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Editorial on the Research Topic

Inflammatory Mechanisms of Hemolytic Diseases

Hemolytic diseases have several underlying causes and result in reduced red blood cell (RBC) counts
due to the destruction of these cells in the circulation. Under homeostatic conditions or mild
hemolysis, free hemoglobin (Hb), heme or iron, released by RBCs in the intravascular environment,
are neutralized by haptoglobin, hemopexin and transferrin, respectively. These plasmatic complexes
are cellularly interiorized, degraded and the iron is recycled for use in new erythroblasts. However,
during acute or chronic hemolytic diseases, intravascular scavenger molecules saturate resulting in
the accumulation of free RBC components, which are potent danger-associated molecular patterns
(DAMPs) sensed by endothelial and innate immune cells that trigger a cascade of oxidative and
inflammatory processes. This Research Topic assembles 13 original research and 7 review articles
that focus on the mechanisms inducing inflammation and how it contributes to the pathology of
acute and chronic hemolytic diseases in human patients and animal models.

Recognized experts in the field contributed review articles to this issue that shed light on the
heme-induced mechanisms that lead to tissue damage and disorders. Bozza and Jeney meticulously
reviewed the mechanisms by which Hb-derived DAMPS, such as free heme, metHb and ferrylHb,
act as proinflammatory triggers. They elucidate the cascade of Hb and heme oxidation, which leads
to reactive and damaging molecules, and clarify the knowledge gathered so far about the ligands and
the pathways that directly stimulate the activation of endothelial and innate immune cells,
promoting endothelial barrier permeability, leukocytes recruitment, secretion of proinflammatory
cytokines, the generation of reactive oxygen species (ROS), neutrophil extracellular traps (NET)
formation, cell death and trained immunity. Jeney et al. reported that oxidized Hb forms, free heme
and a product of heme catabolism, bilirubin, were found in the cerebrospinal fluid from infants with
intraventricular hemorrhage (IVH), which correlated with VCAM-1, ICAM-1 and IL-8 levels. The
direct effect of Hb products was shown by the treatment of a human brain endothelial cell line with
heme, which induced significant production of ROS and decreased cell viability. Furthermore,
treatment with either heme or ferrylHb up-regulated VCAM-1, ICAM-1 and IL-8 expression, which
was not achieved by native Hb or even metHb, revealing specific functions of the different products
of oxidized Hb in endothelial cells.

Pádua and Souza focused their review on the role of heme in pulmonary malaria, a disease
characterized by the presence of free heme and heme oxidation due to hemolysis caused by RBC-
infected Plasmodium sp. The system involved in the clearance of heme has been shown to play a
org January 2022 | Volume 12 | Article 83452715
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protective role in malaria outcomes, since the level of
hemeoxygenase-1 (HO-1), the enzyme responsible for heme
detoxification, is positively correlated with protection from
multi-organ dysfunction and survival. A peculiar feature of
plasmodium infection is the hemozoin, a bio-crystallized
structure produced by the parasites after digestion of Hb from
infected-RBCs, thus another form of heme derivative that is not
present in other hemolytic disorders. Some data show that
hemozoin is phagocyted together with the RBCs content
mainly by macrophages and monocytes, which become
activated to produce proinflammatory cytokines and
chemokines, leading to pneumocyte apoptosis and loss of
alveolar integrity.

Free heme and iron are extremely oxidative, generating ROS
in the vascular milieu by different mechanisms. This oxidative
stress has a direct cytotoxic effect, causing the oxidation of
proteins, lipids, and DNA, which culminates in tissue damage,
as well as an indirect effect by generating and releasing new
DAMPs. Thus, ROS seem to be a key player in a great
feedforward loop that is activated by RBC products and, in
turn, is able to generate even more reactive mediators, amplifying
the inflammatory response. This can be exemplified by sickle cell
disease (SCD), as widely reviewed by Connes’s and Kato’s
groups. As precisely covered by Nader et al., SCD is a disease
characterized by a vicious circle between abnormality in RBCs
and inflammation. A genetic single mutation in the b-globin
gene leads to an anomalous hemoglobin (HbS), which
polymerizes under deoxygenation, changing the deformability
and fragility of the RBCs and, consequently, causing
intravascular hemolysis. In sequence, cell free hemoglobin and
heme induce ROS production and deplete nitric oxide (NO)
from the microenvironment. The pro-oxidative milieu created is
responsible for oxidation of several compounds, and may further
increase RBC death and inflammation, amplifying the damage.
Indeed, Connes’s group (Nader et al.) demonstrated the effects of
ROS and NO on RBC deformability and eryptosis. ROS was also
involved in sickle RBC-derived microparticle (MP) release. The
levels of circulating RBC-MPs correlated with arterial stiffness in
SCD patients and were able to activate a human endothelial cell
line, inducing secretion of proinflammatory cytokines through a
TLR4-dependent mechanism. In line with that, Santana et al.
showed that hydroxyurea (HU), a FDA approved drug for SCD,
induces antioxidant gene expression, such as superoxide
dismutase-1 and glutathione disulfide-reductase. Moreover,
HU was able to reduce ROS production induced by hemin
treatment, suggesting that HU acts by an additional and
previously unappreciated role in SCD disease by inducing
antioxidant proteins and, hence scavenging free radicals.

In their review article, Gbotosho et al. decipher each of the
heme-induced pathways that lead to the complications of SCD,
where excessive ROS are generated by RBCs due to the unstable
nature of HbS and to a greater percentage of NADPH oxidase
and mitochondria retention in mature RBCs. The RBCs-derived
microparticles generated in SCD are also able to deliver heme to
endothelial cells, mediating additional oxidative stress. Besides
the role of heme as pro-oxidative mediator and a DAMP, the
Frontiers in Immunology | www.frontiersin.org 26
authors emphasize its ability to induce PlGF and IL-6 and discuss
several pathways by which these mediators can contribute to the
multiple pathophysiology of SCD. The direct link between free
heme in the bloodstream with IL-6 production and with tissue
damage is shown in a mice model by another article from the
group Gbotosho et al. By injection of heme in the mice, they
demonstrated, in vivo, the expression of IL-6 and markers of
cardiac stress and hypertrophy in Townes mice, a model of SCD,
through a pathway independent of Nrf2, the canonical
transcription factor activated by HO-1.

Belcher and Vercellotti’s groups investigated different aspects
of TLR4 signaling induced by heme. Although TLR4 is a well
described heme ligand and it is widely expressed, it is not
completely clear which cells are the TLR4-expressed effectors
of the heme-induced proinflammatory disorders. By generating a
bone marrow chimera deficient in TLR4 in a murine model of
SCD, Beckman et al. elegantly demonstrated that endothelial, but
not hematopoietic, TLR4 expression is necessary for the
microvascular stasis presented in the disease. In order to
understand how TLR4-dependent heme stimulation occurs,
Belcher et al. performed a detailed investigation on this matter.
Through pull-down and reporter assays they demonstrated that,
similarly to LPS, heme binds to the adaptor molecule myeloid
differentiation factor-2 (MD-2) to initiate NF-kB signaling, a
process that is dependent on TLR4 and CD14. Interestingly, by
generating MD-2 mutants, they were able to identify possible
binding sites for heme in the MD-2 molecule, which they found
to be different to the binding sites for LPS. Although MD-2 is
often co-expressed with TLR4 on the cell surface, Zhang et al.
showed high levels of the soluble form of MD-2 (sMD-2) in
human and murine sickle plasma, which was shown to induce
IL-8 secretion by human endothelial cells, suggesting that heme
bound to sMD-2 is also able to promote endothelial cell
activation in SCD.

Santaterra et al. showed that besides the induction of
inflammatory cytokines, heme present in the serum of SCD
patients promotes endothelial barrier disruption in vitro in a
manner dependent on hemopexin levels in serum, indicating that
when the free heme clearance system is overwhelmed, heme is
able to cause injury. In line with this observation, Poillerat et al.
demonstrated the pharmacokinetic properties of hemopexin in
mice in order to guide future therapy for hemolytic diseases by
scavenging free heme from the bloodstream.

Neutrophils and monocytes are recognized as major
producers of inflammatory cytokines in the vascular
microenvironment during hemolysis. However, other cells may
play a role in this process. As evidence of this, HO-1was shown to
be involved in inflammatory dendritic cell (DC) differentiation
from circulating monocytes by Sesti-Costa et al., suggesting a role
for heme or its derivatives in the generation of these immune
cells. Accordingly, SCD patients had higher circulating
inflammatory DCs, and monocyte-derived DCs from patients
were able to produce MCP-1, IL-6 and IL-8 in culture and induce
Th17 and Tc17 profile skewing, indicating that hemolysis may
also alter the response of a previously unappreciated immune
cell subset.
January 2022 | Volume 12 | Article 834527
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The inflammatory cytokine and chemokine landscape of SCD
patients in different statuses was carefully analyzed by Silva-
Junior et al., who observed that patients have a proinflammatory
profile even in steady state. Interestingly, some of the secreted
mediators are decreased upon vaso-oclusive crisis (VOC), which
is mainly marked by cytokines involved with lymphocyte
proliferation, Th2 responses, and high levels of G-CSF, an
important growth factor for neutrophil development. PDGF-
BB and IL-1ra were pointed out as important hallmarks of
clinical recovery post-VOC, as they are strikingly high during
crisis and were the ones that significantly declined in the
convalescent stage, representing potential markers for
prognosis. A novel potential approach for managing SCD is
also brought by Kiven et al. with a new way to evaluate pain
status in SCD. Using an automated gait measurement method,
the authors accessed gait patterns in a mouse model of SCD and
found alterations in stance instability and spatial and temporal
gait parameters. Interestingly, changes in gait correlated with
mechanical and deep tissue hyperalgesia. In addition, purkinje
cells, which are associated with movement and neural function,
were shown to undergo apoptosis in the cerebella of SCD mice,
suggesting that neuronal damage and chronic pain may incite
compensatory gait alterations in SCD.

Two complete reviews in this Research Topic bring novel
insights on the landscape of autoimmune hemolytic anemia
(AIHA). Barcellini and Fattizzo underscored the heterogeneity
of the disease, as the pathology depends on the isotype and
complement-induced ability of the autoantibodies specific to the
RBCs developed. The outcome is also reflected by the
effectiveness of the compensatory erythropoiesis and whether
the cause is either primary or secondary. The authors critically
discuss the currently available therapies, the ones in development
and the challenges encountered to obtain accurate treatment and
diagnosis. In line with the underappreciated heterogeneity of the
disease, the prevalence of a PNH clone in AIHA patients was
found to be higher than expected (37.4%) by Fattizzo et al. In
addition, the hemolytic pattern and cytokine profile differed
between PNH positive versus negative in AIHA patients,
suggesting that they may be in need of different therapy
indications and that testing for PNH may be beneficial
especially in cases unresponsive to current AIHA treatment.

The differences in the pathogenesis of AIHAmediated by cold
agglutinins is another instance of the heterogeneity of outcomes
in the disease, as covered by Berentsen. In this case, cold-reactive
antibodies that are able to agglutinate RBCs arise from either a
clonal lymphoproliferative source, such as in cold agglutinin
disease (CAD), or a secondary clinical disorder, as seen in
Frontiers in Immunology | www.frontiersin.org 37
secondary cold agglutinin syndrome (CAS). The author
extensively reviews the immune pathogenesis of both diseases,
covering the origin and role of the agglutinins, the activation of
complement and induction of inflammation, which considerably
impact the chosen treatment. Finally, Zaninoni et al. discuss the
poorly studied role of the immune system in congenital
hemolytic anemia (CHA), especially the levels of naturally
occurring antibodies that can play different roles in health and
disorders, and are involved both positively and negatively in
autoimmune disease. The authors highlighted the evidence so far
that suggests that these antibodies may have a pathogenic role in
CHA by inducing removal of RBCs in the spleen, and also the
implications of splenectomy for the immune response in
CHA patients.

We hope the readers enjoy this Research Topic issue that
contains a relevant update on the consequences of hemolytic
anemia from different causes, and we thank all authors that
provided their valuable contributions to this collection.
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1 MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty
of Medicine, University of Debrecen, Debrecen, Hungary, 2 Doctoral School of Molecular Cell and Immune Biology, Faculty
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Intraventricular hemorrhage (IVH) is a frequent complication of prematurity that is
associated with high neonatal mortality and morbidity. IVH is accompanied by red
blood cell (RBC) lysis, hemoglobin (Hb) oxidation, and sterile inflammation. Here we
investigated whether extracellular Hb, metHb, ferrylHb, and heme contribute to the
inflammatory response after IVH. We collected cerebrospinal fluid (CSF) (n = 20) from
premature infants with grade III IVH at different time points after the onset of IVH. Levels
of Hb, metHb, total heme, and free heme were the highest in CSF samples obtained
between days 0 and 20 after the onset of IVH and were mostly non-detectable in CSF
collected between days 41 and 60 of post-IVH. Besides Hb monomers, we detected
cross-linked Hb dimers and tetramers in post-IVH CSF samples obtained in days 0–20
and 21–40, but only Hb tetramers were present in CSF samples obtained after 41–
60 days. Vascular cell adhesion molecule-1 (VCAM-1) and interleukin-8 (IL-8) levels
were higher in CSF samples obtained between days 0 and 20 than in CSF collected
between days 41 and 60 of post-IVH. Concentrations of VCAM-1, intercellular adhesion
molecule-1 (ICAM-1), and IL-8 strongly correlated with total heme levels in CSF. Applying
the identified heme sources on human brain microvascular endothelial cells revealed
that Hb oxidation products and free heme contribute to the inflammatory response. We
concluded that RBC lysis, Hb oxidation, and heme release are important components
of the inflammatory response in IVH. Pharmacological interventions targeting cell-
free Hb, Hb oxidation products, and free heme could have potential to limit the
neuroinflammatory response following IVH.

Keywords: intraventricular hemorrhage, hemoglobin, heme, premature infants, cerebrospinal fluid, adhesion
molecules, brain endothelial cell, inflammation
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INTRODUCTION

Intraventricular hemorrhage (IVH) is a frequent complication
of prematurity, occurring in about 15% to 20% of very low
birth-weight (<1,500 g) preterm infants, and its incidence is
even higher (∼45%) in extremely low birth-weight infants
(500–750 g) (1–3). IVH is associated with high neonatal
mortality (20–50%) and increases the risk of neurodevelopmental
impairment in the surviving infants beyond the risk associated
with prematurity alone (4).

During fetal brain development, neurons and glial cells
migrate out from the germinal matrix (GM), a highly cellular and
vascularized layer of the brain. The GM is most active between 8
and 28 gestational weeks, and generally absent in term infants (5).
In preterm infants, IVH results from bleeding of the GM, because
its capillary network is extremely fragile, and unable to regulate
cerebral blood flow (6).

IVH in preterm infants leads to systemic inflammation,
characterized by elevation of pro-inflammatory cytokines, e.g.,
tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8),
IL-1β, chemokines such as monocyte adhesion molecule-1, and
increased levels of adhesion molecules, i.e., vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1) (7). As a sign of local inflammatory response, the
levels of E-selectin, VCAM-1, ICAM-1, and L-selectin were found
to be elevated in the cerebrospinal fluid (CSF) of patients after
subarachnoid hemorrhage (8).

Rupture of the microvasculature of the GM causes
extravasation of red blood cells (RBCs) in the CSF followed
by lysis of RBCs. While hemoglobin (Hb) is compartmentalized
in RBCs, its oxidation is prevented by a highly effective
antioxidant defense system including enzymatic (Cu/Zn
superoxide dismutase, catalase, glutathione peroxidase, and
peroxiredoxins) and non-enzymatic (glutathione) scavengers
[reviewed in Jeney et al. (9)]. In contrast, outside RBCs, Hb is
prone to oxidation, giving rise to the formation of different Hb
oxidation products [metHb (Fe3+), ferrylHb (Fe4+ = O2−)] and
subsequent release of heme. The formed high-valence (Fe4+)
iron compounds are reactive intermediates and decay quickly
via intramolecular electron transfer between the ferryl iron and
specific amino acid residues of the globin chains resulting in the
formation of globin radicals (10). Then the termination of the
reaction occurs when these globin radicals react with each other
leading to the formation of covalently cross-linked Hb multimers
[reviewed in Jeney et al. (9)]. Covalently cross-linked oxidized
Hb forms have been detected in different biological samples
including plasma following intravascular hemolysis as well as
in human complicated atherosclerotic lesions with intraplaque
hemorrhage (11, 12).

Oxidized Hb forms (metHb, ferrylHb) and labile heme exert
diverse pro-oxidant and pro-inflammatory activities toward
different cell types including endothelial cells (ECs). As pro-
oxidants, they induce lipid peroxidation and sensitize ECs
to oxidant-mediated killing (13, 14). Heme induces toll-like
receptor 4 (TLR4) activation and subsequent upregulation
of adhesion molecules VCAM-1, ICAM-1, and E-selectin
in ECs (15).

Besides heme, ferrylHb but not Hb or metHb induces
upregulation of adhesion molecules in ECs, but interestingly,
this response is not dependent on TLR4 activation (16).
Increased endothelial permeability contributes to inflammatory
cell extravasation upon hemolysis, and previous studies showed
that ferrylHb and free heme induce the loss of endothelial
integrity (16–20).

The goal of the present study was to perform a qualitative
and quantitative analysis of the Hb content of human CSF
samples obtained from premature infants following IVH with
a special interest in detecting ferrylHb/covalently cross-linked
Hb species. We also aimed to investigate the pro-oxidant and
pro-inflammatory effects of these Hb forms on human brain
microvascular endothelial cells (HBECs). We determined the
levels of inflammatory markers in post-IVH CSF samples and
correlated their values to the heme content of CSF samples
to further understand the role of heme in triggering the
inflammatory response following IVH. We believe that a better
understanding of the molecular mechanism of the post-IVH
inflammatory response is critical in tailoring therapeutic tools
to avoid these infants from the development of the life-long
neurological effects of IVH.

MATERIALS AND METHODS

Materials
Reagents were purchased from Sigma-Aldrich (St. Louis, MO,
United States) unless otherwise specified.

Patient Selection and CSF Collection
In this study, we used the leftover of CSF samples that
were collected by spinal tap or ventricular reservoir puncture
for diagnostic purposes at the Department of Neurosurgery,
University of Debrecen. Preterm infants (n = 20) diagnosed
with grade III IVH with a mean gestational age at birth of
27.9 ± 2.2 weeks were involved in the study. CSF samples were
collected at 26.6 ± 16.4 days after the onset of IVH. No CSF was
obtained exclusively for inclusion in this study. Within 30 min of
collection, CSF samples were centrifuged (2,000 g, 4◦C, 15 min),
and supernatants were stored aliquoted at −70◦C until analysis.
The procedures were approved by the Scientific and Research
Ethics Committee of the University of Debrecen and the Ministry
of Human Capacities under the registration number of 1770-
5/2018/EÜIG. Parental consent forms were signed by the parents
of the infants involved in this study.

Determination of Hb, metHb, ferrylHb,
Total Heme, Free Heme, and Bilirubin
Levels in CSF
The absorbance spectra (250–700 nm) of CSF samples were
taken with a spectrophotometer (NanoDrop 2000, Thermo Fisher
Scientific, MA, United States). Concentrations of Hb, metHb, and
ferrylHb were calculated from the absorbance values measured
at 541, 576, and 630 nm, using the absorption coefficients and
equations determined previously by Meng and Alayash (21). The
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total heme concentration of CSF samples was determined by
using a QuantiChrom Heme Assay Kit (Gentaur Ltd., London,
United Kingdom) according to the manufacturer’s instructions.
Concentration of non-Hb bound heme was calculated by the
following equation: [free heme] = [total heme] – [Hb-heme] –
[metHb-heme] – [ferrylHb]. Bilirubin levels in CSF samples were
measured by a colorimetric assay on a Cobas 6000 analyzer
(Roche Diagnostics, Mannheim, Germany).

Cell Culture
HBEC cell line was purchased from ATCC (CRL-3245, Manassas,
VA, United States). Cells were cultured in Media 199,
supplemented with 10% fetal bovine serum (Gibco, Waltham,
MA, United States), 40 µg/ml EC growth supplement, and 1%
penicillin/streptomycin in 5% CO2 humidified atmosphere at
37◦C. HBECs were used at passages 5 and 8.

Hemoglobin Preparation
We prepared Hb, metHb, and ferrylHb from fresh blood obtained
from healthy volunteers as described in detail in our previous
work (12). Briefly, Hb was isolated from fresh blood drawn
from healthy volunteers using ion-exchange chromatography
on a DEAE Sepharose CL-6B column. metHb was generated
by incubation (30 min, 25◦C) of purified Hb with a 1.5-fold
molar excess of K3Fe(CN)6 over heme. FerrylHb was obtained by
incubation (1 h, 37◦C) of Hb with a 10:1 ratio of H2O2 to heme.
The ferryl state of iron is highly unstable and therefore ferrylHb
transiently forms. During stabilization of ferryl iron, different
chemically heterogeneous oxidized Hb molecules are formed,
which we refer to as ferrylHb to reflect rather the way of their
formation than their actual oxidation status. After oxidation,
both metHb and ferrylHb were dialyzed against saline (three
times for 3 h at 4◦C) and concentrated using Amicon Ultra
centrifugal filter tubes (10,000 MWCO, Millipore Corp., Billerica,
MA, United States). Aliquots were snap-frozen in liquid nitrogen
and stored at−70◦C until use.

Cell Viability Assay
Confluent HBECs grown in 96-well tissue-culture plates were
washed twice with Hank’s Balanced Salt Solution (HBSS) and
exposed to heme and different Hb species (Hb, metHb, or
ferrylHb at a concentration of 10–100 µmol/L heme group) for
24 h. Then cells were washed with HBSS, and 100 µl of 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT)
(0.5 mg/ml) solution in HBSS was added. After a 4-h incubation,
the MTT solution was removed, formazan crystals were dissolved
in 100 µl of dimethyl sulfoxide, and optical density was
determined at 570 nm.

Endothelial Cell Monolayer Integrity
Assay
The electric cell-substrate impedance sensing (ECIS) method
was used to measure the endothelial monolayer integrity.
HBECs were cultured in 8-well electrode arrays (8W 10E,
Applied BioPhysics Inc., Troy, NY, United States). After reaching
confluence, cells were treated with different Hb species (Hb,

metHb, and ferrylHb at a concentration of 50 µmol/L heme), and
the complex impedance spectrum was monitored with an ECIS
Zθ instrument (Applied BioPhysics Inc., Troy, NY, United States)
for 4 h. Results are shown as the difference between monolayer
resistance at 4,000 Hz at 0 time point and 4 h.

Quantitative Real-Time PCR
Total RNA was isolated from HBECs using TRizol (RNA-
STAT60, Tel-Test Inc., Friendswood, TX, United States)
according to the manufacturer’s protocol. Two micrograms
of RNA was reverse-transcribed to cDNA with a High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, United States). PCR was performed using iTaq
Universal Probes Supermix (BioRad Laboratories, Hercules, CA,
United States) and predesigned primers and probes (TaqMan R©

Gene Expression Assays) VCAM-1 (Hs01003372), ICAM-1
(Hs00164932), HO-1 (Hs01110250), IL-8 (Hs00174103), and
GAPDH (Hs0278624). Relative mRNA expressions were
calculated with the 11Ct method using GAPDH as an
internal control.

Intracellular ROS Measurement
ROS production was monitored by using the 5-(and-6)-
chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl
ester (CM-H2DCFDA) assay (Life Technologies, Carlsbad, CA,
United States). Confluent HBECs were exposed to the Hb forms
Hb, metHb, ferrylHb, and heme (10, 25, 50, and 100 µmol/L
heme) for 4 h in M199 media supplemented with 1% FBS. Then
cells were loaded with CM-H2DCFDA (10 µmol/L, 30 min,
at 37◦C in the dark), followed by three washes with HBSS.
Fluorescence intensity was measured every 30 min for 4 h
applying 488-nm excitation and 533-nm emission wavelengths.

Western Blot
Whole cell lysates (20 µg/lane) or CSF samples (5 µl/lane) were
resolved on 10% SDS-PAGE, then blotted onto a nitrocellulose
membrane (Amersham Proton 1060003, GE Healthcare,
Chicago, IL, United States). Western blot was performed with
the use of the following polyclonal antibodies: anti-HO-1
antibody (70081, Cell Signaling Technology Inc., Danvers, MA,
United States) at a concentration of 50 ng/ml and anti-VCAM-1
antibody (Sc-8304, Santa Cruz Biotechnology, Inc., Dallas, TX,
United States) at a concentration of 1 µg/ml. We used peroxidase
labeled anti-rabbit IgG (NA931, Amersham Bioscience,
Piscataway, NJ, United States) as a secondary antibody at a
concentration of 20 ng/ml. For Hb detection, we used an HRP-
conjugated goat antihuman Hb polyclonal antibody (ab19362-1,
Abcam Plc., Cambridge, United Kingdom) at a concentration
of 0.1 µg/ml. Antigen–antibody complexes were visualized
with the horseradish peroxidase chemiluminescence system
(Amersham Biosciences Corp., Piscataway, NJ, United States).
Chemiluminescent signals were detected conventionally on an
X-ray film or digitally by using a C-DiGit Blot Scanner (LI-COR
Biosciences, Lincoln, NE, United States). After detection, the
membranes were stripped and re-probed for β-actin using
HRP-conjugated anti-β-actin antibody (Sc-47778, Santa Cruz
Biotechnology, Inc., Dallas, TX, United States) at a concentration
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of 0.13 µg/ml. Blots were quantified by using the inbuilt software
of the C-DiGit Blot Scanner (LI-COR Biosciences, Lincoln,
NE, United States).

Measurement of Soluble VCAM-1,
ICAM-1, and IL-8 Levels in CSF Samples
To perform enzyme-linked immunosorbent assay (ELISA),
CSF samples were first centrifuged at 10,000 g for 1 min.
Soluble VCAM-1 and ICAM-1 protein concentrations
were quantitatively measured by ELISA as described in the
manufacturer protocol (R&D Systems, Minneapolis, MN,
United States). Levels of IL-8 were determined by ELISA (BD
OptEIA; BD Biosciences, San Diego, CA, United States).

Statistical Analysis
Results are expressed as mean ± SD. At least three independent
experiments were performed for all in vitro studies. Statistical
analyses were performed with GraphPad Prism software (version
8.01, San Diego, CA, United States). Comparisons between more
than two groups were carried out by ordinary one-way ANOVA
followed by post hoc Tukey’s multiple-comparisons test. We
applied one-way ANOVA followed by Dunnett’s post hoc test
when experimental groups were compared to a control. A value
of p < 0.05 was considered significant. To measure the strength
of the association between two variables, we performed Pearson’s
correlation analysis. A strong positive correlation was defined as
a value of Pearson’s correlation coefficient (r) > 0.4.

RESULTS

Time-Dependent Accumulation of
Different Oxidized Hb Forms, Free Heme,
and Bilirubin in Post-IVH CSF Samples
In this study, we have analyzed 20 CSF samples that were
collected by spinal tap or ventricular reservoir puncture from
preterm infants diagnosed with grade III IVH. The main
characteristics of the patients are summarized in Table 1. All
patients were preterm infants with a median gestational age of
28 weeks at delivery (Table 1). The mean birth weight of the
infants was 1,094 ± 282 g (Table 1). Out of the 20 infants, 10
did not receive steroid prophylaxis, and 8 obtained partial steroid
prophylaxis. In addition, 14 infants were born via Cesarean
section, 18 developed hydrocephalus, and 2 of them died before
6 months of age (Table 1).

Because CSF samples were taken for diagnostic purposes, we
obtained CSF samples at different time points after the onset of
IVH (days 14–60, mean: 27.6 ± 15.6 days, median: 21 days).
Based on the elapsed time between the onset of IVH and CSF
sampling, we divided the samples into three groups, 0–20 days,
21–40 days, and 41–60 days. CSF samples obtained at different
time intervals after the onset of the IVH had different colors, i.e.,
0–20 days CSF samples had brownish discoloration, 21–40 days
CSF samples were yellowish, whereas 41–60 days CSF samples
were colorless similar to a normal CSF specimen (Figure 1A).
To evaluate Hb, metHb, and ferrylHb concentrations in CSF,

TABLE 1 | Characteristics of the patients.

Characteristic Grade III IVH (n = 20)

Male sex - no./total no. 11/20

Gestational age at delivery
Median - week
Distribution

23 week 0 days to 25 week 6 days
26 week 0 days to 27 week 6 days
28 week 0 days to 29 week 6 days
30 week 0 days to 31 week 6 days

28

4
4
6
6

Birth weight
Mean ± s.d. - g
Distribution
≥500 to <750 g
≥750 to <1000 g
≥1000 to <1250 g
≥1250 to <1500 g

1094 ± 282

3
6
4
7

Apgar 5 min
Median
Distribution

0–3
4–6
7–8
9–10

5

4
13
3
0

Apgar 10 min
Median
Distribution

0–3
4–6
7–8
9–10

8

0
7
9
4

Steroid prophylaxis - yes/partial/no 2/8/10

Multiply pregnancy - no./total no. 5/20

Cesarean section delivery - no./total no. 14/20

Hydrocephalus - no./total no. 18/20

Death - no./total no. 2/20

Timing of the CSF samples [days after
the onset of IVH, (n)]

14(1), 15(1), 16(1), 17(2), 19(1),
20(2), 21(4), 24(1), 25(1), 28(1),

32(1), 45(1), 60(3)

CSF samples were collected from premature infants (n = 20) diagnosed with grade
III IVH.

we took the visible absorption spectra of the samples and
calculated Hb concentrations with the use of molar extinction
coefficients as determined previously (21). The Hb levels of CSF
samples obtained 0–20 days after the onset of IVH showed a big
variation from 13.08 up to 228.12 µmol/L, with an average of
85.04 ± 72.38 µmol/L. The Hb concentration in CSF samples
obtained at later time points, i.e., 21–40 days after IVH onset,
was significantly lower (7.61 ± 10.32 µmol/L), and Hb was
undetectable in CSF samples collected 41–60 days following
IVH (Figure 1B).

One-electron oxidation of Hb leads to the formation of
metHb. Similarly to that of Hb, we found high amounts of metHb
in CSF samples obtained at 0–20 days (80.51 ± 77.65 µmol/L),
which decreased gradually during the study period (Figure 1C).
On average, metHb concentration was 9.65 ± 10.77 µmol/L in
CSF samples obtained at 21–40 days after the onset of IVH and
was below the detection limit in CSF samples collected after 41–
60 days of IVH (Figure 1C). Two-electron oxidation of Hb by
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FIGURE 1 | Time-dependent accumulation of Hb, metHb, and ferrylHb in
post-IVH CSF samples. CSF samples (n = 20) were obtained from preterm
infants diagnosed with grade III IVH at different time intervals after the onset of
IVH. (A) Physical appearance of CSF samples obtained at different time
intervals after the onset of IVH (days 0–20, 21–40, 41–60). (B–D)
Concentrations of Hb, metHb, and ferrylHb were quantified
spectrophotometrically in CSF samples. Closed circles represent individual
samples, red circles represent patients that died before 6 months of age, and
bars represent mean ± SD values. P-values were calculated using one-way
ANOVA followed by Tukey’s multiple comparison analysis. *p < 0.05.

peroxides, for instance, could lead to the formation of ferrylHb.
Interestingly, we could hardly detect any ferrylHb in the CSF
samples, which could be explained by the highly unstable nature
of this Hb species (Figure 1D).

FerrylHb is a reactive intermediate that decays quickly via
intramolecular electron transfer between the ferryl iron and
specific amino acid residues of the globin chains. In this reaction,
globin radicals are produced, which are still unstable and react
with each other to get stabilized via the formation of covalent
bonds between the globin subunits (9). Next we addressed
whether this occurs following IVH in the CSF. We have analyzed
all the CSF samples by western blot under reducing conditions
and detected Hb forms with different molecular weights that
corresponded as globin monomers (16 kDa), dimers (32 kDa),
and tetramers (Hb) (64 kDa). A representative western blot
is shown in Figure 2A. Densitometric analysis of the western
blots revealed that in CSF samples obtained at 0–20 days after
the onset of IVH contained predominantly globin monomers
(59.3 ± 29.3% of total Hb), less globin dimers (33.6 ± 28.2% of
total Hb), and very low amounts of Hb tetramers (7.03 ± 11.1%
of total Hb) (Figures 2A,B). Interestingly, we observed a shift
toward the formation of globin dimers and tetramers in CSF
samples obtained at 21–40 days post-IVH (Figures 2A,B). This
change becomes highly remarkable in CSF samples obtained after
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FIGURE 2 | Time-dependent accumulation of covalently cross-linked globin
multimers in post-IVH CSF samples. Hb contents of CSF samples (n = 20)
obtained from preterm infants diagnosed with grade III IVH at different time
intervals after the onset of IVH were analyzed by western blot.
(A) Representative western blot is shown. (B) Densitometric analysis of
western blots of all samples (n = 20) was performed and percentage of globin
monomers, dimers, and tetramers (Hb) is presented as mean ± SD. P-values
were calculated using one-way ANOVA followed by Tukey’s multiple
comparison analysis. *p < 0.05, **p < 0.01, ****p < 0.001.

41–60 days of IVH, as these samples contained neither monomers
nor dimers but contained Hb tetramers (Figures 2A,B).

Hb oxidation can lead to the dissociation of the heme group
from the globin giving a rise in the formation of non Hb-bound
(free) heme. To see whether this occurred following IVH, first
we determined total heme levels in CSF samples. Total heme
levels were very high in CSF obtained at 0–20 days after the
onset of IVH ranging from 120.02 up to 1,035.27 µmol/L with
an average of 463.01 ± 303.39 µmol/L (Figure 3A). Total heme
levels were significantly lower in CSF samples obtained at 21–
40 days after the onset of IVH (64.98 ± 73.50 µmol/L) and
was below 1 µmol/L in CSF samples collected 41–60 days post-
IVH (Figure 3A). Correlation analysis between Hb and total
heme levels revealed a very strong linear correlation (r = 0.7296)
between the two variables, suggesting that Hb is the major
source of heme in CSF as we expected (Figure 3B). Next we
calculated the concentration of free heme as described in the
methods. Free heme concentrations were high in CSF collected
at 0–20 days after the onset of IVH ranging from 41.99 to
717.39 µmol/L with an average of 295.34 ± 259.80 µmol/L
(Figure 3C). Free heme levels were significantly lower in
CSF samples obtained at 21–40 days after the onset of IVH
(47.73 ± 57.50 µmol/L) and was below 1 µmol/L in CSF
samples collected 41–60 days post-IVH (Figure 3C). We looked
at the correlation between the concentration of oxidized Hb
(metHb + ferrylHb) and free heme and found a strong positive
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FIGURE 3 | Time-dependent accumulation of total heme, free heme, and bilirubin in post-IVH CSF samples. CSF samples (n = 20) were obtained from preterm
infants diagnosed with grade III IVH at different time intervals (days 0–20, 21–40, 41–60) after the onset of IVH. (A,C,E) Total heme, free heme, and bilirubin levels of
CSF samples were determined. Closed circles represent individual samples, red circles represent patients that died before 6 months of age, and bars represent
mean ± SD. P-values were calculated using one-way ANOVA followed by Tukey’s multiple comparison analysis. *p < 0.05, **p < 0.01. (B,D,E) Correlation between
(B) Hb and total heme concentrations, (D) oxidized Hb forms (MHb + FHb) and free heme concentrations, and (F) total heme and bilirubin concentrations in
post-IVH CSF samples (n = 20) is shown. R represents Pearson’s correlation coefficient.

correlation (r = 0.4809) between the two variables, which
supports the concept that oxidized Hb forms can release their
heme prosthetic groups (Figure 3D). Additionally, we measured
the concentration of bilirubin, one of the end-products of heme
catabolism in CSF samples. We found that bilirubin levels
were the highest (8.8 ± 2.47 µmol/L) in CSF collected at 0–
20 days after the onset of IVH, and then it gradually decreased
in time (Figure 3E). We found that bilirubin levels strongly
correlated to the total heme levels in post-IVH CSF samples
(r = 0.7568) (Figure 3F).

Pro-oxidant and Pro-inflammatory
Effects of Hb Forms and Free Heme
Toward Human Brain Microvascular
Endothelial Cells
IVH in preterm infants leads to systemic inflammation
characterized by increased levels of pro-inflammatory cytokines
and cellular adhesion molecules. ECs play a critical role in the
pro-inflammatory responses, and Hb oxidation products have
been shown to be implicated in diverse hemolysis-associated
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sterile inflammatory reactions. Therefore, next we have addressed
the pro-oxidant and pro-inflammatory effects of the different
Hb oxidation products that were identified in post-IVH CSF
samples toward HBECs.

First we have addressed whether the different Hb forms induce
heme oxygenase-1 (HO-1), the stress-responsive inducible
enzyme that catalyzes heme degradation upon heme overload
conditions. We exposed HBECs to Hb, metHb (MHb), ferrylHb
(FHb), and free heme (25 µmol/L heme group). Oxidized Hb
forms, i.e., metHb and ferrylHb, induced an 18.2± 2.6-fold and a
12.1± 3.1-fold elevation of HO-1 mRNA levels (4 h), respectively
(Figure 4A). In contrast, native Hb did not cause an elevation
of HO-1 mRNA (Figure 4A). Free heme was a highly more
potent inducer of HO-1 in HBECs in comparison with metHb
and ferrylHb triggering a more than 1,000-fold elevation of the
HO-1 mRNA level after a 4-h exposure (Figure 4A). In parallel
with the changes of the HO-1 mRNA level, both metHb and
ferrylHb induced an about 20-fold elevation of the HO-1 protein
expression, whereas free heme increased the HO-1 expression by
about 200-fold (Figure 4B).

Heme is a catalyst of the Fenton reaction and therefore
is implicated in the sustained production of reactive oxygen
species (ROS) under hemolytic conditions. Next we investigated
whether the Hb oxidation products found in post-IVH CSF
samples induce ROS production in HBECs. HBECs were treated
with Hb, metHb, ferrylHb, and heme (10, 25, 50, 100 µmol/L
heme group) for 4 h, and ROS formation was measured as
described in the methods. Heme at concentrations of 50 and
100 µmol/L induced substantial production of ROS (Figure 5A).
In contrast, neither native Hb nor oxidized Hb forms (metHb
and ferrylHb) increased ROS production in HBECs (Figure 5A).
To see whether Hb oxidation products induce HBEC death,
we exposed the cells to Hb, metHb, ferrylHb, and free heme
(10, 25, 50, 100 µmol/L heme group) for 24 h. Heme at
concentrations of 50 and 100 µmol/L induced a substantial
reduction in cell viability (Figure 5B). On the contrary, cell
viability was unaffected by the Hb forms, even when they were
applied at the highest concentration (Figure 5B). A previous
study on human umbilical vein ECs showed that oxidized Hb
increased endothelial monolayer permeability (16). Therefore,
we investigated whether the Hb forms impair HBEC monolayer
integrity. We exposed HBECs to Hb, metHb, and ferrylHb
(50 µmol/L heme group) and measured the changes of monolayer
resistance over a 4-h period of time (Figure 5C). HBEC
monolayer integrity was unaffected by native Hb or metHb
treatment. In contrast, ferrylHb treatment largely impaired
HBEC monolayer integrity (Figure 5C).

