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Editorial on the Research Topic

Bone inside-out and outside-in signals: Control of body homeostasis
Summary

Bone mass is controlled by the coordinated actions of osteoblasts and osteoclasts,

cells responsible for bone formation or bone resorption, respectively. It is now clear that

the actions of these two cell types, as well as their differentiation from the corresponding

precursor cells, is modulated by osteocytes, the cells embedded in the bone matrix. Recent

findings indicate that in addition to their role in controlling bone mass, bone cells act as

endocrine cells, and all cells produce factors able to regulate the function of distal organs,

including muscle, pancreas, kidney and brain, among others. Conversely, hormones and

growth factors produced by cells, other tissues modulate bone modeling and remodeling

by altering osteoblast, osteoclast and osteocyte functions. Further, more recently studies

provided evidence for a role of the gut microbiome on bone homeostasis. Understanding

the molecular signature of bone cells, and how these cells are affected by circulating

factors has provided new means to treat conditions with altered bone mass and strength.

The purpose of this Research Topic Issue was to discuss different aspects of bone

interactions with other tissues, both inside-out (from bone cells to other organs) and

outside-in (from other cells/tissues to bone cells). This Research Topic included 20

articles from which 7 are originals and 13 reviews. The following is a summary of the

articles included in the Research Topic Issue.
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Role of osteocytes as
endocrine cells

Osteocytes, previously believed to be inert cells embedded in

the bone matrix, are emerging as key regulators of bone

homeostasis, as well as cells producing molecules that signal to

other tissues and organs. Fibroblast growth factor 23, of

osteocytic fibroblast growth factor 23 (FGF23) is produced and

secreted primarily by osteocytes both as an active molecule and

as truncated, inactive fragments that can be detected in the

circulation. The authors describe the response of osteocytes to

increased phosphate and 1,25(OH)2 vitamin D, leading to the

production of FGF23. In turn, FGF23 activate renal receptors to

control circulating phosphate levels. The synthesis and secretion

of FGF23 is regulated by positive and negative signals.

Osteocytes can “sense” phosphate levels by a mechanism not

completely understood, but that appears to involve the type III

sodium phosphate co-transporter PiT2 (Slc20a2). In addition to

high phosphate levels, FGF23 is positively regulated by pro-

inflammatory molecules and iron deficiency, hypoxia and

erythropoietin, TGFb, calcineurin and NFAT, as well as

transcriptional regulation by parathyroid hormone, and

calcitriol. FGF23 can be also negatively regulated by PHEX,

DMP1, insulin and IGF-1. In addition to these regulations, the

level and activity of FGF23 is regulated by intracellular

proteolytic enzymes. Upon enzymatic cleavage, FGF23

becomes inactive. Another important emerging function of

osteocytes is the control of bone matrix properties. Thus,

osteocytes have the ability to communicate and modulate the

generation and function of osteoblasts and osteoclasts, which

can in turn alter the properties of bone matrix through changes

in bone formation and resorption. In addition, it has been

proposed that osteocytes themselves have the ability to

remodel the perilacunar space, changing the composition of

the bone matrix. Studies in vitro described in this article used

osteocytic cell lines, and their response to endocrine, paracrine,

and mechanical stimuli has been studied using 2D and 3D

systems. In vivo studies focused mainly on the perilacunar

remodeling during lactation and hibernation, with emphasis in

the consequences of these conditions on mineral composition

and structure, as well as in the role of osteocytic genes on

collagen degradation. More recent studies have shown the role of

osteocytes in osteolytic metastasis. While reviewing the current

understanding on how on how osteocytes regulate the growth of

bone metastatic tumors bone metastatic tumors, the authors

proposed both protective and enhancing effect of osteocytes on

tumor growth and metastasis. For example, osteocytes can

promote prostate cancer cell proliferation, migration, and

invasion via the release of growth-derived factor 15 (GDF15),

and osteocyte apoptosis within lytic multiple myeloma lesions

leads to increased sclerostin and RANKL production, generating

a negative bone remodeling balance. This is followed by
Frontiers in Endocrinology 02
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activation of Notch signaling and increased myeloma cell

proliferation. Other studies have shown an inhibitory effect of

osteocytic Cx43 on cancer cell growth, mediated at least in part

but the release of ATP though Cx43 hemichannels.
Osteocalcin and its
endocrine functions

Osteoblasts and osteocytes are proposed to be endocrine

cells, producing and releasing osteocalcin and sclerostin, which

in turn are able to act on cells and tissues outside the bone,

fulfilling the definition of “hormones”. Osteocalcin (g-
carboxyglutamic acid, Gla, protein) is synthesized as pro-

hormone by osteoblasts, it is later cleaved g-carboxylated,
which increases the affinity of the protein for the mineral

component of the bone matrix. g-carboxylated osteocalcin can

be stored within the bone and later be released by bone resorbing

osteoclasts. Full deletion of the osteocalcin gene has shown

disparate effects on bone mass and strength. These differences

could be due to different manners for gene deletion, differences

in the mouse genetic background, sex, age in which the analyses

were made. Discrepancies were also reported on the role of

osteocalcin in energy metabolism, with disparate consequences

on glucose levels, body weight, muscle weight, and male

reproduction depending on the osteocalcin deficiency model

used. Studies were also performed in mice lacking the Bglap

(exon 4) and Bglap2 genes to determine the role of osteocalcin in

the central nervous system, prompted by observations during

animal handling. Further studies showed that mice deficient in

osteocalcin exhibit hippocampal atrophy and dramatic changes

in neurotransmitter levels in the central nervous system. These

effects are ascribed to the lack of circulating maternal

uncarboxylated osteocalcin, which can cross the placenta and

fetal blood-brain barrier. In another set of studies using the same

mouse model, it was shown that osteocalcin regulates output of

parasympathetic neurons under acute stress response, and that

sympathetic input in this condition increases osteocalcin

production by osteoblasts. These effects of osteocalcin have not

been tested in the other osteocalcin deficiency models.

Osteocalcin secreted by osteoblasts and released from the

bone matrix by osteoclasts has been shown to regulate muscle

mass independently of its effects on systemic energy homeostasis.

Circulating osteocalcin levels in older postmenopausal women

with osteoporosis correlate with skeletal muscle mass and their

OAK-score-related risk of falling. This study also found plasma

carboxylated osteocalcin levels to positively correlate with lean

body mass and muscle function. Thus, circulating osteocalcin

could mediate bone-muscle crosstalk, and its levels could be

predictive of muscle function and fall risk in older post-

menopausal women. Further, bone-secreted factors such as

lipocalin influence hypothalamic feeding behavior, suggesting
frontiersin.org
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the existence of a bone-brain axis. Factors responsible for

neuropsychological symptoms were evaluated in the serum of

patients with primary hyperparathyroidism. The study found that

serum osteocalcin levels positively correlate with parathyroid

hormone (PTH) levels and negatively correlate with State-Trait

Anxiety Inventory (STAI). Thus, serum osteocalcin was associated

with psychological performance in patients with primary

hyperparathyroidism and could mediate bone-brain crosstalk.
Outside-in signaling: hematopoietic
and endocrine cells regulate bone
cell function

Wnt signaling plays a critical role in skeletal homeostasis.

The skeletal role for Wnt secreted by hematopoietic cells was

examined by conditionally deleting Wnt modifying enzyme

PORCN using Vav-Cre transgenic mice. Hematopoietic Porcn

deletion did not affect normal skeletal development but delayed

fracture healing. These mice possessed fewer osteoclasts at the

fracture callus causing a delay in callus remodeling. Calcitonin is

a small peptide hormone secreted by the thyroid gland in

response to increases in serum calcium levels. It inhibits

osteoclastic bone resorption and associated release of skeletal

calcium. Calcitonin also enhances osteoblastic bone formation,

but the underlying mechanism was not fully understood,

especially because the calcitonin receptor is present only in

osteoclasts and not osteoblasts. It is now reported that

calcitonin induces bone formation by increasing the

expression of the clastokine Wnt10b in osteoclasts in

ovariectomized rat models of osteoporosis, indicating a

thyroid-bone crosstalk.
Lipid regulation by
bone-produced molecules

Sclerostin is a potent inhibitor of Wnt signaling that is

mainly produced by mature osteocytes. Through its interaction

with LRP4/5/6, sclerostin has been shown to stimulate

adipogenesis by inhibiting Wnt signaling. Although no

evidence of changes in adipose tissue in patients with absence

of sclerostin has been reported, clinical studies showed positive

correlations between serum sclerostin levels and fat mass and the

incidence of metabolic disorders. Studies in vitro and in animal

models support the role of sclerostin on adipogenesis and fat

mass. Another set of studies showed that sclerostin has direct

effects in the kidney, regulating calcium excretion and the

synthesis of 1a,25(OH)2D, thereby contributing to the control

of mineral homeostasis. Others have shown that sclerostin can

affect the cardiovascular system via inhibition of vascular

calcification, and that its inhibition can lead to elevated risk of
Frontiers in Endocrinology 03
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cardiovascular adverse events. Serum sclerostin was found to be

significantly lower in patients with non-alcoholic fatty liver

disease (NFALD) patients compared to non-NFALD patients.

In NFALD patients, serum sclerostin levels negatively correlated

with metabolic parameters including fatty liver index and

triglyceride levels. These findings indicate the existence of a

bone-liver crosstalk playing a role in abnormal bone metabolism

in NFALD patients and suggest the utility of serum sclerostin as

a biomarker for bone disease in NFALD patients.

In addition of utilizing glucose as source of energy,

osteoblasts are able to internalize and metabolize lipids. In a

review by Alekos et al., the mechanism by which disruption of

lipid metabolism in osteoblasts affects the skeleton and whole

body lipid homeostasis is discussed. In particular, the evidence

supporting the requirement for fatty acid oxidation in

osteoblasts and the detrimental consequences of its inhibition

on the skeleton and bone repair following fractures. Further,

fatty acid oxidation is regulated by bone anabolic treatments,

and the review describes how Wnt and parathyroid hormone

signaling. In particular, LRP5 deletion and expression of a gain

of function mutant lead to opposite effects on lipids markers,

with increase and decrease in fat mass and serum triglycerides

and free fatty acid, respectively. These effects of Wnt signaling

are dependent on b-catenin expression, suggesting that

canonical Wnt signaling is involved in the regulation of lipid

metabolism by osteoblasts. Evidence also suggests that

parathyroid hormone and 1,25 dihydrocycholecalciferol

influence fatty acid oxidation at least in vitro/ex vivo, and that

intermittent PTH administration might induce the release of

fatty acids from adipocyte to fuel osteoblast anabolic activity.

The review further discusses the consequences of dyslipidemia in

the skeleton, and how hyperlipidemia impacts the response of

bone to anabolic signals. Thus, increase lipids induce the release

of Wnt inhibitors, and accumulation of oxidized lipids inhibits

PTH signaling. In addition, dyslipidemia leads to insulin

resistance in osteoblasts, which might contribute to bone loss

associated with this condition. PPARg, a transcription factor that

regulates adipogenesis has been identified as a potential link

between hyperlipidemia and bone loss. Metabolic diseases

detrimentally affect the bone. Both hyperglycemia and

ketogenic diet diminished bone mass, microstructure and

strength due to enhanced osteoclast and diminished

osteoblast activity.
Bone-muscle crosstalk in the
masticatory system

Further evidence of the role of bone as a endocrine organ,

and the crosstalk with skeletal muscle is described in the

masticatory system. In addition of biomechanical interaction

between bone and muscle, the authors describe the role of
frontiersin.org
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myostatin, IGF-1 and IL-6 as mediators of the communication

between the two tissues. The authors further discuss the clinical

evidence supporting the biochemical interaction between muscle

and bone at the masticatory system. For example, muscle-

released IL-6 is proposed to mediate mandibular remodeling

in tempomandibular disorders and potentially, the deleterious

effects on mandibular bone following muscle paralysis by

botulinum toxin. Conversely, bone-derived osteocalcin has

been linked to masticatory muscle hypertrophy. Thus,

osteocalcin can regulate IL-6 levels in skeletal muscle, which in

turn upon release is able to modify bone remodeling, creating a

feedback loop between bone and muscle. Other biochemical

mediators of the bone-muscle interaction are sclerostin and

RANKL, produce and released by osteocytes in bone, and with

catabolic potential in skeletal muscle cells, can be further

evaluated as complementary therapeutical targets for highly

prevalent oral diseases such as periodontitis.
Osteoimmunology

Osteoimmunology is emerging as a new interdisciplinary

field to explore the shared molecules and interactions between

the skeletal and immune systems. Here, a review summarizes the

regulatory roles of T lymphocytes in osteoporosis and the

development of T cell therapy for osteoporosis from

osteoimmunology perspective. The inflammatory response is

related to bone healing due to chronic inflammation can lead

to impaired fracture healing. This review summarizes the

principles of inflammation and provide an update on cellular

interactions and immunomodulation for optimal bone healing.

Interleukin-6 (IL-6) is a pro-inflammatory mediator that plays a

key role in obesity-induced loss of bone microarchitecture by

inducing senescence of mesenchymal stem cells. Bone

regeneration is promoted by human amniotic mesenchymal

stem cells due to paracrine functions on immune-regulation,

anti-inflammation and vascularized tissue regeneration. The

review focus on the therapeutic effects and mechanisms of this

cells in promoting bone regeneration in joint diseases and bone

defects. Inflammasomes are multiprotein complex of the innate

immune system responsible for secretion of pro-inflammatory

cytokines. The chronic inflammatory microenvironment

induced by aging or estrogen deficiency activates the NLRP3

inflammasome. The review about NLRP3 Inflammasome

highlights the function of NLRP3 inflammasome in

osteoporosis as a role in the pathogenesis of osteoporosis by

affecting the differentiation of osteoblasts and osteoclasts.

providing information on new strategies for managing

osteoporosis. Further, the TNF-mediated inflammatory

osteoclastogenesis is also considered providing potential

therapeutic strategies to selectively treat inflammatory bone
Frontiers in Endocrinology 04
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resorption, without undesirable effects on normal bone

remodeling or immune response in disease settings. HIV

infection leads toward an inflammatory state associated with

chronic and immune dysregulation activation and involve the

OPG/RANKL/RANK system. It also provides antiretroviral

therapy-related detrimental effects on bone metabolism.
Bone-nervous system interactions

Orthopaedic pain management remains a clinical and societal

challenge. The skeleton is well-innervated, but its function

remains under-appreciated. Understanding the signaling

between bone and nerve during skeletal development, fracture

healing and aging will lead to a better comprehension of skeletal

pain and better therapeutic strategies to alleviate orthopaedic pain.
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The optimal treatment for complex fractures and large bone defects is an important

unsolved issue in orthopedics and related specialties. Approximately 5–10% of fractures

fail to heal and develop non-unions. Bone healing can be characterized by three partially

overlapping phases: the inflammatory phase, the repair phase, and the remodeling

phase. Eventual healing is highly dependent on the initial inflammatory phase, which is

affected by both the local and systemic responses to the injurious stimulus. Furthermore,

immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular

communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular

exchange, inhibition of the natural processes of acute inflammation, and its resolution, or

chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture

healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key

factors for successful, robust bone healing. Recent studies demonstrated the therapeutic

potential of immunomodulation for bone healing by the preconditioning of MSCs to

empower their immunosuppressive properties. Preconditioned MSCs (also known as

“primed/ licensed/ activated” MSCs) are cultured first with pro-inflammatory cytokines

(e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory

environment prior to their intended application. Another approach of immunomodulation

for bone healing is the resolution of inflammation with anti-inflammatory cytokines such

as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and

bone healing and provide an update on cellular interactions and immunomodulation for

optimal bone healing.

Keywords: bone healing, immunomodulation, inflammation, mesenchymal stromal cell, preconditioning,

pro-inflammatory cytokines, anti-inflammatory cytokines

INTRODUCTION

The optimal treatment for complex fractures and large bone defects is an important unsolved
issue in orthopedics and related specialties. In the United States alone, there are ∼8 million bone
fractures annually; 5–10% of fractures fail to heal and develop a non-union (1). The average cost
for treatment of a bone non-union is estimated to be >US$ 10,000 (2).

Bone healing after injury is a complex biological and biomechanical process. Bone healing can
be characterized by three partially overlapping phases: the inflammatory phase, the repair phase,
and the remodeling phase (3). Eventual healing is highly dependent on the initial inflammatory
phase, which is affected by both the local and systemic responses to the injurious stimulus.
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Furthermore, immune cells and mesenchymal stromal cells
(MSCs) participate in critical inter-cellular communication or
crosstalk to modulate bone healing. Thus, understanding and
regulating inflammation is one of the key factors for successful,
robust bone healing.

This review will summarize the principles of inflammation
and bone healing, and provide an update on cellular interactions
and immunomodulation for optimal bone healing.

WHAT IS INFLAMMATION?

Inflammation is the protective response of tissue to a noxious
stimulus, leading to both the removal of harmful stimuli, and
the initiation of the healing process (4, 5). Acute inflammation
is marked by capillary dilatation and leukocytic migration and
infiltration to the local area; this leads to the clinical symptoms of
redness, heat, pain, and loss of function (6).

Acute Inflammation
Acute inflammation is initiated by endogenous or exogenous
adverse stimuli (4, 6). The acute inflammatory response
after injury peaks within the first 24–48 h and is generally
complete after 7 days (7, 8). In acute inflammation, tissue-
resident cells including tissue macrophages, dendritic cells,
lymphocytes, endothelial cells, fibroblasts, and mast cells
recognize invading pathogens, or tissue injury byproducts,
and release a variety of pro-inflammatory mediators including
cytokines, chemokines, and growth factors; this results in
the infiltration of polymorphonuclear neutrophils (PMNs),
monocytes/macrophages, and lymphocytes into the injured site.
PMNs phagocytose and eliminate invading pathogens and tissue
debris. Macrophages are polarized to the M1 phenotype by
damage-associated molecular patterns (DAMPs, e.g., apoptotic
cells and their byproducts), pathogen-associated molecular
patterns (PAMPs, e.g., bacterial endotoxin, lipopolysaccharide
[LPS]), and pro-inflammatory cytokines (e.g., interferon γ

[INFγ], tumor necrosis factor α [TNFα], interleukin 1β [IL1β])
(6, 9). During acute inflammation, M1 macrophages contribute
to host defense as well as amplify the inflammatory reaction
and recruit additional immune cells (10). M1 macrophages
phagocytose and remove micro-organisms, necrotic tissue,
and the provisional fibrin matrix (5, 6, 10). In addition,
M1 macrophages secrete pro-inflammatory and chemotactic
mediators, such as TNFα, IL1β, IL6, and C-C motif chemokine 2
(CCL2) (known as monocyte chemotactic protein 1 [MCP1]) (5,
6). These mediators initiate further recruitment of inflammatory
cells and MSCs (5, 6).

The Resolution of Inflammation
The resolution of inflammation was traditionally characterized as
a passive process (11, 12). However, more recently, the resolution
of inflammation is thought to be an active process, regulated by
various mediators and immune cells (13).

The resolution process begins a few hours after the acute
inflammatory response is initiated. First, the initial inflammatory
stimuli are eliminated; subsequently, pro-inflammatory

mediators are suspended, whereas anti-inflammatory (pro-
resolving) mediators, such as IL4, IL10, and IL13, and CCL2,
are promoted. PMNs cease to infiltrate the injury site and
undergo apoptosis and subsequent efferocytosis by macrophages
(14). Efferocytosis is the removal of apoptotic cells that are
swiftly engulfed and digested by macrophages. Macrophages are
polarized from a pro-inflammatory M1 phenotype to an anti-
inflammatory tissue-repair M2 phenotype by anti-inflammatory
cytokines, resulting in the advancement of the healing processes
(9, 15).

Recently it has been proposed that the resolution of acute
inflammation may not terminate the local immune response.
Subsequent immunological activity after the resolution of the
acute inflammatory stage is termed “the post-resolution stage,” to
obtain a state of “adapted (or adaptive) homeostasis” at the injury
site (13, 16). Adapted homeostasis alters the innate immune
environment of tissues after the resolution of inflammation,
including modifying the biochemical, phenotypic, and functional
aspects of affected cells (13). This new adapted homeostatic
environment may lead to new set-points and ranges of immune
response, and is important for the maintenance of immune
tolerance. This is an area of ongoing active research.

Chronic Inflammation
Chronic inflammation is a state in which acute inflammation,
fibrosis, and repair occur simultaneously (17). In chronic
inflammation, monocytes/macrophages, lymphocytes,
fibroblasts, and other cells are present at the injury site (17, 18).
Examples of chronic inflammation include periprosthetic
osteolysis due to wear particles after total joint arthroplasty, and
autoimmune diseases such as rheumatoid arthritis and systemic
lupus erythematosus (SLE) (9, 17). The failure of the resolution
stage may lead to chronic inflammation, which may persist for
prolonged periods of several weeks, or in some cases, months
to years (9, 17). In chronic inflammation, adaptive homeostasis
is not achieved. Continued production of pro-inflammatory
cytokines such as IFNγ and TNFα continues to polarize
macrophages to a pro-inflammatory M1 phenotype rather than
an anti-inflammatory tissue-repair M2 phenotype. Therefore,
chronic inflammation fails to establish an adaptive homeostatic
state (9).

WHAT IS BONE HEALING?

Bone healing is an intricate regenerative process which can
be classified into primary (direct) and secondary (indirect)
bone healing (3, 19). Primary bone healing is uncommon in
the process of fracture healing and occurs under extremely
rigid fixation without any displacement of bony fragments.
The fracture site is bridged by Haversian systems (or osteons),
similar to the normal bone remodeling. Bone healing by
Haversian systems has little or no inflammatory response and
is a slow healing process that takes from a few months to a
few years to achieve complete healing (3, 19). On the other
hand, secondary bone healing is the most common form of
fracture healing. Generally, the process of secondary bone
healing is characterized by three partially overlapping phases:
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the inflammatory phase, the repair phase, and the remodeling
phase (3) (Figure 1). Eventual healing is highly dependent
on the initial inflammatory phase. Furthermore, immune cells
and bone marrow-derived MSCs (BM-MSCs) participate in
critical inter-cellular communication or crosstalk to modulate
bone healing.

Inflammatory Phase
An inflammatory response occurs immediately following bone
fracture. The trauma leads to blood vessel rupture inside
and surrounding the fracture site, resulting in a hematoma.
The hematoma micro-environment is initially characterized by
local hypoxia, acidity, and lower temperature, and is rich in

FIGURE 1 | Schematic summary of the stages of bone healing and the temporal pattern of the relative immune cells and cytokines/growth factors expression. Bone

healing can be viewed as a three-stage biological phase (inflammation, repair, and remodeling) which can be further divided into six main sub-steps: hematoma,

inflammation, soft callus formation, hard callus formation, remodeling, bone healing. After fracture, immune cells including PMNs, NK cells, mast cells, and platelets

(platelets are not truly cells as they have no nuclei) are activated in the early stage of the inflammation and the secreted cytokines/chemokines subsequently recruit

and activate monocytes/macrophages to further play important roles throughout this process. The pro-inflammatory cytokines including IL1, IL6, TNFα are essential

signals during the early stages of bone fracture. In addition, TNFα increases again in the late repair phase, and several pro-inflammatory cytokines (e.g., IL1, IL6,

TNFα) are highly expressed in the remodeling phase. The control switch of expression patterns from a pro-inflammatory to an anti-inflammatory response (IL4, IL10,

IL13) in the late stages of inflammation is critical to fracture repair.
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calcium and lactic acid (20). The hematoma works as a scaffold
for recruited inflammatory cells and a variety of cytokines,
including IL1, IL6, TNFα, CCL2, and others, to initiate the
inflammatory cascade (20). First, PMNs are recruited and
then monocytes/macrophages infiltrate into the fracture site
(21). Macrophages are polarized to the M1 phenotype. After
infiltration of macrophages, the immune response shifts toward
adaptive immunity, reflected by the invasion of lymphocytes into
the fracture zone. PMNs and macrophages clear the area of dead
cells and debris, and the process transforms to the resolution of
inflammation, which is a complex and well-regulated activity.
In this process, the agents initiating the inflammatory response
and the synthesis of pro-inflammatory mediators are reduced,
and the immune cells are gradually cleared from the tissue (9).
Osteomacs, a special subtype of macrophages residing in bone
tissues, are distributed among bone lining cells within both
endosteum and periosteum and contribute bone homeostasis.
Osteomacs not only sense the original injurious stimulus and
initiate the inflammatory cascade, but also provide a source
of molecules that begins the essential cellular events for bone
healing (22, 23).

During the resolution of acute inflammation, macrophages
are polarized from an M1 phenotype to an M2 phenotype
by anti-inflammatory cytokines such as IL4, IL10, and IL13.
BM-MSCs are attracted locally by cytokines such as TNFα
(24) and stromal cell-derived factor 1 (SDF1) (known as
chemokine C-X-C motif chemokine ligand 12 [CXCL12]).
Recruited inflammatory cells and BM-MSCs participate in
critical inter-cellular communication or crosstalk via pro-
inflammatory cytokines, anti-inflammatory cytokines, as well
as transforming growth factor β (TGFβ), bone morphogenetic
proteins (BMPs), and growth factors (e.g., vascular endothelial
growth factor [VEGF], platelet-derived growth factor [PDGF]
and fibroblast growth factor-2 [FGF-2]) to initiate osteogenesis
and angiogenesis (25). This process could also create a reparative
granuloma forming a template for the following formation of
callus (26). The acute inflammatory response peaks within 24–
48 h and disappears at about 1-week post-fracture.

Repair Phase
During the repair phase, callus is formed as vascular
buds grow into the area, and the collagen matrix is
laid down. Callus formation has two types of processes:
intramembranous ossification and endochondral ossification
(27). Intramembranous ossification occurs at the periosteum
and forms hard callus directly. Periosteal MSCs differentiate
into osteoprogenitor cells, which subsequently proliferate and
differentiate into osteoblasts that directly form woven bone.
Endochondral ossification occurs at the endosteum and bone
marrow, and forms soft callus and then hard callus. BM-
MSCs differentiate into chondrocytes and secrete a cartilage
matrix which forms a cartilaginous template. Chondrocytes
subsequently undergo hypertrophic differentiation and
mineralize the surrounding matrix to form cartilaginous
callus. Finally, hypertrophic chondrocytes undergo apoptosis,
resulting in vascular invasion and migration of osteoblasts.

Cartilage matrix subsequently coverts to bone matrix (27). Pro-
inflammatory cytokines including IL1 and IL6 are absent during
this phase (19). TNFα is also diminished in the early repair phase
but increases in the late repair phase (24). In the endochondral
ossification process, TNFα facilitates chondrocyte apoptosis,
resorption of mineralized cartilage, and vascularization (24, 28).
Lower levels of TNFα also enhance osteoblast proliferation but
high levels inhibit these processes (24). In addition, osteomacs
are enriched at sites of bone formation, forming a canopy-like
structure over sites of active cuboidal osteoblasts. Osteomacs
are associated with maturing of bone tissues in the repair and
remodeling phases (22, 23). Alternatively, osteoclasts are highly
differentiated multinucleated cells that degrade bone.

Remodeling Phase
At the late stage of bone healing, bone is restored to its original
structure, shape, and mechanical properties by remodeling. The
balance between osteoblastic and osteoclastic activity which
results in lamellar bone deposition and bone resorption plays
an important role during the remodeling stage (19, 27). Several
pro-inflammatory cytokines (e.g., IL1, IL6, and TNFα) are highly
expressed (3, 19, 26).

IS INFLAMMATION NECESSARY TO
OBTAIN BONE HEALING?

Inflammation is the crucial first step for bone healing as described
above. However, deficiency and inhibition of acute inflammation
can lead to impaired bone healing. For example, it is well-
known that drugs such as non-steroidal anti-inflammatory drugs
(NSAIDs), corticosteroids, chemotherapeutic agents and others
increase the risk for non-union (29, 30). In addition, excess acute
inflammation due to severe injuries such as polytrauma, and
open fracture also increases the risk for impaired bone healing
(31). Furthermore, chronic inflammation is detrimental to bone
healing (31).

Deficiency and Inhibition of Acute
Inflammation
NOD/SCID-IL2Rγcnull mice are innate and adaptive
immunodeficient mice that lack functional monocytes, dendritic
cells, natural killer cells, and lymphocytes (32). In addition,
there is a defect in the common gamma-chain of the IL2
receptor (γc) such that signaling of IL-2, IL-4, IL-7, IL-9, IL-15,
and IL-21 is defective (33). The fracture healing process in
NOD/SCID-IL2Rγcnull mice demonstrates a callus whose bone
content is unaffected during the early healing stage; however,
the callus is reduced during the late healing phase and the
amount of cartilage is significantly increased, indicating delayed
endochondral ossification (34).

The pro-inflammatory cytokine TNFα has a complex
role during bone healing, demonstrating biphasic peaks at
72 h and 3 weeks after injury (35). TNFα-receptor-deficient
mice showed delayed endochondral and intramembranous
bone formation (24, 36, 37). Furthermore, TNFα knockout
mice demonstrated poor endochondral bone repair after

Frontiers in Endocrinology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 38612

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Maruyama et al. Immunomodulation and Bone Healing

fracture, but had normal skeletogenesis, implicating TNFα
signaling specifically in early fracture repair (38). IL6 has
been shown to increase osteoclastogenesis (39). IL6 knockout
mice demonstrated delayed fracture healing, with decreased
osteoclastogenesis and impaired callus formation, but showed
comparable bone healing and strength in the late stage of
fracture healing (40, 41). The IL6 signal has two different
pathways: the classic signaling pathway via the membrane-
bound receptor (mLI-6R) and the trans-signaling pathway via
its soluble form (sIL6R) (42). Recent studies using a fracture
model in rats demonstrated that the classic signaling pathway
regulates the immune response and bone healing, whereas the
trans-signaling pathway has a minor effect on the immune
response and does not influence bone healing (43); rather it has
negative effects on bone healing after severe trauma (44). IL17A,
secreted mainly by γδ T cells, has also been characterized as
an inflammatory cytokine (45). IL17A expression is induced in
the early phase of bone healing and stimulates the proliferation
and osteoblastic differentiation of BM-MSCs (45–47). IL17A
knockout mice exhibited delayed callus formation and lower
bone mineral density due to a decrease in osteoblastic bone
formation (45). CCL2 is an important chemokine expressed
early in inflammatory conditions. CCL2 deficient mice showed
diminished infiltration of macrophages and BM-MSCs, and
impaired vascularization, resulting in delayed fracture healing,
and less callus formation (48). Thus, pro-inflammatory cytokines
and chemokines are critical to bone healing. Conversely,
although IL1β promotes the proliferation and differentiation of
murine pre-osteoblasts in vitro, IL1β receptor knockout mice had
normal bone healing (49).

Prostaglandin E2 (PGE2) plays a key role in bone metabolism
including homeostasis, inflammation, and healing (50, 51).
Cyclooxygenase 2 (COX-2) is a key enzyme important to
PGE2 synthesis. COX-2 knockout mice exhibited reduced
osteoblastogenesis and impaired intramembranous and
endochondral bone healing (52). NSAIDs have analgesic,
antipyretic, and anti-inflammatory effects, and are frequently
used to treat musculoskeletal conditions. Continuous use of
NSAIDs is associated with delayed bone healing and non-
union via inhibition of the COX2-PGE2 pathway (53, 54).
In our previous study, co-culture of murine BM-MSCs
with undifferentiated M0, pro-inflammatory M1, or anti-
inflammatory M2 macrophages showed that celecoxib, a COX-2
selective NSAID, reduced bone mineralization in all co-cultures
but most dramatically in the BM-MSC-M1 co-cultures (55). This
study re-emphasized the importance of an initial transient acute
inflammatory period during fracture healing.

Excess of Inflammation vs. Bone Healing
Excessive acute inflammation can be caused by several stimuli
including microbial infection, surgical intervention, and injury
due to mechanical, chemical, electrical, or thermal trauma
(56), leading to the excessive production of pro-inflammatory
cytokines (56, 57). TNFα stimulates osteoclastogenesis and
inhibits osteoblast function (58). TNFα overexpression increases
NFκB and the mitogen-activated protein kinases (MAPKs),
increasing the release of cytokines and chemokines and leading

to the activation of osteoclasts (58). In addition, TNFα inhibits
BM-MSC differentiation into osteoblasts via the ubiquitin E3
ligase Wwp1 (59, 60). In polytrauma, excessive infiltration
of activated neutrophils to the fracture site leads to poor
fracture healing (21). Coculture of human BM-MSC with CD4+
T cells promoted increased expression of bone markers and
mineralization, however, coculture of human BM-MSC with
CD8+ T cells did not (61). Patients with impaired fracture
healing had a lower CD4+/CD8+ ratio compared to patients
with healed fractures (62). These data indicated that CD4+
T cells promoted osteogenic differentiation of human BM-
MSCs. On the other hand, in patients with severe trauma, the
CD4+/CD8+ ratio has been reported to be decreased (63). A
rat model of tibial fracture with severe overlying muscle injury
demonstrated not only excessive and prolonged infiltration of
T cells but also a low CD4+/CD8+ ratio at 14 and 28 days,
compared to a rat model of tibial fracture only. Furthermore, this
rat model of tibial fracture with muscle injury showed persistence
of M1 macrophages, resulting in impaired bone healing (64).
Thus, excessive and/or prolonged acute inflammation alters the
balance of inflammatory cells and inflammatory cytokines, which
may lead to poor bone healing.

Chronic Inflammation vs. Bone Healing
Chronic inflammation can be highly detrimental to bone
healing. In chronic inflammation, TNFα and the NFκB
signaling pathways are continuously upregulated, resulting in
the differentiation and activation of osteoclasts (6, 65–68). High
and persistent TNFα levels damage tissues and reduce bone
volume (58). In the context of high TNFα levels, the eroded
bone surface, which is a parameter of bone resorption, was
significantly increased histomorphometrically in patients with
inflammatory diseases, such as rheumatoid arthritis, Crohn’s
disease, and bronchial asthma (69). Chronically elevated NFκB
activity was associated with the impaired ability of BM-MSCs
to form bone (70). Chronic inflammation due to polyethylene
particles induced the activation of NFκB pathways, leading to
bone resorption in both the femoral intramedullary continuous
polyethylene particle infusion model (71) and in the murine
calvarial model (72). In addition, prolonged M1-macrophage
activation continuously produced cytokines, resulting in bone
resorption via increased osteoclast activity and suppression of
bone formation by osteoblasts (5). Therefore, failed bone healing
in chronic inflammation can be caused by the imbalance of
M1/M2 macrophages (5).

WHAT HAPPENS IF BONE HEALING DOES
NOT OCCUR?

According to the U.S. Food and Drug Administration (FDA),
non-union is defined as a fractured bone that has not healed
after a minimum of 9 months since the injury and shows no
radiographic progressive bone healing for a minimum of 3
consecutive months (73). Although different definitions have
been proposed, non-unions can be radiologically categorized as
hypertrophic and atrophic non-unions (74).
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Hypertrophic Non-union
On radiographs, a hypertrophic non-union is seen as a
large broad callus facing the radiolucent fracture gap and
is referred to as a horse-shoe or elephant-foot non-union
(75). Hypertrophic non-union is believed to be caused by
inadequate immobilization to maintain the necessary vascularity
and biologic viability for complete bone healing to occur (76,
77). However, a previous in vitro study (78) demonstrated
that cell viability and osteogenic ability of human osteoblasts
isolated from hypertrophic non-unions were decreased. Iwakura
et al. (79) showed that hypertrophic non-union tissue contained
mesenchymal progenitor cells with multilineage capacity, but
their proliferative capacity was decreased. Thus, the biological
mechanisms and immunoregulatory controls in hypertrophic
non-union remain largely unknown.

Atrophic Non-union
Atrophic non-union refers to an inadequate or poorly
vascularized mesenchymal tissue with very limited potential for
successful healing of the bone ends. Radiographically, there is
little callus formation around a fibrous tissue-filled fracture gap
(75). An in vitro study demonstrated that the fibroblast-like cells
isolated from atrophic non-union tissues in humans had lower
cell proliferation and osteogenic ability (80). El-Jawhari et al. (81)
showed that BM-MSCs isolated from the iliac crest in patients
with a non-union had low proliferative capacity and osteogenic
ability compared with those with successful union. In addition,
the passage-zero cultured BM-MSCs treated with a mixture of
IFNγ, TNFα, IL1, and IL17 showed lower gene expression of
indoleamine 2,3-dioxygenase (IDO), prostaglandin E synthetase
2 (PGES2), and TGFβ1, indicating reduced immunosuppressive
potential. The immunoregulatory properties of cells in atrophic
non-unions have not been fully clarified.

CAN WE MODULATE INFLAMMATION TO
FACILITATE HEALING?

As stated previously, an initial and optimal transient stage
of acute inflammation is a crucial event during fracture
healing. One approach to facilitating bone healing by means
of immunomodulation is the preconditioning of MSCs
to empower their immunosuppressive properties (82).
Preconditioned MSCs (also known as “primed/ licensed/
activated” MSCs) are cultured first with pro-inflammatory
cytokines or exposed to hypoxic conditions for a few days
to mimic the inflammatory microenvironment prior to their
intended application in in vitro and in vivo studies in animals and
humans (e.g., differentiation into special cell lineages, loading
into scaffolds, and administration to animals and humans).
Another approach involves the resolution of inflammation with
anti-inflammatory cytokines.

Preconditioned MSC With
Pro-Inflammatory Cytokines
Addition of different combinations of inflammatory cytokines
to cell culture can dramatically affect the secretory profile

and osteogenic ability of MSCs (Figure 2, Table 1). IFNγ-
preconditioned MSCs upregulated IDO and the secretion
of immunomodulatory molecules, such as PGE2, hepatocyte
growth factor (HGF), TGFβ, and CCL2 (82, 89). IFNγ-
preconditioned MSCs also suppressed CD4+ and CD 8+ T cell
and NK cell proliferation and polarized macrophages to an M2
phenotype (87, 90). However, there are no studies concerning the
osteogenic ability of IFNγ-preconditioned MSCs.

TNFα preconditioning also promotes immunoregulatory
mediators such as PGE2, IDO, and HGF, but this is less
pronounced compared to IFNγ preconditioning (82, 89).
TNFα-preconditioned human adipose tissue-derived MSCs
(AT-MSCs) (83) and their exosomes (84) promoted the
proliferation and osteogenic differentiation of human primary
osteoblastic cells. Another study demonstrated that TNFα-
preconditioned human AT-MSCs reduced collagen type
I gene expression but increased proliferation and ALP
activity (85). Similarly, preconditioned human BM-MSCs
exposed to TNFα enhanced their osteogenic capacity
(86). However, our previous in vitro study demonstrated
that preconditioning of murine BM-MSCs using TNFα
alone or a combination TNFα and IFNγ did not promote
osteogenesis; however, a combination of TNFα and LPS
enhanced osteogenic differentiation including ALP activity and
matrix mineralization (87).

IL17A-preconditioned MSCs increased IL6 and regulatory T
cell generation and inhibited Th1 cytokine secretion (TNFα,
IFNγ, IL2, and IL10) (91). In a rat calvarial defect model,
the direct application of IL17A inhibited osteoblast precursor
cells and bone regeneration (92). In other studies, IL17A
promoted osteoblastic differentiation (46, 93, 94) and inhibited
adipogenic differentiation (95) in human BM-MSCs. Ono et
al. demonstrated that IL17A accelerated osteoblastogenesis in
vitro and in vivo in mice (45). A recent study demonstrated
that IL17 stimulated the osteogenic differentiation of the murine
BM-MSC niche by using IL6 and IL1β signaling to activate
ERK1/2, STAT3, and AKT (47). When these BM-MSCs were
exposed to IL17 in 3D coculture with osteocytes, the BM-MSCs
showed enhanced osteogenesis. However, studies concerning
the osteogenic ability of IL17A-preconditioned MSCs were
not reported.

The effects of preconditioning of MSCs by other pro-
inflammatory cytokines such as IL6, IL8, or IL17F have been
reported. IL6-preconditioned human AT-MSCs demonstrated
increased ALP activity and mineralization (85, 88). IL8-
preconditioned human AT-MSCs did not show changes in
proliferation or osteogenic gene expression, but had reduced
bone nodule formation (85). IL17F-preconditioned human
AT-MSCs had decreased proliferation but enhanced ALP
activity (85).

These in vitro studies suggest that the osteogenic ability
of preconditioned MSCs may be influenced not only by
pro-inflammatory cytokines but also by the species selected
and the tissue of origin. Interestingly, there are few in
vivo studies concerning the efficacy of preconditioned MSCs
using pro-inflammatory cytokines; further study is needed in
this area.
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FIGURE 2 | Schematic summary of the cellular and molecular effects after preconditioning of MSCs. The upper small rectangle boxes depict the different stimuli used

to precondition MSCs. The middle level boxes indicate the upregulation of cytokines and chemokines by MSCs after stimulation. The effects of preconditioned MSCs

on a cellular level are represented on the bottom of the figure. The stimuli factors and their respectively triggered outputs are linked by matched color arrows and

boxes. IL17A-preconditioned MSCs increase IL6 secretion and regulatory T cell generation and inhibit Th1 cytokine secretion such as TNFα, IFNγ, IL2, and IL10.

IFNγ-preconditioned MSCs promote the secretion of immunomodulatory molecules such as IDO, PGE2, HGF, TGFβ, and CCL2, suppress T cell and NK cell

proliferation and polarize macrophages to an M2 phenotype. TNFα-preconditioned MSCs promote the secretion of immunoregulatory mediators such as PGE2, IDO,

and HGF, suppress T cell proliferation. Hypoxia-preconditioned MSCs promote the secretion of PGE2, IDO, VEGF, and bFGF, suppress T cell proliferation, and

polarize macrophages to an M2 phenotype.

Preconditioned MSC With Hypoxia
The effects of hypoxia-preconditioning on the
immunomodulatory and osteogenic capacities of MSCs
have become increasingly relevant, particularly as the potential
therapeutic conditions of MSCs have an oxygen tension between
1 and 11%, compared to normal ambient oxygen tension (21%
O2) (82, 89). Downstream signaling of hypoxia-inducible factors
(HIFs) modulates VEGF expression and activation of SDF1
and CXCR4, thus implicating hypoxia as a modifiable element
to increase MSC migration and bone healing (96). The HIF1α
pathway is tightly linked to skeletal development and bone
repair; mice exposed to hypoxic conditions had increased
vascularity and bone healing via HIF1α and VEGF mediated
pathways (97). MSCs cultured under hypoxic conditions
maintain or increase their proliferation rates with increased
secretion of growth factors, including VEGF, basic FGF, and
PDGF-BB (98–100). In addition, increased lactate production
by MSCs under hypoxic conditions could contribute to the
polarization of macrophages to an anti-inflammatory M2
phenotype (101).

A recent systematic review paper (102) described that
MSCs cultured under severe hypoxic conditions (<2% O2)
with long-term exposure increased their proliferation rate and
inhibited osteogenic differentiation, whereas MSCs cultured
under moderate hypoxic conditions (2–5% O2) with short-term
or cyclic exposure had accelerated osteogenic differentiation and
inhibited osteoclast function in vitro.

Although in vivo applications of hypoxia-preconditioned
MSCs for bone healing are limited (Table 2), Lee et al.
studied human BM-MSCs that were expanded under hypoxia
with 1% O2 and seeded on hydroxyapatite (HA)/tricalcium
phosphate (TCP)-based scaffolds. These hypoxia-preconditioned
BM-MSCs/HA/TCP-based scaffolds increased collagen tissue
formation in a subcutaneous transplantation model in mice
(103). A 21-months-old aged male rat model of hypoxia-
preconditioned BM-MSCs with dimethyloxalylglycine (DMOG),
a prolyl hydroxylase inhibitor, under 1%O2 conditions improved
the repair of a critical-sized mandibular defect (106). The
intramuscular injection of hypoxia-preconditioned human BM-
MSCs under 1% O2 for 48 h exhibited markedly increased cell
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TABLE 1 | Immunomodulation for bone healing by the preconditioning of MSCs with pro-inflammatory cytokines in vitro.

Preconditioning of MSCs with pro-inflammatory cytokines Results

Stimulus Duration Species Type of MSCs

TNFα 3 days Human AT-MSCs TNFα-preconditioned human AT-MSCs (83) and their exosomes (84) promoted the proliferation and

osteogenic differentiation of human primary osteoblastic cells.

TNFα 3 days Human AT-MSCs TNFα-preconditioned human AT-MSCs reduced collagen type I gene expression but increased their

proliferation and ALP activity (85).

TNFα 3 days Human BM-MSCs TNFα-preconditioned human BM-MSCs increased their ALP activity and mineralization (86).

TNFα + LPS 3 days Murine BM-MSCs A combination of TNFα and LPS enhanced osteogenic differentiation including ALP activity and

matrix mineralization; however, TNFα alone or a combination (TNFα and IFNγ) did not promote

osteogenesis (87).

IL6 3 days Human AT-MSCs IL6-preconditioned human AT-MSCs stimulated ALP activity and mineralization (88).

IL8 3 days Human AT-MSCs IL8-preconditioned human AT-MSCs did not affect proliferation or osteogenic gene expression but

reduced bone nodule formation (85).

IL17F 3 days Human AT-MSCs IL17F-preconditioned human AT-MSCs decreased their proliferation but enhanced ALP activity (85).

AT-MSCs, adipose tissue-derived mesenchymal stromal cells; BM-MSCs, bone marrow-derived mesenchymal stromal cells.

TABLE 2 | Immunomodulation for bone healing by hypoxia-reconditioned MSC in vivo.

Hypoxia-preconditioning Study models Carriers of cells Results

Hypoxic condition Duration Species Type of MSCs

1% O2 - Human BM-MSCs A subcutaneous transplantation

model in immunocompromised

mice

HA/TCP scaffolds Hypoxia-preconditioned MSCs/HA/TCP

scaffolds had increased bone tissue formation,

as measured by histological analysis (103).

1% O2 96 h+ Rat BM-MSCs A critical-sized mandibular defect

model in 21-months-old aged

male SD rats

Gelatin sponges Hypoxia-preconditioned BM-MSCs/gelatin

sponges showed accelerated angiogenesis

and osteogenesis and improved bone healing

as measured by microCT and histological

analyses (104).

1% O2 3 days Human BM-MSCs A critical-sized femoral bone

defect model in male athymic

rats (10–12 weeks old)

Alginate hydrogels Hypoxia-preconditioned MSC

spheroids/alginate hydrogels accelerated

angiogenesis at 2 weeks, and improved bone

healing and mechanical strength at 12 weeks,

as measured by microCT, mechanical testing,

and histological analysis (105).

BM-MSC. bone marrow-derived mesenchymal stromal cells; HA, hydroxyapatite; TCP, tricalcium phosphate; DMOG, dimethyloxalylglycine.

survival over 4 weeks in mice (107). A spheroid of hypoxia-
preconditioned human BM-MSCs were cultured under 1% O2

for 3 days (105). Hypoxia-preconditioned BM-MSC spheroids
had high osteogenic differentiation and VEGF secretion in vitro,
and an alginate hydrogel containing hypoxia-preconditioned
BM-MSC spheroids improved bone healing of a critical-sized
femoral bone defect in male athymic rats at the age of 10–12
weeks. Thus, although the molecular mechanisms of hypoxic
conditioning on MSCs remain unclear, these results demonstrate
the translatability of biochemical and in vitro studies of MSC
hypoxia to in vivo therapies, even under challenging conditions
such as critical-sized defects in aged models.

Immunomodulation by Accelerating the
Resolution of Inflammation via Local
Delivery of Anti-inflammatory Cytokines
Direct application of anti-inflammatory cytokines can modify
the microenvironment and promote bone healing, particularly

when consideration is given to the timing and delivery
method (Table 3). Anti-inflammatory cytokines IL4 and IL13
inhibit the proliferation of human osteoblasts (115) but
increase collagen secretion, ALP expression, and mineralization
(116). Alternatively, IL4 decreased osteogenic differentiation
in monoculture of mouse BM-MSCs (108) and human AT-
MSCs (88). However, IL4 and IL13 stimulate the polarization
of macrophages from the inflammatory M1 phenotype to the
anti-inflammatory M2 phenotype (117), and crosstalk between
MSCs and macrophages is critical for successful bone healing
(5). Therefore, monoculture models may not accurately reflect
the full immunomodulatory and osteogenic potential of anti-
inflammatory cytokines in vivo. An MSC-macrophage coculture
model using either primary murine BM-MSCs (55) or pre-
osteoblastic MC3T3 cells (109) with M1 macrophages showed
enhanced bone mineralization and ALP activity. Moreover, the
addition of IL4 at 72 h to polarize the M1 macrophages to
an M2 phenotype further increased calcified matrix formation,
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TABLE 3 | Immunomodulation for bone healing by the resolution of inflammation with anti-inflammatory cytokines.

Anti-inflammatory

cytokines

Studies Models Delivery methods Results

IL4 In vitro Monoculture - IL4 decreased osteogenic differentiation in monoculture

of mouse BM-MSCs (108), human AT-MSCs (88).

IL4 In vitro MSC-macrophage coculture - IL4 enhanced bone mineralization and ALP activity of

murine MSCs (55) or pre-osteoblastic MC3T3 cells (109)

in coculture with M1 macrophages.

IL4 In vitro MSC-macrophage coculture - The addition of IL4 at 72 h to polarize the M1

macrophages to an M2 phenotype further increased

calcified matrix formation, compared to introducing IL4

earlier (110).

IL4, IL13 In vivo A murine bone defect model An IL4 and IL13 loaded collagen

scaffolds

A collagen scaffold containing IL4 and IL13 increased

callus formation in an in vivo murine bone defect model

(111).

IL4 In vivo A rat calvarial defect model Daily injection of IL4 into the

scaffold from day 3 to day 7

Low dose (10 ng) IL4 significantly increased bone

formation and vascularization, with favorable M1/M2

polarization ratios, compared to higher doses (50 ng and

100 ng) of IL4 or none (112).

IL4 In vivo A murine distal femoral

bone marrow cavity model

Genetically modified IL4

secreting MSCs

Genetically modified IL4 secreting MSCs injected into the

murine distal femoral bone marrow cavity increased

bone mineralization (113).

IL4 In vivo A mouse calvarial model

with PE

Daily local IL4 injection Bone loss was significantly decreased following IL4

administration to PE treated calvaria; increased M1/M2

ratio in the PE treated calvaria, which decreased with

addition of IL4 (114).

IL4 In vivo A mouse continuous PE

femoral intramedullary

infusion model

IL4 was infused into mouse distal

femurs by osmotic pump

Continuous local IL4 delivery was an effective means to

prevent particle-induced bone loss and enhance bone

structural properties in the context of wear

particle-induced inflammation (72).

AT-MSCs, adipose tissue-derived mesenchymal stromal cells; BM-MSCs, bone marrow-derived mesenchymal stromal cells; PE, polyethylene particle.

compared to introducing IL4 earlier (109, 110). Thus, acute
inflammation is necessary to initiate bone healing; the specific
timing of the resolution of inflammation is critical for optimal
bone formation in vitro.

Others have demonstrated that a collagen scaffold
containing IL4 and IL13 increased callus formation in an
in vivo murine bone defect model (111). Zheng et al. (112)
implanted a decellularized bone matrix (DBM) scaffold into
a calvarial defect in rats and performed daily injection of
different IL4 doses (0, 10, 50, and 100 ng) through the skin
directly over the scaffold from day 3 to 7 after surgery.
They found that a rat cranial bone defect model with low
dose (10 ng) IL4 loaded into decellularized bone matrix
significantly increased bone formation and vascularization,
with favorable M1/M2 polarization ratios, compared to higher
doses (50 and 100 ng) of IL4 or matrix alone. Indeed, as
immunomodulation to improve bone healing becomes a
therapeutic strategy, immunomodulatory scaffolds are becoming
more complex. Other studies have fabricated a functional
scaffold with differential release of immunomodulatory
molecules, such as a decellularized bone scaffold with
sustained release of IL4 via biotin-streptavidin binding
(118) and a collagen scaffold with poly(lactic-co-glycolic
acid)-multistage silicon particles composite microspheres
releasing IL4 (119). A more recent method to provide controlled,

direct release of anti-inflammatory cytokines is through
cell modification.

Our group (108) has established two types of genetically
modified IL-4 secreting BM-MSCs using lentiviral vectors:
one is a continuously-IL4-overexpressing BM-MSC driven by
the cytomegalovirus (CMV) promoter, and the other is an
NFκB-sensing-IL4-overexpressing BM-MSC driven by the NFκB
promoter. NFκB-sensing-IL4-overexpressing BM-MSCs produce
IL4 whenNFκB is activated; thus, these cells secrete IL4 under the
conditions of an inflammatory stimulus only. Transplantation of
both types of genetically modified IL-4 secreting BM-MSCs into
the murine distal femoral bone marrow cavity increased bone
mineralization (113).

Although these in vivo studies demonstrated the therapeutic
effect of IL4 and IL13 for bone healing, a comprehensive
comparison of the optimal dose and delivery timing andmethods
(e.g., biomaterials and genetically modified MSCs, etc.) of pro-
inflammatory cytokines for bone healing is still lacking; further
in vivo studies are needed.

IL10 is another potent anti-inflammatory cytokine that can
affect bone formation. Mechanistic studies in mice found that
IL10 promotes chondrocyte proliferation and differentiation
via the bone morphogenetic protein (BMP) pathway, thus
influencing endochondral bone formation (120). IL10 deficient
mice showed suppressed bone formation and osteoblastogenesis,
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FIGURE 3 | Potential strategies of immunomodulation for bone healing in acute (A) and chronic (B) inflammation. The optimal inflammatory process for bone healing

is mediated by an initial and optimal transient stage of acute inflammation, followed by the resolution of inflammation (green line). Excess (solid red line) or

deficiency/inhibition of acute inflammation (dashed red line), and chronic inflammation (dotted red line) interfere with the healing of bone defects.

resulting in osteopenia and increased bone fragility (121, 122).
However, various concentrations of IL10 exert different effects
on the osteogenesis of human BM-MSCs. Low physiologic
concentrations of IL10 (0.01–1.0 ng/ml) activate the p38/MAPK
signaling pathway to promote osteogenesis, whereas higher
doses of IL10 (10–100 ng/ml) inhibit p38/MAPK signaling
by activating NF-kB, inhibiting osteogenesis (123). An in
vitro osteoblast-osteoclast coculture model demonstrated that
genetically-modified IL10 and TGFβ overexpressing osteoclasts
inhibited osteoblast apoptosis and decreased osteoclast formation
and bone absorption ability (124). Further translational studies
using IL10 and other immunomodulatory molecules are needed.

Immunomodulatory strategies to resolve chronic
inflammatory bone disease apply these same principles but
require more advanced models and the ability to respond to
inflammatory stimuli. For example, in wear particle-induced
chronic inflammation, in vivo studies using a mouse calvarial
model (114) and continuous polyethylene particle femoral
intramedullary infusion model (125) showed that IL4 prevented
bone loss and accelerated bone formation by modulating
local macrophage polarization to an M2 phenotype. In a
recent MSC-macrophage coculture study simulating wear
particle-induced inflammation, we demonstrated that NFκB-
sensing-IL4-overexpressing BM-MSCs decreased ALP activity
and osteocalcin expression (early osteogenic markers) but
increased mineralization using Alizarin red staining (late
osteogenic marker) (126). These results suggest that NFκB-
sensing-IL4-overexpressing BM-MSCs are useful to enhance
osteogenesis at a later stage. In combination with preconditioned
BM-MSCs, which increased early osteogenic markers, these
immunomodulatory strategies may increase bone regeneration
at different stages of chronic bone inflammatory disease.

DISCUSSION

This review summarizes current fundamental knowledge
underlining the importance of acute inflammation for
normal bone healing after injury. Numerous studies have
now substantiated that deficiencies in critical cell crosstalk,
inhibition of the natural processes of acute inflammation
and its resolution, or chronic inflammation due to a
persistent adverse stimulus can lead to impaired fracture
healing. Thus, an initial and optimal transient stage of
acute inflammation is one of the crucial events during
fracture healing.

Once the basic principles associated with normal bone
healing are clearly understood, then potential strategies
for immunomodulation of critical biological events may
be exploited (Figure 3). For example, in vitro studies
demonstrated that preconditioning of MSCs by pro-
inflammatory cytokines or hypoxic conditions enhances
their osteogenic potential. However, a comprehensive
comparison of the osteogenic ability of MSCs derived
from different tissue sources is still limited. In addition,
no study has directly and comprehensively compared
preconditioning of MSCs using different pro-inflammatory
cytokine combinations vs. hypoxic conditions. Furthermore,
there are few in vivo studies concerning the efficacy of
preconditioned MSCs. Thus, the clinical application of
preconditioned MSCs and other novel technologies is
not fully known. Further in vivo translational studies
are needed in this regard. In vitro studies concerning
immunomodulation for the resolution of inflammation
using anti-inflammatory cytokines also demonstrated their
therapeutic potential to improve bone healing. The clinical
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application of immunomodulation for bone healing using
anti-inflammatory cytokines would not be suitable before 3 days
from the onset of acute inflammation. However, the optimal
dose, timing, and methods of delivery of pro-inflammatory
cytokines have not been fully clarified. Furthermore,
similar to preconditioned MSCs, in vivo translational
studies concerning the efficacy of immunomodulation
for inflammatory resolution for bone healing are limited.
Therefore, the therapeutic effects of immunomodulation for
bone healing using preconditioned MSCs, anti-inflammatory
cytokines to suppress inflammation, or a combination of
these strategies should be further evaluated in future in vivo
translational studies.
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Immune imbalance caused bone loss. Osteoimmunology is emerging as a new

interdisciplinary field to explore the shared molecules and interactions between the

skeletal and immune systems. In particular, T lymphocytes (T cells) play pivotal roles

in the regulation of bone health. However, the roles and mechanisms of T cells

in the treatment of osteoporosis are not fully understood. The present review aims

to summarize the essential regulatory roles of T cells in the pathophysiology of

various cases of osteoporosis and the development of T cell therapy for osteoporosis

from osteoimmunology perspective. As T cell-mediated immunomodulation inhibition

reduced bone loss, there is an increasing interest in T cell therapy in an attempt

to treat osteoporosis. In summary, the T cell therapy may be further pursued as an

immunomodulatory strategy for the treatment of osteoporosis, which can provide a novel

perspective for drug development in the future.

Keywords: osteoimmunology, T lymphocytes, osteoporosis, bone formation, bone resorption

INTRODUCTIONS

Osteoporosis is a prevailing metabolic bone disease in both men > 50 years and postmenopausal
women, which increases bone fragility and may further result in bone fractures, thus significantly
leading to serious health problems for patients (1). Worldwide, nearly 200 million people are
diagnosed with osteoporosis annually, even leading to almost 9 million osteoporotic fractures (2).
In the US, it was approximately 53.6 million of the adult population of years > 50 who suffered
from osteoporosis and low bone mass (54% of the population) (3). In fact, osteoporosis patients
not only suffer from the enormous pain and disability but also bring a huge economic burden for
patients and their families. In the US, it has been estimated that the financial costs associated with
bone fractures will reach $25.3 billion by the end of 2025 (4).

In traditional view, osteoporosis was considered as the imbalance of bone remodeling between
osteoclasts and osteoblasts (5). Recently, the immune system was reported to regulate the bone
system, which promoted the emergence of interdisciplinary field of osteoimmunology (6–9). The
immune and bone systems share the same microenvironment. The immune system regulates
osteocytes by the secretion of inflammatory factors and related ligand, which further affects bone
formation and bone resorption (8, 10). T cells, B cells, and cytokines are important regulatory
factors in the bone resorption. Among them, T cells play pivotal roles in the regulation of bone
remodeling (11, 12). The osteoclast differentiation was enhanced, and the bone mineral density was
decreased in the nude mice (T cell deficient), which was due to the immune imbalance of T cells
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promoting osteoclast differentiation and bone resorption (13,
14). In pathophysiological condition, activated T cells secreted
multiple inflammatory factors and related ligands such as TNF-α,
IL-1, IL-6, IL-17, and CD40L, which enhanced bone resorption
and disrupted bone balance, resulting in bone loss (15, 16).
Th17 cells are mainly involved in inducing bone resorption
(osteoclastogenesis) (17), while Treg cells are major suppressors
of bone loss (18, 19) by inhibiting differentiation of monocytes
into osteoclasts (17, 20, 21). These reports indicated that immune
imbalance promoted osteoclast differentiation, further leading to
bone loss. However, the roles of T cells in osteoporosis and the
underlying mechanism of T cells in the regulation of bone system
are still unclear.

Recently, there is an increasing interest in immune therapies
especially T cell therapies for the treatment of osteoporosis
(22). For example, antiretroviral therapy worsens HIV-induced
bone loss (23), which may be an important future approach
to treat osteoporosis in human. That is because T cell
reconstitution induces RANKL and TNFα production by B-
cells and/or T-cells, which further enhancing bone resorption
and bone loss. T cell therapy became the effective strategy
for the treatment of osteoporosis. For example, RANKL/RANK
inhibition may be an attractive approach for the treatment
of postmenopausal osteoporosis (24). Sclareol is a natural
product (initially isolated from the leaves and flowers of Salvia
sclarea) with immune regulation and anti-inflammatory effects,
and it prevents ovariectomy-induced bone loss in vivo and
inhibits osteoclastogenesis in vitro via suppressing NF-κB and
MAPK/ERK signaling pathways (25). Thus, it will be essential
to develop T cell therapy that may be a huge potential for the
treatment of osteoporosis in future clinical applications.

Herein, we briefly highlight the roles of T cells in various
types of osteoporosis and uncover novel mechanisms of
osteoimmunology, which provides new insight for clinical
implications in the treatment of osteoporosis. Nonetheless, the
underlying mechanisms of bone-immune interactions need to be
further dissected, and an accumulative evidence continues to be
made in favor of regulation roles of immune cells in osteoporosis.
Most importantly, the T cell therapy may represent a suitable and
potential approach to reinstate aberrant bone remodeling in the
bone metabolism diseases.

OSTEOIMMUNOLOGY AND THE
REGULATION OF T CELL CYTOKINES IN
OSTEOPOROSIS

Osteoimmunology is the intricate interaction between
the immune system and the bone system (6–9). The

Abbreviations: BMMs, Bone marrow macrophages; BMSCs, bone marrow
stromal cells; Cbfa1, core-binding factor subunit alpha-1; DC, dendritic cell; GCs,
glucocorticoids; GIO, glucocorticoid-induced osteoporosis; GSK-3β, glycogen
synthase kinase 3β; IGF, insulin-like growth factor; IFN, interferon; M-CSF,
macrophage-colony stimulating factor; MSCs, mesenchymal stem cells; NFATc1,
nuclear factor of activated T cells cytoplasmic 1; NKT, natural killer T cells; iNOS,
inducible NOS; RANKL, nuclear factor-kappa-B ligand; OVX, ovariectomized;
OPG, osteoprotegerin; PTH, parathyroid hormone; T cells, T lymphocytes;
TRAF6, TNF receptor associated factor 6; Runx2, Transcription Factor 2; RANK,
receptor activator of NF-kB ligand; RA, rheumatoid arthritis.

RANKL/RANK/OPG pathway is essential for the differentiation
of bone-resorbing osteoclasts and immune regulation (26, 27).
Activated T cells directly produce RANKL, which further
stimulates osteoclast formation (28, 29). RANKL and RANKwere
identified as key factors in the mediation of bone remodeling,
especially in the osteoclast formation (29, 30). Furthermore, the
activated RANK facilitated the expression of tumor necrosis
factor (TNF) receptor-associated factors (TRAFs), such as
TRAF6, which leads to osteoclast differentiation (31, 32). In
OVX mice, the low-dose RANKL of CD8+ Treg cells decreased
the expression of inflammatory and osteoclastogenic cytokines,
thus suppressing bone resorption (33). Multiple cytokines
produced by T cell including interleukin (IL)-12, IL-17, IL-18,
and TNF-α were involved in RANK signaling, and thus play
essential roles in regulating osteoclastogenesis and osteoclast
differentiation (34). In addition, activated T cells suppress
osteoclast differentiation by the antiviral cytokine IFN-γ (35).
Various inflammatory cytokines were necessary and sufficient for
bone metabolism (11). IL-17A also upregulates the expression of
RANK, thus promoting the osteoclastogenic activity of RANKL
(36). All these studies indicated that T cell cytokines play
essential roles in osteoporosis, which may be the potential targets
for the treatment of osteoporosis. Various T cell cytokines are
listed in Table 1.

THE T CELLS IN THE REGULATION OF
VARIOUS OSTEOPOROSIS

T cells perform a dual role in the regulation of bone remodeling:
resting T cells protect osteoclasts from bone resorption, and
activated T cells actively regulate the osteoclasts generation. This
review aims to summarize the regulatory roles of T cells in
various types of osteoporosis such as chronic inflammation-
induced osteoporosis, senile osteoporosis, estrogen deficiency-
induced osteoporosis, parathyroid hormone (PTH)-induced
osteoporosis, and glucocorticoid-induced osteoporosis (GIO).

The Regulatory Roles of T Cells in Chronic
Inflammation-Induced Osteoporosis
Osteoporosis commonly occurred in various chronic
inflammatory diseases, such as rheumatic arthritis (RA),
gout, psoriatic disease, osteoarthritis, and axial spondylarthritis
and even leads to functional disability and increased mortality
(49–52). It is interesting to note that Tregs play pivotal roles
in inflammation-induced bone loss by inhibiting the functions
of Th17 cells (19, 53). In particular, Foxp3+ Treg cells play
an indispensable role in bone and hematopoietic homeostasis
acting on osteoclast development and function (54). In addition,
in inflammation condition, the expression of nuclear factor
of activated T cells cytoplasmic 1 (NFATc1), as well as by
inflammatory cytokines such as TNFα, IL-1β, and IL-6 was
induced and produced to promote osteoclast differentiation
mediated by the RANKL-RANK and calcium signaling (8).
INFγ, the main Th1 cytokine, can strongly inhibit osteoclast
differentiation in vitro through the proteasomal degradation
of TRAF6, indicating that T cells regulate osteoclastogenesis
(28). The T cell subset, Tregs, also suppresses osteoclast
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TABLE 1 | Roles of various T cell cytokines in the regulation of osteoclastogenesis.

Cytokine Source Modulation of immunology Osteoclastogenic function References

RANKL Th17 cells Osteoclast differentiation

dendritic cells (DCs) maturation

Osteoclast activation via RANK (37)

RANK Osteoclasts, DCs DCs activation Osteoclast differentiation and

activation

(38)

OPG Osteoclasts Decoy receptor for RANKL Inhibits osteoclastogenesis (39)

TNFα Th17, macrophage DCs Pro-inflammatory cytokine Indirect osteoclastic activation

through RANKL

(37)

M-CSF Th1 Pro-inflammatory Inhibits osteoclastogenesis (38)

IL-4 Th2 Humoral immunity Inhibits osteoclastogenesis (40)

IL-6 Macrophage, DCs Pro-inflammation, Th17 induction Activation of osteoclastogenesis (41)

IL-7 T cells Pro-inflammatory cytokine Inhibits osteoclast formation (42)

IL-8

IL-10 Regulatory T (Treg) Anti-inflammatory Suppress bone resorption (43)

IL-17 T cells Pro-inflammatory cytokine RANKL expression and vigorous

pro-inflammatory potency

(44)

IL-27 Macrophage and DCs Th1and Treg Th17 induction Inhibits osteoclast formation, blocking

receptor activator of NF-κB

(RANK)-dependent

osteoclastogenesis

(45)

IL-12 Antigen-presenting cells Pro-inflammatory cytokine Inhibits RANKL-stimulated

Osteoclastogenesis

(46)

IL-15 NK cells Pro-inflammatory cytokine Enhances RANK ligand (RANKL) and

macrophage colony-stimulating factor

expression

(47)

IL-23 Macrophage and DCs Th17 induction Indirect osteoclast activation (48)

IFN-γ Th1, NK cells Cellular immunity Inhibits osteoclastogenesis (41)

formation and bone resorbing in vitro (53). CTLA-4 is the
most essential regulator in the Treg-mediated inhibition of
osteoclast differentiation, whereas the major cytokines of
Tregs-TGFβ and IL-10 do not possess any essential roles
(53). All these studies suggest that T cells and their related
cytokine play pivotal roles in the regulation of osteoporosis,
and they may be the potential therapeutic targets for
bone loss.

Generally, chronic inflammatory diseases are associated with
bone resorption. HIV-infected men had low CD4T cells, which
is inversely associated with bone loss (55). Some studies suggest
that T cells are not associated with bone mineral density in
HIV-infected patients treated with combination antiretroviral
therapy (cART) (56). However, cART seems to influence bone
mineral density (BMD) with the protective effect. Therefore,
the regulatory roles for activated T cells in the pathogenesis of
osteoporosis warrant further investigation. In RA patients, the
enhanced osteoclast differentiation and activation lead to bone
erosion and systematic osteoporosis (57). Indeed, inflammatory
cytokines including RANKL, TNFα, IL-6, and IL-1 were elevated
in RA patients, which promoted the osteoclast differentiation
(58). Taken together, these studies suggest that the T cells
may determine the osteoclast differentiation in the chronic
inflammatory diseases, and the T cell regulatory therapy could
potentially have significant impact on the drug development for
osteoporosis. However, whether the T cell therapy is efficient for
osteoporosis in clinical studies needs further investigation.

The Regulation Roles of T Cells in Senile
Osteoporosis
Aging is always accompanied with the imbalance between bone
formation and resorption, causing skeletal microarchitecture
damage and bone loss (59). The production of naïve T cells is
severely impaired due to a decreased output of lymphoid cells
from the bone marrow and the deterioration of the thymus (60).
Incidence and severity of osteoporosis are increased in the older
population (61). The prevalence of low BMD is associated with
immune activation and senescence induced by HIV infection
(62). Total T cells were increased in the bone marrow (BM) with
age, especially the highly differentiated CD8+ T cells without the
expression of the co-stimulatory molecule CD28, while natural
killer T (NKT) cells, monocytes, and naïve CD8+ T cells were
decreased in the BM with age (63). It seems that the immune
system abnormality plays important roles in the regulation of
senile osteoporosis.

Recent discoveries suggest that T cell dysfunction induced
the accumulation of cytokines, immunological mediators, and
transcription factors, which affect osteoclast and osteoblast in the
elderly (64). Cytokines such as IL-6, TNF-α, and IL-1 increased
with age (65, 66). IL-1 and TNF-α activate the inducible NOS
(iNOS) pathway, which inhibited osteoblast differentiation and
enhanced osteoblast apoptosis in vitro (67). IL-12 derived from
T cells, alone or combined with IL-18, was identified to inhibit
osteoclast formation in vitro (68). IL-4 regulated osteoclast
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differentiation through the antagonism between STAT6 and
NF-kB signaling (69). In addition, T cell mediated the bone
balance by the inhibition of osteoclastogenesis through the
crucial immunoregulatory control, mainly OPG expression and
simultaneous production of cytokines (64). IFN-g, IL-12, and
IL-18 inhibited the RANKL-induced maturation and activation
of osteoclasts (64). Furthermore, senescent T cells impaired the
production of IFN-γ, OPG, and osteoclast-inhibiting cytokines,
which increased the incidence of aged osteoporosis. In addition,
cytokines such as TGFβ and RANKL secreted by activated T cells
can activate p38 MAPKs and further regulate bone development
and remodeling. P38α MAPK mediates osteoclast proliferation
and bone remodeling in an aging-dependent manner (70).
Overall, T cells and their cytokines play important roles in the
regulation of aged osteoporosis, which may be the novel targets
for the treatment of osteoporosis, suggesting that T cell therapy
could be used as immunotherapy and may be beneficial in
counteracting immunosenescence in old population. Meanwhile,
in females, osteoporosis occurrence is generally attributed to the
decrease in estrogen, thus leading to estrogen deficiency-induced
osteoporosis. The underlying mechanisms of T cells involved in
themediation of the postmenopausal osteoporosis were dissected
in the next section, The Regulatory Roles of T Cells in Estrogen
Deficiency-Induced Osteoporosis.

The Regulatory Roles of T Cells in
Estrogen Deficiency-Induced Osteoporosis
The loss of estrogen initiates the inflammatory changes of bone-
microenvironment state, inducing a rapid phase of bone loss
leading to osteoporosis in half of postmenopausal women. In
postmenopausal women, estrogen deficiency stimulates CD4+

T cell dysregulation and induces elevated circulating levels
of inflammatory cytokines, especially TNFα, IFN-γ, IL-17,
RANKL, and CD40L (71–74). These cytokines exert impressive
regulatory effects on bone resorption. For example, TNF-α was
overexpressed in the BM in postmenopausal osteoporosis, which
promotes RANKL-induced osteoclast formation through the
activation of NF-κB and PI3K/Akt signaling (74). Besides, TNF-
α was identified to induce both autophagy and apoptosis in
osteoblasts to enhance bone loss in postmenopausal women
(75). Besides, estrogen deficiency increased the number of
the costimulatory factors, CD40L, expressed on activated T
cells, inducing the expressions of M-CSF and RANKL on
stromal cells and downregulating the production of OPG,
ultimately resulting in a remarkable increase in osteoclast
numbers (76, 77). The pro-osteoclastic cytokines, such as IL-
6, TNF-α, and IL-1, were increased significantly in estrogen
deficiency-induced osteoporosis (78). All these studies indicated
that the inflammatory cytokines and costimulatory factors of
T cells changed significantly in estrogen deficiency-induced
osteoporosis, which may provide the novel perspective for the
treatment of bone loss in postmenopausal women.

Moreover, estrogen deficiency stimulates the IL-17
differentiation of Th17 cells (79) and augments the expression
levels of pro-osteoclastogenic cytokines, such as TNF-a, IL-6,
and RANKL, ultimately leading to bone loss. Nevertheless, IL-17

receptor deficiency induced more serious bone loss in OVXmice
than that in control groups, implying that IL-17 may possess the
bone protective effects (80). The pro-osteoclastogenic cytokine
changes were reversed with the supplementary oral estrogen,
indicating that estrogen may suppress Th17 differentiation and
IL-17 production to protect bone health (81). In summary, in
postmenopausal women, both aging and hormonal deficiency
stimulate the deregulation of T cells contributing to the
inflammatory, which increased bone resorption, resulting in
a bone loss or osteoporosis. We believe that focusing on the
potential biological mechanisms of T cells is of paramount
importance for developing novel therapy strategies for the
treatment of postmenopausal osteoporosis. However, further
confirmation in phase I/II trials is needed to validate these
strategies in a broader clinical evaluation.

The Regulatory Roles of T Cells in
PTH-Induced Osteoporosis
PTH is a key calciotropic hormone and a critical regulator
for postnatal skeletal development (82). The secretion of
inflammatory or osteoclastogenic cytokines of T cells and bone
cells was facilitated under long-term PTH administration, such
as RANKL, TNF-α, and IL-17, which promoted the bone
resorption (83). PTH induced bone loss via the expansion of
intestinal TNF+ T and Th17 cells, and the increase in their S1P-
receptor-1 mediated egress from the intestine and recruitment
to the BM (84). So targeting the gut microbiota or T cell
migration may represent novel therapeutic strategies for PTH-
induced osteoporosis. In addition, PTH exploited CD4+ T cells
to induce TNFα production that enhances the formation of
IL-17A secreting Th17T cells. Both TNFα and IL-17 further
facilitated the development of an increased RANKL/OPG ratio
favorable to osteoclastic bone resorption (85). Moreover, PTH
boosted the production of TNF-α and RANKL in CD4+ T cells,
which triggered osteoclastogenic generation and bone resorption
activity (86). Clinical studies also showed that PTH treatment
increased Th17 cell numbers and the IL-17 production in humans
with primary hyperparathyroidism (34). IL-17 intensified PTH-
induced bone loss through the stimulation of the RANKL
production in osteoblast-lineage cells, which is parallel to the
roles of IL-17 in estrogen deficiency-induced osteoporosis.

Notably, T cells also secreted PTH receptors involved in the
regulation of trabecular bone development (87). For example, T
cells promoted the signals of BMSC proliferation through the
combination of CD40L on T cells and its receptor on BMSC,
weakening the bone catabolic activity of cPTH, leading to a
reduction of the RANKL to OPG ratio and osteoclastogenic
activity (88). Several studies found that the intermittent PTH
administration at low dosage increased bone formation and bone
mass, thus attenuating bone loss (89, 90). The deletion of PTH
receptor in BM mesenchymal progenitors results in a rapid
increase in BM adipocyte accompanied with the reduction of
bone mass. Given the essential regulatory roles of T cells for the
PTH-induced bone loss, particular attention will be paid toward
the combinations of intermittent PTH (iPTH) and T cell therapy
for PTH-induced osteoporosis.
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The Regulatory Roles of T Cells in GIO
Glucocorticoids (GCs) are extensively used for the treatment
of immune and inflammatory disorders due to their powerful
immunosuppressive and anti-inflammatory actions (91, 92).
However, long-term exogenous GC therapy might cause rapid
and pronounced bone loss and subsequently osteoporosis (93,
94). The pathogenesis of GIO was predominantly attributed
to the fact that GCs impaired bone formation by reduction
of osteoblast differentiation and activity via the expression of
the osteoblast-specific transcription factor runt-related Runx2
(95–97). In addition, the long-term GC administration affects
bone remodeling by whittling the insulin-like growth factor
(IGF) in ossification (98). GCs enhanced the expression levels
of RANKL in both osteoblasts and stromal cells, which triggered
osteoclastogenesis and activated osteoclastic bone resorption by
binding to the RANKL receptor RANK (99), thus resulting
in the primary phase of rapid bone loss. On the other hand,
GCs contributed to the apoptosis of certain T cell subsets,
further augmented the secretion of RANKL, and directly induced
osteoclast differentiation (100). Interestingly, different T cell
subsets exhibit distinct sensitivity to GC-induced apoptosis. For
example, Th17 cells, as an osteoclastogenesis-promoting factor,
are resistant to GC-induced apoptosis and cytokine suppression
mostly through the high production of IL-17 and RANKL (79).
Therefore, GC therapy fails to inhibit the Th17 cell activation
and the IL-17 and RANKL production. Excessive GCs could
reduce the production of OPG, further promoting osteoclast
differentiation and resulting in bone resorption. Given above,
we assert that T cell therapy may be effective for the GC-
induced osteoporosis.

T CELL THERAPY FOR OSTEOPOROSIS

T cells and their secreted cytokines are responsible for bone
resorption in various osteoporosis. T cell therapy may be a
potentially therapeutic approach to osteoporosis. For example,
anti-inflammatory therapies have shown good potential in an
animal model, although they have not been widely used clinically
to treat osteoporosis (101). Immune modulation therapy such as
probiotics was considered as a novel strategy for bone loss (102–
104). RANKL was considered as an activator of dendritic cell
(DC) expression in T cells. Anti-RANKL therapeutic antibody
drug, denosumab, has been successfully applied in the treatment
of osteoporosis in clinics (105–107). In addition, a novel
vaccine targeting RANKL by introducing a p-nitrophenylalanine
at a single site in mRANKL immunization could prevent
OVX-induced bone loss in mice (108). Notably, anti-RANKL
antibody inhibited osteoporosis and bone destruction, but
possesses no therapeutic effect on RA disease. Therefore, it is

necessary to rethink about the underlying mechanisms of bone-
related diseases.

Recently, extracts and natural products derived from
traditional Chinese medicine (TCM) have great potential as well
as advantages in the prevention and treatment of osteoporosis
in terms of good therapeutic effect, low toxicity, and side effects
(109, 110), and they have gained increasing attention from the
medical community. For example, polysaccharides derived from
persimmon leaves down-regulated RANKL-induced activation
of mitogen-activated protein kinases (MAPKs) to suppress
the nuclear factor of NFATc1 expression, thus possessing anti-
osteoporotic effects in OVX-induced bone loss. The natural
product cyperenoic acid is a terpenoid isolated from the
medicinal plant Croton crassifolius, and it suppressed osteoclast
differentiation by inhibiting the NF-κB pathway and suppressed
RANKL expression (111). Baohuoside I is an active component
of Herba Epimedii with the immune regulation functions of T
cells and antioxidant activity, which serves as a candidate for
treating postmenopausal osteoporosis (112). All these results
indicated that drugs from TCM possess anti-osteoporosis
effects by the regulation of T cells, and they may show great
potential as therapeutic agents for osteoporosis. However, further
experimental and clinical research remains to be specifically
conducted to explore the cellular and molecular mechanisms of
the drugs from TCM.

CONCLUSION AND PERSPECTIVE

The pathogen clearance of various types of osteoporosis would
be impaired or would delay bone resorption due to the
dysfunction of the T cells. Therefore, understanding the roles of
T cells in the pathogenesis of osteoporosis and the mechanisms
underlying these pathologies between the immune system and
the bone system may lead to the development of new treatments
for osteoporosis. However, further studies, especially clinical
studies, are required to explore the safety of T cell therapy for
bone loss.
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Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded

in bone. These cells exhibit important interactive abilities with other bone cells such

as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond

this local role, osteocytes can also influence the function of distant organs due to the

presence of their sophisticated lacunocanalicular system, which connects osteocyte

dendrites directly to the vasculature. Through these networks, osteocytes sense changes

in circulating metabolites and respond by producing endocrine factors to control

homeostasis. One critical function of osteocytes is to respond to increased blood

phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23

(FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors

(FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of

phosphate transporters, as well as the control of vitamin D metabolizing enzymes to

reduce blood 1,25D. In the first part of this review, we will explore the signals involved in

the positive and negative regulation of FGF23 in osteocytes. In the second portion, we

will bridge bone responses with the review of current knowledge on FGF23 endocrine

functions in the kidneys.

Keywords: osteocyte, FGF23, FGF23 signaling, Klotho, kidney

INTRODUCTION

The mammalian skeleton is formed by several types of bone which interconnect to provide
structural support for the body. In adult humans, the reference value for the skeleton weight
is 10.5 kg (1, 2) representing up to 15% of the average body weight. Bone mass is dynamically
regulated during a lifetime, and subjected to changes with uncontrollable parameters such as age,
gender, genetics, and ethnicity; as well as controllable factors such as lifestyle behaviors including
physical activity levels, smoking and alcohol consumption patterns, and diet (3, 4). Beyond its
important role to enable mobility and provide needed support and structure to the body, bone
represents an important reservoir of several minerals including phosphate and calcium, both of
which are required for proper mineral metabolism and cellular functions (5).

Bone is a mineralized connective tissue formed with three primary cell types that direct intrinsic
skeletal properties: osteoclasts, which resorb mineralized bone; osteoblasts, which form the bone
matrix; and osteocytes, which are considered terminally differentiated osteoblasts (6, 7). Although
morphologically and functionally distinct in the bone, osteoclasts, osteoblasts, and osteocytes are
interdependent and produce growth factors to support each other’s functions as well as responding
in a coordinated manner to metabolic demands, physical stimuli, and structural duties (8). The
three main bone cells are derived from two distinct lineages; osteoblasts and osteocytes derive from
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pluripotent mesenchymal stem cells and share the same
progenitors as fibroblasts and adipocytes (9, 10), whereas
osteoclasts are derived from hematopoietic progenitors in the
monocyte and macrophage lineage (11–13).

The osteocytes, which represent the majority of adult skeletal
cells, are deeply embedded with abilities to communicate locally
with osteoblasts and osteoclasts. This function is necessary to
control skeletal formation as orchestrated by osteoblasts, and
bone resorption dictated by osteoclasts, as well as controlling
the physiological function of distant organs such as the kidney.
Taking advantage of its dendrites, which connect to the
vasculature and give these atypical cells direct access to the
circulation, the osteocyte can send and receive signals with the
vascularized organs. Among the important osteocyte-secreted
factors is fibroblast growth factor-23 (FGF23). Once produced
and secreted by osteocytes, this hormone preferentially acts on
kidney and parathyroid glands to regulate phosphate and vitamin
D homeostasis. FGF23 activity mainly occurs through the
binding of FGF23 to FGF receptor (likely FGFR1), which requires
the presence of its membrane and/or soluble co-receptor Klotho
for a potent FGF23-induced downstream signaling cascade
(14). In this review, the stimulative and repressive regulatory
mechanisms involved in FGF23 production and processing in
osteocytes will be discussed. We will also bridge the control of
FGF23 in osteocytes with highlighting the key signaling pathways
involved in phosphate, 1,25D, calcium, and sodium metabolism
induced by FGF23 in the kidneys.

THE OSTEOCYTE: A CRITICAL BONE AND
ENDOCRINE CELL

As the most prevalent cell in bone, osteocytes have important
roles both within, and outside the skeleton. The osteocytes
are considered as major orchestrators of skeletal activity; these
cells can sense and integrate mechanical and chemical stimuli
from the microenvironment with the goal to properly regulate
bone formation and resorption. Osteocytes derive from mature
and matrix-producing terminally differentiated osteoblasts (6).
During their last phase of differentiation, mature osteoblasts
become embedded in the matrix and generate cellular extensions,
which are future osteocyte dendrites. To establish a sophisticated
and complex network called the lacunocanalicular system, the
dendrites of the newly formed osteocytes are fastened with the
dendrites of existing osteocytes through a multitude of canaliculi
(15). Even after the terminal differentiation of mature osteoblasts
to generate osteocytes, the latter remain active in contributing
to bone remodeling. For instance, osteocytes produce sclerostin
(SOST), which binds to low-density lipoprotein receptor-related
protein (Lrp)5/6, and neutralizes the anabolic Wnt/beta-catenin
pathway (16, 17), thus negatively regulating bone formation.
Osteocytes also produce the receptor activator of nuclear factor-
κB ligand (RANKL) which stimulates osteoclastogenesis, thus
promoting bone resorption (18, 19).

In bone, osteocytes are bathed in canalicular fluid that
delivers and exchanges nutrients, circulating factors, mechanical
signals, and oxygen between the circulation and the “fixed and

embedded” osteocytes (20). During the last decade, the osteocyte
lacunocanalicular network has gained tremendous attention
because of accumulating and convincing evidence describing
osteocytes as amajor endocrine cell, and its role in the production
of critical hormones targeting several organs. One of the most
important osteocyte-secreted factors is FGF23. This hormone
was first characterized as a mammalian “phosphatonin” by
identifying stabilizing mutations in the FGF23 gene in patients
with autosomal dominant hypophosphatemic rickets (ADHR), a
renal phosphate wasting disorder (21).

FGF23 PRODUCTION AND CLEAVAGE IN
OSTEOCYTES

FGF23 is a phosphaturic hormone derived and secreted primarily
by bone osteocytes. Mature, bioactive FGF23 is physiologically
designed to target the kidney to regulate phosphate and vitamin
D homeostasis; and, in a feedback mechanism to control bone
mineralization and FGF23 production (22, 23). The mechanisms
of FGF23 regulation in osteocytes are not fully understood.
Several breakthroughs have been made that greatly improved our
knowledge on the mechanisms of osteocytic FGF23 upregulation
or downregulation through differential signaling pathways, as
well as the pathophysiological response to multiple stimuli. In
addition to several mechanisms involved in the transcriptional
regulation of FGF23, another layer of FGF23 regulation in bone
is the ability of the mature protein to be proteolytically cleaved
within osteocytes to generate inactive FGF23 fragments before its
secretion into the bloodstream (24).

Regulation of Osteocytic FGF23 by
Phosphate, FGF23, FGFR Activation, and
Klotho
Circulating levels of phosphate control FGF23 production
in mammals (25, 26). Although the mechanisms of FGF23
regulation by phosphate are not fully understood, recent studies
have implicated the type III sodium phosphate co-transporter
PiT2 (Slc20a2) as being required for mediating phosphate-
dependent FGF23 production (27). Indeed, in vivo studies using
dietary protocols in PiT2 knock out mice showed that the
deletion of PiT2 results in “inappropriately” normal intact,
bioactive FGF23 in the circulation in response to high or low
phosphate diet, which should normally increase or decrease
FGF23, respectively (27). Using an ex vivo system of cultured long
bone shafts, parallel studies showed that the PiT2 KO bone shafts
failed to undergo Pi-induced FGF23 production, illustrating that
PiT2 could be required for FGF23 induction in mouse bone (27).
These new findings provided interesting insight underlying the
phosphate-dependent regulation of FGF23 secretion, perhaps via
PiT2 regulating phosphate uptake in osteocytes (27) (Figure 1).

In another study, using proteomic analysis to identify
potential upstream sensors in response to elevated phosphate
through dietary intervention, the FGFR1 isoform FGFR1c was
shown to be activated through the phosphorylation of FGFR
substrate 2α (FRS2α, on tyrosine 196) under high phosphate
conditions, but in the absence of an FGF ligand. These
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FIGURE 1 | FGF23 regulation in osteocytes. In osteocytes, FGF23 is positively regulated by different factors and pathways (shown in green). In presence of high

phosphate, the receptor FGFR1 may sense this condition and the adaptor FRS2α is phosphorylated thus activating FGFR1 and the MEK/pERK/EGR1 pathway

leading to FGF23 transcription. It is also possible that the transporter PiT2 senses phosphate increases in osteocyte and responds by inducing FGF23. The activation

of FGFR1 by other FGFs such as FGF2 may induce Pi3K/AKT/pERK/EGR1 leading to FGF23 upregulation. The activation of PTH1R by PTH induces cAMP/PKA and

the transcription factor NURR1 leading to FGF23 induction. Inflammatory conditions are potent FGF23 inducers; lipopolysaccharide (LPS) may bind to osteocyte toll

like receptor 4 (TLR4) and induce MyD88/IRAK/TRAF6/NF-κB to trigger FGF23 transcription (or may act through anemia/hypoxia). The binding of IL-6 to IL-6R in

osteocytes may induce JAK/STAT3 and subsequent FGF23 expression. The cytokines IL-1β and TNF-α can induce NF-κB in osteocytes leading to FGF23

transcription. In the condition of iron deficiency, HIF protein is stabilized, an important mechanism involved in FGF23 upregulation. The active form of vitamin D

(1,25-dihydroxyvitamin D; 1,25D), which results from the conversion of 25-hydroxyvitamin D (25D) inside or outside the osteocyte, could promote the formation of the

complex 1,25D-VDR-RXR which binds the vitamin D receptor element (VDRE, not shown here) and induces FGF23 transcription. The signaling through the

TGF-β-Activin Receptors ALK4/5/7 promotes calcium entry in cell through Orai1 and this process activates calcineurin and NFAT and their binding, which induces

FGF23. Lithium-induced increased intracellular calcium could also increase FGF23 in osteocytes through calcineurin and NFAT activity. An activation of a yet unknown

GPRC could trigger FGF23 transcription through XLαs or Gq/11α and inositol 1,4,5-trisphosphate (IP3) which may activate PKC and stimulate the MAPK pathway.

FGF23 can be negatively regulated by other elements and pathways (shown in red). For instance, insulin can bind to IGFR1 and induce PI3K/AKT/FOXO1 pathway

which represses FGF23. Phex and Dmp1 activities in osteocytes may control FGFR1/PI3KR1/GRB and cell differentiation to restrain FGF23 production. Dmp1 activity

may also neutralize the FAK/MAPK pathway restricting FGF23 expression.

studies were consistent with the idea that phosphate-sensing
mechanisms could control FGF23 production in osteocytes
through ligand-independent FGFR1 activation (28, 29). These
data suggested that high Pi diet-induced serum FGF23 increases
in mice may be mediated by the phosphorylation of FGFR1,
a potential “phosphate receptor” upstream of FGF23, which
induced the mitogen activated protein kinase (MAPK) and
extracellular signal-regulated kinase (ERK) pathways to control

FGF23 synthesis (28). Structural and crystallographic studiesmay
be required to understand how an ion can activate an FGFR, as
well as whether PiT2 is involved in this regulation (Figure 1).

