO) and B6 strain but different to DBA (Keane et al., 2011; Yalcin et al., 2011).
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Next, we aimed to investigate the underlying genetic cause of the differential expression of Ttc39a, Osbpl9, and Kti12. An in silico approach using a PWM based TFBS prediction revealed strong alterations for eight transcription factors (TFs) in a region 2 kbp upstream of Ttc39a (Supplementary Table 2). These variants lead to an altered core region in the DBA sequence, and it is possible that these sequence alterations and a likely difference in TF binding are causal for the low Ttc39a expression in DBA allele carriers.



Expression of Human Orthologues of Nidd/DBA Candidates in Patients With Type 2 Diabetes

The Nidd/DBA locus on mouse chromosome 4 is syntenic to the human genomic segment on chromosome 1 (Figure 6A). To clarify the importance of the genes with differential expression in mouse islets in the pathogenesis of T2D, we used transcriptomic data from human pancreatic islets of deceased donors with and without T2D (Fadista et al., 2014). As shown in Figure 6B, all three genes displayed a significantly different expression in islets of patients with and without T2D, whereby only the effect for TTC39A with a reduced expression in T2D patients was comparable with the data obtained in pancreatic islets of mice carrying the diabetogenic Nidd/DBA allele (Figure 5F).
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FIGURE 6. Expression of Nidd/DBA candidate genes in human pancreatic islets. (A) Cluster of the critical Nidd/DBA region on mouse chromosome 4 and human chromosome 1. (B) Expression of candidate genes in pancreatic islets of T2D (n = 26) and normoglycemic controls (n = 51; Fadista et al., 2014). Data are presented as means ± SEM and were analyzed with Student’s t-test. *p < 0.05; ***p < 0.0005.





DISCUSSION

The present data define a critical interval of the QTL Nidd/DBA on chromosome 4, a diabetogenic allele which was introduced by DBA. The QTL is characterized by hyperglycemia starting at 10 weeks of age, accompanied by hypoinsulinemia and a loss of body weight and total pancreatic insulin levels at the endpoint of the study at 16 weeks. In order to identify the responsible variant(s) on chromosome 4, Nidd/DBA recombinant congenic lines were generated and combined with transcriptomics and different bioinformatic tools to finally define a critical QTL segment of 3.3 Mbp which contains four candidate genes for the observed diabetic phenotype.

The diabetogenic allele of Nidd/DBA mice induces severe hyperglycemia and impaired glucose clearance starting at 10 weeks of age and decreased glucose response in week 13. In week 6, Nidd/DBAD/D islets displayed equivalent basal as well as GSIS, whereas in week 13, carriers of the diabetogenic allele showed a tendency of an impaired insulin secretion capacity. Also, the unchanged insulin levels during the glucose tolerance tests which showed an impaired glucose clearance indicate that Nidd/DBAD/D mice exhibit a restricted insulin secretion. Histology of non-diabetic Nidd/DBAN/N and Nidd/DBAD/D mice at the age of 6 weeks did not indicate any early differences in islet morphology, whereas later immunostaining of pancreatic sections of diabetic Nidd/DBA mice revealed a loss of β-cells and reduced islet size to be a central element in the pathology of Nidd/DBA induced T2D. The time course data indicate that, presumably, due to a moderate and early impairment of insulin secretion, a fast β-cell loss occurs within a period of 3–4 weeks.

Many mouse-cross populations have been analyzed worldwide, but despite the fact that diabetes-related QTL on chromosome 4 have appeared several times in both DBA and NZO outcrosses (BKS-db/−xNZO: Togawa et al., 2006; NONxNZO: Leiter et al., 1998; NZOxSJL: Plum et al., 2002), the responsible variant has yet to be elucidated. The gene Zfp69, uniquely expressed in SJL and repressed in NZO due to the presence of a retrotransposon, is located on chromosome 4 at approximately 121 Mbp and was previously investigated as a T2D candidate, but does not account for islet dysfunction and β-cell loss (Scherneck et al., 2009; Chung et al., 2015). DBA mice carry an intact copy of Zfp69, however, characterization of recombinant congenic mice excluded the possibility that Zfp69 is responsible for β-cell failure observed in Nidd/DBA mice, as Zfp69 is located outside of the smallest critical Nidd/DBA fragment (108.1–111.4 Mbp) inducing hyperglycemia. In addition to SJL, QTL for elevated blood glucose were identified on chromosome 4 from parallel NZO crosses with C3H and 129P2 (Schallschmidt et al., 2018). The QTL derived from SJL, 129P2, and C3H were characterized not only by hyperglycemia but also by a lack of insulin, indicating that β-cell failure is underlying the diabetogenic effect of the QTL. However, it is not entirely clear whether the DBA, C3H, 129P2, and SJL strains harbor the same pathological variant on chromosome 4. Therefore, for haplotype mapping, we just included the sequence variants in the critical region of the Nidd/DBA between DBA and NZO as well as the B6 strain, as no QTL for hyperglycemia was detected on chromosome 4 in the (NZOxB6)N2 cross.

Of the 18 genes within the haplotype block that carry common variants between these strains, three genes located between 108.1 and 111.4 Mbp are differently expressed in islets of homozygous DBA compared to homozygous NZO mice. One of these genes, Ttc39a [tetratricopeptide repeat (TPR) domain] also carries a missense variant in the DBA genome. Ttc39a belongs to the structural family of TPR domain proteins, which comprises about 100 members characterized by repeats of a 34-amino-acid consensus (Dmitriev et al., 2009). The TPR-containing (TTC) proteins are involved in many important biological processes, such as intracellular transport, vesicle fusion, protein folding, cell cycle, and transcriptional regulation (Zeytuni and Zarivach, 2012; Xu et al., 2015). For Ttc4, it has been demonstrated that it is involved in the intraflagellar transport (IFT), a trafficking machinery essential for cilia formation and function (Hao and Scholey, 2009). Defects in cilia assembly and function result in severe disorders called ciliopathies (Xu et al., 2015). A subset of ciliopathies including Bardet-Biedl-Syndrome (BBS) and Alström Syndrome (ALMS) shows metabolic abnormalities including truncal obesity and higher susceptibility to diabetes (Volta and Gerdes, 2017). Cilia are present, e.g., in endocrine β-cells, and it has been reported that cilia play a role in insulin signaling, insulin secretion, and β-cell function (Gerdes et al., 2014). We recently reported that cilia-gene regulation has a strong impact on the presence and dynamics of cilia in islets which, in turn, determines diabetes susceptibility (Kluth et al., 2019). However, as there are multiple transcript variants described for Ttc39a, which encode distinct isoforms, the specific role of the differently expressed isoform in the pathogenesis of diabetes in mice has to be clarified. The second gene with a differential expression is Kti12 (KTI12 homolog, chromatin associated). Kti12 is known to be a vastly conserved ATPase and essential for transfer RNA (tRNA)-modification activity of the Elongator complex (Krutyhołowa et al., 2020). So far, Kti12 was mainly described in plant cell biology, where it plays a role in the transcription by interacting with RNA polymerase II (Nelissen et al., 2003). Attempts to generate Kti12-KO models in mice resulted either in embryonic lethality (prior to organogenesis) or pre-weaning lethality (IMPC2). The gene Osbpl9 (oxysterol binding protein-like 9) belongs to the oxysterol-binding protein family, which has been implicated in the function of, e.g., endoplasmic reticulum (ER) junctions, non-vesicular transport of lipids, integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, and regulation of signaling cascades (Olkkonen et al., 2006). Familial loss-of-function variants of OSBPL1 in humans predisposed to impaired reverse cholesterol transport and low plasma high-density lipoprotein (HDL) levels (Motazacker et al., 2016). Studies on OSBPL10 suggested a suppressive function on hepatic lipogenesis and very low density lipoprotein (VLDL) production (Perttilä et al., 2009). Finally, the gene Calr4 (Calreticulin 4) located within the critical Nidd/DBA segment carries a frameshift mutation within the first exon in the DBA strain. Calr4 alongside with Crt (calreticulin), Cnx (calnexin), and Clgn (calmegin) belongs to the calreticulin protein family that is known to be involved in calcium binding. Genes of the calreticulin family encode for proteins located in the endoplasmic reticulum (ER; Michalak et al., 1992; Bergeron et al., 1994; Watanabe et al., 1994). Crt promotes folding and quality control of the ER by interactions with Cnx (Calreticulin/calnexin cycle; Raghubir et al., 2011). However, due to the fact that Calr4 was not detected in islets by RNAseq, we concluded that its variant is not involved in the impaired β-cell function induced by Nidd/DBA. In addition, Calr4 appears to only be expressed during embryonic development in mice, it is poorly conserved and only encoded as a pseudogene in humans.

In summary, the positional cloning of the QTL Nidd/DBA has identified four genes as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. However, it cannot be excluded that genetic variants, including non-coding SNPs, indels, or copy number polymorphisms, may exert effects on regulatory circuits in the locus, thereby affecting islet cell function and glycemic control. Similarly, it must be considered that the Nidd/DBA locus may contain a diabetogenic variant not in a gene but rather in a regulatory region.



CONCLUSION

In conclusion, the integration of comparative analysis of multiple inbred populations with one common breeding partner, haplotype mapping, expression, and sequence data substantially improved the mapping resolution of the diabetes QTL Nidd/DBA. Within the critical fragment of 3.3 Mbp, four genes with differential expression in pancreatic islets and/or genetic variants were identified. Future studies are necessary to validate the role of the different candidates in β-cell function and for maintaining glycemic control. This information may finally contribute to our growing understanding of the pathomechanisms that lead to β-cell failure and provide new paths toward targeted therapies and prevention strategies.
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Type 1 diabetes (T1D) is largely considered an autoimmune disease leading to the destruction of insulin-producing pancreatic β cells. Further, patients with T1D have 3–4-fold increased risk of developing micro- and macrovascular complications. However, the contribution of immune-related factors contributing to these diabetes complications are poorly understood. Individuals with long-term T1D who do not progress to vascular complications offer a great potential to evaluate end-organ protection. The aim of the present study was to investigate the association of inflammatory protein levels with vascular complications (retinopathy, nephropathy, cardiovascular disease) in individuals with long-term T1D compared to individuals who rapidly progressed to complications. We studied a panel of inflammatory markers in plasma of patients with long-term T1D with (n = 81 and 26) and without (n = 313 and 25) vascular complications from two cross-sectional Scandinavian cohorts (PROLONG and DIALONG) using Luminex technology. A subset of PROLONG individuals (n = 61) was screened for circulating immune cells using multicolor flow cytometry. We found that elevated plasma levels of soluble interleukin-2 receptor alpha (sIL-2R) were positively associated with the complication phenotype. Risk carriers of polymorphisms in the IL2RA and PTPN2 gene region had elevated plasma levels of sIL-2R. In addition, cell surface marker analysis revealed a shift from naïve to effector T cells in T1D individuals with vascular complications as compared to those without. In contrast, no difference between the groups was observed either in IL-2R cell surface expression or in regulatory T cell population size. In conclusion, our data indicates that IL2RA and PTPN2 gene variants might increase the risk of developing vascular complications in people with T1D, by affecting sIL-2R plasma levels and potentially lowering T cell responsiveness. Thus, elevated sIL-2R plasma levels may serve as a biomarker in monitoring the risk for developing diabetic complications and thereby improve patient care.




Keywords: cardiovascular disease, Cluster of Differentiation 25 (CD25), diabetes complications, nephropathy, regulatory T cells, retinopathy, sIL-2R



Introduction

Type 1 diabetes (T1D) is characterised by T cell mediated autoimmune destruction of insulin-producing pancreatic β cells (1, 2), causing T1D individuals to become insulin-dependent throughout their life (3). Most of the patients with T1D develop macrovascular complications such as cardiovascular disease (CVD), and microvascular complications, including proliferative diabetic retinopathy (PDR), chronic kidney disease (CKD), and peripheral neuropathy (PN) (4). The rising prevalence of T1D and its associated long-term vascular complications clearly confer a humanistic (5) and socio-economic burden (6). Vascular complications in T1D individuals are a common cause of mortality related to end-organ damage as compared to the non-diabetic population (4, 7). Remarkably, few patients with T1D do not progress to these vascular complications despite long disease duration and chronic hyperglycaemia, and therefore exert great potential to evaluate end-organ protection (8).

Although T1D individuals with complications show considerable derangement in immunological processes like having elevated concentrations of C-reactive protein (CRP), a marker of inflammation, proinflammatory cytokines interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) as compared to individuals without complications (9), the extent of contribution of immunological factors to the development of vascular complications in patients with T1D is poorly understood.

Over the past decades, both genetic (10, 11) and immunological (12, 13) studies revealed IL-2 receptor (IL-2R) and its downstream signalling pathways as central players in the pathogenesis of T1D (14). Upon binding of IL-2 to its receptor IL-2R, a cascade of signalling events is initiated. These events are negatively regulated by the ubiquitously expressed phosphatase tyrosine-protein phosphatase non-receptor type 2 (PTPN2) (14, 15). IL-2 signalling is critical for the function of regulatory T cells (Tregs), a type of suppressive immune cell, which plays an indispensable role in maintaining immune homeostasis (16) and prevention of autoimmune diseases (17, 18). In addition, elevated levels of soluble IL-2R alpha (sIL-2R; alternative: IL-2RA, CD25) have been reported to be an important factor in the development of diabetic retinopathy in non-insulin-dependent diabetes patients (19) and coronary artery calcification in T1D patients (20). However, a limitation of both studies was that the patient group without complications had a considerably shorter diabetes duration compared to the patient group with the respective complications. Therefore, some of the patients in the complications-free group could have later progressed to vascular complications. Furthermore, Colombo et al. (2019) reported that elevated levels of sIL-2R were associated with a decline in estimated glomerular filtration rate (eGFR) in T1D patients (21).

The aim of the present study was to evaluate plasma levels of inflammatory proteins including but not limited to sIL-2R in long-term T1D individuals with and without vascular complications. Additionally, a subset of patients was screened for circulating immune cells to investigate cell populations associated with developing vascular complications in T1D individuals. Finally, plasma sIL-2R levels were correlated to genetic risk variants in IL2RA and PTPN2.



Methods


Study Design

This immunological investigation forms a part of the PROtective genetic and non-genetic factors in diabetic complications and LONGevity (PROLONG) study, which was launched to identify protective factors against complications in long-term T1D individuals. Patients were recruited from seven departments of endocrinology/diabetes outpatient clinics in Sweden and at the Steno Diabetes Center in Denmark. As an extended collaborative effort, we included T1D individuals from a Norwegian cohort, DIALONG. The DIALONG study also included non-diabetic spouses or friends as a control group.

We classified T1D patients into two groups comparing their diabetes complications status. Non-progressors (NP) were defined as patients with a T1D duration of over 30 years without having progressed to any of the specified complications. Patients who progressed to complications within 25 years of T1D diagnosis were defined as rapid progressors (RP). We defined late progressors (LP) as T1D patients that did progress to complications >25 years post diagnosis. For this study RPs and LPs were pooled into one group referred to as progressors (P).

In PROLONG, PDR was defined by the presence of proliferative retinopathy in at least one eye, confirmed laser treatment (panretinal photocoagulation) or blindness. For CKD we used the following inclusion criteria: presence of nighttime albuminuria over 200 µg/min, macroalbuminuria over 300 mg/g or a documented diabetic kidney disease diagnosis. None of the PROLONG participants were treated with SGLT2 inhibitors. Documented events including non-fatal myocardial infarction, stroke (haemorrhagic or ischemic), balloon angioplasty, or coronary artery bypass were defined as CVD. There was limited information on CVD, as the original focus of PROLONG was on microvascular complications.

In DIALONG (22) macro- and microvascular complications were defined using similar criteria as in PROLONG. PDR was defined by the presence of proliferative retinopathy or blindness. Laser treatment was not used as criteria here as it was not exclusively applied to proliferative retinopathy in this study. CKD was adjusted to include patients with persistent microalbuminuria or proteinuria. None of the DIALONG participants were treated with SGLT2 inhibitors. CVD was defined by stroke or myocardial infarction events, coronary artery bypass or percutaneous coronary intervention (PCI), diagnosed peripheral vascular disease or heart failure.

The regional ethical committees approved the studies (PROLONG: Denmark H-2-2013-073, Sweden 777/2009, Norway 2019/1324; DIALONG: Norway 2014/851) and all participants provided written informed consent.



Blood Sampling

Collected EDTA plasma was aliquoted and stored at -80°C for ~6 years (PROLONG) and ~3 years (DIALONG).

For peripheral blood mononuclear cells (PBMCs) isolation, peripheral blood from patients with T1D (PROLONG) with and without complications was collected in CPT tubes (BD Vacutainer) at the Steno Diabetes Center, Denmark. PBMCs were subsequently isolated by density gradient centrifugation and cryopreserved in human AB serum containing 10% DMSO at -80°C for ~5 years.



Cytokine Analysis

In DIALONG, plasma cytokines were measured in 79 individuals using an Invitrogen™ Human Cytokine 30-Plex kit (LHC6003M, Thermo Fisher Scientific) according to the manufacturer’s instructions. The following adjustments were made to the protocol: (a) one additional standard was included in the serial dilution, making the standard range from 1:3 to 1:2,187; (b) undiluted plasma samples that underwent one freeze-thaw cycle were measured. The following biomarkers were detected in >90% of samples (CCL11, IFN-α, IL-12, sIL-2R, CXCL10, CCL2, CCL3, CCL4 and CCL5), whereas others were only detected in 40–75% (FGF basic, G-CSF, HGF, IL-13, IL-1RA, CXCL9, VEGF) and <17% of patients (EGF, IFN-γ, IL-10, IL-15, IL-17A, IL-1β, IL-2, IL-4, IL-6, TNF-α). GM-CSF, IL-5, IL-7, and IL-8 were not detected in any samples.

In PROLONG, we used a custom-designed ProCartaPlex™ Human Cytokine Panel (sIL-2R, CCL2, CCL11, IFN-α; Thermo Fisher Scientific) according to manufacturer’s instructions to measure plasma cytokines. The following adjustments were made to the protocol: (a) one additional standard was included in the serial dilution, making the standard range from 1:4 to 1:32,768 (in pg/ml: sIL-2R 10.06–82,425; CCL2 0.45–3,650; CCL11 0.07–550; IFN-α 0.08–625); (b) undiluted plasma samples that underwent one freeze-thaw cycle were measured.

Data was acquired on a Luminex® 100™, counting 3,000 (DIALONG) and 600 (PROLONG) beads per well. The five-parameter logistic algorithm [weighted by 1/y, (V2.4)] and raw median fluorescence intensity values were used for the creation of standard curves.



Genetic Analysis

The DNA samples in the PROLONG study were genotyped using InfiniumCoreExome-24v1-1 array. Standard quality control steps for GWAS were performed. Imputation was performed using Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html) using Haplotype Reference Consortium Release 1.1 (HRC.r1-1, GRCh37) as a reference panel. Variants with minor allele frequency (MAF) <5% were excluded before imputation. In the present study, we extracted the region for the IL2RA (Chromosome 10: 6,052,652-6,104,288, build GRch37) and PTPN2 gene (Chromosome 18: 12,785,477-12,929,642, build GRch37) for analysis. Only variants with imputation quality R2 >0.4 and with MAF >5% were included in the analysis.

Principal component analysis (PCA) was performed on pruned, directly genotyped SNPs using 1,000 Genomes’ reference panel version 5A. Population outliers were examined based on visual inspection of PC1 and PC2, and outliers were excluded from the further analysis. Only individuals with complete data on sIL-2R, sex, complication group, HbA1c and age at visit were included. In total, there were 330 individuals analyzed. We used linear regression adjusted for sex, age, and complication group to identify associations between genetic variants and log-transformed plasma levels of sIL-2R.



Antibodies Used for Flow Cytometry

We designed two flow cytometry panels using multiple fluorochrome-conjugated antibodies. Panel 1 includes 14 markers (14 colors), which can discriminate the main mononuclear immune cell types (B cells, T cells, NK cells, monocytes, dendritic cells), and endothelial progenitor cells. Panel 2 includes 16 markers (15 colors) and focuses specifically on different types of T cells. Pacific orange dye (250 ng/ml; Life Technologies) was used as a live/dead marker in both panels. The monoclonal antibodies used in the two panels during the flow cytometry protocol are listed in Supplementary Table 1.



Fluorescent Staining for Flow Cytometry

Before staining, cryopreserved PBMCs were rapidly thawed using a water bath set to 37°C and washed once in cold PBS (without calcium and magnesium, Lonza) containing 5% AB serum and Benzonase® Nuclease (1:10,000; Merck Millipore) by centrifugation at 450 x g for 5 min at 4°C. The PBMCs were then resuspended in cold PBS and stained with pacific orange (250 ng/ml; Life Technologies) for 20 min on ice in the dark. Following live/dead staining, cells were washed once, taken up in cold FACS-buffer (PBS containing 0.5% BSA) and incubated with 2 µl Fc receptor block (Miltenyi Biotec) per 1 x 106 cells for 10 min on ice. Cells were then subdivided into two parts and incubated for 30 min on ice in the dark with the respective antibody staining panel. The samples were subsequently washed once and re-suspended in FACS-buffer prior to analysis at the flow cytometer.



Flow Cytometry Analysis

Samples were acquired on a LSRI Fortessa flow cytometer (BD Biosciences) with BD FACSDiva™ Software (BD Biosciences) at the Bergen Flow Cytometry Core Facility, University of Bergen, Norway. The flow cytometer was equipped with 407, 488, 561, and 635 nm lasers, and emission filters for PerCP-Cy5.5 (Long Pass (LP): 685, Band Pass (BP): 695/40), Alexa Fluor 488 (LP: 505, BP: 530/30), PE-Cy7 (LP: 750, BP: 780/60), PE (LP: -, BP: 582/15), APC (LP: -, BP: 670/14), Pacific blue (LP: -, BP: 450/50), Pacific orange (LP: 570, BP: 585/42), and BV786 (LP: 750, BP: 780/60). The cytometer was routinely calibrated with BD cytometer setup and tracking beads (BD Biosciences). An average of 138,635 (panel 1) and 122,287 (panel 2) events were recorded in the intact single cell gate and mean percentage of live cells was 98 and 96% for panels 1 and 2, respectively. Flow cytometry data was analyzed in FlowJo™ 10 (Tree Star). Compensation beads (eBioscience) stained with the respective antibody were used as controls to calculate the compensation matrix. The representative gating strategies for both panels are shown in Supplementary Figures 1 and 2 and were validated with the unsupervised gating method using the tSNE algorithm (Supplementary Figures 3B, C). For accurate gating, fluorescence minus one (FMO) controls were run regularly for both panels.



Statistical Analysis

sIL-2R was log2 transformed prior to analysis. Values above the ordinary range were removed by biological consideration and literature review. The Mann-Whitney U test was used in the comparison between the complication groups in the analyses of plasma cytokines. To evaluate the association between two variables we used the Pearson correlation formula. In flow cytometry analysis, multiple linear regression was applied and adjusted for the age and sex covariates. Differences were considered statistically significant when p <0.05. The study was of exploratory nature and hence no correction was made for multiple comparisons. Comparisons between patient groups, correlations and the production of associated graphs were done using R Studio (Version 1.1.456). Figures were arranged in Adobe Illustrator CS6.




Results


Elevated sIL-2R in T1D Individuals

Baseline characteristics of DIALONG study participants are given in Table 1. There were 26 T1D individuals with vascular complications (progressor, P), of whom 10 had CKD, 11 had CVD, and all apart from one had PDR. As the matching groups we included 25 T1D individuals without any vascular complications (non-progressors, NP) and 28 healthy controls. In brief, progressors had significantly higher BMI and slightly elevated HbA1c. The groups were balanced regarding age, sex, and eGFR.