Heme and oxidized Hb forms have been shown to be
implicated in the immune response in hemolytic diseases. More
specifically, heme and ferrylHb have been shown to upregulate
the expression of cellular adhesion molecules including VCAM-1
and ICAM-1 in human umbilical vein ECs. Here we treated
HBECs with Hb, metHb, ferrylHb, and heme (25 µmol/L
heme group) and measured mRNA expressions (4 h) of
VCAM-1, ICAM-1, and the pro-inflammatory cytokine IL-
8 (Figures 6A–D). We used LPS (100 ng/ml) as a positive
control in these experiments. Free heme and ferrylHb triggered
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FIGURE 4 | Induction of HO-1 mRNA and protein expression by different Hb
forms in HBECs. Confluent HBECs (P5-8) were exposed to vehicle, Hb,
MetHb (MHb), ferrylHb (FHb), and heme (25 µmol/L heme group) in 1% FBS.
(A) Relative mRNA expression (4 h, mean ± SD) of HO-1 normalized to
GAPDH from three independent experiments performed in triplicates.
(B) HO-1 protein levels (16 h) were analyzed by western blot from whole cell
lysates. Membranes were re-probed for β-actin. Representative blots of three
independent experiments are shown. Densitometry analysis (mean ± SD) of
three independent experiments. (A,B) P-values were calculated using
one-way ANOVA followed by Dunnett’s post hoc analysis. *p < 0.05 and
****p < 0.001.

marked elevations of VCAM-1 mRNA (∼15–20-fold), whereas
the effect of native Hb and metHb was milder inducing about
5-fold increases of VCAM-1 (Figure 6A). We observed a
similar trend on the protein level, namely, ferrylHb and free
heme were more potent in inducing VCAM-1 expression than
native Hb and metHb (Figure 6B). Additionally, free heme
and ferrylHb but not native Hb and metHb induced elevations
of ICAM-1 and IL-8 mRNA levels (Figures 6C,D). We have
to note that the bioavailable heme concentrations in these
experiments were much lower than 25 µmol/L due to the
presence of specific (Hx) and non-specific (albumin) heme-
binding proteins present in the serum, which was applied at 1%
in these experiments.
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FIGURE 5 | Induction of ROS production and cell death by different Hb forms
in HBECs. (A) Confluent HBECs (P5-8) were exposed to vehicle, Hb, MetHb,
ferrylHb (FHb), and heme (10, 25, 50, 100 µmol/L heme group) in 1% FBS for
4 h, then ROS production was monitored by DCFDA assay for an additional
4 h. Graph shows ROS production (mean ± SD) at 4-h time point from three
independent experiments performed in quadruplicates. (B) Confluent HBECs
(P5-8) were exposed to vehicle, Hb, MetHb, ferrylHb (FHb), and heme (10, 25,
50, 100 µmol/L heme group) in 1% FBS and cellular viability (24 h) was
assessed by MTT assay. Graph shows cell viability as a percentage of viability
of vehicle-treated cells (mean ± SD) from three independent experiments
performed in quadruplicates. (C) HBECs cultured in 8-well ECIS plates were
exposed to Hb, metHb, and ferrylHb (FHb) (50 µmol/L heme group) in 1%
FBS containing media. The complex impedance spectrum was monitored
with an ECIS Zθ instrument for 4 h. Change in resistance (mean ± SD) was
calculated based on the difference between monolayer resistance at 4,000 Hz
at 0 time point and 4 h from three independent experiments performed in
triplicates. (A–C) P-values were calculated using one-way ANOVA followed by
Tukey’s multiple comparison analysis. ***p < 0.005, ****p < 0.001.

Correlations Between Levels of Heme
and Pro-inflammatory Markers in
Post-IVH CSF Samples
Previous studies showed that the levels of pro-inflammatory
markers including soluble adhesion molecules and inflammatory

cytokines are elevated in post-IVH CSF samples. Our in vitro
data suggested that Hb-derived heme may play a critical role
in the induction of the pro-inflammatory response. To address
this question, we measured VCAM-1, ICAM-1, and IL-8 levels
in post-IVH CSF samples (N = 20). VCAM-1 levels were the
highest in CSF samples obtained between 0 and 20 days after the
onset of IVH (305.11 ± 120.12 ng/ml) (Figure 7A). Comparing
to these samples, VCAM-1 levels were significantly lower in
CSF samples obtained at 41–60 days after the onset of IVH
(165.31 ± 56.51 ng/ml) (Figure 7A). Then we analyzed whether
there is a correlation between heme and VCAM-1 levels in the
post-IVH CSF samples, and we found a strong linear correlation
between the two variables (r = 0.5603) (Figure 7B). Next,
we determined the level of soluble ICAM-1 in post-IVH CSF
samples. We observed a decreasing trend of ICAM-1 levels, but
the differences were not significant (Figure 7C). On the other
hand, ICAM-1 levels correlated strongly (r = 0.5864) with total
heme concentrations in post-IVH CSF samples (Figure 7D).
Finally, we have measured the level of the pro-inflammatory
cytokine IL-8 in the post-IVH CSF samples. We found that IL-
8 levels were the highest in CSF samples obtained at 0–20 days
after the onset of IVH (3.92± 0.85 µg/ml), and then we observed
a gradual decrease in IL-8 levels at 21–40 and 41–60 days after the
onset of IVH resulting in 2.19 ± 1.5 and 0.2 ± 0.29 µg/ml IL-8
concentrations, respectively (Figure 7E). Additionally, we found
a strong positive correlation between total heme concentration
and IL-8 levels in post-IVH CFS samples (r = 0.6768) (Figure 7F).

DISCUSSION

IVH is a frequent complication of prematurity that
associates with high neonatal mortality and increased risk
of neurodevelopmental impairment in the surviving infants
(1–4). It is known for a long time that inflammation plays
a critical role in the pathophysiology of IVH-induced brain
damage; however, the molecular mechanism by which IVH
stimulates the inflammatory response is not fully understood.
Extravasation of blood into the intraventricular space triggers a
cascade of events including the release of various vasoactive and
pro-inflammatory molecules from blood and the vascular system
[reviewed in Sercombe et al. (22)].

In this study, we performed a qualitative and quantitative
analysis of Hb content of human CSF samples obtained from
premature infants following IVH at different time points after
the onset of IVH to understand the kinetics of Hb release,
oxidation, and clearance. We investigated the pro-oxidant and
pro-inflammatory effects of the identified Hb forms on HBECs
to extend our understanding of the particular roles that these
species may play in the neuroinflammatory response following
IVH. We measured the levels of pro-inflammatory markers in
post-IVH CSF samples at different time points after the onset
of IVH to explore the kinetics of the inflammatory response and
investigated whether the inflammatory response correlates to the
extent of hemolysis.

We showed that after IVH Hb is released into the CSF
and Hb oxidation occurs leading to the formation of metHb,
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FIGURE 6 | Pro-inflammatory effects of different Hb forms in HBECs. (A–D) Confluent HBECs (P5-8) were exposed to vehicle, Hb, metHb (MHb), ferrylHb (FHb),
heme (25 µmol/L heme group), and LPS (100 ng/ml) in 1% FBS. Relative mRNA expression (4 h, mean ± SD) of VCAM-1, ICAM-1, and IL-8 normalized to GAPDH
from three independent experiments performed in triplicates are shown. (B) VCAM-1 protein levels (16 h) were analyzed by western blot from whole cell lysate.
Membranes were re-probed for β-actin. Representative blots of three independent experiments are shown. Densitometry analysis (mean ± SD) of three independent
experiments. (A–D) P-values were calculated using one-way ANOVA followed by Dunnett’s post hoc analysis. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.

ferrylHb, and covalently cross-linked oxidized globin multimers.
Previous studies showed that cell-free Hb and Hb metabolites
are present in CSF following different types of intracranial
hemorrhage including IVH (23–25). Particularly, metHb that is
produced in a one-electron oxidation of Hb was detected in
CSF samples obtained following IVH in preterm infants as well
as in an experimental rabbit model of IVH (23). On average,
the metHb level in the CSF samples obtained between days
0 and 20 after the onset of IVH was 80.51 ± 77.65 µmol/L,
which is in good agreement with the previously reported level
of metHb in CSF (∼ 40 µmol/L) on day 3 post-IVH in a rabbit
model (23).

Peroxides trigger a two-electron oxidation of Hb, leading to
the generation of ferrylHb in which the oxidation state of iron is
+4. This unstable form of oxidized Hb was detected in human
blood under physiologic and pathophysiologic conditions, but
whether this form is produced following IVH has never been
addressed (26–28). We could detect ferrylHb only in two out of
eight CSF samples obtained between days 0 and 20 after the onset
of IVH, which might be explained by the highly reactive nature
of the ferryl iron.

High-valent iron in ferrylHb promotes the oxidation of
definite amino acids of the globin chains and the subsequent
intermolecular cross-linking of the globin subunits (9, 29, 30).
Under in vivo conditions, these covalently cross-linked ferrylHb
species were detected in different biological samples including
plasma and urine following intravascular hemolysis as well as

in human complicated atherosclerotic lesions with intraplaque
hemorrhage (11, 12, 31). Here we showed for the first time that
covalently cross-linked oxidized globin multimers, i.e., dimers
and tetramers, are present in the CSF samples following IVH.

In the circulation, extracellular Hb is eliminated through
the haptoglobin (Hp)–CD163 scavenger pathway (32). First
extracellular Hb binds to Hp with extremely high affinity (Kd ∼
10-12 mol/L) (33), then Hb–Hp complexes are internalized via
CD163 receptors expressed on macrophages and monocytes (34).
Regarding the CNS, Hp is present in CSF, but because of its low
concentration, the Hb-binding capacity of CSF (∼100 µg Hb in
adults) is far below the Hb-binding capacity of plasma (∼5 g Hb)
(35). It has been shown that following IVH, Hb penetrates from
the intraventricular space to the periventricular white matter and
contributes to the development of IVH-associated brain injury.

Hb concentration of CSF samples obtained between days 0
and 20 after the onset of IVH showed a huge variation ranging
from 13 up to 228 µmol/L with an average of 85 µmol heme
groups/L. This corresponds to 10–530 mg of Hb in the 50-
ml volume of CSF in the infants, and although we are lacking
information about Hp levels in the CSF of premature infants, we
assume that in most CSF samples, the level of cell-free Hb exceeds
the Hb-binding capacity of CSF.

Once bound to Hp, Hb is protected from oxidation; therefore,
the presence of oxidized Hb forms, i.e., metHb and ferrylHb in
the post-IVH CSF samples support the idea that the level of Hb
overwhelms the Hb binding capacity of Hp in CSF following
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FIGURE 7 | Level of soluble VCAM-1, soluble ICAM-1, and IL-8 in post-IVH CSF samples. CSF samples (n = 20) were obtained from preterm infants diagnosed with
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IVH. Moreover, covalently cross-linked oxidized Hb multimers
that formed upon Hb oxidation have limited affinity toward Hp;
therefore, these species might bypass the homeostatic control of
cell-free Hb (36).

In contrast to native Hb, MetHb as well as ferrylHb can
release their heme prosthetic groups (13, 14, 37). Heme is a
hydrophobic molecule, which allows its penetration through
cell membranes by passive diffusion, although recently, cell
surface and organelle-associated transporters were discovered
to facilitate the movement of heme between the different
cellular compartments [reviewed in Gozzelino (38)]. Heme
has long been considered as a pro-oxidant molecule (39),

and recently, its pro-inflammatory nature has been recognized
as well (40). The pro-oxidant reactivity of heme relies on
the ability of its iron atom to exchange electrons with
a variety of substrates. For example, interaction of heme
with H2O2 results in the formation of the highly reactive
hydroxyl radical in the Fenton reaction. Consequently, heme
sensitizes various cells to oxidant- or cytokine-mediated
killing (41, 42). Regarding cells of the central nervous
system (CNS), heme (5–40 µmol/L) has been shown to
be cytotoxic toward astrocytes (43) and neurons (44), and
sensitize oligodendrocytes to TNF-α mediated programmed cell
death (42).
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To see whether there is any non Hb-bound, so-called “free”
heme in the post-IVH CSF samples, first we determined the
total heme concentration in CSF (total heme = heme in all Hb
forms+ free heme), and then calculated the amount of free heme.
We found a big individual variation in free heme levels in CSF
samples obtained between days 0 and 20 after the onset of IVH
ranging from 42 up to 717 µmol/L.

Intravascular free heme is eliminated by the CD91–heme–
hemopexin scavenging system [reviewed in Smith and McCulloh
(45)]. Hemopexin binds heme with the highest affinity of any
known protein (46), inhibits its catalytic activity, and facilitates
its removal via the CD91 receptor (47). The same CD91–heme–
hemopexin route exists in the CNS and plays an important role
in heme detoxification after subarachnoid hemorrhage in adults
influencing the clinical outcome (48). We have no information
whether the CD91–heme–hemopexin scavenging system has
evolved fully in preterm infants or the heme removal capacity
of such a system upon IVH, but in any case, we assume that the
system is oversaturated and this contributes to the accumulation
of free heme in the CSF after IVH.

Hb, metHb, total heme, and free heme levels were lower in CSF
samples collected at later time points between days 21 and 40 after
the onset of IVH in comparison to CSF samples collected during
the first 20 days following IVH. This suggests that although the
Hb and heme scavenging capacity of the CSF was overwhelmed
right after the onset of IVH, a slow clearing procedure took place
afterward. In CSF samples collected between days 41 and 60 after
the onset of IVH, we could hardly detect heme in any form. CSF
is renewed four to five times a day in adults, and this rate is
considered to be even higher in neonates. CSF is cleared via the
blood–CSF barrier through specific proteins that are expressed
in the choroid plexus epithelial cells that provide transport of
nutrients and ions into the CNS and removal of waste products
and ions from the CSF. Clearance for Hb and its derivatives from
CSF via the blood–CSF barrier could be an option following IVH,
but this mechanism has not yet been characterized.

FerrylHb is stabilized by intermolecular electron transfer
between the ferryl iron and an adjacent amino acid of the
globin chain resulting in globin radicals. The formed globin-
based radicals react with each other and form covalently cross-
linked Hb multimers that we could detect in CSF samples.
Interestingly, we found a clear shift toward the formation of
higher multimers at later time points after the onset of IVH. In
CSF obtained between days 21 and 40 after the onset of IVH, we
found significantly more covalently cross-linked oxidized globin
tetramers than in CSF collected earlier (days 0–20). Moreover,
in the CSF samples collected between days 41 and 60 after the
onset of IVH, we could detect exclusively the covalently cross-
linked oxidized globin tetramers. Considering that we could not
detect any heme in these samples, we concluded that these globin
tetramers have already released their heme prosthetic groups. The
presence of this form of Hb at days 41–60 after the onset of IVH
suggests that there is no efficient mechanism in the CNS for the
elimination of this oxidized Hb form.

The blood–brain barrier (BBB) prevents blood cells and
pathogens from entering the brain parenchyma and regulates
the transport of molecules between the plasma and the CNS

(49). Intracerebral hemorrhage (ICH) is associated with BBB
dysfunction, and several studies showed that blood components
(e.g., thrombin, Hb, iron) play a major role in ICH-induced
BBB dysfunction (50). The BMEC monolayer is an important
component of the BBB, and in a critical manner contributes to the
neuroinflammatory response mainly by inducing the leukocyte
adhesion cascade to facilitate the transmigration of inflammatory
cells into the CNS. Therefore, we investigated the effect of the
identified Hb forms in post-IVH CSF samples on BMECs.

Free heme content of CSF obtained between days 0 and 20
after the onset of IVH was particularly high; only one out of
eight CSF samples had a free heme content below 50 µmol/L,
three samples had high free heme content (50–250 µmol/L),
and four out of the eight CSF samples had very high free heme
content that exceeded 250 µmol/L. We showed here that heme
at the concentration of 50 µmol/L or higher causes BMEC
death due to elevated production of ROS. On the other hand,
neither native Hb nor the oxidized Hb forms triggered ROS
production or EC death.

With the use of a guinea pig exchange transfusion model, it
was previously shown that polymerized cell-free Hb triggers BBB
disruption (51). Additionally, we showed earlier that ferrylHb
induces intermolecular gap formation in HUVECs leading to
decreased endothelial monolayer integrity (16). In agreement
with the previous study, here we found that ferrylHb but not
native Hb or metHb impairs BMEC monolayer integrity.

HO-1, the oxidative stress-responsive enzyme that catalyzes
heme degradation, is induced following ICH in different cells of
the CNS including astrocytes, microglia, and ECs (52). Here we
showed that besides sublethal concentration of heme, oxidized
Hb forms, i.e., metHb and ferrylHb induce HO-1 expression.
HO-1 has antioxidant and anti-inflammatory actions and affords
protection against programmed cell death and inhibits the
pathogenesis of a variety of immune-mediated inflammatory
diseases (42). In line with this notion, it was shown that the
upregulation of HO-1 prevents the development of experimental
cerebral malaria in mice and attenuates BBB disruption and
neuroinflammation (53). These beneficial effects are considered
to be mediated by the binding of carbon monoxide (CO) – the
end-product of HO-1 activity – to Hb, preventing its oxidation
and the generation of free heme (53).

Recent studies showed the beneficial effect of CO gas
as well as CO releasing molecules (CORMs) in ICH.
CO/CORM treatment alters the inflammatory response,
attenuates vasospasm, improves neurobehavioral function,
preserves the circadian rhythm, and overall reduces the
severity of brain damage in experimental models of ICH
(54–56). Further studies are needed to understand whether
the beneficial effect of CO on ICH-induced brain damage
relies on its ability to prevent oxidation of cell-free Hb and
subsequent heme release.

Adhesion molecules mediate the inflammatory cell response
to injury through adherence to the vascular endothelium,
diapedesis through the endothelial barrier, and migration into
the tissues. Normally, vascular endothelium is in a quiescent
state characterized by low expression of adhesion molecules.
In contrast, upon insult, endothelial dysfunction develops,
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characterized by elevated expression of adhesion molecules and
pro-inflammatory cytokines. Brain hemorrhage triggers a local
inflammatory response, and consequently, the levels of soluble
adhesion molecules (i.e., E-selectin, ICAM-1, VCAM-1, and
L-selectin) and inflammatory cytokines are elevated in the CSF of
patients after subarachnoid hemorrhage (8, 57). IVH is followed
by a systemic inflammatory response as well, and the extent of
this response seems to be associated with white matter injury
(7). ICAM-1 is a potential therapeutic target to attenuate cerebral
vasospasm after subarachnoid hemorrhage (58).

Heme and oxidized Hb forms (i.e., metHb and ferrylHb)
have been previously shown to induce adhesion molecules as
well as pro-inflammatory cytokines (e.g., IL-6, IL-8, IL-1β)
in human umbilical vein ECs (16, 59–61). Here we showed
that heme and ferrylHb are the most potent inducers of the
expression of adhesion molecules and IL-8 in BMECs, and that
the levels of VCAM-1, ICAM-1, and IL-8 in CSF gradually
decreased following the onset of IVH and correlated to total heme
concentration of CSF.

Overall our study suggests that RBC destruction, Hb
oxidation, and heme release are important pathogenic factors in
IVH. On the other hand, this work also has some limitations.
The study examined a very fragile group of patients: preterm
babies with IVH grade III. The work is based on the examination
of CSF samples obtained for diagnostic purposes; therefore, we
could not influence the time of sampling. The earliest time point
when we obtained CSF was day 14 after the onset of IVH,
leaving us without information about the critically important
first 2 weeks following IVH. We can speculate that in the first
2 weeks after IVH, we could have seen even higher amounts
of Hb and its derivatives in the CSF. Another limitation of this
work is that we have focused on only Hb and its derivatives,
although it is very likely that the IVH-associated inflammatory
response is much more complex. The major determinant of the
inflammatory response and the outcome of IVH is the volume
of bleeding, which likely correlates with the levels of Hb and its
derivatives in the CSF. Despite these limitations, we believe that
extracellular Hb and its derivatives contribute to the pathogenesis
of IVH and pharmacological interventions targeting extracellular
Hb, Hb oxidation, and heme could have a potential to limit the
neuroinflammatory response following IVH.
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Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the

β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin

S (HbS), which polymerizes under deoxygenation, and induces the sickling of red

blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently

become anemic and develop frequent and recurrent vaso-occlusive crises. However, it

is now evident that SCD is not only a RBC rheological disease. Accumulating evidence

shows that SCD is also characterized by the presence of chronic inflammation and

oxidative stress, participating in the development of chronic vasculopathy and several

chronic complications. The accumulation of hemoglobin and heme in the plasma, as a

consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability

and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin

also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs),

which may activate endothelial inflammation through TLR-4 signaling and promote the

development of complications, such as acute chest syndrome. It is also suspected that

heme may activate the innate immune complement system and stimulate neutrophils to

release neutrophil extracellular traps. A large amount of microparticles (MPs) from various

cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into

the plasma of SCD patients and participate in the inflammation and oxidative stress

in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters

the RBC properties. Increased pro-inflammatory cytokine concentrations promote the

activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte

ROS. Such enhanced oxidative stress causes deleterious damage to the RBCmembrane

and further alters the deformability of the cells, modifying their aggregation properties.

These RBC rheological alterations have been shown to be associated to specific

SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover,

RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive

to various inflammatory molecules that promote RBC dehydration and increase RBC

adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle

between abnormal RBC rheology and inflammation, which modulates the clinical severity

of patients.

Keywords: sickle cell disease, inflammation, red blood cell, oxidative stress, heme

22

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00454
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00454&domain=pdf&date_stamp=2020-03-13
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pconnes@yahoo.fr
mailto:philippe.connes@univ-lyon1.fr
https://doi.org/10.3389/fimmu.2020.00454
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00454/full
http://loop.frontiersin.org/people/895214/overview
http://loop.frontiersin.org/people/116052/overview


Nader et al. Sickle Cell Disease and Inflammation

INTRODUCTION

Sickle cell disease (SCD) is a genetic disease caused by a
single mutation in the β-globin gene, leading to the production
of an abnormal hemoglobin called hemoglobin S (HbS).
Under deoxygenation, the HbS polymerizes, which causes the
sickling of red blood cells (RBCs). Sickled RBCs are very
fragile and rigid. These abnormal features of sickle RBCs are
believed to be responsible for chronic anemia and frequent and
recurrent painful vaso-occlusive crises, respectively. However,
although the molecular defects at the origin of the disease
have been well-described, patients with SCD may exhibit
various acute and/or chronic complications, which may affect
several organs, such as the lungs, heart, kidney, brain, skin,
bones, and eyes, for example. It is worth noting that this
genetic disorder is associated with an extreme inter-individual
variability of its clinical presentation (1). In addition, while
it is easy to consider that rigid RBCs could obstruct the
microcirculation and trigger the onset of vaso-occlusive like
events, it has been demonstrated that the transit time of
RBCs in deoxygenated vascular areas would be theoretically too
short to allow RBCs to spend enough time to sickle (2, 3).
This means that other biological mechanisms participate in
the pathophysiological processes of the disease. Activation and
increased adhesiveness of neutrophils, monocytes and platelets
to the endothelium, mainly in post-capillary venules, may
initiate vaso-occlusion (4–7). The resulting decreased blood flow
induces a longer transit time of RBCs in vascular areas with
poor oxygen content, hence promoting HbS polymerization
and RBC sickling (6). The accumulation of rigid RBCs and
adherent circulating cells into the microcirculation is responsible
for vaso-occlusion (6). Mounting evidence shows that SCD
is characterized by the presence of chronic inflammation
and oxidative stress, participating in the development of
chronic vasculopathy, endothelial dysfunction and several
chronic complications. In addition, this pro-oxidative and
pro-inflammatory environment further impairs the rheological
properties of RBCs, hence further impacting the clinical severity
of disease in patients.

THE ROLE OF HEMOLYSIS IN
INFLAMMATION AND VASCULAR
DYSFUNCTION

Although chronic anemia is fairly well-tolerated by SCD patients,
the severity of anemia modulates their aerobic fitness and quality
of life (8, 9). Moreover, levels of anemia, partly determined by
the rate of intravascular hemolysis in SCD patients, influences
their survival rate (9). In addition, intravascular hemolysis also
plays a key role in the pathophysiology of SCD, independently
of its effects on anemia. Patients with the highest rate of
hemolysis are at risk of earlier mortality, compared to those with
less pronounced hemolysis (10). This section will discuss the
consequences of enhanced hemolysis on inflammation, oxidative
stress and the vascular function in SCD (11).

Hemolysis and Nitric Oxide (NO)
Bioavailability
NO produced by the endothelial NO-synthase (eNOS) is a strong
modulator of vascular physiology. Through its effects on the
vascular smooth cells, NO plays a key role in vasodilation.
Moreover, NO has been shown to downregulate the transcription
of several endothelial adhesion molecules of both the CAM
(ICAM-1, VCAM-1) and selectin (E- and P-selectin) families (12)
and to inhibit platelet activation (13). Accumulating evidence
strongly supports a key role of hemolysis in the decrease of
NO bioactivity/bioavailability in SCD (14, 15). The accumulation
of hemoglobin in the plasma affects the bioavailability of nitric
oxide (NO). Cell-free hemoglobin destroys NO at a rate of 1,000-
fold faster than hemoglobin encapsulated in the RBCs (16).
Moreover, hemolysis leads to the release of the arginase contained
in erythrocytes into the plasma. The free arginase hydrolyzes
arginine, which is the precursor to NO, to ornithine and urea,
thereby exacerbating the decrease in NO bioavailability (11).
Indeed, any decrease in NO bioactivity/bioavailability would
result in vascular dysfunction.

Blood flow responses to sodium nitroprusside (a NO donor)
or to L-NMMA (a NO-synthase inhibitor) are abolished in
patients with SCD (17). Flow-mediated dilation response using
nitroglycerin (a NO donor) is impaired in patients with SCD,
compared to a control group (18). Belhassen et al. (19) reported
increased diameter in the brachial artery at baseline in SCD
patients, compared to a control group, but the vessel was not
able to further dilate in response to a flow-mediated dilation
procedure. At the microcirculatory level, Moeckesch et al. (20)
reported decreased hyperemic response to skin heating localized
stress in children with SCD, compared to healthy children,
suggesting impaired microcirculatory NO-driven vasodilation in
the former population.

The decrease in NO bioavailability could also be responsible
for the enhanced platelet activation (13) observed in SCD
patients, as documented by increased expression of platelet
activation markers, such as P-selectin, CD63, activated
glycoprotein IIb/IIIa, plasma soluble factor-3 and factor-4,
β-thromboglobulin, and platelet-derived soluble CD40 ligand
(21, 22). Such abnormal platelet activation has been associated
with thrombosis and pulmonary hypertension, a clinical
manifestation of endothelial dysfunction, in SCD patients (23).
Kato et al. (24) also reported positive associations between the
level of plasma soluble adhesion molecules and the severity of
pulmonary hypertension.

On the whole, these studies strongly support a key role of
hemolysis on endothelial/vascular dysfunction through its effects
on NO bioactivity/availability.

Hemolysis, Oxidative Stress, and
Inflammation
The accumulation of extracellular hemoglobin and heme in
SCD, which cannot be fully neutralized by haptoglobin and
hemopexin, respectively (14), is a major source of oxidative
stress. Hemoglobin may react with hydrogen peroxide through
the Fenton reaction to form hydroxyl free radical and
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methemoglobin. The rate of autooxidation of Hb is greatly
enhanced when released into the plasma, where it is partially
oxygenated, and more particularly when the Hb tetramer
dissociates into dimers (25). In addition, the repeated episodes
of ischemia-reperfusion, such as those that occur during vaso-
occlusive crises, induce the release of plasma xanthine oxidase
(XO) (26). The released XO can impair vascular function by
binding to the luminal cells of the vessel. This oxidative milieu
results in exacerbated NO scavenging via an oxygen free radical-
dependent mechanism, and further affects the vascular system.
Mockesch et al. (20) recently showed that the impairment of
microvascular regulation in children with SCD was significantly
associated with both nitrotyrosine and markers of systemic
oxidative stress, confirming the important roles of oxidative
stress and NO scavenging in the development of vascular
dysfunction in SCD.

Excessive production of reactive oxygen species (ROS) leads to
endothelial damage, through peroxidation of the lipid membrane
and/or DNA fragmentation, potentially leading to cellular
apoptosis (27, 28). In addition, ROS play a central role in
promoting vascular inflammation and endothelial activation
through the activation of redox-sensitive transcription factors in
the endothelium, such as NF-κB (29). The increased expression
of several vascular cell adhesion molecules, such as VCAM-
1, ICAM-1, L-, P-, and E-selectins, may then facilitate the
binding of sickle RBCs, platelets and white blood cells (WBCs)
to endothelial cells, which would trigger the onset of vaso-
occlusion (30–32). Marui et al. (30) demonstrated that the use
of pyrrolidine dithiocarbamate (an antioxidant) on cultured
endothelial cells (HUVEC) was able to decrease the expression
of VCAM-1 induced by IL-1β. There is clearly an interplay
between oxidative stress and inflammation, which participates in
the pathogenesis of SCD (33). Additionally, Belcher et al. (34)
demonstrated that the administration of dimethyl fumarate (a
drug activating Nrf2 expression and increasing the transcription
and expression of several genes involved in antioxidant defenses)
for several days in sickle cell mice decreased the hepatic
expression of TLR4, NF-κB activation, VCAM-1, ICAM-1 and
E-selectin mRNA levels, and hepatic necrosis.

Seminal work from Wagener et al. (35) showed that in vitro
incubation of endothelial cells with heme led to a rise in adhesion
molecule expression. Furthermore, the same group (36) reported
that injection of heme in mice increased vascular permeability,
adhesion molecule expression and leucocyte extravasation.
Another group reported that incubation of endothelial cells with
hemin (i.e., heme oxidized in its ferric form) increased the
production of IL-8 (37). Although most of these inflammatory
effects could be partly driven by the resulting enhanced oxidative
stress caused by heme accumulation, heme would also directly
activate the immune innate system (38).

Ghosh et al. (39) showed that hemin administration in sickle
mice enhanced intravascular hemolysis, which further increased
the amount of extracellular hemin, caused lung injuries typical of
acute chest syndrome and decreased their survival rate. However,
TLR4 inhibition (by the use of TAK-242) and hemopexin
replacement therapy, prior to hemin infusion, protected sickle
mice from developing acute chest syndrome. Chimeric sickle

cell mice, knocked out for TLR4, did not develop extensive
lung injury and were able to survive after infusion of hemin.
Belcher et al. (40) investigated the role of heme in SCD vaso-
occlusion and showed that administration of heme to SCD mice
caused increased endothelial P-selectin and vWF expression,
enhanced leucocyte rolling and adhesion and blood flow stasis.
When treated with TAK-242 (an inhibitor of TLR4), blood stasis,
leucocyte rolling and adhesion were decreased in mice injected
with heme.

Adisa et al. (41) reported an association between plasma
free heme concentration and the incidence of vaso-occlusive
crises, in children with SCD. More recently, Pitanga et al. (42)
reported a 4-fold higher level of circulating IL-1β in SCD patients
at steady state, compared to healthy individuals. The authors
also observed higher mRNA expressions of NLRP3 and IL-
1β in the peripheral blood mononuclear cells (PBMC) of SCD
patients, suggesting the activation of the NLRP3 inflammasome.
Subsequently, they showed that incubation of PBMC with
sickle RBCs induced higher mRNA expression of the genes
encoding IL-1β, leukotriene, TLR9, NLRP3, caspase 1, and
IL-18 in the supernatant, as compared to PBMC that were
incubated with healthy RBCs. The authors did not look for the
RBC element/molecule that could trigger the activation of the
inflammasome and one could suggest that RBCs may contain
several molecules that can act as eDAMPs. Hemolysis-related
products are now considered as important eDAMPs that could
trigger inflammasome activation in the context of SCD and
participate in the pathophysiology of several complications (15,
43). Collectively, these findings suggest that hemolysis-related
products could play amajor role in the pathophysiology of several
complications in SCD, through their binding to TLR4 and the
activation of NF-κB and NLRP3 pathways and the enhanced
production of pro-inflammatory cytokines, such as IL1β and IL18
(15). Other potent eDAMPs that may be released by RBCs during
hemolysis include heat shock proteins (Hsp), such as Hsp70,
IL-33, and adenosine 5′ triphosphate (43).

Hemolysis, Neutrophil Extracellular Traps
(NETs), and Inflammation
Heme/hemin have also been shown to activate neutrophils (44)
and promote the release of NETs in SCD (45). Schimmel et al.
(46) reported higher nucleosome levels in SCD patients at steady
state, compared to healthy individuals, with a further increase
during crisis. In addition, the authors reported a correlation
between the levels of nucleosomes and the length of hospital stay
in patients developing acute chest syndrome. NETs are composed
of decondensed chromatin fibers coated with antimicrobial
granular and cytoplasmic proteins, such as myeloperoxidase
(MPO), neutrophil elastase, and alpha defensin. These NETs are
able to promote endothelial activation, thus increasing VCAM-
1 and ICAM-1 expression (47). It has also been suggested that
NETs could promote vessel occlusion by providing a scaffold
for platelets, RBCs and pro-coagulant molecules (48). Recent
studies also demonstrated that NETs induced the activation of
the NLRP3 inflammasome in macrophages through TLR4/TLR9
signaling pathways, leading to higher production of IL-1β in the

Frontiers in Immunology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 45424

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nader et al. Sickle Cell Disease and Inflammation

context of diabetes and atherosclerosis (49, 50). Indeed, one may
suspect a role of NETs in SCD pathogenesis through an activation
of the immune innate system (15).

Hemolysis and the Alternative
Complement Pathway
Hemolysis activates the alternative complement pathway. In
atypical uremic hemolytic syndrome, heme has been shown to
activate the complement system in plasma and on endothelial
cells (51). Heme-induced exocytosis of Weibel-Palade bodies
from endothelial cells induces the expression of P-selectin, which
is known to bind C3b and trigger complement activation (51). In
addition, heme can trigger the release of C5a and C5b9, leading
to the activation and permeabilization of endothelial cells (51).
The attachment of membrane attack complexes to the endothelial
cells may promote inflammation through NF-κB signaling (52).

Increased soluble C5b-9 levels have been reported in SCD
patients (53, 54). Vercellotti et al. (55) demonstrated increased
C3 activation fragments and C5b-9 in the kidneys, lungs
and liver of sickle cell mice, compared to control mice, and
Lombardi et al. (56) found increased microvascular deposition
of C5b-9 on skin biopsies in SCD patients. Increased alternative
pathway Bb fragments have also been reported in the plasma
of both sickle cell mice and sickle cell patients (55, 57).
The infusion of recombinant C5a has been shown to cause
blood stasis and inflammation in the liver of sickle cell mice
(through NF-κB activation and increased expression of TLR4
and several adhesion molecules), but this response was reversed
by an anti-C5a receptor IgG (55). The increased externalization
of phosphatidylethanolamine and phosphatidylserine at the
membrane of sickle RBCs is also suspected to induce complement
activation with increased C3 and C3b binding (56, 57). A
very recent work investigated the role of heme on complement
activation in the context of SCD (58). The authors showed
increased C3 and C9 deposition in the kidneys of both
sickle cell mice and SCD patients and demonstrated that C3
fragment deposition was increased in the kidney of normal mice
receiving phenylhydrazine to promote intravascular hemolysis.
The effects of hemin were tested on endothelial cells and it
was shown that heme triggered rapid P-selectin, C3aR and
C5aR expression, C3 and C5b9 deposition, and downregulated
CD46, a transmembrane protein able to bind and inactivate
C3b and C4b. The use of hemopexin with hemin reduced
the deposition of C3 and C5b9 on endothelial cells. Merle
et al. (59) demonstrated that P-selectin drives complement
attack on endothelial cells during intravascular hemolysis in
a TLR-4/heme-dependent manner. Altogether, these studies
support a key role for hemolysis in endothelial dysfunction in
SCD with implications for the participation of the alternative
complement pathway.

Hemolysis, Microparticles, Inflammation,
and Oxidative Stress
Circulating extra-cellular vesicles (EV), such as microparticles
(MPs, 0.1–1µm) and exosomes (30–100 nm), are thought to
play a role in the pathogenesis of SCD (60, 61). Several

groups reported a 3- to 4-fold increase of plasma MPs (mainly
originating from platelets and RBCs) in SCD patients at steady-
state compared to healthy individuals (62–66), with a further
rise during vaso-occlusive crises (62, 67, 68). Khalyfa et al.
(69) reported increased levels of circulating exosomes in SCD
patients compared to healthy individuals, with the most severe
patients (i.e., with the highest rate of painful vaso-occlusive
crises) exhibiting the highest levels.

MPs and exosomes carry diverse cargoes including proteins,
RNA species, such as mRNA and miRNA and lipids that
can be transported and exchanged between cells, strongly
suggesting that EV play key roles in cell-cell communication
at both paracrine and systemic levels (61, 70). Not specific to
SCD, these EV may promote inflammation, oxidative stress,
coagulation, and endothelial activation. The high amount of
externalized phosphatidylserine at the surface of most of the
MPs is responsible for their pro-coagulant property while
others express tissue factor (60, 61). Various blood cell-derived
MPs have also been shown to regulate the production of
reactive oxygen species and promote endothelial activation (61,
71). MPs shed by endothelial cells (71), monocytes (72), and
lymphocytes (73) induce endothelial O−

2 and H2O2 production
in cultured endothelial cells through processes involving different
enzymatic systems, and thus may lead to apoptosis (74).
Treatment of endothelial cells with platelet- and endothelial
cell-derived MPs were associated with increased expression
of cell adhesion molecules and monocyte-endothelial cell
interactions (74, 75).

However, only a few studies have investigated the effects
of EV in the context of SCD, and more particularly the
effects of RBC-derived MPs. It seems that the amount of
circulating RBC-derived MPs is directly related to the degree
of hemolysis (64, 76, 77). Several authors reported strong
associations between variousmarkers of hemolysis, such as heme,
lactate dehydrogenase, plasma hemoglobin, serum bilirubin,
reticulocyte count, fetal Hb or hemoglobin concentration, and
RBC-MPs (76, 77). Camus et al. (78, 79) previously demonstrated
that ex-vivo generated sickle RBC-MPs, when infused in sickle
cell mice, promoted kidney vaso-occlusions. The authors further
demonstrated that these RBC-MPs delivered toxic heme to
endothelial cells, which increased the production of reactive
oxygen species and the expression of endothelial cell adhesion
molecules, and promoted apoptosis. Interestingly, heme-loaded
MPs were also shown to activate the alternative and terminal
complement pathway at the surface of the endothelial cells
(58). Khalyfa et al. (69) demonstrated that exosomes isolated
from SCA patients with frequent vaso-occlusive crises, for which
RBC-derived exosomes being the most abundant, decreased
endothelial permeability and promoted P-selectin expression
on cultured endothelial cells. These exosomes also significantly
increased the adhesion of monocytes to the vascular wall in mice,
compared with exosomes isolated from SCA patients with a less
severe phenotype.

Taken together, these findings suggest that the accumulation
of RBC-MPs, consecutive to enhanced hemolysis, in SCD could
cause serious damage to the vascular system and modulate
clinical severity.
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HOW DO SICKLE RBCs REACT TO THIS
PRO-INFLAMMATORY AND
PRO-OXIDATIVE ENVIRONMENT?

Because RBCs are very fragile and prone to lysis, SCD patients
are characterized by chronic anemia.We previously discussed the
consequences of enhanced hemolysis in SCD on the reduction
of NO bioavailability, the increase in oxidative stress and
inflammation, the production of NETs, the activation of the
alternative complement pathway and the release of RBC-derived
MPs, which all lead to endothelial activation and vascular
dysfunction. However, this pro-inflammatory and pro-oxidative
environment may further damage the RBCs, which could further
alter their rheological properties and increase their fragility.

Nitric Oxide and RBCs
The effects of NO on the vascular system have been well-
described in the literature, but NOmay also affect the mechanical
properties of RBCs. One of the first reports suggesting that
NO could affect RBC deformability was the study of Starzyk
et al. (80), which demonstrated that intravenous infusion of L-
NAME (an eNOS inhibitor) in rats caused a reduction in RBC
deformability. Bor-Kucukatay et al. (81) then demonstrated that
several eNOS inhibitors decreased RBC deformability. A recent
work conducted in SCD showed that in vitro incubation of
RBCs with sodium nitroprusside (a NO donor) decreased the
amount of intracellular reactive oxygen species and increased
RBC deformability (82). This study also demonstrated that, in
addition to its effects on HbF production and the reduction of
HbS polymerization, the positive effects of hydroxycarbamide
treatment on SCD RBC deformability could be related to the
increased NO delivery from the drug to sickle RBCs.