Additionally, in vivo studies have reported that conditional
deletion of FGFR1 specifically from the osteocytes of Hyp
mice, a mouse model of X-linked hypophosphatemia (XLH)
that exhibits elevated FGF23 production, improves the rickets
and osteomalacia phenotype of these mice in association
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with a decrease in both FGF23 bone mRNA and circulating
protein. These mice also undergo an alleviation of their
hypophosphatemic status, as well as an increase of plasma
1,25D levels (30). Furthermore, promoter studies identified that
the activation of FGFR1 signaling through FGF2 is dependent
on the PI3K-AKT pathway in the MC3T3-E1 osteoblastic cell
line, providing evidence that Fgf23 gene promoter activity
is induced by FGFR1 activation (30). In addition to genetic
interventions, pharmacologic-based studies have shown that
activation of FGFR1 induces FGF23 production and leads to
hypophosphatemia, whereas the inhibition of FGFR signaling
attenuates FGF23 production (31) (Figure 1).

Another study by Hori et al. investigated whether phosphate
could induce reactive oxygen species (ROS) in vitro, leading
to increased FGF23 expression. Using the osteoblastic cell line
UMR-106, these investigators showed that elevated phosphate
in the culture media enhances the production of ROS, and that
hydrogen peroxide further boosts FGF23 production in a dose-
dependent manner, an effect which can be neutralized by an
inhibitor of NADPH oxidase (32). These discoveries suggested
that in vitro phosphate directly enhanced FGF23 transcription
by stimulating NADPH-induced ROS production and the MEK-
ERK pathway. How this translates to the signaling in the
osteocyte in vivo will be an interesting facet to this potential
regulatory network.

Circulating FGF23 ismarkedly elevated during chronic kidney
disease (CKD), and this is associated with poor long-term
outcomes. By investigating the regulation of FGF23 through
FGFR1, Hassan et al. demonstrated that the activation of FGFR1
is essential for the high levels of FGF23 observed during both
acute and chronic uremia in mice and rats (33). In addition,
in mice treated with the receptor FGFR1 inhibitor PD173074
by oral gavage followed with an acute kidney injury induction
using folic acid, the prevailing increased FGF23 was reduced
by 50% in calvaria and led to a complete prevention of the
circulating intact FGF23 rises (33). In a more prolonged uremic
condition using a diet with adenine plus high-phosphorus for
14 days to induce CKD, which resulted in high levels of Fgf23
mRNA and serum FGF23 in rats, an oral gavage intervention
with PD173074 given during the last 2 days of treatment
reduced FGF23 induction by 75% in calvaria and completely
normalized circulating FGF23 (33). Therefore, the FGFRs may
play an important role in osteocyte-bloodstream communication
to control FGF23 production.

Asmentioned above, FGF23 signals via the interaction with its
receptor FGFR1c and its specific co-receptor Klotho (14, 34). A
recent investigation has shown that Klotho could be detected in
osteocytes (35) suggesting that FGF23 may be one of the ligands
that activates FGFR1 in osteocytes, thereby regulating the FGF23
gene transcription in a positive feedback loop. The expression of
Klotho in osteocytes has been suggested to contribute to bone
formation and bone volume increases coupled with enhanced
osteoblast activity (35). Although Klotho has been detected in
bone (35), the kidney, parathyroid glands and brain remain
the primary organs with abundant expression of Klotho to
the best of our current knowledge (36–38). However, it is
possible that in response to pathological circumstances, bone cells

could enhance Klotho expression, thus modulating bone FGFR1
signaling via FGF23.

Through proteolytic cleavage of the membrane-bound klotho
(mKL) (39–42), a soluble form of Klotho (sKL) can be liberated
into the circulation (43, 44). Soluble Klotho has been described
to have a direct role to regulate Wnt and MAPK pathways in
osteoblastic UMR-106 cells in concert with the presence of FGF23
(45). Indeed, in vitro studies showed that a co-treatment of
UMR-106 cells with FGF23 and soluble Klotho activated MAPK
signaling, leading to an increase of Dickkopf-1 (DKK1) protein,
a soluble inhibitor of Wnt/beta-catenin signaling (45). The
induction of Dkk1 through FGF23/FGFR/sKL was shown to be
dependent upon the MAPK pathway since the inhibition of this
pathway using theMEK inhibitor U0126 completely abrogated p-
ERK/ERK induction and abolished downstreamDkk1 expression
(45). The binding of the secreted Dkk1 to the receptors Frizzled
(Fz) and Lrp5/6 thus promoted the phosphorylation of β-catenin
and inactivated the Wnt pathway in osteoblasts (45). Other
studies have shown that a treatment of UMR-106 cells with
soluble Klotho and FGF23 dose-dependently increased MAPK
and Egr1 mRNA responses, an effect which was FGFR- and
MEK-dependent, and led to FGF23 upregulation (46). Future
studies are needed to confirm potential expression of Klotho
in osteocytes and under some circumstances whether FGF23
binding to FGFR1-Klotho complex in osteocytes could induce
FGF23 expression.

Signals Involved in the Positive Regulation
of FGF23 by Inflammation and Iron
Inflammation is a complex phenomenon involving multiple
immune and non-immune cells which cooperate to respond
to endogenous and exogenous events by secreting specific
pro-inflammatory and/or anti-inflammatory factors. Pro-
inflammatory stimuli such as the cytokines tumor necrosis factor
alpha (TNFα), interleukin 1β (IL-1β), the tumor necrosis factor-
like weak inducer of apoptosis (TWEAK), and the bacterial
component lipopolysaccharide (LPS) have all been shown to
dose-dependently upregulate FGF23 in the osteocyte-like cell
line IDG-SW3 (47). Particularly, TNF and IL-1β induce FGF23
expression via nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) (47), a major transcription factor
complex involved in the control of cytokines and in the
mediation of multiple pro-inflammatory cellular responses.
The serine/threonine kinase p38 mitogen-activated protein
kinase (p38MAPK), which is activated by several cellular stress
stimuli and involved in the transcriptional activity of NF-κB, is
another positive regulator of FGF23 in bone cells (48). Other
investigations have shown that the serine/threonine kinase
protein kinase C (PKC), which drives FGF23 expression in
response to phorbol ester 12-O-tetradecanoylphorbol-13-acetate
(PMA), can be suppressed by 75% in the presence of the PKCα/β
inhibitor Go6976. These studies suggested that PKC is a positive
regulator of FGF23 synthesis in IDG-SW3 osteocytic cells
via NF-κB (49). Furthermore, Notch signaling, which can be
mediated by pro-inflammatory cytokines such as TNF-α (50),
has been described by Tamamura et al., to positively regulate
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FGF23 expression which colocalizes with Notch signaling
downstream targets, Notch, and Hes1 in mouse osteocytes
and UMR-106 osteoblastic cells (51). A study also identified
a potential new pathway mediated by G protein–IP3/PKC
events to control FGF23 production (52). It was shown that
the ablation of the extra-large Gα subunit (XLαs) or Gq/11α in
osteocyte-like Ocy454 cells activated IP3/PKC and stimulated
the MAPK/ERK1/2 pathway leading to FGF23 induction (52).
It is assumed that the trigger of the IP3/PKC/MAPK pathway is
controlled by a G protein-coupled receptor which remains to be
identified (Figure 1).

More recently, the use of CRISPR/Cas9 technology has helped
to identify control regions for the Fgf23 gene in response to
various inflammatory stimuli in mice. An enhancer site − 16kb
from the transcription start site of the murine Fgf23 gene
was deleted via CRISPR, and this study demonstrated that
FGF23 expression in bone, bone marrow, spleen, liver, thymus,
and intestine was attenuated in response to LPS injection.
This deletion was also associated with decreased intact FGF23
compared to normal mice treated with LPS. Similar effects were
observed in response to direct TNF-α and IL-1β injections,
highlighting the importance of this genomic region in mediating
inflammation-induced FGF23 expression (53). Further studies
showed that an additional proximal enhancer region in Fgf23
mediates LPS-induced FGF23 expression in vivo through binding
motifs to several known transcription factors that mediate
inflammation, including NF-κB (54).

Persistent iron deficiency in mice has been shown to
induce a pro-inflammatory state (55) that induces a heightened
inflammatory response to stimuli such as LPS (55, 56). Both iron
deficiency and inflammation increase FGF23 transcription by
activating among other signaling pathways, Hif1α, and associated
MAPK signaling, in osteocytes (57, 58). Wild type mice fed
an iron deficient diet for 8 and 12 weeks showed 5- and 10-
fold increases of Fgf23 transcripts, respectively, in femur/tibia
samples (57). In vitro, treatment of UMR-106 cells with the
iron chelator, deferoxamine (DFO) resulted in marked increases
in Fgf23 mRNA, partially dependent on MAPK activity in
association with Hif1α stabilization (57, 58) (Figure 1). These
discoveries suggest that absolute iron deficiency, characterized
by a depletion of both iron stores and circulating iron, promotes
FGF23 transcription through Hif1α. Similarly, a functional iron
deficiency via a treatment of mice with hepcidin also increased
bone Fgf23 mRNA expression (58).

The cytokine IL-6, a known marker of inflammatory states
has also been shown to contribute to FGF23 production. In a
mouse model of folic acid–induced acute kidney injury, bone
Fgf23 mRNA expression increased together with serum FGF23
as well as several circulating cytokines including IL-6 (33). When
fed with an adenine diet to induce CKD, IL-6 knock-out mice
failed to increase bone Fgf23 mRNA, resulting in an attenuation
of circulating FGF23 levels in comparison to wild-type mice with
CKD; these data suggest a direct contribution of IL-6 to the
increased FGF23 observed during CKD (59). Further, ex vivo and
in vitro studies have shown that a treatment of calvaria organ
cultures and UMR-106 cells with the IL-6/soluble IL-6 receptor
fusion protein induced STAT3 phosphorylation, and increased

Fgf23 promoter activity, suggesting a direct effect of IL-6 on the
positive regulation of FGF23 expression (59).

Hypoxia and Erythropoietin as Positive
Regulators of FGF23
Hypoxia inducible factors (HIFs) are constitutively expressed
transcription factors that are critical for sensing oxygen and iron
levels in the body. Oxygen and iron are important co-factors
for the function of HIF-prolyl hydroxylase domain enzymes
(HIF-PHDs), which help maintain the constant turnover of
HIFs by marking them for degradation. As stated above, it
was shown that iron deficiency can drive FGF23 expression
in a mouse model of autosomal dominant hypophosphatemic
rickets (ADHR) (57). Wild type and ADHR mice (harboring
the FGF23-R176Q stabilizing ADHR mutation) fed an iron-
deficient diet had elevations in “total” serum FGF23 (intact
bioactive FGF23 + proteolytic fragments), however only iron-
deficient ADHR mice had increases in intact FGF23 due to
their inability to cleave and inactivate the bioactive form of
FGF23. This and subsequent studies helped tie together iron
handling and phosphate homeostasis, a link that can likely be
explained through HIF activity. An iron-deficient state leads to
HIF stabilization due to the lack of iron as a co-factor for the
HIF-PHDs to tag HIF for degradation. In vitro studies have
shown HIF-mediated induction of FGF23 mRNA expression in
two different osteoblast cell lines, as well as evidence of HIF
binding to the FGF23 promoter (60).More recently, a prospective
study in ADHR patients that co-presented with an iron deficiency
phenotype demonstrated that iron repletion in these patients
reduced their circulating levels of FGF23 and normalized serum
phosphate levels. Thus, providing oral iron is a novel therapeutic
approach to this disease (61). This finding was supported by
studies in iron-deficient women showing that rescue of iron
deficiency using iron dextran lowered the prevailing elevated
FGF23 (62). It is important to note the type of intravenous iron
used, as it has been well-documented that certain types of iron
formulations, especially those with carboxymaltose backbones
can cause hypophosphatemia due to elevating intact FGF23
(63), potentially through altering FGF23 intracellular proteolysis
(see below).

Erythropoietin (EPO) is a hormone made in the kidney that
induces new red blood cell production in the bone marrow in
response to anemia or blood loss. Recombinant human EPO
(rhEPO) is currently used as a therapy to treat anemia related
to CKD. Recently, several studies revealed that this hormone
can induce FGF23 expression (64–66). WT mice given acute
rhEPO treatment after 6 h or after 3–4 days of consecutive
injections resulted in elevated total and intact FGF23 and
bone marrow Fgf23 mRNA expression (64). To understand the
effects of chronically elevated EPO, reports using the transgenic
Tg6 mouse model of EPO overexpression showed that these
mice have basal elevations in total and intact FGF23 (65, 67).
Chronic overexpression of EPO can lead to iron deficiency, so to
determine whether the iron deficiency was causing the elevated
FGF23, mice were given iron dextran. This only modestly
decreased intact FGF23, showing that EPO was primarily driving
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FGF23 expression (65). In healthy human subjects, total FGF23
was elevated 24 h after a single rhEPO dose with no changes
in intact FGF23 (66). In another study, a small population of
anemic patients with normal kidney function were given a single
dose of rhEPO. This increased total and intact FGF23 over the
span of 12–18 h after the injection (64). Few in vivo studies
have examined the effect of curing anemia of CKD on mineral
metabolism. Most recently, a single rhEPO injection in CKD
mice did increase total serum FGF23 after 6 and 24 h but had no
effect on intact FGF23 (65).

To mitigate potential adverse effects of high rhEPO treatment,
new strategies are leveraging the HIF system by creating
inhibitors of the HIF prolyl hydroxylases (HIF-PHDs) called
HIF-PHDs inhibitors (HIF-PHI). These therapeutics have
become increasingly important for anemic patients with CKD,
where they promote endogenous EPO production by stabilizing
HIFs. This class of drug also reduce hepcidin levels to increase
iron utilization in tissues thereby creating a synergistic effect
in providing iron availability to newly forming red blood cells
(68). Recent studies have shown in normal mice that several
HIF-PHIs can regulate Fgf23 expression. For instance, FG-4592
(Roxadustat) was shown to increase bone Fgf23 mRNA and
circulating intact FGF23 (58, 66). Elevations in total and intact
FGF23 were observed in WT mice treated with the HIF-PHI
BAY 85-3934 (Molidustat) after 6 h that returned to baseline by
24 h. This study showed that elevated EPO precedes increases in
FGF23 in response to HIF-PHI BAY85-3934, suggesting that the
cause for elevated FGF23 in response to this treatment was due
to elevated EPO. This was confirmed by treating HIF-PHI mice
with an EPO-neutralizing antibody, which completely attenuated
the increased serum total FGF23 (69). A recent paper, however,
showed that EPO and HIF-PHI treatment of anemic mice with
CKD resulted in suppressed FGF23. This study suggested that
under conditions of anemia, as opposed to mice with normal
iron homeostasis, rescuing iron utilization during CKD may be
a more potent suppressor of FGF23 than EPO and HIF-PHIs
are stimulators (70). Although EPO and HIF-PHI can induce
FGF23, further studies are required to delineate the mechanisms
directing these components on osteocytic FGF23 production.

Signals Involved in the Transcriptional
Regulation of FGF23 by PTH
Parathyroid hormone (PTH) is a hormone secreted by the
parathyroid glands that regulates calcium utilization through
its effects on bone, kidney, and intestine (71–73). During
CKD, a secondary hyperparathyroidism occurs in which
PTH is excessively secreted, in response to factors such as
hyperphosphatemia, hypocalcemia, and low 1,25D levels, to
potentially promote elevated FGF23 (74). Using bioinformatics
and chromatin immunoprecipitation assays, studies have
reported that Nurr1 is an essential transcription factor involved
in FGF23 upregulation in response to PTH in UMR-106 cells.
Furthermore, in a mouse model of CKD, the administration of
a calcimimetic, which is known to activate the calcium-sensing
receptor in different tissues (75) with the goal to attenuate PTH
levels and actions, reduced FGF23 concentrations as well as bone

Nurr1 mRNA and protein levels (76). To test the relationships
between PTH and FGF23, a mouse model with constitutive
activation of PTH receptor (PTHR) signaling in osteocytes was
used by Rhee et al. in a report that showed that PTHR activation
increased FGF23 expression in vivo and in vitro through cAMP
and Wnt-dependent mechanisms (77). In addition, Knab et al.
showed that PTH-induced increases in FGF23 expression were
PKA-dependent in osteocyte-like cells, suggesting that FGF23
production is regulated by the cAMP/PKA/Nurr1 pathway in
response to PTH (78) (Figure 1).

Signals Involved in the Positive Regulation
of FGF23 by TGF-β, Calcineurin, and NFAT
TGF-β has been reported to regulate the extracellular matrix
by activating ROS, which increases calcium influx and activates
calcineurin (79–81). Using UMR-106 cells, TGF-β2 has been
described to enhance store-operated Ca2+ entry (SOCE)
and induce the stimulation of FGF23, an effect significantly
attenuated by both the inhibitor of TGF-β type I receptor activin
receptor-like kinases (ALK5, ALK4, and ALK7) SB431542 and
SOCE inhibitor 2-APB (82). Recent investigation has shown
that the synthesis of FGF23 in UMR-106 cells can be induced
by SOCE through Orai1 (83). In addition, the Ca2+ entry
activates the phosphatase calcineurin, which dephosphorylates
nuclear factor of activated T cells (NFAT) thereby stimulating
its transcriptional activity and targeting the Fgf23 gene. This
suggested that FGF23 may be positively regulated by calcineurin-
NFAT signaling (84). Further analyses confirmed that either
the inhibition of calcineurin using ciclosporin A (CsA) and
tacrolimus (FK-506) or the blocking of the interaction between
calcineurin and NFAT using the inhibitor INCA-6 reduced the
abundance of Fgf23 transcripts as well as FGF23 protein (84).
Additionally, lithium, a widely used drug for the treatment of
mood disorders and known to modify Ca2+ signaling, stimulated
the release of FGF23, partially through NF-κB dependent up-
regulation of Orai1 transcription and SOCE in UMR-106 cells
(85) (Figure 1).

Signals Involved in the Positive
Transcriptional Regulation of FGF23 by
Calcitriol
Early FGF23 physiological studies demonstrated that the
administration of 1,25D dose-dependently increased both serum
FGF23 as well as serum inorganic phosphorus in normal rats
(25). In wild type mice with normal renal function, injection of
calcitriol increased serum FGF23 levels 1-week post treatment
by 15-fold. Calcidiol (25-hydroxyvitamin D), although with a
lesser effect could also induce FGF23 in normal mice (86). In a
mouse model of adenine diet-induced CKD, a 5 weeks-regimen
induced a 40-fold increase of circulating FGF23. However, in the
background of a global deletion of Cyp27b1, the gene encoding
the enzyme vitamin D 1-α-hydroxylase involved in the formation
of calcitriol (1(OH)ase−/− mice), only a 2-fold circulating FGF23
was observed with this treatment, suggesting a contribution of
calcitriol to the increased FGF23. At the bone compartment level,
a specific deletion of Cyp27b1 in osteoblasts reduced FGF23
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induction in long bones from 58-fold in normal mice treated
with a 5-weeks adenine diet to a 10-fold induction, suggesting a
potential role of a local osteoblastic vitamin D conversion process
in the induction of bone FGF23. This attenuation of increased
FGF23 was independent of a potential reduction in PTH levels
since plasma PTH remained elevated in response to the adenine
diet-induced CKD in the mice with global deletion of Cyp27b1,
as well as those with osteoblast-specific deletion of Cyp27b1 (86)
(Figure 1).

NEGATIVE REGULATORS OF FGF23

Dentin Matrix Acidic Phosphoprotein 1 and
Phosphate-Regulating Gene With
Homologies to Endopeptidases on the X
Chromosome
The disease XLH is characterized by hypophosphatemia and
impaired mineralization caused by mutations of the phosphate-
regulating gene with homologies to endopeptidases on the X
chromosome (PHEX). Loss of PHEX leads to the overproduction
of FGF23 in osteocytes, causing hypophosphatemia with bone
mineralization impairment, and thus bone fragility. Similar
to XLH, recessive loss-of-function mutations in the dentin
matrix protein-1 (DMP1) gene, a member of small integrin-
binding ligand N-linked glycoprotein (SIBLING) proteins,
is responsible for a human phosphate wasting and impaired
bone mineralization disease termed autosomal recessive
hypophosphatemic rickets type 1 (ARHR1). It was shown that
a lack of DMP1 in both humans and mice markedly increased
FGF23 expression in bone (87).

To gain insight into the mechanisms by which PHEX
mutations upregulate FGF23 expression, studies have been
designed to investigate the local effects in bone from a mouse
model of XLH (Hyp mice) in a normal hormonal environment
in comparison to the function of wild type bone in the abnormal
metabolic environment of Hyp mice. Using a surgical procedure
to perform intramuscular bone cross-transplantations between
wild-type and Hyp mice, a study found that increased FGF23
expression in Hyp bone results from intrinsic PHEX deficiency
from bone, since FGF23 was increased in Hyp osteocytes before
and after explantation into WT mice but was not increased in
WT osteocytes after explantation into Hyp mice. This evidence
suggested that the mechanisms whereby PHEX mutations lead
to increased FGF23 expression in osteocytes is intrinsic to
bone (88).

Similar to the phenotype resulting from PHEX inactivation,
the inactivation of Dmp1 in mice resulted in equivalent intrinsic
bone mineralization defects associated with increased FGF23
expression in osteocytes (89–91). Using cortical bone isolated
from 12-days old WT, Hyp, Dmp1−/−, and Hyp/Dmp1−/−

mice to perform a genome-wide microarray analysis, the
phosphatidylinositol 3-kinase regulatory α subunit (PIK3R1)
and growth factor receptor-bound protein 2 (GRB2) pathways
were identified as potential common signaling controlled by
PHEX and DMP1 to regulate FGF23 promoter activity through
FGFs/FGFR in osteocytes (91, 92) (Figure 1). These findings

highlight that the activation of FGFRs which contribute to
FGF23 production in osteocytes may be independent from
the phosphate sensing pathways described above. Additionally,
recent in vivo and in vitro studies suggested a direct negative
regulation of DMP1 in FGF23 expression in osteocytes by
activating FAK-mediated MAPK signaling, thus coordinating the
extracellular environment of osteocytic lacunae as well as bone
metabolism (93) (Figure 1). The creation of the floxed-Fgf23
mouse has recently emerged as a critical tool to understand
FGF23 function in vivo (94). To this end, flox-Fgf23 mice were
mated to the global eIIa-cre which mimicked the phenotype
of the Fgf23-KO mouse. Fgf23 was also specifically deleted
from either the osteoblast lineage using the Col2.3 promoter to
drive Cre expression, or from late osteoblasts/osteocytes using
the Dmp1-Cre. This resulted in ∼50% reduction of iFGF23,
with compromised ability to respond to changes in phosphate
(94), demonstrating the specificity of osteoblast/osteocyte FGF23
production in response to metabolic changes.

Negative Regulation of FGF23 by Insulin
and Insulin-Like Growth Factor 1
Recent studies reported insulin and insulin-like growth factor
1 (IGF1) as negative regulators of FGF23 production in vitro
as well as in mice and humans (95). In vitro, insulin and
IGF1 down-regulated FGF23 production by inhibiting the
transcription factor forkhead box protein O1 (FOXO1) through
phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt
signaling in UMR-106 cells (95). In vivo, insulin deficiency
resulted in an increase of serum FGF23 concentrations in mice,
which was reversed by insulin administration. Interestingly, in
women subjects, an increase in plasma insulin levels following
an oral glucose administration correlated negatively with plasma
FGF23 concentrations (95) (Figure 1).

FGF23 CLEAVAGE: A PHYSIOLOGICAL
AND ENDOGENOUS MECHANISM TO
ATTENUATE FGF23 BIOACTIVITY

FGF23 is synthesized as a 251-amino acid protein, primarily
in osteocytes. The FGF23 signal peptide is represented by the
first N-terminal 24 aa. The cleavage of the signal peptide results
in a release of a mature peptide that can be secreted as the
bioactive hormone, referred to as “intact” FGF23 (“iFGF23”).
To control the bioactivity of iFGF23, the protein can be
cleaved at the subtilisin-like proprotein convertase (SPC) site
R176HTR179/S180AE (RXXR/SAE motif) generating at least
two fragments identified as an N-terminal fragment which
is structurally similar to other FGF family members and a
more unique C-terminal tail (21, 96). The proteolytic cleavage
of excess iFGF23 represents a critical secondary regulatory
mechanism to maintain stable serum iFGF23 and normal
serum phosphate. The absence of this proteolytic activity in
humans through the FGF23 gene mutations R176Q, R176W,
R179Q, and R179W are causative for autosomal dominant
hypophosphatemic rickets (ADHR), characterized by elevated
intact FGF23 and hypophosphatemia (21) (Figure 2). In mice
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carrying the ADHR point mutation R176Q-Fgf23, in response to
absolute iron deficiency using dietary intervention, the iFGF23
levels were elevated due to the stabilization of the bioactive
FGF23 (57). This elevated iFGF23 condition in response to
iron-deficient diet in ADHR mice caused similar phenotypes
as observed in ADHR/XLH patients, such as alterations in
genes controlling phosphate reabsorption and 1,25D production,
and a hypophosphatemic bone disease (57). These findings
suggested that iron status is a synergistic factor of the ADHR
phenotype, and that ADHR is a disease of gene-environment
interactions (57).

The cleavage of FGF23 is controlled by the serine
endoprotease furin, a subtilisin-like convertase, at the site
R179/S180 in response to several stimuli including PTH (78).
Previous investigations have shown that an iron deficient
state also promotes iFGF23 cleavage leading to increased
secretion of FGF23 fragments but normal iFGF23 in WT
mice (57, 58). In HeLa Cells, it was described that an iron
deficient state induces furin upregulation via the stabilization
of Hif1α (97), a similar mechanism which occurs in osteocytes.
Posttranslational modifications of iFGF23 can occur via the
O-glycosylation of Thr178 in the furin proprotein processing
motif RHT178R179, which stabilized FGF23 (98) (Figure 2).
This glycosylation process at Thr178 is controlled by the
enzymatic actions of N-acetylgalactosaminyltransferase
3 (GALNT3) which can be upregulated under high
phosphate conditions potentially via the control of FGFR1c
activation and the induction of the transcriptional activators
early growth response 1 (EGR1) and ETS variant 5
(ETV5) (28).

In a recent study, Thr178 was identified as a poor substrate
site with limited glycosylation acceptance, likely a protective
mechanism to prevent cellular resistances to FGF23 cleavage.
Interestingly, Thr178 glycosylation was shown to require a
previous glycosylation at Thr171 before generating a furin-
resistant and secreted stable iFGF23 (99) (Figure 2). These
new discoveries suggest that GALNT3 specificity for FGF23
and its ability to control circulating levels of bioactive
FGF23 is a control point achieved by FGF23 being a rather
poor substrate for this enzyme (99). In contrast to the O-
glycosylation induced by GALNT3 which stabilizes FGF23,
the phosphorylation at position S180 by the kinase FAM20C
inhibited O-glycosylation of FGF23, thus promoting FGF23
cleavage (98) (Figure 2). Indeed, recessive inactivating mutations
in human FAM20C cause ARHR type 3 (ARHR3; Raines
syndrome), consistent with its role as an FGF23 de-stabilizer
(100, 101).

Besides furin which is thought to cleave FGF23 mainly
intracellularly, the extracellular proteases of the plasminogen
activation system, tissue-type PA (tPA), and urokinase-type PA
(uPA), as well as plasmin may also display proteolytic activity
on FGF23 protein at the RXXR motif (R176), with potential
additional cleavages at arginine residues R114, R140, R143, R160,
R196, and R228 (102). Of note, Klotho knock out mice as
well as mice with acute kidney injury, which both exhibit
elevated levels of intact FGF23, also display elevated plasminogen
activator inhibitor-1 (103, 104). Thus, the proteolysis of FGF23

by tPA, uPA, and plasmin may potentially regulate the levels
of active FGF23 thus in part, controlling phosphate and
mineral homeostasis.

These collective studies demonstrated that FGF23 protein
cleavage is a dynamic process which can be adjusted after
production at the cell level with phosphorylation and
glycosylation dictating the levels of bioactive FGF23 depending
upon the osteocyte cell state. Certainly, future studies are needed
to understand the regulation of GALNT3, furin, FAM20C, and
potentially the enzymes of the plasminogen activation system in
the coordinated control of FGF23 production and bioactivity.

FGF23 RENAL SIGNAL TRANSDUCTION

In contrast to paracrine FGFs, such as FGF1 and FGF2, endocrine
FGFs such as FGF23 lack the heparin-binding domain in
their C-terminus, which enables escape from the osteocyte cell
matrix after secretion and their actions on distant target organs
including kidney (14, 105). FGF23 acts primarily on kidney to
promote phosphaturia and parallel reductions in 1,25D (14, 34).
The phosphaturic activity of FGF23 is critical in CKD, preventing
and delaying hyperphosphatemia and vascular calcifications
as FGF23 progressively rises with the loss of renal function
(106). In a study among patients undergoing hemodialysis,
high serum phosphate levels across a quartile of patients (>5.5
mg/dl) was associated with a 20% increase in the multivariable
adjusted risk of death, as compared with normal levels (3.5–
4.5 mg/dl) (107). These findings underscore the importance
of controlling circulating phosphate in kidney disease patients.
During CKD, as kidney function decreases with a progressive
decrease of glomerular filtration rate (GFR), the kidney loses
functioning nephrons decreasing the overall excretion capability
of the kidney. The dramatic rise of FGF23 during CKD is
likely to attempt to boost the excretory capacity of the existing
nephrons to maintain normal serum phosphate levels. This is
likely the primary reason why early stage CKD patients exhibit
normal serum phosphate over much of the disease course [for
review (108)].

FGF23 actions are likely mediated by FGF receptors FGFR1c,
FGFR3c, and FGFR4 and the co-receptor Klotho, a single-pass
transmembrane protein highly expressed in kidney (109–113).
FGF23 binds to FGFR1c and the interaction between these
two proteins with the co-receptor Klotho (which dramatically
increases the binding affinity of the complex FGF23-FGFR-
Klotho) triggers potent FGF23 signaling and activity (114). In
kidney, FGF23 signaling on the basolateral side of proximal
nephron cells causes the internalization of the sodium-dependent
phosphate co-transporters NPT2A and NPT2C from the apical
surface. These actions decrease phosphate reabsorption processes
from the kidney (115) (Figure 3). A global genetic deletion of
FGF23 in mice resulted in severe hyperphosphatemia, due to the
absence of the FGF23-mediated phosphaturia mechanism (116).
In addition, FGF23 signaling regulates vitamin Dmetabolism via
the modulation of the vitamin D metabolic enzymes expression
as well as regulating calcium and sodium reabsorption processes
(Figure 3).
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FIGURE 2 | Schematic representation of the possible fates of FGF23. In (A), the amino acid sequence of human FGF23 is shown with its signal peptide, FGFR

binding region, the RXXR motif/cleavage sequence, and the Klotho binding region. In (B), the possible fates of mature FGF23 after the loss of its signal peptide

sequence is displayed. The O-glycosylation of T178, a process controlled by N-acetylgalactosaminyltransferase 3 (GALNT3) and which requires a precedent

glycosylation at T171, stabilizes and prevents FGF23 cleavage. This process may also be stimulated by increased levels of phosphate which induces GALNT3 and the

glycosylation. Genetic modifications such as autosomal dominant hypophosphataemic rickets (ADHR) mutations R176Q, R176W, R179Q, and R179W stabilize

FGF23 and counteract its natural cleavage. Phosphorylation at position S180 by FAM20C increases FGF23 cleavage controlled by the furin/subtilisin-like proprotein

convertase. FGF23 proteolysis may occur at R176 by extracellular proteases of the plasminogen activation system, tissue-type PA (tPA), urokinase-type PA (uPA), and

plasmin. This proteolysis could potentially occur at the RXXR motif (R176) as well as at different arginine residue sites at R115, R140, R143, R160, R196, and R228.

Unbiased Approaches to Understanding
FGF23 Function in Kidney
Unbiased studies using large-scale microarray and gene
expression approaches from FGF23 transgenic (FGF23 Tg)
mice and WT littermates have identified several renal genes
associated with increased FGF23. Particularly, genes involved
in the phosphate reabsorption process such as Npt2a, Pdzk1 (a
scaffolding protein known to interact with Npt2a) and Klotho,
the co-receptor for FGF23 were among the genes which showed
significantly decreased expression (117). The angiotensin I
converting enzyme 2 (Ace2), known to decrease Angiotensin
II with potential disruption of the renin-angiotensin system
balance (118) was also decreased in FGF23 Tg kidney (117).
It was later hypothesized that FGF23 induced the activation
of FGFR1, leading to Ace2 reduction, causing hypertension
(119). Other genes such as Atp1a2, which has been described to
interact with Klotho and regulate calcium metabolism (120), was
2.5-fold- upregulated (117) and lipocalin 2, a neutrophil-derived
marker previously described to be involved in CKD progression
in mice and humans (121), was also modestly induced (117).

Other approaches using an acute 1-h FGF23 injection revealed
that the MAPK related transcription factor Egr1 is typically the
most up-regulated gene in microarray datasets testing FGF23

bioactivity. It was also determined that EGR1 binding near genes
encoding Npt2a, Npt2c, as well as scaffold proteins (NHERF1-
3, EZR and GABARAP), and trafficking proteins (megalin and
vacuolar ATPase), known to putatively mediate NPT2A protein
internalization and degradation, were increased after FGF23
injection. Collectively, these results suggested a coordinated
regulation of renal Pi transport genes through EGR1 (122).

EGR1: An FGF23 Biomarker and Beyond
Asmentioned above, it has been well-studied that FGF23 delivery
induces EGR1, a transcription factor and downstream marker of
MAPK signaling, in mice and cells (112, 123). It was shown in
the Hyp mouse that MAPK/ERK1/2 signaling is activated in the
kidney and this pathway induction drives EGR1 (112, 123). Other
studies revealed that an inhibition of ERK1/2 signaling using
a selective MEK inhibitor, PD0325901, was associated with a
reduction of renal Egr1 upregulation induced by a Phex deletion.
This led to improvement in the hypophosphatemia associated
with decreased NPT2a protein expression, correction of 1,25D
and calcium deficiency, with a reduction of cortical porosity
(124, 125).

To further understand the contribution of Egr1 on FGF23-
dependent regulation of renal Pi and vitamin D metabolism,
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FIGURE 3 | FGF23 signaling in the kidney. In kidney proximal tubules, circulating FGF23 binds to FGFR1-Klotho complexes at the basolateral membrane, and

activates the MAPK signaling cascade involving ERK1/2. This signaling leads to the internalization and degradation of NPT2A/C and the decrease of urinary phosphate

reabsorption promoting phosphate wasting. In the proximal tubule, FGF23 signaling induces downstream mechanisms which suppress the transcription of the vitamin

D 1α-hydroxylase (CYP27B1) and increases the transcription of the vitamin D 24-hydroxylase (CYP24A1); both events work in concert to limit the conversion of 25D to

1,25D as well as degrading 1,25D into inactive metabolites. In the kidney distal tubule, circulating FGF23 binds to the FGFR-Klotho receptor complex at the basolateral

membrane, and activates the MAPK/pERK/EGR1 pathway as well as cascade signaling for ERK1/2, SGK1, and the WNK4 complex via their phosphorylation.

Activation of WNK signaling increases the expression of TRPV5 and NCC at the apical membrane promoting the reabsorption of calcium and sodium, respectively.

the Egr1 knockout mouse (Egr1−/−) has been studied with
interesting findings. Reports showed that the effect of FGF23-
induced decreases in renal Npt2a and Npt2c proteins is
completely abrogated in Egr1−/− mice (122). To potentially
attenuate Egr1 activity, FGF23 also upregulates two isoforms
of Nab2 which are known to be corepressors of Egr1
(126); however whether this is a direct or an indirect
mechanism through Egr1, which is known to induce Nab2
thus establishing a negative feedback loop (127), remains to
be investigated.

Physiological Role of Renal FGF23
Receptors
Four FGFR isoforms (FGFR 1-4) have been described in
mammals and an alternative splicing of these isoforms can
generate seven major FGFR proteins (FGFRs 1b, 1c, 2b, 2c,
3b, 3c, and 4) (105). FGFR1, FGFR3, and FGFR4 are the most
expressed FGFRs in the mouse kidney with potential functional

roles in mineral homeostasis (128–130). In mice, a deletion
of Fgfr1, Fgfr2, Fgfr3, and Fgfr4 from renal proximal tubules
induces hyperphosphatemia, hypercalcemia, hypervitaminosis
with elevated FGF23 (128). Other studies using mice with
a specific deletion of FGFR1 in distal tubule segments have
suggested that FGF23 activates FGFR1/alpha-Klotho complexes
in the distal tubule leading to an increase of sodium-chloride
symporter (NCC)-dependent sodium (Na) reabsorption, a
decrease of Ace2 and renal KIotho, leading to increased blood
pressure and hypertension (119). Further, activation of FGFR1
using pharmacologic intervention normalized blood pressure in
Hyp mice, a mouse model of elevated FGF23 (119). Although
the roles of FGFR3 and FGFR4 in kidney are not completely
understood, in vivo studies proposed that FGFR3 and FGFR4
may contribute by acting in concert with FGFR1 to mediate
FGF23 effects in kidney. Although their roles may be less
substantial at the physiological level, under conditions of high
circulating FGF23 in Hyp mice, the deletion of FGFR3 leads
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to a feedback stimulation of Fgf23 mRNA expression in bone
(129, 131), suggesting complex kidney-bone crosstalk.

The co-receptor KL is required for high-affinity FGF23
activity in the kidney. Whole-nephron deletion of Klotho
in mice results in renal FGF23 resistance, characterized by
hypervitaminosis D, hyperphosphatemia, and other phenotypes
that may resemble premature aging (39, 132). However, provision
of a low phosphate diet to KL-null mice reversed the severe
phenotypes, showing that the majority of KL-null phenotypes
are due to extreme phosphate imbalances (133, 134). Klotho is
highly expressed in the distal tubule segments of the nephron
in comparison to its relatively modest expression in proximal
tubules (123) although the phosphate reabsorption occurs
primarily in the proximal tubules due to an abundant expression
of the sodium phosphate transporters Npt2a and Npt2c (135–
137). To delineate and identify the main effector sites of FGF23
actions in kidney, recent elegant studies have been performed
using mouse models with nephron segment-specific deletion
of Klotho in concert with a full characterization of mineral
metabolism of these mice (138, 139). Olauson et al. generated a
mouse model with deletion of Klotho in distal tubular segments
(Ksp-KL2/2) which was characterized as fertile with a normal
gross phenotype despite a disrupted mineral metabolism. These
phenotypes were in contrast to Klotho-null mice which are not
fertile in addition to undergoing premature death and severe
vascular calcifications (138). By using immunohistochemistry
analysis, investigators showed that partial deletion of Klotho
in distal tubule resulted in hyperphosphatemia with elevated
plasma FGF23 and increased Npt2a protein expression in the
proximal tubule apical membrane (138). In other studies where
Klotho was conditionally deleted from renal proximal tubule,
the mineral metabolism phenotype was variable depending
upon the strategies used to perform specific Klotho deletion.
Indeed, in the studies of Ide et al., only a mild phenotype on
mineral metabolism with a decrease of urinary phosphate was
observed when Klotho was deleted from proximal tubules
using three different proximal tubule specific Cre transgenic
mice: Kap-Cre (kidney androgen-regulated protein), Slc34a1-
Cre (sodium phosphate cotransporter-2a1) or Pepck-Cre
(phosphoenolpyruvate carboxykinase) (139). The latter, harbors
elevated serum iFGF23 and a slight increase in Npt2a protein
(139). In contrast, other studies using an inducible promoter-
Cre, Ndrg1-Cre, to delete Klotho from proximal tubules revealed
a more pronounced effect on mineral metabolism with markedly
elevated iFGF23 and hyperphosphatemia (128). The phenotypic
differences across these mouse models could be explained by the
variability in Cre-mediated recombination efficiency, which can
be factored by the cell-type specificity of Cre expression, the Cre
expression efficiency in specific cell types, and the recombination
feasibility from different genetic modification strategies.

It was later shown that FGF23 signaling can cross-talk with
PTH signaling to control mineral metabolism. A deletion of
both PTH1R and Klotho from the kidney proximal tubule
(PT-PTH1R/KL−/− mice) led to a severe disturbance of
mineral metabolism including hyperphosphatemia at baseline
and increased circulating phosphate in response to high

phosphate diet (140). The hyperphosphatemia observed in PT-
PTH1RKL−/− mice was associated with elevated circulating
FGF23, PTH, decreased circulating 1,25D and increased Npt2a
(140). These new data underscore that FGF23 and PTH
signaling pathways can interact in kidney thus coordinating renal
phosphate handling in the proximal tubule (140, 141).

Using animal models, studies confirmed over recent years
that FGF23 is a negative regulator of 1,25D production. Indeed,
FGF23 potently inhibits the expression of the 25(OH)D-1α-
hydroxylase CYP27B1 in the renal proximal tubule while
stimulating in contrario the expression of the vitamin D catabolic
enzyme CYP24A1 at the mRNA level (23, 142–144). Mice with
global deletion of the Fgf23 gene displayed elevations in serum
1,25D by 2-4 fold (144). Since FGF23 acts as a requisite partner
with its co-receptor Klotho to control mineral metabolism,
Klotho ablation in mice resulted in a strikingly similar phenotype
to the Fgf23-null mice, including increased serum levels of
1,25D associated with increased renal Cyp27b1 expression
(39, 145). Interestingly, the premature aging-like phenotype
of Fgf23−/− and Klotho−/− mice can be completely rescued
using a genetic approach to ablate 1,25D synthesis through
the generation of double mutant Fgf23−/−/1α(OH)ase−/− and
Klotho−/−/1α(OH)ase−/− mice (146, 147). These data suggested
that increased vitamin D played a major role in the abnormal
mineral ion metabolism and soft-tissue anomalies observed in
Fgf23−/− and Klotho−/− mice. Although Klotho deletion results
in hypervitaminosis, and the kidney is the predominant organ
expressing Klotho, studies using targeted deletion of Klotho
in the proximal or distal tubule segment of the nephron have
shown an overall modest effects on circulating vitamin D levels
(138, 139), likely due to endocrine compensation.

It has also been described that the deletion of vitamin D
receptor (VDR) in Fgf23−/− and Klotho−/− mice rescued these
mice from an early lethality phenotype due to the absence of
vitamin D signaling causing reduced phosphate absorption (148,
149). Therefore, Fgf23−/−/VDR1/1 and Kl−/−/VDR1/1 double
mutant mice can be used to examine the roles of FGF23 and
Klotho at older ages by keeping these mice on a rescue diet rich
in calcium, phosphorus, and lactose (150, 151) with the goal of
preventing hypocalcemia and severe hyperparathyroidism due to
the non-functioning VDR status.

Study of the Fgf23−/−/VDR1/1 and Kl−/−/VDR1/1 mice
showed that the deletion of Fgf23 or Klotho leads to a decrease
in the membrane abundance of NCC (the sodium chloride
cotransporter) in the kidney distal tubule and subsequently to
decreased Na+ reabsorption (152). In contrast, treatment of
WT mice with FGF23 over 5 days upregulated distal tubular
NCC resulting in increased Na+ reabsorption and increased
blood Na+ concentrations (152). Using Hyp mice with elevated
FGF23, studies have also shown that these mice have increased
distal tubular Na+ uptake and membrane abundance of NCC
(152). It was explored whether the effects of FGF23 on NCC
expression in kidney may potentially drive physiological changes
including hypertension and heart hypertrophy in a αKlotho-
dependent manner. The inhibition of NCC using chlorothiazide
abrogated FGF23-induced heart hypertrophy suggesting that
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FGF23 may act as a potential regulator of renal Na+ reabsorption
with downstream consequences, although patients with FGF23-
related gain or loss of function mutations primarily show
more severe defects in phosphate metabolism. Another mineral
that may be regulated by FGF23 in distal tubule is calcium
(153). In this regard, studies have shown that renal calcium
reabsorption and renal membrane abundance of TRPV5 are
reduced in Fgf23−/−/VDR1/1 and Kl−/−/VDR1/1 double
mutant mice (153).

Renal FGF23 Signal Transduction
Although FGFR1c, 3c, and 4 are ubiquitously expressed, Klotho
expression is predominantly expressed in specific tissues such as
kidney renal tubules, parathyroid gland, and choroid plexus of
brain, suggesting that these organs are the physiological targets
for FGF23-mediated endocrine actions (39, 154, 155). FGF23
preferentially binds to FGFR1c and Klotho, and this complex
initiates FGFR1c signal transduction via the cytoplasmic adaptor
FRS2α (156), which activates the FRS2α/Ras/MAPK pathway
(157) (Figure 3). In vitro studies using human embryonic kidney
cells (HEK293), which endogenously express FGFRs but not
Klotho (158), showed that the presence of soluble Klotho (sKL) or
membrane-bound Klotho (mKL) is required for FGF23-induced
MAPK activity, which was assessed by pERK1/2 induction and
EGR1 mRNA expression (157, 159). Although initial studies
suggested that mKL and sKL share a common function of
mediating FGF23-induced FRS2α/Ras/MAPK signaling, recent
findings suggested that FGF23 responses were quantitatively
different depending on mKL or sKL availability (159). In vivo
studies, potentially using genetic targeting to isolate the biological
effects of mKL from sKL will be required to deepen our
understanding of these interactions.

In the absence of Klotho, in HEK293 cells, FGF23 alone can
activate pPLCγ and pAKT, and these activities are completely
neutralized by the presence of Klotho (159, 160). These studies
further suggested that FGF23 preferentially induced FGFR1c
signaling via Klotho. However, in the absence of Klotho,
high concentrations of FGF23 can activate FGFR4 (157). The
activation of FGFR4 was shown to induce PLCγ-catalyzed
production of diacylglycerol and inositol 1,4,5-triphosphate
that increased cytoplasmic calcium levels, thereby activating
several calcium-sensing signal mediators, including the protein
phosphatase calcineurin (157). The activation of calcineurin
dephosphorylates the transcription factor NFAT, which permits
its translocation into the nucleus to modulate the expression of
specific target genes (161). This FGFR4-mediated effect may play
a key role in cardiac hypertrophy through FGFR4 during highly
elevated FGF23 in CKD (157, 162).

The phosphaturic action of FGF23 in kidney proximal
tubule and actions in the distal tubule may occur primarily
through FGFR1c, the main “phosphaturic” FGFR expressed in
both segments and colocalized with Klotho (123, 129). A C-
terminal FGF23 peptide antagonist has been developed recently
to block FGF23 signaling by inhibiting tyrosine phosphorylation
of FRS2α and downstream activation of the MAPK cascades
(34). Studies in Hyp mice using this novel peptide confirmed
that the inhibition of FGF23 signaling in kidney upregulates

the expression of the sodium-phosphate cotransporters Npt2a
and Npt2c, coupled with the alleviation of the observed
hypophosphatemia (34). In a mouse model of CKD, this FGF23
antagonist peptide has been shown to rescue the prevailing
anemia (163).

Beside the effects of FGF23 on phosphate homeostasis,
FGF23 signaling has been described to promote renal calcium
reabsorption through the TRPV5 channel. Indeed, the apical
membrane abundance of TRPV5 in renal distal tubules could be
regulated by the binding of FGF23 to FGFR-Klotho complexes
which activated a signaling pathway implicating ERK1/2, SGK1,
and WNK4. This signaling pathway led to the increase of
intracellular transport of fully glycosylated TRPV5 from the
Golgi apparatus to the apical plasma membrane, thus decreasing
the renal loss of calcium (153). In distal convoluted tubule, the
ERK1/2-SGK1-WNK4 signaling pathway leads to WNK4 serine
phosphorylation at residue 71 and kinase activation. FGF23
promoted the physical interaction between NCC and WNK4,
increasing NCC membrane abundance, and would promote
sodium reabsorption (152). Additional studies of the actions of
FGF23 and Klotho specifically within the kidney distal tubule are
required to determine the full extent of kidney FGF23 bioactivity.

CONCLUSION

The hormone FGF23 is mainly produced by osteocytes
with the ability to target distant organs such as kidney. In
late osteoblasts and osteocytes, FGF23 can be upregulated
by elevated phosphate, anemia, inflammation, PTH and
1,25D; and downregulated by hypophosphatemia, insulin,
and insulin-like growth factor 1. Although not covered
here, studies have shown that FGF23 can be produced
at lower levels by other cells such as immune cells, bone
marrow erythroid cells and other tissues such as liver in
response to diverse stimuli (106, 164). The posttranslational
modifications of FGF23 protein via O-glycosylation and
phosphorylation controls the proteolytic cleavage of
mature FGF23 protein which dictates biologically active
FGF23 concentrations.

The binding of FGF23 to FGFR1-Klotho complexes in
the kidney has been shown to induce a signaling cascade
through MAPK which controls mineral metabolism. The
signals induced by FGF23 in kidney downregulate the
expression of Npt2a/c leading to decreased phosphate
reabsorption in proximal tubules, and upregulation of
TPRV5 and NCC, potentially promoting calcium and
sodium reabsorption, respectively, in the distal tubule.
Alterations of FGF23 expression in osteocytes, FGF23
processing, and FGF23 activity cause severe endocrine
pathologies resulting in rare and common diseases. Thus,
further understanding the mechanisms controlling FGF23
production in osteocytes and bioactivity in kidney will lead to
improved patient outcomes.

In summary, although much is known regarding FGF23
regulation and actions, gaps in our knowledge exist. These
include the potential contributions of bone cells such as
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osteoblasts and osteoclasts in the regulation of osteocytic FGF23,
and it remains unclear whether aged osteocytes (mature cells
and deeply embedded in the mineralized bone matrix) are
more effective in terms of upregulating FGF23 in response
to physiological and pathological changes vs. early osteocytes.
Finally, whether FGF23 can target other cell-types in the kidney
beyond its defined actions on proximal and distal tubules
remains unknown, thus future investigation could examine the
effects of FGF23 on renal immune cells such as macrophages
and regulatory T cells, critical for the control of renal
inflammation and kidney remodeling during acute kidney injury
and CKD.
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The human immunodeficiency virus type 1 (HIV)/AIDS pandemic represents the most

significant global health challenge in modern history. This infection leads toward an

inflammatory state associated with chronic immune dysregulation activation that tilts the

immune-skeletal interface and its deep integration between cell types and cytokines with

a strong influence on skeletal renewal and exacerbated bone loss. Hence, reduced bone

mineral density is a complication among HIV–infected individuals that may progress to

osteoporosis, thus increasing their prevalence of fractures. Highly active antiretroviral

therapy (HAART) can effectively control HIV replication but the regimens, that include

tenofovir disoproxil fumarate (TDF), may accelerate bone mass density loss. Molecular

mechanisms of HIV-associated bone disease include the OPG/RANKL/RANK system

dysregulation. Thereby, osteoclastogenesis and osteolytic activity are promoted after the

osteoclast precursor infection, accompanied by a deleterious effect on osteoblast and

its precursor cells, with exacerbated senescence of mesenchymal stem cells (MSCs).

This review summarizes recent basic research data on HIV pathogenesis and its relation

to bone quality. It also sheds light on HAART-related detrimental effects on bone

metabolism, providing a better understanding of the molecular mechanisms involved in

bone dysfunction and damage as well as how the HIV-associated imbalance on the gut

microbiome may contribute to bone disease.

Keywords: HIV, HAART, bone, osteoblast, osteoclast

INTRODUCTION

According to UNAIDS, 37.9 million people worldwide are currently living with HIV/AIDS and
about 22 million are on highly active antiretroviral therapy (HAART). The life expectancy of
HIV-infected individuals treated with HAART is nearly normal, with a decreased incidence in
AIDS-related morbidity and mortality (1).

Low bone mineral density (BMD) has frequently been observed among HIV-infected
individuals, likely leading to osteopenia and osteoporosis with a high prevalence of fractures
compared with the general population (2).

In HIV-infected patients, bone loss is primarily enhanced by two pivotal factors: HIV infection
and its direct consequences, and HAART, mainly during the first years of treatment (3–8). The
contribution of each one is still controversial. The evidence of reduced bone mass in treatment-
naïve patients indicates that the virus alone directly affects bone homeostasis (9–14). Moreover,
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some reports indicate that low BMD is not completely
attributable to HIV infection alone or HIV infection plus
treatments with HAART (15–23).

The bone as part of the skeletal system interacts with
immune cells in the bone marrow, interacting with each other
in a significant mutual influence (24). Recently, the molecular
mechanisms involved in the homeostatic interactions between
bone and immune cells has been elucidated (25–27), which HIV
appears to be able to disturb.

MICROBIOTA CONTRIBUTION IN HIV
INTERACTION WITH BONE

HIV Proteins
HIV genes encode regulatory, auxiliary, and structural proteins.
The regulatory proteins include the HIV trans-activator (Tat)
involved in the regulation of the reverse transcription of the
viral genome, and the regulator of expression of virion proteins
(Rev) responsible for the synthesis of major viral proteins. The
auxiliary HIV proteins comprise the negative factor (Nef), which
is implicated in multiple functions during the viral replication
cycle, including, among other functions, the lentivirus protein
R (Vpr) responsible for nuclear import of the pre-integration
complex. It is also comprised of the viral infectivity factor
(Vif) required to synthesize infectious viruses in several human
cells and the virus protein U (Vpu) the main role of which
is the successful release of virions from infected cells. The
structural proteins included the group-specific antigen (p55 gag
polyprotein), a polyprotein which is processed by viral proteases
during maturation to matrix protein (p17), capsid protein (p24),
spacer peptide 1 (p2), nucleocapsid protein (p7), spacer peptide
2 (p1), and P6 protein. Other structural proteins involve the
polymerase (Pol) and the envelope protein (gp160) that is post-
translationally processed to produce the surface glycoprotein
(gp120) and gp41 that mediate binding to the CD4 receptor, and
envelope fusion to target cells, respectively (28).

Interaction of HIV and Its Proteins With
Bone Cells
Among many of the viral pathogenic mechanisms, HIV
regulatory, auxiliary, and structural proteins play critical roles
during cell-host interaction and thus have shown significant
impacts on bone in experimental studies, promoting changes in
the balance of bone formation and resorption. It is important
to highlight that the HIV-induced detrimental effects on cells
are not only a consequence of the active viral replication and
the role of infectious virions but are also caused by several HIV
proteins that are released to extracellular media which could
induce bystander harmful effects, such as apoptosis, oxidative
stress, mitochondrial dysfunctions, or autophagy alterations, on
surrounding cells (29, 30).

Mesenchymal stem cells (MSCs) are multipotent precursors
able to differentiate toward multiple tissue lineages such as
adipocytes, chondroblasts, and osteoblasts (31, 32). As MSCs
express CD4 receptors and CCR5 and CXCR4 coreceptors, these
cells are likely susceptible to HIV infection, although integrated

proviruses are rarely found and productive infection has not yet
been documented (33). Nonetheless, hematopoietic progenitor
cells (HPCs) in the bone marrow of HIV-infected individuals
have been regarded as a persistent HIV reservoir (34).

Differentiation of MSCs ex vivo into both osteoblasts and
adipocytes depicted a dichotomy upon exposure to the serum
source, since those in contact with a high HIV viral load
preferentially acquired a proadipogenic phenotype whereas
those in contact with low viral load serum were induced
toward an osteogenic condition. This phenomenon may involve
Tat protein, which inhibits the transcription factor COUP
TF-I (chicken ovalbumin upstream promoter transcription
factor), thus favoring adipocyte differentiation while preventing
osteoblast development.

To command the balance of bone resorption and formation,
osteoblasts produce a receptor activator factor of nuclear
factor-kB ligand (RANKL) that controls the differentiation of
osteoclasts (35). Osteocytes -the terminally differentiated form
of osteoblast- also produce RANKL to regulate osteoclast activity
(36). Under physiological conditions, osteoclastogenesis involves
RANKL and macrophage colony-stimulating factor (M-CSF)
produced by osteoblast and bone marrow stromal cells (37).
M-CSF prompts the expression of RANKL receptor (RANK),
on osteoclast precursor which then interacts with RANKL
to initiate osteoclasts’ differentiation (38). As a counterpart,
osteoprotegerin (OPG) is a neutralizing soluble trap receptor
expressed by bone marrow stromal cells and osteoblasts able to
inhibit the RANKL-RANK interaction (39).

The Tat protein enhances peripheral blood monocyte-derived
osteoclast differentiation and activity by RANKL plus M-CSF
treatment, which increases both the mRNA transcription of
specific osteoclast differentiation markers, such as cathepsin
K and calcitonin receptor, and the tartrate-resistant acidic
phosphatase (TRAP) expression and activity. Together, these
results show that Tat may be considered a viral factor that
stimulates osteoclastogenesis and bone resorption activity (11,
40–42). In vitro, Tat and Nef proteins reduce -in a cumulative
manner- the number of bone marrow MSCs available to
differentiate into osteoblasts by inducing early senescence,
associated with increased oxidative stress and mitochondrial
dysfunction of these cells. Moreover, Tat, but not Nef, induced
an early increase in NF-κB activity and cytokine/chemokine
secretion, and reciprocally, Nef- but no Tat-treated cells -have
shown early autophagy inhibition (43).

The HIV accessory protein Vpr upregulates the RANKL
expression in peripheral mononuclear cells from healthy donors,
enhancing osteoclastic activity. This action is synergized by
both exogenous and endogenous glucocorticoids as a potent
cofactor in bone mineral loss (44). Moreover, Tat and Rev
proteins increase monocyte differentiation into osteoclasts, as
well as boost osteoclast resorption function by increasing reactive
oxygen species and TNF-α production in osteoclast precursors
(45, 46).

In an in vivo humanized mice and ex vivo human joint
tissue study, Raynaud-Messina et al. have contributed to
our current understanding of the HIV-induced bone loss
mechanisms. For the first time, the authors demonstrated that
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HIV infects osteoclast precursors even at different stages of
osteoclastogenesis, either via cell-free viruses or, more efficiently,
through transfer from infected T cells. These infected precursor
cells have been proposed as HIV reservoirs that display a greater
migratory capacity and exhibit the enhanced ability to recruit and
concentrate in the bones where the viral infection alters the bone
resorption machinery. HIV can enlarge podosomes and enhance
the osteolytic activity of the bone resorption apparatus, also
known as the “sealing zone” (SZ). The virus is also able to increase
the TRAP secretion by osteoclasts, leading to demineralization
and degradation of larger bone extensions. These viral-directed
actions are Nef-mediated and are abundantly produced and
secreted during the early phase of viral replication. Such Nef-
mediated actions occur through the activation of Src, which
regulates podosomes into the SZ (47).

Soluble HIV-structural proteins are also mediators of
cytopathogenic effects. These proteins may act as part of the
viral particle or as bystander effect mediators after their release
from productively infected cells (48). Both, p55-gag and gp120
were found to reduce calcium deposition, alkaline-phosphatase
activity, levels of secreted BMP-2, -7, and RANKL, as well as
the expression and activity of the pro-osteogenic transcription
factor runt-related transcription factor 2 (RUNX2) in human
osteoblasts. The levels of osteocalcin were also significantly
reduced by p55-gag treatment, while gp120 also increased the
pro-adipogenic transcription factor and peroxisome proliferator-
activated receptor γ (PPARγ) activity. The ability of MSCs to
develop into functioning osteoblasts was also affected by the
presence of HIV proteins, with p55-gag inducing a decrease
in osteogenesis, while rev induced an increase (49). A positive
feedback loop exists between RANKL production and HIV
replication, which may be relevant to both the pathophysiology
of HIV-linked osteopenia and the control of HIV replication (50).

Furthermore, HIV gp120 can trigger in vitro osteoblast
apoptosis induction mediated by the up-regulation of TNF–α
(51). In these cells, gp120 enhances the expression of Dickkopf-
1 (Dkk1), the antagonist of the Wnt, significantly reducing the
intracytosolic and intranuclear β-catenin expression, the alkaline
phosphatase activity, and the cell proliferation (52).

In HIV-infected individuals, B and T lymphocytes have
exhibited several signs of dysfunction with an impact on bone
homeostasis. They are sources of OPG and, consequently, their
dysfunction contributes to viral-induced bone loss. Hence, there
is a higher frequency of RANKL-expressing B cells (resting
memory and exhausted tissue-like memory B cells) expanded
as a consequence of inflammation and a lower frequency of
OPG-expressing B cells (resting memory B cells) in HIV-infected
compared to HIV-uninfected individuals, thus resulting in a
lower RANKL/OPG ratio that correlates with total hip BMD, T-,
and Z-scores in the HIV-infected participants (14).

Similarly, T-cell OPG production was also significantly
lower in CD4 T-cell-sufficient HIV-infected individuals (>200
cells/µl) but not in those with lower cell counts. It was
coupled with moderately higher T-cell RANKL production,
resulting in a significantly higher T-cell RANKL/OPG
ratio. Such a T-cell RANKL/OPG lowered ratio correlated
significantly with BMD-derived z-scores at the hip, lumbar

spine, and femur neck (53). Moreover, as a bystander
effect, such an abnormal RANKL expression by T cells is
mimicked when these cells are exposed to soluble gp120
(Figure 1) (54).

HIV-Related Gut Microbiome Alterations
and Its Relationship With Bone Loss
Recently, the gut microbiota has been reported to have
an influence on bone metabolism, attracting attention as
a prospective new target to balance BMD. The basis of
this evidence is mainly concentrated on its involvement in
modulating the interface between the immune system and bone
cells (55, 56).

As an early event, the gut microbiome in HIV-infected
individuals exhibits different compositions compared to
uninfected individuals (57, 58). Among them, the bacterial
composition is altered on its diversity, genes, and functional
capabilities, that are either pro-inflammatory or potentially
pathogenic and whose abundance correlated with immune status
(59, 60). T-cell depletion is pronounced at the gut-associated
lymphoid tissue (GALT) promptly after HIV infection, followed
by an increase in the barrier permeability and microbial
translocation with increased LPS levels (61). This context
induces an innate immune activation leading to a shift toward a
pro-inflammatory cytokine environment with osteoclastogenesis
and bone resorption enhancement (62, 63).

Since chronic immune activation with progressive immune
suppression impacts on the gut microbiome, a differential
contribution of gut bacteria and their molecular agents
(metabolites and proteins) is desirable to promote immune
recovery in HIV-infected individuals. Hence, after characterizing
the interplay between the active gut microbiota and the host, it
is plausible to reduce inflammation and recover the immune–
skeletal interface (64–66).

The HAART treatment effect on gut microbiota in HIV
patients is uncertain (67). One hypothesis is that HIV treatment
stimulates the restoration of normal microbial flora (68).
However, some studies show a minimal effect of HAART on the
restoration of normal microbial flora (68–70) while others reveal
a negative impact (71).

ROLE OF ANTIRETROVIRAL THERAPY ON
BONE TISSUE METABOLISM

The widespread accessibility of HAART has changed HIV
from a life-limiting condition to one with a near-normal
life expectancy. Unexpectedly, throughout such a therapy, the
bone loss promoted by HIV-infection may continue unabated.
However, among HIV-infected individuals on HAART, the
presence of osteoporosis appears to be about three times higher
than those uninfected (3–8). Although, far from consensus, other
reports have estimated up to a 6% decrease in BMDuponHAART
treatment initiation for a 2-year period, but then the BMD
remains unchanged despite continuing therapy (72–74).

As mentioned above, in naïve immunosuppressed
HIV-infected individuals a decrease in BMD is observed.
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FIGURE 1 | HIV and viral proteins’ interaction with bone cells. 1-HIV infects osteoclasts via cell-free viruses or by cell-to-cell transfer from infected T cells. The

infection increases the tartrate-resistant acidic phosphatase (TRAP) secretion by osteoclasts. The viral protein Tat increases mRNA transcription of cathepsin K,

calcitonin receptor, TRAP, and Nef-regulate podosomes through activation of Src. Vpr upregulates RANKL expression, stimulating osteoclastogenesis. Tat and Rev

increase osteoclastogenesis. 2-HIV infection induces an increase in RANKL-expression and the reduction of OPG-expression in B and T cells. 3-HIV proteins Tat and

Nef reduce the number of bone marrow MSCs by inducing early senescence. Tat stimulates MSC to secrete IL-6 and IL-8, and Nef induces the inhibition of

autophagy. 4-Human serum with a high HIV viral load preferentially acquired a proadipogenic phenotype in a mechanism dependent on Tat protein, while those in

contact with a low viral load serum were induced toward osteogenic conditions. 5-p55-gag and gp120 stimulate osteoblast apoptosis and reduce

alkaline-phosphatase activity (ALP), calcium deposition, the runt-related transcription factor 2 (RUNX-2), and Bone morphogenic protein-2 and−7 (BMP-2−7), and

p55-gag also reduces osteocalcin levels, and gp120 induces the increase in peroxisome proliferator-activated receptor γ (PPARγ).

Paradoxically, when these individuals are on HAART
they achieve their immune reconstitution by CD4+ T cell
repopulation (75, 76). These reports offer evidence of stable or
increasing BMDwith plausible early, but small and not sustained,
loss of BMD that accompanies the initiation of HAART, and
without accelerated bone loss in the medium term (77–82).

The gender of the HIV-infected individual also influences
the BMD reduction grade. Among HAART-treated patients, it
appears to be more accentuated in women than in men (83,
84), but is at a level similar to that observed initially during
menopause (85).

Several studies have directly emphasized HIV factors
associated with low BMD: duration of infection, HIV viral
burden, and a more advanced HIV disease (86–88). In this
regard, data presented in a sub-study of the Strategy for
Management of Antiretroviral Therapy (SMART) study
demonstrated a low level of bone turnover markers but higher
BMD when HAART is interrupted, thus inferring a higher HIV
RNA level and lower CD4+ T cell counts (89). In contrast,
Grund et al. have reported that continuous HAART was
associated with significant reductions in BMD with no changes
or increases in BMD observed in those on intermittent ART
(90). Similarly, longitudinal data collected from randomized
control trials have insinuated that the initiation of HAART at
higher viral RNA and lower CD4+ T cell counts at baseline
were associated with more pronounced reductions in BMD
(88). Such low pre-treatment CD4 counts were reported

as a strong and independent risk factor for loss of BMD
during treatment. However, loss of bone continues for up to
2 years after HAART initiation and the extent of immune
reconstitution was not related to BMD improvement (88). In
conjunction, these data suggest that important roles are played
directly by HIV and/or indirectly by the immune response in
BMD loss.

The effect of HAART on BMD seems to be influenced
by the specific type of treatment. Low BMD has been
associated with regimens such as nucleoside analog reverse-
transcriptase inhibitors (NRTIs) (74, 91, 92). Individuals exposed
to tenofovir disoproxil fumarate (TDF)-based treatment in
particular exhibited a more accentuated BMD loss compared
to individuals on other regimens, such as lamivudine (3TC)
and emtricitabine (FTC), or those who have been switched to
two-drug regimens (74, 91–97). However, others have reported
contradictory findings regarding TDF-therapy duration and
BMD loss, even after long-term exposure to the drug (98).

The underlying mechanisms by which antiretroviral drugs
promote BMD loss are still controversial. The mechanism
to NRTIs-mediated BMD loss may be promoted by elevated
lactic acid concentration in the blood leading to calcium
hydroxyapatite loss, especially in the trabecular bone, due to
the labile of calcium storage (99). Regarding the underlying
mechanisms that may be related to TDF-associated lower BMD,
mitochondrial toxicity, hyperphosphaturia secondary to tubular
dysfunction, and renal osteodystrophy have been considered
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(92, 100–102). Despite the bone loss, there are contradictory
findings about phosphate metabolism abnormalities observed
among HAART-treated individuals who can present higher
phosphate blood levels and lower bone density (86). These
data offer supportive information to avoid the use of TDF and
its replacement with bone-friendly regimens among the HIV-
infected population with fracture risks (103).

Besides the BMD reduction related to NRTIs, available data
regarding protease inhibitors (PIs) remain contradictory (104).
On the one hand, increased bone turnover, accelerated bone loss,
and a higher prevalence of reduced BMD have been reported
(3, 72, 92, 105–107), whereas other studies showed opposed
results (9, 10, 73, 108). Detrimental effects on BMD are in line
with in vitro observations evaluating the effect of different PIs
on osteoblast activity (109). For example, pharmacologic levels
of two PIs that are clinically linked to osteopenia, ritonavir
(RTV) and saquinavir (SQV) but not indinavir (IDV) and
nelfinavir (NFV), abolish the interferon-γ-mediated degradation
of the RANKL signaling adapter protein TRAF6 (tumor
necrosis factor receptor-associated protein 6) in proteasomes.
Moreover, under inflammatory conditions, interferon-γ
promotes bone loss mainly by up-regulating the activity of
macrophages, leading to T cell activation and osteoclastogenic
cytokine production (110).

RTV appears as an osteoclast-activating agent that
promotes the proliferation and activation of osteoclasts in
vitro (111, 112) and ex vivo studies (113), causing increased
bone absorption.

Importantly, most of these in vitro direct effects of PIs on
bone cells did not resemble the in vivo observations collected
from patients on HAART. RTV, SQV, and fosamprenavir (FPV)
appear to improve the BMD in vitro rather than the loss
observed in vivo, by decreasing RANKL and increasing OPG
secretion (54, 109). The impact on BMD loss was also reported
in several in vivo studies which also observed a strong difference
in bone loss according to PI discontinued and continued
schemes between patients (72, 92, 107). RTV -but not IDV-
at a greater than normal concentration was able to inhibit
osteoclast function and suppress osteoclastogenesis in vitro
and in vivo by impairing RANKL-induced signaling (114).
However, RTV at plasma concentration, as a PI-boosting drug,
favors the differentiation of blood monocytes into osteoclasts
by up-regulating the production of transcripts for osteoclast
growth factors using the non-canonical Wnt proteins 5B and
7B as well as activated promoters of nuclear factor-kappaB
signaling, but suppressing genes involved in canonical Wnt
signaling. Additionally, RTV blocks the cytoplasmic-to-nuclear
translocation of β-catenin, the molecular node of the Wnt
signaling pathway, in association with enhanced β-catenin
ubiquitination (111, 112). In vivo, among RTV-treated patients,
its discontinuation resulted in a slower decrease in BMD (107),
and the bone mineral loss appeared in a time-dependent manner
irrespective of dosage (107). Other PIs, such as IDV and NFV,
have been shown to have a negative impact on osteoblasts
by impairing its alkaline phosphatase activity and calcium

deposition. Lastly, in vivo and in vitro studies demonstrate that
PIs atazanavir (ATV) and lopinavir (LPV) also decrease BMD
by impairing the MSCs differentiation to osteoblasts (72, 92,
115).

Finally, in addition to immune cells, the HIV-coreceptor
CCR5 has been involved in the regulation of the function
of bone cells by directly modulating osteoclastogenesis and
the communication between osteoclasts and osteoblasts (116–
118). In this regard, epidemiological evidence suggests that the
functional loss of CCR5 is correlated with a lower incidence
of bone-destructive diseases as well as of HIV transmission.
Using a CCR5-deficient murine model, the osteoclasts appeared
dysfunctional in their cellular locomotion and bone-resorption
activity, which is associated with the disarrangement of
podosomes and adhesion complex molecules including Pyk2.
Such an experimental model exhibited an osteoporosis-resistance
induced by RANKL (119). These data are in line with a previous
study showing the CCR5-antagonist Maraviroc associated with
a lower degree of bone loss in the hip and lumbar spine of
HIV-infected individuals, as an example of a CCR5-antagonist
treatment that might help to improve bone health among HIV-
infected patients (120).

In conclusion, important progress has been made in
our understanding of the effect of antiretroviral drugs
on bone health in HIV-infected people. Such advances
have enriched our ability to apply treatment to diminish
aging-associated complications, such as osteoporosis
and fractures.

CONCLUDING REMARKS

During HIV infection and its progression to AIDS, bone
loss occurs and HAART likely contributes -at least in
part- to this comorbidity, involving both factors associated
with disease reversal and direct skeletal effects. Although
the clinical and imaging characterization of HIV bone
pathology has been well-documented, the pathogenic
mechanisms of bone loss have only been partially
elucidated at present.

Irrespective of the mechanisms involved, diagnostic and
therapeutic measures are necessary to delay the onset of bone
disease in HIV patients to prevent a significant new threat to the
health of the HIV/AIDS population.
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Calcitonin is a small peptide hormone secreted from the parafollicular cells of the

thyroid gland in response to an increase in serum calcium. The inhibition of osteoclastic

resorption is the main mechanism by which calcitonin quickly decreases circulating

calcium levels. Although calcitonin pharmacologically acts on osteoclasts to prevent

bone resorption, the results of studies on genetically modified animals have shown that

the physiological effect of calcitonin is in the inhibition of osteoblastic bone formation.

Because the calcitonin receptor is only expressed in osteoclasts, the effect of calcitonin

on osteoblasts maybe indirect and mediated via osteoclasts. Wnt ligands are involved in

various aspects of skeletal biology, including bone remodeling and endochondral bone

formation. Wnt10b has recently been recognized as a clastokine, and is potentially

a therapeutic target for treating bone disorders. However, the extent to which Wnt

signaling is involved in bone physiology and disease is not yet fully understood. We

hypothesize that calcitonin indirectly increases osteoblastic bone formation by inducing

Wnt10b expression in osteoclasts. Micro-CT analysis revealed reduced bone loss in

calcitonin-treated ovariectomized rats. The serum of animals treated with calcitonin

had decreased TRAP5b and CTX-1 but increased osteocalcin, P1NP, and Wnt10b.

Immunohistochemistry staining showed that the level of Wnt10b in the femur was

increased in calcitonin-treated groups as compared with control groups. Hematopoietic

mononuclear cells were separated from rat femur and tibia bone marrow, and were

induced into osteoclasts following treatment with M-CSF and RANKL. In these cells,

immunoconfocal microscopy and Western blot analysis showed that calcitonin induced

an increase in Wnt10b expression. In a culture of osteoblasts isolated from neonatal

rat calvariae, the calcitonin-treated osteoclast supernatant showed an increase in

mineralization, as indicated by ALP and alizarin red staining. Taken together, these
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results indicate that calcitonin induces bone formation by increasing the expression of

Wnt10b in osteoclasts in ovariectomy-induced osteoporotic rats. The present study

provides in-depth information about the effects of calcitonin on bone remodeling

and will thus help in the development of future potential therapeutic strategies for

postmenopausal osteoporosis.

Keywords: calcitonin, Wnt10b, osteoporosis, osteoclasts, ovariectomy

INTRODUCTION

The secretion of calcitonin, a 32 aa peptide hormone, from
the parafollicular cells of the thyroid gland is induced by
increased serum calcium (1) leading to rapid reduction in
circulating calcium levels, mainly through the inhibition of
bone resorption. The binding of calcitonin to its receptors on
osteoclasts causes a series of major reactions within minutes,
including loss of the ruffled border, cell retraction, and the
suppression of cell motility and bone resorption (2). It is evident
that the pharmacological function of calcitonin is to inhibit
bone resorption through lowered levels of circulating calcium;
nevertheless, the physiological role of calcitonin remains unclear.
Previous studies have found that bone mineral density and
calcium metabolism were not influenced in patients either with
excess endogenous calcitonin (e.g., those with medullary thyroid
carcinoma) or with undetectable circulating calcitonin (e.g.,
those who had undergone thyroidectomy) (3, 4). Because the
fluctuation in serum calcitonin levels does not have any obvious
pathological outcomes, it has been suggested that calcitonin
should have no physiological role in mammals. This theory is,
however, not widely accepted, and the existing consensus is that
calcitonin plays a significant role in protecting the skeleton under
circumstances of calcium stress (5, 6).

In addition, research on genetically modified animals has
demonstrated that the physiological role of calcitonin in bone
cells could be in the inhibition of bone formation, in contrast
to its pharmacological function of inhibiting bone resorption.
The high bone mass attributed to increased bone formation
has been found in both Calca KO and Calcr KO mice (7, 8),
even though Calcr did not manifest in osteoblasts. Naot and
colleagues suggested that the skeletal phenotype of an osteoclast-
specific Calcr KO could enhance bone formation (6), similar
to that of the global Calcr KO; thus, such findings have solved
the previously mentioned contradiction. In short, calcitonin
probably has indirect effects on osteoblasts that are mediated
via osteoclasts.

Osteoporosis, characterized by remarkable losses of bone
mineral density and strength, results in fragility fractures
and subsequent high morbidity and mortality (9). During

Abbreviations: ALP, alkaline phosphate; CKD, chronic kidney disease; CTX-1,
type 1 carboxyterminal collagen fragments; Calca, calcitonin; Calcr, calcitonin
receptor; CT, computer tomography; M-CSF, macrophage colony-stimulating
factor; OVX, ovariectomy; P1NP, amino-terminal propeptide of type 1
procollagen; RANKL, receptor activator of nuclear factor kappa B ligand; S1P,
sphingosine-1-phosphate; TGF-β1, transforming growth factor-beta 1; TRAP5b,
tartrate-resistant acid phosphatase 5b.

bone remodeling, the bone resorption exerted by osteoclasts
in the bone matrix has the capacity to activate osteoblastic
bone formation through a coupling reaction. This coupling
process ensures the succession of bone formation to bone
resorption in the remodeling cycle. Recent studies of the
regulatory mechanisms for the cross-talk between osteoclasts
and osteoblasts have identified several bone formation-
stimulating osteoclast-derived factors (i.e., clastokines) and
matrix-derived growth factors, and the authors have asserted
that these factors may contribute to the future design of novel
osteoanabolic compounds (10). Uncoupling anti-resorptive
(e.g., calcitonin, odanacatib, and saracatinib) would be
better drugs because they could inhibit osteoclastic bone-
resorbing activity while maintaining the bone formation
attributed to sustained communication between osteoclasts
and osteoblasts (9). A recent study revealed that calcitonin
only inhibited bisphosphonate-induced osteoclast apoptosis,
and the combined usage of calcitonin and bisphosphonate
increased the efficacy of bisphosphonate on bone formation
in a rat model of osteoporosis (11). This result implies
that different kinds of anti-resorptive agents may induce
distinct clastokines. Wnt proteins are usually involved in
various aspects of bone biology, including osteoblastic,
and osteoclastic functions as well as endochondral bone
formation (12, 13). For example, Wnt10b was recently
identified as a clastokine, and a potential novel therapeutic
target of postmenopausal osteoporosis. However, the role of
Wnt ligands in skeletal physiology and disease is not fully
comprehended. Therefore, we hypothesize that calcitonin
increases bone formation by inducing Wnt10b expression
in osteoclasts.

To acquire appropriate data and verify our hypotheses,
a number of valid techniques were employed in this
study. In ovariectomized rats, the effects of calcitonin on
the protection of bone loss and Wnt10b expression were
determined by micro-CT, bone histomorphometry, and
immunohistochemistry analysis. In osteoclasts obtained from
M-CSF- and RANKL-treated hematopoietic mononuclear
cells isolated from rat femur and tibia bone marrow, the
expression of Wnt10b was determined by ELISA, Western
blot, and confocal microscopy analysis. Bone formation
analysis was performed in osteoblasts isolated from neonatal
rat calvariae and cultured with the calcitonin-treated
osteoclast-conditioned medium.

The present study provides evidence that calcitonin
induces bone formation by increasing the expression of
Wnt10b in osteoclasts and offers further information
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FIGURE 1 | Calcitonin increases femoral trabecular bone in ovariectomized osteoporotic rats. (A) Upper panel: micro-computed tomography analysis of the femoral

bones in sham-operated rats and ovariectomized (OVX) rats treated with saline or calcitonin (CT, 5 IU/kg/day) five times per week for 4 weeks. Figures are

representative reconstructed 3D images from each treatment group. (B) Lower panel: quantitative results of the experiment shown in (A). *Indicates a significant

difference (p < 0.05). N = 6 in each group.

about the involvement of calcitonin in bone
remodeling at the molecular level. These findings
will help in future potential therapeutic studies of
postmenopausal osteoporosis.

RESULTS

Calcitonin Alleviates Bone Loss in
Ovariectomy-Induced Osteoporotic Rats
The effect of calcitonin on bone deposition was determined in
osteoporotic rats 4 weeks after ovariectomy (OVX; Figure 1).

OVX or a sham operation was performed in 4-month-old
female Sprague–Dawley rats. After 4 weeks, OVX rats received
a normal saline or calcitonin treatment for four additional
weeks, after which the 6-month-old rats were sacrificed
and underwent micro-CT analysis of the femoral bone
(Figure 1). Although the 2D images also included cortical
bone, the regions of interest containing trabecular bone
in metaphysis were selected for subsequent quantification
(Figure 1A). Quantitation of these results (Figure 1B) indicated
that OVX led to significant bone loss, increased trabecular
separation, and decreased trabecular number compared
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FIGURE 2 | Calcitonin increases Wnt10b and bone formation but decreases bone resorption in ovariectomized osteoporotic rats. Sham-operated rats and

ovariectomized (OVX) rats were treated as indicated in Figure 1. Serum samples obtained from rats were analyzed by ELISA. (A) Quantitative analysis of Wnt10b

(B) Quantitative analysis of TRAP5b (C) Quantitative analysis of CTX-1 (D) Quantitative analysis of osteocalcin (E) Quantitative analysis of P1NP. *Indicates a

significant difference (p < 0.05). N = 6 in each group.

with the control sham operation. Compared with saline,
calcitonin treatment significantly increased the percent bone
volume and trabecular number in OVX rats. A significant
decrease in trabecular separation was found in the calcitonin
treatment group.

Calcitonin Decreases TRAP5b and CTX-1
but Increases Osteocalcin, P1NP, and
Wnt10b Serum Levels in
Ovariectomy-Induced Osteoporotic Rats
The serum levels of Wnt10b and bone formation and
resorption markers were analyzed by ELISA. As shown in
Figure 2A, a significant increase in Wnt10b was found in
OVX rats compared with sham rats. Calcitonin treatment
caused a further increase in Wnt10b in OVX rats. Analysis
of serum bone resorption markers, TRAP5b and CTX-1,
revealed increased bone resorption in OVX rats compared
with sham rats (Figures 2B,C). TRAP5b and CTX-1were
significantly lower in the calcitonin treatment group compared
with the untreated group. Increases in the serum bone
formation markers, osteocalcin, and P1NP, were observed in
OVX rats compared with sham rats (Figures 2D,E). Calcitonin
treatment caused a further increase in osteocalcin and P1NP in
OVX rats.

Calcitonin Treatment Increases the
Expression in Metaphysis of Femoral Bone
in Ovariectomy-Induced Osteoporotic Rats
Immunohistochemistry labeling of Wnt10b was performed in
femoral bone (Figure 3). Positive Wnt10b labeling was noted as
green near resorption zone of growth plate in femoral bone of
sham rats. Decreased Wnt10b and increased TRAP expressions
were found in OVX rats as compared with sham rats. In the
CT treatment group, increase of Wnt10b and decrease of TRAP
expressions were also found near resorption zone of growth plate
in femoral bone.

Calcitonin Increases Wnt10b Expression in
Osteoclasts
Immunofluorescent labeling of Wnt10b was performed
in osteoclasts isolated from rat bone marrow. Confocal
analysis of immunofluorescently labeled Wnt10b showed
that it was greater in osteoclasts treated with calcitonin
compared with controls (Figure 4). Pretreatment with C59,
a Wnt secretion inhibitor, further increased the calcitonin
effect of Wnt10b expression within the osteoclasts and
demonstrated that calcitonin increased Wnt10b release
from osteoclasts.

Western blot analysis revealed a significant time-dependent
increase in Wnt10b expression in calcitonin-treated osteoclasts
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FIGURE 3 | Calcitonin treatment increases the osteoclastic Wnt10b expression in metaphysis of femoral bone in ovariectomy-induced osteoporotic rats.

Sham-operated rats and ovariectomized (OVX) rats were treated as indicated in Figure 1. Immunohistochemistry labeling of Wnt10b (green) and TRAP stain (red)

were performed near resorption zone of growth plate in femoral bone. Decreased Wnt10b expression was found in OVX rats. CT treatment increased Wnt10b

expression. The number of the osteoblast, osteoclast, and osteoclast with Wnt10b were counted. Green arrow showed osteoclasts to secret Wnt10b; White arrow

showed osteoclasts that did not secret Wnt10b. Scale bar = 50µm. *Indicates a significant difference (p < 0.05). N = 6 in each group.

(Figure 5). Pretreatment with C59, a Wnt secretion inhibitor,
further enhanced the effect of calcitonin in increasing Wnt10b
expression within the osteoclasts.

Calcitonin-Induced Osteoclastic Wnt10b
Secretion Improves Osteoblastic
Mineralization
Osteoblastic mineralization was analyzed by alkaline phosphate
(ALP, Figure 6A) and alizarin red (Figure 6B) staining. As a
negative control, osteoblasts isolated from the calvariae of 1-
day-old rats were cultured in a-MEM with or without C59 (a
and b in Figure 6). Significant increase of ALP and alizarin red
staining (c and d in Figure 6) were found in osteoblasts cultured
in conditioned medium with or without C59. Further increase
of ALP and alizarin red staining (e in Figure 6) were found in
calcitonin-treated conditioned medium. The calcitonin-induced
increase of ALP and alizarin red staining was reduced by C59
cotreatment (f in Figure 6). Similar finding of change of Wnt10b
concentration was noted in these groups.

DISCUSSION

The present study usedmicro-CT analysis to show that calcitonin
alleviated bone loss in ovariectomy-induced osteoporotic rats
(Figure 1). Though calcitonin is no longer considered an
appropriate treatment option for osteoporosis, the effects
of calcitonin on the coupling process between osteoclasts
and osteoblasts remain uncertain. Thus, it is fundamentally
important to uncover the mechanism by which calcitonin affects
osteoblastic bone formation through its actions on osteoclasts
(Figure 7).

Consistent with previous studies, we found that calcitonin
treatment not only decreased the levels of serum bone resorption
markers (i.e., TRAP5b and CTX-1) in OVX rats (Figure 2)
(14, 15) but also led to increased levels of bone formation
markers (i.e., osteocalcin and P1NP) in OVX rats (11, 15).
Because Wnt10b has recently been identified as a clastokine
able to increase osteoblast activity, the finding that increased
Wnt10b serum levels are correlated with osteocalcin and
Wnt10b expression in bone marrow in calcitonin-treated
OVX rats (Figure 3) implies that Wnt10b may be involved
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FIGURE 4 | Calcitonin increases intracellular Wnt10b expression in osteoclasts. Bone marrow monocytes were isolated from femoral and tibial bones of 8-week-old

SD rats. They were induced into osteoclasts by M-CSF and RANKL stimulation. (A) Confocal analysis was performed in osteoclasts treated with 3 nM calcitonin alone

or with C59 for 16 h. Osteoclasts were labeled with rhodamine phalloidin (red) to visualize F-actin and Nuclear Red (blue) to visualize nuclei. Scale bar = 20µm.

(B) The statistics of Wnt10b fluorescent intensity was showed in each group. *Indicates a significant difference (p < 0.05).

in the effects of osteoclasts coupling to osteoblasts. Confocal
microscopy of immunofluorescently labeled Wnt10b (Figure 4)
and Western blot analysis of Wnt10b expression (Figure 5)
in osteoclasts provided additional evidence to support this
hypothesis. Moreover, osteoblastic mineralization was enhanced
in conditioned medium derived from calcitonin-treated
osteoclasts (Figure 6). Taken together, these results demonstrate

that calcitonin induces bone formation by increasing the
expression of Wnt10b in osteoclasts in ovariectomy-induced
osteoporotic rats (Figure 7).

It is well-documented that Wnt signaling plays a crucial
role in many biological processes (e.g., cellular proliferation,
tissue regeneration, and other systemic effects) (16). This is
because the Wnt family is characterized by at least 19 different
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FIGURE 5 | Calcitonin increases Wnt10b levels in osteoclasts. Osteoclasts were prepared and treated as indicated in Figure 4. Western blot analysis was performed

on osteoclasts treated with 3 nM calcitonin alone or with C59 for the various times indicated. Protein levels were quantified by densitometry, corrected for sample

loading on the basis of actin levels, and expressed as the fold change relative to the control lane. Each blot is representative of at least three replicate experiments.

glycoproteins, each of which is responsible for triggeringmultiple
signaling cascades. Accordingly, Wnt proteins are likely to
be involved in various aspects of bone biology, including
osteoblastic and osteoclastic functions and endochondral bone
formation. A study indicated that Wnt signaling plays a vital role
in osteoblast differentiation from both mesenchymal precursors
and osteochondo progenitors as well as the proliferation and
survival of osteoblasts (17).Wnt ligands have been widely studied
by means of various osteoblastic models and, later, animal
models. Currently, existing murine models suggest that Wnt3a,
Wnt5a, andWnt10b are critical for osteoblast regulation, whereas
Wnt14 is important for endochondral bone formation (18–20).
Further investigations in this research area are necessary to
comprehend the scope of Wnt effects on bone metabolism and
the effectiveness of Wnt-based therapeutics on bone structure
and functions.

In contrast to the numerous findings regarding Wnt signaling
in osteoblast lineage cells, little is known about the influence of
Wnt proteins on osteoclasts in the context of cell autonomy. It

has been proposed that matrix-bound TGF-β1 could function
as an effective coupling agent for actively recruiting osteoblast-
lineage cells to bone-resorption positions following its osteoclast-
mediated release. A study indicated that TGF-β1 improves
the coupling to osteoblasts by inducing Wnt10b expression
in osteoclasts (21). Moreover, researchers have suggested that
cinacalcet, probably via increased bone mineralization related
to osteoclastic Wnt10b secretion, might improve bone quantity,
and quality in chronic kidney disease (CKD) mice (22).
Moreover, in a study involving calcitriol treatment of secondary
hyperparathyroidism in CKD patients, it was demonstrated that
the increased secretion of osteoclast-derived Wnt10b was critical
for the improvement of bone anabolism through its inhibition
of osteoclastogenesis and promotion osteoblastogenesis (23).
Hence, Wnt10b is a clastokine and a potential novel therapeutic
target of postmenopausal osteoporosis and CKD-related bone
disorder. On the other hand, runx2 directly induces Wnt10b
expression in osteoblasts (24). PTH is a bone anabolic agent
and effective treatment for postmenopausal osteoporosis, maybe
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FIGURE 6 | Calcitonin indirectly increases osteoblast mineralization. Osteoblasts were isolated from the calvariae of 1-day-old newborn SD rats and cultured in

groups a-f medium as indicated in Materials and Methods. Analysis of osteoblast mineralization was performed by ALP (A) and alizarin red staining (B). (C)

Quantitative results of the experiment shown in (A,B), and Wnt10b concentration in mediums of each group before cultured with osteoblasts. *Indicates a significant

difference (p < 0.05). Bar = 500µm.

by its effect of increase Wnt10b production in osteoblasts (25).
Therefore, the role of osteoblast-derived Wnt10b could not
be underestimated.

The elemental mechanisms of calcitonin receptor (CTR) bone
activity were discovered by Keller et al. (8) through experiments
on a new strain of viable global Calcr KO mice, which were
generated by applying a specific technique to knockout the
expression of CTR. Briefly, the study asserted that losing
CTR in osteoclasts would increase the levels of sphingolipid
transporter 2 (spinster 2, SPNS2), an exporter protein required
for the secretion of sphingosine-1-phosphate (S1P), which can
effectively induce bone formation. Thus, on the basis of the
above mechanisms, calcitonin binding to CTR on osteoclasts
will inhibit SPNS2 expression, causing the decreased secretion

of S1P and subsequent inhibition of osteoblast activity. Because
calcitonin-stimulated osteoclasts could inhibit or stimulate
osteoblast functions through the modulation of different
cytokines, the roles that these cytokinesmay play in various stages
of bone resorption remain unknown. Consequently, further
studies are needed to dissect the underlying mechanisms and
corresponding physiological relevance during bone remodeling.