Table 1 | Clinical characteristics of the DIALONG study participants.



There was a significant increase of sIL-2R (p = 0.0011) in T1D as compared to healthy individuals (Figure 1A). The increase was gradual in relation to vascular complication status, being highest in the progressor group (Control vs. NP: p = 0.014; Control vs. P: p = 0.0021; NP vs. P: p = 0.47) (Supplementary Figure 4A). None of the other analyzed cytokines showed significant differences between the T1D groups in relation to their complication status (Supplementary Figure 5A). An overview over the detection rate for each investigated cytokine is provided in Supplementary Figure 5B.




Figure 1 | Elevated plasma levels of sIL-2R in patients with type 1 diabetes (T1D). (A) Patients with T1D from the DIALONG cohort had significantly elevated sIL-2R plasma levels compared to healthy controls. (B) In PROLONG, sIL-2R plasma levels were significantly increased in T1D with vascular complications (progressors, P) compared to T1D patients without complications (non-progressors, NP). (C) PROLONG progressors with proliferative diabetic retinopathy (PDR) showed significantly higher sIL-2R plasma levels compared to progressors with other vascular complications. (The Mann-Whitney U test was used in the comparison between the different groups. **p < 0.01 and ***p < 0.001).



To investigate complication status further, we stratified progressors into those with CKD, CVD, or PDR. These analyses revealed that progressors with CVD had significantly elevated sIL-2R plasma levels (p = 0.029) as compared to NPs (Supplementary Figure 4B). Plasma sIL-2R was slightly increased in progressors with CKD (p = 0.19) as compared to NPs (Supplementary Figure 4C), and sIL-2R correlated negatively with eGFR (T1D: R = -0.42, p = 0.0037) (Supplementary Figure 4D). Adjusting for eGFR did not change the observed result with CKD (p = 0.35). Plasma sIL-2R was elevated in progressors with PDR compared to NPs (p = 0.36) (Supplementary Figure 4E). Monocyte chemotactic protein-1 (CCL2, alternative: MCP-1) plasma levels were significantly higher in progressors with CKD (p = 0.021) and CVD (p = 0.013) compared to NPs (Supplementary Figures 4F, G). CCL2 was slightly elevated in progressors with PDR compared to NPs (p = 0.09) (Supplementary Figure 4H).



Elevated sIL-2R in T1D Individuals with Vascular Complications

In order to confirm our cytokine findings in DIALONG in a larger and independent cohort, we measured 4 nominally associated cytokines (sIL-2R, CCL2, CCL11, IFN-α) in plasma from PROLONG patients with T1D with and without complications (n = 394). Clinical characteristics for this cohort are summarized in Table 2. We included 81 patients with T1D with vascular complications (progressors, P), of whom 40 had PDR, 58 had CKD, and on 2 we had information on CVD. Those individuals were compared to 313 T1D individuals without any vascular complications (non-progressors, NP). Progressors were significantly younger in age, displayed significantly higher BMI and HbA1c and lower eGFR and diabetes duration compared to NPs. The groups were balanced regarding sex.


Table 2 | Clinical characteristics of the PROLONG participants.



Three cytokines were detected in 100% of samples (sIL-2R, CCL2, CCL11), while IFN-α was only detected <16% of samples (Supplementary Figure 6B). We observed a significant increase of sIL-2R (p = 0.0064) in progressors compared to NPs (Figure 1B). This observed difference was even more pronounced (p = 0.00084) when comparing NPs with progressors with PDR (Figure 1C). Additionally, sIL-2R was slightly increased in patients with CKD (p = 0.077) compared to NPs (Supplementary Figure 6C), and sIL-2R correlated negatively with eGFR (R = -0.12, p = 0.025) (Supplementary Figure 6D). Adjusting for eGFR using linear regression, resulted in a significant increase in sIL-2R between progressors with CKD and NPs (p = 0.041). Comparisons for CVD could not be made due to the small sample size of progressors with information on CVD (n = 2). As observed in the DIALONG cohort, there was no significant difference between the complication groups in CCL2 (p = 0.46), CCL11 (p = 0.25), and IFN- α (p = 0.40) (Supplementary Figure 6A). In PROLONG, CCL2 was not elevated in progressors with CKD (p = 0.39) (Supplementary Figure 6E). Progressors with PDR and NPs showed similar levels of CCL2 (p = 0.97) (Supplementary Figure 6F).



Association of sIL-2R Levels With IL2RA and PTPN2 Gene Variants

To identify associations between genetic variants in IL2RA and plasma levels of sIL-2R, we used linear regression adjusting for sex, age, and group. Plasma levels of sIL-2R were significantly associated with 68 SNPs in the IL2RA gene (Table 3), with rs12722489 showing the statistically strongest association (p = 5,19 × 10-7). Two of our identified SNPs are located in exon 8, namely rs12722606 and rs12722605. The majority of the associated SNPs (n = 51) are located in the large intron 1 area of IL2RA.


Table 3 | Imputed IL2RA genotypes and their significant associations with sIL-2R in plasma.




Furthermore, sIL-2R levels were significantly associated with 53 intronic SNPs in the PTPN2 gene region (Table 4). The variant rs12971201 showed the strongest association with plasma sIL-2R (p = 1.09 × 10-3). When we conditioned this analysis for the T1D-associated SNP rs2104286 in IL2RA, we could still identify 42 PTPN2 variants to be independently associated with sIL-2R (Table 4). Here rs592390 had the strongest association with plasma sIL-2R (p = 2.16 × 10-3).


Table 4 | Imputed PTPN2 genotypes and their significant associations with sIL-2R in plasma.





Cell-Surface Marker Analysis on PBMC of T1D Individuals

Our flow cytometry panels enabled us to investigate a range of different cell populations, which are summarized in Supplementary Figure 3A. The applied gating strategies are provided in Supplementary Figure 1 and 2. Baseline characteristics for this subset of PROLONG patients are provided in Table 2. In total, we performed flow cytometry analysis on 61 T1D samples, of which 17 were from progressors. The groups were balanced regarding age and sex.

We identified a significant decrease of CD8+ naïve T cells (CD3+CD8+CD45RA+CCR7+CCR5-) (p = 0.0046) and increase of CD8+ effector T cells (CD3+CD8+CD45RA+CCR7-) (p = 0.070) in progressors compared to NPs (Figures 2A, B). Furthermore, progressors had significantly increased CD4+ effector T cells (CD3+CD4+CD45RA+CCR7-) (p = 0.045) and decreased CD4+ naïve T cells (CD3+CD4+CD45RA+CCR7+CCR5-) (p = 0.14) compared to NPs (Figures 2C, D). To summarize, we observed a shift from naïve to effector T cells (CD4+ and CD8+) in PBMCs from T1D patients with vascular complications compared to those without.




Figure 2 | Patients with type 1 diabetes (T1D) with complications display a shift from naïve T cells to effector T cells. (A) Flow cytometry screening of PBMCs from PROLONG patients revealed a significant decrease of CD8+ naïve T (TN) cells (CD3+CD4+CD45RA+CCR7+CCR5-) in progressors (P) compared to non-progressors (NP). (B) Progressors displayed elevated CD8+ effector T (TEFF) cells (CD3+CD4+CD45RA+CCR7-) simultaneously (p = ns). (C) CD4+ TN cells were also declined in patients with T1D with complications as compared to NPs (p = ns). (D) In progressors CD4+ TEFF cells were significantly elevated compared to NPs. (For the comparison between the different groups, multiple linear regression was applied and adjusted for the age and sex covariates. *p < 0.05 and **p < 0.01).



Since we observed significant differences in plasma sIL-2R in the two PROLONG groups, we also investigated cell surface expression of interleukin-2 receptor alpha (CD25) on PBMCs. Remarkably, we did not see differences between NPs and progressors in neither CD25+ T cells (p = 0.84) nor Tregs (CD3+CD4+CD25++CD127-) (p = 0.27) (Supplementary Figures 7A, B).




Discussion

The present study revealed that plasma sIL-2R levels are reproducibly elevated in individuals with long-term T1D with severe vascular complications as compared to those who remained free from to vascular complications despite more than 30 years of diabetes duration. Further, plasma levels of sIL-2R were associated with SNPs in the IL2RA and PTPN2 gene regions, which might suggest underlying genetic determinants and possibly biological causal inference. Finally, our results are in agreement with published studies confirming an increase of circulating sIL-2R in patients with T1D when compared to healthy controls, which might further emphasize that immune factors contributing to diabetes pathogenesis might early on govern progression to vascular complications (12, 23).

The biological function of sIL-2R is not yet completely understood, but there is evidence that it reflects an imbalance in Treg and effector T cell (TEFF) activity (14, 24). It has been suggested that there is a reduced immunosuppressive function of Tregs due to impaired IL-2 signalling in T1D (24–28), a defect which may subsequently lead to a more aggressive immune destruction of pancreatic β cells by TEFF (12, 28). In addition, defects in the intracellular IL-2 pathways and a decreased regulatory function have recently been reported in patients with type 2 diabetes (T2D) (29). In many autoimmune diseases, such as multiple sclerosis (MS) (30), rheumatoid arthritis (31), primary Sjögren’s syndrome (32), scleroderma (33), and inflammatory myopathies (34), but also in various cancers (31), sIL-2R has been proposed to be a biomarker for disease activity.

Patients with T1D develop the disease at an early age and a large proportion of them will progress to devastating vascular complications representing a major problem because the tools for monitoring when and how disease deteriorates are not available (4). Diabetes retinopathy is the most common vascular complication of diabetes (35) and the proliferative form of diabetic retinopathy (PDR) is the leading cause of vision loss in adults (36). Previous studies show that several inflammatory cytokines are involved in the pathogenesis and progression of PDR, including sIL-2R (19), however, not all of the results have been replicated. In the present study, both PROLONG and DIALONG progressors with PDR had higher plasma levels of sIL-2R compared to NPs, supporting the notion that sIL-2R could emerge as a contributing player not only in the pathogenesis of T1D but also in disease progression.

An additional evidence in the present study to biological importance of sIL-2R were our findings that 68 IL2RA SNPs are associated with sIL-2R plasma levels in PROLONG patients with T1D and correlated with the elevated sIL-2R levels observed in progressors accordingly. IL2RA rs12722489 showed the strongest association with sIL-2R plasma levels in patients with T1D and is located in the large intron 1. This particular SNP has been identified as a risk factor for MS in several studies (37–39). However, a secondary association was suggested due to the nearby location of rs2104286 (Linkage disequilibrium D’ = 1, R2 = 0.58), which is a well-recognized T1D risk factor (11, 37) and also significantly associated with plasma sIL-2R in our dataset. Interestingly, one of our identified SNPs, rs2256774, was associated with higher levels of Rubella antibodies (40), and Rubella viral infections have been associated with the onset of T1D (41, 42). Additionally, multiple IL2RA variants have been shown to correlate with sIL-2R levels in T1D (10) and MS (37) and IL2RA gene variants are associated with susceptibility of T1D (10, 11, 43). Further, functional studies support these results by suggesting that specific IL2RA variants cause defects in immune homeostasis due to impaired IL-2 signalling in Tregs (25, 27, 44).

Interestingly, seventeen of our identified SNPs are positioned within the first 15 kb of the first intron of the IL2RA gene, which has been described as a super-enhancer region due to a cluster of histone 3 lysine 27 acetylation (H3K27ac) elements in this area (45). Notably, many of the IL2RA SNPs related to autoimmune diseases fall into this region and affect transcription factor binding and enhancer activity (46). Several of our identified SNPs have been reported to be associated with DNA methylation at the IL2RA promoter locus, particularly rs6602398 and rs4749926 (47). Despite having detected a number of IL2RA SNPs to be associated with sIL-2R, it is challenging to conclude the direct effect of those mostly intronic SNPs on the expression of IL-2R itself and in-depth research is scarce. However, it has been reported that one of our identified SNPs, rs12251836, is associated with IL2RA expression on acutely triggered TEFF, but not in Tregs (48), suggesting a likely biological causal inference of IL-2R gene locus in T1D.

Another exciting and supporting genetic observation included 53 PTPN2 SNPs to be significantly associated with sIL-2R plasma levels, importantly 42 of which were associations independent of IL2RA variant rs2104286. Our most significant SNP in PTPN2 is rs12971201, which has previously been associated with T1D, however a secondary association has been suggested due to rs1893217 (49). This particular variant is considered a risk variant for T1D and celiac disease (50, 51), and correlated with impaired IL-2 signalling in CD4+ T cells as measured by decreased phosphorylation of STAT5 (pSTAT5) but also reduced PTPN2 expression (52). One of our identified SNPs, rs2847281, was shown to significantly associate with CRP levels along many other PTPN2 variants (53). PTPN2 is a negative regulator in the IL-2 signalling cascade and several SNPs in the PTPN2 gene region have been linked to different autoimmune diseases including T1D, rheumatoid arthritis and Crohn’s disease (54, 55). Furthermore, different genetic variants in PTPN2 were reported to be associated with diminished IL-2 responsiveness in naïve Tregs from patients with long-standing T1D (56). PTPN2 has been shown to modulate interferon gamma signal transduction in pancreatic β cells and regulate cytokine-induced apoptosis, which could potentially contribute to the pathogenesis of T1D (57).

As described above, elevated sIL-2R levels are likely to reflect an imbalance in Treg and TEFF activity. PBMCs from PROLONG patients with T1D with vascular complications displayed a shift from naïve T cells (TN) to TEFF, however, we cannot distinguish whether this shift is the cause or the result of diabetic complications. The interpretation of these results was difficult due to the small and heterogeneous sample size in the progressors group. One can speculate that progressors have increased TEFF due to impaired Treg suppression leading to a more destructive form of T1D, thereby more active course of the disease. This systemic long-term inflammation could subsequently drive the development of vascular complications by affecting tissues aside from the pancreas. Further studies testing suppression capacity of Tregs isolated from patients with T1D with and without complications are crucial to confirm this notion.

In PROLONG, we observed significantly higher levels of sIL-2R in progressors which associated with IL2RA SNPs, however the surface expression of IL-2R on circulating immune cells was similar between progressors and NPs. This may be confirmatory for the theory that it is not the number of cells expressing IL-2R making a difference, but the efficiency of IL-2 signalling within the cells themselves. Paradoxically, the IL-2/IL-2R signalling pathway is important in immunity and tolerance, which is further complicated by shedding of sIL-2R. How sIL-2R is involved in the pathogenesis of different diseases remains a puzzle. The high-affinity receptor for IL-2 consists of 3 protein chains, namely IL-2Rα, IL-2Rβ, and IL-2Rγ. Upon proteolytic cleavage of the ectodomains of the membrane-bound IL-2Rα and release into the extracellular space, sIL-2R retains the ability to bind IL-2 with low affinity, which can lead to different outcomes. Firstly, sIL-2R may function as a decoy-receptor reducing the bioavailability of IL-2 and favor tolerance controlled by Tregs over immunity. Tregs constitutively express the high-affinity IL-2R, which enables them to out-compete conventional T cells with the intermediate-affinity receptor (IL-2Rβ and IL-2Rγ) when less IL-2 is available, thereby boosting immune tolerance (58). This difference in affinity is exploited in clinical trials in T1D where the administration of low-dose IL-2 has shown promising effects expanding and activating Tregs (59, 60). Alternatively, the binding of sIL-2R to IL-2 can enable in trans presentation of IL-2 to T-cells which only express the intermediate-affinity IL-2R. Overall, increased shedding of sIL-2R and it binding to IL-2 can have opposing effects depending on the cell type affected (58).

Stratified analysis of different vascular complications revealed increased sIL-2R and CCL2 levels in DIALONG patients with CVD in comparison to patients with T1D with other diabetic complications. Elevated sIL-2R has been described as a marker for coronary artery calcification progression in both individuals with and without T1D independent of traditional CVD risk factors (20). CCL2 plays a critical role in the development of atherosclerotic plaque formation by attracting monocytes to the vessel lumen where they will differentiate into macrophages and become foam cells by the uptake of low-density lipoprotein (61). Elevated plasma levels of CCL2 have also been associated with CVD (61–63). The observed increases in sIL-2R and CCL2 were based on a small sample set in DIALONG, however, the patient characterisation for CVD was performed thoroughly using computed tomography coronary angiography, which enabled the identification of asymptomatic coronary artery disease (64). Nevertheless, we were not able to investigate this finding in PROLONG due to the limited information on CVD.

Previously it was shown in the EURODIAB study that patients with T1D with complications have increased IL-6 and TNF-α as compared to individuals without complications (9). We could neither confirm nor confound this finding due to the low detection rate of IL-6 and TNF-α (< 20%) in our study, which statistically did not allow for reliable comparisons. In general, the detection rates in our cytokine screening were considerably low, where many of the investigated biomarkers were not detected at all. This could be due to technical differences and kit quality, however all kits used were validated for plasma usage by the respective providers, we followed manufacturer’s instructions accordingly and did not experience technical issues during analysis.

Our future perspective is to unravel the role of IL-2R in the progression to diabetic complications in general, larger cohorts analyzing sIL-2R levels in other types of diabetes, such as T2D with no autoimmunity and latent autoimmune diabetes of adults, are of importance. To investigate the predictive power of sIL-2R levels in the development of diabetic complications, longitudinal studies in children and adolescents would be a great asset. Furthermore, it is of great interest to study the relationship between sIL-2R and IL-2 signalling efficacy and Treg function in patients with T1D.

In summary, we conclude that IL2RA and PTPN2 gene variants may not only increase the risk of T1D, but in addition the development of diabetic complications possibly by influencing sIL-2R plasma levels and lowering T cell responsiveness. Thus, sIL-2R could potentially act as a biomarker for monitoring vascular complications in people with T1D thereby enabling early treatment and improving patient care.
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Unfolded protein response (UPR) is a process conserved from yeasts to mammals and, based on the generally accepted dogma, helps the secretory performance of a cell, by improving its capacity to cope with a burden in the endoplasmic reticulum (ER). The ER of β-cells, “professional secretory cells”, has to manage tremendous amounts of insulin, which elicits a strong pressure on the ER intrinsic folding capacity. Thus, the constant demand for insulin production results in misfolded proinsulin, triggering a physiological upregulation of UPR to restore homeostasis. Most diabetic disorders are characterized by the loss of functional β-cells, and the pathological side of UPR plays an instrumental role. The transition from a homeostatic to a pathological UPR that ultimately leads to insulin-producing β-cell decay entails complex cellular processes and molecular mechanisms which remain poorly described so far. Here, we summarize important processes that are coupled with or driven by UPR in β-cells, such as proliferation, inflammation and dedifferentiation. We conclude that the UPR comes in different “flavors” and each of them is correlated with a specific outcome for the cell, for survival, differentiation, proliferation as well as cell death. All these greatly depend on the way UPR is triggered, however what exactly is the switch that favors the activation of one UPR as opposed to others is largely unknown. Substantial work needs to be done to progress the knowledge in this important emerging field as this will help in the development of novel and more efficient therapies for diabetes.
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Introduction

Recently, increased stress of the endoplasmic reticulum (ER), or ER stress, has emerged as a critical regulator of transcription and translation events in diabetes (1–5). The ER supports correct protein folding that is essential to maintain protein homeostasis and cell survival; however, this process is remarkably sensitive as even minute modifications in the cellular milieu can result in protein misfolding (6, 7). Following nutrient stimulation, freshly transcribed insulin mRNA translated in the ER drives a 10-fold increase in insulin synthesis that represents about 50% of the total protein production by the β-cells (7, 8). This massive synthesis and its variations result in a constant hassle of the ER. To deal with this challenge, β-cells continuously supervise protein folding in the ER through a well conserved mechanism, the unfolded protein response (UPR) (7, 9).

Over the next sections, we will present how UPR is actively present during important stages of β-cell existence in physiological and pathological circumstances. We will focus on processes that are relevant for the development of potential therapies that target UPR. As such, we will address the role of UPR in proliferation, inflammation/inflammatory attack and dedifferentiation of β-cells.



UPR And Development Of Diabetes

UPR is a cellular process consisting of an intricate network of transducers and downstream target genes ensuring correct protein folding in the ER. UPR comprises of three major sensors: Protein kinase RNA-like endoplasmic reticulum kinase (PERK), endoribonuclease/kinase inositol-requiring enzyme 1 (IRE1, or ERN1), and activating transcription factor 6 (ATF6) (10, 11). These factors are localized in the ER membrane and they are able to sense and monitor through their luminal domains the status of protein folding in the ER (12–17). If an accumulation of unfolded proteins occurs, these transducers signal via their cytosolic domains either by direct targeted catalytic activities or by specific post-translational modulation. The precise mechanism that triggers UPR is still under debate (18–22), and most probably there is not a single mechanism involved, but rather the multiple concerted action of several ones, depending on cell type (23–25). The downstream effectors converge at the nucleus and induce UPR targets, finally restoring homeostasis via various processes described below.

PERK, upon oligomerization followed by autophosphorylation (26–28), phosphorylates the translation initiation factor 2 (eIF2α) inducing inhibition of mRNA translation through activation of a signaling cascade, thus reducing the ER protein load, and increasing ATF4 translation (13, 27, 29, 30). This results in overexpression of chaperones, antioxidant genes, but also of proapoptotic genes, such as CHOP, GADD34, ATF3 and TRB3 that contribute to β-cell apoptosis during terminal UPR (31, 32). eIF2α has a central role in stress management, being also targeted by other kinases in response to various kinds of stresses (30, 33–36). This signaling cascade converging on eIF2α phosphorylation followed by ATF4 activation is an adaptive pathway for cellular homeostasis restoration commonly known as Integrated Stress Response (ISR) (37, 38).

IRE1 possesses both kinase and endoribonuclease activities. When UPR is induced, dimerization and trans-autophosphorylation of IRE1 activates its RNase domain and results in splicing of Xbp1 pre-mRNA and overexpression of XBP1s, a transcription factor that induces genes-encoding chaperones, ER-associated protein degradation (ERAD), and lipid biosynthetic enzymes (12, 17, 39–41). Additionally, IRE1 presents a nonspecific RNase activity responsible for degradation of mRNAs from ER vicinity, thus reducing import of proteins into the ER (26, 42, 43). During increased stress, the kinase activity of IRE1 is activated and initiates the apoptosis cascade mediated by signal-regulating kinase 1 (ASK1)/cJun amino terminal kinase (JNK) (44).

Upon UPR activation, ATF6 is translocated to the Golgi apparatus, where it is processed by Site-1 and Site-2 proteases (S1P/S2P) (45, 46). Once the cytosolic fragment (nuclear ATF6, or nATF6) is generated, it travels to the nucleus and induces transcription of UPR target genes (47–49). Alone or in combination with XBP1s, nATF6 acts on increasing synthesis of chaperones to aid with the misfolded proteins, of proteins involved in lipid synthesis to increase ER volume, and of genes responsible for the ERAD pathway. They work for restoring homeostasis by modulating the amount of ER-mediated production of ER lipids and proteins necessary to accommodate variable requirements of ER protein folding and other functions in response to physiological and pathological conditions. If any of these mechanisms fail, the ER homeostasis is lost, a stressed UPR is induced and that ultimately results in cell apoptosis (11, 32, 50–52).