It has been suggested that the effect of NO on RBC
deformability could be partially mediated by soluble guanylyl
cyclase (sGC) (83), but studies by Bor-Kucukatay et al. (81) and
Baskurt et al. (84) also support a role for NO in potassium
permeability. In addition, NO could decrease the risk for
hemolysis and increase RBC survival rate through its effects
on eryptosis since NO is able to down-regulate caspase 3
activity through S-nitrosylation (85). More recently, another
group demonstrated that the NO donor, sodium nitroprusside,
inhibited the decrease in RBC deformability induced by
ionophore A23187-mediated calcium influx in RBC (86).
Increased intracellular calcium concentration activates calcium-
sensitive K+ (Gárdos) channels, resulting in potassium-efflux and
decreased cell volume, which in turn increases the stiffness of
RBC; however, the presence of sodium nitroprusside abolished
this calcium-induced impairment in RBC deformability (86).
Barodka et al. (86) suggested that sodium nitroprusside may
have limited calcium influx, thereby inhibiting the activation of
Gárdos channels, and thus, maintaining cell volume and RBC
deformability. However, the effects of NO on RBC rheology
may not be limited only to its effects on RBC deformability.
For instance, Bor-Kucukatay et al. (87) demonstrated that
incubation of RBC with sodium nitroprusside decreased RBC
aggregation, while giving L-NAME to rats resulted in a rise

in their RBC aggregation. The underlying mechanisms at
the origin of these findings are unclear, but might involve
membrane/cytoskeletal protein nitrosylation or oxidative stress
modulation. In conclusion, the reduction of NO bioavailability
in SCD probably plays a role in the modulation of RBC
rheology (82, 88).

Oxidative Stress and RBCs
As previously discussed, oxidative stress is increased in SCD,
both in plasma and RBC (15, 82, 89–92), with a further
rise during painful vaso-occlusive crises (68). Through its
effects on the membrane of RBCs (i.e., lipid peroxidation
and protein oxidation) and caspase 3 activation (93, 94),
oxidative stress is a key modulator of RBC rheological properties.
Moreover, oxidative stress is able to activate Ca2+-permeable
non-selective cation channels in the RBC membrane, leading
to the accumulation of Ca2+ within RBCs, which can trigger
RBC membrane scrambling, resulting in phosphatidylserine
exposure and possibly in membrane bubbling and emission
of MPs (95). In addition, the activation of Ca2+-sensitive K+

channels can lead to K+ exit, hyperpolarization, Cl− exit and cell
shrinkage (95).

Baskurt et al. (96) demonstrated that superoxide anion
caused a decrease in RBC deformability, a slight decrease
in RBC aggregation and a large increase in RBC aggregates
strength, meaning that the RBC aggregates formed are more
robust upon oxidative stress. Depending on the concentration
used, hydrogen peroxide may decrease RBC deformability (high
concentration) or increase RBC adhesion to endothelial cells
(low concentration) (97). Using atomic force microscopy, Sinha
et al. (98) demonstrated the deleterious effects of several
oxidant molecules (hydrogen peroxide, diamide, primaquine
bisphophate, and cumene hydroperoxide) on RBC cytoskeletal
architecture andmembrane stiffness. All these changes may affect
the fragility of RBCs. For instance, McNamee et al. (99) recently
showed that phenazine methosulfate (an agent that generates
superoxide anion within RBCs) decreased RBC deformability
and increased the sensitivity of RBCs to shear-mediated damage.
Hierso et al. (100) compared the biophysical response of
healthy and SCD RBCs to in-vitro oxidative stress, using t-
butyl hydroperoxide (TBHP). TBHP increased the production
of ROS and decreased GSH content within the RBCs of both
SCD and healthy individuals. In addition, the molecule decreased
RBC deformability and RBC aggregation, and increased the
strength of RBC aggregates in the two populations. However,
the magnitude of changes in RBC rheology was 2- to 3-fold
higher in SCD patients than in healthy individuals, indicating
that RBC from SCD patients are more susceptible to oxidative
stress than RBC from healthy individuals. The decrease in
RBC antioxidant defenses in SCD could account for these
differences (100).

Inflammation and RBCs
SCD is characterized by a pro-inflammatory state leading to
high plasma cytokines levels. Karsten et al. (101) recently
showed that 46 cytokines can be detected in RBCs lysates
of healthy individuals, and their median concentrations in
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RBCs were 12-fold higher than in plasma. Among them, the
authors reported the presence of IFN-γ, IL-1β, IL-18, TNF-
α as well as several chemokines, such as IL-8 and RANTES.
The mean IL-1β and IL-18 concentrations in whole blood
were 0.5 and 13.3 pg/ml, respectively, but the concentrations
reached 4.2 and 657.6 pg/ml in RBCs, respectively (after
correction for white blood cell contamination). When incubated
in a protein-free media, the authors demonstrated that RBCs
were able to release TNF-α, RANTES, IL-6, IL-8, and other
molecules. It was also demonstrated that RBCs were able to
capture various recombinant cytokines by using a recombinant
standard cytokine mix. This study concluded that RBCs are
dynamic reservoirs of cytokines, preventing chemokine clearance
and thereby prolonging chemokine half-life in the blood.
One major locus for cytokines binding is the Duffy Antigen
receptor for chemokines (DARC) (102). Instead of acting as
a reservoir, Darbonne et al. (102) proposed that RBCs act
as a sink for IL-8, thereby inactivating the IL-8-dependent
gradient and preventing neutrophil recruitment. DARC may
also capture other chemokines of the CXC and CC families
(103). Lee et al. demonstrated that patients lacking erythroid
DARC expression exhibited higher plasma chemokine levels
following LPS exposure, suggesting that DARC could act as
chemokine scavengers to decrease immune-activating signals
(sink hypothesis). The two models for RBC regulation of
cytokines and chemokines levels could appear contradictory, but
theymay be not mutually exclusive. Fukuma et al. (104) proposed
that RBCs would scavenge chemokines/cytokines from sites of
inflammation, but could eventually release them in response to a
reduction of plasma levels, effectively maintaining homeostasis.
The degree of rupture of this homeostasis is unknown in
SCD, but some studies have investigated the consequences of
various inflammatory molecules on RBC properties. Bester et al.
(105, 106) recently demonstrated that IL-8 affects the shape
of healthy RBCs with morphological changes typical of those
occurring during eryptosis. Circulating extracellular histones
(i.e., a marker of NETosis) have recently been reported to
promote eryptosis in healthy donors, ending with increased RBC
phosphatidylserine externalization and RBC shrinkage (107).
Test et al. (108) demonstrated increased binding of C5-b7 and
of C9 to dense sickle RBCs, increasing the susceptibility of
these cells to C5b-9-mediated reactive lysis initiated by C5b6.
George et al. (109) tested the effects of transforming growth
factor β1 and endothelin-1 (two cytokines known to be elevated
in the context of SCD) on healthy RBCs. They demonstrated
that these two inflammatory molecules stimulated RBC NADPH
oxidase activity, leading to the accumulation of reactive oxygen
species, which are known to damage the membrane of RBCs
and increase their rigidity when produced in excess. In addition,
endothelin-1 has been shown to promote dehydration of sickle
RBCs through an activation of the Gárdos Channel, leading
to a rise in RBC density (110). Durpes et al. (111) showed
that the percentage of RBCs with densities higher than 1.12
(i.e., irreversibly sickle dehydrated RBCs) was 17-fold higher
in sickle cell patients expressing DARC, compared to Duffy-
negative patients. Since chemokines and cytokines would be
able to bind to DARC, these results suggest a link between

inflammation and sickle RBC dehydration. Furthermore, the
authors demonstrated that both IL-8 and RANTES promoted
dehydration in sickle RBC expressing DARC, through an
activation of the Gárdos pathway. The same group (112) reported
an effect of these two chemokines on the activation of α4β1
integrin in sickle reticulocytes expressing DARC, resulting in
a greater adhesion of sickle RBCs to immobilized VCAM-
1 and fibronectin. These findings could partly explain why
Drasar et al. (113) reported that SCD patients with RBCs
expressing DARC could be more prone to developing leg
ulcers and kidney disease than Duffy-negative SCD patients,
although this association between Duffy phenotype and SCD
clinical severity is still debated (114, 115). Nebor et al. (116)
failed to find an association between Duffy phenotype and the
clinical severity in a large cohort of SCD patients, but they
reported higher plasma IL-8 and RANTES levels in Duffy-
positive vs. Duffy-negative patients, suggesting that RBCs can
clearly modulate the level of inflammation in SCD. Although the
exact mechanisms by which RBCs can modulate inflammation
in SCD are not fully understood, these findings support the
fact that pro-inflammatory molecules may promote sickle RBC
dehydration and increase RBC density/rigidity through increased
Gárdos channel activity, as well as increase RBC adhesiveness to
endothelial cells through α4β1 clustering.

IMPAIRED RBC RHEOLOGY IS INVOLVED
IN THE PATHOPHYSIOLOGY OF SCD

As previously discussed, enhanced hemolysis, due to the
decreased deformability and increased fragility of sickle RBC,
disturbs NO metabolism and promotes oxidative stress and
inflammation through various mechanisms. In turn, this pro-
inflammatory and pro-oxidative environment may further
impair the rheological properties of RBCs and increase their
fragility, further impacting on the clinical expression of the
disease. For instance, SCD patients with the lowest RBC
deformability have been reported to be at higher risk of
developing priapism, leg ulcers and glomerulopathy than those
with the highest RBC deformability (117–119). There is a
clear relationship between RBC deformability, RBC fragility
and the extent of hemolysis in SCD (120). Patients with the
lowest deformability have higher hemolytic rates, which may
increase their risk of developing hemolytic-like complications,
such as those cited above (14, 121, 122). Moreover, abnormal
RBC aggregation properties may also play a role in SCD
pathogenesis and are modulated by both oxidative stress and
inflammation. Lamarre et al. (123) found an association between
increased RBC aggregation strength and the occurrence of acute
chest syndrome. More recently, Lapouméroulie et al. (124)
observed a rise of RBC aggregation and of the robustness
of RBC aggregates in SCD patients during vaso-occlusive
crisis compared to the steady-state condition. Abnormal RBC
aggregation may both disturb blood flow in the microcirculation
and microcirculation (125). In the microcirculation, increased
RBC aggregate strength may increase vascular resistance and
decrease blood flow at the entry of capillaries (88). In the
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macrocirculation, the different hemodynamic re-arrangements
between flowing RBC aggregates and single flowing RBCs
create a situation where the width of the cell free layer
close to the vascular wall is larger when RBC aggregates

are flowing, leading to a decrease in wall shear stress,
and reductions in eNOS activation and NO production,
thus impacting on the ability of the vessels to adapt their
diameters (125–127).

FIGURE 1 | The red blood cell—inflammation vicious circle in sickle cell disease. From RBC alterations to oxidative stress, inflammation and endothelial dysfunction:

Sickled RBC are very fragile and prone to hemolyze. Hemolysis leads to the release of heme, iron, Hb and arginase into the plasma, which interfere with the

metabolism/bioavailability of NO: (I) free arginase may hydrolyze the NO precursor Arginine; (II) free Hb scavenges NO at a rate of 1,000-fold faster than Hb

encapsulated in the RBCs; (III) heme and iron increase ROS generation, which lead to the production of peroxynitrite. ROS production is also enhanced by Xanthine

Oxidase activation, caused by the repetition of ischemic/reperfusion events. Decreased NO bioavailability and increased ROS activate endothelial cells, which in turn

express adhesion molecules of both the CAM and Selectin families, promoting cell-cell interactions. Free heme is able to activate endothelial TLR4, which promotes

inflammasome activation and cytokines production through NF-κB activation. Heme may also activate neutrophils, which would release NETs that can also affect

endothelial cells and act as a scaffold for platelets and RBCs. Recent evidence also showed that free heme could stimulate the complement pathway with potential

consequences at the endothelial cell level. From inflammation and oxidative stress to RBC alterations: This pro-inflammatory and pro-oxidative environment, resulting

from sickle RBCs alterations, also impacts on RBC rheology and physiology. Increased ROS production may lower RBC deformability and increase RBC aggregation.

Decreased NO bioavailability could also participate in the decrease of RBC deformability and promote eryptosis. NETs could also promote RBC eryptosis. Circulating

inflammatory molecules, such as ET-1 and TGF-β, may activate RBC NADPH Oxidase, which in turn would produce ROS and further alter RBC. ROS and ET-1 are

known to activate the RBC Gárdos channel, which could favor RBC dehydration and further promote HbS polymerization. The enhanced release of MP by sickled

RBCs could further exacerbate inflammation and oxidative stress. Increased RBC phosphatidylserine exposure may favor the binding of complement proteins at the

surface of RBCs, which can induce their lysis. RBCs also act as a reservoir and/or a sink for pro-inflammatory cytokines/chemokines. IL-8, TNF-α, and RANTES

promote RBC dehydration through Gárdos channel activation in RBCs expressing DARC. IL-8 and RANTES can also lead to the activation of α4β1 integrin in sickle

reticulocytes expressing DARC, contributing to the adhesion of these cells to the endothelium.
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CONCLUSION

While SCD is the first disease for which the molecular basis
has been identified (128), the pathophysiology of this disorder
remains not fully understood despite decades of extensive
studies dedicated to decipher these complex mechanisms.
While the consequences of the polymerization of abnormal
hemoglobin S were originally described to result in RBC
deformability impairment and increased fragility, a large number
of abnormalities have been described more recently, such
as: the consequences of enhanced hemolysis on decreased
NO bioactivity/bioavailability, the consequences of hemolysis
and other factors on oxidative stress, the activation of
inflammation, the release of NETosis products into the blood,
the activation of the alternative complement pathway and
the production of deleterious extracellular vesicles. All these
biological abnormalities modulate and reflect the clinical severity
of the patients. But, during the last years, accumulating evidence
shows that each of these abnormalities impacts on RBC
physiology and biophysical behavior: NO modulates directly
the rheology of RBCs, increased oxidative stress may cause

damage to the RBC membrane, accumulation of cytokines in the
RBCs may further promote their dehydration and increase their
adhesiveness to the vascular wall, accumulation of NETs could
participate in hetero-cellular aggregation and accumulation of
fragments of the alternative complement pathway may fragilize
RBCs. Indeed, one may assume that these recent data suggest a
new vicious circle in SCD, starting with impaired RBC rheology
and increased RBC fragility and ending with further impairment
of RBC, which would further worsen the clinical condition
of SCD patients (Figure 1). As our understanding of the
complex pathophysiological scheme of SCD has clearly improved
during the last decade, further studies are warranted to better
describe the relationships between the various abnormalities
associated with the most frequently encountered genetic
disease worldwide.
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Autoimmune hemolytic anemias mediated by cold agglutinins can be divided into

cold agglutinin disease (CAD), which is a well-defined clinicopathologic entity and a

clonal lymphoproliferative disorder, and secondary cold agglutinin syndrome (CAS),

in which a similar picture of cold-hemolytic anemia occurs secondary to another

distinct clinical disease. Thus, the pathogenesis in CAD is quite different from that of

polyclonal autoimmune diseases such as warm-antibody AIHA. In both CAD and CAS,

hemolysis is mediated by the classical complement pathway and therefore can result

in generation of anaphylotoxins, such as complement split product 3a (C3a) and, to

some extent, C5a. On the other hand, infection and inflammation can act as triggers

and drivers of hemolysis, exemplified by exacerbation of CAD in situations with acute

phase reaction and the role of specific infections (particularly Mycoplasma pneumoniae

and Epstein-Barr virus) as causes of CAS. In this review, the putative mechanisms

behind these phenomena will be explained along with other recent achievements in the

understanding of pathogenesis in these disorders. Therapeutic approaches have been

directed against the clonal lymphoproliferation in CAD or the underlying disease in CAS.

Currently, novel targeted treatments, in particular complement-directed therapies, are

also being rapidly developed and will be reviewed.

Keywords: autoimmune hemolytic anemia, cold agglutinin disease, lymphoproliferative, complement,

inflammation, therapy

INTRODUCTION

Cold-antibody autoimmune hemolytic anemias (cAIHAs) are mediated by autoantibodies
characterized by a temperature optimum of the antigen-antibody (AgAb) reaction at 0-4oC. These
hemolytic disorders account for∼25–30% of autoimmune hemolytic anemias (AIHAs) (1). Table 1
shows a further classification of cAIHAs (1–7). Cold agglutinins (CAs) are cold-reactive antibodies
that are able to agglutinate red blood cells (RBCs) (8–10). Only CA-mediated AIHAs, i.e., cold
agglutinin disease (CAD) and cold agglutinin syndrome (CAS), will be further addressed in this
review. Although the term CAD, as coined by Schubothe in 1952 (11), originally included both
these concepts, CAD should be distinguished from CAS (2, 3).

According to the recent international AIHA consensus document (3), CAD is defined as
“an AIHA characterized by a monospecific direct antiglobulin test (DAT) strongly positive for
complement fragment C3d and a cold agglutinin (CA) titer of 64 or higher at 4◦C (3, 12–14).
DAT for IgG is usually negative, but can be weakly positive in up to 20% of the patients (15, 16).
There may be occasional cases with CA titer < 64 (3, 16).” By definition, “patients may have a
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TABLE 1 | Cold-antibody mediated autoimmune hemolytic anemias.

Entity Etiology Autoantibody

properties

Ig

class

Complement activation Predominant type

of hemolysis

Incidence

Cold agglutinin

disease (CAD)

Primary (low-grade LPD) Cold agglutinins, anti-I

(rarely anti-Pr or anti-IH)

IgM Classical pathway ++,

terminal pathway (+)

Extravascular Uncommon, mainly

elderly people

Cold agglutinin

syndrome (CAS)

Secondary (Mycoplasma,

EBV; aggressive lymphoma)

Cold agglutinins, anti-I

or anti-i (rarely anti-IH?)

IgM or

IgG

Classical pathway ++,

terminal pathway (+)

Extravascular Rare, any age

Paroxysmal cold

hemoglobin-uria

(PCH)

Children: Mostly postviral.

Adults: Tertiary syphilis or

hematologic malignancy.

Non-agglutinating

biphasic Ab, anti-P

IgG Classical pathway +++,

terminal pathway +++

Intravascular Rare in children,

ultra-rare in adults

Ab, antibody; EBV, Epstein-Barr virus; Ig, immunoglobulin; LPD, lymphoproliferative disorder.

Based on data from Sokol et al. (1), Berentsen and Tjønnfjord (2), Jäger et al. (3), Barcellini et al. (4), Randen et al. (5), and Shanbhag and Spivak (6).

TABLE 2 | Diagnostic criteria for cold agglutinin disease.

Level Criteria Procedures, comments and

reminders

Required for

diagnosis

Chronic hemolysis As assessed by hemoglobin levels

and biochemical markers of

hemolysis

Polyspecific DAT positive Performed in most laboratories but

insufficient for diagnosis

Monospecific DAT

strongly positive for C3d

DAT is usually negative for IgG, but

occasionally weakly positive

CA titer > 64 at 4oC Blood specimen must be kept at

37-38oC from sampling until

serum/plasma has been removed

from the clot/cells

No overt malignant

disease or relevant

infection

Clinical assessment for malignancy.

Radiology as required. Exclusion of

recent infection with Mycoplasma

or EBV

Confirmatory but

not required for

diagnosis

Monoclonal IgMκ in

serum (or, rarely, IgG or

λ phenotype)

Blood specimen must be kept at

37-38oC from sampling until

serum/plasma has been removed

from the clot/cells

Ratio between κ and λ

positive B-cells > 3.5

(or, rarely, < 0.9)

Flow cytometry in bone marrow

aspirate

‘CA-associated

lymphoproliferative

disorder’ by histology

Bone marrow biopsy

CA, cold agglutinin; DAT, direct antiglobulin test; EBV, Epstein-Barr virus; Ig,

immunoglobulin. Previously published by Berentsen (23), reused under general

permission, slightly modified. Copyright: The American Society of Hematology.

B-cell clonal lymphoproliferative disorder (LPD) detectable in
blood or marrow but no clinical or radiological evidence of
malignancy” (3), and there is evidence that CAD is a clonal
LPD of the bone marrow in most, probably all cases (5, 17–
19). This distinct clinicopathological entity should be called
a disease, not syndrome (3, 20). These patients are obviously
identical with those previously described as having “idiopathic”
or primary CAD (21, 22). Table 2 summarizes the diagnostic
criteria for CAD.

CAS is a similar clinical-hematological syndrome further
defined by “the presence of an associated clinical disease, for

example infection, autoimmune disorder, overt evidence of a
lymphoma (clinical or radiological), or other malignancy” (3,
20). Typical underlying infections are Mycoplasma pneumoniae
pneumonia, Epstein Barr virus (EBV) infection, or, rarely, other
specific infections (2, 24, 25).

IMMUNE PATHOGENESIS IN CAD AND
CAS

Origin of Cold Agglutinins
Like other IgM, CAs are produced by B-cells, predominantly at
the lymphoplasmacytic cell stage (5, 26). However, IgM can also
be produced by a smaller compartment of plasma cells that are
long-lived and not targeted by chemoimmunotherapy (26, 27).
The CA-producing cells are monoclonal in CAD as well as in
CAS secondary to lymphoma, but polyclonal in CAS secondary
to infection (2, 9).

The IGVH4-34 gene, originally named VH4-21, is located on
the q arm of chromosome 14. In CAD, this gene encodes for the
CA IgM heavy chain inmore than 85% (9, 28, 29). In contrast, the
monoclonal IgM heavy chain molecule found in Waldenström
macroglobulinemia (WM) is usually encoded by the IGHV3 gene
(30). Framework region 1 (FR1) of the heavy gene variable region
is essential for recognition of the I antigen (31, 32); however,
the affinity and specificity for I antigen binding also depends on
the heavy chain complementarity determining region 3 (CDR3)
and the light chain variable region (29, 33). Recent data suggest
that “subtle differences in light chain multiple binding sequences
may contribute to differences in thermal amplitude and clinical
phenotype” (29).

The first cytogenetic change observed in CAD was complete
or partial trisomy 3 (34). A recent study found trisomy 3 (+3 or
+3q) in all of 12 samples from CAD patients who participated
in a clinical trial. Nine of these had an additional trisomy 12
or 18, but never both (19). Malecka et al. also found that
the Ig light chain gene IGKV3-20 and, to lesser extent, the
similar IGHV3-15 gene are used in most patients (74%) and
might contribute to the I antigen binding. The IGKV3-20 CDR3
region is highly homologous in a subgroup of patients and
correlated with younger age at diagnosis (29). This finding is
consistent with specific antigen selection in this group of patients.
Table 3 summarizes the heavy and light chain gene usage. Next
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generation sequencing together with flow cytometry-assisted cell
sorting of bone marrow from 16 patients enabled Malecka and
coworkers to identify recurrent mutations of KMT2D (69%)
and CARD11 (31%) (36, 37). In diffuse large B-cell lymphoma,
CARD11 mutations have been shown to induce constitutive
activation of the NF-κB pathway (29, 38).

Evidence of a clonal lymphoproliferative disorder (LPD) of
the bone marrow has been recognized for decades (21). This
LPD was previously perceived as being heterogeneous and was
classified into several entities of low-grade LPD, frequently
interpreted as lymphoplasmacytic lymphoma (LPL) or marginal
zone lymphoma (MZL) (16, 18, 21, 39). A comprehensive
histopathology study of 54 patients with CAD, however, showed
a surprisingly homogenous type of lymphoid infiltration that has
been termed “CAD-associated LPD” (5, 40).

The lymphoid infiltration usually consists of nodular B-
cell aggregates, but some biopsies show only scattered B-cells
(Figure 1). Involvement can vary between 5 and 80% of the
intertrabecular surface, median 10% (5, 41). Mature plasma
cells are seen surrounding the lymphoid nodular aggregates
and throughout the marrow in between, but only few plasma

TABLE 3 | Immunoglobulin heavy and light chain V gene usage in cold agglutinin

disease and Waldenström macroglobulinemia.

Gene Cold agglutinin

disease

Waldenström macroglobulinemia/

lymphoplasmacytic lymphoma

Heavy chain gene IGHV4-34 (>85%)

(5, 9, 28, 29)

IGHV3 (83%) (IGHV3-23, 24%) (5, 30)

Light chain gene IGKV3-20 (59%)

(29, 35)

Not determined

cells are usually seen within the aggregates. The plasma cells
have the same heavy and light chain restriction as the B-cells,
consistent with a plasmacytoid differentiation of the B-cell clone.
The histological pattern does not display features typically found
in LPL (39), such as fibrosis, paratrabecular location of lymphoid
infiltrates, lymphoplasmacytoid cell morphology, or infiltration
by mast cells (5). The lymphoid infiltration mimics that of
MZL by morphology; the immune phenotype is not distinct,
and some similarities in molecular genetic features have also
been identified (5). However, CAD patients do not have an
extramedullary marginal zone lymphoma, and therefore, bone
marrow involvement of MZL can be ruled out. In summary,
CAD-associated LPD does not display the features of other
indolent B-cell lymphomas types as described by the WHO
classification. Therefore, it should be considered a distinct entity
(5, 14, 39, 40). Development of diffuse large B-cell lymphoma is
uncommon, probably occurring in less than 4% of the patients
during 10 years (18).

Although cold hemagglutination was described in mammals
already in 1903 and a CA was discovered in human serum in
1918 (8, 42), the physiological function of CAs has not been
clarified. It is difficult to envision a functional role of antibodies
with a temperature optimum way below body temperature.
Comparative studies, however, have strongly indicated that
the evolution of the adaptive immune system began with
the jawed vertebrates (43–46). Cartilaginous fish, which are
phylogenetically ancient and considered closely related to the
first jawed vertebrates, have only one immunoglobulin class
in common with humans: IgM (43, 46). The V, D, and J
gene sequences, known to undergo rearrangement during B-
lymphocyte maturation in humans (47), have also been identified
in sharks, however in the form of preformed combinations

FIGURE 1 | CAD-associated lymphoproliferative disorder. (A) shows the nodular infiltration pattern. (B) highlights the resemblance to marginal zone B cell infiltration.

(C) shows the typical flow cytometry finding of a monoclonal κ+ B-cell population (gated on CD19+ B-cells). Courtesy of U. Randen. First published in Clin Adv

Hematol Oncol 2020 by S. Berentsen et al. (41), reused under Creative Commons Attribution Non-Commercial License. Copyright: S. Berentsen, A. Malecka,

U. Randen, and G.E. Tjønnfjord.
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TABLE 4 | Cold agglutinin disease: handling of samples.

Analysis Material Sampling Handling of sample

Hemoglobin, blood cell counts Blood EDTA vacutainer Prewarm at 37–38oC before analysis if problems

with agglutination

Cold agglutinin titer, thermal

amplitude, immunoglobulin

quantification, electrophoresis,

immune fixation

Serum or plasma Blood is drawn into prewarmed

vacutainers (For serum: No gel or

additive). Place in warming cabinet or

water bath at 37-38oC

Keep at 37–38oC until serum/plasma has been

removed from the clot/cells, after which the sample

can be handled at room temperature

Flow cytometry Bone marrow aspirate

(Too low sensitivity if

performed in peripheral

blood)

Add EDTA or heparin Prewarming before analysis will often be sufficient. If

not, wash cells at 37-38oC. For description, see

Ulvestad et al. (9)

EDTA, ethylenediamine-tetraacetic acid.

Table first published in Journal of Blood Medicine 2019 by Berentsen et al. (14), reused under general permission (Creative Commons Attribution Non-Commercial License). Copyright:

Berentsen et al.

located on several chromosomes (43). While the IGHV4-34 gene
is not known to produce any physiologically functional antibody
in man, the temperature optimum of CAs is much closer to
the environmental and body temperature of non-mammal sea
vertebrates. Furthermore, CAs can react with antigens other
than RBC surface macromolecules, and structures closely related
to the I antigen are present on some microorganisms such as
Streptococcus and Listeria species (48, 49). Thus, one might
explain human CAs as remnants of a primitive vertebrate
immune system (45, 46, 50).

Immunological Properties of Cold
Agglutinins
Most CAs have specificity for the Ii blood group system of
carbohydrate antigens (51, 52). The densities of I and i antigens
on the RBC surface are inversely proportional. Only the i
antigen is expressed on neonatal RBCs, whereas the I antigen
predominates from 18 months-age and onwards (51). Hence,
in most subjects but infants, CAs specific for the I antigen
are more pathogenic than those with anti-i specificity (53, 54).
Occasionally, CAs are specific for the RBC surface protein
antigen Pr, and these CAs can be highly pathogenic (54, 55).
Antigen specificities in CAD and CAS are listed in Table 2. CAs
in CAD are usually anti-I specific.

Most CAs in CAD are monoclonal IgMκ (18, 56). Only ∼7%
of the cases show λ light chain restriction, while CA of the IgG
class occurs in less than 5% (18, 57). Monoclonal IgA is even rarer
and may not be identical to the CA but rather a bystander (58–
60). In CAS secondary to aggressive B-cell lymphoma, the light
chain phenotype can be λ as well as κ (61). CAs in infection-
associated CAS are polyclonal (2). These CAs are anti-I specific
IgM in Mycoplasma pneumonia (62, 63) and IgG or IgM with
anti-i specificity in EBV or cytomegalovirus infection (25, 64–66).
In CAS following infection with EBV, a rheumatoid factor-like
IgM-IgG complex has been reported to act as a CA in single
case (66).

The activity of a CA is usually assessed by the titer, measured
at 4oC and defined as the inverse of the maximum serum dilution
at which agglutination can be seen. Nearly all patients with CAD
have a CA titer > 64; we found a median titer of 512 (range,
16–819200) (3, 13, 18, 67). A titer as high as 168 million has

been reported (68). In older publications, titers tended to be
higher than reported in more recent literature (9, 11, 18, 21,
69), probably because of an underestimation in clinical practice
and some recent studies. Titration can be time-consuming, and
some laboratories discontinue the serial dilution when a clearly
pathological titer has been reached.

The thermal amplitude (TA) is defined as the highest
temperature at which the CA will react with the antigen (9,
70). The pathogenicity of CA depends on the TA more than
on the titer (70, 71). If the TA exceeds 28-30oC, RBCs will
agglutinate in the cooler parts of the circulation even at mild
ambient temperatures, often followed by complement activation
and hemolysis. In some patients, the TA can approach 37oC (53).

For CA detection, serum protein electrophoresis, and
assessments of CA titer, TA and IgM levels, samples must be
obtained and handled as indicated in Table 4 (10, 13). Detectable
CA is present in serum in a proportion of the adult population
without any hemolysis or clinical symptoms, although reported
percentages are highly variable (53, 72). These individuals do not
have CAD or CAS. The normally occurring CAs are present in
low titers, in most cases below 64 and nearly always below 256,
have low TA, and are polyclonal (53). In contrast, significant
CA activity was found in 8.5% of 172 consecutive individuals
with a monoclonal IgM (69). Titers were between 512 and
65,500, and all individuals with detectable CA had hemolysis.
Therefore, monoclonal CA are generally more pathogenic than
polyclonal CA.

The ability of CAs to agglutinate RBCs after binding to the cell
surface (Figure 2) can be attributed to the pentameric structure
and large molecule size of IgM (8, 11, 41). Agglutination-
mediated, cold-induced ischemic symptoms from the acral
capillary circulation have been reported in 40–90% of patients
with CAD. Severity can range from slight acrocyanosis to
disabling Raynaud phenomena and, in rare cases, even gangrene
(16, 18). Atypical circulatory features include dermatologic
manifestations, sometimes described as livedo reticularis and
sometimes as livedo racemosa (73–75). On rewarming in the
central circulation, CA detaches from the cells and the aggregates
disintegrate. Complement protein complex C1, which has bound
to the AgAb complex before the CA detaches, remains cell-bound
and complement activation ensues.

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 59036

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Berentsen Cold Agglutinin-Mediated AIHA

FIGURE 2 | Blood smear in a patient with CAD. Agglutination of erythrocytes

dominates the picture. Courtesy of G.E. Tjønnfjord. First published in Clin Adv

Hematol Oncol 2020 by S. Berentsen et al. (41), reused under Creative

Commons Attribution Non-Commercial License. Copyright: S. Berentsen, A.

Malecka, U. Randen, and G.E. Tjønnfjord.

CAs should be distinguished from cryoglobulins (76). Rarely,
however, cold-reactive immunoglobulins have been described
that exhibited both CA and cryoglobulin properties (68, 76, 77).
The Ii antigen system is also present on granulocytes, monocytes,
lymphocytes, and thrombocytes (78–80). While aggregation of
neutrophils has been observed in rare cases (78, 81), patients
with CAD are not known to have an increased frequency of
thrombocytopenia (9).

Complement Activation and Hemolysis
Antigen-bound IgM is a potent complement activator (82–
84). Following cold-induced binding of CA to the RBCs
during passage through the acral parts of the circulation, the
AgAb complex induces fixation of complement protein C1q
and, thereby, complement activation by the classical pathway
(Figure 3) (84–88). C1 esterase activates C4 and C2, thus
generating C3 convertase which results in the formation of C3a,
a soluble anaphylotoxin, and C3b, an opsonin with enzymatic
activity (84, 89). On rewarming to 37◦C in the central circulation
and detachment of CA, C3b remains bound and C3b-opsonized
RBCs undergo phagocytosis by the mononuclear phagocytic
system, mainly in the liver (84, 87, 90, 91). This process is
also known as extravascular hemolysis. On the surviving cells,
surface-bound C3b is degraded into its more or less inactive split
products iC3b, C3c, and C3d.

Complement activation may proceed beyond the C3b
formation step by binding of the C4bC2a complex to C3b,
thus generating C5 convertase (89, 92). This enzyme initiates
the terminal complement cascade by cleaving C5 into C5a, a
potent anaphylotoxin, and C5b, which remains cell-bound. C5b
is able to bind C6, C7, C8 and C9, resulting in formation of the
membrane attack complex (MAC) and intravascular hemolysis.
Due to inhibition by surface-bound regulatory proteins such
as CD55 and CD59, however, complement activation is often

FIGURE 3 | Classical complement pathway-mediated hemolysis in CAD. Only

relevant steps and components are shown. Black arrows, major pathways.

Gray/dotted arrows, minor pathways. Lightning symbol indicates

anaphylotoxin properties. C1, C2, etc., complement proteins; CA, cold

agglutinin; Ig, immunoglobulin; MAC, membrane attack complex.

not sufficient to produce clinically significant activation of the
terminal complement pathway (73, 87, 93).

The major mechanism of hemolysis in stable disease,
therefore, is the extravascular destruction of C3b-coated
erythrocytes by the mononuclear phagocytic system. In severe
disease and acute exacerbation, however, there can be a
substantial component of intravascular hemolysis, as evidenced
by the occurrence of hemoglobinuria in 15% of the patients (16),
the observation of hemosiderinuria (76), and the modest but
significant effect of treatment with eculizumab (73).

IgG is a weaker complement activator than IgM (82, 83), and
the rare cases of IgG mediated CAD behave differently from IgM
mediated disease in terms of effect of therapy (57). Among the
IgG subclasses, IgG3 activates complement more efficiently than
does IgG1, whereas IgG2 is a still weaker activator and IgG4 does
not trigger the complement system (94). Thus, themechanisms of
hemolysis may be different in IgG mediated disease as compared
with typical IgM mediated CAD.

In a retrospective cohort of patients with CAD, we found
a median hemoglobin level (Hb) of 9.2 g/dL (range, 4.5–15.3
g/dL) (18). Hemolytic anemia was slight (or sometimes even
compensated) in 36% of the patients (Hb > 10.0 g/dL), moderate
(Hb 8.0–10.0 g/dL) in 37%, and severe (Hb < 8.0 g/dL) in 27%.
Severity of anemia correlated with markers of hemolysis, but
not with IgM levels, which may be associated with complement-
independent RBC agglutinating activity as well (Figure 4).

Direct Antiglobulin Test
DAT detects immunoglobulin and/or complement components
on the RBC surface (3, 95). When markers of hemolysis (lactate
dehydrogenase, haptoglobin, bilirubin, and absolute reticulocyte
count) show that an anemia is hemolytic, DAT is performed to
demonstrate autoimmune pathogenesis. In many laboratories,
DAT is first done by using a polyspecific antibody reagent. If
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FIGURE 4 | Severity of anemia in cold agglutinin disease (percentages of patients). Severity of anemia correlates nicely with markers of hemolysis (LDH and bilirubin

levels), but not with IgM levels, which may be associated with complement-independent RBC agglutinating activity as well as complement-mediated hemolysis. Hb,

hemoglobin level; LDH, lactate dehydrogenase; LLN, lower limit of normal (Hb 11.5 g/dL in women and 12.5 g/dL in men). Based on data from Berentsen et al. (18).

AIHA is confirmed, a monospecific DATmust be performed, i.e.,
by using antibodies against specific immunoglobulin classes and
complement proteins. Despite the IgM mediated pathogenesis in
CAD and CAS, monospecific DAT is usually negative for IgM
because the CA detaches from the RBC surface before it can be
identified by DAT (Figure 3). As mentioned above, however, the
classical pathway activation and C3b opsonization of RBCs will
result in a strongly positive DAT for C3 components, in particular
C3d (13, 84). For reasons that are incompletely understood,
monospecific DAT is also weakly positive for IgG in up to 20%
of the patients (16, 18).

COLD-ANTIBODY AIHA AND
INFLAMMATION

Impact of cAIHA on Inflammation
The production of CA by an autonomous B-cell clone explains
why CAD does not seem to be associated with other autoimmune
diseases (9, 18). Still, serum levels of C-reactive protein (CRP)
> 5 mg/L occur in ∼25% of the patients in the absence
of any identifiable infection, consistent with some kind of
proinflammatory state.

Complement activation is closely linked to inflammatory
responses and, often, part of these responses (89, 96–99). It has
been shown that persistent complement activation is associated
with a proinflammatory state in some hemolytic disorders.
Interactions between the complement system, inflammatory
cytokines, and coagulation was investigated in an in vitro model
using inhibition of E. coli-induced complement activation in
human blood (100). The investigators found that complement
activation resulted in increased expression of pro-inflammatory
cytokines and upregulating of tissue factor mRNA levels.

This upregulation, whether induced by E. coli or purified
lipopolysaccharide, was efficiently blocked by C1 inhibition and,
to a lesser extent, by C3 inhibition.

In CAD and CAS, complement activation results in
production of C3a, an anaphylotoxin, and, in cases with terminal
pathway activation, release of the potent anaphylotoxin C5a
(Figure 3) (89, 99). The strong classical pathway activation in
CAD is reflected by low serum levels of C4 because of continuous
consumption; median level was 0.07 g/L in a large descriptive
study (reference range, 0.13–0.32 g/L), and 72% of the patients
had levels below 0.13 g/L (18). To a smaller extent, CAD patients
also tend to have low levels of C1s, C2, C3, and C5 (18, 87). In a
follow-up study of a single patient with CAD, temporarily raised
levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α,
and interferon(INF)-γ were found to be associated with elevated
CRP (101, 102). Other immunoregulatory cytokines may also
be involved, as discussed in the next subsection, “Impact of
inflammation and infection on cAIHA” (103–105).

In polyclonal autoimmune disorders, release of
proinflammatory cytokines have been associated with fatigue,
which is a bothersome symptom in many patients with CAD
(106, 107). Therapeutic classical pathway inhibition in CAD has
been shown to impressively relieve the fatigue, although an effect
on fatigue of improved Hb levels cannot be ruled out (107).