However, C59 is aWnt inhibitor, not specific forWnt10b. This
is a limitation in our experiment. In addition, osteoblasts may
also secrete Wnt10b which is interesting issue worth of more
study. The current clinical application of calcitonin is gradually
decreasing because the other long-acting drugs for inhibition of
bone resorption are effective and convenient. Many studies still
have a great interest in calcitonin and the effect of the bone
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FIGURE 7 | Model of calcitonin-induced bone formation through action on osteoclasts. Bones undergo constant remodeling throughout the lifetime of the organism,

and this involves the continuous activity of osteoblasts and osteoclasts. Osteoblastic bone formation is communicated to osteoclastic bone resorption by positive and

negative modulators (RANKL/OPG or WNT). Osteoclasts also communicate to osteoblasts by clastokines (Wnt10b and S1P). Bone anabolic such as PTH also

increase osteoclastic bone resorption through their control of RANKL/OPG and WNT signaling. Anti-resorptive inhibit osteoclast resorption, which usually causes the

inhibition of bone formation. Uncoupling anti-resorptive, such as calcitonin, may modulate osteoblast mineralization through the controlled secretion of Wnt10b and

S1P.

metabolism, physiological roles, and the activities. This is an
intricate and fantastic peptide.

MATERIALS AND METHODS

Ovariectomy-Induced Osteoporosis RAT
Model
All rat experiments were reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of the
Laboratory Animal Center of the National Defense Medical
Center; the identification number is IACUC-14-104. Briefly, 18
4-month-old female Sprague–Dawley (SD) rats were purchased
from a specific pathogen-free laboratory animal company
(BioLASCO, Taipei, Taiwan) and separated randomly into three
groups. All rats were acclimatized under accepted laboratory
conditions (temperature was 22 ± 2◦C, and humidity was
50 ± 10%). Food and water were provided ad libitum. Rats
were anesthetized by the administration of isoflurane (Forane R©

AbbVie Inc., Queenborough, UK), and bilateral ovariectomy
(OVX) was performed to build an osteoporosis model in OVX
and OVX calcitonin-treated groups. The sham control group
comprised rats whose ovaries were exposed but not removed.
Twenty-eight days after surgery, the following three groups
(6 rats per group) were set up: (a) sham control group: rats
underwent a sham operation and were subcutaneously injected
with the same volume of normal saline; (b) OVX group:
rats underwent the OVX operation and were subcutaneously
injected with the same volume of normal saline; (c) OVX-
calcitonin group: rats underwent the OVX operation and were
subcutaneously injected with calcitonin (5 IU/kg/day, Miacalcic,
NovartisPharma). All groups were treated five times per week for
4 weeks. At the endpoint of the experiment, blood and femurs

were obtained from the rats, which were first fasted overnight
and euthanized, coded, and prepared for blinded distribution.
Collected sera were frozen at −80◦C, and femurs were kept in
alcohol at 4◦C.

Micro-Computed Tomography
The micro architecture of the 18 femoral trabecular bones
was investigated using micro-computed tomography (Skyscan
2211 Nanotomograph Micro-CT; Skyscan, Aartselaar, Belgium)
at a resolution of 8.5µm. The scan was performed with 180◦

scanning at a voltage of 80 kVp and a current of 500 µA
(7.9Woutput). Image reconstruction was performed using GPU-
based reconstruction software, GPU-Nrecon. Ring artifacts and
beam-hardening corrections were also performed using this
software. Reconstructed cross-sections were reorientated, and the
region of interest (ROI) was further selected. We performed the
analysis of the secondary trabecular bone area using 2mm (236
slices) images. The volume of interest was 1.5–3.5mm below the
growth plate. Thresholding, region of interest selection, and bone
morphometric analysis were performed using CTAn software.
The volume of interest was selected as 1.5–3.5mm below the
growth plate. In addition, the region of interest (ROI) of the
trabecular bone area was selected and then analyzed by using
CTAn software.

Biochemical Analyses
The concentrations in sera of Wnt10b and the bone resorption
marker TRAP5b (tartrate-resistant acid phosphatase from
5b) were measured by ELISA (Wnt 10b (MBS2533600,
MyBioSource, San Diego, CA, USA), TRAP5b (SB-TR102,
Immunodiagnosticsystems, East Boldon, UK), and resorption
marker CTX-1 (C-telopeptide of type I collagen) and formation
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markers osteocalcin and P1NP (type 1 procollagen amino-
terminal—propeptide) were measured EIA (AC-06F1, AC-12F1,
and AC-33F1 Immunodiagnosticsystems, UK).

Immunohistochemistry and TRAP Double
Stain of the Femur
Femurs were taken from experimental rats, then washed several
times in PBS and fixed overnight in formalin substitute solution
(FX1075, Cancer Diagnostics, Durham, NC, USA). The femurs
were decalcified in Decalcifying Solution (REF. No.3840, Thermo
Scientific, Waltham, MA, USA) for 24 h, then transferred to
0.5M EDTA, pH 8, for several days until a biopsy needle
could be inserted in to the femur. After decalcification, tissues
were dehydrated, embedded in paraffin, and cut into 10µm
thickness per slices. After deparaffinization, rehydration, and
antigen retrieval and blocking, anti-Wnt10b Ab (NBP2-49165,
Novus Biologicals, Centennial, CO, USA) was applied to the
slides followed by incubation overnight. The prepared slides
were then developed with the substrate chromogen of HRP-green
(TA01HG-15, BioTnA, Kaohsiung, Taiwan). After chromogen
properly developing the TRAP staining (AK04F-COS, COSMO
BIO, Tokyo, Japan) was applied. Briefly, the chromogen was
mixed with buffer immediately. Finally, hematoxylin was applied
to show the nuclei.

Osteoclast Differentiation From Bone
Marrow-Derived Monocytes
After 8-week-old Sprague-Dawley (SD) rats were sacrificed,
bone marrow from the tibiae and femurs were collected in
0.05% citric acid normal saline. Harvested cells (contained
monocytes) from bone marrow were extracted by centrifugation
in an equal volume of Ficoll-Paque PLUS (17144002, GE
Healthcare, Chicago, IL, USA). A total of 106 harvested cells
were cultured in a 10 cm dish with osteoclast differentiation
medium (α-MEM medium containing 10% fetal bovine serum
(FBS, SH30088.03, GE Healthcare, USA), 50 ng/mL macrophage
colony-stimulating factor (M-CSF, 400-28, PEPROTECH, Rocky
Hill, NJ, USA), 50 ng/mL RANKL (315-11, PEPROTECH,
USA), and 1% Antibiotic-Antimycotic Solution (30-004-CI,
CORNING, Corning, NY, USA). The mediumwas changed every
3 days.

Analysis of the Distribution of Wnt10b in
Osteoclasts by Confocal Microscopy
Osteoclasts induced from bone marrow-derived monocytes were
cultured on 22× 22mm glass coverslips in themedium described
above. After the osteoclasts formed, they were separated into
three groups: the control group, the group treated with 3 nM
calcitonin (05-23-2401,Sigma-Aldrich, St. Louis, MO, USA), and
the group treated with 3 nM calcitonin combined with a Wnt
inhibitor, C59 (sc-475634, SANTA CRUZ BIOTECHNOLOGY);
all the groups were cultured with α-MEM medium containing
10% FBS and 1% Antibiotic-Antimycotic Solution for 24 h.
C59 was added in the medium in control group. After the
osteoclasts were washed with PBS, fixed with formalin substitute,
and permeabilized with 0.1% Triton X-100 in PBS for 10min,

the cells were blocked in PBS containing 10% normal rabbit
serum (AR1010, BOSTER, Pleasanton, CA, USA) for 1 h at
room temperature. Then, anti-Wnt10b Ab was applied over
night at 4◦C. On the second day, after washing in 0.05% Triton
X-100 PBS three times, anti-rabbit Ab conjugated FITC was
applied at room temperature for 2 h. F-actin was labeled with F-
Actin Labeling Kit (22663, AAT Bioquest, Sunnyvale, CA, USA),
and nuclei were stained with Nuclear Red DCS1 (157199-63-8,
AAT Bioquest, USA). The distribution and intensity of Wnt10b
was analyzed using a confocal microscope (LSM 510, Zeiss,
Oberkochen, Germany).

Quantitation of Wnt10b in Osteoclasts by
Western Blot
The total protein was extracted from lysed osteoclasts treated
with or without calcitonin and C59 in a lysis buffer (100mM
Tris-HCl, pH7.4, 1% NP-40) containing protease inhibitor
cocktail (F1PICo25, Bio Future, New York, NY, USA). The
proteins were separated by 10% SDS-PAGE and transferred
to a PVDF membrane. After blocking, the membrane was
incubated with primary Ab overnight at 4◦C. The next day, after
washing, the secondary Ab was applied at room temperature
for 2 h. Finally, the membrane was treated with electrogenerated
chemiluminescence reagent (RPN2235, GE Healthcare, USA)
and detected using UVP ChemStudio PLUS (849-97-0851-03,
Analytik Jena, Jena, Germany).

Rat Calvariae Osteoblast Separation
The calvariae of newborn rats were cut into chips and digested
in a digestive solution of α-MEM medium containing 1% type
2 collagenase (LS004174, Worthington, OH, USA) and 0.05%
trypsin for 30min. After removing the solution, fresh digestive
solution was added to digest the calvariae chips; this process was
repeated three times. Finally, after the fourth time, centrifuged
osteoblasts, and calvariae chips were cultured in α-MEMmedium
containing 10% FBS and 1% Antibiotic-Antimycotic Solution.

Conditioned Medium Culture of
Osteoblasts
Osteoblasts separated from rat calvariae were cultured in group
a: osteoblast culture medium alone as mentioned in 4.8; group b:
osteoblast culture medium with C59; group c: half of osteoclast
culture medium as mentioned in 4.5 (conditioned medium) and
half of osteoblast culture medium with 50 mg/mL ascorbic acid
(A1968, Sigma Aldrich, USA) and 2mM b-glycerophosphate
(G9422, Sigma Aldrich, USA) (bone formation medium); group
d: half of conditioned medium with C59 and half of bone
formation medium; group e: half of 3 nM calcitonin-treated
conditioned medium and half of bone formation medium; group
f: half of 3 nM calcitonin-treated conditioned medium with C59
and half of bone formation medium. For the ALP stain and ALP
activity assay, each group was cultured for 7 days. For the alizarin
red stain, each group was cultured for 18 days. Before osteoblast
were cultured, the concentration of Wnt10b in each group of
medium were detected by ELISA (MBS2533600, MyBioSource,
San Diego, USA).
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ALP Staining and ALP Activity Assay of
Osteoblasts
Osteoblasts were stained with an ALP staining kit (AK20-COS,
COSMO BIO, Tokyo, Japan). Briefly, for staining, osteoblasts
were fixed by formalin substitute solution. The buffer and the
substrate were mixed, and the solution was then applied to
coverslips containing osteoblasts at room temperature for 20min,
followed by washing with deionized water to stop the reaction.
The images were captured by microscopy (Axio Imager A2,
Zeiss, Germany). Quantified ALP activity in osteoblasts was
measured using an Alkaline Phosphatase Assay Kit (ab83369,
Abcam, Cambridge, UK). Briefly, cells were lysed in lysis
buffer and combined with p-nitrophenyl phosphate (pNPP) as
a phosphatase substrate, then incubated at room temperature for
1 h. Finally, the reaction was stopped by the addition of 0.1M
NaOH solution, and the ALP activity was estimated by the optical
absorbance measured at 405 nm.

Alizarin Red S Staining and Quantification
Osteoblasts were cultured for 18 days and stained with Alizarin
Red S (0223, ScienCell, Carlsbad, CA, USA) at room temperature
for 20min, and images were captured after washing. To
quantify calcium mineralization in cells, the stained material
in cells was dissolved in 10% cetylpyridinium chloride (C0732,
Sigma-Aldrich, USA) at room temperature for 1 h, and the
quantification was estimated by the optical absorbance measured
at 405 nm.

Statistical Analysis
Each series of experiments was repeated at least three times. The
results obtained from a typical experiment were expressed as
the means ± S.D. Significant differences were determined using
factorial analysis of variance. Group comparisons were made
by one-way ANOVA followed by the Dunnett’s test using SPSS
software, version 15.0 (Armonk, NY, USA).

CONCLUSIONS

Using in vivo OVX rats and in vitro osteoclast and osteoblast
cultures, we show that calcitonin induces bone formation
by increasing the expression of Wnt10b in osteoclasts in
ovariectomy-induced osteoporotic rats. The present study
provides further information about calcitonin at the molecular

level of bone remodeling, and will thus help in future potential
therapeutic studies on postmenopausal osteoporosis.
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The skeleton is a dynamic and metabolically active organ with the capacity to influence

whole body metabolism. This newly recognized function has propagated interest in

the connection between bone health and metabolic dysfunction. Osteoblasts, the

specialized mesenchymal cells responsible for the production of bone matrix and

mineralization, rely on multiple fuel sources. The utilization of glucose by osteoblasts

has long been a focus of research, however, lipids and their derivatives, are increasingly

recognized as a vital energy source. Osteoblasts possess the necessary receptors

and catabolic enzymes for internalization and utilization of circulating lipids. Disruption

of these processes can impair osteoblast function, resulting in skeletal deficits while

simultaneously altering whole body lipid homeostasis. This article provides an overview

of the metabolism of postprandial and stored lipids and the osteoblast’s ability to acquire

and utilize these molecules. We focus on the requirement for fatty acid oxidation and the

pathways regulating this function as well as the negative impact of dyslipidemia on the

osteoblast and skeletal health. These findings provide key insights into the nuances of

lipid metabolism in influencing skeletal homeostasis which are critical to appreciate the

extent of the osteoblast’s role in metabolic homeostasis.

Keywords: osteoblast, fatty acid metabolism, dyslipidemia, bone mass, lipoproteins

INTRODUCTION

Development of the mammalian skeleton and maintenance of its structure for the life of the
organism requires the coordinated actions of two specialized cells. Osteoclasts, largemultinucleated
cells that are derived from themonocyte/macrophage lineage of hematopoietic cells, are responsible
for bone resorption. After attaching to an exposed bone surface, osteoclasts acidify a resorption
lacuna to dissolve the mineral fraction of bone and then secrete proteolytic enzymes that degrade
the organic matrix component (1). During the resorption process, growth factors trapped within
bone matrix are released and trigger the recruitment of osteoblasts responsible for new bone
formation (2, 3). Derived from mesenchymal stem cells present in the bone marrow stroma, these
cells are characterized by their cuboidal shape and abundance of rough endoplasmic reticulum
necessary for the production of the collagen-rich bone matrix (4). After building a packet of bone
most osteoblasts will die by apoptosis, but small fractions will either become encapsulated within
the bone matrix and fulfill regulatory functions as osteocytes or dedifferentiate and line bone
surfaces. Known as bone remodeling, this process prevents the accumulation of old or damaged
bone that may lead to fracture. In humans, peak bone mass is reached during the second decade of
life as a result of net bone accrual during childhood, when bone formation exceeds resorption and
osteoblasts and osteoclasts act on different bone surfaces to maintain the overall shape of bones
during longitudinal growth (known as modeling). A balance between formation and resorption
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FIGURE 1 | Overview of tissue-targeted lipid metabolism. Ingested lipids are broken down in the intestinal lumen and internalized by enterocytes of the small intestine.

The water insoluble triglycerides and cholesterol are repackaged into chylomicrons and travel through the lymphatic system and into the circulatory system where they

engage lipoprotein lipase (LPL) on the surface of capillary endothelial cells. The hydrolyzed triglycerides result in release of free fatty acids that are taken up by adipose

tissue and the skeleton. The remaining chylomicron remnants (CR) are cleared by the liver via the apolipoprotein E (ApoE) receptor. CR-derived cholesterol and free

fatty acids and circulating glucose are used for de novo lipogenesis, generating ATP for the liver, or repackaged into very low-density lipoproteins (VLDL). VLDL

particles are released into the circulation where they engage LPL and release free fatty acids, which are also available for uptake. The remaining low-density lipoprotein

(LDL) are internalized by cells expressing the low-density lipoprotein receptor (LDLR) including adipocytes and osteoblasts. This figure was created using Servier

Medical Art image templates under a Creative Commons Attribution 3.0 Unported License.

then occurs in early adulthood. However, with advancing age or
as a result of numerous endocrine pathologies, an acceleration
of osteoclastic activity leads to bone loss as osteoblastic activity
is unable to keep pace. As bone mass decreases and structure
integrity deteriorates, the risk of fracture increases (5, 6).

The tremendous economic impact of osteoporotic fractures
(7–9) and development of comorbidities after fracture (10–
12) highlight the need to understand the genetic, cellular, and
endocrine mechanisms that influence bone mass. With the
renewed interest in intermediary metabolism in cancer (13–15)
and the recognition that bone is not merely a structural organ
acting as a reserve of minerals but also an endocrine organ that
can influence systemic metabolism (16–21), research in the field
of skeletal biology has coalesced over the last few years on the
contributions of cellular metabolism to osteoblast function and
bone formation. The field reasoned that if bone contributes to
the regulation of metabolic homeostasis through the release of
osteocalcin and other hormones (16, 21), then the availability
of nutrients must be critical to osteoblast function. Indeed,
hierarchical analysis of energy requirments of cellular function
(22) suggest that the bone remodeling process is energy intensive
due to the synthesis of large extracellular matrix proteins and the
necessity of concentratingmineral ions for hydroxyapatite crystal
formation. Evidence from both the laboratory and the clinic

supports this hypothesis as caloric restriction during gestation or
during postnatal life strongly influences the trajectory of both the
accrual and the maintenance of bone mass (23–25). Additionally,
an increase in oxidative phosphorylation and the abundance of
mitochondria appears to be a requirement for the differentiation
of osteoblasts from marrow stem cells (26–29).

Osteoblasts harvest energy from a number of fuel molecules.
Studies performed more than 50 years ago first highlighted
the avidity of osteoblasts for glucose. Isolated osteoblasts or
bone tissue explants from mice, rats, rabbits, and humans all
used glucose to produce lactate even under aerobic conditions
(30–34). More contemporary studies indicated that glucose
acquisition is mediated by glucose transporter-1 (35) and
that metabolic programming of glucose utilization is adjusted
according to the stage of differentiation (28, 36). Cells of
the osteoblast lineage also consume a significant amount of
glutamine which is required for skeletal stem cell specification,
can be catabolized by the tricarboxylic acid cycle to generate
ATP, and serves as a regulatory signal to maintain endoplasmic
reticulum health during stages of heightened protein synthesis
(37, 38).

While lipid metabolism yields significantly more ATP than
glucose or glutamine catabolism, its role in osteoblast function
remains more controversial. Recent studies have highlighted
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FIGURE 2 | Lipid- flux between the adipocyte and osteoblast. White adipose tissue is the primary storage depot of lipids during excess consumption, which are

subsequently released when energy expenditure exceeds caloric intake. Esterified fatty acids are stored in the adipocytes as triglycerides and are hydrolyzed by the

rate limiting enzyme, adipose triglyceride lipase (ATGL), into diglycerides. Diglycerides are hydrolyzed into monoglycerides by hormone sensitive lipase (HSL) and

further into fatty acids by monoacyglycerol lipase (MGL), which are then released into circulation. Adipocyte uptake of glucose is metabolized to acetyl-CoA and used

for de novo fatty acid synthesis. These newly synthesized fatty acids are another lipid source for the osteoblast. LDL-derived fatty acids and uptake of circulating free

fatty acids via CD36/FATPs are vital energy sources for the osteoblast. These internalized free fatty acids are converted into acyl-CoA by fatty acyl-CoA synthase. Very

long chain fatty acids (VLCFAs) (more than 22 carbons) are first shortened by the peroxisome. Acyl-CoA is transported to the mitochondrial matrix by a carnitine

exchange system in order to undergo β-oxidation. The product, acetyl-CoA is transferred to the TCA cycle and electron transport chain for generation of ATP. This

figure was created using Servier Medical Art image templates under a Creative Commons Attribution 3.0 Unported License.

the importance of fatty acid catabolism for normal bone
formation (39, 40), but detrimental effects of lipids on osteoblast
performance are also well-known (41, 42). In this review, we
discuss the dual effects of lipids on osteoblast function and the
maintenance of bone mass and strength. We provide a brief
overview of the trafficking and metabolism of lipids in target
tissues like bone. We then describe studies which highlight the
importance of fatty acids metabolism for the accrual of bonemass
and the mechanisms that regulate fatty acid utilization. Finally,
we discuss the effects of dyslipidemia on osteoblast function
and the potential for this condition to desensitize osteoblasts to
anabolic signals.

OVERVIEW OF LIPID METABOLISM

The lipid molecules that support cellular metabolism are
primarily derived from three sources: ingested fat, lipoproteins
produced by the liver, and non-esterified fatty acids released by
white adipose tissue (Figure 1). Postprandial triglycerides and
cholesterol esters are broken down in the intestinal lumen by
cholesterol esterases, pancreatic lipases, and bile salts. These
molecules are then taken up by the enterocyte of the small
intestine, re-esterified, and packaged with lipid-soluble vitamins,
and apolipoproteins into chylomicrons. Chylomicrons enable

water-insoluble fats and cholesterol to move through the
lymphatic system and into the circulatory system. Engagement
of the chylomicron by lipoprotein lipase (LPL) on capillary
endothelium results in the hydrolysis of triglycerides and the
delivery of fatty acids to target tissues (43, 44). The chylomicron
remnants containing cholesterol and apolipoproteins are then
cleared by the liver (45).

In healthy individuals, the liver exhibits a nearly constant lipid
flux. Chylomicron remnants and free fatty acids are taken up
by the liver, while a portion of the circulating glucose taken up
by the organ is used for de novo lipogenesis. Lipid molecules
from each of these sources can be used to generate ATP in the
liver or they can be packaged along with apolipoprotein (Apo) B-
100, ApoC, and ApoE into very low-density lipoproteins (VLDL)
on the endoplasmic reticulum. VLDL are released into the
circulation and metabolized by target tissues in a manner similar
to that of chylomicrons, with LPL hydrolyzing triglycerides to
fatty acids that can be imported by cells. In this case, the
remaining lipoprotein particle is further metabolized to low
density lipoprotein (LDL), which can be taken up bymany tissues
via the LDL receptor (44).

White adipose tissue is the primary storage depot for excess
calories. Non-esterified fatty acids are taken up by adipocytes,
esterified and stored as triglycerides, while glucose is metabolized
to acetyl-CoA and then used as a substrate for de novo fatty
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acid synthesis. When energy expenditure exceeds caloric intake
or in response to a number of lipolytic hormones, the stored
triglycerides can be hydrolyzed to glycerol and free fatty acids
that are released into the circulation to be used for β-oxidation in
other organs, including the skeleton. Lipolysis is mediated by the
stepwise action of three lipases (illustrated in Figure 2). The rate
limiting enzyme, adipose triglyceride lipase (ATGL), catalyzes
the first reaction by hydrolyzing triacylglycerols at the sn-2
position to diacylglycerol and one fatty acid. Diacylglycerides
are then preferentially hydrolyzed by hormone sensitive lipase
(HSL) at the sn-3 position to yield a second free fatty acid
(46). Monoacyglycerol lipase (MGL) catalyzes the final reaction
generating glycerol and a third fatty acid (47). Most free fatty
acids released into circulation are bound by albumin (48).

The intracellular metabolism of fatty acids taken up by
cells depends on chain length. Short-chain (1-6 carbons) and
medium-chain (7-12 carbons) fatty acids are produced by
the bacterial fermentation of dietary fiber or the ingestion
of dairy products. These lipids are primarily metabolized
by enterocytes or by hepatocytes and are beyond the scope
of this review (47). Long-chain fatty acids (13-21 carbons)
are transported into cells by specific transporters (discussed
below) but have limited solubility in the cytosol. To increase
solubility, trap fatty acids in the cell, and produce a high
energy thioester necessary for the next steps of catabolism,
long-chain fatty acyl-CoA ligases catalyze the formation of
fatty acyl-CoA in a reaction that requires the hydrolysis of
1 ATP to AMP. Acyl-CoA must then be transferred to the
mitochondria by a carnitine exchange system to undergo β-
oxidation. Carnitine palmitoyltransferase 1 (CPT1), the first
and rate-limiting step in this process, is located on the outer
mitochondrial membrane and catalyzes the replacement of CoA
with carnitine. Acyl-carnitines are recognized and transferred by
carnitine-acylcarnitine translocase into the mitochondria matrix
where carnitine palmitoyltransferase 2 (CPT2) reverses the
reaction of CPT1 and regenerates Acyl-CoA. The four reaction β-
oxidation process removes 2 carbons from the carboxy end of the
acyl-CoA to generate acetyl-CoA, 1 NADH and 1 FADH2 that are
transferred to the TCA cycle and electron transport chain for the
generation of ATP (Figure 2). Successive rounds of β-oxidation
are necessary to fully metabolize long-chain fatty acids (49).

Very long chain fatty acids (more than 22 carbons) can
also be used to generate ATP but must be chain-shortened
in peroxisomes before they can enter the mitochondria (50).
Multi-functional peroxisomes encase more than 50 enzymes,
with more than half involved in fat metabolism, in a single
lipid bilayer. As in long chain fatty acid metabolism, very long
chain fatty acids are first converted to acyl-CoAs in the cytosol.
The fatty acyl-CoA is then transported into the peroxisome by
members of the ATP binding cassette transporter D subfamily.
Peroxisomal oxidation also involves four reactions but utilizes
a separate set of enzymes to shorten the fatty acid chain and
is not as efficient at ATP generation as there is no respiratory
chain. Indeed, while the FADH2 produced by one round of
mitochondrial β-oxidation yields 2 ATP, the electrons from
FADH2 produced by peroxisomal oxidation are donated to
oxygen to form H2O2. For this reason, chain shortened fatty

acids can be shuttled to the mitochondria for further metabolism
via β-oxidation.

MECHANISMS OF LIPID UPTAKE BY
OSTEOBLASTS

Although they are smaller than those evident in adipocytes,
most cells contain a lipid droplet that can presumably be used
to generate ATP via β-oxidation. Histological studies indicate
that both mature osteoblasts and differentiating osteoblast
progenitors contain stored lipid (51, 52), but these stored
lipids do not appear to be a major energy source for mature
osteoblast function. Kim et al. (39) ablated the expression of
ATGL in cultures of calvarial osteoblasts and mature osteoblasts
and osteocytes in vivo (Atglflox/flox; Osteocalcin-Cre), which
should eliminate intracellular lipolysis, but did not find a defect
in either in vitro osteoblast performance or bone structure
in vivo. Therefore, osteoblasts appear to require extracellular
lipid sources.

A combination of in vivo and in vitro studies have examined
the uptake of circulating lipoproteins and free fatty acids by the
osteoblast and the skeleton. In perhaps the most comprehensive
study, Neimeier and colleagues (53) modeled postprandial
lipoprotein uptake by intravenously injecting fluorescent- or 125I-
labeled chylomicron remnants into mice. Skeletal uptake was
17% that of liver but was greater than other catabolic organs
including muscle and heart. Importantly, chylomicron remnant
uptake by the osteoblast-/osteocyte-enriched femoral diaphysis
was greater than that of bone marrow, indicating the skeletal
acquisition was not simply carried out by marrow adipocytes.
Osteoblasts also appear to take up of LDL and VLDL and
acquisition can be enhanced by co-administration with ApoE,
but these studies have primarily been performed in cultured
osteoblasts (54–56). Skeletal uptake of fatty acids was assessed
in vivo by Bartelt et al. (57) and Kim et al. (39) after delivering
3H-linoleic acid and 14C-palmitic acid or 3H-bromo-palmitate,
respectively, via oral gavage. Similar to the uptake of chylomicron
remnants, these studies revealed that skeletal acquisition of fatty
acids is comparable to tissues that are more classically associated
with fatty acid metabolism. Together, these studies highlight a
potential role of bone in fatty acid metabolism and postprandial
clearance of fat from the circulation.

The identity and requirements for specific receptors and
transporters that allow osteoblasts to take up fatty acids and
lipoproteins (Figure 2) need additional study, but experimental
data exists for a number of possible mechanisms. Consistent with
osteoblastic uptake of chylomicron remnants and lipoproteins,
osteoblasts express the low-density lipoprotein receptor (LDLR)
and low-density lipoprotein receptor-related protein-1 (LRP1)
(58, 59). Interpretation of the skeletal phenotypes of mice
engineered to be deficient for LDLR (LDLR−/−) requires care
as studies have reported both reduced (60) and elevated bone
volume (61) relative to wildtype mice. Both in vivo (60) and
in vitro (62) analyses indicate that the actions of the LDLR
are important for osteoblast function as its ablation results in
reductions in the expression of gene markers of osteoblastic
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differentiation. These data accord with the ability of LDL
to stimulate cell growth and sustain responsivity to anabolic
stimuli in osteoblasts cultured under serum-free conditions
(63). The discrepancies in bone volume observed in vivo are
likely be related to the requirement for LDLR during osteoclast
differentiation (60, 61).

LRP1 can facilitate the endocytosis of triglyceride and
cholesterol containing chylomicron remnants in cultures of
osteoblastic cell models (58) and polymorphisms in the gene
encoding this receptor are associated with bone mineral density
(64). However, analysis of an osteoblast-specific knockout mouse
(Lrp1flox/flox; Runx2-Cre) revealed an osteopenic phenotype
but there was no effect on systemic lipoprotein clearance
or osteoblasts’ ability to sequester fatty acids (65). While
the bone phenotype has been attributed to marked increases
in osteoclastogenesis (65), the sustained ability to take up
lipoproteins could be due to the engagement of other LDLR
family members. LRP5 and LRP6 are most typically associated
with the propagation of signaling in response toWnt ligands (66),
but these receptors also have the capacity to bind andmediate the
endocytosis of lipoproteins and chylomicron remnants (67, 68).
Cultured osteoblasts rendered deficient for LRP5 also retained
the ability to take up LDL (56), indicating that combinatorial
genetic studies wherein the expression of multiple LRP receptors
are simultaneously ablated may be necessary to discern receptor
function in lipid particle uptake.

Osteoblasts also take up high density lipoproteins (HDL) and
express Scarb1 (also referred to as SR-B1) (55), themajor receptor
for high-density lipoproteins (69). Some epidemiological studies
suggest a positive correlation between BMD and HDL levels,
but others have reported contradictory results [see (70) for a
comprehensive review]. Interpretation of an association between
HDL and bone mass in animal models has been equally
challenging. Martineau and colleagues (71) reported that Scarb1
null mice display increases in HDL-associated cholesterol and
increases in femoral bone volume and mineralization at 2 and
4 months in association with increases in osteoblast surface and
bone formation rate, which suggests a detrimental effect of HDL
on skeletal homeostasis. However, it remains possible that the
high bone mass phenotype in these mice is due to an increase in
serum adrenocorticotropin (ACTH), which has anabolic effects
on osteoblasts (72, 73). Futhermore, control and Scab1 deficient
osteoblasts exhibited similar levels of HDL-cholesterol uptake
in vitro (71). A follow-up study by this same group reported
that Scarb1 deletion in MSCs increased osteoblastogenesis
but decreased terminal osteocyte differentiation as vertebral
osteocyte density was modestly decreased in the mutant mice
(74). However, a more recent study contradicted these findings
and reported Scarb1 null animals to be osteopenic in the
veterbrae at 16 weeks with decreases in resorption and formation
markers, and diminished osteoblast differentiation markers
both in vitro and in vivo (73). Here too, alterations in bone
volume were attributed to dose dependent effects of ACTH on
bone. Similarly, mice with impaired HDL synthesis displayed
reduced bone mass and impaired differentiation (75) suggesting
a necessity for HDL in osteoblast function. Further in vivo
studies using genetic models with osteoblast specific deletions

are required to further delineate Scarb1 function and a role for
reverse cholesterol transport will need to be considered.

Osteoblasts also express the receptors necessary to take up
and metabolize free fatty acids. CD36 is a two-transmembrane
glycoprotein receptor that binds long-chain fatty acids as well
as oxidized low-density lipoprotein (oxLDL) and facilitates their
transport into the cell (55, 76). While direct studies of its effect
on fatty acid uptake have not yet been completed, CD36 null
mice exhibit a low bone mass phenotype secondary to impaired
bone formation (77) that implies fatty acid uptake is essential
for osteoblast function. The SLC27 family of fatty acid transport
proteins (also referred to as FATP1-6), may also contribute to
osteoblasts acquisition of long-chain fatty acids for oxidation
(76, 78), as multiple family members are expressed by primary
osteoblasts (40).

REQUIREMENT FOR FATTY ACID
OXIDATION IN OSTEOBLASTS

The effects of specific fatty acids on the functions of the
major bone cells has recently been reviewed elsewere (79).
Direct examination of the requirement for fatty acid oxidation
during postnatal bone acquisition and bone repair has been
examined in two studies. In the first, Kim and colleagues
disrupted the expression of CPT2 in mature osteoblasts and
osteocytes (Cpt2flox/flox; Osteocalcin-Cre) (39). As noted above,
CPT2 catalyzes an obligate step in fatty acid β-oxidation and was
selected for ablation in this model because it is encoded by a
single gene (three isoforms of CPT1 are present in mammalian
genomes). The skeletal phenotype of the mutant mice was
sexually dimorphic, with male mice fed a normal chow diet
exhibiting only a transient decrease in trabecular bone volume in
the distal femur and L5 vertebrae at 6 weeks of age. By contrast,
female mutants exhibited defects in trabecular bone volume in
the distal femur and L5 vertebrae and an expansion of cortical
bone tissue area at both 6 and 12weeks. This discrepancy between
sexes appears to be related to a greater ability to adjust fuel
utilization in males, as male mutants exhibited an increase in
femoral glucose uptake that was not evident in female mutants.
The greater inhibition of osteoblast performance and inhibition
of glucose uptake in CPT2 mutant osteoblasts treated with
estrogen may explain the sex differences in metabolic flexibility.
Interestingly, both male and female CPT2 mutants exhibited
an increase in serum free fatty acid levels, which suggests that
disrupting fatty acid utilization by osteoblasts and osteocytes is
sufficient to alter lipid homeostasis (39).

In the second study, van Gastel et. al. (40) identified a
role for fatty acid utilization during fracture healing and the
specification of skeletal cell fate. During the bone healing process,
endochondral ossification is initiated by periosteal progenitor
cells that differentiate to chondrocytes and form an avascular,
cartilaginous callus. The callus is subsequently invaded by the
vasculature (80) and replaced by bone (81, 82). Blood vessels
are expected to deliver the oxygen, nutrients, and growth factors
necessary to drive bone formation. Through biochemical assays
and the reanalysis of an existing single cell RNAseq study
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of skeletal progenitors (83), Van Gastel et. al. (40) reported
that chondrocytes express low levels of CPT1a and high Glut1
levels as well as elevated lactate production, which suggests that
glycolysis meets the chondrocyte’s energy needs. On the other
hand, osteoblasts expressed high levels of Glut1 and CPT1a,
exhibited higher levels of oxygen consumption, and an increased
ability to metabolize palmitate, indicating a reliance on fatty acid
oxdiation. Importantly, knocking down the expression of CPT1a
prevented the differentiation of skeletal stem cells to osteoblasts
while local injection of free fatty acids during fracture repair
increased the amount of bone formed in the callus and reduced
the amount of cartilage. Mechanistic studies demonstrated that
reduced fatty acid availability increased the activation of FOXO3,
which in turn activated SOX9 and chondrogenic specification.
Taken together, these studies highlight the requirement for fatty
acid β-oxidation for bone-forming osteoblasts in bone repair and
skeletal development.

Evidence for a role of peroxisomal lipid oxidation in bone is
largely based on the phenotypes evident in patients affected by
peroxisomal disorders and global knockout models. Human and
mouse genetic studies have identified 14 peroxin genes (PEX1-
PEX26) that encode proteins necessary for either the formation
of peroxisomes or the transport of cargo into the organelle.
Loss of function mutations in peroxin genes, which occur at
a rate of ∼1 in 50,000 births, result in autosomal recessive
peroxisomal biogenesis disorders (PBD) that affect a number
of organ systems. Individuals with more severe PBD subtypes
often exhibit craniofacial anomalies, short stature, and limb
length discrepancies. Less severe subtypes have been associated
with reductions in bone mineral density and an increased
susceptibility for non-traumatic fractures (84–86). In the mouse,
hypomorphic alleles for Pex7 leads to a reduction in longitudinal
growth and impaired ossification of the digits (87), while a global
knockout resulted in delayed ossification at multiple skeletal sites
(88). Additional mouse genetic studies will be necessary to fully
delineate the role of peroxisomes in skeletal tissue maintenance
and function.

PATHWAYS REGULATING FATTY ACID
OXIDATION

If fatty acid metabolism is used to generate the ATP necessary
for osteoblast function, then metabolic flux in this pathway
should be regulated by the signals that drive bone formation.
Indeed, two of the most potently anabolic pathways, Wnt
signaling and parathyroid hormone signaling, appear to drive
fatty acid oxidation.

Wnt Signaling
The anabolic effects of Wnt signaling on skeletal development,
repair, and homeostasis have been well-studied (89, 90), and
a number of studies have now demonstrated that the pathway
coordinates the intermediary metabolism of the osteoblast with
the energetic demands of bone formation (38, 91–93). LRP5
and LRP6 act as co-receptors for the Frizzled receptors that
propagateWnt signals and lead to the stabilization and activation

of β-catenin (66). While the osteoblast-specific ablation of
either receptor (Lrp5flox/flox; Osteocalcin-Cre and Lrp6flox/flox;
Osteocalcin-Cre) results in decreases in bone mineral density
and vertebral trabecular bone volume (94), Frey et al. (56)
found that the LRP5 mutants also exhibited increases in fat
mass and serum triglycerides and free fatty acids, suggestive
of a disruption in fatty acid utilization. Indeed, analysis of
gene expression in cultured osteoblasts by microarray revealed
that LRP5-deficient osteoblasts exhibited a downregulation of
multiple genes involved in mitochondrial long-chain fatty acid
β-oxidation. The effects of these changes in gene expression on β-
oxidation were confirmed by examining the oxidation of oleate,
which was reduced in LRP5 deficient osteoblasts when compared
to control. Expression of LRP5 with a gain of function mutation
(Lrp5G171V) in osteoblasts produced the opposite phenotype, as
the transgenic mice exhibited increases in bone volume and
oxidative gene expression as well as decreases in fat mass, serum
triglycerides, and fatty acids.

Subsequent genetic studies revealed that Wnt-mediated
regulation of fatty acid oxidation proceeds via a β-catenin-
dependent mechanism. Frey et al. (95) found that only Wnt
ligands that increase the abundance of β-catenin in cultured
osteoblasts, increase the capacity to fully oxidize oleate to carbon
dioxide. Since constitutive ablation of β-catenin in osteoblasts
results in early lethality (96) in vivo, the generation of an
inducible β-catenin knockout mouse (Ctnnbflox/flox; Osteocalcin-
CreERT2) was necessary to examine the transcription factor’s
effects on fatty acid oxidation. In this model, the temporal
ablation of β-catenin resulted in high-turnover bone loss as
well as increased fat mass and the development of insulin
resistance. Additionally, the expression of genes involved in long-
chain fatty acid oxidation and the ability to oxidize oleate were
reduced in β-catenin deficient osteoblasts in vitro, while serum
fatty acid levels were increased in the mutants in vivo. These
studies have expanded the role of canonical Wnt-signaling to
influencing fatty acid utilization and coordinating whole-body
energy homeostasis.

As indicated above, a number of contemporary studies
suggest that Wnt signaling also regulates glucose and glutamine
utilization by the osteoblast. Wnt signaling through LRP5
increased aerobic glycolysis in the ST2 bone marrow stromal
cell line (93) and mice engineered to overexpress Wnt7b in
osteoblasts exhibit dramatic increases in bone volume, but
simultaneously ablating the expression of Glut1 completely
inhibited the increase in bone accrual (92). Similarly, Wnt
signaling induced glutamine catabolism via the TCA cycle (38)
which in turn stimulated the expression of genes involved in
protein sysnthesis. Interestingly, these effects were mediated by
the activation of mTOR and not β-catenin (92, 93, 97). Thus,
the metabolic actions of Wnt signaling appear to depend on the
specific downstream pathways that are activated.

Parathyroid Hormone Signaling
Parathyroid hormone (PTH) is a master regulator of serum
calcium that signals in the bone, kidney, and intestine to
increase calcium levels. Intermittent administration of human
recombinant PTH (1-34) is now used to reduce the occurrence
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of vertebral and non-vertebral fractures and increased bone
mineral density in postmenopausal osteoporotic women (98).
This therapeutic effect is mediated by PTH’s ability to decrease
apoptosis of mature osteoblasts (99), activate preexisting
bone lines cells (100, 101), and stimulate osteoprogenitor
recruitment (102).

The first indication that PTH might influence fatty acid
oxidation were completed by Adamek et al. (103). In this
study, PTH increased palmitate oxidation in specific cell
populations isolated from bone by enzymatic digestion, while
1,25-Dihydroxycholecalciferol administration produced a more
dramatic effect in multiple cell fractions. A greater reliance of
lipids was suggested by Catherwood et al. (63) who demonstrated
that the inclusion of LDL or VLDL in a basic medium was
sufficient to support the proliferative response of rat ROS17/2.8
to PTH. In a more recent work, Esen et al. (104) used Seahorse
technology, radiolabeled metabolites, and MC3T3-E1 cells to
examine the effect of PTH on osteoblast metabolism. These
studies demonstrated that PTH stimulates glucose uptake and
increases lactate production but reduces the shuttling of glucose-
derived carbon to the TCA cycle. These findings suggest that the
increased rate of oxygen consumption after PTH administration
is due to the oxidation of another fuel source, perhaps fatty
acids imported from serum. While additional studies will
be necessary, this paradigm is congruent with findings from
Maridas et. al (105) that tracked the transfer of fatty acids
from adipocytes to bone marrow stromal cells as well as the
established ability of PTH to induce lipolysis in adipocytes (106).
Likewise, the reduction in marrow adipose tissue volume after
intermittent PTH treatment suggests that marrow adipocytes
represent an energy reserve that provides fatty acids to fuel
the anabolic activity of osteoblasts (105, 107). The finding
that PTH can increase bone mass even under conditions of
caloric restriction suggests that the relationship between PTH
activity and metabolism is more complex and worthy of further
study (105).

SKELETAL CONSEQUENCES OF
DYSLIPIDEMIA

The Centers for Disease Control (CDC) reports that 95
million adults age 20 and older have high cholesterol (>200
ng/dL) while about 25% have elevated triglyceride levels (108).
The aforementioned preclinical studies suggest a requirement
for fatty acid oxidation for normal skeletal development
and homeostasis, but epidemiological studies suggest that
dyslipidemia has detrimental effects on bone (109–114). Elevated
triglycerides, hypercholesterolemia and increased LDL are
associated with higher risk of osteoporosis (111, 114) while
increased LDL has been associated with non-vertebral fractures
(115). Likewise, the National Health and Nutrition Examination
Survey (NHANES III) reports that 63% of osteoporotic patients
have hyperlipidemia (116). Studies from elite endurance athletes
suggest that even short term exposure to a diet rich in fat can
elicit a catabolic state in bone with an increase in markers of bone
resorption and decreases in bone formation markers at rest and

following high-intensity exercise (117). The inverse relationship
between hyperlipidemia and osteoporosis is further noted by
the use of statins, a class of drugs used to lower cholesterol
by blocking 3-hydroxy-3-methyl-glutaryl-CoA reductase, which
was associated with an increase in BMD but no improvement
in fracture risk (118–120). The sections below describe effects of
dyslipidemia on osteoblast function and skeletal homeostasis in
rodent models (Figure 3).

Effect of Dyslipidemia on Bone Structure
and Remodeling
Over the last decade a combination of high fat diet (HFD) feeding
models and hyperlipidemic mouse models have been used to
investigate the effects of dyslipidemia on skeletal homeostasis.
In addition to the development of hypertriglyceridemia, these
models exhibit a host of metabolic defects, including but
not limited to adipose hyperplasia, hyperinsulinemia, insulin
resistance, central leptin resistance, and hepatic steatosis
[reviewed in (121)], that can alter the balance of bone remodeling
and influence bone strength. The consensus from the majority
of these studies is that HFD feeding leads to a deterioration of
trabecular bone mass at multiple skeletal sites in the axial and
appendicular skeleton (60, 116, 122–126). A hypercholesteremic
diet produces a similar effect on trabecular bone parameters
(127). Reports on the effects of HFD on cortical bone parameters
are more variable. Tencerova and colleagues (125) reported that
12 weeks of HFD increased cortical porosity and decreased
cortical thickness in the tibia of male C57Bl/6J mice. These
phenotypes would be expected to reduce bone strength and
indeed a reduction in maximum force and energy to failure
were noted in the femur by Picke et al. (128) when a similar
HFD feeding paradigm was employed. By contrast, Silva et al.
(129) found that HFD had minimal effects on cortical bone
material properties and modestly increased cortical bone area
and strength in mice derived from a Large-by-Small advanced
intercross, wherein inbred mouse strains with extreme body sizes
were crossed. However, this study did note a discrepancy in
the relationship between the expansion of femoral tissue area
with increasing body mass in HFD fed mice. This finding would
appear to be in agreement with the minimal effects of a HFD
on cortical bone geometry in female C57Bl/6J until data were
normalized to body mass (130). In all likelihood, the differences
observed in the cortical bone envelope are due to the balancing
of detrimental effects of metabolic dysfunction with increased
mechanical loading secondary to weight gain.

Histomorphometric analyses and serum measurements of
bone turnover markers consistently demonstrated that trabecular
bone loss in HFD and hyperlipidemic mice is secondary to a
reduction in osteoblast numbers and function as well as an
increase in the abundance of osteoclasts (122, 124, 127, 131, 132).
Consistent with this finding, a HFD induces a decrease in the
expression of the key osteogenic transcription factors RUNX2
and OSTERIX in the bone (60, 124, 132, 133) and impairments
in proliferation and colony forming capacity in bone marrow-
derived mesenchymal stem cells (BM-MSCs) (125). Additionally,
osteoclast precursors isolated from HFD fed mice exhibit
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FIGURE 3 | Skeletal deficits elicited by HFD-induced hyperlipidemia. A high fat diet (HFD) induces extensive systemic metabolic and skeletal changes including

increases in circulating low density lipoprotein (LDL) and triglycerides (TG). This hyperlipidemic state impacts many nuances of osteoblast function and homeostasis

including decreases in Wnt signaling and PTH responsiveness, insulin resistance, and increased RANKL. This results in decreased osteoblast activity and increased

osteoclast activity ultimately contributing to poor skeletal health. This figure was created using Servier Medical Art image templates under a Creative Commons

Attribution 3.0 Unported License.

an increased ability to form TRAP-positive osteoclasts after
treatment with M-CSF and RANKL (134). The extensive effects
of high fat intake were further revealed in gene expression
profiling experiments performed by You et al. (135). In this study,
3 months of a high fat/high cholesterol diet led to the down-
regulation of 2,200 genes and the up-regulation of 992 genes
in RNA samples isolated from whole femur. Downregulated
genes were implicated in a number of pathway associated with
bone formation including the TGF-ß/BMP2 pathway and the
Wnt pathway, while up-regulated genes were associated with
the control of bone resorption. Strikingly, comparative cluster
analysis of these data with changes in gene expression in
ovariectomized rats, a model of osteoporosis, revealed the co-
regulation of more than 1,300 genes, suggestive of a convergence
of pathogenic pathways.

To dissect the effects of altered lipid metabolism from other
metabolic derangements in these models, in vitro culture systems
wherein cultures of primary osteoblasts or osteoblast-like cell
lines are treated with exogenous lipids have proven helpful
(124, 135–139). The common finding in these studies is that
the exposure to sufficient quantities of cholesterol, palmitate
or oxidized LDL [a product of LDL interaction with reactive
oxygen species (140)] reduces the proliferation of osteoblastic
cells, induces cell death, and impairs osteoblast differentiation.
These same stimuli induce an increase in the expression of
RANKL by osteoblasts and enhance osteoclastic differentiation
(127). Together these studies suggest that elevated lipid levels or
the presence of oxidized lipids alone are sufficient to diminish
osteoblast function and in turn lead to an imbalance in anabolic
and catabolic processes in the skeleton.

HYPERLIPIDEMIA’S IMPACT ON
ANABOLIC PATHWAYS OF THE
OSTEOBLAST

The precise mechanisms by which exogenous or oxidized lipids
impair osteoblast function are not completely understood. One
potential explanation is the development of an inflammatory
state that is thought to contribute to metabolic dysfunction
in other tissues. In support of this idea, genetic ablation of
the inflammatory cytokine TNFα inhibits bone loss associated
with a HFD and the detrimental effects of palmitate on
osteoblast differentiation (124). Additionally, a dual impact of
lipids on inflammation has been noted. While polyunsaturated
omega-3 fatty acids are thought to be beneficial to bone
health (79, 141–144), and have anti-inflammatory affects
(145), omega-6 fatty acids have been reported to be pro-
inflammatory (146), leading to pathological bone remodeling
and contributing to bone fracture and osteoporosis (79). In
addition to inflammatory effects, a combination of in vitro
and in vivo evidence suggests that dyslipidemia desensitizes
osteoblasts to anabolic stimuli, including those that regulate
lipid utilization.

Wnt Signaling
In additional to regulating the utilization of fatty acids
by osteoblasts, Wnt/β-catenin signaling is vulnerable to the
detrimental effects of HFD feeding. At the most proximal end
of the signaling pathway, dyslipidemia appears to result in an
increase in the expression of several secreted antagonists of
Wnt signaling. Increases in the abundance of both Dkk1 and
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Sclerostin in serum have been reported in mice fed a HFD, while
the latter was also found to be increased in the serum of ob/ob and
db/dbmice (128, 147–149). Similar increases have also been noted
in obese humans and were accompanied by increases in Dkk-
2 and secreted Frizzled-related proteins (150). At the distal end
of the pathway, obesity and high fat diet feeding were associated
with a reduction in β-catenin protein levels in the femur (151,
152). In a more extreme example, HFD feeding of the ApoE−/−

atherosclerosis mouse model, which induces marked decreases in
osteoblast numbers and an inhibition of bone formation, resulted
in widespread reductions in the expression of Wnt ligands and
target genes at multiple skeletal sites (131). The mechanisms
underlying these changes in transcription are not yet known.

Aside from changes in gene expression, Wang et al. (153)
documented an interaction between the Wnt co-receptor LRP6
and oxidized phospholipids and oxidized LDL, produced as
a result of an increase in reactive oxygen species. In this
study, HFD fed mice exhibited consistent decreases in the
numbers of osteoblast progenitors and the abundance of LRP6
at the cell surface in this cell population. Additional studies
revealed that oxidized phospholipids and oxidized LDL induced
the endocytosis of LRP6 and rendered cells resistant to the
propagation of Wnt signaling. Considering the requirement for
LRP6 function for the maintenance of normal bone mass (94),
this mechanism may partially explain the ability of antibodies
that neutralize oxidized phospholipids to attenuate bone loss due
to a HFD (154).

Parathyroid Hormone Signaling
As indicated earlier, supplementation of basal, serum-free
medium with LDL is sufficient to rescue responsivity to PTH
(63). However, an overabundance of serum lipid can attenuate
intermittent PTH-induced bone formation as evidenced by
studies in the hyperlipidemic Ldlr−/− and Apoe−/− mouse lines.
Intermittent PTH did not increase total bone mineral density or
bone mineral content in the femur of these models, and PTH-
induced increases in multiple parameters of trabecular bone
structure were diminished or abolished in Ldlr−/− mice (155).
Later studies suggested that PTH resistance is likely to be due
to the accumulation of oxidized lipids as administration of the
D-4F peptide, which reduced lipid oxidation products, restored
the anabolic effect of PTH (156–158). Given the requirement for
LRP6 for normal PTH signaling (157, 159), resistence to PTH
may also be mediated by oxidized LDL-induced internalization
of LRP6 (157).

Insulin
The importance of insulin signaling in the osteoblast is revealed
by the increased risk of fracture and decreased BMD in type
1 diabetes [reviewed in (160–162)], increased fracture risk
despite an increase in BMD in type 2 diabetes (163, 164), and
studies utilizing genetic mouse models in which insulin receptor
expression is manipulated. The latter demonstrates that insulin
receptor signaling is required for proliferation, survival, and
osteoblast differentiation, as well as the ability of the osteoblast
to contribute to the regulation of whole-body metabolism
(165–167). As in skeletal muscle and adipose, dyslipidemia

appears to lead to insulin resistance in the osteoblast. Wei and
colleagues (168) demonstrated that mice fed a HFD exhibited
reduced IRS1/2 phosphorylation in osteoblasts after insulin
stimulation in vivo and that stearate treatment in vitro led
to SMURF-mediated ubiquitination of the insulin receptor.
HFD did not reduce trabecular bone volume in this study
(perhaps due to a reduced number of osteoclasts), but multiple
markers of bone formation were reduced which suggests that
skeletal insulin resistance may contribute to bone loss associated
with dyslipidemia.

PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR γ

(PPARγ)

A final mechanism by which hyperlipidemia could impact
osteoblast performance and skeletal homeostasis is through the
activation of PPARγ , a transcriptional regulator of adipogenesis
that can be activated by elevated lipid levels. In bone, the nuclear
receptor influences bone remodeling by stimulating adipogenic
differentiation of mesenchymal stem cell at the expense of
osteoblastogenesis and by stimulating osteoclastogenesis (169–
171). HFD-fed rodents exhibit increased PPARγ gene expression
likely leading to defects in osteoblastogenesis (124, 151).
Additionally, HFD caused an increase in callus adiposity
attributed to increased PPARγ expression and was associated
with decreased osteoblast surface during late stages of healing
post-fracture (172). One potential explanation for these finds is
the ability of PPARγ to interfere with anabolic Wnt/β-catenin
signaling (173–175). These effects are critically important for the
targeting of PPARγ function in the treatment of type 2 diabetes.
Thiazolidinediones (TZDs), synthetic PPARγ ligands, are used
to increase insulin senstivity (176–178) but do so at the expense
of skeletal health. Long term use of these agonists increased risk
of fractures in women (179, 180) and decreased bone formation
makers (181) while short term use was sufficient to decrease bone
formation markers, total hip bone density, and lumbar spine
bone density (182).

It is important to note that genetic ablation of PPARγ has
beneficial effects on bone and body composition. Akune and
colleagues (169) reported that PPAR+/− exhibit an increase
in trabecular bone volume secondary to a doubling of the
osteoblast surface. When PPARγ expression was ablated in
mature osteoblasts and osteocytes (PPARgflox/flox DMP1-Cre),
the mutant mice exhibited increases in femoral bone mineral
density and trabecular bone volume as well as reduced fat
mass and increased energy expenditure (183). Crosstalk between
osteoblasts and adipocytes in this model was indicated by in
vitro studies wherein the 3T3-L1 adipocyte cell line was treated
with medium conditioned by PPARγ deficient osteoblasts culture
media and exhibited reduced Oil Red O staining than those
exposed to medium conditioned by wildtype osteoblasts (183).
Furthermore, PPARγ ablation in mature osteoblast/osteocytes
protected against HFD-induced metabolic affects by improving
liver steatosis, increasing lean mass, preventing fat mass
increases, maintaining wild-type glycemic control, and improved
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biomechanical strength (183). Therefore, modulating PPARγ’s
function in the osteoblast could be a potential target for
combating bone loss associated with hyperlipidemia.

CONCLUDING REMARKS

In this review, we have attempted to convey the necessity of
lipid utilization by the osteoblast for normal skeletal homeostasis
as well as the potential for dyslipidemia to impair osteoblast
function and lead to an imbalance in bone remodeling.
Mitochondrial long chain fatty acid oxidation is of sufficient
importance for osteoblast function that [1] genetic impairments
in this metabolic pathway lead to alterations in whole body lipid
homeostasis and [2] signaling pathways essential to bone mass
accrual influence fatty acid metabolism. Future studies should
be directed toward more fully delineating the mechanisms of
fatty acquisition by osteoblasts. These studies will require the
development of new genetic mouse models in which transporters
are disrupted specifically in the osteoblasts as global knockout
models exhibit disturbances in metabolism that may indirectly
influence bone remodeling. Determining the mechanisms by
which osteoblasts convey their need for sufficient fatty acid
supply to other tissues is equally vital. In this regard, the
emergence of bone as a hormone-producing tissue is likely to
provide key insights into the responsible endocrine networks.
As we noted above, the detrimental effects of dyslipidemia,

particularly in response to a high fat feeding in rodent models,
on bone mass and the balance of bone formation and resorption
are well-known, but the underlying mechanisms are still poorly
understood. The increased recognition of bone as a lipid-utilizing
tissue is likely to lead to a renewed interest in this area.
Together these studies will provide a deeper understanding of
the intimate interaction between the skeleton and metabolism
and hopefully lead to treatment strategies that simultaneously
reduce the burden of obesity and metabolic disease and preserve
skeletal homeostasis.
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The skeleton is well-innervated, but only recently have the functions of this complex

network in bone started to become known. Although our knowledge of skeletal sensory

and sympathetic innervation is incomplete, including the specific locations and subtypes

of nerves in bone, we are now able to reconcile early studies utilizing denervation

models with recent work dissecting the molecular signaling between bone and nerve.

In total, sensory innervation functions in bone much as it does elsewhere in the body—to

sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves

regulate autonomic functions related to bone, including homeostatic remodeling and

vascular tone. However, more study is required to translate our current knowledge of

bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to

combat skeletal diseases, disorders of low bone mass, and age-related decreases in

bone quality.

Keywords: mechanotransduction, nervous system, bone, skeleton, aging, disuse

INTRODUCTION

The presence and purpose of nerves in bones has been under investigation for many decades,
beginning in earnest with the use of routine histological preparations and electron microscopy
in the 1960s, 1970s, and 1980s (1–3). These studies were motivated by the desire for greater
understanding of skeletal pain, such as that induced by surgical operations to resect tumors or
stabilize broken bones. Many early studies using denervation models to abruptly sever the nerve
supply of bones reported minimal effects of diminished nerve activity on bone mass or accrual
in a variety of animal species. Nonetheless, recent immunohistochemical studies have revealed
abundant sensory, sympathetic, and parasympathetic axons of the peripheral nervous system that
terminate in bone (4–10). As a result, research into each of these nerve populations has revealed the
unique functions of each subtype within the skeletal microenvironment. However, much remains
to be uncovered. In this review, we will discuss the sensory, sympathetic, and parasympathetic
actions on bone, as well as the current understanding of nerve roles during skeletal development,
adaptation to mechanical load, and aging.

SKELETAL INNERVATION

Sensory Nerves in Bone
The somatic nervous system (SNS) includes the sensory nerves distributed throughout the body
after their extension from the dorsal root ganglia during development. Skin is well-innervated

84
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by sensory nerves, along with the underlying bone, joints,
tendon, and muscle. These nerves serve a variety of important
roles in the body, including the production of signals that
provide spatial orientation (proprioception), interpret pain and
noxious stimuli (nociception), recognize temperature changes,
and allow the perception of non-painful tactile stimuli (11–14).
Most sensory nerves can be categorized by their expression of
channels and receptors (15); these include toll-like receptors
(TLRs), transient receptor potential (TRP) ion channels, and
receptor tyrosine kinases (RTKs) as well as the recently identified
mechanosensitive Piezo channels (15, 16). These receptors are
utilized to initiate the appropriate intracellular signaling as well
as the neuropeptide or neurotransmitter release. In bone, nearly
all of the thinly myelinated and unmyelinated sensory nerves
express neurotrophic receptor tyrosine kinase type 1 (TrkA), the
high affinity receptor for nerve growth factor (NGF) (10, 17).
This specialization is likely due to the NGF expression that occurs
during the initiation of primary and secondary ossification in
endochondral bone formation (18, 19). Nonetheless, innervation
of bone is most dense in the periosteum and marrow spaces,
with relatively few nerves present in the mineralized bone (9, 10).
Furthermore, innervation density is increased at sites nearest to
active bone remodeling surfaces (20).

Function of Sensory Nerves in Skeletal
Pain
One of the original motivations for studying sensory nerves in
bone was to determine the mechanisms of osseous pain. This
objective has been bolstered by the prevalence of musculoskeletal
pain, including lower back pain, joint pain, and fracture pain,
which collectively are the leading cause of disability in the world
(21). Much of this work has been centered on NGF, which is
expressed by osteoblasts and acts directly on sensory nerve axons
present in bone through TrkA receptors to induce skeletal pain;
furthermore, NGF also functions to enhance the activation of
other nociceptive pathways in skeletal sensory nerves (22). As a
result, the blockade of NGF activity has been explored extensively
in a variety of animal models of skeletal pain. For example,
anti-NGF antibodies profoundly reduce osteosarcoma-related
bone pain in mice as well as tumor-induced nerve sprouting
in a preclinical model of metastatic prostate cancer (23, 24).
Furthermore, consistent with the wide-spread expression of NGF
observed in fracture (25, 26), anti-NGF antibodies decrease
fracture-related pain behavior in mice (27, 28). Subsequent
research suggested that analgesia using anti-NGF antibodies
can be achieved without affecting fracture healing outcomes
(29), although others have shown that silencing the activation
of TrkA diminishes innervation and stress fracture healing in
mice (30). This concept of NGF acting as an osteoanabolic
agent is consistent with earlier work, which reported that topical
application of NGF to rib fractures decreased healing time in rats
(27) and improved healing outcomes in distraction osteogenesis
in rabbits (28). Nonetheless, a complete understanding of the
role of NGF-TrkA signaling in bone healing should be a research
priority, since the humanized monoclonal anti-NGF antibody
Tanezumab (Pfizer and Lilly) received FDA Fast Track approval

in 2017 as the first in a new class of non-opioid pain relievers.
This approval followed a halt in Phase III clinical trials in 2010
due to an increased incidence of adverse skeletal events, which
remains incompletely understood (31).

Release of Neuropeptides by Skeletal
Sensory Nerves
Stimulation of sensory nerves in bone may result in the
release of neuropeptides, particularly calcitonin gene-related
peptide (CGRP) and substance P (SP), but may also include
glutamate and pituitary adenylate cyclase-activating polypeptide
(PACAP) (32). A potential role for neuropeptides to act as
bone therapeutics has been investigated extensively, since both
osteoblasts and osteoclasts express the necessary receptors to for
direct cell-autonomous activation (33, 34). In general, CGRP
increases osteoblast bone formation through stimulation of Wnt
signaling and inhibition of apoptosis (35, 36). Furthermore,
CGRP appears to inhibit osteoclast differentiation and function
(37, 38). Consistent with these findings, mice lacking αCGRP
have low bone mass as a result of decreased bone formation
(39). SP appears to increase bone resorption as well as bone
formation, although its contribution toward formation outweigh
its role in bone resorption and lead to impaired material and
structural bone strength (40, 41). These findings are consistent
with results from previous in vitro experimentation that have
demonstrated both mechanisms (42–44). Neuropeptide release
within the skeleton is potentiated by osteoblast-derived NGF,
which increases both basal and stimulus-evoked release of SP
and CGRP from spinal cord slices in vitro (33). Nonetheless,
the therapeutic application of these osteoanabolic neuropeptides
toward diseases of low bone mass may be limited by drug
delivery, since neuropeptides are widely active outside of bone.

Autonomic Nervous System (ANS) in Bone
The peripheral nervous system also includes the autonomic
nervous system (ANS), which is further divided into the
sympathetic and parasympathetic nervous systems. In general,
the action of these two systems oppose each other and serve
to coordinate unconscious activities of the body, such as
breathing and blood pressure regulation. Coordinated action of
these opposing systems involves unique signaling mechanisms:
sympathetic nerves release of norepinephrine to activate α- and
β-adrenergic receptors, whereas parasympathetic nerves release
acetylcholine to activate muscarinic acetylcholine receptors
(mAChR) and nicotinic acetylcholine receptors (nAChR). Both
sympathetic and parasympathetic nerves have been identified
in the bone, and are typically observed in close contact
with large vascular structures in the long bones (5, 7,
34). Tyrosine hydroxylase (TH), the rate limiting enzyme
in the synthesis of catecholamines, is typically used as an
immunohistochemical marker for sympathetic nerves. TH+

axons are typically observed with a spiral morphology in the
bone marrow, essentially wrapping around blood vessels (10, 45).
Conversely, axons expressing vesicular acetylcholine transporter
(VAChT) and choline aceltyltransferase (ChAT), two markers
for parasympathetic nerves, can also be readily observed in the
marrow space of long bones (46). The innervation density of
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these nerve axons is less well-described than sensory nerves, but
is presumed to follow a similar pattern.

Function of ANS in Bone
The major function of the ANS on the skeleton is restraint of
bone remodeling (37). Specifically, activation of the sympathetic
nervous system acts to stimulate bone resorption as well
as negatively affect bone formation (37, 38). Conversely,
the parasympathetic nervous system activity inhibits bone
resorption, which results in bone mass accrual (46). These
activities may also be related to the general circadian rhythm
of the autonomic nervous system. Sympathetic nervous activity
is generally dominant during the day, which is the peak time
for bone resorption, while parasympathetic nervous activity
is generally dominant at night, when bone formation peaks
(47–49). Osteoblasts and osteoclasts express a wide variety of
adrenergic receptors that could be activated in response to
norepinephrine released from sympathetic nerve terminals (50,
51). Similarly, osteoblast and osteoclasts may be able to respond
to the release of acetylcholine from parasympathetic nerve
terminals due to their expression of the α2 and β2 subunits of the
nAChRs; mAChRs expression is absent in these cell types (46).
Due to the expression of these receptors on bone cells, it has been
presumed that the ANS exerts its effect on the skeleton through
the release of neurotransmitters in close proximity to bone cells,
which subsequently bind to their cognate receptors to initiate a
biological response. However, recent work reporting relatively
limited direct interaction of ANS nerve fibers with skeletal cells
suggests that an alternative diffusion-based mechanism may
be plausible (32, 52). Nonetheless, mice lacking β2 adrenergic
receptor in the osteoblast lineage have increased bone mass
in adulthood, due to increased bone formation and decreased
bone resorption (50). This encouraging result, along with the
known safety profile of “β blockers” (β adrenergic antagonists),
suggested that pharmacological blockade of sympathetic nervous
signaling would increase bone mass and decrease fracture
risk in humans. Surprisingly, subsequent preclinical research
utilizing β adrenergic receptor agonist (salbutamol) or antagonist
(isoprenaline) failed to recapitulate the previous findings in
mice; instead, these drugs were both associated with bone loss,
mostly due to increased bone resorption (53, 54). Similarly, a
randomized clinical trial observed no significant effects of either
β2 adrenergic agonists or antagonists on bone turnover in adults
(55). A meta-analysis of 16 studies published in 2014 reported
that the use of β blockers decreased overall fracture risk by
15%, with β1-specific blockers most strongly associated with
the reduction in risk (56). Consistent with this report, a recent
randomized controlled trial utilized the relative selectivity of β-
blockers to show that patients treated with β1-selective drugs
had improved parameters of bone density and turnover (57). In
total, much of the direct and specific effects of the autonomic
nervous system, as well as the potential therapeutic opportunities
in modulating this signaling pathway, remains to be determined.

Release of Neuropeptides by ANS in Bone
Similar to sensory nerve axons of the SNS, sympathetic nerves of
the ANS can also release neuropeptides, particularly in response

to stress. One such neurotransmitter released by sympathetic
nerves is neuropeptide Y (NPY), which can signal through one
of five NPY receptors that are expressed in both the central
and peripheral nervous systems (58, 59). A role for NPY in
bone homeostasis was first recognized in 2002, when Y2 receptor
null mice were found to have significant increased trabecular
bone volume due to increased osteoblastic activity without an
alteration in osteoclast resorptive area (60). Similarly, in the
setting of ovariectomy, mice lacking hypothalamic Y2 receptors
were found to be protected from bone loss through an increase in
osteoblastic activity (61). More recently, mice in which NPY was
expressed exclusively in noradrenergic nerves of mice otherwise
lacking NPY were used to demonstrate that NPY acts both
centrally and peripherally through Y2 receptors to protect against
stress-induced loss of bone mass (62). Consistent with these
studies, in vitro work utilizing primary osteoblasts has revealed
a direct inhibitory effect of NPY on osteoblast differentiation,
indicating NPY exerts its effects both directly and indirectly
on bone (63–65). Similarly, nerve axons expressing vasoactive
intestinal peptide (VIP) have been observed in bone for some
time (4, 66). Recent interest in this neuropeptide secreted from
the ANS has shown that it promotes osteogenic differentiation
in vitro and stimulates bone repair when delivered in vivo (67).
Alternately, VIP appears to be implicated in the progression of
osteoarthritis through actions on subchondral bone sclerosis and
vascularity (68).

Modifiers of Sympathetic Signaling in Bone
Restraint of sympathetic signaling on bone is achieved via
antagonistic sympathetic projections and degradation or
sequestration of sympathetic neurotransmitters; each are
implicated in an aging skeletal phenotype. Endocannabinoids,
such as 2-arachidonylglycerol (2-AG), are generated by bone
cells and act on CB1 receptors on skeletal sympathetic nerve
endings. In support of endocannabinoid restraining the
inhibitory effect of sympathetic transmission of skeletal mass
and microarchitecture, global deletion of the CB1 receptor
(Cnr1) produces a skeletal phenotype characterized by decreased
trabecular microarchitecture, low bone mass, and increased
osteoclast activation (69). However, functional impact of
cannabinoid receptor signaling on restraint of SNS outflow and
resultant skeletal effects are clouded by contrasting results from
different groups, related to choice of mouse models, sex, and
animal age. For example, enhanced bone mass and resistance
to ovariectomy-induced bone loss was recently reported in
congenic Swiss albino ABH and CD1 congenic Cnr1-deficient
mice (70). However, divergent skeletal phenotypes were observed
in C57BL/6J vs. CD1 Cnr1-deficient mice producing both loss
and gain, respectively, of bone mass in the absence of Cnr1.
Furthermore, the divergent skeletal phenotype was sexually-
dimorphic in CD1 Cnr1−/− mice, affecting males but not
females, whereas the effect was independent of sex in C57BL/6J
strain of mice (69).

Neurotransmitter clearance from the synaptic cleft presents
as another mechanism to influence magnitude or duration of
sympathetic signaling on the skeleton. Clearance of NE from the
synaptic cleft by the norepinephrine transport NET (SLC6A2),
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a sodium- and chloride-dependent monoamine transporter.
Provided that sympathetic signaling exerts negative skeletal
effects via RANKL-mediated osteoclast activation and inhibition
of osteoblast function (71), pharmacologic inhibition or genetic
deletion of NET would be expected to produce a high bone mass
phenotype. Whereas, mature osteoblasts express high levels of
NET, its inhibition with reboxetine elicited sexually-dimorphic
reductions in osteoblast number and bone mineralization in
male, but not female, mice, findings which were also recapitulated
in global Slc6a2−/− mice. Clearance of NE may contribute to
aging-associated skeletal wasting, as NE uptake is greater in
young (3 months) than aged (18 months) mice, reflective from
decreased Slc6a2 expression increased tibial NE content with age
(71). These results demonstrate that NE clearance and catabolism
is a fundamental aspect of skeletal homeostasis with a potential
function in involutional bone loss, yet the unexpected results
from pharmacologic inhibition or genetic deletion of Slc6a2−/−

reveal the need for inducible murine knockout models to more
clearly detail where and when loss of Slc6a2 or Cnr1 most
potently influence bone mass.

NERVES IN THE DEVELOPING SKELETON

Timing of Skeletal Innervation During
Endochondral Ossification
The exact location, timing, and subtype of nerves entering
developing bone has been a topic of research interest for
some time. Early work established that the innervation of
bone occurs approximately simultaneously with endochondral
ossification during embryonic development, including studies
in mice illustrating a functional nerve supply in areas of high
osteogenic activity by embryonic day 15 as well as the presence

of CGRP immunoreactive nerves by embryonic day 16.5 (72, 73).
Consistent with these studies, we have recently demonstrated
that TrkA expressing sensory nerves arrive at the perichondrial
surface of developing bone at embryonic day 14.5 in mice
(Figure 1A), in response to the expression of the neurotrophin
NGF by osteoprogenitors and coincident with the initiation of
primary ossification (75). After birth, nerve density in bone
continues to increase, coinciding with the bone modeling and
remodeling necessary for shaping long bones. Sensory nerve
axons expressing CGRP and Substance P are present at postnatal
day 1 in the epiphysis and endosteum of the distal femur
and proximal tibia, and by postnatal day 6, these sensory
nerves appear in the cartilage canal and 2 days later in the
secondary ossification centers (76). Similar to the invasion of
the primary ossification center by sensory nerves, the sensory
nerve axons entering the secondary ossification center through
cartilage canals is in response to the expression of NGF at the
epiphysis and the majority of these nerves express TrkA (75).
Unlike sensory nerves, autonomic fibers staining for NPY do
not appear in bone until postnatal day 4 (72). The autonomic
fibers first appear as single, non-vascular, branching fibers in
the tibial and femoral periosteum. NPY fibers next appear in
the medullary cavity accompanying blood vessels until postnatal
day 14, when the occurrence of the fibers decreases in all
bone compartments.

Effects of Diminished Skeletal Innervation
on Developing Bone
Although the presence of nerves during primary and secondary
ossification is well-documented, their function during skeletal
development remains poorly understood. Denervation and
associated models of nerve inactivation provide some insights

FIGURE 1 | Nerves in developing, young, and aging bone. (A) Thy1-YFP reporter mice were used to visualize nerve axons in the perichondrial region near the primary

ossification center (POC) at embryonic day 15.5. (B) Inhibition of NGF-TrkA signaling using TrkA-F592A mice diminished the density of nerve axons in this region.

Scale bars are 100µm [adapted from (19)]. (C) Utilizing a 120µm confocal z-stack, CD31+ blood vessels (red), CGRP+ sensory nerve axons (green), and TH+

sympathetic nerve axons (yellow) can be readily visualized in the periosteum of 10-day-old (young) mice. (D) In mice 24 months of age (old), sensory and sympathetic

nerve fibers as well as blood vessels remain intact but markedly diminished in the thinner periosteum. Cambium (C) and fibrous (F) layers of the periosteum and

cortical bone (CB) are labeled. Scale bars are 15µm [adapted from (74)].
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into the role of peripheral nerves during bone development.
For example, sectioning the sciatic nerve in 1-month-old rats
reduced metatarsal length 3–5%, while femora and tibiae,
containing femoral and obturator nerves which could potentially
compensate for sciatic neurectomy, were unaffected (77). Notably
in this study, early reductions in bone length were maintained,
and were not exacerbated, up to the end of the 12-week
study. Similarly, sciatic neurectomy prevented gains in bone
mass and improvements in microarchitecture, instead inducing
considerable trabecular bone loss in growing rats, due to
decreased bone formation and increased bone resorption, though
it is unclear how much of these bone changes were due to
disuse (78). In mice either globally- or neuronally-deficient in
semaphorin 3A, an axonal chemorepellant important to axon
guidance, decreases in sensory innervation of trabecular bone
reduced bone mass via decreased bone formation in 8-week
old mice (79). Mice lacking TRPV1 (capsaicin receptor/vanilloid
receptor1), a cation channel involved in nociception found on
sensory nerves, displayed a similar phenotype to wildtype mice,
with similar size and bodyweight. However, TRPV1 knockout
mice exhibited a reduction in the basal levels of the osteoclast
activation biomarker TRAP in the femur (80) and ovariectomy of
these knockoutmice did not cause the elevation in TRAP levels or
bone loss as normally occurs in wildtype mice. αCGRP knockout
mice displayed osteopenia associated with low bone formation
rate without changes in osteoblast number or surface (39). In our
previous study (81), we investigated bone development in mice
treated with capsaicin as neonates to destroy unmyelinated and
small diameter myelinated sensory neurons (82, 83). We found
that neonatal capsaicin treatment in mice modestly decreased
femur length, femur cross-sectional area, and trabecular bone
thickness, but did not reduce mechanical properties or bone
remodeling rates. In another study, we showed that nerve

growth factor (NGF) signaling through neurotrophic tyrosine
kinase receptor type 1 (TrkA) directs sensory innervation
during long bone development to promote vascularization
and osteoprogenitor differentiation (75). Inactivation of NGF
or TrkA signaling during embryogenesis in mice impaired
sensory innervation (Figure 1B), delayed vascularization of
ossification centers, decreased numbers of osteoprogenitors, and
decreased femoral length and volume. In total, these studies
indicate that sensory innervation is required for attaining
normal bone mass and length, as well as vascularization,
during skeletal development. Future work should determine
if any specific osteogenic factors are delivered by sensory
nerves to bone.

NERVES AND SKELETAL ADAPTATION

Bone tissue contains a dense network of sensory and sympathetic
nerve fibers, which appears to play important roles in
bone modeling, remodeling, metabolism, and adaptation (84).
For example, in a study of bone remodeling induced by
maxillary molar removal in rats, investigators found that normal
tibial growth was not impaired by neonatal sympathectomy
(guanethidine treatment) or sensory denervation (capsaicin
treatment), but that osteoclast surface was increased 45%
in sympathectomized animals and decreased 21% in sensory
denervated animals (85). These data indicate that both
sympathetic and sensory nerves play a role in bone adaptation,
and that these unique fiber types may play opposing roles
on skeletal adaptation. We have provided a concise summary
of the previous work that studied the roles of sensory and
sympathetic nerves in scenarios of increased (Table 1) and
decreased (Table 2) mechanical loading.

TABLE 1 | Increased mechanical loading and altered nerve function.

Model of altered nerve function Loading method Effect on bone References

Sensory nerves ↓Sensory function—perineural anesthesia of brachial plexus with

bupivacaine in rats

Ulnar compression ↓Labeled bone area (80)

↓Sensory function—perineural anesthesia of brachial plexus with

bupivacaine in rats

Ulnar compression ↓Labeled bone area (82)

↓Sensory function—inhibition of TrkA signaling by 1NMPP1 in mice Ulnar compression ↓Bone formation rate

↓Wnt/β-catenin activity in osteocytes

↓Periosteal nerve sprouting

(19)

↑Sensory function—exogenous NGF administration in mice Ulnar compression ↑Bone formation rate

↑Wnt/β-catenin activity in osteocytes

(19)

↓Sensory function—neonatal capsaicin treatment in mice Tibial compression ↑Bone mineral content

↑Mineral apposition rate

(84)

Sympathetic nerves ↓Sympathetic function—guanethidine sulfate or propranolol

treatment in mice

Tibial compression No effect (83)

↓Sympathetic function—propranolol treatment in mice Tibial compression No effect (85)

↓Sympathetic function—propranolol treatment in ovariectomized rats Treadmill exercise ↓Trabecular BV/TV and Tb.Th (86)

↑Sympathetic function—salbutamol treatment in rats Treadmill exercise ↓MAR, Tb.Th, ultimate force,

stiffness, Young’s modulus

(53)

↑Sympathetic function—salbutamol treatment in ovariectomized rats Treadmill exercise ↓Trabecular BV/TV and Tb.Th (87)

↓Sympathetic function—genetic deletion of β1-adrenergic receptors

and/or β2-adrenergic receptors in mice

Tibial compression ↓BMD, Tb.Th, MAR, BFR/BS in

Adrb1−/− and Adrb1b2−/− mice

(88)
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TABLE 2 | Decreased mechanical loading and altered nerve function.

Model of altered nerve function Loading method Effect on bone References

Sensory nerves ↓Sensory function—neonatal capsaicin treatment in rats Molar extraction ↓Osteoclast surface (78)

↓Sensory function—capsaicin treatment in adult rats Hindlimb unloading ↑Energy to failure (92)

Sympathetic nerves ↓Sympathetic function—guanethidine treatment in rats Molar extraction ↑Osteoclast surface (78)

↓Sympathetic function—guanethidine or propranolol treatment in mice Hindlimb unloading ↑Trabecular BV/TV

↑MAR, MS/BS, BFR/BS

↓Oc.N and Oc.S

(93)

↑Sympathetic function—isoproterenol treatment in mice Hindlimb unloading No effect (93)

↓Sympathetic function—guanethidine sulfate or propranolol treatment in mice Sciatic neurectomy No effect (85)

↓Sympathetic function—propranolol treatment in rats Hindlimb unloading ↑Trabecular Bone Volume

↑MAR, BFR/BS

↓Resorbing surface

(94)

↑Sympathetic function—dobutamine treatment in rats Hindlimb unloading ↑BMD, BMC, Bone Area

↑MAR, MS/BS, BFR/BS

(95)

↑Sympathetic function—dobutamine treatment in rats Hindlimb unloading ↑BV/TV, Tb.Th, Tb.N

↑OS/BS, Ob.S/BS

↑ MAR, MS/BS, BFR/BS

↓ Osteocyte apoptosis

(96)

Peripheral Nerves Support Load-Induced
Bone Formation
The role of peripheral nerves in sensing and responding
to mechanical stimuli is an area of equal parts interest
and contradiction. Early studies reported that denervation
had essentially no effect on the bone formation response to
mechanical loading. For example, intermittent loading (bending)
initiated similar magnitudes of cortical bone formation in the
denervated rabbit tibia as in intact tibias (86). This led the authors
to conclude that the nervous system has no significant effect
on the functional adaptation of bone. However, recent studies
have established a notable role of peripheral nerves in bone
mechanosensing and adaptation to mechanical stimuli. A pivotal
study used bupivacaine to induce perineural anesthesia of the
brachial plexus of rats to achieve temporary neuronal blocking
prior to ulnar compression (87). They found that temporarily
blocking neuronal signaling reduced bone formation (total
labeled bone area) by 81% in the compressed ulna relative to
sensory intact ulnae. Further studies by this group revealed that
mechanical loading increased bone formation in the contralateral
limb and at other non-loaded skeletal sites, which was modulated
through sensory nerves (88, 89); however, load-induced increases
in contralateral bone formation have been directly contradicted
by others (90) and indirectly by the large number of related
studies that utilize contralateral limbs as an internal control.

Our study investigating bone adaptation to increased
mechanical loading in mice treated with capsaicin to induce
destruction of TRPV1-expression peripheral nerves found that
tibial compression increased cortical bone area in the loaded
tibia, accompanied by changes in bone formation, which was
generally greater in capsaicin-treatedmice than in vehicle-treated
mice (91). In contrast, our study of NGF-TrkA signaling in
sensory nerves in bone showed that elimination of TrkA signaling
attenuated bone formation and reduced Wnt/β-catenin activity
in osteocytes in bones loaded by axial forelimb compression.

Furthermore, administration of exogenous NGF to wild-type
mice significantly increased load-induced bone formation and
Wnt/β-catenin activity in osteocytes (75). The contrasting results
from these two studies of decreased sensory nerve signaling
in bone suggest a heterogenous population of sensory nerves
in bone with non-overlapping functions in strain adaptive
bone remodeling.

The role of the sympathetic nervous system in the
anabolic bone response to mechanical loading is unclear.
One study in mice reported that sciatic neurectomy enhanced
tibial compression-induced cortical bone formation, but
pharmacological blockade of the SNS with guanethidine sulfate
or propranolol did not affect the bone formation response
(90). The same group found that load-induced bone formation
and unloading-induced bone resorption were unaffected by
propranolol or guanethidine sulfate treatment (92). Another
study found that either propranolol treatment or exercise in
ovariectomized rats was able to partially preserve trabecular bone
volume, but these treatments did not have a synergistic effect,
and in fact exhibited an antagonist effect on trabecular bone
(93). Similarly, treatment of rats with a selective β2-adrenergic
receptor agonist (salbutamol) decreased bone mineral density
and increased bone resorption, and salbutamol treatment
mitigated the beneficial effects of treadmill exercise on bone
structure in these rats (53, 94). In genetic mouse models of
β1-adrenergic receptor and/or β2-adrenergic receptor deficiency,
tibial compression induced increases in bone density, trabecular
and cortical microarchitecture, and bone formation in Adrb2−/−

and wild-type mice, but not in Adrb1−/− or Adrb1b2−/− mice,
suggesting that β1, but not β2, has a role in mechanoadaptation
to mechanical stimulation (95).

Peripheral Nerve Impact in Disuse
The initial rapid loss of bone following spinal cord injury
suggests that factors other than disuse osteoporosis may drive the
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catabolic skeletal response (96). Indeed, electrical stimulation of
muscle does not restore bone mass post trauma (97). Similarly,
unilateral sciatic nerve transection causes bone loss not only in
the denervated limb, but in the contralateral limb as well—even
when use remains unchanged (98). Altogether, these data suggest
that peripheral nerve activity may modulate the bone resorption
response during disuse. A study of hindlimb unloading-induced
bone loss in capsaicin-treated rats showed that both capsaicin
treatment and 4 weeks of hindlimb unloading resulted in
considerable loss of trabecular bone at the proximal tibia, but that
hindlimb unloading of capsaicin-treated rats did not promote
further bone loss (99). Altogether, these data suggest that
diminished sensory nerve function diminishes bone volume but
may make the bone less sensitive to the mechanical environment.
Together, these data suggest that diminished sensory nerve
function diminishes bone volume and may make the bone
less sensitive to the mechanical environment. Moreover, results
from a model of disuse-induced remodeling in the mandible is
consistent with this view. Here, significantly decreased osteoclast
surface was observed in rats with decreased sensory nerve
function due to neonatal capsaicin treatment (85).

Sympathetic nerves have a notable effect modulating
unloading-induced bone loss. One study reported that inhibiting
sympathetic nerves in mice using propranolol or guanethidine
suppressed bone loss associated with hindlimb unloading
by diminishing the reduction in osteoblast activity and the
increase in osteoclast activity associated with unloading (100).
Conversely, activating sympathetic nerves using isoproterenol
reduced bone mass in normally loaded mice, but did not cause
additional bone loss in hindlimb unloadedmice. Similarly, others
found that treatment of rats with propranolol or a leptin analog
during 28 days of hindlimb unloading reduced unloading-
associated bone loss; propranolol treatment effectively preserved
bone formation and prevented increased bone resorption, while
leptin analog treatment was only able to prevent changes in
osteoclastic bone resorption (101). Conversely, treatment of rats
with a β1-adrenergic receptor agonist (dobutamine) attenuated
hindlimb unloading-induced bone loss, prevented the decline
in bone formation induced by unloading, and diminished
unloading-induced osteocyte apoptosis (102, 103).

Load-Induced Neurotransmitter
Expression in Bone
The first evidence of mechanical regulation of neurotransmitters
was the observation that ulnar loading in rats decreased
expression of GLAST, a glutamate/aspartate transporter
previously thought to be present only in mammalian CNS
(104). Quantification of CGRP, VIP, and SP in the rat ulna
after mechanical loading (ulnar compression) using ELISA
revealed that CGRP concentrations in both the loaded and
contralateral limbs were reduced 1 h after loading, and that
this reduction was sustained for at least 10 days (87). Bilateral
decreases in SP concentrations were also observed, although
the effect was less persistent. Ulnar VIP concentrations were
increased bilaterally 10 days after mechanical loading at medium
or high strain magnitudes. In contrast, both CGRP and SP
levels were increased in the sciatic nerve after 4 weeks of
cast immobilization (105). Our results partially agreed with

these data, as mechanically loading tibias in mice resulted
in significantly decreased SP concentrations, but increased
CGRP concentrations relative to controls, while unloaded tibias
exhibited trends toward increased concentrations of both CGRP
and SP (91).

NERVES AND THE AGING SKELETON

Chronological aging causes cell and tissue dysfunction, which
compromises individual capacity to maintain homeostasis. In
the context of the skeleton, uncoupled remodeling promotes
net bone loss, characterized by reductions in bone mineral
density and bone strength and increased fracture risk. Suggestive
links between autonomic tone and bone strength with aging
are evident in associations such as increased sympathetic
tone in post-menopausal women (106) who are at risk of
osteoporotic fractures, and hereditary neuropathies with skeletal
manifestations [reviewed in (32)]. Provided the distribution and
patterning of sympathetic and sensory nerves in bone, changes in
fiber presentation, function, or restraint have each been presented
as correlative—if not causative—for bone loss with age.

Fiber Number and Density
Aging reduces nerve fiber frequency and their organization.
A recent study evaluated sensory and sympathetic innervation
of the periosteum, cortical bone, and bone marrow in femora
of C57BL/6 mice at 10 days, 3 months, or 24 months of age
(74). They observed highest density of sensory (CGRP+) and
sympathetic (TH+) neurons in the inner cambial layer of the
periosteum; CGRP+ sensory fibers displayed a linear pattern
along the long axis of the femur, whereas TH+ sympathetic
fibers were highly branched and closely associated with CD31+

blood vessels (Figure 1C). Despite substantial periosteal thinning
with age—∼75% reduction in total thickness, with greatest
reduction in the cambium (∼90% decrease)—which reduced
total fiber number, fiber density was greatest in aged animals,
likely owing to the dramatic reductions in periosteal thickness
in which fibers were located (Figure 1D). Within cortical bone,
CGRP+ and TH+ fibers were observed exclusively in Haversian
canals, and fiber morphology was similar as observed in the
periosteum. TH+ fibers decreased in aged animals (∼48–14%),
whereas a similar fraction (26%) of fibers were CGRP+ in
adult and aged animals, and there was a modest reduction in
CD31+ blood vessels (89% in 3 months vs. 62% in 24 months).
There were no statistically distinct differences in fiber density
in bone marrow as a function of chronological age. However,
other studies do not fully corroborate these findings. Using
a similar approach in a rat model, reductions in cambium
thickness with age were observed without change in fibrous
periosteum thickness or periosteal innervation (107); in a human
study of femora and tibiae of aged individuals (68–99 years),
significant intraindividual differences in periosteal thickness of
tibia and femur were reported, yet there was no correlation of
periosteal thickness of either bone as a function of age or weight
(108). Thus, whereas supportive evidence for decreased periosteal
thickness as a consequence of aging suggests a relationship to
decreased nerve fiber number and/or density, more detailed
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investigation across a number of species is necessary to faithfully
support such conclusions.

Alterations in fiber density with aging may drive reduced
tissue function, specifically aging of the hematopoietic stem cell
niche within the skeleton. By comparing young (8–10 weeks)
and old (20–24-month-old) mice on a Nestin-GFP reporter
background, aging associated with remodeling of bone marrow
vascular architecture: total vascular density (CD31+ CD144+)
increased in aged mice which was driven by reductions in
arteriolar segment length despite cellular expansion away from
the endosteum and which converged on the central vein (109).
Concomitant with arteriolar remodeling were reductions in TH+

fiber density, total nerve density (β-III tubulin), and neural
dysfunction (reduced synaptophysin density as a marker of
synaptic contacts between blood vessels and nerves). Surgical
transection of femoral and sciatic nerves in young mice fully
recapitulated the effect of age, indicated by absence of TH+

fibers, expanded myeloid-biased CD41+ HSCs with reduced
competitive engraftment potential, and vascular remodeling.
Niche-derived noradrenaline maintains HSC function, as β2- or
β3-selective sympathomimetics reduced both absolute numbers
and frequencies of MSCs and ECs in aged mice, comparable
to young mice; further, β3 agonists increased donor HSC
engraftment following transplantation in aged mice and rescued
the premature aging phenotype in denervated mice. Conversely,
constitutive deletion of Adrb3 accelerated HSC niche aging
in young mice. Thus, age-associated alterations in bone
marrow innervation and vasculature drive hallmarks of immune
dysfunction, although the direct impact on skeletal involution
requires elaboration.

Sympathetic Outflow, Aging, and Skeletal
Disease
Restraint of sympathetic outflow in the skeleton presents
as another potential mechanism whereby age-associated
impairment of cell function produces organ-level dysfunction.
For example, sustained presentation of NE within the skeleton—
given its established catabolic effect on the skeleton—may
drive imbalanced remodeling as observed in older animals
and humans. Indeed, differential clearance of NE by the
norepinephrine transporter NET (Slc6a2) was observed to be
a function of age: specific NE uptake from flushed femoral
cortical bone was greater in young (3 months) than aged (18
months) mice (71). Correspondingly, basal NE content was
greater in aged compared to young mice, although this did not
associate with increased sympathetic outflow in older animals.
Thus, inadequate clearance of NE in aged bone may contribute
to skeletal wasting due to sustained β2 adrenergic stimulation.
Similarly, the cannabinoid receptors Cb1 (Cnr1) and CB2
(Cnr2), which restrain sympathetic signaling, are implicated in
age-related bone loss and joint disease. Dual deletion of both Cb1
and CB2 (Cnr1−/−/Cnr2−/−) mice reveal attenuated bone loss
as a function of age or estrogen status resulting from deficits in
osteoclast formation (110). Further, CB receptor agonists protect
against both collagen- (111, 112) and destabilization-induced
arthritis (113), and loss of Cnr2 delays osteoarthritis progression
(113). Whilst illuminating, such studies do not identify which

cells mediate the observed influence: they do not reveal if
cell-autonomous defects in osteoclastogenesis in vivo mitigate
bone loss, nor do they establish sympathetic involvement.

