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Pigs with severe combined immunodeficiency (SCID) are an emerging biomedical animal

model. Swine are anatomically and physiologically more similar to humans than mice,

making them an invaluable tool for preclinical regenerative medicine and cancer research.

One essential step in further developing this model is the immunological humanization of

SCID pigs. In this work we have generated T− B− NK− SCID pigs through site directed

CRISPR/Cas9 mutagenesis of IL2RG within a naturally occurring DCLRE1C (ARTEMIS)
−/− genetic background. We confirmed ART−/− IL2RG−/Y pigs lacked T, B, and NK cells

in both peripheral blood and lymphoid tissues. Additionally, we successfully performed

a bone marrow transplant on one ART−/− IL2RG−/Y male SCID pig with bone marrow

from a complete swine leukocyte antigen (SLA) matched donor without conditioning to

reconstitute porcine T and NK cells. Next, we performed in utero injections of cultured

human CD34+ selected cord blood cells into the fetal ART−/− IL2RG−/Y SCID pigs. At

birth, human CD45+ CD3ε
+ cells were detected in cord and peripheral blood of in utero

injected SCID piglets. Human leukocytes were also detected within the bone marrow,

spleen, liver, thymus, and mesenteric lymph nodes of these animals. Taken together, we

describe critical steps forwards the development of an immunologically humanized SCID

pig model.

Keywords: severe combined immunodeficiency, SCID, swine, biomedical model, humanization
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INTRODUCTION

Animals with severe combined immunodeficiency (SCID)
are invaluable to biomedical researchers because they are
permissive to engraftment of human cells, allowing one to study
developmental processes within an in vivo environment. In 2012,
we discovered the first naturally occurring SCID pigs (1, 2),
caused by mutations within the ARTEMIS gene, resulting in a T−

B− NK+ SCID phenotype (3, 4). Since then, pigs with mutations
in RAG1 (5, 6), RAG2 (7, 8), IL2RG (9–11), and RAG2/IL2RG
(12) have also been generated through different mutagenic
approaches. Within the past few years, such SCID pigs are now
being utilized by cancer (13), disease model (12), and stem cell
therapy (7) researchers. Biocontainment facilities (14), isolators
(12), and Cesarean section (15) techniques have allowed survival
of animals, enabling longer term studies. An important step in
further developing the SCID pig model is to immunologically
humanize these animals through the introduction of human
CD34+ hematopoietic stem cells. Similarities between human
and porcine immune genes (16) suggest that human immune
development would be supported in vivo within the pig (17).
Development of such a model could provide researchers with a
larger humanized animal for use in cancer (13, 17), HIV, and
vaccine development research.

The first SCID mouse, described in 1983 (18), is capable
of being humanized by either injection of human peripheral
blood leukocytes (19) or by implantation of human fetal
liver, thymus, and/or lymph node tissue (20). Reconstitution
of human immune cell subsets in SCID mice often requires
addition of human cytokine genes, humanization of resident
mouse immune genes, or administration of developmental
cytokines to the mice (21–24). However, limitations of mouse
models include differences in size, drug metabolism, and disease
pathology compared to humans (25, 26). Thus, one major goal
of the SCID pig community is to create an immunologically
humanized SCID pig, which would provide a valuable and unique
tool for preclinical research, in a more anatomically and/or
physiologically relevant animal model.

The most commonly used strain for humanization is the
non-obese diabetic (NOD)-SCID- IL2RG (NSG) mouse (27).
The NOD mouse background contains polymorphisms within
the SIRPA (signal regulatory protein alpha) gene, allowing it
to bind to human CD47 to transduce a “don’t eat me” signal
in mouse myeloid cells to inhibit phagocytosis (28–30). We
have demonstrated that porcine SIRPA also binds to human
CD47 to inhibit phagocytosis of human cells (31), indicating
pigs may be permissive to human xenografts, similar to NOD
mice. In addition to the SIRPA polymorphism, NSG mice also
have a T− B− NK− cellular phenotype. This cellular phenotype
can be generated through mutagenesis of genes required for
VDJ recombination (i.e., ARTEMIS or RAG1/2), in addition to
IL2RG. Previous reports show that mouse NK cells negatively
impact human cell engraftment in SCID mice (27). NK cells
in ART−/− SCID pigs are functional in vitro (4), and thus
we anticipated swine NK cells could also negatively impact
human cell engraftment. To deplete NK cells in our current
ART−/− SCID pig model, we mutagenized IL2RG in an ART−/−

mutant cell line. The resulting pigs are similar to NSG mice in
cellular phenotype and are expected to be similar in SIRPA/CD47
dependent phagocytic tolerance (31).

Here we describe the generation of ART−/− IL2RG−/Y

SCID pigs derived by site-directed CRISPR/Cas9 mutagenesis of
IL2RG in an ART−/− fetal fibroblast cell line. Modified ART−/−

IL2RG−/Y embryos, derived from somatic cell nuclear transfer,
were implanted in gilts via surgical embryo transfer. Piglets
were born at full term and confirmed to have the expected
T− B− NK− cellular phenotype based on flow cytometry and
immunohistochemical (IHC) analysis of blood and lymphoid
organs. We next determined if these double mutant pigs could
be humanized via the introduction of human CD34+ cord blood
stem cells. Gestational day 41 ART−/− IL2RG−/Y fetuses were
injected with human CD34+ cells within the intraperitoneal
space by ultrasound guidance and piglets were delivered via
Cesarean section at gestational day 119. We probed for human
myeloid, lymphoid, and erythroid cells in peripheral blood and
lymphoid organs in piglets for up to 7 days of age. We found
evidence of human CD45+ cell engraftment in several tissues in
the ART−/− IL2RG−/− pigs. Specifically, we detected CD3ε+ T
and Pax5+ B lymphocytes in blood and lymphoid organs. Taken
together, we successfully established the first steps toward the
generation of a humanized SCID pig model.

MATERIALS AND METHODS

Study Design
Our study was designed to develop a T− B− NK− SCID pig
model by generating ART−/− IL2RG−/Y pigs by CRISPR/Cas9
site directed mutagenesis of our existing ART−/− pig line, which
was discovered in 2012 (1, 2, 32). We aimed to generate these
pigs as a large animal biomedical model for human cell and tissue
xenotransplantation. Once we successfully created the ART−/−

IL2RG−/Y fibroblast cell line, we performed a total of eight
embryo transfer surgeries to generate piglets. Of these transfers,
five females became pregnant, and a total of three litters were
born; one of which we performed in utero injections of human
CD34+ cells. Once piglets were born, we confirmed their T−

B− NK− phenotype. We performed a pig to pig bone marrow
transplant on one ART−/− IL2RG−/Y boar, which would allow
us to eventually collect semen for future breeding and use of
this genetic line. We performed in utero injections of human
cord blood selected CD34+ cells on ART−/− IL2RG−/Y fetuses
from one pregnant female. Three piglets were born from this
litter, with two piglets showing evidence of human immune cell
engraftment. The low number of animals in this study are a result
of small litter sizes of cloned piglets, as well as low pregnancy rates
of embryo transfer procedures.

Ethics Statement
All animal protocols were approved by Iowa State University’s
Institutional Animal Care and Use Committee. All animals
were utilized in accordance with the Animal Welfare Act and
the Guide for the Care and Use of Laboratory Animals. All
human sample collection protocols were approved by Iowa State
University’s Institutional Review Board.
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Establishment of Porcine Fetal Fibroblast
Cell Lines With ART−/− Genetic
Background
Our population of SCID pigs has two natural mutations in
two separate ARTEMIS alleles, termed ART12 and ART16. The
ART12 allele contains a nonsense mutation in exon 10, while
the ART16 allele contains a splice site mutation in intron 8(3).
Frozen semen from a bone marrow transplanted (BMT) rescued
ART12/16 (33) boar was utilized to artificially inseminate two
ART+/− carrier sows. The sows were sacrificed at day 35 of
gestation and fetuses were collected in a sterile manner to obtain
fetal fibroblasts (pFF), as described previously (34). Briefly,
minced tissue from each fetus was digested in 20mL of digestion
media (Dulbecco-modified Eagle medium [DMEM] containing
L-glutamine and 1 g/L D-glucose [Cellgro] supplemented with
200 units/mL collagenase and 25 Kunitz units/mL DNaseI) for
5 h at 38.5◦C. After digestion, pFF cells were washed in sterile
PBS and cultured in DMEM supplemented with 15% fetal bovine
serum (FBS) and 40µg/mL gentamicin (Sigma Aldrich). Upon
reaching 100% confluence, the pFF cells were trypsinized, frozen
in FBS with 10% dimethyl sulfoxide (DMSO) and stored long-
term in liquid nitrogen. Simultaneously, cellular DNA was sent
for swine leukocyte antigen (SLA) typing, as described in Powell
et al. (33). SRY (sex determining region Y) andARTEMIS primers
(Supplemental Table 1) were utilized to identify pFF sex and
ARTEMIS genotype (3).

CRISPR/Cas Plasmid and sgRNA Product
Guide RNAs targeting exon 5 of IL2RG were designed utilizing
software available from Zhang Lab (https://zlab.bio/guide-
design-resources). The sequence of the designed sgRNA was:

5′-GGCCACTATCTATTCTCTGAAGG-3′; the bold font
identifies the PAM site. The sgRNA oligos were annealed and
ligated into the human codon-optimized SpCas9 expression
plasmid (pX330; Addgene plasmid # 42230), as described
previously (35). We only transfected male ART12/12 cell lines
(herein referred to as ART−/−).

Identification of Off-Target Sequences
To identify putative off-target sequences for the CRISPR/Cas9
mutagenesis used in ART−/− IL2RG−/Y piglets, bioinformatics
tools (http://www.rgenome.net/cas-offinder/) were used. Ten
potential off-target sites were identified and primers for the
off-target positions were designed. Genomic DNA samples
obtained from ear notches of ART−/− IL2RG−/Y pigs were
used as templates in PCR amplification of potential off-target
regions. Primers and gene information for this purpose are
in Supplemental Table 2. DNA sequencing results revealed
no mutations had occurred in any of the potential off-
target positions.

Establishment of Transfected Clonal
Colonies and Identification of IL2RG
Mutagenesis
Male ART−/− pFFs were used for cell transfection, as described
in Whitworth et al. (36). Briefly, pFFs were cultured in 75 cm2

flasks to reach 90% confluency, trypsinized, resuspended at a

concentration of 1.0 × 106 cells/mL in Electroporation Buffer
medium (25% Opti-MEM [Gibco, 319850070] and 75% cytosalts
[120mM KCl, 0.15mM CaCl2, 10mM K2HPO4; pH 7.6, 5mM
MgCl2]), and prepared for transfection. Amixture of 1µg sgRNA
ligated vector and 200 µL of cell suspension in electroporation
buffer was then transferred into 2mm gap cuvettes (Fisher
Sci, 9104-6050) and exposed to three- 1ms square-wave pulses
at 250V, using the BTX Electro Cell Manipulator (Harvard
Apparatus). Transfected cells were then diluted, 80–200 cells
were plated in 100mm culture dishes to obtain distinct clonal
cell colonies and maintained at 38.5

◦

C in 5% CO2. After 10–
12 days in culture, cell colonies were delineated using cloning
cylinders and picked for clonal colony propagation and DNA
sequencing. Primers (Supplemental Table 1) flanking the IL2RG
exon 5 target region were utilized to test clonal colonies and
PCR products thus obtained were purified by ExoSAP-IT PCR
product Cleanup kit (Affymetrix Inc, Thermo Fisher Scientific).
Mutant PCR products were cloned into PCR2.1 vectors (Life
Technologies) and transformed into E.coli DH5-α maximum
competent cells (Life Technologies). Ten colonies were chosen
and DNA from these samples were sent to the Iowa State
University DNA Facility for sequencing. Sequences were aligned
by Bio-Edit software (Ibis Biosciences, Carlsbad, CA, USA) for
comparison with wild-type alleles, to identify cell lines with the
appropriate mutations in IL2RG on the ART−/− background.

Double Mutant Embryo Production and
Surgical Embryo Transfer
Purchased pig oocytes (DeSoto Biosciences, Inc.) or those derived
from aspirating ovaries collected from a local abattoir were
utilized for in vitro maturation (IVM), as previously described
(37, 38). Briefly, oocytes were matured in vitro with maturation
medium (TCM-199 with 2.9mM HEPES, 5µg/mL insulin,
10 ng/mL epidermal growth factor, 0.5µg/mL follicle stimulating
hormone, 0.5µg/mL luteinizing hormone, 0.91mM pyruvate,
0.5mM cysteine, 10% porcine follicular fluid, and 25 ng/mL
gentamicin) (Sigma Aldrich), and transferred into fresh medium
after 22 h. Following IVM, cumulus-oocyte-complexes (COC)
were vortexed for 3min in 0.1% hyaluronidase in TCM199 with
HEPES to obtain denuded oocytes. Metaphase II (MII) oocytes,
identified by the presence of an extruded polar body, were placed
in manipulation medium (TCM199 with HEPES supplemented
with 7µg/mL cytochalasin B) and used thereafter for somatic cell
nuclear transfer (SCNT). The extruded polar body, along with a
portion of the adjacent cytoplasm, presumably containing the M
II plate, were removed, and a donor nucleus of the appropriate
ART−/− IL2RG−/Y genotype was placed in the perivitelline
space by using a thin glass capillary. The reconstructed embryos
were then placed in a fusion medium (0.3M mannitol, 0.1mM
CaCl2, 0.1mM MgCl2, and 0.5mM HEPES) (Sigma Aldrich)
and exposed to two DC pulses (1-s interval) at 1.2 kV/cm
for 30 µs using a BTX Electro Cell Manipulator (Harvard
Apparatus). After fusion, these embryos were activated in embryo
activation medium (10µg/mL cytochalasin B) for 4 h. After
chemical activation, cloned zygotes were treated with 500mM
Scriptaid for 12–14 h and then cultured in porcine zygote
medium 3 (PZM-3) (recipe per 100 mL: 0.6312 g NaCl, 0.2106 g
NaHCO3, 0.0746 g KCl, 0.0048 g KH2PO4, 0.0022 g Na-pyruvate,
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0.0146 g L-glutamate, 0.0546 g hypotaurine, 0.0617 g Ca-lactate,
0.001 g gentamicin, 2.0mL BME essential amino acid, 1.0mL
MEM non-essential amino acid, and 0.3 g BSA). until embryo
transfer. Embryos produced over 2 days were then surgically
transferred into the ampullary-isthmic junction of the oviduct of
the surrogate on day 1–2 post estrus. Pregnancies were confirmed
by ultrasound∼30 days following embryo transfer.

Cesarean Section and Rearing of ART−/−

IL2RG−/Y SCID Pigs
At gestational day 119, pregnant gilts underwent Cesarean
sections. We chose gestational day 119 instead of 114 (normal
gestation) because piglets derived from somatic cell nuclear
transfer typically requiring longer gestational period. Initial
anesthesia was induced with either a lumbar epidural of propofol
(0.83–1.66 mg/kg) (Zoetis) or intravenous injection of Ketamine
(1–2 mg/kg) (Akorn) and Xylazine (1–2 mg/kg) (Akorn),
and anesthesia was maintained on oxygen and isoflurane
(Phoenix). An abdominal incision was made to expose and
remove the uterus. After removal, the uterus was immediately
rinsed in chlorohexidine and then surgically opened to remove
the piglets. All piglets had their cords clamped before being
immediately placed into sterile polystyrene boxes and delivered
into biocontainment facilities (14). All piglets were fed ∼250mL
of pasteurized porcine colostrum within the first 24 h of life.
A total of eight Art−/− IL2RG−/Y SCID pigs were created and
assessed within this study (animal IDs: 6401, 6402, 6403, 6701,
6702, 6901, 6902, and 6903). Piglets derived from the gilt that
underwent laparotomy procedures for human stem cell injection
(see below) did not receive colostrum. After birth, DNA was
isolated from ear notch tissues and subjected to genotyping for
ART and IL2RG status using primers and protocols described in
Supplemental Table 1.

Flow Cytometry Staining for ART−/−

IL2RG−/Y Pig Characterization and Bone
Marrow Engraftment Monitoring
Whole blood or cord blood from newborn ART−/− IL2RG−/Y

piglets was collected into an EDTA blood collection tube. Whole
blood was stained for porcine CD3ε, CD8α, and CD172α to assess
the presence of porcine T and NK cells. Cells were additionally
stained for porcine CD21 to assess the presence of B cells. Blood
from the ART−/− IL2RG−/Y BMT was also stained for CD79α
to assess B cell reconstitution. Additional information about the
antibodies used can be found in Table 1.

Blood was collected from the bone marrow transplanted boar
approximately once a month after the BMT and subjected to
either a complete blood count (CBC) at Iowa State University’s
Veterinary Diagnostic lab or by flow cytometry analysis using the
above listed antibodies. All samples were run on a custom BD
LSR II (BD Biosciences) and data were analyzed using Flowjo
(Tree Star).

Pig Bone Marrow Isolation and Bone
Marrow Transplantation
A complete SLA-matched female sow of ∼4 years of age was
euthanized and used as a bone marrow donor for one ART−/−

IL2RG−/Y piglet. Briefly, sternum and ribs collected from the
animal were dipped in 70% ethanol after collection. A sterilized
Dremel tool was used to make holes halfway through the bone to
expose bone marrow. Sterilized Spratt Brun bone curettes were
used to scrape marrow from the bone. HBSS (without phenol
red) was used to flush the bone marrow to collect cells; any
other loosened marrow was also placed in HBSS. After marrow
isolation, the suspension was washed in HBSS. The cells were
resuspended in ACK (ammonium chloride potassium) lysing
solution (Lonza) for 10min at room temperature. The suspension
was washed in HBSS and filtered through a 70µm cell strainer. A
total of 2.27 × 108 million unfractionated cells were isolated and
resuspended in∼3mL of HBSS for infusion.

To infuse bone marrow-derived cells into the ART−/−

IL2RG−/Y recipient, the 5-day old SCID piglet was anesthetized
with and maintained on isoflurane gas during the procedure.
A catheter was placed in an ear vein and the cell suspension
slowly infused. After infusion, personnel monitored the piglet
until fully recovered.

Immunohistochemistry of Human and
Porcine Immune Markers
Lymphoid organs were collected into 3.7% formaldehyde in
1X PBS for 24 hours. Tissues were then moved to 70%
ethanol until processing. IHC staining for T and B lymphocyte
markers (for ART−/− IL2RG−/Y immune characterization) was
performed in paraffin-embedded tissue thin sections at the
Kansas State Veterinary Diagnostic Laboratory (KSVDL). Briefly,
deparaffinized slide-mounted thin sections were pre-treated for
5min with a peroxide block, followed by incubation with primary
antibody. A mouse monoclonal anti-CD3ε (clone LN10, Leica
Biosystems) was used to stain for pig T cells, while a mouse
monoclonal anti-CD79α (clone HM57, Abcam) was used to stain
for B cells. Primary antibodies were incubated with PowerVision
Poly-HRP anti-mouse IgG at room temperature for 25min with
DAB chromagen, and then counterstained with hematoxylin.

Lymphoid tissues from SCID pigs engrafted with human
cells were treated similarly as above. Staining was performed
at Michigan State University’s Department of Pathobiology
and Diagnostic Investigation. Tissues were stained for anti-
CD3ε (Dako #A0452) and anti-Pax5 (Ventana clone 24) to
assess for the presence of human T and B cells, respectively.
Briefly, CD3ε staining was performed by antigen retrieval
with standard ER1 retrieval for 20min, and tissues were
analyzed on a BondMax (Leica Biosystems) for the detection
of DAB chromagen. For Pax5 staining, antigen retrieval
was performed with standard CC1 retrieval for 64min, and
tissues were analyzed on a Discovery Ultra AP (Roche) for
ultrared detection.

Human Hematopoietic Stem Cell Isolation
From Cord Blood
Human cord blood was collected at the Mary Greeley Medical
Center in Ames, Iowa, into 50mL conical tubes containing
8mL of anticoagulant citrate dextrose solution (38mM citric
acid, 85.25mM sodium citrate, 136mM dextrose). Mononuclear
cells (MNCs) were isolated from cord blood by diluting
blood 1:2 in HBSS and then layering over Ficoll-Paque (GE
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TABLE 1 | Flow cytometry antibodies used for assessing pig and human cell subsets.

Purpose Marker Clone Fluorophore Company

Porcine immunophenotyping pCD3ε BB23-8E6-8C8 PE-Cy7 BD Bioscience

pCD8α 76-2-11 PE BD Bioscience

pCD172α 72-22-15A FITC BioRad

pCD16 G7 X BioRad

anti ms IgG1 RMG-1-1 BV421 BioLegend

pCD21 BB6-11C9.6 Alexa Fluor 647 Southern Biotech

hCD79α HM47 PE Invitrogen

pCD45 LS-C127705 FITC LSBio

Human immunophenotyping hCD45-biotin HI30 x eBioscience

SA-PeCy5 x PE-Cy5 BD Bioscience

hCD20 2H7 PE BioLegend

hCD3ε UCHT1 X BioLegend

Anti ms IgG1/IgG2a BV421 BD Bioscience

hCD56 B159 PE-Cy7 BD Bioscience

hCD33 WM53 PE BioLegend

hCD11b ICRF44 PE-Cy7 BioLegend

hCD4α RPA-T4 PE-Cy7 BioLegend

hCD8α HIT8a PE BioLegend

hCD15 H198 PE Invitrogen

hCD34 AC136 APC Miltenyi

hCD47 B6H12 x eBioscience

Anti ms IgG1 Cat #1072-09 PE Southern Biotech

Healthcare). Buffy coats were collected and washed in HBSS.
Prior to stem cell isolation, MNCs were resuspended in an
isolation HBSS (iHBSS) consisting of 0.5% FBS and 2mM EDTA
in HBSS.

To isolate human CD34+ cells, we used a CD34MicroBead kit
from Miltenyi Biotech. Briefly, MNCs were incubated in iHBSS
with CD34 microbeads and FcR blocking reagent for 30min at
4◦C on a rocker. After the incubation period, cells were washed in
iHBSS and then passed through a LS column in aMiltenyimagnet
(Miltenyi Biotech) to capture human CD34+ cells. The column
was then removed from the magnet and cells were flushed,
washed once more in HBSS, and then frozen in 10% DMSO and
90% FBS at−80◦C until use.

Human HSC Thawing, Culturing, and
Preparation for Fetal Injection
Human CD34+ cells were thawed by diluting into complete
RPMI media (10% FBS, 2mM glutamine, 50µg/mL gentamicin,
and 10mM HEPES) (Gibco). Cells were cultured in Miltenyi
StemMACS media containing Thrombopoietin (TPO), Stem
Cell Factor (SCF), and Flt3-Ligand (FLT-3L), at starting
concentrations of 38-42× 103 cells/mL. Cells were left in culture
for 7 days and expanded 184.5-fold. Cells were prepared for
injection by washing three times in phosphate buffered saline and
resuspended at a concentration of 26.6 × 106 cells/mL. A total
of 150 µL of cell suspension with either 2 or 4 × 106 cells were
administered to the fetuses in 0.9% saline.

Laparotomy Procedure for Fetal Injection
of Human Stem Cells
Laparotomy procedures were performed as previously described
in Boettcher et al. (39). Briefly, the gilt was started on 15mg
of Matrix (Merck Animal Health) orally 1 day before surgery
and maintained onMatrix until gestational day 118. Immediately
prior to sedation, the gilt was given 0.01 mg/kg Glycopyrrolate
(West-Ward Pharmaceuticals) by intramuscular injection and
then anesthetized with 2 mg/kg Xylazine (Akorn) and 5 mg/kg
Telazol (Zoetis) by intramuscular injection. The gilt was then
placed in dorsal recumbency, intubated, and started on isoflurane
(Phoenix, St. Joseph, MO) (3–5%) and oxygen (2.5 L/min).
Lactated Ringer’s solution (Hospira) was given in an ear catheter
at a constant rate infusion within 10min of the first incision.
The abdominal area was scrubbed with chlorohexidine and the
surgical field was covered with sterile drapes and Ioban drapes.

A ventral midline incision was made from the caudal most
nipple extending to the caudal aspect of the umbilicus through
the linea alba into the peritoneal cavity. The left uterine horn
was exposed and visualized with a ZONARE ultrasound with an
L14-5sp intraoperative linear array transducer (10 MHz). Two
live and one nonviable fetus were visualized in the left horn;
one was injected with 4 million cultured human stem cells in a
volume of 0.15mL within the intraperitoneal space. The left horn
was placed back into the abdominal cavity and the right horn
was exposed and visualized, and three fetuses were observed.
One fetus was injected with 2 million and another fetus with
4 million human stem cells within the intraperitoneal space.
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In total, three out of the five viable fetuses were injected. The
abdominal cavity was lavaged with 500mL of Lactated Ringer’s
solution and sutured closed. The gilt then received 0.18 mg/kg
Buprenophine- Sustained Release (ZooPharm) subcutaneously,
5 mg/kg Ceftiofur Crystalline Free Acid (Excede) (Zoetis), and
0.3mg/kg of meloxicam (Norbrook) andmonitored by personnel
until recovered from anesthesia. The gilt recovered from the
laparotomy surgery with no issues and underwent a Cesarean
section at day 119 of gestation, as described above.

At the time of Cesarean section, we observed two live piglets
within the left horn and one live piglet in the right horn of the
uterus. During the laparotomy, we observed two viable fetuses
in the left horn, of which one was injected, and their relative
position was recorded. After Cesarean delivery, by position in
the uterus we were able to identify the two developed piglets
in the left horn as injected (6901) and non-injected (6902). The
right horn originally had three viable fetuses but only one piglet
survived to term. After flow cytometric analysis, we confirmed
that the one piglet on the right horn (6903) had been injected
based on presence of human cells.

Isolation of MNC From Tissue for Flow
Cytometric Analysis
To collect lymphoid MNCs, tissue was collected and placed into
Hanks Balanced Salt Solution (HBSS) with 10µg/mL gentamicin.
Tissues were minced in a digestion solution of HBSS with 300
mg/mL of collagenase, 3% FBS, and 2mM HEPES (referred to
as d-HBSS). The tissue incubated for 1 h at 37◦C with vortexing
every 15min, and then strained over a 70µm cell strainer. Cells
were washed once and counted with a BD counting kit, and then
were stained as described below.

Flow Cytometry Analysis for Human Cells
in ART−/− IL2RG−/Y Pig Blood
Peripheral or cord blood was collected from piglets into EDTA
blood containers (BD Biosciences). Whole blood or MNC from
tissues were stained with antibodies against human and pig cell
subset markers (Table 1). Each staining step was incubated for
15min at 4◦C and washed with 1X PBS with 0.1% sodium
azide. Red blood cells were lysed with ammonium chloride lysing
solution. Cells were fixed in 2% formaldehyde in 1X PBS and
data were acquired on a FACs Canto II flow cytometer (BD
Biosciences) and analyzed using FlowJo (Treestar).

RESULTS

Generation of ART−/− IL2RG−/Y SCID Pigs
by Site Directed CRISPR/Cas9
Mutagenesis of ART−/− Fetal Fibroblasts
We previously described the discovery of naturally occurring
ART−/− SCID pigs (3), which we have been able to raise and
breed (14, 33) for research purposes. We started with this
genetic background for IL2RG site-directed mutagenesis. One
goal of producing ART−/− IL2RG−/Y SCID pigs is to generate
a breeding colony, such that IL2RG knockout piglets can be
derived through natural birth rather than cloning procedures.

In our breeding protocol, this would require bone marrow
transplantation of a SCID boar, so he could be raised to sexual
maturity and bred to ART−/+ carrier females. Mutagenizing our
existing ART−/− line would facilitate producing SCID pigs with
matching SLA to carrier animals within our colony. Therefore,
we decided to utilize cloned ART−/− fibroblasts for IL2RG
mutagenesis for somatic cell nuclear transfer (SCNT) to generate
pigs with these desired genetics. Figure 1 shows a schematic for
the process of generating ART−/− IL2RG−/Y piglets.

ART−/− pFFs for gene editing were derived from an ART−/−

male by ART−/+ female mating (see Materials and Methods for
information on ARTEMIS genotypes) (Figure 1A). Gestational
day 35 fibroblasts were collected and underwent SLA typing and
were genotyped for ART status. Genotyping revealed that two
male and two female cell lines were ART−/− mutants, while the
other six male and three female cell lines were ART−/+ carriers
(Supplemental Table 3A).

The first sentence should be split into two sentences in the
figure legend:

To mutagenize IL2RG, a single guide RNA (sgRNA) was
designed to target exon 5 of IL2RG (Figure 1B.) We selected
a male ART−/− cell line (7707-FB1) that had a complete SLA-
match (haplotype 26.6/68.19a) to a male carrier fibroblast line
(7709-FB6) to transfect with a vector to express sgRNA and
Cas9 protein (Supplemental Tables 3A,B). After transfection,
a total of 202 individual clonal colonies from the 7707-FB1
cell line were screened using PCR and Sanger sequencing.
Five (2.5%) clonal colonies were confirmed to be IL2RG−/Y

(hemizygous) (Supplemental Table 4), with one cell line (7707-
FB1-U23) carrying a 120 bp deletion in intron 4 and exon 5
of the IL2RG locus, which was expected to cause a frameshift
leading to an premature stop codon (Figure 1B). A total of
920 IL2RG−/Y ART−/− (7707-FB1-U23) and 512 non-modified
(7709-FB6) SCNT derived embryos were transferred surgically
into seven recipient gilts. Both cell lines shared the same SLA
haplotype of 26.6/68.19a. Among those transferred, four gilts
were confirmed pregnant and two carried their piglets to full term
and produced five live male piglets via Cesarean section that were
reared in biocontainment facilities (14) (Supplemental Table 5).
All five piglets were confirmed to have the 120 bp loss in
IL2RG and the established mutation in exon 10 of ARTEMIS
(3) (ART12 allele information found in Materials and Methods).
None of the live born piglets were derived from non-modified,
carrier embryos (7709-FB6) that would have been used as a bone
marrow donor.

ART−/− IL2RG−/Y SCID Pigs Lack T, B, and
NK Cells in Blood and Lymphoid Organs
Once ART−/− IL2RG−/Y piglets were delivered, blood was
collected and analyzed by flow cytometry to confirm the expected
T− B− NK− cellular phenotype of these animals. A total of three
ART−/− IL2RG−/Y pigs were born (6401, 6402, 6403) in this litter
and were analyzed with a wildtype andART−/− pigs.We assessed
forward and side scatter (FSC/SSC) and stained cells for CD172α,
CD16, CD3ε, and CD8α to assess for myeloid, T, and B cells
(Figure 2). FSC/SSC plots show that the lymphocyte population
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FIGURE 1 | Use of CRISPR/Cas9 system to generate ART−/− IL2RG−/Y SCID pigs. (A) Semen from an ART−/− boar was used to inseminate ART−/+ carrier sows.

Two pregnant sows were euthanized at 35 days of gestation and fetal fibroblasts were collected. Collected ART−/− fetal fibroblasts were transfected with PX330

plasmid with Cas9 and sgRNA against IL2RG target site, generating ART−/− IL2RG−/Y mutant fetal fibroblasts (pFF). Once the mutant pFFs lines were established,

somatic cell nuclear transfer was performed, and embryos were transferred into surrogate gilts. Piglets born from these litters were delivered via Cesarean section at

gestational day 119 into biocontainment facilities. (B) Sequence of IL2RG from wildtype and mutated line. Blue sequence is intron 4, and green sequence is exon 5.

Mutation spans through intron 4 and exon 5. Underlined sequence indicates the designed sRNA with the letters in red showing the protospacer adjacent motif (PAM)

sequence (NGG).

is nearly absent in ART−/− IL2RG−/Y SCID pigs compared to
ART−/− and wild type pigs. We measured CD172α and CD16
staining on monocytes as a staining positive control and show
CD172α+ CD16+ monocytes. Compared to wildtype, T cells
(CD3ε+) and NK cells (CD3ε− CD8α+) were absent in ART−/−

IL2RG−/Y piglets. We also stained for pCD21 in a second litter
(6701 and 6702) and confirmed there were no B cells in the
circulation of ART−/− IL2RG−/Y pigs (Supplemental Figure 1).
Lack of B cells in these pigs is consistent with our previous
findings in ART−/− SCID pigs, the genetic background used to
generate ART−/− IL2RG−/Y pigs (1, 32). Furthermore, ART−/−

IL2RG−/Y pigs had atrophic and smaller thymus, spleen, and
lymphoid tissue within the intestines compared to wildtype pigs
(Supplemental Figure 2).

We then confirmed that T and B cells were absent from
lymphoid tissues. Thymus, spleen, and Peyer’s patches were
collected from a wildtype and two ART−/− IL2RG−/Y pigs (6401
and 6402) and stained for CD3ε and CD79α to assess for the
presence of T and B cells, respectively (Figure 3). Thymic tissue
was assessed from only one ART−/− IL2RG−/Y pig. The ART−/−

IL2RG−/Y pigs lacked normal T and B cells in all lymphoid
tissues assessed.
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FIGURE 2 | ART−/− IL2RG−/Y SCID pigs lack T and NK cells in peripheral blood. Flow cytometric analysis of major leukocyte populations from peripheral blood of

wildtype, ART−/−, and ART−/− IL2RG−/Y pigs. Percentages for granulocytes (G, blue), monocytes (M, green), and lymphocytes (L, orange) are shown for each type of

pig. The monocyte population was assessed for CD172α and CD16 expression. The lymphocyte population was assessed for CD3ε and CD8 for T cells (CD3ε
+,

CD8α
−/+) and NK cells (CD3ε

− CD8α
+).

T and NK Cell Reconstitution in an ART−/−

IL2RG−/Y SCID Pig After Pig Bone Marrow
Transplantation
An additional goal for generation of ART−/− IL2RG−/Y SCID
pigs was to establish a male breeding population to maintain this
line. Carrier ART−/+ females bred with an ART−/− IL2RG−/Y

SCID boar would generate litters with a mix of males and females
with different ART and IL2RG genotypes for future studies and
breeding. The original intent of performing embryo transfers
with non-modified carrier embryos was for them to provide a
source of bone marrow for the ART−/− IL2RG−/Y pigs. In our
two full-term pregnancies, one gilt was transferred with carrier
andART−/− IL2RG−/Y embryos (7707-FB1-U23 and 7709-FB6),
while the other was transferred with only ART−/− IL2RG−/Y

embryos. From both litters, only ART−/− IL2RG−/Y piglets were
born, thus requiring an alternative source of bone marrow for
a BMT.

We therefore performed a BMT on one ART−/− IL2RG−/Y

male piglet using complete SLA matched (26.6/68.19a) bone
marrow from a 4-year-old sow, which was raised on a

conventional farm. A total of 2.27 × 108 million unfractionated
bone marrow cells from the ribs and sternum were collected and
administered to oneART−/− IL2RG−/Y SCID pig. The piglet was
not conditioned prior to the BMT, based on our previous success
with porcine T and B cell reconstitution without conditioning in
ART−/− SCID pigs (33).

Peripheral blood was collected approximately once a month

after the BMT and analyzed by either flow cytometric analysis

(FACS) or a complete blood count (CBC) (Figure 4). FACS
analysis using antibodies against CD3ε, CD172α, CD16, CD79α,
and CD21 revealed circulating T (CD3ε+) and NK cells (CD3ε−

CD172α− CD16+) (4), but very few B cells (CD79α+ CD21+/−)
Of note, B cell reconstitution is variable in human SCIDs with
mutations in ARTEMIS post BMT (40–42), which may be a
function of conditioning regimens. CBC analysis showed that
white blood cells and lymphocytes increased monthly after
the transplant, to near normal levels by 4 months post BMT.
Importantly, the ART−/− IL2RG−/Y boar post BMT has been
maintained in the biocontainment bubble since birth and is
sexually mature and healthy as of 1.5 years of age.
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FIGURE 3 | ART−/− IL2RG−/Y SCID pigs lack T and B cells in lymphoid organs. Thymus, spleen, and Peyer’s Patches were collected and assessed for (A) T cells

(CD3ε) and (B) B cells in a wildtype and two ART−/− IL2RG−/Y SCID pigs.

Circulating Human T Cells in Neonatal
ART−/− IL2RG−/Y Piglets After in utero

Injection of Human Hematopoietic Stem
Cells
Once we confirmed the cellular phenotype of ART−/−

IL2RG−/Y pigs, we investigated whether these pigs were

capable of engrafting human CD34+ hematopoietic stem cells.

We had previously attempted intravenous or intraosseous

injection of human CD34+ cells into single mutant ART−/−

piglets (within 1 week of age), with various cell doses and

busulfan conditioning (Supplemental Table 6). We did not
detect any evidence of engraftment in peripheral blood or
lymphoid organs 15 weeks post-transplant. As an alternative
approach, in utero injection of human stem cells into the
intraperitoneal space of ART−/− IL2RG−/Y SCID pig fetuses
was performed.

During mid-gestation (30–45 days), the fetal liver is
the major site for hematopoiesis for many species (43–46),
including swine (47). Previous reports show that injection
of human CD34+ cells into the intraperitoneal space of fetal
piglets and sheep leads to differentiation and engraftment
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FIGURE 4 | T and NK cells are reconstituted after pig to pig bone marrow transplantation. (A) One ART−/− IL2RG−/Y SCID piglet underwent a bone marrow

transplant at 5 days of age. At five months post transplantation, mononuclear cells were stained for CD3ε, CD172α, CD16, CD79α, and CD21 to assess for donor T

(CD3ε
+), NK (CD3ε

− CD16+ CD172α
−), and B cell (CD79α

+ CD21+/−) development. (B) Complete blood counts were also performed routinely, and white blood cell

counts increased upon every collection point. CBC data shown for up to 4 months post BMT.

of human immune cells (48–51). Engraftment of human
cells into pig and sheep fetuses is facilitated by the fact
that the cellular environment is immunologically privileged
early in gestation. However, such injections have not been
reported in SCID pigs. Approaches to inject fetal piglets
require laparotomy procedures to expose the uterus to
visualize fetuses via ultrasound imaging. Thus, laparotomy
surgery with ultrasound guidance was used to inject human
CD34+ cells into the intraperitoneal space of ART−/−

IL2RG−/Y fetuses (39) (Figure 5A). Positively selected human
CD34+ cells isolated from cord blood were cultured with
thrombopoietin (TPO), FLT-3L, and stem cell factor (SCF)
for the 7 days prior to injection to enhance expansion for
the appropriate cell dose delivery. After culturing, cells were
either CD45+CD34+ (23-28%) or CD45+ CD34− (71–76%)
(Supplemental Figure 3).

To create fetuses for human cell injections, one surrogate gilt
was transplanted with 320 ART−/− IL2RG−/Y mutant embryos
(Supplemental Table 7). Pregnancy was confirmed at 28 days
of gestation and laparotomy surgery for in utero injection was
performed on gestational day 41. We injected half of the viable
fetuses (n = 5 total; 3 injected) with 2–4 × 106 cultured human
CD34+ stem cells. The position in the uterine horn was recorded
for all fetuses. The dam fully recovered from the laparotomy
surgery and three piglets (6901, 6902, 6903) were delivered via
Cesarean section at gestational day 119. The uterine positions
at Cesarean section were noted and allowed identification of
injected (6901, 6903) and un-injected (6902) piglets (see details in
Methods). Cord blood was immediately collected from the three
piglets to assess for the presence of human immune cells.We have
tested and determined panels of anti-human antibodies that are
not cross reactive to swine leukocytes (Supplemental Figure 4).
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FIGURE 5 | Human leukocytes in ART−/− IL2RG−/Y SCID pig cord blood. (A) Somatic cell nuclear transfer derived ART−/− IL2RG−/Y embryos were surgically

transferred into a surrogate gilt. At gestational day 41, the pregnant gilt underwent a laparotomy procedure to expose the uterus and ultrasound guidance was utilized

to inject human CD34+ stem cells into the intraperitoneal space of fetal piglets. After surgery, piglets were delivered via Cesarean section at gestational day 119 into

biocontainment facilities. (B) Blood was collected from a human (peripheral blood) and three neonatal (6901, 6902, and 6903) SCID pigs (cord blood) and stained for

human and pig CD45, as well as human CD47. All cells in circulation of cord blood were gated from SCID pigs. Pigs 6901 and 6903 both had human cells in cord

blood, as shown by presence of hCD45+ and hCD47+ cells.

Whole cord blood was stained for pig and human CD45, as well
as for human CD47. The two CD34+ cell injected pigs (6901
and 6903) were found to have human CD45+, as well as human
CD47+ cells in cord blood (Figure 5B).

We next assessed if human cells were circulating in peripheral

blood. One piglet (6901) was euthanized on day 0 due to a

severe cleft palate. Peripheral blood was collected from 6901

at day 0 and at 1 day of age for 6902 and 6903. These blood
samples were stained for human T cells (hCD3ε, hCD4α, and

hCD8α) (Figure 6A), B cells (hCD20) (Figure 6B), and myeloid
cells (hCD33) (Figure 6C). Red blood cells were also stained
for human CD47 (Figure 6D). Nearly all human CD45+ cells
circulating in 6901 and 6903 consisted of human CD3+ cells that
were positive for hCD4α or hCD8α (Figure 6A).

Human CD45+ Cell Engraftment in ART−/−

IL2RG−/Y Bone Marrow, Liver, Spleen, and
Thymic Tissue
Since we observed human cells in peripheral blood, we next
evaluated whether human immune cells were present within
lymphoid organs. Interestingly, during necropsy, we observed
grossly visible mesenteric lymph nodes in 6901 and 6903, but not
in 6902. Additionally, all three pigs had some remnant, immature
thymic tissue present over the heart (Supplemental Figure 5),
which was collected for analysis. Of the tissues collected, cells
were isolated from bone marrow, liver, spleen, and thymic tissue
for flow cytometric analysis. Whole cell suspensions from bone
marrow and thymus were stained, while mononuclear cells were
stained from liver and spleen. Human CD45+ cells were found
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FIGURE 6 | Human CD3ε
+ cells are the primary cell type in peripheral blood of ART−/− IL2RG−/Y SCID pigs. Peripheral blood was collected from 6901 (day 0), 6902,

and 6903 (Day 1) and stained for various human immune cell markers. Whole human blood was stained as a control to show gating strategy. All cells in circulation

were gated from SCID pigs, while only lymphocytes and monocytes were gated from the human sample for the analysis of T, B, and myeloid cells. RBC were also

stained separately for human CD47. (A) Presence of human T cells were assessed by staining for human CD45, CD3ε, CD4α, and CD8α. Cells that were CD3ε
+ (left)

were then assessed for CD4α and CD8α expression (right). Human T cells were present in both 6901 and 6903. Single positive CD4α
+ and CD8α

+ cells were also

present. (B) Human B cells were assessed by staining for hCD45 and hCD20. B cells were not present in any pigs. (C) Human myeloid cells were assessed by

staining for hCD45 and hCD33. Myeloid cells were not present in any pigs. (D) RBCs were stained for human CD47 expression to determine if human erythroid

lineage differentiated in SCID pigs. No RBCs from SCID pigs expressed hCD47.

in all four tissues assessed in 6901 and 6903, which both had
human CD45+ cells in circulation (Figure 7). At least half of the
isolated thymic tissue cells from these two animals were human
cells. Animal 6902 did not have any human CD45+ cells in any
lymphoid organs.

Since a majority of the human cells we observed in these pigs
were hCD3ε+, we assessed the expression of hCD4α and hCD8α
within the thymic tissue cells. Early in development, T cells
express both CD4α and CD8α. In animal 6901, we observed that
the thymic hCD45+ hCD3ε+ cells were either hCD4α+ hCD8α−

or hCD4α− hCD8α−, while in 6903 they appeared to be hCD4α−

hCD8α− (Figure 7B).
In addition to flow cytometric analysis of cells within

lymphoid tissues, we also analyzed tissues by IHC. Lymphoid
tissues were collected and assessed for the presence of human T
and B cells in the in utero injected piglets. Thymic tissue, spleen,
ileum, and mesenteric lymph nodes from both 6901 and 6903
had CD3ε+ cells (Figure 8A). Spleens from both 6901 and 6903
also had punctate Pax5+ cells present, which is a marker for
B cell development. A mesenteric lymph node from 6901 also
had Pax5+ cells (Figure 8B). Tissues from 6902 did not stain
positively for either CD3ε or Pax5, which is consistent with the
lack of human CD45+ cells in blood. These histology results
are consistent with the flow cytometric analyses demonstrating

human leukocyte engraftment within ART−/− IL2RG−/Y SCID
pigs injected with human CD34+ cells.

DISCUSSION

Herein we have described foundational steps toward the
development of an immunologically humanized large animal
SCIDmodel. To create the model, we introduced a mutation into
the IL2RG gene using the CRISPR/Cas9 system in a naturally
occurring ART−/− SCID background to generate ART−/−

IL2RG−/Y pigs that lacked T, B, and NK cells. We performed
a pig to pig BMT procedure on one male ART−/− IL2RG−/Y

pig, which led to successful reconstitution of graft T and NK
cells, but very few B cells. Next, we utilized in utero injection
procedures to introduce human hematopoietic stem cells into
the intraperitoneal space of SCID pig fetuses. We observed that
human CD3ε+ cells were present in bone marrow, spleen, liver,
and thymic tissue in injected pigs after birth. Human Pax5+ cells
were also present within the spleen and mesenteric lymph nodes
of injected pigs. Intrahepatic injection of human CD34+ cells in
newborn NOD Rag−/− IL2RG−/− mice has resulted in similar
patterns of reconstitution (T and B cell development) as our
ART−/− IL2RG−/Y pig (52).
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FIGURE 7 | Human leukocyte engraftment in bone marrow, liver, spleen, and thymic tissue of in utero injected ART −/− IL2RG −/Y SCID pigs. (A) Lymphoid organs

from 0-day old (6901) or 7-day old (6902 and 6903) SCID pigs were analyzed for the presence of human leukocytes by staining with human and pig CD45. Bone

marrow liver, spleen, and thymic tissue from both 6901 and 6903 contained human CD45+ cells. All cells from isolated bone marrow and thymic tissue were stained,

while mononuclear cells from spleen and liver were stained. (B) Human CD45+ cells in isolated cells from thymic tissue expressed human CD3ε. PBMCs from an adult

human were stained as a gating control. Black histogram is gated on hCD45+ cells, while gray is hCD45− cells. Human CD4α and CD8α expression was assessed on

human CD3ε
+ cells within the Art−/− IL2RG−/Y thymic tissue and human PBMC.

FIGURE 8 | Human CD3ε
+ and Pax5+ cells in lymphoid organs of in utero injected ART −/− IL2RG −/Y SCID pigs. Lymphoid tissues were collected and stained for

(A) CD3ε and (B) Pax5. (A) Thymic tissues from 6901 and 6903 were robustly populated with CD3ε
+ cells, and CD3ε

+ cells were also present in periarteriolar sheaths

within the spleen. The ileum tissue from both animals had punctate CD3ε
+ cells (black arrows); CD3ε

+ cells were also present within mesenteric lymph nodes (LN).

Lymphoid tissues from 6902 did not contain CD3ε
+ cells. (B) Spleen from both 6901 and 6903 had punctate Pax5+ cells. Only the mesenteric LN in 6901 had Pax5+

cells. No Pax5+ cells were found in tissues from 6902.

Improving Human Cell Engraftment in
SCID Pigs
One surprising finding was that we did not detect humanmyeloid
cells, as has previously been reported in past in utero injections
of human CD34+ cells in immunocompetent pig fetuses (48). In
this initial humanization model, we had a pre-determined end
point of 7 days to assess human cells in blood and tissues, and

therefore we only probed for myeloid cells during this period. In
previous studies, myeloid lineage development had been assessed
at 40 days post injection (80 days of gestation) (48). It may be
that human myeloid cells are transient during gestation in this
fetal injection model. Further investigation is needed to improve

human myeloid reconstitution in neonatal ART−/− IL2RG−/Y

SCID pigs.
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In the process of in vitro CD34+ cell culture with SCF,
TPO, and FLT-3L, some cells may lose their stemness, which
likely contributed lack of a variety of cells that differentiated
(i.e., only T and B cells) within our SCID pig model. In
mouse models genetic modifications have been required to attain
human myeloid and NK cell engraftment, including human
CSF-1, IL-15, GM-CSF, Flt-3L, IL-3, TPO, as human cells do
not recognize mouse cytokines (21, 23, 53–56). An area to be
investigated is how human cells respond to swine cytokines
and if the swine bone marrow niche is supportive of human
myeloid cells. Humanization of certain cytokine genes may be
required in future humanization attempts in our pig model.
In vitro culturing assays with human hematopoietic stem cells
and porcine cytokines can be a first-line screen for assessing
porcine cytokine cross-reactivity. Additionally, in future studies,
we can assess cytokine secretion by developed human cells within
the pigs.

In our model, we observed that a majority of human cells that
developed were CD3ε+. We assessed the thymic tissue to better
understand the development of human T cells. We interestingly
did not observe CD4α+CD8α+ double positive cells within the
thymus, which is an expected normal stage of T cell development.
In future studies, it will be imperative that we perform deeper
phenotyping of human cells that have differentiated within the
pig. Previous reports by Kalscheuer et al. (57) and Ogle et al.
(49) show that the swine thymus can support engraftment and
differentiation of human T cells. The lack thymic development in
a SCID pig fetus may negatively impact the ability of human cells
to develop, which may warrant transplantation of human thymic
tissue after birth.

Another potential method to increase engraftment is to
condition the fetuses prior to human cell injection. Plerixafor,
a drug that mobilizes stem cells out of bone marrow (58),
has previously been utilized for in utero injections of human
cells into sheep fetuses to improve engraftment of human
cells (59). Plerixafor is an agonist for CXCL12 on stromal
cells, which binds to CXCR4 on hematopoietic stem cells
(HSC) (58). Administration of plerixafor mobilizes sheep HSC
out of bone marrow, providing more available niches for
human HSC to engraft. Goodrich et al. (59) described that
administration of plerixafor along with injection of CD34+

CXCR4+ human stem cells and mesenchymal stem cells
improved chimerism (in peripheral blood) 5 weeks after
transplantation from 2.80 to 8.77%. Now that T− B− NK− SCID
pigs and biocontainment facilities are available for extended
postnatal follow-up, a similar regimen could be administered
to SCID pig fetuses prior to in utero injection with human
stem cells.

Further Characterization of de novo
Differentiated Human Immune Cells
We show that human T cells differentiated and homed to
lymphoid tissues in the ART−/− ILR2G−/Y SCID pigs. Human
B cells also differentiated, but to a much lower extent. While
the human cells that differentiated within the SCID pigs were
not extensively characterized, the major aims of this study

were to develop methodologies to humanize SCID pigs and to
determine the feasibility of performing these methodologies on
ART−/− ILR2G−/Y SCID fetuses. Moving forward, we expect
that optimization of humanization methods would lead to
increased levels of engraftment, and thus a higher number of
human cells in any given tissue which could be used for different
types of analyses.

Performing single cell RNAseq on isolated human cells
form thymic and bone marrow tissues would be of particular
interest to understand how human cells differentiate within the
SCID pig primary lymphoid organs and the composition
of the differentiating cell population within the graft.
A comparison could be made between human cells that
differentiated in NSG mice compared to ART−/− ILR2G−/Y

SCID pigs. Additionally, since we have now established
that human T and B cells differentiate and home to swine
lymphoid organs, the functionality of these cells could be
assessed either through in vivo vaccination studies or in vitro
stimulation assays. Understanding the full extent of human cell
differentiation and functionality will be critical as this model is
developed further.

Outlook on B Cell Reconstitution in
ART−/− ILR2G−/Y SCID Pigs
One issue in both pig to pig BMT, as well as in utero injection
of human HSCs, was the failure of pig or human B cells to
robustly develop. Historically, some human SCID patients that
underwent BMT have also failed to develop graft derived B cells
(40). In some cases, significant B cell reconstitution in human
BMT can require up to 2 years (60, 61). One leading hypothesis
regarding B cell development issues is due to differences in the
B cell niche in the bone marrow. Single mutant IL2RG knock
out pigs are capable of developing B cells, which can be detected
in circulation (9, 10), however they are non-functional due to
the absence of T helper cells. Mutations in ARTEMIS lead to
a B cell block of differentiation at the pre-B cell phase (62).
Together, an ART−/− Il2RG−/Y pig likely still has premature
B cells present in the bone marrow, which would prevent
further engraftment and differentiation of graft stem cells in
this niche. Conditioning prior to stem cell transplantation has
helped improve B cell reconstitution in some cases (63), although
such conditioning procedures would be difficult prior to in
utero cell transplantation. To our knowledge this is the first
time a bone marrow transplantation has been performed on a
double mutant SCID pig. Thus, further assessment of the bone
marrow niches of ART−/− IL2RG−/Y pigs may be required to
better understand conditioning regimens that may be needed
for engraftment.

CONCLUDING REMARKS

As the field of biomedical SCID pig research expands, new
techniques will arise to optimize human cell engraftment within
SCID pig models. We can draw from previous large animal in
utero injection protocols (48–51, 59, 64), as well as humanization
techniques performed in immunocompromised mice (65, 66). In

Frontiers in Immunology | www.frontiersin.org 14 February 2020 | Volume 11 | Article 10017

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Boettcher et al. SCID Pig Human Leukocyte Engraftment

our SCID pig model, we show that human T and B cells can
develop. As we improve reconstitution of human cell subsets, the
humanized SCID pig will be a critical alternative large animal
model for researchers preclinical or co-clinical trials.
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Within human health research, the remarkable utility of kinase inhibitors as therapeutics
has motivated efforts to understand biology at the level of global cellular kinase activity
(the kinome). In contrast, the diminished potential for using kinase inhibitors in food
animals has dampened efforts to translate this research approach to livestock species.
This, in our opinion, was a lost opportunity for livestock researchers given the unique
potential of kinome analysis to offer insight into complex biology. To remedy this
situation, our lab developed user-friendly, cost-effective approaches for kinome analysis
that can be readily incorporated into most research programs but with a specific
priority to enable the technology to livestock researchers. These contributions include
the development of custom software programs for the creation of species-specific
kinome arrays as well as comprehensive deconvolution and analysis of kinome array
data. Presented in this review are examples of the application of kinome analysis
to highlight the utility of the technology to further our understanding of two key
complex biological events of priority to the livestock industry: host immune responses
to infectious diseases and animal stress responses. These advances and examples of
application aim to provide both mechanisms and motivation for researchers, particularly
livestock researchers, to incorporate kinome analysis into their research programs.

Keywords: kinome, kinase, phosphorylation, peptide array, stress, infectious disease

INTRODUCTION

Human and animal health research have each been revolutionized by technologies that enable
global perspectives on cell biology. Omic approaches, an example of such technologies, conducted
at a variety of biological levels have opened new frontiers for understanding biology as well as for
diagnosis and treatment of disease. Ideally, the same omic approaches within human and animal
health research fields can be applied with minimal barriers to translation allowing researchers to
benefit from the advances made within each realm. This is true, to varying degrees, for the different
omic disciplines. The effort required for the successful translation of the omic technologies does
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differ depending on characteristics of the biomolecule under
consideration. That is to say, some omic technologies are more
amenable to translation across species.

The opportunities enabled by broadly applicable omic
technologies are particularly evident within nucleic acid-based
investigations: DNA for genomics and RNA for transcriptomics.
These approaches are based on research platforms that are largely
species-independent such that identical omic technologies can
be applied to virtually any organism. For example, the same
basic approaches can be applied to either sequence the genome
or define the transcriptome largely independent of the specific
species. With that, technological advances within nucleic acid-
based omics have great potential to offer immediate benefit to
livestock researchers. For example, by serving as a catalyst for
development of higher-throughput sequencing technologies, the
Human Genome Project enabled determination of the genomes
of livestock species including cattle (1), pigs (2), chickens (3),
and turkeys (4). Likewise, within transcriptomics, there is a
similar pattern of the development of technologies for traditional
species of research priority (human and mouse) which are
subsequently adopted by livestock researchers. This includes
the use of transcriptional arrays (5), RNA-Seq (6), and single-
cell RNA sequencing (7) to define transcriptional responses in
livestock species.

The translation of technologies from human to animal health
applications is of mutual benefit in that livestock researchers are
empowered with cutting-edge technologies to advance their fields
of study and the emerging data adds value and dimension to
the human data by enabling species-comparative perspectives for
human models of physiology and disease. Furthermore, as large
animal models are representing an essential foundation for our
understanding of human health and disease it is imperative that
these species are investigated using advanced technologies (8).
However, not all omic approaches share the same technological
versatility for application across species, nor is there always the
same level of motivation for their translation.

Within human health research, the priority for investigations
of global cellular kinase (kinome) activity has been heavily
motivated by the fact that kinases are intimately associated
with many diseases and represent excellent drug targets (9).
The “druggability” of kinases reflects both structural features
of this class of enzymes that enables design of inhibitors as
well as the central role of kinases as regulators of cellular
responses and phenotypes (10, 11). In humans, many small-
molecule protein kinase inhibitors have been approved or are
advancing through clinical trials for the treatment of a diverse
array of diseases (12). However, in animals the use of kinase
inhibitor treatment has been limited. Select tyrosine kinase
inhibitors have been approved for the treatment of cancer in
companion animals (13, 14) as well as preliminary investigations
of similar applications in horses (15). A category of kinase
inhibitors, referred to as bumped kinase inhibitors (BKIs), target
calcium-dependent protein kinases belonging to parasites of
human and veterinary importance, including Toxoplasma gondii,
Plasmodium falciparum, and Cryptosporidium parvum (16). BKIs
have shown promising results as anti-parasitic drugs within
food-animal species, including cattle (17) and pigs (18). From a

safety perspective, BKIs represent the most likely usage of kinase
inhibitors in livestock as the BKIs target non-mammalian kinases.
Overall, however, the cost of these treatments relative to the value
of the animals, as well as safety considerations (real, perceived,
and regulatory) of such treatments, has prevented the use of
kinase inhibitors as therapeutics in livestock animals.

The opportunities to employ kinase inhibitors as therapeutics
is not, however, the sole benefit of kinome profiling. Kinome
analysis also offers the unique advantage to understand the
molecular basis of complex phenotypes. In part, this reflects the
fact that kinase-mediated phosphorylation events succeed the
transcriptional and post-transcriptional regulatory events that
complicate the extraction of meaningful biological data from
genomic and transcriptomic approaches. As kinase-mediated
phosphorylation events often initiate cellular responses and
phenotypes, defining host responses at the level of the kinome
provides an opportunity for an unobstructed perspective of
cellular events that anticipate, and are responsible for, organismal
phenotypes. These same features also position kinases to serve
as biomarkers of important phenotypes. Therefore, in spite of
the somewhat restricted potential to the use of kinase inhibitor
therapeutics in livestock, the other benefits of kinome analysis
warrant effort to address the technological barriers that restrict
the application of these approaches to livestock.

EXPERIMENTAL APPROACHES TO
DEFINE KINASE-MEDIATED PROTEIN
PHOSPHORYLATION

There are two primary methodologies that are employed to define
kinase-mediated protein phosphorylation: phosphoproteome
analysis, which characterizes the targets of the kinases, and
kinome analysis, which quantifies the activities of the kinases.
The different philosophical and technological basis of these
approaches have been reviewed elsewhere (19). Each approach
is associated with unique challenges and opportunities for
application to livestock species (20).

Phosphoproteome Analysis
Phosphoproteome investigations typically employ mass
spectrometry to determine the phosphorylation status of
proteins based on changes in molecular mass corresponding
to the addition of a phosphoryl group (21). These types of
phosphoproteomic characterizations can be performed in
a largely species-independent manner as the basis for mass
spectrometry analysis reflects changes to peptide characteristics
(independent of their biological source) and that detailed
predicted proteomes and their proteolytic peptide libraries are
readily available for most species. Indeed, phosphoproteome
characterizations have been applied to livestock to explore
biological questions such as host-pathogen interactions (22),
meat quality (23) and regulation of metabolism (24). The major
technical limitations are the prohibitive costs and requirement
for specialized equipment and personnel. The primary biological
limitations are the challenges of defining dynamic patterns of
phosphorylation within low abundance proteins, in particular
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those that reflect relatively small changes in the extent of
phosphorylation of these proteins, a situation that often occurs
within the context of signal transduction.

The phosphoproteome can be interrogated using antibodies
that exclusively react with phosphorylated amino acids (i.e.,
serine, threonine, and tyrosine) or more specifically investigated
using site-specific antibodies that only react with the protein
in its phosphorylated state. This offers advantages of more
quantitative assessment of priority phosphorylation events but
it is ultimately limited by the availability and specificity of
the antibody reagents. The availability of phosphorylation-
specific antibodies is particularly problematic for livestock. While
some commercially available phosphorylation-specific antibodies
include information on reactivity across a range of species, some
of which include livestock, this information is often unavailable
or, in our experience, unreliable. Secondary challenges to
this approach include technological obstacles to applying the
antibodies in a high-throughput fashion; this is particularly
challenging when using site-specific phosphorylation antibodies.