In theory, the cross-talk between the complement system,
inflammatory processes, and the coagulation cascade (100, 108,
109) might result in an increased frequency of thrombosis in
CAD and CAS. Such a risk is definitely present in wAIHA
(110, 111). In CAD, this risk has been clearly documented in
the most severely affected patients (73), and recent registry-based
studies have found a slightly increased frequency of thrombosis
in unselected CAD cohorts as well (112, 113). According to
one AIHA study, leukocytes influenced the risk of thrombosis
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(111), and the tissue factor expression by granulocytes has
been implicated as one of the links between inflammation and
thrombosis (114). The role of this interaction is more unclear in
CAD, however, due to the different immune pathogenesis and
because CAD patients usually do not have elevated leukocyte
counts (9).

Impact of Inflammation and Infection on
cAIHA
Exacerbation of hemolytic anemia during febrile illness in
a patient with CAD was described in 1999 as “paradoxical
hemolysis” (115). Subsequently, descriptive studies showed that
this occurs in 40–70% of the patients (18), and exacerbations
have also been described after major trauma or major surgery
(101, 116). The phenomenon is best explained by the low
levels of classical pathway components, in particular C4,
caused by continuous consumption in steady-state patients as
already discussed. Probably, C4 activation is rate-limiting for

complement-mediated hemolysis because of these low levels.
When an acute phase reaction occurs, increased amounts of
complement proteins are produced, and exacerbation will ensue.
This causal relationship has been documented in a single
patient (101). Direct complement activation, for example by
microbial agents, may also contribute to the exacerbation in
some situations.

In a mouse model of systemic autoimmunity with AIHA as a
major component, elimination of the proinflammatory cytokine
INF-γ was found to delay AIHA development (102). Moreover,
a role of several immunoregulatory cytokines (IL-1α, IL-2, IL-
6, IL-10, IL-12, IL-13, IL-17, IL-21, INF-γ, and tumor growth
factor(TGF)-β) has been found or implicated in wAIHA (103–
105). However, the relevance for CAD of these observations is
unclear because of its distinct immune pathogenesis.

In infection-associated CAS, the causal relationship between
infection and complement mediated hemolytic anemia is
different. In Mycoplasma pneumoniae pneumonia, IgM-CA is
produced by polyclonal lymphoplasmacytoid cells, probably as
part of the physiological immune response (62, 63, 117). In
fact, a qualitative test for CA was used as a diagnostic test
for Mycoplasma infection before specific serology was clinically
available, but its usefulness was limited because of low specificity
and sensitivity (2). Most of these CAs do not cause hemolysis,
but occasionally, profound hemolytic anemia can occur because
of high-titer, anti-I specific CAs (62, 63). The temporal course
of the disease manifestations is consistent with this explanation,
as any hemolytic anemia usually appears rather suddenly in
the second week of Mycoplasma infection and is self-remitting,
usually within 4–6 weeks (2, 63).

TREATMENT OF CAD

General Considerations
Non-pharmacological management consists of thermal
protection, in particular of exposed parts of the body
(3, 7, 11, 118). Some patients even have to avoid cold food
and beverages and should not take food from the fridge or
freezer without wearing gloves. In my experience, many patients

have discovered these precautions before they see the specialist.
However, they often need to be explained that these are measures
against the hemolytic anemia, not only against the ischemic
symptoms. It is equally important for hematologists to provide
health care personnel with relevant instructions. In the ward or
outpatient department, patients with CAD should keep warm
and avoid cold infusions (10, 11, 119). Any bacterial infection
should be treated (10, 14, 101). Transfusion, when indicated,
can be considered safe. As opposed to wAIHA, in which it
is impossible to find compatible donor blood in most cases,
compatibility problems are usually not encountered in CAD
(2, 118). The patient, including the extremity used for transfusion
should be kept warm, however, and most literature recommends
the use of an in-line blood warmer (3, 7, 119). Disregarding these
precautions has resulted in acute exacerbation, and fatal outcome
has been reported (120). Because low complement protein levels
are rate-limiting for hemolysis, transfusion of blood products
with a high plasma content should probably be avoided (101).

In critical situations where it is not feasible to wait for
the effect of specific therapy (see below), plasmapheresis is
an option for “first-aid” (121–124). The theoretical rationale
for this procedure is strong because virtually all IgM is
located intravascularly (124), but no prospective study has
been published and some conflicting data do exist (122, 125).
Recommendations have been to exchange 1–1.5 times the plasma
volume with albumin, not plasma, daily or every second day
(7, 123). The effect is short-lived and drug therapy should be
initiated concomitantly (7, 10).

According to small retrospective series and case reports,
splenectomy has failed to induce remission of CAD (11, 18, 118).
This is not surprising, as the extravascular hemolysis mainly
takes place in the liver (91). Even though exceptions may exist
among the rare patients with CA of the IgG class or with a TA
approaching 37oC (57, 118), splenectomy should not be used to
treat CAD.

The occurrence of CA in subjects who undergo surgery
in hypothermia and/or cardiopulmonary bypass remains a
challenge. Diverging recommendations exist regarding routine
screening for CA in all patients scheduled for such surgery. The
frequency of positive findings is low and the consequences of
incidentally detected CA not associated with clinical disease have
not been clarified (72, 126). Therefore, the cost-effectiveness of
such screening is probably low. In patients with CAD, however,
a TA measurement and an assessment by a hematologist should
be obtained before cardiac surgery, which should be performed
under normothermia (116, 126).

Pharmacological therapy for CAD is not indicated in patients
with mild anemia or compensated hemolysis in the absence
of troublesome clinical symptoms (3, 7, 10). Still, “real life”
studies have found that 70–80% of patients have been treated (16,
18). Unlike in wAIHA, therapy with corticosteroids and other
unspecific immunosuppression is generally ineffective in CAD
(3, 10). Already 30–60 years ago, Schubothe (11) and Nydegger
et al. (119) reported the poor efficacy of corticosteroids. Dacie
followed 38 patients with “idiopathic” CAD and noticed that only
occasional patients had responded to steroids (118). We found
a response rate <20% in a retrospective series of 86 patients
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(18), although some retrospective studies have found a slightly
higher percentage of responders (4, 16). Furthermore, in the few
patients who do respond, unacceptably high maintenance doses
are often required for sustained response (3, 18, 118). Therapy
directed against the pathogenic B-cell clone, or, more recently,
complement modulation is more likely to succeed (3, 7, 10).

B-Cell Directed Therapies
Not all B-cell directed treatments have been successful. A
small study of chlorambucil therapy found some effect on IgM
concentrations and markers of hemolysis, but no significant
increase in Hb levels (127). Although IFN-α is not a specific
B-cell targeting agent, it has demonstrated favorable activity
in a variety of indolent B-cell LPDs (128, 129). However,
two small series of IFN-α therapy in CAD showed conflicting
results (130, 131). Cladribine monotherapy was found to be
ineffective (132). Approximately 25% of patients seem to respond
to cyclophosphamide monotherapy.

The first therapy shown to give acceptable response rates
was rituximab monotherapy. Two prospective, nonrandomized
studies using rituximab 375 mg/m2 for four cycles at 1 week
interval found partial response (PR) in ∼50% of the patients,
but complete response (CR) was rare (133, 134). Median
response duration was 11 months (range, 2-42 months), and
six of 10 retreated patients achieved a second response (133).
The treatment was well tolerated. Other authors have reported
responses in up to 100% of the patients, but the highest
response rates estimated in the literature have been shown to
reflect selection and publication bias as well as non-defined or
heterogeneous response criteria (135). Although not approved
for this indication by EMA or FDA and not available in all
countries, rituximabmonotherapy has become themost accepted
first-line therapy for CAD (3, 7).

Addition of fludarabine was studied in a prospective,
nonrandomized trial of 29 patients (136). This regimen
(rituximab 375 mg/m2 day 1 and fludarabine orally, 40 mg/m2

days 1-4 for four cycles at 28 days interval) yielded an overall
response rate of 76% (21% CR and 55% PR). Median estimated
response duration was 66 months. Grade 4 neutropenia occurred
in 14% of the patients, but as much as 59% experienced infection
grade 1–3 (136). Based on the use of fludarabine in other
indications, there are also some concerns about possible long-
term toxicities (137).

Rituximab plus bendamustine combination therapy was
prospectively studied in a non-randomized, multicenter trial in
which we treated 45 CAD patients with rituximab 375mg/m2 day
1 and bendamustine 90 mg/m2 day 1 and 2 for four cycles at 28
days interval (138). This trial had the same inclusion criteria and
response definitions as used in the rituximab-fludarabine trial,
and the baseline characteristics were almost identical. Thirty-two
participants (71%) achieved a response; CR in 18 patients (40%)
and PR in 14 (31%). Among 14 patients who had previously
received rituximab or fludarabine plus rituximab, response to
bendamustine plus rituximab was observed in 7 (50%). Hb
levels increased by median 4.4 g/dL in those who achieved CR
and 3.9 g/dL in the partial responders. More than 90% of the
responders were still in remission after 32 months. Fifty per

cent of the responses occurred within 1.9 months, but up to 7
months’ time to response was seen in some patients. Neutropenia
grade 4 was observed in 9 patients (20%), but only 5 (11%)
experienced infection with or without neutropenia. Most clinical
adverse events were mild and could be attributed to known
non-hematological toxicity of bendamustine.

In a prospective, non-randomized study, 19 patients
received one cycle of bortezomib monotherapy. Six participants
responded; three responses were graded as CR and three as PR
(139). Although these response rates may seem low, the results
constitute a promising “proof of principle,” and higher response
rates might be achieved by extending the duration of treatment
or using bortezomib-based combinations.

In theory, administration of Bruton tyrosine kinase inhibitors
or other novel specific B-cell targeted agents would be attractive
(140). The rationale for this approach is strong, as studies of WM
have showed activity of ibrutinib even inMYD88 L265P negative
cases (141). Our group has successfully treated one CAD patient
with ibrutinib, and a systematic study should be done.

We regard four cycles of bendamustine plus rituximab as an
efficacious and sufficiently safe regimen that may be considered
first-line in relatively fit patients who are severely affected by
CAD (3, 10, 138). Safety should be carefully monitored. For other
patients who require treatment, rituximab monotherapy should
be the first choice (3, 7, 10).

Complement Modulation
A non-randomized prospective trial that included 12 patents
with CAD and one with severe CAS showed some effect of
therapy with the anti-C5 monoclonal antibody, eculizumab
(73). However, although intravascular hemolysis was significantly
inhibited and most patients became transfusion independent,
anemia and quality of life scores did not improve significantly.
As explained above, C3b-opsonization followed by extravascular
hemolysis is the main mechanism of RBC breakdown in steady-
state CAD, terminal pathway activation is limited, and C5 is not
the optimal target of complement modulation. A meaningful
effect has been reported, however, in severely affected patients
(142, 143) and as prophylaxis against exacerbation following
heart surgery (116), consistent with the notion that intravascular
hemolysis may be more prominent in these situations.

Inhibition at the C1 or C3 level would be expected to
work better. Plasma-derived C1 esterase inhibitor (C1-INH) is
approved for the treatment of hereditary angioedema, which is
not a complement-mediated disorder. High doses of C1-INH
were shown to block the complement classical pathway, abrogate
hemolysis and improve anemia in a patient with a severe,
IgM-mediated wAIHA (144), and a similar effect has been
reported in a patient with acute, severe CAS (145). However,
endogenous C1-INH production is not deficient in AIHA, and
further C1-INH therapy would require frequently repeated high
doses. C1-INH, therefore, does not seem attractive as long-term
therapy, and no systematic trial has been published.

Sutimlimab (BIVV009, TNT009) is a humanized monoclonal
inhibitory antibody that targets C1s (146). The murine precursor
of sutimlimab, TNT003, showed ability to efficiently inhibit
complement activation, C3 deposition, and phagocytosis of RBCs
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in vitro in the presence of normal human serum as a source of
complement and patient sera as a source of CA (87). In a phase
1B trial of 10 patients with CAD, weekly intravenous infusions of
sutimlimab increased Hb levels by a median of 1.6 g/dL within
the first week of treatment and by 3.9 g/dL within 6 weeks (146).
According to the results published, “extravascular hemolysis was
abrogated in most patients, bilirubin levels mostly normalized
within 24 h, and all of six previously transfusion-dependent
patients became transfusion-free. Hemolysis recurred after
discontinuation, but re-administration of sutimlimab restored
the remission” (146). Recently, similar favorable results have been
confirmed in a phase 3 trial in transfusion-dependent patients
with CAD (107), and a phase 3 trial in transfusion independent
patients is ongoing (ClinicalTrials.gov, NCT03347422). Adverse
events related to the study drug have not been observed in
these trials. Patients received no antimicrobial prophylaxis, but
were vaccinated against Neisseria meningitidis, Streptococcus
pneumonia, and Haemophilus influenzae (107, 146).

No clinical results have been published in CAD regarding
ANX005, a humanized monoclonal antibody to C1q (147),
and peptide inhibitor of C1 (PIC1), a small molecule that
targets C1q and blocks the activation of associated serine
proteases (148).

Splitting of C3 by C3 convertase is a point of convergence
between all three initial complement pathways and critical for
activation of the terminal pathway (84, 89). Therefore, inhibition
at this level will have the potential to block the entire complement
system and is an attractive option in several complement-
mediated disorders (149). The C3 inhibitor, pegcetacoplan
(APL-2), is a pegylated peptide designed for subcutaneous
administration (150). Clinical phase 2 trials have found efficacy of
pegcetacoplan in paroxysmal nocturnal hemoglobinuria as well
as AIHA (151), and further studies in CAD are warranted. A high
risk of infection with encapsulated bacteria might be suspected as
a consequence of C3 inhibition, but thus far, clinical data have
not supported this concern (150–152). Trial participants were
vaccinated as in the C1 modulation trials.

As discussed above, complement-directed therapies for CAD
are promising. However, these options are still investigational
and will encounter some limitations. First, ischemic symptoms
are not complement-mediated and will not be relieved. Second,
in contrast to chemoimmunotherapy, treatment will probably
have to continue indefinitely to maintain its effect. Third, such
therapies will probably be very expensive. On the other hand, the
B-cell directed therapies also have obvious limitations: 20–25%
of the patients will not respond, the time to response can

be several months or even longer (138), and some patients
have contraindications or are reluctant to receive treatment
with cytotoxic drugs. In contrast, sutimlimab is rapidly acting
and seems to have a favorable toxicity profile (107, 146).
Undoubtedly, therefore, the upstream complement inhibitors
have the potential to fill an unmet need in patients with CAD. It
is to be hoped that in severe cases and acute exacerbations, such
therapy will “provide a bridge that will allow rapid achievement
of remission and transition to B-cell directed treatment when the
situation is under control” (88).

TREATMENT OF CAS

As secondary CAS is even rarer than CAD, no systematic
study has been published in this group of disorders, and
recommendations have been based on theoretical considerations,
case reports, and expert opinion (2, 3, 153). In CAS associated
with aggressive lymphoma or other malignancies, no therapy has
been established except for treatment of the underlying disease
(2, 3, 153).

In infection-associated CAS, optimal antimicrobial therapy
should be instituted when relevant (2). Whereas appropriate
antibiotic therapy for Mycoplasma pneumoniae pneumonia is
usually effective for control of the infection, the onset of
secondary CAS will often occur after antibiotic therapy has
been initiated or even completed (2, 63). This hemolytic anemia
is self-remitting but can be profound, and there is an unmet
need for therapy in severely affected patients until resolution
of hemolysis occurs (63, 154). Corticosteroids have been used
in CAS secondary to Mycoplasma as well as virus infections
(155–157). However, no good evidence of benefit has been
published, as all reports are case observations and it is difficult to
distinguish between effect of therapy and spontaneous resolution.
Transfusions can safely be given provided the same precautions
are observed as in CAD.

Temporary use of upstream complement inhibition seems to
be an attractive approach based on theoretical considerations, but
no clinical evidence has been provided for its effect in secondary
CAS. Because of the rarity of this syndrome, prospective trials
are unlikely to be performed, but a systematic retrospective study
might be feasible on a multinational basis.
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Autoimmune hemolytic anemia (AIHA) is a greatly heterogeneous disease due to

autoantibodies directed against erythrocytes, with or without complement activation.

The clinical picture ranges frommild/compensated to life-threatening anemia, depending

on the antibody’s thermal amplitude, isotype and ability to fix complement, as well as

on bone marrow compensation. Since few years ago, steroids, immunesuppressants

and splenectomy have been the mainstay of treatment. More recently, several target

therapies are increasingly used in the clinical practice or are under development

in clinical trials. This has led to the accumulation of refractory/relapsed cases that

often represent a clinical challenge. Moreover, the availability of several drugs acting

on the different pathophysiologic mechanisms of the disease pinpoints the need to

harness therapy. In particular, it is advisable to define the best choice, sequence

and/or combination of drugs during the different phases of the disease. In particular

relapsed/refractory cases may resemble pre-myelodysplastic or bone marrow failure

syndromes, suggesting a careful use of immunosuppressants, and vice versa advising

bone marrow immunomodulating/stimulating agents. A peculiar setting is AIHA after

autologous and allogeneic hematopoietic stem cell transplantation, which is increasingly

reported. These cases are generally severe and refractory to standard therapy, and have

high mortality. AIHAs may be primary/idiopathic or secondary to infections, autoimmune

diseases, malignancies, particularly lymphoproliferative disorders, and drugs, further

complicating their clinical picture and management. Regarding new drugs, the false

positivity of the Coombs test (direct antiglobulin test, DAT) following daratumumab adds

to the list of difficult diagnosis, together with the passenger lymphocyte syndrome

after solid organ transplants. Diagnosis of DAT-negative AIHAs and evaluation of

disease-related risk factors for relapse and mortality, notwithstanding improvement in

diagnostic approach, are still an unmet need. Finally, AIHA is increasingly described

following therapy of solid cancers with inhibitors of immune checkpoint molecules. On the

whole, the double-edged sword of new pathogenetic insights and therapies has changed

the landscape of AIHA, both providing enthusiastic knowledge and complicating the

clinical management of this disease.

Keywords: warm autoimmune hemolytic anemia, cold agglutinin disease, bone marrow transplant, checkpoint

inhibitors, complement inhibitors, target therapy
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INTRODUCTION

Autoimmune hemolytic anemia (AIHA) has always been
considered the simplest and most scholastic example of
antibody-mediated autoimmune disease. As a matter of
fact, autoantibodies (Ab) directed against erythrocytes,
with or without complement (C) activation, are the main
pathogenic mechanism of the disease (1). Clinically, it has
long been considered a trouble-free disease, easy to treat,
and with low clinical impact, compared with malignant
hematologic conditions. This approach is quite similar to
that of immune thrombocytopenia, which has been defined
the “hematology’s Cosette from Les Misérables.” More
recently, AIHA has been identified as a greatly heterogeneous
disease, due to several immunological mechanisms involved
beyond antibodies, complement and antibody-dependent
cell-mediated cytotoxicity (ADCC). Accumulating evidence
demonstrates reduced CD4+ T-regs, imbalance of T-helper
1/2 cytokines, increased activity of cytotoxic CD8+ T
lymphocytes, natural killer cells, and activated macrophages.
More importantly, attention has grown on the pivotal role
of bone marrow compensation, and on bone marrow
characteristics that may reveal dyserythropoiesis, fibrosis,
and clonal lymphoproliferation (1–4). Previously, steroids,
immunesuppressants, and splenectomy were the mainstay of
AIHA treatment (5–8). More recently, several new targeted
therapies are increasingly used in the clinical practice or
under development in clinical trials (7, 9). Along with new
therapeutic options for patients, this growing armamentarium
has complicated the clinical management of AIHA and
increased the number of relapsed/refractory cases. Therefore,
harnessing treatment and defining a risk-adapted therapy
is an emerging unmet need. A peculiar setting is AIHA
after autologous and allogeneic hematopoietic stem cell
transplantation (HSCT), as well as cases described during
therapy with immune checkpoint inhibitors for solid cancers
(10). Finally, AIHAs may be associated with several conditions
(lymphoproliferative, autoimmune and infectious diseases,
immunodeficiencies, solid tumors, transplants, and drugs)
where the several immunologic mechanisms are unpredictably

involved (7, 11). The recent availability of next generation
sequencing has improved the diagnosis of the several associated
conditions, but at the same time has extended the proportion
of “secondary” vs. “primary” AIHAs (4, 12). All these new
insights in the pathogenesis of the disease and treatment
opportunities have undoubtedly changed the landscape
of AIHA.

In this review we will describe new diagnostic tools,
clinical characteristics and therapeutic options of AIHA,
focusing on relapsed/refractory cases, secondary forms,
and AIHAs associated with HSCT or therapy with
immune checkpoint inhibitors (CPIs). Moreover, we
will approach the identification of risk factors for the
development, clinical severity, response to therapy, and
outcome of AIHA in order to start the basis for a
risk-adapted therapy.

CLINICAL CHARACTERISTICS AND
CLASSIFICATION OF AIHA

The gold standard for the diagnosis of AIHA is the Coombs test
or direct antiglobulin test (DAT) that enables the classification of
the disease according to the isotype and thermal characteristics
of the autoantibody. Warm AIHA (wAIHA), the most common
type (60–70% of cases) is typically DAT positive for anti-IgG,
or IgG plus C, while cold forms (cold agglutinin disease, CAD,
20–25%), are due to IgM, and the DAT is positive for C3d.
Among cold AIHAs it is worth considering paroxysmal cold
hemoglobinuria (PCH), usually observed in children and; this
very rare type of AIHA (1–5% of cases) is caused by the Donath-
Landsteiner autoantibody, a bithermic hemolysin able to fix
complement at cold temperatures and to determine RBCs lysis
at 37◦C. Mixed forms show both characteristics of wAIHA and
CAD, with a DAT positive for both IgG and C and high titer cold
agglutinins. Finally, there is a heterogeneous group of atypical
AIHAs that include DAT negative, IgA driven, and warm IgM
types (7, 8, 13). All these forms have a variable degree of anemia,
hemolysis and bone marrow compensation, as shown in Table 1

for Hb and LDH levels, and reticulocyte counts.

Risk Factors for Relapse and Mortality
Given the great clinical heterogeneity of the various AIHA forms,
an effort has been made to identify predictors of outcome,
including complications, response to therapy and death. The
severity of anemia at onset has been identified as the strongest
predictor of relapse, with hazard ratios of 1.61, 1.74, and

1.98, for Hb levels of 8.1–10, 6.1–8, <6 g/dL, respectively
(5, 8). Complement involvement and thermal characteristics
of the autoantibody were also important, with warm IgG+C,
mixed, CAD, and atypical forms more frequently needing
second or further therapy lines. Moreover, the concomitant
presence of immune thrombocytopenia (Evans syndrome) is
associated with a higher risk of relapse and refractoriness to
treatment. Overall, AIHAs other than warm forms, plus Evans
syndrome and Hb<8 g/dL at onset had a 4-fold increased
risk of multiple relapses (8). Moreover, bone marrow features
impact on disease severity since the presence of reticular
fibrosis, dyserithropoiesis, and hypercellularity correlated with
shorter relapse-free survival and lower response rate to
immunosuppressive therapies (3). Regarding fatal outcome, Hb
<6 g/dL at onset, Evans’ syndrome, multi-treatment, acute renal
failure, and infections have been associated with 5-8 fold risk
of increased mortality (8). A case series of 13 very severe
relapsed/refractory primary AIHA reported a mortality of 57%,
despite intensive treatment, including transfusions, steroid boli,
intravenous immunoglobulins, rituximab, erythropoietin, and
plasma-exchange (13). More recently, mortality was 30% in a
series of 44 AIHA admitted to intensive care unit for severe
anemia (14). It is worth remembering that about 15–20% of
AIHAs display thrombotic events, including severe episodes
(pulmonary embolism, stroke, cardiac infarction), which are
generally proportional to active hemolysis (5, 7). Risk factors
for these severe, although not fatal, complications are Hb
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TABLE 1 | Clinical and laboratory characteristics of patients at onset divided according to AIHA serological type.

wAIHA

(n = 225) IgG (n = 158);

IgG +C (n = 67)

CAD (n = 107) Mixed AIHA

(n = 24)

Atypical AIHA

(n = 22)

Hematologic features of primary AIHA patients

Median Age at diagnosis (years, range) 67 (5–94); 65 (21–92) 70 (28–94) 61 (20-86) 45 (25-78)

Hb (g/dL), median (range) 7.3 (2.1–14.1); 6.5

(2.0–11.5)

8.2 (4.0–13.5) 6.4 (4.3–10.7) 6.6 (3.0–10.9)

LDH (ULN), median (range) 1.7 (0.6–26.7); 1.8 (0.8–7.2) 1.4 (0.3–12.2) 1.7 (0.6–9.8) 2 (0.7–18.1)

Ret (×109/L), median (range) 180 (22–644); 143 (53–641) 123 (13–644) 181 (45–576) 195 (29–780)

Inadequate reticulocytosis, n of pts (%) 86 (54); 35 (52) 69 (64) 15 (62) 14 (64)

Hazard risks for AIHA relapse

Hb at onset <6 g/dl HR 1.98 95% CI 1.2–3.2

AIHA type Non wAIHA HR 1.21 95% CI 0.9–1.5

Evans Syndrome Co-presence of ITP HR 1.84 95% CI 1.2–2.7

Hazard risks for AIHA related death

Evans Syndrome Co-presence of ITP HR 8 95% CI 2.5–26

AIHA related complications Acute renal failure HR 6.3 95% CI 1.4–29

Multi-treatment (>4 lines) Infections HR 4.8 95% CI 1.5–15

wAIHA, warm autoimmune hemolytic anemia; CAD, cold agglutinin disease; IgG, DAT positive for IgG; IgG + C, DAT positive IgG + C; LDH (ULN), LDH is expressed as folds of upper

limit of normal.

levels <6 g/dL at onset, increased LDH levels, and previous
splenectomy (8).

Secondary AIHAs
Several conditions represent a risk factor for the development
of AIHA, including lymphoproliferative and autoimmune
diseases, immunodeficiencies, infections, and solid tumors
(Table 2). Concerning lymphoproliferative disorders, CLL
patients show the highest risk with up to 5–10% developing
AIHA, with an onset that may precede the diagnosis of
lymphoproliferative disease (11, 15). The presence of unmutated
IGHV status, sterotyped IGHV frames, and unfavorable
cytogenetics (chromosome 17p and/or 11q deletions) represent
a risk factor for the development of AIHA (4, 15–17). Other
recently identified risk factors were several down-regulated
miRNAs, some of them known to be involved in autoimmune
phenomena (4). Of note, a positive DAT without hemolysis is
frequent in CLL. AIHA prevalence in NHL is 2–3%, with higher
frequencies in some subtypes (13–19% in angioimmunoblastic
T-cell lymphoma and 50% in marginal zone lymphoma)
(7, 11). A particular setting is CAD, which is associated with
an indolent clonal lymphoid infiltrate distinct from other
NHL (2, 6). In this disease recurrent mutations of KMT2D
and CARD11 have been identified in 69 and 31% of cases,
respectively (18). Similar mutations have also been reported
in Kabuki syndrome, a congenital disorder characterized
by malformations, immune-deficiency, and development of
autoimmune diseases (4, 18).

Regarding AIHA in the context of immune dysregulation,
patients with systemic lupus erythematosus develop AIHA in
14% of pediatric cases and 3% of adults (7, 11). A close association
has also been reported with thyroid autoimmune disorders, such
as Hashimoto thyroiditis and Graves’ disease. Several case reports

exist for AIHA association with systemic sclerosis, Sjögren
syndrome (SS), autoimmune liver disorders, and inflammatory
bowel diseases (7, 11). Moreover, various immunodeficiencies
have been identified as predisposing conditions for AIHA,
including common variable immunedeficiency (19), IgA
deficiency, and autoimmune lymphoproliferative syndromes
(ALPS) (20). Interestingly, mutations in genes implicated
in primary immunodeficiencies (TNFRSF6, CTLA4, STAT3,
PIK3CD, CBL, ADAR1, LRBA, RAG1, and KRAS) have been
detected in about half of pediatric patients with AIHA and
ITP (Evans Syndrome, ES); mutated patients showed more
severe disease with higher treatment requirement and fatal
outcome (12). These findings underline the close link between
autoimmunity and immunodeficiency, i.e., a shared condition of
dysregulated immune system.

Genetic Background and Exogenous
Triggers for AIHA Development
Although not specifically involved in the changing landscape of
AIHA, it is worth considering genetic factors and historically
recognized exogenous triggers (4). Several old and recent studies
demonstrated a strong association of AIHA with HLA-B locus,
particularly HLA-B8 and BW6 (21), or a reduced frequency of the
disease in subjects harboring the HLA-DQ6 locus (22) (Table 2).
As regards humoral immune response, various variable regions
of the immunoglobulin heavy and light chains (IGHV and IGKV)
have been associated with AIHA, particularly IGHV4-34, IGHV3,
and IGKV3-20 genes, responsible for I antigen binding, and
mostly represented in CAD (6). Concerning cellular immunity,
autoreactive clonal T- CD8+cells have been reported in about
50% of AIHA cases; moreover, polymorphism of the cytotoxic
T-lymphocyte antigen-4 (CTLA-4) gene and of lymphotoxin-α
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TABLE 2 | Secondary conditions associated with autoimmune hemolytic anemia (AIHA).

Frequency Results

Lymphoproliferative disorders

Chronic lymphoid leukemia and NHL 5–20% Autoimmune cytopenias may frequently complicate chronic lymphoproliferative

disorders and usually correlate with advanced disease and high biologic risk

KMT2D and CARD11 69 and 31% of cAIHA tested Autoreactive B-cells display somatic mutations favoring proliferation

Congenital syndromes and immunodeficiencies

Kabuki syndrome and Hemoglobinopathies 4–6% AIHA and ITP are the most frequent autoimmune complications of Kabuki

Syndrome; DAT positivity is frequent, but clinically overt AIHA is rarer in

thalassemia (particularly beta intermedia, alloimmunized, and transfused pts)

ALPS; CVID; IgA deficiency 2–70% AIHA is the most frequent autoimmune complication together with ITP and ES

Genes involved in PIDs

TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1,

LRBA, RAG1, and KRAS

40% of pediatric ES Majority of pediatric ES display somatic mutations found in immunodeficiencies

Autoimmune diseases

SLE, Systemic sclerosis; autoimmune thyroiditis; Sjogren

Syndrome; IBDs; Autoimmune hepatitis/Primary biliary

cirrhosis

1.4–14% AIHA frequency is higher in pediatric than in adult patients with SLE. AIHA may

be rarely associated to systemic sclerosis or Sjogren syndrome, Hashimoto

thyroiditis and Graves’ disease, ulcerative colitis, and autoimmune hepatitis.

Genetic findings

HLA I and II Case series HLA-B8 and BW6 are strongly associated to wAIHA.

IGHV and IGKV region >60% cAIHA Specific IGVH and IGKV regions are related to AIHA development

TCRG and TCRB 50% Pathogenic T-cells are clonally restricted in AIHA

CTLA-4 exon 1 73% CTLA-4 signaling is defective in AIHA, particularly in CLL cases

Cytokine polymorphisms 41% AIHA shows higher frequency of LT-α (+252) AG phenotype

Infections

Parvovirus B19; HCV; HAV; HBV; HIV

Mycoplasma spp.; Tubercolosis; Babesiosis; Brucellosis;

Syphilis; EBV; Respiratory Syncytial Virus

0.02–20% ParvoB19 infection and HCV and its treatment correlate with AIHA development;

case reports of association with AIHA are available for the other infectious

agents.

Drugs

Antibiotics (penicillins, cephalosporins, etc.), cytotoxic

drugs (oxaliplatin, etc.), antidiabetics (metformin),

anti-inflammatory drugs (diclofenac, etc.), neurologic

drugs (α-methyldopa, L-dopa, chlorpromazine, etc.),

cardiologic drugs (procainamide, etc.)

Case reports and reviews Various mechanisms are demonstrated: hapten and drug absorption

mechanisms; Immune/ternary complex mechanisms; autoantibody mechanism;

non-immunologic protein formation; unknown mechanisms.

CLL therapy: fludarabine and Tyrosin kinase inhibitors 6–21% Fludarabine induced AIHA may be avoided by rituximab association. Ibrutinib

was associated to low risk of AIHA development in registrative trials in CLL

Vaccines

Vaccines 0.8/100.000 person-years AIHA was the rarest autoimmune complication in a population study

Solid cancers

Thymoma;Ovarian/Prostate 1.29–30% autoimmune

phenomena

Thymoma, prostate and ovarian carcinomas have the highest association with

autoimmunity

AIHA, autoimmune hemolytic anemia; wAIHA, warm; cAIHA, cold; ES, Evans syndrome; ITP, immune thrombocytopenia; DAT, direct antiglobulin test; CLL, chronic lymphocytic leukemia;

ALPS, autoimmune lymphoproliferative syndrome; CVID, common variable immunodeficiency; SLE, Systemic lupus erythematosus; IBDs, inflammatory bowel syndromes.

(LT-α) may represent a risk factor for primary or secondary
AIHA development (4).

Various infections have been associated with an increased
incidence of AIHA, particularly Parvovirus B19 (associated
with DAT positive hemolysis in up to 20% of cases and
hepatotropic virus, mostly HCV and possibly related to
interferon therapy (11). Moreover, cold agglutinin AIHA occurs
in up to 3% of patients with infectious mononucleosis and
Mycoplasma pneumoniae infection (7, 11). Finally, paroxysmal
cold hemoglobinuria is almost invariably preceded by an
infection, including syphilis and virus, particularly in children
(7, 11). In addition there is a long list of drugs that have
been proven or highly suspected to induce AIHA, including
historical ones (α-methyldopa, procainamide, penicillins,

cephalosporins, diclofenac, ibuprofen, thiazides, quinine,
quinidine, metformin) and more recent molecules (cladribine,
fludarabine, lenalidomide, oxaliplatin, teniposide, pentostatin)
(7, 11). Concerning new small molecules (ibrutinib, venetoclax,
and idelalisib) few case reports of treatment-emergent AIHAs
have been published (4).

COMPREHENSIVE DIAGNOSTIC
APPROACH AND NEW DIAGNOSTIC
TOOLS

Given the several associated conditions, an accurate
diagnostic approach to AIHA is fundamental for a
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FIGURE 1 | Diagnostic algorithm of autoimmune haemolytic anemia (AIHA). DAT, direct antiglobulin test or Coombs test; MS-DAT, mitogen-stimulated DAT; CAD, cold

agglutinin disease; CT, computed tomography; G6PD, glucose-6-phosphate dehydrogenase deficiency; PKD, pyruvate kinase deficiency; EMA-binding,

eosin-5′-maleimide-binding test.

comprehensive risk assessment and a proper therapy
(Figure 1). Medical history and baseline evaluation is
still fundamental to assess drug assumption, infections,
signs of acute or chronic hemolysis, and bone marrow
compensation (reticulocytes).

The Standard DAT and More Sensitive
Techniques
As mentioned earlier, the DAT with monospecific antisera
(anti-IgG, anti- IgA, anti-IgM, anti C) is the cornerstone of
diagnosis, and allows a proper distinction of the various AIHA
forms, that have different responses to therapy and prognosis
(23). A diagnostic challenge that may take advantage of new
diagnostic tools is represented by DAT-negative AIHA, usually
5–10% of all forms. In these cases, excluding other common
causes of hemolysis and pursuing the clinical suspicion of
AIHA, it is recommended to ask for second-level tests in
a reference center. The DAT negativity due to low-affinity
antibodies may be overcome by low ionic strength solutions
(LISS) or cold washings. The small amounts of RBC-bound

antibodies (below the threshold of the test) may take advantage
of more sensitive techniques, such as microcolumn and solid-
phase antiglobulin tests. In fact, DAT tube effectively diagnoses
AIHA when at least 500 molecules of autoantibodies are
bound to RBCs, whereas microcolumn and solid phase require
∼200–300 molecules per single RBC to yield a positive
result. Consistently, DAT tube is the most specific but least
sensitive test, whereas microcolumn and solid phase methods
show reduced specificity but increased sensitivity (7, 24, 25).
Smaller amounts of autoantibodies can be detected by new,
even more sensitive techniques, such as flow cytometry (able
to detect about 30–40 antibody molecules per RBC), the
enzyme-linked and radiolabeled tests, or themitogen-stimulated-
DAT (able to amplify the autoimmune reaction in culture)
(23, 24). Of particular importance is the identification of
atypical AIHAs due to warm IgM that are potent activators of
complement and often detach from the RBC during washing
procedures, causing detrimental delay in diagnosis and therapy.
In these cases the DDAT (Dual Direct Antiglobulin Test) may
allow the diagnosis of these rare forms, usually severe and
potentially lethal (26). In addition, as complement activation is
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recognized as negative prognostic factor, evaluation of baseline
values of C3 and C4 fractions, would help completing the
diagnostic workup. Notwithstanding extensive evaluation, a
fraction of AIHA remains DAT-negative: in these cases the
diagnosis is made after the exclusion of the many hemolytic
disorders (congenital hemolytic anemias, paroxysmal nocturnal
hemoglobinuria, thrombotic microangiopathies, mechanical and
toxic noxae) and on the basis of an ex-adiuvantibus therapy
with steroids.

Causes of Falsely Positive DAT
The DAT may be positive due to the presence of alloantibodies
in recently transfused patients, in delayed hemolytic transfusion
reactions, and in the hemolytic disease of the newborn (23).
The coexistence of auto- and alloantibodies has been reported
in about 30% of AIHA patients, and their presence is often
masked by autoantibodies, possibly causing severe hemolytic
reactions in case of RBC transfusion. In complex cases
the distinction between allo- and autoantibody is advisable
by immunoabsorbance techniques and by extended RBC

genotyping (7, 24). It is worth reminding that daratumumab,
the anti-CD38 antibody for the treatment of multiple myeloma,
may give false DAT positivity. CD38 is also expressed on red-
cell membranes, resulting in panreactive agglutination in the test
used for antibody screening and cross-matching. Severalmethods
have been proposed to overcome this interference, including
pretreatment of red cells with dithiothreitol, use of antiidiotypic
antibodies against daratumumab, supplementation of soluble
CD38 to bind daratumumab in patient serum, use of red cells
from newborns as test cells, and use of F(ab′)2 fragments of
daratumumab by digestion with pepsin (27).

Bone Marrow Evaluation and Exclusion of
Secondary AIHA Forms
Among “new” diagnostic approaches to AIHA there is
the increasingly recommended (and performed) bone
marrow evaluation (morphology, cytometry, cytogenetics
and biopsy). Bone marrow evaluation may in fact give
important information on adequate erythroid compensation,
underlying lymphoproliferative disorder, and evidence of

TABLE 3 | Target therapies in autoimmune hemolytic anemia (AIHA).