In diabetes, overactivation of UPR leads to phosphorylation of IRE1, which results in degradation of proinsulin mRNA (53–55) activation of JNK pathway, and splicing of XBP1 mRNA. XBP1s by itself or in cooperation with ATF6 induces expression of various ER chaperons, such as Herp1, EDEM, HRD1, p58IPK, and ERAD proteins, followed by swelling of the ER. Moreover, CHOP mRNA expression is induced by both ATF4 and XBP1s (5). By depleting CHOP in various diabetes models results in improved β-cell function and survival (56), although in NOD mice it is not the case (57). Surprisingly, TUDCA was able to increase the expression of Atf6 and XBP1 and increased β-cells survival, reduced islet inflammation and thus lower diabetes incidence in mouse models of diabetes (58). Therefore, in diabetes, the erroneous expression of ER chaperones may be responsible for the predisposition of the β-cell to a terminal UPR that culminates with cell death induced by CHOP.

PERK-eiF2α-ATF4 and IRE1-XBP1s/ATF6 arms of the UPR are activated differently by glucose. Surprisingly, low glucose concentrations result in maximal activation of the first arm, while protein synthesis, ATP levels and the concentration of Ca2+ in the ER are low, whereas the second arm is inactive. The response to high glucose concentration is the rapid inhibition of the ISR, the splicing of Xbp1 pre-mRNA and subsequent upregulation of XBP1s together with the downstream target genes to accommodate increased ER machinery load. Finely adjusting this adaptive response is indispensable to preserve the identity and function of β-cell (59).



UPR Is Very Dynamic And Drives Heterogenic Insulin Expression

Xin and collaborators have shown that in healthy human subjects, β-cells go through different active states to accommodate insulin requirements that are characterized by different levels of UPR and insulin gene expression. They show that the transition between an active and prolonged insulin secretory state results in induction of a stressed UPR that diminishes the levels of secreted insulin. After a certain time, the UPR of the β-cell recovers at a basal level and the cells restart the production of insulin. They describe several cyclical individual states of β-cell stress in correlation with insulin secretion, and low apoptosis and dedifferentiation markers (60). UPR was induced in a subpopulation of β-cells that express low insulin levels (INSlowUPRhi) suggesting they represent a state of recovery from stress. Another population of β-cells was characterized by INShiUPRlow and most likely represents a state of active production and secretion (60). Importantly, the insulin protein amounts are not always correlated with the mRNA levels. Apparently, in pancreases of type 1 diabetes (T1D) patients insulin protein levels were very low; nevertheless proinsulin and INS mRNA were still detected (61). It is not clear if this occurs due to dedifferentiation of β-cells or because more precursors of β-cells arise (61, 62). The characterization of different populations of β-cells based on their UPR and insulin levels is crucial in diabetes. It is important to know how these populations change during the disease progression, and where and when to intervene therapeutically to recover insulin homeostasis.



β-cells With Active UPR Proliferate

One of the questions that puzzled scientists referred to how is β-cell mass regulation maintained? While it is already established that stem cells drive regeneration of tissues with fast turnover, such as skin, gut and blood, a stem cell pool has not yet been characterized for the pancreatic islets (63). Multiple studies demonstrated that β-cell mass adjusts in a dynamic way, in correlation with increased metabolic demand, or upon injury. Under most conditions, the major driver of postnatal islet cell expansion is the proliferation of already present β-cells (64).

Several studies suggested that UPR activation in vivo drives β-cell proliferation. Hodish and collaborators showed that overexpression of mutant proinsulin is correlated with both UPR activation and islet size increase (65). Inhibiting expression of PERK in adult mice resulted in increased proliferation of β-cells (66). In addition, another study established that ATF6 pathway that acts in response to the loss of PERK is regulating the pro-proliferative UPR mechanism rather than PERK. By using different murine models of diabetes (glucose-induced hyperglycemia mouse model; db/db mice and Akita mice) as well as β-cells isolated from pancreatic donors, they argue that mild UPR drives ATF6-induced proliferation of β-cells based on the insulin requirement. Moreover, they show that inhibition of ATF6 and IRE1 pathways reduce glucose-induced β-cell proliferation in vitro. However, chemical chaperones abrogated the proliferative effect on the β-cells (63). Human β-cells are less likely to respond well to stimulation, as they have a lower basal proliferation than mouse cells (67, 68). Importantly, there are studies showing proliferation of β-cells from donors upon UPR stimulation (63). A thorough study that characterized various β-cells subpopulation from healthy subjects showed that the majority of proliferating cells displayed low insulin expression correlated with activated UPR, with more proliferating cells in G1S cell cycle phase rather than in G2M (60).



UPR And Inflammation In β-cells

The questions raised here are: does the dysregulated UPR from β-cells facilitate the immune attack, or vice-versa, the cytokines secreted by the immune cells induced upregulation of the UPR in β-cells, rendering them more susceptible to apoptosis? Many studies proved that both are true and mostly interdependent.


Inflammatory Environment Triggers UPR Activation

Recent work shows the importance of inflammation for UPR induction and β-cell fate in various diabetes contexts, especially in T1D (9, 69). There, the progressive invasion of inflammatory cells, like T-cells, macrophages, dendritic cells, and natural killer cells within the islets leads to insulitis (9, 70–72). Due to insulitis, the access of numerous proinflammatory molecules and reactive oxygen species (ROS) to β-cells, like interleukin-1β (IL1β), TNF, IFN-γ, IL17, and NO, is facilitated as these molecules are secreted by the invading immune cells. This results in apoptosis of β-cells (73, 74). Death of β-cells driven by cytokines entails induction of various transcription factors (NF-κB and STAT1), JNK, which in conjunction with a stressed UPR, end with activation of mitochondrial pathway of apoptosis (73, 75, 76). Moreover, upon stimulation by pro-inflammatory cytokines, β-cells start expressing and secreting more cytokines and chemokines, resulting in a cross-talk between the immune cells and the β-cells (77, 78). As a consequence, many T cells get infiltrated into the islets and cause destruction of the β-cells initiating diabetes (73, 79, 80).

The low grade inflammation present in the pancreas of T2D patients is responsible for recruitment of macrophages in the vicinity of the islets creating a pro-inflammatory milieu and inducing UPR (81, 82). A recent study provided direct evidence for the role of ER stress-induced inflammation in T2D. It revealed that by blocking IL23 and IL24, proinflammatory cytokines upregulated in the islets of T2D patients, the authors were able to partially decrease oxidative stress, UPR induction and restore glucose tolerance in obese mice. In addition, after reducing ROS with IL22, the improved UPR stress and β-cell function re-established glucose homeostasis (83).



UPR Facilitates Inflammatory Attack of β-Cells

This research topic got attention, as emerging data connects inflammatory responses to UPR in β-cells via the regulator of inflammation, NFκB (84, 85). Additionally, XBP1 seems to exert both pro- and anti-inflammatory effects in β-cells depending on the context established by the anti-apoptotic/anti-oxidative reaction as opposed to the pro-inflammatory response (47). Moreover, CHOP was shown to have a pro-inflammatory role in various disease models, upregulating pro-inflammatory cytokines (such as IL1β, IL8) and chemokines (CCL2) in several tissues (86, 87). However, it is not clear how CHOP activates NF-κB. In β-cells, studies show that the transcription factor NF-κB is able to modulate the UPR upon activation by pro-inflammatory cytokines (88, 89). Reciprocally, the UPR was found to induce NF-κB activity in correlation with inflammatory responses, resulting in increased apoptosis and overexpression of cytokines and chemokines that may be responsible for β-cell death (74, 89, 90).




UPR In Dedifferentiation Of β-cells

It has been established that every cell from any organism, β-cells included, are derived by differentiation from embryonic stem cells (91). Differentiation toward β-cells involves synchronized and rigorously controlled induction/downregulation of certain transcription factors and effectors in a timely manner  (59). Importantly, cellular differentiation is not unidirectional (92). Recent data has shown that specific factors can induce mature β-cells to lose their identity and phenotype and backslide to an under-differentiated state, or in a progenitor-like condition. This phenomena is called dedifferentiation and has been involved in the pathology of diabetes (93–96), being a significant contributor of the reduction of functional β-cell mass (62, 97). Dedifferentiation of β-cells is characterized by reduced expression of β-cell-specific genes, that include essential transcription factors, insulin, genes responsible for glucose metabolism, genes required for protein processing and genes of the secretory pathway, accompanied by induction of genes that are usually repressed or lowly expressed in mature β-cell, such as the embryonic endocrine progenitor genes. Expression of these later genes is found in diabetic animals, in the islets (59, 62, 94). The mechanisms involved in the dedifferentiation process are still under investigation and here, we will underline some possible implications of UPR.

In a recent study, Zhu and collaborators have demonstrated that overexpression of miR24 reduced ER stress-induced β-cells apoptosis and blocked INS mRNA degradation, though it induced dedifferentiation of β-cells (98). MiR24 was found to inactivate the IRE1 sensor. Importantly, they speculated that one of the downstream effectors of IRE1 was CHOP. As ATF4 was not affected by miR24, the assumption was that CHOP was not upregulated via the PERK/ATF4 pathway. Surprisingly, they demonstrated that XBP1s, effector downstream of IRE1, is responsible for the apoptosis of β-cells under terminal ER stress (98). In a T1D model, work from Engin’s group has shown that downregulating IRE1 before insulitis appearance results in temporary dedifferentiation of β-cells proved to be beneficial as it made β-cells more resistant to the immune attack (99). These dedifferentiated β-cells expressed lower levels of autoantigens and of MHC class I molecules and upregulated their immune inhibitory markers (99, 100). It became apparent that interference with TGFβ signaling resulted in induction of several markers of β-cells maturation (101, 102) and reversed dedifferentiation (103). The E3 ligase Hsd1 and the cofactor Sel1L represent well-conserved ERAD machinery (104) that has recently been linked to the preservation of β-cells identity via inhibition TGFβ pathway, while their survival and proliferation were not affected (105).



Conclusions and Perspectives

The correlation between activation of UPR and their insulin gene expression was shown to divide β-cells into several populations that evolve from dynamic insulin secretion states to a stress recovery state when insulin production is decreased (60). This is an important aspect when developing new therapies that have a scope to mimic the heterogeneity of the β-cells. Strategies for regenerating β-cells should consider the importance to reintroduce these differences in the newly-emerged cells.

In the β-cells, there are functions of UPR that are ER stress-independent. Hassler and collaborators, by using mice with inducible β-cells-specific deletion of IRE1α, established the importance IRE1α/XBP1s pathway for glucose-stimulated insulin synthesis. The study revealed that this pathway regulates recruitment and structure of the ribosome, translation of pro-insulin mRNA, cleavage of the signal peptide, and inhibition of oxidative/inflammatory stress. Early activation of this UPR pathway appears to happen separately of ER stress and precedes the glucose-stimulated insulin synthesis (47).

Prolonged upregulation of a stressed UPR induces apoptosis, a process that involves JNK activation by the pro-inflammatory cytokines that act upon pancreatic β-cells through the progression of diabetes. It is not clear though the definitive mechanisms that pro-inflammatory cytokines use to induce IRE1α and JNK in human β-cells. This will help build new strategies to inhibit the UPR-driven pro-apoptotic signals without disturbing the other homeostatic functions (70).

We previously defined the ER stress as a stressed/terminal/decompensated UPR, the ultimate stage of UPR, with no recovery, when the cell enters the apoptosis pathway. One of the questions here is how do the cells get to the terminal UPR. What are the stages that precede it and can be targeted through therapies? We and others have challenged two different models for UPR activation: 1) the “rheostat model”, when the UPR sensors and targets get activated in a concerted fashion and they are correlated with the level of stress - the more stress, the higher the UPR. This model is described by different subclasses that are characterized by the type and extent of the stress (52, 106). 2) Some stressors induce a UPR subclass that causes a specific outcome, physiological or pathological. This could vary from “adaptive” to the “terminal” UPR, when the cell sees many facets of UPR through a combination of different arms that are activated differently. These are such broad definitions, and future thorough characterizations are necessary to address the precise role of each of them in the β-cells fate.

Possible therapies that use UPR for restoring β-cells homeostasis should consider the existing β-cell stress level and action inside a narrow safe range to overcome the excess and cell death. One possibility is employing agents that recover β-cell stress from terminal stage to the adaptive stage thus to facilitate the increase of β-cell mass through the mild stress. Therefore, there is a need for more tools for measuring and modulating β-cell stress in vivo.
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The β-cell regeneration field has shown a strong knowledge boost in the last 10 years. Pluripotent stem cell differentiation and direct reprogramming from other adult cell types are becoming more tangible long-term diabetes therapies. Newly generated β-like-cells consistently show hallmarks of native β-cells and can restore normoglycemia in diabetic mice in virtually all recent studies. Nonetheless, these cells still show important compromises in insulin secretion, cell metabolism, electrical activity, and overall survival, perhaps due to a lack of signal integration from other islet cells. Mounting data suggest that diabetes is not only a β-cell disease, as the other islet cell types also contribute to its physiopathology. Here, we present an update on the most recent studies of islet cell heterogeneity and paracrine interactions in the context of restoring an integrated islet function to improve β-cell replacement therapies.
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Introduction

The islets of Langerhans are complex micro-organs composed of different endocrine cell types whose principal function is the maintenance of glucose homeostasis and feeding behavior through coordinated hormone secretion and paracrine interactions. Different studies have estimated the human islet to be comprised mainly by insulin-secreting β-cells in the range of 52–75% (1–5). Following in number, glucagon-secreting α-cells and somatostatin-secreting δ-cells comprise some 40 and 10% of the islet. Pancreatic polypeptide (PP)-secreting γ-cells and ghrelin-secreting ϵ-cells are the minor cell types comprising about 5% and less than 1% of the islet, respectively. Islets cells are characterized by an exquisite secretory capacity and cell mass modulation that efficiently adapts to diverse metabolic stresses or pathologies like pregnancy and obesity. Defects in this adaptive capacity are at the core of certain impairments in nutrient metabolism and diabetes development (6–8).

The different islet cell types are arranged in an intricate network that facilitates cell proximity and direct contacts that fine-tune hormone secretion to robustly control glucose homeostasis. In human islets, there is a predominance of heterologous contacts between β- and α-cells, suggesting their direct interaction is crucial for glycaemia management (9). Indeed, paracrine α-cell signaling establishes a set point for insulin secretion and glycemia throughout different animal species (10). Dysregulation of islet paracrine interactions and non-β-cell function contribute substantially to diabetes symptomatology (11–17). This could be one of the reasons why conventional diabetes therapies relying solely on exogenous insulin do not maintain stable normoglycemia. It is becoming apparent that diabetes is a disease concerning the whole islet, yet regenerative approaches have for the most part focused mainly on restoring a functional β-cell mass and basal insulin secretion with little regard on achieving a balanced islet secretory output. Here, we present an update on recent studies highlighting the importance of islet paracrine interactions and cell heterogeneity for a highly malleable human islet function that achieves optimal glucose homeostasis and withstands the range of stresses present in the ever-changing physiologic and cellular environment.



Diabetes Affects All Islet Endocrine Cell Types

Mounting data shows that the complex islet cytoarchitecture, gene expression, and function of non-β-cells are also significantly compromised throughout diabetes progression. Both T1D and T2D patients present hyperglucagonemia in postprandial conditions or upon oral glucose challenge, that exacerbates hyperglycemia (11–15). The reasons are not fully understood, yet i) lack of intra-islet insulin, ii) dysfunctional α-cell glucose sensing, or iii) increases in the functional α-cell mass may be underlying mechanisms. A convoluted combination of these defects may also be possible, as T2D patients present hyperglucagonemia even in the fasting state (16, 17) while T1D patients present a defective α-cell response to hypoglycemia (18).

In T1D, α-cell mass is maintained in the early stages of the disease (19) while it clearly decreases in advanced stages (20). For T2D, most published studies do not specify the stage of the disease, and report conflicting results depending on the analytical method, with a higher α- to β-cell ratio in long-standing T2D pancreas (9, 21, 22) or a decrease of the total glucagon+ area in all regions of the pancreas (23), but no differences in α-cell mass (22). This suggests that α-cell defects may not be due to an increased cell mass. In concordance, recent studies with islets from T2D donors show no inhibition of glucagon secretion in vitro at high glucose concentrations (24). Moreover, transplantation of islets from T2D donors into a novel Glucagon knockout-NSG mouse model showed increased glucagon secretion during fasting and upon insulin-induced hypoglycemia, suggesting that hyperglucagonemia in T2D is caused by local islet defects that are not resolved when transplanted into a non-diabetic environment (25). Nonetheless, the effect of induced hyperglycemia was not tested in this study. In addition, single cell RNA sequencing (scRNA-seq) of α- and δ-cells from T2D donors showed a downregulation of energy metabolism and protein synthesis genes (26, 27). In contrast, islets from T1D donors show decreased glucagon secretion at low glucose concentrations in vitro (28), underlying the high risk of severe hypoglycemia after insulin administration in T1D patients (18, 28). α-cells from T1D donors also show differential gene expression, including in electrical activity and exocytosis, as well as master regulators of α-cell identity, ARX and MAFB (28).

Only few studies tested the effect of diabetes on the minor islet cell types, yet it is likely they are also significantly affected. ϵ-cells show a reduction in their number that could be linked to lower plasma ghrelin levels in T2D (29). Yet, this is unlikely since most ghrelin-secreting cells are extrapancreatic (gastric fundus). In δ-cells, islets from T2D donors showed blunted in vitro somatostatin secretion in response to glucose while some donors show hypersecretion at low glucose (30). While there are no reports on δ-cells from T1D donors, recent findings in diabetic mice indicate that increased somatostatin signaling may be reducing counter-regulatory glucagon secretion during insulin-induced hypoglycemia (31). Finally, T2D patients present high plasma levels of PP after an oral glucose challenge (32). As PP inhibits somatostatin secretion in human islets (33), is possible that increased levels of PP contribute to diabetic hyperglucagonemia by decreasing the somatostatin inhibitory effect on α-cells.

Collectively, these studies suggest that diabetes eventually becomes an islet disease affecting all islet cells or that the degree of initial non-β-cell dysfunction is a contributing factor accelerating the progression or the severity of diabetes. Whether non-β-cell defects are intrinsic or solely the result of the decrease in β-cells and local insulin, is still the focus of intense research. Little is known about the role of non-β-cell function in glucose intolerance, prediabetes or the initial stages of diabetes. δ-Cell electrical oscillatory activity in response to glucose stimulation is impaired in insulin resistant mice treated with high fat diet (34) and non-human primates show decreased proportion of δ-cells per islet that progresses with mounting hyperglycemia, possibly caused by δ-cell apoptosis (35). Alterations in δ-cell secretory function during the progression of type 2 diabetes may exacerbate β-cell exhaustion due to a lack of inhibitory signals exerted by somatostatin or could be an adaptation to the higher insulin demand during prediabetes. In the case of α-cells, insulin resistant and glucose intolerant mice under high fat diet present α-cell hypertrophy and lack of suppression of glucagon release upon intraperitoneal glucose injection (36). Studies with obese subjects also observed hyperglucagonemia upon postprandial conditions (37) and in non-human primates α-cell mass tends to increase with the duration and severity of obesity (38). It has been postulated that α-cell insulin resistance (39), intrinsic defects in α-cell glucose sensing or a reduced somatostatin signaling may lead to α-cell functional alterations at this stage (40). Nonetheless, these observations also highlight that defects in non-β-cells may appear in the eventual progression to T2D.

Analysis of non-β-cell numbers and circulating levels of their corresponding hormones in prediabetes or the initial stages of diabetes is needed to understand when these defects start and their contribution to diabetes before β-cell function is impaired. Likewise, whether defective α-cell function in diabetes is completely restored by the regeneration of a functional β-cell mass is still not clear. T1D recipients of islet transplants showed an absence or only partial restoration of glucagon secretion upon insulin-induced hypoglycemia (41–43). The combination of mouse diabetic models showing dysregulated glucagon secretion (44, 45) that allow the measurement of human plasmatic glucagon (25) and transplantation of purified human α-cells alone or in combination with other islets cells will be needed to address this issue.



Human Islet Architecture Favors Heterologous Contacts Between Endocrine Cells: Implications in The Counter-Regulatory Islet Response to Hypoglycemia

In 1982, pioneering studies described a poor responsiveness of isolated single rat β-cells to glucose, an effect that was linked to the lack of α-cell contacts and glucagon, revealing the crucial role of the islet architecture in the optimal functional cooperation between islet cells (46). Since then, most studies have focused on the core-mantle arrangement of rodent islets that clusters β-cells in the center surrounded by peripheral non-β-cells (4). This favors homologous β-to-β cell contacts shown to be critical in mice for regulating in vivo insulin secretory dynamics and glucose homeostasis through gap-junction coupling (47), which drives β-cell synchronization in terms of electrical activity and intracellular calcium concentration. However, it is broadly accepted that human islet cell types are distributed more randomly (3, 4). Recent studies show that the human islet involves a more intricate structure that depends on islet size. Small human islets (40-60 µm in diameter), which are more frequent during childhood, display the core-mantle structure of rodent islets, while large islets are formed by multiple subunits of β-cell clusters surrounded by non-β cells, containing a lower proportion of β-cells than the smaller ones (48). A similar trend is observed between juvenile and aged mice. This unique arrangement presents a higher rate of heterologous contacts, while maintaining homologous contacts between β-cells (9). In the case of humans, β-cells seem to be less synchronized than in mice in response to stimulatory glucose concentrations (4), possibly due to their organization within the islet, which can prime them to have a weaker β-cell electrical coupling. Indeed, synchronous intracellular calcium oscillations in response to stimulatory glucose concentrations have been recorded only in β-cells within the same islet region (49). The higher rate of heterologous contacts within the human islet suggests that counter-regulatory paracrine interactions might play a more important role in human than in mouse islets for the fine tuning of insulin secretion and glycemia maintenance. Figure 1 summarizes paracrine interactions between human islet cell types.




Figure 1 | Human islet architecture favors heterologous contacts and holds a tightly regulated cellular inter-communication network. In the human islet, β-and non-β-cells present frequent contacts favoring paracrine signaling between the cells. Human α-cells secrete mainly glucagon (GCG), acetylcholine (Ach), and GLP-I, which activates insulin secretion by β-cells. It has been postulated that an α-cell subpopulation holds the intra-islet secretion of GLP-I. Human pancreatic β-cells comprise a heterogeneous population and may hold differences in the amount of insulin (INS) secreted depending on the subpopulation. UCN3 is secreted along with INS and activates somatostatin (SST) release by δ-cells. SST inactivates GLC and INS secretion, closing the loop of paracrine signaling between the main islet cell types. Although less studied, the minor islet cell types also contribute to the regulation of the islet hormone secretion. Pancreatic polypeptide (PP) secreted by γ-cells suppresses both GCG and SST release, and ghrelin (GHRL), produced by ϵ-cells, seems to activate SST and inhibit INS release.