Kinome Analysis
In contrast to phosphoproteome approaches, kinome analysis
capitalizes on the fact that post-translational modifications
represent enzymatic reactions. By providing an appropriate
substrate, it is possible to quantify the activity of a particular
kinase within the context of an enzymatic assay. As the
specificity of many kinases is determined by the residues adjacent
to the phosphorylation site (within 4 amino acid residues)
(25, 26) it is theoretically possible to use short peptides as
surrogate substrates for kinases. As short peptides are easily
synthesized, relatively inexpensive and amenable to presentation
in array formats this offers tremendous potential to develop
peptide arrays that enable high-throughput analysis of cellular
kinase activity. Early applications of kinase peptide arrays
were performed to define phosphorylation sites and target-site
specificity based on the ability of the kinases to modify peptides
with shared sequence similarity. Once the utility and specificity
of the arrays was established, these investigations evolved into
applications to define cellular signaling responses within cellular
lysates using kinome arrays. In this regard, the first true
global kinome profiling experiment with peptide arrays defined
signaling responses of human peripheral blood mononuclear cells
(PBMCs) following stimulation of the innate immune receptor
Toll-like receptor (TLR) 4 with its ligand lipopolysaccharide
(LPS) (27); a major cell-wall constituent of Gram-negative
bacteria. Notably, this pioneering investigation interpreted the
emerging data from the perspective that each peptide represented
a specific phosphorylation event of a particular protein rather
than each peptide representing a general substrate for a specific
kinase. That is to say, the data was interpreted from a
phosphoproteome, rather than a kinome, perspective.

One of the considerable advantages of peptide arrays is that
they are readily customized to represent the phosphorylation
events that are of highest priority to the individual researcher.
Designing the peptide arrays consists of selecting an appropriate
number of phosphorylation sites from public phosphoproteome
databases, such as PhosphoSite (28) and Phospho ELM (29).

Within these databases, the phosphorylation events are typically
presented as sequences of fifteen amino acids in length with the
phosphoacceptor site in the central position. This format matches
the design for most peptide arrays such that the information from
these databases can be rapidly translated into a customized array.

One of the major hurdles with kinome analysis of livestock
was that the commercially available arrays represented sequences
derived from the human or mouse proteome and that
information available within the phosphorylation databases
was heavily biased toward those same species. The desire to
perform kinome analysis of livestock, coupled with the scarcity
of available experimental phosphoproteome information for
these species, motivated alternate approaches for peptide array
design. In particular, observation of the extent of conservation
of the regions immediately surrounding phosphoacceptor sites
indicated the potential to apply bioinformatic approaches to
predict the phosphoproteome of species of interest.

PLATFORM TECHNOLOGIES FOR
GENERATING SPECIES-SPECIFIC
KINOME ARRAYS

Species-Specific Peptide Arrays
As a first exploration of the extent of conservation of
phosphorylation sites across species nearly one thousand
experimentally determined human phosphorylation sites
(represented by a sequence of 15 amino acids with a centered
phosphoacceptor site) were investigated within the bovine
proteome (30). Of these phosphorylation sites, half were
perfectly conserved across these two species (the same sequence
within the context of a homologous protein), a quarter showed
minor (less than three amino acids) sequence differences,
and the final quarter had no identifiable protein homologs
within the bovine proteome (Figure 1) (30). These results
demonstrated both the potential, as well as the need, to construct
species-specific peptides arrays.

The relatively high degree of conservation of phosphorylation
sites across these species encouraged the potential to create
species-specific peptide arrays. As such, in this example, it
is possible to generate a bovine-specific peptide array by
simply selecting phosphorylation sites whose peptide sequences
are either absolutely conserved, or can be accommodated
through minor species-dependent sequence adjustments. For
example, a researcher could opt to limit the array to peptides
whose sequences were absolutely conserved across the two
species. In the described example, absolute conservation
of sequence would represent half of the experimentally
defined human phosphorylation sites as possible candidates for
inclusion on the bovine peptide array (Figure 1). Notably,
selecting phosphorylation sites whose surrounding sequences
are absolutely conserved across the two species results in a
tool that is equally appropriate for either humans or cattle use.
Such “dual-species” arrays provide a common tool that facilitates
direct comparison of results from each species and are therefore
of particular value for species-comparative investigations. For
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FIGURE 1 | Comparative analysis of conserved and species-specific phosphorylation sites in the human and bovine proteome. Nearly 1,000 experimentally
determined human phosphorylation sites (15 amino acids in length) from PhosphoSite were queried against the Bos taurus proteome using BLASTp (version 2.2.13)
to identify protein homologs. “Conserved” represents 100% amino acid sequence identity; “Partially Conserved” represents less than 3 mismatches in the amino
acid sequence; and “No Match” represents no identified homolog in the bovine proteome (30).

example, the use of a pig/human dual-species peptide array
demonstrated the ability to directly compare datasets from both
human and porcine samples (31).

The list of potential peptides for a customized array can also be
expanded through the inclusion, with appropriate modification,
of peptides with minor species-specific sequence variations. In
the previous example, the inclusion of the sequence-corrected
peptides of this category would expand the list of peptides to
include another quarter of the initial library of experimentally
determined phosphorylation events but would also limit the
application of that array to cattle (Figure 1).

The half of the peptides which were a perfect match, and
the quarter which can be easily adopted through minor species-
specific sequence variations, highlight the potential to create
species-specific peptides arrays. The remaining quarter of human
phosphorylation events which had no counterpart within the
bovine proteome, speak to the need to create customized arrays
for specific species. Consider, for example, if one were to
utilize a peptide array representing human phosphorylation
events to define kinome responses in bovine samples. In a
best-case scenario the fraction of peptides (approximately 25%)
representing human phosphorylation sites for which there is
no functional equivalent within the bovine proteome would
simply not be recognized by bovine kinases. While this would
limit the efficiency of the array, there would be minimal
consequences to the overall quality of the emerging data. Peptide
arrays are typically applied to investigate relative differences in
phosphorylation under different conditions rather than absolute
levels of phosphorylation in a single condition; an unmodified
peptide would appear as having no response to the stimulus
under investigation. It would be more problematic if peptides

representing phosphorylation events that do not exist within
the bovine proteome were recognized and modified by bovine
kinases, as this would imply the occurrence of phosphorylation
events which, in reality, have no biological significance.

A recent investigation into the patterns of conservation of
kinases and phosphorylation sites indicated there was greater
evolutionary stability within the kinases as opposed to their
phosphorylation sites (32). That is to say, a relatively stable
infrastructure of kinases serves to modify a more malleable
proteome. This would seem to support the potential for the
presence of kinases with the ability to modify peptides that
represent phosphorylation sites absent from within the proteome
of that species. For these reasons, it is not recommended to utilize
peptide arrays designed for a particular species to define the
kinome of another species.

Design Array for Phosphorylation
Experiment (DAPPLE)
A software platform called Design Array for Phosphorylation
Experiment (DAPPLE) was created to streamline and automate
the process of developing species-specific peptide arrays.
DAPPLE utilizes BLAST to analyze the sequence similarity
between experimentally determined phosphorylation sites in
other organisms against the proteome of the species of interest
(33). DAPPLE returns to the user a list of peptides containing
a putative phosphoacceptor site for inclusion on a species-
specific array. This peptide library typically ranges in size
from thousands to tens of thousands. DAPPLE was later
expanded into DAPPLE2 (34), to improve on the original
program by surveying a greater number of phosphorylation

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 76524

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00765 May 15, 2020 Time: 14:17 # 5

Facciuolo et al. Kinome Analysis of Livestock Species

FIGURE 2 | Computational workflow for the prediction of phosphopeptides and analysis of kinome array data. (A) DAPPLE2 facilitates the prediction of
post-translational modification sites in proteins. Specific to kinome technology, DAPPLE2 can predict and generate a list of all putative phosphopeptides from the
selected species of interest. (B) PIIKA2 software was custom designed for the transformation, deconvolution, statistical analysis and visualization of kinome array
data. PIIKA2 results returned to the user include various statistical analyses and data visualization such as principal component analysis plots, scatter plots, and
hierarchical clustering heat maps. Both software platforms are freely accessible to all researchers at http://saphire.usask.ca/saphire/.

site datasets as well as enabling consideration of other forms
of post-translational modification. As current arrays typically
contain approximately a thousand unique peptides, it can be
a daunting task to manually select these from the tens of
thousands that are typically present within the DAPPLE output
files. DAPPLE2 facilitates this process by providing the user
with gene ontology terms, signaling pathways, and indicators of
the confidence of the predicted phosphorylation site including
sequence identity within the phosphorylation region and the
homology of the protein in which the phosphorylation site is
contained. DAPPLE2 also provides information on the number
and nature of supporting publications for the phosphorylation
event. The nature of the supporting papers being further defined
on the basis of whether the source publication represents high-
or low-throughput approaches. Greater confidence and priority
are assigned to phosphorylation events characterized using
low-throughput approaches (like site-directed mutagenesis) as
opposed to high-throughput global characterizations of the
phosphoproteome. This information also allows researchers to
simplify peptide selection based on clear and rational criteria
relating to both the biological function and confidence in the
predicted phosphorylation site. For example, a user could specify
the selection of phosphorylation events which are involved in
metabolism, which are absolutely conserved within the target
species, and are supported by at least three publications, one
of which representing a low-throughput study. Based on the
number of peptides meeting these criteria, the user can choose
to alter the selection criteria until a suitable number of peptides

are identified. Using this approach, it is possible for a biologist
with minimal background in bioinformatics to design a species-
customized array, with or without an emphasis on specific
biological processes, in a matter of hours. The workflow interface
of DAPPLE2 is illustrated (Figure 2A).

It is also worthy to note that peptide arrays designed on the
basis of predicted phosphoproteomes are inherently less reliable
than those reflecting phosphorylation sites characterized through
low-throughput experimental approaches. The conservation
of a matching sequence, in a homologous protein, as an
experimentally determined phosphorylation site is not absolute
assurance that the same phosphorylation, and by extension
the same biological outcome, will occur in the target species.
With that appreciation, our central philosophy is that kinome
analysis is a tool, similar to other omic technologies, employed to
generate data that lead to novel hypotheses that are then further
substantiated by independent approaches.

Platform for Integrated, Intelligent
Kinome Analysis (PIIKA)
Interpreting the results of high-throughput analyses that involves
high-level statistics on thousands of data points can be extremely
difficult. As such, extraction of meaningful biological information
is a significant challenge to any omic approach, with kinome
analysis being no exception. To this end, a software tool,
Platform for Intelligent, Integrated, Kinome Analysis (PIIKA),
and our latest version PIIKA2, was created with specific
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consideration of the technical and biological characteristics
of kinome peptide arrays (35). An easy to use web-based
interface allows biologists lacking a strong background in
data science to upload kinome datasets to perform various
analyses and tests: data normalization, evaluation of how well
different experimental groups cluster together, identification
of peptides with consistent phosphorylation patterns amongst
experimental groups, view false negative probabilities, positive
and negative predictive values for t-tests between pairs of
samples, and readily quantify experimental reproducibility (36).
PIIKA2 includes various statistical analyses such as fold-
change analysis, principal component analysis, determination of
Euclidean distance between groups, and hierarchical clustering
(35). Visualization tools within PIIKA2, such as volcano plots,
scatterplots and heat maps aid in the selection process and
statistical interpretation as well as being readily presentable and
easy to understand, in comparison to the raw output. The output
files of PIIKA2 are compatible with software platforms for higher-
level analysis, such as pathway analysis. The workflow interface of
PIIKA2 is illustrated (Figure 2B).

APPLICATIONS OF KINOME ANALYSIS

In the decade following the development of the species-specific
peptide arrays there has been a wealth of publications that
highlight the utility of kinome analysis of livestock species
(Table 1). These investigations explore a variety of species,
biological questions, and sample matrices. In the subsequent
sections we present examples to highlight the diversity within
each of these. Species-specific peptide arrays have been created
and applied for the primary food-associated livestock animals
(i.e., cattle, pigs, and chickens). In terms of biological questions,
the application of kinome analysis to livestock has focused on
two issues of greatest significance to the industry, infectious
diseases, and response of animals to stresses associated with
modern management practices. Within these investigations, a
variety of biological samples have been considered which range

TABLE 1 | Applications of peptide array kinome analysis to livestock species.

Sample

Species Challenge Cell culture PBMCs Muscle Intestine

Bovine
(cattle)

Infectious
disease

(57, 58, 61, 109) (74) (70)

Stress (90)

Swine
(pig)

Infectious
disease

(93)

Stress

Other (31)

Avian
(chicken)

Infectious
disease

(64, 66, 110, 111) (75) (76–78, 112, 113)

Stress (92)

Other (103, 114)

Ovine
(sheep)

Infectious
disease

(94, 115) (94)

in complexity from immortalized cell lines and highly purified
primary cells to complex cell populations like PBMCs and tissue
samples (i.e., muscle and intestine), and even whole organism
kinome profiling. These examples collectively highlight the utility
and robustness of the technology. The workflow for the design,
application, and interpretation of peptide arrays for kinome
analysis is illustrated (Figure 3).

Kinome Analysis of Infectious Disease
As the activation of innate immune responses relies heavily on
phosphorylation-mediated signal transduction, kinome analysis
is a particularly appropriate approach for defining host responses
to microbial pathogens (37). Given the importance of kinase-
mediated signaling in the activation of immune responses, it
is not surprising that many pathogens, in particular those
that result in chronic infections, can subvert protective host
immune responses using their own effector kinases, and
phosphatases in addition to utilizing other virulence factors
that function to manipulate host signaling either directly
or indirectly (38–40). These tactics can represent a critical
obstacle in the development of effective vaccines and/or
immunotherapeutics. These limitations are potentially addressed
through a more detailed understanding of the host-pathogen
interaction; understanding the molecular mechanisms of these
interactions can guide rationale development of vaccines and/or
therapeutics (particularly, in the form of kinase inhibitors), as
well as facilitating the identification of biomarkers that anticipate
the susceptibility, resistance, severity, or outcome of infection.
With this, it is not surprising that early examples of kinome
analysis through peptide arrays were performed in the context of
investigating the host-pathogen interaction.

KINOME ANALYSIS OF EX VIVO
INFECTION MODELS

To enable greater opportunity for insight into host immune
responses to pathogenic challenge, the earliest kinome
investigations of host-pathogen interactions were often
conducted within simplified infection models, like cell lines
or highly purified primary cell populations. The biological
significance of the findings of these investigations were then
typically validated within in vivo infection models through
either direct confirmation of biological responses or through the
effective use of therapeutics informed by the ex vivo investigation.

Mycobacterium avium subsp.
paratuberculosis (ex vivo)
Johne’s disease, a chronic inflammatory disorder of the small
intestine of ruminants, is caused by Mycobacterium avium subsp.
paratuberculosis (41). M. paratuberculosis is an intracellular
pathogen that achieves chronic infection through subversion
of the host immune response (42, 43). In host macrophages,
M. paratuberculosis inhibits phagosome maturation (44) to
promote its intracellular survival and alters cellular signaling
to inhibit the normal bactericidal activity of the host cell (45).
Inhibiting interferon gamma (IFNγ) expression and signaling
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FIGURE 3 | Overview of the kinome array workflow. Schematic representation of the three main components of the kinome array pipeline. (1) Computational
workflow (DAPPLE2) for predicting putative phosphoacceptor peptides for spot printing on peptide microarrays. (2) Representation of the various cells, tissues and
whole organisms in which cellular extracts can be prepared to quantify kinase-mediated phosphorylation using peptide arrays. (3) Computational workflow (PIIKA2)
for transforming, statistical analysis and graphical visualization of kinome array data.

is of central importance to intracellular pathogens, including
M. paratuberculosis, to evade cell-mediated immunity (43,
46). A number of pathogens including Trypanosoma cruzi
(47), Leishmania donovani (48), and Mycobacterium avium
(49) block IFNγ responsiveness by dampening the expression
of the IFNγ receptor. Induced expression of suppressor of
cytokine signaling (SOCS), a key regulator in the IFNγ

signaling pathway, has also been observed following infection
with various pathogens including Toxoplasma gondii (50),
Burkholderia pseudomallei (51), and Group A Streptococcus (52).
IFNγ treatment of macrophages prior to M. paratuberculosis
infection promotes their ability to clear infection, but the
same treatment is ineffective post-infection (53, 54). This
suggests that M. paratuberculosis infection desensitizes infected
cells to IFNγ stimulation. Highly analogous to the situation
with IFNγ, prophylactic stimulation of TLRs on macrophages
prior to infection enhanced bactericidal activity against M.
tuberculosis, but was ineffective post-infection (55); in vivo,

M. paratuberculosis infected sheep show differential expression
of TLRs suggesting this pathogen also targets these innate
immune pathogen-recognition receptors to evade protective host
responses (56). Among the earliest applications of the species-
specific peptide arrays were two investigations to determine the
extent and mechanisms by which M. paratuberculosis influences
the responsiveness of bovine macrophages to both endogenous
and exogenous activators of the innate immune response: IFNγ

(57) and CpG-ODN (a TLR9 agonist) (58), respectively. Both
investigations employed an infection model of primary bovine
monocytes that enabled a homogeneous and biologically relevant
cell population.

The responsiveness of uninfected and M. paratuberculosis
infected monocytes was measured by induction of released
cytokines: TNFα in response to IFNγ, and IL-10 in response to
CpG-ODN. IFNγ stimulation of uninfected monocytes caused a
dramatic release of TNFα while CpG-ODN stimulation induced
the release of IL-10. By contrast, M. paratuberculosis infection
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TABLE 2 | Bovine monocytes differentially respond to IFNγ and CpG-ODN
depending on M. avium subsp. paratuberculosis infection status.

Uninfected monocytes M. paratuberculosis-
infected monocytes

Up Down Up Down

l # p
value

# p
value

# p
value

# p
value

IFNγ stimulation

JAK-STAT
signaling
pathway

16 15 0.002 1 1 4 0.8 7 0.3

Gene
expression
of SOCS

6 6 0.03 0 1 1 0.9 3 0.3

CpG-ODN stimulation

TLR
signaling

18 14 0.02 4 1 2 1 8 0.06

Pyk2
signaling

10 3 1.0 7 0.07 9 0.01 1 1

Pathway analysis was completed using InnateDB (116). Functional enrichment and
pathway prediction (p value) is based on the number of differentially phosphorylated
proteins from the experimental dataset represented within the annotated pathway
in the database. Reported in the table are the total number of differentially
phosphorylated peptides (l), when compared to uninfected control cells, belonging
to each pathway including the total number of peptides (#) within that pathway that
show increased (Up) and decreased (Down) phosphorylation (58).

of monocytes significantly diminished responsiveness to IFNγ

and CpG-ODN. Kinome profiling of the uninfected monocytes
indicated activation of signaling pathways classically associated
with each ligand; JAK-STAT signaling in response to IFNγ

and TLR signaling in response to CpG-ODN (Table 2) (57,
58). Infected monocytes, however, failed to induce JAK-STAT
signaling responses indicating that M. paratuberculosis blocks
IFNγ responsiveness at, or near, the IFNγ receptor (Figure 4)
(57), and CpG-ODN induced signaling was redirected away
from traditional TLR pathway into Pyk2-mediated signaling
(Table 2). Further investigation revealed that as early as 1-h post-
infection SOCS1 and SOCS3 expression significantly increased
with subsequent decreased expression of the IFNγ receptor
by 18 h post-infection. These data suggest that each of these
events desensitized M. paratuberculosis-infected cells to IFNγ

stimulation. In contrast to the complete repression of IFNγ-
induced signaling, M. paratuberculosis infection redirected CpG-
ODN signaling to an early intermediate of TLR signaling, Pyk2
(59). This redirection was confirmed through phosphorylation-
specific antibodies as well as functional assays (58). As
Pyk2 signaling had not been previously implicated in M.
paratuberculosis infection this highlights the power of kinome
technology for novel discovery.

Mycoplasma bovis (ex vivo)
Mycoplasma bovis (M. bovis) is responsible for a number of
diseases of cattle including pneumonia, mastitis, arthritis, and
abortion (60). M. bovis typically functions as a respiratory
pathogen entering the host through lung epithelial cells and

subsequently establishing residence within blood monocytes.
Persistence of M. bovis within the monocytes affords the
opportunity for protected dissemination throughout the host.

The mechanisms by which M. bovis establishes persistent
infection of host immune cells had yet to be fully described. Given
the success of kinome analysis in determining the mechanisms
by which M. paratuberculosis achieves persistent infection of
bovine monocytes, a similar ex vivo investigation was performed
for M. bovis. One of the key findings of the kinome analysis
was the implication by the kinome data that M. bovis sought
to influence apoptosis through manipulation of the caspase
system. Specifically, the signaling events induced by M. bovis
were consistent with an anti-apoptotic outcome. Functional
assays of both spontaneous and induced apoptosis confirmed
the kinome results in that M. bovis-infected cells had decreased
rates of spontaneous apoptosis as well as lower levels of induced
apoptosis in response to pro-apoptotic stimuli (61). The influence
of M. bovis on apoptosis was suggested as a mechanism to
prolong bacterial survival as well as to enable dissemination of
the pathogen throughout the host.

Salmonella (ex vivo)
Poultry is the most significant contributor to food-borne
Salmonellosis in humans (62). Colonization of chickens with
Salmonella results in a rapid (less than 4 h) inflammatory
response that evolves into an asymptomatic, persistent infection
during which time the bacterium is continuously shed in feces
(63). This underscores the capacity of Salmonella to rapidly
evade host innate immune defenses and persistently colonize
the avian host without eliciting an active immune response.
Understanding this host-pathogen interaction is essential for
developing novel intervention strategies to eradicate infection
especially as antibiotic-resistance and the restricted use of
antibiotics in the poultry industry both continue to grow.

Kinome analysis has provided substantial contributions in
understanding how Salmonella evades innate immune defenses
and perturbs host cell signaling in vitro to gain the advantage.
In one particular study, chicken macrophages were infected with
Salmonella Enteritidis and S. Heidelberg for 1.5, 3, and 7 h to
identify species-specific host responses (64). Kinome analysis
indicated that phosphorylation events associated with lysosome
and phagosome processes were significantly different between
these two serovars, specifically suggesting that S. Enteritidis
more effectively alters these signaling pathways to evade host
innate defenses. This finding is consistent with the greater
intracellular survival of S. Enteritidis in chicken macrophages
in vitro compared to S. Heidelberg (65). Pathway analysis
of the differentially phosphorylated peptides in Salmonella
infected macrophages also identified a number of common
pathways upregulated by both serovars that are potentially
involved in pathogen response and control including: increased
dephosphorylation (i.e., activation) of inducible nitric oxide;
activation of TLR4 and TLR5 pathways including many of the
adaptor and intermediate signaling proteins involved in the signal
cascade leading to NF-κB activation (Figure 5); and reduced
phosphorylation (i.e., activation) of NLRP3 – a major hub
in the inflammasome. Salmonella evasion of innate responses
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FIGURE 4 | Immune signaling pathways in bovine monocytes. Schematic representation of the IFNγ and TLR9 signaling pathways in response to exogenous stimuli
and M. avium subsp. paratuberculosis infection. (A) Signaling pathways activated in uninfected bovine monocyte following stimulation with IFNγ, and TLR9 agonist
CpG-ODN. Both pathways lead to the downstream phosphorylation of unique intermediates terminating with the translocation of distinct transcriptional activators
into the nucleus to induce the expression of pro-inflammatory responses and cytokines. (B) M. paratuberculosis infection of bovine monocytes interferes with IFNγ

signaling near the receptor by inducing the expression of SOCS, which disrupts JAK-STAT signaling. M. paratuberculosis infection also dysregulates TLR9 signaling
by shunting the response toward the PYK2 pathway effectively blocking the induction of pro-inflammatory responses via MYD88. “P” designates protein in its
phosphorylated state. Figure is adapted from Arsenault et al. (57, 58) and generated using BioRender. AP-1, adaptor protein complex 1; CpG-ODN, cytosine
triphosphate-guanine triphosphate oligodeoxynucleotide; IFN, interferon; IKKα, inhibitor of nuclear factor kappa-B kinase subunit alpha; IRAK, interleukin-1
receptor-associated kinase 1; JAK, janus kinase; JNK, c-Jun N-terminal kinase; MEKK, MAPK/ERK kinase; MYD88, myeloid differentiation primary response protein;
NFκB, nuclear factor kappa B; PYK, protein-tyrosine kinase; RAC, Ras-related C3 botulinum toxin substrate; SHC, Src homology 2 domain-containing-transforming
protein; SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of transcription; TAK, TGF-beta-activated kinase; TRAF, TNF
receptor-associated factor; TYK, non-receptor tyrosine protein kinase; TLR, Toll-like receptor.

in macrophages was most evident in the dephosphorylation
(i.e., inactivation) of the adaptor protein caspase recruitment
domain-containing protein 9 involved in mediating NOD-like
receptor signaling leading to activation of cell apoptosis and
the production of NF-κB, and the continued perturbation of
mitogen-activated protein (MAP) kinases at all time points
(Figure 5A). These findings provide the basis for developing
and testing novel therapeutics that target these pathways and
gene products to potentially boost innate immune defenses that
restrict Salmonella intracellular persistence.

A follow up in vitro study by the same authors focused
their analysis on phosphorylation targets associated with
proteins in the calcium/calmodulin signaling pathway (66).
Both S. Enteritidis and S. Heidelberg infection of chicken
macrophages resulted in differential phosphorylation of
peptides associated with calcium/calmodulin signaling pathway
suggesting Salmonella dysregulates this pathway to promote its
intracellular survival. This conclusion was further supported

by the observation that treatment of chicken macrophages with
a calmodulin inhibitor both inhibited nitric oxide production
and promoted the intracellular survival of Salmonella. Taken
together, these in vitro studies illustrate how kinome technology
can be applied to investigate global changes in host cell signaling
pathways to specifically identify mechanisms exploited by
pathogens to evade host innate immune defenses, and those in
which the host activates in an attempt to control infection.

KINOME ANALYSIS OF IN VIVO
INFECTION MODELS

While the early kinome investigations of host-pathogen
interactions prioritized ex vivo infection models, there was early
evidence of the opportunity for consideration of samples of
greater biological complexity. Specifically, that the pioneering
investigation of peptide arrays described signaling responses
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FIGURE 5 | Schematic representation of the immune signaling responses occurring in chickens infected with Salmonella. (A) Salmonella infection of chicken
macrophages in vitro activates TLR4 and NOD-like receptor signaling pathways leading to the activation of unique transcriptional activators involved in inducing
pro-inflammatory responses (64). (B) Kinome analysis of cecal tissue from Salmonella-infected chickens revealed differential phosphorylation of TGF-β and
non-canonical Wnt signaling pathways suggesting a dampening of pro-inflammatory responses that supports Salmonella evading host immune defenses and
establishing a persistent local infection (76). Figure is adapted from He et al. (64) and Kogut et al. (76); additional signaling responses have been characterized
through biochemical analyses of TLR4, CARD9, and the NLRP3 inflammasome in bone marrow-derived macrophages and are described elsewhere (117–119).
Protein identities in the figure that are colored (i.e., purple, blue, and pink) were identified as differentially phosphorylated (p < 0.05) (64, 76). Figure is adapted from
KEGG Pathway Mapper (https://www.genome.jp/kegg/mapper.html), and generated using BioRender. “P” designates protein in its phosphorylated state. AP-1,
adaptor protein complex 1; CAMK2A, calcium/calmodulin-dependent protein kinase type II subunit alpha; CARD, caspase recruitment domain-containing protein;
cIAP, cellular inhibitor of apoptosis; ERK, extracellular signal-regulated kinase; FZD1, Frizzled-1; GSK3β, glycogen synthase kinase-3 beta; IκB, NF-κB inhibitor alpha;
IKKα, inhibitor of nuclear factor kappa-B kinase subunit alpha; IRAK, interleukin-1 receptor-associated kinase; JNK, c-Jun N-terminal kinase; MAP,
mitogen-activated protein kinase; MYD88, myeloid differentiation primary response protein; NFAT, nuclear factor of activated T-cells; NFκB, nuclear factor kappa B;
NOD, nucleotide-binding oligomerization domain-containing protein; P70S6K, ribosomal protein S6 kinase beta-1; PKC, protein kinase C alpha type; RIP,
receptor-interacting serine/threonine-protein kinase; Smad, mothers against decapentaplegic homolog; TAB, TAK1-binding protein; TAK, mitogen-activated protein
kinase; TGFβ, transforming growth factor beta; TGFβR, TGFβ receptor; TIRAP, toll/interleukin-1 receptor domain-containing adaptor protein; TRAF, TNF
receptor-associated factor.

within PBMCs (27). Encouraged by the results of the kinome
analysis within ex vivo models, and emboldened by the results
of the characterization in PBMCs, the technology was translated
to in vivo infection models. The following examples represent
kinome analysis of different biological matrices from in vivo
infection models: PBMCs, intestinal biopsies, and muscle
samples. Additionally, in the unique situation of investigating
host responses of an insect to pathogenic challenge, whole
organism kinome profiling is also described.

Mycobacterium avium subsp.
paratuberculosis (Intestinal Samples)
The majority of cattle infected with M. paratuberculosis do
not develop clinical Johne’s disease. This indicates the ability
of animals to mount a local immune response that controls
the infection. The specific mechanisms by which these animals
resist infection are not clearly defined. Understanding the
molecular basis of a protective response would provide valuable
guidance in the efforts to develop vaccines and therapeutics.
It was hypothesized that differences in this host-pathogen
interaction in the early stages of infection at the local site
of infection in the small intestine determine the nature and
efficiency of the induced immune response. To study the host-
M. paratuberculosis interaction at the local site of infection
in the bovine host, a novel intestinal segment model was

employed (67). This intestinal segment model enables targeted
delivery of a defined dose of a pathogen contained to a specific
region of the gut (68, 69). In this study, intestinal segments
were surgically isolated in the ileum, the site of persistent
M. paratuberculosis infection. Additionally, uninfected intestinal
segments were prepared proximal to the M. paratuberculosis-
infected segments of the same animal serving as valuable intra-
animal, syngeneic controls.

Kinome analysis was performed on samples from the
uninfected and M. paratuberculosis-infected segments at 1-
month post-infection. The datasets emerging from kinome
analysis on these ileal intestinal samples clustered into two
distinct groups, indicative of the occurrence of distinct cellular
responses to M. paratuberculosis. These differences in signaling
corresponded to innate immune and interleukin (IL-1, IL-4,
IL-6, and TGF-β) signaling pathways as well as differences in
the Wnt/β-catenin pathway. The distinct signaling responses to
M. paratuberculosis at the site of infection were also reflected at
the level of the organismal M. paratuberculosis-specific immune
responses where the experimental animals could be classified
into two distinct groups based on distinct antibody, T cell
proliferation, and IFNγ responses (70). Most significantly, the
distinct patterns of cell signaling anticipated the differences
in the M. paratuberculosis-specific immune responses.
Understanding the cellular mechanisms that determine

Frontiers in Immunology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 76530

https://www.genome.jp/kegg/mapper.html
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00765 May 15, 2020 Time: 14:17 # 11

Facciuolo et al. Kinome Analysis of Livestock Species

the balance between cell-mediated and antibody responses
could be of considerable importance in the development of
treatments for M. paratuberculosis as well as providing a
novel method for rationale selection and/or design of mucosal
vaccines and adjuvants.

In addition to the biological insight that was provided into
M. paratuberculosis infection, this investigation represented a
key step in the evolution of the application of kinome analysis
for understanding host-pathogen interactions. By demonstrating
that critical differences in signaling could be detected in response
to stimuli of the intact animal motivated subsequent efforts to
apply kinome to define responses occurring within the context
of the intact host.

Bovine Viral Diarrhea Virus (PBMCs)
As previously described, many pathogens, in particular those that
result in persistent infections, utilize immunosuppression as a
significant component of their pathogenic mechanism. Within
this, a common theme is to limit the ability of the infected host to
produce, or respond to, interferons. Bovine viral diarrhea virus
(BVDV) is responsible for some of the most significant losses
to the global cattle industry (71). While BVDV causes persistent
infection of cattle, there is debate of the extent and mechanisms
by which the pathogen impacts host immune responses.

Bovine viral diarrhea virus strains cluster into two
genotypically distinct clades, BVDV1 and BVDV2, with
further sub-division of each genotype into cytopathic (cp)
and non-cytopathic (ncp) phenotypic biotypes on the basis
of their lytic activity to tissue culture epithelial cells (72). In
general, cpBVDV strains are associated with the activation of
IFN responses while there is less consensus on whether this is
also true for ncp-BVDV strains (72–74). It is also important
to keep perspective that manipulating the induction of these
cytokines is just one possible mechanism by which ncp-BVDV
could manipulate this aspect of the host immune response,
that blocking the ability of the infected cells to respond to
these signals, as observed for M. paratuberculosis and other
pathogens, is another option to functionally negate this host
immune response.

An investigation was conducted to determine the occurrence
and functionality of interferon responses following the challenge
of cattle with ncp-BVDV. There were three aspects to this
characterization: (1) defining levels of interferon in response to
challenge with ncp-BVDV, (2) kinome analysis of PBMCs from
infected calves to investigate interferon-associated signaling,
and (3) transcriptional analysis of interferon-regulated genes at
time points corresponding to the IFNγ and IFNα responsive
phases of acute BVDV infection. This collectively covers the
induction of interferon release, the ability of these cytokines to
induce signaling events within immune cells, and the functional
consequences of these signaling events.

In response to the infection of cattle with ncpBVDV2-1373
there were significant increases in serum levels of both IFNγ and
IFNα. The functionality of these responses was dually supported
at the levels of both signal transduction and gene expression;
there was clear evidence for activation of classic IFN-activated
signaling pathways, as well as induced expression of IFNγ and

IFNα regulated genes, within the PBMCs of the infected animals
relative to the age-matched controls (74). Dampening of the
IFNγ responsiveness of peripheral blood immune cells had also
been proposed as an element of the pathogenic mechanism of
BVDV (72) but kinome analysis of PBMCs from BVDV-infected
cattle indicated activation of IFNγ induced signaling which was
further confirmed through induced-expression of IFNγ regulated
genes (74).

This paper was highly significant in demonstrating the ability
to monitor host responses to pathogens within a cell population
that is readily available for repeated sampling in a non-lethal
fashion. As will be discussed later, PBMCs seem to hold
tremendous potential for kinome investigations to determine
responses to a number of stimuli as well as for the identification
of phosphorylation-associated biomarkers.

Salmonella Infection of Chickens
(Muscle Samples)
Salmonella enterica serovar Typhimurium (Salmonella
Typhimurium) infection of young chickens results in
asymptomatic colonization of the cecum accompanied by
persistent fecal shedding. Despite the apparent disease-free
state of these infected birds, it was hypothesized that the local
colonization of the cecum has systemic effects influencing
the physiology of the avian host. To address this, kinome
analysis was completed on breast muscle collected from
Salmonella challenged and uninfected broiler chickens to
identify differentially phosphorylated peptides (75). Biological
pathway analysis of the differentially phosphorylated peptides
revealed that host metabolic pathways were significantly
dysregulated in breast muscle during the early stages of
infection (<3 weeks post-infection). Specifically, pathways
associated with decreased energy currency (i.e., glucose
metabolism, and intermediates shared between insulin
and mTOR pathways), fatty acid metabolism (via AMPKα

signaling) and immune-related pathways (i.e., Fc receptor
and TLR signaling). Despite the apparent lack of clinical
signs associated with Salmonella infection in these chickens,
kinome analysis identified profound systemic effects of infection
on skeletal muscle suggesting colonization negatively affects
the physiology of the avian host with specific ramifications
on meat quality.

A number of studies have used kinome technology to
identify the cell signaling pathways exploited by Salmonella to
support its persistence in the intestines of broiler chickens. In
one particular study, cecal tissue collected from Salmonella-
challenged broiler chickens revealed an up-regulation of the
pro-inflammatory cytokine gene IL-6 early in infection (48 h
post-infection) that quickly regressed by 4 days post-infection
as the anti-inflammatory cytokine gene TGF-β4 was up-
regulated and remained significantly higher at 7, 10, and
14 days post-infection (76). Kinome analysis was used to
identify the signaling pathways and mechanisms responsible
for this persistent local anti-inflammatory state. Cecal tissue
extracts from Salmonella-infected and control chickens applied
to chicken species-specific kinome arrays revealed significant
kinase-mediated phosphorylation of peptides associated with
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canonical Wnt/β-catenin, non-canonical Wnt/Ca2+, and TGF-β
signaling pathways at 4 days post-infection (Figure 5B). Closer
investigation into individual phosphorylation events on the
kinome array showed increased phosphorylation of nuclear
factor of activated T cell (NFAT) peptides in addition to
dephosphorylation of IKK and NF-κB suggesting Salmonella
targets key host proteins to suppress the activation of pro-
inflammatory cytokine responses thus promoting an anti-
inflammatory microenvironment to support its persistence
within this tissue (Figure 5B).

To further elucidate host immune signaling pathways elicited
by the avian host following Salmonella Enteritidis infection, cecal
tissue was collected from Salmonella challenged broiler chickens
and extracts applied to chicken species-specific kinome peptide
arrays (77). Differentially phosphorylated peptides at 4 days
post-infection belonged predominantly to two immune-related
pathways: T cell signaling and JAK-STAT pathways. Further
characterization of these differential phosphorylated peptides
led to the proposed mechanism whereby dephosphorylation
of phospholipase c-G1 fails to activate either NF-κB or
NFAT leading to the inhibition of local pro-inflammatory
responses providing Salmonella with an immune privileged
site to establish persistent infection. In addition to elucidating
proposed mechanisms associated with immune evasion, kinome
analysis has also helped identify host cell signaling responses
associated with increased natural resistance to Salmonella
infection. Intestinal tissue extracts from chickens categorized
as high and low bacterial burden were applied to kinome
peptide arrays and differentially phosphorylated peptides were
comparatively analyzed. Pathway analysis revealed that intestinal
tissue from chickens with low bacterial burden, when compared
to high bacterial burden, up-regulated pathways associated
chemokine signaling, FcεRI signaling, focal adhesion, insulin
signaling, JAK-STAT signaling pathway, MAP kinase signaling,
neurotrophin signaling, and T cell receptor signaling (78).
These analyses suggest that early activation of these pathways
at the local site of infection are associated with increased
natural resistance to Salmonella infection in the avian host.
Continued investigation and validation into these gene products
and pathways will further advance our understanding of
intracellular Salmonella infection in an effort to improve
animal health and meat quality, and provide greater food
safety to consumers.

Varroa Mite Infestation of Honeybees
While not a traditional livestock species, honeybees are
key contributors to food production with approximately a
third of food crops depending on them for pollination.
As such, there is considerable concern over the trend of
worldwide declines in honeybee populations and health (79).
Infestation by Varroa mites is typically regarded as the most
detrimental threat to honeybee health. A current priority of the
honeybee industry is to identify mechanisms and biomarkers
of Varroa mite tolerance to inform breeding efforts toward
this phenotype. To this end, a honeybee-specific peptide array
was developed to enable investigation of kinome responses to

Varroa mite challenge. The development of a peptide array
for an insect represented a significant advancement in the
prediction of phosphorylation sites in a species of interest.
This was achieved through consideration of experimentally
determined phosphorylation sites from a variety of species
but perhaps most importantly, from Drosophila melanogaster
which was the closest relative for which phosphorylation sites
had been defined.

The application of this array to uninfested bees representing
colonies of defined, differentially sensitivities to Varroa mite
infestation revealed unique signaling profiles between bees of the
two phenotypes (80). That is to say, the differences in phenotypes
were reflected at the level of whole organism signaling profiles,
supportive of the potential to use these differences as biomarkers
to guide breeding efforts. Furthermore, bees of the different
phenotypes demonstrated distinct signaling responses to Varroa
mite challenge. Gene ontology analysis of the peptides which
were differentially phosphorylated between the bees of the two
phenotypes indicated that the distinct susceptibilities to Varroa
mite infestation did not reflect compromised immunity within
the uninfested Varroa mite susceptible bees. Instead, there was
evidence that mite infestation results in immune suppression
specifically within bees of the susceptible phenotype. This
immunosuppression increases the susceptibility of these bees to
secondary viral infections, including those carried by the Varroa
mites. The demonstration of more diverse viral infections in
mite-infested, susceptible adult bees would seem to support this
hypothesis (80).

KINOME ANALYSIS FOR
IDENTIFICATION OF ANTIMICROBIAL
THERAPEUTICS

While many kinase inhibitors used in the context of cancer
chemotherapies, there is emerging appreciation of the potential
to repurpose licensed kinase inhibitors, including as antibiotics
and antivirals (81). This includes, but is not limited to, pathogens
that directly impact host signaling through the use of kinase
effector molecules. In these instances, there is the opportunity
to use kinase inhibitors designed for bacterial kinases as
antimicrobials (82). As previously mentioned, the BKIs which are
specific for parasitic targets are under active investigation for the
treatment of a number of human and veterinary infections. It
is also possible to use kinase inhibitors to impact host signaling
to promote the clearance of a pathogen. For example, imatinib,
an FDA approved chemotherapeutic kinase inhibitor, facilitates
clearance of Mycobacterium tuberculosis, the causative agent of
tuberculosis, from a human fibroblast cell line (83).

Kinome analysis of host-pathogen interactions also has the
potential to identify signaling pathways impacted by infection
which, when acted upon through kinase inhibitors, have the
potential to promote more effective clearance of the pathogen.
For example, kinome analysis of M. paratuberculosis-infected
monocytes indicated that the pathogen redirects TLR signaling
through the Pyk2 pathway, an action that would seem to serve
the benefit of the pathogen. Based on this hypothesis, Pyk2
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inhibitors were investigated as potential therapeutics of this
chronic infection. Consistent with the hypothesis, treatment of
M. paratuberculosis-infected cells with Pyk2 inhibitors promoted
clearance of the pathogen (58).

In a pair of investigations of high consequence pathogens,
kinome analysis was applied in an effort to identify therapeutic
targets. Kinome analysis of human hepatocytes to Ebola infection
identified VEGF signaling as a critical component of the
pathogenic mechanism. Treatment of cells with VEGF inhibitors
reduced viral loads in tissue culture models as well as reducing
lethality in a mouse model of Ebola infection. In this model, the
VEGF inhibitors were more effective as prophylactics than as
treatments with 50 and 20% reductions in lethality respectively
(84). In a second kinome study, investigations performed on
human monocytes in response to Monkeypox infection identified
phosphorylation events associated with Akt specific to a more
pathogenic clade of the virus (Congo Basin MPXV) as compared
to Western African MPXV, which has lower rates of lethality.
The use of kinase inhibitors to Akt phosphorylation resulted in
a significant reduction in viral titres of Congo Basin MPXV but,
as predicted by the kinome data, did not impact viral replication
of Western African MPXV (85). Given the potential for kinome
analysis to rapidly translate into potential therapeutics, including
the repurposing of licensed therapeutics, it is not surprising that
the technology has been incorporated for characterizing high
consequence pathogens (86).

While kinase inhibitors are unlikely to be used in the treatment
of livestock, the identification of host responses associated with
effective clearance of the pathogen may enable the development
of alternative therapeutic approaches, such as vaccines, which are
more amenable to livestock. These examples also highlight the
potential to apply kinome analysis to animal models of human
diseases, or diseases causing co-infection of animals and humans,
to the identification of potential human therapies.

KINOME ANALYSIS OF RESPONSES OF
LIVESTOCK TO STRESS

Livestock are exposed to a multitude of stressors during routine
industry practices like weaning, shipping, and restraint. There
is a growing appreciation within the livestock industry of
the negative consequences of these stresses. Stress decreases
milk production, decreases weight gain, and compromises meat
quality and increases susceptibility to, and severity of, infectious
disease (87). With implications for animal health, well-being and
productivity, minimizing animal stress through improved animal
management procedures and/or selective breeding is becoming
a priority to the livestock industry. Effective management of
stress, however, depends on the ability to identify and quantify
the effects of various stressors and determine if individual or
combined stressors have distinct biological effects.

Responses of Cattle to Restraint Stress
Cattle are commonly restrained during routine handling
practices such as vaccination, therapeutic intervention, and
transport. Restraint can elevate plasma cortisol (88), heart rate,

and breathing rate (89). As not all animals respond equally
to restraint stress, there is a desire to better understand the
molecular basis of the stress responses as well as to identify
biomarkers that anticipate maladaptive responses to stress.

In an effort to fully describe the range of response to
restraint stress, cattle were subject to repeated episodes of brief
(5 min) restraint and evaluated for behavioral (chute entry
order, chute behavior, and exit velocity), physiological (serum
cortisol), and biochemical (kinome) responses. Based on serum
cortisol levels (the traditional biomarker of stress responses) sub-
groups of animals representing the extremes of stress response
were identified. Kinome profiling of PBMCs collected from
these animals following a restraint episode revealed distinct
signaling events between the high and low cortisol responders.
These signaling patterns anticipated differences in apoptosis
and carbohydrate metabolism between the two phenotypes,
biological differences which were validated through independent
techniques (90). In particular, the kinome data anticipated a shift
toward the anabolic stage of glycogen metabolism in the high
stress responding animals, a finding that was verified by elevated
serum glucose levels as well as depleted glycogen stores in the
animals of this phenotype. Most importantly, serum glucose
provided a reliable, inexpensive indicator of serum cortisol levels
and often had greater predictive value than cortisol for stress-
related behavioral responses (90).

Responses of Chicken to Heat Stress
Livestock are often exposed to environmental conditions that
impact their health and well-being. For example, during mass
transport poultry are subject to conditions that can result in
significant fatalities as well as compromising the health and
meat quality of the surviving animals (91). Much of this
reflects extremes of temperature that can exist within shipping
containers, in particular during transport in harsh climates. As
a consequence of the positioning of the heating and cooling
systems the front of the container often results in temperature
extremes at the front and back of the container. Each of
these extremes of temperature can have negative consequences
on animal health.

To identify the molecular mechanisms underlying these
changes, a species-customized peptide array was created for
kinome analysis of chickens. This array was designed with a
specific priority to include representation of phosphorylation
events with central roles in regulation of metabolism. As different
regions of the body have unique responses and susceptibilities
to thermal stress, kinome analysis was performed on breast and
thigh muscle in response to both hot (+35◦C) and cold (−15◦C)
stress temperatures that mimic those which are often experienced
during transport. Initial evaluation of meat quality following
stress treatments revealed cold stress, compared to heat stress,
was more detrimental to meat quality as evident by increased
pHu, water binding capacity, darker color and lower glycolytic
potential – these effects were more pronounced in the thigh than
the breast muscle. Subsequent kinome analysis revealed tissue-
specific phosphorylation events occurring in breast and thigh
muscle (92). Specific to breast muscle, pathway analysis revealed
the activation of ErbB signaling pathway in response to cold
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stress, a pathway implicated as having cytoprotective effects in
various animal models and associated with muscle repair and
cell survival. This finding was consistent with the moderate
effect of thermal stress observed in breast tissue. Conversely,
thigh muscle, which showed extensive changes in meat quality
following cold stress, resulted in the activation of innate immune
response and TGF-β signaling, pathways commonly associated
with tissue damage and repair responses. Collectively, this study
offers insight into the unique susceptibilities, as well as functional
consequences, of thermal stress of these tissues.

A further important outcome of this analysis was the
observation that samples from different muscle types had distinct
signaling profiles, even in the absence of thermal stress. This
contributes to, and adds depth to, the emerging hypothesis that
distinct phenotypes are often reflected at the level of the kinome;
that distinct signaling profiles (kinotypes) exist across species,
between individuals of the same species, and within different
tissues of the same individual (93). This was later supported by
an investigation of cattle which demonstrated distinct patterns
of kinome activity within adjacent, but functionally distinct,
regions of the intestine (94). Further to this, comparative kinome
analysis of CD21+ B cells obtained from two anatomically
distinct sites (i.e., intestinal Peyer’s patches and blood) revealed
significant differences in signaling profiles as well as offering
mechanistic insight into critical functional differences between
these populations (94).

FUTURE DIRECTIONS

Technological Limitations (Software)
Even with the development of computational tools customized
specifically for kinome data analysis, a few technical challenges
still need to be addressed. Kinome arrays can create a large
amount of statistical noise, due to a low signal-to-noise ratio,
that may interfere with the results. Currently, this is mitigated
through the use of normalization techniques such as variance
stabilizing normalization, however no technique can remove all
statistical noise. Advancements in normalization methods can be
integrated into the kinome analysis pipeline but many features
need to be specifically tailored to the unique characteristics of
kinome data. A number of key sources of noise that affect kinome
arrays have been identified.

A large degree of variance can be seen across regions of
a peptide microarray. One source of such variance causes
increased foreground and background signal at the bottom of
the array resulting in spatial bias. This is a systemic bias as a
result of uneven distribution of biological sample applied to the
array and/or the stain used to bind and detect phosphorylated
residues. There are methods that sharply reduce this variance that
have been implemented in PIIKA. However, there is location-
based variance between the edges and the center of the array,
and variance between replicate blocks that currently cannot be
corrected for as easily.

While the development of PIIKA has been a large
improvement from using DNA microarray technology for
kinome data analysis, there remains the necessity for using

DNA microarray software for image analysis as no kinome-
specific technology has been created to date. This leads to issues
regarding the alignment of the spots on the microarray. For now,
a large degree of manual alignment is required for kinome arrays
that is done relatively automatically for DNA microarrays. This
is not only a large investment of time, especially in experiments
with a large number of arrays and replicates, it is also subject
to error. The outcome of this type of error can be categorized
by the shift in the foreground mean relative to the foreground
median. This indicates the mislabeling of pixels of the spots as
foreground rather than background. This is then improperly
corrected and causes the foreground pixels to be asymmetrically
distributed as the majority of pixels in an improperly aligned
spot are mislabeled, and ultimately results in a foreground mean
that is much lower than the actual value. It is very possible
that the mean values of many of the top hits are significantly
lower than they should be and thereby not appearing in the
results as a top hit.

The selection of the top hits in a kinome array must be done
carefully, and with the amount of noise often present in the
output it is necessary to apply statistical methods to normalize the
data and remove background noise. However, different methods
have vastly different outcomes, and with a plethora of possible
tools, algorithms and techniques to choose from, it is unknown
which methods translate more accurately to biological truth.
This may not be consistent among different experiments and
array conditions. There may be specific characteristics of arrays
that favor different statistical methods. Further investigation into
which techniques are best applied situationally is needed.

Technological Limitations (Hardware)
Currently, the majority of peptide array kinome efforts
utilize either radioactivity or phosphorylation-specific stains
for the detection of the signal on the arrays; neither of
these options are ideal. Radioactive approaches are challenged
by issues relating to safety and regulation while the stains
can be problematic due to lack of specificity, including
background staining of the arrays which complicates evaluation
of the signal-to-noise ratios. Other detection methods should
be investigated. This could include a variety of antibodies
with general reactivity toward phosphorylated residues; either
reactivity with modified serine and threonine residues, or
serine, threonine, and tyrosine, or a combination of such
antibodies. There are modified forms of ATP, such as gamma-
modified ATP analogs, which are functionally analogous to
the radioactive derivatives but with a basis of detection
in fluorescent labeling (95). These ATP analogs might be
effective for peptide array investigations, although the efficiency
by which they are recognized and utilized by the various
kinases would need to be carefully defined. At the very least,
these alternatives for detection should be evaluated within a
comparative experiment.

Realms of Application
Within the upcoming years there are a number of fields of
investigation which would seem logical and strategy directions
to apply the kinome, both in terms of organisms to be
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considered, applications to understanding the mechanisms and
efficiencies of treatments, and philosophies of application. While
the information provided by DAPPLE2 enables the creation of
customized peptide arrays for virtually any species, there are a
couple of areas where there seems to particularly promising and
strategic opportunities.

Kinome Analysis for Insects and Other
Small Eukaryotes
The use of peptide arrays to define signaling events within the
honeybee highlights the potential for the application of this
approach to other insect species which are of environmental,
economic, and scientific importance. In particular, the
opportunity to conduct whole-organism kinome profiling
to identify biomarkers and mechanisms of phenotypes could
enable high-throughput screening efforts of insects. For example,
this additional layer of information could be particularly
useful for species, such as D. melanogaster, which have been
extensively characterized through genomic approaches. As
the phosphoproteome of Drosophila has been experimentally
defined, creation of a highly reliable Drosophila-specific
array would be a straightforward endeavor. The defined
phosphoproteome of Drosophila also serves as an important
resource for the creation of peptide arrays for other insect
species of undefined phosphoproteomes, as was the case for
honeybees (96).

In contrast to the distinct, phenotype-specific signaling
profiles that were observed in whole organism kinome profiling
of honeybees, within higher organisms there is clear evidence
for distinct patterns of signaling within different regions of
the body, and even within specialized compartments of the
same region of the body. However, the lower levels of tissue
specialization within smaller organisms may translate into a
more homogenous signaling response throughout the organism.
It would be interesting to investigate the extent to which whole
organism kinome profiling can be effectively applied to other
small eukaryotes, in particular those that serve as important
research models, such as nematodes, would seem logical targets
for future investigations.

Plants
Considerable efforts have been expended to define both the kinase
complement (in terms of number and identities of kinases) and
the phosphoproteomes of many plant species (97–99). As with
animal species used for food production, infectious diseases and
stress are also two major priorities affecting crop production.
Kinome analysis could similarly be applied to define phenotypic
traits associated with increased stress tolerance and susceptibility,
in addition to better understanding plant immune defenses
against the diverse range of pathogens they encounter. There
has been considerably less effort toward global kinome profiling
in plants, in particular through peptide arrays. There are two
publications describing the application of peptide arrays to define
kinome activity in the model organism Arabidopsis thaliana (100,
101). The peptide arrays utilized in these investigations were not
customized to reflect the Arabidopsis phosphoproteome. While

these investigations supply high-level proof-of-principle evidence
of the opportunity to apply the technology to plants, it is very
difficult to extract specific biology from this type of cross-species
application of peptide arrays. Given the efforts expended to define
plant responses through other omic approaches, as well as the
success achieved in translating this approach to livestock, it would
seem timely and appropriate to extend this approach to plants. In
particular, the available plant phosphoproteomes databases can
enable the creation of peptide arrays based on experimentally
defined phosphorylation sites as well as serving as an effective
starting point for the creation of arrays for plant species whose
phosphoproteomes have yet to be defined.

MECHANISMS OF THERAPEUTICS

In addition to the potential to use kinome analysis to inform
rational selection of therapeutics, there may also be opportunities
to decipher the mechanisms of action of potential therapeutics.
Such an approach could be applied to inform the rational
selection, application, and refinement of these treatments.
The ability of kinome analysis to offer nuanced information
about host responses could also provide valuable correlates of
protection to facilitate high-throughput screening of libraries of
potential therapeutic agents and/or treatments. Specifically, there
is an opportunity to apply kinome to investigate the modes of
action for prebiotics, probiotics and postbiotics. There is rapidly
growing appreciation of the importance of the microbiome to
human and animal health. With this, there is emerging priority
to manipulate the commensal bacterial environment through
the use of prebiotics, probiotics, and postbiotics. This is not a
trivial task. The contributions of the microbiome reflect complex,
dynamic interactions between the host and associated microbes.
More specific information on the mechanisms and consequences
of action of these interactions would enable rational application
and refinements of these treatments, including indicators to
define therapeutic benefits.

Prebiotics
Prebiotics are non-digestible sugars that are utilized to promote
the establishment of a healthy microbiome. The traditional
view is that prebiotics function by promoting the growth of
beneficial gut microbes, independent of any direct effects on
the host. An investigation was conducted to determine the
occurrence and consequences of direct impacts of prebiotics
on the intestinal mucosa. Treatment with two commercial
prebiotics, inulin and short-chain fructo-oligosaccharide, in the
absence of microbes, had beneficial responses by promoting
intestinal epithelial integrity to limit barrier disruptions by
pathogenic intestinal microbes. These outcomes were achieved
through the induction of select tight junction proteins via a
mechanism involving activation of protein kinase C signaling
(102). In addition to specific information of the action,
mechanisms, and consequences by which these prebiotics exert
barrier protective effects on the intestinal epithelium, this study
also challenged the paradigm that the action of prebiotics was
limited to, and dependent on, microbial influence. Shifting this
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perspective will enable new opportunities for the selection and
refinement of prebiotics.

Postbiotics
A major contributor to the evolution of antibiotic resistance
is their overuse as growth-promoters in livestock species
such as poultry. Probiotics present an attractive alternative
to populate the alimentary tract with beneficial microbes to
improve overall health. Postbiotics provide products derived
from probiotics to elicit and prime beneficial host immune
responses. Kinome analysis was recently used to understand how
postbiotics administered to Clostridium perfringens-challenged
broiler chickens altered the intestinal microenvironment to
contribute to reduced lesion scoring, lower bacterial loads and
mortality (103). Comparative analysis of intestinal tissue extracts
from chickens administered the postbiotic alone showed very
few peptide phosphorylation events on chicken species-specific
kinome arrays when reacted with duodenal tissue extracts, but
extensive kinase-mediated phosphorylation events when reacted
with jejunal tissue extracts. Further analysis of jejunal tissue
revealed postbiotic treatment alone impacted peptides associated
with innate immune pathways. By contrast, jejunal tissue extracts
from chickens challenged with C. perfringens alone revealed
kinase-mediated phosphorylation of peptides associated with T
cell receptor signaling, natural killer cell mediated cytotoxicity,
and the Fc epsilon receptor I signaling suggesting the induction
of adaptive immune pathways. In chickens challenged with
C. perfringens after receiving the postbiotic treatment pathway
analysis revealed, unexpectedly, activation of overall fewer
immune-related pathways in jejunal tissue as compared to either
postbiotic administration alone or C. perfringens challenge alone.

These data suggest that postbiotics induced an immune-
modulating effect in the jejunum of broiler chickens resulting in
an altered intestinal microenvironment capable of controlling
C. perfringens infection while, as importantly, maintaining
gut barrier and function. Further investigation into this
balanced immune response will provide critical information
on understanding how mucosal surfaces can control infection
while maintaining a homeostatic (i.e., anti-inflammatory)
state. Moreover, this study shows that kinome technology
can provide a novel, and complementary, approach in
understanding the mode of action for these alternative,
antibiotic-independent therapeutics.

Correlates of Immune Protection
Researchers typically focus on a very limited number of correlates
of immune protection for screening vaccine antigens. However,
chronic infectious diseases, in particular, would benefit from
a more comprehensive assessment of immune responses both
during infection and in response to vaccines. As an example,
there is clear evidence that IFNγ is a key cytokine contributing
to control and clearance of mycobacterial infection. However, in
vivo, IFNγ has not been a reliable correlate of immune protection
for either M. paratuberculosis in bovine Johne’s disease (104,
105) or Mycobacterium bovis in bovine tuberculosis (106). Thus,
employing IFNγ as the sole readout of immune protection when
screening for potential vaccine candidates could negate a number

of promising candidates. Understanding the processes leading to
IFNγ induction, and the subsequent consequences, would create
a better understanding of immune protection and lead to better
selection of immune correlates when screening vaccine antigens.

Phenotype-Driven Kinome Profiling
Thus far, kinome profiling has typically been applied to describe
signaling events in response to a defined stimulus. There is,
however, the opportunity to adapt a “phenotype first” approach
that has been highly successful for other omic approaches. That
is, to identify and investigate phenotypically distinct sub-groups
of a population in an effort to identify molecular biomarkers
and mechanistic insight into those differences. The example of
describing mechanisms of Varroa mite tolerance within colonies
of honeybees of distinct phenotypes highlights the potential of
this approach for kinome investigations. Within the context of
livestock applications such biomarkers could function to guide
breeding efforts while in the context of human health applications
to differentiate signaling events within healthy and disease-
associated individuals.

PERIPHERAL BLOOD MONONUCLEAR
CELLS

The first use of peptide arrays for global kinome profiling
was to describe signaling events within human PBMCs in
response to ex vivo stimulation with LPS (27). Since this
foundational work PBMCs have remained a convenient and
informative cellular population for describing responses to a
variety of stimuli but with a shift from ex vivo to in vivo
stimulations. A critical advantage of PBMCs is the opportunity
to collect samples pre- and post-treatment which provides a
valuable control to minimize the contributions of the individual-
specific kinome profiles. For example, recent efforts for kinome
profiling of human PBMCs have investigated responses to
acute stress in the form of bungee jumping (107) while
another investigation of human PBMCs facilitated investigation
of signaling responses activated by consumption of marijuana
(108). Important phenotypic differences between individuals, in
particular with respect to immune function, may also manifest in
unique signaling profiles of PBMCs.

INTEGRATION WITH OTHER OMICS

As the respective omic disciplines evolve and refine there is
the overarching priority for more systems biology perspectives
that integrate cellular responses across a range of biomolecular
levels. To date there has been minimal effort to attempt to
integrate peptide array kinome data with the outputs of other
omic approaches, at least on a global scale.