Drug Mechanism Setting Route of administration Efficacy

B-cell directed monoclonal antibodies

Rituximab Anti-CD20 wAIHA/CAD IV 70–80%/50–60%

Rituximab Anti-CD20 wAIHA/CAD SC 100%

R-Fludarabine Anti-CD20 + purine analog CAD IV 76%

R-CTX-Dex Anti-CD20 + alkylator WAIHA IV 97%

R-Bendamustine Anti -CD20 + alkylator CAD IV 71%

Ofatumumab Anti-CD20 Secondary AIHA IV Case report

Alemtuzumab Anti-CD52 Secondary AIHA SC Case reports

Daratumumab Anti-CD38 Secondary AIHA IV Case reports

B-cell receptor inhibitors

Ibrutinib BTKi Secondary AIHA Oral Case reports

Parsaclisib PI3Ki Primary wAIHA/CAD Oral Not available

Venetoclax Bcl2 Secondary AIHA Oral Case reports

Proteasome inhibitor

Bortezomib Proteasome inhibitor CAD/Secondary AIHA IV Case reports

Bortezomib Proteasome inhibitor CAD IV 31.6%

Complement inhibitors

Eculizumab C5i CAD/Mixed AIHA IV Case reports

Sutimlimab Anti-C1s MoAb CAD IV 50%

APL-2 C3/C3bi CAD/wAIHA SC 50/40%

T-cell directed therapies

Soluble IL-2 T-reg stimulation wAIHA SC Not available

Sirolimus mTORi Evans’/Secondary AIHA Oral 80%

Mycophenolate Mofetil Purine synthesis inhibitor wAIHA/CAD/Secondary AIHA/Evans’ Oral 81–100%

IgG mediated phagocytosis inhibitors

Fostamatinib Syki wAIHA Oral 44%

SYNT001 FcRn MoAb wAIHA IV Not available

M281 FcRn MoAb wAIHA IV Not available

CTX, cyclophosphamide; BTKi, Bruton tyrosine kinase inhibitor; Bcl2, B-cell lymphoma 2; δPI3Ki, phosphatidylinositol-4,5-bisphosphate 3-kinase delta type inhibitor; MoAb, monoclonal

antibody; mTORi, mammalian Target Of Rapamycin inhibitor; Syki, Spleen tyrosine kinase; FcRn, neonatal crystallizable fragment receptor.
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an early/subclinical or therapy-related myelodysplasia or
bone marrow failure. These features may help in harnessing
therapy, avoiding further detrimental immunesuppression,
or selecting immunosupprors among the new targeted
therapies, based on the type of bone marrow lymphocyte
infiltrate (T or B). Moreover, the determination of endogenous
EPO levels may indicate this treatment, which has recently
shown effective particularly in relapsed/refractory and heavily
treated subjects (7, 28). To properly identify secondary
forms imaging and serologic investigation is fundamental
(Figure 1). It is advised to test for anti-phospholipid antibodies
(cardiolipin, beta-2, and lupus-like anticoagulant), given the
known thrombotic diathesis of acute/severe AIHAs, and thus
advising thromboprophylaxis. Finally, molecular analysis and
next generation sequencing would help confirming associated
conditions (primary immunodeficiencies, lymphoproliferative
disorders, myelodysplastic syndromes, other coexisting
congenital anemias) again harnessing therapy.

NEW TREATMENTS FOR AIHA

The availability of several new treatments has undoubtedly
boosted the therapeutic possibilities for patients, but at the
same time has increased the number of heavily treated,
relapsed/refractory cases. The immune-mediated pathogenic
mechanisms in AIHA are different and may differently act
at various degrees during the various phases of the disease.
Therefore, the challenge for the future will be the selection and
timing of administration of the several drugs available or under
development. Firstly, distinction between wAIHA and CAD is
pivotal, as therapy in quite different: the former usually respond
to steroids, whereas the latter requires high and unacceptable
doses. Splenectomy, although progressively abandoned and
moved to third or further lines, is still a valid option for wAIHA;
on the contrary it is ineffective and contraindicated in CAD,
where RBC destruction occurs mainly in the liver and lymphoid
organs. Likewise, it is poorly effective and discouraged in AIHA

FIGURE 2 | Transition from chronic/relapsing autoimmune hemolytic anemia (AIHA) to idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and

bone marrow failure (BMF). Various immune effectors such as macrophages, antigen presenting cells (APC), T helper cells and B lymphocytes are involved into the

immune attack, which is firstly directed against peripheral erythrocytes, but may persist and involve bone marrow precursors, possibly leading to ICUS/IDUS or BMF

syndromes over time.
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secondary to immunodeficiencies, autoimmune diseases, and
lymphoproliferative disorders. Several target therapies are now
in the clinical use or under development in AIHA (Table 3)
(7, 9). Rituximab is becoming the preferred second-line for
wAIHA and is recommended as first line in CAD. In the former,
low-doses may be equally effective as standard ones, whereas
in CAD the standard schedule is more effective. The drug is
successfully administered in primary and secondary cases, alone
or associated with chemotherapy (bendamustine, fludarabine,
or other) in AIHAs secondary to lymphoproliferative diseases
(6, 29, 30). The clinical challenges are wAIHAs relapsed after
rituximab and unfit/refusing splenectomy, and CAD relapsed
after rituximab monotherapy and unfit for rituximab-combined
chemotherapy. In this setting, treatment selection would be
ideally driven by disease-related risk factors, and/or associated
conditions, as well as patient general comorbidities. Among
monoclonal antibodies, ofatumumab (anti-CD20), alemtuzumab
(anti-CD52), and daratumumab (anti-CD38) have shown
promising results in case reports, mainly secondary AIHAs.
Likewise, the orally administered B-cell receptor inhibitors
ibrutinib and venetoclax seem particularly effective in secondary
AIHAs, and the proteasome inhibitor bortezomib in 1/3 of
refractory CADs (9). A further B-cell receptor target therapy
is the PI3K inhibitor parsaclisib, which is under investigation
in both wAIHA and CAD with very promising results. An
interesting new approach for CAD is blocking complement
activation, either at the C5 level (eculizumab) or more efficiently
at the C3 (APL-2) or C1s level (sutimlimab), the latter with
about 50% responses (31). Other drugs are directed at cellular
immunity and cytokines, such as subcutaneous low-dose IL-2
and sirolimus (inhibitor of the serine treonine kinase mTOR).
Targeting IgG driven extravascular hemolysis by inhibiting the
spleen tyrosine kinase (Syk) is also an attractive approach
in wAIHA (for example fostamatinib). Finally, inhibition of
the neonatal crystallizable fragment receptor (FcRn) is a new
interesting approach: these drugs avoid protection of circulating
IgG, including pathogenic autoantibodies, from catabolism and
thus regulate innate and adaptive responses initiated by IgG
immune complexes (9).

It is worth commenting that several trials with these new drugs
are ongoing or being planned. In order to achieve meaningful
endpoints it will be essential to properly select patients, bringing
into consideration the number of previous treatments and related
complications, associated conditions, intrinsic AIHA-risk factors,
and type and degree of the immunologic dysregulation. This
would provide the basis of a risk-adapted therapy in AIHA, as
it is now advised for malignant hematologic conditions.

THE TRANSITION FROM
CHRONIC/RELAPSING AIHA TO
IDIOPATHIC CYTOPENIAS/DYSPLASIAS
OF UNCERTAIN SIGNIFICANCE
(ICUS/IDUS)

Several lines of evidence support the existence of a relationship
between MDS and autoimmunity, including their epidemiologic

association, the existence of common immune-mediated
physiopathologic mechanisms, and the response to similar
immunosuppressive therapies. This relationship may be
hypothesized also with the recently-identified conditions
ICUS and IDUS, which are defined by unexplained cytopenia
(hemoglobin <10 g/dL; platelet count <100 × 109/L; absolute
neutrophil count<1.8 × 109/L) and/or dysplasia in <10% of
bone marrow lineages (32, 33). More recently another category
has been proposed, the clonal cytopenias of undetermined
significance (CCUS), where both unexplained cytopenias and
clonal mutation are found, without fulfilling WHO criteria
for MDS (34). Of note, about 10% of the general population
aged over 70 years carries mutations in genes associated
with myeloid neoplasms, usually single mutations at a low
variant allele frequency, whose pathophysiologic role is still
unknown. These cytopenias may be considered milder MDS
forms that may evolve, after a variable period, in overt MDS
or other bone marrow failure syndromes. In this view, we
described the presence of anti-erythroblast antibodies in a case
of erythroblastic synartesis, a rare disease with an autoimmune
pathogenesis against erythroid precursors (35). Moreover, we
also described two cases of AIHA and Evan’s syndrome with
anti-erythroblast antibodies, which showed a clear-cut bone
marrow erythrocyte precursor hyperplasia at diagnosis, but
evolved into IDUS and AA after several years (33). In this
setting it is tempting to speculate that refractory/relapsing
AIHAs lose their predominant “peripheral” pattern over time,
and shift toward a “central” autoimmunity (Figure 2), leading
to a refractory anemia. Additional factors, like accumulating
somatic mutations, increased apoptosis, overinflammatory
response (inflammaging), unfavorable bone marrow cytokine
microenvironment, and breakdown of DNA-repairing tools
(telomere shortening) are likely to play a role and need to be
addressed in large prospective studies. The increasing availability
of NGS panels will also help in defining the genetic background
of the immunologic dysregulation, both in terms of inability to
clear pathogens/external triggers (chronic infection), or failure
to tolerate autoantiges (chronic autoimmune stimulation).
This would be of great importance to selectively modulate
(potentiate, down-regulate, or re-direct) the innate and adaptive
immune response and to avoid an excessively toxic approach
to autoimmunity.

AIHAs ASSOCIATED WITH TRANSPLANT

Organs and tissues transplants represent a challenging event for
the recipient immune system and may evoke an “immunologic
storm” resulting in either transplant rejection and/or devastating
immune reactions. A particular mild picture is the passenger
lymphocyte syndrome due to donor viable, immunocompetent
lymphocytes present within the graft that can produce antibodies
against donor RBCs. The syndrome involves mainly group O
donors, though few cases have been described in AB recipients
with non-AB donors. The risk of hemolysis is proportional
to the burden of transplanted lymphocytes and ranges from
9 to 70% (kidney < liver < heart-lung transplants) (11, 36).
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Onset is between 3 and 24 days post-transplant and hemolysis
is generally transient, since the lymphocytes transferred with
the donor organ do not engraft. An emerging and more
severe clinical entity is AIHA after hematopoietic stem cells
transplant (HSCT). In this setting, autoantibodies are produced
by the donor immune system against antigens on erythrocytes
produced by the graft itself, and the clinical picture is generally
severe (10). Several factors are implicated: the disease itself,
the conditioning therapy preceding transplant, the subsequent
immunosuppressive treatments, and the occurrence of HSCT
complications such as viral infections reactivation. Moreover,
the unfavorable immunologic microenvironment may lead to
graft failure (as observed in transplanted patients with aplastic
anemia), and graft immunocompetence may in turn induce graft
vs. host disease (GVHD), further complicating the clinical course.
Data from the literature report that immune hemolysis may
complicate up to 2–4% of HSCTs after a median of 3–10 months.
Both warm and cold forms are described, the former developing
between 6 and 18 months, vs. 2–8 months for the latter. Risk
factors for AIHA post HSCT are summarized in Table 4 and
include use of unrelated donor and HLA-mismatch, occurrence
of GVHD, use of cord blood, age < 15 years, CMV reactivation,

alemtuzumab use, and non-malignant condition pre-HSCT (10).
Mortality may be quite high and increases with infections (37).

Therapy of Post-Transplant AIHA
Table 4 recapitulates current and novel therapies that have
been used in AIHA post-HSCT. It is evident that the total
number of patients reported in the various studies is small,
and case reports and series carry the bias of describing good
outcomes only. However, first-line steroids seem to work
less than in primary AIHA, being effective in about 20%
of cases only. Moreover, frontline rituximab appears much
more effective than in second line (89 vs. 52% responses),
and most Authors suggest its early use, particularly in severe
cases. Splenectomy is effective but its use is limited to selected
cases given the high surgical, infectious, and thrombotic risk.
Regarding novel targeted therapies, alemtuzumab, bortezomib,
sirolimus, eculizumab, daratumumab, and abatacept have all
been used in selected cases, as 3rd or further line, with
heterogeneous outcomes. Finally, the passenger lymphocyte
syndrome may occur also in this setting and is favored
by: use of cyclosporine alone for GVHD prophylaxis, use
of peripheral blood rather than bone marrow as source

TABLE 4 | Risk factors and therapies for post-allogenic hematopoietic stem cell transplant (allo-HSCT) AIHA.

Risk factor Estimated risk 95% confidence

interval

P-value

Risk factors associated with AIHA development post-allo-HSCT

Recipient Age < 15 years n.a. n.a. 0.005

Disease features Nonmalignant diagnosis pre-HSCT 3.5 (Hazard risk)* 1.1–10.9 0.031

Donor Unrelated donor 1.45 (Relative risk) 1.05–1.99 0.02

Unrelated donor 5.28 (Hazard risk) 1.22–22.9 0.026

HLA mismatch donor n.a. n.a. 0.005

Source of stem cells Cord blood use n.a. n.a. 0.005

Conditioning Alemtuzumab use 2.5 (Hazard risk)* 1.1–5.7 0.028

Allo-HSCT complications Chronic GVHD 12.17 (Relative risk) 96–1.54 0.018

CMV reactivation 3.4 (Hazard risk)* 1.2–9.6 0.02

Drug Dose N of patients ORR (range) N of line

Therapy of AIHA post-allo-HSCT

Wait & See – 6 83% –

Steroids 1–2 mg/Kg day 125 20% (10–50) 1st line

IVIG 2 g/Kg × 2 days 51 12% (10–50) 1st line

Splenectomy – 18 38% (0–100) 2nd line

PEX – 10 10 (0–14) >2nd line

Rituximab 375 mg/sm/week × 4 weeks 18

125

89% (75–100%)

52% (36–100)

1st line

2nd line

Alemtuzumab 15 mg/day × 3/wk 2 50% (0–100) >2nd line

Bortezomib 1,3 mg/mq 19 63% (25–100) >2nd line

Sirolimus 3 mg/sm D1–1 mg/sm day 6 100% >2nd line

Eculizumab 900mg 3 33% (0–50) >2nd line

Daratumumab 16 mg/Kg/week 3 100% >2nd line

Abatacept 10 mg/Kg day 3 100% >2nd line

n.a. not available. *refers to all the autoimmune complications; PEX, plasma exchange.
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of the graft, use of reduced-intensity conditioning, use of
a non-genotypically HLA-matched donor, and use of a
female donor. Umbilical cord blood as source for stem
cells appears protective. Careful transfusion procedures are
warranted in transplanted patients, particularly in mismatched
cases (10, 36, 38).

AIHAS ASSOCIATED WITH NEW
BIOLOGICAL ANTI-CANCER THERAPIES

A fascinating field is that of anti-tumor immunotherapy,
based on the understanding that tumor cells activate immune
checkpoints such as molecular programmed death receptor-1
(PD-1) and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) signaling pathways to inhibit T lymphocyte activation
and thus escape from immune surveillance, known as “immune
brake.” Checkpoint inhibitors (CPIs) reactivate T lymphocytes
to recognize cancer cells by blocking CTLA-4 or PD-1, and
are therefore effective in numerous types of cancer. However,
immune-related adverse effects have also been reported (39,
40) and hematologic ones are rare but potentially fatal. Most
of them are monolineage cytopenia, or bilineage cytopenia,
whilst acquired hemophilia A, eosinophilia, large granular
lymphocytosis, and hemophagocytic lymphohistiocytosis are
rare (41). A meta-analysis of 9,324 patients indicated that
the incidence of anemia, neutropenia, and thrombocytopenia
was 9.8, 0.94, and 2.8%, respectively (41). AIHA is the most
commonly reported hematologic adverse event, with many case
reports of fulminant course (40). A recent revision of the
database of the Food and Drug Administration revealed a
total of 68 cases: men to women ratio was similar, and the
underlying diseases were mainly melanoma (41%), non-small
cell lung cancer (NSCLC, 26%), and others including kidney
cancer, Hodgkin’s lymphoma or skin cancers. The reported cases
were mostly from North America (49%) and Europe (34%),
with a few from Asia (10%) and Australia (7%). Forty-three
cases developed after nivolumab, 13 with pembrolizumab, 7
with ipilimumab, and 5 with atezolizumab, and 16% of cases
had received two CPIs. The median time to AIHA onset was
50 days, four patients had concurrent thrombocytopenia, other
four endocrine abnormalities (thyroiditis, adrenal insufficiency
or hypophysitis), and three gastrointestinal adverse events (colitis
or hepatitis). Most cases were IgG positive warm AIHA, whilst
CADs were rarer. All episodes were severe, with 80% of cases
developing grade 3–4 transfusion-dependent anemia, and the
risk appeared higher with PD-1 or PD-L1 targeting agents
(0.15–0.25%) than with CTLA-4 inhibitors (0.06%). Mortality
was as high as 17%, mainly due to multi-organ failure and
delayed diagnosis (42). In another recent analysis of 14 cases
who developed AIHA after CPIs, median time to AIHA was
55 days (IQR 22–110 days). Compared to primary AIHA, these
cases showed a higher proportion of DAT negativity (38%) and
of severe anemia (median Hb 6.3 g/dL (IQR, 6.1–8.0 g/dL).
Finally, 50% of cases relapsed after first line and 14% became
chronic (43). Regarding therapy, prednisone 1.5 mg−2 mg/kg

per day along with CPIs discontinuation is recommended,
and evidences for the need of early rituximab or further
immunosuppressive agents are lacking. The rechallenge of CPIs
after AIHA has improved or is stable remains inconclusive. A
patient with Hodgkin’s lymphoma who developed nivolumab
associated AIHA, that recovered after steroids and was later
re-challenged with nivolumab without AIHA recurrence, has
been described (44).

CONCLUSIONS

Nowadays the pathogenic and therapeutic landscape of AIHA
is rapidly changing for several reasons. First, numerous
AIHA-associated conditions have been identified, such as
autoimmune diseases, immunodeficiencies, and tumors, which
may have additional immune-mediated pathogenic mechanisms
compared to primary disease, and deserve a specific therapeutic
approach. In this view, the increasing use of molecular testing
has disclosed several underlying conditions, questioning the
distinction between primary and secondary forms. Second, the
development of new drugs has offered additional therapeutic
opportunities to “cure” the disease, but at the same time has
increased the number of relapsed/refractory cases. Moreover,
the future availability of even more target therapies will further
puzzle the treatment algorithm of the disease. Third, there is
increasing awareness of various pathogenic mechanisms that
may differently act during the disease course, ranging from
a predominant “peripheral” autoimmunity against erythrocytes
to a “central” attack against erythroid precursors, possibly
preceding a myelodysplastic or aplastic evolution. These findings
have further therapeutic implications, suggesting to avoid heavy
immunosuppression in favor of immunomodulating/stimulating
agents. Finally, there is increasing emergence of complex and
severe entities, particularly AIHA developing after HSCT and
AIHA associated with novel anti-cancer drugs such as checkpoint
inhibitors, which represent a clinical challenge for complications
and fatal outcome. Diagnosis of DAT-negative AIHAs and
evaluation of disease-related risk factors for relapse andmortality
have improved, but are still an unmet need. The assessment
of disease-related risk factor would be pivotal to design good
clinical trials and to give hints for a risk-adapted therapy
of AIHAs.
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Autoimmune hemolytic anemia (AIHA) is characterized by immunemediated erythrocytes

destruction by autoantibodies with or without complement activation. Additional

pathologic mechanisms include cellular cytotoxicity, cytokline dysregulation, and

inadequate bone marrow compensation with fibrosis/dyserythropoiesis. The latter

resembles that of bone marrow failures, namely aplastic anemia and myelodysplastic

syndromes. Paroxysmal nocturnal hemoglobinuria (PNH) clones are increasingly

recognized in bone marrow failure syndromes, and their selection and expansion are

thought to be mediated by immune mechanisms. In this study, we aimed to evaluate the

prevalence of PNH clones in 99 patients with primary AIHA, and their correlations with

disease features and outcomes. Moreover, in the attempt to disclose the physiopathology

of PNH positivity in AIHA, serum levels of several immunomodulatory cytokines were

tested. A PNH clone was found in 37 AIHA patients (37,4%), with a median size of

0.2% on granulocytes (range 0.03–85). Two patients showed a large clone (16 and 85%)

and were therefore considered as AIHA/PNH association and not included in further

analysis. Compared to PNH negative, PNH positive cases displayed a higher hemolytic

pattern with adequate bone marrow compensation. AIHA type, response to therapy,

complications and outcome were comparable between the two groups. Regarding

cytokine levels, IFN-γ and IL-17 were lower in PNH positive vs. PNH negative AIHAs

(0.3 ± 0.2 vs. 1.33 ± 2.5; 0.15 ± 0.3 vs. 3,7 ± 9.1, respectively, p = 0.07 for both). In

PNH positive AIHAs, IFN-γ positively correlated with reticulocytes (r = 0.52, p = 0.01)

and with the bone marrow responsiveness index (r = 0.69, p = 0.002). Conversely,

IL-6 and IL-10 showed the same pattern in PNH positive and PNH negative AIHAs. IL-6

levels and TGF-β positively correlated with clone size (r = 0.35, p = 0.007, and r =

0.38, p = 0.05, respectively), as well as with LDH values (r = 0.69, p = 0.0003, and r

= 0.34, p = 0.07, respectively). These data suggest testing PNH clones in AIHA since
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their prevalence is not negligible, and may correlate with a prominent hemolytic pattern,

a higher thrombotic risk, and a different therapy indication. PNH testing is particularly

advisable in complex cases with inadequate response to AIHA-specific therapy. Cytokine

patterns of PNH positive and negative AIHAs may give hints about the pathogenesis of

highly hemolytic AIHA.

Keywords: warm autoimmune hemolytic anemia, cold agglutinin disease, paroxysmal nocturnal hemoglobinuria,

rituximab, cytokines

INTRODUCTION

Autoimmune hemolytic anemia (AIHA) is a clinically
heterogeneous disease ranging from mild/ compensated to
very severe life-threatening hemolysis (1, 2). Several pathogenic
mechanisms are involved, mainly encompassing autoantibodies
of different classes, thermal amplitude, and affinity/efficiency
in activating complement. Other factors include abnormalities
of antigen-presenting cells, increased antibody-dependent
cellular cytotoxicity (ADCC) and cytotoxic CD8+T cells,
aberrant cytokine production and inflammation, and alterations
of immunoregulatory T cells. While direct complement-
mediated lysis takes place mainly in the circulations and
liver, ADCC and phagocytosis occur preferentially in the
spleen and lymphoid organs (3). Finally, the efficacy of the
erythroblastic compensatory response can greatly influence the
clinical picture of AIHA (4–6). Intravascular hemolysis has
been shown to correlate with the rate of complement activation
and with the risk of AIHA related thrombosis. Bone marrow
compensation has been demonstated to contribute to anemia
severity at onset, the major predictor of disease relapse and

outcome. Paroxysmal nocturnal hemoglobinuria (PNH) is a rare
(incidence of 2–6 per million) clonal acquired disease, whose
clinical spectrum includes both overt intravascular hemolysis
and bone marrow failure, namely aplastic anemia (AA) and
hypocellular myelodysplastic syndromes (MDS). PNH is due
to a somatic mutation of the hematopoietic stem cell involving
the PIG-A gene and resulting in deficiency of the complement
inhibitory GPI-anchored proteins CD55 and CD59 (7–9). PNH
has been classified by the International PNH Interest Group
(IPIG) (8, 10) in three clinical subgroups: classic, PNH in the
setting of another bone marrow disorder, and subclinical. The
classic form is dominated by intravascular hemolysis, with
markedly elevated LDH and a clone size >50%. The second
group, mainly AA or MDS associated, is clinically dominated
by the underlying bone marrow features and displays a clone
size 10–50%. The third category is defined as subclinical, since
there is no clinical or biochemical evidence of intravascular
hemolysis and the PNH clone is <10%. Since the last 10 years,
the increased sensitivity of the cytofluorimetric techniques (up
to ≥0.01% clone size) enabled the detection of small PNH clones
in up to 60% of AA and 30% of MDS (7–9, 11). The significance
of these clones is still unclear, with some evidences for better
response to immunosuppressive therapy in PNH positive cases.
These tests allowed the detection of small PNH populations
even in diseases not commonly associated to PNH such as
hypomegakaryocytic thrombocytopenia (12) and chronic

benign neutropenia (13). These forms are characterized by
both immune mediated peripheral cytopenia and bone marrow
failure, similarly to what demonstrated for AA and AIHA
itself. We therefore analyzed the presence of small PNH
clones in primary AIHA in order to evaluate their clinical
significance in this acquired hemolytic disease. Furthermore,
given that PNH typically arises in the context of autoimmune
activation, we investigated immunoregolatory and inflammatory
cytokines to address the role of PNH clones in the pathogenesis
of AIHA.

METHODS

Ninety-nine patients with primary AIHA tested at Fondazione
IRCCS Ca’ Granda Ospedale Policlinico of Milan from March
2001 until October 2019 were included in the analysis.
Demographic and clinical phenotypes were retrospectively
evaluated from August 2017 until January 2020.

Clinical history, blood counts, hemolytic markers,
AIHA type, bone marrow features, number and type of
therapeutic interventions and their response rates, occurrence
of complications (particularly thrombosis), and death
were collected.

Primary AIHA was defined by hemolytic anemia and positive
direct antiglobulin test (DAT), in the absence of associated
overt lymphoproliferative, infectious, autoimmune, or neoplastic
diseases. Patients were classified as wAIHA (DAT positive for IgG
or IgG+C), CAD (DAT positive for C only, with high titer cold
agglutinins), mixed (DAT positive for IgG+Cwith high titer cold
agglutinins) and atypical (DAT negative, DAT positive for IgA
only, warm IgM).

Reticulocytosis was evaluated and expressed as bone marrow
responsiveness index (BMRI: absolute reticulocyte count x
patient’ Hb/normal Hb) (1).

PNH Clone Testing
PNH testing had been performed by classical cytometry
technique until 2010 and, thereafter, using high sensitivity
(≥0.01%) fluorescent aerolysin (FLAER)-based assay according
to 2010 International Clinical Cytometry Society (ICCS) PNH
Consensus Guidelines and 2012 Practical PNH Guidelines (14,
15). FLAER/CD33/CD15/CD45 and FLAER/CD59 panels had
been used for white blood cell (WBC) and red blood cell (RBC)
testing, respectively.
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Evaluation of Immunomodulatory and
Inflammatory Cytokines
In a fraction of patients (N = 11) the following cytokines
were evaluated in serum using commercial ELISA kits (High
Sensitivity Elisa kits, Invitrogen by Thermo Fisher Scientific, MA,
USA, human TGF-β elisa kit, Immunological Sciences, Rome,
Italy): interleukin (IL)6, IL10, IL17, tumor necrosis factor (TNF)-
α, interferon (IFN)-γ, and transforming growth factor (TGF)-β.
Cytokine levels were compared with 40 age and sex matched
healthy controls.

Statistical Analysis
Student t–test was used for continuous variables and chi-square
test for categorical ones. Analysis of variance was performed by
using mean, median, ranges and standard errors. Cumulative
incidence of relapse, as well as overall survival, was evaluated by
Kaplan Meyer method.

RESULTS

Demographics and Hematologic
Parameters
Clinical and hematologic features are shown in Table 1: 46%
of patients were older than 60 years of age, male to female
ratio was 0.98, and all AIHA types were represented (wAIHA,
cAIHA, wAIHA+C, mixed and atypical cases). One third of
cases presented severe anemia and hemoglobin levels positively
correlated with LDH > 1.5 x ULN (r = 0.21 p= 0.03), indicating
active intravascular hemolysis, as well as with inadequate
reticulocytosis (i.e., BMRI<121, N = 22, r = 0.19, p = 0.05).
Bone marrow evaluation had been performed in 74 cases and
showed hypercellularity and diserythropoiesis in about half of
cases (52 and 57%, respectively), and reticulin fibrosis (MF-1)
in 42%; the latter displayed reduced BMRI compared with MF-0
patients (107 vs. 137, p = 0.05). Moreover, 63% of patients had
a lymphoid infiltrate, with mainly T or mixed phenotype, not
diagnostic for overt lymphoproliferative syndromes.

AIHA Treatment, Complication and
Outcome
Thirty-nine (39%) of patients required at least one transfusion
during the follow up, and 94% received AIHA treatment
(Table 2). Specifically, 89% were treated with steroids, 71%
responded, and 55% relapsed and required further treatment.
Second line therapy included rituximab (57% with an overall
response rate of 81.5%), splenectomy (7.2% with 75% responsive
cases), and cytotoxic immunosuppressants (20.8%, with a
response in 65% of patients). On the whole, patients received a
median of 2 (range 0–5) therapy lines. Regarding AIHA related
complications, 7% of cases developed acute renal failure, 31% an
infectious episode, 12% experienced a thrombosis (2 pulmonary
embolisms and 10 lower limbs deep venous thrombosis), and 8%
died (3 patients for AIHA-related complications).

TABLE 1 | Clinical and hematologic characteristics of AIHA patients, altogether

and according to PNH positivity.

All patients PNH neg PNH pos

Clinical

characteristics

N = 99 N = 62 N = 37

Median Age y(range) 57 (5–89) 57 (20–85) 63 (5–89)

M/F 49/50 30/32 20/17

Median follow up

m(range)

20 (0–262) 26 (0–205) 24 (2–262)

WAIHA N(%) 37 (38) 27 (43.5) 10 (28.6)

WAIHA IgG+C N(%) 15 (16) 9 (14.5) 6 (17)

CAD N(%) 33 (34) 19 (31) 14 (40)

Mixed N(%) 5 (5) 3 (5) 2 (6)

Atypical N(%) 7(7) 4 (6.5) 3 (8.6)

Median Hb g/dL (range) 7.9 (1.4–13.7) 7.8 (3.5–13.1) 7.9 (1.4–13.7)

Median LDH U/L(range) 451 (150–3,200) 392 (150–1,867) 606 (191–3,200)*

Median LDH ULN

(range)

2 (0–14) 2 (0–7) 2 (1–14)**

Median Ret x103/mmc

(range)

156 (5–574) 151 (5–478) 195 (38–574)

Median BMRI (range) 103 (2–378) 95 (2–305) 128 (18–378)

BMRI<121 N(%) 52 (52) 38 (61) 14 (38)£

Bone marrow

evaluation

N = 74 N = 47 N = 26

Median Cellularity %

(range)

55 (15–100) 55 (20–100) 55 (15–95)

Hypercellularity (%) 38 (51) 24 (51) 14 (54)

Fibrosis MF1 (%) 31 (42) 22 (46) 9 (35)

Dyserythropoiesis (%) 42 (57) 28 (58) 14 (52)

Median lymphoid

infiltrate%(range)

5 (0–75) 5 (0–75) 5 (0–30)

Type of infiltrate B(%) 10 (10) 8 (13) 2 (6)

T(%) 28 (29) 16 (26) 12 (34)

Mixed (%) 23 (24) 16 (26) 7 (20)

PNH paroxysmal nocturnal hemoglobinuria; CAD cold agglutinin disease; WAIHA

warm autoimmune haemolytic anemia; Hb hemoglobin; Ret reticulocytes; LDH lactate

dehydrogenase; ULN upper limit of normality; BMRI bone marrow responsiveness index.

*P = 0.005; **P = 0.03; £P = 0.01.

PNH Clone Analysis and Description of
Two Peculiar Cases
Thirty-seven cases (37%) showed a PNH clone on granulocytes.
Five patients had been tested before FLAER era (2 showed a
PNH clone size of 0.2% on granulocytes) and 3 of them were
re-evaluated thereafter (all PNH negative). PNH positive AIHA
showed increased LDH levels as compared to negative ones (p
= 0.005) and mostly adequate reticulocytosis (BMRI>121 in
62% vs. 39% in PNH negative, p = 0.01). Other hematologic
features, including AIHA type, were comparable among the
two groups (Table 1). Notably, relapse free survival (RFS) after
steroids was slightly shorter in PNH positive than in negative
cases, whilst no other differences in treatment choice or response
rate were noted. In PNH positive patients, median clone size on
granulocytes was 0.2% (0.03–85). Only two patients displayed
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TABLE 2 | Treatments and outcome of AIHA patients, altogether and according to

PNH positivity.

All patients PNH neg PNH pos

Treatment and outcome N = 99 N = 62 N = 37

First therapy line N(%) 96 (96) 61(98) 35 (94)

Second therapy line N(%) 57 (57) 35 (56) 20 (54)

Third therapy line or > N(%) 31 (31) 19 (31) 12 (32)

Median RFS days (range) 539 (25–6,014) 700 (25–6,014) 338 (42–3,483)

Evans (%) 14 (14) 6 (10) 7 (19)

Acute renal failure (%) 7 (7) 6 (10) 1 (3)

Infections (%) 31 (31) 19 (31) 10 (29)

Thrombosis (%) 12 (12) 7 (11) 5 (14)

Death (%) 8 (8) 3(5) 5(14)

Median OS m(%) 25 (0–262) 26 (0–205) 24 (2–62)

OS, overall survival; RFS, relapse free survival.

a PNH clone >10% and both showed LDH levels >1.5xULN.
The first patient was a 40-year-old man, initially diagnosed
with primary wAIHA that was effectively treated with steroids
and rituximab; subsequently a PNH clone 16% was detected
and he developed a severe and fatal Pneumocystis jerovecii
pneumonia (Figure 1A). The second patient was a 65-year-
old lady diagnosed with very severe wAIHA responsive to
steroids with amelioration of anemia. However, LDH levels
were persistently high, and a lower limb venous thrombosis
occurred. Re-evaluation of other causes of hemolysis, including
congenital, toxic, mechanical, and infective forms, demonstrated
a PNH clone 85% on granulocytes (Figure 1B). The patient
started low molecular weight heparin, but after discharge
discontinued treatment. She presented 2 months later with a
massive pulmonary embolism and very severe haemolytic anemia
(Hb 4.2 g/dL and LDH 5.7xULN). DAT tube was still positive
and PNH clone unchanged. She restarted anticoagulation, was
transfused, and commenced eculizumab. Since these two cases
resemble PNH (subclinical and haemolytic type, respectively),
were not included in further correlations.

Cytokine Studies
Figure 2 shows cytokine levels in PNH positive and PNH
negative AIHA patients, in age and sex matched controls (N =

40), and in a cohort of classic hemolytic PNH cases (N = 28).
IFN-γ and IL-17 levels were lower in PNH positive vs. PNH
negative AIHA (0.3 ± 0.2 vs. 1.33 ± 2.5; 0.15 ± 0.3 vs. 3,7 ± 9.1,
respectively, p = 0.07 for both), whilst IL-6 and IL-10 were not
significantly different in the two groups.

As compared to healthy controls, IFN-γ and IL-17 levels were
reduced in PNH positive AIHA, similarly to what observed in
patients with classical PNH. Conversely, IL-6 and IL-10 were
greater compared to healthy volunteers. Concerning TNF-α
and TGF-β levels, no clear differences emerged among groups.
Focusing on PNH positive AIHA patients, IFN-γ positively
correlated with reticulocytes (r = 0.52, p = 0.01) whilst IL-17
showed a negative correlation (r=−0.4, p= 0.04). Similar results
were observed for the bone marrow responsiveness index (r =

FIGURE 1 | Clinical course of two patients (A,B) with PNH/AIHA association

and a clone size>10%. Hb, continuous line; LDH, dotted line; gray area,

prednisone therapy; arrows, rituximab 375 mg/sm/week for 4 weeks; LMWH,

low molecular weight heparin; thrombosis, DVT, deep venous thrombosis; PE,

pulmonary embolism; cross indicates death.

0.69 for IFN-γ, p = 0.002 and r = −0.40 for IL-17, p = 0.04).
IL-6 levels and TGF-β positively correlated with clone size (r =
0.35, p = 0.007, and r = 0.38, p = 0.05, respectively), as well as
with LDH values (r = 0.69, p = 0.0003, and r = 0.34, p = 0.07,
respectively). Finally, TNFα levels showed a negative correlation
with clone size (r =−0.4, p= 0.03).

DISCUSSION

In this study we showed for the first time the presence of a PNH
clone in about one third of 99 consecutive AIHA patients. Almost
all cases displayed a small clone (<10%) considered the hallmark
of subclinical PNH according to IPIG classification (8, 10). Two
patients showed a greater clone size and were therefore diagnosed
as PNH associated with AIHA. This association has not been
previously described and should be considered when the patient
is referred for hemolytic anemia. In fact, thrombotic events
are known to occur in about 10% of active AIHA, whilst the
frequency is far higher (about 40%) in classic hemolytic PNH
(8, 16). Of note, in one of the two AIHA/PNH patients, a severe
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FIGURE 2 | cytokine levels in PNH positive and PNH negative AIHA patients, in age and sex matched controls (N = 40), and in a cohort of classic hemolytic PNH

cases (N = 28). IFN-γ and IL-17 levels were lower in PNH positive versus PNH negative AIHA (p = 0.07 for both). No significant p values were obtained. TNF-α and

TGF-β levels are not shown into the figure; their values were (mean ± SD): TNF-α 0.2 ± 0.2 pg/mL in PNH+AIHA, 0.2 ± 0.1 pg/mL in PNH-AIHA, 0.23 ± 0.29 pg/mL

in classic PNH, and 1.3 ± 0.9 pg/mL in healthy controls. TGF-β 3,249 ± 1,570 pg/mL in PNH+AIHA, 3,295 ± 1,697 pg/mL in PNH-AIHA, 21,010 ± 602 pg/mL in

classic PNH, and 3,160 ± 1,884 pg/mL in healthy controls. *represent outlier values.

thrombotic event occurred soon after the discontinuation of
anticoagulant prophylaxis.

An interesting point is the clinical significance of small PNH
clones in the remaining AIHA studied patients. It is known that
small PNH clones are present in more than 50 and 20% of
patients with aplastic anemia or hypoplastic MDS, respectively
(8, 11, 16). Their clinical significance is still a matter of debate,
although in various series an association with a deeper cytopenia,
increased LDH levels, and thrombotic tendency have been
demonstrated in PNH positive cases (11). Moreover, a better
response to immunosuppressive treatment was reported in this
group, stressing the link between PNH clone emergence and
immune mediated bone marrow failure. Among the hypothesis
of PNH clone selection in the context of bone marrow failure,
it has been reported that GPI molecules may be the target
of the autoimmune attack; therefore, GPI negative stem cells
are spared and may further expand through still unknown
mechanisms, including additional mutations and environmental
factors (8, 9, 16). Our results showed that PNH positive AIHA
cases had greater LDH levels, suggesting a higher hemolytic
pattern and possibly an increased thrombotic risk, although the
number of cases and the follow up may be insufficient to draw
definitive conclusions. As regards therapy outcome, no clear
associations have been demonstrated with PNH positivity in this
AIHA cohort. Another feature of PNH positive AIHAs is their

better bonemarrow compensatory response compared with PNH
negative cases. Consistently, hemoglobin values were comparable
between the two groups, in spite of the more marked hemolytic
pattern observed in the former.

On the whole, despite the few clinical correlations found
possibly due to the small sample size and relative short follow-
up, PNH clone testing may be included in the initial work
up of AIHA to either assess the presence of the two diseases
requiring different and specific therapy. Moreover, PNH
clone testing is advisable in complex cases with inadequate
response to AIHA-specific therapy and with persistent
hemolytic activity.

In the attempt to investigate the physiopathology underlying
the emergence of PNH clones in AIHA, we tested several
immunomodulatory and inflammatory cytokines. PNH positive
AIHA patients showed an immunological signature distinct
from negative cases, with reduced levels of IFN-γ and IL-
17. The former is a classic T-helper 1 cytokine involved
in the autoimmune attack against bone marrow precursors
typical of aplastic anemia (3) and reported elevated also in
AIHA. Likewise, IL-17, a cytokine known to amplify the pro-
inflammatory and autoimmune response, has been reported
elevated in the same settings (17–19). In our study, PNH
positive AIHA showed a Th1 profile more similar to hemolytic
PNH than to “classic” (PNH negative) AIHA, suggesting that
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these small clones might mitigate Th1 response. On the
contrary, Th2 cytokines levels, i.e., IL-6 and IL-10, were not
different in PNH positive and negative AIHA cases. This
finding suggests that Th2 signature, the hallmark of humoral
autoimmunity, is particularly strong in AIHA and is not
influenced by the presence of a small PNH clone. Although
these data are preliminary and would need further ad-hoc
studies, it is tempting to speculate that the detection of a
small PNH clone in AIHA reveals the presence of a wider
spectrum of immunologic mechanisms involved in pathogenesis
of the disease compared with PNH-negative AIHAs. In fact,
in the PNH-positive AIHAs the immunologic signature ranges
from overt antibody mediated autoimmunity against peripheral
erythrocytes to a “central” autoimmune attack to bone marrow
precursors. As a matter of fact, PNH clones, in the context
of AA, are thought to be “surviving clones” spared after
autoimmune attack against hematopoietic stem cells (8, 9);
similarly, autoimmunity against erythroid precursors has been
demonstrated in AIHA (3). Whether the emergence of PNH
clones in AIHA is related to coexisting immune-mediated
bone marrow failure and/or represents a favorable response to
bone marrow stress related to acute hemolysis would require
further investigation.