In humans, α-cell signaling potentiates insulin secretion throughout a wide range of glucose concentrations (50), establishes the glycemic set point for insulin secretion (10) and enhances insulin secretion when β-cells are in contact with α-cells (51). This is classically known to be mediated by glucagon signaling (10), which activates human β-cell G protein-coupled receptors (GPCR) of class B, including glucagon receptor (GCGR), and glucagon-like peptide 1 receptor (GLP-1R), promoting insulin secretion by an increase in cyclic AMP and the recruitment of insulin granules (50). However, GLP-1 is also secreted by human α-cells (52–54) and necessary for insulin secretion in human islets, as GLP-1R antagonism blunted glucose stimulated insulin secretion (GSIS) in vitro (54). Moreover, GLP-1 can elicit synchronous intracellular calcium oscillations in human whole islets (55), suggesting an important role of this hormone and the location of α-cells within the islet to obtain pulsatile and synchronized insulin secretion. Human α-cells also amplify GSIS through the parasympathetic neurotransmitter acetylcholine, which is co-secreted with glucagon (56, 57) and acts through the activation of the muscarinic receptor M3 in β-cells (57). It has been postulated that this mechanism aids in maintaining β-cell responsiveness to the subsequent rise in glucose produced by glucagon action (56). Subsequently, excessive insulin release and hypoglycemia are avoided by a paracrine negative feedback loop between β- and δ-cells (58), mediated by urocortin-3 (UCN3), which is released by β-cells along with insulin. UCN3 activates type 2 corticotropin-releasing hormone receptors specifically borne by δ-cells within the human islet and stimulates somatostatin secretion (58), which directly inhibits insulin secretion through somatostatin receptor 2 (SSTR2) activation (59). Recent data shows that human δ-cells have long filopodia containing secretory granules that allow for direct contact with multiple β- and α-cells (34), and suggests that human β- and δ-cells are coupled by gap junctions (60), as somatostatin secretion follows the same pulsatile and coordinated response of insulin secretion in isolated islets (61).

Recent data is also starting to shed light on how paracrine interactions control α- and δ-cell secretory outputs. The activation of somatostatin secretion by β-cells, directly inhibits glucagon secretion through SSTR2 in α-cells (31) and in vitro chemical inhibition of insulin or somatostatin signaling in whole human islets induces glucagon secretion at non-stimulatory glucose concentrations (24). Isolated human α-cells also activate glucagon secretion at non-stimulatory glucose concentrations, which was corrected by reaggregation with purified β-cells but not by incubation with β-cell secreted factors (62). Lastly, ghrelin has been recently shown to suppress insulin secretion in human islets (29) and potentiate somatostatin release (63), thus suggesting a novel role for ϵ-cells in the control of hypoglycemia. Conversely, γ-cells seem to enhance human insulin secretion through an inhibition in somatostatin secretion caused by the PP activation of NPYR4 receptor in δ-cells (33). PP also activates the PPYR1 receptor (which is present in human α-cells) in mouse α-cells and inhibits glucagon secretion (64).

Knowledge about how human islet structure and the integrated input of paracrine signaling control synchronization of β-cells and islet hormone secretion is scarce and fragmented in comparison with the mouse islet. While mouse islets present tightly synchronized β-cell function and less heterologous cell contacts, non-β-cells might play a more important role in human islets. New techniques employing high yields of purified primary human islet cells will be necessary to study the contribution of each cell type to integrated islet function. Systematic and high-resolution secretory profiling under various metabolic stresses, using isolated as well as reaggregated human islet cells in different combinations, will help dissect the bewildering interplay of interactions that coordinate optimal islet secretion. A recent study employing reaggregated human islets and a microfluidic system that measures secretion concurrently with intracellular signaling dynamics highlights the importance of developing new tools to study human islet cells, as it revealed Gi GPCR signaling decreases insulin and glucagon secretion while Gq GPCRs stimulate glucagon secretion but have dual effects on insulin secretion (65).



Human Islets are Comprised of Heterogeneous Cell Populations: Relevance in β-Cell Function and Stress Adaptation

A higher level of complexity stems from recently identified β- and α-cell subpopulations based on physiological (66–68), transcriptomic (27, 67, 69–72), and proteomic differences (73–75). Upon stimulatory conditions, human β-cells located in discrete islet regions synchronize calcium flux and electrophysiology (4, 49, 76). Shedding light on whether this is due to their location in the islet, their specific β-β physical interactions or to intrinsic features, employing functional cell mapping with optogenetics, “hub” β-cells (10% of the human islet) were identified as first-responders that engage other β-cells into insulin secretion (66). These cells are considered immature based on low Pdx1 and Nkx6.1 expression and low insulin content (66). In mouse islets, “hub” β-cell function is not affected by the inhibition of glucagon signaling or by their location within the islet (66). However, these features have not been explored in human cells, neither whether “hub” cells have a higher number of contacts with α-cells or δ-cells, which could hint at which cell type has a bigger functional influence on this β-cell subpopulation.

Interestingly, “hub” β-cells are more susceptible to glucolipotoxicity, resulting in reduced numbers and high glucokinase protein levels (66). The genes involved in responses to different metabolic insults [including unfolded protein response (UPR), endoplasmic reticulum (ER) stress, and oxidative stress] efficiently cluster β-cells into subpopulations (69–71). This is one of the most relevant features across different scRNA-seq analyses of β-cell heterogeneity, although there is no consensus on the transcriptomic identity of β-cell subpopulations (27, 69–71). In one instance, three β-cell sub clusters where observed matching low UPR with low insulin expression, low UPR with high insulin, and high UPR with low insulin (69). These groups might be transiently moving between a state high insulin production and secretion to fulfill the requirements that maintain normoglycemia, and a state of UPR-mediated recovery from ER stress due to high insulin production, taking the role of hub cells that orchestrate secretion from neighboring cells (69). Importantly, the heterogeneity in UPR responses may have a significant impact on the survival of β-cells to metabolic insults as chronic UPR activation is present in islets from T2D donors and those at risk to suffer the disease (77). However, other studies have not observed differences in UPR-related genes or correlation of any of these β-cell subpopulations with obesity or T2D (27, 72).

In the case of human α-cells, several scRNA-seq analyses identified human α-cell subpopulations with a proliferative profile (27, 69, 72), which have also been reported in pancreatic sections of adolescents (78) and can be correlated with a lower expression of UPR genes (69). At the functional level, GLP-1 secretion has been linked to specific α-cell subgroups that are more prevalent in T2D, indicating a possible α-cell adaptation to higher insulin demand (68). At the structural level, α-cells can be divided into subsets containing different ranges of glucagon granules (75), which suggest distinct secretory properties, yet no heterogeneity in glucagon secretion has been reported (68). However, studies in mice have shown that α-cell subsets vary in calcium flux and membrane capacitance upon stimulatory conditions (45, 79), which may correlate with granule density.

Studies that connect transcriptionally distinct subpopulations with β- and α-cell function are scarce due to technical limitations. Initial reports linked the lack of cell surface markers CD9 and ST8SIA1 with a β-cell subpopulation showing decreased insulin secretion (73). More recently, a study combining scRNA-seq with patch-clamp electrophysiological measurements of vesicle exocytosis and ion-channel activity, found improved excitability properties in a subpopulation of low-expressing RBP4 β-cells in non-diabetic donors, as well as α-cell electrophysiological heterogeneity correlated with differential expression of ER stress markers in non-diabetic and T2D samples (67). Novel methods to inactivate specific subpopulations will unravel the role of heterogeneity in islet function.



Concluding Remarks: Targeting Islet Paracrine Interactions and Heterogeneity for Optimal and Robust Islet Function in β-Cell Regeneration Strategies

Available data suggests that diabetes affects all islet cell types. Islet paracrine interactions and heterogeneity are key features that allow adaptation to a wide spectrum of physiological challenges. Consequently, β-cell regeneration strategies must consider these factors to restore optimal islet secretory capacity. Indeed, islet transplantation, which would partially replenish a functional islet mass, restores circulating insulin to comparable levels of healthy individuals (80, 81), although efficient glucagon secretion upon hypoglycemia is only partially restored (41, 42). It is unclear if transplanting only β-cells to diabetic patients would give similar results, but analogous experiments could be performed in diabetic mice using different combinations of purified human islet populations. De novo generation of surrogate or replacement β-cells from stem cells (SC-β), or other cell sources, has focused in achieving insulin production and secretion comparable to native β-cells under stable conditions. Recent protocols yield SC-β cells that reverse hyperglycemia in mice for up to 45 days, with detectable human C-peptide within 3–14 days after transplantation (82–86). Despite this amazing progress, SC-β cells do not achieve the biphasic insulin release nor the magnitude of insulin secretion of cadaveric islets in vitro, possibly because of a disconnection in glucose sensing (87). Moreover, long-term analysis or the whole range of metabolic stresses including pregnancy, obesity, pathogenic infection, or extreme fasting [where β-cells undergo major modifications which must be quickly reversed after refeeding (88)] have not been explored. Besides, the impact of cell heterogeneity in SC-β strategies remains elusive, with only one report indicating that β-cell subpopulations were not detected after SC-β transplantation in mice (89). Although there are not such studies in human, heterogeneity is crucial in mice for β-cell adaptation to pathological stressors like obesogenic diets (90).

The signals coming from a diverse non-β-cell population might be pivotal to maintain robust insulin content and secretion throughout all these conditions. As described above, while mouse islets seem to rely on homologous β-cell contacts to achieve a synchronized function, in humans, non-β-cells may play a fundamental role as heterologous contacts are more prevalent and GLP-I signaling elicits a coordinated β-cell activation (55). Moreover, functional non-β-cells could also be required for the maturation, as glucagon receptor KO mice show lower expression of Pdx1, Glut2, and MafA in β-cells (91). Additionally, decreased insulin content occurs in glucagon-GFP knock-in mice that lack proglucagon derived peptides (92) and human insulin promoter activity is stimulated by GLP-1 (93). The implications of the cellular architecture and cell diversity in the generation of functional SC-β-cells has been studied recently by the generation of human islet-like organoids (94), containing some 60% of cells co-expressing insulin and other key β-cell markers, along with glucagon, somatostatin, and PP-positive cells (94). This improved functional maturation of SC-β-cells in terms of GSIS and, after the transplantation in mice, allowed for controlled insulin secretion upon a cycle of feeding, fasting, and refeeding (94). Although controls with only SC-β cells is needed to prove if this tuned insulin secretion is driven by adjacent non-β cells, the presence of UCN3 at protein level in β-cells, suggests that paracrine signaling may be restored (94).

Overall, non-β-cell paracrine signaling is key for optimal islet hormone secretion and any disruption to this balanced cell system may exacerbate diabetes symptomatology and compromise β-cell function. In diabetes, non-β-cells present defects that may be not rectified by the sole reestablishment of insulin signaling via β-cell regeneration approaches. This data supports the idea that non-β-cells should be included in the regenerative strategies to treat diabetes. Likewise, the capacity of adaptation of newly generated β-cells and the role cell heterogeneity may play in coping mechanisms that respond to different physiological and pathological metabolic challenges in vivo is also an open question. Experiments that resolve these matters would highlight pivotal pitfalls in β-cell regeneration approaches aimed at restoring integrated islet function.
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Diabetes mellitus is a highly heterogeneous disorder encompassing different types with particular clinical manifestations, while maturity-onset diabetes of the young (MODY) is an early-onset monogenenic diabetes. Most genetic predisposition of MODY has been identified in European and American populations. A large number of Chinese individuals are misdiagnosed due to defects of unknown genes. In this study, we analyzed the genetic and clinical characteristics of the Northern China. A total of 200 diabetic patients, including 10 suspected MODY subjects, were enrolled, and the mutational analysis of monogenic genes was performed by whole-exome sequencing and confirmed by familial information and Sanger sequencing. We found that clinical features and genetic characteristics have varied widely between MODY and other diabetic subjects in Northern China. FOXM1, a key molecule in the proliferation of pancreatic β-cells, has a rare mutation rs535471991, which leads to instability within the phosphorylated domain that impairs its function. Our findings indicate that FOXM1 may play a critical role in MODY, which could reduce the misdiagnose rate and provide promising therapy for MODY patients.
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Introduction

Maturity-onset diabetes of the young (MODY) is a kind of monogenic diabetes mellitus that is characterized by early-onset, autosomal dominant, non-insulin dependent diabetes. Pancreatic β-cell dysfunction reduces glucose-stimulated insulin secretion during early age due to monogenic variation (1, 2). However, MODY not only manifests a distinct clinical phenotype but also emerges metabolically and genetically heterogeneously due to the various MODY-associated genes. To date, 14 genes (HNF4A, GCK, HNF1A, PDX1, TCF2, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABCC8, KCNJ11, and APPL1) have been identified, and their mutations are responsible for the initiation of MODY (3–5). Despite previous intensive linkage analyses for MODY, there are still diagnosed cases that remain genetically inexplicable (6). In addition, different studies suggest that the prevalence of specific mutations of MODY genes differs considerably among various ethnic groups (7). Without characteristic features and pedigreed awareness, most MODY patients are misdiagnosed with type 1 or type 2 diabetes in Chinese populations, who may potentially receive inappropriate therapy.

The emergence of next-generation sequencing has greatly enhanced the identification of novel mutated genes related to complicated diseases. In particular, whole-exome sequencing (WES) is a more useful and efficient strategy for identifying unknown causative genes in complex disorders, such as GCK-MODY (8) PAX4-MODY (9), and KCNJ11-MODY (10). According to Bonnefond’s finding, WES also provides a clinical tool to assess patients presenting with other monogenic diabetes (6). With regard to MODY, geography and ethnicity specific detection rates have been determined in previous studies (11). Moreover, the low detection rate of given mutations previously reported in Chinese patients suggests that the MODY-X gene may play a major role in these populations (12–14).

The aim of this study was to investigate the prevalence of the diabetic population and novel mutations responsible for MODY, especially in Northern of China. Ten diagnosed and suspected MODY patients underwent WES analysis to elucidate the molecular genotype. Focusing on monogenic diabetes enhances the understanding of pancreatic β-cell dysfunction and insulin resistance, which will promote the criterion of clinical typing and reduce misdiagnosis, finally leading to precise and effective therapy.



Materials and Methods


Experimental Subjects

Diabetes subjects were recruited from the Bio-resource Center of The Shijiazhuang Second Hospital (Shijiazhuang, China). The suspected clinical diagnoses of MODY patients were selected based on (1) the early onset of diabetes (< 25 years of age); (2) negative pancreatic autoantibodies; (3) persistently detectable C-peptide; (4) nonketotic hyperglycaemia; and (5) non-pedigreed information. The study was approved by the ethical committee of the The Shijiazhuang Second Hospital and all the patients provided their written informed consent to participate in this study.



Whole-Exome Sequencing

Five to 10 ml venous blood was collected in plastic EDTA bottles or >5 µg DNA. DNA extraction was performed using the Gentra Puregene Blood Kit (Qiagen) according to the manufacturer’s instructions. DNA was quantified for each sample using the Nanodrop (Thermo Fisher Scientific). Whole-exome libraries were constructed using the TruSeq Exome Library Preparation Kit (Illumina, CA). Sequencing was performed using the XTen system (Illumina, San Diego, CA, USA) to generate 2×150 bp paired-end reads. The depth of each sample was over 100X.



Variant Calling

Sequenced raw reads were mapped against the human reference genome (GRCh38) with Burrows-Wheeler Aligner (BWA, v0.78) (15). Variant identification was performed with Genome Analysis Toolkit (GATK, v4.1.2.0) (16). Duplicate alignments were marked and removed with Picard tool (v2.2). Variant quality filters were applied by a set of criteria (QUAL > 30, 5 < DP) and parameters as recommended by GATK (17). The annotation of variants was performed and ANNOVAR (18).



Genome-Wide Association Analysis

Variation and phenotype data were analyzed by PLINK (v1.9) (19). The variants with a minor allele frequency (MAF) of less than 0.05, missing call frequencies greater than 0.1 and Hardy-Weinberg equilibrium exact test p-value less than 0.00001 were excluded. The three diabetic groups, MODY group used as case and the T1DM and T2DM used as control, C-peptide and FPG, were selected as phenotypes to perform GWAS (Genome Wide Association Analysis) analysis.



Gene-Based Rare Variant Association Tests

To test differences burden of the MODY and MODY-X genes, total 56 genes used for burden test were selected by their potential pathogenicity in MODY or the dysfunction of pancreas. RVTESTS was used for the gene-based association by combined multivariate and collapsing (CMC) method (20). Common variants were removed with the following criteria: MAF more than 0.005 in any public database (ExAC, GnomAD, 1000 Genomes) or more than 0.01 in samples of this study; call rate of less than 0.9 in the study samples. The significance threshold here was set to 0.0167 (comparisons between the 3 groups, 0.0167 = 0.05/3), in accordance with Bonferroni correction.



Statistics

Statistical analysis was conducted by R and related packages. Wilcoxon test was used for pairwise comparison of quantitative traits, and Fisher’s exact test was used for qualitative traits. Kruskal-Wallis H test was used for one-way analysis of variance among groups. The p-value was adjusted by Benjamini & Hochberg method, which is also known as false discovery rate (FDR) (21).




Results


Clinical Characteristics of Diabetes Subjects

We sequenced a total of 200 diagnosed diabetes subjects in this study and found significant differences among the 3 groups (Figure 1), such as age (P = 2.60 × 10-8, Kruskal-Wallis test) fasting plasma glucose (FPG) (P = 0.00028, Kruskal-Wallis test), fasting plasma C-peptide (FPGC-peptide) (P = 2.80 × 10-7, Kruskal-Wallis test), insulin (P = 0.0023, Kruskal-Wallis test), HbA1c (P = 0.0015, Kruskal-Wallis test), and body mass index (BMI) (P = 0.0079, Kruskal-Wallis test). There were 130 males (65%) and 70 females (35%), and the average physical age was 53.67 ± 16.83, which ranged from 2 to 87 years. We unexpectedly found significant differences between the suspected MODY group and T1DM or T2DM group within onset age; however, we found that there were significant differences in BMI (P = 0.023, Wilcoxon test), HbA1c (P = 0.00072, Wilcoxon test), FPGC-peptide (P = 0.00044, Wilcoxon test), and FPG (P = 0.017, Wilcoxon test) between the suspected MODY group and T2DM group, whereas those results did not show a remarkable alteration within the MODY group and T2DM group. Comparatively, the T1DM group also differed from T2DM group in FPGC-peptide (P = 3.90 × 10-5, Wilcoxon test), FPG (P = 0.006, Wilcoxon test), and insulin (P = 0.0037, Wilcoxon test) (Table 1). These finding suggested that a number of clinical characteristics have varied widely among various diabetic subjects.




Figure 1 | Clinical characteristics of subjects. X axis indicates the clinical characteristics of subjects, which including age, BMI, hepatic fat content, serum creatinine, FPG, FPGC-piptide, HbA1c, insulin, triglyceride, cholesterol, HDL, and LDL. And the colors of figure represent three diabetic group, MODY (red), T1DM (green), and T2DM (blue), respectively. The box plot is inside violin plot and the asterisk represents the significance between pairwised comparison. ns, p > 0.05; *p <= 0.05; **p <= 0.01; ***p <= 0.001; ****p <= 0.0001.




Table 1 | Clinical characteristics of diabetes subjects.





Identification and Annotation of Variations

To investigate the relationship between genetic polymorphism and different types of diabetes, we performed whole-exome sequencing of the 200 diabetic cases, including T1DM, T2DM and MODY. The depth of WES achieved >100× coverage for all samples. The joint variants distributed in the genome shown in Figure 2A and the consequence type of variants are displayed in Figure 2B, including total 1,941,129 variants called from WES data, of which 417,468 remained after stringent filtering criteria were applied. We used SIFT (22) and PolyPhen2 (23) to predict whether an amino acid substitution could have an impact on the biological function of proteins, which showed that 23.8 and 26.82% variants might have a deleterious effect on the protein function (Figures 2C, D). However, according to ACMG guidelines, we found only eight likely pathogenic variants and six pathogenic variants that annotated by InterVar (24), unfortunately, none of those 14 variants was associated with diabetes.




Figure 2 | Variant annotation and GWAS analysis. (A) The count of mutation distributed in each chromosome, the X axis indicates the name of chromosome and the Y axis is the count of mutation. (B) Consequence type of identified variations, top five categories of variations are listed. (C, D) The pie chart of pathogenic prediction, variations annotated by Sift and PolyPhen2. (E) Manhattan plot of GWAS results, the most outside track indicates the density of mutation, colors represent the count. The 3 tracks of manhattan plot are the GWAS results calculated by diabetic group, C-piptide and FPG, respectively. The vertical axis of 3 tracks represents the -Log10(P-value).



Then, principal component analysis (PCA) was conducted on the genotypes from our cases and 1000 Genomes Project phase 3 samples (25). The PCA results showed that our 200 cases were mostly close to the East Asian (EAS) samples, as expected confirming the ethnicity of the cases used in this study (Figure S1). Since MODY was a monogenic disease, we assessed the previously reported pathogenic gene of MODY in our cases. Intriguingly, we found that the variants of MODY genes were usually accompanied by rarity and functional impact in suspected MODY cases, while other type diabetes cases were not observed.

Based on the significant difference in the clinical phenotype among the three diabetic groups, we also performed GWAS analysis. FPG, FPGC-peptide, and diabetic groups were selected to investigate the genotypic and phenotypic relationships. As displayed in Figure 2E, several significant sites (P< 10 × 10–7, Fisher’s exact test) were found in all three association results, suggesting that those sites were highly correlated with diabetes (Table S1). Enrichment analysis was performed and confirmed that those genes are relevant to diabetes (Tables S2, S3).



Potential Pathogenic Variants in Suspected Maturity-Onset Diabetes of the Young Cases

Since the allele frequency and population prevalence of MODY were lower than those in T2DM, burden analysis of rare variants across MODY and MODY-X genes was performed. Gene-based burden test was more efficient and justified for identifying associated monogenic traits than GWAS, as a single variant might show negative result due to the low frequency and the heterogeneity of pathogenic genes (26). Based on previous reports, 14 specific MODY type genes and 40 MODY-X genes were collected for the burden test. From Figure 3, we found that the mutations in HNF1A, ABCC8, and BLK were more numerous than the others among 14 MODY genes. Table 2 presents the mutation count of MODY and MODY-X genes in 10 suspected subjects; however, the percentage of non-synonymous mutations in MODY-X genes was higher than that of MODY genes. This implied that the prevalence of MODY in Northern China may be caused by other pathogenic genes, since the 14 types of MODY were first and widely reported among populations in Europe and America.




Figure 3 | The count of mutation in 14 MODY genes. The alluvial diagram drawed by the count of mutation in 14 MODY genes. X axis indicates the name subjects and Y axis indicates the count of mutation. Different colors represent different genes.




Table 2 | Variation count of MODY-related genes.



To deduce the pathogenesis of MODY in Northern China with MODY and MODY-X genes, comprehensive analyses were performed to evaluate the potential sites in those genes. Sites with allele frequencies >0.01 in the 1000 Genome Project, gnomAD-ALL and gnomAD-EAS databases were removed, and burden test was applied with RVTESTS (27) on the remaining mutations between three diabetic groups. Six genes (PAX4, FoxA3, Nr5a2, Hnf4a, Ada, Foxm1) reached the significance level (P < 0.1, adjusted by Bonferroni method) for the burden test of association (Table S4). However, only the sites in ADA and FOXM1 annotated with non-synonymous mutations, which could potentially impact the function of proteins. Thus, several single nucleotide variants of those genes were prioritized in the subjects as potential candidates for MODY.



Maturity-Onset Diabetes of the Young-X Gene: FOXM1 Induced Maturity-Onset Diabetes of the Young

As the single-variant association test of these three potential candidates did not show the association with MODY sufficiently, to address whether those variants in the genes that showed a positive result from the burden test were responsible for the pathogenesis of MODY, the impact of each mutation was thoroughly researched using clinical, population or functional databases. Fortunately, there were two pedigreed subjects among the 10 suspected cases, which was only detected in the father and the son. However, we did not find any pathogenic variant in 14 MODY genes, then extend out our sight to MODY-X genes which were collected from OMIM (Online Mendelian Inheritance in Man) annotation related with diabetes. Finally, rs535471991 was revealed as a heterozygous missense mutation (NM_202002; c.T1895G) in the coding region of FOXM1. This variant was then verified by Sanger sequencing (Figures 4A, B, Figure S2).