From a more focused perspective, gene expression data
has often been used to verify the results of kinome studies.
For example, the observation of activation of interferon-
associated signaling pathways was shown to coincide with
elevated expression of interferon-regulated genes, highlighting

Frontiers in Immunology | www.frontiersin.org 16 May 2020 | Volume 11 | Article 76536

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00765 May 15, 2020 Time: 14:17 # 17

Facciuolo et al. Kinome Analysis of Livestock Species

the potential for cohesion between transcriptional and
kinomic responses. Other examples can highlight a seeming
disconnect between transcriptional and kinomic responses;
M. paratuberculosis-infected bovine monocytes had elevated
levels of expression of a receptor but decreased signaling
through the associated pathway. The information from each
of these techniques is not actually contradictory and these
differences instead highlight a key biological mechanism
that occurs within the functional realms that separate gene
expression and signal transduction. Efforts to merge kinome
datasets with those from other omics should look for not only
supporting evidence where the same biology is suggested at
each level of investigation but also where the results would
appear in contradiction with each other may suggest important
points of regulation. The implication of the same biology,
independent of the implied direction of change, activation
or inhibition, nevertheless still implicates the involvement
of that process.

CONCLUDING REMARKS

In the decade since the development of the first species-specific
peptide array there have been a wealth of publications that
demonstrate the value of kinome analysis for investigations
of livestock species. There has been a consistent evolution in
the tools supporting and enabling kinome analysis which have
enabled a consistent progression of the technology and the
complexity of the biology which is addressed. The technology
has not, however, achieved a point where it has been widely
incorporated into research programs. Instead, there is the
trend toward relatively small groups of labs applying the
technology through collaboration, organized research groups
within large organizations, and as fee-for-service opportunities,
both by commercial companies as well as units within academia
(University of Delaware Kinome Center).

The coming years will likely see the expansion of the
peptide arrays into new spheres of application including the
characterization of insect and plant species. Within these realms,

there will be greater opportunities to apply the technology to
samples of defined genetic and phenotypic diversity that will
strengthen the relationship between kinotypes and phenotypes.

Ironically, while the initial applications of peptide arrays to
livestock were inspired by advances in kinome science within
human health realms, the advances which have been made
during efforts to apply the technology to livestock are now
increasingly being applied within human health applications.
This reflects both the advances in the software for analysis
of kinome data but also by facilitating the development
of peptide arrays that are customized for consideration of
specific biology. This is a healthy and desired evolution of
the technology as the emergence of kinome data from a
variety of species will enable greater opportunities to consider
phosphorylation-mediated signal transduction from species-
comparative, evolutionary perspectives. This will undoubtedly
include emphasis on how the presence and absence of specific
kinases and phosphorylation sites across species impact the
phenotypic characteristics of the organism that may serve as an
important evolutionary selection pressure.
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To protect the health of sows and gilts, significant investments are directed toward

the development of vaccines against infectious agents that impact reproduction. We

developed an intrauterine vaccine that can be delivered with semen during artificial

insemination to induce mucosal immunity in the reproductive tract. An in vitro culture of

uterine epithelial cells was used to select an adjuvant combination capable of recruiting

antigen-presenting cells into the uterus. Adjuvant polyinosinic:polycytidylic acid (poly

I:C), alone or in combination, induced expression of interferon gamma, tumor necrosis

factor alpha, and select chemokines. A combination adjuvant consisting of poly I:C, host

defense peptide and polyphosphazene (Triple Adjuvant; TriAdj), which previously was

shown to induce robust mucosal and systemic humoral immunity when administered to

the uterus in rabbits, was combined with boar semen to evaluate changes in localized

gene expression and cellular recruitment, in vivo. Sows bred with semen plus TriAdj had

decreased γδ T cells and monocytes in blood, however, no corresponding increase in the

number of monocytes and macrophages was detected in the endometrium. Compared

to sows bred with semen alone, sows bred with semen plus TriAdj showed increased

CCL2 gene expression in the epithelial layer. These data suggest that the adjuvants may

further augment a local immune response and, therefore, may be suitable for use in

an intrauterine vaccine. When inactivated porcine parvovirus (PPV) formulated with the

TriAdj was administered to the pig uterus during estrus along with semen, we observed

induction of PPV antibodies in serum but only when the pigs were already primed with

parenteral PPV vaccines. Recombinant protein vaccines and inactivated PPV vaccines

administered to the pig uterus during breeding as a primary vaccine alone failed to

induce significant humoral immunity. More trials need to be performed to clarify whether

repeated intrauterine vaccination can trigger strong humoral immunity or whether the

primary vaccine needs to be administered via a systemic route to promote a mucosal

and systemic immune response.
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INTRODUCTION

Mucosal vaccination of livestock has the potential for several
benefits over classical parenteral vaccinations, including the
initiation of a strong mucosal and systemic immune response
(1, 2) while reducing the incidence of common needle-stick
injuries by veterinarians (3). However, several challenges need to
be overcome in order to generate a successful mucosal immune
response including avoiding vaccine elimination by the flow of
mucosal fluids across mucosal surfaces, recruitment of antigen
presenting cells (APCs), and targeting of the vaccine toward
APCs (4). Mucosal surfaces are primed to induce a tolerogenic
response toward antigens thereby limiting the reaction to
microflora, food, and environmental particles (5). Currently,
no studies have identified a commensal flora in the upper
reproductive tract of pigs, which may mean that the porcine
uterus may be less predisposed to a tolerogenic bias to antigens
encountered at its surface. In fact, studies in rats and rabbits
have shown that the uterus may be a suitable immunization
site as vaccines delivered to the uterus triggered a measurable
antigen-specific systemic and local humoral immunity (6–8).
Because a number of economically important diseases in pigs
such as porcine parvovirus (PPV) and porcine reproductive and
respiratory syndrome virus (PRRSV) impact reproduction, it
may be very beneficial to have a mode of vaccine delivery that
triggers a strong mucosal immune response in the uterus to
protect growing fetuses (9). For livestock systems that use natural
breeding, the uterus is not readily accessible for immunization.
However, because the majority of commercial pigs are bred by
artificial insemination (AI) (10), current husbandry practices
allow routine access to the uterus during each reproductive cycle.

Adjuvant facilitate uptake of the antigen across the epithelial
barrier, recruitment of APCs, activation of APCs, and they
protect the antigen from degradation (1). One or several of
these mechanisms of action may be required to generate a
successful mucosal vaccine response and, therefore, the inclusion
of multiple adjuvants may be necessary for an effective vaccine
formulation (11). Certain mucosal surfaces have specialized
epithelial cells such as M cells, which are efficient at sampling
and delivering antigens to underlying immune cells and these
cells can be targeted by adjuvants (4, 12). Although the uterine
epithelia has no known specialized epithelial cells or canonically
organized lymphoid tissue, it contains a multitude of epithelial
cells and both luminal (13) and subepithelial lymphocytes (14).
Thus, vaccine formulation and delivery need to be directed
toward normal epithelial cells or at immune cells recruited to the
uterine lumen or tissue.

The following study aims to determine which adjuvant
components and combinations can generate an immune
response in uterine epithelial cells (UECs). Additionally, we seek
to determine if the inclusion of adjuvants in a semen dose
modulates the uterine immune response to sperm and what role,
if any, the UECs play in this response. Finally, we investigate
whether delivering a vaccine during AI triggers an effective
immune response in pigs. It is critical that any intrauterine
vaccine administered during breeding does not have a negative
effect on fertility or piglet growth kinetics.

MATERIALS AND METHODS

The majority of these methods are previously described in the
thesis by Hamonic, University of Saskatchewan (15) and are
presented here with permission.

Animal Ethics
All experimental procedures were conducted in accordance with
the guidelines of the Canadian Council on Animal Care (CCAC)
under approval from the Animal Research Ethics Board at the
University of Saskatchewan. Pigs were Landrace/Large White
from Prairie Swine Centre, Inc. (PSC), a High Health herd that is
free from porcine reproductive and respiratory syndrome virus,
Mycoplasma hyopneumoniae and swine influenza virus. Pigs were
housed in stalls for the duration of the experiments.

Animal Trials and Sample Collection
Adjuvant Trial

Single parity sows were synchronized following a fixed-
time AI protocol (16) prior to post-cervical insemination
(Supplementary Figure 1). In brief, pigs were synchronized
by oral progestin (Regu-mate; Merck Animal Health, USA)
(17). Twenty-four hours after the final dose of oral progestin,
pigs received 800 international units of pregnant mare serum
gonadotrophin (Folligon; Merck Animal Health, USA) by
intramuscular (i.m.) injection. Eighty hours later, pigs were
given 5mg porcine pituitary luteinizing hormone (Lutropin-
V; Bioniche Animal Health, Belleville, ON) by i.m. injection
(16). Thirty-two hours post-Lutropin-V injection, pigs were
bred using post-cervical insemination catheters (Megapor) with
a semen dose mixed with 3.2ml of phosphate-buffered saline
(PBS; Sigma Aldrich, Oakville, ON, Canada) (mock control
sows, n = 3) or a standard semen dose containing 4mg
poly I:C (Invivogen, San Diego, CA, USA), 8mg Host defense
peptide 1002 (HDP, Genscript, Piscataway, NJ, USA), and 4mg
polyphosphazene (PCEP; IdahoNational Laboratory, Idaho Falls,
ID, USA) in 3.2ml of PBS (TriAdj sows, n = 4). Adjuvants were
administered into the opened semen bag then mixed by gentle
inversion prior to being attached to the catheter for breeding.
Sows were euthanized by captive bolt 24 h post-breeding and
exsanguinated to allow necropsy of the reproductive tract
and collection of uterine lavage. Small sections of tissue were
collected from the cervix, lower uterine horn, mid uterine
horn, upper uterine horn, ampulla, isthmus and ovaries for
histology. Sections of the uterine horns were flash frozen in
liquid nitrogen for RNA isolation and a duplicate section was
frozen in Shandon cryomatrix (Thermofisher) for laser-capture
microdissection collection.

Vaccine Trial 1

Sows used in this trial had previously received Porcine
ParvoShield vaccine (Elanco Animal Health) by the i.m. route
at each parity. The period between the last vaccination and
the current intrauterine (i.u.) or i.m. immunization was at least
120 days. Sows were bred with semen alone or semen plus
the vaccine (see below) using post-cervical catheters. Control
sows (n = 3) received i.m. ParvoShield vaccine as they entered
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into farrowing crates (day 100 gestation) and they remained
at PSC. Sows that were subjected to i.u. immunization (n =

4) were brought to VIDO-InterVac (Saskatoon, SK, Canada)
prior to the start of the trial. The i.u. vaccine was comprised
of 1 × 107 TCID50 BEI-inactivated PPV (NADL-7; American
Type Culture Collection) along with 400 µg poly I:C, 800
µg HDP, and 400 µg PCEP adjuvants (TriAdj) in 1ml total
volume, which were administered to the semen bag immediately
prior to breeding. Sows were heat-checked twice daily after
weaning by experienced personnel looking for a standard lordosis
response following exposure to 5-α-androstenone (Hog-Mate;
Reproduction Provisions, Inc., Walworth, WI, USA). Sows were
inseminated with the AI dose alone or plus the vaccine 12 h
after the first detection of lordosis (day 0) and then bred
every 24 h with semen alone for the duration of the standing
estrus. Blood was collected at day 0, 15, and 30 and then the
i.u. vaccinated sows were humanly euthanized by captive bolt
and exsanguination at day 30 post-vaccination. Reproductive
tracts were externalized, the number of viable embryos in
each uterine horn was recorded, and corpus luteum (CL) were
counted as a measure of ovulation. Each fetus was visually
inspected to establish whether they appeared viable to time of
sow death.

Vaccine Trial 2

Gilts were administered oral progestin (Regu-Mate) for 14 days
and then heat checked by experienced personnel using mature
boars. Gilts were bred at the first sign of standing estrus by
conventional AI with a standard semen dose with or without the
vaccine and then every 12 h after with semen dose alone. The
i.u. vaccine was comprised of 400 µg recombinant (r)VP2-Trx
protein [cloned, expressed, and purified in E. coli as detailed in
(6)] plus 400 µg poly I:C, 800 µg HDP, and 400 µg PCEP in 1ml
total volume (n= 7 gilts). Mock-vaccinated gilts (n= 9) received
the standard semen dose and they were administered ParvoShield
vaccine i.m. when they entered into farrowing crates at day 100
gestation. Blood serum was obtained at day 0, 15, 30, 70, 90, and
at weaning. Piglet weights were obtained at day 3 and at day 21
from 6 randomly reselected gilts per group.

Vaccine Trial 3

Gilts were bred by cervical AI with a standard semen dose alone
(control gilts, n = 5) or semen mixed with a combination of
3 separate vaccines (treatment gilts, n = 8). The i.u. vaccines
were formulated with a consistent adjuvant dose of 266 µg
poly I:C, 533 µg HDP and 266 µg PCEP combined with either
400 µg recombinant porcine epidemic diarrheal virus (PEDV)
Spike protein, 200 µg recombinant Lawsonia intracellularis (LI)
FliC protein or 1 × 107 BEI-inactivated PPV. Recombinant
FliC was purified from E. coli and rSpike protein was purified
from HEK293 cells as detailed in Obradovic et al. (18) and
Makadiya et al. (19), respectively. The control animals received
i.m. injection with FarrowSure B Gold (Zoetis, Canada) to
compare the anti-PPV vaccine response. Gilts were humanely
euthanized after 30 days. The fetus viability relative CL numbers
was presented as a ratio. The crown-rump ratio was measured

using Image J and the average weight of the fetuses per litter
was recorded.

PBMC and Luminal Cell Processing
PBMCs were isolated from blood collected using EDTA
Vacutainers (BD Biosciences) then centrifuged at 1,100 × g
for 30min. The buffy coats were collected and layered onto
Ficol-Paque plus (GE life sciences) and centrifuged at 400 ×

g for 40min. The PBMC layer was collected, washed in PBS 3
times with centrifugation at 250 × g for 10min and stained for
immunotyping by flow cytometry (described below) or stained
with CFSE and restimulated with vaccine antigens (described
below). The uterine horns were removed from the sows and
flushed with 25ml PBS + 1% BSA (Sigma-Aldrich) per horn to
collect luminal cell populations, which were counted and stained
for immunotyping by flow cytometry analysis and to quantify
CCL2 (see below).

Isolation, Culture, and Stimulation of
Primary Uterine Epithelial Cells
Primary UECs were isolated from uterine tissue of gilts/sows
collected from a local abattoir (n = 4) as described in detail
in a previous study (20). Cells were polarized for 7–10 days as
determined by stable 10x increase in transepithelial electrical
resistance (TEER) with media changes taking place every second
day. After cells achieved stable TEER, they were stimulated
with 50µg/ml poly I:C (Invivogen), 50µg/ml lipopolysaccharide
(LPS; Salmonella enterica serovar Minnesota from Sigma-
Aldrich), 50µg/ml CpG oligodeoxynucleotides (CpG 2395;
Merial), 50µg/ml muramyl dipeptide (MDP; Sigma-Aldrich),
100µg/ml HDP (Genscript), 50µg/ml PCEP (Idaho National
Laboratory) or combined together in various combinations at
the stated concentrations including as the triple combination
adjuvant (TriAdj; poly I:C, HDP, PCEP). Six hours post-
stimulation, cells were collected in Trizol (Invitrogen) for RNA
extraction (described below).

Sperm Abnormality and Mobility
Sperm abnormality assessment was performed on extended
semen (PIC, Kipling, SK) alone or including the vaccine
components from Trial 2 (individually or combined), which
includes 1 × 107 TCID50 binary ethylenimine (BEI)-inactivated
PPV, 400 µg Poly I:C, 800 µg HDP 1002 and 400 µg PCEP.
Extended semen alone or with the vaccine components was
stored for 1, 3, 5, and 7 days at 17◦C to mimic industry standard
conditions. Alternatively, semen and components were warmed
to 39◦C with periodic readings for up to 360min to assess
how the extended semen alone or with the vaccine components
were impacted at sow body temperature for a period of time
after breeding. Sperm abnormality was assessed using multi-
color flow cytometry to identify acrosome-reacted sperm by
binding with peanut agglutinin (PNA) conjugated to Alexa-
647 (Life Technologies). Sperm were stained with propidium
iodide (BioVision, Milpitas, CA, USA) at a concentration of
5 mg/mL and PNA-Alexa647 at a concentration of 30 ng/mL,
at room temperature for 5min. Samples were then diluted 1:4
with Beltsville thawing solution (PIC) and 1 × 105 events were
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collected using a FACSCalibur (BD Bioscience Franklin Lakes,
NJ, USA) with analysis performed using FlowJo (Tree Star,
Ashland, OR, USA). Dead sperm were identified if they were
stained with propidium iodide. Experiments were repeated with
three separate batches of semen.

Sperm motility was assessed for semen extended with
Beltsville thawing solution alone or combined with 400 µg
rPEDV spike protein, 200 µg rFliC protein, 1 × 107 BEI-
inactivated PPV and 800 µg poly I:C, 1,600 µg HDP and 800
µg PCEP (i.e., the cumulative components of Trial 4 vaccine).
Sperm motility was evaluated following incubation for 30min
at 37◦C and average motility across 5 unique fields of view
were performed using an SCA CASA system for automatic
sperm analysis.

Porcine Parvovirus Propagation and
Inactivation
PPV was propagated on fetal porcine testicular fibroblast
testis (ST; CRL-1746) from American Type Culture Collection
(Cedarlane, Burlington, Ontario, Canada). ST cells were cultured
in Eagles minimal essential medium (Sigma) with the addition of
5% FBS (Gibco) and Antibiotic/Antimicotic (Life Technologies).
Cells were hypotonically lysed in 0.01M PBSA and free-thawed
twice before removal of cell debris by centrifugation at 2,500
× g for 15min. Viral particles were isolated from the resulting
supernatant by centrifugation on top of a 25% sucrose cushion
at 210,000 g for 2 h. Purification of the virus from the resulting
pellet was carried out on a discontinuous gradient consisting of
1.2 and 1.4M CsCl, centrifuged at 210,000 g for 1.5 h. Finally,
the lower of the two resulting bands was collected and dialyzed
against 3 changes of 10mM Tris-HCl. The identity of the
virus was confirmed by qPCR and TCID50 by serial infection
of ST cells.

Inactivation of PPV was carried out with binary ethylenimine
(BEI) following this published methodology (21). In short, BEI
was prepared through the reaction of 0.1M 2-bromo-ethylamine
hydrobromide with 0.175N NaOH at 37◦C for 1 h with reaction
validated colorimetrically with the addition of 0.0005% β-
naphthol violet. Viral stock at 1× 108 TCID50/ml was inactivated
with 1.5mM BEI for 30 h at 37◦C, before BEI was neutralized
with 10mM sodium thiosulfate. To confirm virus neutralization,
inactivated PPV was passaged on ST cells for 5 passages with
no evidence of CPE carried out both in house and by Prairie
Diagnostic Services, Inc. (Saskatoon, Saskatchewan).

Laser-Capture Microdissection Sample
Collection
Cryoblocks were sectioned at 14µm thickness onto polyethylene
naphthalate membrane slides and immediately fixed in 70%
ethanol. Residual cryomatrix was removed by submersion in
DEPC treated water (Invitrogen), and slides were stained in cresyl
violet (Sigma-Aldrich) for 30 s. Excess stain was removed by
submersion in 70% and then 100% ethanol. Epithelial cells were
captured within 45min of staining using a PALM-Microbeam
System (Zeiss), removing the basolateral third of the epithelial

cell prior to capture to eliminate contamination of samples from
sub-epithelial lymphocytes.

RNA Isolation and Gene Expression
Analysis
RNA analysis was carried out on both uterine tissue (UTE)
and laser captured uterine epithelia (LC-UE) from gilts in Trial
1. Uterine tissue collected from the animal trial were ground
at −80◦C by mortar and pestle until the entire tissue section
was reduced to a fine powder. Up to 100mg of tissue was
dissolved in 1ml of Trizol (Invitrogen) for RNA extraction
as detailed in Pasternak et al. (22). DNAse treatment was
carried using the Turbo DNAse kit (Thermofisher) following
the manufacturer’s specifications and the inclusion of 10 units
RNase inhibitor (Thermofisher). RNA quantity was determined
by Nanodrop (Thermofisher) and RNA quality was validated
by denaturing agarose gel. cDNA was generated from 2 µg
of RNA using the high capacity cDNA kit (Thermofisher)
following the manufacturer’s specifications. Gene expression
analysis was carried out on a StepOne Plus (Thermofisher) using
KAPA SYBR mix (Sigma-Aldrich), containing 0.2mM primer
concentrations [primer sequences and annealing temperature
used in Supplementary Table 1; (23–27)] and 10 ng/sample
cDNA in 15 µl reactions run in duplicate.

For gene expression analysis from laser-captured uterine
epithelial cells (LC-UE), RNA was isolated using the Picopure
RNA isolation kit (Thermofisher) following the manufacturer’s
specifications including an on-column DNase treatment
(Qiagen). RNA quantity and integrity were confirmed using the
Bioanalyzer (Agilent) and 200 ng RNA per sample was converted
to cDNA using the High-Capacity cDNA Reverse transcription
kit as described above. Gene expression analysis was carried out
as described above using 4 ng/sample in each reaction. Primer
amplification efficiency was measured at the optimal annealing
temperature and in all instances was found to be >90%. Gene
expression was normalized to the geometric mean of multiple
stable reference genes, RPL19, YWHAZ and GAPDH for the
in vitro analysis, and GAPDH and β-Actin for in vivo analysis
(Supplementary Table 1).

Immunotyping of PBMCs and Cells
Obtained by Uterine Flush
Cells collected from uterine flush were washed 2x in PBS +

0.1% EDTA at 400 × g for 15min and counted by a coulter
counter (Beckman Coulter). Both PBMCs and cells flushed
from the uterine tissues (from Trial 1) were stained for flow
cytometry (FCM) analysis in 96 well plates with 1 × 106

cells/wells. All FCM stains were incubated in stains diluted
in PBS + 2% FBS for 10min at room temperature followed
by 3x washes in PBS + 2% FBS centrifuging at 500 × g for
3min. All antibody concentrations and details are available in
Supplementary Table 2. PBMC and flushed T cells were stained
in a four-step staining procedure beginning with anti-CD4, anti-
CD8α and anti-TCRγδ, followed by the secondary antibodies
anti-IgG2b-FITC, anti-IgG2a-Alexa 647, and anti-IgG1-biotin.
Next, IgG and Streptavidin (SA)-PerCP-Cy5.5 was added,
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followed by the directly labeled anti-CD3-PE antibody. PBMCs
and flushed B cells were stained with anti-CD21 followed by
anti-IgG1-APC. PBMCmonocytes were stained with anti-CD172
and anti-CD14, followed by anti-IgG1-PE and anti-IgG2b-APC.
Flushed myeloid cells were stained with anti-CD172, anti-
MHCII, anti-SWC9, and anti-CD16, followed by anti-IgG2b-
FITC, anti-IgG2a-PE, and anti-SA-PerCP-Cy5.5. FCM samples
had 60,000 events for PBMCs and 250,000 events for flushed cells,
all of which were immediately collected on a FacsCalibur (BD)
with appropriate fluorescence minus one (FMO), single stains,
and isotype stains. FCM analysis was carried out using FlowJo
(FlowJo LLC). A representative flow cytometry gating scheme
for blood analysis (and luminal cell lymphocytes only) is shown
in Supplementary Figure 2, such that CD3−CD8α+ represent
natural killer (NK) cells, CD3+TCRγδ

−CD4+CD8α− represent
CD4+ T cells, CD3+TCRγδ

−CD4−CD8α+ represent CD8+ T
cells, CD3+TCRγδ

−CD4+CD8α+ represent CD4+CD8+ T cells,
and CD21+ represent B cells. A representative gating scheme for
the flushed myeloid cells is shown in Supplementary Figure 3,
such that CD172+MHCII−CD16+ cells represent neutrophils,
and CD172+MHCII+SWC9− cells represent APCs.

CCL2 ELISA
Uterine horn luminal CCL2 was quantified by sandwich
ELISA against porcine CCL2 (Kingfisher Biotech) following
manufacturer’s instructions. In short, 96 well high binding plates
(Immulon II, VWR) were coated with a polyclonal anti-swine
CCL2 (Kingfisher Biotech) at 1µg/ml in PBS overnight at
RT. Plates were then blocked by 4% BSA in PBS for 2 h at
RT prior to a 1 h RT incubation with CCL2 standard (1 in
2 dilutions from 10 ng/ml to 10 pg/ml) and undiluted flush
samples. Plates were washed with TBST and biotinylated anti-
swine CCL2 antibody was incubated at 0.5µg/ml in PBS +

4% BSA for 1 h at RT followed by washing and a 30min RT
incubation with streptavidin-HRP. Plates were developed with
TBS for ∼30min in the dark before stopping with a 2N sulfuric
acid and absorbance was read at 450 nm.

Antibody ELISAs
Antibody ELISAs were performed on serum and on supernatants
from uterine tissue finely minced then incubated in AIM-V
media for 48 and 120 h. To measure antibody response to BEI-
inactivated PPV, rVP2-TRx, and/or rFliC, Immulon II plates
(VWR) were coated over night at with 0.6µg/ml rVP2-TRx (6) or
2µg/ml rFliC protein in coating buffer. Plates were washed with
tris-buffered saline with 2% Tween-20 (TBST). When detecting
antibodies against rPEDV protein, Immulon plates were coated
with 0.5µg/ml purified rSpike S1 protein in coating buffer. Plates
were washed with TBST+ 0.1% Tween 20.

For all ELISAs, sera and supernatants from minced tissues
were serially diluted in assay diluent buffer TBST (+ 1%
fish gelatin for the rSpike S1 protein ELISA only). After 2 h
incubation, the plates were washed in TBST then incubated
for 1 h with 1/5,000 Alkaline phosphatase-conjugated Goat
anti-Pig IgG (H+L) (KPL catalog #151-14-06). ELISAs were
then developed with 1 mg/ml p-nitrophenyl phosphate in DE
buffer (1M diethanolamine, 0.5M magnesium chloride) and
absorbance at λ405 nm was measured on a SpectraMax plus

microplate reader (Molecular Devices). All end-point titers were
determined using 4-fold serial dilutions with initial dilutions of
serum and culture supernatants performed at 1:4.

Histology and Immunohistofluoresence
Small sections of tissue were collected from the gilts (Trial 1)
cervix, lower uterine horn, mid uterine horn, upper uterine horn,
ampulla, isthmus, and ovaries and fixed in formalin for 36 h.
Formalin-fixed tissue was processed and embedded into paraffin
blocks that were sectioned at 4µm and floated onto superfrost
plus slide (Thermofisher). Tissue blocks were deparaffinized by
xylene and rehydrated by decreasing concentrations of ethanol
prior to Haemotoxylin and Eosin (H&E) staining.

Duplicate slides were deparaffinized and rehydrated from the
middle uterine tissue for anti-CD163 immunohistofluoresence
(IHF) wherein the slides underwent heat-mediated antigen
retrieval in 10mM Na-Citrate, pH 6 for 30min at 90◦C before
being blocked in 5% skim milk in TBS for 1 h at room
temperature. Primary antibody staining with mouse anti-human
CD163 (EdHu-1; Bio-Rad) at 10µg/ml in dilution buffer (PBS
with 1% BSA, 1% horse serum, 0.3% triton-X, and 0.01% sodium
azide) overnight at 4◦C. Slides were washed 3x in TBS + 0.05%
Tween 20 and incubated in 5µg/ml donkey anti-mouse IgG
Al555 (Invitrogen) for 90min at room temperature. Slides were
again washed 3x in TBS+ 0.05% Tween 20 and then stained with
4′,6-diamidino-2-phenylindole (DAPI; Invitrogen) in methanol
for 10min before being cover slipped and imaged on Axiovert
200M (Zeiss) at 20x magnification with appropriate isotype
controls. CD163 positive cells were counted in ImageJ by analyze
particles, selecting particles between 100 and 1,000 pixels and
identified cells were confirmed manually.

Statistical Analysis
All statistical analysis was carried out using GraphPad Prism 7
(GraphPad Software). Gene expression analysis of in vitro UEC
stimulations were evaluated by one-way ANOVA and significant
differences between mock-treated cells and individual treatments
were determined by Holm-Sidak’s multiple comparisons test.
Gene expression and blood immunotyping from in vivo
experiments and weights of newborn and weaners, fetus to
CL ratios, average length of crown/rump ratio per litter were
evaluated by unpaired t-test with Welch’s correction. Uterine
flush immunotyping was evaluated by Mann Whitney test.
CD163 recruitment analysis was evaluated by unpaired t-test
with Welch’s correction. In all cases, significant differences were
reported by ∗p < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

RESULTS

Cytokine and Chemokine Gene Expression
Changes in Uterine Epithelial Cell in
Response to Stimulation With Adjuvants
We first evaluated the potential impact of vaccine adjuvants
on the uterus through in vitro culture with primary epithelial
cells. Following stimulation of UECs with adjuvants alone
or in combination, the cells stimulated with poly I:C-
HDP and poly I:C-HDP-PCEP showed TEER values that
dropped significantly at 6 h (Supplementary Figure 4A).
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TEER values returned to initial levels by 24 h post-
stimulation (Supplementary Figure 4B) which suggest that
these combinations of adjuvants may transiently impact
tight-junction integrity.

Compared to mock-stimulated UECs, poly I:C significantly
increased UEC expression of IFNβ (4.5-fold increase, p <

0.0005), TNFα (3.18-fold increase, p < 0.03), CCL2 (3.81-fold
increase, p < 0.005), and CCL4 (3.56-fold increase, p < 0.007)
but poly I:C did not significantly increase expression of GM-CSF,
IL-6, IL-8, CCL3, CCL20, or CCL28 (Figure 1). Stimulation of
UECs with LPS, MDP, PCEP, HDP alone, or MDP-HDP-PCEP in
combination did not significantly impact the expression of any of
the evaluated immune response genes. When poly I:C was co-
incubated with other adjuvants, there was a significant change
in gene expression relative to the mock-stimulated cells, but no
differences relative to poly I:C alone. For example, poly I:C-HDP
stimulated UECs showed significantly induced IFNβ (4.44-fold
increase, p < 0.0004), CCL2 (4.18-fold increase, p < 0.01), and
CCL4 (3.25-fold increase, p < 0.006) gene expression relative
to the mock-stimulated cells. The poly I:C-HDP-PCEP and
poly I:C-MDP stimulated UECs showed significantly induced
expression of IFNβ gene (4.31, p < 0.003 and 3.31-fold increase
respectively, p < 0.002), TNFα (2.99, p < 0.04 and 3.14-fold
increase, p < 0.04, respectively), and CCL2 (4.34, p < 0.02 and
3.3-fold, p < 0.02 increase, respectively). Stimulation of UECs
with poly I:C-MDP in combination significantly induced CCL4
(2.81-fold increase, p < 0.04) and was the only treatment able to
significantly induce CCL3 expression (3.3-fold increase, p< 0.05)
relative to the mock-stimulated UECs, although non-significant,
equivalent numerical changes were noted in all other treatments
which included poly I:C. No adjuvants significantly induced the
expression of GM-CSF, IL6, and CCL28 when compared to the
mock stimulation. SLA-DRA gene expression was not detected in
any UEC stimulation sample (data not shown) indicating porcine
UECs do not express MHC class II.

Impact of Semen and Adjuvants on Uterine
Luminal Cell Populations and PBMC
Composition After Breeding
Because we are interested in understanding how adjuvants
administered with semen impacts the pig uterus, our next
steps were to measure changes in luminal cell population 24 h
post-breeding with semen alone or semen plus adjuvants. We
selected three adjuvants (4mg poly I:C, 4mg PCEP, and 8mg
HDP; TriAdj) to use in combination. Sows were administered
semen +/− TriAdj and we observed that the semen spiked
with TriAdj (STA) triggered a non-significant trend in increased
luminal cells (p = 0.057) compared to the number of luminal
cells in sows administered semen only (SO) (Figure 2A). To
determine whether the changes in CCL2 gene expression analysis
observed in polarized UECs stimulated with TriAdj (Figure 1)
correlates to increased CCL2 secretion 24 h after breeding with
STA relative to SO, we quantified CCL2 secretion from uterine
flushes and saw no significant differences (Figure 2B). STA did
not significantly impact CCL2 luminal secretion by luminal
cells which could indicate a lack of protein translation or that

secretion of CCL2 was directed into the tissue as opposed to into
the lumen.

To determine whether inclusion of TriAdj with the semen
dose impacted cell recruitment to the uterus, we enumerated
total cells collected from the uterine lumen 24 h after breeding
with SO or STA. The most predominant cell populations in
the uterine lumen following breeding were neutrophils with
mean population percentages at 45% total events in response
to SO and 53% of total events in response to STA, followed
by non-macrophage APCs at 0.79% total events in response
to SO and 1.19% total events in response to STA, respectively
(Figure 2C). All other cell populations were below 1% of total
events, regardless of treatment with the exception of one animal
bred with STA which had higher total events for NK (3%), γδ

T cells (8.4%), and CD8T cells (6.98%). Overall, the inclusion
of TriAdj in semen did not appear to significantly impact the
proportions of immune cell populations in the uterine, although
there was a trending increase in the total number of cells collected
(p= 0.0571).

We performed immunotyping on PBMCs to discern whether
the number of T cell subsets, B cells, and monocytes were
impacted by either breeding (i.e., pre-semen vs. post-semen; pre-
semen + TriAdj vs. post-semen + TriAdj) or by the adjuvants
administered to the uterus during breeding (SO vs. STA). Before
and after breeding with SO or STA, there was no significant
change in the percentages of the blood cell population of
CD3−CD8+ NK cells, CD4T cells, CD8T cells, CD4+CD8+ co-
positive T cells, or CD21+ B cells (Figure 2D). After animals were
bred with STA, there was a significant drop in the percentage of
γδ T cells (10.5% decrease) and monocytes (4.7% decrease) in the
PBMC mixed cell populations relative to the percentages present
in PBMCs prior to STA immunization suggesting that the TriAdj
may have impacted blood cell composition. However, when we
compared the blood cell populations in sows bred with semen vs.
sows bred with semen plus TriAdj, we did not observe significant
differences in any of the population percentages.

CD163 Positive Cell Recruitment to Uterine
Tissue Following Breeding
To determine if the decreased monocytes in blood in response
to STA (shown in Figure 2D) shows a corresponding
influx of CD163 positive monocytes into uterine tissue,
immunohistofluorescence was carried out on sections from
the middle of the uterine horn (representative staining
in Supplementary Figure 5A). CD163 positive cells were
enumerated per 100 µm2 section. No significant differences in
the number of CD163+ cells were found in the uterine tissue
from sows bred with SO (1.23 cells per 100 µm2) or sows bred
with STA (2.03 cells per 100 µm2; Supplementary Figure 5B).

Impact of Semen Alone or Semen Plus
Adjuvants on Uterine Tissue and
Laser-Captured Uterine Epithelial Cell
Gene Expression
Twenty-four hours after sows were bred with semen alone
or semen plus Triadj, the uterine tissue (UT) from lower to
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FIGURE 1 | Gene expression heat map of polarized uterine epithelial cells (UECs) stimulated with multiple adjuvant components alone and in combination. UECs were

cultured until polarized and stimulated by adjuvant components (horizontal axis) for 6 h before cells were collected, RNA was isolated and gene expression was

analyzed by qPCR. Median log2 increases are presented in the heat map with significant differences were evaluated by one-way ANOVA and significant differences

between mock-treated cells and individual treatments were determined by Holm-Sidak’s multiple comparisons tests (*p < 0.05, **p < 0.01, and ***p < 0.001).

upper uterine horns were subjected to gene expression analysis.
Relative to the UT exposed to SO, UT exposed to STA did
not result in significant differences in expression of TNFα,
IFNβ, GM-CSF, IL-6, IL-8, CCL2, CCL3, CCL4, or CCL28 genes
(Supplementary Figure 6).

We speculated that we may not be able to discern whether
gene expression profiles of the uterine epithelial cells were
being masked by the expression profiles of the multiple cell
populations present in UT. Therefore, we performed laser-
capture microdissection (LCM) such that we captured only
the uterine epithelial cells (LC-UEs). LCM was performed
on cryoblocks from only the middle of the uterine horn as
no significant differences in gene expression were observed
between lower, middle and upper uterine horn UT. LC-UE

cells from animals bred with SO or STA also showed no
changes in expression of TNFα, IFNβ, GM-CSF, IL-6, IL-8,
CCL3, CCL4, or CCL28 (Supplementary Figure 6). However,
the LC-UE cells isolated from sows bred with STA showed
significantly induced expression of CCL2 (2.4-fold increase; p
< 0.0274) relative to the expression profile observed in LC-
UE cells from sows bred with SO. Lastly, SLA-DRA gene
expression was not detected in the LC-UE samples and had
no significant differences when observed in tissue (data not
shown). Collectively, these data suggest that TriAdj administered
with semen during breeding had an impact on select uterine
epithelial cell chemokine expression. Our next steps were to
determine whether i.u. vaccination with the TriAdj triggered an
immune response.
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FIGURE 2 | Uterine flush cell counts and immunotyping of luminal cell populations of sows 24 h after breeding with semen only (SO) or semen containing a triple

adjuvant combination (STA) in addition to PBMC immunotyping before or 24 h after breeding. Flushed cells were counted by coulter counter (A). Luminal CCL2 was

quantified by sandwich ELISA (B) and significant differences between treatments were determined by Mann Whitney test. Immunotyped cells in the uterine flush were

stained with CD3, CD4, CD8α, γδ T cells, CD172, MHCII, SWC9, and CD16 (C). PBMCs were isolated from blood and stained for CD3, CD4, CD8α, γδ T cells, CD21,

CD172, and CD14 (D). Stained cells were analyzed on a FACScalibur and significant differences between treatments determined by Mann Whitney test. Each circle or

square represents a unique biological replicate and the line represents mean data. *p > 0.05.

Response to Intrauterine Vaccine
Administered With Semen at the Time of
Breeding
For our first animal trial, the i.u. vaccine was comprised of 1
× 107 TCID50 BEI-inactivated PPV vaccine formulated with
400 µg Poly I:C, 800 µg HDP and 400 µg PCEP. Prior to
vaccination we evaluated the impact of this formulation on
sperm and found no significant effect on either acrosome
reaction or viability during storage for 7 days (Figure 3A) or at

physiological temperatures over 360min incubation (Figure 3B).
Flow cytometric analysis showed that the vaccine components

alone or in combination had no significant impact on the

percentage of abnormal semen. Next, treatment sows (n = 4)
were bred with semen combined with the vaccine immediately

prior to breeding. Control sows (n = 3) were immunized

with ParvoShield vaccine by i.m. route when they entered into
farrowing crates. All sows had previously been vaccinated i.m.
with ParvoShield at each breeding cycle when they entered
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FIGURE 3 | Sperm abnormality assessment of extended semen incubated with intrauterine (i.u.) vaccine components and fetus viability after i.u. immunization and

serum antibody titers from animals vaccinated through the i.u. or intramuscular routes (i.m.). Commercially extended semen was incubated alone or in the presence of

1 × 107 TCID50 BEI-inactivated PPV, 400 µg Poly I:C, 800 µg HDP, 400 µg PCEP (i.u. vaccine) at 17◦C for 7 days (A) or 39◦C (B) with periodic readings for up to

360min. Acrosome-reacted sperm was bound by peanut agglutinin (PNA) conjugated to Alexa-647 and identified on a FACScalibur. Dead sperm were identified if

they were stained with propidium iodide (PI). Experiments were repeated with three separate batches of extended semen. (C–E) Animals were bred with extended

semen alone or with i.u. vaccine. Control sows (n = 3) were immunized with ParvoShield vaccine by i.m. route. All sows had previously been vaccinated i.m. with

ParvoShield at each breeding cycle when they entered into the farrowing crates (∼120 days previously). Serum anti-VP2 IgG (C), IgG1 (D) and IgG2 (E) antibody titres

over time were quantified relative to each sow’s anti-VP2 titres at day 0 to give relative anti-VP2 titres for i.u.-vaccinated (black circle) and i.m.-vaccinated (black

square) sows. Data are presented as means [horizontal bars; (A,B)] and mean with standard deviation in (C–E).

into the farrowing crates (∼120 days previously) so we are
measuring a booster vaccine response. Serum was tested for
anti-VP2 antibodies up to 30 days later. Results showed
that sows responded to the i.u. vaccine with anti-VP2 IgG
(Figure 3C), IgG1 (Figure 3D), and IgG2 (Figure 3E) titres that
were comparable to the titres from sows immunized with the
commercial i.m. PPV vaccine. The individual antibody titres for
each animal is shown in Supplementary Figures 7A–C and the
data shown as percentage change from the zero time point is
shown in Supplementary Figures 7D–F. Together these results
show that the i.u. vaccine did not negatively affect sperm function
or embryo viability and that sows responded to an inactivated
PPV vaccine administered with the semen dose with elevated
serum anti-VP2 titres if the sows had previously received an i.m.
porcine parvovirus vaccine.

For our second trial, we immunized gilts via the i.u. route
(n = 7) with 800 µg rVP2 antigen with 400 µg Poly I:C, 800
µg HDP and 400 µg PCEP. Mock-control sows (n = 9) were
administered a comparable volume of saline with the semen dose.
Serum was obtained throughout gestation and continued until
weaning (21 days after birth). Piglets born from i.u. vaccinated
gilts (n = 6 randomly selected) had comparable weights at
3 days of age (Supplementary Figure 8A) and at weaning
(Supplementary Figure 8B) relative to the piglets born from
mock-vaccinated dams (n = 6 randomly selected) suggesting
that the i.u. vaccine components did not negatively affect piglet
development. Serum anti-VP2 IgG titres were at comparable
low levels across all time points with no significant differences
between the 2 groups (Supplementary Figure 8C) suggesting

that either rVP2 was a poor antigen or that the i.u. vaccine was
not effective as a primary vaccine.

For our third trial, we combined semen with TriAdj and one
of three antigens including rPEDV Spike protein, rFliC, and
BEI-inactivated PPV. We performed CASA analysis to assess
sperm motility and we observed no difference in the percent
motile sperm between semen alone or semen incubated with
the vaccines (Figure 4A). The two vaccine groups consisted of
i.u.-vaccinated sows (n = 8) and control sows (n = 5) which
were immunized with parvovirus vaccine FarrowSure B Gold
i.m. at breeding. After 30 days, fetuses were visually inspected
and the CL were counted. There was no difference in the viable
fetus/CL ratio between both groups of sows (Figure 4B). The
length of the fetus from the crown to the rump (mm) was
measured for each fetus and the average crown-rump length
was comparable across both groups of sows (Figure 4C). There
was no significant difference in the average fetus weight born
to either groups of sows (Figure 4D). Collectively, these data
indicate that the vaccines comprised of recombinant proteins
or inactivated PPV vaccine each formulated with TriAdj did
not negatively affect sperm function or fetus viability, fetal
crown-rump length, or birth weight in the i.u. vaccinated sows
relative to the control sows. Finally, we assessed the impact
of the anti-VP2 response in the sow sera and uterine tissue
immune responses (Figure 5). Thirty days post-immunization,
serum anti-VP2 IgG were assessed and we observed that the
animal immunized with Farrowsure B Gold vaccine i.m. had
a significant increase in antibody titres relative to the i.u.
vaccinated gilts after 30 days (Figure 5A). Similarly, when the
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FIGURE 4 | Sperm motility measurements of extended semen incubated with vaccine and fetal morphometrics from animals vaccinated through the intrauterine or

intramuscular routes. (A) Sperm motility was evaluated in the presence of inactivated PPV, Spike and LI FliC (i.u. vaccine) and TriAdj using SCA CASA system for

automatic sperm analysis and the average motility across 5 unique fields of view. (B–D) Fertilization rates and fetal morphometrics were measured 30 days after

breeding following i.m. vaccination with Farrowsure B Gold vaccine (which contains PPV antigens) or i.u. vaccination with 3 vaccines each consisting of 400 µg

recombinant PEDV spike protein, 200 µg recombinant LI FliC protein, and 1 × 107 BEI-inactivated PPV each formulated with 266 µg poly I:C, 533 µg HDP and 266

µg PCEP. (B) The ratio of viable fetuses divided by the CL per sow are presented. (C) The distance in mm between the crown and rump was measured for each fetus

and the ratio are presented. Each data point represents the average length for the fetuses born to each gilt. (D) The average weight of the fetuses (g) from each litter

are presented. Statistical analysis carried out by Kruskal-Wallis test and Dunns multiple comparisons test. Horizontal bars represent mean values.

uterine tissues were minced and incubated in media for 48 and
120 h to allow measurement of local antibody production, only
the i.m. vaccinated animals showed a statistically not-significant
(P < 0.063) increase in anti-VP2 IgG titres (Figure 5B). The
serum and mucosal antibody titres for i.u. vaccinated gilts
were also calculated for the other two antigens included in
the i.u. vaccine, rPEDV Spike and rFliC protein (which are
absent in Farrowsure B Gold vaccine). There was no significant
increase in anti-PEDV Spike IgG in serum (Figure 5C) or uterine
tissue (Figure 5D) or anti-FliC IgG in serum (Figure 5E) or
uterine tissue (Figure 5F). These data suggest that a primary
vaccine comprised of BEI-inactivated PPV or recombinant
proteins formulated with TriAdj administered to the uterus
at breeding failed to promote a systemic or mucosal humoral
immune response.

DISCUSSION

Initiating a strong mucosal immune response to inactivated virus
or subunit vaccines requires potent adjuvants that overcome the
mucosal barriers and initiate recruitment of APCs to the mucosal

surface. As the uterine epithelial layer is the first cellular contact
for an i.u. vaccine, generating a strong chemoattractive response
that leads to APC recruitment to the uterine tissue or the uterine
lumen may increase i.u. vaccine efficacy. Immunostimulatory
adjuvants frequently considered for use in mucosal vaccines are
TLR agonists and other pattern recognition receptor ligands
that act through the inflammasome. Although porcine UECs
express the necessary receptors for all the ligands evaluated
[TLR3 bound by poly I:C, TLR4 bound by LPS, TLR9 bound
by CpG, NOD2 bound by MDP (28)], our study showed that
these cells only induced expression of the pro-inflammatory
cytokine IFNβ and TNFα and chemokine genes CCL2 and
CCL4 in response to poly I:C suggesting that TLR3 was a
viable adjuvant target. This analysis shows agreement with our
previous research which also showed that pig uterine epithelial
cells express functional TLR3 which is targeted by poly I:C (20).
In vitro experiments have shown poly I:C and LPS stimulation
of murine UECs significantly induced secretion of CCL2, while
CpG stimulation was unable to induce CCL2 expression (29). In
contrast, LPS stimulated HumanUECs showed suppressed CCL2
expression whereas poly I:C induced secretion of TNF-α, GM-
CSF, IL-6, G-CSF, CCL2, and CCL4 (30, 31). Lastly, although
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FIGURE 5 | Serum and mucosal antibody titers from animals vaccinated through the intrauterine or intramuscular routes. Serum (A,C,E) and mucosal antibody titers

(B,D,F) were measured after breeding animals with semen alone then immunizing them through the i.m. route with Farrowsure B Gold vaccine (which contains PPV

antigens) or after breeding animals with semen combined with 3 vaccines consisting of 400 µg recombinant PEDV spike protein, 200 µg recombinant LI FliC protein,

and 1 × 107 BEI-inactivated PPV each formulated with 266 µg poly I:C, 533 µg HDP and 266 µg PCEP. Serum was collected at day 0 and 30 days later and uterine

tissue was collected at day 30 after gilts were humanely euthanized. The supernatants from the minced uterine tissues was collected after 48 and 120 h to establish

mucosal antibody production. Data are presented as mean values. Statistical analysis carried out by Kruskal-Wallis test and Dunns multiple comparisons test.

Significantly different groups are denoted by differing letters.

porcine UECs showed induced expression of pro-inflammatory
cytokine and chemokine genes in response to poly I:C, LPS
stimulation had no observable impact on the assayed genes.
These results suggest that poly I:C alone or in combination
may be a suitable adjuvant to use to target uterine epithelial
cells innate immune responses. The notable discrepancies of
responses between species supports the concept that although
TLR expression in UECs is relatively conserved across species,
the response upon TLR ligand stimulation between species can

vary significantly and caution should be taken in attempting to
extrapolate results across species.

Non-TLR ligands are less regularly evaluated as adjuvants,
however, porcine UECs express the receptors for several potential
adjuvants such as NOD2, the receptor for MDP which may
indicate that NOD2 may be a suitable adjuvant (28). Although
there are no studies showing significant in vitro stimulation of
UECs with MDP, in vitro studies with mouse APCs showed
minimal NF-κβ activation unless MDP was combined with other
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ligands such as CpG (32). Our results show that pig UECs
did not induce expression of any assayed genes in response
to MDP alone nor did MDP amplify the response generated
toward poly I:C. Therefore, we do not anticipate that it will be
an effective adjuvant in inducing APC recruitment or activation
in an i.u. vaccine. HDP, which has no known receptor, has been
implicated in modulating the immune response in several cell
types including monocytes where in vitro stimulation resulted
in increased CCR5 expression and enhanced recruitment to
CCL3 and CCL5 (33). Although there has been observed HDP
modulated activity in other cells, both when alone and combined
with other adjuvant components, HDP showed no significant
impact on the capacity for porcine UECs to respond to poly I:C.
Lastly, there have been studies evaluating polyphosphazene in
both mucosal and parenteral vaccine formulations where PCEP
alone induced protective immune responses (34). Intramuscular
injection of mice with PCEP triggered local production of CCL2
and pro-inflammatory cytokines as IL-1beta, and IL-18 cytokines
and when injected intradermally into pigs, PCEP induced the
expression of chemokine CCL2 and pro-inflammatory cytokine
IL-6 suggesting that it has immunostimulatory potential (35,
36). These observations suggest that PCEP can act as an
immunostimulatory adjuvant and it may potentiate immune
responses to antigens. Despite these results in mice and pigs after
parenteral injection/vaccination, porcine UECs stimulated with
PCEP did not induce expression of cytokine or chemokine genes
and may not be an effective i.u. vaccine adjuvant alone.

TriAdj as a vaccine adjuvant has been evaluated in multiple
vaccine formulations, in multiple species, and delivered via
several routes. Primarily it has been evaluated for use as an
i.m. vaccine adjuvant where it has been used in mice, rats,
cattle, sheep, and pigs generating strong systemic immunity
against human parainfluenza type 3 (in mice and rats), bovine
viral diarrhea virus (in cattle and sheep) and porcine epidemic
diarrhea virus (in pigs) (11, 19, 37). TriAdj has also been used
to generate a strong single dose humoral and cell-mediated
immune response when delivered subcutaneously in koalas as
a subunit chlamydia vaccine (38). When TriAdj was used in
conjunction with mucosal vaccine studies, there was increased
mucosal immunity and protection generated to an intranasal
vaccine to respiratory syncytial virus in mice (39). A promising
use for the TriAdj as a mucosal adjuvant was shown when it was
administered as part of a subunit vaccine in the rabbit uterus
as it induced strong systemic and mucosal humoral immune
responses even after a single dose (6). Although there have been
limited studies on the initial innate immune response generated
to TriAdj, an in vitro study with mouse macrophages found
that they induced significant expression of several chemokines
including CCL2, CCL3, and CCL4 in addition to upregulation
of the co-stimulatory molecules CD80/86 and MHC class II (40)
in the presence of TriAdj.

Because i.u. vaccination in commercial sows would only
be used during AI, it is important to take into account
the immune response generated during breeding. Breeding in
swine elicits an inflammatory immune response and neutrophil
infiltration into the uterine lumen (41, 42). However, with the
exception of a widely accepted IL-8 induction and corresponding

polymorphonuclear cell recruitment to the lumen (43, 44), there
are limited studies examining the exact cytokine and chemokine
genes induced following breeding. Interestingly one previous
study showed that the semen extender Androhep and seminal
plasma alone induced IL-10, TGF-β, IL-8, and TNF-α, however
when combined with spermatozoa, these values returned to
baseline expression levels (45). The possible suppression of
cytokine and chemokine expression by spermatozoa may
contribute to the discrepancy in the magnitude of expression
observed in vivo that was lower than what was observed in the
in vitro experiments. However, studies evaluating immune cell
recruitment into the endometrium following breeding remain
somewhat unclear whether spermatozoa, seminal plasma, or
semen extender is the primary inducer of this response (43).
We speculate that this inflammatory response may reduce the
requirement of an i.u. vaccine to induce an inflammatory
response itself, and may instead require the adjuvants to
modulate the inflammatory response toward a higher proportion
of recruited APCs in the uterine mucosa, possibly through the
induction of chemokines that will preferentially recruit APCs,
such as CCL2 and CCL3. In pigs bred with semen alone or
semen plus TriAdj, we observed increased expression of CCL2
and CCL4 genes but no detectable increase in luminal CCL2
protein. While it is possible that CCL2 is secreted by the
uterine epithelia basolaterally, we would anticipate observing
a greater degree of APC recruitment into the endometrium if
this were the case. Further, despite the increased expression
of chemokines known to promote monocyte and macrophage
recruitment chemokines as well as decreased levels of monocytes
in the blood, we did not observe a significant increase in the
numbers of monocytes/macrophages (CD163 positive cells) in
the uterine tissue when compared to the response to extended
semen. Although there are numerous studies characterizing the
polymorphonuclear cell recruitment into the lumen following
breeding and the inflammatory response following breeding with
extended semen (41, 42, 45), data on APC recruitment in swine
is limited. However, a single study observed increased MHCII
expression on uterine macrophages and DCs following breeding,
indicative of APC maturation (44). These data and the non-
significant decrease of blood monocytes after breeding in our
studymay be indicative of a certain degree of APC engagement to
extended semen alone and inclusion of TriAdj in semen although
more research is required to understand this.

Previous studies have described that the lumen of the porcine
uterus, in a native state, has a relatively low-level complement of
T cells (13) which is consistent with our observations. Further,
our data shows that not only does semen plus TriAdj not impact
T cell recruitment to the uterine lumen, we also show that
breeding appeared to have minimal effect on luminal T cell
numbers. It remains to be clarified why blood γδ T cells were
reduced after animals bred with semen plus TriAdj but not in
animals bred with semen alone and why there is no evidence
that the γδ T cells were recruited to the uterine lumen. Current
data indicate that circulating porcine γδ T cells are primarily
pro-inflammatory (46) and therefore further research should be
carried out to determine if the inflammatory response induced
by TriAdj plus semen is specifically recruiting these cells. Based
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on the limited data available for γδ T cells and their subtypes in
pigs, we currently do not know the impact these cells may have in
mounting a response to the i.u. vaccination.

To establish combining vaccines with semen during breeding
as a viable alternative method of immunization, it is critical that
we establish not only an effective immune response, but we also
must ensure that sperm function and fertility are not negatively
affected. Our results show that vaccinating gilts or sows via the
i.u. route with recombinant proteins and/or inactivated PPV
formulated with TriAdj did not negatively impact sperm function
or motility, fetal viability, CR length or fetal weight suggesting
that a properly formulated i.u. vaccine does not negatively impact
fertility. Piglet weight at birth and weaning also did not appear to
be negatively affected by i.u. vaccination. However, i.u. vaccines
with inactivated virus or recombinant proteins did not promote a
significant humoral response in gilts or sows when the i.u. vaccine
was a primary immunization. Only sows that had previously
been vaccinated with an i.m inactivated PPV vaccine produced a
humoral anti-VP2 IgG, -IgG1, and -IgG2 immune response that
was comparable to the i.m control sows. These results contrast
with what has been observed in rats and rabbits which showed
that a single i.u. vaccine triggered a measurable antigen-specific
systemic and local humoral immunity (6–8). The reasons why the
i.u. vaccinemay have been effective in rodents or rats after a single
dose may be due to the fact that they were administered without
semen. Because we observed increased humoral immunity to
a booster i.u. vaccine in sows that had previously received a
primary systemic vaccine, it is possible for an i.u. vaccine to be
effective under still undefined conditions. More trials need to be
performed to clarify whether repeated i.u. vaccination can trigger
strong humoral immunity or whether the primary response
needs to occur via a systemic route. Of additional concern is
the possibility of generating an immune response to sperm that
results in infertility or reduced fertility in future pregnancies,
as has been observed in in humans, mice and rabbits following
immunization with sperm specific proteins (47). We hypothesize
that by delivering the sperm through its conventional route,
the mechanisms for prevention of infertility inducing immune
responses to sperm will be maintained (41), however further
studies will be required to determine if immunization utilizing
an artificial insemination dose impacts future pregnancies. Lastly,
we could establish whether the semen dose itself interferes with
the efficacy of a primary immunization by administering the first
i.u. dose in gilts during their first-heat detection.
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Supplementary Figure 1 | Schematic timeline of hormonal synchronization

method for fixed time artificial insemination of sows.

Supplementary Figure 2 | Gating strategy used for T cell, B cell, and monocyte

immunotyping stains from the blood.
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Supplementary Figure 3 | Gating strategy used for myeloid cell immunotyping

stain used for luminal cell populations.

Supplementary Figure 4 | Changes in the primary uterine epithelial cell (UEC)

transepithelial electrical resistance TEER stimulated with multiple adjuvant

components alone and in combination. UECs were cultured until polarized and

stimulated by adjuvant components (horizontal axis) and had the TEER measured

prior to the addition of stimulants at 6 h (A) and again at 24 h (B). Statistical

analysis was done by Kruskal-Wallis test and significant differences between mock

and individual stimulations were determined by Dunn’s multiple comparison tests

(∗p < 0.05). Each circle, square, etc. represents a unique biological replicate and

mean values are represented by a horizontal line.

Supplementary Figure 5 | Representative immunohistofluorescence of CD163+

cells in uterine tissue after breeding with semen only (SO) or with a triple adjuvant

combination (STA). (A) Twenty-four hours after breeding with semen alone or with

TriAdj, uterine tissue was processed for immunohistofluorescence. Stained slides

were imaged in 10 random fields of view and CD163 positive cells were counted

by Image J (B) and significant differences were determined by unpaired t-test with

Welch’s correction. Each circle or square represents a unique biological replicate

and the line represents mean data.

Supplementary Figure 6 | Gene expression of uterine tissue and laser captured

uterine epithelia (LC-UE) of sows 24 h following breeding with semen only (SO) or

semen containing a triple adjuvant combination (STA). Gene expression analysis

was performed for the following genes: TNFα, IFNβ, GM-CSF, IL6, IL8, CCL2,

CCL3, CCL4, and CCL28. UTE expression shows averaged gene expression

profiles across the lower, middle and upper uterine horn and LC-UE samples were

collected from samples in the middle of the uterine horn. Significant differences

within sample types were determined by unpaired t-test with Welch’s correction

(∗p < 0.05). Each circle or square represents a unique biological replicate and the

line represents mean data.

Supplementary Figure 7 | Serum antibody titers from animals vaccinated

through the i.u. or intramuscular routes (i.m.). Animals were bred with extended

semen alone or with i.u. vaccine comprised of 1 × 107 TCID50 BEI-inactivated

PPV, 400 µg Poly I:C, 800 µg HDP, 400 µg PCEP (i.u. vaccine) and control sows

(n = 3) were immunized with ParvoShield vaccine by i.m. route. All sows had

previously been vaccinated i.m. with ParvoShield at each breeding cycle ∼120

days previously. Serum anti-VP2 IgG (A), IgG1 (B), and IgG2 (C) antibody titres for

i.u.-vaccinated (closed symbols) and i.m.-vaccinated (open symbols) sows.

Percent change of serum anti-VP2 IgG (D), IgG1 (E), and IgG2 (F) antibody titres

for i.u.-vaccinated (closed symbols) and i.m.-vaccinated (open symbols) sows are

also shown.

Supplementary Figure 8 | Weight of piglets born from IU-vaccinated and control

gilts and anti-VP2 serum antibody titres over time. Intrauterine-vaccinated animals

were bred with standard extended semen dose plus 800 µg recombinant VP2-Trx

formulated with 400 µg Poly I:C, 800 µg HDP, and 400 µg PCEP. Control animals

received the standard semen dose. Blood was obtained for the gilts day 0, 15, 30,

70, 90, and at wean (21 days after piglet birth). Piglet weights were measured on

day 3 after birth (A) and at weaning (B) and the average weight of the piglets born

to each gilt is shown. (C) Serum anti-VP2 IgG antibody titres were quantified

relative to each gilt’s anti-VP2 titres at day 0 to give relative anti-VP2 IgG titres for

i.u.-vaccinated (orange circle) and i.m.-vaccinated (blue triangles) gilts. Horizontal

bars present mean values.

Supplementary Table 1 | Primer names, sequences, annealing temperature, and

target sequence used in all qPCR experiments.