Neurotrophin Presentation With Aging
Despite a name suggesting neural-specific expression and
function, neurotrophins and their receptors are highly expressed
in osteochondrogenic cells during development and repair
[reviewed in (114)] Thus, changes in neurotrophin ligand or
receptor expression in the skeleton can alter the ingrowth or
maintenance of neural fibers in the skeleton. Whether aging
influences presentation of NGF or other neurotrophins, is
unresolved: serum NGF levels appear unaffected by aging (115,
116) or modestly decrease (117), as does serum BDNF levels
(118). While Ngf expression in bone is mechanically regulated,
and is induced less in aged mice compared to younger mice
(119), if attenuated load-induced expression with increasing
age impacts sympathetic or sensory signaling in the skeleton
requires greater elaboration. Further, detailed studies defining
the contribution of NGF to post-menopausal vs. sex-independent
involutional bone loss are lacking.

CONCLUSIONS

Extensive and sustained efforts reveal that the skeleton is
richly innervated by sensory and sympathetic nerves which
appear during and participate in skeletal development; further
investigations have implicated these same nerve fibers in skeletal
homeostasis and adaptation, as well as contributions toward
bone loss with age. Yet, with each discovery, the relationships
become more complex, demanding more precise interrogation
and articulation in order to weave together a precise narrative.
Indeed, the development of this narrative is hampered by a
variety of questions. To what extent conclusions about the impact
of sympathetic or sensory fiber number, density, etc. on the
skeleton limited by an experimental approach that may not
be as robust as assumed. For example, the decalcification of
bone that is necessary for its immunohistological evaluation
can prevent retention of neurologic markers, as demonstrated
in (74), wherein labeling of TrkA, p75, and NGF in the
periosteum and bone marrow was diminished in specimens
that had undergone decalcification. Observations such as these
motivate the opportunity to utilize or develop models whose
results are less ambiguous and with greater fidelity, such as
cell-specific fluorescent reporter mice. Furthermore, despite the
mandate from the National Institutes of Health to include sex
as a biological variable, many of the studies reviewed here
used animals of a single sex. Provided the overwhelming fact
of skeletal sexual dimorphism and evidence supporting sexual
dimorphism in neurotrophin and receptor expression (120–122),
the opportunity to establish correlation, if not causation, is
missed. Indeed, a novel role for kisspeptin-expressing cells within
the arcuate nucleus—wherein estrogen receptor alpha drives
central and peripheral energy metabolism to exert inhibitory
effects on bone mass—was discovered recently in female, but not
male, mice (123). Studies like these, and other reports whose
seeming contradictions with previous reports may originate
in sexual dimorphism, reveal the obligation to evaluate both
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sexes. Furthermore, this study also illuminates another area of
nerve-bone interaction outside scope of the present review—
signaling in the central nervous system. In total, more research
to resolve outstanding issues and improve our knowledge of
nerve-bone interaction may permit the use of these signaling
mechanisms to combat skeletal diseases, effectively treat skeletal
pain, increase bone mass in healthy individuals, and address
age-related declines in skeletal health.
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Bone regeneration has become a research hotspot and therapeutic target in

the field of bone and joint medicine. Stem cell-based therapy aims to promote

endogenous regeneration and improves therapeutic effects and side-effects of

traditional reconstruction of significant bone defects and disorders. Human amniotic

mesenchymal stem cells (hAMSCs) are seed cells with superior paracrine functions on

immune-regulation, anti-inflammation, and vascularized tissue regeneration. The present

review summarized the source and characteristics of hAMSCs and analyzed their roles

in tissue regeneration. Next, the therapeutic effects and mechanisms of hAMSCs in

promoting bone regeneration of joint diseases and bone defects. Finally, the clinical

application of hAMSCs from current clinical trials was analyzed. Although more studies

are needed to confirm that hAMSC-based therapy to treat bone diseases, the clinical

application prospect of the approach is worth investigating.

Keywords: hAMSCs, paracrine functions, endogenous bone regeneration, arthritis, bone defects, clinical trials

INTRODUCTION

Large bone defects and disorders, either congenital or acquired, severely affect the patients’
appearance and function (1). Moreover, the incidence of these bone diseases is high and has been
on the rise in the past decade. In terms of bone defects, approximately more than 350million people
suffer from fractures, about 46 million people have head injuries, and 20 million people are subject
to spinal injuries.Meanwhile, more than 300million people have been diagnosed with osteoarthritis
while about 20 million people have got rheumatoid arthritis around the world. Periodontal disease,
which tends to cause severe alveolar bone loss and tooth loss, also has a high prevalence rate of about
800 million (2). Currently, the reconstruction of the bone defects mainly depends on autologous
tissue transplantation due to various factors, such as biocompatibility and histocompatibility (3).
However, this strategy has limited applications due to a shortage of harvest sites, incomplete
integration into the defects, and risk of disease transfer (4). In addition to various defects, bone
disorders also include joint diseases associated with an autoimmune disorder, such as rheumatoid
arthritis (RA) (5), osteoarthritis (OA) (6), and ankylosing spondylitis (AS) (7). Typically, these
joint diseases are treated by drugs (for example, glucocorticoid, immunosuppressive agents, non-
steroidal anti-inflammatory drugs, and disease modifying antirheumatic drug) to reduce the
symptoms and improve the joint function; however, therapeutic interventions are essential in
the advanced stage characterized by loss of articular cartilage, subchondral sclerosis, osteophyte
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formation, and joint capsule thickening (8). Nowadays, tissue
engineering is gaining increasing attention and is expected to
resolve these clinical issues.

Different types of scaffold, bioactive factors, and seed cells
are the three major elements of tissue engineering. Thus, finding
an ideal scaffold to replace the autologous bone translation
in the treatment of bone disorder is under intensive research.
Nowadays, the scaffold matrix used for bone tissue engineering
includes inorganic material, polymers, and their composites
(9). In addition, bioactive factors, such as bone morphogenetic
protein-2 (BMP-2), fibroblast growth factor-2 (FGF-2), vascular
endothelial growth factor (VEGF), and epidermal growth factor
(EGF), also play a vital role in bone rebuilding (10). Among those
growth factors, BMP-2 and FGF-2 have been utilized to promote
bone regeneration and angiogenesis in clinical practice (11, 12).
Currently, stem cell-based tissue regeneration has some curative
effects (13), but the effect of seed cells in repairing the bone
disorders is yet controversial.

Endogenous regeneration, proposed in recent years, focuses
on the stimulation and regulation of endogenous factors to
achieve in situ tissue regeneration by applying bioactive factors
locally (14). Stem cells possess robust biological potential with
respect to self-renewal, multidirectional differentiation, and
paracrine functions (15, 16). These might act as bioactive
factors to activate the endogenous regeneration by local or
systematic applications (14, 17). The homeostasis of tissues and
organs relies on the coordination and regulation of the nervous,
endocrine, and immune systems (18). The endocrine system
is a complex network of hormone-producing cells and tissues,
which secrete a variety of hormones to act on distant and/or
adjacent target cells through endocrine, paracrine, autocrine,
or intracrine mechanisms to exert biological activities (19). In
addition to enteroendocrine cells, other tissues and cells, such as
retinal ganglion cells (RGCs) (20), bone (21), and muscle (22),
have paracrine and endocrine functions to maintain homeostasis.
Growth hormone (GH) can be expressed in RGCs, and retinal
GH has a paracrine role in ocular development and vision (20).
It has been widely accepted that stem cells could secrete a
variety of bioactive factors which regulate immune state of the
body and local microenvironment of tissue regeneration (23).
These mechanisms of stem cell-based therapy are to some extent
similar to those of some hormones, such as GH. Based on these
similarities, stem cell-based therapy might exert a positive effect
on promoting endogenous bone regeneration.

Stem cells are divided into embryonic stem cells and
adult stem cells (16). The embryonic stem cells for stem
cell therapy shows high tumorigenicity and ethical problems
in the application process (24). Adult stem cells, including
mesenchymal stem cells (MSCs), are undifferentiated cells found
in various tissues and organs (25). Nowadays, researchers can
isolate MSCs from bone marrow (bone-marrow mesenchymal
stem cells, BMSCs) (26), fat (adipose-derived stem cells, AdSCs)
(27), peripheral blood (peripheral blood-derived mesenchymal
stem cells, PMSCs) (28), umbilical cord blood (umbilical cord
blood-derived mesenchymal stem cells, CB-MSCs) (29), and
other tissues (30–32) for tissue engineering, immune-regulation,
and anti-inflammation. However, it is also unknown which

source of stem cells is better for promoting tissue regeneration
after transplantation.

Currently, we are focusing on promoting bone regeneration
in the oral and maxillofacial regions using human amniotic
mesenchymal stem cells (hAMSCs). In this study, we reviewed
the source, characteristics, and roles of hAMSCs in bone
regeneration, not only in the reconstruction of bone defects
but also in the treatment of arthritis. Thus, hAMSCs might be
used as an innovative treatment option to promote endogenous
bone regeneration.

SOURCE AND CHARACTERISTICS OF
HAMSCS

MSCs are specialized cells with multi-differentiation potentials,
which can be activated to differentiate into tissue cells under
specific inducing conditions (33, 34). Previous studies have
demonstrated that MSCs have abilities of regeneration and
immunoregulation (35). The hAMSCs, isolated from the
amniotic membrane (AM) of the human term placenta that
plays a key role in maintaining maternal-neonatal tolerance, not
only share phenotypes similar to typical MSCs, including
fibroblast-like morphology, specific surface molecules,
and multi-differentiation potential but also have superior
immunomodulatory (36–39) and paracrine properties (40, 41).
Compared to hAMSCs, mostMSCs have inevitable disadvantages
on clinical use, including invasive access procedure, host immune
response after transplantation, age-related heterogeneity in the
quality of MSCs, and extremely low acquisition rate of
MSCs (33).

The AM is the innermost layer of the placenta consisting
of two sets of cells; one is the amnion epithelial cells that
are in direct contact with the amniotic fluid, and the other is
the amnion MSCs dispersed in the matrix (42, 43). Since AM
is an avascular structure and its epithelial layer can be easily
removed by Dispase II, the hAMSCs can be obtained without
contamination of endothelial cells and hematopoietic cells (42,
44). Each gram of wet amnion tissue can provide 1.7 ± 0.3
× 106 hAMSCs (45), which are positive for CD44 and CD90
(46, 47). Moreover, the placental tissue becomes a medical waste
after childbirth, and hAMSCs can be harvested non-invasively
and without ethical controversy (48). In addition, parturients are
usually young women, and hence, age-related heterogeneity of
hAMSCs might be relatively better than that of stem cells from
other sources. The hAMSCs lack the expression of human major
histocompatibility complex (MHC) antigens (human leukocyte
antigens, HLA), including HLA class I antigens (HLA-DP, HLA-
DA, HLA-DR) and HLA class I antigens (HLA-A, HLA-B, HLA-
C), showing low immunogenicity (49, 50), while they also exhibit
low tumorigenicity due to lack of expression of telomerase (48,
51, 52). Low immunogenicity and low tumorigenicity of hAMSCs
render them conducive for allotransplantation to promote tissue
regeneration. Also, their paracrine properties have multiple
regulatory functions (40). Furthermore, several bioactive factors
could be produced by hAMSCs, including immunomodulatory
factors that are crucial for the resolution of inflammation (44, 53)
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TABLE 1 | The mechanisms of hAMSCs in regulating joint diseases.

References Disease

Model

Method Conclusion

Shu et al. (55) RA Intraperitoneal

injection

hAMSCs inhibited the production of

proinflammatory cytokines and the

response of T-cell, and restored

CD4+/CD8+ T cell ratio in CIA rats.

Parolini et al.

(56)

RA Subcutaneous

injection

hAMSCs decreased the production of

inflammatory cytokines, stimulated the

generation of human

CD4+CD25+FoxP3+ Treg cells, and

suppressed the antigen-specific Th1/Th17

activation in CIA mice.

Huss et al.

(57)

OA Culture in vitro NK cells were a principal infiltrating immune

cells in synovial tissue of patients with

osteoarthritis.

Pianta et.al.

(58)

Inflammation Co-culture hAMSC-CM regulated T-cell polarization

toward Th1, Th2, Th17, and T-regulatory

(Treg) subsets.

Topoluk et al.

(59)

OA Co-culture hAMSCs were better than AdSCs in

shifting OA synovial macrophage M1:M2

ratio.

Cargnoni

et al. (60)

Lung fibrosis Intrathoracic

injection

hAMSC-CM reduced the levels of

pro-inflammatory and pro-fibrotic

cytokines, and reduced lung macrophage

levels.

Borem et al.

(61)

IVDD Co-culture hAMSCs produced more anti-inflammatory

cytokines than AdSCs under identical

inflammatory conditions.

Miceli et al.

(62)

Inflammation Culture in vitro hAMSCs in 3D culture system produced

more angiogenic and immunosuppressive

factors than in 2D cultures.

Banerjee

et al. (63)

Inflammation Culture in vitro hAMSCs changed mitochondrial function

and increased IL-6, and maintained the low

levels of ROS at 20% oxygen.

RA, rheumatoid arthritis; hAMSCs, human amniotic mesenchymal stem cells; CIA,

collagen-induced arthritis; OA, osteoarthritis; hAMSC-CM, hAMSCs conditionedmedium;

AdSCs, human adipose stem cells; IVDD, intervertebral disc degeneration; 3D, three-

dimensional; 2D, two-dimensional; ROS, reactive oxygen species.

and growth and angiogenic factors that are critical for tissue
remodeling (41). These exogenous molecules have been shown
to be important in inducing endogenous regeneration.

EFFICACY OF HAMSCS IN JOINT
DISEASES

Arthritis is a characteristic of rheumatic diseases, which
are chronic, intractable, and musculoskeletal system diseases,
such as RA, OA, AS, and juvenile idiopathic arthritis (JIA)
(54). Although the pathological characteristics of these joint
disorders are different, the joint symptoms are associated with
abnormal autoimmune function, inflammatory cell infiltration,
and joint structural lesions (5). Stem cells, including hAMSCs,
have been introduced to arthritis models, such as rat, to
improve the treatment by inhibiting inflammation, regulating
the status of autoimmunity, and promoting tissue regeneration
(Table 1) (55, 64, 65).

RA is a chronic, autoimmune, inflammatory joint disease
characterized by hyperplasia of the synovial membrane and
infiltration of immune and inflammatory cells. The synovial cell

fibrosis, excessive production of inflammatory cytokines, and
osteoclast appearance led to joint destruction and disability (5).
The immunomodulatory and anti-inflammatory properties of
hAMSCs indicated the therapeutic potential for the treatment of
RA. In the classic rat arthritis model for human RA, hAMSCs
significantly ameliorated the severity of arthritis and decreased
the histopathological changes due to dramatic inhibition of the
production of proinflammatory cytokines, such as interferon-
γ (IFN-γ) and tumor necrosis factor-α (TNF-α) (55). For a
T cell-mediated disease, such as RA, the therapeutic effects
of hAMSCs are crucial because they could remarkably restore
the CD4+/CD8+ T-cell ratio and inhibit the response of
T-cells (55). In addition, hAMSCs suppressed the antigen-
specific Th1/Th17 activation and stimulated the generation of
CD4+CD25+FoxP3+ Treg cells (56). In mice with collagen-
induced arthritis (CIA), systemic infusion of hAMSCs markedly
reduces Th1-driven autoimmunity and inflammation, as shown
by decreased production of TNF-α, IFN-γ, and some interleukins
(IL-2 and IL-17) and increased production of IL-10 and
activation of cyclooxygenase 1/2 (COX1/2) (56).

OA is another chronic joint disease with an incidence as
high as 40% (66). It is a degenerative disease characterized by
progressive cartilage degradation, subchondral bone remodeling,
osteophyte formation, and synovitis (67). Synovial NK cells and
macrophages secrete abnormally large amounts of perforins,
granzymes, and pro-inflammatory cytokines (TNF-α, IL-1β)
to induce and aggravate the synovial inflammation and
bone/cartilage resorption (57), while activation of CD4+Th1
cells contributes to the development of inflammation (68).
The hAMSCs might be beneficial for OA as they inhibit the
proliferation of T-cells in vitro (58), polarize M2 macrophages
in the condition with the hallmarks of RA in vitro (59), and
promote bone/cartilage regeneration in rabbits (69, 70). The
conditioned medium of hAMSCs (hAMSC-CM) was reported
to remedy tissue fibrosis by lowering the levels of T-cells
and macrophages, leading to a decline in pro-inflammatory
cytokines (60). When hAMSCs were introduced to the OA
model established by coculturing the OA patients’ cartilage and
synovium, the M1:M2 percentage ratio of synovial macrophages
was decreased significantly; also, the concentrations of IL-
1β and matrix metalloproteinase-13 (MMP-13) was declined,
and macrophage-mediated cartilage destruction was effectively
abrogated (59).

In addition, hAMSCs not only secreted active factors
with therapeutic effects routinely but also produced
abundant cytokines in specific environments. Under identical
inflammatory conditions, hAMSCs produce more anti-
inflammatory cytokines than AdSCs, such as IL-10 (61).
Under three-dimensional (3D) culture conditions, hAMSCs
spheroids could secrete considerable amounts of angiogenic
and immunosuppressive factors while remaining viable and
multipotent (62). The production of some cytokines by hAMSCs
vary under different conditions of different oxygen tension.
Consequent to exposure to 20% oxygen culture condition,
hAMSCs secrete abundant IL-6 as a response to changes in the
mitochondrial function, but the content of intracellular reactive
oxygen species (ROS) remained unaltered (63). These properties
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of hAMSCs rendered the stem cell-based therapy applicable and
also provided valuable guidance for bone regeneration.

EFFICACY OF HAMSCS IN BONE DEFECTS

The hAMSCs, as a kind of stem cells, can be induced to
osteogenic differentiation to form refracted crystal-like nodules
which could be indicated by alkaline phosphatase staining or/and
alizarin red S staining (71–73). The expression of osteogenesis-
related genes and proteins, such as alkaline phosphatase (ALP),
runt-related transcription factor 2 (Runx2), osteopontin (OPN),
and osteocalcin (OCN), was significantly enhanced in osteo-
induced hAMSCs (74–76); also, their osteogenic differentiation
capacity is superior to other MSCs derived from chorionic
membrane and decidua (77, 78). However, the comparison
of the osteogenic capacity of hAMSCs and BMSCs revealed
that BMSCs are more likely to differentiate into osteoblasts
in vitro and seem to be appropriate for bone regeneration
(79). Nevertheless, the capacity of hAMSCs might not be
inferior to that of BMSCs in improving bone regeneration
in vivo. Several studies have reported that transplanted MSCs
might play therapeutic roles by paracrine signaling rather than
becoming target tissue cells directly (80–82). In recent years,
several studies have focused on hAMSCs promoting tissue
regeneration, based on their functions of anti-inflammation, pro-
angiogenesis, and chemotaxis(Table 2) (38, 83, 96). To the best
of our knowledge, hAMSCs secrete more cytokines than BMSCs,
including interleukins (IL-6 and IL-8), C-X-C motif chemokine
ligand-1/5 (CXCL1 and CXCL5), Angiogenin (ANG), hepatocyte
growth factor (HGF), and fibroblast growth factor-7 (FGF-7)
(83). These paracrine properties of hAMSCs make them suitable
for the restoration of bone defects (40, 83).

Fracture healing is a complex, well-orchestrated, regenerative
process that is coordinated by a variety of cell types, including
inflammatory cells, vascular endothelial cells, MSCs, and
fibroblasts (97). In the various stages of the bone healing
process, inflammation and angiogenesis precede osteogenesis,
thereby indicating that controlling inflammation and promoting
angiogenesis in an early stage might speed up the subsequent
bone formation and ultimately bone remodeling (97).
Therefore, we proposed to introduce hAMSCs to bone
defects’ microenvironment and stimulate and accelerate the
endogenous vascularized bone regeneration. Several studies have
shown that hAMSCs enhance the osteogenic differentiation of
AdSCs, BMSCs, and promote the tube-formation of human
umbilical vein endothelial cells (HUVECs) (84–89). When
hAMSCs are co-cultured with BMSCs in a transwell system, ALP
activity of BMSCs and the expression of osteogenic markers,
including OCN and Runx2, were upregulated (90). Conversely,
in the co-culture, hAMSCs reverse the inhibition of oxidative
stress-induced osteogenic differentiation of caused by hydrogen
peroxide, which in turn, inhibits the inflammatory response in
vivo (91). When hAMSCs are co-cultured with HUVECs, high
levels of Collagen-1 (COL1), ANG, and VEGF were detected in
the co-culture medium, and capillary-like tube structures were
observed in HUVEC tube-formation assay (92). Interestingly,

a correlation was established between the high expression of
lncRNA H19 and the pro-angiogenic functions of hAMSCs (93).

Based on the in vitro data, the researchers applied hAMSCs
to animal bone defect models. Ranzoni et al. injected hAMSCs
intraperitoneally into mice that suffered from osteogenesis
imperfecta (OI). The transplanted mice had improved
bone structural quality, high mineral density, and better
mineralization, while the genes related to osteogenesis were
upregulated and those associated with inflammation, TGF-β,
and osteoclast differentiation were downregulated (94). The
β-tricalcium phosphate (TCP) scaffolds containing xenograft
hAMSCs have been reported to improve regeneration of Wistar
rats’ skull defects. The xenograft cells did not cause obvious
immune response in the transplanted rats (95). In our recent
studies, we comprehensively analyzed the survival of hAMSCs
after transplantation in nude mice and the specific mechanism
of hAMSCs in promoting bone tissue regeneration. It had been
confirmed that hAMSCs could be survival in bone defects for at
least 2 weeks after transplantation. Although hAMSCs survived
in vivo, they did not seem to transform into osteoblasts. In
specimens from early bone defect healing, hAMSCs polarized
macrophages to M2 that could secrete pro-angiogenic and
osteogenic cytokines, such as BMP-2 and VEGF (83). Moreover,
we also found that hAMSCs promote extracellular matrix
remodeling (98). Combined with these functions, we believed
hAMSCs could start endogenous vascularized bone regeneration.
And in terms of the ultimate osteogenic effect, our findings
showed that hAMSCs accelerated new bone formation not only
in bone defects but promoted rapid osseointegration of dental
implants (69, 83).

CLINICAL TRIALS

Stem cell therapies exert their effects on a wide range of diseases
and injuries, including immune disorders (99), various neural
disorders or injuries (100), myocardial injury (101), pulmonary
diseases (102), diabetes (103), cancer treatments (104), and
bone/cartilage degenerative disorders or injuries (105). Several
types of stem cells have been subjected to clinical trials (106).
Stem cells derived from the human placenta have been reported
to be in clinical trials for a variety of therapeutic applications
(107). In a single-center, non-randomized, intravenous dose-
escalation phase Ib trial, patients with idiopathic pulmonary
fibrosis received intravenous administration of placental MSCs
from unrelated donors. Previous data demonstrated that
placental MSC therapy is feasible and has a satisfactory short-
term safety profile in idiopathic pulmonary fibrosis (108).
Clinical trials using placental MSCs to treat OA, Crohn’s disease,
and multiple sclerosis (MS) have shown that the cells were well-
tolerated, and cell therapy was dose-related (109–111). Amnion
is a part of the placenta that has been used in clinical trials
to treat skin and corneal burns (112, 113). These clinical trials
suggested that the amniotic membrane accelerates recovery via
inhibiting inflammation and releasing growth factors. These
therapeutic effects could also be found in hAMSC-CM. In
the subsequent clinical trials using this conditioned media,
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TABLE 2 | The role of hAMSCs in bone regeneration.

References Disease model Method Conclusion

Yin et al. (69) MSFE Intravenous injection hAMSCs accelerated mineralized deposition rates and

enhanced bone regeneration after MSFE.

Topoluk et al. (71) Bone defects Culture in vitro hAMSCs had a greater differentiation potential toward bone and

cartilage compared with AdSCs.

Li et al. (72) Bone defects Implantation with PLGA The BMP9-induced osteogenic differentiation and angiogenesis

of hAMSCs could be inhibited by Schnurri-3.

Li et al. (73) Bone defects Implantation with

scaffolds

The osteogenic differentiation and angiogenesis of hAMSCs

could be enhanced by 3D silk fibroin scaffolds.

Leyva-Leyva et al.

(75)

Bone defects Culture in vitro Different hAMSCs subpopulations had dissimilar osteoblastic

differentiation potential, and CD105– cells were better than

CD105+ cells.

Fan et al. (76) Bone defects culture in vitro <1.0mM sodium butyrate enhanced the expression of

osteogenesis-related genes and proteins of hAMSCs.

Shen et al. (77) Bone defects Culture in vitro hAMSCs and UC-MSC had a higher osteogenic differentiation

potential than the MSCs from chorionic membrane and decidua.

Ma et al. (78) Bone defects Culture in vitro hAMSCs had a greater osteogenic differentiation than the MSCs

from umbilical cord and chorionic plate.

Liu et al. (80) Osteopenia Hypodermic

implantation

MSCs secreted exosomes to regulate the

miR-29b/Dnmt1/Notch epigenetic cascade.

Jiang et al. (83) Bone defects Subcutaneous injection hAMSCs stimulated endogenous regeneration of bone via

paracrine function.

Zhang et al. (84) Osteoporosis Co-culture hAMSCs enhanced the cell proliferation, antioxidant properties,

osteogenic, and angiogenic differentiation of BMSCs and

HUVECs.

Wang et al. (85) Periodontitis Culture in vitro hAMSCs promoted the osteoblastic differentiation of BMSCs

and influenced p38 MAPK signaling to reducing bone loss.

Wang et al. (86) Bone defects Co-culture hAMSCs regulated the differentiation processes in BMSCs by

influencing the differentiation antagonizing non-protein coding

RNA.

Zhang et al. (87) Bone defects Co-culture hAMSCs increased the proliferation and osteoblastic

differentiation of AdSCs and enhanced angiogenic potential of

AdSCs via secretion of VEGF.

Wang et al. (88) Bone defects Culture in vitro hAMSCs enhanced the osteogenesis of AdSCs by promoting

APN excretion through APPL1-ERK1/2 activation.

Ma et al. (89) Bone volume

inadequacy

Hypodermic

implantation

hAMSCs promoted osteogenic differentiation of BMSCs via

H19/miR-675/APC pathway.

Wang et al. (90) Bone defects Co-culture hAMSCs promoted BMSCs proliferation and osteogenic

differentiation in vitro.

Wang et al. (91) Bone deficiency Culture in vitro hAMSCs promoted the proliferation and osteoblastic

differentiation of BMSCs via ERK1/2 MAPK signaling, and

down-regulated ROS level.

Bian et al. (92) Bone deficiency Co-culture hAMSCs/BMSCs cultured in transwell coculture system had

better performance in bone regeneration than those in mixed

coculture systems.

Yuan et al. (93) Bone defects Co-culture hAMSCs promoted angiogenesis regulating by the expression of

lncRNA H19.

Ranzoni et al. (94) OI Intraperitoneal injection hAMSCs accelerated the bone formation via differentiating into

osteoblasts and promoting endogenous osteogenesis and the

maturation of resident osteoblasts.

Tsuno et al. (95) Bone defects Implantation with

scaffolds

hAMSCs promoted bone regeneration via increasing ALP

activity, calcium deposition, and the expression of osteocalcin

mRNA.

MSFE, maxillary sinus floor elevation; hAMSCs, human amniotic mesenchymal stem cells; AdSCs, adipose-derived stem cells; BMP9, bone morphogenetic protein 9; PLGA,

poly(lactic-co-glycolic acid); 3D, three-dimensional; UC-MSC, umbilical cord mesenchymal stem cells; MSCs, mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem

cell; HUVECs, human umbilical vein endothelial cells; MAPK, mitogen-activated protein kinase; VEGF, vascular endothelial growth factor; APN, adiponectin; APPL1, adaptor protein;

PH, phosphotyrosine interaction, domain and leucine zipper containing 1; ERK1/2, extracellular signaling-regulated kinase 1/2; APC, adenomatous polyposis coli; ROS, reactive oxygen

species; OI, osteogenesis imperfecta; ALP, alkaline phosphatase.
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the bioactive cytokines, such as VEGF, FGFs, and keratinocyte
growth factor (KGF) were identified and were found to promote
ulcer healing (114) and improved photoaging (115) when the
medium was locally injected into the lesions. Currently, there
are no reports on the clinical trials using hAMSCs on bone
regeneration; however, BMSCs (116, 117), AdSCs (118), and
dental pulp stem cells (DPSCs) (119) had shown to be safe,
feasible, and effective (120). Based on the data of the clinical trials,
we speculated that hAMSCs could be studied in the clinical trials
of bone regeneration for future applications.

CONCLUSION AND PERSPECTIVES

Although hAMSCs have become an alternative source of stem
cells in regenerative medicine and tissue engineering due to their
advantages such as easy gain, sufficient quantity, and superior
properties, the application from laboratory research to clinical
practice in the future needs further exploration. We still need
to carry out further studies on hAMSCs acquisition, storage,
and transportation to form standardized standards to maintain
and improve the therapeutic potential of hAMSCs, so as to
ensure the clinical application effects. It has been well-known
that autologous MSCs represent the primary sources considered
safe for transplantation and minimization of immunological risk.
Preclinical studies should confirm the safety and immunological
risk of allogenic hAMSCs for transplantation by comparing
with autologous MSCs, and then the mechanisms of hAMSCs
in promoting skeletal system diseases in vivo are also needed

to further elucidate, which are important to determine the
indications, timing, dosage, and accurate administration of
hAMSC-based therapy. For the treatment of bone regeneration
and other bone disorders, more efforts should be made to
optimize the therapeutic effects of hAMSC-based therapy by
combining with other biomaterials and bioactive factors. Despite
these challenges, it is no doubt that MSC-based therapy has a
promising clinical application prospect. Since previous studies
have demonstrated the hAMSCs with excellent MSC properties,
hAMSC-based therapy is worthy to be further studied in depth
and finally put into clinical practice.
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TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in
immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is
effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In
contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL
to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are
members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is
much weaker than that of RANKL. Recent studies have uncovered key intrinsic
mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis,
including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM
(Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory
network, NF-kB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its
mediated regulatory network, uniquely and predominantly limit osteoclastogenesis
mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities
suppresses inflammatory bone destruction but does not significantly impact normal bone
remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms
addresses why TNF has a weak osteoclastogenic potential, explains a significant difference
between RANKL and TNF signaling, and provides potentially new or complementary
therapeutic strategies to selectively treat inflammatory bone resorption, without
undesirable effects on normal bone remodeling or immune response in disease settings.

Keywords: tumor necrosis factor, osteoclasts, bone resorption, rheumatoid arthritis, RBP-J, IRF8, Def6
INTRODUCTION

Adult skeleton undergoes constant remodeling throughout life to maintain bone homeostasis.
Normal bone remodeling requires a delicate balance between the activities of major bone cell types:
bone-resorbing osteoclasts and bone-forming osteoblasts, as well as osteocytes. Osteoclasts are bone
cells derived from monocyte/macrophage lineage and are exclusively responsible for bone
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resorption, which contributes to skeletal development, bone
homeostasis, and remodeling. Osteoclast differentiation is
induced by the master osteoclastogenic factor, RANKL, which
acts in concert with M-CSF and ITAM-mediated co-stimulatory
signaling. These stimulations activate a broad range of signaling
cascades, such as canonical and non-canonical NF-kB pathways,
mitogen-activated kinase (MAPK) pathways and calcium
signaling, which in turn activate downstream transcriptional
regulators to drive osteoclastogenesis. Under inflammatory
conditions, abnormal osteoclast differentiation and function
often results in excessive bone resorption, which is a common
characteristic of many diseases, such as osteoporosis, rheumatoid
arthritis (RA), psoriatic arthritis and periodontitis (1–5).

Inflammatory conditions have complex impacts on
osteoclastogenesis and bone remodeling (1, 5, 6). Current
treatments for excessive bone resorption utilize RANK receptor
blockers or neutralizing antibodies, which are able to inhibit
osteoclast formation. However, inhibition of osteoclast formation
via blocking RANK signaling can result in long-term bone
remodeling defects. The approved TNF blockade therapy (TNFi)
has been a medical breakthrough that successfully ameliorates the
quality of life of patients suffering from TNF-mediated diseases.
TNFi includes monoclonal antibodies to TNF, such as Infliximab,
Adalimumab, Certolizumab Pegol, and Golimumab, as well as
soluble TNF receptor(s), such as Enbrel. Using TNFi has shown to
help treat inflammation and joint erosion that occur in RA.
However, immunosuppression from long-term utilization of
TNFi is a side effect that can result in patients being susceptible
to opportunistic infections. Understanding the mechanistic
difference between RANKL-mediated physiological and TNF-
mediated inflammatory osteoclastogenesis, and especially TNF-
induced intrinsic inhibitory mechanisms, will strengthen the
development of therapeutic approaches to treat pathological
bone destruction in disease settings and prevent negative side
effects on bone remodeling and immunity.

Tumor necrosis factor (TNF) is a pleiotropic inflammatory
cytokine that is important for inflammation, immunity, and
disease pathogenesis. TNF is known to play a key role in
driving chronic inflammation as well as in pathological bone
erosion associated with multiple inflammatory bone diseases,
such as RA, periodontitis and periprosthetic osteolysis (1, 2, 7, 8).
TNF particularly promotes osteoclastogenesis in these common
pathological bone diseases via multiple mechanisms, such as
increasing osteoclast precursor cells, acting on other cell types
and in synergy with additional cytokines, mostly with RANKL
(Figure 1). However, its direct osteoclastogenic capacity on its
own is dramatically weaker than that of RANKL. Both TNF and
RANKL belong to the TNF superfamily; however, there is a
longstanding enigma in the field as to why TNF alone is unable to
efficiently induce osteoclastogenesis, and the mechanisms that
restrain TNF-induced osteoclastogenesis are poorly understood
(6, 8). Since bone remodeling plays a key role in skeletal health, it
is of particular clinical interest to develop therapeutic strategies
specifically targeting pathological bone destruction, meanwhile
without or minimizing undesirable effects on physiological bone
remodeling. Therefore, in contrast to the traditional approaches
Frontiers in Endocrinology | www.frontiersin.org 2106
by blocking physiological RANK signaling or global TNF
inhibition, elucidation and augmentation of these TNF-
induced intrinsic inhibitory mechanisms will have high
potential to provide novel treatments that are selective for
inflammatory bone resorption, which will have long-term
benefits for bone healing and maintenance of healthy skeleton.

Recent studies have provided evidence that uncover
TNF-mediated intrinsic inhibitory mechanisms during
osteoclastogenesis. In this review, we will highlight these
discoveries and discuss their potential clinical relevance in
treating inflammatory bone destruction.
DOES TNF PROMOTE OR RESTRAIN
OSTEOCLASTOGENESIS AND
INFLAMMATORY BONE RESORPTION?

TNF plays a key role in chronic inflammation and, notably, in
bone destruction observed in diseases such as RA, periodontitis,
and periprosthetic osteolysis. Clinical evidence from TNFi
therapy further supports the role of TNF in promoting
pathological bone resorption. However, genetic evidence and
osteoclast differentiation of human CD14-positive cells
demonstrate that TNF cannot effectively induce osteoclast
differentiation directly as RANKL does (9–11). TNF acts,
mainly in synergy with RANKL and/or together with other
inflammatory cytokines, such as IL6, on osteoclast precursors
to promote osteoclastogenesis and bone resorption under
inflammatory conditions (3, 7, 12–17). Evidence indicates that
TNF promotes the increase of osteoclast precursors in vivo (18–
21). TNF can also indirectly promote osteoclastogenesis via
augmentation of c-Fms and RANK expression in osteoclast
precursors, and M-CSF and RANKL expression in osteoblasts,
stromal cells, T cells and synovial fibroblasts (7, 22, 23). Therefore,
TNF generally indirectly promotes osteoclastogenesis and bone
resorption through other cell populations or cytokines (Figure 1).
The direct osteoclastogenic capacity of TNF is weak. Recent
FIGURE 1 | Direct and indirect effects of TNF on osteoclastogenesis.
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studies have revealed key mechanisms by which TNF restrains its
osteoclastogenic potential, such as through osteoclastic inhibitors
RBP-J, NF-kB p100, IRF8, and Def6, which will be discussed
below (Figure 1).
RBP-J PREDOMINANTLY SUPPRESSES
TNF-INDUCED OSTEOCLASTOGENESIS
COMPARED TO THAT INDUCED
BY RANKL

Recombinant recognition sequence binding protein at the Jk site
(RBP-J) is a nuclear DNA-binding protein that is expressed in a
wide range of cell types and was originally identified as a key
transcription factor in the canonical Notch signaling (24). Upon
activation via Notch ligands, Notch intracellular cytoplasmic
domains (NICDs) translocate to the nucleus and bind to RBP-J,
which inducesNotch target gene transcription. RBP-J has also been
shown to function as a transcriptional activator or repressor for
other signaling pathways, such as TNF (25), TLR (26, 27), Wnt–b-
catenin (28), NF-kB (29, 30), TAK1 (31), and ITAM-signaling
pathways (32). RBP-J is also targeted by viral proteins (30, 33) and
cellular proteins of unknown function (34, 35). Through its
involvement of a multitude of signaling pathways, RBP-J is an
important regulator of cell differentiation and proliferation, cell
cycle, and survival, anddiverse cellular functions including stemcell
maintenance, neurogenesis, and lymphocyte development (24, 36).
RBP-J has been identified in inflammatory macrophage activation
and function (26, 27, 37), dendritic cell (DC) differentiation and
maintenance of CD8-negative DC populations (38, 39). Many of
these functions are associated with Notch signaling; however, the
function of RBP-J is context-dependent and found to be significant
in inflammatory disease conditions that are not related to canonical
Notch signaling (27).

RBP-J function is also implicated in osteoclastogenesis. We
demonstrated that RBP-J is activated by TNF in bone marrow-
derived macrophages (BMMs), which are osteoclast precursors,
and dramatically suppresses TNF-induced osteoclastogenesis
and bone resorption in vitro and in vivo (25, 32), while
modestly suppressing RANKL-induced osteoclastogenesis (25,
32, 40). Genetic evidence showed that Notch-RBP-J signaling
plays a minor role in homeostatic bone resorption. Myeloid-
specific deletion of RBP-J (RBP-Jf/f; LysM-Cre), deletion of
Notch 1/2/3, or constitutively-active NICD1 expression in the
myeloid compartment (NICD1M) in mice did not exhibit
significant bone defects under physiological conditions (25,
41). However, TNF-induced osteoclastogenesis was
dramatically increased in RBP-Jf/f; LysM-Cre mice, comparable
to RANKL-induced osteoclastogenesis and in a TNF-induced
inflammatory bone resorption model. Osteoclast differentiation
and bone resorption can be effectively induced by TNF in
osteoclast precursor cells lacking RBP-J and even in the
absence of RANK signaling (25). Thus, RBP-J restrains the full
osteoclastogenic potential of TNF.

The mechanism by which RBP-J restrains TNF-induced
osteoclastogenesis is by suppressing induction of NFATc1
Frontiers in Endocrinology | www.frontiersin.org 3107
through attenuation of c-Fos activation and suppression of
Blimp1 induction (25). These events maintain the expression
of osteoclastogenic repressor, IRF-8, which prevents cell
differentiation (25). RBP-J deficiency allows for the drastic
increase of NFATc1 transcription by TNF stimulation. These
studies identified the role of RBP-J in transcriptional repression
of osteoclastogenic factors to specifically suppress and restrain
TNF-mediated inflammatory osteoclastogenesis and bone
resorption (Figure 2). This selective role of RBP-J presents
clinical potential in developing therapeutic strategies in
suppressing inflammatory bone destruction.
CROSSTALK BETWEEN RBP-J
AND ITAM SIGNALING

The immunoreceptor tyrosine-based activation motif (ITAM) is
a highly conserved signaling motif contained in the cytoplasmic
domain of transmembrane receptors and adaptors that are
crucial mediators of various cellular activities, particularly
immune response and cancer activation. ITAM-mediating
signaling regulates hematopoietic cells including myeloid
osteoclast precursor cells. The main ITAM-containing adaptors
expressed by myeloid osteoclast precursors that play crucial roles
in the osteoclast program include DNAX-activating protein 12
(DAP12) and Fc receptor common g subunit (FcRg). These
adaptors associate with various receptors in myeloid cells to
mediate signaling, including DAP12-associated triggering
receptor expressed in myeloid cells 2 (TREM2), signal-
regulatory protein b 1 (SIRPb1), FcRg-associated osteoclast-
associated receptor (OSCAR), paired immunoglobulin-like
FIGURE 2 | Intrinsic inhibitory mechanisms by which TNF restrains its
osteoclastogenetic potential. The negative regulators are labeled red, and the
mechanisms regulated by these regulators are detailed in the text. Among
these inhibitory mechanisms, RBP-J is a central inhibitor that predominantly
suppresses osteoclastogenesis and inflammatory bone resorption mediated
by TNF, but not by RANKL.
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receptor-A (PIR-A) and FcRs. Osteoclasts require co-stimulation
of RANK via ITAM-mediated signaling pathways to drive
osteoclastogenesis (42). Deficiency of both DAP12 and FcRg in
mice results in significant osteopetrosis and defects in osteoclast
differentiation. Our previous study has demonstrated that
mye lo id-spec ific RBP-J defic iency in Dap12− /− or
Dap12−/−Fcrg−/− mice significantly rescued the bone defects
(32). This indicated that the lack of RBP-J allowed for
osteoclastogenesis in homeostatic bone remodeling to occur by
bypassing the requirement of ITAM-mediated co-stimulation.
Under inflammatory conditions, RBP-J restrains ITAM signaling
and suppresses the basal expression and activity of PLCg2,
limiting calcium signaling that is needed to induce osteoclast
differentiation (42) (Figure 2). Consistently, RBP-J deficiency
reversed this effect and enabled TNF stimulation to induce
osteoclastogenesis in Dap12−/−Fcrg−/− mice. RBP-J deficiency
allows for osteoclastogenesis to occur independently of ITAM-
mediated co-stimulation, indicating that RBP-J functions to
enforce ITAM-mediated co-stimulatory calcium signaling to
induce osteoclast differentiation and function in both
homeostatic and inflammatory settings. This balance between
ITAM-mediated co-stimulation and RBP-J-mediated
suppression settles the basal level of PLCg2/calcium signaling,
and presents a mechanistic model whereby the regulation of this
basal level of PLCg2/calcium signaling determines whether
osteoclastogenic factors, such as RANKL or TNF, are able to
effectively induce sufficient calcium signaling required for
NFATc1 induction and downstream osteoclastogenesis. These
studies demonstrate the inhibitory effect of RBP-J on ITAM-
signaling and shed insight into the mechanisms mediated by the
RBP-J and ITAM crosstalk, which can partially explain why TNF
alone is unable to effectively induce osteoclastogenesis as
RANKL can.

In addition to canonical Notch-dependent RBP-J signaling,
modern genomic studies provide important evidence of Notch-
independent RBP-J signaling pathways (43–45). Therefore, it
would be of interest to elucidate whether RBP-J functions are
dependent on canonical Notch signaling in TNF-mediated
osteoclast differentiation and what upstream pathways would
regulate RBP-J activities in this setting.
RBP-J TARGETS AND THE REGULATORY
NETWORK MEDIATED BY RBP-J/
NFATC1-MIR182 IN TNF-MEDIATED
OSTEOCLASTOGENESIS

Despite its selective regulation in inflammatory conditions
associated with bone destruction, RBP-J is a widely expressed
transcription factor involved in many diverse cellular functions
and therefore, unideal for direct targeting for therapeutic
approaches. It is important to uncover and focus on its
downstream targets in specific cell types of interest. Through
genome-wide miRNA expression profiling, our group identified
miR-182 as a TNF-induced miRNA that is directly targeted and
suppressed by RBP-J in bone marrow macrophages and
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osteoclast precursors (46, 47). RBP-J inhibits the expression
and function of NFATc1 (25), which in turn acts as an
upstream regulator activating miR-182, pointing to a novel
regulatory network (48). Both in vitro and in vivo evidence
supports the role of miR-182 as a positive regulator of TNF-
mediated osteoclastogenesis. Myeloid-specific double knockout
of miR-182 and RBP-J showed abolishment of the enhanced
TNF-induced osteoclast differentiation and activity that occurs
in the absence of only RBP-J in myeloid cells. Furthermore,
inflammatory bone erosion in vivo mouse models demonstrated
that miR-182 deletion reversed RBP-J deficiency enhanced
osteoclast formation and bone erosion. Collectively with
previous studies, these data reveal a crucial regulatory
mechani sm whereby RBP-J inh ib i t s TNF- induced
osteoclastogenesis through suppression of its downstream
target, miR-182 (Figure 2).

Studies on inflammatory bone diseases, such as RA, present a
disrupted balance of osteoclastogenic regulatory mechanisms.
Monocytes isolated from RA patients show elevated levels of
positive osteoclastic regulators miR-182 and NFATc1, and
repressed levels of anti-osteoclastic regulators including RBP-J,
Forkhead box class O 3 (FOXO3) and protein kinase double-
stranded RNA-dependent (PKR) compared to healthy donors
(46, 47). The administration of Enbrel, a TNFi therapy, to RA
patients reverses these levels of regulators towards healthy levels,
further supporting the RBP-J/NFATc1-miR-182 regulatory
network in controlling TNF-mediated osteoclastogenesis. This
data further supports the notion that disruption of the RBP-J/
NFATc1-miR-182 regulatory network is responsible for
pathological osteoclastogenesis and bone destruction in
inflammatory bone diseases, and targeting this network holds
potential for the development of novel treatment (Figure 2).

NF-kB p100 and TRAF3
The nuclear factor NF-kB family is involved in a number of
cellular functions and plays a key role in immunity and
proinflammatory signaling pathway. This family includes the
transcription factors p65/RelA, RelB, c-Rel, NF-kB1 (p105/p50),
and NF-kB2 (p100/p52). NF-kB activation can be induced via
canonical or classical signaling pathway involving TNFR
activation or TLR ligand binding and dependent on IKKb-
induced IkBa degradation, which leads to RelA/p50 activation
and downstream gene transcription. The non-canonical or
alternative pathway involves NIK-induced phosphorylation of
NF-kB2/p100, which is crucial for p100 processing to p52 and
RelB/p52 activation for downstream gene transcription. RelB was
found to be essential for RANKL-induced osteoclast maturation
and TNF-induced bone resorption (49). Activation of IKKb has
been implicated in RANKL-induced osteoclastogenesis; however,
it was also found to be sufficient for osteoclast differentiation and
osteolysis independent of RANK (50). There is crosstalk between
canonical and non-canonical NF-kB pathways, and NF-kB
activation in these two pathways plays important positive
regulatory roles in osteoclastogenesis (49, 51–53). In contrast,
NF-kB p100 has been shown to function as a negative regulator
of osteoclastogenesis by binding to NF-kB complexes and
preventing their nuclear translocation. This consequently leads
October 2020 | Volume 11 | Article 583561
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to cytosolic accumulation of p100 and impairment of osteoclast
differentiation. Deficiency of p100 reverses this inhibition and
results in enhanced osteoclastogenesis that contributes to an
osteopenic phenotype in vivo (49, 52–55). TNF cannot efficiently
activate the alternative pathway which requires processing of
p100 to p52. Therefore, unlike RANKL, TNF induces p100
accumulation in osteoclast precursors via induction of TNF
receptor-associated factor 3 (TRAF3), limiting TNF-induced
osteoclastogenesis (54) (Figure 2). In vivo evidence showed
that TNF induced robust osteoclast differentiation in mice
lacking RANK/RANKL and NF-kB p100, and enhanced bone
erosion in TNF-Tg mice lacking NF-kB p100 compared to TNF-
Tg littermates (54). These data suggest that promoting TRAF3 or
targeting NF-kB p100 processing to prevent TNF-induced NF-
kB p100 accumulation may represent novel therapeutic strategies
to treat inflammatory bone resorption associated with RA,
periodontitis, or periprosthetic osteolysis.

IRF-8
Within osteoclast differentiation program, transcriptional
repressors contribute to the ‘braking system’, which is necessary
to be overridden during differentiation process by master
osteoclastogenic factor RANKL. These repressors include
inhibitors of differentiation/DNA binding (Ids) (56, 57), Eos (58),
v-maf musculoaponeurotic fibrosarcoma oncogene family protein
B (MafB) (59), IFN regulatory factor-8 (IRF-8) (60) and B cell
lymphoma 6 (Bcl6) (61). Among these transcriptional repressors,
IRF-8 is of particular interest due to the dramatic augmentation of
TNF-induced osteoclast differentiation in the absence of IRF8,
resulting in increased NFATc1 expression. This indicates that
IRF-8 plays a suppressive role in TNF-induced osteoclastogenesis
(Figure 2). Additionally, IRF-8 deficiency significantly attenuates
TLR-induced inhibition of osteoclastogenesis, suggesting that IRF-
8 also plays a crucial role in the inhibitory mechanisms of TLR
stimulation. In an LPS-induced inflammatory bone resorption
model, IRF-8 deficient mice exhibited enhanced osteoclast
formation and more severe bone destruction than WT littermates
(60). These data suggest that IRF-8 is a negative regulator of
osteoclastogenesis and may be important in limiting bone
destruction during acute infections as well as in chronic
inflammatory conditions such as rheumatoid arthritis.

Recently, inspiring studies highlight novel epigenetic regulatory
mechanisms that control IRF8 downregulation, which present
translational implications towards developing promising
therapeutic strategies (62, 63). Epigenetic mechanisms of gene
expression regulation are involved in virtually all biological
processes in the human body and include transcriptional
activation and repression via interplay of DNA methylation and
histone post-translational modifications. DNAmethylations via de
novo DNA methyltransferases (DNMTs), such as DNMT3a and
DNMT3b, and histone post-translational modifications (histone
tailmodifications), suchas acetylation,methylation, phosphorylation,
ubiquitylation, and sumoylation of histones, are common types of
epigenetic modifications. Epigenetic repressors generally include
DNMTs, histone deacetylases (HDACs), and polycomb group
proteins (PcG). It has been shown that epigenetic repression of Irf8
byDnmt3a-mediatedDNAhypermethylation leads todecreasedIRF-
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(62). Previous study by our grouphas found that polycomb repressive
complex 2 (PRC2) component, EZH2, is recruited to the IRF8
promoter after RANKL stimulation, inducing transcriptional
repressor mark H3K27me3 and subsequently downregulating Irf8
expression (63). There are functional links between DNMTs, PRC2,
and HDACs (64), and thus it is likely that IRF8 expression can be
regulated through both DNA methylation and histone modification
in a synergistic manner. It would be of great interest to investigate
whether inflammatory conditionswould impact the interplay of these
epigenetic mechanisms and whether these regulatory mechanisms
also regulate TNF-mediated osteoclastogenesis and bone resorption.

Def6
Differentially expressed in FDCP 6 homolog (Def6), also known
as IRF4-binding protein (IBP) or SWAP-70-like adaptor protein
of T cells (SLAT), is a type of guanine nucleotide exchange factor
(GEF) expressed predominantly in T cells and regulates T cell
development, activation, and function (65, 66). Expression of
Def6 was also identified in myeloid cells and is functionally
essential for regulating innate immunity (67). Previous study
found that TCR-Tg (DO11.10) mice with Def6 deficiency
developed RA-like joint disease (68). Our group further
explored the role of Def6 in osteoclast formation and provided
in vitro and in vivo evidence of the inhibitory role of Def6 in
osteoclastogenesis (69). Def6 deficiency enhanced the sensitivity
of osteoclast precursors to RANKL stimulation. Importantly,
Def6 deficiency enabled TNF alone to induce osteoclastogenesis
in the absence of RANKL, and markedly enhanced TNF-induced
osteoclast formation and bone resorption. In human macrophages,
TNF downregulated Def6 expression. Furthermore, we observed a
close correlation between Def6 expression levels in osteoclast
precursors, serum TNF levels from RA patients and the
osteoclastogenic capacity of these precursors, indicating that Def6
inhibits excessive osteoclast formation and bone destruction in RA.
Anti-TNF treatment resulted in significantly increased Def6 levels
in peripheral blood mononuclear cells (PBMCs) from RA patients,
further confirming that TNF downregulates Def6 expression and
supporting a role for Def6 in modulating the effects of TNF on
osteoclastogenesis. It was shown that Def6 suppresses NFATc1,
Blimp1 and c-Fos by regulating an autocrine feedback loop
mediated by endogenous IFN-b (69), leading to inhibition of
osteoclastogenesis. Collectively, these findings identify Def6 as a
negative regulator in TNF-mediated osteoclastogenesis and
inflammatory bone resorption (Figure 2).
CLINICAL RELEVANCE OF TNF-INDUCED
INHIBITORY MECHANISMS IN
INFLAMMATORY BONE RESORPTION

An extensive and complex regulatory network exists to delicately
control and maintain formation and activity of osteoclasts
throughout lifetime. Many players are involved in contributing
to the opposing osteoclastogenic and anti-osteoclastogenic
mechanisms required for physiological bone remodeling. These
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mechanisms are often dysregulated in pathological conditions.
Potential long-term side effects on physiological bone remodeling
by targeting these mechanisms should especially be given
attention. Recent studies identified novel TNF-induced intrinsic
inhibitory mechanisms of osteoclastogenesis, which are unique
from RANKL-mediated mechanisms (25, 32, 48). Exploring these
mechanisms would shed insight into developing selective
therapeutic approaches to prevent TNF-mediated bone resorption
associated with inflammatory diseases, without undesirably
impacting physiological bone remodeling. A good example is
targeting the RBP-J signaling pathway in osteoclasts as discussed
above. Notably, RBP-J was validated as an RA risk allele in a
genome-wide association study (GWAS) meta-analysis (70).
Mounting evidence shows that the expression and function of
RBP-J can be altered by various environmental cues, such as
those involved in pathological settings. For example, we observed
that RBP-J expression level was significantly suppressed in RA
synovial fluid macrophages (32). However, it is clear that TNF
activates and maintains RBP-J activity to suppress TNF-induced
osteoclastogenesis. Thus, an interesting question arises as to why
RBP-J expression level is decreased in RA, in which TNF activity is
generally high and supposed to increase RBP-J expression/activity.
Literature suggests that cytokines that activate Jak-STAT signaling
are implicated in RA pathogenesis andmay suppress Notch/RBP-J
signaling and activity (27, 71, 72). Therefore, although TNF
stimulation maintains RBP-J expression level and promotes its
activity inmacrophages/osteoclast precursors, the complex chronic
inflammatory states in RA, such as involving the cytokines that
activate Jak-STAT rather thanTNF, lead tooverall decreasedRBP-J
expression level/activity in this disease condition.

The identification of miR-182 as a key downstream target of
RBP-J lead to the finding of a novel RBP-J/NFATc1-miR182
regulatory network (47, 48). Positive osteoclastogenic regulators
NFATc1 and miR-182 levels were elevated, while negative
regulators RBP-J, FOXO3, PKR and IFN-b levels were
repressed in PBMCs isolated from RA patients compared to
healthy donors (Figure 3). Serum TNF levels are correlated
with these gene expression levels, and Enbrel treatment is able
to reverse the expression profile of this regulatory network towards
the level of health donors. Moreover, the osteoclastogenic capacity
of RA PBMCs is strongly correlated with the expression levels of
these regulators, through positive correlation with upregulated
NFATc1 and miR-182, and negative correlation with downregulated
RBP-J, FOXO3, PKR and IFN-b.

Evidence from both murine and human data indicate that the
regulatory pattern and the function of the RBP-J/NFATc1-
miR182 network are well conserved, and therefore strengthen
the translational implications of this regulatory network in
treating diseases associated with bone destruction, such as RA.
Through this exploration, the negative impact of TNFi treatment
on immune response may be preventable. Indeed, manipulation
of RBP-J activity or the downstream target miR182 expression
levels in inflammatory arthritis mouse models has significant
impact on bone while discernable implications on TNF-mediated
inflammation (25, 73). These findings therefore suggest a
possibility of exploring selective control of RBP-J activity to
Frontiers in Endocrinology | www.frontiersin.org 6110
attenuate inflammatory bone destruction without significantly
affecting the immune response mediated by TNF and
physiological bone remodeling.
CONCLUDING REMARKS

The process of osteoclast differentiation is regulated by both
osteoclastogenic and anti-osteoclastogenic mechanisms. Recent
discovery of the intrinsic inhibitory mechanisms involved in TNF-
mediated osteoclastogenesis and inflammatory bone resorption shifts
the paradigm of inflammatory osteoclastogenesis. Some of these
intrinsic mechanisms, such as those mediated by RBP-J, mostly
selectively restrain TNF-mediated osteoclast differentiation and bone
resorption, without significantly affecting RANKL-induced osteoclast
differentiation, and thus maintaining physiological bone remodeling.
Therapeutically targeting these mechanisms would therefore avoid
long-term side effects caused by blockade of physiological bone
remodeling. Anti-inflammatory therapy, such as TNF inhibitors, is
often a double-edged sword that treats inflammation but meanwhile
leads to immunorepressive side effects. Identification of alternative
strategies that selectively target pathological bone resorption would
help alleviate such undesirable treatment effects, such as the RBP-J
mediated mechanisms discussed in this review. Collectively, the
intrinsic inhibitory mechanisms selectively involved in TNF-
mediated osteo-clastogenesis have promising translational
implications in treating inflammatory bone resorption.
FIGURE 3 | The positive and negative regulators of osteoclastogenesis
involved in RA. The expression levels of these regulators are impacted by RA
inflammation and correlated with osteoclastogenetic potential of PBMCs.
Positive osteoclastogenic regulators NFATc1 and miR-182 levels are usually
increased, while negative regulators RBP-J, FOXO3, PKR, IFN-b, and Def6
levels are downregulated in RA PBMCs. The imbalance between positive and
negative osteoclastic regulators in RA leads towards enhanced inflammatory
osteoclastogenesis and excessive bone resorption in this disease.
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Osteocytes and Bone Metastasis
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Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one
of the most common sites of metastasis for many solid tumors. Once cancer cells colonize
in the bone, it imposes a major clinical challenge for the treatment of the disease, and
fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile
microenvironment enriched with nutrients, growth factors and hormones, a generous
reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic
(bone forming) or osteolytic lesions to promote the net resorption and/or release of growth
factors from the bone extracellular matrix. These processes activate a “vicious cycle”,
leading to disruption of bone integrity and promoting cancer cell growth and migration.
Cancer cells influence the bone microenvironment favoring their colonization and growth.
In order to metastasize to the bone, cancer cells must first migrate from the site of origin,
and once established within the bone, they must overcome the dormant inducing effects
of resident cells. If successful, cancer cells can then colonize and continually disrupt bone
homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type.
For example, it has been shown that exercise induces osteocytes to release anabolic
factors that inhibit osteoclast resorptive activity, promote dormancy and the release of
anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will
summarize recent research findings and provide mechanistic insights related to the role
of osteocytes in osteolytic metastasis.

Keywords: osteocyte, bone, cancer, metastasis, microenvironment
INTRODUCTION: CANCER BONE METASTASIS

The bone is a mineralized tissue highly regulated to adapt and meet the diverse needs of the host
relative to physical demand, hormones, metabolic state, and environmental stimulation. Bone
remodeling involves three major bone cell types; osteoblasts (bone forming cells) and osteoclasts
(bone resorbing cells) that function in maintaining the structural balance, and the osteocytes that
function in bone remodeling in response to environmental and mechanical signals and stimuli (1).
The osteocyte, which is the most abundant cell type (~95%) in the bone, is the primary cell
responsible for bone remodeling and homeostasis. Embedded inside the bone mineral matrix,
osteocytes are connected and able to sense and respond coordinately to environmental cues, such as
hormones, physical stress, and mechanical loading and unloading. These properties allow osteocytes
to modulate the bone microenvironment by promoting the release of factors that regulate bone
formation or resorption with respect to demands. Disease and aging can disrupt bone homeostasis,
create structural defects, and alter the bone macro- and microenvironment, ultimately leading to
n.org October 2020 | Volume 11 | Article 5678441113
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cancer cells colonizing within the tissue (2). The bone, along with
the liver and lung, is one of the most frequent sites of cancer
metastasis (2). Bone metastasis is an unfortunate outcome of
many solid tumors, typically breast, lung, prostate, thyroid, renal
carcinoma, melanoma, gastrointestinal tumors, and head and
neck cancers (2, 3). Tumors that originate in the bone represent a
small fraction of diagnosed cancers. Originating from cells found
in bone tissue of osteosarcomas, these cancers are of transformed
osteoblastic lineage, and occur most often in adolescents (4, 5).
Other cancers, such as multiple myeloma arise from the bone
marrow, but do not come from mesenchymal lineage.
Approximately 80% of bone lesions and tumors originate in
the bone marrow as multiple myeloma (3, 6, 7). The process of
other cancers metastasizing to the bone is as complicated as one
would expect considering that it is not one single cancer type that
favors bone metastasis. This article primarily focuses on cancer
bone metastasis from cancer not originating from the bone. Bone
metastasis greatly affects the quality of life of patients, causing
complications, such as pain, nerve root or spine cord
compression, vertebral or peripheral fractures, hypercalcemia,
and bone marrow infiltration that lead to cytopenia (3, 8).

The reasons why tumor cells metastasize to the bone are poorly
understood. Bone tissue provides an ideal microenvironment for
metastatic tumor cells. Bone marrow endothelium, adipocytes, and
the immune response all participate in maintaining bone
homeostasis in ways that are only partially understood. Although
solid tumor metastasis to the bone is common, not all
cancers preferably metastasize to the bone. Thus, disseminated
tumor cells homing to the bone may be a targeted, and/or the
microenvironment found in the bone, including cellular, hormonal
or otherwise is not suitable for the growth of certain cancer types (8,
9). Interestingly, highly vascularized bone containing red bone
marrow and cancellous bone (e.g. pelvis and long bones) are
common sites of metastasis (rarely hand and foot bones) (3). It
has been shown that primary tumors from near and distal regions of
the body organize and make ready premetastatic niches. For
instance, myeloid cells can be recruited from the bone marrow by
tumor-derived exosomes that release a plethora of soluble factors,
including, proteins, enzymes, and small nucleic acids, which are
capable of homing in circulating tumor cells to the newly forming
metastatic niche (10).

avb3 integrins (acting as cell surface adhesion receptors) have
been found to play a key role in mediating the metastatic MDA-
MB-231 and Chines Hamster Ovary tumor cells into the bone
(11, 12). Metastatic cancer cells are attracted and retained in the
bone marrow through the sensing and signaling of chemokines,
for example, the C-X-C motif chemokine ligand 12 (CXCL12),
which is expressed in bone marrow stromal cells, attracts tumor
cells overexpressing the C-X-C chemokine receptor type 4
(CXCR4) (13). In another study by Cox et al., lysyl oxidase
(LOX) was identified in hypoxic ER-negative breast tumor cells
to play a key role in preparing the bone metastatic niche. LOX
induces osteoclastogenesis independent of RANKL, disrupts
bone homeostasis, ultimately leading to the formation of
premetastatic bone lesions (14). Moreover, high LOX activity
has been clinically associated with increased collagen cross-
Frontiers in Endocrinology | www.frontiersin.org 2114
linking, fibrosis, and elevated risk of cancer metastasis (15).
LOX, secreted by primary tumor cells, is responsible for
catalyzing the cross-linking of both collagen and elastin, which
increases matrix stiffness, alignment, and total ECM volume. The
increase of ECM stiffness facilitates the activation of integrins
and augments Rho-generated cytoskeletal tension promoting
focal adhesion formation and cell motility (14, 15).

Adaptive immune cells also play a role in setting up the bone
metastatic niche. Immune-competent mice orthotopically
injected with metastatic 4T1 breast cancer cells are shown to
have increased osteoclastogenesis; this induces the pre-metastatic
osteolytic niche required for colony formation. It is further
shown that the primary tumor environment promotes the
differentiation of helper T cells (CD4+), and the tumor-specific
Th17 cells expressing RANKL, which stimulates osteoclast
activation and induces osteolytic bone lesions, ultimately
promoting breast cancer colonization in the bone (16).

The seemingly self-perpetuating metastatic growth to bone
has been described as a ‘vicious cycle’. In an intricate process
inside the bone, tumor cells secrete osteoclastogenic factors (e.g.,
IL-1, IL-6, IL-11, PDGF, MIP1a, TNF, M-CFS, RANKL, and
PTHrP) that help stimulate the recruitment and activity of
osteoclast, key players in the formation of osteolytic lesions
(17). This process disrupts bone homeostasis and induces the
release of growth factors, including, activin, transforming growth
factor b (TGFb), fibroblast growth factor (FGF), and platelet-
derived growth factor (PDGF) from the bone mineral matrix. In
turn, these released factors promote tumor cell growth and
increase further bone resorption (Figure 1, step ①) (18). This
feedback loop, or ‘vicious cycle’, increases the incidence of metastatic
lesions in the bone and eventually leads to related ailments, e.g. bone
fractures, and high levels of blood calcium (hypercalcemia).

As mentioned, an important player in the vicious cycle is
osteoclasts, large bone resorbing multinucleated cells originating
from the fusion of bone marrow-derived monocytes/
macrophages. Activated osteoclasts adhere to bone surfaces,
forming an acting ring that covers a space in which bone
demineralizing enzymes and proteases are secreted. Key
players in osteoclast differentiation include adenosine
nucleotides, receptor activator of nuclear factor k-B ligand
(RANKL), macrophage colony-stimulating factor (M-CSF),
and other molecules (19), which are principally generated from
nearby osteoblasts, osteocytes, and immune cells (20). Osteoclast
generation and activation is achieved directly, or indirectly by
RANKL production by neighboring cells, or by bone
trophic tumor cells. These activities are eventually used by
tumor derived cells to create the bone niche, leading to further
osteoclastogenesis and bone resorption. The mechanistic
comprehension of bone turnover in tumor growth has led to
the clinical use of osteoclast inhibiting bisphosphonates, and
Denosumab (anti-RANKL antibody) in patients with bone
metastasis, and has become the standard of care to improve
quality of life by limiting bone turnover (Figure 1, step ②) (21).
In addition to molecules directly involved in bone resorption,
other factors involved in bone resorption include interleukins-6
and 11 (22), parathyroid hormone-related peptide (PTHrP) (23,
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24), soluble intercellular adhesion molecule 1 (ICAM-1) (25),
Wnt molecules (26, 27), macrophage-stimulating protein (MSP)
(28), and extracellular adenosine (Figure 1, step ③) (29).

Although crucial to bone metastasis and creating the
metastatic niche, osteoclasts are not the only cell type to
participate in bone metastasis, and osteoblasts also play a vital
role. Osteoblasts participate in matrix mineralization, which
provides strength (hardness) to the bone (30). Osteoblasts are
derived from skeletal bone marrow stromal cells that differentiate
into preosteoblasts and secrete numerous factors, including
RANKL that directly impact osteoclastogenesis (Figure 1,
step ③) (30). These cells eventually differentiate into mature
osteoblasts, which secrete the mineral matrix proteins and
mineralize bone (30). Some osteoblasts may become bone
lining cells or become embedded in lacunae where they
differentiate into fully mature mechanosensing osteocytes (1,
30). While studies show osteoclasts can induce tumor
proliferation by releasing growth factors stored within the
mineral matrix, osteoblast activity has been associated with
tumor cell growth and tumor cell dormancy. Preosteoblasts and
osteoblasts express tumor-promoting osteoprotegerin (OPG)
(31), hepatocyte growth factor (HGF), and secrete connective
tissue growth factor (CTGF) and TGFb (22). Furthermore,
osteoblasts express IL-6, which increases osteoclastogenesis, and
Frontiers in Endocrinology | www.frontiersin.org 3115
has been shown to drive proliferation of multiple myeloma
plasma cells (24, 32).

Tumor–osteoblast interactions have been shown to be critical
in establishing bone metastasis (33, 34). Circulating (prostate)
metastatic cells have been shown to have an affinity for the bone
endosteal surface where they interact with osteoblasts through
annexin2/annexin2 receptor interactions (33, 34). These micro-
metastases are formed in regions of new bone formation, where
differentiating and actively mineralizing osteoblasts are located.
Furthermore, osteoblast and breast tumor interaction is shown to
require adherent junction formation for tumor cell proliferation
(9), supporting the notion that factors produced during
osteogenesis promote cancer proliferation. Disseminated cancer
cells must also compete for the endosteal surface of the bone, a
niche occupied by non-proliferating long-term hematopoietic
stem cells (LT-HSCs) (Figure 2, step ①). The mechanisms of
cell cycle arrest of breast cancer cells once established in the
endosteal niche are likely the same mechanisms that induce the
non-proliferating status of long-term resident hematopoietic stem
cells, unfortunately, only to later escape dormancy and proliferate
(35, 36). In one study using a 3D co-culture model (osteoblast/
breast cancer), it was identified that the addition of bone
remodeling cytokines, tumor necrosis factor (TNF)-a and
interleukin (IL)-1b and tumor necrosis factor resulted in
FIGURE 1 | Schematic illustration of tumor microenvironment in the bone. At the left side of the panel is the osteocyte and the right side is the breast cancer cell.
These cells interact in a bone catabolic environment. The numbers indicate the steps of events that may happen during breast metastasis described in the review.
① The vicious cycle; cancer cells interact with monocytes to increase the osteoclast number and activity in order to release growth factors embedded in the bone.
② RANKL expressed by osteocytes and cancer cells increases the recruitment of monocytes and stimulates the osteoclast differentiation. ③ Under this condition
osteocytes increase the release of Sost and DKK1 that inhibit osteoblast activity and increase the expression of RANKL. ④ Notch signaling pathway induces
apoptosis in the osteocytes and increases the proliferation of cancer cells. ⑤ Osteocytes apoptosis signals promote osteoclasts for bone resorption. ⑥ eATP is
hydrolyzed to adenosine through CD39/CD73 enzyme activation, and generated adenosine activates adenosine receptor in cancer cells, leading to increased
proliferation, migration, and metastasis. ⑦ Extracellular adenosine increases osteoclast activity, ⑧ also promotes Treg activity, and increases immune tolerance.
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increased proliferation in the breast cancer cell line MDA-MB-231
BMRS1 (37). The inhibition of TNF-a and IL-1b downstream
targets, cycloxygenase (COX) and PGE2 receptors, resulted in
decreased cancer cell proliferation (37). Moreover, osteoblasts and
osteocytes also secrete leukemia inhibitory factor (LIF), and the
activation of LIF receptors present in breast cancer cells is shown
to maintain them in a dormant state. Loss of LIFR resulted in
decreased expression of genes associated with cell dormancy. LIFR
knockdown increased cancer cell migration and invasion,
proliferation, and osteoclastogenesis. Interestingly, overexpression
of PTHrP also decreased LIFR signaling. (38).

An early study by Kobayashi et al. found bone stromal cells
induced dormancy by the release of bone morphogenic protein 7
(BMP7) and activation of prostate BMP receptor 2. BMP7-treated
prostate cancer cells resulted in activated p38 MAPK, increased
expression of p21 and the metastasis suppressor gene, NDRG1 (N-
myc downstreamregulated gene 1) (39). Key studies have given
further insight into the mechanisms in which osteoblasts may
induce dormancy in disseminated tumor cells (40, 41). In another
study, osteoblast conditioned media increased cellular quiescence
of prostate cancer cells. TGF-b2 and growth differentiation factor
(GDF)10 were identified as osteoblast secretory factors that
induced quiescence in several prostate cancer cell lines. The
binding of these factors to the TGF-bRIII receptor expressed in
prostate cancer cell lines activated (phosphorylation at Thr180/
Tyr182) p38 mitogen activated protein kinase (MAPK). Activated
p38-MAPK phosphorylation of downstream target retinoblastoma
Frontiers in Endocrinology | www.frontiersin.org 4116
protein (Rb) resulted in the inhibition of cancer cell-cycle
progression (40). In another study of prostate cancer metastasis
to the bone, Yumoto et al. identified osteoblast-derived ligand
growth arrest specific 6 (GAS6) and the tumoral tyrosine kinase
receptor Axl as required for the TGF-b2-induced response
towards prostate cancer cell dormancy (41). Multiple myeloma
cells have also been shown to be affected by the bone
microenvironment. These cells can occupy the endosteal niche,
remain dormant, and escape therapies that largely target dividing
cells. The interaction of multiple myeloma cells with cells of
osteoblastic lineage along the endosteal bone surface was
associated with single, non-dividing tumor cells. Interestingly,
dormant myeloma cells that were insensitive to melphalan, a
chemotherapeutic agent, could be reactivated upon osteoclast
activation with the soluble form of RANKL (42).

The bone is home to the hematopoietic system, and it
integrates an assortment of systemic physiological signals. Bone
homeostasis is affected directly or indirectly by many pathological
conditions, including diabetes, gastrointestinal diseases, physical
stress, etc. (43–48). One example is the increased risk of cancer and
tumor growth under inflammatory conditions (32, 49) or the
propensity of cells metastasizing to fractures sites (50). Similar
correlations have been associated with surgical procedures (51–
53), which intrinsically induce trauma, inflammation, and an
increase in innate immune cells needed for tissue repair. These
responses have been shown to promote conditions conducive to
metastatic growth at non-surgical sites (51, 53).
FIGURE 2 | Schematic illustration of anti-tumor microenvironment in the bone. At the left side of the panel are the osteocytes and the right side are the breast
cancer cells. These cells interact in a healthy bone environment. The numbers indicate the steps of events that may happen during breast metastasis described in
the review. ① The interaction of metastatic cells with osteoblast promotes dormancy. ② Physiological level of mechanical loading stimulates osteocyte release of
anabolic factors, Wnt, and OPN, to increase osteoblast differentiation, activity, and bone strength. ③ High concentration of OPN reduces EMT in metastatic cells.
④ Mechanical loading increases opening of Cx43 hemichannels and the release of ATP. ⑤ eATP inhibits osteoclast activity and ⑥ also inhibits Treg formation and
stimulates immune surveillance. ⑦ eATP activates P2X receptor and reduces the proliferation, migration, and metastatic potential of cancer cells.
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Bone, like other organs, changes with age, which includes an
accumulation of senescent cells, such as, osteoblasts, and resident
bone cells harboring genetic mutations (54–56). The loss of bone
density with age is well known. Equally concerning is how the
accumulated damage to cells and their genetic makeup, caused
by environmental toxins, or byproducts of cellular respiration,
can result in an environment primed for tumor growth and
metastasis (57). How does an increase in senescent bone cells
affect certain cancers metastasizing to the bone, or dormant cells
in the bone being released from dormancy? As discussed here and
shown in numerous studies, senescent osteoblasts can promote
osteoclastogenesis, which leads to increased metastasis,
dissemination, and metastatic growth of cancer in the bone. This
supports and explains the possible mechanisms in which elder
cancer patients in remission with dormant cancer cells in the bone
often relapse. A possible underlying reason is that cancer cells can
take residence in the bone through the contribution of senescent
cells accumulated over time (42, 58). An important detail to keep in
mind is that most experimental studies have not used aged animal
models (59, 60). Studies delving into how age affects metastasis are
in dire need.

Bone impacts metastasis in unexpected and sometimes
complex manners. Mechanical loading inhibits secondary
growth and osteolytic capability of metastatic tumors in nude
mice by modulating osteoblastic/osteoclastic activities and
communication between osteocytes and tumor cells (61).
Osteocytic release of osteopontin (OPN) (Figure 2, step ②), a
secreted phosphoprotein with a high avidity to bone mineral
matrix, has been reported to induce activators of the EMT
process (62). Interestingly, lower OPN levels (0.1 to 0.5 mg/ml)
induce EMT markers. Low levels of mechanical loading (1 N) are
shown to increase the expression and secretion of OPN (Fan, 2020
#82). The increase in OPN in turn inhibits the expression of TGF-
b in osteocytes, increases the adhesion of tumoral cells, thus
possibly inhibiting growth and migration by anchoring tumor
cells at the primary site. This bone microenvironmental condition
is pro-mesenchymal to epithelial transition (MET) reducing the
aggressiveness and allowing the settlement of secondary tumor
(Figure 2, step ③) (63). Similar intensities of mechanical loading
inhibiting tumor growth in nude mice have been previously
reported (61). As studies have shown, high loading intensity of
the bone enhances breast cancer cell malignancy; therefore, the
extent of mechanical loading should be carefully monitored (63).
Taken together, studies indicate osteocytes are an important player
in providing the ‘soil’ for bone metastasis/progression as well as
associated skeletal diseases (27, 64–66).
INTRICATE FUNCTION OF OSTEOCYTES
IN BONE HOMEOSTASIS AND CANCER
BONE METASTASIS

The extensive lacuna–canaliculi network allows osteocytes to
directly communicate with one another. It also allows for
osteocytes to respond to local and distant signals, including
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mechanical (bone stress) or biological (paracrine and
endocrine) (1, 67). Osteocytes control bone remodeling
through regulation of bone-forming and bone-destroying cells.
During bone demineralization, osteocytes decrease osteoblast
differentiation and function through secreted factors, including
the Wnt signaling antagonists sclerostin and Dickkopf Wnt
signaling pathway inhibitor 1 (DKK1) (67). Osteocytes are the
main sclerostin producer in the bone, and this protein inhibits
the association of Wnt ligands with their receptor in osteocytes
and osteoblast. Therefore, the key bone formation inhibitor,
sclerostin, has been given much attention as a targeted
therapeutic approach for low bone density (66, 68). Bone
RANKL is primarily produced by osteocytes (Figure 1, step
③). RANKL promotes monocyte differentiation into bone
resorbing osteoclasts. Neutralization of RANKL with the
antibody Denosumab is currently in use to reduce fracture
incidence in low bone density, bone metastasis, and rare bone
cancers (Figure 3, step ①) (69, 70). The Denosumab Clinical trial
(ABCSG-18) showed that postmenopausal breast cancer patients
under aromatase inhibitor treatment had a significant latency of
apparition of bone fracture with Denosumab as an adjuvant (71).
This was also true in metastatic breast cancers and new
primary malignancies.

In contrast, in a clinical trial (D-CARE study) of patients with
stage II/III breast cancer, Denosumab treatment did not improve
bone metastasis free survival. Denosumab did increase the
incidence of osteonecrosis of the jaw (5 versus <1%) and
hypocalcaemia (7 versus 4%) in comparison with placebo (72).
Although the above mentioned trials do not corroborate
Denosumab having a beneficial effect on survival, the results
obtained from these two trials have a significant difference. The
D-care trial patient profile was of early stage high risk breast
cancer patients, while the ABCSC-18 study focused on early stage
low risk breast cancer patients. It is also important to note the
trials were conducted with different Denosumab schedules and
endpoints (70).

As mentioned above, bones inevitably age and undergo
numerous changes, including bone loss, osteocyte apoptosis,
and increased oxidative stress. Osteocyte apoptosis is a key
stimulus that triggers bone resorption (Figure 1, step ⑤) (73,
74). The slowed production of sex hormones that comes with
aging promotes osteoclast activity (75, 76), osteocyte apoptosis
(73), elevated oxidative stress (76, 77), and a reduction in
osteoblast function (78). Thus, reduction in sex hormones
culminates in bone fragility and bone loss. This bone
destructive environment is further enhanced by a decline in
immune surveillance and increased fat formation; this disturbs
the balance of critical osteoclastogenic proteins, RANKL, and
OPG, towards bone destruction (79). The AZURE phase 3
clinical trial for post-menopausal women was designed to
study the effects of adjuvant zoledronic acid treatment in early
high risk breast cancer patients. The AZURE trial showed that
with treatment, incidence of bone metastasis was reduced.
Critical to our understanding, this benefit was restricted to
postmenopausal women and those under ovarian suppression
treatments with hormone-receptor-positive breast cancer. This
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observation highlights how critical it is to understand the
differences between old and young bones in metastasis (80, 81).

Emerging studies indicate how osteocytes could have a
positive impact on tumor growth, motility, and survival, a
scenario leading to poor outcomes in cancer patients. The
interaction between prostate cancer cells and osteocytes
induces the osteocytic production and release growth-derived
factor 15 (GDF15) promoting prostate cancer cell proliferation,
migration, and invasion of prostate cell in the bone (82). MLO-
Y4 osteocytes stimulated by hydrostatic pressure, similar to what
is observed in bone metastasis, increased the viability of prostate,
breast, and lung cancer cell lines. Hydrostatic pressure also
improved motile and invasive capacity through increased
expression of chemokine (C-C motif) ligand 5 (CCL5, also
known as RANTES) and MMPs (83). Likewise, high intensity
shear stress increased survival and migration in the MDA-MBA-
231 breast cancer cell line (63, 84). However, these studies also
show how intensity of load imparts opposing effects on survival
and migration. This underscores the importance of osteocytes in
the modulation of the bone microenvironment with regard to
tumor progression particularly with respect to the relationship
between the magnitude of mechanical stimulation and breast
cancer cell apoptosis or migration (84).

Increased osteocyte apoptosis within lytic bone lesions has
been found in patients with multiple myeloma (85). During the
progression of multiple myeloma, osteocytes directly interact with
multiple myeloma cells, which stimulate osteocytes to produce
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sclerostin and RANKL. This results in the recruitment of
osteoclast precursors and a reduction of Wnt signaling, leading
to the inhibition of osteoblast differentiation (Figure 1, step ③).
Concomitantly, cell to cell interactions reduce osteocyte viability
due to apoptosis triggered Notch signaling and sustained by
multiple myeloma derived TNFa. Furthermore, Notch signaling
interaction increases the proliferation of multiple myeloma by
increasing cyclin D1 RNA levels and accelerating cell proliferation
(Figure 1, step ④) (27). This highlights how osteocytes play a
constant integrative role of endocrine, paracrine, and mechanical
signals, and the output of those signals results in bone formation
or resorption responses. The complexity of such integration makes
it particularly difficult to predict the impact of osteocytes on cancer
cells metastasized to the bone.
PROTECTIVE ROLES OF OSTEOCYTES
AGAINST CANCER BONE METASTASIS

The skeleton is a dynamic organ that responds to physical stress by
promoting bone remodeling, which includes the addition and
removal of bone. Although several resident bone cells are involved
in mechanosensing, osteocytes are regarded as the major
mechanosensory cell within the bone (67, 86). The long
dendritic processes of osteocytes form gap junction channels
composed primarily by gap junction proteins (connexins). These
FIGURE 3 | Schematic illustration of therapeutic agents used to treat bone metastasis. At the left side of the panel are the osteocytes and the right side are the
breast cancer cells. These cells are subjected to the therapeutic treatment under the bone environment. The numbers indicate the steps of events that may happen
during breast metastasis described in the review. ① Denosumab, a RANKL neutralizing antibody, binds RankL expressed by osteocytes and cancer cells, and
inhibits the recruitment of monocytes and osteoclast differentiation. ② Bisphosphonates (BPs) inhibit osteoclast activity. Also, ③ BP increases osteocyte survival and
induces opening of Cx43 hemichannels and the release of ATP. ④ eATP inhibits osteoclast activity. ⑤ eATP activates P2X receptor and reduces the proliferation,
migration, and metastatic potential of cancer cells. The effects of the pharmacological agents reduce the activity of the vicious cycle.
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gap junction networks connect not only neighboring osteocytes,
but also cells on the bone surface, including osteoblasts and
osteoclasts (1, 67). The mechanosensing osteocytes form
connexin 43 (Cx43) hemichannels (half a gap junction channel)
which allows for the communication between the internal
environment of the cell and its extracellular environment. Gap
junction channels are involved in the global regulation and fine
tuning of bone formation and resorption as it was evidenced by
the altered levels of serum remodeling markers N-terminal
propeptide of type I procollagen and C-terminal telopeptide of
type I collagen, respectively (87). Osteocyte hemichannels likely
play a predominant role in its response to mechanical stimulation;
given that bone and osteocytes are constantly subjected to
mechanical stimuli as a result of physical movement, gravity,
and blood circulation. This is evident by the major impact that
Cx43 hemichannels have on the expression of OPG and RANKL,
and osteocyte viability, which are essential for bone integrity and
longevity (87, 88). Concordantly, the anti-apoptotic effect of
bisphosphonates on osteoblasts and osteocytes has been shown
to be through regulation of Cx43 hemichannels (Figure 3, step ③)
(89). Bisphosphonates are the gold standard for therapy for bone
diseases in cancer patients (6, 80) as they inhibit osteoclast activity
and prevent bone loss induced by cancer cells, thus reducing
fracture risk (21, 28). In vivo, osteocyte Cx43 hemichannel activity
is an important mediator of the growth inhibitory effects of
bisphosphonates in breast cancer (65). In vitro and in vivo
studies by our group further underscore the key role of Cx43 in
mediating the tumor inhibitory effects of bisphosphonates.
Bisphosphonate conditioned media from osteocytes inhibited
breast cancer cell growth (MDA-MB-231), migration, and
invasion. These effects were abrogated by treating with Cx43
hemichannel specific blocking antibody (65). Moreover, mice
with impaired Cx43 gap junctions and hemichannels showed
significantly increased tumor burden and a reduced effect of
bisphosphonates on tumor growth compared to mice with
impaired Cx43 gap junction channel function or wild type (65).
This implies Cx43 hemichannels in osteocytes are responsive to
bisphosphonates, thus making Cx43 a promising novel drug target
for the treatment of breast cancer metastasis to the bone. In a
previous study, we have shown that these effects are mediated by
adenosine triphosphate (ATP) released by osteocyte Cx43
hemichannel opening (Figure 2, steps ④ and ⑦) (Figure 3, steps
③ and ④) (90). These important findings highlight that more work
is needed to determine exactly how osteocytes impact various
cancers metastatic potential, and if these cells can be targeted to
stop bone metastasis.
ATP RELEASE BY OSTEOCYTES, A KEY
COMPONENT FOR THE HOSTILE
MICROENVIRONMENT FOR CANCER

As a response to tissue damage and cellular stress, cells, including
osteocytes, secrete/release ATP to the extracellular space (Figure
2, step ④) (65, 91, 92). The intracellular concentration of ATP is
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~3–10 mM, and the extracellular ATP (eATP) is about 10 nM.
The big difference between intracellular and extracellular ATP is
from active ATP degradation through ectonucleotidases in the
extracellular compartment (93). The presence of eATP has been
shown to inhibit the growth of pancreatic, colon, prostate, breast,
liver, ovarian, colorectal, esophageal, melanoma, and leukemia
(94). Intravenous ATP used in clinical trials of patients with pre-
terminal lung cancer, showed an increase in survival rate and had
a beneficial effect on weight and muscle strength (95–97).
Multiple studies show an anticancer action of eATP or eATP
analogs by binding to P2 purinergic receptors (90, 98). eATP is
rapidly degraded to adenosine, a well-known tumorigenic factor
(92, 93, 99). Additionally, eATP or P2 receptor agonist decreases
osteoclast activity and bone resorption (Figure 2, step ⑤) (100),
reduces the number of T regulatory lymphocytes (Tregs) (101),
and prolongs the activity of T lymphocytes (Figure 2, step ⑥)
(102). However, ATPmetabolites through P1 purinergic receptor
activation also mediate pro-tumorigenic effects in prostate
and breast cancer cells (90, 103). This suggests that ATP
and/or ATP metabolite balance plays a key role in the tumor
microenvironment. The solid tumor microenvironment is
usually hypoxic and/or inflammatory, and the extracellular
concentration of nucleotides (ATP/adenosine) is higher in
comparison to normal tissue (92, 103, 104). In this hypoxic/
inflammatory microenvironment, adenosine promotes cancer
cell migration and chemotaxis in breast cancer and melanoma
cells, along with an increase in osteoclastic activity and bone
resorption (Figure 1, ⑥ and ⑦) (29). This microenvironment also
results in poor immune surveillance with high lymphocytic
tolerance (Figure 1, steps ⑥and ⑧) (92, 105, 106). The main
pathway leading to high extracellular adenosine levels is the
hydrolysis of eATP by a family of enzymes known as
ectonucleotidases, such as CD39 and CD73, which hydrolyze
ATP and ADP to AMP, and AMP further to adenosine (Figure
1, step ⑥) (93, 105). CD73 has been associated with a pro-
metastatic phenotype in breast cancer, and CD73 knockdown
leads to suppression of breast cancer cell growth, migration, and
invasion both in vivo and in vitro (105). Therefore, we must
practice caution since the function of eATP on tumorigenesis
could largely depend on the activity of ecto-ATPases in
the tissue.

Adenosine and ATP bind to specific purinergic receptors at
the cell surface, which are divided into P1 receptors, with
adenosine as the main ligand, and P2 receptors, with ATP and
ADP as the main agonists. P1 receptors have four subtypes: A1,
A2a, A2b, and A3. There are two major P2 receptor subtypes,
seven P2X, and eight P2Y subtypes (92, 107). The presence of P2Y
subtypes has been shown to play important roles in cell survival
under mechanical stress, although the role of specific P2X
subtypes remains unclear. It has been suggested that autocrine
activation of breast cancer P2X7 receptors participates in the
activation of cell proliferation, cancer cell process elongation, and
further ATP release (99). The tumor microenvironment rich in
ATP is shown to either promote or inhibit cell migration, enough
to activate multiple P2 receptors, but not enough to induce cell
death trough P2X7 activation. The study by Zhou et al. provides
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clues to clarify the mixed effects of ATP. They showed that the
addition of a non-hydrolysable P2X receptor agonist resulted in
an inhibitory effect on cancer cell migration and growth. This
inhibitory effect was dependent on P2X7 activation (Figure 2,
step ⑦) (Figure 3, step ⑤) (90). A2A receptor activation, on the
other hand, resulted in a stimulatory effect on breast cancer cell
migration and growth (Figure 1, step ⑦) (90). Cancer cell-specific
expression of P1 receptor subtypes has been reported. for
example, in breast cancer. A2b receptors are absent on ER-
positive MCF-7 cells, whereas MDA-MB-231 cells express very
high levels of A2b (90). In order to understand and establish
strategies to control tumor growth and metastasis, it is very
important to evaluate the presence and expression levels of the
specific P1 or P2 receptor subtypes in cancer cells. These are likely
key factors determining if a cellular response to adenosine
nucleotides will be elicited.
CONCLUSION AND FUTURE DIRECTIONS

The osteocyte is a key player modulating the bone cancer
microenvironment. Metastatic cancer cells have shown the
potential to utilize osteocyte signaling by turning the bone
microenvironment osteoclastogenic and transforming
osteocytes into pro-tumorigenic cells. Moreover, osteocytic
overproduction of Wnt inhibitors contributes to the
suppression of bone formation. In addition, metastatic cancer
cells colonized in the bone reduce osteocyte viability, resulting in
reduced cell capacity to maintain bone homeostasis. However,
the bone forming ability of osteocytes is related with an anti-
resorptive microenvironment. This condition reduces osteocyte
apoptosis, enhances Cx43 hemichannel activity, increases bone
strength, and reduces osteoclast recruitment and activity. Taken
together, these osteoclast activities will inhibit the overall
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activation of metastatic dormant cells, and tumor growth, and
motility. Although we have just started a fascinating journey to
understand the functional relationship between cancer and
osteocytes, targeting osteocyte signaling pathways and
molecular messengers has already shown to have a positive
impact on preventing/improving bone pathologies associated
with cancers. These results offer encouraging and supportive
ideas of a targeted approach on osteocytes that reside in the
cancer niche. These studies may offer guidance and a map to
develop new therapies for cancers metastasized to bone, or the
prevention thereof.