Figure 4 | rs535471991 identified in FOXM1. (A, B) Results of Sanger sequencing of rs535471991 in FOXM1 of the subjects. The highlighted position indicates c.T1895G and the results showed the mutation on complementary strand. (C) The vertical color bar on the left side indicates data provenance, the top part in lavender color indicates the genomic exon structure; the green part indicates the motif and variation information from UniProtKB, UP sites shows the Uniprot annotated amino acid modifications and Variation shows non-genetic variation from ExPASy and dbSNP; the oranges part indicates the domain information from Pfam; purple part indicates the phosphorylation annotation from PhosphoSite; the grey part indicates the disorder (red: potentially disordered region, blue: probably ordered region) and hydropathy (red: hydrophobic, blue: hydrophilic) information; the blue part indicates the annotation from PDB, Secstruc shows the secondary structure and 3G73.A shows the structure from PDB; the red part indicates homology models predicted by CATH.



This mutation leads to an alteration in the amino acid sequence (p.Val632Gly). The allele frequency in the 1000 Genomes, Exome Aggregation Consortium (ExAC) (28) and Genome Aggregation Database (gnomAD) (29) was 2.00×10–5, 9.48×10–5 and 1.80×10–5 respectively, but it was not found in the Exome Sequencing Project (ESP) (30). The pathogenic prediction of SIFT, MutationTaster (31), CADD (32), and gerp++ indicated that this mutation was a deleterious mutation. Furthermore, we found that the mutation was located in vanadium-containing chloroperoxidase domain 2, which was annotated by a protein structure classification database (CATH) (33) (Figure 4C). That particular domain played a major role in phosphorylation, and the mutation existed exactly among a series of phosphorylation sites. A single nucleotide polymorphism at codon 1895, leading to the substitution of valine (Val) for glycine (Gly) in FOXM1, implicated the stability of the protein. The alteration caused the loss of isopropyl group and decreased the stability of FOXM1 (34). Furthermore, the hydrophobic state also changed from hydrophobicity to hydrophilicity, which played an important role in cell cycle and insulin signaling pathway, especially in pancreatic cell proliferation (35). These findings extrapolate that rs535471991 may behave as a potentially pathogenic variant in FOXM1.




Discussion

Two hundred diagnosed diabatic subjects were analyzed from northern China. However, multiple susceptibility genes involved in diabetes, particularly T1DM or T2DM, presented a distinguishing feature of polygenic inheritance and differed from MODY or neonatal diabetes mellitus (NDM), since WES could provide an accurate molecular diagnosis for monogenic disease.

Clinically, we found that BMI, FPG, C-peptide, and HbA1c had a significant difference between suspected MODY patients and T2DM, while no difference was observed with T1DM. MODY patients usually do not associate with obesity, which is consistent with previous reports. It is interesting to note that FPG and HbA1c were higher than T2DM and C-peptide was lower than T2DM in this study and that phenomenon also occurred in the research of Zhang (12) and Anuradha (36), despite general acceptance that patients with MODY have better glycemic control than patients with T2DM. Based on the phenotypic distinctions, GWAS and gene-based burden test were performed, however, the number of MODY patient was not large enough to obtain a convincing statistical results, which bring a limitation on this study. Besides, we use MODY group as case and T1DM and T2DM as control, some significantly differential traits might also stick out in the association results, such as BMI. Thus, we chose FPG and insulin data as covariates for association analysis to adjust the result. Fortunately, 2 MODY patients was a pair of father and son, which brought us a pedigreed information for investigating the potential pathogenic loci credibly. Since MODY-X might be the main component in China, and the relevant genes could impact the glycemic control even worse than that regulated by other diabetic genes. Therefore, the percentage of non-synonymous 14 MODY genes was sharply less than that of MODY-X genes, indirectly suggesting that the prevalence in China was distinctive, which was also comparable with previous studies (11–13).

Moreover, we also found a missence mutation in ADA except FOXM1. ADA is located in 20q12-q13.1 and has been reported as a MODY-associated region identified by genetic map of chromosomes (37). However, the mutation of emphADA only occurred in one suspected patient, unlike FOXM1 without pedigreed information, and we could not verify as a pathogenic site based on a solitary case. In contrast, the mutation in FOXM1 occurred in two paternity samples. FOXM1 appears to be a transcription factor that regulates the expression of cell cycle proteins and is essential for proper mitotic progression (38, 39). During mitosis, cyclinA-dependent binding of CDK1 (cyclin-dependent kinase 1) affects the phosphorylation of FOXM1 within the vanadium-containing chloroperoxidase domain and then regulates the S/G2 transition (40). Though the vanadium-containing chloroperoxidase domain was annotated as a disordered region that did not have a stable three-dimensional structure but had good plasticity, the disordered region modulated the stability depending on the degree of aromaticity and phosphorylation status (41). In addition, receptor-mediated insulin signaling promotes the expression and binding between FOXM1 and CENPA and PLK1 in pancreatic β-cell to enable proliferation (35). These findings suggest that the mutation in FOXM1 most likely affects the risk of MODY.

In summary, the study focused on MODY in the Northern China population. Based on WES analysis, we report a mutation in FOXM1 caused MODY potentially. Furthermore, we validated the genetic findings with an alternative sequencing method and performed in silico analysis that suggest that rs535471991 may be relevant to the development of MODY. Therefore, elucidation of the molecular genetics of FOXM1 is likely to result in better an understanding of the pathogenesis of MODY.
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Type 1 and 2 diabetes (T1/2D) are complex metabolic diseases caused by absolute or relative loss of functional β-cell mass, respectively. Both diseases are influenced by multiple genetic loci that alter disease risk. For many of the disease-associated loci, the causal candidate genes remain to be identified. Remarkably, despite the partially shared phenotype of the two diabetes forms, the associated loci for T1D and T2D are almost completely separated. We hypothesized that some of the genes located in risk loci for T1D and T2D interact in common pancreatic islet networks to mutually regulate important islet functions which are disturbed by disease-associated variants leading to β-cell dysfunction. To address this, we took a dual systems genetics approach. All genes located in 57 T1D and 243 T2D established genome-wide association studies (GWAS) loci were extracted and filtered for genes expressed in human islets using RNA sequencing data, and then integrated with; (1) human islet expression quantitative trait locus (eQTL) signals in linkage disequilibrium (LD) with T1D- and T2D-associated variants; or (2) with genes transcriptionally regulated in human islets by pro-inflammatory cytokines or palmitate as in vitro models of T1D and T2D, respectively. Our in silico systems genetics approaches created two interaction networks consisting of densely-connected T1D and T2D loci genes. The “T1D-T2D islet eQTL interaction network” identified 9 genes (GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1, and HEMK1) in common T1D and T2D loci that harbor islet eQTLs in LD with disease-associated variants. The “cytokine and palmitate islet interaction network” identified 4 genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) in common T1D and T2D loci whose expression is mutually regulated by cytokines and palmitate. Functional annotation analyses of the islet networks revealed a number of significantly enriched pathways and molecular functions including cell cycle regulation, inositol phosphate metabolism, lipid metabolism, and cell death and survival. In summary, our study has identified a number of new plausible common candidate genes and pathways for T1D and T2D.
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INTRODUCTION

Type 1 (T1D) and 2 diabetes (T2D) are complex metabolic traits characterized by complete or relative insulin deficiency, respectively, due to destruction or failure of the β-cells in the pancreatic islets of Langerhans. In T1D, the β-cells are destroyed by both innate and adaptive immune mechanisms in which pro-inflammatory cytokines are believed to play key roles (Berchtold et al., 2016). During the process of immune-mediated β-cell killing, the β-cells are not just passive bystanders but actively participate in their own demise through the interface with the immune system via e.g., MHC class I expression and production of chemokines favoring islet infiltration of immune cells, and through their inherent “fragility” to immune damage (Soleimanpour and Stoffers, 2013; Mallone and Eizirik, 2020). β-cell failure in T2D may be caused by prolonged metabolic stress exerted by e.g., free fatty acids (FFA) such as palmitate, and by the persistent increased demand for insulin production due to peripheral insulin resistance ultimately leading to β-cell failure (Prentki and Nolan, 2006; Oh et al., 2018; Wysham and Shubrook, 2020). Hence, although different mechanisms lead to β-cell failure in T1D and T2D, the loss of functional β-cell mass is a common key mechanism and, in both cases the β-cells seem to play an active role (Eizirik et al., 2020).

Both T1D and T2D are polygenetic and disease risk is influenced by multiple genetic variants. To date, genome-wide association studies (GWAS) genotyping thousands of single nucleotide polymorphisms (SNPs) have established more than 50 and 200 risk loci for T1D and T2D, respectively (Barrett et al., 2009; Bradfield et al., 2011; Morris et al., 2012; Onengut-Gumuscu et al., 2015; Mahajan et al., 2018)1 Remarkably, the GWAS signals in T1D and T2D are starkly separated with only a few shared loci (Basile et al., 2014; Aylward et al., 2018) indicating vastly different genetic architectures. Among the few known common risk genes that have also been functionally validated is GLIS3 which plays an important role in the β-cells by regulating proliferation and apoptosis (Nogueira et al., 2013; Wen and Yang, 2017). Based on its functional role, GLIS3 has been suggested as an important predisposing factor of β-cell fragility in both forms of diabetes (Nogueira et al., 2013; Liston et al., 2017). Of note, the causal genetic variant(s) and gene(s) for most of the GWAS loci in T1D and T2D have not been identified. Better insight into the differences and putative commonalities of diabetes genetics may shed new light onto the pathogeneses of both diabetes forms.

Traditionally the gene located in closest physical proximity to the GWAS SNP in the disease locus has been considered the candidate risk gene (Slatkin, 2008). However, for complex polygenetic traits it has been reported that disease-associated SNPs are enriched for variants that have gene expression regulatory effects as determined by expression quantitative trait locus (eQTL) analyses (Westra and Franke, 2014; Fagny et al., 2017). eQTL analyses therefore represent an attractive way to link disease-associated SNPs to potential causal risk genes. Importantly, genetic variants can exert eQTL effects on genes that are physically distant to the disease-associated SNP underlining the complexity of disease genetics (Kumar et al., 2014). Based on this, it is plausible that many causal variants in T1D and T2D increase disease risk through changes in gene expression of nearby and distant genes. Notably, eQTLs can be highly tissue-specific emphasizing the necessity to examine eQTLs in relevant disease-affected tissue such as pancreatic islets in the case of T1D and T2D (Fagny et al., 2017).

In the present study, we aimed to take current knowledge of T1D and T2D genetics a step further by applying a systems genetics approach integrating GWAS data with human islet eQTLs and in vitro pathogenesis models to identify plausible causal risk genes, networks, and pathways shared between T1D and T2D at the pancreatic islet level. We identified a number of hitherto unreported common genes and pathways thereby advancing our understanding of shared genetic and pathogenic mechanisms in T1D and T2D. From our findings, novel hypotheses can be generated and tested in experimental disease models.



MATERIALS AND METHODS


T1D and T2D Loci and Associated Genes

T1D loci; GWAS signals and candidate genes were retrieved from ImmunoBase1. ImmunoBase provides curated and integrated datasets of summary case/control association studies from 12 immunologically related human diseases including T1D originally targeted by the ImmunoChip consortium. T2D loci; GWAS signals and candidate genes were retrieved from Mahajan et al. (2018). All genes located ± 500 kb from GWAS-significant SNPs were extracted using bedtools (Quinlan and Hall, 2010). This window to retrieve loci-associated genes was selected based on published studies (Alasoo et al., 2019; Stacey et al., 2019). Previously pin-pointed/suggested causative candidate genes for each locus were retrieved as reported (Onengut-Gumuscu et al., 2015; Mahajan et al., 2018)1.



Islet eQTLs and LD Analysis

Recently, Viñuela et al. (2020) profiled and genotyped human islet samples from 420 human organ donors as a part of Integrated Network for Systematic analysis of Pancreatic Islet RNA Expression (InsPIRE) consortium (Viñuela et al., 2020). The study aggregated previous islet studies and retrieved data from 196 individuals (Fadista et al., 2014; van de Bunt et al., 2015; Varshney et al., 2017). The samples were jointly mapped and reprocessed (median sequence-depth per sample ~60 M reads). We retrieved both exon- and gene-based islet eQTLs from this study to identify islet eQTLs associated with T1D-T2D loci.

Islet eQTLs in linkage disequilibrium (LD) (r2 ≥ 0.8) with nominally associated disease variants (both T1D and T2D variants) were identified using SNIPA (Arnold et al., 2015). The variant set used for LD calculation was 1,000 Genome, Phase 3 v5 (GRCh37 genome build), European population. For T1D and T2D, 20,669 and 5,270 nominally associated SNPs were obtained (p < 0.05), respectively. The summary statistics from a BMI-adjusted European dataset were used to retrieve T2D SNPs from Mahajan et al. (2018).

All the islet eQTL variants were annotated with Islet Regulome chromatin classes (including islet enhancers, promoters, and CTCF binding sites) retrieved from Mularoni et al. (2017) and Miguel-Escalada et al. (2019) using intersectBed feature of Bedtools (Quinlan and Hall, 2010). The T1D/T2D variants in LD with islet eQTLs were also annotated with islet regulome features.

Total RNAseq datasets from FACS-purified human α-, β-, and exocrine cells from 8 organ donors without diabetes were retrieved from GEO (GSE50386 and GSE76268) (Bramswig et al., 2013; Ackermann et al., 2016). The datasets included libraries that were single-end sequenced to 100 bp on an Illumina hiSeq2000. The raw fastq files were trimmed, cropped, and adapters removed using Trimmomatic v.0.36 (Bolger et al., 2014). The filtered reads after pre-processing (trimming and adapter removal) were aligned to a human genome (GRCh38) using tophat 2.1 (Trapnell et al., 2009) using the following parameters: Library-type = fr-firststrand, no-coverage-search, m 2, p 10. The raw read counts at gene level were calculated using htseqcount and further normalized to counts per million (CPM) and logCPM in EdgeR (Robinson et al., 2010).



Genes Transcriptionally Modified by Cytokines or Palmitate in Human Islets

The differentially expressed genes after cytokine (IL-1β + IFNγ) or palmitate exposure for 48 h in human islets were retrieved from GEO datasets GSE35296 and GSE53949, respectively (Eizirik et al., 2012; Cnop et al., 2014). Both datasets included five human islet preparations obtained from organ donors without diabetes, treated, and handled under similar conditions, with comparable human islet collection and handling protocols. In both studies, paired-end total RNA-sequencing was performed using polyA-selected mRNA and the datasets were processed using similar methods. Briefly, the authors mapped the paired end reads to human genome (GRCh37) using Genomic Multitool (GEM) suite (https://bio.tools/gemmapper) and transcripts were quantified into RPKM values using Flux Capacitor (http://flux.sammeth.net) (Eizirik et al., 2012; Cnop et al., 2014). The differentially expressed genes were identified using Fisher's exact test and p-values were corrected using Benjamini-Hochberg method. A difference in gene expression was considered significant if the adjusted p < 0.05 and if the expression changed significantly in one direction in at least four out of the five islet preparations (Eizirik et al., 2012; Cnop et al., 2014). In total 3,019 genes were found to be modulated by cytokines whereas 1,236 genes were modified by palmitate. Of these, 494 genes were regulated by both cytokines and palmitate.



PPI Network and Pathway Analysis

ToppCluster within ToppGene Suite (Chen et al., 2009) was used to identify protein-protein interactions (PPIs) between the T1D and T2D loci genes. Cytoscape v3.7.0 (http://www.cytoscape.org) (Smoot et al., 2011) was used to visualize the PPI network. A network topological analysis was performed using NetworkAnalyzer v2.7 which is a part of Cytoscape to assess various topological features. For every node in a network, NetworkAnalyzer computes its degree, the number of self-loops, and a variety of other parameters.

Ingenuity pathway analysis (IPA, Qiagen Inc.) was used to predict the downstream effects of the selected genes from the PPI networks. IPA has the most comprehensive, manually curated QIAGEN Knowledge Base that includes data derived from “omics” experiments including RNAseq, small RNAseq, metabolomics, proteomics, microarrays, and small-scale experiments from published studies2. IPA core analysis was performed to identify enriched pathways and molecular and cellular functions for the T1D and T2D loci genes in the PPI networks.

Pathway analysis was also performed using ClueGO plug-in v2.5.3 (Bindea et al., 2009) in Cytoscape. ClueGO integrates GO terms and pathways into a PPI network and creates a functional annotation map that represents the associations between terms. Pathway based clustering was performed with following settings: minimum number of genes within each cluster = 3, pathway network connectivity measure (κ score) = 0.4. The κ score defines the term-term interrelations and creates functional groups based on shared genes between the terms. The p-values were calculated using two-sided hypergeometric test and adjusted using Bonferroni step-down method. The minimum percentage of genes and terms for group merge was 50%. KEGG, Reactome, and WikiPathway annotations were used for pathway-based enrichment analyses in ClueGO.

STRING database and STRING enrichment app (Doncheva et al., 2019) in Cytoscape were used for expanding the network for the selected shared genes. The extended network in STRING was created using the following parameters: A confidence score cutoff of 0.5, selectivity of interactors 0.5 and the total number of interactors to expand the network was set to 50. The KEGG and Reactome pathway annotations were used to perform STRING enrichment analysis. The significant pathways were selected based on an FDR value <0.05.




RESULTS


Selection and Integration of T1D and T2D Loci Genes and Islet eQTLs

A systems genetics approach was applied to pinpoint likely causal T1D and T2D risk genes and to examine their putative interactions in joint networks in human islets—the common “diseased tissue” in T1D and T2D (Figure 1). We divided our overall approach into two sub-approaches integrating; (1) T1D and T2D loci genes with human islet eQTL data, and (2) T1D and T2D loci genes with cytokine- or palmitate-modified human islet gene expressional changes. First, all genes located within ± 500 kb from 107 and 380 genome-wide significant signals for T1D and T2D, respectively, were extracted from publicly available data from ImmunoBase and Mahajan et al. (2018)1. These signals corresponded to 57 T1D and 243 T2D genomic loci of which 5 were overlapping. The genomic loci were defined based on conditionally independent signals that reach the GWAS significance ± 500 kb surrounding the lead SNP (Mahajan et al., 2018)1. If the minimum distance between any distinct signals from two separate loci was <500 kb, additional conditional analysis taking both regions (encompassing ± 500 kb from both ends) were performed to assess the independence of each signal (Mahajan et al., 2018). Of the total 403 identified distinct signals by Mahajan et al. 380 remained after excluding 23 signals that were not amenable to fine mapping (Mahajan et al., 2018). In total, 2,487 and 7,114 genes were retrieved for the T1D and T2D loci, respectively (Figure 2A).
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FIGURE 1. Overview of the dual systems genetics approach applied.
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FIGURE 2. The “T1D-T2D islet eQTL interaction network.” The “T1D-T2D islet eQTL interaction network” is derived from islet eQTLs in linkage disequilibrium (LD ≥0.8) with nominally associated disease variants (both T1D and T2D variants). (A) Venn diagram of the genes filtered for. (B) The 'T1D-T2D islet eQTL interaction network' as visualized by Cytoscape. T1D (n = 204) and T2D genes (n = 192) are shown as cyan and red nodes, respectively. The edges (blue lines) represent the physicial interactions between the nodes. The network consists of 361 nodes, of which 9 are shared (shown in green). (C) Functional annotation of the “T1D-T2D islet eQTL interaction network” (117 nodes with a node degree ≥1) based on IPA analysis. Top canonical pathways and molecular and cellular processes are shown for the selected nodes.


Leveraging on a study by Vinuela and colleagues (Viñuela et al., 2020) that profiled gene expression and performed genotyping of human islets from 420 individual donors, we retrieved islet eQTLs. Both exon and gene-level cis-eQTLs corresponding to 4,312 and 6,039 genes, respectively (FDR < 1%; cis defined as within 1 Mb of the transcription start site [TSS]), were combined that resulted in a total of 10,108 islet eQTL associations for 6,618 genes (Table 1.1 in Supplementary File 1). The majority of the islet eQTL signals were associated with protein-coding genes (n = 9,627), while a much lower fraction was associated with long non-coding RNA genes (n = 842). We annotated the islet eQTL variants with Islet regulome features to identify enrichment for islet regulatory elements including islet enhancers, promoters, open chromatin regions, and CTCF binding sites etc. Only 12% (1,282 SNPs) of the islet eQTLs showed overlap with islet regulatory features, whereas the majority of the islet eQTL SNPs did not show any overlap (Table 2.1 in Supplementary File 2).

To further filter and prioritize the islet eQTL genes, we performed LD analysis to identify T1D and T2D GWAS SNPs that either themselves have islet eQTL effects or are in strong LD (r2 > 0.8) with islet eQTL SNPs. For this analysis, we included all nominally associated SNPs for both T1D and T2D with a p < 0.05. Using a LD cutoff of r2 > 0.8, 242,191 proxy SNPs were retrieved for the 10,108 islet eQTL SNPs.

For the T1D loci, 247 islet eQTLs SNPs (associated with 204 genes) were in LD with 1,735 T1D-associated SNPs. Of these, 55 of the T1D-associated SNPs directly acted as islet eQTL signals for T1D loci genes (Table 1.2 in Supplementary File 1). For the T2D loci, 223 islet eQTLs SNPs (associated with 192 genes) were in LD with 176 T2D SNPs. Of these, 19 of the T2D-associated SNPs directly acted as islet eQTL signals for T2D loci genes (Table 1.3 in Supplementary File 1). The annotation of these T1D and T2D SNPs in LD with islet eQTL SNPs with islet regulome features and Variant Effect Predictor (VEP) are shown in (Tables 2.2, 2.3 in Supplementary File 2).



Generation of a Common T1D-T2D Islet eQTL Interaction Network Based on Genes in LD With Disease Variants

We created a “T1D-T2D islet eQTL interaction network” based on the genes with islet eQTLs in LD with nominally associated T1D and T2D SNPs, i.e., the 204 T1D and 192 T2D loci-associated genes (Figures 2A,B).

Figure 2B (see Supplementary File 3 for a high resolution image) shows the generated network which consists in total of 361 nodes, of which 9 are shared between T1D and T2D (shown as green nodes). These shared genes are GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1, and HEMK1 and are covered in detail in the following section.

Pathway-based functional annotation was performed on the 117 nodes with a node degree ≥1 (i.e., with at least one physical interaction partner) in the “T1D-T2D islet eQTL interaction network.” The top canonical pathways based on IPA pathway analysis included “Cell Cycle: G1/S checkpoint regulation,” “PEDF Signaling,” “Osteoarthritis Pathway,” “Cell cycle control of chromosomal regulation,” and “RhoA signaling” (Figure 2C). The identified molecular and cellular processes included “Cell-to-cell signaling and interaction,” “Cell cycle,” “Cell morphology,” and “Lipid metabolism.”

We also performed ClueGO pathway analysis of the “T1D-T2D islet eQTL interaction network” which identified 10 highly significant pathways that grouped into 5 clusters (Figure 1 in Supplementary File 1). The representative pathways and genes for these 5 clusters were “Sphingolipid metabolism” (with 3 genes involved: CERS2, GBA, GLB1), “Transcriptional regulation of white adipocyte differentiation” (with 4 genes involved: CDK8, MED1, MED28, MED31), “G1 to S cell cycle control” (with 3 genes involved: CDC25A, POLA2, PRIM1), “Ethanol effects on histone modifications” (with 4 genes involved: ACSS2, ATF2, MED1, HDAC7) and “Chromosomal and microsatellite instability in colorectal cancer” (with 6 genes involved: RHOA, SMAD3, TCF7L2, CDK8, ATF2, PLEC). All the 10 significant pathways are listed in Table 1.4 in Supplementary File 1 along with their clusters and p-values.