Supplementary Table 2 | Antibodies used in FCM analysis, final concentrations,

and suppliers.
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Otitis externa is one of the most common diseases in dogs. It is associated with bacteria

and yeast, which are regarded as secondary causes. Cerumen is a biological substance

playing an important role in the protection of ear skin. The involvement of cerumen

in immune defense is poorly understood. MicroRNAs can modulate the host immune

response and can provide promising biomarkers for several inflammatory and infectious

disorder diagnosis. The aims of this study were to profile the cerumen miRNA signature

associated with otitis externa in dogs, integrate miRNAs to their target genes related

to immune functions, and investigate their potential use as biomarkers. Cerumen was

collected from healthy and otitis affected dogs and the expression of miRNAs was

profiled by Next Generation Sequencing; the validation of the altered miRNAs was

performed using RT-qPCR. The potential ability of miRNAs to modulate immune-related

genes was investigated using bioinformatics tools. The results pointed out that 32

miRNAs, of which 14 were up- and 18 down-regulated, were differentially expressed in

healthy vs. otitis-affected dogs. These results were verified by RT-qPCR. To assess the

diagnostic value of miRNAs, ROC analysis was carried out, highlighting that 4 miRNAs

are potential biomarkers to discriminate otitis-affected dogs. Bioinformatics showed

that cerumen miRNAs may be involved in the modulation of host immune response.

In conclusion, we have demonstrated for the first time that miRNAs can be efficiently

extracted and quantified from cerumen, that their profile changes between healthy and

otitis affected dogs, and that they may serve as potential biomarkers. Further studies

are necessary to confirm their diagnostic value and to investigate their interaction with

immune-related genes.
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INTRODUCTION

Otitis externa is defined as the inflammation of the external ear
canal and represents one of the most prevalent skin disorders
in dogs (1–4). The causes of otitis externa can be divided into
primary and secondary (5, 6). Primary causes of otitis include
inflammatory conditions, such as autoimmune or immune-
mediated diseases, keratinization and glandular disorders, and

ectoparasites. Onset of secondary causes such as bacterial
and Malassezia spp. infections is generally associated by the
emergence of primary diseases such as canine atopic dermatitis

or combined with several predisposing factors (7). The host
immune response to microorganisms in the external ear canal
likely plays a pivotal role, but few data are available in dogs,

except for studies on the immune reaction against Malassezia
(8–10). Cerumen, or earwax, is a biological substance composed
of lipids, proteins, amino acids, and carbohydrates produced by
the combination of the excretions of ceruminous and sebaceous
glands in the auditory canal of the external ear of mammalians.

Cerumen is believed to protect the epithelial lining of the ear
canal against pathogens. Besides its importance as a physical
barrier, the involvement of cerumen in other functions, including
specific immune defense, remains largely unexplored. Cerumen
is supposedly involved in antimicrobial defense as demonstrated
by the presence of lysozyme and immunoglobulins (11), as
well as of additional proteins with antimicrobial functions,
as recently shown by proteomics (12). In human cerumen,
proteins belonging to β-defensin families were also detected (13),
suggesting a possible role in the local innate immune response.

In addition to its biological function, cerumen has gained
interest in the clinical setting as a potential source of
biomarkers (14). Cerumen composition indeed reflects the
pathophysiological status of the patient, containing lipids,
proteins, and metabolites derived from blood (14). Although
the amount and the variation of texture and color of cerumen
during ear diseases have been accurately described in dogs (15),
the active protective role of cerumen in the development of
immunity during otitis externa is yet to be determined.

MicroRNAs (miRNAs) are short (∼22 nucleotides), single-
stranded non-coding RNAs that modulate gene expression
by binding to complementary target mRNA. MiRNAs down-
regulate gene expression by silencing or degrading their mRNA
target (16). Extensive research over the last years demonstrated
that miRNAs fulfill a fundamental role in pathogen recognition
and inflammatory responses (17). The profile of miRNAs is
tissue-dependent and relative stable during several disorders and
pathological alterations. Therefore, besides their importance as
regulators of immune defenses and inflammation, miRNAs also
provide promising targets and biomarkers for molecular-based
diagnostics and therapies in both humans (18) and animals (19–
21). Changes in miRNAs expression pattern have been observed
in association with skin diseases (22) and in otitis media, where
they were located in middle ear fluid exosomes (23, 24).

Since no information on miRNAs derangements in canine
otitis externa is available, and that cerumen might provide
a source of biomarkers, the present study aimed to assess
miRNAs expression profiles in the cerumen of dogs affected

by otitis externa. This study tested the hypothesis that (a)
cerumen microRNA could be differentially abundant between
healthy and otitis affected dogs; (b) cerumen microRNA could
provide a source of biomarkers to discriminate between healthy
and otitis-affected dogs, and (c) cerumen could be a source
of microRNAs involved in immune reaction, and as such
participates to the regulation of ear innate immunity. A next-
generation sequencing pilot study was carried out to identify a list
of potential differentially expressed (DE)-miRNAs extracted from
cerumen. Results were validated and quantified by RT-qPCR, and
functional enrichment analysis of target genes and functional
interaction network analysis was finally carried out to identify
pathways potentially affected by DE-miRNAs.

MATERIALS AND METHODS

Subjects and Sample Collection
The study was prospective, randomized, and blinded. Twenty
client-owned dogs, of which 16 with bilateral and 4 with
unilateral bacterial otitis externa, were included. Written
informed consent was secured from dog owners prior to
enrolment. Diagnosis of otitis externa was based on history,
clinical signs such as head shaking, pruritus, local pain, otorrhea,
erythema, or swelling of at least one ear canal, visible debris
and discharge in the ear canal upon otoscopic examination,
and cytological confirmation of bacterial overgrowth and/or
bacterial infection by microscopic examination of the exudate.
To collect the ear exudate, the external ear canal of the right
and left ear was swabbed and the non-sterile cotton-tipped
swabs obtained were streaked onto two glass slides, which were
then heat-fixed and stained with a modified Wright’s stain
(Quick Panoptic Kit; Pokler Italia). At least 10 fields per slide
were examined under optical microscopy and a number of
bacteria ≥25 per high power microscopy field (400×), with or
without bacterial phagocytosis by neutrophil granulocytes, were
considered positive (infection) as previously described (25). Dogs
with any topical or ongoing treatments for otitis externa were
excluded. In the control group, 28 dogs deemed healthy based on
history, physical, and otoscopic examination and on the absence
of neutrophil granulocytes, bacteria <25 and yeast <5 per high
power microscopical field (400x) on ear cytology (25) were
included. Supplementary Table 1 summarizes the characteristics
of dogs.

After inclusion, the skin of each vertical ear canal was sampled
by rubbing (I) a tubed sterile dry swabTM rayon [ref MW1028;
MWE Co (Bath) LTD—England] for small RNA extraction; (II) a
Transystem AMIES w/o charcoal plastic applicator rayon tipped
swab (Copan Italia SPA—Brescia—Italy) for microbiological test;
and (III) a non-sterile cotton-tipped swab for cytology for 10 s.

Microbiological Analysis
Microbiological analyses were performed as previously reported
(26). Each swab was plated on Blood Agar plates with 5%
sheep blood (Thermo Fisher Scientific), Mannitol Salt Agar
(Thermo Fisher Scientific), and Mac Conkey agar (Thermo
Fisher Scientific); the plates were aerobically incubated at 37◦C
for 24–48 h.
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The same samples were plated on Sabouraud’s dextrose agar
with chloramphenicol and incubated at 30◦C for 7 days and were
used to identify the fungal flora.

The isolated bacteria were identified according to standard
laboratory procedures (morphology, Gram staining, catalase,
oxidase, etc.) and subjected to biochemical identification using
the API system (bioMèerieux SA, Marcy L’Etoile, France). The
species identification by miniaturized biochemical tests was
accepted when the probability was >90%.

Cytology
The ear swabs were air-dried and stained with May-Grünwald
Giemsa. The following parameters were evaluated at the
microscope: cellularity, presence of epithelial cells, inflammatory
cells, bacteria, and Malassezia spp. A semi-quantitative scoring
system to evaluate all the parameters was designed. A five-
point scale scoring was proposed as follows: 0, absent; 1,
very rare presence; 2, mild presence (scarce number in some
microscopic fields); 3, moderate presence (variable number in
almost all microscopic fields); or 4, good presence (good number
in all microscopic fields). When bacteria were present, their
morphology was recorded.

Small RNA Extraction and Sequencing
Total RNA was extracted using miRNeasy Serum/Plasma
Kit (Qiagen, Cat. No 217184) following the manufacturer’s
instruction. The RNA quality and quantity were verified
according to MIQE guidelines (27). For all samples, RNA
concentration was quantified by Qubit R© 2.0 Fluorometer with
Qubit R© microRNA Assay Kit (Invitrogen, Cat. No. Q32880).

A pilot sequencing was performed on 3 healthy
(Supplementary Table 1, no. 15 right, 19 right, and 20 right) and
3 otitis-affected samples (Supplementary Table 1, no. 32 left, 35
left, and 41 right). Small RNA transcripts were converted into
barcoded cDNA libraries. Library preparation was performed
as previously reported (28) using the NEBNext Multiplex small
RNA Library Prep Set (Cat. No. NEB#E7560) for Illumina and
run on the NextSeq500 (Illumina Inc., USA).

Computational Analyses
The output of NextSeq500 Illumina sequencer was demultiplexed
using bcl2fastq Illumina software embedded in docker4seq
package (29). miRNA expression quantification was performed
using the workflow previously described (30), using the
implementation as previously described (31). In brief, after
adapter trimming with cutadapt (32), sequences were mapped
using SHRIMP (33) to Canis familiaris precursors miRNAs
available in miRBase 22.0—March 2018 (http://www.mirbase.
org/). Counts table and cpm tables were used.

Validation by RT-qPCR
Total RNA was extracted from all samples included in the
study using miRNeasy Serum/Plasma Kit (Qiagen, Cat. No.
217184). One ml of Qiazol (Qiagen) was added and, after
incubation at room temperature for 5min, 3.75 µl (25 fmol
final concentration) of the exogenous synthetic spike-in control
Caenorhabditis elegans miRNA cel-miR-39 (Qiagen, Cat. No.

219610) was spiked into samples. The reverse transcription was
performed using the TaqMan Advanced miRNA cDNA Synthesis
Kit (Applied Biosystems, Cat. No. A28007) as per manufacturer’s
instruction. The qPCR experiments were designed following
MIQE guidelines (27). The small RNA TaqMan assays were
performed according to the manufacturer’s instructions using
the selected primer/probe assays (ThermoFisher Scientific),
including: cel-miR-39-3p (assay ID 478293_mir); cfa-miR-
21-5p (assay ID rno481342_mir); cfa-miR-26a-5p (assay ID
mmu481013_mir); cfa-miR-27b-3p (assay ID rno478270_mir);
cfa-miR-320a-3p (assay ID 478594_mir); cfa-miR-342-3p (assay
ID 478043_mir); cfa-miR-146a-5p (assay ID 478399_mir); cfa-
miR-378a-3p (assay ID 478349_mir); cfa-miR-375-3p (assay ID
mmu481141_mir); cfa-miR-423-5p (assay ID mmu481834_mir);
miR-125b (assay ID rno480907_mir); and miR-199 (custom-
designed). miRNAs were selected among those with the highest
read counts. Quantitative reactions were performed in duplicate
in scaled down (15 µl) reaction volumes using the TaqMan
Fast Advanced Master Mix (Applied Biosystems, Cat. No.
4444558) on CFX96 Real-Time PCR detection system (BioRad
Laboratories). The standard cycling program was 50◦C for
2min, 95◦C for 3min, and 40 cycles of 95◦C for 10 s and
60◦C for 30 s. Endogenous control for qPCR normalization
was identified adapting the pipeline developed by Eisenberg
and Levanon (34). Briefly, reference miRNAs were selected
considering the individual raw count and with at least 50 reads
for each sample; a standard error of the log2 fold change
value <0.75 and a log2 fold change ranging between −0.074
and 0.46. Three reference miRNAs (cfa-miR-21, cfa-miR-26a,
and cfa-miR27b) have been selected. No-RT controls and no-
template controls were performed. The geometric mean of
reference miRNA abundance was used for normalization. The
relative quantification of target miRNAs was carried out after
normalization of the sample using the geometric mean of
reference miRNAs.

miRNA Target Prioritization
The target genes of DE-miRNAs were predicted using MiRWalk
3.0 (35), which includes 3 miRNA-target prediction programs
[miRDB (36), miRTarBase (37), and Targetscan (38)]. The
analysis was performed targeting the entire gene sequence

(including 5
′

UTR, CDS, and 3′UTR). The list of target
genes predicted by the three tools was included in further
analysis and functional mRNA enrichment was performed using
DAVID (Database for Annotation, Visualization and Integrated
Discovery) bioinformatic resource (39, 40) and biological
pathways in the KEGG (Kyoto Encyclopedia of Genes and
Genomes) (41) were examined for enrichment. To visualize
the interaction between immune-related genes and up- and
down-regulated miRNAs, miRNet (42) software was employed to
construct the miRNA-hub gene networks.

Computational and Statistical Analysis
Raw reads quality-check, adapter clipping, and mapping were
performed as previously reported (30). After reads mapping,
a matrix of integer values was created. The value in the i-th
row and the j-th column of the matrix reported how many
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reads have been unambiguously assigned to mature miRNA i in
the sample j. The unwanted variation present in the data was
estimated using the functions implemented in the SVA package
(43). The differential expression analysis was run using DESeq2
(44), setting a thresholds adjusted p < 0.1 and |log2FC| >1.
The differential expressed miRNAs (DE-miRNAs) were those
associated with adjusted False Discovery Rate (FDR) ≤0.05 and
the mean read count ≥300.

Statistical analysis was carried out using XLStat for Windows
(Addinsoft, New York, U.S.A.), IBM SPSS Statistics 25 software
(IBM Corp., 2017) and MedCalc 14.0 (MedCalc Software bvba,
Ostend, Belgium). Statistical significance was accepted at p <

0.05. Data were tested for normality and homogeneity of variance
using the Kolmogorov-Smirnov and Levene tests, respectively.
As data were not normally distributed, non-parametric statistical
tests were applied. The Kruskal-Wallis test was used to assess
differences in miRNAs concentrations. P-values were adjusted
using the Bonferroni correction.

A multivariate statistical analysis (Principal Component
Analysis—PCA, correlation matrix, no rotation) was used for
miR-320a, miR-342, miR-146a, miR-378a, miR-375, miR-423a,
miR-125b, miR-199 as an exploratory analysis to detect the
underlying relationships among miRNAs and to identify cases
clusters. Data assumptions were checked, KMO (Keiser Meyer
Olkin) and Bartlett’s test of sphericity were applied to test the
suitability of the data for structure detection. Factor scores were
calculated for dogs when the component’s Eigen value was greater
than one, to evaluate the distribution of the subjects according to
the considered variables and classed using the categories healthy
dogs and dogs with otitis.

To determine the diagnostic accuracy of targets differing
statistically between healthy and otitis affected dogs, receiver
operating characteristic (ROC) analysis was performed as
previously reported (45). The diagnostic values were calculated
for miRNAs that showed significant differential expression in the
buffalo blood.

RESULTS

Demographics and Characteristics of
Study Subjects
A total of 95 samples, 59 from healthy and 36 from ears affected
by otitis externa, were collected. The median age in the control
and otitis affected groups was 9 (ranging from 6 months to 15
years) and 8 (ranging from 1 to 14 years) years, respectively.
The male-to-female ratio was 11:17 in the healthy group and
11:10 in the otitis-affected group. A total of 19 different breeds
was included in the list, with an over-representation of Labrador
Retrievers (8) and German shepherds (5). The list of samples
including the diagnosis and cytological and bacteriological data
are listed in Supplementary Table 1.

Cytology and Bacteriology
Cytological findings and yeast and bacterial isolation results are
listed in Supplementary Table 1. Mites were not observed in any
of the cytological specimens. Cytology and culture evidenced
bacterial organisms (both coccoid and rod-shaped) and yeast

in clinically healthy and otitis affected ears independently of
the clinical presentation. As it could be assessed by cytology,
bacteria were higher in diseased ears. Yeast numbers did not
correlate with otitis. In three dogs with a clinical diagnosis of
otitis, neutrophils phagocytizing bacteria were observed in high
numbers and were consistent with the clinical finding of severe
otitis. Malassezia and bacterial organisms were isolated from
healthy and diseased ears and no association with otitis externa
was observed between number and type of yeast or bacteria.

RNA Extraction From Cerumen and
Determination of miRNome Profile
To characterize miRNA expression profiles of cerumen, a pilot
study small RNA-seq was performed on RNA extracted from the
cerumen samples of three healthy and three otitis-affected dogs.
After RNA extraction, small RNAs were selected according with
their size (≈146 bp band) and sequenced on the NextSeq500
sequencer (Illumina). Multiple reads per sample, varying from
349,000 to 11,000,000, were obtained. Counts table was used to
detect differentially expressed miRNAs via DESeq2 analysis (44).
Furthermore, the analysis revealed the expression of 102 Canis
familiaris (cfa) miRNAs, discarding lowly expressedmiRNAs (≤1
raw count across 6 samples).

MiRNAs Are Modulated in Cerumen of
Otitis-Affected Dogs
A cluster analysis based on the expression profiles of the
six sequenced samples was performed. The results allowed to
differentiate the samples in two clusters, namely cluster of
otitis-affected and cluster of healthy control group (Figure 1A).
To determine whether there were differences in the miRNAs
expression profile of healthy and otitis-affected samples, a
differential expression (DE) analysis applying using DESeq2
(44), with a threshold adjusted P < 0.1 and |log2FC| >1,
was performed. A difference in miRNA profiles was observed,
suggesting molecular changes due to otitis externa. Thirty-two
miRNAs were significantly altered in otitis-affected dogs, of
which 14 resulted upregulated (1.5- to 3.9- fold) and 18 down-
regulated (1.6- to 5.5- fold) (Figure 1B).

Validation of Differentially Expressed
miRNAs in Otitis-Affected and Healthy
Dogs
RT-qPCR validation was performed on the 6 sequenced samples
and on a separate independent set of 89 samples, collected from
56 from healthy and 33 from otitis-affected ears. To validate
the sequencing results, eight differentially expressed (DE)-
miRNAs were selected following their potential involvement in
regulating the immune system. Their relative abundance was
quantified using RT-qPCR. MiR-21-5p, miR-26a-5p, and miR-
27-3p were analyzed as endogenous controls for normalization.
Cel-miR-39, an artificial spike-in, was used as an internal
control. The results are presented in Figure 2. The selected
miRNA targets were detected in all samples. In accordance with
the sequencing data, RT-qPCR results demonstrated that the
levels of five miRNAs (miR-320a: P ≤ 0.0001, ratiohealthy/Otitis
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FIGURE 1 | Cerumen sequencing results. (A) Principal Component Analysis

(PCA) of six sequenced samples. Two-dimensional PCA was used to

determine whether otitis affected (blue point) could be distinguished from

healthy (pink points) subjects. (B) Identification of DE-miRNAs between otitis

affected and healthy dogs. Heat-map and table displaying the fold change and

Padj of DE-miRNAs.

= 17.5; miR-342: P ≤ 0.0001, ratiohealthy/Otitis = 15; miR-
146a: P≤ 0.0001, ratiohealthy/Otitis= 2.1; miR-378a: P = 0.0035,
ratiohealthy/Otitis = 2.9; miR-375: P ≤ 0.0001, ratiohealthy/Otitis
= 11) were significantly down-regulated in otitis-affected dogs.
Remarkably, the RT-qPCR validation for miR-125b (P ≤ 0.0001,
ratiohealthy/Otitis = 12.3) did not confirm the sequencing results,
presenting the evidence that this miRNA is down-regulated.
MiR-199 and miR-423a did not exhibit statistically significant
differences between otitis affected and healthy dogs.

The miR-320a, miR-342, miR-146a, miR-378a, miR-375,
miR-423a, miR-125b, and miR-199 abundance for the 95
samples were also analyzed together using Principal Component
Analysis (PCA, correlation matrix, no rotation), which is an
exploratory analysis tool used to explain the structure of a
set of variables through linear combinations. Good suitability
of data for PCA analysis was valued (KMO = 0.795 and
Bartlett’s test P≤ 0.001). The PCA revealed two main factors
with Eigenvectors greater than one, which together explains
75.9% of the variation between dogs. As shown in Figure 3A, the
first factor (PC1-Component 1; Eigenvalue = 3.927; Explained
variance = 49.092%) shows positive loadings for miR-320a,
miR-342, miR-375, miR-423a, and miR-125b. The second factor
(PC2-Component 2; Eigenvalue = 2.143; Explained variance
= 26.791%; Cumulative explained variance = 75.883%) shows
positive loadings for miR-146a, miR-378a, and miR-199. To test
whether there were any significant effects of the dog condition,
the PC miRNAs scores attributed to the samples on the first
two main components of the PCA (explaining 75.883% of
total variance) were analyzed through a Kruskal-Wallis test.
Based on the category healthy and otitis-affected, dogs did not
cluster homogeneously but were significantly (P ≤ 0.001) sorted
into two groups on PC1 (Figure 3B): one group with higher
variable values associated with healthy dogs and the second group
identified by a lower variability for otitis-affected dogs.

Assessment of the Diagnostic Value of
DE-miRNAs
To investigate the diagnostic value and the diagnostic potency of
DE-miRNAs in the cerumen, ROC curves and the area under
the curve (AUC) were calculated. The diagnostic performance
is reported in Table 1. The AUC was fair for miR-146a and
miR-378a, good for miR-342 and miR-375, and excellent for
miR-320a and miR-125b (Figure 4). Discriminant analysis was
carried out to investigate the potential for improving diagnostic
performance by analyzing multiple DE-miRNAs. The weighted
average relative quantification (RQ) values of the miRNAs
with an AUC>0.9 (miR-let-320a and miR-125b) and with
AUC>0.8 (miR-let-320a, miR-125b, miR-342, and miR-375)
were analyzed (Supplementary Figure 1). Median expression
levels including the RQ of 2 DE-miRNAs were 26 (range,
17.07–703.13) and 3.2 (range, 0.74–17.74) in healthy and otitis
affected dogs, respectively (Supplementary Figure 1A). Median
expression levels including the RQ of 4 DE-miRNAs were 13.3
(range, 3.31–367.7) and 1.69 (range, 0.24–9.1) in healthy and
otitis affected dogs, respectively (Supplementary Figure 1C).
The predicted probability of being discriminated as infected
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FIGURE 2 | Box plots of DE-miRNAs in otitis affected compared with healthy dogs. Significance was declared at *P < 0.05, and ***P < 0.001. Black lines inside the

boxes mark the medians. Whiskers indicate variability outside the upper and lower quartiles. (A) miR-320a, (B) miR-342, (C) miR-146a, (D) miR-378a, (E) miR-375,

(F) miR-125b, (G) miR-199, and (H) miR-432a.
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FIGURE 3 | Multivariate statistical analysis. (A) Projection for the loadings of the miRNAs considered for the First and Second Principal Component. (B) Score plot of

dogs in terms of clinical outcome.

TABLE 1 | Area under the curve (AUC), sensitivity, specificity, and accuracy for DE-miRNAs in the cerumen.

miRNA AUC 95% CI P-value Cut-off Sensitivity Specificity Accuracy

miR-320a 0.9202 0.8656–0.9748 <0.0001 0.9084 0.8636 0.9748 0.8254

miR-342 0.8758 0.79–0.9616 <0.0001 0.2308 0.7273 0.9268 0.8571

miR-146a 0.7749 0.6487–0.9012 <0.0001 1.7416 0.8636 0.7317 0.7778

miR-378a 0.7129 0.5732–0.8525 0.0028 1.5993 0.5909 0.8537 0.7619

miR-375 0.8703 0.7823–0.9583 <0.0001 0.1464 0.6364 1 0.8730

miR-125b 0.9834 0.9834–0.9834 <0.0001 0.4365 0.9545 0.9512 0.9524

Av_2 0.9607 0.9349–0.9865 <0.0001 10.28 0.8696 0.9286 0.9077

Av_4 0.9762 0.9762–0.9762 <0.0001 4.32 0.8696 0.9762 0.9385

Av_2, weighted average relative quantification of miR-320a and miR-125b; Av_4, weighted average relative quantification of miR-320a, miR-125b, miR-342, and miR-375.

from the logit model based on the two [logit = (19.5 ×

expression level of miR-320a) + (10.4 × expression level of
miR-125a)] or the four cerumen DE-miRNAs [logit = (19.5
× expression level of miR-320a) + (10.4 × expression level
of miR-125a) + (5.26 × expression level of miR-342) + (-
4.55 × expression level of miR-375)] was used to construct the
ROC curves (Supplementary Figures 1B,D). The results of ROC
curves analysis are reported in Table 1.

miRNA Localization, Target Prediction, and
Pathway Enrichment
To investigate the immune relevance, predicted targets of
DE-miRNAs were computationally retrieved from miRWalk
resources. The mRNA enrichment was performed using DAVID
bioinformatic tool. Since little information on alterations in
immune response contributing to the onset and progression
of otitis externa are available, an enrichment of mRNA targets
that encode for immunologically relevant genes was performed
comparing the target genes obtained from miRWalk with the
Gene List of ImmPort (46). The predicted mRNA targets of up-
regulatedmiRNAswere 270 [164 at 3′ untranslated region (UTR),

21 at 5
′

UTR, and 85 at codon sequence (CDS)], of which 21
were immune-related. The predicted mRNA targets of down-

regulated miRNAs were 133 (78 at 3′UTR, 10 at 5
′

UTR, and
45 at CDS), of which 15 were involved in immunity. The list

of immunologically relevant genes is reported in Table 2. KEGG
pathway analysis was performed on the enriched immune-related
targets of up- and down-regulated miRNAs using DAVID. The
top 10 significantly enriched KEGG pathways are reported in
Figure 5. The up-regulated miRNAs (Figure 5A) were identified
to be predominantly involved in the following pathways: HIF1
(Hypoxia Inducible Factor 1) and FoxO (Forkhead box O3)
signaling pathways. The down-regulated miRNAs (Figure 5B)
were revealed to be involved in the T cell receptor signaling
pathway, MAPK (Mitogen-Activated Protein Kinase) signaling
pathway, Focal adhesion, and RAP1 (Ras-proximate-1) signaling
pathway. Aiming for further understanding the associated
functions of the DE-miRNAs, Gene Ontology (GO) analysis
was performed. GO enrichment analysis included the categories
molecular function (MF), cellular component (CC), biological
process (BP) (Figure 6). For down-regulated miRNAs, most
MF items mainly included genes involved in the regulation
of MAPK activity, growth factor activity, and heparin-binding;
the enriched CC converged on genes associated with the
nucleoplasm and extracellular exosomes, while BP on ROS
(Reactive oxygen species) metabolic species, signal transduction
in response to DNA damage, and VEGF (Vascular-Endothelial
Growth Factor) receptor signaling pathway. For up-regulated
miRNAs, MF items focused on steroid hormone receptor
activity and insulin receptor substrate binding; CC converged
on receptor complex, phosphatidylinositol 3-kinase complex and
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FIGURE 4 | Receiver-operator characteristic (ROC) curve analysis of DE-miRNAs in the cerumen. AUC, area under the curve; CI, confidence interval. (A) miR-320a,

(B) miR-342, (C) miR-146a, (D) miR-378a, (E) miR-375, and (F) miR-125b.

integral component of plasma membrane, and BP on positive
regulation of transcription from RNA polymerase II promoter,
steroid hormone-mediated signaling pathway, and positive
regulation of cell migration. To identify which type of cells in
cerumen express DE-miRNAs, the atlas of miRNA expression
(FANTOM5) in immune cells and keratinocytes was explored.
The radar chart reported in Figure 7A presents the contribution
of cells to the production of up- and down-regulated miRNAs.
In detail, down-regulated miRNAs are produced mainly by
keratinocytes, monocytes, dendritic cells, and T cells, while up-
regulated miRNAs by B cells and mast cells. The miRNA–mRNA
networks determined using miRNet database are presented in
Figures 7B,C.

DISCUSSION

The findings of this study provided for the first-time evidence
that (a) miRNAs can be efficiently extracted, sequenced, and
quantified by RT-qPCR from canine cerumen and (b) cerumen
microRNAs quantities change during otitis externa. In the first
part of the investigation, a pilot sequencing study was performed
to profile the miRNome of cerumen, showing that otitis externa

TABLE 2 | Immune-related target genes of differentially expressed miRNAs.

Immune-related genes targeted by

up-regulated miRNAs

Immune-related genes targeted

by down-regulated miRNAs

FASLG, IGF1R, TGFBR3, SOCS1, CRLF3,

NR2C2, RORA, NR4A3, CREB1, STAT3,

VDR, INSR, ACVR2A, KDR, NR3C1,

PTGER4, EDN1, PIK3R1, NR6A1,

PIK3CA, PPP3R1

BDNF, THBS1, CDC42, VEGFA,

IFNG, PDGFRB, MAPK14, PAK4,

CMTM4, GRB2, LRP1, NFATC3,

NFAT5, SP1, MAPK1

changed the expression of 32 miRNAs, of which 14 were more
abundant and 18 were less abundant compared to healthy dogs.
In the second step, 8 differentially expressed miRNAs were
validated on a larger cohort using a RT-qPCR approach. It
was found that miR-320a, miR-342, miR-146a, miR-378a, miR-
375, and miR-125b were down-regulated in cerumen from otitis
affected dogs. The results are supported by PCA analysis, of
which the first principal component accounts for as much of the
variability in the data as possible. miRNAs on this component
are the most important in explaining the differences between
healthy and otitis-affected dogs. Moreover, heat map, hierarchical
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FIGURE 5 | Pathway enrichment analysis for genes regulated by (A) up- and (B) down-regulated miRNAs. Genes regulated by DE-miRNAs were retrieved and

enriched in KEGG using DAVID. The P-value was negative 10-base log transformed. The top 10 enriched KEGG pathways are reported.

clustering, and PCA revealed that dogs with otitis showed
increased variability in miRNA levels compared to healthy ones.

Given the functions of the target genes regulated by DE-
miRNAs, the current findings demonstrated that miRNAs
contained in cerumen might interact with several pathways
involved in the host innate immunity, including modulation
the inflammatory reaction, the regulation of M1/M2 monocyte
lineage polarization, the resolution of inflammation, and
reparation of damaged tissues.

All DE-miRNAs are involved in pathways that regulate
the inflammatory reaction. Therefore, their down-regulation
provides cerumen with a potential pro-inflammatory activity,
following a mechanism different for each DE-miRNAs.
For example, the downregulation of miR-320a induced
the overexpression of pro-inflammatory cytokines through
promoting COX-2 (Cyclooxygenase-2) expression by targeting
MAPK-1 (47). In macrophages, decreasing miR-125b-5p has
a dual, apparently opposite, effect of increasing secretion
of the pro-inflammatory chemokine MCP-1 (Monocyte
chemoattractant protein-1) (48) and upregulating B7-H4 in

macrophages, which induces an anti-inflammatory effect
(49). Decreasing miR-378a through targeting CD47-SIRPα

(Signal Regulatory Protein Alpha) inhibits phagocytosis in
macrophages, and promotes the secretion of TNFα (Tumor
Necrosis Factor-alpha) and IL-6 (Interleukin-6) (50). MiR-375
regulates the expression of pro-inflammatory cytokines such
as IL1-β, TNFα, and IL-6: therefore, miR-375 decrease also
reduces cytokine expression, as shown in a myocardial infarction
model (51). Finally, miR-146 is involved in the regulation
of inflammation via negative feedback of toll-like receptor
signaling (TLR) (52), as already described in otitis media
in humans (24): consequently, down-regulation of miR-146
induces a pro-inflammatory effect. Moreover, miR-125b and
miR-146, which are also reduced after TLR activation, can
promote tolerance to endotoxin (53). We found that all these
miRNAs are less abundant in cerumen of dogs affected by
otitis, confirming what has been already reported in other
diseases such as for miR-342 (54) and miR-375 in sepsis,
or during C5a (complement component C5a) activation for
miR-320a (55).
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FIGURE 6 | Target prediction. GO annotation of genes regulated by (A) up- and (B) down-regulated miRNAs. The target genes were annotated by DAVID at three

levels: molecular function, cellular component, and biological process. The top 10 significantly enriched items are shown.

FIGURE 7 | Localization of DE-miRNAs and network analysis of miRNAs-immune-related target genes in the cerumen. (A) FANTOM5 miRNAS atlas was analyzed for

the expression of DE-miRNAs in immune cells and keratinocytes. Expression (counts per million) was plotted for these miRNAs in the radar graph; (B) network of

over-expressed miRNAs constructed using miRNet; (C) network of down-regulated miRNAs constructed using miRNet. The blue squares represent miRNAs, the red

dots mRNA.
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All DE-miRNAs are also involved in the modulation of
monocyte/macrophage polarization. Specifically, miR-125b,
miR-378, miR-375, and miR-372 are involved in polarization
to M1 lineage whereas miR-320a and miR-146a are involved
in polarization toward M2 lineage. MiR-320a, in particular,
was found in epithelial-derived microvesicles, and could
activate macrophage pro-inflammatory effects (56). The
effect of miR-320a may be even more complex since a more
recent study demonstrated that miR-320a promotes the
polarization toward immunosuppressive M2 macrophages
meanwhile inducing polarization toward M1 lineage (57).
Moreover, the effects of miR-375 require a more in-depth
investigation since the inhibition of miR-375 represses M1
macrophage polarization and promotes M2 macrophage
polarization, targeting PDK-1 (Pyruvate Dehydrogenase Kinase
1) (51).

Following their inflammatory functions, classical M1
macrophages feature higher capabilities of phagocytosis and,
more in general, a pro-inflammatory phenotype. On the contrary,
non-classical M2 monocytes share a lower pro-inflammatory
activity, although their precise physiological roles remain still
poorly defined (58). Given the background that miRNAs play
pivotal roles in macrophage activation and polarization (59),
the finding that miRNAs involved in monocyte/macrophage
polarization were detected in cerumen was not surprising
and suggests that during inflammatory responses, monocytes
are attracted to cerumen, and become activated on site and
modulated by miRNAs.

The DE-miRNAs are involved in a third mechanism
represented by the regulation of repair pathways after
inflammation. For example, miR-320a is involved in intestinal
mucosal reconstitution and repair after inflammation (60), and
miR-125b inhibits proliferation and promotes differentiation
of keratinocytes in the skin (61). Therefore, the capability of
cerumen to down-regulate miR-320a andmiR-125bmay result in
keratinocyte proliferation, which in turn may accelerate wound
healing and homeostasis restitution.

Although neutrophils were observed in high numbers only
in three dogs, cytological findings associated always with otitis
paralleling the observations of Angus (62). According to our
results, cytology should be considered a specific diagnostic
technique assisting in the diagnosis of otitis in dogs although
bearing lower sensitivity. Isolation of yeasts and bacteria species
did not correspond to a specific condition; however, increased
numbers of bacteria were evidenced in cases of otitis as
previously reported (62). These findings suggested that isolation
of organisms should be assessed in the context of clinical
presentation and cytological findings as an adjunctive tool
to support diagnostic and therapeutic protocols. Noteworthy,
cytology and microbiology did not always result in sensitive
techniques to distinguish healthy vs. diseased ears. On the
contrary, ROC analysis highlighted that two miRNAs, namely
miR-125b and miR-320a, can discriminate otitis-affected from
healthy dogs with high sensitivity (>86%) and specificity
(>97%), confirming that these miRNAs may be excellent
candidate biomarkers. These findings are more relevant if
considered that differentiation among diseased and normal ears

occurred independently from the presence of elevated numbers
of neutrophils thus independently of morphological features
of inflammation.

Currently, one of the main issues in human as well as
in veterinary medicine is the overuse of antibiotics, which
promotes the selection of resistant commensal flora. Careful use
of antibiotics for treatment of cutaneous infections, including
otitis externa in dogs, is recommended (63). We believe that
molecular biomarkers, such as the miRNAs identified in this
work, may assist the clinical monitoring of drug effectiveness
during otitis externa treatment. To support this hypothesis,
further studies will be performed on cerumen collected from
dogs affected by otitis and treated with antibiotics. Moreover,
as allergic dermatitis is the most frequently recognized primary
cause of canine otitis externa (64), further studies evaluating
the change of biomarkers expression in allergic dogs, without
symptomatic otitis externa, compared to healthy subjects could
provide the clinician with a valuable screening method to
monitor the ear canal inflammatory status. This could, in
turn, support the proactive use of targeted anti-inflammatory
treatments aimed to prevent the development of secondary
infections decreasing further the use of antibiotics and the risk
of bacterial resistance.

In conclusion, to the best of the authors’ knowledge, this is the
first report demonstrating the presence of miRNAs in cerumen
and their changes in dogs with acute otitis externa. These findings
provided insights on the role of miRNAs in modulating immune
defenses in cerumen, a biological fluid whose importance has
been almost completely neglected so far, meanwhile highlighting
the potential role of cerumen as a source of biomarkers. In this
work, the finding of miRNAs differential expression is relevant
for a better understanding of the pathogenic mechanism leading
to otitis and tampering of external ear damage and provides a
novel technique able to discriminate healthy vs. otitis-affected
ears representing a more specific and sensitive diagnostic tool
compared to cytology and microbiology. Thus, the abnormal
expression of miRNAsmay lead to an early diagnosis of otitis and
timely treatment.

Further studies are necessary to confirm their diagnostic
values by increasing the number of clinical samples, associating
their abundance with specific pathogens and antibiotic treatment,
and to investigate the direct interaction between these miRNAs
and their target genes.
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Antimicrobial resistance (AMR) is a significant problem in health care, animal health,

and food safety. To limit AMR, there is a need for alternatives to antibiotics to

enhance disease resistance and support judicious antibiotic usage in animals and

humans. Immunomodulation is a promising strategy to enhance disease resistance

without antibiotics in food animals. One rapidly evolving field of immunomodulation

is innate memory in which innate immune cells undergo epigenetic changes of

chromatin remodeling and metabolic reprogramming upon a priming event that results

in either enhanced or suppressed responsiveness to secondary stimuli (training or

tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG)

or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram

or “train” the innate immune system. Over the last decade, significant advancements

increased our understanding of innate training in humans and rodent models, and

strategies are being developed to specifically target or regulate innate memory. In

veterinary species, the concept of enhancing the innate immune system is not new;

however, there are few available studies which have purposefully investigated innate

training as it has been defined in human literature. The development of targeted

approaches to engage innate training in food animals, with the practical goal of enhancing

the capacity to limit disease without the use of antibiotics, is an area which deserves

attention. In this review, we provide an overview of innate immunomodulation and

memory, and the mechanisms which regulate this long-term functional reprogramming

in other animals (e.g., humans, rodents). We focus on studies describing innate training,

or similar phenomenon (often referred to as heterologous or non-specific protection), in

cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits

and shortcomings of engaging innate training for enhancing disease resistance.

Keywords: trained innate immunity, veterinary species, disease resistance, beta-glucans, innate memory

INNATE MODULATION

While various approaches are used to limit disease and antibiotic usage in agricultural animals,
efficacious intervention strategies remain unavailable for many diseases. Immunomodulation is
one approach to engage or prime (1) the host’s own immune system to defend against infectious
disease. Vaccines are effective immunomodulators, priming the adaptive immune system, and
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BOX 1 | De�ning immunomodulation.

Immunomodulation

Changes to the immune system after exposure to a substance or

compound (i.e., agonist) that stimulates or suppresses the immune response.

This review is focused on immunomodulation that alters the immune response

to subsequent exposure with non-related (heterologous) immune agonist, not

the priming agonist.

Immunomodulation of adaptive immunity: altered vaccination or natural

exposure of an animal to pathogens or other foreign agents induces the

generation of effector and memory T- and B-cells to provide long-term

(multi-year to lifetime) protection against the foreign agent.

Exposure of an animal to a priming substance or compound, often a

protein or protein-polysaccharide, such that subsequent exposure to similar

compound results in cross-reactive response. dependent on B- and T-cells.

anergy and tolerance are functions of non-repsonsiveness or suppressive

responses by B- or T-cells

Immunomodulation of innate immunity (innate memory): exposure of

an animal or cells to a priming substance or compound (i.e, agonist), often a

microbial-associated molecular pattern (MAMP), such that exposure to non-

related immune agonist results in heightened (trained) or suppressed (tolerant)

response. Observed in non-T, non-B cells, and primarily in myeloid lineage

and NK cells. Mechanism includes epigenetic and metabolic reprograming

of innate immune cells and progenitor cells. Duration of effect is not yet

determined, but there is evidence for months to a few years.

Training: enhanced response to heterologous agonists

Tolerance: decreased response to heterologous agonists

well-understood by infectious disease experts. However,
less common or at least less frequently discussed is
immunomodulation of the innate arm of the immune system for
enhanced disease protection. A related, rapidly evolving field of
immunomodulation is innate training, which relies on memory
of the innate immune system (see Text Box).

While adaptive immune memory is well-understood at
the cellular and molecular level, the innate system was not
known to have memory, and concordantly disease prevention
strategies primarily targeted the adaptive immune system (e.g.,
vaccination). However, the paradigm on innate memory has
recently shifted, with substantial evidence indicating that innate
immune cells functionally adapt after stimulation or microbial
exposure. More specifically, circulating monocytes, monocyte-
derived macrophages, and NK cells have altered secondary
responses to various pathogens or microbe-associated molecular
patterns (MAMPs) after an initial priming event with the same or
different MAMP (1–4). In vitro, purified monocytes stimulated
with specific innate agonists, such as β-glucan or live-attenuated
tuberculosis vaccine [Mycobacterium bovis bacillus Calmette-
Guerin (BCG)], and restimulated days later with a heterologous
MAMP, had heightened responses compared to cells that were
not primed with β-glucan or BCG [reviewed in (3)]. Thus, the
adaptive immune system may not be the only consideration
for development of disease intervention strategies for enhancing
food animal health.

The sustained effect of trained innate immunity is dependent
on epigenetic changes, chromatin remodeling, and basal

metabolic shifts that occur in the cell after primary stimulation,
with effects that can be long-lasting. Primary MAMP (5, 6)
exposure leaves the cell in a “poised” state, or a state in
which the cell is ready to respond to secondary insult or
exposure. In a trained response, cells respond with increased
production of effector molecules, including proinflammatory
cytokines, upon secondary stimulation or exposure (Figure 1).
The trained response differs from innate tolerance, in which
poised cells respond with reduced production of effector
molecules (Figure 1). While circulating immune cells such as
monocytes and NK cells may exhibit a trained response, the
lifespan of circulating cells is relatively short-lived (7) and
the length of time cells exhibit a trained phenotype may
concordantly be short-lived. However, epigenetic modification of
bone marrow progenitor cells that become circulating effector
cells (including monocytes and NK cells), underlies innate
training in vivo and contributes to the longevity of innate
training (8, 9). Experimental vaccination of humans with BCG
enhances in vitro PBMC pro-inflammatory cytokine production
upon stimulation with the MAMP lipopolysaccharide (LPS),
even 12 months after BCG administration (1). Furthermore,
epidemiological studies with human infants found that BCG
vaccination is associated with non-specific (i.e., not related to
BCG) protection. In other words, BCG vaccinated children
had enhanced resistance to other diseases (5, 6), leading to
increased overall survival and decreased incidences of morbidity.
Importantly, the protective benefits were noted months to
years after vaccination (10). Food animals are relatively short
lived, and changes to innate immunity in early life may
afford a protective effect against disease for the animals’
entire lifespan.

In this paper, we briefly review important concepts from
mouse, rabbit, and human literature, including mechanisms of
innate memory, training, and tolerizing agents, and evidence
for innate training in various cells types. However, the
primary focus of this review is to summarize the available
evidence for innate immunomodulation and memory in
agricultural species including cattle, pigs, poultry, fish, and
small ruminants.

REVIEW OF HUMAN AND ANIMAL MODEL
LITERATURE

Immunomodulator Molecules
Bacterial endotoxin, or LPS, is the earliest described and best-
known agonists capable of modulating the innate immune system
(11). Priming of innate cells, most notably monocytes, with
low doses of LPS, followed by homologous LPS restimulation
resulted in a depressed inflammatory immune response (i.e.,
tolerance) (12, 13). However, Gregory Shwartzman described a
phenomenon whereby rabbits intradermally injected with super
low doses of gram-negative sterile culture filtrate had dermal
necrosis at the site of injection following intravenous rechallenge
with the same filtrate (14), suggesting the cells primed at the
initial injection site responded to the secondary stimulation
with a heightened response. The discovery of the “Shwartzman
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FIGURE 1 | General outline of immune response associated with innate

memory. Initial exposure to a priming agonist (red and blue lines) induces an

innate response, typically measured as induction of proinflammatory cytokine

production. After a rest period, subsequent stimulation of the same cells or

animal with a heterologous agonist (commonly LPS or Pam3CSK4) results in

tolerance or trained response, marked by reduced (red line) or enhanced (blue

line) cytokine production when compared to naïve response (black line).

Proinflammatory cytokines, including IL-1β, TNF-α, or IL-6 are the most

common cytokines measured for innate memory. Priming and heterologous

stimulation may all occur in vitro with primary cells; in vivo; or a combinantion

of in vivo with ex vivo cell stimulation.

phenomenon” was followed by multiple studies highlighting the
importance of dose, as low doses of LPS induced tolerance
while super low doses resulted in heightened immune responses
(15–18). Compounds besides LPS can induce a tolerant state
in myeloid cells when restimulated with the same molecule
(homologous tolerance). Additionally, priming with one agonist
could induce tolerance in response to restimulation with a
heterologous agonist, a process termed cross-tolerance (13, 19,
20). Zymosan, a particulate preparation of β-glucans, mannans,
and proteins from Saccharomyces cerevisiae was one of the
earliest known inducers of cross-tolerance (21, 22). Collectively,
variousmolecules have been implicated in tolerance, and the dose
upon primary exposure impacts the induction of tolerance.

As LPS is known as a classic tolerizing agent, the BCG
vaccine is a highly described inducer of innate training. There are
numerous reports on the non-specific effects of BCG vaccination
of infants in countries that actively administer neonatal BCG,
with significant reductions in non-tuberculosis diseases (5, 6, 23).
In a set of particularly compelling studies, BCG vaccination of
low-birth weight infants in Guinea-Bissau was associated with
a nearly 50% reduction in mortality rates, primarily due to
reductions in sepsis and respiratory infections (5, 6). Monocytes
and NK cells from BCG-vaccinated adults and infants, compared
to non-vaccinated cohorts, display increased expression of toll-
like receptors and increased cytokine production in response
to various pathogens and their products (e.g., M. tuberculosis,
Candida albicans, Staphylcoccus aureus, LPS, and Pam3CSK4)
(17–19). Mice vaccinated with BCG are protected from lethal C.
albicans challenge via a mechanism that requires macrophages

(24) and humans vaccinated with BCG show reduced viral
titer when experimentally infected with the attenuated yellow
fever virus vaccine strain (25). However, BCG-induced trained
immunity did not protect mice against experimental influenza
A infection (26). Early studies with Mycobacterium tuberculosis
or BCG indicate enhanced resistance against subsequent disease
may not be a universal phenomomen. While protection in
mice against Bacillus anthracis, Brucella suis, Staphylococcus
aureus, Pasteurella pestis, Listeria monocytogenes, and Klebsiella
pneumonia has been noted (27–30), BCG treated mice are
more sensitive to endotoxin and had similar mortality to
untreated mice when challenged intravenously with a low dose
of Salmonella enteritis (1 × 104 CFU) (31). While not all
encompassing, numerous reports indicate BCG administration
in humans or rodent animals models enhances resistance to
subsequent disease with increased immune responses to the
secondary agent, a hallmark of innate training.

β-glucans, which activate innate cells via the Dectin-1 receptor
or CR3, can also induce innate training. However, the source
and type of β-glucan impacts the primary immune response
and subsequent induction of innate memory. Human myeloid-
lineage cells require cross-linkage of the Dectin-1 receptor and
formation of a phagocytic synapse for downstream signaling
(32). Soluble β-glucans, such as laminarin with (1–3)(1–6)
linkages, can bind to the Dectin-1 receptor but are incapable
of cross-linking multiple receptors and thereby fail to initiate
an immune response (32, 33). As discussed above, zymosan
induces tolerance in monocytes. It is a complex compound
of β-glucan with highly branched (1–3)(1–6) linkages that,
along with mannan and proteins, forms the cell wall. However,
human and mouse monocytes primed with β-glucan from
C. albicans exhibited a trained phenotype upon heterologous
restimulation (17, 34–36). In fact, heat-inactivated C. albicans
alone is sufficient to induce a trained state in human monocytes
(34). β-glucans primarily induce innate training, but there
are instances in which tolerance is induced, though the
reason may not be related to dose, but receptor binding or
signaling by additional cell wall components contained within
the product.

There aremany documented and perceived benefits associated
with innate memory, but some potential drawbacks. While
β-glucans and BCG are the most studied innate priming
agonists other MAMP molecules, such as flagellin, muramyl
dipeptide (MDP), polyinosinic-polycytidylic [Poly(I:C)] can
induce innate training (1, 17). Innate training is the proposed
mechanism for the non-specific benefits observed with certain
vaccines, including the yellow fever vaccine, measles vaccine,
vaccinia, and the influenza vaccine (37, 38). However, a
heightened immune response to subsequent infections may
result in enhanced pathology, an undesired effect. Indeed,
trained immunity is hypothesized to contribute to autoimmune
diseases (39, 40) and in a controlled experiment, patients
vaccinated with BCG and later infected with malaria experienced
earlier and more clinically severe symptoms than those not
vaccinated with BCG (41). Thus, a deeper understanding of
the implications associated with harnessing innate memory
are warranted.
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Mechanisms and Cells in Trained Immunity
Trained immunity is based on epigenetic reprogramming in
innate immune cells, which has been documented primarily in
monocytes (35, 42). The epigenetic modifications lead to changes
in gene expression and consequent protein production upon
secondary stimulation. Chromatin modifications and changes
in DNA accessibility are the central processes of epigenetic
reprogramming associated with trained immunity. Histone
modifications, such as increased methylation of the latent
enhancer histone H3 at K4 (H3K4me1), reduced methylation
of the repressor histone marks such as histone H3 at K9
(H3K9me3) and the most informative histone marker, increased
acetylation at the poised/active enhancer mark (H3K27ac), are
associated with a trained phenotype (1, 2, 35, 36). Other
posttranscriptional regulatory mechanisms, such as microRNA
(miRNA) modulation of mRNA levels, are involved in the
regulation of the immune response (43). MicroRNA genes,
as well as protein coding genes, can be regulated by histone
modifications, and at the same time, miRNAs can directly and
indirectly target effectors of the epigenetic machinery (44) and
immune system mRNAs.

Changes to metabolic state are also noted in trained cells,
and likely the result of epigenetic reprogramming whereby cells
are primed to respond to secondary stimulation. Metabolic state
is important for rapid release of intermediate substrates, such
as nucleic and amino acids, necessary for the production of
effector molecules (45). Innate training by C. albicans β-glucan
is evidenced by an increase in basal glycolysis and a decrease
in basal mitochondrial respiration, a measure of oxidative
phosphorylation (Warburg effect) (46). The importance of
glycolysis in β-glucan mediated innate training was noted in
a clinical trial wherein β-glucan injection was administered to
human volunteers, with a cohort also receiving metformin (a
drug that prevents gluconeogenesis). Individuals on metformin
did not exhibit enhanced ex vivo cytokine production following
heterologous restimulation, which was in contrast to volunteers
who received the β-glucan injection without prior metformin
treatment (47). Thus, the availability and capacity to utilize
glucose is critical in trained innate cells.

In addition to evidence of metabolic state impacting β-
glucan induced training, BCG impacts cellular metabolism.
BCG-treated cells have an increase in basal glycolysis as
well as oxidative phosphorylation (48). Activation of the
metabolic Akt/mTOR/HIF1 pathway is a critical feature of
BCG-mediated trained immunity. Inhibition of glutamine or
mTOR/glycolysis metabolism during in vitro training with BCG
inhibited mRNA expression, and also prevented the epigenetic
changes (H3K4me3 and H3K9me3) normally associated with
BCG trained immunity (48). Collectively, the epigenetic and
metabolic changes associated with BCG-induced training, or lack
thereof, are linked. Understanding the mechanisms associated
with training can provide a more targeted approach to modulate
immune status.

Innate training and tolerance are well-described in monocytes
and monocyte-derived macrophages, and to a lesser extent in NK
cells (19, 34, 46, 49, 50). In vitro studies with purified monocytes

and in vivo studies with severe combined immunodeficient
(SCID) mice indicate T and B cells are not required for
development of trained immunity (1). Epigenetic reprograming
of myeloid progenitor cells leads to long lasting changes to
emigrating monocytes, contributing to the longevity of innate
training (8, 9). Tissue resident macrophages (e.g., Kupffer cells
in the liver) are terminally-differentiated and do not rely on
circulating monocytes for regeneration (51). It is unclear if
tissue-resident macrophages can be trained, or if presence
of trained myeloid lineage cells in tissue is the result of
circulatingmonocytes migrating into a tissue. A study identifying
alveolar macrophages with a trained phenotype showed CD8T
cells were required for induction of a trained state following
a viral infection (52). In another study, reprogramming of
tissue-resident macrophages occurred upon placement in new
microenvironments, and cells may be driven into a trained or
tolerant phenotype (53). Innate training is noted in other cell
types, including dendritic cells (54, 55), non-immune cells such
as mesenchymal and epithelial stem cells, and intestinal stromal
cells (56). Additional research will be required to understand how
alterations in the innate responsiveness of various cell types may
contribute to disease resistance at the level of the organism.

INNATE MEMORY IN FOOD ANIMALS

Innate memory, defined as both training and tolerance, is well-
described in human and rodent literature, and a mechanistic
model of innate training as described above is beginning to be
defined. However, there exists a paucity of information regarding
innate memory in agriculture animals. Although broadly similar
to human and rodent immune systems, there are important
species-specific differences in the innate immune systems of
individual food animals which can significantly impact the
development of innate memory. For example, LPS dose plays a
critical role in the induction of tolerance or training. However, it
is difficult to draw parallels across species because of differences
in LPS sensitivities. A very low dose of LPS can induce cellular
and physiological changes in sheep, while a much higher dose
is needed for a similar effect in chickens (57, 58). Thus, in the
future, it will be critically important to assess the induction and
effects of innate training in each individual species, ensuring
that species-specific differences in innate immune function
are fully acknowledged. As an impetus to encourage futher
research, this review is focused on evidence for innate training in
individual commercially important agricultural species and the
potentiall benefits and limitations of innate training to enhance
disease resistance.

Cattle
To date, there are only a handful of reports detailing innate
training as described by Netea et al. (3) in cattle. In one report,
vaccination of 3- to 6- months old beef calves with heat-
killed M. bovis resulted in an enhanced capacity for monocyte-
derived macrophages from these animals to phagocytose and
kill M. bovis in vitro. This effect was independent of cellular or
humoral adaptive immune responses, and lasted up to 6 months
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after vaccination (59). Recent data from our group has shown
that aerosol BCG vaccination induces a trained phenotype in
circulating bovine monocytes. Specifically, monocytes isolated
from BCG-vaccinated calves produce more proinflammatory
cytokines in response to stimulation with LPS or Pam3CSK4

compared to cells from non-vaccinated, control calves (60). Thus,
it is clear that the bovine innate immune system can be trained
in a similar fashion as that of humans and rodents. Further
analysis of the literature suggests other instances in which innate
training may occur in cattle, although without experiments
designed to specifically address the duration or mechanisms of
innate memory, one must infer based upon the nature of the
stimuli or resulting phenotype. In one report, immunization of
cattle with an ultrasonicated lysate of Corynebacterium cutis had
positive effects on morbidity and mortality in three different age
groups of animals (61). Ten days old calves receiving the C.
cutis lysate demonstrated a nearly 50% reduction in morbidity
compared to controls due to enteric and respiratory diseases
in the first 6 months of life. When pregnant cows were given
C. cutis lysate in the final month of pregnancy, the resultant
calves had a higher birth weight and greater weight gain in
the first 3 months of life. Of the 23 control calves that were
born, only 15 calves survived to 3 months of age, while 25
of 25 calves from the C. cutis immunized dams survived to
the study endpoint (61). In a number of early studies, oral
vaccination of calves using attenuated, live auxotrophic mutants
of Salmonella enteritidis serovar Typhimirium (S. Typhimurium)
resulted in homologous and heterologous protection against
S. Typhimurium and S. Dublin (62–64). Protection was non-
specific and T cell-independent, and endured for about 1 month
after vaccination. Similar results were subsequently recapitulated
inmousemodels (65); and in fact, more recent results have shown
that oral vaccination with live, attenuated S. Typhimurium
induces sufficient non-specific protection to prevent lethal
influenza virus infection in a mouse model (66). Thus, while
the authors did not investigate the mechanisms of non-specific
resistance in the calves, we speculate that the live Salmonella
vaccine may have induced some form of innate memory.

Several recent commercial therapies have emerged with
potential to enhance the bovine innate immune response
during times of stress. One such DNA-based immunostimulant,
marketed as the commercial product ZelnateTM, can reduce lung-
pathology scores in cattle experimentally challenged with M.
haemolytica (67), and significantly reduce mortality in high-
risk cattle after feedlot placement (68, 69). While the product’s
exact mechanism(s) of action is not well-defined, it is likely
stimulating the immune system through pattern-recognition
receptors such as TLR9 or the innate cytosolic DNA sensing c-
GAS-STING pathway (70). It is unclear, however, if ZelnateTM’s
mechanism of action can be classified as innate memory.
Product literature encourages the use of Zelnate immediately
prior or within 24 h of a perceived stressful event. Given
that a critical aspect of innate training is the duration of
the effect, this form of immunomodulation may not fit the
definition. Another immunomodulatory product, marketed as
AmplimuneTM, is a mycobacterial cell wall fraction derived
from the non-pathogenic Mycobacterium phlei. AmplimuneTM

non-specifically activates the innate immune system and can
significantly reduce the incidence and severity of K99 Escherichia
coli infection in newborn calves (71). It is currently marketed
in the United States and Canada for this use. A recent study
revealed that AmplimuneTM also had significant beneficial effects
in reducing the incidence and mortality associated with bovine
respiratory disease in newly received, light-weight beef calves
(72), suggesting it may have broader applications for ruminant
health. Another commercial immunomodulator, BaypamunTM,
an inactivated preparation of Orf virus (Parapoxvirus ovis), was
sold in Europe for several years for use in food animals and
horses. Treatment with BaypamunTM immediately prior to, or in
the early stages of infectious bovine rhinotracheitis infection was
shown to significantly reduce clinical disease and virus shedding
(73–76). Again, while it is evident that these commercial products
have enhancing effects on the innate immune system, it is unclear
if the immune system remains in a poised state for prolonged
periods following treatment. More research will be required to
determine if these products have the capacity to induce the long-
term effects of innate memory, or simply a transient increase in
innate activation.

The use of immunomodulatory feed compounds has grown
with the increasing interest in alternatives to antibiotics.
Many of these compounds are comprised of a mixture
of whole yeast or yeast cell wall components. Several can
promote innate immune functions, such as increasing
phagocytic activity, increasing the generation of reactive
oxygen species or restoring proinflammatory cytokine secretion
to leukocytes from transition cows (77–82). The use of
particular immunomodulatory feed additives can increase
disease resistance in bovine. For example, supplementing with
a S. cerevisiae fermentation product improves outcome of
experimental Salmonella or Cryptosporidium challenges in
preweaned calves (83–85); and reduces the size and number of
liver abscesses in finishing beef steers, with efficacy comparable to
standard in-feed antibiotic regimens (86). Yeast-supplemented
cattle have reduced incidences of bovine respiratory disease
during the receiving period (87, 88); while preweaned dairy
calves receiving a yeast-based supplement have improved fecal
scores and overall reductions in morbidity and mortality during
the first 70 days of life. Given the capacity of the yeast cell wall
component, β-glucan, to train the innate immune system in
rodents and humans (34, 35, 46), it seems likely that at least
some of the positive effects of such yeast-based additives on
bovine health may be attributed to the induction of innate
memory. More in-depth analyses of innate cell function and
the specific epigenetic and metabolic alterations accompanying
these changes will be required to determine if innate memory is
a mechanism contributing to enhanced disease resistance.

Sheep and Goats
Similar to the other species in this review, β-glucans are the
most common immunomodulatory compounds investigated in
sheep. Oral supplementation of β-(1-3)(1-6)-glucans to ewes has
positive effects on reproductive performance, and on growth rate
and body composition of the resultant lambs (89), potentially
due to the positive effects of β-glucan supplementation on
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milk yield and milk composition in lactating ewes (89, 90).
Monocytes and neutrophils isolated from lambs fed β-glucans
have increased phagocytic and respiratory burst activities, and
increased lysozyme activity (90, 91). Lactating ewes fed β-
glucans have reduced somatic cell counts in milk (89), while
an intramammary infusion of β-glucans resulted in selective
recruitment of CD14+ monocytes/macrophages to the udder
(92), potentially priming the animal to be more resistant
to mastitis.