In conclusion, osteocytes play a large role as gate keepers of
the bone and bone homeostasis. By having a broader knowledge
on how osteocytes influence cancer cells, osteoblasts, and
osteoclasts, we may improve and increase pharmacological
strategies to help keep the bone healthy and free of cancer.
Further work is needed to uncover key events and players that
coordinate the communication between cancer cells and bone
cells. The goal is to identify target points that can disrupt the
initial and key steps of bone metastasis. Osteocytes may prove to
be a key ally in combating cancer cell progression in the bone.
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Though diabetes mellitus (DM) is one of the known causes of osteoporosis, it is also
realized that ketogenic diet (KD), an effective regimen for epilepsy, impairs bone
microstructures. However, the similarities and differences of effects between these two
factors are still unknown. The purpose of this study is to identify different effects between
hyperglycemia and hyperketonemia, which are manifestations of DM and KD, on bone in
rats. Thirty male Sprague-Dawley rats were randomly divided into three groups: the sham,
DM, and KD groups. Hyperglycemia was achieved by intravenous injection of
streptozotocin in DM group, while hyperketonemia was induced by application of
ketogenic diet (carbohydrates-to-fat as 1:3) in KD group. The body weight, blood
ketone body, and blood glucose were recorded, and the bone turnover markers, bone
length, bone microstructures, bone biomechanics and histomorphology were measured
after 12 weeks intervention. Compared with the control and KD groups, a significant body
weight loss was found in the DM group, and the bone lengths of tibia and femur of the
group were shortened. The blood glucose and blood ketone were noticeably increased in
the DM and KD rats, respectively. Microstructures and properties of cancellous bone were
significantly deteriorated in both the DM and KD groups compared with the sham group,
as the bone volumes were decreased and the bone trabecula structures were disturbed.
Meanwhile, the thickness and strength of cortical bone was reduced more in the DM
group than those in the sham and KD groups. The HE staining showed that bone
trabecula was significantly decreased in both the DM and KD groups, and more adipose
tissue was observed in the KD rats. The activity of osteoblasts was decreased more in
both the KD and DM groups than that in the sham group, while the activity of osteoclasts
of the two groups was remarkably increased. The present study indicates that both
hyperglycemia and hyperketonemia have adverse effects on bone. Therefore, it is worth
paying more attention to the bone status of patients with hyperglycemia and
hyperketonemia in clinic.
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INTRODUCTION

Metabolic syndrome and osteoporosis are medical conditions
that must not be overlooked, since both may lead to serious
problems in the aged (1). Metabolic syndrome is characterized by
abdominal obesity, impaired glucose tolerance, hypertension and
dyslipidemia (2). The accumulating studies reported that
metabolic disturbance might be a risk factor for osteoporosis.
Increased insulin resistance promotes osteolysis of inflammatory
cytokines in patients with metabolic syndrome, triggering
osteoporosis (3). Moreover, higher serum lipid level resulting
from metabolic syndrome is considered to play a critical factor in
pathogenesis of osteoporosis (4).

Diabetes mellitus is a metabolic disease which is characterized
as hyperglycemia resulted from defects in insulin action and/or
insulin secretion (5). It has negative effects on skeletal disorders,
including osteopenia or osteoporosis (6). It is known that type 1
diabetes mellitus (T1DM) compromises bone microstructures by
suppressing growth potential and worsening insulin resistance
and glycemic control (7). By carrying out an MRI-based
assessment, Naiemh et al. (8) found that young women with
T1DM were more likely to suffer from trabecular bone volume
and trabecular numbers reduction. Shortened femur length,
reduced growth plate thickness, compromised cancellous and
cortical bone, and decreased collagen II expression were
observed in streptozotocin-induced diabetic animal models
(9, 10).

Ketogenic diet (KD) is a well-established therapeutic
intervention for patients with refractory epilepsy (11). By
maintaining a high-fat and low-carbohydrate diet with restricted
protein intake, systemic ketosis raises seizure threshold for
intractable epilepsy treatment (12). However, it was firstly
reported by Hahn that KD had deleterious effects on bone mass
in children who maintained this regimen in long term (13). Our
previous studies also confirmed that KD compromised bone
micro-structures and reduced bone biomechanics in rodents
(14–18). However, the different effects of streptozotocin-induced
hyperglycemia and KD-induced hyperketonemia on bone micro-
structures and biomechanics have not been elucidated.

The purpose of this study is to investigate the effects of
hyperglycemia and hyperketonemia on appendicular bone.
Micro-CT scan and biomechanical test were performed to
evaluate the bone mass and biomechanical properties, and
both the serological and histological bone turnover markers
were observed to evaluate the activities of osteoblasts and
osteoclasts after intervention.
MATERIALS AND METHODS

Animals
A total of thirty Sprague Dawley male rats, purchased at 12 weeks
of age from the Experimental Animal Center of Southern
Medical University, were randomly divided into three groups:
the sham group, the diabetes mellitus (DM) group, and the
ketogenic diet (KD) group. The rats in the DM group were
Frontiers in Endocrinology | www.frontiersin.org 2125
injected intravenously with streptozotocin (STZ; Fisher
Scientific) at the dose of 50 mg/kg (10), while the rats in the
KD group were fed with the ketogenic diet (Jielikang Inc.,
Shenzhen, China), which containing a ratio of fat to
carbohydrate and protein of 3:1. All rats were kept in a wire
hanging cage with a 12-h light–dark cycle, and a constant
temperature of 25°C and humidity of 48%. And they had free
access to food and water during the entire experiment.

Specimens Collection
All the rats were anesthetized by 1% pentobarbitone sodium after
12-weeks interventions. The blood samples were collected with a
5 ml syringe from abdominal vein, and then centrifuged under
3000rpm for 20 min to obtain the serum samples. The left
tibiae and left femora were fixed in 4% p-formaldehyde for
48 h before analyzing the bone microstructures, histology and
immunohistochemistry, and the right tibiae and right femora
were frozen in -20°C until biomechanical properties analysis.

Measurement of Body Weight, Length
of Tibia and Femur, Blood Ketone Body,
and Blood Glucose
The rats were weighed at 12 weeks using a CS 200 balance
(Ohaus, Pine Brook, NJ, USA). The full lengths of the tibia and
femur were measured with a vernier caliper. The blood ketone
and glucose levels were measured by cutting tail veins. Yicheng
Blood Ketone Meter T-1 (Sentest Inc., China) and Medisense
Precision Xtra monitor (Abbott Laboratories, Canada) were used
to determine the blood ketone concentrations, while the blood
glucose levels were tested with monitor JPS-5 (Leapon
Inc., China).

Analysis of Bone Turnover Biomarkers
in the Serum
The collected serum samples were used to test the bone turnover
biomarkers. The serological calcium and phosphorus
concentrations, as well as the concentrations of the specific
markers of bone turnover biomarkers, including bone-specific
alkaline phosphatase (ALP), tartrate-resistant acid phosphatase
(TRAP), insulin-like growth factor 1 (IGF-1), N-terminal
propeptide of type I procollagen (P1NP), and C-telopeptide
fragments of collagen type I a1 chains (b-CTX), were
measured by available assay kit (Beckman Coulter, Suzhou,
China) according to the manufacturer’s protocols.

Micro-CT Scan
Each specimen was washed with tap water for 2 h and kept
straight in the tube for micro-CT scanning after fixation. Refer to
the guidelines for assessment of the bone microstructures in
rodents using micro-CT (19), the trabecular microstructures of
left tibiae were analyzed using a micro-CT system (mCT80,
SCANCO MEDICAL, Switzerland) at resolutions of 12 mm
with a tube voltage of 50 kV and a tube current of 0.1 mA.
The region of interest (ROI) was defined as 180 slices
approximately 2.0 mm from the growth plate of the proximal
tibia. Bone morphometric parameters, included the tissue
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mineral density (TMD), the connection density (Conn.D), the
bone volume/tissue volume (BV/TV), the trabecular number
(Tb.N), the trabecular thickness (Tb.Th) and the trabecular
separation (Tb.Sp), were obtained via analysis of the ROI. The
180 slices of left femur mid-diaphysis were selected to analyze the
parameters of cortical bone, including the total cross-sectional
area inside the periosteal envelope (Tarea), the bone area (Barea)
and the thickness (Ct.Th).

The micro-finite element analysis (micro-FEA) of
compressive test (SCANCO Medical AG, Version 1.13) was
used to assess the biomechanical characteristics in cancellous
bone based on the micro-structures from micro-CT images. The
simulations were done within the framework of linear elasticity,
and the detailed operation was shown in our previous study (17).
The simulation yielded the compressive stiffness and failure load
of cancellous bones.

Three-Point Bending Test
The three-point bending test was performed to evaluate the
biomechanical properties of cortical bone. After thawing 1 h at
room temperature, the proximal tibiae were placed on a base
consisting of an aluminum block with one rounded edge-free
notches on top and the mid-shaft of femora were placed on two
supports separated by a distance of 20 mm for biomechanical
test. A compressive force was applied at a constant speed of 2
mm/min by the material testing machine (Instron ElectroPuls,
E1000, USA). The maximum load (Max.L), stiffness, and energy
absorption were obtained based on the load-deformation curve
after the specimen was broken.

Histological and Immunohistochemical
Staining
The proximal tibiae were embedded into olefin after micro-CT
scan, and then decalcification in 10% EDTA for 4–5 weeks. All
samples were stained with the hematoxylin–eosin and
immunohistochemical (IHC) staining according to standard
conditions. The hematoxylin–eosin staining was performed to
observe the histomorphology of trabecula, while the osteocalcin
(OCN) staining (Abcam Cambridge, UK) and the tartrate-
resistant acid phosphatase (TRAP) staining (Sigma–Aldrich, St.
Louis, USA) were performed to evaluate the osteoblasts cell
activity and the presence of osteoclasts in the trabecular
bone. The results of IHC staining were evaluated by cell
number counting and computerized optical density (OD)
measurements. Cells per bone surface (B.S) were used to
calculate the number of positive cells, and integrated optical
density per area of positive cells (IOD/area, mean density) was
used to semi-quantify the staining intensity by detecting in 10
different images taken at 400× magnification every slide with
Image Pro Plus 6.0 software (Media Cybernetics, MD, USA).

Statistical Analysis
All data were analyzed by SPSS 20.0 software and showed as
mean ± SD. The differences in the body weight, the blood ketone
and glucose levels, the serological biomarkers, the micro-CT
parameters, the biomechanical results, and the histological
results were analyzed by one-way ANOVA with least-
Frontiers in Endocrinology | www.frontiersin.org 3126
significant difference (LSD) post hoc test among groups. P<0.05
was considered statistically significant.
RESULTS

Changes of Body Weight, Blood Ketone
and Blood Glucose Concentrations, and
Bone Lengths
The detailed data of body weight and the levels of blood ketone
and glucose are shown in Table 1. The body weight of the DM
group was significantly decreased compared with the sham and
KD groups (P<0.05), while no significant difference was shown
between the sham group and the KD group (P>0.05). The blood
ketone of the KD group was noticeably higher than that of the
sham group or the DM group (the blood ketone concentrations
were 0.40 ± 0.14mmol/L, 0.55 ± 0.21mmol/L and 1.13 ±
0.12mmol/L in the sham, DM and KD groups, respectively).
The DM rats exhibited higher blood glucose levels than those in
the sham and KD groups (the blood glucose concentrations were
7.10 ± 1.15 mmol/L, 6.1 ± 0.47 mmol/L and >33.33 mmol/L in
the sham, KD and DM groups, respectively).

The bone length showed a trend similar to the body weight.
The tibia and femur lengths of DM group were the shortest
among all the groups (Figure 1). The lengths of tibia and femur
of DM group were 0.47mm and 0.52mm, respectively, shorter
than those in the sham group (Table 2).

Analysis of Serum Calcium, Phosphorus,
and Bone Turnover Biomarkers
The serum concentrations of calcium and phosphorus showed
no significant difference among the groups, yet there were great
differences among the bone turnover biomarkers (Table 3). The
ALP level was significantly decreased in the KD group compared
with the sham group (the ALP level was 0.78 fold in the DM
group relative to the sham group, P<0.05). The concentrations of
TRAP were increased remarkably in both DM and KD groups
than that in the sham group (the TRAP levels were 113.0 mmmol/
L, 206.3 mmmol/L and 192.3 mmmol/L in the sham, DM and KD
groups, respectively).

IGF-1, as a growth factor rich in bone tissue, stimulates
proliferation of preosteoblastic cells and enhances differentiated
functions of the osteoblast. The concentrations of IGF-1 were
significantly decreased in the DM and KD rats compared with that
in the sham rats (629.0 ng/ml, 230.8 ng/ml, and 339.5 ng/ml in the
sham, DM and KD groups, respectively). P1NP and b-CTX are
biomarkers of bone formation and resorption, which are
TABLE 1 | The body weight, blood glucose, and blood ketone among groups.

Groups Body weight
(g)

Blood Ketone
(mmol/L)

Blood Glucose
(mmol/L)

Sham 508.33 ± 15.41 0.40 ± 0.14 7.10 ± 1.15
DM 290.12 ± 50.15* 0.55 ± 0.21 >33.33*
KD 507.33 ± 22.23 1.13 ± 0.12* 6.1 ± 0.47
Octo
ber 2020 | Volume 11
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recommended for clinical application. The concentrations of
P1NP were decreased by 56.2% and 31.2% in the DM and KD
groups compared with the sham group, while the b-CTX levels
were increased by 143.1% and 39% in the DM and KD groups,
respectively (Table 3). Moreover, the b-CTX concentration of the
DM group was increased more significantly than that of the KD
group (38.93 ng/ml and 22.27 ng/ml in the DM and KD
groups, respectively).

Changes of Bone Microstructures
The micro-CT data showed that the cancellous bone was
significantly compromised in the DM and KD groups
compared with the sham group (Figure 2). The TMD and
Conn.D were obviously reduced in both the DM and KD
Frontiers in Endocrinology | www.frontiersin.org 4127
groups (the TMD and Conn.D were 172.5 mg HA/ccm and
62.9 mm-3, 65.2 mg HA/ccm and 21.8 mm-3, 71.4 mg HA/
c cm and 16 . 8 mm-3 in th e sham , DM and KD
groups, respectively). And the DM and KD rats exhibited
lower BV/TV and Tb.N with higher Tb.Sp than those in the
sham group (the BV/TV was 22.1%, 7.2%, and 9.3% in the
sham, DM and KD groups, respectively). While the Tb.Th of
DM group was thinner than that of the KD group, no
significant difference of Tb.Th was shown between the KD
rats and the sham rats.

The cortical bone of the DM rats was impaired as well. The
Barea and the Tarea of cortical bone were significantly decreased
in the DM group compared with the sham and KD groups
(Figure 3). The Ct.Th of the DM group was thinner than that of
the sham and KD groups, although it was decreased in the KD
group compared with the sham group (Figure 3).
Assessments of Biomechanical Properties
In order to verify the biomechanical properties of the cortical
bone, the three-point bending test was performed on the
proximal tibia (Figure 4A) and the mid-shaft femur (Figure
4B). It was showed that the Max.L, stiffness and the energy
adoption of cortical bone of tibia and femur in the DM group
were significantly decreased compared with the sham group
(Figure 4). And the Max.L and the energy adoption of tibia
and femur in the KD group were decreased more noticeably than
those in the sham group (Figure 4).

The results of micro-FEA has shown that the stiffness and the
failure load were significantly weakened in both the DM and KD
groups compared with the sham group, and there was no
significant difference between the DM and KD groups
(the stiffness and failure load were 2127.3 ± 842.3 N/mm
and 777.3 ± 279.6 N, 357.0 ± 117.4 N/mm and 132.1 ± 46.3 N,
734.5 ± 307.7 N/mm and 212.1 ± 100.9N in the sham, DM and
KD groups, respectively) (Figure 5).
FIGURE 1 | The general picture of bone length of tibia and femur in the sham, diabetes mellitus (DM) and ketogenic diet (KD) groups.
TABLE 2 | The bone length of tibia and femur among groups.

Groups Tibia (mm) Femur (mm)

Sham 4.52 ± 0.15 4.10 ± 0.12
DM 4.05 ± 0.09* 3.58 ± 0.11*
KD 4.36 ± 0.11 4.00 ± 0.08
Data are represented as means ± SD. “*” means P < 0.05 compared to Sham group.
TABLE 3 | The serum parameters of calcium, phosphate, and bone turnover
biomarkers among groups.

Parameters Sham DM KD

Calcium (mol/L) 2.22 ± 0.09 2.21 ± 0.11 2.25 ± 0.08
Phosphorus (mol/L) 2.28 ± 0.32 2.24 ± 0.27 2.13 ± 0.20
ALP (mmol/L) 3.01 ± 0.34 2.65 ± 0.18* 2.25 ± 0.39*
TRAP (mmol/L) 113.02 ± 6.18 206.25 ± 41.21* 192.34 ± 19.67*
IGF-1 (ng/ml) 629.04 ± 66.53 230.84 ± 54.02* 339.51 ± 64.51*
P1NP (ng/ml) 12.83 ± 1.86 5.62 ± 0.90* 8.83 ± 1.19*
b-CTX (ng/ml) 16.02 ± 2.72 38.93 ± 10.20* 22.27 ± 2.95*#
Data are represented as means ± SD. “*”means P < 0.05 compared to Sham group, and
“#” means P < 0.05 between DM and KD groups.
October 2020 | Volume 11 | Article 590575
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Evaluations of Histology and
Immunohistochemistry Staining
The HE staining results indicated that the number of trabeculae
significantly decreased in both the DM and KD groups compared
with the sham group (Figure 6). Meanwhile, more adipose tissue
was found in the KD group than that in the sham and DM
groups. Based on the immunohistochemical results, the activity
of osteoblast cell was significantly decreased in the DM and KD
groups, while the activity of osteoclast cell was increased. An
obviously lower expression of OCN and remarkably higher
expression of TRAP were identified in both the DM and KD
groups relative to the sham group (Figure 7).
DISCUSSION

This study proved that both hyperglycemia and hyperketonemia
induce bone compromising in rats by reducing bone mass,
disturbing the balance of osteoblast and osteoclast, and
Frontiers in Endocrinology | www.frontiersin.org 5128
impairing the biomechanical properties. Nevertheless the
effects of these two kind of metabolic disturbance on bone had
some differences. Hyperketonemia induced by KD resulted in
more compromised more in cancellous bone with little effect on
cortical bone, while hyperglycemia caused by DM had adverse
effects on both the cancellous bone and cortical bone, influencing
the bone length as well.

It has been long thought that diabetes mellitus negatively
affects bone metabolism. Using high-resolution peripheral
quantitative computed tomography and magnetic resonance
imaging, several cross-sectional studies revealed that both
cortical and trabecular bone tend to be more fragile in diabetes
patients, which increases fracture risk (20, 21). Diabetes mellitus
reduces bone density and bone strength by inhibiting osteoblast
activity and enhancing osteoclast activity (22). Guo et al. (23)
found that ALP activity and TRAP activity in serum were
significantly decreased in the STZ-injected rats. Meanwhile,
other researchers found that serum ALP level was greatly
increased in diabetic rats and serum TRAP level was also
A

B

FIGURE 2 | The micro-CT pictures and bone parameters of cancellous bone in the proximal tibia. (A) The 2D and 3D pictures of bone microstructures in the sham,
diabetes mellitus (DM) and ketogenic diet (KD) groups. (B) The trabecular parameters of cancellous bone among groups. “*” means P < 0.05 compared to sham
group, “#” means P < 0.05 between the DM and KD groups.
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greatly increased (24). The findings of TRAP activity were
consistent, though the ALP level showed differences among
studies. In the present study, the ALP level was remarkably
reduced in the DM rats, and the TRAP concentration was
significantly raised. Moreover, N-terminal propeptide of type I
Frontiers in Endocrinology | www.frontiersin.org 6129
procollagen (P1NP) and C-telopeptide of type I collagen (CTX),
as the specific biomarkers of bone formation and resorption,
have been recommended for clinical application. A clinical
research study into the bone turnover biomarkers showed that
a corrective relationship exists between serum P1NP level and
A B

FIGURE 3 | The micro-CT pictures and the bone parameters of cortical bone in the mid-shaft femur. (A) The 2D and 3D pictures of bone microstructures in the
sham, diabetes mellitus (DM) and ketogenic diet (KD) groups. (B) The parameters of cortical bone in the sham, DM and KD groups. “*” means P < 0.05 compared to
sham group, “#” means P < 0.05 between the DM and KD groups.
A

B

FIGURE 4 | The biomechanical strengths of cortical bone in the proximal tibia (A) and mid-shaft femur (B) from the three-bending test. “*” means P < 0.05
compared to sham group, “#” means P < 0.05 between the diabetes mellitus (DM) and ketogenic diet (KD) groups.
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histomorphometric bone formation estimates, and between
serum CTX and histomorphometric bone resorption estimates
(25). The present study found that the P1NP concentration of the
DM group was decreased by 56.2% and the b-CTX level
increased by 143.1% in comparison with the sham group. We
are inclined to the view that the functions of osteoblasts and
osteoclasts were responsible for the bone loss in the DM rats
which occurred at least 3 months later.

Abnormal bone metabolism indicators bring about
deteriorated bone microarchitectures. Ma et al. (26) found a
trabecular number and volume decrease and trabecular
separation increase of femur in diabetic rats. In the present
study, a remarkable TMD and Conn.D decrease was found in
the diabetic rats with less bone volume fraction, lower trabecular
number, thinner trabecular thickness, and wider trabecular
separation. Similarly, diabetes deteriorates cortical bone and
Frontiers in Endocrinology | www.frontiersin.org 7130
shortens bone length. Hyperglycemia increases the osteocyte
lacunar density by decreasing osteocytic territorial matrix
volume, thus increasing cellularity of cortical bone as well as
affecting the bone length (27). The STZ-rats displayed an
apparently smaller cortical area and a higher cortical porosity
(28). The micro-CT data showed that the bone area, the total
area and cortical thickness of the mid-shaft of femur were
significantly decreased in the DM rats than those in the sham
rats. The lengths of tibia and femur of the diabetic rats were
remarkably shortened. The bone trabecular and cortical bone
parameters exhibited that diabetes not only affects the status of
cancellous bone and cortical bone, but also affects the
bone growth.

The status of cortical bone plays a critical role in bone strength.
Supportive findings have shown that diabetes mellitus is associated
with increased risk of hip fracture and other fractures (29). In the
FIGURE 5 | The biomechanical properties of cancellous bone in the proximal tibia from the micro-FEA. “*” means P< 0.05 compared to sham group.
FIGURE 6 | The hematoxylin-eosin stain in the proximal tibia. The trabeculae was significantly decreased in both diabetes mellitus (DM) and ketogenic diet (KD)
groups compared with the sham group, and the adipose tissue (showed in red frame) in the KD group was risen compared with the sham and DM groups.
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rodent models, diabetes significantly weakened bone strengths by
impairing cortical bone microarchitectures (30, 31). Three-point
bending test has been proven as a useful method to measure
biomechanical properties of cortical bone in rodents (32). In this
study, the biomechanical properties of cortical bone of the diabetic
rats were significantly weakened, which was manifested as lower
maximum load, stiffness and energy absorption, compared with
the sham group. Moreover, simulated compressive test based on
micro-finite element analysis is an effective technique for
evaluation of cancellous bone since it has an irregular structures.
Consistent with the bone parameters from micro-CT, the micro-
FEA results also showed that the stiffness and failure load were
significantly decreased in the DM group compared with the sham
group. The results from the biomechanical tests indicated that
both the cortical bone and cancellous bone were deteriorated in
the diabetic rats.

Researches on the effects of hyperketonemia induced by KD
on bone microstructures and bone qualities in rodents were
performed in our previous studies. KD deteriorated
microstructures of cancellous bone by decreasing bone mass
and impairing biomechanical properties, as well as inhibiting
osteogenic process and enhancing osteoclastic process in the
BMSCs (15, 17). Akihiro et al. (33) found that ketone bodies
bidirectionally modulate osteoblast functions, which suggests
Frontiers in Endocrinology | www.frontiersin.org 8131
that ketone bodies is an important endogenous factor that
regulates bone metabolism in both physiological and
pathological situations. And they pointed out that b-
hydroxybutyrate significantly reduced the ALP activity and
mineralization in osteoblasts. It was confirmed in this study
that hyperketonemia severely impaired cancellous bone and its’
biomechanical properties, and cortical bone was partly affected.
The underlying mechanism might be that hyperketonemia
inhibits the osteoblast activity and increases the osteoclast activity.

Both hyperglycemia and hyperketonemia have obvious
adverse effects on bone. The results of this study showed that
both hyperglycemia and hyperketonemia deteriorated cancellous
bone and weakened its biomechanical properties, which might be
attributed to the changes of activity of osteoblasts and
osteoclasts. However, there were differences existing between
the two effects. Firstly, hyperglycemia had more adverse effects
on cortical bone than hyperketonemia. It was found that the DM
rats exhibited smaller Barea and Tarea, and thinner Ct.Th than
the sham and KD rats. The Ct.Th was thinner in the KD rats
compared to the sham group, which was consistent with the
results of biomechanical properties. Secondly, hyperglycemia
induced by diabetes significantly inhibited the bone growth. The
lengths of tibia and femur in the DM rats were remarkably shorter
than those in the sham and KD groups. In addition, hyperglycemia
A

B

FIGURE 7 | The osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) staining in the proximal tibia (A), and the results of semi-quantitative analysis (B).
The activity of the osteoblast cell was significantly decreased, while the osteoclast cell was increased in diabetes mellitus (DM) and ketogenic diet (KD) groups. There
was significantly lower expression of OCN and remarkably higher expression of TRAP in both DM and KD groups compared with the sham group (arrows refer to
positive cells). “*” means P < 0.05 compared to sham group.
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induced by diabetes and hyperketonemia induced by ketogenic
diets provided similar effects on the bone turnover markers, which
were decreasing the activity of osteoblasts and promoting the
activity of osteoclasts. However, there was still a slight difference.
According to the HE staining result, more adipocytes were found
in the bone marrow cavity of the KD rats when compared with the
sham and DM rats. This indicates that KD might have a stronger
ability to differentiate BMSCs from osteoblasts to adipocytes.

It should be noted that the affecting mechanisms of
hyperglycemia and hyperketonemia on bone are still unknown.
Insulin-like growth factor 1 (IGF-1) plays a central role in
growth, development and metabolism, and it contributes to
normal longitudinal bone growth and cortical bone size as well
as the maintenance of bone mass in adults (34). IGF-1 is highly
expressed in osteoblasts and chondrocytes, and it brings its bone
anabolic effects into play through promoting osteoblasts
differentiation and bone mineralization (35, 36). IGF-1’s
stimulation of osteoblast differentiation is a result of activation
of mammalian target of rapamycin (mTOR) through the PI3K/
Akt pathway (37). Ma et al. (26) indicated that diabetes may
damage bone microarchitectures and bone strengths through
Sema3A/IGF-1/b-catenin signaling pathway. In our previous
study, KD reduced serological IGF-1 and delayed the spinal
fusion (38). Bielohuby et al. (39) pointed out that diet-induced
reduction in GH/IGF system components probably aggravated
the bone phenotype, which might be an important factor in the
KD-induced bone loss. The serological IGF-1 level decreased in
both the DM and KD groups, with a lower trend in the DM group.
Therefore, the systemic changes of IGF-1 might, in some extent,
explain the mechanism of hyperglycemia and hyperketonemia on
bone growth, bone development, and bone mass accrual. In
addition, advanced glycation end products (AGEs) are diverse
compounds that generated via a non-enzymatic reaction between
reducing sugars and the amine residues on proteins, lipids, and
nucleic acids. Growing evidence concerning bone fracture in
patients with diabetes mellitus indicates the crucial roles of
AGEs in aggravating bone fragility (40). However, ketogenic diet
improves glycemic control in type 2 diabetes (41), and 3-b-
hydroxybutyrate (the main component of a ketone body)
inhibits the glycation process, decreases glucose binding to the
protein, and prevents the formation of AGEs (42). Therefore,
AGEs might not be a common role in the bone deterioration
induced by hyperglycemia and hyperketonemia, but further study
is needed.
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Certain limitations of this study must be mentioned. On one
hand, the effects of hyperglycemia and hyperketonemia on bone
were observed at a single time point. The different time points and
dynamic changes of bone microstructures and histomorphometry
(such as calcein stain) need to be further studied. On the other
hand, the present study has only indicated that hyperglycemia and
hyperketonemia have adverse effects on bone structures, but the
underlying mechanisms should be further investigated.

In conclusion, the present study comprehensively compared the
effects of hyperglycemia and hyperketonemia on the bone structures
from various perspectives, such as serum biomarkers, bone length,
biomechanical characteristics, bone microarchitectures, and the
histomorphometry. The disturbance of carbohydrate metabolism
and lipid metabolism have significant adverse effects on the bone
tissues, which is worth calling more attention to in clinical practice.
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Osteocytes make up 90–95% of the cellular content of bone and form a rich dendritic
network with a vastly greater surface area than either osteoblasts or osteoclasts.
Osteocytes are well positioned to play a role in bone homeostasis by interacting directly
with the matrix; however, the ability for these cells to modify bone matrix remains
incompletely understood. With techniques for examining the nano- and microstructure
of bone matrix components including hydroxyapatite and type I collagen becoming more
widespread, there is great potential to uncover novel roles for the osteocyte in maintaining
bone quality. In this review, we begin with an overview of osteocyte biology and the
lacunar–canalicular system. Next, we describe recent findings from in vitro models of
osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we
describe historical and current research on matrix alteration by osteocytes in vivo,
focusing on the exciting potential for osteocytes to directly form, degrade, and modify
the mineral and collagen in their surrounding matrix.

Keywords: perilacunar remodeling, lacunocanalicular network, extracellular matrix, collagen, mineral,
mechanical loading
INTRODUCTION

Embedded within the mineralized matrix of bone, osteocytes, a cell population of growing
importance in bone biology and medicine, find great longevity despite their apparently isolated
location. Osteocytes are increasingly recognized as cells that govern the process of bone remodeling
by directing bone forming osteoblasts and bone resorbing osteoclasts. While these actions play an
important role in determining the location and time-course of bone remodeling, osteocytes
themselves are positioned to readily access immense quantities of bone tissue. Making up over
90% of the cellular content of bone, osteocytes form a rich network of dendrites that communicate
with roughly 50 neighboring osteocytes, resulting in a total surface area that greatly exceeds that of
osteoblasts and osteoclasts combined. Therefore, any stimulus that triggers osteocytes to directly
interact with the bone matrix could have a great positive or negative impact on the overall integrity
of bone. In this review, we begin with a brief discussion of how osteocytes direct the activities of
osteoblasts and osteoclasts. Next, we cover the important role of the lacunar-canalicular network
(LCN) in osteocyte communication and remodeling. Finally, we discuss the exciting potential for
osteocytes to directly modify the organic and inorganic components of the bone matrix, which may
form an important basis for future treatment strategies aimed at improving bone mass and
tissue quality.
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OSTEOCYTE-DIRECTED MATRIX
MODIFICATION BY OSTEOBLASTS
AND OSTEOCLASTS

At the end of their period of bone formation, late-stage osteoblasts
are directed via unknown cues to either undergo apoptosis or
terminal differentiation (1, 2). One option is for osteoblasts to
differentiate into quiescent bone lining cells, which cover the bone
surface and are thought to mediate remodeling in localized bone
areas (1). Some osteoblasts further differentiate into osteocytes. Late
osteoblasts transition to early osteocytes by forming dendrites via
upregulation of the gene E11/gp38, or podoplanin (3). Upregulation
of MT1-MMP, a metalloproteinase that cleaves collagen, is also
required for osteocyte dendrite formation and maintains cell
viability throughout differentiation (4, 5). These findings may
suggest that osteocyte embedding is an active, proteolytic process,
in contrast to initial studies that suggested osteocyte embedding is a
process of passive entrapment within the matrix (6, 7). Recently,
however, studies utilizing intravital imaging have suggested that
there may be multiple mechanisms for osteocyte embedding that
involve some combination of the above processes, as well as lacunar
reshaping prior to differentiation (8). Once embedded, the osteocyte
begins its role in coordinating the actions of osteoblasts and
osteoclasts as a part of the rich osteocyte network.

Osteocyte Communication With
Osteoblasts
The activities of osteoblasts and osteoclasts are highly regulated
by signals originating from osteocytes, although the mechanisms
by which signals reach these cells are poorly understood.
Osteoblasts are responsible for new bone formation, which
primarily occurs on trabecular and cortical bone surfaces (9).
Bone formation is notably induced by the Wnt signaling
pathway. The canonical pathway involves Wnt binding to low-
density lipoprotein receptor-related protein 5/6 (Lrp5/6) and its
co-receptor, Frizzled (10). This binding inhibits the intracellular
activity of glycogen synthase kinase 3 (GSK3) and its complex
consisting of Axin and adenomatous polyposis coli (APC), which
results in hypophosphorylation of the transcription factor b-
catenin (11). Translocation of intact b-catenin to the nucleus
results in the expression of genes that enhance osteoblast survival
and bone formation activity. Osteocytes are an important
regulator of this process via the secretion of Sclerostin (Sost).
Sost is a potent suppressor of Wnt signaling by binding Lrp5/6,
competitively inhibiting Wnt binding (12). This results in
uninhibited phosphorylation of b-catenin and its subsequent
degradation by the proteasome. Sclerostin has also been shown
to inhibit bone morphogenic protein (BMP)-related bone
formation (13). In humans, mutations in Sost result in
sclerosteosis, a condition characterized by increased bone
formation resulting in high bone mass and cranial
neuropathies due to nerve compression (14). Therefore,
osteocytes have the potential to control when and where bone
formation occurs and interfering with this process can have
dramatic effects on human health.
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Osteocyte Communication With
Osteoclasts
Interestingly, osteocytes also mediate the process of bone
resorption by osteoclasts. One method of regulation is through
osteocyte secretion of receptor activator of nuclear factor kappa
B ligand (RANKL) through their dendrites, which binds the
RANK receptor on osteoclast precursors and drives their
differentiation into mature osteoclasts (15). RANKL expression
by osteocytes is essential for trabecular bone remodeling and is
secreted by osteocytes in regions of osteocytic apoptosis (16, 17).
Additionally, osteocytes secrete osteoprotegerin (OPG), a
molecule that competes with RANKL for the RANK receptor
(18). This interaction suppresses osteoclast activity and is the
basis for the anti-resorptive osteoporosis drug denosumab (19,
20). Frequently, the overall secreted RANKL/OPG ratio is
measured in in vitro and in vivo models, and in humans, to
approximate the degree of osteoclastogenesis in the bone (21).
Therefore, osteocytes can modify the total content and activity of
mature osteoblasts and osteoclasts, demonstrating their
important regulatory role in the process of bone remodeling.

Repair of bone microdamage has also been shown to be
dependent on the coordinated actions of osteocytes and
osteoclasts. Microdamage, or small cracks or breaks in the
bone, trigger osteocyte apoptosis and induce intracortical
remodeling, a process that is atypical in rodent cortical bone
(22). Further, regions of bone remodeling colocalize with regions
of osteocyte apoptosis in the context of microdamage or estrogen
deficiency (22, 23). In vitro studies have demonstrated that
apoptotic osteocytes stimulate their neighbors to release
RANKL, which acts as a chemotactic signal for osteoclasts to
migrate into the regions of apoptosis and remodel the bone (24).
Therefore, osteocytes also utilize osteoclasts to repair regions of
microdamage through the controlled release of RANKL while
preserving undamaged regions of the bone.

The process of remodeling is slow and deliberate, but
evidence demonstrating decreased whole body bone mineral
content in lactating women suggests that rapid changes in
systemic mineral demands must be met by liberating mineral
from the bone (25). Furthermore, bone matrix components must
rapidly reform to maintain bone strength when mineral
demands are lifted. Indeed, weaning triggers osteoclast
apoptosis and a decrease in RANKL levels within the bone
while osteoblastic activity remains elevated, favoring bone
formation (26). However, considering that the resorption and
formation processes by osteoclasts and osteoblasts, respectively,
primarily occur on bone surfaces, it is logical that osteocytes may
utilize their large surface area to release bone mineral during
lactation and reconstruct their surrounding matrix after
weaning. Therefore, due to their large population, extensive
network, and sprawling surface area, researchers have begun
investigating the osteocyte as a potential candidate for rapid bone
alterations when subjected to stimuli that alter bone formation
and resorption (27). The remainder of this review will focus on
observations from in vitro and in vivo studies examining the
potential for osteocytes to control the structure and composition
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of bone by modulating the activity of osteoblasts and osteoclasts
and by direct interaction with the extracellular matrix.
LACUNAR–CANALICULAR NETWORK
AND ITS ROLE IN TRANSMITTING
MECHANICAL STIMULI

Osteocyte cells are embedded in the mineralized matrix in
protected lacunae which surround the cell body. The cells are
connected to one another by dendritic cell processes which reside
in canaliculi. Together, these form the lacunar–canalicular
network (LCN). This interconnected network of cells may be
relevant to mechanical sensing and is important for signaling and
solute transport (28). As extracellular fluid flows through the
LCN, the osteocytes release chemicals such as nitric oxide,
prostaglandin, and other factors (29). Additionally, the level of
mechanical stimuli is related to osteocyte apoptosis which
promotes osteoclastogenesis and is a mechanism by which
osteocytes regulate bone repair and shape (28). Loading
enhances fluid flow and the shape of the LCN may affect how
fluid flows through the system, as observed by the use of injected
tracers, where there is an increase in labeled osteocytes with
loading (30). Ciani et al. saw an increase in the percentage of
osteocytes labeled with an injected tracer in loaded tibiae
compared to non-loaded tibiae of rats. However, this only
occurred in cancellous bone, not cortical bone (30). This
increase of fluid flow with loading has also been speculated
with numerical methods. Multiple groups have attempted to
quantify the forces placed on the LCN using finite element
analysis (FEA) and numerical models which indicate that the
shape of the network influences the shear stress the cell is
exposed to (31–33). The model in Gatti et al. indicated that
vascular porosity plays a role as well, with idealized models
showing a decrease in fluid velocity with an increase in vascular
porosity (33). Using a fluid–structure interaction model to model
a single cell, Joukar et al. indicated cells in rounded lacunae
experienced less shear stress than elliptical ones under different
modes of loading (32). The overall organization and shape of the
LCN affect the ability of the osteocyte to sense stimuli,
communicate with other cells, and effectively modulate
bone quality.

The LCN can be imaged multiple ways, in two and three
dimensions to provide quantitative measures of the LCN and
osteocyte shape and organization. Two dimensional methods
include scanning electron microscopy (11) with silver staining or
quantitative backscatter imaging. Three dimensional methods
allow for data analysis on connections between the osteocytes.
These include high resolution micro-computed tomography,
second harmonic generation, and confocal microscopy when
combined with staining (34). In addition to the LCN shape, the
osteocyte cell can be imaged using a combination of staining and
confocal microscopy. Recent research has utilized green
fluorescence protein (GFP)-labeled osteocytes and other dyes
to image cellular aspects of the osteocyte such as the cytoskeleton
along with the dendritic connections in relation to the
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surrounding collagen (35). This approach has yielded some
evidence that vesicles may be released by the osteocyte as it
embeds itself within the LCN and that collagen may be produced
by the osteocyte. It is important to note that quantifying the
number of lacunae is not the same as quantifying occupied
lacunae (36). After an osteocyte dies, the lacunae will remain
empty until it is gradually filled with mineralized debris.

Quantitative analysis of the LCN structure must be done to
determine if alterations to the shape and organization of the
network are occurring. Lacunar area or volume, lacunar density,
canalicular length, and canalicular density are some of the
measurements that can be made to quantify changes. The LCN
can also be quantified in a manner similar to quantification of the
connectivity of the trabecular bone network. This is essentially a
measure of how many connections would have to be broken to
separate the network into two (37). Additionally, the LCN can be
analyzed in terms of connectomics. In this analysis, the LCN is
considered as a system of nodes linked together by edges. Nodes
can be either lacunae or places where at least three canaliculi
connect. This analysis could be useful to determine how the
organization of the LCN affects the osteocyte’s ability to
communicate with other cells and respond to loading. Nodal
centers with higher numbers of connections may indicate fewer
and more utilized routes of communication. Connectomics
analysis has been reviewed in depth elsewhere (38). Less work
has been done using connectomics analysis, but there have been
some studies that have utilized this technique. Mabilleau et al.
have indicated that high fat diet caused an increase in node
degree in mice (39) Additionally, connectomics analysis has been
used to analyze differences in the LCN structure between sheep
and mouse bone, albeit on a limited number of samples (40). The
network of sheep bone was more regularly organized but less
connected than mouse bone, but properties such as edges per
node and edge length were similar between species.

Changes to the LCN have been observed based on the
organization of the surrounding matrix, during aging, disease,
and in response to environmental factors. More spherical
lacunae are likely to be found in woven bone versus the more
organized lamellar bone (41). Osteocytes have been seen to
elongate perpendicular to the long axis of bones in
amphibians, reptiles, and mammals (42). High fat diet caused
an increase in lacunar area in mice (39). The LCN also changes
with aging, as lacunae become flatter and the canaliculi become
more interconnected with maturity, a trend that reverses once
bone is aged (43). There are changes to the LCN in osteogenesis
imperfecta (OI) as OI mice have been observed to have more
spherical lacunae with more canaliculi than wild-type mice (44).
Mechanical unloading also results in changes to the LCN. Sciatic
neurectomy to immobilize one limb in growing rats resulted in
lower lacunar density and volume (45). Similarly, growing mice
were found to have a reduced cell volume and number of
processes with sciatic neurectomy in both cortical and
cancellous bone (46). It is important to note that these
experiments were both done in growing rodents. Immobilized
female patients had a lower osteocyte density and reduced
connectivity than postmenopausal controls (47). Fluid flow as
January 2021 | Volume 11 | Article 578477

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Creecy et al. Bone Matrix Control by Osteocytes
determined by finite element analysis (FEA) was shown to
decrease in ovariectomized rats that had lower lacunar density
and porosity (33).

The LCN may have a direct effect on bone quality. In cases of
spaceflight where the lacunar volume was shown to decrease and
become more spherical, nanoindentation indicated that the
hardness and stiffness of the matrix also decreased (48). Another
study used nanoindentation to assess the area close to (1 to 5 µm)
and further away from the lacunae (16 to 20 µm) in ovariectomized
rats with treatment. While there were no differences between
treatment groups (PTH, alendronate, raloxifene, PTH and
alendronate, and PTH and raloxifene), Young’s modulus was
lower in the perilacunar region compared to the area further
away (49). Modulus was also higher further away from the
lacunae and canaliculi in healthy 4-month old female rats (50).
Mounting evidence supports that actions coordinated by osteocytes
in the LCN directly impact matrix quality.

The pericellular matrix (PCM) surrounds the osteocyte and
separates the cell from the walls of the lacunae and canaliculi. This
matrix contains proteoglycans and hyaluronic acid and may
amplify the impacts of mechanical loading to allow osteocyte to
sense more load than what would be calculated by tissue strain
alone. Tethering elements between the matrix wall and the cells
that could amplify force through shear drag forces in response to
fluid flow were first postulated with computational modeling (51)
prior to transverse elements between the matrix wall and cell being
visually confirmed with TEM imaging (52). Perlecan has been
speculated to form the tethering elements in the PCM. MLO-Y4
cells express perlecan protein and immunogold labeling indicated
the presence of perlecan along the osteocyte bodies and walls of the
canliculi (53). Perlecan deficient mice have shown higher solute
diffusivity, but lacked the anabolic response to in vivo tibial loading
(54) indicating its importance for mechanical sensing (54).
Additionally, integrins have been speculated to form part of the
PCM and affect the osteocyte response to mechanical stimulation.
TEM images have indicated the canalicular walls may have
protrusions into the pericellular space (55, 56). A theoretical
model incorporating tethering elements along with focal
adhesion complexes mathematically predicted a high
amplification of strain that was an order of magnitude higher
than previous strain amplification models (56). This focal
adhesion complex has been speculated to be b3-integrin as
immunohistochemistry has indicated the presence of b3-integrin
along the walls of canaliculi of murine cortical bone (55). In vitro,
inhibition of avb3 integrin attachment sites in MLO-Y4 cells
reduced the Ca2+ response to probe stimulation (57). Structured
Illumination Super Resolution Microscopy has found membrane
proteins associated with mechanotransduction to be colocalized
with b3-integrin foci in vivo, though this did not find a
colocalization with connexin 43 (58). The PCM may also alter
with age. Osteocytes isolated from aged mice were able to produce
less PCM than osteocytes from young mice in vitro. Aged cells also
had fewer plasma membrane disruptions than young cells in
response to fluid shear stress, indicating the mechanical response
may be dependent on the PCM (59). This is an aspect of osteocyte
control of the environment that needs to be further studied.
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IN VITRO MODELS OF PERILACUNAR
REMODELING

Due to their preference of remaining embedded within the bone
matrix, osteocytes have proven difficult to study when removed
from their natural enclosure. Indeed, studies on primary
osteocytes have demonstrated complications including low
yield, poor viability when grown in 2D culture, and limited
dendrite formation. Therefore, most studies to date have utilized
immortalized cellular models of osteocytes. These cell lines
represent various stages of the osteocyte life cycle, including
late transitioning osteoblasts, early osteocytes, late osteocytes,
and lines that gradually differentiate through all three stages.
Despite being derived from osteocytes, each cell line responds
differently to mechanical, endocrine, and paracrine signals.
Therefore, we will begin our analysis of osteocyte matrix
modeling and remodeling by examining what has been learned
using in vitro models.

Cellular Models of Osteocytes
The most frequently used cell line in osteocyte research is the
MLO-Y4 line. These cells were derived from the long bones of
female mice and immortalized using an SV40 T-cell antigen
coupled to the osteocalcin promoter (60). MLO-Y4 cells are
mechanosensitive, as studies utilizing fluid shear stress have
demonstrated robust increases in intracellular calcium
currents, ATP production, and release of prostaglandin E2
(PGE2) and nitric oxide (NO) (61–63), all of which are
essential components of the osteocyte response to mechanical
stimulation. Additionally, they express large amounts of
connexin 43 (Cx43) and produce a dendritic network. In
response to short-term unidirectional and oscillatory fluid
flow, MLO-Y4 cells increase RANKL expression while greatly
increasing OPG expression, resulting in a decrease in the
RANKL/OPG ratio (64, 65). This finding may indicate that
osteocytes respond to loading by reducing osteoclast activity
through paracrine signaling. Importantly, MLO-Y4 cells do not
typically express Sost, a potent inhibitor of bone formation by
osteoblasts. This shortcoming is also noted in MLO-A5 cells, a
model of late transitioning osteoblasts (66). Interestingly, long-
term fluid shear may increase Sost expression in MLO-Y4 cells
despite their lack of natural Sost expression, although conflicting
evidence exists (67, 68). In terms of anabolic functions,
conditioned media taken from MLO-Y4 cultures increases
alkaline phosphatase (34) and osteocalcin (OCN) expression in
osteoblasts, indicating the presence of additional secreted factors
that increase osteoblast activity (69).

Two models of differentiated osteocytes are the Ocy454 and
IDG-SW3 cell lines. Each of these lines utilizes an interferon-g-
driven T-cell antigen promoter to induce immortalization
followed by temperature-driven differentiation. The mechanical
response of Ocy454 cells to fluid shear are more variable than
MLO-Y4 cells, with fewer cells demonstrating increased calcium
currents with occasional high magnitude calcium waves (70).
Unlike MLO-Y4 cells, Ocy454 osteocytes express abundant
DMP1 and Sost, and Sost expression can be lowered by fluid
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shear (68). Increasing the duration of fluid shear gradually
increases Sost expression and the RANKL/OPG ratio in both
lines (68). Like Ocy454 cells, the IDG-SW3 cell line expresses
classic osteocytic genes when they reach maturity. In the early
stages of differentiation, IDG-SW3 cells express osteoblastic
genes including ALP and type I collagen (col1a1) (71). As they
transition into early osteocytes, dentin matrix protein 1 (DMP1),
matrix extracellular phosphoglycoprotein (MEPE), and
phosphate-regulating neutral endopeptidase (Phex) levels
increase (71). Finally, as late osteocytes, IDG-SW3 cells begin
expressing high levels of Sost and fibroblast growth factor 23
(FGF23), demonstrating their utility in studying osteocyte
paracrine and endocrine signaling (71).

While osteoblasts and osteoclasts are the classic cell types
involved with forming and shaping bone, emerging research has
demonstrated that many of the cues that drive these cells may
also trigger osteocytes to participate in these functions. The
process of bone matrix alteration by osteocytes is currently
known as perilacunar remodeling (PLR), a concept that is
gaining popularity in the bone community. Utilizing the idea
that osteocytes also modify their activity in response to cues that
would normally change bone mass, we next examine how bone-
altering signals may modify osteocyte function to alter their
surrounding extracellular matrix using the aforementioned in
vitro models.

Osteocyte Responses to Endocrine,
Paracrine, and Mechanical Stimuli
One of the most important signals the bone receives is from
parathyroid hormone (PTH), a peptide hormone secreted from
the parathyroid gland in response to low serum calcium. In
addition to increasing calcium absorption from the intestine,
sustained elevations in PTH are known to cause mineral release
from the bone, as seen in hypercalcemia of malignancy and
chronic kidney disease (72, 73). Studies using IDG-SW3 cells
have demonstrated that PTH upregulates ATPase H+
Transporting V0 Subunit D2 (ATP6V0D2), a proton pump on
the cell membrane that acidifies the extracellular environment,
indicating that osteocytes can acidify their extracellular
environment to degrade mineral (74). PTH-related Peptide
(PTHrP) has also been shown to stimulate acidification of the
osteocyte extracellular environment by upregulating ATP6V0D2
during lactation, and this process is dependent on intact PTH
signaling in osteocytes (75). IDG-SW3 cells naturally upregulate
several osteoclastic genes throughout their 28-day differentiation
including tartrate-resistant acid phosphatase (TRAP), carbonic
anhydrase I and II (CA1/2), and cathepsin K (CTSK), indicating
that mature osteocytes are poised to participate in PLR (76).
While matrix acidification is required for mineral removal, it also
promotes the collagenolytic activity of CTSK, indicating that
osteocytes can degrade both mineral and collagen (77, 78). In
addition to PTH, Sost signaling has also been shown to
upregulate TRAP, CA, and CTSK in neighboring MLO-Y4
osteocytes (79). Therefore, osteocytes may increase the bone
resorbing activity of nearby osteocytes in addition to reducing
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osteoblast activity via Sost signaling (76, 79). Finally, TGFb also
upregulates several osteoclastic genes via the YAP/TAZ signaling
pathway in MLO-Y4 and Ocy454 cells. In MLO-Y4 cells,
treatment with TGFb results in extracellular acidification and
upregulation of CTSK and matrix metalloproteinase 13 and 14
(MMP13/14) while glucocorticoid treatment decreases MMP13
expression (80). A similar finding was shown in Ocy454 cells,
which upregulated CTSK and MMP14, but not MMP13 (78).
While these two osteocyte models differ slightly in their
responses, they each suggest that osteocytes participate in
matrix remodeling by adopting an osteoclast-like phenotype.

As mentioned above, mechanical loading alters osteocyte
signaling to osteoblasts and osteoclasts. However, whether
loading influences the process of PLR remains unclear. When
fluid shear stress is applied to MLO-Y4 cells, increased E11/gp38
expression drives increased dendrite formation and elongation
(80). For this process to occur in vivo, however, osteocyte
dendrites must express genes that allow them to degrade local
mineral and collagen to extend through the bone. Indeed, a
recent study seeding IDG-SW3 cells into an MMP-sensitive
hydrogel demonstrated increased dendricity, Cx43, and MMPs
2 and 13 throughout differentiation (81). These cells also
maintained elevated ALP expression through day 28 of
differentiation while ALP expression diminishes in 2D culture.
Another study in 3D culture demonstrated that MLO-Y4 cells
display increased col1a1 expression over time (82). Therefore,
3D culture models may be necessary to capture the ability for
osteocytes to form matrix components. However, studies
examining perilacunar modeling and remodeling by osteocytes
in 3D cell culture with loading or other physiologic stimuli
remain to be performed. Altogether, these in vitro findings
suggest that bone-forming osteoblasts can differentiate into
mechanosensitive osteocytes that coordinate the activities of
osteoblasts and osteoclasts, and eventually gain osteoclastic
resorptive abilities. Strikingly, while osteocytes reduce their
osteoblastic activity over time, these functions are not entirely
lost as they mature in a 3D environment. Therefore, further
research probing the ability for osteocytes to form mineral and
collagen are imperative to understand the contribution of
osteocytes to the microstructure and overall integrity of bone.
MODIFICATION OF MINERAL BY THE
OSTEOCYTE

Osteocyte modification of the mineral in the surrounding matrix
has been observed in cases where PLR removes mineral such as in
lactation (83) and hibernation (84), and lack of PLR can result in
hypermineralization such as in the case of exposure to
microgravity (48). This has been supported by changes to
lacunar area. In the case of lactation, it has been suggested that
the osteocyte can also replace the mineral in its surrounding bone
if recovery after weaning is allowed, as double fluorochrome
labeling has indicated new mineral formation around the
osteocyte (75). The osteocyte can alter the overall porosity of
January 2021 | Volume 11 | Article 578477

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Creecy et al. Bone Matrix Control by Osteocytes
bone by either removing or adding mineral to its lacunae. The
osteocyte network appears to influence the quality of the mineral
as well. Using small angle X-ray scattering (SAXS) combined with
confocal microscopy, a study showed that in areas with a high
density of osteocytes that were well aligned, the mineral platelet
thickness and particle orientation was higher than is less organized
areas (85). The mineral thickness and particle orientation were
lower in the areas closer to the lacunae themselves, indicating that
the osteocytes may control the quality of the mineral over time
(85). In another study looking at mice that underwent treadmill
running, the mineral to matrix ratio (MMR) of the matrix
surrounding the osteocyte was lower than the MMR of the
matrix further away, indicating the osteocyte altering its bone
matrix (86). Interestingly, mice that underwent treadmill running
and showed lower MMR in their perilacunar region had higher
post-yield work in bending tests of their tibiae, indicating that PLR
may improve bone’s overall mechanical properties (86). An effect
on mechanical properties has also been observed elsewhere as the
elastic modulus as measured by microindentation of the bone
decreased with lactation (87). Thus, changes to the mineral by the
osteocyte may affect overall bone quality.
COLLAGEN PRODUCTION AND
ALTERATION BY OSTEOCYTES

Type I collagen is the most prevalent organic component of the
bone extracellular matrix and provides the tissue with tensile
ductility and fracture toughness by limiting crack formation and
propagation (88–90). Collagen is primarily produced by osteoblasts
during bone formation alongside mineral. The helical structure of
collagen is composed of Gly-X-Y repeats where X and Y are
typically proline and hydroxyproline, respectively (91). Collagen
consists of two pro-a1 and one pro-a2 peptide chains that are
translated by ribosomes embedded within the endoplasmic
reticulum (ER) membrane. Next, post-translational modifications
including hydroxylation of proline and lysine residues and
glycosylation of some prolines occurs within the ER. The chains
twist into a triple helix and are shuttled to the Golgi apparatus as
procollagen. Upon secretion from the osteoblast, the N- and
C-terminal domains are cleaved, forming tropocollagen. Finally,
tropocollagen strands self-assemble into fibrils and neighboring
tropocollagen molecules are crosslinked at their hydroxylysine
residues by lysyl oxidase, stabilizing the fibrillar structure (92).

The overall quality of collagen is dependent on the correct level of
post-translational modifications, proper crosslinking, incorporation
into the bone, and alignment within the bone tissue. Importantly, the
alignment of collagen fibrils is related to the types of loads that each
bone experiences. During physiologic loading of the lower limb, the
anterior portion of the femur and tibia typically experiences tension
while the posterior portion is under compression (93). Studies
utilizing polarized light microscopy have determined that collagen
fibrils tend to be aligned perpendicular to transverse sections of
bones under tension while they are aligned parallel to transverse
sections in compressive regions. Intriguingly, collagen fibrils tend to
align with the major axis of osteocytes and their lacunae (41).
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Additionally, it has been shown that osteoblasts initially secrete
disorganized collagen that eventually aligns with the osteoblast major
axis or the axis under the greatest mechanical strain (94, 95).

While osteoblasts follow mechanical cues from their
environment to determine collagen orientation and placement,
mechanosensory cues from osteocytes may also be required to
instruct osteoblast collagen deposition. Further, it stands that
osteocytes themselves may be responsible for forming and
aligning collagen in the perilacunar region. One of the earliest
studies examining this possibility placed bones from egg-laying
hens in media containing radiolabeled proline, a highly prevalent
amino acid in all collagens (96). In hens fed a calcium-rich diet
after egg laying, it was reported that osteoblasts and osteocytes
demonstrated widespread uptake of proline, indicating that
osteocytes may replenish matrix collagen following lactation
(97). Modern intravital imaging studies have also demonstrated
that early osteocytes may be able to synthesize parts of the collagen
matrix surrounding their lacunae while also exerting mechanical
forces on the existing collagen matrix (8). Eventually, this process
results in a collagenous matrix that aligns with the major axis of
osteocyte lacunae, but whether this process is mechanically driven
remains unknown.

As discussed earlier, in vitro models of osteocytes have the
capacity to degrade collagen in response to catabolic stimuli
including PTH. The importance of this finding has also been
established in vivo, as lactating mice fail to resorb mineral from
their lacunae if collagen degrading genes including CTSK and
MMP-13 are knocked out in osteocytes (98, 99). Therefore,
collagen degradation is an essential step in perilacunar
remodeling. Additionally, MMP-13 expression by osteocytes is
critical to maintenance of bone fracture toughness, or the ability
of bone to resist crack formation and propagation, a property
that is highly dependent on proper collagen incorporation and
crosslinking (99, 100). There are implications that TGF-bmay be
involved as well. It has been demonstrated that inhibiting TGF-b
receptor pharmacologically in mice resulted in a reduction of
gene expression of genes associated with PLR and reduced
canaliculi length (76). The same study examined a knock-out
mouse of osteocyte specific TGF-b receptor in bone which
resulted in a similar decline in PLR gene expression and
decrease in canalicular length and lacunar–canalicular area.
Fracture resistance was notably lower in the knock-out mice
(76). Taken together, there is striking preliminary evidence to
warrant a deeper investigation of the osteocytes ability to modify,
align, and produce collagen within their lacunae. Future work
may require the use of 3D scaffolds in order to capture these
effects in vitro while in vivo studies will likely benefit from the use
of emerging techniques to analyze bone composition and
mechanical properties on the microscale in animal models of
post-lactation recovery, space flight, and other instances of
mineral challenge. Furthermore, while collagen is the most
prevalent protein in bone, genetic knockouts of non-
collagenous proteins (NCPs) including biglycan, fibrillin-2, and
bone sialoprotein among others have demonstrated altered
microarchitecture and/or reduced mechanical properties (101–
103). Biglycan in particular is required for proper collagen
assembly into organized fibrils, and knockouts resemble the
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phenotype of Ehlers–Danlos syndrome (104). However, material
tests such as fracture toughness testing and tissue-level analyses
have largely not been performed on these genetic models. While
NCPs are known to impact bone formation, whether osteocytes
can interact with and alter NCPs, or whether NCPs control the
ability for osteocytes to model and remodel their surrounding
matrix remains largely unknown. Taken together, understanding
the full extent of the osteocytes capabilities will require a
combination of robust cellular models, modern imaging
modalities, and tissue-level analyses that can distinguish
material, structural, and compositional properties on the
micro- and nano-scales in and around the LCN, enhancing our
ability to devise new treatments for bone diseases.
CONCLUSION

The osteocyte has a profound effect on the bone matrix through
signaling to osteoblasts and osteoclasts and by directly modifying
Frontiers in Endocrinology | www.frontiersin.org 7140
its environment (Figure 1). The structure of the LCN relates to
the structure and quality of the surrounding matrix. There is also
in vitro and in vivo evidence indicating the osteocyte can directly
modify mineral and collagen in its surroundings. Thus, the
osteocyte must be considered when examining the effects of
disease and treatments on the bone matrix.
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Obesity, a chronic low-grade inflammatory state, not only promotes bone loss, but also
accelerates cell senescence. However, little is known about the mechanisms that link
obesity, bone loss, and cell senescence. Interleukin-6 (IL-6), a pivotal inflammatory
mediator increased during obesity, is a candidate for promoting cell senescence and an
important part of senescence-associated secretory phenotype (SASP). Here, wild type
(WT) and (IL-6 KO) mice were fed with high-fat diet (HFD) for 12 weeks. The results
showed IL-6 KO mice gain less weight on HFD than WT mice. HFD induced trabecular
bone loss, enhanced expansion of bone marrow adipose tissue (BMAT), increased
adipogenesis in bone marrow (BM), and reduced the bone formation in WT mice, but it
failed to do so in IL-6 KO mice. Furthermore, IL-6 KO inhibited HFD-induced clone
formation of bone marrow cells (BMCs), and expression of senescence markers (p53 and
p21). IL-6 antibody inhibited the activation of STAT3 and the senescence of bone
mesenchymal stem cells (BMSCs) from WT mice in vitro, while rescued IL-6 induced
senescence of BMSCs from IL-6 KO mice through the STAT3/p53/p21 pathway. In
summary, our data demonstrated that IL-6 KO may maintain the balance between
osteogenesis and adipogenesis in BM, and restrain senescence of BMSCs in HFD-
induced bone loss.

Keywords: IL-6, obesity, osteoporosis, senecence, bone mesenchymal stem cells
INTRODUCTION

Obesity and osteoporosis are common diseases with increasing prevalence worldwide. Obesity is
often accompanied by metabolic complications, including insulin resistance, type 2 diabetes (T2D)
and liver steatosis (1, 2). Osteoporosis is characterized by low bone mass with microstructure
disruption, resulting in skeletal fragility and increased risk of fracture (3, 4). For a long time, obesity
was recognized as a condition with positive effects on bone, mainly because weight gain on bone has
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been considered to increase mechanical loading exerted on the
skeleton, and then bone mass would increase to accommodate
weight gain (5). However, some epidemiologic studies indicate
that obesity is associated with increased incidence of fractures (6,
7). In general, the increase of mechanical load caused by obesity
initially promotes the increase of bone mass, while the metabolic
disorders caused by long-term obesity leading to the decrease of
bone formation and bone turnover (8). In recent years, studies
on obesity and bone metabolism have attracted academic
attention. However, the mechanisms underlying the bone mass
acquired in obesity remains not well known.

There are two main imbalances in the development of
osteoporosis (OP): one is the uncoupled bone remodeling
involving bone-forming osteoblasts and bone-resorbing
osteoclasts, the other lies in bone-fat imbalance (9). Current
evidence indicates that the differentiation potential of bone
mesenchymal stem cells (BMSCs) is strictly regulated by the
bone marrow (BM) microenvironment, including cytokines and
hormones in BM (10). Changes in the BM microenvironment
determine the commitment of BMSCs into the osteoblast or
adipocyte lineage (11, 12). The balance between adipogenesis and
osteogenesis of BMSCs would be broken when the BM
microenvironment changes. The eWAT-derived cytokines may
dysregulate the interaction between adipogenesis and
osteogenesis of BMSCs through endocrine pathway. Bone
marrow adipose tissue (BMAT) exerts influence on osteoblasts,
osteoclasts and hematopoietic cells through paracrine pathway
(13). Obesity causes chronic low-grade inflammatory state. The
adipose tissue derived inflammatory cytokines promote obesity-
related metabolic disorders. The level of inflammatory cytokine
is discrepant in different adipose tissues, and visceral adipose
tissue (VAT) produces more pro-inflammatory cytokines than
subcutaneous adipose tissue (SAT) (14). Although the
underlying mechanism is not clear, increased levels of
inflammatory factors (such as TNF-a, IL-1, IL-6, and IL-17)
have been traditionally thought to contribute to bone loss
(15–17).

IL-6, a multifunctional cytokine, is produced by adipocytes,
monocytes, endotheliocytes and hepatocytes (18). As one
important mediator of chronic low-grade inflammation, the
level of IL-6 is higher in VAT than SAT in mice (19).
However, the level of IL-6 in BM is not exactly known. IL-6
initiates intracellular signal transduction by binding to its
membrane-bound receptor IL-6Ra or its soluble receptor sIL-
6R (20). Studies have shown that levels of IL-6 and sIL-6R
increase during the osteogenic differentiation of BMSCs. Then,
the IL-6/sIL-6R complex could activate the downstream signal
transducer and activator of transcription 3 (STAT3) signaling
pathway, promote the osteogenic differentiation of BMSCs
through autocrine or paracrine feedback loops (21, 22). The
IL-6/sIL-6R complex could enhance alkaline phosphatase
(ALP) activity of human (MG-63) and murine (MC3T3-E1)
osteoblastic cell lines as well as primary murine calvaria cells (23,
24). However, the activation of the gp130 signaling pathway by
the IL-6/sIL-6R complex was initially thought to regulate
osteoclast formation in bone (25). Early research also suggested
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that IL-6 inhibited bone nodule formation by rat calvaria cells in
vitro, revealing that IL-6 may inhibit osteoblast differentiation
(26). In obesity, elevated level of IL-6 may lead to a low-grade
inflammatory state and bone metabolism imbalance, but the
mechanism remains unclear.

It was reported that obesity accelerated senescence of BMSCs
(including the increased expression of senescence markers p53
and p21) in the BM microenvironment, thereby preventing
BMSCs recruitment for bone remodeling and leading to bone
fragility (27). IL-6 may be involved in the pathogenesis of
senescence (28–33). The combination of IL-6/sIL-6R complex
and gp130 activates the JAK/STAT signal transduction pathway
and transmits the signal from cell membrane to nucleus, which is
critical to cell cycle transition from G1 to S (34). Previously, IL-6/
sIL-6R induced premature senescence in normal human
fibroblasts through STAT3/p53 pathway, and there was a
potential binding site (5′-TTnnnnGA-3′) of p-STAT3 in the
p53 promoter region (30, 35). Moreover, IL-6 activated
intracellular STAT3/p53/p21 signal transduction and induced
senescence of vascular smooth muscle cells (36). However, it is
unclear whether IL-6 involved in the senescence of BMSCs in
high-fat diet (HFD)-induced obesity. In summary, current
knowledge about the roles of IL-6 in differentiation and
senescence of BMSCs is limited in HFD-induced obesity. In
this study, we used IL-6 gene knockout (IL-6 KO) mice to
investigate the effect of IL-6 on bone metabolism and the
potential mechanism in HFD-induced obesity. Our study
demonstrated that IL-6 KO may inhibit the senescence of
BMSCs, thus led to attenuated bone loss.
MATERIALS AND METHODS

Experimental Animals
All animal experiments have been approved by the Institutional
Animal Care and Treatment Committee of Sichuan University in
China (Permit number: 2020136A) and were carried out in
accordance with the approved guidelines. The male wild type
(WT) and IL-6 KOmice generated on C57BL/6 background were
purchased from Jackson Laboratory (Bar Harbor, ME, USA).
Mice were housed in cages at a temperature of 23 ± 1°C with a
12 h light-dark cycle and had free access to food and water.
Eight-week-old WT and IL-6 KO mice were randomly divided
into standard diet (SD) and HFD groups. The composition of SD
and HFD from Beijing HFK Bioscience Corporation was shown
in Table 1. Four groups of mice were given diet intervention for
12 weeks: (1) WTmice, fed on SD (WT-SD group); (2) WTmice,
fed on HFD (WT-HFD group); (3) IL-6 KO mice, fed on SD (IL-
6 KO-SD group); (4) IL-6 KO mice, fed on HFD (IL-6 KO-HFD
group). Body weight was measured weekly. Mice were fasted for
12 h at the end of the experiment and euthanized under a general
anesthesia. Blood was collected from retroorbital vein prior to
sacrifice. Enzyme-linked immunosorbent assay (ELISA) kits
(Mbbiology biological, Jiangsu, China) were used for detecting
levels of IL-6 and procollagen I N-terminal peptide (PINP).
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Analysis of Bone Microstructure
Left femurs and L3 vertebras were isolated from soft tissues and
immersed into fixative solution for mCT analysis (37). The high-
resolution mCT system (vivaCT80; Scanco Medical, Switzerland)
was used to analyze the bone microstructure of trabecular bone
of distal femoral metaphysis and L3 vertebra, and cortical bone of
femoral mid-diaphysis. The scanner was set at a voltage of 55
kVp, a current of 145 µA and a voxel size of 10 µm. The three-
dimensional (3D) reconstruction and analysis were performed
using the Scanco software version 5.0. One hundred contiguous
cross-sectional slices were selected for analysis of trabecular and
cortical bone. The domain of trabecular and cortical analysis was
manually profiled and intermediate sections were interpolated
with the contouring algorithm to choose a region of interest
(ROI). The parameters including bone volume per tissue volume
(BV/TV), connect density (Conn. D), structure model index
(SMI), trabecular number (Tb. N), trabecular thickness (Tb. Th)
and trabecular spacing (Tb. Sp) were achieved for analysis of
trabecular bone, while BV/TV, cortical thickness (Ct. Th) and
bone surface per bone volume (BS/BV) for cortical bone.

Quantification and Imaging of BMAT
by Osmium-mCT
The BMAT was quantified by osmium tetroxide (osmic acid)
staining combined with mCT imaging (Quantum GX,
PerkinElmer, USA) (38). The right tibias were dissected from
soft tissues, fixed for 24 h, washed for 10 min, and immersed into
20% ethylenediaminetetraacetic acid (EDTA) solution to
decalcify at 37°C for 14–17 d. The decalcification solution was
changed every 3 d until the bones were flexible. One part 5%
solution of potassium dichromate and one part 2% solution of
osmium tetroxide were added to a 2-ml microtube, each with 3–4
bones inside. The bones were immersed in the dye for 48 to 60 h
at room temperature and washed repeatedly with distilled water
for 2 h. The mCT system was used to perform 2D analysis of
BMAT in tibias. The scanner was set at a voltage of 90 kVp, a
current of 88 µA and a voxel size of 50 µm. The analysis of the
osmium density (white color in BM cavity) of tibial sagittal plane
was used to assess the content of BMAT with Image J software.
Frontiers in Endocrinology | www.frontiersin.org 3146
Histological Analysis
The left tibias were dissected from soft tissues, fixed for 12 h,
washed for 10 min, and decalcified at 37°C until the bones were
flexible. The tibias were then dehydrated, embedded in paraffin,
cut to 5 mm sections, dried, and kept at room temperature.
Longitudinal sections from the proximal tibias were stained with
either hematoxylin-eosin (H&E) or tartrate-resistant acid
phosphatase (TRAP) (Sigma, Merck, Germany). Lipid droplets
were counted and calculated to assess BM adiposity using Image
J software. TRAP-positive multinucleated cells were observed
along the bone edge. Osteoclast surface per bone surface (OcS/
BS) was calculated at five different visual fields with Image J
software to evaluate osteoclast formation.

Isolation of Bone Marrow Cells (BMCs)
Both femurs and tibias of WT and IL-6 KO mice were collected
and cleaned in PBS. The femoral and tibial diaphysis were
snipped and the BMCs were isolated as previously described
(39). Bones were placed vertically in a 0.5-ml microtube that was
cut open at the bottom. The 0.5-ml microtube was placed into a
1.5-ml microtube. Fresh BM was spun out by quick centrifuge
(from 0 to 10,000 rpm within 10 s) at room temperature. Red
blood cells were lysed using erythrocyte lysing buffer (Beyotime,
Shanghai, China) and the BM suspension was allowed to stand
for 5–10 min to make low-density bone marrow adipocytes
(BMAs) released and floating. After centrifugation (3,000 rpm
for 3 min), the bottom BMCs were collected and washed with
PBS for the follow-up experiments. BMCs contained BMSCs,
hematopoietic cells, immune cells, etc. but not BMAs
or erythrocytes.

Colony Formation
BMCs harvested from femoral and tibial cavities of WT and IL-6
KOmice after diet intervention were plated at a density of 5 × 105

cells/well in 6-well culture plates (40). BMCs were cultured with
MEM alpha modification (aMEM, HyClone, Thermo Fisher
Scientific, USA), containing 10% fetal bovine serum (FBS,
Gibco, Thermo Fisher Scientific, USA) and 1% penicillin–
streptomycin solution. After 24 h of adhesion, nonadherent
cells were discarded and the culture medium was changed
every other day. Colonies were cultured for 14 d in growth
culture medium. Then the medium was removed and cells were
stained with 0.1% crystal violet (Beyotime) after fixed with 4%
paraformaldehyde solution. Colonies were counted in three
different wells with Image J software.

Replicative Senescent BMSCs
BMCs from WT and IL-6 KO mice were cultured in aMEM,
digested and passaged with TrypLE Express Enzyme (Gibco).
BMCs were cultured for passage 9 (P9) to achieve replicative
senescent BMSCs as described previously (41), with minor
modification. BMCs from WT mice were cultured with or
without 100 ng/ml mouse IL-6 neutralization antibody (R&D
Systems, USA), while cells from IL-6 KOmice were cultured with
or without 2 ng/ml recombinant mouse IL-6 (Solarbio, Beijing,
China). The medium was changed every other day. BMCs,
TABLE 1 | The composition of standard diet (SD) and high fat diet (HFD).

Composition SD HFD

Protein 19.2 g% 20 kcal% 26 g% 20 kcal%
Casein 189.58 g 758.32 kcal 258.45 g 1033.80 kcal
Cystine 2.84 g 11.36 kcal 3.88 g 15.52 kcal

Carbohydrate 67.3 g% 70 kcal% 26 g% 20 kcal%
Corn starch 298.59 g 1194.36 kcal 0 0
Maltodextrin 33.18 g 132.72 kcal 161.53 g 646.12 kcal
Saccharose 331.77 g 1327.08 kcal 88.91 g 355.64 kcal

Fat 4.3 g% 10 kcal% 35 g% 60 kcal%
Soybean oil 23.70 g 213.30 kcal 32.31 g 290.79 kcal
Lard oil 18.96 g 170.64 kcal 316.60 g 2849.40 kcal

Cellulose 47.40 g 0 64.61 g 0
Others 53.98 g 37.92 kcal 73.71 g 51.68 kcal
Total 1000 g 3845.70 kcal 1000 g 5242.95 kcal
Others: mineral mixture, calcium hydrophosphate, calcium carbonate, potassium citrate,
vitamin mixture, etc.
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containing hematopoietic cells, immune cells etc., were purified
into BMSCs through culturing and passaging. The senescent BMSCs
were used for senescence‐associated‐b‐galactosidase (SA‐b‐gal)
staining, and analysis of related mRNA and protein expression.

SA‐b‐Gal (Senescence-Associated-b-
Galactosidase) Staining
SA-b-gal staining of BMSCs was conducted as previously
described (42). Senescence b-galactosidase staining kit and X-
gal were purchased from Cell Signaling Technology (CST, USA).
Briefly, cells were fixed in fix solution at room temperature for
15 min and stained with fresh staining solution at 37°C
overnight. SA-b-gal-positive cells were counted in randomly
selected five fields by Image J software.

RNA Extraction, cDNA Synthesis, and
Quantitative RT-PCR (qRT-PCR)
Total RNA was extracted from the distal metaphysis of right
femurs, BMCs and cultured BMSCs according to the protocol
provided by the manufacturer with TRIzol reagent (Invitrogen,
Thermo Fisher Scientific, USA). The total RNA (1 mg) was
converted to cDNA using PrimeScript RT reagent Kit with
gDNA Eraser (Takara, Japan). Gene expression analysis was
performed using LightCycler 96 Real-Time PCR System (Roche,
Switzerland) and TB Green Premix Ex Taq II (Takara). Primer
sequences were summarized in Table 2. The relative mRNA
levels of target genes were normalized to that of b-actin. Data
analysis was performed with the 2-DDCT method.

Western Blot Analysis
The total protein from BMCs and cultured BMSCs was obtained
by using RIPA lysis buffer with general protease inhibitor
cocktail and general phosphatase inhibitor cocktail (Absin,
Shanghai, China). Protein lysates were quantified using a BCA
quantification kit (Absin), subjected to sodium dodecyl sulfate-
polyacrylamide gels (SDS-PAGE) and electrotransferred to
PVDF membranes (GE Life Sciences, USA). The membranes
were blocked with 5% milk solution, incubated with primary and
secondary antibodies in sequence. The primary antibodies
against b-actin, p21, p53, STAT3 and phospho-STAT3, as well
as secondary antibodies were from CST. The results of western
blot analysis were obtained by ChemiDoc XRS+ system (Bio-
Rad, USA) with ECL reagents (GE Life Sciences).
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Statistical Analysis
Results were presented as mean ± standard deviation (SD).
Statistical analysis was performed using SPSS 5.0 software.
Statistically significant differences between two groups were
determined using unpaired, two-tailed Student’s t test, and
two-way ANOVA (genotype x diet) with post-hoc test was
used for multiple group comparisons. Actual P values have
been shown in each graph or statistically significant p values were
labeled as follows: * P<0.05, ** P<0.01, *** P<0.001 (compared to
the same genotype); # P<0.05, ## P<0.01, ### P<0.001 (compared
to the same diet).
RESULTS

IL-6 KO Restrained Trabecular Bone Loss
in HFD-induced Obesity
The obesity models were established with WT and IL-6 KO mice
after HFD for 12 weeks. Compared with the SD, the weight of
WT mice was increased by 25%, 36%, and 41% after HFD for 4,
8, and 12 weeks, while the weight of IL-6 KO mice was increased
by 9%, 20%, and 22% (Figures 1A, B). Moreover, we found that
the levels of IL-6 in serum increased significantly after HFD in
WT mice (Table 3). To evaluate the effects of HFD and IL-6 on
the bone mass and bone microstructure, mCT was used to assay
the trabecular bone of distal femoral metaphysis, L3 vertebra,
and the cortical bone of femoral mid-diaphysis. On the SD, no
difference was observed between WT and IL-6 KO mice in the
trabecular bone of the distal femoral metaphysis (Figure 2A) and
the L3 vertebra (Figure 2B). On the HFD, the distal femoral
metaphysis of WT mice showed obvious reduction in trabecular
BV/TV, Conn. D, Tb. N and Tb. Th, and prominent increase in
SMI and Tb. Sp, the L3 vertebra of WT mice showed distinct
reduction in trabecular BV/TV and Tb. Th, and significant
increase in SMI and Tb. Sp. The distal femoral metaphysis and
L3 vertebra of IL-6 KO mice showed no significant changes in
bone mass and bone microstructure after HFD. Additionally, no
significant changes were detected in cortical BV/TV, Ct. Th and
BS/BV in the femoral mid-diaphysis of WT and IL-6 KO mice
after HFD (Figure 2C). These results indicated that IL-6 KO
retained trabecular bone loss in HFD-induced obesity.

IL-6 KO Rescued the Decreased
Osteogenesis in HFD-induced Obesity
To investigate the possible contributor of bone loss after HFD,
we further analyzed the bone turnover indicators. TRAP
staining of proximal tibia showed no significant difference
between WT and IL-6 KO mice after SD or HFD (Figure 3A).
The level of serum bone formation biomarker PINP was
significantly decreased in WT mice (14.3 to 8.7 ng/ml) after
HFD, while it kept a similar level in IL-6 KO mice (11.8 to
12.9 ng/ml) after HFD (Figure 3B). In addition, mRNA levels
of collagen type 1 alpha 1 chain (Col1a1) and Col1a2 in
metaphysis of WT mice were significantly reduced, while those
in IL-6 KO mice did not show notable changes after HFD
TABLE 2 | Primer sequences.

Target
gene

Forward (5′ to 3′) Reverse (5′ to 3′)

b-actin AGATTACTGCTCTGGCTCCTAGC ACTCATCGTACTCCTGCTTGCT
Col1a1 CTGGCGGTTCAGGTCCAAT TTCCAGGCAATCCACGAGC
Col1a2 CCCAGAGTGGAACAGCGATT ATGAGTTCTTCGCTGGGGTG
Adipoq ATCTGGAGGTGGGAGACCAA GGGCTATGGGTAGTTGCAGT
Pparg CACTCGCATTCCTTTGACATC CGCACTTTGGTATTCTTGGAG
Lepr GGTCCTCTTCTTCTGGAGCCT AGAACTGCTTTCAGGGTCTGG
p53 TCAGCCTCTTGATGACTGCC ATCGTCCATGCAGTGAGGTG
p21 GTGAGGAGGAGCATGAATGGA GAACAGGTCGGACATCACCA
p16 CGCTTCTCACCTCGCTTGT TGACCAAGAACCTGCGACC
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(Figure 3C). These results suggested that HFD inhibited
osteogenic differentiation, while IL-6 KO rescued the HFD-
induced decreased osteogenesis.

IL-6 KO Attenuated Adipogenesis of BM in
HFD-induced Obesity
HFD induced significant obesity in mice of both strains, while
the weight gain of IL-6 KO-HFD mice was significantly lower
than that of WT-HFD mice. Obesity-induced osteoporosis is
closely related to osteogenesis and adipogenesis in the BM. We
next investigated BM adiposity via osmium-mCT and H&E
staining. On the SD, IL-6 KO mice exhibited less BMAT,
compared with WT mice (Figure 4A). The osmium signal was
increased in WT mice, while it was not statistically changed in
IL-6 KO mice after HFD. In addition, the amounts of adipocytes
in proximal tibia by H&E staining were statistically increased
only in WT mice, but not in IL-6 KO mice (Figure 4B). These
data indicated that HFD induced a greater amount of BMAT in
WT mice than that in IL-6 KO mice.

Since the osteogenesis and adipogenesis of BMSCs created a
tug-of-war between osteoblasts and adipocytes, we next
examined the mRNA levels of adipogenic differentiation genes
in bone marrow cells (BMCs). BMCs contained BMSCs,
hematopoietic cells, immune cells, etc. but not BMAs or
erythrocytes. The BMCs from WT-HFD mice exhibited
increased adipocytic differentiation capacity compared with
WT-SD mice measured by mRNA gene expression of
adipogenic genes (Adipoq, Pparg, Lepr), indicating that HFD
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increased an adipogenic cell population in BM (Figure 4C).
However, the adipogenic gene expression (Adipoq, Pparg) in the
BMCs from IL-6 KO mice was not significantly changed after
HFD, which suggested that IL-6 KO restrained HFD-induced
BMAT expansion. These results implied that IL-6 might enhance
the adipogenic potential of BMSCs to accelerate trabecular bone
loss in HFD-induced obesity.

IL-6 KO Attenuated Senescence of BMCs
in HFD-induced Bone Loss
We have observed the differences in the increase of adipogenesis
and the decrease of osteogenesis in BM of the two strains of mice
in HFD-induced obesity, and obesity can also accelerate cellular
senescence (27, 43, 44). As an important component of
senescence-associated secretory phenotype (SASP), IL-6 can
enhance cell senescence through autocrine and paracrine
pathways (45). The HFD induced distinct increase in IL-6
levels of the culture supernatant of primary BMSCs in WT
mice (Table 3), suggesting the senescent phenotype of BMSCs.
Considering the senescence of BMSCs promoted bone loss (27),
we explored whether IL-6 KO could inhibit senescence of
BMSCs. Bone marrow cells (BMCs), containing hematopoietic
cells, immune cells etc., were purified into BMSCs through
culturing. The number of colonies from BMCs was
significantly decreased in WT mice after HFD, while it
remained similarly in IL-6 KO mice after HFD (Figure 5A).
The changes in mRNA levels of typical senescence marker
p16 were not statistically significant in the four groups of
mice (Figure 5B). However, p21, another typical aging
marker, in BMCs was significantly increased in WT-HFD mice
while it did not change observably in IL-6 KO-HFD mice
(Figures 5B, C). Although the mRNA level of p53 in WT
mice showed only a slight increase after HFD, the protein level
was significantly increased. Moreover, the protein level of p53 in
BMCs was not significantly changed in IL-6 KO mice after HFD.
It was reported that IL-6 activated intracellular STAT3/p53/
p21 signal transduction and induced senescence of vascular
smooth muscle cells (36). As IL-6/sIL-6R was involved in the
A B

FIGURE 1 | The obesity models were established with WT and IL-6 KO mice. (A) Body weight curves of WT and IL-6 KO mice after SD or HFD (n = 5).
(B) Photographs of mice in each group after 12 weeks of dietary intervention. Data were expressed as mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001: compared
to the same genotype; #P < 0.05, ##P < 0.01, ###P < 0.001: compared to the same diet.
TABLE 3 | The levels of IL-6 in serum and culture medium of BMSCs in WT
mice after SD or HFD.

Mice Serum (n = 7) Culture medium of primary
BMSCs (n = 8)

WT-SD
WT-HFD

15.2 ± 6.4 pg/ml
28.9 ± 7.1 pg/ml **

11.0 ± 1.0 pg/ml
20.8 ± 2.5 pg/ml ***
Data were expressed as mean ± SD. **P < 0.01, ***P < 0.001: WT-HFD mice versus WT-
SD mice.
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pathogenesis of cell senescence through IL-6/sIL-6R/STAT3
axis (30, 32–34), we explored this pathway in the process of
senescence in BMCs. HFD induced a similar protein level of
p-STAT3 in WT and IL-6 KO mice (Figure 5C). These results
suggested IL-6 KO attenuated the reduced proliferation of
BMCs and the enhanced expression of senescence markers in
HFD-induced bone loss, which implied that IL-6 promoted
senescence of BMCs.
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IL-6 Might Accelerate Senescence of
BMSCs through IL-6/STAT3 Pathway

BMSCs are the common ancestor of osteoblasts and adipocytes.
The status of BMSCs accurately reflects the potential of
adipogenic and osteogenic differentiation. To further investigate
the role of IL-6 on BMSCs senescence, we generated replicative
senescent BMSCs from BMCs of WT and IL-6 KO mice by
A

B

C

FIGURE 2 | IL-6 KO restrained the trabecular bone loss in HFD-induced obesity. (A) The trabecular bone parameters at distal femoral metaphysis were evaluated as
BV/TV, Conn. D, SMI, Tb. N, Tb. Th and Tb. Sp from WT and IL-6 KO mice after SD or HFD treatment. Representative images for mCT 3D reconstruction were
shown in lower panel (scale bar = 100 mm). (B) The trabecular bone parameters at the L3 vertebra were measured via mCT from WT and IL-6 KO mice after SD or
HFD treatment. The red circles indicate the ROI. (C) The cortical bone parameters at femoral mid-diaphysis measurement were evaluated as BV/TV, Ct. Th and BS/
BV from WT and IL-6 KO mice after SD or HFD treatment. Data were expressed as mean ± SD.
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cultivation and passage. SA-b-gal is a key feature in the process
of cell senescence. The SA-b-gal positive BMSCs from IL-6 KO
mice were significantly less than that from WT mice when
cultured for passage 9 (P9) (Figure 6A). IL-6 neutralization
antibody exposure resulted in significant reduction in SA-b-gal
positive cells in WT mice, while BMSCs from IL-6 KO mice
showed more positive cells after being treated with recombinant
IL-6. Furthermore, the mRNA and protein levels of senescence
Frontiers in Endocrinology | www.frontiersin.org 7150
markers (p53, p21) in BMSCs fromWT were markedly decreased
after IL-6 antibody treatment (Figures 6B, C). In contrast, the
mRNA and protein levels of senescence markers (p53, p21) in
BMSCs from IL-6 KO mice were significantly increased after
recombinant IL-6 treatment (Figures 6D, E). The protein level of
p-STAT3 was notably decreased in senescent BMSCs from WT
mice with IL-6 antibody treatment, while expression of p-STAT3
showed significant increase in BMSCs from IL-6 KO mice after
A

B C

FIGURE 3 | IL-6 KO rescued the decreased osteogenesis in HFD-induced obesity. (A) Histopathological analysis on bone sections from tibia stained with TRAP
staining from WT and IL-6 KO mice after SD or HFD treatment (scale bar = 50 mm). Osteoclast surface per bone surface (OcS/BS) was evaluated in tibia (right
panel). (B) Bone formation marker PINP was measured in serum of WT and IL-6 KO mice after SD or HFD. (C) The mRNA levels of osteogenic markers Col1a1 and
Col1a2 were measured in metaphysis of WT and IL-6 KO mice after SD or HFD. Data were expressed as mean ± SD.
A

B

C

FIGURE 4 | IL-6 KO attenuated adipogenesis of BM in HFD-induced obesity. (A) Representative images of BMAT from full-length tibial sagittal plane of WT and IL-6
KO mice fed with SD or HFD by mCT. Quantification of the osmium density in tibial sagittal plane was expressed as tibia adiposity (right panel). (B) Histopathological
analysis on bone sections from tibia stained with H&E staining from WT and IL-6 KO mice after SD or HFD treatment (scale bar = 50 mm). Adipocyte number per
field on H&E section was evaluated by Image J software (right panel). (C) The mRNA levels of adipogenic genes in bone marrow cells (BMCs) of WT and IL-6 KO
mice after SD or HFD. Data were expressed as mean ± SD.
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recombinant IL-6 treatment (Figures 6C, E). Taken together,
these results implied that IL-6 accelerated senescent phenotype
of BMSCs through the IL-6/STAT3 pathway, suggesting a
potential mechanism for bone loss in HFD-induced obesity.
DISCUSSION

The body weight of WT and IL-6 KO mice was increased
significantly after HFD, while IL-6 KO mice gained less weight
thanWTmice (Figures 1A, B). The changes of body weight were
consistent with the previous study (46), but not exactly as the
same as the results of several other studies due to the different
dietary intervention time, the consistency of the initial body
weight of the two strains of mice, and the animal conditions (47–
49). Previous study has suggested that the trabecular BV/TV, Tb.
N and Tb. Th of IL-6 KO mice were higher than those of WT
Frontiers in Endocrinology | www.frontiersin.org 8151
mice through bone histomorphormetry after SD (47). In our
study, the high-resolution mCT system was used to analyze the
bone microstructure of WT and IL-6 KO mice, and we found
similar levels of BV/TV, Conn. D, SMI, Tb. N, Tb. Th and Tb. Sp
between WT-SD and IL-6 KO-SD mice. The dietary intervention
time and detection methods in our study were different from the
previous study (47), which may help explain the inconsistent
results of bone phenotypes. In the present study, we found 12-
week HFD treatment obviously enhanced trabecular bone loss in
WT mice, but it failed to do so in IL-6 KO mice (Figures 2A, B).

Evidence has shown that HFD led to chronic low-grade
inflammation and local lipid accumulation (50). There are two
main imbalances in the development of osteoporosis (OP): one is
bone-fat imbalance, the other lies on the uncoupled bone
remodeling (9). Bone resorption marker TRAP staining
showed no significant difference between WT and IL-6 KO
mice after SD or HFD (Figure 3A). Furthermore, both the
A

B

C

FIGURE 5 | IL-6 KO attenuated senescence of BMCs in HFD-induced bone loss. (A) Representative images for colony formation of bone marrow cells (BMCs) from
WT and IL-6 KO mice after SD or HFD treatment. The number of colonies per well was counted and calculated (right panel). (B) The mRNA levels of typical aging
markers (p53, p21, p16) in BMCs from WT and IL-6 KO mice after SD or HFD. (C) Western blot analysis of indicated proteins (p53, p21, p-STAT3, STAT3, b-actin)
in BMCs of WT and IL-6 KO mice fed with SD or HFD for 12 weeks. The expression of p53 and p21 was normalized against b-actin, and the expression of p-STAT3
was normalized against STAT3. Quantitative analysis with Image J software was shown on the right panel. Data were expressed as mean ± SD.
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levels of PINP in serum and the mRNA levels of osteogenic
markers in metaphysis indicated that IL-6 KO restrained HFD-
induced decrease of osteogenesis (Figures 3B, C). It was widely
accepted that abnormal expansion of BMAT plays a crucial role
in the onset and progression of OP, in part because both
adipocytes and osteoblasts originate from a common ancestor
lineage and there is a competitive relationship between
adipogenic and osteogenic differentiation of BMSCs (51).
Marrow adipocytes are dynamic: their size and number can
Frontiers in Endocrinology | www.frontiersin.org 9152
change in response to environmental, nutritional, and hormonal
cues (39). In our study, IL-6 KO suppressed HFD-induced
BMAT expansion (Figures 4A, B). In addition, IL-6 KO
restrained the increase of adipogenic genes (Adipoq, Pparg) in
BMCs induced by HFD (Figure 4C). Therefore, IL-6 KO
inhibited the adipogenesis in BM, arrested the shift of BMSCs
from the osteoblast lineage to the adipocyte lineage.