Extended Network of Shared Genes and Pathway Analysis

The 9 shared genes between T1D and T2D found in the “T1D-T2D islet eQTL interaction network” (Figure 2B) were explored further in relation to; (1) their shared eQTL signals for T1D and T2D; (2) their neighboring interacting partners; and (3) their associated pathways. Table 1 lists the 9 shared genes and their islet eQTL associations with T1D- and T2D-associated SNPs. The genes with islet eQTLs in LD with highly significant (GWAS p < 2E-08) T1D- and T2D-associated SNPs were GSDMB and CRAD9 (Table 1).


Table 1. Islet eQTL SNPs in LD with disease-associated SNPs for the 9 shared genes within the “T1D-T2D islet eQTL interaction network.”

[image: Table 1]

We extended the network of the 9 shared T1D/T2D genes by including neighboring genes to create a larger network allowing identification of their associated pathways. Figure 3A shows the extended network of the 9 shared genes. The extended network was expanded by allowing a maximum of 50 interactors shown in gray nodes (Figure 3A). The STRING enrichment analysis identified 17 significant pathways and an overall PPI enrichment score of 1.0E-16. A PPI enrichment score <0.05 indicates that the proteins are more likely to be biologically connected as a group. The top 5 pathways for the extended network included “inositol phosphate metabolism,” “synthesis of pyrophosphates in the cytosol,” “phosphatidylinositol signaling system,” “synthesis of IPs in the nucleus,” and “c-type lectin receptors (CLRs)” (Table 2). We then analyzed the expression of the genes in the extended network using RNAseq data from FACS-purified α-, β-, and exocrine cells derived from human islets. Figure 3B shows a heatmap of the expression values of the genes in the three cell types.


[image: Figure 3]
FIGURE 3. Extended network of the 9 shared genes within the “T1D-T2D islet eQTL interaction network.” (A) The 9 shared genes within the “T1D-T2D islet eQTL interaction network” are shown as red nodes. The network was extended based on physical interactions to allow 50 neighboring genes (shown in gray nodes) using STRING app in Cytoscape. (B) Expression of the genes within the extended network (n = 59) in FACS-purified α, β, and exocrine cells derived from human islets. The heatmap shows unsupervised clustering of log2CPM values for α-cells (n = 8), β-cells (n = 8), and exocrine cells (n = 2) samples. The clustering was done using Euclidean distance with complete linkage method.



Table 2. Pathway-based functional annotation of the extended network of the 9 shared genes within the “T1D-T2D islet eQTL interaction network.”
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Generation of a Common T1D-T2D Islet Interaction Network Based on Cytokine- and Palmitate-Regulated Loci Genes

As eQTLs may not be present under basal, non-disease conditions, but only in the disease state or the phase preceding disease, we sought to take an additional approach to investigate interactions between islet expressed T1D and T2D loci genes. We therefore next created a network of T1D and T2D loci genes whose expression in human islets is modulated by pro-inflammatory cytokines as an in vitro model of a T1D environment and/or by the FFA palmitate as an in vitro model of a T2D environment using published RNAseq datasets (Eizirik et al., 2012; Cnop et al., 2014) (Figures 4A,B). In total, cytokines modulated the expression of 191 T1D loci genes whereas palmitate modulated the expression of 187 T2D loci genes. Interestingly, among these, 4 genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) were commonly regulated by cytokines and palmitate and were also located in shared T1D and T2D loci (Table 1.5 in Supplementary File 1). Figure 4B (see Supplementary File 4 for a high resolution image) depict the derived network with a total of 372 nodes, the 4 shared genes are shown in green nodes.


[image: Figure 4]
FIGURE 4. The “cytokine and palmitate islet interaction network.” The “cytokine and palmitate islet interaction network” is derived from overlap of T1D and T2D loci genes with cytokine- and/or palmitate-regulated genes. (A) Venn diagram of the genes filtered for. (B) The “cytokine and palmitate islet interaction network” as visualized by Cytoscape. The T1D loci genes subject to cytokine regulation (n = 191) and T2D loci genes subject to palmitate regulation (n = 187) are shown in cyan and red nodes, respectively. The edges (blue lines) represent the physicial interactions between the nodes. The network consists of 372 nodes, of which 4 are shared (shown in green). (C) Functional annotation of the “cytokine and palmitate islet interaction network” (181 nodes with node degree ≥1) based on IPA analysis. Top canonical pathways and molecular and cellular processes are shown for the selected nodes.


IPA pathway analysis of the “cytokine and palmitate islet interaction network” identified “Antigen presentation” and “Th1 and Th2 activation” as top canonical pathways (Figure 4C). The top molecular and cellular processes included “Cellular movement,” “Cell death and survival,” and “Cell proliferation and growth.”

Functional annotation of the “cytokine and palmitate islet interaction network” using ClueGO revealed 3 clusters of 24 highly significant pathways (Figure 2 and Table 1.6 in Supplementary File 1). The representative terms and genes for these 3 clusters are “Signaling by NOTCH4” (with 6 genes involved: ACTA2, FBXW7, NOTCH2, PSMB1, PSMB8, PSMB9), “Apoptosis-related network due to altered Notch3 in ovarian cancer” (with 5 genes involved: APOE, AXIN1, ERBB3, ERN1, IL7R) and “Epstein-Barr virus infection” (with 35 genes involved: HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DRA, HLA-DRB5, ITGB3, TAP1, TAP2, TUBA4A, CIITA, IL2RA, IL7R, NOTCH2, RARA, PTPRN2, EEF1A2, SOCS1, ICAM1, KRT40, CEBPG, CTSD, LSP1, IKBKE, KPNA2, OAS3, ADCY5, CDKN2C, FOSL1, MYC, DDB2, TNFAIP3, RAC2, AP1B1, AP2M1, PSMB9).




DISCUSSION

In this study, we employed a systems genetics approach integrating RNAseq data, eQTL signals and cytokine/palmitate-regulated genes to look for PPIs between probable causal risk genes in T1D and T2D GWAS loci at the human pancreatic islet level. We were able to create a PPI network that contained interactions between multiple T1D and T2D loci genes that associated with SNPs in LD with islet eQTL SNPs. IPA pathway analysis of the interacting nodes pointed toward important cellular processes such as regulation of cell cycle processes. Considering that loss of functional β-cell mass is a key mechanism in both T1D and T2D, it is plausible to think that disease-associated variants linked to altered gene expression of genes involved in cell cycle control could negatively affect the replicative capacity of the β-cells thereby favoring a loss of functional β-cell mass.

Interestingly, we identified 9 shared genes within the “T1D-T2D islet eQTL interaction network” and an extension of the network surrounding these shared genes revealed highly interconnected nodes that are putatively involved in regulating common processes leading to either type of disease. Among the 9 shared genes (HEMK1, GSDMB, ERAP1, PPIP5K2, TMEM69, DNLZ, SDCCAG3, CARD9, and PLEKHA1), two of them, GSDMB (gasdermin B) and PLEKHA1 (pleckstrin homology domain-containing family A member 1) were previously identified as candidate genes for T1D (Morris et al., 2012) and T2D (Mahajan et al., 2018), respectively. GSDMB and CARD9 (caspase recruitment domain family member 9), both have implications in the inflammatory pathways leading to apoptosis (Hara et al., 2007; Ruan, 2019). Three genes encode for enzymes with different functions, ERAP1 (endoplasmic reticulum aminopeptidase 1) an amino peptidase involved in the processing of HLA class I-binding precursors (Rock et al., 2002), a histidine acid phosphatase, PPIP5K2 (diphosphoinositol pentakisphosphate kinase 2), regulating bioenergetic homeostasis (Nair et al., 2018), and HEMK1 (methyl transferase family member 1), responsible for the methylation of glutamine residues. Further, PLEKHA1 (pleckstrin homology domain containing A1) is involved in signaling complexes in the plasma membrane. SDCCAG3 (serologically defined colon cancer antigen 3) is potentially related to protein trafficking and secretion (Neznanov et al., 2005).

The enriched pathways for the extended network of the 9 shared genes included interesting categories such as “inositol phosphate metabolism,” “immune system,” “inflammasome pathway,” and “NOD1/2 signaling.” Broadly speaking, most if not all these pathway functions seem rational in terms of regulating cellular mechanisms that could be important for diabetes at the islet level. For instance, with regard to “inositol phosphate metabolism,” it is well-recognized that inositol phosphate compounds are intimately involved in the stimulus-secretion coupling process in β-cells through the regulation of calcium signaling (Barker et al., 2002). Remarkably, there was as many as 6 enriched pathways in total related to inositol in the extended network inferring that inositol signaling and metabolism may play prime roles in both T1D and T2D.

Identifying protein complexes from PPIs is an important area of research for gaining insights into genetic pathways and identification and prioritization of disease genes (Lage et al., 2007; Taylor and Wrana, 2012). An increasing number of studies have employed PPI networks to explore the molecular basis of complex diseases (Oti et al., 2006; Bergholdt et al., 2007; Lage et al., 2007; Jaeger and Aloy, 2012). Genes causing the same or similar diseases tend to lie close to one another in a network of PPIs or functional interactions and display a high degree of connectivity (Oti et al., 2006; Vanunu et al., 2010). Previous studies combining PPIs and genetic interactions predicted disease genes for genetically heterogeneous diseases and proved helpful in identifying associations between disease genes and other genes for specific protein complexes (Oti et al., 2006; Bergholdt et al., 2007, 2009; Lage et al., 2007; Vanunu et al., 2010).

An important part of our study design of the first approach was the gene filtering based on regulatory islet eQTLs. Lappalainen et al. (2013) provided a detailed landscape of regulatory SNPs in 1,000 Genomes data and demonstrated how eQTL data can be used to identify potential causal variants. In a recent study, Fagny et al. (2017) constructed tissue-level eQTL networks in 13 human tissues and observed tissue-specific regulatory roles of common variants and their collective impact on biological pathways underlining the necessity to look for eQTLs in the specific tissue of interest, i.e., in islets in our current study, to obtain meaningful and (patho)physiologically relevant information.

In our second part of analyses, we also selected for loci genes that were subject to differential regulation by cytokines and/or palmitate as in vitro models of T1D and T2D. This analysis revealed 4 commonT1D and T2D loci genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) that are all regulated by both cytokines and palmitate in human islets. RASGRP1 (RAS guanyl releasing protein 1) was previously identified as a candidate gene for both T1D and T2D (Mahajan et al., 2018), and ASCC2 (activating signal cointegrator 1 complex subunit 2) and SRGAP2 (SLIT-ROBO Rho GTPase-activating protein 2) were identified as T2D candidate genes (Mahajan et al., 2018)1. Interestingly, two of the genes, ASCC2 and HIBADH, were also associated with islet eQTLs, and even more remarkably, we found that ASCC2 eQTL SNPs were in strong LD with T1D-associated SNPs (data not shown). ASCC2 is involved in ubiquitin binding activity which might be responsible for commonly regulating β-cell function in human islets and contributing to both T1D and T2D (López-Avalos et al., 2006), which deserves further investigation in future studies. HIBADH (3-hydroxyisobutyrate dehydrogenase) has been previously implicated in insulin resistance and risk of incident type 2 diabetes and gestational diabetes mellitus (Nilsen et al., 2020). Although the selection of genes based on their regulation by cytokines and/or palmitate does not necessarily identify causal genes, but merely identifies genes whose expression level correlate with cytokine/palmitate exposure. It is also important to keep in mind that the genes observed to be differentially expressed at a specific time point only reflect a snapshot of the gene regulatory effects exerted by cytokines and palmitate. Despite these drawbacks, we do believe that this approach is a valid alternative approach to the eQTL/LD selection criteria in our first part of the analyses.

Our finding that risk genes for T1D and T2D interact in shared networks at the islet level supports the concept that despite the overall lack of genetic commonality in T1D and T2D, and that different mechanisms underlie the loss of functional β-cell mass in T1D and T2D, at least some candidate risk genes of both diabetes forms seem to cooperate in common pathways to regulate various islet processes that could be relevant for promoting disease. The common networks identified by our analyses adds to our current knowledge and may offer an opening to pinpoint potential commonality between T1D and T2D. It is worth noticing, however, that although both diseases are heterogenous, T2D is probably more heterogenous than T1D and can be classified into multiple subtypes according to clinical parameters and phenotype, and genetics most likely play an important underlying role in this (Udler, 2019). Future studies comparing T1D genetics with the various subclasses of T2D categorized by genetic profiles would be of interest.

A limitation of our study may be that the GWAS datasets used to define the disease-associated loci are from European populations only. We therefore might have missed potential GWAS signals that could be present in other ethnicities. Another limitation is that it was not possible to use PPIs obtained from human islets as such data currently does not exist. It is therefore not possible to apply tissue specificity at this point. In general, however, PPIs are not tissue-specific, though, but, obviously, rely on the expression of the protein-coding genes that interact at the protein level. We applied islet gene expression filtering that indirectly added some tissue specificity for the PPI analyses, but it would have been further advantageous if PPI data for human islets existed. Additional studies are highly warranted to validate the results and to explore the roles of the identified common candidate genes for normal and dysfunctional islet mass.

In summary, by a dual systems genetics approach, we report the identification of novel plausible causal T1D and T2D risk genes that are common between both diabetes forms. Our study further suggests that some genes located in T1D and T2D risk loci interact in shared islet networks where they regulate critical cellular functions such as cell cycle processes and lipid metabolism in human islets. From our findings novel testable hypotheses can be formulated thereby setting the groundwork for future experimental follow up and functional characterization of the shared and interacting T1D and T2D candidate genes in in vitro and in vivo models. Moreover, it would be imperative to experimentally validate the identified PPIs in human islets and in β-cells by appropriate methods. These studies are highly warranted as they could shed further light onto causal and pathogenic mechanisms and offer new clues about how genetic factors set the scene for immune- and metabolic stress-mediated β-cell loss in T1D and T2D.
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Supplementary Table 1.1. Annotation of islet eQTL signals and biotype of islet eQTL genes. The islet eQTL associations were retrieved from Viñuela et al. (2020). Both exon and gene-level cis-eQTLs corresponding to 4,312 and 6,039 genes, respectively (FDR<1%; cis defined as within 1 Mb of the transcription start site [TSS]), were combined that resulted in a total of 10,108 islet eQTL associations for 6,618 islet eQTL genes.

Supplementary Table 1.2. T1D-associated SNPs as islet eQTLs. The table lists 55 T1D-associated SNPs that act as islet eQTLs. T1D GWAS summary statistics were retrieved from Onengut-Gumuscu et al. (2015). All nominally associated SNPs (p < 0.05) were compared against the significant exon and gene level islet eQTLs from Viñuela et al. (2020). OR, log odds ratio for the effect allele. T1D GWAS Alleles (Min>Maj); Islet eQTL Alleles (Ref>Alt).

Supplementary Table 1.3. T2D-associated SNPs as islet eQTLs. The table lists 19 T2D-associated SNPs that act as islet eQTLs. The T2D GWAS summary statistics were retrieved from Mahajan et al. (2019) (European BMI adjusted dataset). All nominally associated SNPs (p < 0.05) were compared against the significant exon and gene level islet eQTLs from Viñuela et al. (2020). Beta: log odds ratio for the effect allele; T2D GWAS Alleles (Effect allele > other allele); Islet eQTL Alleles (Ref>Alt).

Supplementary Table 1.4. Pathway-based annotation analysis of the “T1D-T2D islet eQTL interaction network.” The pathway-based annotations were performed using KEGG, Reactome, and Wiki pathway annotations in ClueGo app in Cytoscape. P-values were corrected with Bonferroni step down.

Supplementary Table 1.5. Shared genes in the “cytokine and palmitate islet interaction network”.

Supplementary Table 1.6. Pathway-based annotation analysis of the “cytokine and palmitate islet interaction network.” The pathway-based annotation was performed using KEGG, Reactome, and Wiki pathway annotations in ClueGo app in Cytoscape. P-values are corrected with Bonferroni step down.

Supplementary Figure 1. Pathway based functional annotation of “T1D-T2D islet eQTL interaction network” (117 nodes with node degree ≥1) using CytoScape plugin ClueGO.

Supplementary Figure 2. Pathway based functional annotation of “cytokine and palmitate islet interaction network” (181 nodes with node degree ≥1) using CytoScape plugin ClueGO.
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Supplementary Table 2.1. Annotation of islet eQTL SNPs based on islet regulome features. A total of 1,282 islet eQTL SNPs intersect with islet regulome features derived from Miguel-Escalada et al. (2019). All the coordinates are based on the GRCh37 version of the human genome.

Supplementary Table 2.2. Annotation of T1D-associated SNPs in LD with islet eQTL SNPs based on islet regulome features. 140 T1D-associated SNPs in LD with islet eQTLs intersect with islet regulome features derived from Miguel-Escalada et al. (2019). All the coordinates are based on the GRCh37 version of the human genome.

Supplementary Table 2.3. Annotation of T2D-associated SNPs in LD with islet eQTL SNPs based on islet regulome features. 22 T2D SNPs in LD with islet eQTLs intersect with islet regulome features derived from Miguel-Escalada et al. (2019). All the coordinates are based on the GRCh37 version of the human genome.

Supplementary File 3. High resolution view of the 'T1D-T2D islet eQTL interaction network' as visualized by Cytoscape. T1D (n = 204) and T2D genes (n = 192) are shown as cyan and red nodes, respectively. The edges (blue lines) represent the physicial interactions between the nodes. The network consists of 361 nodes, of which 9 are shared (shown in green).

Supplementary File 4. High resolution view of the ‘cytokine and palmitate islet interaction network’ as visualized by Cytoscape. The T1D loci genes subject to cytokine regulation (n = 191) and T2D loci genes subject to palmitate regulation (n = 187) are shown in cyan and red nodes, respectively. The edges (blue lines) represent the physicial interactions between the nodes. The network consists of 372 nodes, of which 4 are shared (shown in green).



FOOTNOTES

1Immunobase. Available online at: https://www.immunobase.org/.

2IPA (QIAGEN Inc). Available online at: https://digitalinsights.qiagen.com/plugins/ingenuity-pathway-analysis/.
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In diabetes mellitus, death of β cell in the pancreas occurs throughout the development of the disease, with loss of insulin production. The maintenance of β cell number is essential to maintaining normoglycemia. SNAPIN has been found to regulate insulin secretion, but whether it induces β cell proliferation remains to be elucidated. This study aimed to explore the physiological roles of SNAPIN in β cell proliferation. SNAPIN expression increases with the age of mice and SNAPIN is down-regulated in diabetes. KEGG pathway and GO analysis showed that SNAPIN- interacting proteins were enriched in cell cycle regulation. B cell cycle was arrested in the S phase, and cell proliferation was inhibited after SNAPIN knockdown. The expression of CDK2, CDK4 and CCND1 proteins in the S phase of the cell cycle were reduced after SNAPIN knockdown, whereas they were increased after overexpression of SNAPIN. In addition, insulin protein and mRNA levels also increased or decreased after SNAPIN knockdown or overexpression, respectively. Conclusions: Our data indicate that SNAPIN mediates β cells proliferation and insulin secretion, and provide evidences that SNAPIN might be a pharmacotherapeutic target for diabetes mellitus.
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Introduction

Diabetes is a prevalent disease worldwide, and it has become a serious social health problem (1). It ultimately results in a deficiency of functional pancreatic β cells (2).The maintenance of β-cell number and islet mass is essential for maintaining normoglycemia (3, 4). Human β cell replication rates are very low, and the cells are only capable of replication for a brief period after birth (5).

Type 1 diabetes mellitus (T1DM) is associated with impaired β cell mass (6).The pathogenesis of type 2 diabetes is more variable, and it consists of insulin resistance and defective insulin secretion (6). More specifically, type 2 diabetes mellitus (T2DM) is associated with genetic predisposition and environmental factors, such as obesity and diet (7). During pregnancy and the early stages of diabetes, compensatory proliferation of pancreatic β cells occurs in response to changes in blood glucose (8, 9). Glucose itself is able to stimulate β cell replication (10), and several lines of evidence indicate that the terminally differentiated pancreatic β cells retain significantly proliferative capacity in vivo (11, 12). This proliferative capacity has attracted considerable research attention in terms of developing therapeutic strategies for diabetes mellitus. Although a number of studies concerning differentiated β-like cells from embryonic stem cells or induced pluripotent (adult) stem cells are in progress, the low conversion efficiency of β cells from stem cells remains a challenge for developing cell-based therapies (13). Glucokinase signaling, carbohydrate response element-binding protein (ChREBP), nuclear factor of activated T-cells (NFAT), platelet-derived growth factor (PDGF), CDK4/6 and TCF7L2 have all been reported to stimulate human β cells proliferation (14–19). Therefore, the mechanisms regulating β cell mass have been revealed that underlie the development of T1DM and T2DM, which is important for developing novel therapeutic approaches for diabetes. This proliferative capacity has attracted considerable research attention in terms of developing therapeutic strategies for diabetes mellitus.

SNAPIN is a protein that interacts with SNARE complexes during synaptic transmission and was first reported by Jeffrey M. Ilardi in 1999 and it was first identified in neurons and located on synaptic vesicle Membranes (20). It is also a component member of the BLOC-1 complex and BORC complex (21). The BLOC-1 complex is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet-dense granules and melanosomes (22), and the BORC is required for lysosome positioning in mammalian cells (21). Increasing evidence shows that SNAPIN is important for retrograde axonal transport (23), late endosomal-lysosomal trafficking (24), and glucose-induced insulin exocytosis (25). It is also believed to be involved in a variety of signal transduction and intracapsular transport/fusion functions (26).

SNAPIN is specifically expressed in the endocrine department of the pancreas. Diffuse cytoplasmic staining has been observed, and the cells were clustered into punctate structures, which co-located with insulin-secreting granules (27).The insulin secretion may be caused by the interaction between the c-terminal H2 region of SNAPIN and sn-1 region of snap-25 in the SNARE complex (27, 28), which initiates the process of insulin secretion particle targeting, tethering, initiation and membrane fusion (27, 29). These exocytosis processes are mediated by the Munc18/SNARE complex (30).

In addition, SNAPIN is a target of protein kinase A (PKA) (31), which is a critical regulator of glucose-stimulated insulin exocytosis in pancreatic β cells by promoting the interaction and assembly of insulin secretory vesicle-associated proteins Snap25 and TMEM27 (32). SNAPIN is significantly correlated with the TMEM27 gene, which codes a membrane protein cleaved and shed by pancreatic beta cells that have been proposed as a beta cell mass biomarker (33). This indicates that SNAPIN may also be a biomarker for beta cells. The function of SNAPIN in β cell growth is poorly understood, and our findings reveal that the overexpression of SNAPIN in Min6 cells can promote cell proliferation and is promising in achieving the goals of regenerative medicine for diabetes treatment.



Materials and Methods


Cloning Procedures

Snapin full length was PCR-amplified from cDNAs and cloned at XhoI and BamHI sites of PCDH-3xFlag-3xHA-EF1-puromycin vector. Primers were designed using the Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA).