A recent series of studies has shown that the marine yeast,
Debaryomyces hansenii and its cell wall, has the potential to
train the innate immune system in newborn goats (93–96). In
vivo supplementation of newborn goats with live D. hansenii
induced upregulation of the genes encoding for TLR2, 4, and
6, IL-1β and TNF-α in circulating leukocytes, and resulted in
increased respiratory burst, catalase and superoxide dismutase
activity (94–96). The cell wall of D. hansenii is comprised
primarily of (1-6)-branched (1-3)-β-D-glucan (96). In vitro
training of goat monocytes with purified D. hansenii β-glucans
results in increased expression of CD11b and the macrophage-
associated gene F4/80, increased viability upon LPS challenge
and increased phagocytic activity (93). In vivo, newborn kid
goats supplemented with purified β-glucans from D. hansenii
and subsequently challenged with LPS demonstrate increased
plasma concentrations of IL-6, IL-1β, and TNF-α, and isolated
leukocytes show increased respiratory burst activity and nitric
oxide production (93).

BCG has not been widely studied in sheep. However, a few
early studies showed that vaccination with BCG affords some
resistance to infection with rift valley fever virus (97) and
resistance to caseous lymphadenitis caused by Corynebacterium
pseudotuberculosis (98). In the former study, a fraction of the
BCG immunized sheep developed short fevers and viremia for
only 24–48 h, while control sheep were viremic and febrile for up
to 8 days after challenge. Sheep receiving two doses of BCG were
completely protected from liver involvement due to rift valley
fever infection (97). The latter study followed more than 500
head of sheep and used a model of natural C. pseudotuberculosis
infection by seeding the herd with clinically infected animals.
Over a period of 4 years, 99% of the lambs vaccinated with BCG
were protected from development of caseious lymphadenitis
(98). Thus, it appears that the innate immune systems of sheep
and goats have the capacity to be trained, and the strategy
holds significant potential for promoting disease resistance in
small ruminants.

Swine
β-glucans are readily used in pig production systems across the
world with noted health benefits [reviewed in (99)]. Commerical
in-feed products may be formulated with purified β-glucan from
various sources (yeast, algae, fungi), or contain live yeast, yeast
with fermentation products, or a semi-purified mix of cell-
wall polysaccharides (mannans). Each product includes some
amount of β-glucan, either purified or in the cell wall, which
is presumably the ingredient responsible for noted changes
in health status. Oral supplementation with β-glucans can
improve weight gain, though not every trial indicates improved

performance (100–103). Oral β-glucan can improve performance
when low levels of aflatoxin are also present (104). Post-weaning
diarrhea in pigs is caused by enterotoxigenic E. coli (ETEC), and
antibiotics are commonly administered to limit ETEC. Oral β-
glucan supplementation for the 2 weeks post-weaning decreased
susceptibility to ETEC (105). Addition of yeast fermentation
product to the diet decreases ETEC attachment to mucosa (106).
However, frequency of diarrhea after ETEC challenge increases
with a yeast-whole cell supplemented diet, although E. coli
levels in feces do not increase (107). Interestingly, dietary β-
glucan improves piglet health after rotavirus infection (108).
However, inclusion of β-glucan in the diet increases susceptibility
to intravenous Streptococcus suis challenge, even with increased
performance measures (100). The authors hypothesize dietary
β-glucan increases expression of IL-1R antagonist, which may
enhance feed uptake by blocking IL-1R signaling, but enhances
susceptibility to disease due to lack of necessary IL-1R signaling.
Following LPS injection, pigs on a β-glucan diet have less
TNF-α and IL-6 in the plasma (103), suggesting reduced
responsiveness upon secondary stimulation. While β-glucan
and related products are used in pig production systems, the
mechanisms of improved health are not completely understood
and various factors, including microbiota, age, and pathogen
insult may impact outcomes.

Though β-glucan is most commonly administered by the oral
route, changes in peripheral, as opposed to intestinal, immune
status is often assessed. Multiple cell types have receptors
for β-glucans in pigs, including myeloid progenitor cells in
the bone marrow (22, 109, 110); and in mice, intravenous
injected fluorescent labeled β-glucan is located in bone marrow
macrophages and neutrophils (111). Thus, β-glucans may
translocate from the intestine into the periphery to modulate
progenitor cells, with peripheral impact. As noted above, levels
of proflammatory cytokines in the sera are lower in response to
LPS injection when pigs are fed a β-glucan supplemented diet
(102, 103). Inclusion of whole yeast cells in the diet leads to
shifts in circulating leukocyte populations (107, 112), though the
impact of changes on disease resistance are unclear. Peripheral
blood mononuclear cells produce less proinflammatory cytokine
following LPS stimulation if pig diet is supplemented with β-
glucan (103). While Dectin-1 and CR3 are expressed by different
pig leukocytes (109), and intestinal dendritic cells may be the
first to encounter dietary β-glucan (113), it’s unclear how dietary
supplementation alters responsiveness of peripheral immune
cells to heterologous stimulation. Overall, dietary products
containining yeast and/or β-glucan can modulate peripheral
immune responses, but the longevity of the shifts and translation
to innate memory warrant further investigation.

While BCG is a classically defined training agonist across
multiple species, there are few reports on the impact of
BCG administration on pig innate immunity. Coe et al.
report BCG administration in pigs did not alter neutrophil
function (114). In a recent study, pigs administered inactivated
Mycobacterium paratuberculosis vaccine had enhanced
pathology and inflammatory responses following Actinobacillus
pleuropneumoniae challenge (115), suggesting a heightened
secondary response indicative of innate training. BCG readily
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interacts with cells of the innate immune system; however,
in pigs it’s unclear if changes result in protection against
heterologous infections. Pigs are a proposed model for
tuberculosis research (116) and BCG vaccination in wild
boar to limit M. bovis infection is proposed (117, 118). Given
the conserved aspects of innate immunity across species, BCG
is anticipated to induce innate memory in pigs, but has yet to be
adequately demonstrated.

Poultry
Of the food animals, commercial meat poultry (including
chickens, turkeys, ducks, and quail) have some of the shortest
times to market, with broiler chickens reaching market weights
at an average of 47 days post hatch (119). While poultry breeds
raised for egg production are longer-lived (1–2 years) (120),
they have early life disease challenges and adaptive immune
system limitations similar tomeat poultry. Disease prevention via
the adaptive immune system is controlled through vaccination
against specific organisms and reaches full potential at around
3 weeks after vaccination (almost half a commercial broilers life
span) (119, 121). Durning that 3 weeks span, maternal antibodies
provide additional protection to the chick, but are dependent
on multiple factors such as individual antibody titer levels and
time post vaccination (122). Vaccination is relatively expensive
with each vaccine providing protection against few pathogens.
Contrasted to the adaptive immune response, the fast induction
and breadth of innate memory presents a prime mechanism to
reduce disease and foodborne organisms in poultry.

β-glucans are the most well-studied of the known innate
memory immunostimulants in poultry (123, 124). However,
due to the practical limitation of inoculating thousands of
birds with β-glucans, stimulation with β-glucan occurs almost
exclusively through the oral route via feed supplementation
(125–129). Yeast are the most common form of dietary
β-glucan as cereal β-glucans with (1–4)(1–6) linkages (i.e.,
barley and oat) are detrimental to poultry production due to
reduced nutrient digestion and adsorption (130). In chicks,
dietary supplementation with yeast β-glucans reduces Salmonella
colonization of the cecum (131) and visceral organs (131, 132).
Intermittent feeding of a β-glucan containing yeast product
decreased the effects of transportation stress in turkey poults
and tended to decrease colonization of the ceca with the
foodborne pathogens, Salmonella and Campylobacter (129, 133).
Interestingly, the same positive effect was not observed with
continuous feeding of the yeast β-glucan product (129). No
benefit of a β-glucan diet was observed when broiler chicks
were challenged with Eimeria oocysts (128). While no studies
in poultry have directly addressed the ability of β-glucans or
other immunostimulants to induce trained immunity, β-glucan
can alter the chicken immune system both in vitro and in vivo.
Nitric oxide and IL-1, but not IL-6, production was increased
in a chicken macrophage cell line following β-(1-3)(1-6)-glucan
stimulation (134). The same study also detected increases in
ex vivo macrophage phagocytic activity. Heterophil leukocyte
function (phagocytosis, bactericidal killing, oxidative burst) is
altered in yeast and β-glucan fed broiler chicks and turkey
poults (125, 132, 133).

The production benefits (body weight, feed:gain ratios, feed
consumption) of dietary β-glucans in poultry are less clear,
as β-glucans and yeast products can enhance, reduce, or not
change production parameters in chickens, turkey, or ducks
(125, 127, 135). It is unclear if the conflicting results are due
to different products (whole yeast, mannan oligosaccharides,
purified β-glucan, etc.), source of yeast product (Saccharomyces
cerevisiae, Aureobasidium pullulan, or other), relative dose of
β-glucan, age of the animals, or some other factor. Huff
et al. (135) suggest a potential mechanism for differences in
production parameters, as they found in absence of E. coli
challenge, chicks on control diets had higher body weights and
feed:gain ratios than β-glucan fed chicks, but with challenge,
the β-glucan chicks had higher production parameters. Dietary
β-glucan is also associated with enhanced intestinal barrier
functions (increased villus height/crypt depth ratio, number of
goblet cells, and secretary IgA levels), but the authors did not
determine if the effect was due to direct β-glucan stimulation
of host immune cells or alterations in the gut microbial
populations (131, 136).

In ovo injection of vaccines or immunostimulants represents
an interesting way to alter the immune system of poultry
before hatch and environmental exposure to pathogens. For
the past 25 years, poultry producers have utilized in ovo
technologies to safety and effectively vaccinate chicken, turkey,
and quail embryos for common poultry diseases such as
Marek’s disease, infectious bursal disease (IBD), and coccidiosis
(137). Recently, immunostimulants have come to the forefront
of in ovo applications as a mechanism to non-specifically
enhance the immune system of poultry before hatch. In ovo
injection of resiquimod, a TLR7/8 agonist, at embryo day
18 increased MCR1L-B positive macrophages in the trachea,
lungs, duodenum, and large intestine of chicks at hatch (138).
Furthermore, the authors show that following infection with
infectious laryngotracheitis virus (ILTV) 1 day post hatch,
cloacal shedding of ILTV at 7 d post infection was significantly
reduced in resiquimod injected embryos and that resiquimod
treatment induced type 1 IFN activity in macrophages. Of
the in ovo immunostimulants, CpG DNA is perhaps the most
well-studied (139–141). Abdul-Cader et al. (140) show that
CpG DNA delivered in ovo upregulates IL-1β expression and
macrophage proportions in the lungs and these changes are
associated with reduced ILTV induced mortality and weight loss
in chicks. A 2018 study (139) with in ovo administration of
CpG DNA reported reduced mortality and clinical scores from
experimental E. coli infection of yolk sacs in day old chicks.
Indeed, a commercial product Victrio R©, is an in ovo DNA
immunostimulant marketed to reduce mortality in embryonated
eggs and chicks from E. coli and is shown to activate TLR21
on chicken macrophages and increase nitric oxide production
(70). Overall, in ovo exposure to innate agonists altered immune
responses to disease; however, it is unclear if the impact is
the result of ongoing immune activation, or was the result of
innate memory. The length of time from agonist exposure to
challenge testing suggests innate memory may be at play, but
targeted studies are warranted to clearly define the mechanism
of protection.
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Fish
Unlike most other food animal species, review articles have been
published summarizing the evidence for trained immunity in
fish (142, 143) and we would direct readers to those sources
for an in-depth review of innate training in various fish
species. Since the 1990’s, β-glucan from a variety of sources was
studied or fed in commercial fisheries for its growth promoting
and immunomodulating effects (144, 145). However, detailed
analysis suggests the observed benefits are dependent on β-
glucan source and dose, fish species, and age (145). Heterologous
protection against bacterial challenge occurs after intraperitoneal
or oral administration of β-glucans in multiple fish species
ranging from Zebrafish (Danio rerio) (146) to Yellowtail (Seriola
quinqueradiata) (147) to Orange spotted grouper (Epinephelus
coioides) (148). Researchers observed lower mortality; increased
oxidative burst, cytokine production, and lysozyme activity (143,
146, 147). The decreased mortality was observed up to 30 days
after β-glucan feeding ceased (148). The length of effect after
withdrawl suggests, similar to mammalian studies (34, 36, 123),
dietary β-glucan treatment in fish induces epigenetic changes
at the progenitor level allowing for sustained changes to innate
immune cells. Fish express a higher diversity and variation
of innate receptors that are both similar to and distinct from
mammalian receptors (149). Dectin-1, a C-type lectin, is the
primary myeloid receptor for β-glucans in mammals (32, 150–
152); however, no corresponding β-glucan receptor has been
identified in fish. Recently, Petit et al. (153) identified several
potential candidate receptors for β-glucan in European common
carp (Cyprinus carpio carpio). They also showed that, as with
mammals, the C-type lectin pathway is involved in detection and
signaling in response to β-glucan (153). This and other studies lay
a foundation for mechanistic work in fish to determine the direct
and long-lasting effect of β-glucan on the fish immune system.

Of the molecules known to stimulate innate memory (1, 123,
154), β-glucans are those most commonly used in aquaculture,
but others, including mycobacteria, have been studied. Reviewed
in Petit and Wiegertjes (142), studies show intraperitoneal
injection with Mycobacterium butyricum enhances bactericidal
activity up to 33 d post injection (155). A series of studies
by Kato et al. (156–158) indicate injection with BCG enhances
innate immune responses in multiple fish species and induces
protection against challenge with Nocardia seriolae in Japanese
flounder. Yellowtail (Seriola quinqueradiata) first exposed to one
of several immunostimulants were protected against Pasteurella
piscicada disease. Specifically, pre-exposure to Freund’s complete
adjuvant (CFA), which contains inactivated M. bovis, was found
to be the most protective (147). Indeed, while enhanced survival
and immune markers were observed with glucan pretreatment,
the effect was markedly heightened with CFA treatment. The
observed cross protection observed with these last studies are
hallmarks of innate training and is strong evidence for innate
memory in fish.

When reviewing literature published before innate memory
was well-described, and in the absence of studies specificly
designed to investigate the induction of heterologous protection
independent of adaptive immune system, it can be difficult to

assign innate memory as the mechanism for enhanced disease
resistance. For example, Lorenzen et al. (159) observed cross-
protection against viral hemorrhagic septicemia virus (VHSV)
in rainbow trout inoculated with a plasmid DNA encoding
the viral glycoprotein from an unrelated virus. Mortality was
decreased in plasmid inoculated fish when challenged with virus
either 4 and 7 days after plasmid inoculation, but not at 60
or 84 days post inoculation. The limited window of protection
suggests a mechanism independent of adaptive immunity. A
later study of juvinal turbot (Scophthalmus maximus) inoculated
with DNA plasmid encoding the VHSV envelope glycoprotein
and challenged with unrelated virus also observed reduced
mortailities in the plasmid inoculated fish (160). It’s unclear
if the protection was due to innate training, or just non-
specific protection due to the primary reponse to plasmid
DNA. Regarless, some immunomodulation occurred to enhance
disease resistance. Mechanistic evidence of contemporary trained
immunity (as described by human and rodent literature) remains
to be described. As demand for fish increases, methods to
enhance disease resistance in farmed fish without high cost and
antibiotics is desired.

IMPLEMENTING INNATE MODULATION IN
FOOD ANIMAL AGRICULTURE

The primary objective of innate immunomodulation in food
animals is to enhance the immune status of the animal, thus
resisting disease to enhance animal welfare and production
efficiency. Enhancing the animal’s ability to resist disease could
reduce the need for antibiotics and amount of feed required to get
an animal to market weight. In most production systems there
are clearly defined periods in which animals are known to be
at high risk for infection. Universal to all production systems
is the susceptibility of the neonatal or very young animal to
disease (161). As maternal immunity wanes, and an infant’s own
adaptive immune system is inexperienced, there is a window
of heightened vulnerability to disease. The adaptive immune
system may not be fully matured in neonates, but the innate
immune system is active and provides a key role in immune
responses at this age [reviewed in (162)] making it a good target
for enhanced protection. In humans, innate training mediated
by BCG is effective for more than a year (124). While longevity
of protection by innate training is important, it may also be
important to initiate protection early in life. The time from
birth to market for a particular species can range from weeks
to years, for example broilers go to market at around 6 weeks
of age, pigs at 6 months, and beef cattle at 2 years. Thus, an
important consideration for harnessing innate training is length
of protection but also how quickly innate training protection is
evident in the animal. One recent review of antibiotic usage by
pig producers in Belgium reported that more than 80% of all
antibiotics are administered to piglets <10 weeks of age (163);
and similar results were reported for North America and several
other countries in Europe (164). An important consideration for
harnessing innate training is length of protection but also how
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quickly innate training protection is induced to minimize disease
during a high-risk period.

Calves are most susceptible to diarrheal diseases in the first
4 weeks of life, and then the risk for respiratory diseases
increases as they mature to 2–6 months of age. Induction of
innate training in the neonatal period would be expected to
promote improved disease resistance through at least 6 months
of age, when the “window of susceptibility” to infection is
the greatest (165). Subsequent high-risk periods for beef cattle
include the shipping and receiving period (first 50 days on feed),
when cattle are weaned, trucked, co-mingled, and placed in the
feedlot (166). Administration of BCG, β-glucan, or other known
immunomodulator in the period prior to weaning and shipping
could protect the animal through the receiving period. In
support of this supposition, the commercial immunomodulators
ZelnateTM and AmplimuneTM have both shown some benefit
when administered to calves immediately prior to or following
placement in the feedlot (67–69, 72). Dairy cattle are known to
go through a period of immunosuppression during the transition
period (the 3 weeks prior to calving, through the 3 weeks after
calving) leading to a sharp increase in the prevalence of infectious
and metabolic diseases (167, 168). Exploiting the effects of innate
training or tolerance during the periparturient period could have
beneficial effects on cow health and performance.

As with pigs and cattle, fish and poultry are most susceptible
to disease while they are very young. In fish, immunostimulants
have been administered to newly hatched larvae directly via
feed pellets, or indirectly via bath treatment (143, 144, 169–
171). In poultry, as described in detail above, in ovo vaccination
is industry standard and there exists both experimental and
commercial (Victrio R©) evidence of protection from disease
with non-specific immunostimulants (70, 139, 140). As egg
laying animals, immunomodulation can occur before hatch
and before the fry or chick is exposed to a broader range of
pathogens. Additionally, the passive transfer of antibodies from
the mother to the progeny via the yolk in egg-laying species
is well-described, but in fish, innate immune components have
been shown to transfer from the dams to the oocytes and
direct passage of immunostimulants from mother to young
have also been described (172–174). One last benefit of innate
modulation in both poultry and fish is the evidence of passage
of transgenerational epigenetic changes to innate immune
phenotypes and genes for both broiler chickens (175) and fish
(176, 177). Combined with a dam’s ability to produce large
numbers of eggs, changes in epigenetic phenotypes (the hallmark
of innate memory) could be inherited by the embroyos allowing
for animals to hatch in a primed state to face bacterial or viral
challenge. In some ways fish and poultry producers have an
advantage beyond that of mammalian species to harness innate
memory to prevent disease, and both industries havemade strides
to study and utilize these evolutionary advantages.

Potential Pitfalls of Innate Training
Although harnessing innate training for enhancing disease
resistance is appealing, particularly in the context of the known
periods of susceptibility or immunosuppression described above,
there are still potential pitfalls that warrant consideration.
In humans and rodents, innate training can have deleterious

effects in the context of chronic inflammatory conditions such
as autoimmunity, atherosclerosis, and diabetes (3). In food
producing animals, while heightened immune responses may
be beneficial for pathogen clearance, an increased inflammatory
response may lead to tissue damage. In the case of respiratory
diseases, for example, dysregulated inflammatory responses are
often implicated as causing more damage to the host than
the pathogen itself (178–181). Further enhancing this innate
inflammatory response may not be ideal. However, if innate
training has the capacity to reduce shedding of the organism,
its use may still provide significant benefit to the health of the
herd by reducing the risk of disease transmission. The impact of
innate training on tissue pathology, pathogen burden and overall
outcome of disease will need to be carefully evaluated in the
context of particular disease settings in order to determine the
risk vs. reward of engaging innate memory.

In addition to the potential of enhancing pathology of a
disease, harnessing the immune system for disease resistance
may negatively impact production parameters. Activation of
the immune system comes at a considerable metabolic cost
to an organism (182–185) and becomes energy not spent on
production of muscle or milk. Activation of cells for the synthesis
and secretion of cytokines and acute phase proteins, and cellular
proliferation all require glucose, amino acids, and energy.
To ensure survival of the host, the integrity of the immune
system is maintained above nearly all other biological functions,
partitioning nutrients away from growth, reproduction, and
lactation (182). Although there is currently little supporting
evidence available, it is almost certain that induction and
maintenance of the innate immune cells in a trained state comes
at some catabolic cost to the animal. Glycolysis, the metabolic
pathway favored by trained monocytes and macrophages (46, 47)
is less efficient than oxidative phosphorylation; thus increasing
the cost of per-cell energy use. In addition, the initial activation
of the immune system to induce a trained state utilizes metabolic
resources. Although there is significant benefit to the animal in
limiting disease upon pathogen exposure, it is currently unknown
if the energy costs of a trained immune system will negatively
affect performance, or if this possible performance loss will
outweigh the benefit of increased disease resistance. Additional
studies focused on the efficacy of innate training for preventing
disease in food animals, as well as the impacts of training on
animal performance and growth, will be required to unravel these
possibilities. Regardless, strategies that enhance disease resistance
without antibiotics warrant consideration to limit the impacts of
antimicrobial resistance.

SUMMARY AND CONCLUSIONS

Few studies have directly examined trained immunity in food
animal species. However, as discussed here, a plethora of evidence
exists for a variety of immunostimulants to enhance non-specific,
heterologous protection against bacterial and viral disease in
cattle, swine, poultry, fish, and small ruminants. Innate memory
presents an exciting opportunity to prevent or limit disease
as well as reduce antibiotic use and AMR in agricultural
animals. A number of opportunities exist for mechanistic studies
to elucidate the cell types, pathways, and molecules involved
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in innate memory in food animals. Until innate training
and tolerance are better understood, caution is warranted to
determine the immunological and metabolic costs and efficacy
of protection to specific diseases. Within innate memory is the
potential to reduce disease burden and antibiotic use in animal
agriculture, and we feel this area of investigation represents
one of the most exciting fields of study for a new generation
of scientists.
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Molecular Dissection of the Antibody
Response: Opportunities and Needs
for Application in Cattle
Ruben Barroso †, W. Ivan Morrison and Liam J. Morrison*

Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom

Improving understanding of the bovine adaptive immune response would equip

researchers to more efficiently design interventions against pathogens that impact upon

food security and animal welfare. There are features of the bovine antibody response

that differ substantially from other mammalian species, including the best understood

models in the human and mouse. These include the ability to generate a functionally

diverse immunoglobulin response despite having a fraction of the germline gene diversity

that underpins this process in humans and mice, and the unique structure of a subset of

immunoglobulins with “ultralong” HCDR3 domains, which are of significant interest with

respect to potential therapeutics, including against human pathogens. However, a more

detailed understanding of the B cell response and the production of an effective antibody

response in the bovine is currently hampered by the lack of reagents for the B cell lineage.

In this article we outline the current state of knowledge and capabilities with regard to

B cell and antibody responses in cattle, highlight resource gaps, and summarize recent

advances that have the potential to fundamentally advance our understanding of this

process in the bovine host.

Keywords: B cell, immunoglobulin, bovine, single cell analysis, ultralong HCDR3 domain

INTRODUCTION

The molecular basis of how antibody repertoires are generated is broadly similar between
mammalian species. Rearrangement of genes encoding immunoglobulin heavy and light chains
during B cell development, from a pre-existing library of variable gene segments, results in each B
cell expressing a unique immunoglobulin specificity. Immunoglobulin diversity is further refined
by somatic mutation of the immunoglobulin genes during development of an immune response,
which enables selection of B cells expressing antibodies with enhanced affinity for the immunogen.
Studies of immunoglobulins in domestic animal species have highlighted certain unique features.
One such example is that Camelids produce a subset of immunoglobulins composed only of a
heavy chain, in which antigen recognition involves only one variable region. This has allowed
isolation of these single heavy chains and their expression as recombinant antibodies, referred
to as nanobodies, for various practical applications (1). Compared to humans and mice, cattle
and sheep have a more restricted repertoire of immunoglobulin variable gene segments, but
they compensate for this by utilizing antigen-independent somatic mutation of their rearranged
immunoglobulin genes to generate further sequence diversity. Another distinct feature in cattle is
that ∼10–15% of immunoglobulins possess an ultralong heavy chain CDR3 domain. In contrast
to conventional antibodies where antigen recognition involves interaction with six hypervariable
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loops (or complementarity determining regions–CDRs)–three
on the heavy chain and three on the light chain—recognition
of antigen by these ultralong antibodies is determined
predominantly by the HCDR3, which has an extended stalk-knob
like structure (2–5).

The capacity to analyse antibody responses against infectious
agents at the single B cell level provides a powerful means
to identify the biological properties of individual antibody
specificities, including their potential role in immunity. Until
recently, such analyses have proved difficult in outbred species.
Techniques developed in the 1970s for generating monoclonal
antibodies in mice and rats were not readily applicable to other
species, because of the absence of suitable myeloma cell lines
for use as fusion partners. Attempts to use murine myeloma cell
lines with bovine B cells to generate heterohybridomas had some
success in producing bovine monoclonal antibodies, but these
systems were not sufficiently efficient to allow their routine use
(6–8). A further factor that constrained the ability to analyse
antibody responses at the clonal level was the limited capacity of
antibody-producing cells to proliferate, as they undergo terminal
differentiation as plasma cells. This is in marked contrast to
antigen-specific T cells, which can be propagated and cloned
in vitro, allowing analyses of their specificity at the clonal
level. In the last few years, advances in the sensitivity of
methods to examine gene expression at the single cell level
have opened up new opportunities to analyse B cell responses,
including the isolation of expressed immunoglobulin genes from
individual B cells.

This paper aims to provide a brief review of new and emerging
approaches to interrogating bovine antibody responses, focusing
particularly on analyses of responses at the single B cell level.

ADVANCES IN CLONAL ANALYSES OF
ANTIBODY RESPONSES IN OUTBRED
SPECIES

In the last few years, methods have been established for
generating antigen-specific human monoclonal antibodies from
B cells isolated ex vivo from humans mounting an antibody
response. These methods are based on the ability to enrich
for specifically reactive B cells and the capacity to isolate and
express immunoglobulin genes from single responding B cells.
Enrichment for antigen-specific B cells has relied either on
use of fluorescently labeled antigen tetramers to identify and
isolate antigen-specific B cells or isolation of plasmablasts and
plasma cells using surface markers expressed specifically on
these activated B cell populations. Rapid methods for isolation
and expression of immunoglobulin heavy and light chain genes
from single B cells have allowed analyses of the antibody
specificities. Such approaches have proved to be highly successful
in generating novel data on the fine specificity of human antibody
responses to a number of pathogens, most notably influenza and
Ebola viruses (9, 10).

The ability to conduct similar analyses of antibody responses
in cattle would represent a major advance, particularly with
respect to identification of antibody targets for use in vaccination.

Many pathogens induce antibody responses to multiple antigens,
only some of which play an important role in immune protection.
The capacity to screen the biological activities of monoclonal
antibodies induced in the target species, provides a direct means
of identifying antigens that are likely to be immunogenic. In some
diseases, immune responses are dominated by antibodies against
antigens that vary between pathogen strains, leading to strain-
specific immunity (e.g., foot and mouth disease virus). In such
cases, interrogation of the fine specificity of the response at the
clonal level, offers the means of identifying subdominant cross-
reactive antigenic specificities with potential for vaccination.

REAGENTS FOR STUDYING B CELL
RESPONSES IN CATTLE

The ability to apply these new technologies to studies of bovine
B cell responses has been constrained by a paucity of reagents
for studying B cell differentiation. Studies of human B cell
responses are able to utilize a suite of reagents developed against
surface markers, which enables relatively precise characterization
and placement of B cells within the differentiation cascade.
Identification of particular stages of differentiation frequently
relies on the use of combinations of several markers, and in some
instances consideration of their levels of expression.

Two distinct lineages of B cells, B-1 and B-2, have been
identified in humans and mice. In contrast to conventional B-2
cells, which cooperate with helper T cells and undergo Ig isotype
switching and affinity maturation within germinal centers, B-1 B
cells have minimal requirement for auxiliary signals and respond
rapidly by producing predominantly IgM (11, 12). The majority
of B-1 cells are CD5+ (referred to as the B-1a subset), with a
minor subset being CD5− (B-1b subset). In cattle, expression
of surface CD5 has been used as a marker for B-1a B cells,
which represent ∼20–25% of B cells in PBMC (13). CD5+ B
cells play a prominent role in bovine immune responses to a
number of pathogens, including Trypanosoma congolense (14),
foot and mouth disease virus (15) and Bovine Leukosis Virus
(16). In the case of T. congolense, the percentage of CD5+ B cells
in peripheral blood approximately doubles during the first 3–4
weeks of infection.

Of greater relevance to the present discussion are B-2 B cells,
which undergo a complex series of differentiation events during
generation of an antibody response. Interaction of mature-
naïve B cells with antigen via the B cell receptor (BCR), which
is associated with a complex of proteins (CD19, CD21 and
CD79) that are responsible for co-stimulation, promotes B cell
activation and differentiation (17, 18). Multiple changes in cell
surface phenotype occur once the B cells have been activated,
including increased levels of CD40, CD69, CD80 and CD86. Up-
regulation of CD40, coupled with antigen uptake by specific B
cells, enables them to interact with antigen-specific T cells in
the follicles of secondary lymphoid organs, leading to germinal
center formation and further B cell differentiation, including Ig
isotype switching and affinity maturation. The latter involves a
clonal selection process, in which antigen-specific B cells with
the highest affinity are selected for survival and clonal expansion.

Frontiers in Immunology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 117585

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Barroso et al. Bovine B Cell Review

Finally, B cells either differentiate into long-lived memory cells
or develop to plasmablasts and antibody-secreting plasma cells.
Increased expression of surface CD27 is an important marker for
memory cells, although they show considerable heterogeneity in
phenotype and function (19, 20). Among the phenotypic changes
that occur during differentiation to plasma cells is increased
levels of expression of CD38, which is frequently exploited for
identifying antibody-secreting cells (21).

In contrast to human B cells, there is a distinct lack of antibody
reagents that enable discrimination between the different states
of differentiation of B-2 B cells in cattle. Apart from surface
immunoglobulin and CD21, there are no well-defined pan-
B cell markers in cattle. Although IgD is used as one of
the surface markers of naive human B cells, its existence in
cattle was only demonstrated in 2006 (22) and there is only
one report of expression of the protein on a minor subset of
bovine B cells (23). There are also no monoclonal antibody
reagents that can be used to identify plasmablasts and plasma
cells. Similarly, memory B cell markers are not well-developed
for cattle. Therefore, the ability to resolve and understand the
intricacies of the bovine B cell response is substantially hampered
at present, and requires investment to generate the tools required
to fill this gap; this is starting to be addressed by initiatives
such as the Veterinary Immunological Toolbox (https://www.
immunologicaltoolbox.co.uk/).

GENOMIC ORGANIZATION OF
IMMUNOGLOBULIN GENES IN THE COW
AND DIVERSITY GENERATION

It is now known that bovine B cells express five isotypes
of immunoglobulin: IgM, IgD, IgG, IgE and IgA, with the
IgG isotype differentiated into three sub-isotypes (IgG1, IgG2
and IgG3), and IgM into two sub-isotypes (24, 25). Until
relatively recently, annotation of the bovine heavy and light
chain genomic loci was incomplete. Of the genes that encode
the immunoglobulin antigen binding domains [heavy and light
chain variable (V), diversity (D) and joining (J) segments], which
are generated by VDJ recombination, cattle differ substantially
from humans and mice, in particular with respect to the
comparative paucity of variable gene content. Cattle have only
twelve genes encoding functional heavy chain variable gene
segments (IGHV—located on chromosome 21), and all belong
to one subgroup, IGHV1 (compared to seven diverse subgroups
in humans), with a number of pseudogenes also described in
both IGHV1 and two further subgroups, IGHV2 and IGHV3.
Only four of the twelve documented heavy chain joining gene
segments (IGHJ) and sixteen of the twenty-three diversity gene
segments (IGHD) found in cattle appear to be functional (25).
Additionally, compared with humans and mice, available data
suggest that cattle have a more restricted set of putatively
functional light chain genes (26). Most vertebrates express two
light chain isotypes: kappa (κ) and lambda (λ). However, the
bovine light chain repertoire is dominated by the expression
of λ genes [κ usage represents ∼5% of the expressed antibody
repertoire (27)], and predominantly by one subfamily, Vλ1.

Vλ genes are clustered close to the Jλ and Cλ cluster on
chromosome 17 (28) and Vκ genes on chromosome 11 (26).
In cattle, the limited data available suggest the light chain may
have a subsidiary role in antigen recognition, with most antigen
binding being driven by the heavy chain variable region. Recent
x-ray crystallography data on the structure of two bovine IgG
antibodies support this assertion by showing that the heavy
chain predominantly contributes to the antigen-combining site
(29, 30). When the light chains were exchanged between these
two antibodies, antigen recognition by one of the antibodies
(but not the other) was substantially reduced and structurally
this was associated with a subtle change in the orientation
of the associated heavy chain. An earlier study of a poly-
specific IgM long-CDR3 antibody had also demonstrated a
predominant role of the heavy chain in antigen recognition,
although interaction with some antigenic ligands was influenced
by the light chain (29).

The information on the genomic architecture of the bovine
immunoglobulin loci has been derived from work on European
Bos taurus breeds, with the most complete genome assembly
and associated resources deriving from a Hereford cow (31–
34). Immune gene loci tend to be highly repetitive by nature,
and therefore difficult to accurately assemble without the use of
resource-intensive sequencing technologies that enable accurate
construction across large stretches of multiple and similar
gene members—for example, long-read or chromatin-linking
sequencing approaches. While such genomic resources are being
developed for other breeds [e.g., Brahman Bos indicus (35)],
there are still too few genomes sequenced to a sufficient depth
across diverse cattle breeds and lineages to enable assessment of
the degree of immunoglobulin locus polymorphism, and how
that may impact upon antibody expression and function. This
is the focus of increasing effort (e.g., the Bovine Pan Genome
Consortium), and increasing the genomic resources across breeds
and lineages will be important in functionally linking genomic
diversity to phenotypic diversity with respect to the bovine
antibody response.

The limited repertoire of germline variable gene segments
in cattle has been proposed to be offset by the occurrence of
somatic hypermutation in rearranged B cells prior to exposure
to antigen, thus generating greater diversity and expanding the
B cell repertoire (36, 37). There is evidence from studies in
both sheep and cattle (36, 38) that the ileal Peyer’s patch is a
major site of this antigen-independent somatic mutation. This
organ, which differs histologically from conventional Peyer’s
patches, develops with the kinetics of a primary lymphoid
organ (i.e., similar to the thymus). In sheep, the ileal Peyer’s
patch undergoes significant development during the latter
half of gestation, with further enlargement in the first few
months of life, and gradual involution from about 3 months
onwards (39).

Bovine HCDR3 length on average is longer than in other
vertebrates such as humans or mice (bovine HCDR3 ranging
from <10 to at least 67 amino acids in length, in contrast
to 4–36 amino acids in humans) (2, 5, 22, 24, 40, 41). It
has been known for many years that a proportion (∼10%)
of bovine immunoglobulin transcripts contain unusually long
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HCDR3 domains up to and beyond 60 amino acids long (40,
42–45)—often termed “ultralong” HCDR3 domains. Resolution
of the structure of these antibodies identified an unusual and
relatively conserved stalk-knob protrusion, which comprised
the HCDR3 antigen-binding domain (2, 3, 5). Formation of
the stalk structure is facilitated by the presence of several
disulphide bonds. The ultralong antibodies described thus far
all utilize a single variable gene (IGHV1-7) and diversity gene
(IGHD8-2) donor (2, 41), and the few paired heavy and light
chain data available also suggest utilization of a limited number
of λ light chain V genes (46). Based on analyses of the
sequences of multiple long HCDR3 antibodies, a recent study
by Deiss et al. (41) has identified a number of key features of
the rearranged genes encoding these antibodies. Firstly, they
confirmed the almost exclusive use of the IGHV1-7 gene segment
and showed that this variable gene contains an internal 8-
nucleotide duplication (which contributes to formation of the
elongated stalk structure). They also found that, in contrast
to other IGHV gene rearrangements, the IGHV1-7 CDR1 and
CDR2 regions contain a low frequency of mutations, whereas
the CDR3 regions of the same genes show very high levels of
mutation compared to the germline sequence (41). This relative
conservation of CDR1 and CDR2 sequences is consistent with
evidence that these regions have little involvement in antigen
binding but rather play a structural role in the long HCDR3
antibodies, whereas the knob-like structure formed by the CDR3
region is the primary antigen-binding site. Direct evidence for
the latter was provided by the demonstration that removal of
the “knob” sequence ablated antigen binding by the modified
antibody (2). Deiss et al. also identified an unusually high degree
of deletion events in the HCDR3 domains of long antibodies
(predominantly in the IGHD8-2 segment), including deletions
that alter the reading frame, thus contributing to ediversity in
both the length and sequences of the CDR3 segments and hence
structural diversity of these antibodies (41). They hypothesized
that this may also be mediated by the enzymatic driver of somatic
hypermutation, activation induced cytosine deaminase (AID).
This mechanism has been proposed to be a means of generating
structural diversification through modification of the pattern of
disulfide bond formation (41). This is facilitated by an unusual
codon bias in HCDR3, which predicates mutation to cysteine
(particularly in the IGHD8-2 segment codons) during bovine
VDJ recombination, resulting in the generation of diversity in
structure due to the making and breaking of di-sulfide bonds
between paired/unpaired cysteines (2, 47). This diversification
mechanism has also been shown to operate in conventional
length bovine antibodies (47). Analyses of the sequences of re-
arranged bovine Ig genes has additionally indicated evidence of a
low frequency of gene conversion events in both light and heavy
chains that involves short nucleotide segments from light and
heavy chain pseudogenes (48, 49), potentially providing a further
means of generating sequence diversity–although current data
are limited and its importance has yet to be fully determined.
In summary, the long HCDR3 antibodies exemplify the bovine
host’s adaptations to generating antibody diversity from a limited
germline repertoire–the combination of codon bias and (possible
AID-mediated) targeted deletions resulting in changing of the

pattern of cysteine pairs, generating a remarkable ability to create
structural diversity in epitope-binding domains, despite being
restricted to the use of a single V and D segment.

While the function of these ultralong antibodies remains
unclear [interestingly the proportion of ultralong antibodies
is significantly higher in neonatal calves (50)], their unusual
structure quickly raised the hypothesis that such antibodies
could bind to antigen epitopes that were not accessible to
conventionally structured immunoglobulins. For example, sites
on bacterial pore proteins or proteins embedded within the
complex surface coat of parasitic pathogens, which are hidden
from conventional antibodies, may be potential targets. There
has also been significant interest in application of ultralong
antibodies to non-bovine pathogens and their exploitation for
development as potential therapeutics, in particular for human
pathogens such as HIV (46)—the potential for therapeutics of
relevance to veterinary pathogens is also clearly a possibility that
is currently underexploited. However, the exact roles that these
antibodies play during natural immune responses in cattle, or,
for example, whether they may be an important factor in the
efficacy of immune responses induced by vaccines, are unclear.
Additionally, all studies analyzing long HCDR3 antibodies
have examined European Bos taurus cattle—although the long
HCDR3 antibody expression levels been shown to be consistent
across several European B. taurus breeds, current data on, for
example, long HCDR3 antibody expression data in Bos indicus
or African B. taurus breeds, and any role they may play across
the very different infectious disease contexts that such breeds are
exposed to, are all currently unknown. These are all areas that
clearly merit further research.

IN VITRO CULTURE OF ACTIVATED
B CELLS

Although most studies of antibody responses at the single cell
level have focused on analyses of actively responding B cells
harvested ex vivo, in recent years there have been attempts
to analyse the antibody repertoire of memory B cells (51).
Since memory B cells are normally present at low frequencies,
this approach is dependent on use of culture systems to
activate and expand the memory B cells. This in turn requires
precise phenotyping reagents (52). A number of studies have
reported successful establishment of in vitro culture systems
that allow expansion of human memory B cell populations and
differentiation to immunoglobulin secretion (53). These studies
have used combinations of factors that stimulate activation,
proliferation, and differentiation, coupled with inhibition of
apoptosis, of B cells to maintain growth in vitro, albeit for a
limited period of time.

Systems for culturing B cells have attempted to mimic the
events that drive B cell development during antibody responses
in vivo. The stimulation of B cells by crosslinking of the BCR with
anti-IgM antibodies is well-established as a means of mimicking
antigen stimulation (54). Uptake and processing of antigen by
specific B cells enables them to present the antigen to T cells,
which provide co-stimulatory signals by interaction of CD40
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FIGURE 1 | Identification of bovine antigen-specific B cells in peripheral blood mononuclear cells (PBMCs) of an antigen-immunized calf by staining with

Phycoerythrin-labeled antigen tetramers: (A) PBMCs isolated from naïve and immunized calves were stained by two-color immunofluorescence with a monoclonal

antibody (IL-A58) specific for bovine immunoglobulin light chain (IgL) and antigen tetramer. Representative plots of stained cells from a naïve animal (B) and an

immunized animal (C) are presented, showing the presence of an IgL+ Tetramer-Ag+ population in the immunized animal. Approximately 1% of IgL+Tetramer-Ag+

B cells were detected in the immunized calve, compared to <0.2% in the unimmunized control.

on the activated B cells with CD40 ligand (CD40L) on the T
cells. This process can be mimicked in vitro by stimulation of B
cells with soluble CD40L (55, 56). Activation in vitro via CD40
promotes an increase of levels of IL-21 receptor on the B cell
surface (57). Among the cytokines that also contribute to B cell
activation, IL-21, induced by T cells upon interaction with B cells
is a key stimulus for B cell proliferation and differentiation (58).
One of the main surface ligands involved in B cell survival is
the BAFF receptor (BAFFR) that binds BAFF (B cell activating
factor of the TNF family). Other similar related receptors that
bind BAFF, are TACI and BCMA, which can also bind APRIL
(α proliferation-inducing ligand), and these play a key role in
preventing cell death and increasing plasma cell survival (59).

This knowledge has been applied to successfully culture
activated porcine B cells, taking advantage of the cross-reactivity
of the human reagents with porcine B cells (60). Addition of
IL-21 plus CD40L to purified pig B cells resulted in activation
and proliferation over a 4-day period, and inclusion of BAFF
and APRIL maintained the viability of the cells for 7 days.
Secretion of low levels of both IgM and IgG by these cultures
was detected on day 7 of culture indicating differentiation of
some of the activated B cells. The reagents used in this study also
cross-react with bovine B cells and we have been able to obtain
similar activation, proliferation and maintenance of bovine B
cells similar to that reported by Rahe and Murtaugh (60). The
development of phenotyping reagents that allow identification of
bovine memory B cells will enable these culture systems to be
used to amplify memory cell populations prior to clonal analyses
of their specificities.

ISOLATION OF ANTIGEN-SPECIFIC
B CELLS

The isolation of antigen-specific B cells is a critical step in the
ability to evaluate and analyze the bovine humoral immune

response, particularly responses to either specific pathogens or
vaccination. In addition, due to the unique properties of bovine
antibodies as described above, the isolation of antigen-specific
cells is a route to explore their potential relevance as novel
molecular tools for research or therapeutic use.

Populations of human B cells enriched for antibody-
producing cells have been isolated from blood by flow cytometry
using a combination of cell surface markers, including CD19,
CD20, CD38, and CD71 (61). In the absence of such markers
for cattle, the ability of antibody-producing cells to bind
fluorescently labeled tetramerised antigen offers an alternative.
This approach is challenging because of the low frequencies of
antigen-producing B cells in peripheral blood, and the short
time window during which these cells are present at sufficient
frequency for detection by flow cytometry. Moreover, antigen
tetramers do not detect all antibody-producing cells, as mature
plasma cells lose expression of surface Ig upon transition
from plasmablasts (62). We have employed established methods
(63) to produce streptavidin-labeled tetramers incorporating
a recombinant protein from the major cattle pathogen,
Trypanosoma congolense and used these tetramers to monitor the
blood of calves immunized with this antigen. These experiments
revealed the presence of a small population of surface Ig+

tetramer+ cells, detectable for several days after the third dose of
antigen administered in adjuvant (Figure 1). In Giemsa–stained
cytospin preparations the positive cells exhibited a plasmablast
morphology. Further studies are underway to isolate and analyse
the immunoglobulin genes expressed by these B cells.

IMMORTALISATION OF B CELLS BY
INFECTION WITH THEILERIA ANNULATA

One of the potential uses of isolated antigen-specific B cells is to
transform the cells to allow clonal expansion of the populations
and potentially examine antibody secretion. Some species of

Frontiers in Immunology | www.frontiersin.org 5 June 2020 | Volume 11 | Article 117588

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Barroso et al. Bovine B Cell Review

FIGURE 2 | Surface phenotype of five cloned B cell lines infected with Theileria parva, as described by Baldwin et al. (65). Briefly, surface Ig+ B cells (>98% purity)

were isolated by cell sorting from healthy resting peripheral blood mononuclear cells and infected in vitro by incubation with T. parva sporozoites, followed by cloning

at limiting dilution in 96-well round-bottom plates. The cells were phenotyped 8 weeks after infection by staining with monoclonal antibodies specific for bovine IgM

and IgG (Mab B5/4 and IL-A2, respectively) followed by fluorescein-labeled anti-mouse Ig. Significant levels of IgM or IgG expression were detected only on two of the

clones (clone 1–IgM; clone 6–IgG). The percentages of positive gated cells for each clone are (Clone 1: Control−1%, IgM−54%, IgG−6%. Clone 2: Control−3%,

IgM−6%, IgG−6%. Clone 3: Control−2%, IgM−3%, IgG−10%. Clone 5: Control−2, IgM−4%, IgG−4%. Clone 6: Control 5%, IgM−2%, IgG−47%). Controls were

incubated with secondary antibody only. All clones were negative for T cell markers (CD2, CD4, CD8)–data not shown.

Theileria parasites are able to infect and transform bovine
lymphocytes. Theileria are tick-borne apicomplexan protozoa
found in tropical and subtropical regions of the world. The
most important species in cattle are Theileria annulata and
Theileria parva (64). Both species infect leukocytes: T. parva
infects T and B lymphocytes, while T. annulata infects monocytes
and B cells (65, 66). A characteristic feature of infection with
both parasites is that they induce activation and proliferation
of the cells they infect (67), during which the parasites divide
synchronously with the host cells (68). This relationship, coupled
with inhibition of apoptosis of the host cells by the parasite
(69) results in clonal expansion of the cells initially infected
by the parasite. These properties enable the infected cells to be

maintained as continuously growing cell lines in vitro, and such
cell lines can be initiated by in vitro infection of leukocytes with
the tick-derived infective stage of the parasite, the sporozoite.
In previous studies, we examined the phenotype of purified
resting Ig+ B cells several weeks after infection in vitro with T.
parva. Most infected cells were found to gradually lose surface
expression of immunoglobulin, although analyses of cloned
populations revealed continued Ig expression, either IgM or
IgG, by some clones (70) (Figure 2). Similar gradual loss of
Ig expression has also been observed in B cells infected with
T. annulata. However, expression of Ig by B cells in the early
stages after infection by Theileria was not studied, nor was the
susceptibility of activated B cells to infection examined in these
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experiments. In recent studies, we have shown that purified
tetramer+ B cells are similarly susceptible to infection with T.
annulata. However, similar to previous findings with infected
resting B cells, following cloning and expansion of the cloned
populations over a 3–4 week period, only a subset of the clones
secreted antibody.

These preliminary finding suggest that this system could be
used to obtain cells secreting antibody with particular antigenic
specificities, but may not be suitable for direct large-scale clonal
analyses of antibody responses at the level of Ig secretion.
Nevertheless, the generation of cloned transformed B cells from
antigen-specific B cells could prove to be a valuable resource of
immortalized cells from which the rearranged Ig heavy and light
chain pairs can be retrieved for further analyses. However, further
studies are required to explore the full potential of this system.

IMMUNOGLOBULIN GENES EXPRESSED
BY SINGLE B CELLS

While advances have been made in our understanding of the
genomic repertoire of bovine immunoglobulin loci, we still
have only limited data on the usage of these gene families in
generating functional, effective antibody proteins. This partly
stems from the difficulty in deconvoluting data generated from
cell pools or populations into that relevant at the single cell
level—this is in most cases an insurmountable bioinformatic
challenge, whether short or long read sequencing approaches
are used. An obvious route to gaining data at this level is
to analyse gene expression of multiple single cells, rather
than averaging gene expression across RNA extracted from
populations. There are several factors required to do this—one
being an ability (within the context of a response to a particular
immunogen) to identify and isolate multiple single antigen
specific cells (current limitations and challenges around this
are outlined above). Despite this challenge, data on single cells,
yielding paired heavy and light chain sequences, are emerging
in bovine studies, although still only from small numbers
of cells.

The ability to analyse single cell data at scale from humans
has significantly advanced in recent years. Single cells can be
isolated by various routes [micro-dissection, flow cytometry,
microfluidics and droplet-based methods (71)], each of which
have their advantages and limitations. Droplet-based methods
in particular have led to a step change in terms of scale,
providing the ability to potentially analyse thousands of single
cells (72–74). The challenge of analyzing the VH and VL
sequences of B cells has been to some extent overcome in
human studies by isolating single cells within emulsion droplets,
in which the cells are lysed and mRNA captured by poly-
dT beads. From this substrate physically linked VH and VL
transcripts are generated through overlap-extension reverse-
transcription PCR (OE RT-PCR), effectively splicing the VH
and VL amplicons together, which can then be resolved into
paired VH and VL chain data (75). This has resulted in
novel insights in terms of VL and VH pairing and use,
and the identification of broadly virus neutralizing antibodies

(76). However, while providing a substantial improvement on
individual VH and VL PCRs from isolated cells, the OE RT-
PCR approach is still technically indirect, with the full-length
variable sequence inferred from assembly of several partial
sequences because of the limitations of sequencing technologies.
A recent development, termed sc-BCRseq, applied barcodes to
fragmented VH and VL sequences from single B cells within
droplets, importantly then providing confident downstream
assembly into full length paired VH and VL sequences (77).
This approach also can be employed in a high throughput
manner, and was successfully applied to 250,000 B cells and
enabled high resolution analysis of antibody lineages in response
to immunization (77). All of these approaches still have their
challenges, one particular issue with B cells (if an aim is
to analyse antibody response development through the B
cell lineage) being sensitivity bias—the increased Ig transcript
levels in plasmablasts meaning they are over-represented in
expression data.

While the advances in single cell technologies present exciting
future possibilities when applied to the bovine antibody response,
in the context of analyzing antibody responses to a specific
antigen, the initial step in identifying and isolating antigen-
specific B cells is still necessary. Thus, the generation of B cell
reagents that allow more precise analysis of single cells remains a
priority in order to fully realize our ability to analyse the antibody
response in cattle.

SUMMARY AND CONCLUSIONS

Our understanding of the bovine B cell and antibody response
has advanced significantly in recent years, with genomic and
experimental data resolving the unique manner in which the
cow generates immunoglobulin diversity from a restricted
germline VH repertoire. This has included the characterization
of ultralong HCDR3 domain antibodies and their structure,
and consequent interest in their potential application to novel
therapeutics. However, our ability to advance understanding
of many aspects of the antibody response is restricted by
a lack of reagents for bovine B cells, in particular those
that allow identification and characterization of B cells at
different stages of differentiation along the B cell lineage. Such
tools would enable more detailed analysis of the initiation,
progression and maturation of an effective antibody response,
as well as the ability to address specific questions such as the
role of HCDR3 antibodies during infection or in response to
vaccination. The ability to isolate antigen-specific B cells is also
key to facilitating analyses within the context of infection or
vaccination, and we have outlined potential routes to how this
could be achieved–the development of better reagents for bovine
plasma cells/plasmablasts would certainly significantly enhance
this capability. Finally, application of single cell sequencing
technologies has the potential to revolutionize the analysis of B
cell responses, enabling the isolation of paired heavy and light
chain data from hundreds of thousands of B cells. Therefore,
with investment in the development of key reagents combined
with single cell sequencing at scale, we are poised to enter
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an era that can transform our understanding of the bovine
antibody response.
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T cells resident within the intestinal epithelium play a central role in barrier integrity

and provide a first line of immune defense. Intraepithelial T cells (IETs) are among the

earliest immune cells to populate and protect intestinal tissues, thereby giving them an

important role in shaping gut health early in life. In pigs, IETs are poorly defined, and

their maturation in young pigs has not been well-studied. Given the importance of IETs in

contributing to early life and long-term intestinal health through interactions with epithelial

cells, the microbiota, and additional environmental factors, a deeper characterization of

IETs in pigs is warranted. The objective of this study was to analyze age- and intestinal

location-dependent changes in IETs across multiple sites of the small and large intestine

in pigs between 4- and 8-weeks of age. IETs increased in abundance over time and

belonged to both γδ and αβ T cell lineages. Similar compositions of IETs were identified

across intestinal sites in 4-week-old pigs, but compositions diverged between intestinal

sites as pigs aged. CD2+CD8α
+

γδ T cells and CD4−CD8α
+

αβ T cells comprised

>78% of total IETs at all intestinal locations and ages examined. Greater percentages

of γδ IETs were present in large intestine compared to small intestine in older pigs. Small

intestinal tissues had greater percentages of CD2+CD8α
−

γδ IETs, while CD2+CD8α
+

γδ IET percentages were greater in the large intestine. Percentages of CD4−CD8α
+

αβ

IETs increased over time across all intestinal sites. Moreover, percentages of CD27+ cells

decreased in ileum and large intestine over time, indicating increased IET activation as

pigs aged. Percentages of CD27+ cells were also higher in small intestine compared

to large intestine at later timepoints. Results herein emphasize 4- to 8-weeks of age as

a critical window of IET maturation and suggest strong associations between intestinal

location and age with IET heterogeneity in pigs.

Keywords: intraepithelial T cells, intraepithelial lymphocytes, intestinal T cells, porcine T cells, pig T cells, pig

intestine, intestinal development, T cell maturation

INTRODUCTION

The intestinal tract contains the single largest andmost diverse compartment of immune cells in the
body and is a highly versatile organ system, with different regions performing various physiological
and immune functions (1). Furthermore, the intestinal epithelium performs a key function by
serving as a selective physical barrier between the intestinal lumen and the body. Intraepithelial
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T cells (IETs) are T cells located within the epithelial layer
throughout the intestinal tract. In neonates, IETs are among
the earliest immune cells to populate and protect intestinal
tissues (2). IETs are tissue-resident cells that respond to foreign
antigen from the intestinal lumen and to self-derived, stress-
induced molecules, positioning IETs as first responders to
enteric pathogens or as mediators of epithelial stress, respectively
(2–5). IETs are also important in regulating metabolism;
mice lacking IETs are resistant to weight gain, even when
fed a high-fat diet, due to a hyperactive metabolic profile,
indicating IETs have an important role in promoting weight
gain efficiency (6). In the context of immunity, IETs can
release cytotoxic molecules, cytokines, and/or antimicrobial
peptides upon activation, inducing intestinal inflammation
and/or antimicrobial activity associated with immune protection
(7–9). Conversely, to avoid unwarranted inflammation, IETs
are tightly regulated and exercise regulatory functions, giving
them a primary role in maintaining epithelial integrity and
immune quiescence (7, 9). In the absence of such regulation,
inflammation induced or exacerbated by IETs can threaten
epithelial barrier integrity and promote immunopathology (2).
Hence, IETs are critical in balancing immune tolerance and
protection within the intestinal tract. Moreover, microbial and
dietary antigen exposure majorly influence the development,
specificity, reactivity, and homeostasis of IETs (6, 10–14), largely
contributing to their fate in promoting or deteriorating intestinal
health (2).

In humans and rodents, IET prevalence, phenotype, and
function varies by anatomical location along the intestinal
tract, indicating regional specialization of intestinal IETs,
especially between small and large intestinal locations (15–20).
Additionally, age is a primary driver of changes to intestinal
IETs, indicating time-dependent changes to the cells occur due
to further immune maturation and continual antigen exposure
(16, 20–22). In pigs, information pertaining to IETs across
intestinal locations or in regards to the impact of age during
intestinal immune maturation is limited. While multiple studies
have analyzed porcine T cells across different intestinal locations
or across ages (23–29), the focus was primarily the small intestine
and included combined cell fractions from epithelial and lamina
propria compartments. Given the specialized role of intestinal
IETs, it is important to understand whether previous findings
can be applied specifically to IETs or generalized to additional
intestinal locations. In general, we know porcine small intestinal
IETs are located primarily within the apical and middle portions
of the villi, and the number of IETs increases with age, primarily
in the first 3 months post-parturition, in a microbiota-dependent
fashion (30–33). Similar to humans and rodents, the majority
of IETs in the porcine small intestine are CD4−CD8α+ (34);
however, whether IETs belong to αβ or γδ T cell lineages is
unknown and could have further implications into cell function.
Meanwhile, studies analyzing IETs within the porcine large
intestine are lacking.

In pigs, the window of ∼3- to 8-weeks of age (often referred
to as the weaning and nursery period in pig production) is a
critical time during which porcine intestinal T cell communities
are still developing (23, 35–37). Stress from the weaning

process, as pigs are moved from the dam and a milk-based
diet to new surroundings, pen mates, social structure, and
solid food, can result in intestinal inflammation, increased
epithelial permeability, diarrhea, increased susceptibility to
disease, decreased nutritional absorption, and weight loss with
life-long effects (38, 39). A better understanding of age- and
location-dependent characteristics of intestinal IETs during
stages of major immune maturation and increased stress, such
as that of the nursery phase, may prove useful in developing
strategies to improve pig health, improve market performance,
and/or reduce antibiotic usage during the nursery phase. To our
knowledge, an analysis of age- and intestinal location-dependent
changes in porcine αβ and γδ IET abundance, phenotype,
and distribution throughout multiple compartments of both
small and large intestine during intestinal T cell maturation in
nursery-age pigs has not been completed. Hence, the objective
of this study was to quantify IET numbers, assess presence and
proportional phenotypes of both αβ and γδ IET populations, and
assess expression of the T cell activation marker CD27 between
jejunal, ileal, cecal, and colonic tissues across multiple weeks of
age in pigs during the nursery period.

MATERIALS AND METHODS

Study Overview
Conventional, mixed-breed pigs [Camborough (1050) × 337
(Pig Improvement Company, Hendersonville, TN)] were weaned
from dams at ∼19–21 days of age and transported to the Iowa
State University Swine Nutrition Facility. Upon arrival, pigs were
randomly selected, weighed, and placed into individual pens
with shared horizontal bar gating. Pens allowed for nose-to-nose
contact and sight lines between pigs in adjacent pens to facilitate
visual and some physical contact, thereby minimizing any social
deprivation and undue stress (40). Moreover, pigs could move
freely within respective pens, which exceeded minimum space
guidelines. All pigs had free access to water and feed at all
times. Pigs were fed a corn-soybean meal-based diet that met
or exceeded nutrient and energy requirements for this size
pig (NRC, 2012 #146). The diet was free of antibiotics and
therapeutic concentrations of minerals. At ∼4-, 6-, and 8-weeks
of age (7, 21, and 35 days post-weaning, respectively), pigs
were randomly chosen and humanely euthanized via captive
bolt and exsanguination. Immediately thereafter, intestinal
tissue samples were collected. Average weights, feed intakes,
and weight gain values for each timepoint are available in
Supplementary Table 1. The study was completed in 2 identical
replicates, with 4 pigs necropsied at each timepoint per replicate
(n= 8 pigs per timepoint; n= 24 total).

Sample Collection
Sections of jejunum, ileum, cecum, and colon were collected
for tissue fixation and flow cytometric (FCM) staining. Jejunal
sections were collected ∼95 cm distal to the pylorus. The most
proximal∼7.5 cm jejunal section was collected for tissue fixation,
and the next ∼7.5 cm jejunal section was collected for FCM
staining. Ileal sections were collected starting ∼7.5 cm proximal
to the ileocecal valve. The more distal ∼7.5 cm ileal section was
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used for FCM staining, and the next ∼7.5 cm ileal section was
collected for tissue fixation. Cecal sections were collected as two
adjacent ∼5 cm by ∼10 cm sections located in the middle of the
cecal pouch, one section for FCM staining and one section for
tissue fixation. Colonic sections were collected from the apex of
the spiral colon as two adjacent∼7.5 cm colonic sections for FCM
staining and tissue fixation.