BM adiposity is a manifestation of BMSCs senescence,
and obesity accelerates cell senescence (27, 43, 44). Tencerova
A

B

D E

C

FIGURE 6 | IL-6 accelerated senescence of BMSCs through IL-6/STAT3 pathway. (A) Representative images for SA-b-Gal staining of replicative BMSCs with or
without IL-6 neutralization antibody from WT mice, and with or without recombinant mouse IL-6 treatment from IL-6 KO mice. (Cell nucleus: dark blue, SA-b-gal-
positive cell: cyan, scale bar = 50 mm). Quantification of SA-b-Gal positive cells evaluated with Image J software (right panel). (B) The mRNA levels of p53 and p21 in
replicative BMSCs with or without IL-6 antibody treatment from WT mice. (C) Western blot analysis of indicated proteins (p53, p21, p-STAT3, STAT3, b-actin) in
replicative BMSCs with or without IL-6 antibody treatment from WT mice. The expression of p53 and p21 was normalized against b-actin, and the expression of p-
STAT3 was normalized against STAT3. Quantitative analysis with Image J software was shown on the right panel. (D) The mRNA levels of p53 and p21 in replicative
BMSCs with or without IL-6 treatment from IL-6 KO mice. (E) Western blot analysis of indicated proteins in replicative BMSCs with or without recombinant IL-6
treatment from IL-6 KO mice. The expression of p53 and p21 was normalized against b-actin, and the expression of p-STAT3 was normalized against STAT3.
Quantitative analysis with Image J software was shown on the lower panel. Data were expressed as mean ± SD.
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et al. found BMAT accumulation and BMSCs senescence
were increased in BM cavity in obesity (27, 43). Moreover,
obesity results in the accumulation of senescent glial cells in
proximity to the lateral ventricle, while senescent glial cells
exhibit excessive fat deposits (44). As one of the most
important inflammatory mediators in obesity, IL-6 was also
involved in the pathogenesis of cell senescence. IL-6 KO
inhibited aging-related accumulation of p53 in mouse
myocardium (52). Cell senescence involves in multiple
signaling pathways (53). The senescence associated gene p21 is
a well-known target gene of p53 that has been shown to play a
critical role during the process of p53 induced cellular senescence
(54). We hypothesized that IL-6 KO may restrain HFD-induced
accelerated senescent phenotype in the BM microenvironment.
Several lines of experimental evidence supported this hypothesis.
First, IL-6 KO inhibited the HFD-induced decrease in the
number of colonies from BMCs (Figure 5A). Secondly, IL-6
KO inhibited HFD-induced increase of senescence-specific
markers in BMCs (Figures 5B, C). This may explain the
possible molecular mechanism of IL-6 KO preventing HFD-
induced bone loss. IL-6 KO may prevent HFD-induced
BMSCs exhaustion and the creation of a senescent BM
microenvironment, thereby relieving bone fragility in HFD-
induced obesity.

Senescent cells secrete multiple inflammatory factors,
chemokines and matrix proteases, known as senescence-
associated secretory phenotype (SASP). IL-6 is an important
component of SASP. IL-6 can enhance cell senescence through
autocrine and paracrine pathways (45). Replicative BMSCs
derived from WT mice when grown in medium supplemented
with IL-6 antibody, exhibited consistently less SA-b-gal staining
and lower levels of senescent markers (p53, p21) than controls
(Figures 6A–C). The recombinant IL-6 administration led to
increased SA-b-gal staining and higher levels of senescent
markers (p53, p21) in replicative BMSCs from the IL-6 KO
mice, when compared to controls (Figures 6A, D, E).

It was reported that the IL-6/sIL-6R complex activates the
JAK/STAT3 signal transduction pathway and inhibits G1 to S
phase transition of cell cycle (34, 36, 52). Previously, IL-6/sIL-6R
induced premature senescence in normal human fibroblasts
through STAT3/p53 pathway, and there was a potential binding
site (5′-TTnnnnGA-3′) of p-STAT3 in the p53 promoter region
(30, 35). Moreover, IL-6 activated intracellular STAT3/p53/p21
signal transduction and induced senescence of vascular smooth
muscle cells (36). In our study, although BMCs from IL-6 KO
mice expressed similar levels of p-STAT3 with WT mice after
HFD (Figure 5C), less p-STAT3 expression was detected
when the effects of IL-6 were removed in replicative senescent
model using BMSCs fromWT and IL-6 KOmice (Figures 6C, E).
This supports the hypothesis that the activation of IL-6/STAT3
promotes the senescence of BMSCs in BM, suggesting a potential
mechanism for trabecular bone loss in HFD-induced obesity.

In summary, we demonstrated the effect of IL-6 on
differentiation and senescence of BMSCs in HFD-induced
obesity. IL-6 KO restrained HFD-induced trabecular bone loss
and BMAT increase. IL-6 might promote BMAT expansion and
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break the balance between osteogenesis and adipogenesis of
BMSCs in HFD-induced bone fragility. IL-6 promoted BMSCs
senescence through IL-6/STAT3 pathway, suggesting a potential
mechanism for bone loss. Therefore, IL-6 KO contributed to the
maintenance of bone mass after HFD. Our results showed, for
the first time, that the IL-6 may be involved in the potential
mechanism of HFD-induced trabecular bone loss by breaking
the balance between osteogenesis and adipogenesis of BMSCs
and promoting senescence of BMSCs in HFD-induced obesity.
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The masticatory system is a complex and highly organized group of structures, including
craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular
elements. While the musculoskeletal structures of the head and neck are known to have a
different embryonic origin, morphology, biomechanical demands, and biochemical
characteristics than the trunk and limbs, their particular molecular basis and cell biology
have been much less explored. In the last decade, the concept of muscle-bone crosstalk
has emerged, comprising both the loads generated during muscle contraction and a
biochemical component through soluble molecules. Bone cells embedded in the
mineralized tissue respond to the biomechanical input by releasing molecular factors
that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-
derived factors act as soluble signals that modulate the remodeling process of the
underlying bones. This concept of muscle-bone crosstalk at a molecular level is
particularly interesting in the mandible, due to its tight anatomical relationship with one
of the biggest and strongest masticatory muscles, the masseter. However, despite the
close physical and physiological interaction of both tissues for proper functioning, this
topic has been poorly addressed. Here we present one of the most detailed reviews of the
literature to date regarding the biomechanical and biochemical interaction between
muscles and bones of the masticatory system, both during development and in
physiological or pathological remodeling processes. Evidence related to how
masticatory function shapes the craniofacial bones is discussed, and a proposal
presented that the masticatory muscles and craniofacial bones serve as secretory
tissues. We furthermore discuss our current findings of myokines-release from
masseter muscle in physiological conditions, during functional adaptation or pathology,
and their putative role as bone-modulators in the craniofacial system. Finally, we address
the physiological implications of the crosstalk between muscles and bones in the
n.org March 2021 | Volume 11 | Article 6069471156
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masticatory system, analyzing pathologies or clinical procedures in which the alteration of
one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-
bone crosstalk in the masticatory system opens broad possibilities for understanding and
treating temporomandibular disorders, which severely impair the quality of life, with a high
cost for diagnosis and management.
Keywords: musculoskeletal system, masticatory muscles, craniofacial bones, paracrine communication,
bone biomechanical
INTRODUCTION

A strong positive-association between bone mass and muscle
mass throughout life has been attributed to their shared function
(1–5). This mechano-functional theory has been built upon
studies using different approaches. Among these, clinical
studies have shown simultaneous decreases in bone and muscle
mass when musculoskeletal activity decreases, as in neuronal
lesions leading to paralysis, neuromuscular dystrophies,
microgravity, immobilizations or prolonged rest (2, 6–8).
Likewise, the concomitant loss of both muscle and bone mass
in the elderly (sarcopenia and osteoporosis, respectively) leads to
a reduction in motility and increases the risk of falls and
fractures, heightening morbidity and mortality. How this
relationship occurs is not only relevant for basic science; due
to the progressive aging of the world population, musculoskeletal
disorders are reaching an epidemic status (9, 10). Thus,
providing knowledge on the topic can help to the development
of prevention and treatment strategies.

Muscle-bone crosstalk, long regarded as exclusively
biomechanical, has, over the last decades, been opened to the
idea of an additional biochemical component. Thus, muscles and
bones are considered secretory tissues capable of releasing
soluble molecules to regulate each other (3, 6, 11, 12).

The masticatory system is a highly organized group of
craniofacial structures, including bones (maxillae and
mandible), teeth, joints, neurovascular elements, and the
muscles responsible for moving the mandible. Mandibular
movements are required for vital functions such as
mastication. These are made possible by the coordinated action
of the masticatory muscles (jaw closing and jaw opening) that
displace the mandible in a wide range of motions in the tri-
dimensional space. That displacement is also guided by the
articular surfaces of the temporomandibular joint (TMJ) (13).
The biomechanical input from masticatory muscles is not only
required for mandibular movement but also for TMJ
maintenance (14, 15). The functional and/or structural
alterations in one or more of the structures of the TMJ are
recognized as temporomandibular disorders (TMDs), grouped
by muscular, articular, or developmental conditions (16, 17).

The masticatory system is a highly coordinated machine,
where minimal deregulation in one of the components evokes
dramatic alterations in the whole system. Because of this, it is an
exciting model to study muscle-bone crosstalk. To date, the
molecular basis for muscle plasticity or muscle-bone
interaction has not been studied in the masticatory system,
n.org 2157
hindering the development of proper therapies against direct
targets in TMDs. Considering that jaw muscles are anatomically
and biochemically different to those of the trunk and limb (18–
20), it is essential to study them at the cellular and molecular
level. Some of the masticatory muscles unique features are: 1) In
the embryo, they develop from the mesoderm of the first
pharyngeal arch, while the trunk and limb muscles derive from
the somites; 2) They express a broader range of myosin heavy
chain (MyHC) in adulthood (in addition to type I-IIA-IIX), such
as neonatal and cardiac isoforms; 3) They have a high number of
hybrid fibers (one fiber expressing several MyHC subtypes),
which leads to the development of high force in a fatigue-
resistant mode; 4) Their fiber morphology is unusual, with
type II fibers smaller in diameter than type I; 5) The velocity
of shortening of their type I and type II fibers is even slower and
faster, respectively, than their counterparts in the trunk and
limbs (Figure 1) (20, 21). Moreover, masticatory muscles are
highly moldable, depending on genetic and environmental
factors (21).

Besides, compared to the postcranial skeleton, the jaws
present some unique developmental and morphological
features (Figure 2). They derive from the embryonic neural
crest cells instead of the embryonic mesoderm; they support
teeth, which means that they are exposed to additional
developmental processes (anatomical and molecular) until
young adulthood; they undergo pathologies that are not
present in other bones (many of them related to the presence
of teeth); as part of the axial skeleton, they contain more red bone
marrow than yellow bone marrow; their regeneration capacity is
higher than that of the other axial bones; and they are under the
constant mechanical stimulus produced by chewing, speech, and
swallowing (22–25) (Figure 2).

Most of the muscle-bone functional relationship has been
addressed through bone biomechanics, i.e. how loading and
movement impact bone shape through modeling and
remodeling. The cellular processes responsible of this
relationship were however not broadly studied. In addition, in
the last decade, the molecular crosstalk between bone and muscle
has received increasing attention. The present review gathers and
organizes for the first time the current evidence of the cross-
communication between muscles and bones in the masticatory
apparatus, starting from their intimate biomechanical
relationship to the current knowledge on molecular cross-talk
generated by our own work and the work of other researchers.
We propose that, as it occurs with other features of the
masticatory apparatus, the muscles and bones of this territory
March 2021 | Volume 11 | Article 606947
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hold a particular biochemical communication through secreted
molecules mediating auto/paracrine responses, in particular
“myokines” and “osteokines.” Finally, we address how the
dysregulation of the masticatory muscles affects the bone
component and vice versa, in pathologies, adaptations, or
interventions. The latter reinforces the functional interrelation
of the components of the masticatory apparatus and challenges
to elucidate the molecular bases that mediate this process.
Frontiers in Endocrinology | www.frontiersin.org 3158
BIOMECHANICAL INTERACTION
BETWEEN MUSCLES AND BONES
IN THE MASTICATORY SYSTEM;
FROM FUNCTION TO SHAPE

Mechanical stimulation, which at a tissue level results in
microdeformation of the cells and the extracellular matrix, is
an essential factor for bone development and determining bone
A

B

C

FIGURE 1 | Particularities of masticatory muscles with respect to that of the
trunk and limbs. Differences between trunk and limb muscles (left panels) and
masticatory muscles (right panels) are depicted, as indicated at the top of the
figure. (A) While the trunk and limb muscles form from the mesoderm-derived
somites, the masticatory muscles are derived from mesodermic-derived cells
at the first pharyngeal arch (origin sites colored in dark-brown). (B) The trunk
and limb muscles express myosin heavy chains (MyHC) type I, IIA, or IIX.
Each myofiber expresses a single type of MyHC, and type II fast-fibers have a
larger diameter than type I slow-fibers. In masticatory muscles, apart from the
classic MyHC types (I, IIA, IIX), the neonatal and cardiac (atrial) types are
expressed. There is a large proportion of “hybrid” fibers, simultaneously
expressing several MyHCs types. This means that the fibers can have great
force-generating properties, with high resistance to fatigue. Additionally, in
masticatory muscles, type I fibers are larger in diameter than type II. (C) In
masticatory muscles, type I myofibers are even 10-fold slower than in trunk
and limbs. Moreover, the velocity of shortening of type II myofibers is faster in
masticatory muscles as compared to the trunk and limbs ones.
A

B

D

C

FIGURE 2 | Particularities of the mandibular bone with respect to the trunk
and limb bones. Differences between long bones of the appendicular skeleton
(left panels) and mandible (right panels) are depicted, as indicated at the top
of the figure. (A) While long bones derive from embryonic mesoderm,
mandibular bone derives from cells of the 1st pharyngeal arch coming from
the neural crest (origin sites colored in dark-brown). (B) Mandible is the only
structure supporting the four main mineralized tissues: bone, cartilage,
enamel, and dentin. Instead, long bones only have bone and cartilage.
Because jaws support the teeth, they are exposed to additional
developmental processes until adulthood and undergo pathologies that are
not present in other bones. (C) While long bones contain both red and yellow
bone marrow, the jaws mainly have red bone marrow. (D) Mesenchymal stem
cells (MSC) derived from mandible have better osteogenic potential than
derived from long bones; they have a higher proliferation rate and
mineralization, with an increased regeneration capacity. OB: osteoblasts.
March 2021 | Volume 11 | Article 606947

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Buvinic et al. Muscle-Bone Crosstalk in Masticatory System
shape in adults. The mechanostat hypothesis by Harold Frost
(26, 27), is still widely accepted among researchers in
biomechanics. It proposes that when mechanical stimulation
produces bone strains in or above the 1,500-3,000 microstrain
range, bone modeling increases bone mass. In comparison,
strains below the 100-300 microstrain range activate bone
resorption, which reduces unnecessary bone that is
metabolically expensive. Low strain magnitudes acting at high
frequency are also important in promoting bone formation (28,
29). For this to occur, bone cells responsible for bone deposition
and resorption must sense such changes in mechanical stimuli.
During muscle contraction and during loading due to e.g., body
weight, the deformation of bone tissue, intertrabecular spaces,
bone canaliculi and movement of interstitial fluids cause
mechanica l s t imul i that os teocytes sense through
mechanoreceptors. This signal is then transduced to different
parts within the cell until a target molecule is activated (30).

Although research in this field of mechanoreception and
mechanotransduction is still ongoing, some aspects have been
elucidated. Among the mechanoreceptors, there are
mechanosensitive ion channels that change the polarization
status of a cell; integrins that connect the cell membrane with
the extracellular matrix and have the inherent capacity to initiate
signal transduction; connexins that allow cells in a network to
“inform” the others about the mechanical milieu; lipid rafts
associated to cytoplasmic second-messengers; and the same cell
membrane and primary cilia which during deformation causes
conformational changes in molecules that cause the transduction
of signals (30–33). During mechanotransduction the
cytoskeleton is deformed, which moves organelles and
proteins, deforms the nucleus, and activates ion channels and
G-protein receptors; in addition, second messengers are
activated following the activation of a mechanoreceptor (30,
31). Mechanotransduction ends with the expression of genes
and synthesis of proteins such as the receptor activator of nuclear
factor kappa-B ligand (RANKL), sclerostin, osteopontin, and
fibroblast growth factor 23, among others relevant for bone
homeostasis (30, 33).

The masticatory apparatus produces loads of variable
magnitude and high frequency on the teeth and jaws. Unlike
in the appendicular skeleton, the loads cause complex patterns of
bone deformation during normal function. These cause bone
modeling and remodeling, which ultimately shapes the adult
form of the jaw to a mechanically fit morphology. These loads are
produced directly by tension in the entheses, but perhaps more
markedly, by microdeformation of the entire structure as a result
of the different force vectors acting on it. During the power
stroke of mastication, maximal muscle activity and bone strain
occur. Forces acting on the jaw during the power stroke can be
represented in a simplified manner using lever mechanics, where
the TMJ acts as the fulcrum, the distance of muscle insertion to
the TMJ is the force arm, and the biting force is the resistance
arm. The more anterior the biting point, the lower the resulting
biting force, and vice versa. In a frontal plane, a more laterally
placed biting point (e.g., at the posterior teeth of animals with
wide palates like humans) is close to the TMJ, reducing the length
Frontiers in Endocrinology | www.frontiersin.org 4159
of the resistance arm and increasing bite force. The logical
conclusion is that biting in posterior teeth is more efficient in
terms of the use of muscle force. A more detailed review on the
mechanics of biting in humans can be found in Hylander (34) and
Lieberman (35). In this simplified model, not only the biting point
and the entheses (at the cranium andmandible) are loaded, but also
the TMJ surfaces. The appliedmuscle forcemagnitude decomposes
at the biting point and the TMJ. Thus, if a large muscle force is
generated during contraction, a large bite force reduces the reaction
force at the TMJ. The resulting forces produced during biting cause
the deformation of the jaw (Figure 3). Due to its simpler anatomy
compared to the maxilla, the mandible has undergone most of the
studies in this regard. Using experimental and theoretical
approaches in humans and non-human primates, it has been
shown that the mandible deforms in three main patterns: bending
of the sagittal plane, transversal bending (also called “wishboning”),
and twisting of the corpus and symphysis (37–40) (Figure 3).
Studies byDaegling (37) andFukase (41) analyzing themorphology
of the mandible in macaques and humans, respectively, concluded
that a thick cortical bone is located in the anterior part of the
mandible and towards the posterior end of the corpus, precisely
where strains during biting are the largest.

The study of the primate cranium has presented a comparable
level of evidence regarding the impact ofbiting forces onbone strain
and, thus, morphology. Bromage found that the orientation of
collagen fibers in the circumorbital region of macaques follows the
directionsof strainsproducedon itduringbiting (42).These strains,
March 2021 | Volume 11 | Article 606947
FIGURE 3 | Schematic representation of the forces acting on the mandible
during static biting and the resulting bone deformation patterns described in
the literature. Image built using a three-dimensional reconstruction of CT-data
from an individual in Toro-Ibacache et al. (36).
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however, although enough to have an impact at the tissue level,
would not be the cause of presence of the supraorbital torus in these
animals (43). In a series of experimental and observational studies,
Toro-Ibacache et al. showed that during incisor andmolar biting in
humans, the most strained areas of the face are the alveolar process
in relation to the loaded tooth and the frontal and zygomatic
processes of the maxilla (44–46). These areas at the same time are
formed by dense bone that forms the cranial buttresses and also
show evidence of bone deposition (47). The deformation pattern in
the human cranium does not vary much from that of non-human
primates, consisting of a ventral bending of the anterior part of the
maxilla during incisor biting (45, 48), and compressionof the lateral
aspect of the orbit during molar biting (45, 49).

Considering the evidence above, it is then logical to assume
that a modification of masticatory forces also affects skull form.
Experimental work in animal models has shown that the
impairment of masticatory muscle activity and/or softening
food consistency leads to a reduction in the thickness of the
trabecular bone of the condylar process (50, 51), to a
reorganization of it (51, 52), and to a gracilization in the form
of the entire skull (53, 54). Observational studies in humans
agree with these results. Raphael et al. (55) showed in women
with TMJ disorders that those who had received intramuscular
injections of botulinum toxin had a decreased bone density of the
condylar process in compared to women who did not receive the
injections. Overloading of the TMJ could also lead to
degeneration of the joint components (56, 57). Egli et al. found
in people affected by Duchenne muscular dystrophy that they
progressively developed malocclusions, which are associated
with lowering bite forces and a detriment of the masticatory
function (58). Moreover, it has been proposed that the diet of the
modern, urban populations, based mainly on highly extraorally
processed food items, is the cause of a reduction in jaw size that
results in dental malocclusions in modern humans which are not
found in their ancestors (59–61). In addition, dental
malocclusions reduce masticatory efficiency (62), and altered
maxillomandibular relationships are at the same time associated
to broad ranges of craniofacial shape variation (36, 63, 64).

From a developmental perspective, an optimal masticatory
function should act by canalizing craniofacial form. However, this
does not seem to be the rule in modern humans. Although it is
possible to find a relationship between the intensity of masticatory
activity and the shape of the craniofacial skeleton, this seems
relatively modest, increasing only when functional limits are
reached, i.e. when either very high/low/infrequent force
magnitudes or altered force vectors are produced. In this regard,
Toro-Ibacache et al. found that modifying the patterns of
masticatory muscle activity (i.e. the relative force produced by
each jaw-closing muscle during biting) changes the peak strain
magnitudes, but not where these are located; only large, asymmetric
modifications were able to change the location of TMJ peak strains
from the balancing to the working side (45). Moreover, the same
author described a weak covariation between masticatory muscle
force and craniofacial shape inhumans (46) and founddifferences in
mandibular and cranial shape only among groups of individuals
withmarkeddifferences in diet consistency/dental occlusion pattern
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(36, 63). Shape covariation between the upper and lower jaws/dental
arches is also lower in humans when compared with other animals
(65), which has been associated with the comparatively lower
mechanical and kinetic constraints underwent by humans during
the normal masticatory function. Conversely, stronger covariation
has been found in individuals with malocclusions when compared
with those with normal occlusion (64, 66). Taken together, these
antecedents support the idea that in humans, there has been a
reduction in the constraining role of themasticatory function on the
shape of the craniofacial skeleton. This means that under
physiological conditions that do not involve intense nor too low
masticatory forces, the human cranium displays a broad range of
morphologies, which may be the result of other, non-mechanical
factors. However, outside these functional limits, there are
morphological consequences on craniofacial bones, as seen in the
aforementioned studies with congenital and induced muscle
paralysis and dental malocclusions. How this can be of use in the
clinical context has been in part explored; changes in how the
musculoskeletal system works is the basis of orthopedics and other
related disciplines, such as orthodontics and management of TMJ
disorders. However, achieving predictable, long-term results is
sometimes challenging. For example, some malocclusions relapse
after the end of orthodontic treatment, and some individuals do not
respond to the orthopedic management of TMJ disorders. At the
same time, the use of extreme functional settings or the use of large
external forces to induce bone changes can also cause tissue damage.
Thus, how toachieve afine-tuningof the relationshipbetween forces
and bone (and articular tissues)morphology is yet to be understood.

In conclusion, chewing generates forces that cause the
deformation of the skeleton. This deformation is sensed at the
cellular level, eliciting a response that can result in bone resorption
or deposition. These processesmodify the shape of the loaded bone,
turning it into a structure able to withstand the new loading
scenario. This relationship, however, is not always linear. In
humans, whose masticatory activity is less intense compared to
that of other mammals, the shape of the craniofacial skeleton is
remarkably variable, and it does not necessarily correlate to
masticatory function parameters. However, under extreme
functional situations, the form of the jaws is more prone to reflect
the loading scenario. Controlling this non-linear relationship
between form and function could be key in achieving predictable,
long-term results in clinical situations where functional or
externally applied forces are the therapeutic tools.
MASTICATORY MUSCLES AND BONES
AS SECRETORY TISSUES. MUSCLE-
BONE INTERACTION THROUGH
SIGNALING MOLECULES

Muscle-Bone Crosstalk; Looking
Beyond Mechanics
The relationship between muscles and bones in health and
disease has been mainly considered as a mechanical process in
which bone provides an attachment site for muscles and muscles
March 2021 | Volume 11 | Article 606947
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apply load to bone (67). It is known that bone adjusts its mass
and architecture to changes in mechanical load, so it is strongly
influenced by muscle contraction (68). In recent years, the idea
has emerged that beyond this mechanical coupling of muscle and
bones, there is a biochemical crosstalk through secreted
molecules (11). In effect, both muscle and bone produce
factors that circulate and act on distant tissues, the classical
definition of an endocrine signal. Therefore, molecular
communication with its adjacent tissue is even more likely to
occur. Understanding this apparent biochemical coupling
between muscles and bones is an exciting new avenue of
research (2, 3, 6, 69). Muscles and bones have been recently
defined as endocrine organs, secreting “myokines” and
“osteokines.” respectively. These molecules are secreted after a
wide range of stimuli and run autocrine, paracrine, and
endocrine effects in several tissues. A recent review by Kirk
et al. summarizes the current knowledge about molecules
involved in musculoskeletal communication, including not
only myokines and osteokines, but also adipokines (12). The
list of currently defined myokines includes myostatin, interleukin
(IL)-5,6,7,8,15, brain-derived neurotrophic factor (BDNF),
Irisin, Insulin-Like Growth Factor (IGF), b-aminoisobutyric
acid (BAIBA), matrix metalloproteinase-2, and Fibroblast
Growth Factor (FGF)-2, which mediate the crosstalk between
skeletal muscles and adipose tissues, blood vessels, central
nervous system, and/or bone (3, 6, 70–72). Muscle-derived
exosomes and miRNAs have been found in the circulation and
influenced by exercise and disease, but their paracrine/endocrine
role on other tissues has been not well-established (73, 74).
Actually, efforts are directed towards muscle secretome
elucidation (75, 76). Likewise, bone cells, which historically
have been considered a target of the endocrine system, have
been described in recent years as secretory entities of signaling
molecules for controlling local or long-distance processes (77–
79). Molecules suggested as osteokines include Osteocalcin (80),
Sclerostin (81), Prostaglandin-E2 (PGE2) (81), Fibroblast
Growth Factor 23 (FGF-23) (82), Transforming Growth Factor
b (TGF-b) (83), RANKL (84, 85), and Wnt3a (81, 86)

The intimal muscle-bone relation is strongly evidenced by the
fact that in open fractures, if muscle injury is also extensive, or if
muscle atrophy develops, healing of the fracture is significantly
impaired (11, 87, 88). In contrast, when the fracture area is
covered with muscle flaps, even without tendon attachment,
bone repair is significantly improved (88). This reinforces the
communication between muscles and bones through soluble
molecules, complementary to signaling by mechanical loading.
In a mouse model of deep penetrating bone fracture and muscle
injury, the exogenous administration of recombinant myostatin
significantly reduced bone callus formation, while increasing
fibrous tissue in skeletal muscle (87). Furthermore, assays
using conditioned media coming from C2C12 cultured
myotubes demonstrated that skeletal muscle-secreted factors
protect the osteocytes against apoptosis evoked by
glucocorticoids, by activating the b-catenin pathway (89). In
the opposite way, conditioned media derived from osteocytes
evokes calcium transients and myogenesis of a C2C12 cell line,
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mimicked by the bone-released factor prostaglandin E2
(PGE2) (81).

Biochemical Muscle-Bone Crosstalk
in the Masticatory System—From In Vitro
to Preclinical Evidence
As previously described, the muscle-bone relationship in the
masticatory system has been mostly studied from a
biomechanical perspective. However, differentiating the
mechanical component and the biochemical signaling by
secreted molecules is not straightforward. Nowadays, there are
no studies available that address biochemical crosstalk between
muscles and bones in the masticatory system. However, several
molecules described as myokines or osteokines in the
musculoskeletal system of the trunk and limbs have been
reported acting in the masticatory region, allowing to propose
their putative role in bone-muscle communication.

A common crit icism of the idea of biochemical
communication between muscles and bones is that the
molecules released from one of them must pass multiple tissue
barriers to move from one tissue to another. The presence of
physical barriers such as endomysium, perimysium, and
epimysium in muscle and periosteum in bone is always
mentioned. However, it has been demonstrated the presence of
vessels coming from muscle in bone, in direct relation to
osteocytes (3), which would allow a rapid endocrine effect
between them. In particular, the injection of bone marrow
mononuclear cells into rat masseter muscle has been shown to
help repair bone after mid-palate expansion procedures (90).
Therefore, if cell migration between the masseter and the palate
occurs, communication via molecules is highly probable.

Next, we list several molecules well-described as muscle-bone
interactors in the trunk and limbs and analyze the background
suggesting their involvement in the masticatory apparatus.

Myostatin
Myostatin (GDF-8) is a member of the TGF-superfamily. It is
released by muscle cells and acts as an autocrine negative
regulator of muscle mass (91). An increase in myostatin levels
is related to conditions of skeletal muscle injury, disuse, or
sarcopenia (92, 93), and limits the bone formation/resorption
index (94). In contrast, reduction of myostatin expression by
using genetic approaches or pharmacological inhibitors highly
increases skeletal muscle mass, bone formation, and bone
regeneration (95–98). The effect of myostatin on bone
remodeling has historically been attributed to its direct effect
on muscles and their biomechanical role on the skeleton.
However, it is currently known that myostatin has a direct
impact on bone cells, such as the acceleration of osteoclasts
formation evoked by RANKL (99) and the inhibition of
osteoblasts differentiation by controlling the content of the
exosomes derived from osteocytes (74). This is why myostatin
has emerged as one of the candidates in muscle-bone crosstalk.
Knockout mice lacking myostatin, called “mighty mice,” have
higher morphologic dimensions of the mandibular condylar
process, corpus, and symphysis (100). Moreover, they have
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increased mineralization at the corpus (101), as well as in the
condylar subchondral bone and mandible neck (102). Myostatin-
deficient mice have longer and “rocker-shaped” mandibles, with
shorter and wider crania compared to controls (103).

Insulin-Like Growth Factor 1
IGF-1 is mainly produced in the liver, but it is also expressed in
skeletal muscle and highly increases after exercise (104). In
addition, IGF-1 is the main growth factor in the bone matrix
(105); it is expressed by osteocytes and upregulated in response
to mechanical loading (106). It is also well known that IGF-1 is a
relevant anabolic factor in muscle and bone and has been
proposed as a potential muscle- bone crosstalk molecule (107).
Several functional changes in skeletal muscle, such as unloading,
overloading, or denervation, modify the expression of proteins of
the IGF-1 signaling pathway, which relates to changes in muscle
fiber type (104, 108). When rats are fed with a soft diet
immediately after weaning, the mRNA levels for IGF-1, IGF-2,
IGF receptor (IGFR) 2, IGF binding proteins (IGFBP) four and
six in masseter muscle are reduced (109). Furthermore, in the
masseter muscles of mice feeding a soft diet after weaning, there
is a reduction in IGF-1, IGF-2, and IGFBP5 expression (110). In
parallel, murine models of masticatory reduction through soft
diet consumption show alterations in morphology and molecular
markers in masseter muscle and mandible (Table 1, Figure 4). A
decrease in masseter muscle activity has been reported (114,
115). Furthermore, a reduction in masseter muscle mass and
fibers diameter have been demonstrated in rats (110, 117) and
mice (111, 118, 124) after soft-diet consumption. MyHCIIB (fast
glycolytic) expression levels are increased in a 580%, and
MyHCIIA (fast-oxidative) mRNA levels are reduced in a 70%
in rats fed with a soft diet (109), consistent with observed in all
muscle disuse models. It has been established that the increased
expression of genes related to hypercatabolism works as a
molecular marker of muscle atrophy. Of these, the most
studied are the ubiquitin ligases muscle RING finger 1 (Murf1)
and muscle atrophy F-box (MAFbx or Atrogin), relevant
components of the ATP-dependent ubiquitin-proteasome
pathway (130). We have recently reported an increase in
atrophy markers Atrogin and Murf in the masseter muscle of
adult mice, as early as 2 days after start eating a soft-diet (4- and
20-fold increase, respectively). After 30 days of consuming the
soft diet, the levels of Atrogin and Murf expression were
increased by 35- and 150-fold, respectively, compared with
mice eating regular pellets (118, 124). In mice and rats, the
soft-diet consumption modifies both mandible and condylar
morphology, by reducing mandible ramus height and
robustness and condylar width (54, 57, 113, 115, 117). A
reduction in bone volume fraction of the mandibular condyle
and masseter muscle attachment sites have been observed, as well
as a reduction in articular cartilage thickness (112, 115, 116, 131).

On the other hand, it has been recently demonstrated that a
mouse model of increased mastication by hard-diet consumption
shows raised levels of IGF-1 and a decrease in sclerostin expression
in osteocytes. In this model, an increase in bone formation at the
enthesis of the masseter muscle was observed (132).
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Then, the IGF-1 signaling either decreases or increases after
hypo- or hyperfunction of the masticatory system, respectively.
IGF-1 is expressed by both the masseter muscle fibers and
mandibular osteocytes, which makes it a strong candidate for
mediating muscle-bone crosstalk in this territory (Figure 4).

Interleukin-6 (IL-6)
IL-6 family of cytokines comprises ten members, such as IL-6,
IL-11, leukemia inhibitor factor (LIF), and oncostatin M
(OSM). IL-6 synthesis and release have been historically
related to immune cells, for mediating B- and T-cells
development with a pro-inflammatory role (133). However,
nowadays, it is known that there are several sources of IL-6,
such as epithelial cells, fibroblasts, osteoblasts, synovial cells,
cancer cells, and skeletal muscle fibers, leading to either pro- or
anti-inflammatory events (134, 135). IL-6 is a 26 kDa
glycopeptide that binds a specific IL-6 receptor (IL-6R, either
membrane-associated or soluble (sIL-6R)) (134). IL-6 was the
first molecule defined as “myokine” when Pedersen and
colleagues demonstrated a link between IL-6 and exercise
(136). IL-6 is a myokine released from skeletal muscles during
exercise, with a plethora of physiological effects in autocrine,
paracrine and endocrine ways (135, 137, 138). The magnitude of
the plasma-IL-6 increase depends on the exercise duration,
intensity, and muscle mass involved. Plasma levels of IL-6
increase up to 100-fold after exercise, without any sign of
muscle damage, nor an associated inflammatory response.
Furthermore, the concentration of IL-6 in the interstice of the
exercised muscles, measured by microdialysis, is up to 100 times
higher than the plasma concentration, suggesting a possible local
role (139).

IL-6, in an autocrine-loop, improves insulin sensitivity in
skeletal muscle cells for increasing glucose uptake (140, 141). In
addition, IL-6 produced in response to strenuous and prolonged
exercises increases satellite cells proliferation, leading to
regeneration of damaged muscle myofibers and hypertrophy
(142, 143). However, a pivotal role of IL-6 in skeletal muscle
has been proposed, being related to both skeletal muscle renewal
and wasting. Under some pathological conditions, IL-6 leads to
muscular atrophy. During cachexia [muscle wasting associated
with underlying chronic diseases such as cancer, chronic heart
failure, and chronic kidney disease (144)] it has been proposed
that increased IL-6 plasma levels mediate proteolysis at the
skeletal muscle in patients. In a mice model of cancer-evoked
cachexia, activation of the IL-6 signaling pathway has been
demonstrated in skele ta l muscles , increasing both
phosphorylation and nuclear localization of STAT3 (145).
Moreover, pharmacological or molecular blockade of the IL-6/
STAT3 signaling pathway prevents tumor-induced muscle
atrophy in mice (146). Either IL-6 infusion in wild type mice
or the transgenic mouse models for IL-6 overexpression, evoke
muscle atrophy by reducing protein synthesis and promoting
catabolic pathways (147–149). Several pharmacological therapies
targeting the IL-6 signaling pathway, mainly by using anti-IL-6
or anti-IL-6R antibodies or blockers, have had preventive effects
in cancer-evoked cachexia (150, 151), restored muscle function
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TABLE 1 | Summary of adaptations in the masseter muscle and mandible in murine models of masticatory hypofunction.

A. Soft diet consumption

Reference Effect on masseter Effect on mandible Myokines/Osteokines

Vilmann et al
(111).

↓ Fibers diameter

Saito et al (109). ↓ Type IIA fibers
↑ Type IIB and type IIX fibers

↓ IGF-1 and IGF-2 expression

Urushiyama et al
(110).

↓ Muscle mass
↓ Fibers diameter

↓ IGF-2 expression

Tanaka et al
(112).

↓ Degree of mineralization in the trabecular
bone of the mandibular condylar process

Odman et al
(113),

↓ Posterior height of the mandibular corpus
and the height of the angular process

Kawai et al
(114).

↓ Muscle activity
↓ Type IIA fibers
↑ Type IIB fibers
↓ Cross-sectional area of type IIB and IIX fibers

Hichijo et al
(115).

↓ Muscle activity ↓ Condylar articular cartilage thickness
↓ Mandibular ramus height

Hichijo et al
(116).

↓ BV/TV of the mandibular condyle and the
masseter attachment sites

Spassov et al
(54).

↓ Muscle mass Horizontally-oriented coronoid process and
smaller mandibular condylar process articular
surface

Shi et al (117). ↓ Muscle mass ↓ Tb.Th and Tb.N of the mandibular condylar
process
↓ Condylar articular cartilage thickness

Rojas-Beato
et al (118).

↓ Muscle mass
↑ Atrophy markers (Atrogin/MuRF)

↑ IL-6 expression and synthesis

B. Masseter muscle intervention with BoNTA

Reference Animal
(age)

Effect on masseter Effect on mandible Myokines/Osteokines

Tsai et al (119). Male rats
(4 wks)

↓ Muscle mass ↓ Total mandibular length

Tsai et al (120). Male rats
(8 wks)

↓ Muscle mass ↓ Mandible dimensions, BMD, Cortical Bone
Thickness and Trabecular Bone Area to
Total Bone Surface

Tsai et al (121). Male rats
(10 wks)

↓ Muscle activity (transient, up to 4 wks)

Kün-Darbois et
al (122).

Male rats
(18 wks)

↓ B.Ar/T.Ar of the alveolar and the
mandibular condylar process

Dutra et al (123). Female mice
(5 wks)

↓ BV/TV, Tb.Th, width and tissue density of
the mandibular condylar process
↑ Apoptosis and ↓ proliferation in both
subchondral bone and articular cartilage of
the mandibular condylar process

Shi et al (117). Female rats
(5 wks)

↓ Muscle mass ↓ BV/TV, Tb.Th, Tb.N, width and length of
the mandibular condylar process
↓ Condylar articular cartilage thickness
↑ Tb.Sp of the mandibular condylar process

Balanta-Melo et
al (50).

Male mice
(8 wks)

↓ Muscle mass
↓ Fibers diameter
↑ Atrophy markers (Atrogin/MuRF) and
Myogenin mRNA expression

↓ B.Ar/T.Ar and Tb.Th of the mandibular
condyle

↑ RANKL mRNA expression in the
mandibular condylar process

Balanta-Melo
2018b (124).

Male mice
(8 wks)

↑ IL-6 expression

Balanta-Melo et
al (51).

Male mice
(8 wks)

↓ Muscle mass ↓ BV/TV, Tb.Th and shape changes of the
mandibular condylar process

Balanta-Melo et
al (125).

Male mice
(8 wks)

↓ BV/TV and Tb.Th in the middle portion of
the mandibular condylar process
↓ BMD of the mandibular condylar process

(Continued)
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in a mouse model of muscular dystrophy (152), and ameliorated
muscle atrophy induced by tail suspension in mice (153).

In bone physiology, IL-6 also shows a dual role. IL-6 influences
both osteoclasts and osteoblasts differentiation through
contradictory mechanisms. It sustains bone formation, but it also
drives bone loss in various osteolytic pathologies (134). Osteoblasts
express low levels of IL-6R; therefore, sIL6R is required for
maximum IL-6 effects. IL-6 family members increase osteoblasts
markers expression andmatrix mineralization nodules, all mediated
through the STAT3 activation (154, 155). In contrast, IL-6 type
cytokines (IL-6, IL-11, LIF, and OSM) inhibit bone formation in
vitro, with potent pro-apoptotic effects, all mediated by PKCd and
ERK1/2 pathways. IL-6 clearly stimulates the osteoblastic
production of RANKL and PGE2, both involved in differentiation
and activation of osteoclasts; this has been described as the critical
event leading to pro-resorption action evoked by IL-6, and is
mediated by STAT3 signaling (156–158). In contrast, other
research groups have described that IL-6 inhibits osteoclast
formation and bone resorption in pre-osteoclasts primary cultures
or cell lines (159, 160). By using genetic strategies, it has been
demonstrated that the IL-6 deficient mice have increased bone
formation, whereas IL-6 overexpression showed a decrease in
osteoblasts and osteoid, but also in osteoclasts and bone
resorption. Then, it has been proposed that IL-6 could contribute
to bone turnover in vivo (134). An essential role of IL-6 in
osteoarticular pathologies has been established. IL6-/- mice are
protected from joint inflammation and destruction in a mouse
model of arthritis, and from bone loss evoked by estrogen depletion.
Inhibition of IL-6R with the drug Tocilizumab improves the clinical
response and suppresses the biochemical markers of osteoclast-
mediated bone destruction in patients with rheumatoid arthritis
(161, 162). In contrast, IL-6 stimulates fracture healing and bone
resistance (163). All of this data suggests that IL-6 can lead to bone
formation or resorption, depending on its pathophysiological
context. The role of IL-6 in bone turnover is then indisputable;
however, it is not easy to directly associate it to a specific effect, due
to it appears as a double-edged sword.

At the masticatory system, the role of IL-6 in muscle
homeostasis has been demonstrated. An increase in masticatory
activity in a mice model of restrained/gnawing raises IL-6 mRNA
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and protein levels in the masseter muscle. The increase in IL-6
production and release is dependent on a previous rise in IL1a-b,
and then promotes the glucose uptake in the masseter muscle.
Authors suggest that a highly coordinated loop happens, where
masseter muscle activity releases some myokine that “calls to” IL-1
positive cells around blood vessels; then, IL-1 evokes IL6
expression and release from masseter muscle, improving the
glucose homeostasis and muscle performance and preventing
muscle fatiguability (164). Ono et al. also reported an increase in
IL-6 in rat masseter muscle when stimulated electrically in situ
(100 Hz for 200 ms, 800 ms between stimulations, 10-30-60 min
total stimulation time) (165). In masseter muscles isolated after the
electrical stimulation protocol, they observed a 3-fold increase in
IL-6 mRNA levels, with no changes in IL-1 bmRNA levels. These
authors propose that considering that IL-1 b is a well-known pro-
inflammatory cytokine, the increase in IL-6 in masseter muscle
would not respond to inflammatory infiltration, but a local
synthesis in muscle fibers. When carrageenan was directly
injected in rat masseter muscles, which is an inductor of local
acute inflammation, both IL-6 and IL-1 bmRNA levels increased.
When the electrical stimulation was performed after muscle
contraction blockade with dantrolene, the increase in IL-6
mRNA was blocked, suggesting that muscle contraction is
relevant to evoke IL-6 expression. The authors reinforce the idea
that masseter muscle contraction stimulates IL-6 expression,
independent on inflammation processes (165).

Some of us have recently demonstrated that electrical
stimulation of isolated masseter muscle in vitro (20 Hz, 270
pulses, 0.3 ms each), resembling motoneuron stimulation, evokes
an increase in IL-6 mRNA expression, as well as IL-6 protein
synthesis and release (118). Thus, masseter muscle synthesizes
and releases IL-6 during activity. However, as previously
described, IL-6 has a pivotal role, as it has either anabolic or
catabolic effects in the musculoskeletal system. We have recently
demonstrated basal increases in IL-6 production and secretion in
mouse models of masseter muscle atrophy. In the previously
described model of adult mice consuming a soft diet, a 2-fold
increase in IL-6 mRNA was observed in the masseter muscle, as
early as 2 days after soft-feeding. Two weeks later, resting levels
of IL-6 mRNA and protein increased 12-fold and 2-fold,
TABLE 1 | Continued

A. Soft diet consumption

Reference Effect on masseter Effect on mandible Myokines/Osteokines

Dutra and Yadav
(126).

Female mice
(6 wks)

↓ BV/TV and articular cartilage thickness of
the mandibular condylar process (not
transient, up to 8 wks)
↑ Apoptosis in articular cartilage of the
mandibular condylar process

Vásquez et al
(127).

Male mice
(8 wks)

↓ Muscle mass
↓ Fibers diameter
↑ Atrophy markers (Atrogin/MuRF) and
Myogenin mRNA expression

↑ IL-6 expression

Animal (age)

B. Masseter muscle intervention with BoNTA
M

Evidence regarding morphological and biochemical changes in the masseter muscle and/or the mandible in murine models of soft-diet consumption (A) or masseter paralysis evoked by
BoNTA injection (B) are listed. Changes in expression of molecules classically described as myokines or osteokines are highlighted.
wks, weeks; mo, months; BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.N, trabecular number; Tb.Sp, trabecular space; B.Ar/T.Ar, bone area per tissue area; BMD, bone
mineral density; IGF, Insulin Growth Factor.
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respectively, compared with mice eating regular pellets (118, 124,
166, 167). Thus, IL-6 is highly overexpressed in a mouse model of
masseter muscle atrophy by underuse. We also developed a
mouse model of unilateral injection of Botulinum Toxin type
A (BoNTA) in the masseter muscle, specifically to address
putative alterations in the associated bone (mandibular
condylar process) evoked by muscle paralysis. This is highly
relevant in dentistry because BoNTA is used as an off-label
therapeutic tool for the management of several TMDs (125, 168).
In adult mice, we injected the right masseter with 0.2U/10 µl
BoNTA, and the left masseter with saline solution. As early as 7
days after the intervention, an increase in molecular markers of
muscle atrophy (Atrogin and Murf1) was observed, with
histological signs of atrophy after 14 d (50, 127, 167, 169). A
reduction in masseter muscle activity, muscle mass and fibers
diameter have also been observed after BoNTA injection in
masseter muscles of rats and mice (50, 117, 119–121, 170).
Interestingly, we demonstrated an increase in IL-6 mRNA
levels in muscles as early as 2 days after BoNTA injection (50,
127, 167, 169). Just 2 days after BoNTA injection in masseter
muscle, a significant increase in a molecular marker of bone
resorption (RANKL) was also observed in the ipsilateral
mandibular condylar process. Two weeks after BoNTA
injection, qualitative bone loss was detected in the right
mandibular condyle (BoNTA-side), with highly impaired bone
parameters detected by microcomputed tomography (µCT). In
contrast, contralateral saline-injected masseter muscle and its
Frontiers in Endocrinology | www.frontiersin.org 10165
adjacent condylar process remained as healthy as that in control
untreated mice (51, 125). Several other authors have observed
severe damages in mandibular morphology and microstructure
after BoNTA injection in masseter muscles of murine, with high
impact in the articular cartilage and subchondral bone (117, 119,
120, 122, 123, 126, 170). Then, BoNTA injection evokes both
muscle atrophy and bone loss at the mandibular condylar
process (as summarized in Table 1 and Figure 4). We are
currently studying the putative role of IL-6 myokine in both
muscle atrophy and bone loss evoked by BoNTA injection.
Taken together, these results support the idea that IL-6 is
released from masseter muscle either during activity and
during paralysis/atrophy, reinforcing its dual role in physiology
and pathology of the musculoskeletal system.

Interestingly, IL-6 level at the synovial fluid has been widely
associated with TMD (171). IL-6 level is undetectable in synovial
fluid from healthy controls (172, 173), but it is increased in that
from patients with chronic TMD (174). Moreover, in TMD
patients, IL-6 level at the synovial fluid is significantly higher
in the joints with bony changes in the condylar processes than
when these are not affected (175). Then, IL-6 could be associated
with bone remodeling during TMDs. It has always been
considered that, in TMD, the IL-6 at the synovial fluid comes
from synoviocytes, chondrocytes, or inflammatory cells as the
main source. But, depending on the TMD-type, masticatory
muscles should be a new source to keep in mind, considering
its great contribution to the biomass of the system.
FIGURE 4 | Hypothetical model of cross-communication between muscles and bones at the murine masticatory system. Here we relate in a graphic outline the
main changes described in rat/mouse models subjected to a reduction (Soft Diet) or an increase (Hard Diet) in diet consistency, as well as those described after
paralysis of the masseter muscle by injection of botulinum toxin type A (BoNTA). In the hypofunctional models (Soft-diet, BoNTA), an increase in interleukin-6 (IL-6)
expression and release, as well as a reduction in insulin-like growth factor 1 (IGF-1) in masseter muscle could mediate the muscle atrophy and bone loss, together
with the reduced mechanical stimulation. In addition, the increased levels of RANK ligand (RANKL) in mandibular condyle after BoNTA injection could mediate both
the osteoclastogenesis leading to bone loss and the muscle atrophy observed. On the other hand, consumption of a hard diet evokes an increase in IGF-1
expression in mandibular osteocytes, which could act as an anabolic factor in muscle and bone, leading to increased muscle mass and bone formation described in
this model. Technical information: 3D rendering of murine skull, mandible, and masseter muscles corresponds to PTA contrast-enhanced high-resolution microCT

data taken at the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany). Skull and mandible segmented with Avizo 9.2 (Thermo Scientific™, USA);
masseter muscles segmented with the Biomedical Segmentation App (Biomedisa) (128). 3D rendering of hard and soft tissues performed with DRAGONFLY 4.1
(Object Research Systems, Canada). Image built using data from an individual in Balanta-Melo et al. (129).
March 2021 | Volume 11 | Article 606947

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Buvinic et al. Muscle-Bone Crosstalk in Masticatory System
MUSCLE-BONE CROSSTALK AT THE
MASTICATORY SYSTEM IN HEALTH
AND DISEASE—MOVING TO CLINICAL
EVIDENCE

In the present section, we discuss clinical data suggesting a
biochemical communication between muscle and bone at the
masticatory system. To this end, we reviewed the evidence on
several muscular pathologies or clinical interventions leading to
bone remodeling, as well as bone pathologies leading to muscle
remodeling. We focus on the presence of molecules described in
the previous sections as myokines or osteokines.

Muscular Conditions With Potential Bone
Implications in the Masticatory System
During prolonged tooth clenching, the masseter muscle exhibits
a lower recovery capacity for tissue reoxygenation (176, 177),
which favors the development of skeletal muscle inflammation.
Britto et al. have demonstrated that hypoxia-evoked
inflammation leads to skeletal muscle hypertrophy through the
IL‐6/STAT3 pathway in human legs (178). These results may
explain the potential mechanism behind the masseter
hypertrophy in patients with parafunctional masticatory
activity (179, 180). The expression of IL-6 is also increased
during other inflammatory conditions of the masticatory
system, such as myofascial pain (181), which is part of the
group of craniofacial musculoskeletal diseases known as TMDs
(182, 183). Increased levels of IL-6 have been reported in
masseter muscles of adult women with myofascial pain
compared to healthy controls, levels that are even higher
during tooth clenching (184). Considering the dual role of IL-6
in bone formation and resorption, is highly possible that muscle-
derived IL-6 mediate mandibular bone remodeling observed
in TMDs.

Masseter hypertrophy is often associated with parafunctional
activities such as bruxism (179), but it also may have an
idiopathic background (i.e., benign masseter hypertrophy)
(185). In both cases, the aesthetic impairment caused by the
increase of masseter volume mass can be solved either using
surgical techniques or by inducing muscle atrophy with
botulinum toxin type A (BoNTA) (186, 187). The BoNTA is a
neurotoxin that blocks the release of neurotransmitters in the
skeletal muscle, leading to hypofunction and atrophy (188).
Therefore, BoNTA-induced atrophy is effective in reducing the
thickness of the masseter muscle (189). This desired aesthetic
outcome, however, may involve deleterious consequences on
mandibular bone homeostasis (51, 125). In patients that
underwent repetitive BoNTA injections to treat masseter
hypertrophy, a reduction of bone volume at the mandibular
angle was found after 6 months (190). Another study found bone
loss in the anterior portion of the mandibular condylar process 1
year after a single injection of BoNTA in both the masseter and
the temporalis muscles (191). Using a similar design, a
retrospective study identified in adult women a cortical bone
thinning in the mandibular condylar processes after two BoNTA
injections within a 6-month interval (192). In this context, the
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BoNTA intervention resulted in a more deleterious effect at the
cortical bone of the mandibular condylar process of
postmenopausal women, when compared with premenopausal
women (192). In adult women with myofascial pain, a
randomized clinical trial demonstrated a significant reduction
of the volume of the mandibular condylar process at 3 months,
after a high BoNTA dose injection in both the temporalis (25 U)
and the masseter (75 U) muscles but not at lower doses (20 U
and 50 U, respectively) (193). These results are consistent with a
cohort study, which showed no bone loss at the mandibular
condylar process in adult women with myofascial pain that
underwent BoNTA interventions under 40 U in the masseter
muscles when compared to match control population (194).
These results support the hypothesis that masticatory muscle
hypofunction negatively impacts mandibular bone homeostasis
in humans, especially at the condylar process, when high doses of
BoNTA are used. Based on our results in a mouse model, it is
advisable to characterize how the negative effect of BoNTA-
induced masseter atrophy on the mandibular bone occurs. Is it
limited to a biomechanical interaction, or does it respond to
alteration on the secretory activity of soluble factors from the
injected muscles, such as IL-6? The answer to this question may
help to develop strategies to avoid BoNTA’s deleterious effect on
the mandible.

Bone Conditions With Potential Muscle
Implications in the Masticatory System
As mentioned above, the jaws undergo pathologies that are
specific to them, but they are also affected by more general
conditions such as bone loss during aging (195). Since bone also
works as an endocrine organ (12), pathological conditions that
affect the capacity of the mandibular bone to release osteokines
could also affect muscle-bone molecular crosstalk. Here we
analyze how mandible-changes could lead to masticatory
muscles remodeling during aging, microgravity, and
periodontal disease in humans.

In postmenopausal women, a lower mandibular bone density
and higher plasma levels of osteocalcin were determined when
compared with premenopausal women (195). These results
found as a consequence of aging are consistent with those
identified during space flight conditions (i.e., microgravity)
(196). In adults of both sexes, the use of simulated
microgravity promotes a reduction of bone mineral density in
the mandibular bone and an increase in the plasma and salivary
levels of osteocalcin (197). Interestingly, in an animal study
under microgravity conditions, the masticatory muscles were
not atrophied, in contrast with those from the hindlimbs (198).
The fact that the activity of the masticatory muscles seems not to
be affected by the lack of gravity may shed light on their
structural and physiological differences to postcranial muscles.

Osteocalcin has been linked to muscle hypertrophy (12). In a
mouse model of forceful mastication, an increase of osteoblasts
positive for osteocalcin in the enthesis between the masseter and
mandibular bone was observed (132). Even more, recently has
been described that a muscle-bone axis comprising IL-6 released
by muscles and osteocalcin released and processed by
osteoblasts/osteoclasts is relevant to improve muscle
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performance during exercise (80). It seems contradictory, then,
to observe increased plasma levels of osteocalcin in older adults
and hypogravity models, which present a clear decrease in
muscle mass in the trunk and limbs. One possibility is that,
since osteocalcin is regulating the levels of IL-6 secreted by the
muscle, it may also promote the adverse catabolic effects of IL-6
on muscles and bones. Probably a fine-tuned muscle-bone axis is
controlling anabolic or catabolic final effects, depending on
myokines/osteokines concentrations, or modulated by
additional microenvironment stimuli. It is still unknown how
these molecular pathways differentially affect masticatory versus
trunk and limbs musculoskeletal system. The existence of
features that appear contradictory, such as bone loss with an
increased osteocalcin production and a preserved muscle
activity, presents an exciting opportunity to investigate the
functional peculiarities of the musculoskeletal components of
the masticatory apparatus.

In addition, while mandibular osteocytes are activated during
high load masticatory activity (132), the aging process seems to
affect their number only in the bones of the hindlimbs but not in
those of the craniofacial skeleton, including the mandible (199,
200). In vitro, it has been shown that osteocytes also produce
osteokines that impair skeletal muscle homeostasis (12, 201).
One of these osteocyte-derived osteokines is sclerostin (202).
Since masticatory function suppresses the release of sclerostin
from mandibular osteocytes (132), a reduced masticatory
function during aging increases the levels of this osteokine,
which may impact the masticatory muscles negatively through
a molecular (and not purely mechanical) mechanism.

The inflammatory periodontal disease that causes alveolar
bone loss (i.e., periodontitis) increases the level of osteokines like
osteocalcin in the gingival crevicular fluid (GCF) of
postmenopausal women (203). This increase, however, was not
found in the saliva or plasma of the periodontally ill patients
(203). Moreover, there is a lack of correlation between the
presence of systemic bone disease (osteopenia and
osteoporosis) and osteocalcin levels in either salivary, plasma
or GCF samples (203–205). Another recognized osteokine,
sclerostin, is also increased in the GCF of periodontally ill
patients (12, 206). In bone tissue, sclerostin is a negative
regulator of bone mass through the inhibition of the Wnt
signaling in the osteoblast lineage (206). The osteoblast
population of the human mandible, however, exhibits a higher
Wnt signaling response to external vibration when compared
with osteoblast from the iliac bone (207). In adults with
moderate to severe periodontitis, a significant increase of
sclerostin in the GCF was determined when compared with
healthy patients (208). In contrast, Wnt proteins levels in the
GCF were no significatively different between periodontally ill
and healthy patients but were increased in individual sampled
sites (periodontally compromised) when compared with healthy
sites (208). Taken together, the results of this clinical study
suggest both sclerostin and Wnt proteins as a promising
diagnostic tool for periodontitis (208). Since sclerostin has
been presented as an osteokine with catabolic potential on
muscle cells, these results allow us to hypothesize a molecular
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(and not purely mechanical) link between periodontitis and the
reduction of the masticatory muscle thickness that has been
found in periodontally ill patients (209).

The osteocyte population is a crucial regulator of both
sclerostin and RANKL local expression during active
periodontal disease (210). The sclerostin and RANKL are
negative bone mass regulators by inhibiting Wnt signaling and
by inducing osteoclastogenesis, respectively (210–212).
Specifically, the receptor of RANKL, RANK, is expressed in the
skeletal muscle tissue (213) and a deleterious effect of RANKL on
muscle homeostasis has been suggested (212, 214). Although
periodontitis is known to increase the systemic inflammatory
burden affecting, e.g., the cardiovascular system (215), it is
reasonable to hypothesize that inflammatory diseases of the
jaws can affect masticatory muscle homeostasis, as these are
anatomically closer and linked through the vascular network.
CONCLUDING REMARKS
AND FURTHER PERSPECTIVES

In this review, we summarized and discussed the available
information regarding the muscle-bone interaction in the
masticatory apparatus, with an emphasis in the molecular
crosstalk between both tissues, an emerging research area that
shows promising applications in clinics. The structures of the
masticatory apparatus present biochemical, structural, and
functional characteristics that make them physiologically very
different from the musculoskeletal components of the trunk and
limbs. The bones in the masticatory apparatus also have a high
rate of remodeling, not only during development and postnatal
growth but well into adulthood. In addition, an essential
morphofunctional relationship between the muscles and bones
has been described in this region.

To date, the approach to study the muscle-bone crosstalk in
the masticatory apparatus has been mostly biomechanical. Here,
we present the evidence suggesting that the communication
between the jaws and masticatory muscles also occurs via
secreted molecules, which opens a new field of research.
Molecules defined as “myokines” (e.g., IGF-1 and IL-6) or
“osteokines” (eg, Osteocalcin, Sclerostin, RANKL) have been
described as expressed in the masticatory apparatus. The levels
of these mediators are altered both in animal models of use/
disuse of the masticatory apparatus, as well as in
pathophysiological conditions in humans. Due to the large
biomass component provided by the masticatory muscles, it is
highly probable that they contribute through myokines in the
pathogenesis of temporomandibular disorders. Molecules such
as IL-6, which have been reported elevated in the synovial fluid of
individuals affected by TMDs, and have been essentially
associated with chondrocytes or inflammatory cells, could well
be derived from masticatory muscles. Likewise, the molecules
that mediate bone resorption associated with periodontitis could
cross-affect masticatory muscles and contribute to the loss in
their volume.
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It is already challenging to experimentally separate the
biomechanical from the biochemical component in the
musculoskeletal system, but even more so in the masticatory
apparatus, which due to its structural characteristics makes it
difficult to work with isolated cells. For example, the culture of
isolated fibers is of common use to study limb muscles. It is,
however, very complex in multipennate muscles such as the
masseter, with fibers of very different lengths, orientations, and
firmly attached to bone and tendons. To our knowledge, obtaining
isolated masseter muscle fibers has been briefly described in only
one article (216), but to date, no cellular or biochemical studies have
been reported that use them in vitro. Likewise, obtaining bone
precursors for in vitro cultures, which is easy from long bones such
as the femur or the tibia, is operationally muchmore challenging in
the mandible (217). It therefore remains a challenge to find
experimental designs that allow for evaluating the biochemical
muscle-bone crosstalk in the masticatory apparatus. Probably,
genetic manipulation approaches, directed to proteins in specific
cell types, will be relevant in this mission.

The understanding of how the cells of themasticatory apparatus
(muscle, bone, cartilage, immune) communicate through
molecules, both in health and disease, will contribute to the global
understanding of how the masticatory apparatus remodels. More
importantly, it will allow for having precise therapeutic targets,
focused not only to alleviate the symptoms but to tackle some
prevalent orofacial pathologies from their bases.
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In addition to its structural role, the skeleton serves as an endocrine organ that controls
mineral metabolism and energy homeostasis. Three major cell types in bone - osteoblasts,
osteoclasts, and osteocytes – dynamically form and maintain bone and secrete factors
with systemic activity. Osteocalcin, an osteoblast-derived factor initially described as a
matrix protein that regulates bone mineralization, has been suggested to be an
osteoblast-derived endocrine hormone that regulates multiple target organs including
pancreas, liver, muscle, adipose, testes, and the central and peripheral nervous system.
Sclerostin is predominantly produced by osteocytes, and is best known as a paracrine-
acting regulator of WNT signaling and activity of osteoblasts and osteoclasts on bone
surfaces. In addition to this important paracrine role for sclerostin within bone, sclerostin
protein has been noted to act at a distance to regulate adipocytes, energy homeostasis,
and mineral metabolism in the kidney. In this article, we aim to bring together evidence
supporting an endocrine function for sclerostin and osteocalcin, and discuss recent
controversies regarding the proposed role of osteocalcin outside of bone. We summarize
the current state of knowledge on animal models and human physiology related to the
multiple functions of these bone-derived factors. Finally, we highlight areas in which future
research is expected to yield additional insights into the biology of osteocalcin
and sclerostin.

Keywords: osteoblast, osteocyte, osteocalcin, sclerostin, bone homeostasis
INTRODUCTION

Traditionally considered as a structural organ, the skeleton provides mechanical support and
protection for soft organs and facilitates mobility. To maintain skeletal integrity, the three major cell
types within bone – osteoblasts, osteocytes, and osteoclasts – remodel bone through coupled
processes. Osteoclasts are multinucleated hematopoietic cells of the monocyte-macrophage lineage
that resorb bone along its surfaces (1). Osteoblasts originate frommesenchymal progenitor cells and
produce bone matrix proteins to facilitate bone formation on the surface (2, 3). Some osteoblasts
acquire long dendritic processes and embed within bone to become terminally-differentiated
n.org March 2021 | Volume 12 | Article 5841471175

https://www.frontiersin.org/articles/10.3389/fendo.2021.584147/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.584147/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.584147/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mnwein@mgh.harvard.edu
https://doi.org/10.3389/fendo.2021.584147
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.584147
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.584147&domain=pdf&date_stamp=2021-03-10


Wang et al. Endocrine Functions of Sclerostin and Osteocalcin
osteocytes (4). Osteocytes remodel their surrounding bone
matrix and orchestrate the activity of osteoblasts and
osteoclasts (4).

One way that osteoblasts, osteocytes, and osteoclasts
communicate is through production of paracrine signaling
molecules that act on neighboring cells. Well known bone-
derived paracrine factors include sclerostin (osteocyte-derived
inhibitor of Wnt signaling), receptor activator of NF-кB
ligand (RANKL, a key regulator of osteoclast differentiation
produced mainly by mesenchymal osteoblast-lineage cells),
monocyte/macrophage colony stimulating factor (M-CSF,
osteoblast-derived stimulator of myeloid cell survival and
osteoclastogenesis) and osteoprotegerin (OPG, osteoblast-
derived inhibitor of osteoclastogenesis) (5–10). Beyond well-
established bone-derived paracrine-acting factors that
participate in cross-talk between cell types within bone, bone-
derived endocrine factors have also been reported.

Other than its classic structural role, the paracrine and
endocrine functions of bone are essential for organismal
homeostasis. Fibroblast growth factor 23 (FGF-23) is mainly
secreted by osteoblasts and osteocytes and plays an important
role in regulating phosphate homeostasis (11). Osteocalcin
(OCN), the most abundant non-collagenous bone matrix
protein, is produced specifically by osteoblasts and is suggested
to regulate the biological processes of multiple organs including
bone, brain, liver, pancreas, testes, muscle, the parasympathetic
nervous system, and adipose tissue (11). Recent studies
demonstrate that osteoblast-derived lipocalin 2 (LCN2)
regulates glucose tolerance, insulin sensitivity, and insulin
secretion to maintain glucose homeostasis (12). In addition to
its paracrine roles, effects of sclerostin on adipose tissue and
mineral metabolism have also been reported recently, with an
additional possible role in preventing vascular calcification (13–
15). Given the established role of FGF-23 in regulating renal
phosphate handling and the relatively limited information on
LCN2, this review will focus on osteocalcin and sclerostin. Here,
we will bring together the recent data on osteocalcin and
sclerostin in bone and distant target organs, primarily focusing
on important new insights into the role of these circulating
factors learned from animal models.
OSTEOCALCIN

Osteocalcin, or bone g-carboxyglutamic acid (Gla) protein, is an
osteoblast-derived circulating protein. Osteocalcin is initially
synthesized as a prohormone (95 amino acids) and then
cleaved to form the mature peptide (46 amino acids) that
contains three g-carboxyglutamic acid residues at positions 13,
17 and 20 (16). In human, the mature peptide has 49 amino acids
and is g-carboxylated at positions 17, 21 and 24 (17). g-
carboxylation increases the affinity of osteocalcin to the
mineral component of the extracellular matrix. This leads to
the accumulation of g-carboxylated osteocalcin in bone (18).
Osteoclast resorption, on the other hand, creates an acidic
environment where osteocalcin is de-carboxylated. Under-
Frontiers in Endocrinology | www.frontiersin.org 2176
carboxylated osteocalcin has lower affinity to bone matrix and
is released into the bloodstream where it can function as an
endocrine hormone (19, 20).

OCN is encoded by a single gene (BGLAP) in human, while
mice have a cluster of three genes (Bglap, Bglap2, and Bglap3)
within a 25 kb genomic region (21–23). Bglap and Bglap2 are
highly expressed in bone, while Bglap3 has a relatively lower
expression in bone, but higher expression in kidney and lung
(23–25). The amino acid sequences of g-carboxylated Ocn
encoded by Bglap and Bglap2 are identical. The sequence
encoded by Bglap3 is different from the sequences encoded by
Bglap and Bglap2 by four amino acid residues (26).
OSTEOCALCIN IN SKELETAL
DEVELOPMENT

To study and understand the role of osteocalcin in bone
formation, Karsenty and colleagues generated the first Ocn-
deficient mouse (Osc-/Osc-) in 1996 (27). Mice homozygous for
the deletion of Bglap and Bglap2 were generated in embryonic
stem (ES) cells by homologous recombination. Exon4 of Bglap
and the entire sequence of Bglap2 were replaced by a PGK-Neo
cassette. Osc-/Osc- pups are viable, fertile and there are no skeletal
defects at birth. At 6 and 9-months of age, osteocalcin null mice
showed significantly increased bone mass, bone strength and
bone formation, without changes in osteoblast numbers or bone
resorption. A subsequent study on the role of osteocalcin in
extracellular matrix using fourier-transform infrared imaging
(FTIR) showed larger hydroxyapatite crystal size (28). More
recently, it was reported that osteocalcin null mice on a pure
C57BL/6J background show increased carbonate-to-mineral
ratio in cortical bone (29).

More recently, studies of two independently-generated
osteocalcin knockout mouse models were published in PLOS
Genetics. In an article by Diegel and colleagues, the authors
generated a Bglap and Bglap2 double-knockout (Bglap/2dko/dko)
strain using CRISPR/Cas9-mediated gene editing (26). More
specifically, they designed guide RNAs that target Bglap and
Bglap2, but not Bglap3. In one founder allele, a 6.8-kb fragment
was deleted which leads to a functional junction between exon 2 of
Bglap to exon 4 of Bglap2. The authors reported no differences in
bone mass or bone strength between homozygous mutants and
wild-type mice. Further FTIR analysis revealed that Bglap/2dko/dko

mice have increased crystal size and higher carbonate-to-mineral
ratio. Moriishi and colleagues also reported a novel Ocn knockout
strain (Ocn-/-) using homologous recombination by replacing the
genomic region encompassing Bglap and Bglap2 with the gene
conferring neomycin resistance (30). Both trabecular and cortical
bone mass are similar in wild-type and Ocn knockout mice. While
most skeletal parameters analyzed were normal, these authors did
observe disrupted orientation of hydroxyapatite crystals along
collagen fibrils in their Ocn-/- strain.

Several possible explanations exist for differences in skeletal
phenotypes among three osteocalcin knockout models, including
mouse genetic background, sex, differences in age of analysis,
March 2021 | Volume 12 | Article 584147
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effects of mutated alleles on neighboring genes and, potentially,
technical differences between homologous recombination and
CRISPR/Cas9-mediated gene editing. In all 3 osteocalcin-null
models, complete genome sequencing has not been performed,
which leaves open the possibility that ‘off-target’ effects related to
traditional or CRISPR/Cas9-mediated target gene modification
may drive phenotypic differences. Though the specificity of Cas9
is determined by the 20-base pair (bp) sequence of the sgRNA
and the NGG trinucleotide (the protospacer-adjacent motif,
PAM) adjacent to the target sequence, off-target mutations can
be induced at sites that differ slightly from the on-target sites
(31–33). Sensitive and comprehensive approaches are therefore
required to detect off-target sites. Currently developed and
widely-adapted methods include deep sequencing, web-based
in silico prediction tools, and ChIP-seq (34–37). Compared to
CRISPR-Cas9 gene editing, conventional homologous
recombination leads to rare off-target effects (38). Whole
genome sequencing of all three osteocalcin mutant mouse
strains may therefore prove useful to clarify potential
differences between these models at the level of locus
modification and potential off-target changes. Osc-/Osc- mice
from Karsenty and colleagues were initially generated and
characterized in the mixed BL6/129 background; more
recently, studies related to energy metabolism, male fertility
and neurobiology on that studies have been performed on a
‘pure’ 129 background (39–41). Bglap/2dko/dko mice generated by
Diegel and colleagues were on a mixed BL6/C3H background
Frontiers in Endocrinology | www.frontiersin.org 3177
(back-crossed to C57BL/6 for 2 generations). Ocn-/- mice were
generated in the pure C57BL/6 background by Moriishi and
colleagues. Studies from Berezovaska and colleagues do support
genetic background as a contributing factor to different
osteocalcin null phenotypes (29). When Osc-/Osc- mice were
backcrossed to pure C57BL/6J mice (more than 8 generations),
reduced bone strength was observed. Other than genetic
background, Moriishi et al. used mice with different ages and
sexes compared to Osc-/Osc- mice generated by Karsenty
and colleagues.

In summary, there are both consistent and inconsistent findings
when comparing skeletal traits in the three reported osteocalcin
knockout mouse models (Figure 1). Beyond some questions about
the role of osteocalcin in bone, different potential roles of
osteocalcin as an endocrine factor will be discussed below in
detail. At present, additional work is needed to clarify this active
controversy (42–45). Potential future strategies that could be
considered to address this controversy might include a blinded,
side-by-side comparison of the 3 different osteocalcin-null models
with appropriate age- and sex-matched littermate controls. This
approachmayhelp to tease apart the relative role ofmethodological
differences in assessing metabolic phenotypes (see below) versus
inherent intrinsic differences between different osteocalcin mutant
strains indriving different observations.An additional, constructive
approach may be to backcross to ‘purity’ all mouse models on the
same genetic background and then rigorously re-analyze
each model.
FIGURE 1 | Summary of three osteocalcin null mouse models and their observed phenotypes in different tissues. Karsenty and colleagues generated the first Ocn-
deficient mouse (Osc-/Osc-) in 1996. Bglap and Bglap2 were deleted in embryonic stem cells using homologous recombination. Diegel and colleagues generated the
Bglap and Bglap2 double-knockout (Bglap/2dko/dko) strain using CRISPR/Cas9-mediated gene editing. Moriishi and colleagues generated the novel Ocn knockout
mouse (Ocn-/-) using homologous recombination by replacing the genomic region encompassing Bglap and Bglap2 with the neomycin resistant gene. Osc-/Osc-

mice showed increased bone mass and bone formation, while Bglap/2dko/dko and Ocn-/- mice showed similar bone mass/formation compared to their control littermates.
Many investigators reported the endocrine role of osteocalcin by studying Osc-/Osc- mice. Circulating osteocalcin stimulates b-cell proliferation and insulin synthesis in
pancreas. Under-carboxylated osteocalcin may also increase insulin sensitivity in adipose tissue and liver. Elevated osteocalcin increases nutrient uptake in muscle and
exercise capacity. In addition, osteocalcin promotes male fertility by increasing testosterone synthesis. However, initial analyses on Bglap/2dko/dko and Ocn-/- mice
demonstrated that osteocalcin has no effect on glucose level, body fat, muscle weight, and testis size. N/A, not assessed. This figure was created using Servier Medical
Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com
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OSTEOCALCIN IN ENERGY METABOLISM
(PANCREAS, LIVER, ADIPOSE
AND MUSCLE)
The first demonstration of a potential endocrine function of
osteocalcin came with the description that Osc-/Osc- mice have
high blood glucose levels, increased fat mass, glucose intolerance
due to decreased insulin synthesis and beta cell proliferation, and
insulin resistance (39). In contrast, Esp-/- mice with ablation of
osteo-testicular protein tyrosine phosphatase have opposite
metabolic phenotypes as Osc-/- animals: decreased fat mass,
increased b-cell proliferation and enhanced insulin sensitivity (46,
47). The authors went on to show that Esp-/-mice exhibit a gain-of-
function of osteocalcin phenotype since the encoded phosphatase is
a negative regulator of osteocalcin activation. Esp-deficient mice
have decreased g-carboxylated osteocalcin and therefore show
increased serum osteocalcin levels. Further studies showed that
exogenous un-carboxylated osteocalcin can also increase glucose
tolerance and insulin sensitivity (39, 48, 49). Reciprocal regulation
of osteocalcin by insulin has also been demonstrated: insulin-
treatment of MC3T3-E1 cells increased osteocalcin promoter
activity and gene expression (50). Mice with deletion of the
insulin receptor from osteoblasts show increased body fat,
impaired glucose metabolism, reduced levels of circulating
uncarboxylated osteocalcin, and impaired insulin sensitivity (49,
50). These analyses suggest a bone-pancreas endocrine loop where
insulin induces osteocalcin expression and then in turn promotes
insulin secretion. The receptorGprc6amaymediate the osteocalcin
function in pancreatic islets. In vivo, Gprc6a-/- pancreas showed
decreased b-cell mass, b-cell proliferation and impaired capacity of
insulin secretion (48). However, Diegel and colleagues showed no
differences in blood glucose (with or without fasting) and body
weight between Bglap/2dko/dko andwild-type littermates (26). These
phenotypes align with previous reports on Bglap knockout rats.
Osteocalcin null rats exhibit no change in glucose levels and insulin
resistance (51). Moriishi and colleagues also examined the role of
osteocalcin in glucose metabolism and observed similar blood
glucose between Ocn-/- and wild-type mice in both sexes at all
ages. Both glucose tolerance tests (GTTs) and insulin tolerance tests
(ITTs) showed no change of serum glucose levels in Ocn-/- mice in
both sexes, at all ages and with both normal and high fat diet fed
animals (30).

At present there is no unifying explanation to account for
these apparently discrepant findings. A large body of evidence
published in high quality, peer-reviewed journals strongly
supports a role for osteocalcin in regulating energy metabolism
(43, 52). The recent CRISPR/Cas9-generated osteocalcin-null
models reported limited numbers of mice analyzed for analysis
of glucose metabolism phenotypes. As detailed above, a
‘contemporaneous replication’ strategy (53), if possible, may be
helpful to build confidence in potentially-controversial
preclinical findings. In addition, in an important perspective
relevant to this issue, the topic of inter-lab variability in the
setting of preclinical energy metabolism models has recently
been addressed in a productive manner by top scientists from the
pharmaceutical industry (54). As noted above, differences in
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strain background and off-target effects may play an important
role in driving different observations between osteocalcin mutant
strains reported to date. In addition, important methodologic
differences must be acknowledged in how metabolic phenotypes
were assessed in the ‘newer’ osteocalcin mutant strains versus the
extensive metabolic phenotyping performed by Karsenty and
colleagues over many years and multiple publications. For
example, Diegel and colleagues measured fasting blood glucose
in n=8-11 six month old Bglap/2dko/dko mice, without measuring
insulin levels, performing dynamic testing such as oral glucose
tolerance tests or insulin tolerance tests, or investigating glucose-
related phenotypes at other ages (26). Moriishi et al. did perform
dynamic testing (30), though methodologic differences appear to
exist between doses of glucose and insulin used in their studies
versus those previous reported by Karsenty and colleagues (39).
In addition, it is possible that differences in housing conditions
(bedding, animal diet, local microbiome), sex of mice analyzed,
and experimental sample size may be present between the
different studies as well. These same methodologic issues may
contribute to differences noted between strains with respect to
assessment of fertility and gonadal hormone levels. Figure 1
summarizes the currently-available mouse osteocalcin
mutant models.

In addition to glucose intolerance and insulin resistance, Osc-/
Osc- mice showed liver steatosis, adipose tissue inflammation, and
reduced exercise capacity (46, 47). Since osteocalcin knockoutmice
(Osc-/Osc-) showed accumulation of body fat, several research
groups examined the role of Ocn as a potential mediator of
crosstalk between bone and adipose tissue. The direct role of
osteocalcin in adipocytes was demonstrated first through in vitro
analyses. In vitro uncarboxylated osteocalcin treatment of
adipocytes increased the expression of peroxisome-proliferator-
activated receptor g (master regulator of adipogenesis) and
adiponectin (an adipokine that regulates glucose and lipid
metabolism) via the Gprc6a receptor (49, 55). In vivo treatment
ofmicewith recombinant osteocalcin can also upregulate adipocyte
adiponectin in white and brown adipose tissues (46). Though
Gprc6a-/- mice also had increased fat mass, further studies are
needed to reveal whether osteocalcin interactswithGprc6a or other
potential receptors in adipose tissue (56). Two studies reported that
adiponectin plays a role in regulating insulin sensitivity in high fat
diet-fed mice (57) and adiponectin can regulate bone mass in
normal diet-fed mice without affecting glucose levels (58). It still
remains unknownhowosteocalcin affects fatmass.Uncarboxylated
osteocalcin treatment can promote the expression of adipose
triglyceride lipase (ATGL) and further lead to the induction of
lipolysis though the cAMP-PKA-ERK-CREBsignaling in vitro (59).
Livers in Osc-/Osc- mice show accumulation of lipids and steatosis
(49). Mice treated with osteocalcin have no accumulation of lipids
and show normal liver morphology though fed with high fat diet
(60, 61). The current understanding of how osteocalcin regulates
lipid accumulation is still unclear. One potential mechanism is
through the receptor Gprc6a since Gprc6a-/- mice also develop
hepatic steatosis (56).

Ocn-deficient (Osc-/Osc-) mice show reduced muscle mass
(62). To further investigate the role of osteocalcin in muscle, the
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receptor Gprc6a was conditionally deleted in myofibers using
Mck-Cre (63). Gprc6a may also serve as the osteocalcin receptor
in skeletal muscle since Gprc6a-deficient mice have impaired
exercise capacity and are resistant to osteocalcin treatment (56,
63, 64). The analysis showed that osteocalcin is necessary to
increase exercise capacity. The level of circulating under-
carboxylated osteocalcin increases during exercising. The
increasing Ocn can increase nutrient uptake and ATP
production. The potential mechanism of osteocalcin in
regulating muscle function is by promoting the expression of
interleukin-6 (IL-6) (65). Increased IL-6 level results in bone
resorption and in turn, de-carboxylates osteocalcin (66). These
studies outline a feed-forward loop between bone and muscle.
Further, both Ocn levels and muscle mass decrease with aging.
Treatment with osteocalcin augments exercise capacity in both
young and old mice (63, 64). This suggests that osteocalcin is
necessary and sufficient to maintain/increase muscle mass in
older mice. However, Moriishi et al. recently showed that there
are no differences in muscle weight or fiber area between Ocn-/-

mice and wild-type littermates (30).
Another recent review also addressed some of the

controversial actions of uncarboxylated osteocalcin in
adipocytes and hepatocytes (26, 30). Although recombinant
osteocalcin does show intriguing effects, another possibility is
that osteocalcin-deficient mice might acquire compensatory
mechanisms during development. For example, Gprc6a may
use other ligands instead of osteocalcin. Similar to osteocalcin
null mice, Gprc6a deficient mice also showed discrepancies in the
metabolic functions as reported by different laboratories (30).
OSTEOCALCIN IN MALE FERTILITY

A distinct role of osteocalcin as an endocrine factor related to
male fertility has been described. Oury and colleagues were the
first to show that osteocalcin favors male fertility (41). Male Osc-/
Osc- mice have lower litter frequencies, testis size and weights,
and testosterone levels. These phenotypes caused by osteocalcin
deficiency could be rescued by supplementing male mice with
exogenous, uncarboxylated osteocalcin. Moreover, in the gain-
of-function model of osteocalcin [Esp-/-, (40, 48, 67)],
hyperandrogenism is noted. The study further identified the G-
protein coupled receptor Gprc6a as the receptor for mediating
testosterone synthesis. Mice lacking Gprc6a in Leydig cells
showed decreased testis size, weight and testosterone levels.
The role of osteocalcin in modulating male reproduction was
also identified in humans by examining patients with primary
testicular failure due to GPRC6A mutations (68). However, both
Diegel et al. and Moriishi et al. showed discrepant results
compared to Karsenty group regarding the role of osteocalcin
in male fertility (Bglap/2dko/dko and Ocn-/-) (26, 30). Diegel and
colleagues reported that there are no differences in testis size and
blood testosterone levels between Bglap/2dko/dko and wild-type
mice. Moriishi and colleagues also demonstrated that testis size,
serum testosterone levels, testosterone synthesis and
spermatogenesis are normal in Ocn-/- mice compared to wild-
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type mice. As discussed in detail above, side-by-side analysis of
distinct strains of osteocalcin-deficient mice may be helpful to
resolve the role of osteocalcin in male fertility in mice. In
addition, careful review of potential methodologic differences
between studies may help clarify these apparent discrepancies.
Moreover, identification of additional humans with rare and
common osteocalcin/GPRC6A variants linked to male fertility
phenotypes is needed to further understand the role of
osteocalcin as an LH-independent regulator of testicular
testosterone synthesis. Additional (non-osteocalcin) ligands for
Gprc6a have been proposed. As such, an improved structure/
function understanding of how this receptor control Leydig cell
testosterone synthesis, and how Gprc6a variants affect the
function of this receptor (69), is needed (70).
OSTEOCALCIN IN THE CENTRAL AND
PERIPHERAL NERVOUS SYSTEM

Studies on a potential role for osteocalcin in the central nervous
system (CNS) were prompted by the initial observation thatOsc-/
Osc- mice displayed an extremely passive phenotype during
routine animal handling (27). Since this phenotype was present
in both male and female mice, it was unlikely to be related to
male-specific hypogonadism discussed above. Rather, it was
noted that under-carboxylated osteocalcin could cross the
blood-brain barrier where it accumulated in the midbrain and
brainstem. Formal behavioral testing revealed anxiety-like
phenotypes with learning defects in Osc-/Osc- mice (41).
Neuroanatomic analysis of brains from Osc-/Osc- mice showed
hippocampal atrophy (specifically in the dentate gyrus region)
with frequent absence of the corpus callosum. These
neuroanatomic abnormalities were associated with dramatic
changes in overall CNS neurotransmitter levels: Osc-/Osc- mice
show reduced brainstem monoamines and increased GABA
levels. At the electrophysiologic level, Osc-/Osc- mice show
increased activation potential of brainstem neurons in the
locus coeruleus. Direct delivery of recombinant un-
carboxylated osteocalcin into the CNS corrected molecular and
phenotypic abnormalities in Osc-/Osc- mice. Interestingly, the
role of osteocalcin in CNS development seems to be due to the
ability of circulating maternal uncarboxylated osteocalcin to
cross the placenta and the fetal blood-barin barrier. In
humans, decreased circulating osteocalcin levels are associated
with poor cognitive performance (71, 72). Highlighting the
potential function of CNS-active un-carboxylated osteocalcin
to restore cognitive function in aging, injection of plasma from
young control, but not Osc-/Osc-, mice improved cognitive
function and anxiety-related behaviors in aged mice.
Osteocalcin appears to accomplish these effects by promoting
synaptic transport of vesicles containing the neurotrophic factor
BDNF in a pathway in hippocampal neurons involving the
histone binding protein RbAp48 (73, 74).

While the peripheral extra-skeletal functions of osteocalcin
appear to be mediated via GPRC6A, osteocalcin uses a distinct G
protein coupled receptor to regulate neurons in the central and
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peripheral nervous system. GPR158 is a neuronally-expressed
class C GPCR required for the CNS effects of osteocalcin. Mice
lacking this GPCR in brain show similar learning defects and
anxiety-related phenotypes as Osc-/Osc- mice, and studies using
compound heterozygotes for both genes show that they function
in a similar genetic pathway (73). In neurons, GPR158 signals
through a Gaq-dependent pathway to promote IP3 generation. It
remains possible that additional CNS osteocalcin receptors exist
since the pattern of GPR158 expression does not perfectly match
the pattern of CNS uncarboxylated osteocalcin binding.

In addition to its proposed role in the central nervous system,
more recently it has also been reported that osteocalcin regulates
output of parasympathetic neurons during the “fight or flight”
(acute stress) response (ASR) (75). Exposure of rodents and
humans to stressful stimuli acutely increases circulating bioactive
osteocalcin levels in a manner dependent on the amygdala.
Interestingly, treatment of osteoblasts with the excitatory
neurotransmitter glutamate rapidly increases osteocalcin
production, and glutamatergic nerve terminals can be found
immediately adjacent to osteoblasts in bone. Therefore, the
model emerges that the ASR increases sympathetic input to
bone which in turn rapidly promotes osteoblastic osteocalcin
production. In the ASR, Osc-/Osc-mice show blunted physiologic
changes such as heat generation, increased oxygen consumption,
and increased serum glucose levels. Osteocalcin promotes the
acute stress response by binding to GPRC6A expressed in
parasympathetic neurons. Upon binding to parasympathetic
nerves, osteocalcin inhibits their firing and blunts
parasympathetic tone and therefore promotes sympathetic
output in the ASR. By linking bone and the acute stress
response, osteocalcin may serve as an endocrine link between
the ability of an organism to quickly run away from danger and
promote physiologic changes to facilitate this rapid
response (75).

Taken together, this line of investigation supports a role for
bone-derived osteocalcin as a factor that modulates brain
development and function, thereby linking bone homeostasis
with whole body physiology and higher order cognitive functions
(76). That being said, careful review of potential neuronal
functions of osteocalcin in independent models, as reviewed
above, will be helpful to build confidence in these findings.
Future studies are needed to better define the role of the
putative CNS osteocalcin receptor GPR158 in human nervous
phenotypes, and to explore whether other CNS osteocalcin
receptors may exist.
SCLEROSTIN

Sclerostin is a secreted glycoprotein expressed predominantly by
mature osteocytes that is best known as a negative regulator of
bone formation (77). Sclerostin was originally discovered
because of inactivating mutations in the coding and enhancer
regions of the SOST gene that cause the rare high bone mass
disorders sclerosteosis and van Buchem disease (78). Although
sclerostin was initially described as a BMP antagonist (79, 80), it
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is now primarily studied as a negative regulator of Wnt signaling
(81). Sclerostin antagonizes Wnt signaling by occupying Wnt
coreceptors LRP5/6 and preventing their binding to Wnt ligands,
which inhibits downstream canonical Wnt signaling (78, 82).
Sclerostin also binds directly to LRP4, a membrane-bound
protein that facilitates its interactions with LRP5/6 (83). Since
active canonical Wnt signaling promotes osteogenic
differentiation and osteoblast maturation and survival, low
sclerostin expression leads to bone anabolism whereas high
expression inhibits bone formation (77). The regulation of
sclerostin in bone in response to mechanical and biochemical
cues and its role in regulating bone homeostasis has been
reviewed elsewhere (79, 80).

The possibility that sclerostin can exert endocrine effects on
non-skeletal tissues is inspired by the detection of sclerostin
protein in circulation. Whereas sclerosteosis patients have no
detectable protein in circulation, heterozygous carriers of SOST
mutations have serum sclerostin levels approximately half that of
control subjects (84) and bone mineral density (BMD) values
higher than age-matched controls (85). In mice, sclerostin
overexpression in the liver causes increases in serum sclerostin
and loss of trabecular bone mass (86). Dozens of clinical studies
have reported correlations between serum sclerostin levels and
age, sex, bone mass, and disease (87). While most studies agree
that circulating sclerostin increases with age (88–90), puzzling
inconsistencies and contradictions exist, such as reports of both
positive (89, 91, 92) and negative (93) associations between
serum sclerostin and bone mass. The extent to which sclerostin
measured in serum typically represents an active mediator of
Wnt signaling versus a biomarker of ongoing disease (discussed
more later), remains to be determined.

Bona fide endocrine effects of sclerostin would require that
the protein be transported from the cell of origin to distant
tissues. Sclerostin is a marker of mature osteocytes, and the
osteocyte lacuno-canalicular network provides a pathway for
secreted osteocyte factors to enter the circulation (94, 95).
Inactivation of the Sost gene in mice with osteoblast and
osteocyte-targeted Cre recombinases results in undetectable
serum sclerostin, suggesting that osteocytes are the primary
source of sclerostin in circulation (96). At least two clinical
studies have found that circulating sclerostin does not correlate
with SOST mRNA in bone biopsies (91, 97). However, the
relationship between serum sclerostin and mRNA in bone
biopsies is inherently sensitive to the mechanical environment
of the biopsy site, the cortical/cancellous composition of the
biopsy, and differences in clearance rates between subjects, so
these studies do not necessarily detract from the animal work
demonstrating that osteocytes are the primary source of
circulating sclerostin. It is worth noting that Sost ablation with
Prx1-Cre-mediated recombination does not fully reduce serum
sclerostin, likely due to contributions from osteocytes in the axial
skeleton. However, the high bone mass phenotype in the
appendicular skeleton of these mice matches that seen with
systemic Sost deletion better than Dmp1- and Col1-Cre models
(96). Together these models indicate that sclerostin regulates
bone mass through primarily paracrine signaling from
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osteoblasts, osteocytes, and additional cells derived from the limb
mesenchyme. At various points in normal development and in
disease, low levels of SOST mRNA or sclerostin protein have
been detected in additional locations including cementocytes,
hypertrophic chondrocytes, synovial fibroblasts, vascular smooth
muscle cells, and kidney (79, 80, 98). There is no evidence to date
to support that cells other than osteocytes contribute
significantly to sclerostin in the circulation.