Lentivirus Packaging and Infection

HEK293T cells were seeded in culture plates for 12 hrs and transfected with lentiviral vectors together with packaging vectors, pMDL, VSVG, and REV, at a ratio of 10:5:3:2 using Lipofectamine 2000 for 48 hrs. Virus was collected, filtered and added to β cells in the presence of 10 μg/mL polybrene (Sigma, H9268), followed by centrifugation for 30 mins at 1,500 g at 37°C. Medium was replaced 12 hrs later. The transduction efficiency was evaluated by immunoblotting analysis.



shRNA Infection

The packaging process of lentiviruses particles was the same as above. Primers sequences were in the Table 1. The transient transfection of plasmids into the cells was performed by using Lipofactamine 2000 reagents (Invitrogen) according to the manufacturer’s instructions.


Table 1 | shRNA targeting sequencing and primers for SNAPIN cloning.





Cell Lines

The mouse pancreatic Min6, the rat pancreatic INS1 and the HEK-293T cell lines were obtained from ATCC. Min6 cells were maintained in high-glucose DMEM medium(BI) supplemented with 15% v/v fetal bovine serum (FBS, BI), 50 mmol/L 2-mercaptoethanol, and 1% penicillin-streptomycin at 37°C and 5% CO2 in a humidified atmosphere in an incubator. HEK-293T was cultured in DMEM medium supplemented with 10% v/v fetal bovine serum (FBS, BI) and 1% penicillin-streptomycin in an incubator at 37°C and 5% CO2 in a humidified atmosphere in an incubator. The rat pancreatic INS1 cells were cultured in RPMI1640 (Hyclone) containing 10% v/v fetal bovine serum (FBS, BI), 1% penicillin-streptomycin 1% glutamine, 1 mM sodium pyruvate, and 50 μM β-mercaptoethanol (sigma).



Animal

Male KM mice weighing approximately 18–25 g were purchased from the Animal Center of Xiamen University. Mice were humanely housed at 22 ± 2°C with 12-h light/dark cycles. All animals had free access to food and water. All animal studies were approved by the ethical review committee of Xiamen University and followed the regulations of the National Institutes of Health guidelines on the care and welfare of laboratory animals. Db/Db and HFD mice were obtained from Li Ming Yu lab at Xiamen University.



Immunohistochemistry

SNAPIN and insulin were analyzed by immunohistochemical staining of frozen sections from adult mouse pancreas fixed O/N in 4% PFA in PBS at RT, pH 7.4, cryoprotected in 30% sucrose in PBS, embedded in Tissue-Tek (Sakura; Værlose, Denmark), and cut into 9-μm sections on a Leica cryostat. Antigen retrieval was performed by microwave treatment for 4 mins at 600 W in 200 mL 0.01 M citrate buffer, followed by 15 mins at 250 W, and finally left to cool for 20 mins. Tissue sections were rinsed in TBS, quenched in 3% H2O2 for 5 mins, and rinsed again. Then, 10% goat serum was used for blocking for 1 hr before overnight incubation with the purified rabbit anti-SNAPIN antibodies diluted 1:200 and rabbit anti-insulin antibodies diluted 1:400 in 10% goat serum blocking buffer. Sections were washed three times for 5 mins each in TBS between incubations with primary antibody and the following incubations with biotinylated secondary antibody (Zymed; Aarhus, Denmark) for 30 mins. Bound antibodies were visualized with the DAB after a 3 mins incubation period and a subsequent wash in TBS, and the slides were counterstained with hematoxylin. Images were collected with an Olympus (Tokyo, Japan) BX51 microscope and captured using a chilled Hamamatsu C5810 CCD camera (Hamamatsu City, Japan) and Image Pro Plus 4.5 software.



Nuclear Extraction of Cells

SNAPIN was overexpressed in Min6 cells. All steps were performed on ice with ice-cold reagents in pre-centrifuge tubes. We first used ice-cold 1xPBS to wash cells and scrape cells gently into a 15mL tube. They were centrifuged for 5 mins at 500 rpm, 4°C. Then the pellet was resuspended in 1 mL ice cold BUFFER1 (1 M HEPES, PH 8.0, 1 M Mgcl2, 1 M KCl and 1 M DTT) and incubated for 15 mins on ice to allow cells to swell. Np40 was added to vortex for 10 S. Cells were centrifuged for 3 mins at maximum speed, then supernatant was aspirated with pipet, which was the cytoplasmic fraction. The pellet was resuspended in cold BUFFER2 (1 M HEPES, PH 8.0, 1 M Mgcl2, Glycerol, 1 M Nacl, 0.5M EDTA and 1 M DTT), vortexed 30 S and rotated vigorously at 4°C for 30 mins. The pellet was centrifuged for 15 mins at maximum speed, and the supernatant was removed and transferred to a fresh, chilled tube. Assay for protein concentration for immunoblotting analysis.



Confocal Immunofluorescence Microscopy

β cells were fixed in 4% paraformaldehyde for half an hour at room temperature. Then, cells were washed three times with PBS for 5 mins at room temperature. 0.1% Triton-100 was added for permeation for 10 mins, and cells were incubated in a blocking buffer (5.0% BSA in PBS) for 1 hr at room temperature. Then we performed immunostaining using the primary antibodies SNAPIN (1:50) and insulin (1:800) incubated overnight at 4°C, followed by fluorophore-conjugated secondary antibodies. The immunolabeled cells were analyzed with a Carl Zeiss LSM5 EXITER or Leica TCS SP8 STED laser scanning confocal microscope. The green channel was imaged using a 488-nm laser line (120 mW/cm2, 2.5%). The red channel was imaged using a 559-nm laser (120 mW/cm2, 2.0%). Images were acquired in 4-s intervals (frame time 3.9 s). A pulsed 375-nm laser (10 MHz) was applied for uncaging experiments in the entire field of view for eight frames (3.2 s/frame). The dual scanner setup allowed for simultaneous laser stimulation and confocal imaging. This permitted the acquisition of cellular responses that occurred during or immediately after laser stimulation.



Cell Cycle and Flow Cytometry

Min6 cells that underwent SNAPIN overexpression or knockdown were added to 1 mL cold PBS to re-suspend cell pellet and vortexed gently and an equal volume of cold absolute ethanol (store at -20°C) was added dropwisely to cell suspension in the same 15 mL tube. Then, it was stored at – 20°C for at least 2 hrs. Before staining, cells were washed twice with cold PBS and centrifuged at 4°C, 3000g, for 5mins, and supernatant was completely removed. PI staining solution was added, and it was incubated at 37°C for 15 mins. Data were acquired on a flow cytometry. Then, we used PI to stain Min6 cells that transfected shRNA for 15 mins. Cells or nuclei were filtered through 40-mm sieves, and flow cytometry was performed on a 4-laser, LSRII (BD Biosciences). Data were analyzed with FlowJo software.



Cell Proliferation Assay

Min6 cells that underwent SNAPIN overexpression or knockdown were seeded into a 96-well plate and were incubated with the medium for 24 hrs. The cell viability was measured by MTS analysis using CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega). For the measurement of cell viability, 500μL of medium/MTS solution mix (20μL MTS/mL medium) was added per well. The plate was incubated at 37°C for 1 hr. Then, the absorbance at 490nm was measured using an automatic microplate reader. Cell viability was measured every 24 hrs for consecutive four days.



Ethynyldeoxyuridine (EdU) Analysis

Proliferating cells were assessed using a Click-iT™ EdU Proliferation Assay (Invitrogen) following the manufacturer's protocol. Briefly, Min6 cells that underwent knockdown were inoculated seeded into a 96-well plate (5000 cells/well). Then, 10 um EdU labeling media was added and cells were incubated for 24hrs. 50 µL Click-iT™ EdU fixative was added to each well for 5 mins and 50 µL 1X Click-iT™ reaction cocktail to each well for 30 mins. Then, 1.5% BSA was added to block cells for 5 mins. After washing several times, 100 µL Amplex™ UltraRed reaction mixture was added for 15 mins and followed by incubated with 10 µL Amplex™ UltraRed stop reagent. Fluorescence was measured with excitation maximum of 568 nm and emission maximum of 585 nm.



Annexin V-FITC/Propidium Iodide (PI) Staining

Apoptosis of β cells were measured by Annexin V/FITC(BD Bioscience)according to the manufacturer’s protocol. Cells were harvested and resuspended in 100 μL binding buffer, followed by staining with 5 μL FITC− conjugated Annexin V and 5 μL PI in the dark for 15 mins at room temperature. Then, 00 μL binding buffer was added to resuspend cells. Cells were detected by flow cytometry (BD Biosciences). In the early stage of apoptosis, cell membranes were stained with FITC− conjugated Annexin V, whereas nuclei were not stained with PI. In the late stage of apoptosis, cells were stained with both FITC− conjugated Annexin V and PI. The results were analyzed by FlowJo vX.0.7 (FlowJo LLC).



Insulin Secretion in bb Cells

In order to test the secretory response to glucose, Min6 cells were cultured on glass coverslips for 24 hrs. After 24 hrs of plating, Min6 cells were incubated for 1 hr at 37°C in KIRH BUFFER (136 mmol/L NaCl, 4.7 mmol/L potassium chloride (KCl), 1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4, 5 mmol/L NaHCO3, 1 mmol/L CaCl2, 10 mmol/L HEPES, and 0.5% BSA, pH 7.4) supplemented with either 2.8 mmol/L or 16.7 mmol/L glucose. Insulin was detected by ELISA (wide range mouse insulin immunoassay kit, catalogue number: 32100). 5 µL of standard and sample and 100 µL detection antibody was added to each well followed by incubation at room temperature for 90 mins. After washing for several times, 100 µL of substrate solution was added to each well at room temperature for 15 mins followed by adding 100 µL of stop solution and detecting at 450 nm immediately. Cells were fixed with 4% paraformaldehyde for 20 mins, and fixed cells were permeabilized with 0.5% Triton-100 for 15 mins, treated with 0.1% Tween 20 in phosphate buffered saline for 5 mins and blocked with 5% FBS for 40 mins before incubation with the primary antibody against SNAPIN (1:50; proteintech) and insulin (1:800; Cell Signaling Technology) overnight at 4°C, followed by incubation with rhodamine-labeled anti-mouse IgG secondary antibody (1:200; Chemicon, Temecula, USA) for 1 hr at room temperature. Nuclear localization was counterstained with DAPI.



Tissues and Cells RNA Isolation

Mouse tissues were isolated from 5 days, 2, 3, 4 and 8 weeks mice. Total RNA was then extracted using TRIzol reagent (Gibco-BRL) and following the manufacturer’s instructions.



Real-Time Reverse Transcriptase-Polymerase Chain Reaction

Briefly, total RNA was extracted using the TRIzol reagent (Invitrogen) and complementary DNA was generated using the PrimeScript™ reverse transcript reagent Kit (Takara, Tokyo, Japan). From 1 μg RNA aliquots, we synthesized cDNA using random hexamers or oligo (dT), and reverse transcriptase, following the manufacturer’s protocol. The reactions were run for 40 cycles at 30°C for 10 mins, 42°C for 20 mins, 99°C for 5 mins, and 4°C for 5 mins using real-time PCR detection system (Bio-Rad, Hercules, USA) according to the manufacturer’s instruction and verified on gel. Real-time reverse transcriptase-polymerase chain reactions (real-time RT-PCRs) were performed using the Power SYBR Green PCR Master Mix (Roche) and a 7500 Real-Time PCR Detection System (Applied Biosystems). Actin was used as an internal control. Primer sequences are listed in Table 2. All experiments were performed in triplicate, and the data are shown as mean ± SD.


Table 2 | Real-time PCR primer sequences.





Western Blotting

Cells were seeded at the appropriate density, and total protein of cells or tissues were using cell lysis buffer containing  (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA and 1% Triton X-100)containing protease inhibitor cocktail (sigma, P2714-1BTL) on ice for 30 mins followed by centrifugation. Protein concentrations was determined with a Bicinchoninic Acid Assay Kit (Beyotime Biotechnology). Protein (20 μg/lane) was separated by 10–15% sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene fluoride membranes (Millipore, Billerica, MA). The membranes were blocked for 1.5 hrs in Tris‐buffered saline and Tween 20 (TBST, pH 7.6) containing 5% non‐fat milk powder at room temperature and incubated with primary antibodies at 4°C overnight. The membranes were then washed three times with TBST for 15 mins each and incubated with anti‐rabbit secondary antibodies (1:5,000 in TBST) conjugated to HRP for 1 hr at room temperature. The blots were then developed in the dark by using an ECL detection kit (Proteintech). Band intensities were quantified by ImageJ 1.45 software (NIH, USA). Antibodies are listed in Table 3.


Table 3 | Antibodies used in Western blotting, immunohistochemistry and immunofluorescence.





Immunoprecipitation Assay

Two days after transfection, the cells were lysed in lysis buffer (1% Triton X-100, 50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% sodium deoxychlate) with protease inhibitor cocktails. Pre-washed Flag-beads were added. After immunoprecipitation, Flag-Beads were washed 4-5 times with lysis buffer (containing protease inhibitor). Flag peptides were added to elute Flag-tagged proteins. 4xSDS loading buffer was added into the supernatant after enrichment and the sample was boiled in the metal bath for 10min before being The elutes were then subjected to SDS–PAGE and Western blotting analysis.



LC–MS Analysis and Database Search

Each immunoprecipitation (IP) was carried out in triplicate. Min6 cells expressing Flag-SNAPIN or PCDH vector were grown on 15 cm plates until 90% confluent and then subjected to IP. The elutes after IP were firstly reduced in 20 mM dithiothreitol (DTT) (Sigma) at 95 °C for 5 mins, and subsequently alkylated in 50 mM iodoacetamide (IAA) (Sigma) for 30 mins in the dark at room temperature. After alkylation, the samples were transferred to a 10 kD centrifugal spin filter (Millipore) and sequentially washed with 200 mL of 8 M urea for three times and 200 mL of 50 mM ammonium bicarbonate for two times by centrifugation at 14,000 g. Next, tryptic digestion was performed by adding trypsin (Promega) at 1:50 (enzyme/substrate, m/m) in 200 mL of 50 mM ammonium bicarbonate at 37°C for 16 hrs. Peptides were recovered by transfer-ring the filter to a new collection tube and spinning at 14,000 g. To increase the yield of peptides, the filter was washed twice with 100 mL of 50 mM ammonium bicarbonate. Peptides were desalted by StageTips (34, 35).

GO and KEGG pathway analysis Gene Ontology (GO) is an ontology widely used in the field of bioinformatics for annotating large scale genes and gene products (36). KEGG is a practical database resource for genome sequencing and polymer experiment technology. It is generated by molecular- level information, especially macromolecular datasets, which can be used to predict which by pathways of a particular gene is enriched (37). It covers information resources such as diseases and pathways, GO analysis and KEGG analysis were performed by DAVID tools (https://david.ncifcrf.gov/). P <0.01 was considered statistically significant.



Statistical Analysis

Group data are displayed as means ± standard errors of the mean (SEMs). Differences between groups were calculated by Student’s unpaired two-tailed t-tests or one-way analyses of variance (ANOVAs) followed by Tukey’s post hoc tests. P < 0.05 was considered statistically significant.




Results


SNAPIN Expression Increases With the Age of Mice and SNAPIN Is Down-Regulated in Diabetic Mice

Tissues of six mice of different ages were isolated, followed by protein extraction to detect the expression of SNAPIN (Figures 1A, B). We found that the expression of SNAPIN was relatively higher in liver (38), kidney (39) and pancreas (25). The expression level of SNAPIN in mouse pancreas also closely increased with the age of mice (Figures 1C, D).




Figure 1 | Expression of SNAPIN in mouse tissues. (A) SNAPIN expression was calculated by Western blot. SNAPIN was comparable for 5 days to 8 weeks mouse. (B) Normalized histograms of snapin protein against actin by using imaging software. (C) The expression level of SNAPIN in mouse pancreas also closely increased with the age of mice. (D) Normalized histograms of snapin protein against actin by using imaging software. (E) Representative immunofluorescence images of mouse healthy and pre-diabetic pancreases using antibodies against SNAPIN and insulin. The insulin and SNAPIN of HFD mice and db/db mice were significantly lower than those of wildtype mice. (F) Pancreatic β cell size and SNAPIN expression were calculated from the immunohistochemistry (IHC) sections processed for insulin and SNAPIN by capturing bright field images (Leica CTR 4000 series). The β cell size of high-fat diet (HFD) mice were significantly smaller than that of wildtype mice, and SNAPIN expression of HFD mice were significantly lower than that of wildtype mice. Scale bar: 100µm (left) and 50 µm (right). Values are expressed as means ± S.E.M. P<0.001 versus control. (G) Statistics for β cell size and SNAPIN expression. ***P < 0.001.



We next investigate whether SNAPIN expression has discrepancy in its involvement with healthy and diabetic mice. Hematoxylin staining was performed to detect insulin and SNAPIN expression in wild-type and diabetic mice. Decreased β cell masses and decreased SNAPIN were observed in diabetic mice compared with WT controls. Diabetic mice had much less SNAPIN compared with WT controls (Figure 1E), tending to a 40% reduction. We also investigated SNAPIN expression by immunostaining, and diabetes mice had much less SNAPIN compared with WT controls (Figures 1F, G).



SNAPIN Is Mostly Located in the Cytoplasm, and Is Co-Located With Insulin Secretory Granules

SNAPIN was originally reported in the neurons and exclusively on the synaptic vesicle membrane (40). Later, extrarenal expression has been reported in several tissues and cell lines, including pancreatic β cells, INS1 cells, Min6 cells, brain, etc. In 3T3-L1 adipocytes, biochemical and immunofluorescence microscopy analysis showed that it locates in both diffuse cytosolic and perinuclear membrane compartments (41). We found that SNAPIN was mostly located in the cytoplasm, and we found that SNAPIN presents some diffuse cytosolic staining and is clustered into punctate structures within the cell body of in rat INS1 cells and Min6 cells. Furthermore, the punctate staining pattern was similar to that seen for insulin-containing secretory granules. The two fields were then superimposed (Figure 2A). And fluorescence co-localization analysis showed that SNAPIN and insulin had a co-localization relationship by ImageJ (Figure 2B). Data analysis confirmed that there was significant co-fluorescence between the punctate insulin and SNAPIN signals, which indicates the co-localization of SNAPIN and insulin secretory granules. We also use a wildtype Min6 cell to detect the subcellular localization of SNAPIN and found that nucleocytoplasmic separation showed that SNAPIN was predominantly located in cytoplasm (Figure 2C).




Figure 2 | Subcellular localization of SNAPIN. (A). Immunofluorescence was performed to measure the subcellular localization of SNAPIN. SNAPIN was visualized in INS-1 and Min6 cells using anti- SNAPIN antibody in conjunction with anti-rabbit FITC, whereas insulin was visualized using anti-insulin and red-conjugated goat anti-mouse. Slides were mounted and fluorescence viewed under a laser scanning confocal microscope equipped with a 488 nm laser excitation filter for FITC. The nuclei were labeled with DAPI (blue) (4ʹ,6-diamidino-2-phenylindole), and SNAPIN protein was labeled with the Alesa Fluor 643 (red). Scale bar, 2 mm. (B) The fluorescence distribution of SNAPIN and insulin was analyzed by ImageJ. (C) Nucleocytoplasmic separation was performed to measure the Subcellular localization of SNAPIN. PARP is the nuclear marker, and HSP60 is the cytoplasmic marker. SNAPIN is mainly located in the cytoplasm.





SNAPIN and Its Interacting Protein- Enriched Cell Cycle

SNAPIN is mostly located in the cytoplasm, and to elucidate the role of SNAPIN in the development and progression of diabetes, a schematic outline of the immunoprecipitation mass spectrometry procedure was used in this study. Flag- SNAPIN or empty vector was overexpressed in Min6 cells and immunoprecipitated using whole cell lysates in triplicates. Min6 cells expressing empty vector alone served as negative controls. To identify putative biological processes associated with SNAPIN interacting proteins, we performed enrichment analysis in the Gene Ontology (GO) domain “Biological Process” (Figure 3A) and KEGG pathway (Figure 3B). This analysis identified cell cycle which related to cell growth.




Figure 3 | Outputs of proteomic analysis for SNAPIN -altered proteins. Identity of the SNAPIN -binding proteins. Experimental workflow of the identification of the SNAPIN -interacting proteins. Min6 cells were transduced with SNAPIN with specific sequences containing the 3xFlag tag. The resulting cell lysate was reacted with flag beads. The bound fraction was eluted and submitted for shotgun LC–MS/MS. (A, B) Pathways were enriched for common genes by employing the Database for Annotation, Visualization and Integrated Discovery (DAVID) ver. 6.8, KEGG pathway and GO pathway that represent functional classes of SNAPIN interacting proteins. (C) Proteins significantly interacting with SNAPIN were classified into different protein complexes. (D) IP was performed to measure the efficiency of Flag pulldown. BLOCS1 was the positive control. (E) The SNAPIN - binding proteins were identified by Flag Immunoprecipitation pulldown. The heat map shows the score sequest HT, where the intensities in blue indicate the relative abundance of the protein in the sample.



Immunoblot analysis of the immunoprecipitated fractions showed that tagged- SNAPIN was enriched in the pulldown(Figure 3C). In contrast, no SNAPIN was detected in the pulldown in the vector control. Some papers have previously demonstrated that SNAPIN associates with Bloc1s1 by immunoblot (42). As expected, Bloc1s1 was detected in the current IP-MS study (Figure 3C). These data demonstrate that tagged- SNAPIN can be efficiently and specifically immunoprecipitated from cell extracts.

Proteins significantly interacting with SNAPIN were classified into different protein complexes. The results of this analysis identified twenty predominant complexes:(1) Nop56p-associated pre-rRNA complex, (2) Large Drosha complex, (3) CCT complex (chaperonin containing TCP1 complex), (4) SNW1 complex, (5) PA700 complex, (6) C complex spliceosome, (7) CDC5L complex, (8) TNF-alpha/NF-Kappa B signaling complex and other known complexes: BLOC1 (biogenesis of lysosome-related organelles complex1) complex and Arp2/3 protein complex (Figure 3D).

Our experiments showed that SNAPIN could affect cell proliferation and cell cycle, and we analyzed the cell cycle pathway, which are closely related to cell growth (Figure 3E).



SNAPIN Overexpression Induces Proliferation of β Cells

SNAPIN and its interacting proteins may enrich the cell cycle pathway, which could lead to increased cellular proliferation. To directly evaluate the role of SNAPIN in β cell proliferation, we transfected Min6 cells with lentivirus for 24 hrs. MTS analysis was applied to detect the cell proliferation. We observed a significant increase in SNAPIN protein abundance in lentivirus-treated Min6 cells by Western blot analysis (Figure 4A). SNAPIN overexpression induced β cell proliferation (Figure 4B) and increased Min6 cells clone formation compared to that control group (Figure 4C). Figure 4D shows the clone statistics.




Figure 4 | SNAPIN overexpression induces proliferation of β cells. Min6 cells were transduced with non-specific and SNAPIN specific Sequences. (A) Min6 cells were treated with lentivirus. A significant increase in SNAPIN protein by Western blot analysis. (B) MTS analysis illustrated the proliferation of Min6 cells induced after SNAPIN overexpression. (C, D) Clone formation showed that SNAPIN overexpression induced the proliferation of β cells. (E) The cells were stained with PI staining. Adherent cells were collected, and cell cycle analysis was done by flow cytometry. SNAPIN overexpression increased the population of cells in the S phase. (F) The protein expression levels of CyclinD1, CDK2 and CDK4 were checked by Western blot with indicated antibodies. (G) Normalized histograms of snapin protein against actin by using imaging software. *P < 0.05, **P < 0.01, ****P < 0.0001.