Immunohistochemistry (IHC)
Intestinal tissues were fixed in a 10% neutral-buffered formalin
solution (3.7% formaldehyde) for ∼24 h at room temperature
(RT). Tissues were then cut to appropriate size, placed in
cassettes, transferred to 70% ethanol, and embedded in paraffin
blocks. Formalin-fixed, paraffin-embedded (FFPE) tissues were
cut into 4-micron thick sections and adhered to Superfrost-
Plus charged microscope slides (Thermo Fisher Scientific).
Immunohistochemical staining was performed for detection of
CD3 protein as described previously (41). Briefly, slides were
baked, deparaffinized, and rehydrated for IHC staining. Antigen
retrieval was carried out by incubating slides in 1X sodium citrate
buffer, pH 6.0 at 95◦C for 20min in a pressurized Decloaking
Chamber NxGen (Biocare Medical, LLC) and then allowing
slides to cool down in antigen retrieval solution for ∼10min
outside of the decloaking chamber. Next, slides were sequentially
incubated with endogenous enzyme blocker (Dako S2003) for
10min at RT; protein block (Dako X0909) for 20min at RT; 0.006
g/L polyclonal rabbit anti-human CD3 antibody (Dako A0452,
stock concentration 0.60 g/L diluted 1:100 in 1% bovine serum
albumin [BSA] phosphate-buffered saline [PBS]) for 60min at
RT; horseradish peroxidase (HRP)-labeled anti-rabbit antibody
(Dako K4003) for 30min at RT; and 3,3′-diaminobenzidine
(DAB) substrate (Dako K3468) for 3min at RT. Volumes used
for each incubation varied between slides but was enough to fully
cover all tissue sections. Between each incubation, slides were
washed with 0.05% PBS-Tween (PBS-T), pH 7.35 ± 0.02. Slides
were then counterstained with Gill’s Hematoxylin I (American
Mastertech) for 1min, rinsed with distilled water, dehydrated,
and coverslipped.

Dual Chromogenic IHC and RNA in-situ

Hybridization (IHC/ISH)
Dual chromogenic IHC/ISH staining was performed to
simultaneously detect T receptor delta constant (TRDC) mRNA
and CD3 protein. FFPE intestinal tissues were fixed, processed,
and sectioned as described in IHC methods. Slides were first
stained for TRDC mRNA using the RNAscope 2.5 HD Reagent
Kit-RED (Advanced Cell Diagnostics, ACD) and custom-
designed probe complementary to Sus scrofa TRDC mRNA
(ACD 553141). A probe targeting Bacillus subtilis DAPB (ACD
310043) was used as a negative control. Slides were baked at
60 ◦C in a dry oven for 1 h, followed by deparaffinization and
rehydration using incubations in xylenes (2 × 5min), 100%
ethanol (2 × 1min), and air drying at RT. Slides were incubated
with Hydrogen Peroxide (ACD) for 10min at RT, rinsed with
water, incubated in 1X Target Retrieval Solution (ACD) for
15min at 95◦C in a pressurized Decloaking Chamber NxGen
(Biocare), rinsed with distilled water, incubated in 100% ethanol

for 2min, and air dried at RT. Once dry, a hydrophobic barrier
was drawn around each tissue using an ImmEdge PAP pen
(Vector Laboratories, Inc.).

ISH staining for TRDC RNA was completed by incubating
slides in a humidifying tray either at at 40◦C in a HybEZ
Hybridization System oven (ACD) or at RT on the benchtop for
all steps. Protein digestion was performed by incubating slides
with Protease Plus (ACD) for 15min at 40◦C, followed by rinsing
with distilled water. Next, slides were sequentially incubated with
the following reagents and washed with 1XWash Buffer (ACD) 2
× 2min between each incubation: undiluted TRDC probe (ACD)
2 h at 40◦C; 5X saline-sodium citrate (SSC) buffer overnight at
RT; AMP1 (ACD) at 40◦C for 30min; AMP2 (ACD) at 40◦C
for 15min; AMP3 (ACD) at 40◦C for 30min; AMP4 (ACD) at
40◦C for 15min; AMP5 (ACD) at RT for 30min; AMP6 (ACD)
at RT for 15min; and prepared RED detection solution (diluted
according to manufacturer’s instructions; ACD) at RT for 10 min.

Following RNA ISH, IHC was performed for CD3 protein
staining. Slides were washed with 0.05% PBS-T, pH 7.35
± 0.02 (2 × 2min) following RNA ISH and following
incubations with protein block, primary antibody, and
secondary antibody as outlined in the CD3 IHC method.
Next, slides were incubated with HIGHDEF Yellow HRP
chromogen (diluted according to manufacturer’s instructions;
Enzo Life Sciences) for 10min at RT followed by washing
again with PBS-T. To counterstain, slides were placed into
25% Gill’s Hematoxylin I (American Mastertech) for 30 s.
Following counterstaining, slides were rinsed well with
distilled water, dried for 20min at 60◦C, and mounted with
VectaMount Permanent Mounting Media (Vector) and #1
thickness coverslips.

IHC Stain Quantification
Quantification of CD3 IHC staining within the intestinal
epithelium of tissues was performed using the HALO image
analysis platform (Indica Labs). Regions of interest were
manually annotated around epithelium of 3 villi of jejunal and
ileal tissues and 3 crypts of cecal and colonic tissues per sample.
Only crypts or villi non-adjacent tomucosal-associated lymphoid
tissue (e.g., Peyer’s patches) were annotated for analysis. Due
to the inability to accurately define individual cell borders
of tightly-packed cells using the software, CD3 staining was
quantified as a percentage of CD3-stained surface area over the
total surface area of the annotated regions with user-defined
parameters for stain detection from the Area Quantification
(v2.1.3) package. The percentage of CD3-stained surface area
for each of the 3 annotated villi or crypts per sample were
averaged together to obtain a single value for each sample.
Software quantification of dually-stained CD3 and TRDC in
tissues was not performed due to cross-detection between the
two chromogenic stains. Values did not vary statistically between
the 2 study replicates, as determined using the Mann-Whitney
non-parametric test between time-matched data from each study
replicate. Correlation between data and animal necropsy weight
were not noted but would be difficult to discern due to small
sample size and low statistical power.
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Analysis of Variance (ANOVA) Statistical
Analyses of IHC Data
One-way ANOVA analyses of percentages obtained from IHC
staining quantification were performed using Prism 8 (version
8.1.2; GraphPad Software). A Gaussian distribution could not be
assumed based on small sample size; therefore, non-parametric
tests were used to analyze data. The rank-based Kruskal-Wallis
test was performed on sets of data within a single tissue
across timepoints. All combinations of multiple comparisons
between tissues or timepoints were analyzed within each
dataset for both analyses. P < 0.05 were considered significant
(∗ <0.05, ∗∗ <0.01, ∗∗∗ <0.001). Input data can be found in
Supplementary Materials.

Intestinal Epithelial Isolation
Sections of jejunum, ileum, cecum, and colon were collected
to obtain single-cell suspensions for cell phenotype labeling
and analysis by FCM. Intestinal sections were cut open to
expose the lumen, and the epithelium was gently rinsed with
PBS to remove intestinal contents. Sections were placed in RT
stabilization buffer of Hank’s balanced salt solution (HBSS; Gibco
14175) containing 2mM ethylenediaminetetraacetic acid (EDTA;
Invitrogen AM9261), 2mM L-glutamine (Gibco 25030), and
0.5% BSA (Sigma A9418) for transport back to the lab. In
the lab, ∼1.5 g sections of tissues were processed for single-
cell isolates, and all subsequent incubations were performed in
a shaking incubator (200 rpm, 37◦C). Mucus dissociation was
performed by incubating tissues in 30mL of HBSS containing
5mM dithiothretol (DTT; Invitrogen 15508) and 2% heat-
inactivated fetal calf serum (FCS; Gibco A38401) for 20min.
Epithelial cell removal was carried out by transferring tissue into
30mL of HBSS containing 5mM EDTA and 2% FCS. A total
of 3 sequential incubations in fresh epithelial removal solution
were carried out for 25min each, transferring the tissue to
fresh solution for each incubation. Tissues were then washed
in 20mL of HBSS containing 10mM HEPES (Fisher Scientific
BP299) for 10min before transferring to 10% neutral buffered
formalin to confirm epithelial cell removal. Liberated cells from
the epithelial removal and wash solutions were retained, pooled,
passed through a 100-micron nylon filter, and washed with
HBSS containing 2mM L-glutamine and 2% FCS. Isolated cells
were centrifuged 8min at 450 × g at RT, and the pellet was
resuspended in HBSS/L-glutamine/FCS solution. Viability and
quantity of the final epithelial-enriched cell suspensions were
determined with the Muse Cell Analyzer with the Muse Count
& Viability Assay Kit (Luminex).

Peripheral Blood Mononuclear Cell (PBMC)
Isolation
Immediately prior to euthanasia, ∼8mL of whole blood was
collected from each animal into a sodium citrate cell-preparation
tube (CPT; BD Biosciences). Samples were transported to the lab
at RT and processed using manufacturer’s recommendations as
previously described (42). HBSS was used to wash and resuspend
cells. Cell enumeration and viability was determined as described

for epithelial cell fractions. PBMCs were stored on ice for all steps
unless temperature was noted otherwise.

Cell Phenotype Labeling and Data
Acquisition by Flow Cytometry
For each sample, 5 × 105 live cells were seeded into
a single well of a 96-well round bottom plate, pelleted,
resuspended, and stained with Fixable Viability Dye eFluor 780
(eBioscience) diluted 1:1,000 in PBS for 30min according
to manufacturer’s recommendations. Next, sequential
incubations with unconjugated primary antibodies, secondary
fluorophore-conjugated antibodies, and primary antibodies
directly-conjugated to fluorophores were carried out for 15min
each at RT. Unconjugated primary antibodies included anti-γδ

T cell receptor (α-γδTCR; PGBL22A, mouse IgG1) and α-CD2
(MSA4, mouse IgG2a) from Washington State University.
Secondary antibodies included rat α-mouse IgG1-BUV395
(A85-1; BD) and rat α-mouse IgG2a-BV605 (R19-15; BD).
Directly conjugated antibodies included α-CD3ε-PE-Cy7 (BB23-
8E6-8C8, mouse IgG2a; BD), α-CD4-PerCP-Cy5.5 (74-12-4,
mouse IgG2b; BD), α-CD8α-PE (76-2-11, mouse IgG2a; BD),
and α-CD27-FITC (b30c7, mouse IgG1; BioRad). Between
incubations, cells were washed with PBS. After antibody staining,
cells were fixed with BD Stabilizing Fixative (BD) and stored at 4
◦C overnight. The following day, fixed cells were resuspended,
passed through a 35-micron nylon filter to remove aggregates,
and data were acquired using a BD FACSymphony A5 flow
cytometer (BD). The instrument was set up according to
manufacturer’s recommendations using bead capture reagents to
set compensation controls.

Flow Cytometry Gating Analysis
FCM data were analyzed with FlowJo (FlowJo, LLC). Single
stains and fluorescence-minus-one antibody combinations were
used to set appropriate gates for each fluorochrome and
respective sample type (43, 44). Data were quantified as
frequencies of specified parent populations or total cell
counts. Samples with low event yields were analyzed for
outlier data using box-and-whisker plot outlier analysis for
frequency measurements collected. If no outliers were detected,
samples were included in further analysis. Values did not
vary statistically between the 2 study replicates, as determined
using the Mann-Whitney non-parametric test between time-
matched data from each study replicate. Correlation between
data and animal necropsy weight were not noted but would
be difficult to discern due to small sample size and low
statistical power.

t-Distributed Stochastic Neighbor
Embedding (t-SNE) Visualization of Flow
Cytometry Data
Dimensionality reduction using t-SNE visualization was
performed on FCM data within FlowJo using the t-SNE and
DownSample plug-ins available from FlowJo Exchange. Prior
to t-SNE visualization, similar fluorescence intensities and
gating for flow cytometry markers in each tissue at each
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timepoint were confirmed. Cells from the CD3ε+ gate of
each sample were down-sampled (n = 990 cells per sample)
using the DownSample plug-in to obtain equal numbers of
cells for each sample type (based on combination of 4 tissues
and 3 timepoints; 12 sample types total), and subsequent
gates were reapplied to down samples. Next, the 8 gated IET
populations were concatenated between all down samples
within each tissue/timepoint combination to create a total of 96
concatenated files (8 files belonging to each IET population ×

12 belonging to each tissue/timepoint combination). Keyword
value series were applied based on IET population and sample
type. Compensation was reapplied to the concatenated files,
and the 96 files were again concatenated into a single file,
including the keyword value series as additional parameters.
Compensation was reapplied again to the final concatenation,
and t-SNE analysis was completed with input parameters for
fluorescence intensities of compensated CD3ε, γδTCR, CD2,
CD4, CD8α, and CD27 being considered for visualization.
Default options for the opt-SNE learning configuration, exact
KNN algorithm, and Barnes-Hut gradient algorithm were
used with 1,000 iterations and a perplexity of 150. To identify
αβ and γδ IET populations within the final concatenation,
gates were drawn based on the keyword series values assigned
to IET populations and tissue/timepoint variables. CD27+

and CD27− expression was assessed by redrawing gates
used previously.

Non-metric Multidimensional Scaling
(NMDS) Visualization and Permutational
Multivariate Analysis of Variance
(PERMANOVA) Statistical Analyses of Flow
Cytometry Data
For a multivariate comparison of sample similarity, the IET
compositions of each sample were considered. IET communities
were composed of 16 discrete subpopulations defined by
expression of CD27 (positive or negative) for each of the 8 T
cell populations defined by flow cytometry gating analysis.
Frequencies of the 16 subpopulations were calculated from
cell counts exported from FlowJo and were considered as
discrete, non-overlapping groups comprising the total CD3ε+

IET community within each sample. From the frequency data,
a dissimilarity matrix was calculated using the Bray-Curtis
dissimilarity metric and this dissimilarity matrix was used for
visualization and statistical testing of sample similarity. NMDS
visualization of Bray-Curtis dissimilarities was performed in R
with the vegan (version 2.5-5) (45), and tidyverse (version 1.2.1)
(46) packages. PERMANOVA testing was completed in R using
vegan’s ‘adonis’ function. Tissue, age, and a combination of tissue
and age were used as variables. Post-hoc pairwise PERMANOVA
tests were completed on comparisons of interest (single tissue
type between timepoints or within a single timepoint between
tissues), correcting p-values with the false discovery rate (FDR)
method. Corrected p< 0.05 were considered significant (∗ <0.05,
∗∗ <0.01, ∗∗∗ <0.001). Input data and R scripts can be found
at https://github.com/jwiarda/Intraepithelial_T_cells.

ANOVA Statistical Analyses of Flow
Cytometry Data
One-way ANOVA using percentages obtained from individual
gates of flow cytometry data were performed using Prism 8.
Because a Gaussian distribution could not be assumed based on
small sample size, non-parametric tests were used to analyze data.
The rank-based Kruskal-Wallis test was performed on sets of
data within a single tissue across timepoints, while the paired,
rank-based Friedman test was performed on sets of data within
a single timepoint across tissues, pairing samples derived from
the same animal. All combinations of multiple comparisons
between tissues or timepoints were analyzed within each data
set for both analyses. P < 0.05 were considered significant
(∗ <0.05, ∗∗ <0.01, ∗∗∗ <0.001). Input data can be found in
Supplementary Materials.

RESULTS

Intestinal IET Abundance Increased With
Age and Was Composed of Both γδ and αβ

T Cells
Jejunum, ileum, cecum, and colon were collected from 4-, 6-,
and 8-week-old pigs (Figure 1A). To assess the presence of T
cells in the intestine, IHC staining of CD3 protein was completed
using the collected tissues, and any CD3 stain-positive cells were
considered T cells. T cells were found in both the epithelial
layer and the lamina propria of all intestinal tissues, as well
as within the Peyer’s patch areas of the ileum. CD3 staining
within the epithelium appeared to be more frequent in the villi
compared to the crypts of small intestinal tissues (jejunum and
ileum) and within the apical portions of crypts in large intestinal
tissues (cecum and colon). Moreover, T cell staining within the
epithelium appeared more frequent overall in small intestinal
compared to large intestinal tissues (Figure 1B). Within a
respective intestinal tissue, T cell staining both throughout
the entire tissue (including epithelium, lamina propria, and
submucosa compartments) and specifically within the epithelial
layer appeared to increase as animals aged (Figure 1B). To
confirm the latter observation, CD3 staining was quantified
within villus epithelium of jejunal and ileal tissues or crypt
epithelium of cecal and colonic tissues and compared across
time (Supplementary Figure 1 and Supplementary Table 2).
CD3 staining within the epithelium increased significantly at
all intestinal sites as age increased (Figure 1C), suggesting
IETs became more abundant across the 4- to 8-weeks of age
time frame.

To further characterize intestinal IETs, dual staining of
CD3 protein and T receptor delta constant (TRDC) mRNA
was completed in a subset of jejunal, ileal, cecal, and colonic
tissues. Using the rationale that CD3 protein (yellow staining)
would be expressed by all T cells, TRDC mRNA (red staining)
would only be expressed by γδ T cells, and that TRDC-
specific red staining would mask co-localizing CD3-specific
yellow staining, cells staining red were presumably γδ T cells
(TRDC+), whereas cells staining yellow were presumably αβ

T cells (CD3+TRDC−). Staining revealed the presence of both
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FIGURE 1 | Porcine intestinal IETs increased with age and were composed of γδ and αβ T cells. (A) Anatomical diagram of tissue collection sites from jejunum, ileum,

cecum, and colon within pig intestinal tract. (B) Representative images of T cell-specific CD3 protein staining (brown) within multiple intestinal tissues at different ages

in pigs. (C) Percentages of epithelial surface area stained for CD3 protein within a single tissue over multiple timepoints. Statistical significance was determined within

a single tissue across timepoints by the rank-based Kruskal-Wallis test using all combinations of multiple comparisons within a tissue. P < 0.05 were considered

significant (* < 0.05, *** < 0.001). (D) Representative images of T cell-specific CD3 protein staining (yellow) and γδ T cell-specific TRDC transcript staining (red) in pig

intestinal tissues at 8-weeks of age. Distance scales on the bottom of each image are included for size comparisons. Samples were taken from 4 animals per

timepoint in each of two separate experiments (n = 8 per timepoint; n = 24 total).
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FIGURE 2 | Flow cytometry gating revealed IET populations and CD27 expression varied by intestinal location and age. (A) Gating strategy used to identify IET

populations and subpopulations from flow cytometry data of epithelial-enriched samples. (B–D) t-SNE dimensional reduction of gated flow cytometry data from all

samples to reveal clustering of αβ and γδ IET populations (B), CD27+ and CD27− expression (C), and tissue and age-specific cell frequency distributions (D). In (B,C),

individual points represent single cells. Plot axes indicate t-SNE dimensions. Cells highlighted in non-gray colors coordinate with corresponding αβ and γδ IET

populations (B) or CD27+ classification (C). In (D), areas with more cells present are indicated by red, whereas areas with less cells present are indicated by blue.

Subsets of total IETs were taken from each sample (n = 990) to obtain equal cell numbers for each individual sample; an equal number of cells are present for each

animal and combination of intestinal tissue and timepoint. Samples were taken from four animals per timepoint in each of two separate experiments (n = 8 per

timepoint; n = 24 total).
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TRDC+ and CD3+TRDC− cells, corresponding to presumable
γδ and αβ T cells, respectively, within the epithelium of all
intestinal tissues analyzed (Figure 1D). T cells in the lamina
propria and submucosa were primarily CD3+TRDC−, with
TRDC+ cells noted infrequently outside of the epithelium
(Supplementary Figure 2). These findings suggest both αβ and
γδ T cells are located within the intestinal epithelium of both
small and large intestine in pigs.

IET Compositions Diverged by Intestinal
Location as Pigs Aged
To further phenotype intestinal IETs, cell staining and FCM
analysis was performed on epithelial-enriched fractions of the
jejunum, ileum, cecum, and colon collected at 4-, 6-, and 8-
weeks of age. The protocol used to liberate epithelial cells
from the intestinal tissues resulted in isolation of primarily
epithelial cells, though some lamina propria cells may have
been released during processing and included in the analysis
(Supplementary Figure 3). CD3ε was used to identify T cells,
and further characterization of total T cells by expression of
cell surface markers γδTCR, CD2, CD4, CD8α, and CD27 was
assessed. CD2 and CD8α expression are commonly used to
identify functional porcine γδ T cell populations (47, 48); CD4
and CD8α expression identify functional porcine αβ T cell
populations (49, 50); and CD27 expression is indicative of T
cell activation and memory states (51–54). In total, this gating
strategy yielded 16 discrete, non-overlapping IET subpopulations
based on CD27+/− expression within each of the 8 defined IET
populations (Figure 2A).

Interpretation of flow cytometry data by t-SNE analysis
allows users to obtain an overall impression of marker-
specific characteristics by simultaneously considering all marker
expression patterns to spatially resolve cellular identities and
visually identify cell populations of interest. Hence, fluorescence
intensities of cell surface markers within the total CD3ε+ T
cell community were utilized for implementation of t-SNE
visualization (Supplementary Figure 4). Visualization revealed
close proximities of cells assigned to each of the 8 IET
populations, as defined by γδTCR, CD2, CD4, and/or CD8α
expression in Figure 2A, and variability in frequencies of cells
belonging to the 8 populations (Figure 2B). Within each of the
8 IET populations, expression of CD27 was variable based on
CD27+ or CD27− classification, but some populations were
largely CD27+ while others were largely CD27− (Figure 2C).
Thus, heterogeneity existed within IETs based on the cell surface
markers assessed here. We next analyzed distribution of different
IETs by observing cell distribution frequencies within the t-SNE
plot across the multiple intestinal tissues and ages. Biases toward
different IET populations or different CD27 expression within an
IET population were observed between different intestinal tissues
at a single timepoint or within a tissue across time, indicating
both age- and intestinal location-dependent changes to IET
distributions occurred (Figure 2D). Therefore, t-SNE analysis
demonstrated heterogeneity amongst and variability between
IETs, as related to both age and intestinal site.

FIGURE 3 | IETs diverged by intestinal location over time. (A) Multivariate

analysis of flow cytometry data to assess tissue- and age-dependent effects

on compositions of IET communities. Sample frequencies of the 16 discrete

cell subpopulations defined by flow cytometry gating of αβ or γδ T cell

populations and CD27 expression were analyzed for their overall tissue and

age-dependent effects using PERMANOVA analysis. Greater F model statistic

values represent greater magnitude of differences, while p < 0.05 were

considered significant (*** < 0.001). (B) NMDS visualization of IET communities

based on sample frequencies of the 16 discrete cell subpopulations

(Continued)
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FIGURE 3 | defined by flow cytometry gating of αβ or γδ T cell populations and CD27 expression. Shorter distances between points represent greater similarities

between samples. Centroids are plotted at the center of each 95% confidence ellipse for each sample type based on both intestinal tissue and pig age during sample

collection. Centroids from each particular timepoint of a single tissue are sequentially connected chronologically. Point, ellipse, and line color is tissue-specific, while

centroid shape is age-specific. (C,D) Visualization of pairwise PERMANOVA test results comparing IET compositions from samples between timepoints within a tissue

(C) or between tissues within a single timepoint (D). Relationships between variables are represented by connecting lines. Magnitudes of the F model statistics

demonstrate the influence of a comparison and are represented by the width of the lines, while color of the line represents statistical significance (red = significant;

black = not significant). P-values were corrected for multiple comparisons using the FDR method considering all tests displayed here, p < 0.05 were considered

significant. Samples were taken from four animals per timepoint in each of two separate experiments (n = 8 per timepoint; n = 24 total).

FIGURE 4 | Intestinal location and age affected frequencies and phenotypes of αβ and γδ IETs. (A) Comparison of percentages of γδTCR+ cells from the total IET

communities across intestinal tissues within a single timepoint. (B,C) Fluorescence intensities of γδTCR from the total IET communities. Frequency is proportional to

unit area under the curve, and all samples are represented by equal total unit area under the curve. For fluorescence intensity curves (B,C), data are acquired from

merging the subsetted data of 8 samples from each age/tissue combination used for t-SNE analysis. The same data are presented in B and C to show

tissue-dependent (B) or age-dependent (C) changes. (D) Mean normalized frequencies of αβ and γδ IET populations across intestinal tissues and timepoints. Each

IET population frequency is represented by a different color, and percentages of all IET populations within a single tissue and timepoint total 100%. (E) Comparison of

percentages of CD2+CD8α
+ cells from the total γδ IET communities across intestinal tissues within a single timepoint. (F) Comparison of percentages of CD4−CD8α

+

cells from the total αβ IET communities across timepoints within a single intestinal tissue. In (A,E), statistical significance was determined within a single timepoint

across tissues by the paired, rank-based Friedman test using all combinations of multiple comparisons within timepoint. In (F), statistical significance was determined

within a single tissue across timepoints by the rank-based Kruskal-Wallis test using all combinations of multiple comparisons within a tissue. P < 0.05 were

considered significant (* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001). Samples were taken from four animals per timepoint in each of two separate experiments (n =

8 per timepoint; n = 24 total).

The overall effects of intestinal tissue, pig age, and a
combination of tissue and pig age on intestinal IET community
compositions were analyzed statistically by PERMANOVA, a
multivariate comparison of the frequencies of the 16 discrete
IET subpopulations of each sample identified in Figure 2A.
This analysis revealed heterogeneity in the compositions of IET
communities was significantly affected by tissue and age, and
tissue exerted a greater influence on IET compositions than did
age. A significant combinatorial influence of both tissue and

age could also be observed, suggesting the effect of age was not
consistent across all tissues (Figure 3A).

NMDS visualization and pairwise post-hoc tests were
next employed to extract results for tissue and age-specific
comparisons of interest. Compositions of IET communities
in jejunum, ileum, cecum, and colon were relatively similar in
pigs at 4-weeks of age but diverged as age increased, with the
greatest differences occurring between small and large intestinal
locations (Figure 3B). The largest changes in IET compositions
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FIGURE 5 | Frequencies of IETs expressing CD27 decreased with age in distal intestinal tract. (A) Comparisons of percentages of CD27+ cells within CD2+CD8α
+

γδ

IETs across timepoints within a single intestinal tissue. (B,C) Fluorescence intensities of CD27 from total CD2+CD8α
+

γδ IETs within a single intestinal tissue across

time (B) or within a single timepoint across intestinal tissues (C). (D) Comparisons of percentages of CD27+ cells within CD4−CD8α
+

αβ IETs across timepoints within

a single intestinal tissue. (E,F) Fluorescence intensities of CD27 from CD4−CD8α
+

αβ IETs within a single intestinal tissue across time (E) or within a single timepoint

across intestinal tissues (F). In (B,C) and (D,E), frequency is proportional to unit area under the curve, and all samples are represented by equal total unit area under

the curve. For fluorescence intensity curves, data are from merging the subsetted data of 8 samples from each timepoint/tissue combination used for t-SNE analysis.

The same data are presented in B and C or D and E to show age-dependent (B,D) or tissue-dependent (C,E) changes. Statistical significance was determined for

percentages of total CD27+ cells within a single tissue across timepoints by the rank-based Kruskal-Wallis test using all combinations of multiple comparisons within a

tissue. P < 0.05 were considered significant (* < 0.05, ** < 0.01, *** < 0.001). Samples were taken from four animals per timepoint in each of two separate

experiments (n = 8 per timepoint; n = 24 total).

within tissues over time occurred between 4- and 6-weeks of
age: IET compositions in the jejunum, cecum, and colon but
not ileum at 4-weeks of age were significantly different from the
same sites at 6- and 8-weeks of age, while 6- and 8-week IET
communities were not significantly different from each other
(Figure 3C). Divergence in IET compositions at 6- and 8-weeks
of age contributed to jejunum and ileum of the small intestine
becoming increasingly divergent from large intestinal tissues
and, to a lesser extent, from each other (Figure 3D). Hence,
within the age span analyzed, IET communities changed most
drastically within a single tissue between 4- and 6-weeks of age,
and were largely defined by small or large intestinal location,
although significant differences between locations within the
small intestine were also detected.

Frequencies and Phenotypes of Intestinal
αβ and γδ IETs Differed With Age and
Intestinal Location
We next compared frequencies of different IET populations
defined by FCM gating to discover the manners by which

IETs differed between intestinal tissues and as pigs aged. To
determine the composition of γδ vs. αβ T cells within the total
IET community, percentages of γδTCR+ cells from total CD3ε+

T cells obtained from our epithelial-enriched cell fractions
(Supplementary Table 3) were compared across age and tissues.
As no antibody reactive to the porcine αβTCR is currently
available (55), CD3ε+γδTCR− cells were inferred to be αβ T
cells, while γδ T cells were identified as CD3ε+γδTCR+ (47,
56, 57). Percentages of γδTCR+ IETs were similar between
intestinal sites at 4-weeks of age but differed between small

and large intestinal tissues at both 6 and 8-weeks of age, by

which times γδTCR+ percentages were greater in large intestinal

compared to small intestinal tissues (Figures 4A,B). Percentages
of γδTCR+ cells decreased in jejunum between 4- and 8-weeks
(p= 0.0157), whereas percentages did not change significantly in

ileum, cecum, and colon over time (Figure 4C). Thus, as animals

aged, γδ T cells constituted a smaller proportion of the total IETs
in small intestine compared to large intestine.

Frequencies of the γδ and αβ IET populations defined by
CD2 and CD8α or CD4 and CD8α expression, respectively,
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FIGURE 6 | IET community landscape was altered by intestinal location and

pig age. (A) Representation of IET community landscapes in small and large

intestine of 4- vs. 8-week-old pigs. γδ IETs are shown in teal, while αβ IETs are

shown in orange. Expression of CD27 and CD8α receptors are also indicated.

Whether CD8α is expressed in conjunction with another CD8α molecule or a

CD8β molecule is unknown. (B) Summary of key changes in IET populations

observed across intestinal locations in 4- and 8-week-old pigs. Y-axes show

qualitative increases in measurements specified for each plot. Representative

approximations in 4-week-old pigs are illustrated with dark gray dotted lines,

while orange dotted lines represent approximations in 8-week-old pigs.

varied within our total dataset (Figure 2B). In support of this
observation, the normalized frequencies of the 8 discrete γδ

and αβ IET populations to the entire CD3ε+ IET community
were calculated for samples based on intestinal tissue and age
(Supplementary Table 4). Two major populations comprised
a combined normalized frequency of between 78.4 and
91.7% of the total IET communities within the 12 sample
groups: CD2+CD8α+ γδ T cells and CD4−CD8α+ αβ T cells
(Figure 4D).

Not only did frequencies vary between αβ and γδ IET
populations, but populations of γδ or αβ IETs also appeared to
vary between tissues and with age. To investigate, percentages
of each of 4 IET populations within total γδ or αβ IETs
(Supplementary Tables 5, 6) were compared across tissues
and age. γδ IET populations were defined by expression of
CD2 and CD8α (Figure 4E and Supplementary Figures 5A–C).
CD2+CD8α+ γδ T cells, which have been proposed to be a
terminally differentiated cell population (28, 48, 54), comprised
the largest fraction of γδ IETs in all samples, while CD2+CD8α−

γδ T cells, which are proposed to be a naïve or memory
population (28, 48, 54), were the second most abundant γδ IET
population (Figure 4D). Increased percentages of CD2+CD8α−

γδ IETs within total γδ IETs (Supplementary Figure 5A)
coincided with complementary decreases in percentages of
CD2+CD8α+ γδ IETs (Figure 4E) in small intestine compared
to large intestine. Moreover, differences in compositions of
γδ IET populations were tissue- but not age-dependent, and,
overall, CD2+CD8α+ cells were still the predominating γδ

IET population within the intestinal epithelium, making up an
average of between 57.3 and 93.8% of all γδ IETs, regardless
of intestinal location or timepoint analyzed. Thus, the majority
of γδ IETs were associated with a terminally differentiated cell
phenotype (CD2+CD8α+), and γδ IETs associated with a naïve
or memory phenotype (CD2+CD8α−) were more frequent in the
small intestine compared to the large intestine.

Porcine αβ T cell populations were defined by CD4 and
CD8α expression as presumable cytotoxic T cells (CD4−CD8α+)
(49, 58), naïve helper T cells (CD4+CD8α−) (49, 50, 58),
activated or memory T helper cells (CD4+CD8α+) (50, 58),
and CD4−CD8α− T cells that were potentially mucosal-
associated invariant T (MAIT) cells (59), invariant natural
killer T (iNKT) cells (60), or immature αβ T cells (9)
(Figure 4F and Supplementary Figures 5D–F). The majority
of intestinal αβ IETs were CD4−CD8α+ (average of 69.1
to 95.4%), followed in frequency by CD4−CD8α− (1.9 to
17.3%) and then CD4+CD8α+/− populations (0.8 to 5.0%
and 0.7 to 9.5%, respectively) (Figure 4D). As pigs aged,
significant increases in CD4−CD8α+ αβ IET percentages
(Figure 4F) and concomitant decreases in all other αβ IET
population percentages (CD4+CD8α+, CD4+CD8α−, and
CD4−CD8α−; Supplementary Figures 5D–F) occurred
across all tissues. Findings indicate a potential increase in
CD4−CD8α+ αβ IETs, decrease in other αβ IET populations
(CD4+CD8α+, CD4+CD8α−, and CD4−CD8α−), or
combination of both scenarios occurred at all intestinal locations
as pigs aged.

Fewer IETs Expressed CD27 in Distal
Intestinal Tract as Pigs Aged
CD27 is commonly used as a phenotypic marker for functional
classification of porcine T cells and is downregulated on
activated/effector T cells (51–54, 61, 62). CD27 expression
within intestinal IET populations was assessed to compare
activation phenotypes across intestinal tissues with age
(Supplementary Table 7). The 2 predominating IET
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populations, CD2+CD8α+ γδ IETs and CD4−CD8α+ αβ

IETs, had similar patterns of CD27 expression: as pigs aged,
percentages of CD27+ IETs decreased significantly in ileum,
cecum, and colon but not jejunum (Figures 5A,B,D,E).
Decreases in percentages of CD27+ cells also occurred in
CD2+CD8α− γδ IETs but not any other γδ or αβ IET populations
(Supplementary Figures 6A–F). Although percentages of
CD27+ cells decreased in ileum, decreases in percentages of
CD27+ cells in large intestine between 4- and 6-weeks of age were
more drastic (Figures 5C,F). Consequently, average percentages
of CD27+CD2+CD8α+ γδ IETs and CD27+CD4−CD8α+

αβ IETs were no >49.0% in large intestine compared to a
minimum of 64.6% in small intestine at 6- and 8-weeks of age.
The data suggest the majority of IETs were not activated in
4-week-old pigs, but, as pigs continued to age, IETs of the more
distal intestinal tract became activated, especially those of the
large intestine.

Furthermore, proportions of CD27+ CD2+CD8α+ γδ and
CD27+ CD4−CD8α+ αβ IETs in 6- and 8-week-old pigs
were compared to corresponding populations in peripheral
blood (PB) (Supplementary Tables 7, 8). Direct comparison
revealed significantly higher CD27+ percentages in PBMCs
compared to cecum and colon IETs for CD2+CD8α+ γδ T
cells at 6-weeks of age (Supplementary Figure 7A) and for
CD4−CD8α+ αβ T cells at both 6- and 8-weeks of age
(Supplementary Figure 7B). Neither CD27+ CD2+CD8α+ γδ

nor CD4−CD8α+ αβ IET percentages in jejunum or ileum were
statistically different from that of PBMC populations at either
timepoint (Supplementary Figures 7A,B). Collectively, the data
suggest a similar fraction of small intestine IETs are in an
activated state compared to peripheral T cells, while more large
intestine IETs are in an activated state compared to peripheral
T cells in 6- and 8-week-old pigs, as evidenced by expression
of CD27.

IET Community Landscape Is Altered by
Both Intestinal Location and Pig Age
In summary, IET abundance increased with age at all intestinal
locations analyzed, and compositional differences were largely
noted between small and large intestine in older pigs (Figure 6).
In older pigs, lower proportions of γδ IETs from the total IET
community were present in the small compared to the large
intestine. Of these γδ IETs, nearly all were CD2+CD8α+ in the
large intestine, while expression of CD8α on γδ IETs was more
variable in the small intestine. Percentages of CD4−CD8α+ αβ

IETs from total αβ IETs were similar between intestinal locations
and uniformly increased with age. Lastly, CD27 expression was
lost by IETs in the ileum and especially in the large intestine as
pigs aged. In total, these alterations contributed to an overall
divergence in IET abundances and compositions as pigs aged
within the 4- to 8-week-old timespan.

DISCUSSION

Understanding changes in IET quantities, proportional
phenotypes of αβ and γδ IET populations, and expression

of T cell activation marker CD27 between intestinal locations
over the nursery period is important for establishing a paradigm
of porcine IET maturation that may contribute to developing
strategies to improve pig health and/or market performance.
Herein, we demonstrate dynamics of IET maturation within
the porcine intestinal epithelium arise in an age- and intestinal
location-dependent manner, and our findings recapitulate
and expand upon results of previous studies of porcine IETs.
In line with previous work, we report IETs increased in
abundance within the small intestine as pigs aged (31) and
further demonstrated increased abundances of IETs within
the large intestine as pigs aged. The majority of porcine IETs
are CD4−CD8α+ (34), and we further show that porcine IETs
belonged to both αβ and γδ T cell lineages. Overall, IETs were
primarily CD2+CD8α+ γδ T cells and CD4−CD8α+ αβ T cells.
Early in the nursery period (4-weeks of age), IET communities
were similar throughout the intestinal tract. As pigs aged,
not only did IET numbers increase, but communities became
regionally specialized by 6-weeks of age, corresponding to
previous findings denoting intestinal T cell communities do not
resemble adult populations until between 5- to 8-weeks of age
in conventional pigs (36). Moreover, shifts in IET compositions
were largely due to several alterations to IET populations.
First, small intestinal tissues had lower percentages of γδ IETs
(and presumably greater percentages of αβ IETs) but higher
proportions of CD2+CD8α− cells (complemented by lower
percentages of CD2+CD8α+ cells) within total γδ IETs than did
large intestinal tissues at the later nursery stages (6- and 8-weeks
of age). Second, as pigs aged, the percentages of CD4−CD8α+

αβ IETs increased in all tissues. Third, the percentages of
IETs expressing CD27 decreased with age in the major IET
populations (CD2+CD8α+ γδ IETs and CD4−CD8α+ αβ IETs)
of the ileum and large intestine. Fourth, at later nursery stages
(6- and 8-weeks of age), lower percentages of cells from the
major IET populations were CD27+ in the large compared
to small intestine. Moreover, percentages of CD27+ IETs in
large intestine were significantly lower than corresponding T
cell populations in the periphery, while percentages between
small intestine IETs and peripheral T cells were similar at later
nursery stages (6- and 8-weeks of age). To our knowledge,
this work comprises the most comprehensive and detailed
analysis of porcine IETs in regards to intestinal location and
nursery pig age and highlights important age- and intestinal
location-associated dynamics of IET maturation to consider in
future work.

While interactions between IETs and microbiota were not
directly observed in this study, associations exist between
intestinal IET phenotype data obtained from our study
and previous reports of intestinal microbial diversity in the
developing pig. The largest microbial differences in the porcine
intestinal tract correlate to intestinal location, but age also
correlates to microbial differences (63). Drawing parallels to
the current study, intestinal location gave greater dictation to
IET community composition than age, though age still had
significant influence. In pigs, distinct microbial communities
exist between the small and large intestine and become more
prominent with age (64). Distinct microbial communities
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also exist between the jejunum and the ileum of the small
intestine (65). Similarly, we detected significant differences
in overall IET community compositions not only between
the small and large intestine but also between jejunum
and ileum. Microbial abundance and diversity increase going
from proximal to distal end of the intestinal tract and
as pigs age (1, 66, 67), resulting in exposure to a larger
and more diverse microbially-derived antigenic repertoire in
distal intestinal regions and in older pigs. Correspondingly,
percentages of CD27+ IETs were reduced at the distal
but not proximal end of the intestinal tract as pigs aged,
indicating distally-located intestinal IETs may be activated at
higher frequencies, and the frequency of activation accrues
with age (and presumably, antigen exposure). Future studies
investigating how parallel development of microbial and IET
communities influence one another would greatly enhance our
understanding of both components. Hence, antigenic stimulation
from the microbiota should be strongly considered for potential
influences on variability, maturation, and/or activation of
intestinal IETs.

Ultimately, functional specialization of different intestinal
segments may contribute directly or indirectly to variability
in IET numbers, compositions, and activation. Variability
in microbiota, dietary constituents, and immune-modulating
molecules have all correlated to physiological functions at distinct
intestinal locations (1). IETs were less abundant in intestinal
crypts than in villi and in large compared to small intestine.
In the small intestine, villi are important for increasing surface
area to maximize nutrient absorption (1, 68). Hence, the small
intestinal villi provide a large surface area with close contact
with luminal contents, and interactions at the luminal-epithelial
interface may attract greater numbers of IETs. Compared to the
single mucus layer of the small intestine, the large intestine has
two mucus layers, providing an additional degree of physical
separation between the epithelium and luminal contents (69),
and the large intestine also lacks villi. Thus, IETs located within
large intestinal crypts may have less exposure to luminal contents,
resulting in fewer IETs present there. Microbes in the large
intestine are also important bioreactors that ferment indigestible
components into metabolites that serve as fuel or signaling
molecules for the host. To maintain beneficial microbes, a
symbiotic relationship is established, and microbes are tolerated
yet tightly regulated by the host (70, 71), perhaps through
IETs in close proximity with these microbes being primed for
activation. It’s unclear why lower percentages of IETs expressed
CD27 in large intestine compared to small intestine as pigs
aged, indicating greater percentages of IETs were activated in
the large intestine compared to the small intestine. However,
differing compositions and abundances of microbial species
present in the large intestine compared to the small intestine
may play a role in IET activation. Moreover, large intestinal
IETs may be exposed to a different repertoire of soluble factors
than IETs of the small intestine, such as microbially-derived
components including lipopolysaccharide (LPS) or microbially-
constructed metabolite products including short-chain fatty
acids (SCFAs).

In peripheral blood and non-intestinal tissues, the presence
or absence of CD8α expression within porcine CD2+ γδ T
cells is associated with different functional states. CD2+CD8α+

γδ T cells exhibit greater expression of the effector T cell
transcription factor T-bet (54), greater cytokine production (48),
and expression patterns of cell surface molecules indicative of T
cell activation (28, 51) when compared to CD2+CD8α− γδ T
cells. Resultingly, CD2+CD8α− γδ T cells are a proposed naïve
or memory cell population, while CD2+CD8α+ γδ T cells are
proposed to be a terminally differentiated population (48, 54).
Moreover, porcine CD2+CD8α− γδ T cells can gain expression
of CD8α following in vitro IL-2 stimulation (47). In humans
and rodents, IETs may gain surface expression of the CD8αα

homodimer upon activation (9), supporting the notion that
porcine CD2+CD8α+ γδ T cells are a terminally differentiated
cell population arising from CD2+CD8α− γδ T cells. In our
study, greater percentages of γδ IETs expressed CD8α in the
distal compared to proximal intestinal tract. Expression of the
CD8αα homodimer on T cells is implicated in increasing the
threshold for T cell receptor-mediated activation (72–74). Hence,
CD8α expression in our proposed terminally differentiated
CD2+CD8α+ γδ IETs may indicate an increased threshold
for TCR-mediated activation, suggesting a more regulatory or
tolerant phenotype for CD2+CD8α+ γδ IETs compared to
CD2+CD8α− counterparts. Whether similar phenomena occur
in pigs is unknown but supported by previous in vitro and in
vivo work in gnotobiotic pigs (27, 75). Wen et al. demonstrate
ileal CD2+CD8α− γδ IETs secreted higher levels of IFN-γ,
secreted lower levels of IL-10, and expressed lower levels of
regulatory transcription factor Foxp3 compared to CD2+CD8α+

γδ IETs (75). Moreover, frequencies of CD2+CD8α+ γδ T cells
increased in ileum of gnotobiotic pigs following colonization
with probiotic Lactobacilli or infection with human rotavirus,
while CD2+CD8α− frequencies decreased (27). Therefore, it is
plausible that γδ IETs in the more distal intestinal tract have an
increased threshold for TCR-mediated activation, giving way to
a more tolerogenic profile. The same might also hold true for αβ

IETs; however, whether CD4−CD8α+ αβ IETs expressed CD8αα,
CD8αβ, or a combination of both cannot be determined from
our data.

In the United States, pigs are typically weaned at ∼21 days
of age and immediately proceed to the nursery period (3- to 10-
weeks of age) of production thereafter. The weaning period is
considered to be one of the most stressful life events for pigs.
Weaning involves cessation of passive immune transfer of milk-
derived immunoglobulins by abrupt removal of piglets from
the sow; introduction of new social and environmental stressors
from inter-litter mixing and transport to a new facility; and
introduction to a solid-food diet (38, 39). In addition, animals
are exposed to a plethora of new environmental, microbial,
and dietary antigens that may induce age-associated changes
to intestinal IETs. In humans and rodents, major naturally-
occurring IET populations include CD4−CD8α+CD8β− αβ T
cells (CD8αα

+
αβ IETs), which express the CD8αα homodimer

rather than the CD8αβ heterodimer, and γδ T cells (2, 9). Natural
IETs are recruited to the epithelium in an antigen-independent
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manner and do not show increased recruitment with antigen
exposure or age (2). Induced IETs, on the other hand, are
predominately CD4−CD8α+CD8β+ αβ T cells (CD8αβ

+
αβ

IETs) expressing the CD8αβ coreceptor (2, 9). Induced IETs
encounter their cognate antigen, then are recruited to the
intestinal epithelium and reside within the epithelial layer as
antigen-experienced effector or memory cells (7, 76). Induced
IETs increase with age in association with increased antigen
exposure (2). Hence, increased IET numbers observed in our
study may be related to the recruitment of induced IETs
associated with exposure to increased antigenic load and/or
diversity as pigs aged. Increases in induced IET recruitment as
antigen is experienced could account for overall increases in IET
numbers observed as pigs aged, as well as increased percentages
of CD4−CD8α+ αβ IETs observed across time at all intestinal
sites. Moreover, decreased percentages of γδ IETs in the small
intestine compared to large intestine may be attributed to greater
recruitment and abundance of induced CD8αβ

+
αβ IETs in the

small intestine. To our knowledge, natural and induced IETs have
not been characterized in the pig intestinal tract, but knowledge
of CD8β expression for αβ T cells required to further investigate
presumable induced or natural IET phenotypes based on human
and rodent data is lacking from our data.

CONCLUSIONS

Overall, we demonstrated heterogeneity in IET numbers,
compositions, and activation phenotypes between small and large
intestinal tissues and across age in nursery pigs. IET communities
were largely similar between intestinal sites early in the nursery
phase; however, tissue-specific divergence occurred as pigs aged,
indicating the nursery period is a critical time of intestinal IET
maturation in conventional pigs. Divergence in IET communities
was evident by variation in cell numbers, γδ vs. αβ T cell
compositions, frequencies of γδ and αβ IET populations, and
CD27 expression. Due to the uniqueness of IETs by intestinal
location and pig age, results pertaining to IETs should not
be generalized, but rather the variables of age and intestinal
location should be strongly considered. Our findings are based
on cellular phenotypes, and functional significance remains to be
shown. In this regard, caution should be taken when applying
functional characteristics based from research performed using
T cells that are not of intestinal epithelial origin. Though not
addressed by our study, additional factors such as intestinal
microbiota, weaning age, antibiotic usage, environmental stress,
diet, animal market performance, and disease, should be
strongly considered for their correlations with or impacts on
the age- and intestinal location-dependent IET communities
defined herein.
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It is well-recognized that research capability in veterinary species is restricted by a lack

of immunological reagents relative to the extensive toolboxes for small rodent biomedical

model species and humans. This creates a barrier to the strategic development of

disease control solutions for livestock, companion animals and wildlife that not only

affects animal health but can affect human health by increasing the risk of transmission

of zoonotic pathogens. There have been a number of projects aimed at reducing the

capability gaps in the veterinary immunological toolbox, the majority of these focusing

on livestock species. Various approaches have been taken to veterinary immunological

reagent development across the globe and technological advances in molecular biology

and protein biochemistry have accelerated toolbox development. While short-term

funding initiatives can address specific gaps in capability, they do not account for

long-term sustainability of reagents and databases that requires a different funding

model. We review the past, present and future of the veterinary immunological toolbox

with specific reference to recent developments discussed at the International Union of

Immunological Societies (IUIS) Veterinary Immunology Committee (VIC) Immune Toolkit

Workshop at the 12th International Veterinary Immunology Symposium (IVIS) in Seattle,

USA, 16–19 August 2019. The future availability of these reagents is critical to research

for improving animal health, responses to infectious pathogens and vaccine design as

well as for important analyses of zoonotic pathogens and the animal /human interface

for One Health initiatives.

Keywords: immunological toolbox, veterinary, reagents, technologies, databases, monoclonal antibodies

INTRODUCTION

The development of novel tools and technologies has been fundamental to the advancement of
basic and applied immunology across species. The rate of progress of immunological reagent
development for veterinary species has been much slower than that for humans and small rodent
biomedical model species, and has impacted research capability in those species (1). Historically,
however, innovations in surgical procedures in veterinary species have resulted in major step-
changes in our understanding of the ontogeny, compartmentalization and function of the immune
system. For example, bursectomy in chickens shed new light on mechanisms of B cell development
and immunoglobulin production (2), in utero thymectomy of lambs revealed the importance of
the thymus for lymphocyte development (3) and lymphatic cannulation of sheep revealed that
lymphocyte subsets differ between blood, afferent and efferent lymph (4). These ground-breaking
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experiments were feasible, in part, due to the size of the
species under investigation, particularly for the technique of
lymphatic cannulation due to the diameter of lymphatic vessels
in ruminants (5).

However, this momentum in veterinary immunological
studies was not maintained; the vast majority of technological
innovations and discoveries in immunology in the past 50 years
have been made in mice. The development of congenic mice,
differing at a single histocompatibility locus, was a fundamental
technological innovation in immunology that led to mice being
the primary species of choice for research. That pioneering
work of George Snell and the later capability of genetically
manipulating congenic mice has allowed immunologists to
ascribe functions to genes, molecules and cells with high
precision (6). The development of monoclonal antibody (mAb)
technology using congenic mice subsequently created almost
boundless opportunities for research in basic and translational
immunology (7).

The availability of mAbs that could phenotype cells and
detect cytokines by ELISA underpinned the discovery of
two distinct CD4+ve T-cell subsets in congenic mice (8).
The subsequent Th1/Th2 paradigm provided a fundamental
framework for investigating immune activation and regulation
that has expanded far beyond those original two subsets. Current
capability now extends to multi-parametric analyses such as
simultaneous fourteen-color flow cytometry that can identify 89
functionally-relevant CD4+ve T-cell subsets in human blood (9).
Mass cytometry (CyTOF) methods using panels of well over 40
conjugated antibodies are now allowing for even deeper analysis
of single cell expression, offering new insights into cellular
subsets and their differentiation (10, 11).

Such technologies cannot usually be applied directly to
different species since molecular differences in immunological
orthologs result in low cross-reactivity of reagents across species
(12) as affirmed by a recent comparison of reactivity of immune
protein reagents for other species with swine orthologs (13).
Thus, reagent development needs to be evaluated on a case-
by-case basis. Gaps in capability for veterinary species are
often prioritized based on the extensive mouse and human
immunological toolboxes. The expansion of the toolboxes has
revealed substantial differences in the ways that humans, mice
and veterinary species respond to disease and highlighted to
need for studying different species in their own right (14, 15).
There have been coordinated efforts to evaluate species cross-
reactivity of anti-human CD antigen mAbs through the animal
homologs section of the human leukocyte differentiation antigen
(HLDA) workshops: for horses (16), dogs (17), pigs (18), and
ruminants (19).

In an effort to generate greater international co-ordination
for immune reagent characterization activities, the International
Union of Immunological Societies (IUIS) Veterinary
Immunology Committee (VIC) supported a Toolkit Workshop

Abbreviations: BMGF, Bill & Melinda Gates Foundation; BBSRC, Biotechnology

and Biological Sciences Research Council; NIFA, National Institute of Food and

Agriculture; REEIS, Research, Education and Economics Information System; SG,

Scottish Government; USDA, United States Department of Agriculture.

at the 6th International Veterinary Immunology Symposium
(IVIS) in Upsala, Sweden in 2001. This set the scene for a series
of VIC Toolkit Workshops (20). It is almost 10 years since the
last published review of the veterinary immunology toolbox
from the IUIS VIC Toolkit Workshop at the 9th IVIS in Tokyo,
Japan (1). Here, we review progress over the past decade by
reporting on the IUIS VIC Toolkit Workshop at the 12th IVIS in
Seattle, USA in 2019 and take a forward look to the future of the
veterinary immunology toolbox.

THE PAST

The success of the HLDA workshops was based on good
co-ordination, high-quality work and collective effort by the
veterinary immunology community, as well as results from past
species-specific CDworkshops supported by IUIS VIC. Common
standards were applied to the distribution and evaluation of
anti-human CD reagents being assessed in different laboratories
and the collective generated data being reviewed centrally. The
outcome was an evidence-based assessment for the activity
of species cross-reactive mAbs, with affirmation that only a
limited number of mAb directed against human CD antigens
actually cross-react with other animal species (21). These
results instilled confidence in the performance of those reagents
and promoted their uptake by the research community and
industry, including companies that market and sell veterinary
immunological reagents.

Although the HLDA workshops were primarily focused on
evaluation of species cross-reactive antibodies, they played an
important role in informing of capability gaps and therefore
the prioritization of reagents for future development. A major
step-change in the way veterinary immunological reagent
development was supported came with the inception of a
UK Immunological Toolbox funded by the Biotechnology
and Biological Sciences Research Council (BBSRC) and the
Scottish Executive Environment and Rural Affairs Department
(SEERAD) in 2003. This was unique as it united several
laboratories within a single project to take a collective multi-
species approach to immunological reagent development. This
was followed by the Veterinary Immune Reagent Network
(VIRN) funded by United States Department of Agriculture
(USDA)/National Institute of Food and Agriculture (NIFA) in
the US in 2005. Both projects included the creation of databases
listing available veterinary immunological reagents, which will be
discussed later. They also expanded the emphasis frommAb anti-
CD antigens to expression of immune proteins (cytokines and
chemokines) and protein reactive mAbs. The US project included
direct collaboration with commercial partners to express these
immune proteins. The US and UK projects worked together
under a Memorandum of Understanding (MOU) to avoid
duplication of effort. This MOU was created in the absence of
a mechanism for joint international funding by the respective
national agencies. The structure, priorities and achievements
of these projects has been published previously (1). A key
output from these initiatives was an increased recognition of
the importance of coordinated, complementary approaches to
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reagent prioritization and development. Their success has also
been reflected by continued support for reagent development
initiatives by funders seeking to build on the significant benefits
from their original investments, with the assertion that long-term
sustainability is essential.

The funding for veterinary immunology reagent development
has changed over the past 10 years, moving from the multi-
species models of the UK Immunological Toolbox and US VIRN,
to single-species projects. With the exception of ruminants,
there is very little species cross-reactivity of veterinary reagents,
highlighting that the genes involved in immune responses
are amongst the most rapidly evolving in vertebrate genomes
(22, 23). However, this does not diminish their potential as
disease models. BBSRC and USDA/NIFA have supported reagent
development projects for ruminants, swine, horses, aquaculture
species and poultry in the past 10 years (Box 1). A barrier to
formal international collaboration was lifted in 2013 when
USDA/NIFA and BBSRC launched a pilot call to support animal
disease research of strategic importance to both the US and UK
which included the development of veterinary immunological
reagents for agriculturally-relevant animal species. The
swine toolkit was a landmark first transatlantic veterinary
immunology reagent project funded under this initiative
in 2015 (Box 1).

Although we have focused here on projects funded specifically
to develop reagents and supporting technologies, this is not
intended to ignore the veterinary immunological reagent
development that is conducted within disease-driven projects,
networks and within strategic programmes of government
research institutes across the globe. The challenge is in capturing
the outputs of these diverse activities. The websites of commercial
reagent suppliers and peer-reviewed publications are sources

of validated information on reagent activity. However, they do
not capture everything, a particular gap being the paucity of

“negative” data when reagents are found to be non-functional
or where repeated attempts fail to generate specific antibodies.
These are very valuable data as they can potentially prevent the
duplication of wasted effort. The solution lies in community
engagement for the sharing of knowledge on reagent availability
and performance. Workshops such as those hosted by IUIS VIC
Toolkit are a focal point for international information exchange,
but they do not have the facility to capture, store and disseminate
information at a detailed level. It has been recognized for
many years that a major unmet need in veterinary immunology
is the lack of centralized, non-commercial, searchable reagent
databases (20). The original UK Immunological Toolbox (2003–
2009) and the US VIRN (2005–2015) both created lists of
reagents but the databases were not sustainable beyond the
term of funding. This is not surprising as curation is time-
consuming, requiring expert knowledge of immunology and
information technology input to create web-based interfaces.
This also highlighted the problem of sustainability when there is
reliance on short-term funding for reagent development projects.
Finding solutions to these problems has been the focus of several
recent workshops as discussed below. One exception to this has
been the USDA Agricultural Research Service (ARS) supported

Porcine Translational Research database (PTRD, http://tinyurl.
com/hxxq3ur) (15).

THE PRESENT

The current landscape of the veterinary immunology toolbox
has been shaped by new funding approaches to facilitate reagent
development while also addressing the complex issues of database
construction, collection and validation of data, and sustainability
of the database and biobanks of the reagents listed therein.
This report summarizes the outcomes of several international
workshops where these various elements have been considered.

Before summarizing those outcomes, it is worth reviewing
the scope of the toolbox in terms of species coverage and
knowledge of immunological capability within those species. In
the broadest sense, the concept of a veterinary immunological
toolbox encompasses a broad range of livestock, companion
animal, biomedical model and wildlife species. There has been
progress in reagent development across all of those species
in the past 10 years which has been presented at various
meetings and workshops. We have identified a number of
published articles where reagent availability for different species
have been reviewed. For the purposes of the toolbox, livestock
species can largely be regarded as belonging to one of four
major groupings, namely swine (24, 25), ruminants (22, 26),
poultry (27–29), and aquaculture (30, 31). Companion animals
include horses (32, 33), cats (34), and dogs (35). As previously
discussed, mice are the most common small-animal biomedical
model for human (12). However, rabbits (36) and ferrets (37)
are also popular small-animal biomedical models for human
disease. There is interest in expanding the immunological
toolboxes for wildlife species, for example buffalo (38) and
badgers (39) due to their potential to act as reservoirs for
economically-important livestock diseases. There is also interest
in developing immunological reagents for marine mammals
such as dolphins (40). In addition, although camelid species are
not often regarded as a major target host species for disease
studies, they have come to the fore with heightened awareness
of MERS-CoV and the potential to reduce zoonotic transmission
by investigating vaccine-induced responses in camels (41).
Importantly, camels make a unique technological contribution
to the immunological toolbox via the production of nanobodies
(42, 43).

To date, the concept of the veterinary immunological toolbox
has largely (but not exclusively) focused on reagent development
for livestock species due to their strategic relevance for funders
with a stake in livestock health, food safety and global food
security. In the period between the last published review of the
IUIS VIC Toolkit Workshop at the 9th IVIS in Tokyo (1) and
the IUIS VIC Toolkit Workshop at the 12th IVIS in Seattle, there
have been several key meetings whose outcomes are directly
relevant to the current status and future directions of the toolbox
andmerit discussion here. The first was at the 10th IVIS inMilan,
Italy in 2013 when BBSRC and The Global Strategic Alliances for
the Coordination of Research on the major Infectious Diseases of
Animals and Zoonoses (STAR-IDAZ) supported a vaccinology
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BOX 1 | Veterinary immunological reagent and technology projects �rst funded in the period 2010–2020.

BMGF: Livestock Antibody Hub: Cattle, swine, poultry (2019–2024):

https://www.pirbright.ac.uk/news/2019/11/bill-melinda-gates-foundation-funds-development-pirbright%E2%80%99s-livestock-antibody-hub. To study cattle, pig

and poultry antibody responses at high resolution to expand the understanding of protective immunity in those species and that can also be used as models for a

range of human infectious diseases.

USDA/NIFA: Cattle (2019–2022):

https://portal.nifa.usda.gov/web/crisprojectpages/1016686-immune-reagents-for-ruminants-with-primary-focus-on-bovine-specific-reagents.html. To develop,

and make commercially available, mAb reagents needed to elucidate cattle immune mechanisms by focusing on CD antigens, cytokines, and chemokines and

relevant assays.