In conclusion, our data suggest testing PNH clones in
AIHA since their prevalence is not negligible. Moreover, PNH
positivity correlates with a prominent hemolytic pattern and
may confer a higher thrombotic risk. Finally, cytokine patterns
of PNH positive and negative AIHAs may give hints about the
pathogenesis of highly hemolytic AIHA.
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Congenital hemolytic anemias (CHAs) are a heterogeneous group of rare hereditary

conditions including defects of erythrocyte membrane proteins, red cell enzymes, and

disorders due to defective erythropoiesis. They are characterized by variable degree of

anemia, chronic extravascular hemolysis, reduced erythrocyte life span, splenomegaly,

jaundice, biliary lithiasis, and iron overload. Although few data are reported on the

role of the immune system in CHAs, several immune-mediated mechanisms may be

involved in the pathogenesis of these rare diseases. We reported in ∼60% of patients

with hereditary spherocytosis (HS), the presence of naturally-occurring autoantibodies

(NAbs) directed against different membrane proteins (α- and β-spectrin, band 3, and

dematin). Positive HS subjects showed a more hemolytic pattern and NAbs were

more evident in aged erythrocytes. The latter is in line with the function of NAbs in

the opsonization of damaged/senescent erythrocytes and their consequent removal

in the spleen. Splenectomy, usually performed to reduce erythrocyte catheresis and

improve Hb levels, has different efficacy in various CHAs. Median Hb increase is 3

g/dL in HS, 1.6–1.8 g/dL in pyruvate kinase deficiency (PKD), and 1 g/dL in congenital

dyserythropoietic anemias (CDA) type II. Consistently with clinical severity, splenectomy is

performed in 20% of HS, 45% of CDAII, and in 60% of PKD patients. Importantly, sepsis

and thrombotic events have been registered, particularly in PKD with a frequency of∼7%

for both. Furthermore, we analyzed the role of pro-inflammatory cytokines and found

that interleukin 10 and interferon γ, and to a lesser extent interleukin 6, were increased

in all CHAs compared with controls. Moreover, CDAII and enzymatic defects showed

increased tumor necrosis factor-α and reduced interleukin 17. Finally, we reported that

iron overload occurred in 31% of patients with membrane defects, in ∼60% of CDAII

cases, and in up to 82% of PKD patients (defined by MRI liver iron concentration >4mg

Fe/gdw). Hepcidin was slightly increased in CHAs compared with controls and positively

correlated with ferritin and with the inflammatory cytokines interleukin 6 and interferon γ.

Overall the results suggest the existence of a vicious circle between chronic hemolysis,

inflammatory response, bone marrow dyserythropoiesis, and iron overload.

Keywords: congenital hemolytic anemias, splenectomy, inflammation, cytokines, iron overload, naturally

occurring antibodies
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INTRODUCTION

Congenital hemolytic anemias (CHAs) are a heterogeneous
group of rare hereditary conditions characterized by reduced
life span and premature removal of the erythrocytes from
the circulation. They comprise defects of the erythrocyte
membrane proteins and of red cell enzymes metabolism, as well
as alterations at the level of erythrocyte precursors, resulting in
defective bone marrow erythropoiesis. The typical examples of
membrane defects are hereditary spherocytosis (HS), hereditary
elliptocytosis (HE), and the group of hereditary stomatocytosis
(HSt). Glucose-6-phosphate dehydrogenase (G6PD) and
pyruvate kinase (PK), are the most common enzyme deficiencies,
and congenital dyserythropoietic anemia (CDA) type II is the
best studied form among defective erythropoiesis. The role of the
immune system has been poorly investigated in these conditions,
at variance with the several reports in hemoglobinopathies such
as sickle cell disease and thalassemia, which are beyond the scope
of this review.

In this review the role of naturally-occurring autoantibodies
will be discussed focusing on their ability to opsonize
damaged/senescent erythrocytes that are consequently removed
in the spleen. Furthermore, as splenectomy is one of the
therapeutic options in these conditions, we will describe the
immunological abnormalities following this procedure, with
particular reference to increased infectious and thrombotic
risk. Finally, given the increasing interest in the occurrence
of iron overload in CHAs and consequent relevant clinical
complications, we will review available literature on this topic.
We will focus on the pathophysiology of iron overload which
is closely linked to inflammatory cytokines and to the hepcidin
pathway, which in turn is straightly linked to the immune system.

CLINICAL AND MOLECULAR FINDINGS IN
CHAs

Although some hemolytic features are present also in
hemoglobinopathies, the classic CHAs are characterized by
chronic extravascular hemolysis, splenomegaly, jaundice, biliary
lithiasis, and a variable degree of anemia and iron overload. The
most relevant genetic basis of CHAs are shown in Table 1 and
more detailed description of the different forms is given in the
following sections.

Red Cell Membrane Disorders
Inherited RBC membrane disorders are caused by quantitative
or qualitative defects in transmembrane or cytoskeletal proteins
of erythrocytes (1–3). HS is the most frequent congenital
hemolytic anemia in Caucasians, with reported prevalence
ranging from 1:2,000 to 1:5,000, and is characterized by a highly
heterogeneous molecular defect, involving the genes coding
for RBC membrane proteins SPTA1 (α-spectrin), SPTB (β-
spectrin), SLC4A1 (band 3), ANK1 (ankyrin), EPB42 (protein
4.2). In general, these abnormalities affect the vertical interactions
between phospholipid bilayer and the cytoskeleton of RBC
membrane, resulting in a progressive change of the discocytes
into osmotically fragile spherocytes that are recognized and

sequestered by the spleen (4). HE, characterized by the presence
of elliptocytes in peripheral blood smear, is more prevalent
in malaria endemic regions in West Africa; it is usually
an asymptomatic condition, but moderate to severe anemia
may be present in ∼10% of cases (5). The severe recessive
variant is hereditary pyropoikilocytosis, in which the significant
membrane fragmentation and reduced surface area is mostly
caused by a pathogenic mutation in SPTA1 gene inherited in
trans to the hypomorphic variant αLELY (Low Expression LYon)
(6). In HSt the inability to regulate the cation homeostasis
lead to inappropriate shrinkage (dehydrated HSt) or swelling
(overhydrated HSt) of the RBCs (7–13). Finally, “Gardos
cahnnelopathy” is a recently described form of HSt with some
differences in the clinical phenotype and hematological features,
caused by mutations in KCNN4 gene (14–18).

Defects of Red Cell Metabolism
CHAs also occur as a consequence of RBC metabolism defects,
affecting one of the three main metabolic pathways: the Embden-
Myerhof pathway (glycolysis), the nucleotide metabolism, and
the exose-monophosphate shunt. G6PD deficiency is the
most common erythroenzymopathy, usually causing acute
hemolysis during oxidative stress, with the exception of the
class-I variants, which also result in chronic hemolysis (19,
20). Among the abnormalities of glycolytic enzymes, the
most common is PK deficiency (PKD) (21–25), followed by
glucosephosphate isomerase and hexokinase deficiency (26–
29). Pyrimidine 5′-nucleotidase is the most frequent defect of
nucleotidemetabolism (30), whereas adenylate kinase deficicency
has been reported in 12 families only (31). When the involved
gene is ubiquitously expressed, the enzymopathy may be
associated to extra-hematological signs such neuromuscular
abnormalities, myopathy and mental retardation, as in the case
of triosephosphate isomerase (32, 33), phosphoglycerate kinase
deficiency (34) and phosphofructokinase deficiency (35).

Congenital Dyserythropoietic Anemias
Congenital dyserythropoietic anemias (CDA) comprise a
group of rare/very rare diseases characterized by ineffective
erythropoiesis and morphological abnormalities of bone marrow
erythroblasts (36, 37), caused by different molecular mechanisms
affecting cell maturation and division. Three major types and
other more rare or sporadic variants can be classified, on the
basis of the typical morphology and on the affected genes
(38–40). CDA type I, caused by biallelic mutations in CDAN1
(CDAIa) or c15orf41 (CDAIb) genes, is characterized by the
presence of 2-5% binucleated erythroblasts of different size
and shape in bone marrow, chromatin bridges between nuclei,
and dense heterochromatin with a “Swiss cheese” appearance
when observed at electron microscopy (41). CDA type II
(CDAII) is a recessive disease caused by mutations in the
SEC23B gene (42, 43), characterized by 10–35% binucleated and
multinucleated erythroblasts which present with a peripheral
double membrane, and hypoglycosylation of band 3 as a
biochemical hallmark. CDAIII is caused by the dominant P916R
mutation of KIF23 gene with large multinucleated erythroblasts
(44), whereas E325K mutation of KLF1 gene is responsible for
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TABLE 1 | Genetic basis of congenital hemolytic anemias.

Gene Gene location Function Trasmission

RBC membrane defects

Hereditary spherocytosis SPTA1 1q23.1 Membrane skeletal network AR

SPTB 14q23.3 Membrane skeletal network AD

SLC4A1 17q21.31 Anion exchange channel

Link to glycoltytic enzymes

Vertical interactions

AD

ANK1 8p11.21 Vertical interactions AD, de novo

EPB42 15q15.2 Stabilize band3/ankyrin complex AR

Hereditary elliptocyosis SPTA1 1q23.1 Membrane skeletal network AD

SPTB 14q23.3 Membrane skeletal network AD

EPB41 1p35.3 Stabilize spectrin-ankyrin contact AD

Hereditary

pyropoikylocytosis

SPTA1/ SPTA1LELY

SPTA1/ SPTB

SPTB/SPTB

1q23.1 Membrane skeletal network AR

Hereditary stomatocytosis

Dehydrated PIEZO1 16q24.3 Mechanosensitive ion channel AD

Overhydrated RHAG 6p12.3 Rh -blood group AD

Gardos Channelopathy KCNN4 19q13.31 Potassium Ca2+-Activated Channel AD, de novo

RBC enzyme defects

Glucose-6-phosphate

dehydrogenase deficiency

G6PD Xq28 Hexose-monophosphate shunt X-linked

Pyruvate kinase deficiency PK-LR 1q22 Glycolysis AR

Glucosephosphate

isomerase deficiency

GPI 19q13.11 Glycolysis AR

Triosephosphate isomerase

deficiency

TPI1 12p13.31 Glycolysis AR

Hexokinase deficiency HK1 10q22.1 Glycolysis AR

Phosphofructokinase

deficiency

PFK-M

PFK-L

12q13.31

21q22.3

Glycolysis AR

Phosphoglycerate kinase

deficiency

PGK1 Xq21.1 Glycolysis X-linked

Pyrimidine-5′-nucleotidase

deficiency

NT5C3A 7p14.3 Nucleotide metabolism AR

Adenylate kinase deficiency AK1 9q34.11 Nucleotide metabolism AR

Congenital dyserythropoietic anemias

CDAI CDAN1

C15ORF41

15q15.2

15q14

Microtubule attachments

Restriction endonuclease

AR

CDAII SEC23B 20p11.23 Vescicle trafficking AR

CDAIII KIF23 15q23 Cytokinesis AD

CDA variants GATA1 Xp11.23 Transcription factor X-linked

KLF1 19p13.13 Transcriptional activator AD

AR, Autosomic recessive; AD, Autosomic dominant.

CDAIV (45) and mutations in GATA1 gene cause an X-linked
sporadic form (46).

THE ROLE OF NATURALLY OCCURRING
ANTIBODIES IN CHAs

Natural antibodies (Nabs) are circulating antibodies that, in
healthy subjects, occur without known immune exposure or
vaccination. They are mainly moderate affinity polyreactive IgM
and are secreted by B1 cells, a subset of B cells that have

been identified as CD20+CD27+CD43+ memory B cells without
activation markers (47, 48). NAbs play different roles in health
and disease (49). They contribute as a first line of defense from
infection of bacterial, viruses, protozoa, and fungi (50, 51). This
activity is mediated by opsonisation and neutralization of the
pathogens, by activation of T cell and B cell responses, and by the
induction of long-term immunememory cells (52, 53). NAbs play
also a crucial role in the maintenance of the immune homeostasis
by recognizing apoptotic cells membranemarkers and promoting
the process of their phagocytic clearance (54). Moreover, there is
evidence that NAbs binding to inflammatory cytokines protect
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FIGURE 1 | The several roles of Naturally Occurring Antibodies (NAbs).

against improper inflammation (55). In addition, they concur to
the opsonisation and removal of potentially harmful elements,
thus exerting a physiologic antitumor surveillance (56). Finally,
NAbs are closely related to autoimmunity, acting in a dual
manner. On one hand, they prevent autoimmune disease by
binding to immune-complexes and promoting their removal,
or to self-antigens by increasing their exposure to immature
B cells, and thus inducing tolerance (57, 58). On the other
hand, in systemic autoimmune diseases, NAbs can bind to
different self-molecules, such as nucleic acids, phospholipids,
erythrocytes, serum proteins and cellular components, and cause
disease through the formation of immune complexes (49, 59, 60)
(Figure 1).

Regarding CHAs, NAbs anti-spectrin and anti-band 3 had
been described long ago in sera from healthy subjects and
in β-thalassemia patients, hypothesizing a physiologic role in
the clearance of debris of lysed cells (61, 62). In particular,

Reliene et al. (63) demonstrated the presence of high-affinity
NAbs directed against RBCs (up to 140 molecules per cell) in
band 3-deficient HS patients. Moreover, their number increased
in with cell age, suggesting a possible role in removal of
senescent cells. In line with these results, Zaninoni et al. (56)
found that 61% of HS cases showed RBC-bound IgG positive
values (up to 330 ng/mL), detected by mitogen-stimulated direct
antiglobulin test (MS-DAT). The latter, is a sensitive test that
may amplify autoantibody secretion, including NAbs production,
through mitogen stimulation in vitro (64, 65). RBC-bound IgG
were directed against different membrane proteins (α- and β-
spectrin, band 3, and dematin) and were more evident in aged
samples obtained after several days of storage at 4◦C (56). As
shown in Table 2, positive HS cases, mainly spectrin-deficient
cases, had an increased number of spherocytes and showed
a more hemolytic pattern (increased number of reticulocytes,
unconjugated bilirubin and LDH values), suggesting that these
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TABLE 2 | Hematological characteristics of HS patients divided according to

MS-DAT positivity.

MSDAT negative MSDAT positive

Non-splenectomized

N◦ patients 30 48

Hemoglobin (g/dL) 12.5 ± 2.2 12.3 ± 1.8

Spherocytes (%) 5 (2–24) 7 (1–68)

Reticulocytes ×103/mmc 147 ± 98 278 ± 133

Unconjugated bilirubin 2.7 ± 2.3 3.0 ± 2.1

LDH (U/L) 396 ± 158 473 ± 163

Haptoglobin <20 mg/dL (N) 22/30 (73%) 43/48 (89%)

IgG bound to RBC (ng/mL) 105 ± 31 331 ± 217

Splenectomized

N◦ patients 6 3

Hemoglobin (g/dL) 15 ± 0.65 13.9 ± 1.6

Spherocytes (%) 8 (5–11) 4 (3–20)

Reticulocytes ×103/mmc 85 ± 29 95 ± 77

Unconjugated bilirubin 0.5 ± 0.17 1.5 ± 1.8

LDH (U/L) 342 ± 54 322 ± 93

Haptoglobin <20 mg/dL (N) 0/6 (0%) 2/7 (35%)

IgG bound to RBC (ng/mL) 100 ± 44 277 ± 131

Values are expressed as median (range) or mean±DS. Normal values are Hb: 13.6–16.7

g/dL; MCV 78-99 fL; reticulocytes: 16–84 × 103/mmc; unconjugated bilirubin <0.75

mg/dL, aptoglobin: 30–200mg/dL; LDH: 135–214 U/L. Data obtained from Zaninoni et al.

(56).

antibodies may have a pathogenic role, participating in the loss of
membrane area and reduction of surface-to-volume ratio (66).
This phenomenon is less evident in splenectomised patients
who lack the main organ in which RBC clearance occurs. In
fact, the amount of RBC-bound IgG is slightly lower in these
patients compared to non-splenectomised ones. Although there
is no direct evidence that RBC antibodies induced by mitogen
stimulation are NAbs, their increase with RBC age, and their
greater amount in more hemolytic HS subjects are in favor of
this hypothesis. Altogether these findings suggest that a humoral
immune response has a role in removing senescent and damaged
HS cells, thus participating in the clinical picture, and severity of
the disease.

THE ROLE OF THE SPLEEN AND EFFECTS
OF SPLENECTOMY IN CHAs

It is well-established that the spleen is the main catheretic organ
involved in the removal of damaged or abnormal red blood
cells, mainly via the macrophage system. In fact, splenectomy
has been suggested as a possible therapeutic approach for various
hemolytic diseases including CHAs. Its efficacy greatly varies
among different pathologies, being maximal in HS, moderate
in red cell enzyme defects, and minimal in dyserythropoietic
anemias. Autoimmune hemolytic anemia (AIHA) and immune
thrombocytopenia (ITP) are two acquired autoimmune disorders
were splenectomy has been the only second line therapy
for many years (67, 68). In recent years, the percentage of

patients with CHAs or autoimmune cytopenias subjected to
this therapeutic option has progressively declined due to the
availability of new drugs and to the increasing awareness
of possible complications. They include short- and long-
term infections by encapsulated microorganisms (Streptococcus
pneumonie, Neisseria meningitides, and Hemophilus influenza)
(69), thrombotic events and pulmonary hypertension (70, 71).
The mechanism underlying thrombotic complications are poorly
understood. Early thrombotic events have been related to stasis in
the splenic vein remnant, increased numbers of platelets, and to
large spleen size previous surgery. Additional mechanisms, under
investigation, are endothelial alterations, presence of activated
platelets, and increased amounts of circulating procoagulant
microvescicles. Moreover, there is an interplay between the
coagulation and the immune system, particularly with the
complement cascade as highlighted in paroxysmal nocturnal
hemoglobinuria (72).

Concerning CHAs, a large retrospective analysis reported that
splenectomy has been performed in 21% of HS patients and
induced a median Hb increase of 3 g/dL (from 10.8 g/dL to 13.9
g/dL) (73). After splenectomy no infectious complications have
been reported in a recent meta-analysis (74). On the contrary,
episodes of stroke, pulmonary emboli or pulmonary arterial
hypertension have been described with an overall risk 5.6-fold
higher than in non-splenectomised (71, 75–77).

Regarding PKD, Zanella et al. (21, 22) reported that 18/61
(30%) patients had been splenectomised with an amelioration of
the hemoglobin levels (median Hb increase of 1.8 g/dL, range
0.4–3.4). In the more recent and larger international series of
splenectomised PKD cases, Grace et al. (23) showed that 59%
of patients have been splenectomised at a median age of 6.5
years (range 0.4–37.8) with a median Hb increase of 1.6 g/dL.
Sepsis and thrombotic events have been registered in 7 and
8%, respectively.

Regarding HSt, splenectomy is contraindicated in both
dehydrated and overhydrated types, due to the highly increased
risk of thromboembolic complications. In old case reports, severe
thrombotic complications after surgery have been documented
in 100% of cases, of which 3 were fatal (78–80). More recently,
Andolfo et al. (81) reported that Hb levels did not improve
and severe thrombotic episodes occurred in 5 PIEZO1-mutated
splenectomized cases. Moreover, Picard et al. (82) described 12
cases in which splenectomy has been performed at a median
age of 24 years (range, 4–41) and before the diagnosis of
DHSt. Surgery didn’t ameliorate hemolysis (mean Hb level
11.2±1.9 g/dL and reticulocytes count 280 ± 134 × 109/L after
splenectomy). Thrombotic complications occurred in all the 8
splenectomised patients with PIEZO1mutation, while in none of
the 4 subjects with KCNN4mutation.

Finally, splenectomy has been described in 13/53 (25%)
CDAI patients with severe anemia and mainly transfusion-
dependent. Surgery has been performed mainly in adulthood
(range 27–42 yrs) and 6/13 patients became transfusions-
independent. However, the long follow-up performed revealed
that 3 patients died, 1 of pulmonary arterial hypertension and
2 of overwhelming sepsis (83, 84). Concerning CDAII, Heimpel
et al. (85) described that splenectomy has been performed in
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22/48 (46%) patients at a median age of 19.9 years (range 1–
50) with a median Hb improvement of about 1 g/dL, remaining
below the reference values. The analysis of a larger series of
101 CDAII patients from 91 families, with a median follow-up
of 23 years (range 0–65), is in line with these results (86): 40/
101 cases underwent splenectomy, 16 of whom before diagnosis
of CDAII, and at median age of 19 years (range 3–56). The
rate of splenectomy dropped from 40 to 24% by considering
only patients splenectomised after the diagnosis of CDAII, and
further decreased to 7.5% by considering only the patients
splenectomised in the past 15 years. The median Hb increase
was 1.7 g/dL (range 1–6,7 g/dL, and splenectomy abrogated
transfusion requirement in all patients but three. Information on
splenectomy complications was available in 12 patients: one child
had a thromboembolic event soon after surgery, and two patients
had sepsis after 3 and 15 years. Table 3 summarizes available
studies on splenectomy in CHAs with the relative efficacy and
safety data.

In conclusion, the efficacy of splenectomy in CHAs mainly
resides in the removal of the catheretic organ. However,
as the spleen plays an important role in the immune
system, this therapeutic option may be accompanied by a
reduction of the immune competence with possible serious
consequences. To reduce their development, patient education
and immediate interventions in case of febrile episodes are
pivotal. Additional important prophylaxis includes continuous
antimicrobial therapy and periodical re-vaccination.

CYTOKINE AND ERYTHROPOIETIN
LEVELS IN CHAs

It is well-known that there is a complex interplay between
hemolysis, inflammation, and erythropoiesis (87). Although
intravascular hemolysis is not the main pathogenic mechanism
in CHAs, it may occur in acute and severe hemolytic
crisis, and results in the release of cell-free hemoglobin
that has pro-inflammatory properties (88). Moreover, it is
clearly demonstrated that anemia of chronic inflammatory
disease is driven by alterations of several immune-regulatory
cytokines. In particular, overproduction of pro-inflammatory
mediators, such as interleukin (IL)1-β, tumor necrosis factor
(TNF)-α, IL-6, and interferon (INF)-γ, have been reported
in several conditions including autoimmune diseases, chronic
kidney and pulmonary disease, cancer, and chronic infections
(89). In particular, in autoimmune hemolytic anemia several
abnormalities of immune regulatory cytokines have been
reported: high serum levels of IL-10 and IL-12 (90) and
increased IL-1α, IL-2/IL-2R, IL-6, and IL-21. In cell supernatants,
the T helper (Th)-1 cytokines IL-2 and IL-12 were reported
elevated, whereas IFN-γ was found reduced, and the Th-2
cytokines IL-4 and IL-13 were increased, together with elevated
production of IL-6, IL-10, and IL-17 (64, 91). Moreover,
AIHA patients with active hemolysis showed further reduction
of IFN-γ and increased secretion of transforming growth
factor (TGF)-β that favor the differentiation of a Th-17
subset, which amplifies the pro-inflammatory and autoimmune

response (92). It is known that inflammatory cytokines down-
regulate erythropoietin (EPO) production, thus compromising
erythropoiesis, and can activate erythrophagocytosis, especially
in acute inflammation (89, 93).

Regarding CHAs, little is known about cytokine levels.
Barcellini et al. (94) described cytokine status and EPO levels
in 52 patients with membrane or enzymatic defects and CDAII.
As shown in Figure 2, IL-10 and IFN-γ were increased in
all groups compared to age and sex matched controls, being
particularly evident in membrane defects. IL-6 was increased
as well, although to a lesser extent. Interestingly, CDAII and
enzymatic defects showed a similar pattern regarding TNF-α and
IL-17 with increased values of TNF-α and reduced levels of IL-
17. Finally, EPO levels were increased in CHAs compared with
controls, particularly in CDAII, possibly reflecting an attempt to
compensate anemia. These alterations showed no relationship
with severity of the clinical phenotype, i.e., degree of anemia
and hemolysis. This was the first evaluation of cytokines in these
diseases and results should be interpreted with caution due to
the limited sample size and to the high inter-individual variation
of the cytokine signature. However, it can be speculated that a
chronic inflammation exists also in CHAs and may affect proper
bone marrow compensatory erythropoiesis. Moreover, it may
play a role in the complex interplay between hemolysis and
iron overload.

THE VICIOUS CIRCLE OF IRON AND THE
IMMUNE SYSTEM IN CHAs

It is well-recognized that iron overload (IO) occurs in
hemoglobinopathies, also because of transfusion support.
Complication of IO are well-described in these diseases, and
include cardiac dysfunction (arrhythmia, cardiomyopathy,
hemosiderosis), liver cirrhosis, liver cancer and hepatitis,
metabolism dysfunction (diabetes, hypogonadism, thyroid
disorders, parathyroid, and less level of adrenal glands), and
delays in sexual maturity, impotence and infertility (95–97).

Occurrence of iron overload is well-documented in
dyserythropoietic anemias, PKD and HSt. Russo et al. (98)
reviewed data of 205 CDAII showing that 57% patients had
a serum ferritin level of >500µg/ml, of whom 15% never
transfused, and a transferrin saturation (TfSat) value of about
60%. More recently, IO was reported in 45% of PKD patients,
as defined by ferritin levels >1,000 µg/L or chelation. A liver
iron concentration (LIC) > 4mg Fe/gdw was observed in 82% of
patients by magnetic resonance imaging (MRI), even in absence
of regular transfusions (23, 99). Moreover, van Strateen et al.
(100), showed that LIC ≥ 3mg Fe/gdw was present in 71%
(31/44) of patients with CHAs and LIC ≥ 7mg Fe/gdw was
present in 36% (16/44), regardless of transfusion dependency
and ferritin levels >1,000 µg/L. None of the patients had
cardiac iron overload. Iron overload has been also described in
HSt, particularly in the DHSt form and Gardos chanellopathy,
where hyperferritinemia, high transferrin saturation or clinical
iron overload are very frequent (81, 82, 101). In these cases
hyperferritinemia is not related to transfusions since usually
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TABLE 3 | Effect of splenectomy in congenital hemolytic anemias.

Main hematological findings Complications References

Hereditary Spherocytosis Median Hb increase of 3 g/dL

Normalization of reticulocytosis

Decrease of unconjugated bilirubin and

LDH levels

No infectious complications Thrombotic

events (risk 5.6-fold higher)

(75)

(76)

(73)

(77)

(71)

(74)

Dehidrated Hereditary

Stomatoytosis (PIEZO1)

Hb amelioration in few reported cases

No amelioration of Hb levels

Severe/fatal thrombotic complications

(PHT, PE; priapism)

Severe thrombotic events

(78)

(79)

(80)

(81)

(82)

Gardos Chanellopathy

(KCNN4)

Amelioration of Hb levels No thrombotic events (81)

(82)

Piryuvate Kinase deficiency Median Hb increase of 1.6–1.8 g/dL

Decrease of unconjugated bilirubin

Reduction in the number of patients

receiving regular transfusions

Sepsis in 7% of cases

Thrombotic events in 8% of cases

(21)

(22)

(23)

Congenital

Dyserythropoietic anemia

type I

Amelioration of Hb levels

Transfusion-independency in some cases

Fatal complications: 1 pulmonary arterial

hypertension and 2 overwhelming sepsis

(83)

(84)

Congenital

Dyserythropoietic anemia

type II

Hemoglobin concentration improved in all

patients but remaining below reference

values

Decrease of bilirubin levels

Median Hb increase of 1.7 g/dL

Transfusion-independency in almost

all cases

No infectious or thrombotic episodes

Sepsis: 2 episodes

Thrombotic event: 1 episode

(85)

(86)

PE, pulmonary embolism; PHT, pulmonary hypertension.

FIGURE 2 | Cytokine and erythropoietin serum levels in congenital hemolytic anemias. Values are expressed as mean±SD. Data obtained from Barcellini et al. (94).

patients are not transfused on a regular basis. Serum ferritin
level up to ∼1,000 µg/L, TfSat value of about 60–70%, LIC ≥

4mg Fe/gdw, and cardiac T2∗ < 10ms, have been described in
case reports (102–105). Similar results have been reported in a
large series of 126 patients were the mean±SD ferritin level at

diagnosis was 764±480 µg/L (1,702 ± 1,048 µg/L in 5 KCNN4
gene mutated cases, and 656 ± 428 µg/L in 40 PIEZO1 mutated
patients); mean liver iron content, evaluated by MRI, was 200 ±
103µmol/g at diagnosis (82). Finally, Barcellini et al. (94) studied
52 patients with different CHAs showing that 60% of subjects had
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TABLE 4 | Iron overload in congenital haemolytic anemias.

Main hematological findings Complications Reference

Hereditary Spherocytosis Median ferritin value 634 µg/L (192–1,171) (n = 26)

Median TfSat value 36 % (23–67)

Median NTBI value −0.08 µmol/L (−1.1 to 4.05)

Mean ± SD hepcidin value 29.7 ± 4 ng/mL

LIC > 4mg Fe/gdw in 8/26 cases

1 patient showed moderate cardiac IO

(T2* 13ms)

(94)

Dehidrated Hereditary

Stomatoytosis (PIEZO1)

Ferritin value up to ∼1,000 µg/L

TfSat value of ∼60–70%

LIC ≥ 4mg Fe/gdw

Cardiac IO with T2* < 10ms

(102)

(103)

(105)

(104)

Mean ± SD ferritin value 656 ± 428 µg/L (n = 40) Mean liver iron content, evaluated by MRI,

was 200±103 µmol/g

(82)

Median ferritin value 425 µg/L (n = 20) Not reported (81)

(106)

Gardos Chanellopathy

(KCNN4)

Mean ± SD ferritin value 1,702 ± 1,048 µg/L (n = 5) Mean liver iron content, evaluated by MRI,

was 200±103 µmol/g

(82)

Piruvate Kinase Deficiency Median ferritin value 425 µg/L (182–1,605) (n = 17)

Median TfSat value 52% (22–89)

Median NTBI value 0.26 µmol/L (−0.48 to 2.37), Mean

± SD hepcidin value 15.15 ± 3 ng/mL.

LIC > 4mg Fe/gdw in 6/17 cases.

Overall prevalence of IO was 45% (82/181)

as defined by ferritin or chelation; 82%

(67/82) as define by LIC > 4mg Fe/gdw

(94)

Median ferritin value 583 ng/mL (17–5,630).
7% (5/75) of cases had cardiac IO

(99)

(23)

Congenital

Dyserythropoietic Anemia

type II

Median ferritin value 441 µg/L (206–1,605) (n = 9)

Median TfSat value 85% (13–92)

Median NTBI value 1.07 µmol/L (0.9–2.15)

Mean ± SD hepcidin value 17.6 ± 6.5 ng/mL.

LIC > 4mg Fe/gdw in 7/9 cases

1 patient showed moderate cardiac IO

(T2* 12.7ms)

(94)

Median ferritin value 464.8 ± 55.9 µg/L (n = 109)

Median TfSat value of ∼60%

Not reported (98)

Median max ferritin value 668 µg/L (27–5,267) (n = 98)

Median max TfSat value of 81% /20–157) (n = 79)

Not reported (86)

n, number of patients; TfSat, Transferrin saturation; NTBI, Non-transferrin-bound serum iron; LIC, liver iron concentration.

ferritin values> 500 µg/L. TfSat was > 50% in 31% of patients
with membrane defects, in 66% with CDAII, and in 53% with
enzymopathies. Moreover, non-transferrin-bound serum iron
(NTBI) serum levels were increased in CDAII and moderately
augmented in enzymatic defects. By MRI, median LIC value was
3.4mg Fe/gdw (range 1.4–16.1) and 40% of patients, almost all
CDAII, had a LIC ≥4 mg Fe/gdw (Table 4).

Among factors possibly involved in IO, low hepcidin levels,
ineffective erythropoiesis and an altered pro-inflammatory
cytokine profile have been suggested to play different roles
in CHAs (107–109). Ineffective erythropoiesis is probably the
leading mechanism, since the greater frequency of IO is observed
in CDAII, and dehydrated stomatocytosis (13, 110). In line with
this hypothesis a correlation was observed between LIC and
EPO levels (94). In the same series, hepcidin, the main hormone
involved in the regulation of iron homeostasis, was slightly
increased in CHAs compared with controls, and positively
correlated with ferritin. Moreover, hepcidn positively correlated
with the inflammatory cytokines IL-6 and IFN-γ, and has a direct
pro-inflammatory activity (89, 93). Further evidence for the
interplay between iron and inflammation comes from studies in
DHSt, where hepcidin levels were decreased and erythroferrone
(ERFE), the negative regulator of hepcidin, slightly increased. In
patients with gain-of-function mutations in PIEZO1, inhibition
of the bone morphogenetic proteins (BMP)/small mother against
decapentaplegic (SMADs) pathway was involved in hepatic iron
metabolism impairment (106). In addition, another important

FIGURE 3 | Vicious circle among chronic hemolysis, inflammatory response

and iron overload. IL, Interleukin; IFN, Interferon; TfSat, Transferrin saturation;

NTBI, Non-transferrin-bound serum iron.

factor for iron balance is emojuvelin (HJV), a co-receptor of
BMP that is degraded in juvenile hemochromatosis, causing
severe hepcidin deficiency and iron overload. Fillebeen et al.
(111) showed that HJV knocked-out mice failed to mount an
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appropriate hypoferremic response to acute inflammation caused
by lipopolysaccharide. Finally, it is well-known that hemolytic
crisis in CHAs may be triggered by infectious episodes that may
therefore fuel the inflammatory loop. Overall the results suggest
the existence of a vicious circle between chronic hemolysis,
inflammatory response and IO (Figure 3).

CONCLUSION

Although few data are reported on the role of the immune
system in CHAs, several immune-mediated mechanisms are
certainly involved in the pathogenesis of these rare diseases,
namely naturally-occurring autoantibodies, spleen catheresis,
overexpression of inflammatory cytokines, and iron overload.
Regarding the first, naturally-occurring autoantibodies have a
function in the opsonization of damaged/senescent erythrocytes
and consequently further increase of their removal in the
spleen, participating in the clinical picture and severity of
the disease. Furthermore, splenectomy is performed in CHAs

with variable degree of efficacy related to reduction of
erythrocyte catheresis. However, it is important to remind

that spleen is part of the immune system and its removal
is associated with a variable immune deficiency, infections,
and a higher thrombotic risk. Regarding the third mechanism,
there is undoubtedly a role for pro-inflammatory cytokines
in perpetuating chronic inflammation, which in turn may
affect proper bone marrow compensatory erythropoiesis. This
may account for a vicious circle among low-grade chronic
inflammation, chronic hemolysis, and increased production of
hepcidin, resulting in iron overload in a considerable and
underestimated proportion of CHAs.
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Myeloid differentiation factor-2 (MD-2) binds lipopolysaccharide (LPS) and initiates toll-like

receptor-4 (TLR4) pro-inflammatory signaling. Heme also activates TLR4 signaling,

but it is unknown if heme interacts with MD-2. Therefore, we examined MD-2 for

a potential heme activation site. Heme-agarose and biotin-heme/streptavidin-agarose

pulled down recombinant MD-2, which was inhibited by excess free heme. UV/visible

spectroscopy confirmed MD-2-heme binding. To determine whether MD-2 was required

for heme-mediated TLR4 signaling, HEK293 cells were transfected with MD-2, TLR4,

CD14, and an NF-κB luciferase reporter, and then stimulated with heme or LPS.

Heme or LPS treatment elicited robust reporter activity. Absence of MD-2, TLR4 or

CD14 plasmid abolished NF-κB reporter responses to heme or LPS. In silico analysis

identified two potential heme docking sites on MD-2 near conserved amino acids

W23/S33/Y34 and Y36/C37/I44. Heme-induced NF-κB activity was reduced by 39 and

78% in HEK293 cells transfected with MD-2 mutants W23A and Y34A, respectively,

compared to WT-MD-2. NF-κB activation by LPS was not affected by the same

mutants. Biotinyl-heme/streptavidin-agarose pulled down 68% less W23A and 80% less

W23A/S33A/Y34A mutant MD-2 than WT-MD-2. In contrast, at the Y36/C37/I44 MD-2

site, heme-induced NF-κB activity was significantly increased by mutants Y36A (191%

of WT-MD-2) and unchanged by mutants C37A and I44A (95 and 92%, respectively,

of WT-MD-2). In conclusion, these data suggest that heme binds and activates TLR4

signaling at amino acids W23 and Y34 on MD-2.

Keywords: MD-2, TLR4, heme, LPS, NF-κB

INTRODUCTION

Toll-like receptors are central to vertebrate innate immune responses (1, 2). They recognize broad
but highly conserved structural patterns on bacteria, fungi and viruses called pathogen-associated
molecular patterns or PAMPs as well as non-pathogenic chemicals and non-patterned molecules.
Unique among toll-like receptors, TLR4 activity depends on a molecular interaction with the
extracellular adaptor protein MD-2 (3, 4). TLR4 and MD-2 form a heterodimer that recognizes
LPS molecules delivered to MD-2/TLR4 by CD14 (5). LPS binds to a large hydrophobic pocket
in MD-2 and directly bridges the MD-2/TLR4 heterodimer (6). Binding of LPS to MD-2 triggers
homodimerization of MD-2/TLR4 complexes and recruitment of specific adaptor proteins to
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TLR4 cytoplasmic domains that initiates a signaling cascade
leading to the activation of NF-κB, inflammasome formation, and
production of pro-inflammatory cytokines such as TNF-α, IL-1β,
IL-8, and IL-18 by macrophages, and the expression of adhesion
molecules such as P-selectin and von Willebrand factor on
endothelium (7–11).

The MD-2/TLR4 complex also recognizes a diverse number
of endogenous molecules released from injured cells called
damage-associated molecular patterns or DAMPs. One such
DAMP is heme (7, 9, 12). The activation of MD-2/TLR4
by heme is distinct from the activation of MD-2/TLR4
by LPS (7). An anti-TLR4/MD2 antibody or a lipid A
antagonist inhibits LPS-induced, but not heme-induced
MD-2/TLR4 signaling and conversely, protoporphyrin IX
inhibits heme-induced, but not LPS-induced MD-2/TLR4
signaling (7, 9).

Large amounts of heme can be released intravascularly
by trauma, sepsis, malaria and red blood cell disorders
such as sickle cell disease (SCD). Recent studies underscore
the importance of heme-mediated MD-2/TLR4 activation in
inflammation, vaso-occlusion, lethality and pulmonary injury
in SCD (9, 13). In monocyte/macrophages, heme promotes
a pro-inflammatory M1 phenotype, induces tissue factor, and
activates coagulation in a TLR4-dependent fashion (9, 14, 15).
We previously demonstrated that TLR4 signaling is required
for vaso-occlusion induced by heme in SCD mice (9). In
endothelial cells, heme mobilizes Weibel-Palade body P-selectin
and von Willebrand factor onto the cell surface within minutes,
activates the pro-inflammatory transcription factor NF-κB,
and induces microvascular stasis in SCD mice in a TLR4-
dependent manner. All of these heme-mediated effects can
be blocked by adding back the high-affinity heme scavenger
hemopexin that is depleted in the plasma of SCD mice
and patients (9, 16). Disrupting heme-mediated MD-2/TLR4
signaling might provide a potential therapeutic opportunity to
interrupt heme-mediated inflammation and vaso-occlusion in
SCD and other hemolytic conditions. Because of heme and
MD-2’s mutual hydrophobicity and the precedence for LPS
binding to MD-2, we explored potential heme activation sites
on MD-2.