While questions remain regarding the accuracy and utility of
measuring circulating sclerostin, many groups have gone on to
test hypotheses regarding the role of sclerostin on non-bone
tissues. Here we review the effects of sclerostin on adipose tissue,
renal mineral metabolism, and the cardiovascular system. As
more evidence is gathered to determine whether bone-derived
sclerostin is implicated in these outcomes, the endocrine capacity
of sclerostin will be decided.
SCLEROSTIN IN ADIPOGENESIS

Wnt signaling plays a key role in mesenchymal progenitor
differentiation. Activation of Wnt signaling drives osteogenic
differentiation of early mesenchymal precursors, while
suppression of Wnt signaling promotes adipogenesis (99).
Through its interactions with LRP4/5/6, sclerostin inhibits
canonical Wnt signaling and could therefore stimulate
adipogenesis. Studies of body adiposity in sclerosteosis patients
have not been reported, and clinical descriptions that discuss
patient weight compared to control subjects attribute slight
increases to the extreme density of the skeleton (100).
Nevertheless, correlations between circulating sclerostin and fat
mass or metabolic disorders have inspired investigations into
possible endocrine effects of sclerostin on adipose tissue.

Clinical Evidence
Clinical studies demonstrate that serum sclerostin levels are
positively correlated with fat mass and incidence of metabolic
disorders. Serum sclerostin is positively correlated with
abdominal fat mass, android and gynoid fat mass, and body
mass index (BMI) in men and women (89, 92, 101) and with
vertebral bone marrow fat content in men (102). Men and
women with type 2 diabetes have significantly higher serum
sclerostin than non-diabetic controls (103–105). Even in
prediabetes, when insulin resistance and secretion are first
altered, circulating sclerostin is elevated and positively
correlated with fasting glucose production and metrics of
insulin resistance (106). Inactivating mutations in LRP6, as
well as single nucleotide polymorphisms (SNPs) in LRP5 that
are associated with low bone mass, are correlated with increases
in metabolic syndrome and diabetes in humans, similar to mice
that overexpress sclerostin (13, 107, 108). Individuals with a gain
of function mutation in LRP5 that causes high bone mass have
decreased upper-to-lower body fat ratio and increased insulin
sensitivity, consistent with the metabolic phenotype of mice that
do not express Sost (13, 107). These studies support a role for
sclerostin and Wnt signaling in the regulation of adipose tissue
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and whole-body metabolism, but they need to be interpreted
with caution for several reasons.

First, cross-sectional/case-control studies are insufficient to
demonstrate causal relationships between sclerostin levels and
disease phenotypes. While individual-level data allows strong
correlations to be drawn, these human studies lack interventions
that would help to rule out confounding variables. None of the
clinical trials evaluating therapeutic sclerostin-neutralizing
antibodies (Scl Ab) to date report fat mass or insulin resistance
as outcomes. This interventional design would be ideal for
assessing the effects of sclerostin in humans. Second, the
accuracy and consistency of assays for circulating sclerostin is
not well established. Significantly different sclerostin
concentrations have been found in serum and plasma from the
same patients using three different assays (87). When two
commercially available assays were compared directly, they
also produced significantly different results (109). Care must
therefore be taken when conducting meta-analyses of studies
that utilize different sclerostin assays, and individual studies
would ideally use a consistent assay for all subjects and report
their validation strategy. Third, the extent to which circulating
sclerostin levels represent active protein is not entirely certain. In
cross-sectional studies, circulating sclerostin is often positively
correlated with BMD even though high sclerostin levels would be
expected to suppress bone formation (89, 91, 92). Mendelian
randomization studies clarified this relationship, showing that
high serum sclerostin is causally related to low BMD and that
high BMD causes high serum sclerostin (93). In this case, serum
sclerostin measurements may include both bioactive molecules
and biomarkers of osteocyte activity. Furthermore, most studies
do not investigate whether changes in serum sclerostin arise
from changes in skeletal production or in renal clearance.
Therefore, serum sclerostin levels and metabolic disorders may
both reflect underlying differences in kidney function rather than
pathogenic overproduction of sclerostin. Fourth, serum
sclerostin measurements may be disrupted when Scl Ab is
administered. Several animal studies that measure serum
sclerostin after treatment with Scl Ab report increases in
circulating sclerostin even though b-catenin activity and bone
mass increase (13, 110). One potential explanation is that the
antibodies used to quantify serum sclerostin detect the protein
whether it is biologically active or bound and inactivated by the
therapeutic neutralizing antibody (110). Well-controlled
interventional studies will be needed in order to reliably
correlate bioavailable sclerostin with the endocrine functions
it exerts.

In Vitro Evidence
In vitro experiments have demonstrated the direct effects of
sclerostin on adipogenesis in primary and immortalized cells.
Sclerostin positively regulates the differentiation of the 3T3-L1
preadipocyte cell line. Treatment with recombinant sclerostin or
with osteocyte conditioned media increases expression of
adipogenic transcription factors Pparg and Cebpa and increases
lipid accumulation as measured by oil red O staining (111, 112).
Primary adipocytes treated with recombinant sclerostin respond
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by increasing expression of adipocyte differentiation markers,
increasing fatty acid synthesis, and increasing oil red O staining.
Primary cells also reduce their metabolism of fatty acids in
response to sclerostin, as evidenced by downregulation of
genes such as Cpt1a and reduced oleate oxidation (13, 113).
Mesenchymal stromal cells frommouse bone marrow, mouse ear
tissue, and human bone marrow also respond to treatment with
recombinant sclerostin and osteocyte conditioned media with
increased expression of Cebpa and Pparg and increased oil red O
staining (111). Thus when isolated in vitro, sclerostin
consistently stimulates adipocyte differentiation and increases
cell lipid content through enhanced fatty acid synthesis and
reduced catabolism.

Evidence From Animal Studies
The positive regulation of adipogenesis by sclerostin is further
supported by studies of white adipose tissue and metabolism in
animals. Mice with systemic ablation of Sost (Sost-/- mice) have
lower overall fat mass as measured by qNMR and reduced mass of
white adipose tissue from gonadal, inguinal, and retroperitoneal fat
pads. Within the white adipose tissue of Sost-/- mice, individual
adipocytes were also smaller, and Wnt target genes were
upregulated (13). In mice injected with an AAV causing
overexpression of sclerostin the same relationship was supported;
Sost-AAV-treated mice had significantly increased fat mass,
increased weight of individual fat pads, increased adipocyte size,
and down-regulation of Wnt target gene expression in white
adipose tissue depots (13).

The effects of sclerostin on white adipose tissue in vivo appear
to be both pro-anabolic and anti-catabolic. Genes associated with
adipocyte differentiation and lipid synthesis were increased in fat
pads from mice treated with Sost-AAV and downregulated in
Sost-/- mice (13). Fatty acid synthesis, as measured by 3H-acetate
incorporation, was also reduced in Sost-/- mice. At the same time,
genes associated with fatty acid oxidation and markers of beige
adipocytes, such as Cpt1a, Ppargc1a, and Ucp1, were increased
when Sost was ablated. Beige adipocytes are cells in white adipose
tissue that express UCP1 and take on a thermogenic brown
adipocyte-like phenotype with improved insulin sensitivity and
glucose metabolism (114). Sost-/-mice and Scl Ab-treated mice (1
dose/week, 30 mg/kg, 8 weeks) show increased oxidation of the
fatty acid oleate in adipose tissue explants (13). These findings
are in agreement with in vitro studies on primary and
immortalized adipocytes. However, they do not demonstrate
whether sclerostin predominantly acts on adipocytes or on
mesenchymal progenitor cells to induce adipogenesis.

The ability of sclerostin to act directly on adipose tissue in
vivo was investigated in mice made conditionally insensitive to
sclerostin with deletion of Lrp4 from white and brown adipocytes
(83). These mice showed small adipocytes with reduced
expression of Cebpa, though fat mass and weight of individual
fat pads was not affected. By further reducing sclerostin
availability with compound heterozygous mice expressing one
allele of Lrp4 in adipocytes and one allele of Sost systemically, fat
mass and adipocyte size were reduced (113). Two studies found
that deletion of Lrp4 from osteoblast-lineage cells leads to high
Frontiers in Endocrinology | www.frontiersin.org
 8182
bone mass and increased circulating sclerostin, due to either
increased sclerostin production in bone or the loss of local
sequestration by LRP4 (113, 115). This model of high
circulating sclerostin also increased fat mass in white adipose
tissue depots (113). These studies indicate that sclerostin can act
directly on adipocytes in vivo, but progenitor cells targeted by
circulating sclerostin during development likely also contribute
to the full white adipose tissue phenotype of mice with systemic
Sost overexpression or ablation.

Sclerostin may also play a broader role in metabolism in mice.
Feeding wild-type mice with a high fat diet for 4 or 8 weeks leads
to increased white adipose tissue mass, increased Sost mRNA in
bone, and increased serum sclerostin (13). Leptin-deficient ob/ob
and db/db mice also have elevated serum sclerostin compared to
wild-type littermates (13). Sost-/- mice fed a high fat diet,
however, gain less body weight and fat mass than their wild-
type counterparts. Scl Ab treatment (1 dose/week, 30 mg/kg, 8
weeks) also partially protected mice from high fat diet-induced
increases in body weight and fat mass. Along with differences in
white adipose tissue mass, Sost-/- mice showed improved glucose
handling in glucose tolerance and insulin sensitivity tests
compared to wild-type littermates on normal or high fat diets.
These results are supported in Scl Ab-treated mice. Sost-AAV-
treated mice, on the other hand, have higher random-fed insulin
levels, are worse at regulating blood glucose levels, and are less
sensitive to insulin (13). Reducing adipocyte sensitivity to
sclerostin through Lrp4 deletion and additionally reducing
circulating sclerostin both cause improvements in glucose
handling, suggesting that sclerostin’s effects on adipose tissue
can have a systemic impact (113).

In addition to these endocrine effects on white adipose tissue,
sclerostin also positively regulates adipose tissue in the bone
marrow. Marrow adipose tissue - distinct from the white adipose
tissue found in subcutaneous and visceral fat depots - is
dynamically regulated with age, diet, hormones, and disease,
though its function in skeletal homeostasis is still being
determined (114). Effects of sclerostin on immune cells in the
marrow, recently reviewed elsewhere (116), and on marrow
adipose tissue may be best classified as paracrine, but we will
discuss the available research on marrow adipose tissue here.

Consistent with the effects of Sost ablation on white adipose
tissue, Sost-/- mice have decreased bone marrow adipose tissue
volume as detected by osmium tetroxide micro-CT (117).
Likewise, mice treated with Scl Ab for 3 weeks (1 dose/week,
100 mg/kg) end with lower marrow adipocyte number and size
(118). In a separate study, 3 weeks of Scl Ab treatment (2 doses/
week, 25 mg/kg) did not significantly affect bone marrow
adipocyte number in healthy mice, nor did it decrease the
number of adipocytes surrounding a fracture callus (110). These
studies all used young male mice (6-11 weeks old), though the
differences in animal age and antibody dose may explain the
discrepancy in outcomes.

Male and female rats treated with Scl Ab (1 dose/week, 3 or 50
mg/kg) for 4 or 26 weeks presented a more complex response
(119). After 26 weeks of treatment, both sexes showed significant
dose-dependent decreases in tissue adiposity driven by decreased
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adipocyte number, consistent with prior studies in mice. However,
when adipocyte numbers were normalized to bone marrow area,
which decreases as bone mass increases in treated animals, the
significant effects of sclerostin antibody on marrow adiposity were
limited tomales.Whethernormalized to tissue areaormarrowarea,
marrow adiposity of female rats increased in the first four weeks of
Scl Ab treatment, again in a dose-dependentmanner, whereasmale
rats showed no changes in the first four weeks of treatment. Sex-
dependent differences in baseline trabecular bone volume and
marrow adiposity may drive the sex-specific differences in early
response to Scl Ab. Also notable was that marrow adiposity
increased with age, an effect that was only partially blocked by Scl
Ab treatment. In sum, these studies illustrate a predominantly
positive relationship between sclerostin and marrow adiposity, but
reconciling the age-, sex-, and dose-dependent effects of Scl Ab
treatment will require further study.

In disease models where marrow adiposity is elevated, a
protective role of sclerostin antibody treatment has been
reported. Rabbits treated with Scl Ab for five months (2 doses/
week, 13 mg/kg) were protected from the increase in marrow fat
fraction caused by ovariectomy. While adipocytes in untreated
ovariectomized rabbits increased in diameter and density, those
in rabbits that also received Scl Ab were indistinguishable from
sham-operated animals (120). Streptozotocin-induced diabetic
mice have higher bone marrow adiposity than non-diabetic mice.
In this model, Scl Ab treatment slightly attenuates the additional
increase in adipocyte density seen around a fracture callus (3
weeks, 2 doses/week, 25 mg/kg) (110). This raises the possibility
that sclerostin acts as a mediator in disease even if it is not a
primary regulator of adipogenesis in bone marrow. Additional in
vivo studies with conditional deletion of LRPs from adipocytes
and from mesenchymal progenitor cells are needed to determine
the extent to which sclerostin acts directly on marrow adipocytes
versus altering the commitment of bipotential precursor cells to
cause these phenotypes.

In vitro studies, animal experiments, and clinical trials have
provided evidence that sclerostin can act on adipose tissue to
regulate Wnt signaling, adipogenesis, and metabolism. Together
this body of work suggests an overall positive regulatory
relationship between sclerostin and adipogenesis, but the extent
of its regulatory capabilities and its importance relative to other
endocrine and paracrine factors in homeostasis and in disease is not
entirely clear. In humans, all studies published to date linking
sclerostin levels and metabolic phenotypes are associative. While in
vitro and in vivo studies show that sclerostin is capable of regulating
adipocyte behavior, its importance within physiological
concentrations and in concert with other signaling molecules is
not yet clear. In mouse models, global deletion of sclerostin or
mutations in Wnt signaling-related proteins may cause secondary
changes in bone that in turn regulate adipocyte biology, rather than
direct effects of sclerostin protein on adipocytes. The careful
experiments describing cell type-specific contributions of Sost to
regulation of bone mass (96) have not been conducted with adipose
outcomes. Future studies using bone-specific sclerostin mutant
animals will be helpful to isolate the effects of bone-derived
sclerostin on distant tissues in mice.
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SCLEROSTIN IN MINERAL METABOLISM

The extreme high bone mass phenotype seen in people with
sclerosteosis and in Sost-/- mice likely requires a shift in systemic
mineral homeostasis to support absorption and retention of the
required calcium and phosphorus. In neutral calcium balance,
the dietary calcium absorbed in the intestines is offset by the
amount of calcium filtered and then reabsorbed or excreted via
the kidneys. Calcium and phosphorus balance are carefully
maintained through the coordinated control of circulating
hormones including PTH, FGF-23, and vitamin D (121, 122).
Since sclerostin plays a major role in regulating bone
homeostasis, whether this same factor may modulate renal
mineral metabolism or the actions of calciotropic hormones is
of particular interest.

Indeed, Sost-/- mice demonstrate alterations in mineral
metabolism resulting in enhanced absorption and reduced
excretion of calcium and phosphorus. Active vitamin D (1a,25
(OH)2D) concentrations were significantly elevated in the serum
of Sost-/- mice, which would be expected to promote calcium and
phosphorus absorption in the kidney and intestines. Accordingly,
urinary calcium excretion was reduced, serum phosphorus was
elevated, and serum FGF-23, which promotes phosphate
excretion, was low in Sost-/- mice (14). In wild-type mice and in
a mouse model of X-linked hypophosphatemia, sclerostin-
neutralizing antibody treatment (4 weeks, 2 doses/week, 25 mg/
kg) significantly increased serum phosphate and decreased
circulating FGF-23 (123). Therefore, sclerostin deficiency leads
to alterations in mineral metabolism to enhance absorption and
reduce excretion of calcium and phosphorus.

Since vitaminD regulatesmineral absorption in both the kidney
and the intestines, the possibility of direct action of sclerostin on
vitamin D metabolism has been investigated. Inactive vitamin D
prehormone (25(OH)D) must be converted to the active form
(1a,25(OH)2D) by 25-hydroxyvitamin D 1a-hydroxylase (1a-
hydroxylase, encoded by Cyp27b1), which primarily occurs in the
kidney. Cyp27b1 expression is slightly elevated in the kidneys of
Sost-/- mice and is significantly repressed in proximal tubule cells
after treatment with recombinant sclerostin, consistent with the
elevated levels of 1a,25(OH)2D in serum of Sost-/- mice (14). High
serum PTH, low serum phosphorus, and low FGF-23 could also
cause high 1a-hydroxylase activity, but of these factors, Sost-/-mice
only have low serum FGF-23 (124–126). Together these results
suggest that sclerostin, through direct effects on proximal tubule
cells and indirectly through FGF-23, negatively regulates the
synthesis of 1a,25(OH)2D. The ability of sclerostin to regulate
systemic mineral metabolism may therefore be regulated by a
combination of vitamin D-mediated effects and direct action on
the kidney to control calcium excretion. The potential endocrine
effects of sclerostin on mineral metabolism and on adipogenesis as
studied in cell and animal models are shown in Figure 2. For
schematics describing the role of sclerostin in bone, we again refer
the reader to existing reviews (79, 80).

To date, the effects of sclerostin overexpression on mineral
metabolism remain to be determined, and many outstanding
questions remain regarding potential renal actions of sclerostin
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(127). For example, does FGF-23 act independently of sclerostin
or mediate its effects on 1a,25(OH)2D synthesis? Which
nephron segment in the kidney responds to sclerostin to
regulate calcium excretion? Do these processes involve
canonical Wnt signaling? The extent to which sclerostin
functions as a normal part of processing dietary calcium,
versus only in a disease state, also remains to be determined.
Supporting the importance of sclerostin in the kidney, though, a
meta-analysis of genomewide association studies found robust
association between SNPs in B4GALNT3, which is highly
expressed in the kidney, and serum sclerostin (93). Thus, the
kidney may participate in regulating the levels of circulating
sclerostin available to act on it by modulating expression of
B4GALNT3. Further mechanistic studies are needed to validate
the role of renal B4GALNT3 in regulating sclerostin availability
and clearance.

Studies with adult sclerosteosis patients have found normal
urinary calcium excretion, plasma PTH, 25(OH)D prehormone,
serum calcium, and serum phosphorus (84, 128). van Lierop
et al. reviewed 96 cases of sclerosteosis and determined that
active 1a,25(OH)2D is elevated in sclerosteosis patients
compared to carriers (129). Children with sclerosteosis have
high serum phosphorus and calcium, and they may better match
the developmental stage of mice used in research (128).
Interpretation of clinical trials studying sclerostin-neutralizing
antibodies blosozumab and romosozumab is complicated by the
simultaneous administration of calcium and vitamin D
supplements. Blosozumab caused slight elevation of serum
1a,25(OH)2D and PTH compared to placebo that did not
reach statistical significance (130). Romosozumab caused a
transient decrease in serum calcium and a slight dose-
dependent increase in serum PTH compared to baseline, but
vitamin D was not reported after baseline (131, 132). In the first
single-dose studies of romosozumab (then called AMG 785)
when calcium and vitamin D supplements were not given, serum
calcium and PTH reacted similarly, but vitamin D was not
measured (133). In the relatively healthy people studied in
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these trials, sclerostin deficiency appears to have a small effect
on mineral metabolism. However, given the careful balance of
sclerostin, PTH, and FGF-23 [reviewed by (134)], sclerostin may
play a bigger role in patients with chronic kidney disease (135).

Because of the frequency of bone phenotypes in patients with
chronic kidney disease, the role of circulating sclerostin has been
studied extensively in this population. In two cross-sectional
studies of patients with chronic kidney disease, serum sclerostin
levels were higher in patients with the lower glomerular filtration
rates characteristic of advanced disease (136, 137). Rather than
reflecting reduced renal clearance, however, the urinary
excretion of sclerostin also increased as kidney disease
progressed (137). This along with immunohistochemistry of
bone biopsies from chronic kidney disease patients suggests
that increased production of sclerostin by osteocytes may be a
factor in the development of chronic kidney disease (138, 139).
This is further supported by bone biopsies from patients
undergoing kidney transplant. Serum sclerostin measurements
were significantly correlated with the percentage of sclerostin-
positive osteocytes measured by immunohistochemistry and
negatively associated with residual renal function in end-stage
kidney disease (140). As needed with studies of adiposity, careful
interventional clinical trials and animal studies with tissue-
specific sclerostin overexpression or ablation will be necessary
to isolate the effects of sclerostin on mineral metabolism.
SCLEROSTIN IN VASCULAR
CALCIFICATION

The individual effects of sclerostin on bone, adipose tissue, and
kidney suggest that sclerostin-neutralizing antibodies should have
net positive benefits on human health, and clinical trials thus far
have reported few adverse events from sclerostin-neutralizing
antibodies (130–132, 141, 142). While sclerosteosis can lead to
life-threatening elevation of intracranial pressure caused by
FIGURE 2 | Summary of sclerostin-mediated effects on adipose tissue and on mineral metabolism. Recombinant sclerostin exerts direct effects on adipocytes and
kidney proximal tubule cells in culture. Mice overproducing sclerostin demonstrate increased adiposity and reduced glucose tolerance. Reduced sclerostin in vivo,
achieved through inactivating mutations, conditional ablation, or neutralizing antibodies, leads to reduced adiposity, improved glucose handling, and altered mineral
metabolism in mice.
March 2021 | Volume 12 | Article 584147

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. Endocrine Functions of Sclerostin and Osteocalcin
thickening of the skull, health of people with sclerosteosis and van
Buchem’s disease is considered good overall, without involvement
of the heart or lungs (143). Furthermore, sclerosteosis carriers have
high bone mass without intracranial hypertension. However, a
numeric imbalance in serious cardiovascular adverse events was
reported in romosozumab-treated women compared to
alendronate-treated women in the ARCH trial (144) as well as in
romosozumab-treated men compared to placebo-treated men in
the BRIDGE trial (145). While the absolute risk for adverse
cardiovascular events remained quite small, these findings led the
U.S. FDA to include a black box packaging warning for potential
cardiac risks associated with romosozumab. It is not yet known
why this effect on cardiovascular adverse events was not apparent
in women in the placebo-controlled trial (131). It is possible that
the placebo-controlled trial in women included younger patients
with fewer risk factors for cardiac events or that alendronate is
somewhat cardioprotective. These clinical findings also raise the
possibility that circulating sclerostin exerts effects on the
vasculature in a cardioprotective manner.

A recent genetics study supports the idea that inhibition of
sclerostin elevates risk of cardiovascular adverse events (15).
Bovijn et al. found that two common SOST variants associated
with high BMD were also associated with reduced expression of
SOST and a small increase in lifetime risk of myocardial
infarction, coronary heart disease, and other adverse
cardiovascular events. One mechanism by which sclerostin
could prevent cardiovascular adverse events is through
inhibition of vascular calcification, though correlations between
sclerostin and vascular calcification have identified both positive
and negative relationships (146). In support of a protective role
for sclerostin, a multivariate logistic regression model of patients
with chronic kidney disease found that lower circulating
sclerostin was significantly associated with aortic calcification
(147). In another human study, biopsies from aortic aneurysms
contained less sclerostin protein than healthy aortic tissue (148).
ApoE-/- mice stimulated with angiotensin II develop aortic
aneurysms and atherosclerotic plaques, but when these mice
also overexpressed human sclerostin or were injected with
recombinant mouse sclerostin they were protected from aortic
aneurysms and atherosclerosis (148).

On the other hand, sclerostin is also positively associated with
cardiovascular disease in some cases. When vascular smooth
muscle cells are induced toward calcification in vitro, they
express more sclerostin (149). In a mouse model of chronic
kidney disease-mineral and bone disorder, aortic calcification
and circulating sclerostin were significantly increased compared
to healthy mice (150). In a mixed population of people with and
without type 2 diabetes, serum sclerostin was positively associated
with the presence of aortic calcifications and cardiovascular
mortality over the eight-year longitudinal study (151). Finally, in
end-stage renal disease, coronary artery & epigastric artery
calcification positively correlated with serum sclerostin. Since no
specific sclerostin mRNA or protein expression was detected in the
vessels, it appeared that circulating sclerostin produced elsewhere
was responsible for the vascular calcification (152). In these
associative studies, it is still not known whether sclerostin is
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involved in the cause or response to calcification. Furthermore,
many of these studies were performed in the context of chronic
kidney disease where sclerostin also correlates with age, male
gender, and glomerular filtration rate, so its individual effect on the
vasculature is difficult to discern.

A safety study sponsored by Amgen Inc., Astellas, and UCB
Pharma reported no effects of sclerostin-neutralizing antibody on
the cardiovascular system in multiple animal models (153). Healthy
rats and cynomolgus monkeys as well as angiotensin II-infused
ApoE-/- mice and ovariectomized ApoE-/- mice on a high fat diet
were administered romosozumab and monitored for toxicity and
cardiovascular function. In healthy animals and in mouse models of
atherosclerosis, effects of sclerostin neutralization on cardiovascular
function, vascular calcification, and transcription were
nonsignificant. Only the supraphysiological dose of 300 mg/kg
romosozumab in monkeys elicited a response - sporadic increases
in heart rate and blood pressure – which was discounted by the
authors. While this study gives ample evidence that romosozumab
is unlikely to exert direct effects on the cardiovascular system, many
questions remain regarding the extent to which sclerostin itself
functions in the vasculature and the mechanisms by which
romosozumab induces cardiovascular adverse events in humans.
The effects of sclerostin on cardiovascular health will doubtless be a
focus of research in the future as more patients are prescribed
sclerostin-neutralizing antibodies to increase bone mass and reduce
fracture risk.

Further work will be needed to determine the extent to which
bone-derived sclerostin regulates adipogenesis, renal mineral
metabolism, cardiovascular health, and other potential non-
skeletal tissues. Of particular importance are animal studies in
which sclerostin is ablated specifically from osteoblast lineage
cells, animal studies in which potential target cells are rendered
insensitive to sclerostin, and clinical trials that measure the
effects of sclerostin or sclerostin neutralizing antibodies on
non-skeletal tissues in a prospective, interventional manner. As
the full endocrine capacity of sclerostin is elucidated, it may lead
to exciting new roles for osteocytes in systemic homeostasis.
CONCLUSIONS AND FUTURE
PERSPECTIVES

As summarized here, multiple extra-skeletal functions of
osteocalcin and sclerostin have been proposed based on
preclinical models. Given the central role of bone in whole
organism physiology, it is not surprising that crosstalk between
the skeleton and other organs exists and is mediated by bone-
specific factors. It is likely that osteocalcin and sclerostin
represent the tip of the iceberg with respect to how bone-
derived factors regulate the function of other organs. As
outlined above, future studies are needed to validate findings
from preclinical models and to rigorously test hypotheses in
humans. In addition, it will be important to consider how the
organs targeted by bone-derived factors signal to the skeleton in
order to maintain organismal homeostasis.
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Background: Bone and skeletal muscle represent a single functional unit. We cross-
sectionally investigated body composition, risk of fall and circulating osteocalcin (OC)
isoforms in osteoporotic postmenopausal women to test the hypothesis of an involvement
of OC in the bone-muscle crosstalk.

Materials and Methods: Twenty-nine non-diabetic, non-obese, postmenopausal
osteoporotic women (age 72.4 ± 6.8 years; BMI 23.0 ± 3.3 kg/m2) underwent to: 1)
fasting blood sampling for biochemical and hormone assays, including carboxylated
(cOC) and uncarboxylated (uOC) osteocalcin; 2) whole-body dual energy X-ray
absorptiometry (DXA) to assess total and regional body composition; 3) magnetic
resonance imaging to determine cross-sectional muscle area (CSA) and intermuscular
adipose tissue (IMAT) of thigh muscles; 4) risk of fall assessment through the OAK system.

Results: Appendicular skeletal muscle index (ASMMI) was low in 45% of patients. Forty
percent got a low OAK score, consistent with moderate-severe risk of fall, which was
predicted by low legs lean mass and increased total fat mass. Circulating cOC levels
showed significantly correlated with bCTx-I, lean mass parameters including IMAT, and
OAK score. Fractured and unfractured women did not differ for any of the analyzed
parameters, though cOC and uOC positively correlated with legs lean mass, OAK score
and bone markers only in fractured women.
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Conclusions: Data supported the relationship between OC and skeletal muscle mass and
function in postmenopausal osteoporotic women. Serum cOC, but not uOC, emerges as
mediator in the bone-muscle crosstalk. Circulating cOC and uOC levels may be differentially
regulated in fractured and unfractured osteoporotic women, suggesting underlying differences
in bone metabolism.
Keywords: osteocalcin, skeletal muscle mass, risk of fall, osteoporosis, fragility fractures
INTRODUCTION

Aging results in the progressive and parallel loss of bone, known
as osteopenia, and in skeletal muscles, known as sarcopenia.
Sarcopenia is defined as the loss of skeletal muscle mass and
quality, which accelerates with aging and is associated with
functional decline. Osteopenia and sarcopenia are two main
determinants of aging-related fragility (1), and sarcopenia
represents one of the main causes of increased risk of falls and,
directly or indirectly, fractures (2). Sarcopenia in elderly women
associated with an increased risk of all-cause mortality (3, 4).
Moreover, in older adults, the coexistence of osteopenia and
sarcopenia, namely osteosarcopenia, has to be regarded as the
major risk factor for fractures and further functional decline due
to low physical performance (5–7). Among the lean tissues,
skeletal muscles exert a strong positive effect on bone mass (8–
10), while the impact of fat is weaker and likely indirect (11, 12).

Bone and muscle are functionally related, not only
biomechanically since the direct connection, but also based on
the emerging intense endocrine crosstalk (13–16).

Osteocalcin (OC) is mainly secreted by osteoblasts during
bone formation, in part also by osteocytes, and it binds to the
mineralized matrix (17). Its role in skeletal remodeling is debated
as OC knockout mice showed normal bone mineral density
though they display a crystals misalignment along the collagen
fibrils consistent with a low degree of crystal maturation and
increased brittleness (18, 19). OC overexpression in mice does
not affect bone mineralization, but it promotes recruitment and
differentiation of circulating monocytes and osteoclast
precursors, suggesting a role in the osteoblast-osteoclast
interaction (20).

Among other metabolic abnormalities and the substantially
unmodified bony phenotype, mice in which Gprc6a, the putative
receptor for OC, has been knocked out experienced decreased
muscle mass, while the knockout mice of Esp, a phosphatase that
inhibits the function of OC, has increased muscle mass. Further
evidence that OC may solve a relevant role in muscle mass gain
and muscle function is that supplementation with OC restores
reduced exercise capacity in aged mice and increases muscle
strength. Aerobic exercise increases circulating bioactive OC
levels (i.e., uncarboxylated OC) and induces OC signaling in
muscle leading to the expression of the myokine IL-6 (21, 22).

OC regulates muscle mass independently of its effects on
energy expenditure, acting by direct activation of the receptor
GPRC6A (21–23). Uncarboxylated OC (uOC) seems to directly
promote protein synthesis in mice myotubes, explaining why this
ntiersin.org 2191
hormone is responsible for muscle maintenance during aging
(21, 22). Moreover, uOC induces myoblast proliferation via
sequential activation of the PI3K/Akt and p38 MAPK
pathways in C2C12 murine myoblasts, while it enhances
myogenic differentiation via a mechanism involving GPRC6A-
ERK1/2 signaling (23).

However, many studies were published using animal models,
and they need to be confirmed in humans. Some differences
between murine and human OC should be considered. OC is
carboxylated on glutamic acid residues (Glu!Gla) 13, 17, and 20
in the mouse protein and on Glu 17, 21, and 24 in humans.
Moreover, regarding the circadian rhythm, in mice OC levels
peak during the daytime and are at lowest during nighttime,
whereas in humans, the levels fall in the early morning, rise in the
afternoon and peak at night (14, 24).

The primary aim of the present study was to investigate the
associations between circulating carboxylated (cOC) and uOC,
body composition (i.e., bone, fat and muscle mass) and risk of fall
in a series of postmenopausal osteoporotic elderly women.
Secondly, we aimed to examine the pairwise differences in
body composition, risk of fall and circulating cOC and uOC
levels between fractured and unfractured osteoporotic women.
We tested the hypothesis that cOC and/or uOC are involved in
the bone-muscle crosstalk in osteoporotic elderly women.
MATERIALS AND METHODS

Study Design
This is an observational cross-sectional study conducted in
accordance with the STROBE guidelines for cross-sectional
studies (25) and was approved by the Ethical Committee of Vita-
Salute San Raffaele University (ref.no.17/INT/2017). Before the
beginning of the study, all the participants signed their written
informed consent to participate. All study procedures were
performed in compliance with the laws and regulations governing
the use of human subjects (Declaration of Helsinki) and the study
protocol was registered at clinicaltrials.gov (ref.no. NCT03382366).
All patients enrolled were investigated by: a) clinical and
anthropometric evaluation; b) risk of fall evaluation by the OAK
system (Khymeia, Noventa Padovana, Italy); c) fasting blood sample
for biochemical and hormonal assays, and d) total body dual energy
x-ray absorptiometry scan (DXA) for body composition assessment.
Moreover, magnetic resonance imaging (MRI) was performed to
measure the cross-sectional muscle area (CSA) and the
intermuscular adipose tissue (IMAT) of thigh muscles.
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Study Population
The final series was represented by 29 postmenopausal non-obese
women (mean age 72.4±6.8, range 60-85 years; BMI 23.0±3.3 kg/m2,
range 18.1-29.3) from the outpatients referred to the Endocrinology
Frontiers in Endocrinology | www.frontiersin.org 3192
Service of IRCCS Istituto Ortopedico Galeazzi in Milan. Women
were consecutively enrolled between May 2017 and September
2019 as illustrated in Figure 1. Inclusion criteria were: Caucasian
ethnicity, age ≥ 60 years, a DXA-based diagnosis of osteoporosis at
FIGURE 1 | Diagram representing process of patients enrollment.
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proximal hip (neck or total femur bone mineral density (BMD) T-
score ≤ -2.5), and ability to walk without aids. Exclusion criteria
included: age< 60 years, BMI> 30 kg/m2, estimated GFR> 60 ml/
min, active or previous smoke, alcohol abuse, diabetes mellitus,
heart failure with NYHA class> 2, active neoplastic diseases, liver
diseases, ascertained endocrine and rheumatologic diseases,
immunosuppressive treatment including corticosteroids,
treatment with aromatase inhibitors, anticonvulsants, drugs
known to alter cognitive function, occurrence of fragility
fractures or orthopedic surgery in the last 6 months before the
enrollment. All women, included those with previous fragility
fractures, were free from anti-osteoporotic drugs, calcium and
vitamin D supplementation since at least 6 months.

Fall Risk Assessment by OAK Device
The OAK device is a safe and validated device used for the
assessment of fall risk [26]; it provides an automated version of
the Brief-BESTest, a clinical tool examining balance performance
in six specific context of postural control (26). The risk of fall
reflects bone frailty, chronic, and/or degenerative conditions
associated with physical, sensory, and cognitive changes in
advancing age (27). The OAK system works semi-
automatically and an experienced investigator assisted every
session. The OAK system comprises two stabilometric
platforms, three sensorized bars, four antennas and a Human
Machine Interface providing audio and video instructions to the
subjects. Before the beginning of the test, all subjects wore a
portable device connected to a set of four inertial-magnetic
sensors, located on the wrists and the thighs through gloves
and rip-ties, to interact with the OAK system. Data from sensors,
platforms and bars were then collected and integrated to
calculate balance scores for each task. The global score ranges
between 0 and 24 points: a score between 17 and 24 classifies a
subject as low risk of fall, while a score between 0 and 16
identifies a subject as medium/high risk of fall (28). A
familiarization session was performed before the text
execution; the time range needed to complete the whole test
was 9-15 minutes.

Body Composition Analysis
A whole-body DXA scan was performed to measure total and
regional body composition (Hologic QDR-Discovery 139 W
densitometer; Hologic Inc., Bedford, MA, USA). Regions of
interest were automatically defined by the software including
six different body districts: total body, trunk, upper limbs (left
and right arms), lower limbs (left and right legs). For each region,
the exam provided the weight of total mass, fat mass, and lean
mass, all expressed in grams (g), as well as regional BMD values,
expressed in g/cm2. The precision of the BMD measurement by
DXA has coefficients of variation (CV) at different sites between
0.4% (lumbar spine) to 1.3% (femoral neck) and 2% to 6% for
body composition, in line with previous report (29).

The total amount of lean mass was also investigated by using
the Appendicular Skeletal Muscle Mass Index (ASMMI), which
is the amount of muscle in the upper and lower limbs, corrected
by the individuals’ square of the height (appendicular lean
mass/height2). The most valid and widely accepted cut-off
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value for ASMMI with the whole-body DXA in women is
reported to be 5.7 kg/m2, with subjects under this threshold
being diagnosed with low muscle mass (30, 31). Diagnosis of
osteoporosis was established in presence of BMD of −2.5
standard deviation or more below the mean of a young healthy
adult (T-score) (32). DXA-measured femoral neck BMD (33)
and ASMMI (31, 33) are considered the gold standard values for
the diagnosis of osteoporosis and low muscle mass, respectively
(34, 35).

Magnetic Resonance Imaging (MRI)
MRI was performed in twenty-four women; the remaining
patients refused to undergo this additional procedure due to
claustrophobia. All scans were performed with a 1.5T MR
system (Avanto, Siemens Medical Solution, Erlangen, Germany)
and 15 slices with a thickness of 5 mm were acquired covering a
total length of 7.5 cm at the middle third of the right thigh. MRI
protocol included a transverse T1-weighted sequence (for
anatomic reference) and a transverse Dixon sequence (for
quantitative analysis), for a total examination time of about 10
minutes. More in detail, intermuscular adipose tissue (IMAT)
quantification was performed by using Dixon MRI sequences,
which produce four sets of MRI images providing information on
water and fat content separately, therefore offering the possibility
for precise fat quantification (36, 37). The segmentation of the
thigh muscles was performed for each slice of that in which the
muscle-tendon junction of the gluteus maximus muscle was visible
with the use of ImageJ, an open-source software (38), by a single
expert operator (C.M.). The whole muscle area was selected as a
single unit. Two quantitative parameters were finally calculated
using Image J15: the thigh cross-sectional muscle area (CSA),
expressed in mm2, and the thigh IMAT, representing the IMAT
absolute value of the total muscle CSA and expressed in mm2.
Subcutaneous fat, major blood vessels and the bony femur were
excluded from the segmentation.

Laboratory Examination
Fasting blood samples were collected from each patient
by standard venipuncture. Total calcium, phosphate, total
alkaline phosphatase activity (ALP), creatinine, and the bone
resorption marker type I collagen C-terminal cross-linked
telopeptide (bCTx-I) were measured by routine assays in
serum tubes with clot activator (SSTII Advance Vacutainer,
Becton Dickson, Franklin Lakes, NJ, USA). Dipotassium
ethylendiaminotetraacetate (K2EDTA)-anticoagulated plasma
PTH (K2EDTA Vacutainer, Becton Dickinson) and serum 25-
hydroxyvitamin D [25-(OH)D)] were assayed by Roche. Plasma
cOC and uOC were measured by the means of two specific
monoclonal antibody-based sandwich immunoassays
(Undercarboxylated OC EIA kit and Gla-Type OC EIA kit,
Takara Bio Inc., Otsu-Shi, SHG, Japan). The lower limit of
detection (LLD) was 0.25 ng/mL for both assays. As reported
by the manufacturer, intra-assay (CVw) and interassay (CVb)
coefficients of variation were 4.58% and 5.67% for uOC and 3.3%
and 1.0% for cOC, respectively (39). All samples were tested in
duplicate and according to the most up-to-date pre-analytical
warnings (40, 41).
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Statistical Analysis
Sample size was calculated by G*power3.1, considering as
significant a correlation with a slope of at least 0.48, an
a-error of 0.05 and a power of 0.80 in a model of linear
bivariate regression. Continuous variables were given as
mean ± standard error media (SEM). Numeration data were
described as percentages (%). The normality of the distribution
of clinical, radiological and laboratory variables for the fractured
(n=13) and unfractured group (n=16) were checked using
graphical methods and the Shapiro-Wilk test. Data
homogeneity between groups was tested through un-paired
Student t-tests or with the Mann-Whitney rank test for non-
normally distributed variables. Significance was set at p<0.05. In
addition, the normality of the distribution of clinical, radiological
and laboratory variables were checked using graphical methods
and the Shapiro-Wilk test for the entire group of subjects. The
existence of a correlation between outcomes was tested by the
Pearson’s correlation index. The same approach was adopted to
test the existence of possible correlations between cOC or uOC
and the other outcomes for the group of fractured and
unfractured women separately. Correlations were considered
significant when r>0.25 and P<0.05. Multivariate analysis
considering OAK score and cOC as dependent variables have
been performed to test the hypothesis they could be predictive of
muscle parameters. Statistical analysis was performed using
GraphPad Prism version 6.00 (GraphPad Software, San Diego,
CA, USA) and by Past3.14 (42).
RESULTS

Body Composition in the Series of
Postmenopausal Osteoporotic Women
Mean ASMMI was 5.69±0.13 kg/m2. Considering a cut-off of
5.7 kg/m2 for the diagnosis of low muscle mass in elderly women
according the Consensus Report produced by European
Working Group on Sarcopenia in Older People 2 (EWGSOP2)
(30), low muscle mass was detected in 13 (45%) out of the 29
osteoporotic women, with ASMMI ranging between 4.20 and
5.62 kg/m2. In the present series of osteoporotic postmenopausal
women, ASMMI did not correlate with age, while it positively
correlated with BMI value (r=0.599, p=0.006); therefore, the
muscle mass index was normalized by BMI, and appendicular
skeletal muscle (ASM)/BMI was considered. ASM/BMI
negatively correlated with total fat mass (r=-0.644, p=0.0002)
(Figure 2A) and in particular with the trunk fat mass (r=-0.724,
p=0.0001) (Figure 2B). Despite ASM/BMI did not show any
significant correlation with segmental bone mineral density,
considering the lean mass of each leg, a significant positive
correlation with the corresponding segmental bone mineral
density (BMD) emerged (Figures 2C, D).

We further gained insight about skeletal muscle mass features in
elderly osteoporotic women investigating the muscle and fat
components of thigh by MRI. The thigh CSA ranged 5323- 10759
mm2, and positively correlated with ASM/BMI (r=0.415, p=0.044)
(Figure 3A) and with leg BMD (r=0.554, p=0.014) (Figure 3B).
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The extracellular adipose tissue found beneath the fascia and
in-between muscle groups, evaluated as IMAT, ranged between
741 mm2 and 1881 mm2, representing 10-25% of the thigh CSA.
IMAT positively correlated with CSA (r=0.471, p=0.020)
(Figure 3C), and with the leg fat mass measured by DXA
(r=0.564, p=0.012) (Figure 3D).

Fall risk was evaluated using the OAK score derived by the
OAK system. Mean OAK score was 17.8 ± 4.7 point-score out of
24.0; 12 women (41%) showed an OAK score between 0-16
consistent with moderate-high risk of fall. OAK scores negatively
correlated with age (Figure 3E). Interestingly, OAK scores
positively correlated with ASM/BMI (r=0.645, p=0.0002)
(Figure 3F), with CSA (r=0.436, p=0.033) (Figure 3G), and
negatively with total fat mass (r=0.527, P=0.003) (Figure 3H). A
multivariate model considering OAK score as the dependent
variable, and age, ASM/BMI, CSA, and total fat mass as the
independent variables, indicated that OAK score is significantly
related to age (r2 = 0.334, p=0.004) as well as to ASM/BMI
(r2 = 0.416, p=0.005).

Circulating Osteocalcin Levels in
Osteoporotic Postmenopausal Women
OC is released by activated osteoblasts (17). Though both plasma
cOC and uOC did not show any significant correlation with
segmental BMDs nor with total or segmental fat masses (data not
shown), in the series of osteoporotic women, both serum cOC
and uOC levels positively correlated with serum bCTx-I levels,
while any significant correlation could be detected with the
mineral metabolic markers (Table 1). It is note of worth that
plasma cOC, but not uOC, levels positively correlated with the
ASM/BMI (Table 1). Considering the different skeletal muscle
segments, plasma cOC, but not uOC, levels positively correlated
with trunk lean mass as well as with legs lean mass (Table 1). In
line with finding in DXA-derived lean mass parameters, plasma
cOC levels positively correlated with CSA and with IMAT
measured by MRI (Table 1). Interestingly, plasma cOC levels
also positively correlated with muscle function assessed as OAK
score (Table 1). In a multivariate model considering plasma cOC
levels as the dependent variable, and serum bCTx-I levels, legs
lean mass, IMAT, and OAK score, as the independent variables,
cOC levels were significantly related to serum bCTx-I levels (r2 =
0.147, p=0.011) and to legs lean mass (r2 = 0.319, p=0.017).

Differences Between Fractured and
Unfractured Osteoporotic Women
Thirteen women (45%) experienced previous fragility fractures: at
least one vertebral fracture (clinical and morphometric vertebral
fractures, detected by dorsal and lumbar conventional x-ray
imaging) was diagnosed in 10 women, femur neck fracture in 1
woman, and distal radius fractures in 2 women. Fractured
osteoporotic women did not show evident differences in their body
composition when compared with unfractured women (Table 2).

We further investigated about differences in cOC and uOC
correlations between fractured and unfractured osteoporotic
women (Table 3). The most striking difference between the
two groups consists in the strong positive relationship between
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serum cOC and uOC levels in fractured women (r=0.852,
p=0.0002), which was definitely abolished in unfractured women.
In unfractured women, circulating cOC was confirmed to correlate
with muscle mass parameters, such as legs lean mass, thigh CSA
and IMAT. In fractured women, both cOC and uOC correlated
with lean mass parameters, namely ASM/BMI and legs lean mass,
with the OAK score-related risk of fall, and with bone markers,
suggesting that the intense crosstalk among bone, and muscle mass
and function mediated by cOC is more active in fractured
osteoporotic women with respect to unfractured women.
DISCUSSION

Osteoporosis and sarcopenia are serious health problems in
postmenopausal women. In the present study, the interaction
between bone and skeletal muscle was investigated in non-obese,
non-diabetic, vitamin D-sufficient, older than 60 years
postmenopausal osteoporotic women, free from anti-osteoporotic
drugs and from any other treatment known to affect bone
metabolism. The hypothesis that circulating carboxylated and/or
uncarboxylated osteocalcin levels may mediate the bone-muscle
interaction has been tested. Lowmuscle mass affected about a half of
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osteoporotic women, and data obtained by MRI suggested that
elderly osteoporotic women with conserved lean mass may have,
indeed, increased intramuscular fat infiltration, measured as IMAT.
This finding is relevant because as IMAT increases, muscle quality,
and possibly muscle function, decreases (43). Moreover, the
frequently occurring low muscle mass at legs level and reduced
thigh cross-sectional muscle area are known to be associated with
reduced bone mineral densities, in line with a previous report (44),
underscoring the relationship between bone and skeletal muscle in
elderly osteoporotic women.

A consistent subset (40%) of osteoporotic postmenopausal
women had a moderate-high increased risk of fall as evaluated by
the automated system OAK. Interestingly, OAK score well
correlated with muscle parameters, namely ASM/BMI and thigh
CSA, supporting the hypothesis that a reduced muscle mass
increases the risk of fall in osteoporotic women. Increased fat
mass also emerged as a negative factor determining the risk of
fall, though the role seems minor than that of age and ASM/BMI.
Therefore, impaired muscle mass and function frequently occur in
osteoporotic postmenopausal women and are related with BMD.

Experimental evidence suggest an intense crosstalk between
bone and skeletal muscle through mechanic stimulation and
hormones, including myokines, adipokines, and osteokines
A

B

C

D

FIGURE 2 | Correlations between parameters of body composition detected by DXA in osteoporotic postmenopausal women. ASM/BMI negatively correlated with
total fat mass (A) and, in particular, with trunk fat mass (B). Left leg lean mass positively correlated with the corresponding segmental BMD (C); similar correlation
was detected between the right lean mass and the corresponding segmental BMD (D). Lines represent regressions, dot lines represent 95% confidence intervals.
Data were analyzed by Pearson coefficient of correlation.
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(15, 16). We focused attention on osteocalcin, whose endocrine
function is emerging, though data are controversial (45). Gender
differences in serum osteocalcin levels and their modulation have
been reported (20), so to avoid this potential confounding bias,
postmenopausal women have been analyzed in the present study.
Moreover, osteoporotic women with diabetes and obesity were
excluded, since the potential involvement of this hormone in the
regulation of energy metabolism and endocrine pancreas
function, at least in rodent models (46). Investigating both the
carboxylated and uncarboxylated forms in a series of
postmenopausal osteoporotic women, we found that both cOC
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and uOC levels positively correlated with serum bCTx-I levels, in
line with what previously reported (47, 48), suggesting that OC is
related with osteoclastic resorptive activity. We found that
circulating cOC levels correlated with body composition,
namely ASM/BMI, in particular with the trunk and legs lean
masses, and with total fat mass in osteoporotic women. Of note,
legs lean mass is mainly associated with circulating cOC levels,
supporting the narrow relationship between skeletal muscle and
bone-derived cOC in osteoporotic elder women. This finding
represents a discrepancy with reports in mice, where uOC
display endocrine action. The association we found between
A

B

C

D

E

F

G

H

FIGURE 3 | Correlations between parameters of body composition detected by MRI and with risk of fall measured by OAK automated system. Thigh cross sectional
area (CSA) positively correlated with ASM/BMI (A) and with the leg BMD (B). The intramuscular adipose tissue (IMAT) positively correlated with CSA (C) and with the
leg fat mass (D). OAK scores negatively correlated with age (E), positively with ASM/BMI (F) and with CSA (G), and negatively with total fat mass (H). Lines represent
regressions, dot lines represent 95% confidence intervals. Data were analyzed by Pearson coefficient of correlation.
TABLE 1 | Significant correlations between plasma cOC and uOC levels and parameters related to bone, muscle mass, and muscle function.

Pearson cOC uOC

r P r P

Bone parameters
bCTx-I 0.620 0.039 0.707 <0.0001
Muscle mass
ASM/BMI 0.458 0.013 0.009 0.961
Trunk lean mass 0.458 0.012 0.186 0.400
Legs lean mass 0.565 0.001 -0.134 0.542
CSA 0.519 0.009 0.153 0.475
IMAT 0.435 0.034 -0.022 0.917
Muscle function
OAK score 0.431 0.020 0.014 0.944
May 2021 | Volume 12 | Article
cOC, carboxylated osteocalcin; uOC, uncarboxylated osteocalcin; r, coefficient of correlation by Pearson test; P, statistical significance; bCTx-I, beta-crosslinked C-terminal telopeptide of
type I collagen; ASM/BMI, appendicular skeletal muscle mass corrected for BMI; CSA, Cross-sectional muscle area of the thigh; IMAT, Intermuscular fat of the thigh.
Bold values highlighted statistical significant values.
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TABLE 2 | Pairwise comparisons between fractured (n=13) and unfractured (n=16) osteoporotic women for clinical, body composition and bone metabolism variables.

Parameters Fractured women (n=13) Unfractured women (n=16) Significance

Age (years) 74.7±1.6 70.6±1.8 0.107
Bone mineral density
L1-L4 T-score -2.70±0.31 -3.00±0.26 0.448
Neck T-score -2.74±0.09 -2.60±0.13 0.410
Femur T-score -2.34±0.19 -2.51±0.15 0.487
Arm sBMD (g/cm2) 1.194±0.201 1.199±0.080 0.926
Legs BMD (g/cm2) 1.709±0.310 1.630±0.509 0.656
Fat mass
BMI (kg/m2) 24.2±0.9 22.1±0.8 0.075
Total fat mass (g) 22109.0±1817.0 19283.0±1187.0 0.190
Arms fat mass (g) 3107.0±1272.0 2567.0±1242.2 0.316
Legs fat mass (g) 7735.0±1699.0 7889.0±1507.4 0.821
Trunk fat (g) 9988.0±1307.0 8163.0±872.0 0.251
Lean mass
ASM/BMI 0.248±0.033 0.251±0.029 0.773
Arms lean mass (g) 3634.0±373.3 3258.0±404.9 0.016
Legs lean mass (g) 10487.0±1222.0 9665.0±1628.0 0.144
Trunk lean mass (g) 17260.0±522.5 16225.0±590.7 0.207
Thigh muscle CSA (mm2) 7998.8±1163.2 7637.1±1574.9 0.545
IMAT (mm2) 1265±52.6 1190±102.9 0.571
Muscle function
Physical activity (hr/week) 1.08±1.38 2.19±3.10 0.243
OAK score (0-to-24) 15.5±4.3 16.4±4.8 0.578
Circulating bone markers
cOC (ng/ml) 10.2±1.0 10.3±0.9 0.936
uOC (ng/ml) 3.7±0.6 4.5±0.9 0.509
Total ALP (U/L) 74.0±26.1 66.0±13.4 0.256
bCTx-I (ng/ml) 0.245±0.144 0.259±0.162 0.888
Total calcium (mg/dl) 9.3±0.3 9.4±0.5 0.427
PTH (pg/ml) 50.7±24.3 84.1±37.5 0.226
25-(OH)D (ng/ml) 36.4±12.8 33.7±14.3 0.900
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Data are reported as mean ± SD. BMD, Bone Mineral Density; BMI, Body-Mass Index; ASMMI, Appendicular Skeletal Muscle Mass Index; CSA, Cross-sectional muscle area of the thigh;
IMAT, Intermuscular fat of the thigh; cOC, carboxylated osteocalcin; uOC, uncarboxylated osteocalcin; ALP, alkaline phosphatase activity; PTH, Parathyroid hormone; 25-(OH)D, serum
25-hydroxyvitamin D; bCTx-I, beta-crosslinked C-terminal telopeptide of type I collagen.
Bold values highlighted statistical significant values.
TABLE 3 | Correlations between cOC or uOC with the body composition parameters and bone markers in fractured and unfractured women.

OSTEOCALCIN Fractured Unfractured

Parameters cOC uOC cOC uOC

Pearson r P r P r P r P

Muscle mass
ASM/BMI 0.433 0.139 0.716 0.006 0.100 0.712 -0.013 0.962
Legs lean mass (g) 0.661 0.014 0.499 0.084 0.595 0.029 -0.117 0.665
CSA (mm2) 0.378 0.282 0.050 0.891 0.569 0.034 0.190 0.515
IMAT (g) -0.355 0.315 -0.453 0.189 0.640 0.014 0.095 0.747
Muscle function
OAK score 0.645 0.017 0.591 0.034 0.170 0.530 -0.122 0.652
Fat mass
BMI (kg/m2) -0.200 0.521 -0.521 0.068 0.147 0.587 0.276 0.300
Total fat mass (g) -0.221 0.468 -0.493 0.087 0.058 0.830 0.066 0.806
Circulating bone markers
Total ALP (U/L) 0.786 0.007 0.794 0.006 0.494 0.214 0.665 0.072
bCTx-I (ng/ml) 0.855 0.0002 0.855 0.0002 0.063 0.817 0.678 0.004
25-(OH)D (ng/ml) -0.689 0.019 -0.468 0.146 0.035 0.923 -0.494 0.147
uOC (ng/ml) 0.852 0.0002 – – -0.013 0.963 – –
Article 6
OC, carboxylated osteocalcin; uOC, uncarboxylated osteocalcin; fractured, osteoporotic women experiencing previous fragility fracture; unfractured, osteoporotic women without
evidence of clinical or morphometric fractures; r, coefficient of correlation by Pearson test; P, statistical significance; ASM/BMI, appendicular skeletal muscle mass corrected for BMI; BMI,
Body-Mass Index; CSA, Cross-sectional muscle area of the thigh; IMAT, Intermuscular fat of the thigh; ALP, alkaline phosphatase activity; bCTx-I, beta-crosslinked C-terminal telopeptide
of type I collagen; 25-(OH)D, serum 25-hydroxyvitamin D.
Bold values highlighted statistical significant values.
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cOC and leg composition may be related to the muscular activity
that, in humans, included the elderly, is prominent in the lower
limbs. However, this finding should be confirmed and its
physiological meaning might be investigated. Nonetheless, it is
in line with the intervention study by Kyla Shea et al. (49)
demonstrating that uOC was not cross-sectionally associated
with appendicular lean mass or fat mass in older community-
dwelling men or women, and that reduction of uOC levels
following vitamin K supplementation affected neither lean nor
fat mass over 3 years. Moreover, a positive correlation between
circulating osteocalcin and lean mass has been reported in
trained and untrained young women (50) and in middle-aged
and elderly Chinese subjects (51). Moreover, exercise enhances
osteocalcin serum levels in adult women (22), while osteocalcin
circulating levels decrease during aging, when exercise capacity
declines. By contrast, in community-dwelling middle-aged and
elderly adults, Moriwaki et al. failed to detect any relationship
between OC and muscle parameters (52).

Further, we focused the attention on the two subgroups of
osteoporotic elder women who experienced at least one fracture
and those who never suffered fractures, including screening for
morphometric vertebral deformities. All fractures occurred at
least 6 months before the enrollment in the study, when bone
turnover markers return to baseline (53).

We failed in detecting any difference in body composition
parameters, OAK score, as well as in circulating bone markers
between the two groups. Nonetheless, fractured women were
characterized by a positive relationship between circulating cOC
and uOC, which was absent in unfractured women. Moreover,
plasma cOC and uOC levels well correlated with total ALP and
bCTx-I in fractured women, but not in unfractured women. These
findings suggest that bone remodeling differ in osteoporotic
fractured women compared with osteoporotic unfractured. In the
present series of osteoporotic elder women, serum bCTx-I emerged
as a determinant of circulating cOC, suggesting that osteoclasts-
related resorptive activity, which is known to be associated with an
increased risk of fractures (54, 55), may be involved in modulation
of cOC levels, throughout its release from the matrix. Moreover, in
fractured women, plasma cOC and uOC correlated with the lean
mass parameters and OAK score, showing that relatively low
circulating levels of cOC and uOC may be predictive of low legs
lean mass and, hence, increased risk of fall in fractured osteoporotic
women. Besides, unfractured women displayed a significant positive
correlation of plasma cOC levels with IMAT and with legs lean
mass, highlighting that relative high cOC levels may reflects
conserved muscle mass though of reduced quality. This finding
suggested that bone turnover rate may differ in fractured and
unfractured osteoporosis and that, likely, differently influenced the
release of the different forms of OC. The different correlations
between cOC and uOC and the parameters of the musculoskeletal
system, such as risk of fall and intramuscular fat infiltration, are
consistent with a complexity in the modulation of the OC effect on
skeletal muscle mass.

A limit of the present study is represented by the small sample
size, that, though adherent to the power analysis calculation, is
limited due to extensive exclusion criteria aimed to avoid a number
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of diseases and therapies known to independently affect bone mass
and metabolism, as well as skeletal muscle mass and function.
Second, study design prevents any inference about cause-effect
relationship between plasma carboxylated osteocalcin and the
different parameters analyzed. Third, vitamin K status, which is
known to affect OC carboxylation, has not been evaluated in the
present series due to unavailability of accurate tools such as high-
performance liquid chromatography–tandem mass spectrometry
for the assessment of vitamin K homologues, phylloquinone
(vitamin K1) and menaquinones (MK-4 and MK-7). However, it
is of note that measuring uncarboxylated vitamin K-dependent
protein (i.e., osteocalcin) levels is considered the most accurate
and convenient method for assessing tissue-specific vitamin K
deficiency or insufficiency (56). Indeed, here failure in detecting
association between plasma uOC levels and most of the
parameters related with body composition, may suggest that
vitamin K replenishment is not a major determinant of the
potential relationship with muscle mass and function. Lastly,
vitamin D was not routinely administered, though at the
enrollment all women were checked for circulating 25-(OH)D
levels and in all participants serum 25-(OH)D levels were above
20 ng/ml, a threshold considered consistent with a sufficient
condition of vitamin D repletion (57).

Strengths of the present study are body composition analysis by
DXA and risk of fall assessment by an automated system. DXA is
the gold-standard technique in the analysis of body composition,
providing assessment and quantification of fat mass, lean mass and
bone mineral content, both in a single body region of interest and at
whole-body level (35). The OAK system incorporates movement
and balance sensors and accelerometers for the assessment of fall
risk in a single examination. The diagnostic test accuracy of the
OAK device has been recently investigated and the results showed
good accuracy of OAK system in assessing risk of fall
(discriminative power of AUC values above 80%) and the device
also showed a sensitivity of 84% and a specificity of 67% (28).
Diagnostic accuracy of OAK system was similar to the sensitivity
levels obtained with other fall risk assessment, such as the Brief-
BESTest. Moreover, data about skeletal muscle fat infiltration
analyzed by lower leg MRI has been provided. Lastly, both
circulating cOC and uOC levels were analyzed in the same
sample, at variance with most clinical studies provided data about
total OC and/or uOC.

In conclusion, data here presented supported the relationship
between OC and skeletal muscle mass and function detected in
mice, though in osteoporotic postmenopausal women cOC, but not
uOC, emerges as mediator in the bone-muscle crosstalk. Though
the release of cOC and uOC was similar, circulating levels may be
differentially regulated in fractured and unfractured women,
suggesting that bone metabolism differs in the two groups.
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Wnt signaling plays a critical role in bone formation, homeostasis, and injury repair.
Multiple cell types in bone have been proposed to produce the Wnts required for these
processes. The specific role of Wnts produced from cells of hematopoietic origin has not
been previously characterized. Here, we examined if hematopoietic Wnts play a role in
physiological musculoskeletal development and in fracture healing. Wnt secretion from
hematopoietic cells was blocked by genetic knockout of the essential Wnt modifying
enzyme PORCN, achieved by crossing Vav-Cre transgenic mice with Porcnflox mice.
Knockout mice were compared with their wild-type littermates for musculoskeletal
development including bone quantity and quality at maturation. Fracture healing
including callus quality and quantity was assessed in a diaphyseal fracture model using
quantitative micro computer-assisted tomographic scans, histological analysis, as well as
biomechanical torsional and 4-point bending stress tests. The hematopoietic Porcn
knockout mice had normal musculoskeletal development, with normal bone quantity
and quality on micro-CT scans of the vertebrae. They also had normal gross skeletal
dimensions and normal bone strength. Hematopoietic Wnt depletion in the healing
fracture resulted in fewer osteoclasts in the fracture callus, with a resultant delay in
callus remodeling. All calluses eventually progressed to full maturation. Hematopoietic
Wnts, while not essential, modulate osteoclast numbers during fracture healing. These
osteoclasts participate in callus maturation and remodeling. This demonstrates the
importance of diverse Wnt sources in bone repair.

Keywords: fracture healing, bone formation, Wnt signaling, osteoclast, hematopoietic Wnts
HIGHLIGHTS

• Hematopoietic Wnts are dispensable for normal skeletal development, growth and maturation.
• Bone mass accrual and bone quality are not adversely affected by hematopoietic Wnt depletion.
• Depletion of hematopoieticWnts results in fewer osteoclasts and delayedmaturation of the fracture

callus after bone injury.
• Hematopoietic Wnts are dispensable for completion of fracture healing.
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INTRODUCTION

Bone is a complex tissue that is structurally important for force
transmission and locomotion, as well as mineral metabolism and
hematopoiesis. The Wnt signaling pathway is a key modulator of
bone formation (1–4).Wnts influenceprenatal skeletal development,
aswell as post-partum skeletal growth andmaturation.Wnts are also
critically important in bone mass accrual and adult bone hemostasis
in the skeletally mature individual.

There are 19 distinct Wnt ligands in the human genome that
function via short range cell to cell signaling (5–8). Different Wnts
can function in different processes, broadly categorized into b-
catenin dependent and independent pathways, both of which are
involved in bone formation at different time points during
development and fracture healing. Early in bone development,
Wnt/b-catenin signaling through Frizzled and LRP5/6 receptors
inhibits chondrogenesis. Conversely, WNT5A interacts with its
receptor ROR2 to antagonize theWnt/b-catenin pathway to induce
local chondrogenesis by stimulating cartilage nodule formation (9,
10). Wnt/b-catenin signaling, in contrast, promotes osteoblastic
differentiation (11) and mineralization (12). This is important in
late phase fracture callusmaturation aswell as bone growth. Besides
maintaining the osteoblasts, Wnts also enhance proliferation and
prevent differentiation of the osteoclast precursor cells, regulating
the number of mature osteoclasts that are critical for callus
remodeling. Wnt signaling is thus extremely important for
multiple aspects of fracture healing (13–16).

The Wnts regulating bone formation and repair can be
produced by multiple cell types, the most well-known being
osteoblasts (11). Another potential source are the cells of
hematopoietic origin (hereafter called hematopoietic Wnts).
Hematopoietic stem cells differentiate and proliferate into various
blood components every day. Bone plays a role in regulating
hematopoiesis (17). Conversely, cells of hematopoietic origin,
specifically monocytes and tissue macrophages, are important in
injury repair (18–20). Macrophages migrate to sites of tissue injury
and produceWnts as well asmultiple cytokines and other factors to
aid in tissue repair (21, 22). Whether hematopoietic and
macrophage derived Wnts also contribute to fracture healing and
bone formation is not known.

Fracture non-unions and delayed unions are common clinical
problems worldwide, with up to 18.5 percent incidence in tibia
diaphyseal fractures reported (23). Non-union is defined clinically
as the arrest of progression to union at the fracture site with
persistent pain and mobility for six months or more. The causes
of non-union are categorized into twobroad groups. The first is due
to mechanical factors that impair fracture healing, such as poor
strain environment or excessive motion. The second is caused by
biological factors. This includes a multitude of causes that have a
cumulative or additive effects, including local bone marrow
suppression, poor vascularity, immunosuppression, and aberrant
cellular signaling (24–27). Introducing autologous bone graft and
bone marrow aspirate concentrate to the fracture site to promote
healing in fracturenon-unionshasproven tobeclinically efficacious
(28–31). These therapeutic interventions introduce several cell
types, including cells of hematopoietic origin that are important
for fracture healing (19). Hematopoietic cells are also known to
Frontiers in Endocrinology | www.frontiersin.org 2202
express multiple Wnt ligands, but their function is controversial.
Kabiri et al. made the unexpected and surprising discovery,
examining mice with genetic knockout of Porcn in cells of
hematopoietic lineage using three (Vav, Mx1, and Rosa26)
distinct Cre drivers, that intrinsic Wnt production was not
required for the stemness, regeneration, nor differentiation of the
hematopoietic compartment (32).Why thendohematopoietic cells
make Wnts? Since we know that Wnts function as short-range
signalingmolecules, we hypothesized thatWnts secreted from cells
of hematopoietic origin (hereafter designated as hematopoietic
Wnts) at the site of injury might play an additive role in
modulating bone formation.

To test the importanceofhematopoieticWnts inbonegrowthand
fracture healing, we utilized the previously reported Vav-Cre x
Porcnflox mouse model (Figure 1), where Wnt secretion is blocked
specifically in cells of hematopoietic lineage (32). This is
accomplished by knockout of the Porcn gene encoding an
endoplasmic reticulum-resident membrane bound O-
acyltransferase that responsible for palmitoleation of all Wnt
molecules. This essential post-translational modification is required
for the interaction with the Wnt transporter molecule WLS, which
transports Wnts to the cell surface for secretion. Knockout of Porcn
therefore results in an upstream inhibition of Wnt signaling, by
inhibiting secretion of all Wnts (33, 34). We assessed skeletal
development, growth and maturation, as well as fracture healing, in
the absence of hematopoietic Wnts. We found that hematopoietic
Wnts did indeed contribute quantitatively to fracture callus
maturation. Hematopoietic Wnt depleted mice had fewer mature
osteoclasts as well as more residualmineralized cartilage in the callus
(Figure 2).We also observed amarginal decrease in skeletal length in
the hematopoietic Wnt depleted mice. However, depletion of
hematopoietic Wnts did not result in severe musculoskeletal
abnormalities. This suggests that there is a physiological
redundancy of secreted Wnts from other cell types for modulation
of bone formationduringdevelopment.HematopoieticWntsdoplay
a role in modulating osteoclasts during fracture healing (Figure 2).
METHODS

Mice Strains
Mice with a Porcn conditional null allele (Porcnflox)were generated
as described (35). The Porcnflox mice were crossed with Vav-Cre
mice [9, 14] to generateVav-Cre/PorcnDelmice, with hematopoietic
tissue-specific block in Wnt secretion (Figure 1). These mice were
age and gender matched with their wild-type litter mates for
comparison. Male mice and female mice were analyzed
separately. Genotyping primer sequences are provided in the
table PRIMERS. Animal housing, breeding and procedures were
done in accordance with IACUC guidelines.

Measurement of Developmental Weight
and Dimensions
Mice pups were weaned at 3 weeks old and weighed at weekly
intervals until past skeletal maturity (100 days old). Measurements
ofmousebone length (nose topelvis), right femur lengthandcranial
size were done at skeletal maturity using digital calipers, after
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dissection of soft tissue. Bothmale and femalemice were measured
and analyzed. To facilitate readability and avoid figure redundancy,
all figures henceforth are offemalemice, since there were no gender
specific differences in the results.

Whole-Mount Skeletal Staining
Mice were sacrificed at 3 weeks of age and stained as described by
Rigueur and Lyons (36). Soft tissue was removed, including the
Frontiers in Endocrinology | www.frontiersin.org 3203
skin, fat, muscle and viscera, and the specimens were fixed in
ethanol (95%). The whole mouse specimens were then
sequentially stained with Alcian Blue and Alizarin Red stains.

Fracture Surgery
Tibia diaphyseal fracture model was performed as described (19)
at ~100 days of age. A 1 cm incision was made centered on the
proximal tibia. The patella was identified. A stainless-steel pin
(Entochrysis Stainless Mounting Insect Pin, Size 00) was inserted
via the tibia plateau to stabilize the subsequent tibia fracture, and a
diaphyseal osteotomy was then performed. Care was taken to
ensure that the localization of the osteotomy was consistent from
mouse to mouse, by referencing to the tibia tubercle. Routine
analgesia was given perioperatively and the mice were allowed to
weight bear as tolerated upon recovery. The mice were sacrificed at
2 weeks, 3 weeks or 4 weeks after the osteotomy was performed for
FIGURE 2 | Wnts modulate fracture callus maturation. Hematopoietic and other cells within the bone microenvironment secrete Wnts. Wnt upregulation activates
osteoclastic precursor cell proliferation but inhibits osteoclastic precursor cell maturation to osteoclast. Carefully regulated Wnt activity is therefore required for the
correct number of mature osteoclasts to develop during fracture healing. Wnts are also responsible for the activation of mesenchymal stem cell differentiation to
osteoblasts. These mature osteoblasts are responsible for the formation of woven bone. Osteoclasts also play a key role in callus maturation by resorption of
cartilage during callus remodeling. A quantitative shortfall in the secreted Wnts may therefore result in a less mature callus with more cartilage and less woven bone
by inhibiting the proliferation of osteoclast precursor cells.
A B

FIGURE 1 | Generation of hematopoietic Wnt-depleted mice. (A) Porcnfloxmice were crossed with Vav-Cremice, resulting in Vav-Cre/Porcnfloxmice with excisional deletion
of Porcn exon 3 in hematopoietic and other tissues expressing Vav-Cre. Relative annealing positions of complementary primers used for PCR from mouse genomic DNA is
shown (RecF1, RecR1, and RecR3). (B) PCR genotyping using DNA from tail clippings. Each lane is from an individual mouse. Upper panel, Vav-Cre/Porcnflox mice samples
exhibited 2 bands, a faster 128 bp band from RecF1/RecR1 (floxed), and a slower 248 bp band from RecF1/RecR3 (KO, knockout), since the tail clippings contain both
hematopoietic and non-hematopoietic tissue. Porcnfloxmice in the absence of Vav-Cre exhibit only a single PCR product (RecF1/RecR1).
PRIMERS | Genotyping primer sequences.

Primer Sequence

PORCN Forward CTGTTAAACCAAGACATGACCTTCA
PORCN Reverse 1 TAACTAGGACGCTTTGGGATAGGAT
PORCN Reverse 3 GTTCTGCCTTCCTAACCCATATAAC
Vav Forward GGACATGTTCAGGGACAGGCA
Vav Reverse CTCTGATTCTGGCAATTTCGGC
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callus analysis. The pin was removed from the tibia specimens
after retrieval. Both male and female mice were analyzed
separately at the 2-week, 3-week and 4-week time points after
injury to exclude gender bias.

Micro-Computed Tomography (Micro-CT, µCT)
Harvested specimens were dissected of soft tissue and scanned
using high resolution micro-CT (Skyscan 1176, Bruker Micro-
CT, Kontich, Belgium) at 9 µm resolution. Image acquisition was
performed at 50 kV, 800 µA and 0.25 mm aluminum filter.
Hydroxyapatite phantoms were scanned and used for bone
mineral density (BMD) calibration.

Acquired images were reconstructed with NRecon and
analyzed with CTAn (version 1.5.0, Skyscan, Bruker Micro-
CT). For analysis of the cancellous bone, the region of interest
encompassing the entire vertebrae body was manually defined to
include the trabeculae bone only. Cortical bone was segmented
out. This was used to generate a three-dimensional (3D) model
CTvol (Skyscan Bruker Micro-CT) for analysis. For analysis of
the tibial cortical bone, the midpoint of the tibia was used, and a
100-slice volume centered on this midpoint was defined as the
region of interest. For analysis of the fracture callus, the midpoint
of the callus was used to define a 3mm region of interest. The
cortical bone from the fracture fragments within the callus was
segmented out, leaving only the newly formed callus for analysis.
The fibular callus was not included in our analysis.

Histology
Fracture calluses were decalcified in Osteosoft (Merck) for 5 days
and paraffin embedded after mCT scanning of bone. Serial sections
of 3 mm were deparaffinized and rehydrated to water for
hematoxylin and eosin (H&E), toluidine blue andVonKossa Stain.

For hematoxylin and eosin (H&E) staining, tissue sections
were stained in Shandon hematoxylin solution, differentiated in
1% acid alcohol, and immersed in ammonia with washing
between steps. The sections were subsequently rinsed in 95%
alcohol, counterstained in eosin-phloxine solution and rinsed
before mounting.

Toluidine blue stain was used to identify the cartilaginous
components of the callus. Sections were stained with 1% toluidine
blue before being dehydrated and mounted. After staining,
cartilage appears blue to purple, nuclei dark blue and all other
tissue green.

Von Kossa staining was employed to monitor the
mineralization of bone. After the sections were degreased and
rehydrated, 2% silver nitrate solution was applied to each section,
and the slides were exposed to strong light for 30 minutes. After
the silver nitrate was removed, 5% sodium thiosulfate was added
to the section for prior to rinsing with distilled water. The sections
were then incubated with van Gieson working solution before
mounting. After von Kossa staining, the mineralized bone
appeared black, and less mineralized bone appearing pink.

Tartrate resistant acid phosphatase (TRAP) staining was used
to stain osteoclasts. Demineralized samples were incubated in
freshly made TRAP staining solution at 37°C for 30 minutes. The
slides were then rinsed with distilled water and counterstained
with 0.02% Fast Green for 30 seconds and then rinsed again with
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distilled water. Osteoclasts were stained red violet and the callus
matrix was stained green.

Histomorphometry Analysis
Histology cross-sections were referenced to the corresponding
micro-CT images to identify those which represented the center
of the fracture callus, and mid-section of the vertebrae. These
sections were digitized and analyzed using the BioQuant Osteo
software package (https://osteo.bioquant.com, Nashville, TN, USA).
Total cartilage volume, total tissue volume, total trabecular bone
volume, total trabecular bone surface area, trabecular diameter,
trabecular number, trabecular spacing, fibrosis volume, total
osteoblast surface, total osteoblast number, and osteoblast number
per bone surface were analyzed. The results for osteoblast number,
osteoblast number per bone surface, cartilage volume, and cartilage
to total volume ratio were verified manually by a trained clinical
pathologist (VKL) reviewing the digitized images of the calluses.

Biomechanical Evaluation
Whole tibia fracture callus specimens were allocated for
mechanical testing. All specimens were measured with a digital
Vernier caliper (Mitutoyo Absolute, Mitutoyo, Japan), and the
mid-point for the callus was determined. Intramedullary pins
were removed prior to testing. A distance of 1.5 mm from the
mid-point of the callus was marked superiorly and inferiorly.
The 1.5 mm marking was used as a baseline to ensure that the
tibia was centered, with equidistance from the mid-point of the
callus. Superior and inferior ends of the tibia were embedded into
stainless steel nuts using acrylic dental cement. Tibial specimens
were wrapped in gauze soaked in saline solution to prevent the
bone from dehydration and kept at 4°C. On the day of
experiment, each specimen was mounted onto a torsion testing
machine (Bionix® EM Torsion Test System, MTS, Eden Prairie,
MN USA) and angularly displaced at a rate of 2 degrees per
second. Angular displacement and torque were recorded for the
duration of each test. Torsional stiffness was computed as the
gradient of the most linear part of the torque versus angular
displacement curve. Angular failure displacement and failure
torque were determined as the yield point of the torque versus
angular displacement curve.

Quantitative PCR Analysis
Fracture calluses were snap frozen in liquid nitrogen and
processed using a bead beater with tungsten beads for
homogenization. RNA was extracted from the cell lysate using
Qiagen RNeasy RNA extraction kit. Total RNA was reverse
transcribed into cDNA first strand using the Superscript II kit
as per manufacturer’s protocol. Target and endogenous control
genes were amplified with validated primers. Reactions were
performed in triplicate in a 96-well plate using OneStep Plus
(Applied Biosystems) for 40 cycles. Differential expression was
determined using the comparative Ct method.

Statistical Analysis
Results were presented graphically as a scatter plot of the
individual sample values and expressed as a mean ± standard
deviation of the mean. This format of presentation provides both
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the sample size in each group, as well as the result of each
individual mice in the experiment. Sample normality was
assessed with the Kolmogorov-Smirnov (KS) test prior to
analysis. Statistical significance between all parametric sample
groups was determined by performing an unpaired t test with
Welch’s correction at 5% statistical significance. Individual P
values for each test was presented. All data was analyzed using
GraphPad PRISM (version 8.4.2; San Diego, California, USA).
RESULTS

Loss of Hematopoietic Wnt Secretion
Results in Marginal Decrease in Skeletal
Size, but No Gross Defects
Wnts are implicated in both endochondral ossification and
intramembranous ossification during skeletal growth and
development. To investigate the role of hematopoietic Wnts in
fetal skeletal development, we bred Porcnflox mice (32, 35) with
Vav-Cre mice (37). This allowed us to generate mice with tissue
specific deletion of Porcn in hematopoietic lineage cells (Vav-
Cre/PorcnDel) (Figure 1). PORCN is required for Wnt secretion
and activity (33, 38, 39). Hematopoietic lineage cells in Vav-Cre/
PorcnDel mice therefore cannot produce active Wnts. PorcnDel

mice were confirmed by genotyping (Figure 1). Depletion of
hematopoietic Wnts was well tolerated, with similar numbers of
Vav-Cre/PorcnDel and wild-type pups surviving.

If hematopoietic Wnts are important in fetal musculoskeletal
development, we expect the Vav-Cre/PorcnDel pups to differ
phenotypically from their wild-type littermates. The Vav-Cre/
PorcnDel mice differed slightly in weight and size from the wild-
type littermates but only at 3 months of age. They did not
Frontiers in Endocrinology | www.frontiersin.org 5205
demonstrate any gross skeletal abnormalities on whole mount
skeletal staining of the mice pups at 3 weeks of age (Figure 3).
Themicroarchitecture of the spinewas grossly normal onH&Eand
SafraninOstaining,withnormal development of the vertebral body
and intervertebral discs, with no gross deformities. The Vav-Cre/
PorcnDel mice pups also had normal weight gain over time until
skeletalmaturity andhadnormal long bone and cranial dimensions
on maturation (Figure 3). There was a marginal decrease in the
nose to pelvis length of Vav-Cre/PorcnDel mice but overall, there
were no significant gross musculoskeletal abnormalities in these
developingmice.Therewasno increase inmortality in theVav-Cre/
PorcnDelmice compared to their wild-type littermates, with similar
numbers surviving beyond sexual maturity to late adulthood.

Hematopoietic Wnts Do Not Contribute to
Bone Mass Accrual
Wnts are important in bone mass accrual and are implicated in
osteoporosis. To determine if hematopoieticWnts play an important
role in bone mass accrual, we evaluated the microarchitecture of the
Vav-Cre/PorcnDel vertebral body at maturity using high resolution
microcomputer tomography scans (µCT) (Figure 4, male mice).
TheVav-Cre/PorcnDeldemonstratednodifference in trabeculae bone
volume, percentage trabeculae bone volume and bone mineral
density compared to the wild-type mice. There was also no
difference in cortical volume and thickness. Since the dimensions of
the cortical bone were similar, we proceeded to evaluate the
qualitative properties of the cortical bone of the Vav-Cre/PorcnDel

mice by measuring the stiffness and torque required for fracture
(strength). If hematopoietic Wnts depletion resulted in quantitative
or qualitative differences in bone development, we expect the cortical
bone to have decreased mechanical strength. Again, there was no
demonstrable difference in stiffness or torque strength between the
A B

D EC

FIGURE 3 | Depletion of hematopoietic Wnts has a minimal effect on musculoskeletal development. (A) Whole-mount skeletal staining demonstrating similar gross
skeletal structure in the wild type (WT) and knockout mice (KO). (B) Growth curves demonstrated no growth arrest or delay in the KO mice. (C) Nose to pelvis
length, (D) femur length, (E) cranial size (cross sectional dimensions) were comparable for the KO and WT mice, with only nose to pelvis length demonstrating a
marginal increase in the WT.
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Vav-Cre/PorcnDel mice and their wild-type littermates, suggesting
that haemopoietic Wnts production is dispensable for physiological
bone development.
Hematopoietic Wnts Promote
Fracture Callus Maturation by
Up-Regulation of Osteoclasts
Fracture healing in long bones most frequently occurs by
endochondral ossification. Direct healing only occurs when there
is bone toboneapposition and compression at the fracture site,with
absolute stability (40). The early phase of endochondral fracture
healing involves an inflammatory process followed by the
formation of a soft callus (41). This soft callus depends on
chondrogenic differentiation of stromal mesenchymal stem cells,
which then produce a cartilage scaffold around the fracture site.
Specific Wnts (WNT9A, WNT5B) are known to play a key role in
chondrocyte differentiation and soft callus formation (10). To
investigate the role of hematopoietic Wnts in this early phase of
fracture healing, we created an osteotomy in the tibia diaphysis of
theVav-Cre/PorcnDelmice, stabilized with an intra-medullary steel
Frontiers in Endocrinology | www.frontiersin.org 6206
pin (Figure 5). We then evaluated the early fracture callus using
high resolution micro-CT scans and histomorphometrically
analysis at 2 weeks after the osteotomy had been performed. The
hematopoietic Wnt depleted calluses were of normal volume and
percentage bone volume compared to the wild-type calluses. There
was only amarginal increase in the volumeof cartilage, aswell as the
cartilage to total volume ratio in the hematopoietic Wnt-depleted
callus (Figure 6I), indicating that the callus was less mature.
However, this difference did not reach statistical significance.
These results suggest that hematopoietic Wnts, specifically those
implicated in chondrogenic differentiation, do not play an
important role in the early phase of fracture healing.

We then investigated the effects of hematopoieticWnt depletion
in the 3-week-old callus. This allowed us to investigate the role of
hematopoietic Wnts in the mineralization of the soft callus by
osteoblasts. As expected, the wild-type callus demonstrated
decreased cartilage composition, and increased woven bone and
mineralization, compared to the 2-week-old callus. The Vav-Cre/
PorcnDel mice also demonstrated a similar increase in woven bone
and mineralization in the 3-week-old callus compared to the 2-
week-old callus. Interestingly, we found that the Vav-Cre/PorcnDel
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FIGURE 4 | Hematopoietic Wnt-depleted mice have normal bone quality. (A) L5 vertebral bodies from WT and KO mice assessed by hematoxylin and eosin (H&E)
and safranin O staining and micro computer-assisted tomography (mCT) with reconstruction demonstrating similar trabecular bone microarchitecture. (B–G) mCT
quantification revealed no major differences in the bone quality of the L5 vertebrae by tissue volume (mm3), bone volume (mm3), percentage bone volume (%) and
relative bone mineral density, trabaculae number(mm-1) and trabaculae thickness in the KO and WT mice. (H) mCT reconstruction of tibia cortical bone demonstrated
minimal difference in (I) cortical volume (mm3), and (J) cortical thickness (mm) between the KO and WT mice. (K) Rotational torque machine. (L) The maximum tibia
torque and (M) 4-point bending stiffness (Newton/mm) of the tibia were similar for both groups of mice.
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mice had a higher volume of cartilage and percentage of cartilage in
the callus at 3 weeks compared to the wild-type mice (Figure 6).
The wild-type mice callus had negligible cartilage at 3 weeks after
fracture, indicating that the callus had almost completely matured
to woven bone. This suggested that hematopoietic Wnts had a
positive effect in ossification of the cartilaginous callus.However, by
4 weeks, both the wild-type mice and the Vav-Cre/PorcnDel mice
had fully matured calluses with all woven bone and no more
cartilage. Thus, hematopoietic Wnt depletion demonstrated a
Frontiers in Endocrinology | www.frontiersin.org 7207
clinically significant but dispensable role in callus formation and
maturation. To identify howhematopoieticWnt depletion resulted
in a delay in callus remodeling to woven bone, we analyzed the
osteoclasts and osteoblasts per bone surface area in the fracture
calluses. We observed that the hematopoietic Wnt depleted callus
had fewerosteoclasts at the3-weekmark (Figure7). Incontrast, the
osteoblasts were not decreased.

We lysed the 3-week-old fracture callus to investigate the
transcriptional changes in Wnt target genes and markers of
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FIGURE 5 | Hematopoietic depletion of Wnt does not affect callus volume and early healing. (A) Illustration of murine fracture model with a diaphyseal osteotomy
stabilized with an intramedullary stainless-steel pin. (B) µCT reconstructed 3D images showed that the KO mice healing fracture callus had similar gross dimensions
compared to the WT, 3 weeks after injury. (C–E) µCT volumetric analysis of the 3-week-old fracture callus by percentage bone volume (%), tissue volume (mm3),
and bone volume (mm3); showed that the KO mice had normal callus bony volume and density. (F, G) Mechanical evaluation of the fracture callus at 3 weeks by
maximum torque (Newton.mm), and stiffness (Newton/mm) were similar for both the KO and WT mice.
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osteoblastic differentiation (Figure 6J, female mice). Despite the
difference in the phenotype of the callus at 3 weeks, expression of
the Wnt/b-catenin target gene (Axin2) and the markers of
osteoblastic differentiation (Opg, Runx2), bone resorption
(Rankl) and early chondrogenesis (Ihh and Sox9a) were similar
for both groups. This may be because the increase in Wnts
secreted, and expression of the markers analyzed may have
changed for only a short transient duration. This may have
normalized at the time point of our analysis. There may also only
be a difference in the ratio of specific Wnts rather than just a
decrease in the quantity of b-catenin dependent Wnts in the KO
callus compared to the wild-type callus.
Frontiers in Endocrinology | www.frontiersin.org 8208
DISCUSSION

This study sets out to investigate the role of hematopoieticWnts in
bone homeostasis and fracture healing. We know that bone
marrow is important for hematopoiesis, but are hematopoietic
cells important for bone formation? Do marrow cells play a role
under normal physiological conditions in development or only in
injury? These important questions can help us to understand how
autologous bone marrow grafts assist in fracture healing.
Stimulation of fracture healing by bone marrow or bone grafting
has thus far been focused on the therapeutic effect ofmesenchymal
stem cells and the osteoconductive scaffold that the graft provides.
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FIGURE 6 | Hematopoietic Wnt-depleted mice had delayed callus maturation with more cartilage. (A) Histology of representative mice callus samples 3 weeks after injury
from each group, demonstrated increased cartilage in the callus in the KO compared to the WT mice. (B–H) Quantitative evaluation of the fracture callus 3 weeks after injury
were done by determining the (B) Total osteoblast surface (mm), (C) osteoblast number per bone surface (mm3), (D) total trabecular bone volume (mm3), (E) total cartilage
volume (mm2), (F) total osteoblast number and (G) bone volume to total callus volume ratio (%). Total cartilage volume (E) was significantly less in the KO compared to the
WT callus samples. (H) Representative images showing progressive maturation of the fracture callus in hematopoietic Wnt-depleted mice (KO) and wild type mice (WT).
(I) Cartilage volume to total volume ratio (%) during the 1st 4 weeks after injury, demonstrating that the fracture calluses from the KO mice matured to woven bone after 4
weeks. (J) Quantitative polymerase chain reaction (qPCR) evaluation of the fracture callus at 3 weeks for relative expression of Wnt target gene (Axin2), bone turnover (RankL),
osteoblastic genes (Runx2, Opg) and chondrogenic genes (Ihh, Sox9) revealed no significant difference in the 2 groups of mice. N=4 mice per group.
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Wedonotknowmuchabouthowthehematopoietic componentof
the marrow contributes to bone formation. Understanding how
hematopoietic cells modulate fracture healing will also help us to
predict how bone marrow suppression or failure may affect
fracture healing.

In this study, we found that hematopoietic Wnts had only a
marginal quantitative effect on musculoskeletal development
during fetal development and post-partum growth. However,
when we examined what happens during fracture, we identified
that there was a delay in fracture callus maturation. This was
demonstrated by a more cartilaginous callus matrix. Fracture
callus maturation is depended on two sequential and overlapping
processes. Thefirst process is resorption of themineralized cartilage
in the soft callus by osteoclasts. The second process is the
replacement of the resorbed cartilage with woven bone by
osteoblasts. Disruption of either of these two processes can result
in delay in callus maturation (40). We found that in the
hematopoietic Wnt depleted mice callus, there was a significant
decrease in the osteoclast to bone surface area. This phenotype of
delayed callus remodeling that we observed was similar to what Lin
et al. (42) reported following reduction of osteoclast numbers in a
fracture model. Can a shortfall inWnts result in a reduced number
of osteoclasts?Wei et al. (43) demonstrated thatWnt inhibition in
osteoclast lineage cells by b-catenin deletion resulted in
inhibition of proliferation of osteoclast precursor cells. Wnt/b-
catenin activation stimulates GATA2/Evi1 expression which is
required to generate osteoclast precursors. Constitutive Wnt/b-
catenin activation resulted in proliferation of osteoclast
precursors, but inhibition of osteoclastic differentiation to
mature osteoclasts. Wei also showed that Wnt/b-catenin
downregulation is needed for c-Jun activation, which in turn is
required for the proliferation to differentiation switch in
osteoclast precursors. This suggests that a very finely balanced,
phased Wnt activation level is required for optimizing the
number of mature osteoclasts. Although Wei’s experiments
were not done in a fracture model, it follows that an acute
Frontiers in Endocrinology | www.frontiersin.org 9209
shortfall in Wnt molecules during healing caused by
hematopoietic Wnt depletion can disrupt this balance and
result in fewer mature osteoclasts within the callus, specifically
by inhibiting osteoclast precursor proliferation.

In contrast to the number of mature osteoclasts, the number
of osteoblasts per bone volume was not decreased in the
hematopoietic Wnt depleted callus. Osteoblasts play a key role
in laying down bone during fracture healing, an essential step in
callus maturation. Wnt signaling is a positive regulator of
osteoblasts (44) and osteoblastic Wnt/b-catenin inhibition
results in fracture non-union (14). In our model, Wnt
secretion from osteoblasts was not blocked, and so the
osteoblasts could provide an alternative source of functional
Wnts in our model.