USDA/NIFA: Swine (2019–2022):

https://portal.nifa.usda.gov/web/crisprojectpages/1019192-development-of-new-swine-reagents-to-broaden-our-understanding-of-immune-correlates-of-

protection-and-microbial-pathogenesis.html. To generate priority reagents for swine immune proteins and pipeline them for marketing. Develop SLA class I tetramers

and new assays for important swine immune markers.

USDA/NIFA/BBSRC (US-UK Collaborative): Swine (2015–2019):

https://gtr.ukri.org/projects?ref=BB%2FM028232%2F1

https://portal.nifa.usda.gov/web/crisprojectpages/1005670-us-uk-collaborative-swine-immune-toolkit-development-of-new-immune-reagents-for-swine-health-

vaccine-and-disease-studies.html. To develop panels of mAb reactive with swine targets (cytokine, chemokines and their receptors) using conventional and

phage-display methods. Use resultant mAbs to develop new assays for swine immunity and make the reagents commercially available.

USDA/NIFA: Horse (2015–2019):

https://portal.nifa.usda.gov/web/crisprojectpages/1005524-equine-immune-reagents-development-of-monoclonal-antibodies-to-improve-the-analysis-of-

immunity-in-horses.html. To develop and characterize mAbs for the analysis of horse immunity and distribute these to the scientific community for immunological

research.

USDA/NIFA: Aquaculture (2016–2020):

https://portal.nifa.usda.gov/web/crisprojectpages/1009003-collaborative-immune-reagent-network-for-aquacultured-species.html. To develop and provide

immunological tools and assays to the aquaculture community to advance health for four fish species: rainbow trout, Atlantic salmon, channel catfish and Nile tilapia.

USDA/NIFA: Poultry (2017–2022):

https://reeis.usda.gov/web/crisprojectpages/1012306-development-of-poultry-immune-reagents.html. To identify chicken immune molecules, particularly

cytokines, chemokines and cell surface markers, express them as recombinant proteins, and characterize their function. Develop mAbs to the target molecules

and use these for multiplexed detection assays.

BBSRC/SG/BioRad: Cattle and Sheep (2012–2015):

https://bbsrc.ukri.org/research/grants-search/AwardDetails/?FundingReference=BB%2FI019863%2F1. To develop reagents and techniques to enable the

investigation of the activation and regulation of the immune systems of cattle and sheep with specific reference to cell-surface molecules, intracellular transcription

factors and cytokines that can define phenotypically-distinct macrophage, dendritic cell (DC) and T cell subsets.

USDA/NIFA: US Veterinary Immune Reagent Network (2010–2015):

https://portal.nifa.usda.gov/web/crisprojectpages/0221344-us-veterinary-immune-reagent-network.html. To clone, express, develop mAb reagents specific for

ruminants, swine, poultry, equine and aquaculture species, sharing methods across species. Work with commercial partner to market expressed proteins for use by

veterinary immunology community.

workshop. The lack of immunological tools and reagents was
recognized as a major barrier to progress. This can be seen in
the subsequent BBSRC Veterinary Vaccinology Strategy (https://
bbsrc.ukri.org/about/reviews/scientific-areas/1506-veterinary-
vaccinology-strategy/) and the creation of the BBSRC UK
Veterinary Vaccinology Network (VVN).

In 2017, BBSRC VVN hosted a workshop to discuss the
toolbox initiatives in the UK and US with specific relevance to
the aims and objectives of the newly-formed Global Challenges
Research Fund (GCRF) International Veterinary Vaccinology
Network (IVVN). A full report is available on the BBSRC VVN
website (http://www.vetvaccnet.ac.uk/publications/veterinary-
immunology-toolbox-meeting-uk-veterinary-vaccinology-
network). At this workshop, The Pirbright Institute and The
Roslin Institute at the University of Edinburgh announced plans
for a new UK Immunological Toolbox project. The combined
project would be underpinned by core Institute funding from
the BBSRC, with additional support from the BBSRC GCRF
Tools and Resources (https://www.immunologicaltoolbox.co.
uk/about/funders). This project is addressing major gaps in

capability and sustainability. The first of these is the creation
of a publicly accessible, searchable database of veterinary
immunological reagents to be accessed via a dedicated website.
A follow up meeting was held at the VVN Conference in Stirling
in early 2018 (https://www.vetvaccnet.ac.uk/news/2018/01/
uk-veterinary-vaccinology-network-conference-2018-report)
to discuss in more detail the focus of the website and new
reagent development. It was agreed by the community that a
key driver for the website would be the facility for researchers
to submit information on reagent performance and request
reagent production where gaps exist. It was discussed that the
primary focus of new reagent development should be around T
cell and B cell subsets to help dissect in more detail pathogen
and vaccine responses. As well as new reagent development
the toolbox aims to exploit new technologies to translate
current hybridoma stocks into gene blocks via sequencing and
create a recombinant antibody pipeline, express recombinant
proteins (including cytokines and chemokines), build multiplex
platforms and develop high-throughput screening systems for
new antibodies. These sequences act as the template from which
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the constant region can be switched between different species
while maintaining target specificity.

A toolkit workshop was held at the 6th European Veterinary
Immunology Workshop (EVIW) conference in Utrecht,
Netherlands in 2018. Although this conference was organized
under the auspices of the European Veterinary Immunology
Group (EVIG), as opposed to IUIS VIC, the IUIS VIC Toolkit
Committee took a leading role in the organization of the toolkit
workshop. Notably, the toolkit workshop was structured to
reflect four newly-formed major livestock groupings (swine,
ruminants, poultry, aquaculture) of IUIS VIC Toolkit which
were announced for the first time at this meeting. The leaders
of the species groups represented their respective areas at the
workshop. They are listed on the IUIS VIC webpage and can
be contacted by members of the community who are seeking
information or looking to engage in reagent development
for each of those areas (https://iuis.org/committees/vic/). The
workshop covered the major projects in Europe and the US on
reagent development, including a presentation on the plans for
the new UK Immunological Toolbox. In the panel discussion,
there was broad international support for the approaches
being taken within the new toolbox project and recognition
of the complementary work being supported by USDA/NIFA
in all of the target species (Box 1). This meeting cemented
the requirement for community engagement in the website
to provide and maximize information exchange about the
availability and performance of reagents and the focus on the
generation of novel antibodies and methods to distinguish T
and B cell subsets. This particular area will be advanced by
the development of a new Livestock Antibody Hub centered
at The Pirbright Institute which aims to improve both animal
and human health globally by translating research outcomes in
livestock diseases (Box 1). A core aim of this Antibody Hub is to
develop tools, techniques and reagents for livestock research that
bring the research capability to the same level as that for humans
and mice.

The IUIS VIC Toolkit workshop at the 12th IVIS in Seattle
was the forum for the international launch of the Pirbright/Roslin
UK Immunological Toolbox website and the associated database
(http://www.immunologicaltoolbox.co.uk). This database was
built around the original information collated during the 2003–
2009 BBSRC SEERAD-funded UK Immunological Toolbox and
is therefore skewed toward three of the four major livestock
groupings (swine, ruminants and poultry). However, aquaculture
species, companion animals and now major animal pathogens
are also included, and as the community engages the amount
of information will increase. The main aim of the website is
to collate reagent information and act as a centralized source
to increase information exchange but is not the only source
for any particular species. For example, the USDA Porcine
Translational Research Database (http://tinyurl.com/hxxq3ur)
is considered a very wide ranging and valuable community
resource and cannot be duplicated but information is shared
with the UK Immunological Toolbox via mutual awareness and
direct communication.

The UK Immunological Toolbox database contains data
on reagents that are held in research laboratories, and also

those available commercially, which immediately raises questions
on the quality and reproducibility of reagents from different
sources. The standardized production, evaluation and storage
of commercially-available reagents would be expected to reduce
batch-to-batch variation, whereas the same reagent produced
and stored in different research laboratories is likely to have
more variability due to the different conditions. When reagents
are listed on the UK Immunological Toolbox website there will
be information on their specificity and performance, preferably
supported by peer-review publication wherever possible.

There is also a facility for registered users to provide feedback
on performance to add to the available information. Such
information will be checked before posting against the user’s
identification. It was emphasized that such a database can be
as complete and useful as the community wants it to be. The
website and database will be curated centrally, but the community
has to take collective ownership by submitting reagents and
information on their performance. It is pleasing to see that
this is already happening. The toolbox website also serves as
a reference point for non-veterinary immunologists looking
to expand their choice of biomedical models and facilitate
comparative immunology research (44).

Finally, several new opportunities were identified during
the open discussion at the IUIS VIC Toolkit Workshop in
Seattle. These included the unique opportunity to salvage and
store “orphan” mAbs via the sequencing technology within the
UK Immunological Toolbox. The preservation of sequences
does not incur the high costs associated with maintaining
hybridoma cells in liquid nitrogen. In addition, the sharing
of sequences circumvents many of the logistical and financial
issues involved in the shipment of live cells, particularly across
international borders.

THE FUTURE

As we enter the third decade of the 21st century, the “OneHealth”
agenda has never been more important. The development
of solutions for controlling infectious diseases in livestock,
companion animals and wildlife not only has direct benefits for
the target species but can reduce disease transmission across
species, including zoonotic transmission, thereby reducing the
wider global disease burden (45). Close contact between different
animal species and between animals and humans is a risk for
zoonotic disease, which can be difficult to manage in low and
middle income countries (LMICs) (46). Given the importance
of livestock to LMICs, the veterinary immunological toolbox
provides economic and health benefits by underpinning animal
vaccine development.

The quality of toolbox reagents and associated information in
the UK Immunological Toolbox database are paramount.
Evidence-based validation and standardization of new
technologies is essential to generate confidence in performance
and encourage uptake by the community. There remain
major capability gaps in multi-analyte protein technologies for
veterinary species. The development of such technologies is
technically challenging, but entirely feasible with the appropriate
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resources and effort. The key to success is in working together.
The single-tube technology that simultaneously identifies 89
functionally-relevant CD4+ve T-cell subsets in human blood
was developed and validated through the collective efforts
of the multiple partners in the EuroFlow and PERISCOPE
consortia (9). Multiparametric technologies are extremely
powerful; one way of expanding the flexibility of the relatively
limited range of antibodies in veterinary species is the ability to
efficiently conjugate small amounts of antibodies with different
labels for defining immune correlates. The identification and
quantification of immunological correlates of protection are
aspirational goals for the development of safe and effective
vaccines (47, 48). However, with the exception of anti-virus
neutralizing antibodies, immunological correlates of protection
tend to be multifactorial rather than singular, particularly in the
case of cell-mediated protective immunity requiring not only cell
subset identification but appropriate cytokine co-expression. The
solution to identifying such correlates lies in the application of a
range of multi-plex technologies that all detect multiple analytes
at the genetic, protein, and cellular level, so called “systems
vaccinology” (49).

We are also moving into an era of high dependency
on computational infrastructure as the data generated by
such complex studies require specialized programmes for full
analysis. Hence, collective approaches are becoming increasingly
important if we are to maximize our potential to develop and
adopt complex technologies in the future. The importance of
genomic information and alternate expression systems such
as Pichia pastoris, insect and mammalian cells has meant
wider availability of species-specific immune proteins. The
veterinary immunology community has a long history of working
together for collective good, such as the HLDA workshops,
international CD workshops, toolkit committees, collaborative
funding initiatives and the immunological toolbox. In doing
so we need to maintain a global perspective and consider
technologies that create solutions for animal diseases across
borders. One example is the antibody sequencing technologies
of the new UK Immunological Toolbox. In addition to the
advantages described earlier, this technology offers particular
cost-effective and sustainability benefits for the transfer and
storage of reagents to LMICs where veterinary immunology
research is being conducted.

In parallel to sequencing, expressing and engineering mAbs,
companies and research groups all over the world are adapting
single B cell sequencing technologies to a range of host
species. These technologies often rely to some extent on
existing reagents to identify B cells (including antigen specific
B cells) but are generally very adaptable to any given species
and synergise well with existing mouse recombinant antibody
expression methods. These methods are providing a completely
new route to identifying antibodies against specific epitopes
on pathogens as well as other foreign immunizing antigens.
These antibodies can be used as reagents, including mapping
complex epitope landscapes to inform structural vaccinology
approaches to increase efficacy, and may also be used as
therapeutics. Antibodies are now a primary therapeutic goal of
many companies for a range of human diseases. Cats and dogs

are not only a profitable target market for immunotherapeutics,
they provide value data on in vivo mAb function (50).
Although the cost of such treatments is currently prohibitive
for food producing species, large animal models and species-
specific reagents can have a very important role in testing
manufacture, delivery and efficacy of mAbs as part of the One
Health approach.

The impact of veterinary immunology research will ultimately
be measured by the development, or contribution to the
development, of disease-control solutions including diagnostic
tests, vaccines and genetic-based strategies. The range of
vaccine-delivery platforms is rapidly expanding, including
improved adjuvants, vector-based delivery systems and
genetic vaccination with DNA and RNA. Although viral-
vectored vaccines are successfully deployed in humans and
companion animals (51), public safety concerns remain
regarding their use food animals (52). The immunological
toolbox can be applied to safety and efficacy studies in
livestock, thereby informing on the benefit-risk ratio that
would be impossible to do at the same scale in humans
or primates.

Animal genetics can provide insights into responses to
infection and vaccination which can be translated into livestock
breeding programmes (53, 54). Breeding programmes require
several generations to observe population effects and conclusive
proof for the effect of a specific genotype on immune status
requires functional evidence, hence reliance on the toolbox.
New gene-editing technologies such as CRISPR now allow very
targeted approaches to livestock production (55). This is the
future of livestock farming and the immunological toolbox
not only has a role to play in the identification of genes
to be targeted, but it will also be important for defining
subsequent immune function, including potential off-target
effects. Genome editing is also creating the opportunities to
engineer species to act as better models for human diseases
alongside or in addition to genetically defined and tailored
breeds, such as SCID pigs and MHC homozygous pigs (56,
57). For example, pigs are emerging as a very powerful
model to predict human influenza vaccine responses but to
achieve the maximum benefit of such models a complete
toolkit is required (58). Gene editing is already providing pig
organs for future human xenotransplantation, a biomedical
application that has helped drive reagent development in pigs
(59, 60).

CONCLUSION

The veterinary immunological toolbox is very broad in
its scope and has evolved from multiple efforts across
the globe. In the broadest sense, the toolbox incorporates
livestock, companion animals, wildlife and biomedical animal
species. Each is important in its own right, but all are
collectively important for the One Health agenda and for
controlling existing and emerging diseases that infect different
animal populations and have zoonotic potential. As human
populations expand, there is a need to protect food security
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without compromising food safety. Disease prevention and
control results in improvements in animal health and welfare,
which not only has economic and ethical benefits but
can also address concerns for climate change by making
food production more efficient. Basic immunology underpins
these approaches, from vaccine design to understanding the
effects of gene editing. The immunological toolbox website
and associated searchable database provides a new focal
point for information and knowledge exchange for the
veterinary immunology community. The key to future success
is global collective working facilitated by networks such as
national immunological societies, EVIW, IVVN, American
Association of Veterinary Immunologists (AAVI), and IUIS VIC
Toolkit Committee.
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Natural antibodies (NAb) are defined as germline encoded immunoglobulins found

in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g.,

bacterial) and self-components and have been found in every vertebrate species tested.

NAb likely act as a first-line immune defense against infections. A large part of NAb, so

called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic,

and necrotic cells. Such self-binding antibodies cannot, however, be considered as

pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and

their implications in health and disease are relatively well-described in humans and mice.

NAb are present in veterinary (and wildlife) species, but their relation with diseases and

disorders in veterinary species are much less known. Also, there is little known of IgA

NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and

homeostatic properties urging for more research on the importance of IgA NAb. Since

NAb in humans were indicated to fulfill important functions in health and disease, their

role in health of veterinary species should be investigated more often. Furthermore,

it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be

modulated. Veterinary species as models of choice fill in a niche between mice and

(non-human) primates, and the study of NAb in veterinary species may provide valuable

new insights that will likely improve health management. Below, examples of the

involvement of NAb in several diseases in mostly humans are shown. Possibilities

of intravenous immunoglobulin administration, targeted immunotherapy, immunization,

diet, and genetic modulation are discussed, all of which could be well-studied using

animal models. Arguments are given why veterinary immunology should obtain inspiration

from human studies and why human immunology would benefit from veterinary models.

Within the One Health concept, findings from veterinary (and wildlife) studies can be

related to human studies and vice versa so that both fields will mutually benefit. This

will lead to a better understanding of NAb: their origin, activation mechanisms, and their

implications in health and disease, and will lead to novel health management strategies

for both human and veterinary species.

Keywords: natural (auto-)antibodies, disorders, food animals, modulation, homeostasis
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INTRODUCTION

Natural antibodies (NAb) are defined as immunoglobulins found
in individuals without (known) prior antigenic experience (1).
Albeit a heterogeneous group, NAb are generally characterized
as oligo-specific low affinity binding immunoglobulins which
recognize exogenous and self-antigens (2). The majority of
reported NAb are IgM and IgG, whereas IgA is much less studied
and described. NAb have germline encoded VH and VL regions
that restrict their binding capacity to phylogenetically conserved
epitopes (3), in contrast to adaptive immunoglobulins that could
theoretically recognize any epitope of an antigen. NAb have
minimal N-nucleotide insertions and few or no somatic hyper-
mutations and therefore are of low affinity (4). In comparison,
low affinity NAb have a dissociation constant (Kd) ranging
between 10−4 and 10−6 M, whereas high affinity conventional
antibodies range between 10−6 and 10−10 M (5). With respect
to their functions, NAb were reported to initiate apoptosis
(6), enhance T cell proliferation (7), activate complement (8–
10), opsonize antigen (11), enhance antigenicity (12), target
antigen to lymph nodes (13), and are involved in FcR-mediated
phagocytosis (10). They also act as broad neutralizing agents
(6) and endogenous adjuvants for CD8+ T-cell responses (14),
and they sustain differentiation and maturation of dendritic cells
(15, 16) (Table 1). For extensive reviews of NAb functions see also
references 4 and 17.

A substantial part of NAb can react with intracellular
and membrane expressed autoantigens and circulating
macromolecules and haptens that are conserved during
evolution. Such antibodies are called natural autoantibodies
(NAAb) (23, 24). NAAb can react with many autoantigens,
and damaged and senescent cells. Damage or senescence of
cells might be due to oxidative mechanisms resulting in the
generation of neo-epitopes on or within the cell. Thereby,
NAAb facilitate antigen-mediated removal of apoptotic cells
by phagocytosis and display anti-inflammatory activity. This
decreased exposure to intracellular autoantigens from apoptotic

TABLE 1 | Involvement of natural antibodies in immune responses and immune

status.

References

Initiation of apoptosis (6, 17)

Complement activation (8–10, 18)

FcR-mediated phagocytosis (10, 19)

Neutralization of infective agents (6, 18, 20, 21)

Adjuvanting properties (14, 22)

Maturation of dendritic cells (15, 16)

Clearance of senescent/necrotic cells (23, 24)

Prevention of autoimmunity (17, 25–28)

Opsonization of antigens (11)

Enhancement of antigenicity (12)

Antigen targeting to lymph nodes (13, 18)

T cell proliferation (29)

Allograft rejection (30)

cells might also mitigate the development of autoimmune
diseases (17, 25). On the other hand, NAb are indicated in the
pathogenesis of autoimmunity, inflammatory bowel diseases,
contact hypersensitivity, and sepsis (31), but only a minority
of NAb and NAAb have pathogenic features (29). Moreover,
many individuals possess antibodies directed against common
epitopes in highly mutating viral infections, like influenza
and HIV. These, so-called “broadly neutralizing antibodies”
share some characteristics with NAb (20, 21). Antibodies
binding previous versions of the viral strain consist of about
0.01% of the antibodies raised after infection or vaccination
and react with all variants of the virus and thus appear to be
multi-specific. Such antibodies might constitute passive vaccines
against non-mutable common structures in otherwise highly
mutating viruses.

Since their initial discovery early 1960s, NAb were found
in every vertebrate species investigated: mammals (2), birds
(32, 33), fish (34, 35), and reptiles (36). Nevertheless,
NAb have been regarded as contradictive with established
immunological dogmas, but gradually receive more attention in
main stream immunology.

B1-CELLS ARE THE PREDOMINANT
SOURCE OF NATURAL ANTIBODIES

The origin of NAb has mostly been studied in mice, where they
predominantly originate from B1-cells (B220low, CD19high,
IgMhigh, CD23–, CD43+), which are further delineated in
B1a-cells (CD5+) and B1b-cells (CD5–). B1-cells are present
within peritoneal and pleural cavities and lymphoid tissues like
spleen and lymph nodes (37). Such B1-cells were found to be
long-lived and retain their self-renewing capacity and hence
their suggested innate-like properties. Besides their reduced
junctional diversity and their low somatic hypermutation, their
IgH VH gene rearrangements favor usage of the VH12 segment
generating antibodies able to react with phosphatidylcholine.
Phosphatidylcholine is a major lipid in general the protective
mucus layer of the gastrointestinal tract and membranes of
various bacterial species. These B1-cells maintain an active first
line of defense against bacteria (37). The typical VH12 containing
B1 receptor is able to reprogram B2-cells into becoming B1-
cells and thereby adopting the B1 receptor and other B1-cell
surface markers and start to spontaneously produce antibodies.
Therefore, apparently no distinct progenitor cells for B1-cells
required. This shows that driving the generation of B1-cells is
because of their special B-cell receptors (38).

Approximately 90% of NAb in mice are secreted by B1a-
cells whereas B1b-cells and marginal zone (MZ) B-cells do so
to a lesser extent (2). Approximately 80% of total murine serum
IgM is derived from B1-cells under steady state conditions (17).
Therefore, B1-cells were regarded as the main source of NAb
whereas B2-cells (B220+, CD19+, IgMlow, CD23+, CD43–) are
considered as the main source of conventional antibodies. In
humans B1-cells were defined as CD20+CD27+CD43+CD70–
(39), and CD19+CD20+CD27+CD38low/intCD43+. The latter
cells were found to decrease with aging, probably because of
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poor bone marrow production which might have an impact
on the ability to fight infections and the development of
age-related diseases (40). In all other species, B1-cells require
identification and characterization, and their role in the release
of NAb is unknown. For instance, B1-cells in cattle were defined
by the originally used murine markers CD5 and CD11b and
subdivided in CD5+CD11b- B1a-cells, CD5-CD11b+ B1b-cells
and CD5-CD11b- conventional B2-cells (41). Flow cytometry
analysis showed a distinct cell population of IgM+, pSYK+ cells,
indicating B1-cells in dairy cattle (42). Phenotypical properties of
NAb-secreting B-cells in other species remain enigmatic.

Although NAb B-cells are regarded as pre-defined, it is
suggested that a NAb B-cell still requires antigenic selection
and even T-cell help, remarkably by yδ T-cells (29), but the
exact mechanisms are not known (2). One theory suggests that
B1-cells are educated at mucosal (intestinal) sites under the
influence of the microbiome. This is supported by the finding
that NAb binding the carbohydrate Galα1-3Galβ1-4GlcNAc (α-
Gal) in GALT−/− mice were influenced by the Clostridiales,
Bacteriodales, Lactobacillales, and Deferribacterales orders (43).
Anti-Gal NAb can block the entry and transmission of
membrane-binding viruses as these cannot produce glycosylated
proteins themselves (44).

Fetal and neonatal self-reactive B1-cells do not show clonal
expansion upon B-cell receptor (BCR)-signaling because of the
expression of the inhibitor CD5 and a lack of fully functional
CD19. Consequently, these B1-cells are silenced and thereby
prevented to induce autoimmunity. Nevertheless, B1-cells can
respond rapidly to different infections by firstly migrate to
secondary lymphoid tissues and subsequently differentiate into
IgM-secreting cells (45). Thus, stimulation of murine B1-cells
in peritoneal cavities does not directly lead to the secretion
of NAb as these activated B1-cells migrate toward the spleen
and lymph nodes before the secretion of natural IgM takes
place (46, 47). However, by Toll like receptor (TLR)-mediated
activation these B1-cells can respond and circumvent the BCR-
induced signaling block (45). The restricted fetal preimmune
repertoire in humans may contain potentially beneficial self-
reactive innate-like B cell specificities that are involved in the
removal of apoptotic cells and shaping of the gut microbiota
after birth (48). Another hypothesis is that IgM NAb B-
cells are educated by maternal IgG, which in humans is the
only antibody isotype that passes the placental wall. This IgG
pool represents the unique environment experienced by the
mother and is passed into the neonate as a single passive
immunization. This idea is supported by observations that
human neonates share a similar IgM profile with each other,
whereas the IgG profiles of neonates are similar with their
respective mothers (49). During aging, the IgM and IgG
profiles merge suggesting that the IgM repertoire is shaped
by maternal IgG. Therefore, maternal IgG may act as the
immunological homunculus (50) shaping or educating the
neonatal immune system. Whether this is true for all species is
currently unknown. Bovine calves that do not receive maternal
antibodies prior to intake of colostrum showed both IgM and IgG
self-binding antibodies (51), which are, however, dramatically
increased after colostrum intake. Nevertheless, the exact origin

of germline encoded NAb remains unknown and requires
further investigation.

THE MECHANISMS LEADING TO
NATURAL ANTIBODY SECRETION ARE
NOT FULLY UNDERSTOOD

Little is known about the mechanisms that underlie the secretion
of NAb, but Holodick et al. (2) propose some interesting models
that may explain the activation routes of NAb B-cells. The first
model states that a NAb B-cell is pre-existing, but in order to
secrete NAb it must undergo classical maturation, activation
and differentiation into plasma cells and memory B-cells. The
existence of homeostatic self-binding NAb B-cells in this model
could then be explained by the fact that IgM-BCRs have similar
low affinity binding like IgM NAb and would therefore be able to
escape negative selection. However, the model does not explain
the necessity of structurally and functionally unique pre-existing
immunoglobulins if editing and selection procedures will take
place eventually.

The second model embraces the idea that a NAb B-cell
is pre-existing and generates NAb at a constant rate without
the need for antigenic activation. This is supported by the
observation that NAb are universally present in many species
without (known) antigenic stimulation and that IgM levels seem
constant throughout life (52), suggesting that NAb are a tightly
regulated pool of immunoglobulins. However, the model fails to
explain the presence of IgG and IgA NAb (53, 54) as it does not
allow hypermutation and class switching to occur. Instead, an
antigenic overload would require compensation by adaptive IgG’s
that could lead to an excessive or irrelevant immune response.

The third model suggests that a NAb B-cell is pre-existing
but that a slight antigenic push is required in order to secrete
NAb. While the secretion of NAb has been implicated to
be T-cell and antigen independent, there is a possibility that
exogenous antigens are indeed involved in B-cell activation, but
in a B-cell Receptor (BCR) independent manner instead of an
antigen independent manner. Besides BCR, B-cells also express
innate receptors (e.g., TLRs), and it was demonstrated that they
are important mediators of B-cell activation, proliferation, and
class-switching (45, 55). One example is the BCR independent
secretion of natural and self-reactive immunoglobulins binding
LPS (55), suggesting the involvement of the LPS recognizing
TLR4. Moreover, B1-cells from naïve mice stimulated with IL-
5 and TLR-agonists secreted IgM against oxidized lipids ex
vivo (3, 56), further suggesting that the secretion of NAb is
BCR independent and rather regulated by innate pathways.
Recently, it was also demonstrated that TLRs are critical
for regulating antibody production by B1a-cells (45, 57).
Microbial-sensing TLR (e.g., TLR2 and TLR4) are required
for anti-microbiota B1a-cell responses, whereas nucleic-acid
binding TLR7 and TLR9 control B1a-cell responses to self-
antigens like phosphorylcholine (the headgroup of oxidated
phosphatedylcholine) and microbiota-derived antigens (57).
Unfortunately, this model is not able to explain the constant
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secretion of IgM as it will only provide IgM when there is an
antigenic demand.

The fourth model tries to create a middle ground by stating
that a NAb B-cell is pre-existing and secretes IgM NAb in steady
state conditions. However, it is able to differentiate into IgG
or IgA secreting plasma cells after antigenic stimulation that
allows somatic hypermutation and class switching. This view is
supported by the finding that IgG NAb against citrate synthase
(CS) in the pericardial fluid (PF) correlated with antibody
titers against pathogens associated with cardiovascular diseases,
whereas anti-CS IgM NAb were not (58, 59). This also implies
that only IgM antibodies could be defined as NAb according to
the classical definition. As opposite to classical antigen-induced
B-cell responses which are helped by αβ T-cells, NAb producing
B cells were indicated not to require cognate T-cell help but
depend on soluble mediators produced by γδ T-cells which
should play a prominent role in their regulation through the fine-
tuning of IL-4-levels (29). The earlier arising γδ T-cells during
ontogeny should be better positioned than αβ T-cells to shape
the developing repertoire of NAb. Since ligand specificities of
NAb and γδ T-cell receptors appear to overlap, this may allow
γδ T-cell help for certain NAb specificities (29). Lastly, since
vertebrates share many macromolecules with the microbiome,
“cross reactivity,” and the role of the microbiome in shaping
and maintaining the NAb-repertoires cannot be excluded. Many
“classical” NAb may be initiated by the intestinal and oral cavity
microflora (44, 60). In conclusion, further research regardless of
species is required to fully understand the origin, induction and
activation pathways of NAb B-cells and NAb.

NATURAL ANTIBODY REACTIVITY

Since their discovery in the early 1960s, NAb were neglected
or denied within the immunological society because of
their apparent contradiction with established immunological
dogma’s. Germline encoded immunoglobulins do not fit in the
fundamentals of random VDJ-rearrangement, and the existence
of self-binding NAb is incompatible with Burnet’s clonal selection
theory (61), stating that self-binding B-cells are selectively
removed from the circulation. Furthermore, the properties of
NAb could also be perceived as redundant because high-affinity
binding and mono-specificity are regarded as key characteristics
of relevant and effective immunoglobulins.

NATURAL ANTIBODIES BINDING TO
SELF-ANTIGENS ACT AS HOMEOSTATIC
AGENTS

On average, humans possess around 5 l of blood containing 4 x
109 white blood cells per liter of blood of which 5% is comprised
of B-cells. In turn, ∼5% of the B-cell population are considered
to be B1-cells, amounting to 5 x 107 B1-cells in an average human
which suggests that NAb are amajor part of the systemic antibody
pool (5, 62).

Autoantibodies have a bad reputation in immunology as
they are the primary mediators in many autoimmune diseases.

The majority of these disorders are hallmarked by the presence
of autoantibodies against specific target antigens (63). For
example, Graves’ disease is characterized by antibodies targeting
the Thyroid Stimulating Hormone (TSH) receptor, which
results in an unregulated secretion of thyroid hormones (63).
Autoantibodies against Ro/SSa and La/SSb are hallmarks of
Sjögrens Syndrome, which is an autoimmune disorder that
mainly affects mucous membranes and moisture-secreting
glands in the eyes and mouth (64). More than 180 unique
autoantibodies were identified in Systemic Lupus Erythematosus
(SLE), a systemic autoimmune disease that affects multiple
organs (65). Despite these negative associations, self-binding
immunoglobulins can already be detected in future patients with
autoimmune diseases years before the onset of autoimmunity
without showing any signs of pathology (66, 67). A large
portion of B-cells are self-binding under steady state conditions
and murine B1a-cells are positively selected for self-reactivity
(37). Moreover, 75% of early immature naïve murine B-
cells and 20% of mature naïve B-cells are self-binding and
somatic hypermutation even restores self-reactivity back to
approximately 45% (68, 69). Despite the immense pool of diverse
antigens available, “only” 100 immune diseases are known, of
which half of them have signature antigens for autoantibodies,
which is a very small part of the total proteome (63) as already
indicated above (29). This raises questions about the nature of
these hallmark antigens and why the rest of the proteome is not a
trigger for autoimmunity.

In all “normal” healthy individuals, in human cord blood
and in “antigen-free” mice (1), self-binding antibodies are
found of the IgM, IgG, and IgA classes, binding a variety of
structurally different serum proteins, surface molecules, and
intracellular structures like ubiquitin, collagen, hemoglobin-α,
ss- and dsDNA, fibrin, the carbohydrate α-Gal, extracellular
cytokines (54), nuclear membrane antigens (70) and cell
membrane components such as oxidized lipoproteins (24,
71). Exposure of these kind of self-antigens in the wrong
context, for example due to necrosis or aberrant apoptosis
could lead to unwanted presentation to adaptive immunity
and subsequent autoimmunity with severe consequences for
the affected individual. Therefore, it can be hypothesized that
NAb neutralize these antigens before an adaptive immune
response or inflammation is initiated against them. For
instance, protective natural IgM’s binding phosphorylcholine
were negatively correlated with IL-6 and TH17 responses in SLE
patients and could be related to the intestinal microbiota (72).

The antigens that are targeted by self-binding NAb may
in fact function as Damage/Danger Associated Molecular
Patterns (DAMPs), which are endogenous compounds that are
constitutively expressed in all tissues. When released into the
periphery during degranulation, cell injury or necrosis, they
induce chemotaxis and various forms of immune activation (73).
Heat shock proteins (HSP), annexin, S100 proteins and galectins
are considered as signature DAMPS (74), but were also found
to be targets for NAb (54). It was demonstrated that a pool of
IgM’s inhibited TLR mediated cytokine expression and mitogen
activated protein (MAP) kinase activation in vitro and specifically
induced inhibitory signaling pathways in innate immune cells
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(17). While this shows that NAb can have a direct inhibitory
function on immune cells, it can be hypothesized that this is
mediated by the formation of immune complexes, presumably
with DAMPs. This would be an essential mechanism as decreased
NAb-levels would leave DAMPs in the circulation and susceptible
to be intercepted by adaptive immune cells, leading to a pro-
inflammatory immune response. While this is beneficial in some
cases, it could have severe consequences if inflammation occurred
in the wrong context. Natural antibodies that are part of immune
complexes can essentially be eliminated without the induction of
inflammation, tissue repair and controlled catabolism.

Another mechanism that is suggested to be used by NAb
against self-antigens is the regulation of B-cell development and
selection by IgM’s, as it was found that selective IgM deficient
mice developed pathological autoimmunity (26). B cells, which
express BCRs specific to hen egg lysozyme (HEL) were found
to display diminished responsiveness to HEL stimulation in
presence of soluble anti-HEL IgM antibodies suggesting IgM
as negative regulator of BCR signaling. Soluble IgM antibodies
may than act as decoy receptors for self-antigens that are
recognized by membrane bound BCRs (75). Together with
other data from FcµR−/− mice, it was demonstrated that IgM
NAb most likely facilitate the healthy development of B-cells
in an FcµR-dependent manner (76, 77). As IgM is not able to
pass the placental wall, an IgM-dependent IgM secreting B1-
cell subset must pre-exist to facilitate this process (26). Natural
IgM deficiency does affect B-cell development and selection and
induces tolerance that prevents development of primary auto-
immune diseases (26).

It is most likely that NAb also bind self-antigens that are not
considered as typical DAMPs. For instance, antibodies binding
many self-antigen fragments were found in liver from mice (78),
liver, brain, kidney, and muscle from humans (79–83), and liver
from cows (84) and poultry (85), but the functions of NAb
binding such to be defined self-tissue antigens is still unknown.
Hartman et al. (86) found that hybridomas from unmanipulated
adult murine spleen cells revealed a pattern of a diverse VH usage
reflecting the germline repertoire. The majority of murine organ
reactive IgM NAb were polyreactive, expressing a broad range of
unique and not indiscriminate reactivity patterns for both self
and foreign antigens, suggesting that many naturally activated
adult B-cells are highly polyreactive and that autoreactivity
is a consequence of polyreactivity. The population of NAb
exhibiting organ reactivity overlaps the populations of other IgM
autoantibodies, and all these derive from a pool of polyreactive
IgM antibodies which are polyclonally activated in the early
immune response. These polyreactive natural antibodies may
then represent a first line of defense and offer protection for the
host against a variety of foreign agents (86).

In summary, it is very likely that self-bindingNAb are systemic
surveillance molecules that maintain immune homeostasis by
aiding in the clearance of dying cells and apoptotic debris, thereby
preventing activation of the immune system against the self and
the subsequent development of self-immunity (3, 27, 28). In
this light, it is fitting to regard pathological autoimmunity as a
dysregulated state of initial homeostatic autoimmunity, rather
than onset of previously absent self-recognition (87).

NATURAL ANTIBODIES BINDING TO
FOREIGN ANTIGENS ACT AS A FIRST LINE
OF DEFENSE

Immunoglobulins in the absence of known immunization or
vaccination against foreign antigens are persistently found in
many species and have been isolated from various sources,
including serum, milk, saliva, mucus, eggs, and feces. For
an extensive review on NAb binding fungi, viruses and
bacteria see also reference 17. NAb bind to foreign (microbial)
antigens like lipopolysaccharide (LPS), lipoteichoic acid and
peptidoglycans (88), which are present on many different types
of bacteria. NAb were found to react with phosphorylcholine,
which is present in the cell wall of Streptococcus pneumoniae
(89), but also occurs on mammalian cell-membranes when
phosphatidylcholine is oxidized. NAb are reactive with viruses
and showed to bind to lymphocytic choriomeningitis virus
(LCMV), vesicular stomatitis virus (VMV) (90), and various
strains of Influenza (91). In addition, NAb also bind foreign (non-
self) antigens that are not considered as pathological. Humans,
rats, mice and alligators without previous immunization showed
antibodies binding chicken red blood cells (92), whereas poultry
(32), pigs (93), and cattle (94) all demonstrated to have NAb
against Keyhole Limpet Hemocyanin (KLH). KLH is a large
390 kDa glycosylated protein from the gastropod Megathura
crenulata which is found within the waters near California (95)
and therefore an antigen that is highly unlikely to be experienced
by non-marine individuals. To our knowledge, there is little
evidence of cross reactivity with known infectious agents albeit
the largeness of KLH does not completely exclude cross reactive
antibodies. KLH is a potent immunogenic protein, but it does
not cause adverse immune effects in humans and it is therefore
a widely used vaccine carrier protein. Thus, KLH-binding NAb
and likely NAb to other non-self-antigens appear to act as
a vanguard of the immune system by protecting the host in
an innate fashion during the relatively slow development of a
specific antibody response.

IgM AND IgG NATURAL ANTIBODIES IN
HEALTH AND DISEASE

IgM and IgG are the most extensively described classes of
NAb in literature and were found to be implicated in many
human infectious diseases and disorders, including neurological
disorders, cancer, diabetes, and cardiovascular diseases. For an
extensive review of the involvement of NAbs in health and
various infectious-, tumor-, neurological-, andmetabolic diseases
see reference 94. Interestingly, lower levels of self-binding NAb
are usually negatively correlated with disease onset and progress
whereas high levels often correlate with protection or the absence
of disease. In humans, profiles of NAb binding self-antigens
were proposed as biomarkers or fingerprints for the physiological
and health status of individuals (78, 96), including parasite
infections such as malaria and schistosomiasis (97). The observed
decline in the amount, or efficacy of homeostatic natural antibody
levels were associated with a relative loss of protection against
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molecules involved in diseases whose incidence rises in the
older age population, and that those individuals experiencing
the greatest loss are at the highest risk. Natural antibodies were
thus proposed as rheostats for susceptibility to several age-related
diseases (98).

In veterinary species, clear relations betweenNAb and diseases
were hardly expected, and thus much less studied, and are
therefore much less known. In pigs, significant associations
with osteochondrosis (OC) were found for IgM levels binding
chondroitin sulfate A at 6 weeks of age (odds ratio (OR) 1.4
and 1.5), actin at 6 weeks of age (OR 1.4 and 1.3), thyroglobulin
at 24 weeks of age (OR 1.5 and 1.3), and levels of IgG binding
at 6 weeks of age (OR 1.7 and 1.4). Additionally, significant
associations with OC were also found with IgM levels binding
albumin or KLH at 6 weeks of age (OR 2.3 and 1.4), and with
IgM levels binding actin at 24 weeks of age (OR 1.3) suggesting
associations between the presence and levels of NAb-idiotypes at
a young age and development of OC at later age (99).

NATURAL ANTIBODIES AGAINST BRAIN
EPITOPES AND THEIR RELATIONSHIP
WITH NEURODEGENERATION

For decades, the central nervous system (CNS) has been
considered as an immune privileged site with relatively low
to no detectable immune activity. Microglia and astrocytes
can present antigen, but Major Histocompatibility Complex
(MHC) -I and MHC-II expression is low and classical lymphatic
drainage is apparently absent (100). However, the concept of
an immune privileged brain has been moved aside in favor of
“an immunologically unique environment” as it becomes more
apparent that the CNS is more accessible to the immune system
than has previously been thought. This access probably also
applies for NAb as self-bindingNAb targeting brain epitopes were
found in healthy subjects or in the context of neurodegenerative
disorders as exemplified below.

Multiple sclerosis (MS) is a neurodegenerative disorder
in which an immune-mediated degeneration of myelin and
subsequent loss of cognition is observed in about 50% of
the patients. A human natural IgM (hIgM22) bound to
oligodendrocytes in fresh brain slices (101). hIgM22 is thought
to bind sulphated molecules, especially the myelin essential
component sulfatide (102). Sulfatide acts as a negative feedback
regulator for oligodendrocyte survival (103–105), which is the
major cell type to produce myelin. A decrease in hIgM22 could
lead toward neurodegeneration due to an increased availability
of inhibitory sulfatide whereas binding of hIgM22 to sulfatide
retains oligodendrocyte survival and subsequentmyelin synthesis
(102, 104). Indeed, hIgM22 induced remyelination in Theiler’s
Murine Encephalomyelitis Virus (TMEV), which is commonly
used as a murine model of human MS. Lastly, hIgM22 was also
able to bind to gangliosides and was therapeutic in a murine
model of human Amyotrophic Lateral Sclerosis (ALS) (106).

Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized by deposition of Amyloid βeta (Aβ) plaques and
Tau rich neurofibrillary tangles (NFT) (107). Aβ originates from

the cleavage of the Amyloid Precursor Protein (APP), which is
thought to play a role in synapse formation although its function
is not fully understood (108). Neuroprotective NAb binding to
assemblies of amyloidogenic peptides were reported to decrease
with normal aging and advancing AD (109), and AD patients
had decreased amounts of natural IgM and IgG against Aβ

compared to age matched healthy individuals (110). This proved
to be a therapeutic target of interest as APP-transgenic mice
maintained their initial cognition level while having decreased
cerebral Aβ depositions after intravenous administration of anti-
Aβ antibodies (19). An observed side effect in mice, however,
was the occurrence of cerebral microhaemorrhages. This was
explained by a lower specificity of IgG for Aβ compared to IgM
and the ability of IgG to pass the blood-brain barrier (111),
demonstrating a more protective role of natural IgM in contrast
to natural IgG. The second major AD associated protein is tau
which, in its native form acts as a mediator in the generation
and stabilization of microtubules. In NFT however, it is present
in a hyper phosphorylated form (112) making it an excellent
target for homeostatic immunity due to its modifications.
Indeed, anti-tau IgG was found in healthy controls and pooled
commercial IgG, although no clear differences in concentrations
were found between these groups and AD patients (113). Of
note, the therapeutic efficacy of anti-Tau antibodies was epitope
dependent (114).

Many mouse strains suffer from an age-related progressive
clustering of Periodic acid-Schiff granules within the
hippocampus, which are characterized by the expression of
a not fully defined carbohydrate neo-epitope. It was found that
ICR-CD1, BALB/c and SAMP8 mouse strains have natural
IgM’s against these carbohydrate structures at all ages and even
under germfree conditions (115). Strikingly, the same study also
found that serum of rats, rabbits, goats and even commercially
available antibodies also reacted with pathological granules
in hippocampal tissue of ICR-CD1 mice, suggesting that they
are conserved and widespread across species. In summary,
literature (Table 2) demonstrates that brain epitopes are targets
for NAb and that decreased levels can be negatively associated
(or correlated) with neurodegeneration, whereas protection to
behavioral disorders such as schizophrenia were correlated with
for instance protective platelet associated autoantibodies (117).

NAb could also influence behavior, depression or anxiety,
as these mental states were demonstrated to show immune
alterations in general (134). Decreased levels of IgM NAb against
oxidative stress epitopes like malondialdehyde and azelaic acid
were found in deficit schizophrenia (118).

Veterinary models on the relations between NAb and
neurological disorders are scarce. Pigs that were housed for 9
weeks in a straw embedded environment showed higher levels
of IgM NAb binding myelin basic protein (MBP) compared
to pigs kept in a barren environment (119), suggesting that
the straw embedded environment has an enriching effect on
the brain and either results in higher NAb-levels or prevents
a decrease of these antibodies in barren environment kept
pigs. Interestingly, in the barren kept pigs increasing levels of
IgM binding MBP positively correlated with a decrease in viral
PPRSV RNA levels (135) suggesting that high NAb-levels to
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TABLE 2 | Involvement of natural antibodies in disorders.

Species Antigen(s) Isotype Disorder Protection References

Human, mice Various self-antigens and

neo-epitopes

IgM and IgG Various: anti-inflammation, OxLDL, tumors, neurologic

diseases, infections, clearance senescent cells and cytokines,

passive protection to autoimmunity and tissue injury

Yes (116)

Pig Chondroitin sulfate, IgM, IgG Osteochondrosis Yes? (99)

Actin, KLH

Thyroglobulin

Mice Myelin sulfatide IgM Multiple sclerosis Yes (101)

Human Amyloid IgM Alzheimer Yes (109–111)

mice Amyloid beta-peptide Polyclonal Alzheimer Yes (19)

Human Platelets IgG Schizophrenia Yes (117)

Human Malondialdehyde IgM Schizophrenia Yes (118)

Pig Myelin basic protein IgM unknown (119)

Chicken PC-BSA IgM Non-aggressive behavior (120)

Chicken PC-BSA IgG Aggressive behavior (120)

Human oxLDL IgM Carotid atherosclerosis Yes (121)

Human PC-KLH, PC-BSA IgG Cardiovascular diseases Yes (122, 123)

Human Phosphorylcholine, IgM Atherosclerosis, Yes (27, 124)

Cardiolipin Stroke,

Myocardial infections

Mice Malondialdehyde IgM Hepatic inflammation Yes (125)

Mice Phosphoryl-enriched- Not specified Non-alcoholic Yes (126)

Pneumococci Steatohepatitis

Mice Oxidized phospholipids IgM Atherosclerosis Yes (127)

Mice Phosphorylcholine,

T15-idiotype

IgM Vein graft atherosclerosis Yes (128)

Chicken KLH IgM longevity (129, 130)

Cow KLH IgM, IgG Mastitis Unknown (131)

Human Low density lipoprotein IgM Atherosclerosis Yes (132)

IgG Pro-atherosclerosis

Mice CNS-cells IgM Remyelination (101)

Mice Gangliosides IgM Amyotrophic (108)

Lateral sclerosis

Human Galα1-3Galβ1-GlcNAc IgM, IgG, Henoch-Schönlein purpura (43, 44, 54, 133)

IgA IgA nephropathy

Crohn’s disease

a self-antigen enhanced resistance to PRRSV. The underlying
mechanism remained unknown. Also recently, higher levels of
IgG NAb were found in poultry strains bred for aggressive
behavior, whereas the non-aggressive strain showed higher levels
of IgM NAb (120). Further research is required to understand
the relationship between NAb (isotypes) and behavior, but the
current data suggest that self-binding antibodies protect against
autoimmunity, chronic inflammation and necrosis which may
underlie neurological disorders and misbehavior.

NATURAL ANTIBODIES AGAINST
TUMOR-ASSOCIATED EPITOPES AND
THEIR ANTI-TUMOR EFFECTS

Cellular transformation occurs in all types of cells and may lead
to the development of tumors, albeit this is a relatively rare

phenomenon compared to the high frequency of spontaneous
mutations that occur in an individual (136). Immune processes
are likely involved in clearing corrupted cells or components
out of circulation. NAb may play an important part in this as
nearly all monoclonal tumor targeting antibodies isolated from
cancer patients so far were oligo-specific low affinity binding
pentameric IgM’s (137). Furthermore, natural IgM’s to cancer
associated autoantigens were detected up to 5 years before onset
of breast cancer (138), suggesting their pre-existence but also
providing diagnostic value as early biomarkers.

Carbohydrate structures are highly expressed on tumor cells
and can be recognized by NAb (139). SC-1 is an isolated
monoclonal IgM from a signet-ring cell carcinoma patient
(140) and binds to a carbohydrate modified version of decay
acceleration factor B (DAF/CD55), which is highly expressed on
tumor cells and aids in immune evasion (140). SC-1 mediated
crosslinking of DAF resulted in tumor-regression and apoptosis
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of stomach cancers without showing cross-reactivity with healthy
tissue (121). PAM-1, a natural IgM isolated from a gastric
carcinoma patient, binds to a carbohydrate modified isoform of
cysteine rich fibroblast growth factor receptor (CFR-1), which
is expressed on malignant cells but not on healthy tissue (141).
PAT-SM6 is a natural IgM isolated from a gastric cancer patient
(142) and binds to a glycosylated form of glucose-regulated
protein 78 (GRP78), which is found on malignant cells but not
on healthy tissue (143). PAT-SM6 was also found to induce
apoptosis in multiple myeloma cells binding to the glycosylated
form of GRP78 while leaving healthy tissue unharmed (144).
Another study found that activation of peritoneal B1-cells with
the C-type lectin agonist monophosphoryl lipid A (MPL) and
the TLR agonist trehalose-6,6’-dicorynomicolate (TDCM) lead
to increased production of IgM NAb in mice. These IgM’s
were targeted at carbohydrate antigens and suppressed tumor
growth of peritoneal metastasis via the classical complement
pathway (145). In summary, NAb are able to challenge tumors
by recognizing tumor specific antigens, specifically those with
carbohydrate modifications. Circulating autoantibodies in cancer
patients had high specificity for glycoxidation modified histone
H2A suggesting that glycoxidation of proteins and related
autoantibodies could act as early biomarkers of cancer (146).

NATURAL ANTIBODIES AGAINST
OXIDIZED LIPIDS AND THEIR ROLE IN
CARDIOVASCULAR DISEASE

Atherosclerosis is a chronic inflammatory disease that is
characterized by the accumulation of apoptotic cells and oxidized
lipids, specifically oxidized Low Density Lipoprotein (oxLDL)
(147). It was demonstrated that oxLDL is an important target
for NAb. In mice, around 30% of the IgM NAb bound to
oxidized lipids, atherosclerotic lesions or apoptotic cells (71).
Autoantibodies to oxLDL derived from “naïve” atherosclerotic
mice shared complete genetic and structural identity with
antibodies from the classic anti-phosphorylcholine B-cell clone,
T15, which protects against common infectious pathogens,
including pneumococci. S. pneumoniae immunizedmice showed
high circulating levels of oxLDL-specific IgM and persistent
expansion of oxLDL-specific T15 IgM-secreting B cells, a
decreased the extent of atherosclerosis (148) and blocked uptake
of OxLDL by macrophages (127). High levels of IgM NAb
against oxLDL were associated with protection against carotid
atherosclerosis in hypertensive humans (149), but high levels
of IgG binding LDL could be pro-artherosclerosis (132). NAb
binding phosphorylcholine conjugated to BSA or KLH were
decreased in patients with cardiovascular diseases and SLE
and therefore proposed as potential protective factors (122,
123). NAb against other oxidation-specific epitopes have also
been described, including those against malondialdehyde and
4-hydroxynonenal which were found in mice under pathogen
free and germfree conditions (150). Immunoglobulins against
phosphatidylserine and cardiolipin are generally associated with
thrombosis, whereas immunoglobulins against their oxidized
forms are associated with protection against atherosclerosis (27,
124). Natural IgM and IgG against citrate synthase (CS) were

found in serum of healthy individuals and pericardial fluid (PF)
of patients that went through open heart surgery (58, 59). CS
is a highly conserved mitochondrial inner membrane enzyme
involved in the citric acid cycle which occurs in nearly every
cell, and especially in mitochondria-rich heart muscle cells. A
relatively high number of B1-cells were present within PF and
the prevalence of IgM NAb in PF was only half the amount of
serum anti-CS IgM NAb in comparison to the total Ig levels that
were four to eight times higher in serum (58). Together, the data
suggests that NAb play an important role in the regulation or
prevention of cardiovascular diseases (Table 2).

NATURAL ANTIBODIES AND THEIR ROLE
IN TRANSPLANTATION IMMUNOLOGY

NAb play an important role in transplantation immunology
and allograft rejection (30). NAb against the oligosaccharide
moieties of the ABO blood group system have been well-
described and a mismatched blood transfusion leads to hyper
acute transplantation rejection with severe clinical consequences.
Graft B-cells infiltrate coronary arteries resulting in cardiac
allograft vasculopathy (CAV), an accelerated form of coronary
artery disease (CAD) limiting the long-term survival after cardiac
transplantation (151). It was found that half of 100 B-cell
clones isolated from three CAV cases showed oligo-reactivity
toward apoptotic cells, dsDNA, cardiolipin, LPS and insulin
(152). Renal proximal tubular epithelial cells are considered
relatively susceptible to ischemia reperfusion injury, and this was
mediated by IgM NAb via the classical complement pathway
(153). Higher levels of IgG NAb binding apoptotic cells prior
to kidney transplantation negatively correlated with graft loss,
which was mediated by C4b complement deposition (154). A
subsequent study also found that polyreactive IgG clones from
two kidney transplant recipients were able to bind to Human
Leukocyte Antigen (HLA) class I, albeit non-native denatured
HLA (155). It can be postulated that an incorrect collection and
transplantation of the organ would induce stress and subsequent
antigen modification, therefore allowing homeostatic NAb to
attack the neo-epitopes within the graft. Together, these studies
demonstrate that graft-rejection should not strictly be attributed
to monospecific immunoglobulins but probably rather to NAb,
although the threshold for initiating this antibody-mediated
rejection is unknown.

Apart from studies on pig tissues for human transplantation,
transplantation studies are not a main topic in veterinary species
and therefore knowledge on the role of NAb in these models is
completely lacking.

NATURAL ANTIBODIES AGAINST
PATHOGENS AND INFECTIONS

NAb were acknowledged as a first line of defense to infectious
agents (29). IgM NAb might be involved in tuberculosis as a
decrease in serum IgM levels against phospholipids is observed
after intensive phase treatment, probably due to a decrease in
bacterial burden (156). However, a decrease in IgM contrasts with
the observation in other models where a decrease in NAb usually
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is a negative predictor for disease. An age-dependent decline in
IgM NAb against pneumococcal capsular polysaccharides (PPS)
and IgG NAb against a pool of virulence-associated proteins
(VAP) of various Streptococcus pneumoniae (S. pneumoniae)
strains was observed in humans, which could lead to increased
susceptibility to S. pneumoniae infection (157).

In mice, NAb provide protection to viral infections (in an
indirect fashion) by targeting virus-antibody complexes to the
spleen and by contributing to the resolution of the acute phases
of some viral diseases (18, 90). Infections are also prevented
indirectly by NAb binding self-receptors such as CCR5, essential
for the entry of the HIV virions (158). Maternal natural
IgG antibodies protected neonatal mice from infection with
enterotoxigenic E. coli infections when these antibodies were
delivered across the placenta or through milk (159).

Protection to infections has been observed in veterinary
species, but information is still scarce. High levels of NAb binding
Aeromonas salmonicida protected goldfish against experimental
infection (160), and high levels of NAb (and complement
activity) correlated with fitness of wild boar when exposed to
classical swine fever (161). Chickens bred for high levels of
anti-KLH NAb showed improved resistance to avian pathogenic
E. coli (162). The latter group also identified the existence
of a single nucleotide polymorphism (SNP) variation in likely
the TLR1A gene involved in determining the levels of natural
antigen-specific IgM and total IgM antibodies in chickens (163).
Heritability of natural IgM antibody levels was found which was
absent or low for natural IgG or IgA antibodies (164).

In summary, NAb of the IgM and IgG class have been
implicated in both health and diseases and are associated with
protection against infections (Table 3) and disorders (Table 2)
in humans and veterinary species. Future research should aim
to expand this knowledge by further identifying more diseased
states in which NAb are involved to further demonstrate their
importance in maintaining health, and whether modulation of
NAb-levels is feasible and desirable.

IgA NATURAL ANTIBODIES REQUIRE
MORE INTENSIVE INVESTIGATION

IgA is the most abundant immunoglobulin, with a production in
humans of about 66mg.kg−1.day−1 (reflecting 3–5 g per day). In
humans, monomeric IgA (at 2mg.ml−1) predominantly resides
in serum where it functions as a potent pro-inflammatory agent
by inducing rapid FcαRI mediated activation of neutrophils
(166). In humans, two subclasses, IgA1 and IgA2, were identified
in serum and secretions. These pro-inflammatory properties are
not well-known as IgA has been perceived as a redundant non-
inflammatory immunoglobulin in the intestinal lumen, which is
true for secretory IgA (sIgA). sIgA originates at the basolateral
side of mucosal areas where J-chain linked dimeric IgA (dIgA)
is transported across the mucosal barrier into the lumen via
the polymeric IgA receptor (pIgR). Upon its release into the
lumen, dIgA retains a fraction of the pIgR, known as the
secretory component (SC), which makes sIgA more robust and
resistant against bacterial derived proteases. The SC also prevents
association with the FcαRI which prevents interaction with

immune cells, resulting in a homeostatic immunoglobulin that
neutralizes microbiota and food antigens to prevent interactions
with the host (167). Innate-like B1-cells can be stimulated by IL-
5, IL-10, Toll-like receptor (TLR) agonists or whole bacteria to
secrete IgM and IgA. As a pro-inflammatory immunoglobulin,
serum IgA is crucial in the first line of defense against pathogens
as a rapid activator of neutrophils. Meanwhile, homeostatic
sIgA at mucosal sites most likely experiences the largest and
most diverse amount of antigen interactions and is constantly
challenged by this hostile environment.

IgA is perhaps the most important Ig-class, but the available
literature on IgA NAb in humans and mice is lacking far behind
in contrast to IgM and IgG NAb. Research in domesticated
animals pointed to an important role for IgA NAb in binding
larval antigens on mucosal tissues and aiding in the development
of immunity to nematodes (168), and other parasites. Further
studies into the role of IgA NAb in veterinary species are
urgently needed.

IgA NATURAL ANTIBODIES IN SERUM
BIND TO SELF-ANTIGENS

An antigen microarray screening of self-binding NAb in serum
and cord blood of ten mothers and their infants found IgA NAb
against myelin oligodendrocyte glycoprotein (MOG), Gelsolin,
Low Density Lipoprotein (LDL), Factor X and Protease in all
subjects (54). While the reactivity of IgM NAb was nearly always
higher than the reactivity of IgA NAb to a specific antigen, this
was not the case for High Density Lipoprotein (HDL) and α2-
microglobulin. On other occasions, IgA NAb showed higher
reactivity against HDL, α2-microglobulin, LDL, Factor X, and
Gelsolin compared to IgG NAb. Additional research is required
to understand why IgA specifically seems to favor these antigens.
Other studies found IgA NAb against α-Gal, which is considered
as one of the most abundant natural antibodies (169). Anti
α-Gal IgA was found in healthy subjects (170) but was also
associated with Henoch-Schönlein purpura, IgA nephropathy
and Crohn’s disease (133). As serum IgA is a potent pro-
inflammatory immunoglobulin, a sufficient amount of IgA NAb
in serum against foreign antigens could be very beneficial in the
critical time period of adaptive immunoglobulin development,
by rapidly recruiting neutrophils to the side of infection. A
pro-inflammatory response against self-antigens is questionable,
unless it concerns oxidized, or (carbohydrate) modified (neo-
epitope) forms of these antigens.

IgA NATURAL ANTIBODIES AT MUCOSAL
SITES LIKELY ORIGINATE FROM
COMMITTED B1b-CELLS

Commensal gut bacteria are targeted in the small intestine by
polyclonal oligo-specific B1b-cell derived IgA NAb whereas B1a-
cells recognize restricted microbial regions (171). In contrast
to B1a-cells, B1b-cells are able to switch to IgA+ plasma cells
in a T-cell independent manner under the influence of TGF-β
and Retinoic Acid (RA), which induces upregulation of α4β7+
and CCR9, providing a gut-homing phenotype (171, 172). A
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TABLE 3 | Involvement of natural antibodies in prevention or combat of infection.