MATERIALS AND METHODS

Site-Directed Mutagenesis of Human MD-2
Plasmid pFlag-CMV1–hMD2 was a gift from Doug
Golenbock (Addgene plasmid #13028). Site-directed
mutagenesis was performed using a QuickChange II
XL site-directed mutagenesis kit (Agilent Technologies).
Mutagenic primers were designed using web-based
QuickChange primer design program, and synthesized by
Integrated DNA Technologies (IDT) with polyacrylamide
gel electrophoresis (PAGE) purification. Mutant strands
were synthesized and transformed into XL10-gold
ultracompetent cells (Agilent), the DNA from the colonies
were checked with restriction digestion and confirmed with
DNA sequencing.

Expression and Purification of N-Flag
Tagged Recombinant MD-2 and Its
Mutants
WT and mutant N-Flag-hMD-2 fragments from pFlag-CMV1–
hMD-2 plasmids were subcloned into expression plasmids with
a CAG promoter (pT2/Caggs-Flag-hMD2) that were used to
produceWT andmutant MD-2 recombinant proteins in Chinese
Hamster Ovary Cells (CHO) as described previously (16) with
modifications. CHO cells were maintained in T225 flasks in
RPMI-1640 with L-glutamine (Gibco) supplemented with 10%
fetal bovine serum (FBS) in a 5% CO2 incubator at 37◦C. Cells
in T225 cm2 culture flasks were transiently transfected with
polyethylenimine (PEI, linear, MW 2500) (Polysciences) using a
4:1 ratio of PEI to DNA (w/w). After 18 h at 37◦C, the cells were
changed to ProCHO-AT protein-free media (Lonza). After 4 days
in ProCHO-AT media, the conditioned media was collected, and
cleared by centrifugation at 600× g for 30min at 4◦C and filtered
using a 0.22µm Stericup Vacuum Filtration System (EMD
Millipore). In the UV/Vis heme-MD-2 binding assays described
below, the recombinant proteins in the filtered media were
purified using anti-Flag M2 affinity gel (Sigma-Aldrich) column
chromatography following the manufacturer’s instructions. The
bound Flag fusion proteins were eluted by competition with Flag
peptide, and further concentrated using 10k centrifugal filter
units (Amicon). The purity and concentration of the protein was
determined by a 4–15% SDS-PAGE and Coomassie R-250 stain
(Bio-Rad) with BSA standards (0.2–5 µg) loaded on the same gel
to estimate the Flag-MD-2 concentration by comparing the band
intensities with BSA. The recombinant WT and mutant MD-2
proteins were confirmed by Western blots with a primary MD-2
antibody (Abcam).

Heme-Agarose and
Biotin-Heme/Streptavidin-Agarose
Pull-Down Assays
Pull-down assays were used to determine if there was a physical
interaction between MD-2 and heme. Conditioned ProCHO-AT
culture media (30ml) from T225 tissue culture flasks containing
CHO cells overexpressing recombinant wild-type (WT) Flag-
MD2, mutants or recombinant Flag-hemopexin (Hpx) as a
positive control as previously described (16) were concentrated to
3ml using a 10k centrifugal filter units (Amicon). For the heme-
agarose pull-down assays, 1ml of the concentrated ProCHO-
AT media was incubated overnight at 4◦C with 35 µl heme-
agarose, or control agarose beads (Sigma, pre-washed with PBS).
For the biotin-heme/streptavidin-agarose pull-down assays, 1ml
of concentrated ProCHO-AT media was incubated with 15µM
biotin-heme (Frontier Scientific) overnight at 4◦C in the dark,
then 40 µl of 50% streptavidin-agarose (Sigma-Aldrich) was
added to the mixture and incubated an additional 2 h at 4◦C. To
test the binding specificity of biotin-heme and recombinant MD-
2 proteins, 1ml of concentrated ProCHO-AT media was pre-
incubated with a 6.7-fold excess of unlabeled free heme (100µM)
for 2 h at 4◦C before the incubation with 15µM biotin-heme.
The resulting beads from both heme-agarose and streptavidin-
agarose pull-down assays were washed with PBS 6 times and run
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on an SDS-PAGE Western bot using an anti-Flag monoclonal
antibody (Sigma-Aldrich) for detection. Hematin, herein referred
to as heme, was prepared immediately before use by mixing
10mg hemin chloride (Frontier Scientific), 10mg D-sorbitol
(Sigma-Aldrich), and 6.9mg sodium carbonate (Sigma-Aldrich)
in 5.7ml of sterile saline (Baxter) for 30min in the dark. All
heme preparations, appropriately diluted in saline, were filtered
at 0.22µm before use. Endotoxin levels were monitored using a
Limulus amebocyte lysate test (GenScript). Heme preparations
contained <0.01 endotoxin units/ml at 10mM heme; all assays
used 10 µM heme.

UV/Vis Heme-MD-2 Binding Assays
The UV/Vis absorption spectra (250–600 nm) of heme, MD-2
and heme + MD-2 were measured using a Nanophotometer
P330 (Implen) with an optical path length of 1 cm.
Human recombinant Flag-Hpx was used as a positive
heme-binding control.

In situ Identification of Potential
Heme-Binding Sites on MD-2
Potential heme-binding amino acid (AA) residues on human and
mouseMD-2 were identified using theHemeBind web server that
is freely accessible online (http://mleg.cse.sc.edu/hemeBIND/).
HemeBind is a specialized algorithm that combines both
structure- and sequence-based methods to identify potential
heme-binding sites on heme proteins (17).

NF-κB Reporter Assays
Human embryonic kidney 293 (HEK293) cells were seeded
in 96-well plates at 2 × 104 cells per well and incubated
overnight in a 5% CO2 incubator at 37

◦C. In the morning, cells
were transiently transfected with 50 ng TLR4 expression vector
(pcDNA3.1-hTLR4, a gift from Ruslan Medzhitov, Addgene
plasmid #13086) or empty vector, along with 15 ng of Firefly
luciferase NF-κB reporter vector (pNifty-Luc, InvivoGen), 15 ng
of Renilla luciferase control vector (pRL-TK, Promega), 10 ng
of wt or mutant MD-2 expression vector (pFlag-CMV1-hMD2),
and 10 ng of CD14 expression vector (pCDNA3.1-hCD14, a
gift from Doug Golenbock, Addgene plasmid #13645) per well
using Lipofectamine Plus reagent (LifeTechnology). Four h after
transfection, cells were incubated 24 h in media containing 10%
fetal bovine serum (FBS). Twenty-four hours after transfection,
cells were incubated with media with 1% FBS (control), or
media with 1% FBS supplemented with heme (10µM), LPS
(10 ng/ml, Escherichia coli, serotype O111:B4; Sigma-Aldrich) or
heme + LPS for 6 h, then cells were lysed and luciferase activity
was measured.

Statistical Analysis
Results are presented as means ± standard deviation unless
otherwise indicated. Analyses were performed with SigmaStat 3.5
for Windows (Systat Software, San Jose, CA). Comparisons of
multiple treatment groups were made using One Way ANOVA
with Holm-Sidac correction, Kruskal-Wallis One Way Analysis
of Variance on Ranks, or a student’s unpaired t-test. Statistical
significance was considered to be p < 0.05.

RESULTS

Heme Binding to MD-2
To determine if heme binds to MD-2, recombinant MD-
2 was expressed by transfecting CHO cells with a plasmid
encoding human MD-2 with a Flag tag at the N-terminus.
After transfection, cells were washed and incubated for 3 or
4 days in protein-free ProCHO medium. Transfected, but not
untransfected CHO cells secrete soluble recombinant human
MD-2 into the media (Supplemental Figure 1). Flag-MD-2 had
an apparent molecular weight of ∼25 kDa, which is close to the
predicted mass of 19.2 kDa.

The recombinant human flag-MD-2 (rhMD-2) was highly
purified as seen on an SDS PAGE gel stained with Coomassie
Brilliant Blue R-250 (Supplemental Figure 2). After 4 days, Flag-
MD-2 was present in the conditioned medium of transfected
CHO cells as demonstrated by a Western blot of the medium
with an anti-Flag primary antibody (Figure 1A, lane 3). The
conditioned CHOmedium containing Flag-MD-2 was incubated
with heme-agarose beads in a pull-down assay. Flag-MD-2 in the
medium was pulled down with heme-agarose as demonstrated
on a Western blot of the pull-down proteins with anti-Flag
IgG (Figure 1A, lane 2). Flag-MD-2 was not pulled down
from conditioned medium by control agarose without heme
(Figure 1A, lane 1). As a positive control, recombinant human
hemopexin (Hpx), which binds heme with high affinity, was
expressed by transfecting CHO cells with a plasmid encoding
Flag-labeled Hpx. After 4 days, Flag-Hpx was present in the
conditioned medium of transfected CHO cells as demonstrated
by a Western blot with anti-Flag IgG (Figure 1B, lane 6). Flag-
Hpx had an apparent molecular weight of ∼59 kd, which is the
predicted mass. Themedium containing Flag-Hpx was incubated
with heme-agarose beads in a pull-down assay. Flag-Hpx in the
medium was pulled down with heme-agarose as demonstrated
on a Western blot of the pull-down proteins with anti-Flag IgG
detection (Figure 1B, lane 5). Flag-Hpx was not pulled down
from conditioned medium by control agarose without heme
(Figure 1B, lane 4).

To confirm heme binding to MD-2, additional pull-down
assays were run using recombinant MD-2, biotin-heme and
streptavidin-agarose (Figure 1C). Flag-MD-2 was present in the
conditioned CHO medium as demonstrated by a Western blot
of the medium with an anti-Flag primary antibody (Figure 1C,
lane 4). Conditioned CHO medium containing Flag-MD-2 was
incubated with biotin-heme followed by streptavidin-agarose.
Flag-MD-2 in the medium of conditioned CHO cells was pulled
down with biotin-heme + streptavidin-agarose as demonstrated
by a Western blot of the pull-down proteins with anti-Flag
IgG (Figure 1C, lane 2). Biotin-heme binding to MD-2 was
markedly diminished in the presence of a 6.7-fold excess of
unlabeled free heme in the assay, demonstrating specific heme
binding to MD-2 (Figure 1C, lane 3). Flag-MD-2 was not pulled
down from conditioned medium by control agarose without
streptavidin (Figure 1C, lane 1). As a positive control, CHO
medium containing Flag-Hpx was incubated with biotin-heme
+ streptavidin-agarose. Flag-Hpx was present in the conditioned
CHO medium as demonstrated by a Western blot with anti-Flag
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FIGURE 1 | Heme binds to MD-2 in pull-down assays. Recombinant MD-2 and hemopexin (Hpx) were expressed by transfecting Chinese hamster ovary (CHO) cells

with plasmids encoding human Flag-MD-2 or Flag-Hpx. Flag-Hpx served as a positive control for heme binding. After transfection, cells were washed and incubated

for 72 h in protein-free CHO medium to allow the recombinant proteins to be transcribed, translated, and secreted into the CHO media. After 72 h, Flag-MD-2 (A, lane

3 and C, lane 4) and Flag-Hpx (B, lane 6 and D, lane 8) were present in the conditioned media of transfected CHO cells as demonstrated by a Western blot of the

concentrated media with an anti-Flag primary antibody. (A,B) Heme-agarose pull-down assays. Conditioned CHO media containing (A) Flag-MD-2 or (B) Flag-Hpx

were incubated overnight at 4◦C with heme-agarose (lanes 2 and 5) or control agarose beads (lanes 1 and 4) and then pelleted, washed, and run on a Western blot

with anti-Flag detection. (C,D) Streptavidin-agarose pull-down assays. Conditioned CHO media containing (C) Flag-MD-2 or (D) Flag-Hpx were incubated with 15µM

biotin-heme overnight at 4◦C in the dark, then streptavidin-agarose (lanes 2, 3, 6, and 7) or control agarose (lanes 1 and 5) was added to the mixture for an additional

2 h at 4◦C. After incubation, the agarose pellets were washed and run on Western blots with anti-Flag detection. To test the binding specificity of biotin-heme and

recombinant Flag-MD-2 (C, lane 3) and Flag-Hpx (D, lane 7), conditioned CHO media were pre-incubated with an excess of unlabeled free heme (100µM) for 2 h at

4◦C before the incubation with 15µM biotin-heme. The results shown are representative of four (A and B) and two (C and D) independent experiments, respectively.

IgG (Figure 1D, lane 8). Flag-Hpx in the medium was pulled
down with biotin-heme + streptavidin-agarose as demonstrated
by a Western blot of the pull-down proteins with anti-Flag IgG
(Figure 1D, lane 6). Biotin-heme binding to Hpx was eliminated
in the presence of a 6.7-fold excess of unlabeled free heme in the
assay, demonstrating specific heme binding to Hpx (Figure 1D,
lane 7). Flag-Hpx was not pulled down from conditioned
medium by agarose without streptavidin (Figure 1D, lane 5).

To further confirm heme-MD-2 binding, UV/visible
spectroscopy was used to detect heme binding to MD-2. Proteins
such as Hpx when bound to heme have an increase in absorbance
at ∼414 nm (18). Recombinant Flag-MD-2 and Flag-Hpx were
purified from conditioned CHO media using anti-Flag-IgG-
agarose affinity chromatography. A UV/visible absorbance scan

of heme, Flag-MD-2, and Flag-MD-2 + heme demonstrated
an increase in absorbance at 414 nm when heme was added to
Flag-MD-2 (Figure 2A), consistent with heme binding to MD-2
that was similar to, but less than, Flag-Hpx+ heme (Figure 2B).

Heme Activation Sites on MD-2
Potential heme-binding amino acid residues on human and
mouseMD-2 were identified using theHemeBind web server that
is freely accessible online. HemeBind is a specialized algorithm
that combines both structure- and sequence-based methods to
identify potential heme-binding sites on heme proteins (17).
These in silico analyses identified two potential heme docking
sites on both human and murine MD-2 near conserved amino
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FIGURE 2 | Heme binds to MD-2 in absorbance spectroscopy assay. (A) The

UV/Vis absorption spectra (250–550 nm) of heme (10µM, dashed blue line),

recombinant MD-2 (green line), and heme + MD-2 (red line) were measured.

(B) As a positive heme-binding control, the experiment was repeated using

recombinant human Hpx instead of MD-2. The black arrows show the location

of a characteristic Soret peak at ∼414 nm seen in heme proteins. The results

shown in (A,B) are representative of three independent experiments. Each

spectrum was blanked against the buffer vehicle.

acidsW23/S33/Y34 and Y36/C37/I44 highlighted inmagenta and
green, respectively (Figure 3).

NF-κB Reporter Assays With CD14, MD-2,
and TLR4
LPS activation of TLR4 signaling requires CD14, MD-2 and
TLR4, which leads to the activation of the pro-inflammatory
transcription factor NF-κB. Previously, heme activation of TLR4
signaling in macrophages was shown to require TLR4 and CD14
(7), but it is unknown if heme activation of TLR4 requires MD-2.
To determine whether heme-mediated TLR4 signaling requires
MD-2, an NF-κB reporter assay was developed using HEK293
cells transfected with a Firefly luciferase NF-κB reporter with or
without plasmids encoding MD-2, TLR4, and CD14. Twenty-
four hours after transfection, HEK293 cells were incubated with
media (control), heme (10µM), LPS (10 ng/ml), or heme + LPS
for 6 h, followed by measurement of NF-κB luciferase reporter
activity. Heme, LPS and heme + LPS treatment elicited robust
luciferase activity in the presence of CD14, MD-2, and TLR4
(Figure 4, gray bars). The absence of a CD14 (orange bars), MD-
2 (blue bars) or TLR4 (green bars) inhibited NF-κB luciferase
reporter responses to heme, LPS, and heme + LPS similar to
control cells. TLR4, MD-2 and CD14 replete cells (gray bars)

FIGURE 3 | Two potential heme-docking sites on MD-2. Potential

heme-binding amino acid residues on human and mouse MD-2 were identified

using the online HemeBind algorithm that combines both structure- and

sequence-based methods to identify potential heme-binding sites on heme

proteins (17). These in silico analyses identified six potential heme binding

amino acids located in two separate clusters on the surface of MD-2. The

amino acids in the 2 clusters, W23/S33/Y34 (magenta) and Y36/C37/I44

(green), are highlighted on the 3-dimentional structure of human MD-2.

FIGURE 4 | NF-κB Reporter Assays with TLR4, MD-2, and CD14. Human

embryonic kidney 293 (HEK293) cells were transfected with plasmid

expression vectors for Firefly NF-κB and Renilla luciferase reporters, plus

CD14, MD-2, and TLR4 (gray bar); MD-2 and TLR4 (no CD14, orange bar);

CD14 and TLR4 (no MD-2, blue bar); or CD14 and MD-2 (no TLR4, green

bar). Twenty-four hours after transfection, cells were incubated with media

(Control), 10µM heme, 10 ng/ml LPS, or heme + LPS for 6 h in media

containing 1% serum. After 6 h, cells were lysed and luciferase activity was

measured and expressed as the ratio of Firefly luciferase NF-κB reporter to

Renilla luciferase control. Results are representative of 3 independent

experiments run in triplicate. Bars are means + SD. #P < 0.01 control vs.

heme, LPS, and heme + LPS. *P < 0.01 TLR4 + MD-2 + CD14 (gray bar) vs.

no CD14 (purple bar), no MD-2 (orange bar), and no TLR4 (green bar) for each

stimulant, using One Way ANOVA with Holm-Sidac correction.

stimulated with heme + LPS had more activity than replete cells
treated with heme or LPS alone.
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FIGURE 5 | NF-κB reporter assays with WT and mutant MD-2. HEK293 cells were transfected with plasmid expression vectors for WT or mutant MD-2, TLR4, CD14,

Firefly luciferase NF-κB reporter, and Renilla luciferase control. Twenty-four hours after transfection, cells were treated with 10µM heme or 10 ng/ml LPS for 6 h in

media containing 0.1% serum. After 6 h, cells were lysed and luciferase activity was measured and expressed as the ratio of Firefly luciferase NF-κB reporter to Renilla

luciferase control. Luciferase activity is expressed as a percent of cells transfected with WT MD-2 stimulated with heme or LPS (100% activity, black bars and

horizontal dashed black line). Magenta cluster and green cluster refer to the 2 clusters of potential heme binding amino acids in Figure 3. Results are representative of

3 independent experiments run in triplicate. Bar values are means ± SD. **P < 0.01 vs. WT MD-2 using Kruskal-Wallis One Way Analysis of Variance on Ranks.

NF-κB Reporter Assays With WT or Mutant
MD-2
We next examined the effect of MD-2 point mutations on
heme and LPS stimulation in the NF-κB reporter assay. MD-
2 amino acids located at the potential heme binding sites on
MD-2 identified in the magenta and green amino acid clusters
in Figure 3 were each mutated individually to alanine. HEK293
cells were transfected with wild-type (WT) or mutant MD-2,
WT CD14, WT TLR4, and the NF-κB luciferase reporter. NF-κB
reporter activity was then expressed as a percent of WT MD-2
(100%) with heme or LPS stimulation (Figure 5). MD-2 point
mutants W23A or Y34A in the magenta cluster significantly
reduced heme-mediated NF-κB luciferase activity to 61 and 22%,
respectively, relative to WT MD-2 (Figure 5, left). The S33A
MD-2 mutation in the magenta cluster was similar to WT MD-
2 NF-κB luciferase activity with heme stimulation. In contrast,
MD-2 mutations in the green cluster, Y36A markedly stimulated
heme-induced NF-κB luciferase activity to 191% compared to
WTMD-2 (Figure 5, left). The C37A and I44A MD-2 mutations
in the green cluster were not significantly different from WT
MD-2. When the transfected HEK293 cells were stimulated with
LPS (Figure 5, right), MD-2 mutations in the magenta and green
cluster had no significant effects on NF-κB reporter activity
relative to WTMD-2.

Heme Binding to Mutant MD-2
To determine if MD-2 mutations at the W23/S33/Y34 site
affect heme binding to MD-2, WT MD-2, W23A MD-2, and
W23A/S33A/Y34A MD-2 with Flag tags were expressed in CHO
cells and the MD-2-containing media were used in heme-agarose
and biotin-heme/streptavidin-agarose pull-down assays. Four
days after transfection, the conditioned CHO media contained
similar amounts of WT, W23A, and W23A-S33A-Y34A MD-2
on Western blots using Flag detection (Figure 6A, lanes 5, 6,
and 7 and Figure 6B, lanes 6, 7, and 8). Heme-agarose pulled
down 47% of the W23A and 36% of the W23A/S33A/Y34A
MD-2 mutants compared to WT MD-2 (Figure 6A, lanes 2,
3, and 4 and Figure 6C). WT MD-2 was not pulled down
from conditioned medium by control agarose without heme
(Figure 6A, lane 1).

Similarly, the biotin-heme/streptavidin-agarose pulled down
32% of the W23A and 20% of the W23A/S33A/Y34A MD-
2 mutants compared to WT MD-2 (Figure 6B, lanes 2, 3,
and 4 and Figure 6D). WT MD-2 incubated with biotin-
heme was not pulled down from conditioned medium by
agarose without streptavidin (Figure 6B, lane 1). As previously
shown, the addition of excess unlabeled heme markedly reduced
the amount of WT MD-2 pulled down by biotin-heme/
streptavidin-agarose (Figure 6B, lane 5).
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FIGURE 6 | Heme binds poorly to W23A and W23A-S33A-Y34A mutant MD-2. WT MD-2, W23A MD-2, and W23A/S33A/Y34A MD-2 with Flag tags were expressed

in CHO cells and the MD-2-containing media were used in heme-agarose and biotin-heme/streptavidin-agarose pull-down assays. Three days after transfection, the

conditioned CHO media contained similar amounts of WT, W23A, and W23A/S33A/Y34A MD-2 on Western blots using Flag detection (A, lanes 5, 6, and 7 and B,

lanes 6, 7, and 8). Heme-agarose pulled down only 47% of the W23A and 36% of the W23A/S33A/Y34A MD-2 mutants compared to WT MD-2 (A, lanes 2, 3, and 4

and C). WT MD-2 incubated with control agarose without heme was not pulled down (A, lane 1). Similarly, the biotin-heme/streptavidin-agarose pulled down only 32%

of the W23A and 20% of the W23A/S33A/Y34A MD-2 mutants compared to WT MD-2 (B, lanes 2, 3, and 4 and D). WT MD-2 incubated with biotin-heme was not

pulled down by agarose without streptavidin (B, lane 1). As previously shown, the addition of excess unlabeled heme markedly reduced the amount of WT MD-2

pulled down by biotin-heme/streptavidin-agarose (B, lane 5). The results shown in (A,B) are representative of four independent experiments. (C,D) show the results of

quantitation of the Western blots. Bars are means + SD. *P < 0.05 compared to WT MD-2 using a student’s unpaired T-test.

DISCUSSION

Heme is essential for life, but when released from damaged cells
it can act as a DAMP that promotes activation of MD-2/TLR4
signaling (7, 9, 12). Sickle cell disease (SCD), sepsis, malaria,
viral hemorrhagic fevers, trauma, and hemorrhagic stroke can
release large amounts of heme into the vasculature thereby
promoting pro-inflammatory responses and tissue damage. We
used pull-down assays and UV-VIS absorbance spectroscopy
to demonstrate that recombinant MD-2 can bind heme. In
silico analyses identified two potential heme docking sites on
both human and murine MD-2 near conserved amino acids
W23/S33/Y34 and Y36/C37/I44. HEK293 cells transfected with
plasmids encodingWTMD-2, TLR4, and CD14 produced robust
NF-κB reporter activity when stimulated with heme, LPS, or
heme+ LPS. NF-κB reporter activity was lost when MD-2, TLR4
or CD14 was omitted. MD-2 point mutations W23A and Y34A
markedly inhibited the reporter responses to heme, but not LPS
compared to WT MD-2. These data suggest that heme initiates
MD-2/TLR4 signaling upon docking with MD-2 amino acids

W23 and Y34. Y34 is a tyrosine residue; we speculate that the
OH group on Y34 interacts with the iron moiety of heme as
the heme iron is required for MD-2/TLR4 signaling (7, 9). W23
is a tryptophan which may provide a hydrophobic docking site
for the vinyl groups on heme as the vinyl groups on heme are
also required for MD-2/TLR4 signaling (7). The role of CD14
in heme-mediated MD-2/TLR4 signaling is unclear, but CD14
might be involved in the transfer of heme to MD-2 as has been
reported for LPS (5, 19–21).

The function of sMD-2 has been extensively studied in
LPS-TLR4 signaling. This LPS-sMD-2-TLR4 activation model
is different from the classic LPS-TLR4 activation model in
which MD-2 is co-localized with TLR4 on the cell surface,
indispensable for LPS recognition and signaling (6). Heme-
mediated MD-2/TLR4 signaling by macrophages does require
MyD88 (7), suggesting dimerization of TLR4. However, it
is possible that the model of a circulating sMD-2-heme
complex to activate TLR4 is different from the model in
which heme binds to the MD-2 co-localized with TLR4 on
cell surface.
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The activation of TLR4 signaling is unlikely to have been
caused by LPS contamination of our hemin preparations.
Endotoxin levels were monitored using a Limulus amebocyte
lysate test. Heme preparations (10mM) contained <0.01
endotoxin units/ml. Our NF-κB reporter assays used 10
uM hemin. We have previously shown that anti-LPS IgG
directed against the LPS core does not inhibit heme-induced
TLR4 signaling (9), but significantly inhibits LPS-induced
MD-2/TLR4 signaling. The original paper describing
the activation of TLR4 signaling by heme (7), showed
that signaling of heme through TLR4 depended on an
interaction distinct from the one established between TLR4
and lipopolysaccharide (LPS) since anti-TLR4/MD2 antibody
or a lipid A antagonist inhibited LPS-induced TNF-alpha
secretion but not heme activity. These data indicate that heme
activates TLR4 signaling independently of LPS. In addition,
the specificity of heme activation of MD-2/TLR4 signaling
is supported in several published papers by our lab and
others showing that the high affinity heme-binding protein,
hemopexin, blocks the activation of MD-2/TLR4 signaling by
heme (9, 14, 16, 22–24).

Some of our MD-2 Western blots appear to have 2
bands. Ohnishi et al. (25) reported that MD-2 has N-linked
glycosylations at Asn (25) and Asn(114), which give up to
3 molecular weight bands on SDS PAGE gels. When cellular
extracts are treated with N-glycosidase, only a single band with
the fastest mobility was detected. It is likely the two bands seen
on our MD-2 Western blots represent different glycosylation
states of MD-2. Glycosylation of MD-2 appears to be important
for TLR4-mediated signal transduction of LPS (25, 26). The
impact on signal transduction of heme is unknown, but should be
explored further.

There could potentially be other heme-activation sites on
MD-2 or TLR4 that were not identified. We used a specialized
algorithm that combines both structure- and sequence-based
methods to identify potential heme-binding sites on heme
proteins (17). This algorithm identified the same two distinct
clusters of potential heme-binding amino acids at W23/S33/Y34
and Y36/C37/I44 on the surface of both human and mouse
MD-2. Point mutations at W23A and Y34A inhibited heme
activation of TLR4 signaling and a point mutation at W23A
and a triple mutation at W23A-S33A-Y34A inhibited heme
binding to MD-2. In contrast, point mutations S33A, Y36A,
C37A, and I44A either stimulated or had little effect on
heme-mediated MD-2/TLR4 signaling. Thus, it seems likely
that the pocket located at W23 and Y34 on MD-2 is the
most likely site for heme docking and activation of TLR4
signaling. However, a limitation of this study is the incomplete
heme-binding data with the other MD-2 site mutations at
S33A, Y34A, Y36A, C37A, and I44A. Confirmation of the
NF-kB activation data in Figure 5 and the heme binding site
on MD-2 awaits additional studies to confirm the W23/Y34
activation site.

Another possibility is that mutations of MD-2 at the proposed
activation site might affect the folding and 3-dimensional
structure of MD-2 and thereby indirectly affect MD-2 binding
to heme and TLR4 signaling. However, nearby mutations Y36A,

FIGURE 7 | Surface representation of MD-2 structure derived from Protein

Data Bank 3VQ2 (29) showing the LPS-binding site and the putative

heme-binding site on MD-2.

C37A, and I44A on MD-2 did not inhibit heme-mediated MD-
2/TLR4 signaling. An important caveat of our data interpretation
assumes the mutants were properly folded.

Another limitation is the limited characterization of heme-
MD-2 interactions. Future experiments will further characterize
the interactions of heme with MD-2 using differential scanning
fluorimetry to detect heme’s binding affinity to MD-2 (27).
Heme binding to MD-2 will be confirmed using secondary
screens of melting by circular dichroism (non-fluorescent
confirmation of ligand-binding stabilizing MD-2) and analytical
centrifugation (non-fluorescent confirmation of heme-binding to
MD-2 and stoichiometry). Heme-binding will also be analyzed
by isothermal titration calorimetry. Our laboratory was unable
to obtain reproducible data on heme binding to recombinant
MD-2 using surface plasmon resonance. Verification of the heme
docking site onMD-2 awaits confirmation of the crystal structure
as was done with TLR4-MD-2 complexes with LPS and LPS
analogs (6, 28–30). The interaction with LPS is mediated by a
hydrophobic internal pocket in MD-2. However, there appears
to be no overlap of MD-2 residues involved in the binding of
LPS and the MD-2 heme-binding site at W23 and Y34 near the
N-terminus. In fact, the heme and LPS binding sites are located
on opposite sides of the MD-2 protein (Figure 7), which might
partially explain why mutations at the heme binding site had no
significant effects on the LPS-stimulated NF-κB reporter assays.

Future studies will use virtual screening to identify small
molecules that might interact at the W23/Y34 site and inhibit
heme-mediated MD-2/TLR4 signaling. Their interaction with
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MD-2 will be characterized by differential scanning fluorimetry,
circular dichroism, and analytical centrifugation as described
above for heme-MD-2 interactions. Candidate molecules will be
screened for their ability to inhibit heme-mediated chemokine
production in human monocyte/macrophages. Follow-up
screens will include inhibition of heme activation of P-selectin
and von Willebrand factor expression on the membrane of
endothelial cells, vaso-occlusion in SCD mice, and heme binding
to MD-2.

We conclude that heme activates TLR4 signaling at residues
W23 and Y34 on MD-2. This site on MD-2 appears to be a
possible target for inhibition of heme-mediated TLR4 signaling.
We speculate that targeted inhibition of heme-mediated TLR4
signaling would be beneficial in hemolytic diseases such as SCD
without affecting innate immunity to gram negative bacteria
expressing LPS.
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Damage associated molecular patterns (DAMPs) are endogenous molecules originate

from damaged cells and tissues with the ability to trigger and/or modify innate immune

responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs)

to the circulation and give a rise to the production of different Hb redox states and

heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that

targets different immune and non-immune cells. Heme is a chemoattractant, activates

the complement system, modulates host defense mechanisms through the activation

of innate immune receptors and the heme oxygenase-1/ferritin system, and induces

innate immune memory. The contribution of oxidized Hb forms is much less studied,

but some evidence show that these species might play distinct roles in intravascular

hemolysis-associated pathologies independently of heme release. This review aims to

summarize our current knowledge about the formation and pro-inflammatory actions of

heme and other Hb-derived DAMPs.

Keywords: hemoglobin, heme, TLR4 (toll-like receptor 4), NLRP3, DAMP, hemolysis (red blood cells)

INTRODUCTION

Red blood cells (RBCs)—the most abundant cell type of the human body—deliver oxygen to the
tissues during their lifespan of about 120 days. Under homeostasis, destruction of aged RBCs is
usually an unrecognized event that takes place in macrophages of splenic and hepatic sinusoids
(1). After RBC phagocytosis macrophages efficiently handle the high hemoglobin (Hb) load, break
down heme, and redistribute iron for further use, or store it in a catalytically inactive form in ferritin
(FT) (1). Some RBCs lyse intravascularly even under physiological conditions releasing Hb and
heme to the circulation. To prevent the deleterious effects of extracellular Hb and heme they are
scavenged by the acute phase plasma proteins haptoglobin (Hp) and hemopexin (Hx), respectively,
and removed from the circulation rapidly (2). On the other hand, oversaturation of this defense
system leads to the accumulation of different redox forms of Hb and heme in the circulation.

Heme is a well-known pro-oxidant that feature relies—at least in part—on the ability of heme
iron to catalize the generation of hydroxyl-radicals in the Fenton reaction, due to its capability of
acting as both an electron donor and an acceptor (3). Another important source of radical species
that could mediate heme-induced toxicity is the conversion of organic hydroperoxides (ROOH)
into highly reactive alkoxyl (RO r) and peroxyl (ROO r) radicals (4, 5). These radicals trigger lipid
peroxidation forming alkyl radicals that in the presence of O2 will generate more peroxyl radicals,
thus amplifying free radical reactions (6). Finally, heme can also promote reactive oxygen species
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(ROS) generation through enzymatic reactions mediated by
NADPH oxidases (7–11) and by the mitochondria (11).

Besides being a pro-oxidant, three lines of evidence indicated
that heme is an inflammatory molecule with unique properties:
(i) sterile intra or extra vascular hemolysis cause inflammation,
that is controlled by Hx and heme oxygenase-1 (HO-1) (12);
(ii) injection of heme in experimental animals triggers local
and systemic inflammation (11–14); (iii) heme activates innate
immune cells in vitro acting as a chemoatractant, inducing
cytokine production, ROS generation, and cell death (7, 8,
11, 15, 16). The observations that heme causes macrophage
activation dependently of the innate immune receptors TLR4 and
NLRP3 were important to a paradigm shift, defining heme as a
prototipical damage-associated molecular pattern (DAMP) (11,
16–18). The requirement of TLR4 or NLRP3 to the pathological
consequences of experimental sterile hemolysis suggest that
heme-induced activation of these pathways contributes to the
pathology (11, 12, 19, 20). Importantly, the tissue damage
triggered by the actions of labile heme also critically contributes
to the pathogenesis of severe infections such as malaria (21–24)
and sepsis (14, 25). Growing evidence shows that the complement
system can be activated by heme which mechanism play a role
in the pathomechanism of certain hemolytic diseases (20, 26–
28). On the other hand heme can activate defense mechanisms
to establish tolerance and to foster survival of the host in diverse
pathological conditions via the induction of the HO-1/FT system
(17, 23, 29, 30). Recent investigation showed that heme can
induce innate immune memory as well (31).

Growing evidence suggest that besides labile heme other
Hb-related DAMPs e.g., metHb, ferrylHb as well as covalently
crosslinked Hb multimers can be considered as alarmins
(32–34). These species might play distinct, heme-independent
roles in intravascular hemolysis-associated pathologies. The
multiple mechanisms by which Hb-derived DAMPs modulate
cell activation and inflammation, contributing to pathology, are
object of intense research. In this review we aim to give an
overview of the most recent development of this dynamically
evolving field.
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Hb INSIDE OF THE RBCs

Hb, the major oxygen-transport protein consist of 2 different
subunits, α and β, that compose a α2β2 tetrahedron. Each of the
four subunits contains a heme prosthetic group with a central
Fe2+ (ferrous) ion. Heme iron is critically involved in O2 binding.
Each ml of human blood contains ∼0.3 g of Hb, most of it is
compartmentalized within RBCs.

Circulating RBCs are continuously exposed to high levels of
ROS of both endogenous and exogenous origin [reviewed in
(35)]. When Hb binds O2, Hb auto-oxidation frequently occurs
in which the central heme Fe2+ is oxidized into Fe3+ (ferric,
metHb) with the concomitant reduction of O2 into superoxide
anion (O•−

2 ) (Figure 1). This reaction is a major source of
endogenous ROS inside the RBCs. Cytochrome-b5 reductase,
an NADH-dependent enzyme present in RBCs convert metHb
to Hb, therefore metHb content in intact RBC generally stays
below 1%.

A highly effective antioxidant defense system protects RBCs
from the continuously produced ROS. This system consists of
enzymes, such as Cu/Zn superoxide dismutase that converts
superoxide anion to hydrogen-peroxide (H2O2), catalase,
glutathione peroxidase, and peroxiredoxins which decompose
H2O2 to H2O [reviewed in (35–37)] and non-enzymatic low
molecular weight scavengers, such as glutathione, ascorbic acid,
and vitamin E (Figure 1). When ROS production exceeds the
capability of ROS neutralization, RBC membrane damage occurs
which impairs oxygen delivery.

During their lifespan in the circulation RBCs lose about
20% of their initial Hb content via vesiculation (38). This
process is considered an efficient mechanism to remove damaged
membrane patches, senescent cell antigens and intracellular
inclusion bodies (Heinz bodies) from the otherwise healthy
RBCs, therefore they can stay longer in the circulation (39).
Approximately after 120 days in the circulation RBCs are
completely worn out, and they are cleaned from the circulation
by hemophagocyticmacrophages, mainly in the spleen, via a non-
inflammatory process which allows efficient and safe recycling of
the RBC components, particularly the heme iron (40–42).

Hb OUTSIDE OF THE RBCs

Diverse inherited or acquired conditions can trigger uncontrolled
destruction of RBCs in the vasculature or in the extravascular
space. Upon RBC lysis a large amounts of Hb is released into the
circulation, or into the surrounding tissues.

Elimination of Cell Free Hb and Limitations
of the Clearance System
Following RBC lysis extracellular Hb is promptly removed from
the circulation. Hp, an acute phase plasma protein is in the
first line of defense [reviewed in (43)]. Hp binds extracellular
Hb avidly, protects Hb from oxidation (44–48), and facilitates
its clearance from the circulation through endocytosis via the
CD163 macrophage scavenger receptor (49). Although abundant
in the plasma (0.41–1.65 mg/ml), the amount of Hp allows
the clearance of ∼3 g of Hb, <1% of the Hb amount in the
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FIGURE 1 | Pro-oxidant and antioxidant mechanisms is RBCs. O2 binding to Hb initiates Hb auto-oxidation in which process metHb (Fe3+) and superoxide anion

(O•−

2 ) are formed. MetHb is reduced by metHb reductase, while O•−

2 is converted to H2O2 by superoxide dismutase (SOD). In the presence of transition metals such

as Fe2+ or Cu+ a reaction between O•−

2 and H2O2 occurs yielding hydroxyl radical (OH•) (Haber Weiss reaction). Catalase, glutathione peroxidases (GPx), and

peroxiredoxins (PRXs) decompose H2O2. The antioxidant system is completed with non-enzymatic low molecular weight scavengers, such as glutathione, ascorbic

acid, and vitamin E. SOD, superoxide dismutase; GPx, glutathione peroxidase; PRXs, peroxiredoxins; GSH, reduced glutathione; GSSG, glutathione disulfide; GSR,

glutathione-disulfide reductase; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced NADP; G6PDH, glucose-6-phosphate dehydrogenase;

Trx(r), reduced thioredoxin; Trx(ox), oxidized thioredoxin; TrxR, thioredoxin reductase.

circulation. Therefore, massive hemolysis with more than 1%
of RBC lysis, Hp is depleted from the plasma and cell-free Hb
is eliminated from the circulation via alternative mechanisms.
These include (i) a low-affinity pathway through CD163 by
macrophages (50) and (ii) renal excretion which is accompanied

by profound oxidative stress and organ damage (51, 52).