Other hematopoietic cells, specifically myeloid cells including
macrophages and osteoclasts, have also been reported to be
important for late stage fracture healing. Schlundt (41)
reported that macrophage reduction did not result in an
obvious effect in the early phase of fracture healing but resulted
in delayed hard callus formation. They also reported that
the anti-inflammatory M2 macrophage enhancement improved
fracture callus maturation. They concluded that the macrophages
played an important role in immune modulation during healing.
Linda et al. (19) also reported that macrophages were important
in promoting osteoblastic differentiation during fracture healing.
Our study suggests that hematopoietic cells may contribute to
fracture healing in a multitude of ways, including secretion of
Wnts to increase osteoclasts during callus remodeling. This has
important implications for our understanding of basic fracture
healing physiology.
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FIGURE 7 | Hematopoietic Wnt depletion results in decreased osteoclasts in the fracture callus. (A) Representative histology (Tartrate resistant acid phosphatase staining)
of fracture callus at 3 weeks showed fewer osteoclasts in the KOmice. (B)Osteoclast/trabecular bone surface of 3-week-old fractures were decreased in the KOmice.
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Objectives: Growing evidence argues for a relationship between liver and bone
metabolisms. Sclerostin is a secreted glycoprotein and could antagonize osteoblast-
mediated bone formation. Previous studies indicated that circulating sclerostin levels may
be associated with metabolic parameters with inconsistent results. This study was designed
to evaluate serum sclerostin in patients with or without nonalcoholic fatty liver disease
(NAFLD) and to analyze its relationship with metabolic parameters in different populations.

Methods: A cross-sectional study was designed and 168 NAFLD subjects and 85 control
subjects were included in this study. Serum sclerostin and metabolic parameters were
measured. Mouse models of NAFLD were also induced by high-fat diet. Bone structural
parameters were determined using microCT and mRNA expression levels of sclerostin in
bone and liver tissues were measured.

Results: Our study suggested that circulating sclerostin levels were significantly lower in
NAFLD subjects compared with normal controls. In NAFLD subjects, sclerostin was
negatively correlated with multiple metabolic parameters, including waist circumference,
urea, hepatic enzyme, gamma-glutamyl transpeptidase, and triglyceride, while such
correlation was not significant in control subjects. Circulating sclerostin was also
negatively correlated with fatty liver index in NAFLD subjects but not in control subjects.
Mice fed on a high-fat diet had reduced bone mass and lower sclerostin expression levels
in both the bone and liver tissues.

Conclusions: Our study suggested that the liver-lipid-bone interactions may play a key
role in the abnormal bone metabolism in NAFLD, and circulating sclerostin may be a
surrogate marker to reflect bone metabolism status in NAFLD subjects.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD), which is closely
associated with obesity, type 2 diabetes, and the metabolic
syndrome, has become the most prevalent chronic liver disease
today. In recent years, extrahepatic manifestations of NAFLD
have attracted scientific attention (1, 2). Previous studies also
indicated a possible liver - bone interaction (3). Low bone
mineral density (BMD) and high risk of osteoporosis have
been found in both pediatric and adult populations with
NAFLD (4, 5). For example, Pardee et al. reported that obese
children with NAFLD had significantly lower BMD Z-scores
than obese children without NAFLD after controlling for age,
sex, race, ethnicity, and total percent body fat (6). In Korean
men, NAFLD has been demonstrated to be negatively associated
with right-hip BMD and serum osteocalcin after adjusting for
body mass index (BMI) and homeostasis model assessment of
insulin resistance (HOMA-IR) in Korean men (7, 8). However,
reverse results have also been reported. S. H. Lee et al. revealed a
significantly negative association between the femoral neck (FN)
BMD and NAFLD in men, while a positive correlation between
lumbar spine BMD and NAFLD in postmenopausal women (7).
It was suggested that fatty liver index (FLI), which is calculated
using BMI, waist circumference (WC), serum triglyceride (TG),
and gamma-glutamyltranspeptidase (g-GGT) levels, was
negatively associated with total hip, femoral neck, and whole-
body BMD in Korean men, but not in women (9). A
meta−analysis including studies in adults did not show a
significant difference in BMD between patients with NAFLD
and non-NAFLD (10), while meta-analysis including studies
conducted in children or adolescents revealed significant
differences in whole-body or lumbar BMD Z scores between
children/adolescents with and without NAFLD (11). Therefore,
the liver- bone interaction and the underlying mechanism
deserve further investigations.

Sclerostin is a glycoprotein predominately secreted by
osteocytes. Notably, although sclerostin could antagonize
osteoblast-mediated bone formation through inhibiting the
Wnt pathway, circulating sclerostin levels have been found to
be positively associated with BMD in humans (12–14). It is
speculated that circulating sclerostin may reflect numbers of
osteocytes. Sclerostin has been found to be associated with
metabolic abnormalities. Giuseppe Daniele et al. suggested that
sclerostin levels were higher in impaired glucose regulation
(IGR) subjects compared with normal glucose tolerant (NGT)
individuals and are correlated with insulin resistance in skeletal
muscle, liver, and adipose tissue (15). Higher sclerostin levels
have also been found in type 2 diabetes (16, 17). NAFLD plays a
key role in insulin resistance and type 2 diabetes. It is intriguing
to explore whether sclerostin is correlated with NAFLD. S A.
Polyzos et al. found a progressive decline in serum sclerostin
levels from the controls (76.1 ± 6.8 pmol/L) to nonalcoholic
simple steatosis (SS) (53.5 ± 6.4 pmol/L) and steatohepatitis
(NASH) (46.0 ± 8.1 pmol/L) patients (p = 0.009) (3). Our clinical
study also demonstrated that circulating sclerostin levels were
significantly lower in NAFLD subjects than normal controls and
Frontiers in Endocrinology | www.frontiersin.org 2213
were significantly correlated with multiple metabolic parameters.
Although sclerostin is predominately expressed by osteocytes,
sclerostin mRNA was also detected in liver tissues in human and
mice. Therefore, we also built mouse models of NAFLD using a
high-fat diet (HFD) to compare the mRNA expression levels of
sclerostin in both the bone and liver tissues between mice fed on
a control diet (CON) or HFD.
MATERIALS AND METHODS

Subjects
This study was approved by the Ethics Committee of the West
China Hospital. All participants gave written informed consent.
NAFLD group included patients with ultrasound found fatty liver,
and there were no causes for secondary hepatic fat accumulation
due to significant alcohol consumption, malnutrition, hepatitis B
virus, and hepatitis C virus. Exclusion criteria include: (1). Patients
with alcohol consumption more than 140g/week for males and
70g/week for females; (2). There was a past history of hepatitis B
virus and hepatitis C virus; (3). Ultrasound showed hepatomegaly;
(4). BMI<16 and incomplete data. 168 NAFLD patients were
included in our study. 85 age- matched control subjects without
ultrasound found fatty liver were recruited from West China
hospital’s physical examination center. None of the participants
were on any medications known to cause hepatic steatosis or
taking vitamin supplements.

Anthropometric Measurements
Anthropometric measurements were performed for all participants
and were recorded by trained staff. Body height, weight, blood
pressure, andWCwere recorded. BMI was calculated as weight (kg)
divided by height (m2) squared. Measurements were carried out
twice by two independent interviewers.

Laboratory Assessments
Venous blood samples were collected to measure lipids, liver
function, and other biochemical parameters after fasting for ≥ 8 h.
Total cholesterol (TC), TG, low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine
transaminase (ALT), aspartate aminotransferase (AST), g-GGT,
urea, alkaline phosphatase (ALP), ferritin, and alpha-fetoprotein
(AFP) were assessed in all the patients using automated,
standardized equipment from the Clinical Laboratory of West
China Hospital. Plasma glucose levels were tested using a
hexokinase enzymatic technique. Serum insulin was measured
using a radioimmunoassay (Beijing North Institute of Biological
Technology). Circulating sclerostin levels were measured using an
ELISA kit from Abcam (ab221836, Cambridge, UK). The detection
limit of the assay is 6 pg/mL with a range of 31.1 – 2000 pg/mL.
The intra- and inter-assay precisions are 4.8 and 8.6%, respectively.
HOMA-IR was used to measure the insulin resistance as the
equation: HOMA-IR= [fasting plasma glucose (mmol/L) ×fasting
insulin (pmol/L)]/22.5. Fatty liver index (FLI), calculated from
serum TG, BMI, WC, and g-GGT, has been used as a surrogate
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marker of NAFLD and a screening test in epidemiologic studies.
FLI was calculated by the following formula: FLI = [e0.953 × ln (TG) +

0.139 × BMI + 0.718 × ln (GGT) + 0.053 × WC - 15.745/(1 + e0.953 × ln (TG) +

0.139 × BMI + 0.718 × ln (GGT) + 0.053 × WC - 15.745)] × 100 (18).

Abdominal Ultrasonography
A high-resolution B-mode ultrasound probe (IU22, Philips,
Netherlands) equipped with a 7.5 MHz linear array was used
to measure the fatty liver. Participants were asked to maintain in
the supine position with the right arm raised above the head
during the examination. The liver’s fatty infiltration was
diagnosed by two experienced sonographers unaware of the
study’s aims and blinded to the laboratory results. A fatty liver
was defined as the presence of hyperechogenic liver parenchyma
compared to the kidney or spleen parenchyma.

Animals and Interventions
Male C57BL/6 mice were maintained in the temperature- and
light-controlled pathogen-free barrier facility under a 12-h light–
12-h dark cycle and had free access to water and diet. At the age
of 8 weeks, mice were divided into 2 groups with 6 animals each
either on a standard chow diet (64% carbohydrate, 10% fat, and
26% protein) or a high-fat diet (28% carbohydrate, 60% fat, and
12% protein) for 12 weeks.

At the end of the experiment, mice were euthanized with an
intraperitoneal injection of sodium pentobarbital. Bone and liver
tissues were fixed in 4% formalin, embedded in paraffin, and
stained with Hematoxylin and Eosin for histopathological
analysis. Oil Red O staining was also performed in the frozen
liver sections. The left femora were immersed into 4%
paraformaldehyde immediately for measurement of bone
structural parameters.

Bone structural parameters of mice, including trabecular bone
volume (Tb. BV/TV), cortical bone volume (Cort. BV/TV),
trabecular number (Tb·N), trabecular thickness (Tb·Th), and
trabecular separation (Tb·Sp), were measured using
microcomputed tomography (mCT) (MicroCT80, Scanco
Medical AG, Bassersdorf, Switzerland), as previously
described (19).

Total RNA was extracted from femur distal metaphyses
(which was devoid of bone marrow) and liver tissues using
Trizol reagent according to the manufacturer’s protocol
(Invitrogen, Frederick, USA). 1 mg RNA was reversely
transcribed into cDNA with PrimeScript™ RT reagent kit
(TaKaRa Biotechnology Co., Ltd., Dalian, China). Following
reverse transcription, the cDNA (2 ml) was amplified and
quantified (Bio-Rad laboratories, Inc., California, USA). The
sequence of oligonucleotide primers was listed in the following:
sclerostin forward primer: CCTCATCTGCCTACTTGTGC (5′–
3′); sclerostin reverse primer: GGTCTGGTTGTTCTCA
GGAGG (5′–3′). Relative gene expression levels were
normalized to beta-actin and analyzed with the 2-DDCt method.

Statistical Analysis
Data were analyzed using SPSS v. 16.0 software. Shapiro–Wilk’s
test was used to verify the normal distribution of continuous data
before each analysis. Analysis showed that HOMA-IR, sclerostin,
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ALT, TG, g-GGT, ferritin and FLI were not distributed normally.
Data are presented as mean ± standard deviation (SD) for
normally distributed data. Otherwise, non-normally distributed
data were presented as median (quartiles) and were transformed,
using the natural logarithms, before each analysis. The
significance of group differences was evaluated using
independent samples t-Test for continuous variables, while
Chi-square test was performed for categorical variables.
Pearson’s correlation test or Spearman’s correlation test was
used to determine the correlation between sclerostin levels with
various parameters. Partial correlation was used to eliminate the
influence of potential confounding factors. The statistical
significance was set at p<0.05 (two-tailed).
RESULTS

Clinical Study
As expected, the metabolic parameters were significantly
different between NAFLD subjects and normal controls
(Table 1). NAFLD subjects had significantly higher BMI, WC,
Waist-to-Hip ratio (WHR), blood pressure levels, urea, AST,
TABLE 1 | Baseline characteristics and biochemical indices.

Control (n=85) NFALD (n=168) p
values

Age (years) 43.27 ± 11.19 47.74 ± 10.35 0.002
Gender (male/female) 48/37 119/49 0.000
Body weight (kg) 61.48 ± 9.50 70.73 ± 10.53 0.000
Height (cm) 163.27 ± 7.97 165.08 ± 8.47 0.111
BMI (kg/m2) 22.99 ± 2.67 25.86 ± 2.48 0.000
Waist circumference
(cm)

77.96 ± 7.56 88.19 ± 7.60 0.000

WHR 0.83 ± 0.06 0.91 ± 0.05 0.000
SBP (mmHg) 116.16 ± 16.36 121.75 ± 16.75 0.014
DBP (mmHg) 71.60 ± 10.06 77.54 ± 10.44 0.000
Urea (umol/L) 320.31 ± 82.03 399.57 ± 96.82 0.000
ALT (IU/L) 19.00(14.00-26.00) 38.00(24.00-56.75) 0.000
AST (IU/L) 23.00 ± 9.15 32.27 ± 15.48 0.000
Fasting plasma
glucose (mmol/L)

5.14 ± 0.52 5.87 ± 1.84 0.000

Fasting insulin
(pmol/L)

14.04 ± 6.77 15.35 ± 7.56 0.163

HOMA-IR 3.08(2.02-4.50) 3.62(2.36-5.22) 0.013
TC (mmol/L) 4.76 ± 0.74 5.17 ± 0.99 0.001
TG (mmol/L) 1.16 (0.90-1.62) 2.13(1.57-3.04) 0.001
LDL-C (mmol/L) 2.57 ± 0.64 2.80 ± 0.78 0.018
HDL-C (mmol/L) 1.59 ± 0.41 1.27 ± 0.30 0.000
g-GGT (IU/L) 16.00 (12.00-23.00) 35.50(25.00-66.75) 0.000
ALP (IU/L) 67.18 ± 18.43 78.38 ± 21.39 0.000
Ferritin (ng/mL) 111.23 (53.27-152.84) 209.18(125.38-303.32) 0.000
AFP (ng/mL) 3.75 ± 2.13 3.52 ± 1.36 0.320
Sclerostin (pg/mL) 462.60(346.95-617.15) 362.25(189.78-489.40) 0.000
FLI 12.42 (6.19-23.20) 52.77 (34.63-70.47) 0.000
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NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; WC, waist circumference;
WHR,Waist-to-Hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; HOMA-IR, homeostasis model
assessment of insulin resistance; TC, total cholesterol; TG, triglyceride; LDL-C, low density
lipoprotein; HDL-C, high-density lipoprotein; g-GGT, gamma-glutamyltranspeptidase; ALP,
alkaline phosphatase; AFP, alpha fetoprotein; FLI, fatty liver index.
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ALT, fasting blood glucose levels, HOMA-IR, TC, TG, LDL-C,
g-GGT, ALP, and ferritin levels, as well as significantly lower
HDL-C levels, compared with normal controls. Height, fasting
insulin, and AFP levels were not different between the two
groups. Circulating sclerostin levels were significantly lower in
NAFLD subjects than normal controls.

For normal controls, circulating sclerostin was found to be
positively associated with age, fasting insulin levels, and HOMA-
IR and negatively correlated with HDL-C levels through Pearson
analysis (Table 2). After adjusting for age and WC, these
correlations were still significant (Table 3). For NAFLD
subjects, sclerostin showed a positive correlation with age and a
negative correlation with height, body weight, WC, DBP, urea,
ALT, AST, fasting insulin levels, HOMA-IR, TC, TG, g-GGT, and
ALP levels by Pearson analysis (Table 2). After adjustment for
age and WC, sclerostin was still negatively correlated with DBP,
ALT, AST, HOMA-IR, TC, TG, g-GGT, ALP and FLI (Table 3).
Further analysis showed that the correlation between sclerostin
with BW, BMI, WC, WHR, urea, insulin, HOMA-IR, TG and
HDL-C are different between two groups (Table 2). It seems that
sclerostin are closely associated with TG, BW and BW-related
parameters in NAFLD subjects, while are closely correlated with
insulin, HOMA-IR and HDL-C in controls (Table 2).

FLI serves as a surrogate marker for liver fat content. Our
study revealed a negative correlation between circulating
sclerostin with FLI in NAFLD subjects (r=-0.243, p=0.002),
while no correlation was found in normal control (r=0.178,
p=0.111) (Figure 1). Further analysis showed that the
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correlation of NAFLD and controls are statistically different
(95% confidence interval: -0.663, -0.160; p=0.002). After
adjustment for age and WC, the correlation was still significant
in NAFLD subjects (Table 3).

Animal Study
Hematoxylin and Eosin and Oil Red O staining showed more
lipid droplets accumulated in the liver tissues of HFD-fed mice
TABLE 2 | Correlation between sclerostin and other parameters.

Parameters Control NFALD Comparence of correlation

r p r p 95% confidence interval p

Age (years) 0.343 0.001 0.233 0.002 -0.136 0.340 0.374
Gender -0.115 0.297 0.102 0.189 -0.470 0.047 0.107
Body weight (kg) 0.165 0.141 -0.224 0.004 0.128 0.632 0.004
Height (cm) 0.046 0.682 -0.183 0.020 -0.033 0.483 0.087
BMI (kg/m2) 0.176 0.116 -0.128 0.104 0.041 0.551 0.023
Waist circumference (cm) 0.185 0.099 -0.183 0.020 0.106 0.612 0.006
WHR 0.175 0.117 -0.126 0.111 0.038 0.549 0.025
SBP (mmHg) -0.056 0.582 -0.047 0.551 -0.268 0.253 0.947
DBP (mmHg) -0.062 0.099 -0.236 0.002 -0.083 0.430 0.187
Urea 0.160 0.143 -0.176 0.022 0.073 0.582 0.012
ALT (U/L) -0.034 0.755 -0.216 0.005 -0.077 0.438 0.170
AST (U/L) -0.129 0.238 -0.217 0.005 -0.165 0.345 0.512
Fasting plasma glucose (mmol/L) 0.111 0.312 -0.055 0.480 -0.098 0.420 0.218
Fasting insulin (pmol/L) 0.217 0.047 -0.174 0.024 0.130 0.632 0.003
HOMA-IR 0.243 0.025 -0.161 0.037 0.144 0.643 0.002
TC (mmol/L) -0.029 0.793 -0.173 0.025 -0.116 0.402 0.281
TG (mmol/L) 0.178 0.103 -0.256 0.001 0.174 0.675 0.001
LDL-C (mmol/L) 0.061 0.579 -0.121 0.118 -0.081 0.438 0.176
HDL-C (mmol/L) -0.256 0.018 0.151 0.051 -0.645 -0.148 0.002
g-GGT (U/L) -0.067 0.541 -0.280 0.000 -0.042 0.467 0.103
ALP (mg/L) -0.076 0.489 -0.165 0.033 -0.169 0.348 0.504
Ferritin (ng/mL) 0.051 0.645 -0.136 0.079 -0.076 0.443 0.164
AFP (ng/mL) -0.096 0.381 0.013 0.868 -0.365 0.155 0.419
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NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; WC, waist circumference; WHR, Waist-to-Hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; HOMA-IR, homeostasis model assessment of insulin resistance; TC, total cholesterol; TG, triglyceride; LDL-C, low density
lipoprotein; HDL-C, high-density lipoprotein; g-GGT, gamma-glutamyltranspeptidase; ALP, alkaline phosphatase; AFP, alpha fetoprotein.
TABLE 3 | Correlation between sclerostin and other parameters after adjustment
of WC and age.

Parameters Control NFALD

r p r p

DBP (mmHg) -0.216 0.058 -0.170 0.033
AST (U/L) -0.123 0.284 -0.174 0.029
ALT (U/L) -0.023 0.841 -0.200 0.012
Fasting insulin (pmol/L) 0.270 0.018 -0.130 0.104
HOMA-IR 0.269 0.017 -0.159 0.046
TC (mmol/L) -0.070 0.545 -0.189 0.018
TG (mmol/L) -0.100 0.384 -0.244 0.002
HDL-C (mmol/L) -0.233 0.040 -0.112 0.164
g-GGT (U/L) -0.116 0.311 -0.186 0.020
ALP (mg/L) -0.179 0.116 -0.165 0.039
FLI 0.025 0.830 -0.161 0.045
WC, waist circumference; NAFLD, nonalcoholic fatty liver disease; DBP, diastolic blood
pressure; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HOMA-IR,
homeostasis model assessment of insulin resistance; TC, total cholesterol; TG,
triglyceride; HDL-C, high-density lipoprotein; g-GGT, gamma-glutamyltranspeptidase;
ALP, alkaline phosphatase; FLI, fatty liver index.
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compared with mice fed on a control diet (Figures 2A–D).
More fat vacuoles were found in the bone marrow of mice fed on
a high-fat diet (Figures 2E, F). Tb. BV/TV and Cort. BV/TV
were significantly decreased in mice fed on a high-fat diet
compared to mice on a control diet, while Tb. N, Tb. Sp and
Tb. Th were not significantly different between groups (Figure 3).
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The mRNA expression levels of sclerostin were significantly lower
in both the bone and liver tissues of HFD-fed mice than those of
mice on a control diet (Figures 4A, B). Sclerostin expression
levels in bone tissues were positively correlated with Cort.
BV/TV (Figure 4C).
DISCUSSION

Our study suggested that circulating sclerostin levels were
significantly lower in NAFLD subjects compared with normal
controls, which was consistent with a previous study (3). Our
study also indicated that sclerostin was correlated with multiple
metabolic parameters, especially WC, hepatic enzyme, g-GGT,
and TG. Although sclerostin is predominantly expressed by
osteocytes, sclerostin mRNA has been detected in other human
and mouse tissues, including cartilage, liver, kidney, and heart
(20). Research conducted by M E. Brunkow et al. suggested that
sclerostin expression levels in human and mouse liver were only
lower than those of bone and cartilage (21). Therefore, we also
conducted an animal study to compare the expression levels of
sclerostin in bone and liver tissues of mice fed on either a control
diet or HFD. Mice fed on HFD showed significantly lower
sclerostin expression levels in both the bone and liver tissues,
FIGURE 1 | Circulating sclerostin was negatively correlated with FLI in
NAFLD subjects (r=-0.243, p=0.002), but not in control subjects (r=0.178,
p=0.111). FLI, fatty liver index; NAFLD, nonalcoholic fatty liver disease.
A B

D

E F

C

FIGURE 2 | Histological analyses of fat deposition in liver and bone marrow of mice. (A, B) Hematoxylin and Eosin staining showed more lipid droplets accumulated
in the liver tissues of HFD-fed mice, compared with mice fed on control diets. (C, D) Oil Red O staining showed more lipid droplets accumulated in the liver tissues
of HFD-fed mice. (E, F) Hematoxylin and Eosin staining revealed more fat vacuoles in the bone marrow of mice fed on HFD. CON, control; HFD, high-fat diet.
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A B

D

E

C

FIGURE 3 | Decreased bone mass in mice fed on a high-fat diet. (A) Trabecular bone volume (Tb. BV/TV). (B) Cortical bone volume (Cort. BV/TV). (C) Trabecular
bone number (Tb. N). (D) Trabecular separation (Tb·Sp). (E) Trabecular bone thickness (Tb·Th). CON, control; HFD, high-fat diet.
A

B

C

FIGURE 4 | Expression levels of sclerostin. (A) Sclerostin expression was significantly decreased in bone tissues of HFD-fed mice (p=0.002). (B) Sclerostin
expression was significantly decreased in liver tissues of HFD-fed mice (p=0.046). (C) Sclerostin expression levels in bone tissues were positively correlated with
Cort. BV/TV (r=0.745, p=0.003). CON, control; HFD, high-fat diet.
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especially the bone tissues. Since the mRNA expression levels
of sclerostin in liver tissues were extraordinarily low (data are
not shown), when compared with the expression levels of
sclerostin in bone tissues, it was speculated that the decreased
sclerostin levels in NAFLD subjects may mainly reflect
reduced sclerostin secretion from bone tissues.

Previous studies suggested that sclerostin expression is
regulated by several factors, including age, estrogen, parathyroid
hormone (PTH), and mechanical loading et al. (22). Our study
also found a significantly positive correlation between sclerostin
and age. Our study indicated that the correlation between
sclerostin with metabolic parameters are different between two
groups. In NAFLD subjects, sclerostin was closely and negatively
correlated with TG, BW and BW-related indicators, while in
controls, sclerostin was positively and significantly correlated with
insulin and HOMA-IR, and negatively correlated with HDL-C.
However, in subjects with NFALD, sclerostin was negatively
associated with insulin and HOMA-IR. It seems that body
weight gain and accompanying metabolic abnormalities may
play a key role in the reduced sclerostin levels in NAFLD
subjects. In this study, the sex distribution is significantly
different between groups. However, our study indicated that
gender may not play a role in the different sclerostin levels
between two groups. In both the NAFLD patients and controls,
circulating sclerostin levels were not different between male and
female (Supplementary Figure 1), and no significant correlation
between sclerostin and gender was found (r=-0.115, p=0.297 in
NAFLD; r=0.102, p=0.189 in controls). WC, g-GGT, and TG are
also key risk factors of NAFLD and are used to calculate FLI. In
this study, we also analyzed the possible association between
sclerostin and FLI in different populations. Similarly, circulating
sclerostin was significantly and negatively correlated with FLI in
NAFLD subjects, while it was not associated with FLI in control
subjects. Our study may suggest that in normal subjects without
NAFLD, these metabolic indexes showed no obvious influence on
sclerostin secretion, while in NAFLD subjects, these multiple
metabolic abnormalities may inhibit sclerostin secretion
mediated by a direct or indirect mechanism. The more obvious
the metabolic abnormalities were, the more prominent the
inhibitory effects on sclerostin expression.

NAFLD, defined by the presence of hepatic steatosis in the
absence of other causes for hepatic fat accumulation, is actually a
multisystemic clinical disease with extrahepatic manifestations
including cardiovascular disease, type 2 diabetes, chronic
kidney disease, hypothyroidism, polycystic ovarian syndrome,
and psoriasis (1). Decreased BMD and increased risks of
osteoporotic fractures have been observed in NAFLD subjects
(5), and the underlying mechanism linking fat accumulation in
the liver with abnormal bone metabolism has attracted increasing
interest recently (5). Chronic inflammation, vitamin D deficiency,
growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis,
insulin resistance, limited physical activity, some adipokines like
adiponectin and leptin, as well as marrow adipose tissue (MAT)
have been proposed as possible mediators of mutual interactions
among the skeleton, fatty tissue, and liver (23).

The liver plays a key role in lipid, glucose, and energy
metabolism. NAFLD reflects a local manifestation of systemic
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metabolic abnormalities. These abnormities are closely
associated with increased body fat content and abnormal lipid
metabolism. Our previous and current studies have found a
decreased bone mass and increased adipocytes in the bone
marrow of mice fed on HFD, indicating MAT may be critically
involved in the interplay between bone and liver (19). MAT,
which is functionally distinct from both white and brown
adipose, can contribute to systemic and skeletal metabolism
(23). The previous study found no correlation between MAT
with any measure of metabolic risk, including WHR, blood
pressure, carotid intima-media thickness, insulin resistance, or
lipid profile in young, healthy individuals, while such association
was noticed in obese women as well as in patients with type 2
diabetes, indicating MAT may be activated by these metabolic
abnormalities. Our present study also revealed similar
phenomena. A significant and negative correlation was
observed between sclerostin with multiple metabolic indexes,
including FLI, in NAFLD subjects, while such correlation was
not significant in control subjects without NAFLD. Sclerostin
acts as a negative regulator of bone formation by inhibiting the
Wnt pathway, while most previous studies revealed a positive
correlation between circulating sclerostin levels and BMD in
human subjects (24). Our animal study also found that sclerostin
expression levels in bone tissues were positively correlated with
Cort. BV/TV. Therefore, the decreased circulating sclerostin
levels in NAFLD patients may reflect the reduced bone mass
and abnormal bone metabolism in these subjects to some degree.
MAT may be involved in this process, and the underlying
mechanism needs further investigation.

It has been suggested that sclerostin could directly increase
adipogenesis in mouse pre-adipocytes and enhance adipocyte
differentiation in 3T3-L1 cells (25, 26). However, in our current
study, we showed that mice on HFD had more adipocytes in
bone marrow while lower sclerostin expression in bone tissues.
The inhibited sclerostin expression may reflect lower bone mass
with decreased osteocyte numbers in these mice on HFD.
However, there may be an interaction between sclerostin and
MAT, and enhanced MAT may show some regulatory effects on
sclerostin expression. The relevant studies are under way.

Previous studies found increased sclerostin levels in type 2
diabetic patients compared with age-matched controls and type 1
diabetic patients, and sclerostin increased with the number of
metabolic syndrome features (16, 17). In post-menopausal type 2
diabetic women with NAFLD and significant fibrosis, sclerostin
levels were also higher than those of type 2 diabetic patients
without NAFLD (27). In our study, a positive association
between sclerostin levels with insulin and HOMA-IR was
found in control subjects without NAFLD, while a negative
correlation was found between sclerostin and HOMA-IR in
NAFLD subjects. Furthermore, NAFLD patients showed a
significant correlation between sclerostin levels with lipid
profiles, especially TG levels, even after adjusting for
confounding factors. These discrepancies may suggest that
pathways involved in bone metabolism are different between
T2DM and NAFLD.

Our study has certain limitations. First, the clinical study
was a cross-sectional study, and thus no causal relationship
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could be established. Second, the liver biopsy was not performed
due to possible risks for participants. Furthermore, BMD and
bone turnover markers, including bone-specific alkaline
phosphatase (B-ALP), procollagen I N-terminal propeptide
(PINP), and cross-linked type I collagen (CTx), have not been
measured in the clinical study. However, the animal experiment
was performed and showed from different aspects that sclerostin
expression in both the bone and liver tissues was indeed
decreased in mice with NAFLD induced by HFD. Our animal
study also revealed a positive correlation between sclerostin
expression levels in bone tissues and Cort. BV/TV.
CONCLUSIONS

Our study suggested that circulating sclerostin levels were
significantly decreased in NAFLD subjects and were negatively
correlated with multiple metabolic parameters, including FLI.
Mice with NAFLD induced by HFD showed decreased bone
mass and lower sclerostin expression in bone and liver tissues.
Our study indicated that the liver-lipid-bone interactions may
play a key role in the abnormal bone metabolism in NAFLD.
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The Associations of Serum
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Objectives: The aim of this study was to investigate factors responsible for the
psychological performance in primary hyperparathyroidism (PHPT) patients.

Methods: A group of 38 PHPT patients receiving questionnaires, including Beck
Depression Inventory (BDI), State–Trait Anxiety Inventory (STAI), and 36-Item Short
Form Survey (SF-36), was evaluated. The relationships between scores of
questionnaires and clinical biomarkers were examined. Collinearity and linear regression
model were applied to examine variables determining the scores of the questionnaire. In
192 PHPT patients, bivariate and partial correlation were used to analyze the relationships
between serum concentrations of parathyroid hormone (PTH), calcium, osteocalcin
(OCN), and cortisol.

Results: Among 38 patients receiving questionnaire tests, 50% (19/38) of the patients
developed state anxiety, 60.5% (23/38) of the patients had the trait of developing anxiety.
In addition, 18.4% (7/38) of the patients developed mild to severe depression. Serum
cortisol at 8:00 was negatively and significantly correlated with social function (r = -0.389,
p = 0.041) after controlling for age, sex, disease duration, serum PTH, calcium,
phosphorus, and 25-hydroxyvitamin D [25(OH)D] concentration. OCN was significantly
and negatively correlated with score of STAI-S (r = -0.426, p = 0.027). In the linear
regression model for BDI score, variables with statistical significance were serum OCN
(b = -0.422, p = 0.019) and cortisol at 0:00 (b = 0.371, p = 0.037). In 192 PHPT patients,
the serum concentration of OCN (r = 0.373, p = 0.000) was positively correlated with PTH
level. After controlling for age, sex, disease duration, serum 25(OH)D, phosphorus, and
calcium concentration, the positive correlation between OCN and PTH was still statistically
significant (r = 0.323, p = 0.000). The serum concentration of cortisol at 0:00 was
significantly and positively correlated with serum calcium (r = 0.246, p = 0.001) in bivariate
correlation analysis. After controlling for age, sex, disease duration, serum PTH, 25(OH)D,
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and phosphorus concentration, serum cortisol at 0:00 was still positively and significantly
correlated with serum calcium (r = 0.245, p = 0.001).

Conclusion: Serum levels of OCN and cortisol, rather than PTH and calcium, are
associated with the development of anxiety and depression symptoms in PHPT patients.
Keywords: depression, anxiety, primary hyperparathyroidism, cortisol, osteocalcin
INTRODUCTION

Primary hyperparathyroidism (PHPT) is a disorder of
parathyroid hormone (PTH) hypersecretion by parathyroid
gland(s) in patients with normal renal function, resulting in
increased serum calcium concentration (1). While most patients
today are “asymptomatic”, lacking the classical skeletal and renal
manifestations of PHPT, nonspecific neuropsychological
symptoms are also investigated (2–5). Several studies suggested
that PHPT was associated with impaired quality of life (QoL),
anxiety, and depression as evaluated by questionnaires (6–8).
Although these symptoms are concerning, there is a debate upon
whether these symptoms are directly and specifically attributable
to PHPT (7). There were mainly two facts contributing to this
argument. For one thing, there is no consistent difference in the
psychological performance between PHPT patients and control
counterparts (7–9). For the other, the reversible role of
parathyroidectomy on these psychologic features was not fully
recognized (1, 9–11). Therefore, at the Third International
Workshop on Asymptomatic Primary Hyperparathyroidism
(12), studies on the psychological and cognitive features of
PHPT were reviewed and were not considered to be an
indication for parathyroidectomy (13). As for the primary
exploration for factors of PHPT neuropsychological
manifestations, studies were mainly concentrated on the
relationship between psychological performance and PTH or
calcium. However, neither the increased PTH nor calcium
concentration was definitely reported to be the direct cause (1, 7).

In fact, a number of hypotheses have been proposed with
regard to the mechanism of depression and anxiety development.
“Hypothalamus pituitary adrenal (HPA) axis disorder”
hypothesis (14) was a classic and widely accepted hypothesis
for the pathophysiology of anxiety and depression.
Glucocorticoids exerted damaging effects on psychological
function. Mouse experiments showed that high-dose
glucocorticoid reduced the neurogenesis of the hippocampus
and olfactory bulb that were related to depression and anxiety
behaviors (15–17). For humans, Cushing’s syndrome (CS) was a
pathological model of hypercortisolemia. The psychiatric feature
of hypercortisolism is a well-recognized manifestation of CS, as
described decades ago (18). In a study by Kelly et al. (19),
including 209 patients with active CS of all ages, depression
was present in 57% of the patients, while anxiety was diagnosed
in 12% of the patients. In addition to cortisol, recently, the
beneficial effects of osteocalcin (OCN), a bone-derived protein,
on improving neurological performance were reported, such as
n.org 2222
cognition impairment (20, 21), neuromotor dysfunction (22),
and anxiety and depression (21, 23). However, the changes of
cortisol and OCN concentration in PHPT, especially their
relationships with psychological features in PHPT patients,
have not been investigated.

In this study, both serum cortisol and OCN concentration
changes and the correlation of psychological features with serum
OCN and cortisol were analyzed in a group of PHPT patients.
MATERIALS AND METHODS

Patients
In this study, psychological questionnaires, which were not a
mandatory requirement for every patient in our department,
were tested from August 2020. Until December 2020,
questionnaire information in 38 out of 52 patients in this
period was obtained. The inclusion criteria included:
i) elevated serum calcium level with inappropriately high
serum PTH level and ii) with a complete record of serum
PTH, OCN, and cortisol concentration. The exclusion criteria
included: i) secondary and tertiary hyperparathyroidism, ii)
multiple endocrine neoplasms, iii) malignancy, iv) chronic
kidney disease (CKD) stages 4 and 5 or eGFR ≤30 ml/min, v)
a history of head trauma or stroke, and vi) medications with
glucocorticoid. In order to find out whether serum
concentration of OCN and cortisol changed as PTH and
calcium increased in PHPT patients, a total of 192 PHPT
patients admitted to our department from January 2011 to
December 2020, including the above 38 patients, were
retrospectively evaluated, who met the above inclusion and
none of the exclusion criteria. All the patients were managed by
the standard protocol developed by our department. Due to the
retrospective nature of this study, the written informed consent
was waived, which was approved by the ethics committee of our
hospital (2017-201).

Clinical Features
The age of onset was recorded according to the first identification
of symptoms related to PHPT (bone pain, nephrolithiasis,
pathological fractures, polydipsia and polyuria, digestive
symptoms, neuropsychiatric manifestations, etc.) or an
elevation in serum calcium or PTH concentrations. The
anthropometric information was also collected, including sex,
age at the time of diagnosis, and body mass index (BMI).
August 2021 | Volume 12 | Article 692722
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Biochemical Markers and Bone Mineral
Density Measurements
Blood samples were collected in the morning after 10 h of fasting.
Fasting serum albumin, calcium, phosphorus, and creatinine levels
were measured using an automatic biochemical analyzer (Beckman
Coulter, DXH 800, USA). Serum level of PTH was measured by
intact immunoradiometric assay (ARCHITECT i2000sr, Abbott,
Chicago, IL). Serum level of 25-hydroxyvitamin D [25(OH)D] was
measured by electrochemiluminescence immunoassay (Roche
Diagnostics, Indianapolis, IN, USA). Serum level of OCN was
assayed by two methods: radioimmunoassay (Gamma
radioimmunoassay counter GC-911, ZONKIA, China) and
electrochemiluminescence (Cobas, E601, Roche) during different
periods. Serum concentrations of Type I procollagen amino-
terminal peptide (PINP) and Collagen I telopeptide-b (b-CTX)
were examined through electrochemiluminescence method
(Cobas, E601, Roche). Serum concentrations of cortisol (collected
at 8:00, 16:00, and 0:00) and 24-h urinary cortisol were assayed by
chemical luminescence assay (Beckman Coulter Corp., Brea, CA,
USA). Plasma adrenocorticotropic hormone (ACTH) level was
tested by chemical luminescence assay (Mindray CL-600i, China).
Area bone mineral densities (aBMDs) at the lumbar spines 1–4
(L1–L4) were measured by dual-energy X-ray absorptiometer
(DXA, Lunar Prodigy; GE Medical Systems).

Psychological Testing in Primary
Hyperparathyroidism Patients
Testing was conducted preoperatively by a doctor who was not
blinded to disease state, lasting approximately 0.5 h for each.
Psychological tests included State–Trait Anxiety Inventory
(STAI) (24), Beck Depression Inventory (BDI) (25), and 36-
Item Short Form Survey (SF-36) (9). In our study, only mental
components (MCs) of SF-36 were analyzed, including social
function (SF), role of emotion (RE), mental health (MH), and
vitality (VI).

The STAI (24) measures anxiety and consists of two 20-item
scales measuring trait anxiety (anxiety proneness) and state
anxiety (a current emotional condition), with higher scores
suggesting more obvious anxiety or more traits developing
anxiety. As a reference, mean raw values ( ± SD) for working
adults aged 50–69 years are 32.2 ± 8.7 for state anxiety and 31.8 ±
7.8 for trait anxiety. For BDI (25), higher scores indicate more
symptoms: 0–13 indicates no or minimal depression; 14–19,
mild depression; 20–28, moderate depression; and 29–63, severe
depression. For items in SF-36 (9), a higher score indicates a
better QoL; for mental components of SF-36, a higher score
suggests better psychological performance.

Statistical Analysis
For results in this study, continuous variables were expressed as
means ± SD or median (minimum, maximum) according to their
distributions. Categorical variables were summarized as group
number/total number. The comparisons of continuous variables
between groups were performed using t-test or one-way
ANOVA for normally distributed variables; otherwise,
nonparametric test. Categorical data were compared by
Frontiers in Endocrinology | www.frontiersin.org 3223
chi-square test. As serum concentration of OCN was tested by
two different kinds of methods, OCN was transformed into
categorical variables according to its tertile values. Pearson
correlation analysis (two-tailed) was used to investigate the
relationship of PTH, calcium with cortisol, as well as the
association between the serum PTH, calcium, OCN, cortisol
levels, and parameters of questionnaires. Kendall’s tau-b was
used to test the correlation between OCN and PTH or calcium,
which were also transformed into categorical variables here.
Partial correlation analysis (two-tailed) was used to examine
the above associations when controlling for clinical features and
biomedical markers. Linear regression analysis with backward
mode was applied to examine determining variables of
questionnaire score. In this part, age; sex; disease duration;
serum PTH; calcium; phosphorus; 25(OH)D; OCN; cortisol of
8:00, 16:00, 0:00; and 24-h urinary free cortisol were considered.
To get stable results, collinearity analysis was used to eliminate
collinear variables in each questionnaire regression model. The
cutoff value of the variance decomposition proportion for the
diagnosis of multicollinearity is set to 0.3 in dimensions with
condition index over 10 according to the work of Liao (26) and
Kim (27). After screening, all the variance inflation factors
became less than 2, indicating that no multicollinearity existed
(26, 27). All statistical calculations were performed using the
SPSS (version 23.0; IBM statistics). A p-value <0.05 was
considered statistically significant.
RESULTS

Higher Serum Cortisol Concentration and
Lower Serum Osteocalcin Level Were
Correlated With Worse Psychological
Manifestation in Primary
Hyperparathyroidism Patients
Since only 38 out of 52 patients received psychologic evaluation,
including BDI, STAI, and SF-36 questionnaire during August
2020 to December 2020, a sensitivity analysis was performed
between patients who had taken the tests and those who had not.
As shown in the Supplementary Table, there were no between-
group differences in age, sex, disease duration, body weight,
height, BMI, systolic blood pressure (SBP), heart rate, BMD
(L1~L4), serum concentrations of PTH, 25(OH)D, b-CTX,
albumin, hemoglobin, HbA1c, and phosphorus (all p > 0.05).
Serum calcium concentration (p = 0.006) was higher in patients
receiving questionnaires. However, serum and urine cortisol
concentrations had no statistical difference between the two
groups (p > 0.05).

For PHPT patients receiving questionnaire tests, the SF-36 MC
items’ scores were 74.04 ± 23.32 for SF, 72.74 ± 18.71 for MH,
57.76 ± 22.17 for VI, and 66.67 (0,100) for RE, respectively. The
score of STAI-S was 35.43 ± 11.56, STAI-T 37.39 ± 10.34, and BDI
was 5 (0,46). According to the reference (24), out of the 38 patients
receiving questionnaires, 50% of the patients (19/38) with a STAI-
S score over 32.2 were in a state of anxiety; 60.5% of the patients
(23/38) with the score of STAI-T over 31.8 have the trait of
August 2021 | Volume 12 | Article 692722
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developing anxiety; 44.74% of the patients (17/38) had both STAI-
S over 32.2 and STAI-T over 31.8. As for BDI score (25), 18.4%
patients (7/38) developed mild to severe depression. Here, 15.9%
of the patients (6/38) developed both anxiety (STAI-S and STAI-T
were higher than the reference) and depression.

In addition, we assessed associations of PTH, calcium, OCN,
and cortisol concentrations with psychological performance, as
evaluated by questionnaires. As shown in Table 1, in bivariate
model, cortisol concentration at 8:00 was significantly and
negatively correlated with SF (r = -0.393, p = 0.015), one
feature of psychological health evaluation. Serum OCN
concentration was significantly and negatively correlated with
BDI (r = -0.345, p = 0.0378). Serum concentration of PTH and
calcium was not correlated with any of the scores in the
questionnaires (p > 0.05). After controlling for age, sex, and
disease duration, serum concentration of cortisol at 8:00 was still
significantly and negatively correlated with SF (r = -0.391, p =
0.020). When serum PTH, 25(OH)D, phosphorus, and calcium
were further adjusted, the correlation of cortisol at 8:00 with the
score of SF (r = -0.389, p = 0.041) was still significantly negative;
the negative correlation of serum OCN concentration and
STAI-S (r = -0.426, p = 0.027) was statistically significant.

OCN and Cortisol Levels Were the
Determinants of Psychological
Performance in Patients With Primary
Hyperparathyroidism
As for the linear regression model of the BDI score, statistically
significant variables were serum OCN (b = -0.422, p = 0.019) and
cortisol at 0:00 (b = 0.371, p = 0.037), while variables excluded by
collinearity analysis included age, serum PTH, 25(OH)D,
calcium, cortisol at 8:00, and urinary free cortisol in 24 h. No
significant variable was included in the equations of
other questionnaires.

Serum Cortisol and Osteocalcin Were
Positively Correlated With Serum Calcium
and Parathyroid Hormone Concentration
in Primary Hyperparathyroidism Patients
In these 38 patients, we found that OCN was associated with
PTH (r = 0.351, p = 0.031) and marginally associated with
calcium (r = 0.304, p = 0.067), while cortisol was not related
with these two parameters. In order to further test whether these
findings could be replicated in a larger sample size, we further
explored the relationships among OCN, cortisol, PTH, and
calcium in 192 PHPT patients.

The baseline characteristics of 192 PHPT patients in different
PTH tertile groups were shown in Table 2. The mean age of the
cohort was 52.7 ± 13.8 years, with 76.6% (147/192) females. In
terms of bone biochemical markers, it was found that, as the
serum PTH concentration increased, the serum concentration of
calcium (p = 0.000), PINP (p = 0.000), and b-CTX (p = 0.028)
increased and phosphorus decreased (p = 0.000) significantly.
Also, with the increase of PTH concentration, the percentage
of patients with upper tertile of OCN concentration increased
(p = 0.000), while both the serum 25(OH)D concentration
Frontiers in Endocrinology | www.frontiersin.org 4224
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(p = 0.000) and BMD (L1~L4) level (p = 0.000) declined
significantly. As for cortisol, the serum cortisol at 0:00 (p =
0.021) was significantly elevated with the increase of PTH
concentration. As serum PTH concentration increased, no
difference in serum ACTH, cortisol concentration at 8:00 and
16:00, and urinary cortisol excretion in 24 h was observed
(p > 0.05).

When patients were grouped according to tertiles of serum
calcium concentration, as shown in Table 3, with the increase
of serum calcium concentration, serum PTH (p = 0.000),
PINP (p = 0.000), b-CTX (p = 0.001), and the percentage
of patients with upper tertile of OCN concentration (p = 0.000)
increased significantly, while serum phosphorus concentration
(p = 0.002) and BMD (L1~L4) (p = 0.000) decreased
significantly. Serum concentration of 25(OH)D was
significantly (p = 0.000) different between calcium tertile
groups. However, the differences in body weight, height, and
BMI were not statistically significant. It was again shown that
with the increase of calcium concentration, serum cortisol
concentration at 8:00, 16:00, and 0:00 and urinary cortisol
excretion did not show a statistically significant difference
(p > 0.05).

In addition, in the bivariate correlation model between serum
PTH concentration and OCN, cortisol concentration showed
that serum PTH was positively and significantly correlated with
serum OCN (r = 0.373, p = 0.000). When controlling for age,
sex, and disease duration, and additionally with phosphorus,
calcium, and 25(OH)D, PTH was still positively and significantly
correlated with serum OCN concentration (r = 0.323, p = 0.000).
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However, serum PTH concentration was not significantly
correlated with serum cortisol of different time points and
urinary cortisol excretion (p > 0.05) in the bivariate and partial
correlation model.

As to serum calcium level, it was positively and significantly
correlated with serum OCN (r = 0.240, p = 0.000) and cortisol
concentration at 0:00 (r = 0.246, p = 0.001). When controlling for
age, sex, and duration, the correlation of serum calcium with
OCN (r = 0.248, p = 0.001) and cortisol at 0:00 (r = 0.249, p =
0.001) was still significantly positive. When serum 25(OH)D and
phosphorus were adjusted, serum calcium was still significantly
and positively correlated with serum cortisol at 0:00 (r = 0.251,
p = 0.001) and OCN (r = 0.222, p = 0.003). Even when serum
PTH was further adjusted, the correlation between serum
calcium and cortisol at 0:00 was still significantly positive
(r = 0.245, p = 0.001), while the correlation between serum
calcium and OCN (r = 0.110, p = 0.143) lost its significance.
DISCUSSION

The findings from this study lie in two aspects. Firstly, the
balance of serum OCN and cortisol was associated with the
psychological performance in PHPT patients. Secondly, with
the elevation of serum calcium and PTH, the concentration of
serum cortisol and OCN increased.

The effects of glucocorticoid (15–17, 19) and OCN (21, 23,
28) on the depression and anxiety symptoms in patients and
related behavioral performance in animals were widely reported.
TABLE 2 | Baseline characteristics of PHPT patients in different PTH tertile groups.

Total Tertile 1 (pg/ml) Tertile 2 (pg/ml) Tertile 3 (pg/ml) p-value
<167.50 167.50~318.90 >318.90

Sex (female/total, %) 147/192, 76.6 54/64, 84.4 48/64, 75 45/64, 71.9 –

Age (years old) 52.7 ± 13.8 54.9 ± 12.2 51.2 ± 13.5 52.1 ± 15.5 0.286
Disease duration (months) 12 (0.25, 360) 16.5 (0.5, 240) 13.0 (0.25, 360) 12 (0.25, 360) 0.592
Weight (kg) 61.22 ± 10.81 61.57 ± 10.26 61.86 ± 11.34 60.29 ± 10.96 0.702
Height (cm) 162.56 ± 7.45 162.43 ± 6064 162.36 ± 7.68 162.89 ± 8.10 0.916
BMI (kg/m2) 23.01 ± 3.06 23.15 ± 3.07 23.43 ± 3.14 22.41 ± 2.92 0.213
SBP (mmHg) 128.52 ± 16.98 129.77 ± 20.52 126.84 ± 14.84 128.91 ± 15.40 0.613
HR (bpm) 75.12 ± 11.75 75.41 ± 9.92 74.20 ± 12.03 75.73 ± 13.27 0.760
Serum 25(OH)D (nmol/L) 35.13 ± 16.02 42.22 ± 16.07 33.67 ± 15.42 24.49 ± 14.02 0.000***
Serum PINP (ng/ml) 84.59 (17.96, 1,200) 69.11 (20.54, 207.90) 80.59 (17.96, 262.30) 151.80 (28.42, 1,200.0) 0.000***
Serum b-CTX (ng/ml) 0.84 (0.09, 4.06) 0.72 (0.28, 2.11) 1.01 (0.09, 2.80) 0.945 (0.14, 4.06) 0.028*
Serum OCN (upper tertile/total, %) 63/192, 32.8 7/64, 10.9 17/64, 26.6 39/64, 60.9 0.000***
Serum calcium(mmol/L) 2.74 ± 0.25 2.60 ± 0.17 2.72 ± 0.22 2.89 ± 0.27 0.000***
Serum phosphorus (mmol/L) 0.85 (0.44, 10.50) 0.97 (0.59, 1.27) 0.85 (0.54, 10.50) 0.76 (0.44, 1.20) 0.000***
BMD (L1~L4) (g/cm2) 0.957 ± 0.189 1.012 ± 0.162 0.992 ± 0.197 0.863 ± 0.173 0.000***
Albumin (g/L) 39.61 ± 3.58 39.78 ± 3.30 39.74 ± 3.60 39.31 ± 3.83 0.719
Serum creatinine(mmol/L) 65.52 ± 22.79 63.52 ± 16.48 65.57 ± 18.64 68.45 ± 30.59 0.445
Serum hemoglobin (g/L) 127.57 ± 20.14 129.23 ± 16.91 128.51 ± 21.15 125.03 ± 22.03 0.462
HbA1c (%) 5.55 ± 1.09 5.58 ± 0.65 5.39 ± 0.66 5.68 ± 1.66 0.338
Serum cortisol 8:00 (mg/dl) 11.28 ± 4.09 10.74 ± 3.32 11.05 ± 3.68 12.03 ± 5.02 0.175
Serum cortisol 16:00 (mg/dl) 5.28 (1.77, 21.19) 5.11 (2.19, 19.21) 5.02 (2.00, 15.76) 5.40 (1.77, 21.19) 0.859
Serum cortisol 0:00 (mg/dl) 2.65 (0.54, 18.84) 2.47 (0.54, 14.85) 2.46 (0.76, 18.12) 3.34 (0.96, 18.84) 0.021*
Urine cortisol (mg/24 h) 71.34 (1.90, 407.55) 70.00 (28.0, 144.96) 71.03 (3.31, 269.83) 73.16 (1.90, 407.55) 0.797
Serum ACTH (pg/ml) 25.83 (4.41, 105.92) 25.36 (4.41, 70.49) 26.20 (0.92, 105.92) 25.62 (6.4, 91.67) 0.681
Aug
ust 2021 | Volume 12 | Article
BMI, body mass index; SBP, systolic blood pressure; HR, heart rate; 25(OH)D, 25-hydroxyvitamin D; PINP, Type I procollagen amino-terminal peptide; CTX-b, collagen I telopeptide-b;
OCN, osteocalcin; BMD (L1~L4), bone mineral density (lumbar 1~4); HbA1c, glycosylated hemoglobin; ACTH, adrenocorticotropic hormone; PHPT, primary hyperparathyroidism.
*p < 0.05, ***p < 0.0001.
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Thus, changes of cortisol and OCN in PHPT patients and their
relationships with scores of questionnaires were investigated in
this study. We found that as serum PTH concentration
increased, circulating OCN and cortisol levels increased
significantly. Besides, through the correlation analysis, we
found that cortisol and OCN were negatively and positively
related with psychological performance in PHPT patients,
respectively, independent of PTH and calcium.

To the best of our knowledge, the balance of cortisol and
OCN has not been reported in studies concerning psychological
performance in PHPT so far. In our study, we found that OCN
and cortisol were two determinants of the psychological
performance in PHPT patients, independent of PTH and
calcium. Our finding was supported by previous clinical and
animal studies. First of all, clinical studies revealed the opposite
effects of cortisol and OCN on psychological performance and
brain structure that was related to affective disorders. On the one
hand, excessive cortisol was related to decreased volume of
different brain areas of patients. It was reported that
hypercortisolemia in CS leads to shrinkage of amygdala
volume (29), an important brain structure involved in
emotional response (30) and a target of cortisol hormone with
abundant glucocorticoid receptors (31). It was also reported that
amygdala volume was negatively and significantly correlated
with scores of STAI-S and BDI in CS (29). Other findings in
active CS patients revealed smaller volumes in comparison to
healthy controls in gray matter of the medial frontal gyrus (32),
cerebellar cortex, and gray matter volumes (33), which was
observed in depression models (34). Besides, higher serum
Frontiers in Endocrinology | www.frontiersin.org 6226
cortisol at bedtime could reflect a flatter diurnal slope (35, 36),
which was associated with an impaired psychological
manifestation (37). In this study, we found that a flatter
diurnal slope reflected by higher serum cortisol concentration
at 0:00 was associated with worse psychological performance in
PHPT patients. On the other hand, a recent study (38) revealed
that OCN concentration was lower in depressive patients than
that in healthy controls. In obese and control human subjects,
lower serum levels of OCN were associated with lower cognitive
performance together with cognitive and depressive brain
microstructural changes, and serum OCN independently
explained 10% of the variation in cognitive performance (28).
The correlation between the decrease of OCN concentration and
cognition impairment has also been noted in older adults (39).
Secondly, experimental studies uncovered molecular
mechanisms of harmful and protective effects of glucocorticoid
and OCN for psychological features, respectively. Glucocorticoid
was reported to be increased in depression and anxiety mice and
was revealed to increase the hippocampus apoptosis in vivo and
in vitro (40). In contrast, OCN was demonstrated to exhibit
neuron-protective effects on dopaminergic neuron in a
Parkinson’s disease mouse model through regulating gut
microbiota in our most recent study (41). It was also reported
(40) that glucocorticoid elevation leads to decreased expression
of brain-derived neurotrophic factor (BDNF) in depressive
mouse hippocampus and in PC12 cells, while OCN exerted a
protective effect for depression and anxiety by increasing BDNF
expression through activation of cAMP/PKA signaling in mice
(21). Thus, the above studies suggested that opposite to
TABLE 3 | Baseline characteristics of PHPT patients in different calcium tertile groups.

Total Tertile 1 (mmol/L) Tertile 2 (mmol/L) Tertile 3 (mmol/L) p-value
<2.62 2.62~2.81 >2.81

Sex (female/total, %) 147/192, 76.6 52/63, 82.5 47/66, 71.2 45/63, 71.4 –

Age (years old) 52.7 ± 13.8 54.9 ± 12.2 51.2 ± 13.5 52.1 ± 15.5 0.286
Disease duration (months) 12.0 (0.25, 360) 12.0 (0.25, 240) 12.0 (0.33, 180) 12.0 (0.25, 360.0) 0.986
Weight (kg) 61.22 ± 10.81 61.57 ± 10.26 61.86 ± 11.34 60.29 ± 10.96 0.702
Height (cm) 162.56 ± 7.45 162.43 ± 6.64 162.36 ± 7.68 162.89 ± 8.10 0.916
BMI (kg/m2) 23.01 ± 3.06 23.15 ± 3.07 23.43 ± 3.14 22.41 ± 2.92 0.213
SBP (mmHg) 128.52 ± 16.98 129.77 ± 20.25 126.84 ± 14.84 128.91 ± 15.40 0.613
HR (bpm) 75.12 ± 11.75 75.41 ± 9.92 74.20 ± 12.03 75.73 ± 13.27 0.760
Serum PTH (pg/ml) 220.35 (74.70, 218.10) 149.5 (74.7, 1,939.9) 215.65 (94.30, 2,380.10) 398.2 (88.9, 2,680.1) 0.000***
Serum 25(OH)D (nmol/L) 35.13 ± 16.02 42.22 ± 16.07 33.67 ± 15.42 29.49 ± 14.02 0.000***
Serum PINP (ng/ml) 84.59 (17.96, 1,200) 69.11 (17.96, 418.90) 86.92 (24.09, 479.20) 110.7 (28.95, 1200) 0.000***
Serum b-CTX (ng/ml) 0.835 (0.09, 4.06) 0.703 (0.11, 1.91) 0.93 (0.24, 1.95) 1.44 (0.09, 4.06) 0.001**
Serum OCN (upper tertile/total,%) 63/192, 32.8 11/63, 17.5 20/66, 30.3 32/63, 50.8 0.000***
Serum phosphorus (mmol/L) 0.85 (0.44, 10.50) 0.94 (0.44, 10.50) 0.85 (0.44, 1.32) 0.79 (0.50, 1.20) 0.002**
BMD (L1~L4) (g/cm2) 0.957 ± 0.189 1.012 ± 0.162 0.992 ± 0.197 0.863 ± 0.1730 0.000***
Albumin (g/L) 39.61 ± 3.58 39.78 ± 3.30 39.74 ± 3.60 39.31 ± 3.83 0.719
Serum creatinine (mmol/L) 65.52 ± 22.79 63.52 ± 16.48 64.57 ± 18.64 68.45 ± 30.59 0.445
Serum hemoglobin (g/L) 127.57 ± 20.14 129.23 ± 16.91 128.51 ± 21.15 125.03 ± 22.03 0.462
HbA1c (%) 5.55 ± 1.09 5.58 ± 0.65 5.39 ± 0.66 5.68 ± 1.66 0.338
Serum cortisol 8:00 (mg/dl) 11.28 ± 4.09 10.74 ± 3.32 11.05 ± 3.68 12.03 ± 5.02 0.175
Serum cortisol 16:00 (mg/dl) 5.28 (1.77, 21.19) 4.71 (2.19, 19.21) 5.67 (2.00, 12.72) 5.56 (1.77, 21.19) 0.133
Serum cortisol 0:00 (mg/dl) 2.65 (0.54, 18.84) 2.61 (0.54, 14.85) 2.46 (0.91, 12.35) 2.91 (0.99, 18.84) 0.092
Urine cortisol (mg/24h) 71.34 (1.90, 407.55) 71.78 (43.44, 157.92) 71.72 (1.90, 222.14) 70.92 (3.31, 407.55) 0.999
Serum ACTH (pg/ml) 25.83 (4.41, 105.92) 25.48 (7.06, 91.67) 26.23 (4.41, 72.58) 23.82 (10.4, 105.92) 0.419
August
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BMI, body mass index; SBP, systolic blood pressure; HR, heart rate; 25(OH)D, 25-hydroxyvitamin D; PINP, Type I procollagen amino-terminal peptide; CTX-b, collagen I telopeptide-b:
OCN, osteocalcin; BMD (L1~L4), bone mineral density (lumbar 1~4); HbA1c, glycosylated hemoglobin; ACTH, adrenocorticotropic hormone; PHPT, primary hyperparathyroidism.
**p < 0.01, ***p < 0.0001.
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glucocorticoid, OCN might exert protective effects on depression
and anxiety in patients and mice. The net effect of this balance
may explain the inconsistent findings regarding the
psychological performance in PHPT from different studies (7–
9). Also, since there is no report on changes of these parameters
before and after surgery in PHPT patients, it is thus interesting
to investigate whether its dynamic changes are related to
the psychological performance in PHPT patients after
parathyroidectomy (1, 9, 10).

It is noteworthy that in our multivariate correlation analysis,
serum calcium rather than PTH was independently and
positively correlated with cortisol concentration in PHPT
patients. From a clinical perspective, Espiritu et al. (41)
reported that PHPT patients with serum calcium over 2.47
mmol/L had more symptoms of depression than patients with
lower calcium. Weber et al. (42) also found that serum calcium
rather than PTH was related to depression. These observations
were in line with our results that higher calcium was
independently related to higher serum cortisol level, which was
associated with more depression symptoms, as evidenced by SF
score. From the perspective of mouse studies, serum calcium can
stimulate the secretion of adrenal hormones, while PTH just acts
like a calcium ionophore (43). To some extent, this finding could
partly explain why no difference in depression and cognitive
indices was reported in mild hypercalcemic and normocalcemic
PHPT patients (7).

However, Bargren et al. (44) found that patients with milder
hypercalcemia had more depression, suggesting that hypercalcemia
might not mediate these symptoms. In our study, it was
demonstrated that with the elevation of serum calcium level, both
serum cortisol and OCN increased, thus it is of interest to
investigate whether the findings from Bargren et al. (44) could be
explained by the balance of cortisol and OCN. In addition, in the
other study of Kearns et al. (11), baseline PTH level, but not
calcium, was found to have a weak relationship with change in
depressive symptoms after parathyroid surgery. This result seemed
to contradict with our findings. In our study, both OCN and cortisol
were increased along with the increase of PTH; however, after
controlling PTH, although serum calcium was not related to OCN,
it still significantly correlated with midnight serum cortisol level,
while morning cortisol level was in a significantly negative
association with SF independent of PTH. Furthermore, in our
study, neither PTH nor calcium has any correlation with scores
in questionnaires. Thus, investigating the relative contribution of
PTH, calcium, OCN, and cortisol to the development of anxiety and
depression behaviors in PHPT in a larger cohort, especially before
and after parathyroidectomy, is very important.

Although we revealed the presence of psychoneurological
phenotypes in PHPT and found the independent role of serum
cortisol and OCN in PHPT patients, this study was just
exploratory or hypothesis generating, instead of a confirmatory
investigation. Some limitations should be mentioned here. First,
the postoperative concentrations of cortisol and OCN as well as
the psychological questionnaires were not examined and
compared with the preoperative ones. Thus, we have no idea
whether the balance of these two markers and patients’
Frontiers in Endocrinology | www.frontiersin.org 7227
psychological scores changed or not after parathyroidectomy.
Second, in this study, we analyzed concentrations of total OCN,
rather than uncarboxylated OCN (ucOCN), which is a
metabolically active form of OCN at least in mouse studies
(21). Third, the sample size of this study, especially those
receiving questionnaires, was small; selection bias should be
considered. In our sensitivity analysis, it was found that no
significant difference of serum OCN and cortisol existed
between those receiving questionnaires and their counterparts.
Last, we did not measure body water distribution in PHPT
patients who were usually treated with water repletion. It was
recently shown that the ratio of extracellular water to total body
water was related to cognitive function in diabetes patients (45).

To sum up, in this study, it was demonstrated that the serum
levels of OCN and cortisol were independently associated with
the development of psychological symptoms in PHPT patients.
More basic and clinical studies are needed to test and verify
this observation.
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Osteoporosis is a systemic bone metabolism disease that often causes complications,
such as fractures, and increases the risk of death. The nucleotide-binding oligomerization
domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an
intracellular multiprotein complex that regulates the maturation and secretion of
Caspase-1 dependent proinflammatory cytokines interleukin (IL)-1b and IL-18,
mediates inflammation, and induces pyroptosis. The chronic inflammatory
microenvironment induced by aging or estrogen deficiency activates the NLRP3
inflammasome, promotes inflammatory factor production, and enhances the
inflammatory response. We summarize the related research and demonstrate that the
NLRP3 inflammasome plays a vital role in the pathogenesis of osteoporosis by affecting
the differentiation of osteoblasts and osteoclasts. IL-1b and IL-18 can accelerate
osteoclast differentiation by expanding inflammatory response, and can also inhibit the
expression of osteogenic related proteins or transcription factors. In vivo and in vitro
experiments showed that the overexpression of NLRP3 protein was closely related to
aggravated bone resorption and osteogenesis deficiency. In addition, abnormal activation
of NLRP3 inflammasome can not only produce inflammation, but also lead to pyroptosis
and dysfunction of osteoblasts by upregulating the expression of Caspase-1 and
gasdermin D (GSDMD). In conclusion, NLRP3 inflammasome overall not only
accelerates bone resorption, but also inhibits bone formation, thus increasing the risk of
osteoporosis. Thus, this review highlights the recent studies on the function of NLRP3
inflammasome in osteoporosis, provides information on new strategies for managing
osteoporosis, and investigates the ideal therapeutic target to treat osteoporosis.
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INTRODUCTION

Osteoporosis (OP) is a chronic disease characterized by changes in
bone mass, bone microstructure, and fractures and is a causative
factor of morbidity and death in senior adults (1). According to the
National Health and Nutrition Examination Survey in 2010, more
than 50% of seniors in the USA were affected by OP and low bone
mass (2). Furthermore, severe medical and social issues caused by
OP are accelerated with age (3).

Previous studies have suggested that estrogen is the main
hormone regulator of bone metabolism. Estrogen deficiency can
not only directly promote osteoclasts differentiation through
estrogen receptors on osteoclasts, but also indirectly stimulate
nuclear factor kappa-b ligand (RANKL) on osteoblasts, T cells
and B cells to promote bone resorption (4). In addition, estrogen
deficiency increases osteoblast apoptosis and inhibits osteoblast
differentiation by increasing reactive oxygen species (ROS) and
nuclear factor kappa-B (NF-kB) pathway, causing a relative
deficiency of bone formation (5, 6). As a result, the balance
between osteoblasts and osteoclasts is broken while the rate of
bone formation cannot keep up with the rate of bone resorption,
leading to net bone loss. Therefore, the therapeutic effect of
estrogen achieves in OP mainly through four effector cells such
as osteoblasts, osteoclasts, osteocytes and T cells (7). Besides the
effects of hormones on bone metabolism, chronic inflammation
promotes bone loss and the onset of OP (8). The nucleotide-binding
oligomerization domain-like-receptor family pyrin domain-
containing 3 (NLRP3) inflammasome is an intracellular protein
complex that mediates the systemic innate immune response and
inflammation. The NLRP3 inflammasome mediates the activation
of inflammatory caspase 1 (Caspase-1), interleukin (IL)-1b, and
IL-18, causing inflammation and inducing inflammatory cell death.

It has been demonstrated that the abnormal activation of the
NLRP3 inflammasome is closely related to multiple metabolic
diseases driven by aging and chronic inflammation, such as
diabetes, obesity, and gout (9–12). Here, we briefly summarize
recent studies on the mechanism of NLRP3 inflammasome in OP,
provide information on new strategies for preventing and treating
the disease, and investigate the ideal therapeutic target to
treat osteoporosis.
Frontiers in Endocrinology | www.frontiersin.org 2231
CONCEPT AND STRUCTURE OF
NLRP3 INFLAMMASOME

Thematuration and activation of IL-1b, a critical molecule involved
in inflammation, was known to be mediated by Caspase-1;
however, the underlying mechanism remained unclear until the
discovery of the NLRP1 inflammasome that suggested the
modulation of the process in monocytes (13). The NLRP3
inflammasome, a supramolecular complex concentrated in the
cytoplasm, affects innate immunity and inflammation, responds
to pathogen- and injury-related signals, and mediates the activity of
Caspase-1 and IL-1b (14). Additionally, various sensors are known
to assemble into classic inflammasomes such as NLRP1, NLRP3,
NLRC4, AIM2, and Pyrin (15).

The NLRP3 inflammasome is mainly composed of a signal
sensor component (NLRP3) and an adaptor, apoptosis-associated
speck-like protein containing a CARD (ASC). The ASC can recruit
the proinflammatory caspase, Caspase-1 (16), or the non-classical
caspases, Caspase-4 or Caspase-5 (17). In the inflammasome
complex, Caspase-1 is composed of CARD and two subunits, p10
and p20, at the N-terminal. NLRP3 and ASC interact with their
respective PYRIN domains (PYD), whereas clustered ASC and
Caspase-1 interact with their respective caspase recruitment
domains (CARD). The NLRP3 inflammasome acts as the
molecular platform for Caspase-1 lysis and activation, and the two
subunits form the activated Caspase-1 tetramer (18). The activated
Caspase-1 processes the precursors IL-1b and IL-18, resulting in the
release of mature cytokines and the induction of the inflammatory
response in the extracellular environment (Figure 1).
REGULATORY MECHANISM OF NLRP3
INFLAMMASOME

The recognition of activation signals by inflammasomes is the
first step in inflammatory reactions. NLRP3 recognizes two types
of extracellular stimulators, pathogen-associated molecular models
(PAMPs), such as bacteria and viruses, and danger-associated
molecular models (DAMPs), such as uric acid crystals, saturated
FIGURE 1 | Structure of nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome. NLRP3 inflammasome
comprises a leucine-rich repeat (LRR) domain, an N-terminal Pyrin domain (PYD), and a central adenosine triphosphatase (ATPase) domain known as NACHT. Caspase-1
comprises CARD and two subunits, p10 and p20. NLRP3 and ASC interact with their respective PYDs. ASC and Caspase-1 interact with their respective CARDs.
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fatty acids, and cholesterol (19). Next, it induces uniform
downstream host-derived cellular events, including K+ efflux,
Ca2+ efflux, ROS generation, and lysosomal damage (20). The
activation of the NLRP3 inflammasome involves priming and
activation. It is believed that the transcription of IL-1b and
NLRP3, mediated by NF-kB, is the main event caused by the
inflammasomes. In addition, post-translational modification of
NLRP3, such as phosphorylation induced by JNK1, is a critical
event during the initiation process (21). During inflammasome
assembly, NLRP3 interacts with a NIMA-related enzyme (NEK7)
through the NACHT domain to form large oligomers that form the
basis of its activation (22). Finally, NLRP3 recruits Caspase-1
precursor (pro-Caspase-1) through ASC and promotes the
processing of Caspase-1 and the subsequent maturation and
secretion of the proinflammatory cytokines IL-1b and IL-18,
causing inflammation (23) (Figure 2).
NLRP3 INFLAMMASOME MEDIATED IL-1b
AND IL-18 IN OP

Reduced estrogen levels and aging promote low-grade inflammation
in the body, and the generated proinflammatory cytokines stimulate
OP by affecting the expression and transcription of osteogenic and
osteoclastic factors (24, 25). The levels of many inflammatory factors,
including IL-1, IL-6, and tumor necrosis factor (TNF)-a, increase
Frontiers in Endocrinology | www.frontiersin.org 3232
during the pathogenesis of OP (26). IL-1b is one of the primary
members of the IL-1 family (27) that plays an important role in bone
loss following estrogen deficiency (28, 29). A previous study in early
postmenopausal women after the discontinuation of estrogen
therapy showed that bone resorption is reduced by approximately
50% in subjects randomly receiving anakinra, an IL-1 receptor
blocker (30). IL-1b stimulates the expression of Receptor activator
of RANKL in osteoblasts or bonemarrowmesenchymal stem cells as
well as the generation of osteoclasts (25). Besides, IL-1b binds its
receptors on T lymphocytes, B lymphocytes, and macrophages,
promotes the generation of RANKL, and binds to RANK on
osteoclast precursor cells, thus facilitating the differentiation and
activation of osteoclasts (31, 32). Therefore, IL-1b is not only an
effective bone resorption stimulator but also an effective osteogenic
inhibitor. High doses of IL-1b inhibit osteogenic differentiation by
activating NF-kB to inhibit the bone morphogenetic protein (BMP)/
Smad signal transduction (33). IL-1b decreases Runx2 activation and
inhibits the osteoblastic differentiation by activating MAPK pathway
(34) (Figure 3).

IL-18 and IL-1b are closely related since they belong to the same
structural family, have similar 3D structures, and their precursors
remain inactive until they are cleaved by intracellular Caspase-1
(35). IL-18 promotes osteoclast differentiation through many
pathways. Apart from the bone cells, T helper (Th) cells and
various other immunocytes are also major factors participating
in bone homeostasis (36). Th17 cells release the marker cytokine
IL-17 to upregulate RANKL and promote bone resorption (37).
FIGURE 2 | Activation mechanism of nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome. NLRP3 is
activated by two signals when it senses the stimulation of aging or estrogen deficiency through toll like receptors (TLRs). The first priming process (Signal 1) is the
expression of NLRP3 and inflammatory factors under the action of the NF-kB transcription factor. Next, it induces uniform downstream host-derived cellular events,
including K+ efflux, Ca2+ efflux, reactive oxygen species (ROS) generation, and lysosomal damage. ASC is an adaptor molecule responsible for connecting NLRP3
and caspase-1 precursors, and then recruits the precursor caspase-1 into an activated form (Signal 2). Activated caspase-1 cleaves the precursors of IL-1b and
IL-18 into mature forms and causing inflammation.
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Previous studies in ovariectomized (OVX) mice have suggested
that increased IL-18 levels in peripheral monocytes stimulate
Th17 cells to secrete IL-17, a process conducive to osteoclast
differentiation. In addition, co-culture of osteoblasts with CD4+ T
cells and CD11b+macrophages isolated fromOVXmice showed an
upregulation of IL-18, activation of NLRP3 inflammasome-related
molecules, and inhibition of osteoblasts manifested as reduced
expression levels of Wnt-10b, Runt-related transcription factor 2
(Runx-2), and BMP-2 (38). Another in vivo study supported the
hypothesis that IL-18 participates in the pathogenesis of OP. In
OVX mice, the levels of IL-18 binding protein (IL-18BP, a natural
specific IL-18 inhibitor) were declined, whereas IL-18BP
supplementation markedly decreased the Th17/Treg ratio and
proinflammatory cytokines, restoring the microstructure of bone
trabeculae. These findings were confirmed in female patients with
OP (38). In serum obtained from patients with Cushing’s
syndrome, IL-18 and osteocalcin (OCN) levels were negatively
correlated (39). Therefore, IL-1b and IL-18 participate in
increased inflammation during OP.
NLRP3 INFLAMMASOME INDUCES
PYROPTOSIS OF BONE CELLS IN OP

It has been reported that the NLRP3 inflammasome not only
aggravates cellular inflammatory response through the Caspase-
Frontiers in Endocrinology | www.frontiersin.org 4233
1/IL-1b/IL-18 activated pathway, but also forms pores on the cell
membrane using gasdermin D (GSDMD) as the general
substrate, digests the N-terminal domain of GSDMD to bind
to the pore of the cell membrane, releases inflammatory
mediators, and destructs osmotic pressure, inducing cell
swelling, lysis, and death, known as pyroptosis (40). At high
glucose concentrations, MC3T3-E1 osteoblasts and Caspase-1 in
alveolar bone are activated. Enhanced IL-1b activity increases the
expression levels of GSDMD and reduces those of osteogenesis-
related proteins, such as p-AKT and b-catenin, whereas Caspase-1
inhibitor can reverse this process (41). In a mouse osteomyelitis
model, pyroptosis-related proteins were upregulated, whereas Ac-
YVAD-CMK, a specific Caspase-1 inhibitor, not only inhibited
the increases of Caspase-1 and GSDMD in mice induced by
bacteria, but also helped to restore the osteogenic characteristics
(42). Vx765, an inhibitor of Caspase-1, partially reduced bone
resorption in apical periodontitis rats, although bone trabecular
thickness increased and bone volume did not change significantly.
In vitro experiments showed that ROS can induce osteoblast
pyroptosis and lead to osteoblast dysfunction (43). Tao et al.
(44) summarized the relationship between ROS and NLRP3 in
OP, considering that ROS is an important component in the
pathogenesis of OP, and speculated that it may be a trigger factor
for pyroptosis in this pathological process. Therefore, we
hypothesize that the NLRP3 inflammasome not only activates
the downstream inflammatory factors to participate in OP
FIGURE 3 | IL-1beta contributes to bone resorption. IL-1b inhibits osteogenic differentiation by inhibiting the BMP/Smad pathway and osteogenic markers including
RUNX2, OCN and ALP. IL-1b binds with IL-1R on T cells or B cells and induces the expression of RANKL on osteoblasts and then promotes activated osteoclasts
via a RANKL-RANK independent mechanism.
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pathogenesis, but also induces pyroptosis and maintains or
aggravates inflammation (Figure 4).
NLRP3 INFLAMMASOME PARTICIPATES
IN OP PATHOGENESIS

During the growth and development of bones, the NLRP3
inflammasome and its associated proteins have positive
regulatory effects. Compared with NLRP3+/+ mice, NLRP3-/-

mice have shorter stature, impaired long bone growth, and
defective osteoblast differentiation and mineralization (45). ASC
is an essential molecule in the osteoblast phenotype. Compared
with osteoblasts obtained from wild-type mice, primary osteoblasts
with ASC-source knockout have lower levels of osteogenic
properties, and thus, tibial defect healing requires a longer period
(46). However, over-activation of the NLRP3 inflammasome is
related to osteopenia due to aging. A previous study found that
NLRP3 is overexpressed in an aging mouse model, whereas its
knockout increased the density of the bone cortex and trabecula
(47). A humanized NLRP3 mouse strain created by replacing the
mouse NLRP3 locus with the human allele associated with the
disease developed progressive arthritis and OP, accompanied by
granulocyte infiltration and increased IL-1b levels, after attack by
injury-related molecular model molecules (48). Recent studies
Frontiers in Endocrinology | www.frontiersin.org 5234
revealed that in an OVX mouse model, the NLRP3
inflammasome components are upregulated in the femoral bone;
however, knockdown of NLRP3 notably enhanced the expression
of Runx2 and OCN, which are responsible for osteogenic
differentiation (49). Therefore, the NLRP3 inflammasome plays a
dual role in bone metabolism, but its abnormal activation produces
unfavorable effects in OP development (Table 1). The NLRP3
inflammasome and its components, IL-1b and IL-18, jointly exert
effects in OP, whereas the latter may be regulated by NLRP3
inflammasome to result in inflammatory bone injury.

NLRP3 Inflammasome
Inhibits Osteogenesis
Bone mesenchymal stem cells (BMSCs) can differentiate into
osteoblasts and adipocytes after stimulation by environmental
factors (52). During the development of OP, BMSCs exhibit
reduced osteogenic capacity and increased fat-forming capacity,
resulting in reduced bone formation and increased bone marrow
fat accumulation (53, 54). It has been confirmed that the NLRP3
inflammasome is involved in this process and may affect the
differentiation of BMSCs via certain active molecules. The group
III protein deacetylase, Sirtuin1 (SIRT1), has positive regulatory
effects in inhibiting MSC fat formation and promoting bone
formation (55). Lipopolysaccharide/palmitic acid (LPS/PA) was
previously used to process in vitro MSCs by significantly
FIGURE 4 | Hypothesized participation of nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the
pathogenesis of osteoporosis.
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increasing the expression of NLRP3 inflammasome in MSCs and
reducing the expression levels of SIRT1; thus, the NLRP3
inflammasome inhibits osteogenic differentiation by inhibiting
SIRT1 and promoting the differentiation of MSCs into
adipocytes (51). One study showed that osteogenic differentiation
is hampered by the NLRP3 inflammasome in MSCs isolated from
the human cord blood and treated with LPS/ATP, probably
through the inflammasome assembly, since the siRNA of ASC,
the critical component of the targeted inflammasome assembly, can
reverse the process (56). However, another study showed that the
NLRP3 inflammasome does not promote adipogenic
differentiation. Any discrepancies between the studies could be
attributed to the different stimulants used.

The activated NLRP3 inflammasome contains multiple
exogenous or endogenous substances, but none has been
confirmed as the activating substances during bone metabolism.
A previous study revealed that NLRP3 is expressed in osteoblasts,
mediates cell death induced by bacteria, and participates in bone
loss during the inflammatory process (57). In OVX mice, the
femur protein and NLRP3 in the osteoblasts are highly expressed
even when no direct bacterial infection is observed (49). Since
various substances can activate the NLRP3 inflammasome during
bone metabolism, it is necessary to investigate the mutual
regulation mechanism between the metabolites and the NLRP3
inflammasome in OP due to aging or estrogen deficiency.

NLRP3 Inflammasome Promotes
Bone Resorption
Previous in vivo experiments have indicated that the NLRP3
inflammasome accelerates bone resorption under multiple bone
turnover states (i.e., estrogen deficiency and persistent parathyroid
hormone exposure) and that NLRP3 knockout reduces bone loss
in many high bone turnover models (58). Similarly, in osteoclasts
exposed to high concentrations of glucose and the rat model of
diabetic OP, the expression levels of NLRP3 inflammasome and its
related proteins are increased, bone density is reduced, and
osteoclast markers are increased. Besides, the overactivated
NLRP3 inflammasome can be inhibited by exosomes originating
from MSCs (59). It has been reported that the initiation step for
NLRP3 inflammasome activation mainly depends on the NF-kB
pathway. NF-kB is an inflammation regulation signal downstream
of Toll-like receptor (TLR) and the classic inflammatory pathway
of the immune response. Several studies have confirmed that the
NF-kB pathway has significant effects on the growth and
maturation of osteoblasts and osteoclasts (6). At the molecular
level, exposure to high glucose concentrations upregulated NLRP3
inflammasome expression and this is regulated by ROS/MAPKs/
NF-kB. NF-kB inhibitors significantly reduce the expression level
Frontiers in Endocrinology | www.frontiersin.org 6235
of NLRP3 inflammasome and alleviate bone resorption (50).
When bone marrow macrophages (BMMs), which are osteoclast
precursors, are exposed to bone matrix particles, the NLRP3
inflammasome is activated, resulting in increased NF-kB
and MAPK phosphorylation (58). Therefore, the NLRP3
inflammasome and the classic inflammatory pathway mutually
interfere and produce joint effects in osteoclast differentiation,
which further confirms the critical role of NF-kB in the initiation
of the NLRP3 inflammasome.
POTENTIAL THERAPEUTIC TARGET OF
NLRP3 INFLAMMASOME IN OP

Considering that the NLRP3 inflammasome has dual effects in OP
pathogenesis, its regulationmay be a novel ideal therapeutic target.
Other anti-OP drugs, such as bisphosphonates, parathyroid
hormone analogs, and RANKL inhibitors, can only either inhibit
bone resorption or promote bone reconstruction to achieve
therapeutic effects, and their long-term use has certain safety
concerns (1). Previous studies have suggested that bisphosphate,
an antiresorptive agent, increases the secretion of NLRP3
dependent IL-1b and induces osteonecrosis in diabetic mice
(60). Therefore, combined treatment with an NLRP3 inhibitor
might reduce the side effects of bisphosphate, such as jaw necrosis.
There are two categories of pharmacological inhibitors for
targeting NLRP3 inflammasome: direct inhibitors that directly
target NLRP3 protein and some others that are indirect inhibitors,
which target constituents of the NLRP3 inflammasome such as
Caspase-1, IL-1b and IL-18. Some of the inhibitors that are related
to osteoporosis has been reported (Table 2).

Anakinra, a targeted IL-1b inhibitor, has been successfully
applied to treat rheumatoid arthritis (68). A clinical study showed
that it is also resistant to bone resorption in postmenopausal
women (30). Auranofin, another drug used for the treatment of
rheumatoid arthritis, significantly reduces bone loss in OVX mice
by suppressing osteoclastogenesis induced by RANKL in BMMs
and inhibiting IL-1 expression mediated by inflammasomes (67).
The drugs, anakinra and auranofin, successfully regulate the
cytokine components of the NLRP3 inflammasome to prevent
osteoclast-related OP. Although the drugs alone cannot
completely block the inflammation, they can be taken orally
rather than through injection. Animal experiments have
demonstrated that mouse IL-18BP has obvious anti-OP effects,
but humanized IL-18BP needs to be further studied (38).

Novel drugs including natural or synthetic molecules that inhibit
the maturation or release of IL-1 family cytokines (i.e., NLRP3
inflammasome or Caspase-1 inhibitor) are currently under
TABLE 1 | The different effects of NLRP3 inflammasome on bone cells.

Effector cells Effects Crosstalk pathways References

Osteoblasts Decreased cell migration ROS Liu SS et al. (43)
Inhibited the proliferation and differentiation of osteoblasts p-AKT and b-catenin Xu L et al. (49)

Osteoclasts Enhanced bone-resorption capacity of osteoclasts, but inhibited their efferocytosis ROS/MAPK/NF-kB pathway An Y et al. (50)
BMSCs Inhibits osteogenic differentiation and promotes adipogenic differentiation SIRT1 Wang L et al. (51)
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development and expected to emerge as a new strategy for the
treatment of OP, as confirmed by numerous in vivo and in vitro
experiments. MCC950, an effective and specific inhibitor of the
NLRP3 inflammasome, alleviates the inhibition ofMG63 osteoblasts
mediated by the NLRP3 inflammasome under oxidative stress (43).
In vivo experiments have suggested that NLRP3 knockout and
MCC950 supplementation significantly reduces age-related
alveolar bone loss in elderly mice. In addition, MCC950 treatment
results in higher bone mineral density and bone volume per tissue
volume as well as the reduced formation of tartrate-resistant acidic
phosphatase (TRAP)-positive cells, delaying osteoclast
differentiation (61). Other targeted NLRP3 inflammasome
inhibitors, such as OLT1177 and CY-09, also exhibited good
therapeutic properties (69). CY-09 reduced bone loss in
osteoarthritis modeling. However, the route of administration is
achieved by intra-articular injection in the knee (62). At present, the
research on OLT1177 in OP has not been reported.

Glyburide, a drug in clinical use, also known as an NLRP3
inflammasome inhibitor, reversed the expression of osteogenic
markers such as collagen I and Runx2 and reduced the abnormal
activation of osteoclasts (42). However, in this study, the
concentration of glyburide far exceeded the concentration of
its application in hypoglycemia, which undoubtedly increased
other side effects of the drug. In addition, glyburide accelerated
the healing of diabetes induced fracture by inhibiting the
production of inflammatory factors (63). In a rat model of
periodontitis, glyburide suppressed the activation of Caspase-1
and IL-1b, and oral glyburide significantly the inhibited the
number of osteoclasts in alveolar bone (64).
Frontiers in Endocrinology | www.frontiersin.org 7236
It has been found that many natural and endogenous or
exogenous molecules exert anti-inflammatory effects by inhibiting
NLRP3 inflammasome activation in OP. Arioz ect (70). have
summarized the effect of melatonin, a widely used natural and
endogenous molecule, on NLRP3 in a variety of different diseases.
In vivo experiments have suggested that melatonin inhibits the
activation of the NLRP3 inflammasome and improves the
inhibition of osteogenic differentiation in OP through the Wnt
pathway, which is related to osteogenic differentiation (49). Irisin,
another natural molecule, suppressed osteoblast apoptosis and
increased the content of ALP in postmenopausal OP rats through
the inhibition of NLRP3 inflammasome (65). Dioscin, a plant
product, can also inhibit the activation of NLRP3 inflammasome
in mouse macrophages and promotes osteogenesis of mouse pre-
osteoblasts (57). Therefore, exploring the endogenous and
exogenous regulation mechanisms is helpful in improving the
understanding of inflammasome activation in the body.

Many studies have focused on the post-transcriptional control
of microRNAs (miRNA) based on NLRP3 (71). NLRP3-targeted
miRNA is a successful therapeutic method for various diseases,
including rheumatoid arthritis and cancer, but little is known
about its effectiveness in the treatment of OP (72, 73).
SUMMARY AND OUTLOOK

The expression of NLRP3 inflammasome in bone cells affects
osteoblast activation and osteoclast differentiation in OP. In
addition, it maintains and aggravates the inflammation of
TABLE 2 | Inhibitors of NLRP3 inflammasome related to OP.

Targets Agents Benefits Side effects or limitation References

NLRP3 MCC950 Reduces age-related bone loss by inhibiting
osteoclastogenesis

The effectiveness in bone formation remains to be confirmed Zhang Y et al. (61)

Reverses osteogenic dysfunction In vitro experiments only Liu SS et al. (43)
CY-09 Reduced bone loss Osteoarthritis modeling only and needs intra-articular

injections
Li Z et al. (62)

OLT1177 – – –

Glyburide Expedites diabetes-induced impaired fracture healing The concentration of anti-inflammatory and anti-
hyperglycemia is difficult to balance

Yang X et al. (63)
Reverses the expression of osteogenic markers and
reduces the activation of osteoclasts

Kawahara Y et al. (64)
Zhu X et al. (42)

Irisin Lowers inflammation and suppressed osteoblast
apoptosis

Studied in animal models of OP only Xu L et al. (65)

Melatonin Promotes osteoblastogenesis through Wnt/b-catenin
pathway

The mechanism mediated through the inhibition of bone
resorption is unclear

Xu Lijun et al. (49)

Dioscin Inhibits the activation of NLRP3 inflammasome in
mouse macrophages and promotes the osteogenesis
of mouse pre-osteoblasts

Whether osteogenesis is promoted by inhibiting NLRP3 is
unknown

Yin Wei et al. (57)

Caspase-1 Ac-
YVAD-
CMK

Restores the osteogenic characteristics Osteomyelitis model only Zhu X et al. (42)
Reverses the inhibition of proliferation and
differentiation osteoblast resulting from high glucose
induced pyroptosis

The effect in bone resorption is unknown Yang L et al. (41)

VX765 Partly decreases bone resorption The effect of vx765 may be limited by dose and duration of
the drug

Cheng R et al. (66)

IL-1b Anakinra Reduces bone resorption Blocking cytokines alone cannot completely prevent the
increase of bone resorption in estrogen deficiency.
Combined blocking may be required

Charatcharoenwitthaya
N et al. (30)

Auranofin Inhibits osteoclastogenesis and can be orally available More clinical trial data are needed Kim H et al. (67)
IL-18 IL-18BP Inhibits osteoclastogenesis and reduces bone loss. Humanized IL-18BP toward the treatment of OP remains to

be investigated
Mansoori MN et al. (38)
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osteoblasts or osteoclasts in OP pathogenesis through its downstream
inflammatory factors, IL-1b and IL-18, and the induction of Caspase-
1-dependent pyroptosis. The NLRP3 inflammasome is involved in
bone metabolism by influencing various active molecules and other
classic inflammatory pathways. It is obvious that reduced NLRP3
levels delay OP development, but the underlying mechanism
involved needs further research. In order to achieve anti-
inflammatory functions, the concentration of some drugs is
increased, which also increases the possibility of side effects.
Therefore, it is necessary to find more suitable drugs, such as
MCC950, to inhibit the progress of OP. Basic and clinical studies
that provide references for the prevention and treatment of various
metabolic diseases are of the utmost necessity.
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