Antigen(s) Isotype Infection Effect References

Self- and microbiota IgM, IgA Microbiota Protection (37)

Glycans and microbiota Not specified Microbiota Orchestration (43)

Carbohydrates IgM Microbiota (44)

LPS,KLH,

Peptidoglycan

IgM, IgG, IgA Unknown Heritable (88)

PC-rich IgM S. pneumonia Protection (89, 148)

Streptococcus pneumonia

OxLDL, T15 idiotype

VSV virus, Listeria IgM VSV virus, Listeria Protection (90)

Influenza strains Not specified Influenza Protection (91)

Malaria IgM, IgG Malaria Protection (97)

Schistosome Schistosomiasis

myelin basic protein IgG Porcine reproductive Protection? (119)

respiratory syndrome virus

Phospholipids IgM Tuberculosis Protection? (156)

Virulence-associated IgM, IgG S. pneumonia (157)

Protein

self-antigens, IgM Microbiota Protective? (18)

Phospholipids,

T-cell independent-

antigens

CCR5 Not specified HIV Protective? (158)

Pantoea-1 microbes IgG E. coli Protective (159)

Aeromonas salmonicida IgM A. salmonicida Protective (160)

Chicken red blood cells not specified Classical swine fever Protective? (161)

KLH IgM E. coli Protective (162)

Phosphatidylcholine IgG Plasmodium chabaudi Protective (165)

Galα1-3Galβ1-GlcNAc IgM, IgG, IgA Block infections (43, 44, 54, 155)

follow-up study found that naïve B-cells recirculated through
Peyer’s Patches to become IgA-secreting plasma cells in germfree
and antigen-free mice (173). So it appears that B1b-cells are
committed to eventually secrete IgA NAb at mucosal sites
whereas activated B1a-cells migrate from the peritoneal cavities
toward the spleen where they eventually secrete IgM (46, 47).
Targeted modulation of the B1b-cell population might improve
or diversify IgA NAb-responses at mucosal sites which could
result in a better protection against exposure to microbes.

Chickens supplemented with probiotics showed higher levels
of NAb (IgM and IgG) in their serum and intestines (IgA and
IgG). These NAb also reacted with bacterial exotoxins (174). This
implicates that studies on the role of microbes and hygiene in the
formation of serum (IgM and IgG) and mucosal NAb (IgA) via
dietary interventions could add in health management of both
humans and veterinary species.

IgA NATURAL ANTIBODIES IN MILK MAY
SHAPE NATURAL IMMUNITY OF THE
INFANT

Human milk is highly saturated with sIgA in concentrations up
to 12 g/l in colostrum and 1 g/l in mature milk (175). These IgA

NAb bind to endogenous antigens like actin, myosin, tubulin,
transferrin, thyroglobulin, spectrin, laminin, myoglobulin, and
native DNA (176, 177). Human colostrum derived sIgA reacted
in vitro with human Hep-2 cells and monkey ovary, pancreas
and adrenal gland tissue while in a lesser extend to monkey
liver, testes, salivary gland, muscle, and thyroid glands (175).
IgA NAb in milk can also be directed against foreign antigens,
like protein disulfide isomerase (PDI) of Toxoplasma gondii
(178). There is probably an interesting link between IgA NAb
in milk and the gut. One study phenotyped milk derived B-
cells as CD38-high, complement receptor-low, indicating that the
milk derived B-cell population predominantly contained plasma
blasts and plasma cells that actively secreted immunoglobulins.
Further phenotyping revealed that the majority of milk derived
B-cells were α4β7+ CD62L–, which are migration patterns
similar to Gut Associated Lymphoid Tissue (GALT) B-cells
(179). These findings lead to the hypothesis that an IgA NAb-
profile of the environment is created in the maternal gut,
specifically by B1b-cells that locally switch to IgA to create
a highly promiscuous pool of immunoglobulins that react to
both foreign and self-antigens. Human breast milk or raw cow’s
milk-derived immunomodulatory cytokines, like TGF-β2 and
(very low levels of) IL-10, might upon consumption induce a
regulatory environment in the gut which induces Regulatory
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T-cells and leading to the production of IgA and IgG4. Supplying
sIgA NAb in breast milk can potentially enhance intestinal
immunity in early life (180).

The exact effect and function of maternal sIgA for
the infant is not known, but it fits in Jerne’s idiotypic
immune network theory where natural IgA would act as
an educator of the infant’s immune system (181). In this
model, maternal sIgA (Ab1) is elicited against an environmental
epitope in the mother and transferred toward the infant via
the milk. In the infant, an anti-idiotypic immunoglobulin
(Ab2) is generated against the maternally acquired Ab1.
Subsequently, a third immunoglobulin mimicking the Ab1
BCR (Ab3) is generated against Ab2, which allows the
infant to imprint this maternal immunoglobulin or BCR
within its own repertoire. Previously mentioned findings in
serum further support this idea (49), where it was observed
that maternal IgG educated the neonatal independent IgM
repertoire. However, the relationships between serum IgA
levels and maternal IgG and/or neonatal IgM were not
investigated. In mice, it was already shown that anti-idiotypic
IgM antibodies specific for the IgA myeloma protein TEPC-
15 (anti-phosphorylcholine) specificity, share similar or even
identical idiotypes (182). In summary, natural IgA NAb or
maternally derived natural antibodies may provide protection
of the infant gut and be involved in maturation of the mucosal
immune system.

In most veterinary species (e.g., cows and poultry) IgA is
not the predominant maternal antibody as its role is fulfilled
by IgG. Birds receive maternal IgG in the yolk, and are thus
hatched with the maternal antibody repertoire, including self-
binding antibodies (183). Calves, like most mammalian food
animals, receive maternal IgG via colostrum including self-
binding antibodies (51). Whether these maternal IgG antibodies
shape the neonatal antibody repertoire as discussed above for
man is currently unknown.

MODULATING NATURAL ANTIBODIES
AND THERAPEUTIC OPPORTUNITIES

NAb are important as a first line of defense against pathogens
and as homeostatic agents that inactivate or clean up potential
dangerous self-antigens. Modulation or enhancement of NAb-
levels and their diversity could lead to new therapeutic strategies
and new insights into the usefulness of NAb. There is increasing
knowledge of NAb in humans and their implications in health
and disease, but studying intentional enhancement or decrease
of NAb-levels in humans faces ethical objections because the
effects and eventual risks are unknown, therefore urging the use
of animal models. Mice are usually the first model of choice as
they are economically affordable, easy to handle and share many
parallels with human immunology. While mice have given many
tremendous new insights into human immunology, there are
also significant differences in immune development, activation
mechanisms and immune response as mice andmen are different
in physiology, anatomy, size and lifespan (184, 185). Using non-
human primates would be a logical alternative as they come

closest to humans in genetics, physiology and behavior (186), but
they are expensive and also require tight ethical regulations.

Alternative animal models that would fill a niche between
mice and men are veterinary species like cattle, poultry, sheep
and pigs which are not as tightly restricted by regulations and
relatively economically affordable. In addition, contemporary
agricultural practices require more knowledge on the
maintenance or enhancement of health and welfare in veterinary
species as well. Pigs are physiologically and anatomically close to
humans, sharing similarities in cardiovascular systems, feeding
(omnivorous) and skin composition (187, 188). Chickens being
the most wide spread and most consumed veterinary species
would also be interesting models as some major immunological
breakthroughs in the past were achieved in chickens, including
the principles of graft vs. host reactions and the delineation of
the adaptive immune system into immunoglobulin secreting
B-cells and cell-mediated immunity by T-cells (189).

Findings from veterinary species can be translated back to
humans, but can also be applied within the field of veterinary
immunology itself. Veterinary species are constantly challenged
by bacteria, viruses, and parasites which not only has a major
impact on animal welfare but also on the economy due to
prevention and treatment costs, production losses and premature
culling (190, 191). Diseases of bacterial nature are often treated
with antibiotics, but the popularity of antibiotics has decreased
due to risk of antibiotic resistance. Vaccination has received
more popularity as it is preventive and actively stimulates the
immune system, but vaccines are not always fully protective
(192) or available. Therefore, there is a need for innovation in
veterinary treatment strategies (193) and elucidating NAb and
their functionality in veterinary species may provide new exciting
opportunities. NAb have been described in veterinary species and
it has been demonstrated that they are able to bemodified, but the
clinical relevance of NAb in veterinary species remains enigmatic.
Humans and veterinary species would mutually benefit from
the combined effort to study NAb and allow for the reciprocal
exchange of findings from their respective fields.

INTRAVENOUS OR ORAL
ADMINISTRATION OF
IMMUNOGLOBULINS

Intravenous immunoglobulin (IVIg) preparations contain large
amounts of immunoglobulins reactive with various constituents
and a portion of these are most likely (self-binding) NAb. IVIg
has been used in humans as a therapeutic in immunodeficiency
to replace missing immunoglobulins (194). IVIg was used as a
successful treatment for Kawasaki disease, which is a pediatric
disorder that leads to inflammation of coronary arteries, and
diminished coronary dilation and improved coronary flow (195).
IVIg was also used as a therapeutic for unexplained recurrent
spontaneous abortion, and is especially effective when repetitive
miscarriage occurs after an initial live birth (196), suggesting
that tolerance against the neonate is breached during first
pregnancy and that IVIg, which likely includes NAb, might
restore this. This inspires the investigation of NAb-exclusive IVIg
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administration for the treatment of immune mediated diseases.
Natural antibodies, present in IVIG, could be used to prevent
autoimmune reactions and to enhance the immune response
to vaccination.

Albeit no IVIg sensu stricto, intravenous administration of
KLH binding NAb to chickens enhanced specific antibody
responses to KLH after immunization indicating an “adjuvant”
role of NAb (22). Oral administration of NAb could also be
beneficial, as pigs fed with pig plasma-derived natural IgG
showed a decrease in shedding of Salmonella enterica diarizone
and three strains of E. coli (O138, O149:F4 and F18), and
a restoration of microbiota diversity compared to untreated
pigs (197). NAb binding glutamate dehydrogenase, carbonic
anhydrase, myosin and transferrin were found in unborn calves
prior to intake of colostrum, and were greatly enhanced by
colostrum resident NAb against the same self-antigens (51). This
is in line with previously mentioned findings on the presence
of self-binding natural sIgA in colostrum and milk of humans
(175–178), speculating that oral ingestion of NAb may lead to
immune education and therefore adequate NAb-levels in the
neonate. These findings suggest that NAb-levels in neonates,
and immunity in general, heavily rely on these early maternal
NAb and stresses the importance of breastfeeding or oral Ig-
supplementation.

From a veterinary perspective: IVIg procedures are likely not
useful, but providence of colostrum and allowing food animals
such as calves and piglets to stay with their mothers for an
extended period of time would give them a more extensive
immune-education that would prevent disease later in life.

IDENTIFYING NATURAL ANTIBODIES AND
TARGET EPITOPES TO DEVELOP
THERAPEUTIC IMMUNOGLOBULINS

Several IgM NAb-clones were isolated from cancer patients
and were able to bind carbohydrate structures on tumors and
subsequently decrease tumor burden (136). Another example of
an isolated NAb is the IgM clone “EO6,” which was isolated
from apolipoprotein E-deficient mice (198). EO6 bound to
oxLDL, apoptotic cells, atherosclerotic lesions and oxidized
phospholipids whereas it did not recognize native lipoproteins
(199). Furthermore, EO6 administration in ApoE deficient mice
lead to less oxLDL uptake by macrophages and thus decreased
formation of foam cells (200). Intravenous administration of
a specific MDA antibody in vivo neutralized endogenously
generated MDA epitopes that resulted in decreased hepatic
inflammation in low-density lipoprotein receptor-deficient mice
on a Western-type diet (125).

There is an opportunity to isolate and develop monoclonal
therapeutic NAb. This approach would have several benefits
in comparison to monoclonal conventional antibodies: (i)
NAb would be cost-efficient as they could be directly isolated
from donor volunteers which would leave the immunization
of mice and other laboratory animals unnecessary. (ii) NAb
have been demonstrated to be oligo-specific, so by binding to
multiple antigens a single therapeutic NAb could be applied

in the treatment of multiple diseases. (iii) NAb that have been
investigated so far did not show to bind to healthy tissue or native
forms of their target antigens, suggesting less therapeutic side-
effects. These therapeutic NAb-inspired immunoglobulins could
also be administered to veterinary species to treat inflammatory
diseases or prevent cancers, such as Marek’s disease in poultry.

IMMUNIZATION OR ENVIRONMENTAL
EXPOSURE AS TRIGGERS FOR NATURAL
ANTIBODY SECRETION

NAb in neonates have not been positively associated with
vaccinations due to maternal IgG. IgG in humans and apes is
the only isotype that can pass the placental wall and serves as
a single dose of immunoglobulins to the neonate which possess
them post-natal up to 12 months. This single dose immunization
helps to defend against pathogens in a critical window where the
infant’s immune system is under development, as demonstrated
in agammaglobulinemia patients that were fully protected against
bacterial infection up to 6 months after birth (201). While
maternal antibodies are considered as essential in the critical
window of neonatal immune development, it was demonstrated
that maternal IgG may have a substantial inhibitory effect on
many human and veterinary vaccines and could even lead to a
partial or complete lack of protection in humans and cotton rats
[reviewed in (202)].

It can be hypothesized that maternal IgG immunoglobulins
are able to neutralize the antigen components from the vaccine
and therefore prevent recognition by adaptive immunity. So, the
ideal time-point for a vaccination would be when these maternal
IgG’s have disappeared, but this is highly variable and difficult
to predict (202). These effects might be due to neutralization of
live vaccines, epitope masking, elimination of antibody-coated
vaccines by FcγR-mediated phagocytosis, and inhibition of B-cell
activation by Fcγ-receptor mediated signaling. A strategy to
evade this phenomenon could be to extend the protection of
maternal IgG’s and vaccinate with known NAb-epitopes (203),
therefore stimulating the development of natural immunity itself
and thus provide protection without conventional vaccines.
Maternal NAb, likely initiated by the intestinal microbiota,
protected neonatal mice in an antigen-non-specific fashion
(203). Serum from mice immunized with KLH, DNP and
peanut extract showed increased binding of immunoglobulins
on brain, liver and spleen slices in vitro, demonstrating that
NAb-levels can be regulated via (non-specific) immunization
(204). This suggests that (non-specific) immunization can
increase NAb-levels and therefore be utilized as prevention
against autoimmune diseases. In mice solely expressing IgM
NAb, approximately 30% of all NAb bound to model oxidation-
specific epitopes, atherosclerotic lesions and apoptotic cells. It
was hypothesized that these epitopes exert selective pressure to
expand NAb, which in turn play an important role in mediating
homeostatic functions consequent to inflammation and cell
death, as demonstrated by their ability to facilitate apoptotic
cell clearance thereby preventing chronic inflammatory
diseases and atherosclerosis (71). Indeed, active immunization
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with phosphorylcholine-enriched pneumococci protected
mice against non-alcoholic steatohepatitis (126), whereas
immunization with phosphatidylcholine, a component of red
blood cells protected mice against Plasmodium infection (165).
Also passive immunization of mice with monoclonal IgM against
phosphorylcholine reduced vein graft atherosclerosis (128).

Higher IgM NAb-levels, but not IgG, have been found
in wild rats compared to their laboratory counterparts (205),
suggesting environmental antigens directly influence NAb-
levels and diversity. Moreover, several bacterial orders were
demonstrated to influence α-Gal NAb-levels (43), while chickens
fed with probiotics showed enhanced levels of NAb binding to
KLH (174). Recently, it was demonstrated that immunization of
rats with model antigens (KLH-FITC or DNP-Ficoll) enhanced
the level of antibodies binding various autologous organ extracts
for both IgM and IgG, suggesting an enhanced network of
NAb (204). Flynn et al. (206) found that domestic cats infected
with feline immunodeficiency virus (FIV) showed enhanced
levels of antibodies toward non-viral antigens: trinitrophenol
(TNP), ovalbumin, beta-galactosidase, and DNA, which were not
due to the presence of cross-reacting epitopes on recombinant
FIV p17 or p24 antigens and suggesting that B-cell activation
associated with infection was polyclonal rather than entirely virus
specific (206).

Unpublished results from our lab revealed that chickens kept
under high hygienic conditions had low levels of NAb to KLH
and self-binding antibodies to liver as opposite to chickens
kept under unhygienic conditions. NAb therefore would fit
in the hygiene hypothesis, stating that a decreased incidence
of infections, especially in the Western world, results in a
higher incidence of autoimmunity and allergy (207). Here,
microbes would educate natural immunity to peritoneal B1-
cells that subsequently secrete homeostatic NAb to prevent
autoimmune diseases. Almost by definition, this activity starts
immediately after birth and is relevant in early life, precisely as
implicated by the hygiene hypothesis. This also would suggest
that dietary antigens could influence NAb levels, especially since
the “WesternDiet” that is rich in refined sugars, salt and saturated
fat has been associated with immune alterations, including
pathological autoimmunity (208).

Thus, altering antigenic experience by changes in diet or
supplementation with probiotics or challenge by microbes
might improve NAb-levels and diversity and thus enhance
resistance to infection and decrease the incidence of pathological
autoimmunity, or enhance the homeostatic function of
NAb in preventing mal-behavior and metabolic disorders in
veterinary species.

BREEDING OR GENETIC MODIFICATION
OF NATURAL ANTIBODIES, USE OF
VETERINARY SPECIES

NAb are often germline encoded, so there is a possibility to
modify their levels and diversity on a genetic level. Additionally,
it is also important that NAb generally have a restricted VH gene
usage, which can also be modified genetically. While performing

genetic alterations in humans is obviously difficult due to ethical
reasons, veterinary models could be used instead as they are less
tightly regulated and experimental circumstances are much more
controlled. In addition, breeding companies continuously search
for new breeds with higher health status.

There is evidence that breeding for high levels of NAb and
NAAb is possible. Different NAAb-levels were earlier determined
in inbred mouse strains (78), but studying veterinary species
also allows (unexpected) linkage of NAb-levels with various
other physiological and important production and welfare traits.
The advance of synthetic biology approaches relies on the
use of omics information and these greatly improved insights
provide opportunities to more closely monitor health conditions,
modulate the genetic background, and thus improve animals on
a pre-selected genetic background (209). High levels of anti-
nuclear immunoglobulins were found to be heritable in sheep
and were associated with higher longevity (70). Overall survival
during a laying period was higher in chickens with high NAb-
levels (129, 130), and life history: “fast” or “slow” correlated
with constitutive immune defenses, i.e., that slower developing
species showed higher NAb-levels, as was also true for solitary
living bird species (210). NAb levels can thus be used to compare
constitutive humoral immunity among and within species with
respect to strain, age, sex, treatments, ecology, and “life span or
history” (33).

Genetic regulation of NAb was demonstrated in poultry that
were divergently bred for high levels of anti-KLH NAb (211).
Divergent breeding of poultry for NAb also affected their self-
antigen binding antibodies (212). A genome wide association
study (GWAS) showed that the KLH NAb High line of chickens
possessed a single nucleotide polymorphism (SNP) within the
TLR1A gene significantly explaining levels of KLH binding IgM’s,
indicating that TLR1A has a major impact on NAb-levels and/or
NAb B-cells. This TLR1A region was also significant for total
levels of IgM in blood (163) and most likely levels of IgM
antibodies binding self-antigens (213).

NAb-levels to KLH from pigs in high-health environments
were proposed to be used as phenotypical predictors for resilience
and mortality under a disease challenge, and higher NAb-levels
at a young age correspond to increased resilience and decreased
mortality in swine (214). NAb against KLH were also found to
be heritable in cattle (88, 94). NAb-levels were associated with
inflammatory diseases in cattle (215), and NAb-levels in milk
and serum correlated both phenotypically and genetically with
immune associated traits and diseases in cows (216) including
mastitis (131, 217). It is suggested that breeding of cattle against
diseases such as mastitis or uterus inflammation may benefit
from specifically breeding for high NAb-levels. Different levels of
NAb were also found in different genetic lines of common carp
(Cyprinus carpio) independent of antigen, age and environment,
further suggesting that NAb are for an important part under
genetic control and could therefore be modulated genetically to
improve disease resistance in fish (218) and food animals such as
cattle and poultry.

Genetic modulation of NAb could give new insights in key
genes that regulate NAb-levels and findings from these studies
might be translated to humans in future gene therapies and
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could possibly restore defected genes associated with decreased
NAb-levels that are correlated with disease.

CONCLUDING REMARKS

While Burnet’s forbidden clone paradigm still provides a barrier
to many immunologists, others gradually accept the existence of
NAb and their importance in health and disease. In humans and
mice, various infectious, neurological-, tumor-, cardiovascular-
, and metabolic diseases were related with (usually decreased)
levels of (self-binding) NAb. Still, homeostatic NAb and their
target antigens deserve more attention, especially in food
animals as they most likely contribute to maintaining health by
preventing development of disease in animals as well. While IgM
and IgG have been thoroughly investigated in many species, the
data on IgA NAb are lacking far behind and should be more
intensively investigated. Importantly, NAb may not function
completely in an antigen-non-specific manner as previously
thought, since relations between diseases, specific antigenic
epitopes and specific NAb-isotypes and idiotypes become more

apparent. Genomics, proteomics, and quantitative Western
blotting approaches will likely reveal many (un)expected self,
non-self- and neo-antigens that contribute to the formation and
maintenance of NAb. Understanding the functional relationship
between NAb and their antigen will lead to intervention, such as
vaccination and diet modulation in both humans and animals, or
selective breeding and hygienemanagement strategies in animals.
This may result in new health management strategies, such as
vaccination and diet modulation in both humans and animals, or
selective breeding and hygienemanagement strategies in animals.
Albeit that the role of NAb in veterinary species in contrast to
humans is largely unknown, veterinary animals would provide
excellent models to investigate the possibilities of modulating
NAb, allowing the reciprocal exchange of data that will mutually
benefit both human and veterinary immunology.
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Novel computational tools for swine vaccine development can expand the range of
immunization approaches available to prevent economically devastating swine diseases
and spillover events between pigs and humans. PigMatrix and EpiCC are two new
tools for swine T cell epitope identification and vaccine efficacy analysis that have been
integrated into an existing computational vaccine design platform named iVAX. The iVAX
platform is already in use for the development of human vaccines, thus integration of
these tools into iVAX improves and expands the utility of the platform overall by making
previously validated immunoinformatics tools, developed for humans, available for use
in the design and analysis of swine vaccines. PigMatrix predicts T cell epitopes for a
broad array of class I and class II swine leukocyte antigen (SLA) using matrices that
enable the scoring of sequences for likelihood of binding to SLA. PigMatrix facilitates
the prospective selection of T cell epitopes from the sequences of swine pathogens for
vaccines and permits the comparison of those predicted epitopes with “self” (the swine
proteome) and with sequences from other strains. Use of PigMatrix with additional tools
in the iVAX toolkit also enables the computational design of vaccines in silico, for testing
in vivo. EpiCC uses PigMatrix to analyze existing or proposed vaccines for their potential
to protect, based on a comparison between T cell epitopes in the vaccine and circulating
strains of the same pathogen. Performing an analysis of T cell epitope relatedness
analysis using EpiCC may facilitate vaccine selection when a novel strain emerges in a
herd and also permits analysis of evolutionary drift as a means of immune escape. This
review of novel computational immunology tools for swine describes the application
of PigMatrix and EpiCC in case studies, such as the design of cross-conserved T
cell epitopes for swine influenza vaccine or for African Swine Fever. We also describe
the application of EpiCC for determination of the best vaccine strains to use against
circulating viral variants of swine influenza, swine rotavirus, and porcine circovirus type
2. The availability of these computational tools accelerates infectious disease research
for swine and enable swine vaccine developers to strategically advance their vaccines
to market.
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INTRODUCTION

Pigs are an important component of the agricultural economy
worldwide and are an important contributor to protein intake for
populations living in developed and developing world economies.
Due to the concentration of pigs in industrial farming operations
and concern about the overuse of antibiotics for food animals,
the control and prevention of infectious diseases in swine
has become an important topic that is not only relevant to
animal health and wellbeing but also to global food security
and economic stability. Vaccine development for swine is likely
to be facilitated by the emergence of computational tools
for vaccine design. These same tools may also contribute to
research on the spread of swine pathogens within herds and
across geographical borders. For example, influenza is more
diverse in swine populations than in humans. Spillover of
influenza strains from pigs to humans was observed in 2009,
and efforts to predict the next such event may be improved
by comparisons of circulating strains in different species, a
process that can be enabled by computational tools. Such tools
may also contribute to the development of novel vaccines for
important pathogens of swine for which effective vaccines are
not yet available, such as African Swine Fever Virus (ASFV),
a pathogen that is affecting swine populations in Asia and
Europe (1).

Veterinary vaccines are one of the more cost-effective means
of controlling, eradicating diseases and protecting herd health.
Nevertheless, culling infected animals and strict containment are,
in many instances, the only method available to limit the spread
of disease during outbreaks (2). In order to move away from
culling and quarantining infected animals, new types of vaccines
and new vaccine methodologies that reduce the susceptibility
of swine to infections bear serious consideration. Given the
emergence of new strains of influenza and diseases that become
endemic in new locations such as ASF in swine populations,
and ethical considerations related to the culling of animals
in industrial farming operations, there is a critical need for
tools that can enable novel vaccine design, accelerate vaccine
design, and assess the efficacy of vaccines against circulating
strains, in silico.

Most veterinary vaccines are developed using standard
methods, such as inactivating the pathogen using chemical or
physical methods and then injecting killed organism directly into
the animals (a process that can be called “shake and bake”).
Alternatively, molecular tools are used to selectively modify a
pathogen so as to limit virulence, resulting in an attenuated
version that can be used as a vaccine. These vaccine approaches
do not adequately address strain variation, which is a significant
problem for the development of swine vaccines, as many of the
pathogens affecting swine are highly variable. Additionally, viral
pathogens have been shown to modify T cell epitopes to evade
host immune response (immune escape) and more recently,
selected epitope sequences of pathogens have been shown to
resemble epitopes found in their hosts (immune camouflage) (3).
Research in the field of human immunology has contributed to
the development of tools that permit the evaluation of pathogen
variation and immune camouflage. Although no examples of

immune camouflage have been demonstrated in pigs, evolution
of pathogens in pigs and the close resemblance of human
and swine immune systems, including the Th1/Th2/Th17/Treg
paradigm, suggests immune camouflage may occur in pigs like in
humans. The availability of tools that discover pathogen epitopes
that resemble their host sequences may lead to improvement
in the process of antigen selection and enabling researchers to
improve the efficacy of vaccines for swine.

Computational tools for vaccine design usually start with
T cell epitope prediction due to the important role of T
cell epitopes in cell-mediated immunity (CMI). T cell epitope
mapping algorithms enable the analysis of complete proteomes
of any size to identify vaccine candidates for experimental
validation. Despite the demonstrated utility of computational
vaccinology in human vaccine development (4), computational
tools for vaccine design are very limited for non-human species.
This is mainly due to the limitations on available experimental
data that is required to develop prediction models. However,
methods for extracting similarities between human and swine
immune system orthologs exist and have been applied to
develop new epitope prediction tools for swine (5), and this
makes it possible to imagine further improvements in epitope-
prediction models and further expansion of computational
vaccinology tools. The fact that swine are both “patient” and
“experimental model” facilitates the testing of hypotheses and
will enable the development of at least as many applications of
immunoinformatics tools as for humans and the acceleration of
porcine immunology research.

Here, we review new immunoinformatics tools for swine
developed by a team of scientists at EpiVax in partnership with
researchers based in academic settings (University of Rhode
Island, University of Georgia), that have been integrated into
an existing toolkit for human vaccine design. The hybrid toolkit
has been applied to design and evaluation of novel vaccines for
influenza and African Swine fever, and to the analysis of vaccine
for protective efficacy against circulating strains of influenza and
porcine circovirus. We also discuss current challenges and future
perspective in the field.

THE iVAX TOOLKIT

Computational vaccinology is a term that incorporates epitope
mapping, antigen selection and vaccine construct design using
computational tools. In silico tools are at the core but validation
is used to improve the efficacy of prediction and to measure
the impact on immune responses to pathogens. A wide range of
tools have been developed in the past 20 years that dramatically
accelerate the design of novel and next generation vaccines. In
a recent publication, we have described the utility of iVAX for
human vaccine design and analysis (4). Here we will focus on the
integration of PigMatrix into a pre-existing toolkit, and describe
applications of the combined tools to swine vaccines.

The iVAX toolkit has been in development since 1998. It
is an interactive internet-based platform that integrates user
input, immunoinformatics algorithms and several sequence
databases, enabling users to rapidly identify and triage candidate
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antigens, select immunogenic T cell epitopes, eliminate
potential regulatory T cell epitopes, and optimize antigens
for immunogenicity and protection against disease. Detailed
descriptions of the tools are published [see references (4, 6–8)].
While the tools were designed for humans, swapping out the
tools used for epitope prediction from Human Leukocyte
Antigen (HLA) to Swine Leukocyte Antigen (SLA) has enabled
EpiVax vaccine developers to apply these advanced tools to
infectious disease problems affecting swine.

Overview of the iVAX Toolkit
iVAX contains a compilation of tools that implement information
derived from the T cell epitope mapping tool, EpiMatrix (9). This
tool accepts sequence input for human, swine, and murine major
hisotocompatability complex (MHC) class I and class II epitope
prediction. The generated predictions can then be incorporated
into further analysis using a variety of tools including the
Conservatrix, ClustiMer, EpiAssembler (4) and VaxCAD
algorithms (10). Conservatrix enables a search for sequences
across variable pathogens, for example, swine influenza A, or

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV).
ClustiMer finds regions of class II SLA-binding epitopes that
cluster into a single longer sequence, and EpiAssembler is
used for identifying epitopes that are conserved across several
different strains of the same pathogen. Additional tools include
JanusMatrix, a unique homology analysis tool that predicts the
potential of a given peptide to contain epitopes exhibiting cross-
reactivity between a pathogen and a host (such as swine) based
on the conservation at the MHC-T cell receptor (TCR) interface.
A list of the tools is provided in Figure 1 with a short description
of their function.

Immunogenicity Scale – Triaging
Antigens
During the process of selecting candidate vaccine antigens,
the overall immunogenic potential should be taken into
consideration as it directly relates to the cytotoxic T cell (CTL)
or T helper (Th) T cell epitope content. We have observed that
the greater the concentration of HLA ligands and putative T cell

FIGURE 1 | Integration of PigMatrix and EpiCC into the iVAX Toolkit. The iVAX toolkit is a comprehensive set of tools for in silico analysis and computational vaccine
design for humans. PigMatrix analyzes protein sequences for Class I and Class II SLA-restricted T cell epitopes. EpiCC defines the relatedness of sequences based
on their T cell epitope content. The integration of PigMatrix and EpiCC into the existing iVAX toolkit allows them to be applied for the development of accelerated and
improved swine vaccines.
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epitopes that are contained in an antigen, the more likely it will
induce an immune response.

T cell epitope concentration can be expressed as an overall
EpiMatrix score called the EpiMatrix Protein Score, which is
the difference between the number of T cell epitopes predicted
in a given protein and the number of T cell epitopes expected
to be found in a random protein sequence, normalized for
length (per 1,000 amino acids). The average number of T
cell epitopes contained in 10,000 randomly generated protein
sequences is set to zero, proteins considered to have a significant
immunogenic potential score above 20 on the normalized
scale, on which several swine pathogen antigens included for
comparison, in Figure 2.

Regional Immunogenicity
While the normalized EpiMatrix Protein Score provides an
approximation of the overall protein immunogenicity, regional
immunogenicity also plays a role in the immunogenic potential.
T cell epitopes tend to cluster in regions of protein sequences.
ClustiMer was developed to identify regions with unusually high
densities of putative T cell epitopes. For a given region, ClustiMer
calculates a T cell epitope cluster score. Clusters with scores above
10 are considered potentially immunogenic. The length of T

cell epitope clusters ranges from nine to approximately twenty-
five residues and can contain from four to forty HLA binding
motifs. T cell epitope clusters usually contain one or more 9-mer
frame sequences predicted to bind to four or more HLA alleles.
This epitope bar feature (EpiBar) is highlighted in the iVAX
report. T cell epitope clusters can be highly immunogenic. An
example is given of a Swine Influenza A Hemagglutinin epitope
cluster (Figure 3). Human T cell epitope clusters that have a
similar EpiBar have been defined for Tetanus toxin 825–850,
GAD65 557–567 and are often used as controls for T cell assays
(11). In our experience, these clusters are recognized in outbred
populations of humans (12, 13); however similar epitopes have
not yet been defined for swine.

JanusMatrix and Self-Like T Cell
Epitopes
Although T cells possessing anti-self TCRs were previously
thought likely to be eliminated in the thymus, evidence emerged
showing that anti-self immune response is also controlled by
regulatory T cells recognizing the same antigens (14, 15).
The phenotype of these regulatory T cells may be reinforced
by repetitive re-exposure to their cognate self-antigens (16).
Thus, immune response to new antigens is shaped by previous

FIGURE 2 | EpiMatrix immunogenicity scale. The immunogenicity scale shows swine pathogen antigens that have been reported to be immunogenic, and
non-immunogenic antigens. Sequence accession numbers in GenBank are provided in the parentheses. The EpiMatrix immunogenicity scale is set to zero based on
the average epitope content in a randomly generated protein sequence. Normalization of SLA scoring enables the ranking and direct comparison of candidate
antigens; for example, candidate vaccine antigen A would be preferred over candidate vaccine antigen B for inclusion in a vaccine designed to elicit T helper immune
response and to drive humoral response.
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experience in the thymus and by exposure-driven reinforcement
in the course of immune system maturation.

We observed that certain pathogens contain critical antigens
with T cell epitopes that are highly conserved with self-antigens.
This is true for humans and consequently deserves attention in
swine. We hypothesized that pathogens use these epitopes as
a means of “immune camouflage”; thus, these epitopes might
be tolerated or actively tolerogenic upon vaccination (17). In
retrospective studies, we determined that peptide epitopes that
have identical TCR-facing residues and similar MHC binding
anchors can be potentially tolerogenic and/or activate T cells that
have a regulatory T cell phenotype or induce immunosuppressive
responses (3). To identify these self-like epitopes, we developed
the JanusMatrix tool. Using this tool, we are studying the impact
of mutating these epitopes to enhance vaccine immunogenicity
in humans (18) and anticipate that we will extend this work
in collaborations that will evaluate the impact of self-like
epitopes for swine.

For any given putative T cell 9-mer epitope, JanusMatrix
analyzes residues in contact with the MHC molecule, and those in
contact with the T cell receptor (TCR). Positions 1, 4, 6, and 9 are
assumed to interact with MHC class II molecules and positions 2,
3, 5, 7, and 8 are assumed to interact with TCRs (Figure 4). For
class I epitopes, the TCR-facing residues vary from allele to allele.

The JanusMatrix algorithm then searches a reference database
for similar epitopes, considering both MHC- and TCR-facing
residues. The reference database (to which pathogen epitopes
are compared) can be human, swine, murine, or any other
organism (including other pathogens from the same, or similar
species). JanusMatrix finds reference epitopes with identical
TCR-facing residues that are predicted to bind to the same
MHC molecule despite amino acid differences. JanusMatrix
calculates a Homology Score as the average depth of coverage
within the reference database for the putative MHC binding
epitopes identified in the input peptide. JanusMatrix Homology
Scores above two are considered to be significant, indicating

FIGURE 3 | PigMatrix class II analysis. The cluster report of a swine influenza hemagglutinin sequence shows a 9-mer frame that contains three top 1% hits (strong
binding likelihood) and four top 5% hits for SLA class II alleles. This feature is called an EpiBar and is characteristic of highly immunogenic epitopes.

FIGURE 4 | JanusMatrix and self-like epitopes. Predicted SLA ligand with identical TCR-facing residues with the swine proteome (presented in blue) and variant
SLA-binding residues (presented in green) may stimulate cross-reactive tolerizing or Treg responses, if both bind to the same SLA allele.
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an elevated level of conservation between putative epitopes
in the input peptide and epitopes in the reference database.
Using this threshold, we identified epitopes that are more
likely to be tolerated or actively regulatory (19). For a given
EpiMatrix Score, a high JanusMatrix Homology Score suggests
that T cells recognizing that epitope may exhibit a bias toward
immune tolerance, which has been validated in retrospective
and prospective studies (3) in the human context. More
remains to be done to evaluate whether the same observation
is true in swine.

PIGMATRIX

In general, the development of models for prediction of T cell
epitopes requires a large amount of experimental data for training
and testing. A variety of approaches provide data that can be
used to define peptide:MHC binding rules and enable binding
predictions, all of which have been applied to identification
of SLA ligands. High throughput methods that define MHC
binding peptides include biochemical assays that measure
peptide:MHC binding affinity or a proteomics approach that uses
immunoprecipitation of solubilized peptide:MHC complexes
from the cell surface followed by peptide elution and liquid
chromatography/mass spectrometry (20–22). Additionally, in a
low throughput manner, epitope-specific T cell lines are used
to define binding anchor residues by assaying epitope variants
at anchor positions for T cell stimulation as measured by
cytokine or chemokine release (23). While such binding data
are abundantly available for HLA, they are limited for MHC
of other species. Only one online tool algorithm has been
trained and evaluated for prediction of SLA class I alleles (24).
Prediction tools have not been available for SLA class II alleles.
To overcome this lack of binding data for SLA, PigMatrix
leverages similarities between the secondary structure of HLA
and SLA molecules and predefined HLA binding preferences
to generate SLA epitope predictors based on the pocket profile
method (5, 25).

The crystallographic structure of HLA molecules reveals
that the peptide-binding groove contains a number of pockets
and that polymorphic residues in the HLA sequence are often
involved in forming these pockets (26). Consequently, the
residues in the pocket define allele-specific binding preferences
for particular amino acid side chains of the antigenic peptides
(27). Thus, for each MHC molecule, the profile of a given binding
pocket can be defined by its residues and binding preferences.
Sturniolo et al. demonstrated that each “pocket profile” was
nearly independent of other pockets in the HLA-DR binding
groove (25). The authors also showed that an MHC molecule
could be defined in terms of its individual pocket profiles as
a quantitative matrix of binding preferences. Therefore, once a
pocket profile is determined experimentally, it can be shared with
other HLA-DR molecules that have identical pocket residues.

A number of pan-specific algorithms for T cell epitope
prediction based on the pocket profile method have been
developed, including TEPITOPE (25), TEPITOPEpan (28), and
PickPocket (29). The predictive performance of these methods

for novel HLA alleles depends on the similarity of pocket
residues; performance decreases as similarity decreases (29). For
HLA alleles with limited quantitative data, algorithms based
on the pocket profile method have demonstrated better or
comparable performance when compared to methods, such as
artificial neural networks, that require a large amount of training
data (28, 29). NetMHCpan, an artificial neural network-based
algorithm, has been used for prediction of SLA class I-restricted
peptides (24, 30).

PigMatrix (5) is the first algorithm that was designed for the
prediction of SLA class II T cell epitopes. Using the Sturniolo
et al. approach described above, PigMatrix matrices were created
by integrating the binding preferences of the best-matched
HLA pocket for each SLA pocket, using SLA or HLA crystal
structures as a basis for pocket selection. PigMatrix achieved a
favorable predictive performance, comparable to or better than
PickPocket and NetMHCpan for SLA class I alleles (5). PigMatrix
class II epitope predictions were validated prospectively (see
section “Swine Influenza A Virus Vaccine” below). Overall,
using the pocket profile method for SLA, and defined binding
preferences from HLA, shows promise for developing T cell
epitope prediction tools for pigs.

Limitations of PigMatrix: Class I and II
SLA Coverage
To effectively harness epitope immunoreactivity data, the identity
of SLA alleles involved in peptide presentation to T cells is
required. This information is needed to establish knowledge of
the prevalence of allelic families on a population level, which is
used in turn to ascribe immunological significance to epitope-
specific T cell responses detected in infection and vaccine studies.
Furthermore, knowledge of MHC allele sequences is required for
T cell epitope prediction.

The diversity of SLA and the lack of information on SLA
frequencies represent a significant challenge for the development
of T cell epitope vaccines for swine (31). The problem of
SLA coverage is illustrated by a small swine influenza vaccine
immunogenicity study that was performed using PigMatrix-
identified T cell epitopes, SLA alleles expressed by the pigs in the
study cohort were different from those reported to be prevalent
in the United States swine population. Information about SLA
allele diversity in the United States swine population is critically
important to develop a more comprehensive set of predictions
that target the most prevalent SLA alleles. Once the prevalence
and diversity of United States swine SLA are better understood,
it may be possible to cluster SLA molecules into supertypes. The
concept of supertypes has been applied to HLA for selection of
few representative alleles from different clusters to cover a high
percentage of the HLA diversity in the human population (32,
33). An epitope-based vaccine containing peptides predicted to
bind SLA supertype alleles could induce immune responses in
pigs expressing diverse alleles.

Fortunately, the importance of SLA diversity for vaccine
development and studies to identify commonly expressed
haplotypes has been recognized and new studies are expanding
available information on prevalent SLA alleles in swine
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poulations (34). Currently, the Immune Polymorphism Database
lists 90 SLA-1, 96 SLA-2, 41 SLA-3, and 99 DRB1 alleles.
Continuing efforts to expand the identification of specific alleles
are needed, as are studies that will determine allelic frequencies
on a population level for prediction of T cell epitope binding
for vaccine development and analysis of epitope-specific T cell
responses in infection and vaccination.

SLA typing is commonly performed using sequence-specific
primers in PCR (PCR-SSP) (35, 36). This is a labor-intensive
approach that yields low resolution results at the allele group
level; e.g., SLA-1∗08XX refers to a group of alleles that encode
the SLA-1∗08 antigen or sequence homology to other SLA-
1∗08 alleles. Improved resolution to four digits is needed to
identify specific allele proteins (e.g., SLA-1∗0801, SLA-1∗0802).
High-resolution and high-throughput methods have also been
developed (37). Next generation sequencing is a widely used
technology for HLA typing (38, 39) and has been used
for SLA typing in a few studies (40, 41). A commercially
available high-throughput method for high-resolution SLA-
typing would improve the ability of researchers and producers to
determine SLA diversity.

EPITOPE CONTENT COMPARISON
(EpiCC)

Using PigMatrix, it is possible to identify potential T cell epitopes
and rank proteins based on their immunogenic potential. In
addition to immunogenicity, vaccines need to induce memory T
cells that will recognize epitopes contained in circulating strains.
In other words, the epitope content of a vaccine should be
similar to that of the circulating strains to elicit broad immune
recognition and protection.

To estimate the relationship between pathogen sequences
based on their putative T cell epitope content and predict cross-
protection potential, we developed the T cell Epitope Content
Comparison tool (EpiCC) which facilitates sequence pairwise
comparison based on epitope content rather than sequence
identity (42). EpiCC assesses the relatedness of T cell epitopes
contained in a protein sequence of one strain and those in
another based on a comparison of the epitope sequences and their
PigMatrix SLA binding score. T cell epitopes can be either shared
(cross-conserved) between sequences, or unique to each strain.
Thus, the EpiCC score for the comparison of two strains is based
on the PigMatrix scores of shared and unique epitopes, which are
defined using JanusMatrix. For a pair of protein sequences, the
EpiCC score is high if the epitope content shared between both
sequences is dense and similar. For comparison of a vaccine and
outbreak strains, vaccine sequences that share more T cell epitope
content with circulating strains have higher EpiCC scores.

EpiCC can be applied to estimate whether a given vaccine
would protect against circulating or newly emerging strains of a
pathogen. It can also potentially be used to assist in the selection
of live or killed organism vaccine candidates by comparing one
or multiple antigens and identifying the vaccine strain sequence
that best represents the T cell epitope content of circulating
strains and that may induce the broadest cross-reactive T cell
response. See for example, the publication by Bandrick, M. et al.,

comparing monovalent and bivalent PCV2 vaccines to field
strains (43). EpiCC also has applications for analysis of large-scale
surveillance data to identify circulating or novel viruses distantly
related to current vaccines for further experimental evaluation to
determine potential risk of vaccine failure.

CASE STUDIES

Vaccine Development Against Swine
Pathogens Using the iVAX Toolkit
Swine Influenza A Virus Vaccine
Influenza A virus (IAV) is considered one of the most important
infectious disease agents affecting North American swine (44).
The majority of currently licensed swine IAV vaccines consist
of whole inactivated viruses administered with adjuvants by
intramuscular injection (45). This platform primarily induces
systemic IgG antibody responses to the surface glycoproteins,
mainly HA (45, 46). However, antibody-mediated immunity does
not typically provide protection against divergent strains of IAV
(46, 47). In contrast, CMI can be broadly cross-reactive to a
variety of IAV subtypes (48, 49). Moreover, CMI contributes to
virus clearance, reduces symptom severity, and virus shedding
(50). A vaccine that can induce CMI and reduce morbidity could
prevent anorexia and weight loss in swine, which cause significant
economic loss to pork producers. Therefore, the identification
of T cell epitopes conserved in diverse strains of IAV represents
the first step toward the development of a potentially broadly
protective vaccine.

Using PigMatrix and Conservatrix, the complete proteomes of
representative IAV strains in a United States swine population
were screened for class I and II T cell epitopes (31). EpiAssembler
was used to construct immunogenic consensus sequences -
peptides of 16–25 amino acid containing SLA-DRB1-restricted
epitopes that were highly conserved in IAV strains, predicted
to bind to multiple alleles, and enriched for immunogenicity.
Using VaxCAD, 28 class I and 20 class II predicted epitope
sequences were concatenated into two multi-epitope genes
(one for SLA class I and one for class II epitopes). Cleavage
promoting spacers or binding inhibiting “breaker” sequences
were introduced where VaxCAD reordering did not eliminate
junctional immunogenicity. Vaccine genes were synthesized and
subcloned into vectors containing signals for proteasome or
secretory pathway targeting.

The immunogenicity of the 48 predicted T cell epitopes was
determined by measuring IFNγ recall responses using PBMCs
from pigs immunized intramuscularly with the prototype DNA
vaccine. Positive responses were observed upon restimulation
with pooled peptides as well as eleven individual peptides. Recall
responses to peptides were not observed in pigs immunized with
a tetravalent inactivated commercial vaccine, despite containing
similar internal antigens. This result suggested that the epitope-
based DNA vaccine promoted more efficient processing and
presentation of its own epitopes as compared to whole-protein-
based vaccines.

In a vaccine challenge study, intradermal immunization with
the epitope-based DNA vaccine followed by an intramuscular
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tetravalent inactivated vaccine boost was effective against H1N1
homosubtypic challenge. Pigs had reduced lung lesions and no
detectable IAV antigen at necropsy. Moreover, IFNγ secreting
cells, recognizing vaccine epitope-specific peptides and pH1N1
challenge virus were highest in PBMCs from pigs vaccinated
using the prime-boost approach (51).

African Swine Fever Vaccine
African swine fever virus (ASFV) is the etiological agent of
African swine fever (ASF), a highly contagious hemorrhagic
disease of swine that affects domestic pigs and wild boars of all
ages and breeds. Several clinical forms of ASF are presented in
swine and include a hyper-acute or acute disease, a sub-acute
disease and a chronic disease with mortality rates ranging from
100 to 3% depending on the virulence of the viral isolate, route of
infection, and the host (52, 53). ASFV transmission to unexposed
domestic pigs occurs by direct contact with an infected animal
or the body fluids and carcasses of infected animals, or by
indirect contact with contaminated materials or through the
consumption of contaminated products (54). Wild pigs and soft
ticks of the genus Ornithodoros are the natural reservoir for the
ASF virus (55).

ASF poses a devastating threat to the global pig industry and
has been spreading at an alarming rate in the past few years,
affecting more than 55 countries in three different continents:
Africa, Asia, and Europe (56). The introduction of ASF into these
countries has dramatically impacted their socio-economics, pig
production and status for international trade (57). Prevention,
control, and eradication measures for ASF are mainly based
on early detection and on the implementation of strict sanitary
measures (58). However, successful control of ASF has proven to
be challenging and the risk of introducing the virus into ASF-free
countries is increasing. A vaccine against ASF is urgently needed
to improve prevention and control strategies and mitigate major
economic losses in endemic and non-endemic areas.

No licensed vaccine currently exists against ASF. The
complexity of the virus and the large number of encoded proteins,
with some involved in the modulation of host immune responses
(59, 60), has made it challenging to identify immunogenic
targets and hindered the development of an efficacious ASF
vaccine. Another challenge is the genetic diversity of the
ASFV and the limited knowledge of antigens involved in
conferring cross-protection. Thus far, little to no cross-protection
has been reported (61–63); however, pigs that survive ASFV
infection generate protection against subsequent infections with
a homologous ASFV (58). Several efforts have been made to
develop an ASF vaccine with a current focus on the induction
of both humoral and cellular immune responses due to their
potential role in conferring ASF protection (64–67).

Using iVAX, we developed a T cell-directed ASF vaccine
composed of swine MHC class I and class II epitopes conserved
across 21 European, Asian and African isolates covering
genotypes I, II, IX, and X. T cell epitopes identified by
JanusMatrix as potentially regulatory (highly cross-conserved
with the swine proteome) were excluded. Multi-epitope
genes encoding class I and class II epitopes separately were
each subcloned into plasmids to produce a DNA vaccine.
The vaccine has undergone immunogenicity testing and is

immunogenic (unpublished collaboration); further development
is currently anticipated in collaboration with a commercial
animal vaccine company.

Applications of EpiCC
Swine Influenza A Virus Vaccine Analysis
For influenza and other viruses, sequence data and antibody
cross-reactivity are commonly used to predict vaccine-
induced protection (45, 46). However, previous efficacy
studies demonstrated that even in the absence of cross-reactive
antibodies, a commercial swine IAV vaccine was capable
of inducing protection or partial protection (reduced lung
lesions, reduced viral titers in lungs and/or nasal swabs) against
heterologous challenge strains (46, 68–72).

To determine the potential role of T cell epitope-driven
CMI in vaccine-induced protection in the absence of cross-
reactive antibodies, an EpiCC analysis was performed to compare
the T cell epitope content of HA sequences from swine IAV
strains representing the major H1 clusters circulating in the
North American swine population and those of H1 viruses in
a commercial vaccine. Using experimental data from previous
vaccine efficacy studies testing one of the H1 viruses in the
commercial vaccine against different challenge viruses (46, 68–
70, 72), a threshold level of T cell epitope relatedness associated
with protection was identified. The published results provided
supportive evidence that T cell epitopes that are conserved
between vaccine sequences and circulating strains contributed to
vaccine efficacy. We have provided a typical EpiCC analysis, using
example influenza vaccines and strains, for illustration purposes,
in Figure 5A.

For the initial influenza study, EpiCC analysis was restricted
to HA sequences from 23 viruses representing diverse clusters
of field strains, assuming limited T cell epitope variation of
other antigens. However, the same approach is currently being
applied to multiple antigens or to complete proteomes of
influenza strains, and to hundreds of variant strains representing
other pathogens such as PCV2. We anticipate that EpiCC may
complement existing methods for vaccine selection in outbreak
situations and could be used by animal vaccine companies for
strain selection during vaccine development.

Swine Rotavirus Vaccine Analysis
We have also applied EpiCC to understand vaccine strain
selection for swine rotavirus. Swine rotavirus serogroups A and
C (RVA and RVC, respectively) are a significant cause of piglet
morbidity and mortality across the world. The outer capsid
of the RV particle is composed of the viral proteins VP7 and
VP4, both of which are targets for neutralizing immunity and
they also determine the G and P genotypes of RV strains
(73). Cross-protection between RVA and RVC is non-existent
while heterotypic immunity across different G and P genotypes
remains limited (74). Given the large genetic diversity of RV
genotypes, vaccination efforts have been limited. There is one
currently available commercial vaccine that only contains three
strains of RVA (75, 76). RV vaccine strains with high T cell
epitope conservation with circulating strains may induce broader
cross-protective immunity. Using EpiCC and PigMatrix, we
investigated the presence of SLA class II putative T cell epitopes
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FIGURE 5 | EpiCC radar plot. Radar plots are used to visualize the relationship between vaccine strains and circulating strains. In the top plot, Panel (A) for illustration
purposes, 16 typical circulating swine influenza A virus strains are presented on the perimeter of the chart. The EpiCC scores of their HA antigens (hemagglutinin) are
indicated by their distance from the center to the perimeter. Vaccine efficacy thresholds for protection (white area), partial protection (light gray area) and no
protection (dark gray area) have been based on experimental data from efficacy studies of swine Influenza A virus vaccines (17). The blue line represents an example
of an ideal vaccine strain that contains T cell epitopes fully matched to all the circulating strains. The green line represents an example of an influenza vaccine strain
HA protein that contains T cell epitopes well matched to the majority of circulating strains. The orange line represents an example of a vaccine strain HA protein that
contains T cell epitopes not well-matched to any of the circulating strains. This example is intended to illustrate how EpiCC provides guidance on vaccine selection
but does not provide data on any specific influenza strains. An example of how EpiCC can be used is provided for a set of swine rotavirus vaccines and circulating
rotavirus strains. Rotaviruses (RVs) are among the most common causes of acute diarrheal disease in humans and swine. Speciation of RVs is based on sequencing
of the viral protein (VP) 6, the middle capsid protein. Rotavirus group A (RVA) is the most prevalent and pathogenic species of RV. The VP7 and VP4 proteins
stimulate neutralizing antibodies and are used as a binary classification system for genotypes (G and P genotypes, respectively). Due to the binary classification
system, we have performed an EpiCC analysis based on comparisons of the VP7 and VP4 components of each strain and their equivalent viral protein-specific
vaccine components VP7 and VP4. In Panel (B), we compare RVA strain VP7 proteins to the VP7 component of the vaccine, and in Panel (B) we compare RVA
strain VP4 proteins to the VP4 component of the vaccine. The viruses are sorted by genotype (by G for Panel (B) and by P for Panel C); the classification is
highlighted by the color of the outermost circle (orange for G3 and green for G4 and so on). Each of the three RVA strains in the ProSystems vaccine is represented
with a different colored line: the blue line represents the A2 RVA strain which contains viral proteins derived from genotypes G9 and P7), the orange line the Gottfried
RVA strain (which contains G4 and P6) and the green line the OSU RVA strain (G5 and P7). In Panel (B), the EpiCC scores of the A2 vaccine strain (G9P7) are highest
against strains that fall into the same genotype (G9) and low for all other genotypes. The EpiCC scores of the Gottfried strain (G4P6) are highest for strains that are in
genotype G4 but low against other strains. This suggests that vaccine strains are more related to homologous field strains than to other strains. Therefore, the T cell
epitope content of circulating swine rotavirus strains is highly genotype specific explaining why it is necessary to use genotype-specific RVA vaccines to protect
against field strains. Panel (D) illustrates the expected finding that swine RVA vaccine strain VP7 has no conservation against circulating strains from rotavirus group
C (RVC) VP7. If T cell epitopes are protective against swine rotavirus, a ‘universal’ RV vaccine would need to include T cell epitopes representing all of the genotypes.

in the VP7 and VP4 of circulating porcine RVA and RVC strains
and assessed the degree of their cross-conservation with the RVA
strains in the ProSystems Rota vaccine (77). This data is shown in
Figures 5B,C.

To perform this analysis, we first used PigMatrix to identify
SLA class II-restricted T cell epitopes in a set of VP7 and VP4

proteins of RVA and RVC strains circulating in the United States
as well as in the RVA strains Gottfried (G4P[6]), OSU (G5P[7])
and A2 G9P[7]) (76) that are used in the ProSystems Rota
vaccine. We then performed an EpiCC analysis to assess the
relationship between the T cell epitopes found in VP7 and VP4
of circulating RVA strains and the T cell epitope content of the

Frontiers in Immunology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 563362145

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-563362 October 5, 2020 Time: 17:10 # 10

Moise et al. Immunoinformatics Tools for Swine Health

RVA vaccine. The analysis demonstrated that T cell epitope cross-
conservation between circulating strains and the RVA vaccine is
genotype-specific and is limited to homologous strains as seen in
(Figures 5B,C). In other words, T cell epitopes from the vaccine’s
G9 genotype strain (called A2) are only conserved with field
strains that belong to the G9 genotype, and this was also true
for the G4 (Gottfried) and G5 (OSU) vaccine strains. There was
very limited conservation between the T cell epitopes of the VP7
protein in the RVA vaccine with T cell epitopes found in non-
homologous VP7 proteins in other genotypes of RVA (Panel B).
This was also true when the VP4 protein is considered (Panel
C). Thus, the existing RVA vaccine has genotype-specific T cell
epitope content.

We then performed the same EpiCC analysis to assess the
relationship between the VP7 of circulating RVC strains and
RVA vaccine strains. The results again show that swine RVA
VP7 T cell epitopes are serogroup specific and are not at all
cross-conserved with the VP7 of RVC strains (Figure 5D). This
study demonstrates that T cell epitopes found in circulating
swine and vaccines are serogroup and genotype-specific, and
may explain why vaccines to protect against swine rotavirus have
to be multivalent.

Porcine Circovirus Type 2
Porcine circovirus type 2 (PCV2) is one of the top infectious
agents in the porcine industry. Eight PCV2 genotypes have been
described based on ORF2 phylogenetic analysis (78). Due to its
remarkable evolutionary rate, further genetic variation of PCV2
is expected, limiting the usefulness of single vaccine strains.
Currently, PCV2a, PCV2b, and PCV2d are considered to be
clinically relevant causes of disease in swine populations, and
PCV2d is currently the predominant genotype. However, most
of the commercial vaccines available are based on the PCV2a
genotype (79).

PCV2 vaccines were based on the 2a genotype because this was
the first genotype that was discovered. Currently, eight genotypes
of PCV2 viruses are known to circulate in swine populations, and
further variation in PCV2 is expected. For these reasons, there is
a need to determine how well existing and future vaccines cover
field strains. We therefore used EpiCC to analyze the sequences
of two major structural proteins, the replicase (encoded by
ORF1) and the capsid (encoded by ORF2) from selected vaccines
and compared the epitopes in the vaccines to those found in
field strains. The two commercial vaccines that were analyzed
in this study were based on PCV2a, PCV1-PCV2a chimeric
virus (cPCV2a), an experimental PCV1-PCV2b chimeric virus
(cPCV2b), and an experimental combination of cPCV2a and
cPCV2b provided by the study’s co-authors at Zoetis.

The putative T cell epitope content of these vaccines was
compared to that of 161 field strains representing PCV2
genotypes a-f using EpiCC (43). The analysis, performed using
EpiCC and PigMatrix, demonstrated that the combination
cPCV2a-cPCV2b vaccine had, on average, the highest EpiCC
score against circulating strains. EpiCC scores of this vaccine
were higher than those of the monovalent vaccines not only
for PCV2a and PCV2b, but also PCV2d, which suggested
that developing the combination vaccine would be preferable

to developing a monovalent vaccine against the predominant
circulating strain. EpiCC analysis suggested that the combination
of cPCV2a and cPCV2b would confer the broadest cross-reactive
cell-mediated immunity and protection against field strains (43).

CONCLUSION

Recent developments in computation and genomics usher
in new opportunities to address these unmet needs using
immunoinformatic tools for accelerated design of safe and
effective vaccines starting from sequence data. However, more
research is needed. For example, further development of
PigMatrix is necessary, to enable prediction for the broad range
of SLA alleles that exist in global pig populations. Larger datasets
of SLA-restricted peptides are required to further evaluate
the PigMatrix approach and improve predictions. To generate
quantitative binding data and test PigMatrix, binding assays
for commonly expressed SLA molecules could be developed.
Currently, these assays have been developed for a limited number
of SLA class I and II alleles (24, 80–82). Binding assays provide
valuable information to better define binding preferences and
potentially develop predictions based on SLA specificities rather
than pocket preferences. High-throughput binding assays using
planar peptide microarrays have been applied to produce large
amount of data (83). This technology could generate the data
required to train and test SLA-specific models. One of the most
significant interventions that would promote progress on new
epitope-prediction models for additional SLA would be funding
to carry out these studies.

Improvements to current methods of vaccine development
are needed to protect swine from devastating pathogens and to
stabilize the global food supply. Introduction of PigMatrix into
the iVAX vaccine design platform has enabled demonstration
of a heterologous prime-boost immunization strategy that
protects against IAV and can be applied to other pathogens
(51). Additionally, integrating PigMatrix into iVAX enables the
comparison of related strains of highly variable pathogens to
guide rational selection of candidate vaccine strains to advance to
field trials and implementation. These novel computational tools
are a valuable resource for countering pig-associated zoonotic
disease to lower burden on pig production and human health.

In the context of epidemic outbreaks of infectious diseases,
SLA-restricted epitopes can be identified and vaccines designed
in under 48 h (84). Therefore, this computational “vaccines
on demand” approach can be applied to other swine diseases
of economic importance to accelerate vaccine development
timelines by rapidly generating vaccine designs ready for
production and testing. We note that requests for access to the
tools for academic research can be directed to the University
of Georgia technology transfer office, where two of the authors
(ADG and LM) now have faculty appointments.

As illustrated here, vaccine design using the PigMatrix and
the iVAX toolkit, may offer some advantages over standard
approaches to developing vaccines for pathogens affecting the
pork industry. PigMatrix and iVAX tools can be used to (i)
accelerate vaccine design for new and emerging pathogens;
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(ii) identify highly conserved epitopes from the sequences of
diverse strains that are able to drive cross-protective immune
responses, reducing the need for developing a vaccine for each
new strain of a pathogen; (iii) identify potential regulatory T cell
epitopes; (iv) improve existing vaccines by engineering in more
T cell epitopes or removing regulatory T cell epitopes; and (v) to
predict the efficacy of existing vaccines against newer circulating
strains of pathogens.
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