Our MS data showed an enrichment in SNAPIN and its interacting proteins that are known to regulate the cell cycle. To provide direct evidence that SNAPIN regulates the cell cycle, we transfected Min6 cells with lentivirus to quantified cellular DNA content by flow cytometry (Figure 4E). Compared to the control group, SNAPIN overexpression resulted in an increase in the population of cells in the S phase from 6.85% to 27.13%. We evaluated β cells for expression of CDK2, CDK4 and CCND1, which mark the S phase of the cell cycle. CDK2, CDK4 and CCND1 expressions were all upregulated (Figures 4F, G). Our results suggested that SNAPIN overexpression could promote the cell proliferation of β cells.



SNAPIN Knockdown Inhibit Proliferation of β Cells

Lentivirus shRNA to silence SNAPIN and transfected Min6 cells with lentivirus for 24 hrs. MTS analysis was applied to detect the cell variety. We observed a significant decrease in SNAPIN protein abundance in lentivirus-treated Min6 cells by Western blot analysis (Figure 5A). SNAPIN knockdown inhibited β cells proliferation (Figure 5B) and inhibited Min6 cells clone formation compared to that of the control group (Figure 5E). Figure 5F shows the clone statistics. Cell photographic also showed that SNAPIN knockdown could cause Min6 cell death (Figure 5G).




Figure 5 | SNAPIN knockdown inhibit proliferation of β cells. (A) Mouse Min6 cells were transduced with lentivirus expressing shRNA and non-specific sequences. A significant decrease in SNAPIN protein by Western blot analysis. (B) MTS analysis illustrated that the proliferation of Min6 cells were inhibited after SNAPIN knockdown. (C) Click-iT™ EdU Proliferation Assay illustrated that the proliferation of Min6 cells were inhibited after SNAPIN knockdown. (D) Statistic for fluorescence intensity in 585nm. (E) Clone formation showed that SNAPIN knockdown inhibited the proliferation of β cells. (F) Statistic for clone formation. (G) Cell photography indicates Min6 cells suffer death with SNAPIN knockdown. (H) The cells were stained with PI staining. Adherent cells were collected, and cell cycle analysis was done by flow cytometry. SNAPIN knockdown resulted in a decrease in the population of cells in S phase. (I) The protein expression levels of CyclinD1, CDK2 and CDK4 were checked by Western blot with indicated antibodies. (J) Normalized histograms of snapin protein against actin by using imaging software. *P < 0.05, **P < 0.01, *** P< 0.001, ****P < 0.0001.



We also quantified cellular DNA content by flow cytometry (Figure 5H). Compared to control group, SNAPIN knockdown resulted in a decrease in the population of cells in the S phase from 47% to 40% and 42.25%. We evaluated β cells for expression of CDK2, CDK4 and CCND1, which marks the G1/S phase of the cell cycle. CDK2, CDK4 and CCND1 expressions were downregulated (Figures 5I, J). Click-iT™ EdU Proliferation Assay measure β cells proliferation (Figure 5C). statistics for fluorescence intensity in 585 nm (Figure 5D). Our results suggested that SNAPIN knockdown could inhibit the proliferation of β cells.



SNAPIN Knockdown Induce β Cells Apoptosis

Apoptosis is a specific mode of programmed cell death (43). Inappropriate apoptosis can cause a variety of diseases, so the regulation of apoptosis has great therapeutic potential (44). As a substrate of Caspase 3, PARP cleaves during the initiation of apoptosis program (45). So Cleaved PARP is a signature protein for apoptosis. In order to study the effect of SNAPIN on apoptosis of β cells, we used shRNA to interfere with SNAPIN expression and detected cell apoptosis based on Annexin V-FITC/PI staining. The proportion of apoptotic cells in the Control group was 10.32%, and the proportion of apoptotic cells after SNAPIN interference was 50.1% (Figures 6A, B). This result indicated that interference with SNAPIN expression induced apoptosis of cells. we also analyzed the expression level of PARP and SNAPIN (Figures 6C, D).




Figure 6 | SNAPIN knockdown induce apoptosis of β cells. (A) apoptosis assay indicate that the apoptosis of β cells were induced after SNAPIN knockdown. (B) statistic for FITC and PI of apoptotic β cells. (C) Mouse Min6 cells were transduced with lentivirus expressing shRNA and non-specific sequences. A significant decrease in SNAPIN expression. (D) SNAPIN knockdown induced PARP cleavage of apoptotic marker protein. ****P < 0.0001.





SNAPIN Knockdown Inhibit Insulin Protein/mRNA Level

In order to evaluate the effect of SNAPIN on insulin mRNA level, we used shRNA to silence SNAPIN and transfected Min6 cells with lentivirus for 24 hrs. We observed a significant decrease in SNAPIN mRNA abundance in lentivirus treated Min6 cells by QPCR analysis (Figure 7A). Insulin- obtained INS1 and INS2 were inhibited after SNAPIN knockdown (Figures 7B, C). We also transfected Min6 cells with lentivirus to quantify insulin mRNA level. We observed an increase in SNAPIN mRNA abundance in lentivirus treated Min6 cells by QPCR analysis (Figure 7D), and insulin only showed a slight increase (Figures 7E, F).




Figure 7 | SNAPIN affects insulin mRNA and protein levels. (A) SNAPIN knockdown efficiency in β cells. (B, C) SNAPIN knockdown inhibit Insulin mRNA expression in β cells. (D) SNAPIN overexpression efficiency in β cells. (E, F) SNAPIN overexpression increased Insulin mRNA expression in β cells. QPCR was performed to measure the mRNA expression of insulin. Data are shown as the mean ± SD, n = 3. (G) SNAPIN knockdown inhibits insulin protein expression in INS1 cells. Glucose-induced insulin secretion measured by ELISA. (H) SNAPIN knockdown inhibits insulin protein expression in Min6 cells. INS1 cells were transduced with lentivirus expressing shRNA which obtained GFP. The vector was Psicor-GFP. The insulin protein expression levels were measured by immunofluorescence. The nuclei were labeled with DAPI (blue) (4ʹ,6-diamidino-2-phenylindole), insulin protein was labeled with the Alesa Fluor 643 (red) and shSNAPIN was labeled with the GFP (yellowish-green). **P < 0.01, ****P < 0.0001.



Min6 cells were treated with two shRNA to interfere SNAPIN. Glucose-induced insulin secretion was measured by ELISA. Min6 cells were stimulated with 2.8mmol/L and 16.7mmol/L glucose solutions for 2 hr, and the supernatant was collected to detect insulin content. After SNAPIN interference, insulin expression was reduced (Figure 7G). Then, we treated INS1 cells with two shRNA to interfere SNAPIN and detected insulin by immunofluorescence. SNAPIN was visualized by GFP, and insulin was visualized using anti-insulin antibody in conjunction with goat anti-mouse cy3. Insulin secretion decreased when SNAPIN was knocked down (Figure 7H).




Discussion

Diabetes mellitus is a very common metabolic disease, its acute and chronic complications have serious impacts on human health (46). Pancreatic β cells are the only cells that can produce insulin in the human body. Once the β cells are dysfunctional, the body cannot produce enough insulin to maintain the stability of blood glucose, and long-term hyperglycemia of the body will cause multiple organ dysfunction (47). The replication rate of β cells is very low, and scientists have attempted to induce the differentiation of β cells from progenitor cells or stem cells or from other islet cell lines, but the clinical progress is still very difficult. Many scientists are trying to identify small molecules or biomacromolecules that can induce β cells to self-replicate. However, there is no effective drug that can effectively induce β cells to replicate. Therefore, it is significant to find new therapeutic targets and new therapeutic methods for diabetes.

SNAPIN was originally reported to be a SNAP25-related protein that mainly interacts with SNARE complexes for vesicle transport to regulate insulin secretion (29). We compared the amino acid sequences of SNAPIN in humans, mice, and rats, and SNAPIN is highly conserved and homologous, suggesting that SNAPIN performs highly consistent biological functions in humans, mice and rats. We extracted various tissues of mice at different ages. SNAPIN was abundant in the pancreas, and its expression increases with the aging of mice, which may indicate that SNAPIN is related to the development of the pancreas. However, more experiments are needed to confirm this, we can extract the islets of mice of different gestational ages to interfere with or overexpress SNAPIN to explore the function of SNAPIN in the development of islets. SNAPIN is significantly correlated with the TMEM27 gene, which encodes a membrane protein that is cleaved and shed by pancreatic β cells, and this protein has been proposed as a biomarker for β cell quality (33). This suggests SNAPIN may also be a biomarker for β cells.

Furthermore, we used SNAPIN as bait to find SNAPIN interacting proteins and various protein complexes were enriched, including BLOC1, BORC, Arp2/3, Dynactin Complex.Snap23, Snap47 and other SNAP family members reported in the paper that interact with SNAPIN. We verify our results by using Bloc1s1 as a positive control. The proteins with high ratings were analyzed by Metascope and further enriched by BO/KEGG pathway. We enriched BLOC1/BORC, which is a SNAPIN family member, and cell cycle and protein processing in the endoplasmic reticulum etc, can further explore the mechanism. According to KEGG enrichment results, we detected changes in major proteins in the UPR pathway. Our experiment results show that SNAPIN affects the Min6 cell cycle and the level of cell cycle markers. We will continue to explore whether SNAPIN regulates β cell proliferation by interacting with cell cycle-related protein in follow-up work.

As the only glucose-lowering hormone in the body, insulin can also promote body growth (48). Our study shows that SNAPIN can promote insulin secretion, which is consistent with other reports (25). We found that SNAPIN promotes β cell growth, and it remains to be seen whether this pro-growth effect is due to SNAPIN or due to the increase in insulin secretion.

In conclusion, we showed that overexpression of SNAPIN is sufficient to induce β cell proliferation. We can therefore try to design agonists for the SNAPIN sequence as a new treatment for diabetes. This is a huge challenge but could provide new strategies for treating diabetes. Taking a broader perspective, SNAPIN overexpression promoting cell proliferation may open a new avenue of research in the field of tissue regeneration.

Finally, it is important to emphasize that there are many treatments available in addition to b cell proliferation. For example, many of the pathways that activate proliferation also activate survival pathways, another important therapeutic objective. Further, β cell expansion might be achieved through other approaches, notably β cell redifferentiation and trans-differentiation from a- or d-cells to β cells (49, 50). Of course, creating new β cells also requires effectively addressing autoimmunity. These are all critical, fertile and active areas of β cell therapeutic research.
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Serpin B1 rs15286 genotypes Controls n = 62 Diabetic n = 98 X2 p-value OR (95% CI) p-value

n (%) n (%)
AA 3 (4.8%) 6(6.1%)

AG 22(35.5%) 26 (26.5%) 1.473 0.479 0.707 (0.392-1.274) 0.249
GG 37 (59.7%) 66 (67.4%) 0,655 (0.322-1.332) 0.242¢
AG/AAVS. GG 25(40.3%)vs. 37 (59.7%)  32(33.6%)vs. 66 (66.4%) 0974 0.324 0.718 (0.371-1.388) 0324
0.741 (0.338-1.623) 0.454%
AG/GG vs. AA 59 (95.2%) vs. 3 (4.8%) 92 (98.9%) vs. 6 (6.1%) o.118 0731 0.780 (0.188-3.238) 0.782
0.799 (0.14-4.54) 0.800%

Total 62 (100%) 98 (100%)

A x2 test was done for various genotypes, A allele and G alele, and dlabetes status. The odds ratio (OR) wes calculated using binary logistic regression using dlabetes status as the
dependent variable and genotype as the covariate, in adiion to adjustment for age, gender and BMI as adtional covariates.
YAdjusted for the effect of covariates: age, gender, and BMI.





OPS/images/fendo-11-00450/fendo-11-00450-t003.jpg
Parameter SerpinB1 rs15286 genotypes.

Control Type 2DM
AR AG GG p-value  p-value® AR AG [t} p-value  p-value®

N (M) 33/0) 22(15/7) 87418  — - 6(4/2) 26(13/18) 66 (20/37) - -

Age (year) 29.7+38 404 £2.1 376+13 0.116* = 547 45 472+2 493+13 G.LF i

BMI (kg/m?) 304+62 28312 2041%07 0778° - B17+£1.6  81.8+09  B1.4x07 0934 -
WHR® 089002 0824001 093+001 0469 0772 0974002 095+008 095+002 0522 0670
FPG (mg/d)® 8172 0823  845x22  011° 017 141£75  2248+138 2008+9.1 0008  0018*
HoAic(%)° 538+002 56401  53x01 008® 0109  66+08  897+£03  84+03 0006 0055
TG (mg/de 787424 78989 8116 0733 0872 2483+445 17294169 1785+118 0258° 0439
TC (mg/cl) 1627£188 155151  147£7.7  065° 0529 2127213 2127£91 2073+£66 0889 0892
LDL-C (mg/dl) 1047+£163 023+£59 845175 0587 0484  1157+128 1283+86 1281+55 0797 0633
HDL-C (mg/di 4246 47112  475+£09 038 0128 47+£88  458+27  441£18 0601 0750
LDL-G/HDL-C® 25+04 2047 19£02  0164> 0147  25+020 82087 831024 0561 0716
TOMDL-C® 39£05  34£019 8202  022° 0208  46£037  51x04  52x027 0881 0878
C-peptide (ng/m)° 4.4 0.8 41£04  836+086 028 0386 09802 075£004 087£008 02 0.247
HOMA2-B%° 280+ 756 2022+ 168 215+1565 05710 0.413 328+4.7 144£17 18+£15 0.004>**  0.004**
HOMA2-IR® 34049 3+029  25+£026 0127 030  083+016 086x007 098=01  0781° 0963

Results are expressed as mean = S.E.M. p-values are shown for ANOVA or Kruskal-Walis test, before and also after adjustment for age, gender, and BMI by GLM. DM, diabetes
melitus; B, body mass index; WHR, waist to hip ratio; FPG, fasting plasma glucose; TC, total cholesterol; LDL-C, low-density lpoprotein cholesterol: HDL-C, high-density fpoprotein
cholesterol; TG, trigiycerices; HbA1c%, glycosylated hemoglobin; HOMA2-$%, homeostasis model assessment-f cell function; HOMAZ-IR, insuli resistance.

SANOVA, two-tailed, p-value >0.05 non-significant. ®Kruskal-Walis, two-tailed, p-value >0.05 non-significant, °Log transformedfor performing GLM. IP-value after adjustment for age,
gender and BMI by GLM. *Significant at p < 0.05 level, **Significant at p < 0.01 level. All significant p-values are written in bold and italics.
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Serpin B1 rs15286 Good glycemic control Poor glycemic control x2 p-value OR (95% Cl) p-value

genotypes (HbAi < 7%) n =31 (HbAgc >7%) n =67
n (%) n (%)

AA 5(16.1%) 1(1.5%)

AG 3(0.7%) 23(34.3%) 12586 0.002* 0.188 (0.064-0.551) 0,002

GG 23(74.2%) 43 (64.2%) 0212 (0.071-0.635) 0.006%"*

AG/AA vs. GG 8(25.8%) vs. 23 (74.2%) 24 (35.8%) vs. 43 (64.2%) 0.967 0.326 0.623 (0.242-1.606) 0.328
0627 (0.233-1.691) 0.357%

AAvs. AG/GG 5(16.1%) vs. 26 (83.9%) 1 (1.5%) vs. 66 (98.5%) 7.899 0,005 12,602 (1.414-113.917) 0023+
10.324 (1.088-97.965) 0.042%*

Total 31(100%) 67 (100%)

A x2 test was done for various genotypes, A allele and G allele, and glycemic control status of diabetic patients. The odds ratio (OF) was calculated using binary logistic regression
using glycemic control status as the dependent variable and genotype as the covariate, in adition to adjustment for age, gender, and BMI as additional covariates.

“Adjusted for the effect of covariates: age, gender, and BMI.

“Significant at p < 0.05. **Significant at p < 0.01. All significant p-values are written in bold and italics.
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Factor

N (F/M)

Age (year)
Diabetes duration (year)
BMI (kg/m?)
WHR®

FPG (mg/d)®
HoAG (%)

TC (mg/d)

LDL-C (mg/dl)
HDL-C (mg/d)*
TG (mg/d)
LDL-C/HDL-C®
TC/HDL-C*
C-peptide (ng/mi)®
HOMA-p%°
HOMA2-IR®

Type of treatment
(OHA/OHA +
insulinvinsuiin)

Controls

62 (42/20)
382+ 11

28.8£0.62
0.92 £0.08
865+1.6
5.4 +£0.07
150.6 £ 5.0
88.2+5.02
471£074
802+ 48
1.96 £0.13
33+0.15
3.81£0.26
2136+ 113
273£0.19

Type 2DM

98 (46/52)
49111
839074
315053
0.95+0013
2096+ 7.4
84022
2090 £5.2
1274+ 4.4
447 £1.41
177996
3224019
5.11£0.22
0.84 +0.054
17.9£12
0.94 4 0.07
35/3/60

p-value

p-value®

<0.0012
<0.001*
0.014>

<0.001>
<0.001>
<0.001°
<0.001*
<0.001°
<0.001*

0.845
<0.001
<0.001
<0.001
<0.001

0.165
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Resuits are expressed as mean + S.EM. DM, diabetes melitus; BMI, body mass
index; WHR, waist to hip ratio; FPG, fasting plasma glucose; TC, total cholesterol;
LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol;
TG, trighcerides; HbAic%, glycosylated hemoglobin; HOMA2-8%, homeostasis
model assessment-p-cell function; HOMAZ-IR, homeostasis model assessment-insulin
resistance; OHA, oral hypoglycemic agent.
aIndependent-sample T-test, two-tailed, p-value >0.05 non-significant. ®Mann-Whitney
U test, two-tailed, p-value >0.05 non-significant. °Log transformed for performing GLM.
P-value after adjustment for age, gender, and BMI by GLM. All significant p-values are

written in bold and italics.
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Islet eQTLs TiD-associated SNP in LD T2D-associated SNP in

(r2>0.8) LD(r2>0.8)
Genename ~ eQTLSNP A1 A2 MAF  chrSNP  StartSNP SNP P-value SNP P
HEMK1 1512493985 T G o014 3 50544715 151084405 2.39E-03 151034405 0022

GSDMB 15870829 A c 042 17 38068382 15870829 2.426-08
1512939565 A T 047 17 38038389 112453507 1.05€-08 1511657467 0019
ERAPY rs7063 A T 029 5 96110211 157063 0.014
1146341958 C T o3 5 96125159 1572773968 0,007
PPIPSK2 151898673 G c 08 5 102293380 rs3776855 0016 1534813 000084
1527489 c T o028 5 102555746 rs3776855 0016 134813 0.00064
TMEM69 128507977 A G 032 1 46181206 156694302 0.040 1528375469 0,049
DNLZ 1s57052773 T c o004 9 139385701 rs78270318 0012 153812561 0002
128679497 G A 028 9 139246594 160080157 2.02E-15
rsd4442263 c T 0.04 9 139322775 rs78270318 0.012 rs3812561 0.002
SDCCAG3 1534619169 G A 027 9 139327277 rs11146021 0,021 153812504 0.0051
CARDY 157052773 T c 004 9 139385701 178270318 0012 153812561 0,002
rs61386106 G A 0.28 9 139246768 rs60980157 2.02E-15
154442263 c T 004 9 139322775 1s78270318 0012 153812561 0,002
PLEKHA 154752689 G A 04 10 124131176 151045216 9.80E-08
1571486610 G c 049 10 124134803 152280141 0,030
17007701 0.0270

The table shows the 9 shared genes in the “T1D-T2D islet eQTL interaction network.” eQTLs that are disease-associated SNPs themselves are shown in bold. T1D/T2D SNPs in LD
with islet eQTL SNPs are listed. In case of multile disease-associated SNPs in LD with an eQTL SNF, the most significant disease-associated SNP is listed. The disease-associated
SNPs with GWAS significance are highlighted in bold.
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Annotation
Source

Reactome

Reactome

KEGG

Reactome

Reactome

Reactome

Reactome
Reactome

Reactome

Reactome

Reactome

Reactome
KEGG
KEGG
KEGG

Reactome
Reactome

# Background
genes

48

97

134

94

53

54

2082

1925

84
73
93
172

26
35

# Genes

PR

2
2

Description

Inositol phosphate metabolism

Synthesis of pyrophosphates in
the cytosol

Phosphatidylinositol signaling
system

Synthesis of IPs in the nucleus
C-type lectin receptors (CLRs)

CLEGTA (Dectin-1) signaling

CLECTAvinflammasome pathway

Synthesis of PIPs at the plasma
membrane

Nucleotide-binding domain,
leucine rich repeat containing
receptor (NLR) signaling
pathways

Metabolism

Immune System

Pl Metabolism
Inositol phosphate metabolism
NF-kappa B signaling pathway
Tuberculosis

Dectin-2 family
NOD1/2 Signaling Pathway

Genes

ITPK1, IPPK, IP6K2, IPMK,
IP6K3, PPIPSK1, IP6K1,
PPIP5K2

ITPK1, IPPK, IP6K3, PPIPSK1,
IP6K1, PPIPSK2

ITPK1, IPPK, IPBK2, IPMK,
IPEK3, PPIPSKT, IPEK1,
PPIP5K2

IPPK, IP6K2, IPMK, IP6K1
PYCARD, CLEC4E, MALT1,
BCL10, CARD9, CLEC6A
PYCARD, MALT1, BCL10,
CARD9

PYCARD, MALT1

PLEKHAS, PLEKHA1, PTPN13

PYCARD, CARD9, TNFAIP3

PLEKHAS, ITPK1, ENOPH1,
IPPK, IP6K2, THEM4,
PLEKHA1, IPMK, COorf41,
ORMDLS, PTPN13, IP6K3,
PPIP5K1, IP6K1, PPIPSK2

PYCARD, TRIM62, ERAP1,

CLEC4E, MALT1, IL23R, IP6K2,

THEM4, BCL10, CARDS9,
CLEC6A, ORMDLS3, PTPN13,
TNFAIPS

PLEKHA3, PLEKHA1, PTPN13
ITPK1, IPPK, IPMK
MALT1, BCL10, TNFAIP3

CLEC4E, MALT1, BCL10,
CARD9

CLEC4E, CLECBA
CARD9, TNFAIP3

FDR Value

4.31E-10

4.31E-10

2.81E-08

1.65E-07

9.48E-05

0.0042

0.0042
0.0089

0.0089

0.009

0.0145

0.0202
0.0241
0.0241
0.0241

0.0258
0.0413

The functional annotations of the extended network of the 9 shared genes are shown in the table. KEGG and Reactome pathway annotations were used for the pathway enrichment
analysis using the STRING app in CytoScape. The 9 shared genes associated with the enriched pathways are highlighted in bold.
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Gender Age at diagnosis

(vears)
] M 12
5 F 45
16 M 43
"7 F 40
14 F 76
14 M 55
13 M 59
12 F 80
13 M 7

BMI, body mass index; BS, blood sugar; CP. C-peptide; HbATc, glycated hemoglobin Alc. The

BMI
(kg/m?)

23.39
2318
23.18
22.60
18.26
28.03
20.75

2596

Waistline
(cm)

83
78
82
73
69
9%
98

92

oBS
(mmol/L)

9.0
43
3.6
4.7
6.1
52

44

" indicates not available.

120BS
(mmol/L)

18.8
10.6
1.2
13.2
1.8
8.6

9.0

o’cP

(nmol/L)

0.438
0.488
0.571
0.59
1.020
1.010

1.000

HbA1c
(%)

13.0
54

556
5.4
6.3
6.2

5.4
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The region defining upstream variants was set by 2 kbp upstream of the transcription

start site.