Failure of Hb Clearance: Nitric Oxide
Depletion, Hb Oxidation, and Heme
Release
Once the capacity of the Hp/CD163 system is overwhelmed,
cell free Hb accumulates in the plasma. Hb exhibits a high
affinity for nitric oxide (NO), the important endogenously
produced gas that plays a major role in the regulation of vascular
tone [reviewed in (53, 54)]. Scavenging of NO by Hb triggers
vasoconstriction that contributes to clinical complications in
diverse forms of hereditary or acquired hemolytic anemias (55).
Furthermore, non-compartmentalized Hb cannot benefit from
the highly efficient antioxidant defense system present in intact
RBCs, and Hb tends to oxidize. One-electron oxidation of
Hb occurs when Hb reacts with NO resulting metHb. Also
auto-oxidation of oxyHb triggers metHb generation with the
concomitant production of superoxide anions (Figure 2A). Two-
electron oxidation of Hb occurs when Hb reacts with peroxides,
such as H2O2 or lipid hydroperoxides leading to the formation of

ferryl (Fe4+ = O 2−) Hb (Figure 2B). When metHb reacts with
peroxides ferrylHb radical is formed [Hb•+(Fe4+ = O 2−)] in
which the unpaired electron is located at either the globin chain
or at the porphyrin ring (56–59). The ferryl oxidation state of
iron is very unstable, therefore these high-valence Hb forms are

short-lived intermediates that decay quickly (60).
Ferryl iron can oxidize the neighboring oxidation-prone

amino acid residues of the globin chains (i.e., αTyr-24,
αTyr-42, αHis-20, βTyr-35, βTyr-130, and βCys-93) with
the concomitant reduction of Fe4+ into Fe3+ (37, 61, 62).
This intramolecular electron transfer between the ferryl iron
and the amino acids yields metHb globin radicals in which
the unpaired electrons are located on the oxidized amino
acid residues (37, 61, 62). Reactions between globin radicals
or between globin and porphyrin-centered radicals lead to
the formation of globin-globin and porphyrin-globin adducts,
respectively (Figure 2C). These structurally altered Hb forms
are less efficiently removed from the circulation because both
high-affinity (Hb-Hp/CD163) and low-affinity (Hb/CD163)
endocytosis pathways are compromised (50, 63).

The prosthetic heme group is tightly bound in Hb, while
this bound is weakened in oxidized Hb forms. Both metHb and
ferrylHb releases heme moiety (Figure 2) which is captured by
the acute phase plasma protein Hx (64). Hx-heme complexes
are taken up mainly by macrophages and hepatocytes through
the scavenger receptor LDL receptor-related protein 1/CD91 (65,
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FIGURE 2 | Formation of oxidized Hb forms and labile heme upon hemolysis. Hb tetramers (HbFe2+α2β2) is released from RBCs following intra- or extravascular

hemolysis. (A) Hb outside of RBCs dimerize and can undergo spontaneous auto-oxidation (reaction I) to metHb (HbFe3+αβ). (B) Two-electron oxidation (reactions II) of

Hb and metHb by H2O2 or lipid hydroperoxides (L-OOH) lead to the formation of ferrylHb (HbFe4+αβ) or ferrylHb radicals, respectively. (C) FerrylHb get stabilized via

intramolecular electron transfer (reaction III) between iron and the globin chain forming globin radicals. Globin radicals get stabilized via covalent crosslinking (reaction

IV) producing covalently crosslinked Hb multimers. Oxidized Hb forms (metHb, ferrylHb, covalently crosslinked Hb) release their heme prosthetic group (reactions V).

66). Similarly to Hp, Hx is also depleted from the plasma upon
massive intravascular hemolysis, leading to the appearance of
labile heme, that is, a redox active form of heme which is loosely
bound tomolecules, other than hemoproteins including albumin,
α1-microglobulin and lipoproteins such as LDL and HDL.

Recycling of heme iron is a critical component of systemic
iron metabolism. Iron is released from the heme molecule
via the action of heme oxygenases (HOs), mainly HO-1, the
inducible isoenzyme that catabolizes free heme into equimolar
amounts of Fe2+, carbon monoxide (CO), and biliverdin
(67). HO-1 induction and heme degradation products exhibit
various cytoprotective mechanisms (29). Heme-mediated HO-1
induction and iron release is associated with the upregulation
of ferritin, the major intracellular iron storage protein, assuring
that iron is stored in a catalytically inactive still bioavailable form
inside the cells (68).

ACTIVATION OF THE INNATE IMMUNE
SYSTEM BY LABILE HEME AND OXIDIZED
Hb FORMS

Hemolytic and hemorrhagic episodes are often accompanied
by inflammation even in the absence of pathogens (17, 69).
Accumulating evidence suggest that upon hemolysis RBCs
release large amounts of DAMPs including RBC microvesicles,

heme, ATP, heat shock protein 70, interleukin-33 that induce
pro-inflammatory responses in different cells (70, 71). Here we
will focus on the contribution of Hb-derived DAMPs to the
hemolysis-induced sterile inflammatory responses (Figure 3).

Endothelial Cells (ECs) as First Line
Targets of Hb-Derived DAMPs
A monolayer of ECs cover the entire vasculature and the
lymphatic system providing a semi-permeable barrier between
blood and tissue, and lymph and tissue, respectively. Under
physiological conditions, ECs are involved in many processes
including the regulation of metabolic homeostasis, vascular
hemodynamics, vascular permeability, coagulation, and cell
trafficking [reviewed in (72)]. Besides of these numerous
functions, ECs are one of the first cell types to detect pathogen-
associated molecular patterns (PAMPs) and DAMPs in the
bloodstream, therefore ECs have important immunological
functions in the early innate immune system activation as
danger signal sensors [reviewed in (72)]. ECs are equipped with
a series of pathogen-associated pattern recognition receptors
(PRRs) including toll-like receptors (TLRs) and nucleotide-
binding oligomerization domain (NOD)-like receptors
(NLRs), as well as diverse chemokine receptors [reviewed
in (73)]. Growing evidence shows that ECs respond to various
Hb-derived DAMPs.

Frontiers in Immunology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 132390

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bozza and Jeney Pro-inflammatory Actions of Hemoglobin-Derived Damps

FIGURE 3 | Targets of Hb-derived DAMPs. (I) Labile heme and ferrylHb induces endothelial cell activation characterized by NF-κB activation, elevated ROS

production, and increased expression of adhesion molecules and pro-inflammatory cytokines. (II) Heme activates neutrophils characterized by elevated ROS

production through the activation of NOX, increased production of IL-8 and NET formation. (III) Heme and ferrylHb induces monocyte and neutrophil chemotaxis. (IV)

Labile heme and ferrylHb induces ROS production, NLRP3 activation, and pro-inflammatory cytokine production in LPS-primed macrophages. (V) Heme induces

innate immune training through triggering epigenetic changes, such as acetylation of H3 at lysine-27 in monocytes and macrophages in a Syk-dependent manner. (VI)

Heme induces complement activation leading to the formation of C3a and C5a activation fragments and the assembly of MAC. NF-κB, nuclear factor kappa B; ROS,

reactive oxygen species; NOX, NADPH oxidase; NET, neutrophil extracellular trap; TLR4, toll-like receptor 4, NLRP3, NLR family pyrin domain containing 3; LPS,

lipopolysaccharide; Syk, Spleen tyrosine kinase; H3, histone 3, MAC, membrane attack complex.

Heme-Mediated TLR4-Dependent EC Activation

(Adhesion Molecules and Barrier Function)
ECs respond to a variety of inflammatory stimuli e.g., IL-
1, tumor necrosis factor α (TNF-α), lipopolysaccharid (LPS)
by upregulating the expression of cellular adhesion molecules
including intracellular adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1 (VCAM-1), and E selectin (74, 75).
These adhesion molecules anchor leukocytes to the endothelial
surface and facilitate their transmigration into the inflamed
tissue. Interestingly heme, similarly to that of IL-1, TNF-α, or
LPS upregulates the expressions of adhesion molecules (76) in a
TLR4-dependent manner (19, 20).

This heme-mediated TLR4-dependent mechanism has been
connected to vaso-occlusive crisis in sickle cell disease (Figure 3)
(19). Recent evidence shows that TLR4-dependent upregulation
of endothelial P-selectin triggers an unconventional route of
complement activation by non-covalent binding of C3 activation
fragments on the surface of ECs, whichmechanism contributes to
liver injury in hemolytic diseases such as sickle cell disease (20).

Besides increased expression of cell surface adhesion
molecules, increased endothelial permeability contributes
to inflammatory cell extravasation upon hemolysis. Many
attempts were made to identify the molecular mechanism of this
phenomenon which revealed that ferrylHb and free heme trigger

the loss of endothelial integrity (33, 77–80). Heme-induced loss
of endothelial barrier function is dependent on the activation of
the p38/heat shock protein 27 pathway (79) and associated with
TLR4-dependent production of ROS and necroptosis (77).

FerrylHb-Mediated TLR4-Independent EC Activation

(Adhesion Molecules and Barrier Function)
Besides heme, ferrylHb but not Hb or metHb induces up-
regulation of adhesion molecules ICAM-1, VCAM-1, and E-
selectin, and increase endothelial cell monolayer permeability
in human ECs (Figure 3) (33). Interestingly, ferrylHb-mediated
responses are dependent on the activation of nuclear factor
kappaB (NF-κB), requires actin polymerization, involves the
activation of the c-Jun N-terminal kinase and the p38 mitogen-
activated protein kinase signal transduction pathways but not
dependent on TLR4 activation (33). The facts that (i) ferrylHb
and heme trigger endothelial activation with the use different
signaling mechanisms and that (ii) metHb – that can release
heme more avidly than ferrylHb – does not induce EC activation
suggest that ferrylHb-mediated EC activation cannot be simply
considered as a consequence of heme release from ferrylHb.
The putative receptors associated with ferrylHb-induced EC
activation are currently unknown.
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Induction of Cytokine Production by Hb-Derived

DAMPs in ECs
Growing evidence suggest that endothelial cells are not only
sentinels of the activation of the innate immune system but
actively participate in cytokine production upon hemolysis.
Recently heme and ferrylHb were identified as activators of the
NLRP3 inflammasome leading to processing and secretion of
active IL-1β in LPS-primed macrophages (11, 34). Previously
it has been shown that ECs respond to classical DAMPs such
as extracellular ATP and high mobility group box 1 protein
(HMGB1) by the activation of NLRP3 inflammasome and
the subsequent production of IL-1β (81, 82). Based on these
information we investigated whether heme and the different Hb
redox forms induce NLRP3 inflammasome activation in ECs
(32). We showed that heme but not the different Hb redox forms
induced NLRP3 inflammasome activation and IL-1β production
ECs (Figure 3). Heme-induced inflammasome activation in ECs
requires LPS priming, structural integrity of the heme molecule,
and ROS production (32). Recent data suggest that globin-
derived peptides formed during Hb oxidation are also capable to
induce NLRP3 inflammasome activation and IL-1β production
in ECs (83). Besides IL-1β production, Hb-derived DAMPs,
namely metHb but not Hb has been implicated in IL-6 and IL-8
production in ECs (84). In the same experimental setting heme
did not induce IL-6 and IL-8 production in ECs, so we can
assume that metHb-induced EC response was independent of
heme release.

Hb-Derived Molecules as
Chemoattractants
Heme is chemoatractant in vivo, which notion is supported
by the finding that peritoneal injection of heme causes the
recruitment of neutrophils and intravenous administration of
heme causes leukocyte infiltration in various organs (7, 11, 15,
85). Heme-induced neutrophil recruitment is independent of
TLR4 activation (16), but depends on the endogenous production
of leukotriene B4 by macrophages (86) and the activation of the
NLRP3 inflammasome (11).

Recent studies showed that besides heme, ferrylHb, but not
Hb and metHb triggers peritoneal infiltration of monocytes and
neutrophils (33, 34). The chemotactic effect of ferrylHb is less
likely to be dependent on heme release exclusively, which is
supported by two facts; first, ferrylHb is a more powerful inducer
of leukocyte infiltration than heme and second, metHb that has
the ability to release heme at the same or even higher rate as
ferrylHb (87) fails to trigger leukocyte recruitment (34).

Actions on Neutrophils
Neutrophil granulocytes play a fundamental role in innate and
adaptive immunity. Upon infection or inflammation, neutrophils
are the first leukocytes migrating from the blood into the
affected tissues. Neutrophils are equipped with sensors of PAMPs
and DAMPs, they kill and phagocytose pathogens and clear
cellular debris (88). In the recent years, it has become evident
that neutrophils not only sense PAMPs but can recognize and
respond to endogenous DAMPs as well. As it was mentioned
before, heme and ferrylHb are potent triggers of neutrophil

infiltration (7, 15, 33, 85). Moreover, heme has been shown to
activate neutrophils characterized by elevated ROS production
and increased expression of the pro-inflammatory cytokine
IL-8 (Figure 3) (7, 15). Heme is a potent chemoattractant
of neutrophils in vitro in a mechanism characteristic of a
G protein-coupled receptor activation (7, 15). Heme-induced
neutrophil chemotaxis and ROS production are independent of
the coordinated iron present in heme, while requires the vinyl
groups in the porphyrin ring (15, 89).

Upon activation neutrophils release extracellular traps—
meshes composed of chromatin and neutrophil granular
proteins—which plays a critical role in immobilization of
invading pathogens (90). Recently heme has been identified
as a potent inducer of neutrophil extracellular trap (NET)
formation in TNF-α-primed neutrophils in vitro and in vivo
(91). Accumulating evidence show that heme-mediated NET
formation plays a pathogenic role in vaso-occlusion crises in
sickle cell disease, in transfusion-related acute lung injury, in
systemic inflammation in paroxysmal nocturnal hemoglobinuria
as well as in malaria (91–94). Interestingly, heme-induced NET
formation requires the coordinated heme iron, is dependent on
NADPH oxidase and ROS formation but occurs independently
of TLR4 (95). These results suggest that at least two different
signaling pathways are activated by heme on neutrophils. One
that triggers chemotaxis and is independent of the heme iron
while requires the vinyl groups, and one that triggers the
NET release, requires the iron but not the vinyl groups of the
porphyrin ring. The putative receptors associated with these
activities are currently unknown.

Activation of Macrophages by Hb-Derived
DAMPs
Macrophages are effector cells of the innate immune system,
which respond to a variety of PAMPs and DAMPs. Macrophages
are present in all vertebrate tissues and have highly heterogeneous
phenotypes depending on the environmental cues encountered.

TLR4 Activation by Heme in Macrophages
Heme profoundly affect macrophage physiology through
multiple pathways (17, 18). The requirement of TLR4 to the
induction of TNF production by heme on macrophages was the
first demonstration of a receptor-mediated effect of heme (16).
The coordinated iron and the vinyl groups are essential for heme
to induce TLR4-dependent TNF production. The effect of heme
on macrophages through TLR4 is exquisitely different from the
effect of LPS, the canonical agonist of TLR4. While LPS triggers
the activation of the Myeloid differentiation primary response
88 (MyD88) and the TIR-domain-containing adapter-inducing
interferon-β (TRIF) pathways (96) on macrophages and DCs,
heme activates only the MYD-88 pathway and is unable to
induce the expression of type I interferon or co-stimulatory
molecules (16).

Heme-Induced Macrophage Necroptosis
High amounts of free heme due to hemolysis is involved with
the loss of macrophages, specially in the absence of HO-1
(97). Heme induces macrophage necroptotic cell death in a
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mechanism that requires TNF, ROS, and the kinases RIPK1
and RIPK3 (98). Although required to heme-induced TNF
production, TLR4 is not essential for the necroptosis induced
by heme in the presence of exogenous TNF. An important
study demonstrated that heme triggers tissue macrophage
differentiation by inducing the transcriptional factor Spic in
monocytes through a mechanism dependent on the degradation
of the transcriptional repressor Bach1 (99). During pathological
hemolysis, the axis formed by heme, Bach1, and Spic is critically
involved in the homeostatic response to the macrophage loss.
Another compensatory response to hemolysis and heme is
the formation of aggresome-like induced structures (ALIS) on
macrophages, p62/SQTM1 aggregates containing ubiquitinated
proteins (100, 101). The heme-induced ALIS formation on
macrophages requires mitochondrial ROS, NRF2 and HO-1,
while is independent of TLR4. Moreover, iron from heme is
necessary, while both Fe2+ and Fe3+ are sufficient to trigger ALIS
formation (100). The physiopathological role of heme-iduced
ALIS formation is currently unknown.

NLRP3 Activation by Heme in Macrophages
Heme has a synergistic effect with microbial molecules
on macrophages, increasing the production of inflammatory
cytokines in a mechanism dependent of ROS and spleen
tyrosine kinase (Syk) (13). Moreover, heme induces NLRP3
inflammasome activation leading to processing and secretion of
active IL-1β in LPS-primed macrophages (11). Heme-mediated
NLRP3 inflammasome activation is found to be dependent on
the coordinated heme iron, and also involves activation of Syk,
elevated ROS production by NOX2 and the mitochondria and
K(+) efflux, contributing to intravascular hemolysis-induced
lethality (11). An interesting study demonstrated that heme
reduces the host resistance to bacterial infection (102). Treatment
of macrophages with heme, but not with Hb, free iron, or
the heme analogs protoporphyrin IX and tin-protoporphyrin
IX, causes a dose-dependent inhibition of E. coli phagocytosis
by macrophages (102). This inhibitory effect of heme on
macrophage phagocytosis and chemotaxis occurs through the
activation of the GTP-binding Rho family protein Cdc42 by
DOCK8, a guanine nucleotide exchange factor, disrupting actin
cytoskeletal dynamics (102). Together, these results indicate
possible signaling pathways for therapeutic intervention during
hemolytic infectious conditions.

NLRP3 Activation by ferrylHb in Macrophages
Besides heme, the involvement of different Hb redox forms
was investigated in hemolysis-associated NLRP3 inflammasome
activation in macrophages. That study revealed that ferrylHb but
not Hb or metHb induce active IL-1β production in LPS-primed
macrophages in an NLRP3-dependent manner (34). Based on
the fact that metHb cannot induce IL-1β production in LPS-
primed macrophages it is unlikely that heme release plays a
critical role in the ferrylHb-triggered response. FerrylHb-induced
NLRP3 activation is associated with elevated ROS production
but the detailed molecular mechanism needs to be further
explored (34).

Hemorrhage-Associated Macrophage Subsets
Besides the two extreme canonical macrophage phenotypes, the
pro-inflammatory M1 and the anti-inflammatory M2, many
other specific and distinct macrophage subsets exist (103).
Both extracellular Hb and heme are implicated in macrophage
polarization triggering the formation of hemorrhage-associated
M(Hb) and M(heme) subsets, respectively (103–106). These
hemorrhage-associated macrophage subsets were first identified
in advanced human atherosclerotic lesions with intraplaque
hemorrhage (103–106). M(Hb) macrophages represent a
subpopulation of CD68+ macrophages and their characteristic
markers are the macrophage mannose receptor 1 and the
CD163 receptor through which macrophages recognize and
endocytose Hp-Hb complexes (103–105). Additionally, due to
their role in Hb clearance, M(Hb) macrophages exhibit increased
HO-1 and ferroportin expressions thereby facilitating heme
catabolism and cellular efflux of excess iron (105). Reduced
labile iron content in M(Hb) macrophages is associated with
less ROS production which is linked to increased activity of
the transcription factor liver X receptor-α and the induction of
cholesterol efflux (105). Because of this, M(Hb) macrophages
are protected from lipid accumulation and produce anti-
inflammatory factors, such as IL-10 (105). M(heme) macrophage
polarization is driven by extracellular heme, and similarly to that
of M(Hb) this subset is protected from oxidative stress and lipid
accumulation (107).

Activation of Microglia by Hb-Derived
DAMPs
Microglia are the primary innate immune effector cells of
the central nervous system (CNS) with a similar function
to macrophages. Intracerebral and subarachnoid hemorrhages
(ICH and SAH, respectively) are associated with activation of
microglia and growing evidence suggest that inflammation is
the key contributor of secondary brain injury induced by ICH
or SAH (108, 109). Microglia have an important function in
hematoma resolution by phagocytosing RBCs which process
is mediated by the class B scavenger receptor CD36 (110,
111). CD36 expression is regulated by peroxisome proliferator-
activated receptor γ (PPARγ), and activation of PPARγ has
been shown to promote hematoma resolution and decrease
neuronal damage following ICH (111). Incomplete removal
of RBCs leads to hemolysis and the production of oxidized
Hb forms and free heme (112, 113). Microglia plays a
critical role in removing these toxic Hb derivatives from the
central nervous system through CD163-Hp-Hb and CD91-
Hx-heme scavenging mechanisms and heme degradation by
HO enzymes (114–117). These mechanisms can attenuate
bleeding-associated neuronal damage, though we have to
note that upon significant intrathecal hemolysis the Hb-heme
elimination system is largely overwhelmed leading to the
accumulation of oxidized Hb forms and free heme in the
CNS (112–114).

These Hb-derived DAMPs trigger neuroinflammation
following ICH and SAH. In line of this notion it has been shown
that heme induces TLR4-mediated inflammatory injury via the
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activation of MyD88/TRIF pathways in microglia following
ICH (118). Importantly, mice deficient of Tlr4 or anti-TLR4
treatment reduce heme-induced neurologic deficit, brain edema,
and inflammation. Not only heme, but also metHb has been
identified as a TLR4 agonist that triggers the secretion of
TNF-α by the microglia (119). A number of studies support
the notion that TLR4 contributes to the brain injury due to
ICH (120–123). Additionally, heme induces the release of IL-1α
but not IL-1β in primary mixed glia (124). Targeting these
inflammatory pathways with anti-TLR4 antibody or with IL-1
receptor antagonist attenuate intrathecal hemorrhage-associated
inflammatory injury (118, 124). A recent study showed
that besides heme and metHb, large amounts of covalently
crosslinked Hb multimers (dimers and tetramers) accumulate in
the cerebrospinal fluid of preterm infants following IVH (112).
Further work needed to address whether these Hb multimers
are implicated in the inflammatory microglia activation
following IVH.

Induction of Innate Immune Memory by
Heme
Trained immunity or innate immune memory is the ability
of the innate immune system to adapt its function after
previous encounters with pathogens or their products (125).
This mechanism not only provides protection against reinfection
but also contributes cross-protection between infections with
different pathogens (125, 126). The major cell types in which
trained immunity occurs are myeloid cells, natural killer cells,
and innate lymphoid cells. Trained immunity is activated by
PAMPs such as LPS or β-glucan via PRR signaling, resulting
changes in transcription programs through epigenetic regulation
that can persist for up to several weeks (125, 126). Epigenetic
reprogramming – driven by histone acetylation, for example at
lysine-9 (H3K9ac) and lysine-27 (H3K27ac) of H3 histones that
almost exclusively determines transcriptional capability – is a
critical determinant of trained immunity (127).

Recently it was reported that heme is a potent inducer of
trained immunity in monocytes and macrophages both in vitro
and in vivo (31). Heme pretreatment increased pro-inflammatory
cytokine (TNF-α, IL-6, IL-8) release from macrophages upon
secondary challenge by LPS (Figure 3) (31). Such effect of
heme was independent on the pro-oxidant nature of heme,
which notion is supported by the fact that (i) trained immunity
is induced by protoporphyrin IX, lacking iron and (ii) it is
not prevented by the glutathione precursor N-acetyl cysteine
(31). Heme pretreatment triggered epigenetic changes, such as
acetylation of H3k27. Comparing heme and β-glucan-induced
training in monocytes revealed overlapping as well as distinct
epigenetic and transcriptional responses between the two triggers
(31). Common pathways, regulated by both heme and β-glucan
included lysosome maturation and metabolism. Genes only
induced by heme are mainly involved in inflammatory pathways,
and as expected heme/iron related metabolism (31). Another
remarkable difference between heme- and β-glucan-induced
training is that heme-mediated training relies on the activation
of Syk and c-Jun n-terminal kinase, but independent on the

activation of the Mammalian Target of Rapamycin which is
largely involved in β-glucan training (31). This finding reinforces
the critical role of Syk signaling on heme-induced macrophage
activation (11, 13). At present, the mechanism by which heme
triggers Syk phosphorylation is unknown (17). Interestingly,
heme seems to be a Janus-faced training molecule in vivo
resulting that the outcome of heme pretreatment largely depends
on the experimental conditions (31).

Complement Activation and the
Thromboinflammatory Loop
Originally the complement system has been considered
as a simple mechanism to induce bacterial lysis. Recently
it became evident that complement has diverse functions
in both physiologic and pathologic conditions (128). The
complement system senses PAMPs and DAMPs and translate
the danger information into an adequate cellular innate or
adaptive immune response (129). The complement system is
a cascade of more than 40 proteins, which can be initiated
by different ways. There are three known distinct ways for
complement activation: the classical, the lectin-mediated, and
the alternative pathway (AP) (130). Activation of each of
the three pathways leads to a common terminal pathway in
which the inactive C3 protein is cleaved into the functional
fragments C3a and C3b, and the membrane attack complex
(MAC) is formed (130). These products of complement
activation mediate a diverse inflammatory response that includes
opsonization and phagocytosis, bacterial killing, immune
cell recruitment, endothelial and epithelial cell activation,
platelet activation and interaction with the adaptive immune
system (128).

It has long been known that hemolytic disorders, such
as sickle-cell disease, beta-thalassemia major, thrombotic
thrombocytopenic purpura, and paroxysmal nocturnal
hemoglobinuria are associated with complement over-activation
(131–136). Recent evidence suggest that heme has a direct role in
hemolysis-associated complement activation (Figure 3). In line
of this notion heme has been shown to activate the complement
AP and trigger the deposition of C3 activation fragments on the
surface of RBCs (28). A detailed work showed that C3a, C5a, and
sC5b9 activation fragments are formed during heme-mediated
activation of the complement AP in normal human serum
(Figure 3) (26). Additionally, heme-exposed ECs also activate
the AP resulting in cell-bound C3 and MAC, which mechanism
contributes to endothelial damage and thrombosis in atypical
hemolytic uremic syndrome (26). Drug-induced intravascular
hemolysis or injection of heme trigger C3 deposition in the
kidneys and subsequent renal damage which can be attenuated
by the heme scavenger Hx. Also, deficiency of C3 attenuates
hemolysis-induced kidney injury in mice, suggesting that
heme-mediated complement activation and C3 deposition
play a fundamental role in renal damage upon intravascular
hemolysis (27).

Clinical and epidemiological studies revealed that RBC
abnormalities such as abnormal hematocrit, sickle cell disease,
thalassemia, hemolytic anemias, and malaria are associated with
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increased incidence of both arterial and venous thrombosis
(137). Recently it has been shown that heme activates the tissue
factor (TF)-dependent extrinsic coagulation pathway both in
vitro and in vivo which can be attenuated by an anti-TF antibody
(138, 139). Importantly, inhibition of TF-induced coagulation
activation reduces microvascular stasis and lung vaso-occlusion
in sickle mice (140). By activating both inflammatory
and hemostatic pathways extracellular heme can trigger a
thromboinflammatory vicious cycle that can contribute to the
pathogenesis of hemolytic diseases. Recently the heme-induced
thrombogenecity was studied in an ex vivo human whole blood
model. Heme-induced thromboinflammation was attenuated by
the inhibition of the complement component C5 and the TLR
coreceptor CD14 (141). Inhibition of the thromboinflammatory
loop can be a meaningful therapeutic target in hemolytic
diseases (141).

Modulation of Host Defense Mechanism by
Labile Heme
High concentrations of labile heme are observed in infectious
conditions, such as malaria and sepsis, both in humans and
experimental animals (14, 17, 21, 29). As in sterile hemolytic
conditions, the axis Hp/Hx and HO-1/FT heavy chain (FTH)
also provides critical host protection against free heme on
infectious disease with increased hemolysis (14, 21–25, 29).
Two complementary mechanisms comprise the host response
to infection. Resistance, a primarily attribute of the immune
system, is associated with the reduction or elimination of
infectious agents, while tolerance is the capacity of limiting
the pathological consequences of an infection (142, 143). Heme
can affect the host responses in multiple ways, modulating
both the disease tolerance and the resistance to infection.
In a series of important studies, it has been demonstrated
that heme contributes to the pathogenesis of malaria by
increasing tissue damage, while HO-1 and FTH contributes
to disease tolerance irrespective of changes on pathogen loads
(21–24). A recent study indicates that sickle cell trait with
low grade hemolysis is beneficial in malaria infection due
to an increased in disease tolerance associated with higher
HO-1 expression (23). CO, generated by the catabolism of
heme by HO-1, binds to heme inhibiting its release from
the Hb during malaria, thus preventing pathology (21).
Moreover, the antioxidant effects of HO-1 inhibits the hepatocyte
apoptosis induced by the synergistic effects of heme and TNF,
preventing hepatic failure, and death in a mouse model of
malaria (144).

In a mouse model of endotoxemia heme enhances the plasma
concentrations of TNF and IL-6, drastically increasing the
lethality induced by LPS (13). This increased lethality in mice is
observed even when the challenge with LPS occurs after 6 days
of treatment with heme and correlates with increased numbers
of tissue macrophages (31). Heme reduces blood glucose levels
dependently of TLR4, contributing to the severity of sepsis,
while FTH reverts this effect contributing to glucose and tissue
homeostasis (25). In mouse models of severe bacterial infection,
heme increases multi organ failure, and lethality irrespective to

a change on pathogen load (14). An interesting study has shown
that heme reduces resistance to Gram-negative infection in mice
predisposing to pathogen dissemination through the suppression
of phagocytic function and independently of bacterial growth
due to nutritional advantage (102). These results suggest that
upon acute bacterial infection heme can be deleterious due to an
increase on tissue damage and bacterial loads.

Heme can also modify immunoglobulin-mediated immune
responses. This activity relies on the ability of heme to bind
to immunoglobulins of different isotypes (IgG, IgA and IgM)
leading to the formation of heme-immunoglobulin complexes
that exhibit increased reactivities toward various self and
bacterial antigens (145). Besides that, it has been shown that
heme-IgG complex can interact with previously unrecognized
bacterial antigens and intact bacteria through binding to an
enlarged panel of structurally unrelated epitopes (146). Heme-
induced expansion of the antibody repertoire may represent
an inducible innate-type host defense mechanism against
infections (146).

CONCLUSIONS

Upon hemolysis a large amount of Hb is released from RBCs that
is oxidized in the extracellular milieu. Cell free Hb, its oxidation
products and heme that is released from oxidized Hb forms
are potential DAMPs. Among these numerous Hb oxidation
products heme is the most widely studied molecule, and its
contribution as a DAMP in hemolysis-associated pathologies
has been confirmed. Because of structural alterations oxidized
Hb forms (metHb and ferrylHb) bind heme less avidly than
Hb, therefore pro-inflammatory actions of oxidized Hb forms
was thought to be attributed to their ability to release the heme
prosthetic group. This idea is challenged by recent studies
suggesting that oxidized Hb forms, in particular ferrylHb exhibit
pro-inflammatory actions independently of heme release. A
lot of work needs to be done to further explore the colorful
picture of Hb-derived DAMPs, their targeted cells and the
mechanisms of their actions. Comprehensive understanding
of hemolysis/hemorrhage-associated inflammation could
contribute to the development of novel therapeutics intended to
interrupt these pathological events.
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(UFBA), Salvador, Brazil

The excessive release of heme during hemolysis contributes to the severity of sickle

cell anemia (SCA) by exacerbating hemoglobin S (HbS) autoxidation, inflammation and

systemic tissue damage. The present study investigated the effect of hydroxyurea

(HU) on free radical neutralization and its stimulation of antioxidant genes in human

peripheral blood mononuclear cells (PBMC) and human umbilical vein endothelial cells

(HUVEC) in the presence or absence of hemin. HU (100 and 200µM) significantly

reduced the production of intracellular reactive oxygen species (ROS) induced by hemin

at 70µM in HUVEC. HUVECs treated with HU+hemin presented significant increases

in nitric oxide (NO) production in culture supernatants. HU alone or in combination

with hemin promoted the induction of superoxide dismutase-1 (SOD1) and glutathione

disulfide-reductase (GSR) in HUVECs and PBMCs, and glutathione peroxidase (GPX1)

in PBMCs. Microarray analysis performed in HUVECs indicated that HU induces

increased expression of genes involved in the antioxidant response system: SOD2,

GSR, microsomal glutathione S-transferase (MGST1), glutathione S-transferase mu 2

(GSTM2), carbonyl reductase 1 (CBR1) and klotho B (KLB). Significant increases in

expression were observed in genes with kinase activity: protein kinase C beta (PRKCB),

zeta (PRKCZ) and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2

beta (PIK3C2B). HU also induced a significant increase in expression of the gene

p62/sequestosome (p62/SQSTM1) and a significant decrease in the expression of the

transcriptional factor BACH1 in HUVECs. Upstream analysis predicted the activation of

Jun, miR-155-5p and mir-141-3p. These results suggest that HU directly scavenges

free radicals and induces the expression of antioxidant genes via induction of the Nrf2

signaling pathway.
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INTRODUCTION

Hydroxyurea (HU) is a hydroxylated analog of urea, which
was initially identified as a myelosuppressive drug that acts
by inhibiting ribonucleotide reductase. After determining its
antisickling effect, HU was approved in 1998 by the U.S. Food
and Drug Administration (FDA) for the treatment of sickle
cell anemia (SCA). SCA is a hereditary autosomal recessive
disease, characterized by the homozygosity of the beta S
(βS) allele (HbSS), which is derived from the GAG>GTG
mutation in the sixth position of the β globin gene (HBB)
(1). The pathophysiological condition of SCA is recurrent and
characterized by a large production of reactive oxygen species
(ROS) and reactive nitrogen species (RNS), which play a crucial
role in the maintenance of inflammation (2–6).

The imbalance caused by increased oxidation-reduction
(redox) reactions in the vascular microenvironment in SCA
provokes important deleterious effects (4). Indeed, patients with
SCA can present (i) intravascular and extravascular hemolysis
with free heme release; (ii) autoxidation of HbS (3, 7);
(iii) nitric oxide (NO) depletion and endothelial dysfunction
(8, 9); (iv) ischemia-reperfusion events (10); (v) marked
leukocyte dysfunction, conferring a non-effector response against
pathogens, and the dysregulation of inflammatory equilibrium
that increases susceptibility to secondary infections (11–13).

Despite the recent approval of L-arginine by the FDA, HU
remains the drug most indicated for SCA patients who present
a severe clinical profile (14, 15). Experimental studies have
demonstrated that after oral administration, HU is absorbed,
converted into a nitroxide radical and transported to the
active site of the M2 subunit of the ribonucleotide reductase
protein, inactivating the enzyme and generating cytotoxic
suppression, most likely via the induction of an antioxidant
response (16). Ware (17) pointed out the main benefits of HU
therapy in patients with SCA: HU induces fetal hemoglobin
(HbF) production through the activation of guanylate cyclase
and reduces neutrophil and reticulocyte counts by inhibiting
ribonucleotide reductase activity and bone marrow toxicity.
Moreover, it decreases adhesiveness and improves the rheology
of circulating neutrophils and reticulocytes, reduces hemolysis

and improves erythrocyte hydration, promotes macrocytosis,
reduces intracellular sickling and stimulates the release of NO
as a potential local vasodilator. Despite these benefits, relatively
few studies have specifically focused on the action of HU in

Abbreviations: BACH1, BTB (Broad-Complex, Tramtrack and Bric-a-brac)

Domain and CNCHomolog 1, Basic Leucine Zipper Transcription Factor 1; CBR1,

Carbonyl reductase 1; DPPH, 2,2-Diphenyl-1-picrylhydrazyl; GPX, Glutathione

peroxidase; GSH, Reduced glutathione; GSR, Glutathione-disulfide reductase;

GST, Glutathione S-transferase; GSTM2, Glutathione S-transferase mu 2; H2O2,

Hydrogen peroxide; HbF, Fetal hemoglobin; HbS, Hemoglobin S; HMOX1, Heme

oxigenase-1 gene; HU, Hydroxyurea; HUVEC, Human umbilical vein endothelial

cells; Keap1, Kelch-like ECH-associated protein1; KLB, Klotho beta; MAPK,

Mitogen-activated protein kinase; MGST1, Microsomal glutathione S-transferase;

NO−

3 , Nitrate; Nrf2, Nuclear factor erythroid 2 (NF-E2) p45-related factor 2;

NO, Nitric oxide; PBMC, Peripheral blood mononuclear cells; p62/SQSTM1,

Sequestosome1; RNS, Reactive nitrogen species; ROS, Reactive oxygen stress; SCA,

Sickle cell anemia; SOD-1, Superoxide dismutase-1.

alternative mechanisms that broaden the field of knowledge
regarding its action and systemic effects.

We hypothesized that HU can act by decreasing ROS/RNS
and stimulating antioxidant defense systems in endothelial cells
and leukocytes. To this end, we investigated the effects of HU
in human peripheral blood mononuclear cells (PBMC) and
umbilical cord vein endothelial cells (HUVEC) pre-treated or
not with hemin, an important pro-oxidant molecule released
during hemolysis (3, 18, 19). We then specifically investigated
the antioxidant effect of HU, as well as the expression
of antioxidant genes, such as heme oxygenase-1 (HMOX1),
superoxide dismutase-1 (SOD1), glutathione disulfide-reductase
(GSR) and glutathione peroxidase (GPX1).

METHODS

Drugs
HU, butylated hydroxytoluene (BHT) and L-ascorbate were
purchased from Sigma Aldrich (St. Louis, MO, USA) and
prepared following the manufacturer’s instructions. After
complete solubilization, drugs were sterilized by filtration
using a 0.22µm polyethersulfone membrane (PES) (Jet Biofil,
Guangzhou, China) for use in culturing assays.

Preparation of Hemin
Hemin (Sigma Aldrich, St. Louis, MO, USA), a ferric chloride
hemin, was prepared from a 5mM stock solution solubilized in
0.1M NaOH using non-pyrogenic water under dark conditions.
The hemin solution was then diluted in RPMI 1640 medium
(Gibco, New York, NY, USA) to obtain optimal concentrations.
Finally, a non-pyrogenic hemin solution was obtained following
0.22µmPES-membrane filtration (Jet Biofil, Guangzhou, China)
for use in cell culture assays.

Scavenging Activity Assay of
2,2-Diphenyl-1-Picrylhydrazyl (DPPH)
DPPH free scavenging activity was assessed by a modified
microplate assay method previously described by Li et al.
(20). Initially, 200µM of DPPH stock solution (Sigma Aldrich,
St. Louis, MO, USA) was prepared in methanol p.a. (Synth,
Diadema, SP, Brazil) 10–15min before experimentation, stored
in a sealed bottle, and kept away from light. For this assay, stock
drug solutions were prepared, using methanol, at concentrations
ranging from 3.13 to 800 µM/well. HU, as well as the antioxidant
external controls BHT and L-ascorbate, were incubated for 30 or
60min at a volume of 0.1mL on 96-well flat-bottom microtiter
plates (Greiner Bio-one, Monroe, North Carolina, USA) at a ratio
of 1:1 (v/v), with the addition of DPPH (100 µM/well). All plates
were covered and kept in the dark to minimize evaporation and
to avoid the photosensitization of DPPH radicals. Finally, the
plated solutions were homogenized for 5 sec, and absorbance was
measured on a microplate reader (SpectraMax 190, Molecular
Devices Corporation, Sunnyvale, CA) using Softmax software v.
5.0 (Molecular Devices, Sunnyvale, CA, USA) at a wavelength
of 517 nm. DPPH radical scavenging activity was determined
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using the following equation: Scavenging activity of DPPH
(%)= [(Absdpph-Absdrug)× 100]/Absdpph.

Cell Cultures
HUVECs were cultured in 25 cm2 cell culture flasks (Costar,
Corning, NY, USA) containing 5mL RPMI 1640medium (Gibco,
New York, NY, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco, New York, NY, USA), 20mM
glutamine (Sigma Aldrich, St. Louis, MO, USA), 10mM HEPES,
5mM NaOH and the following antibiotics: 100 U/mL penicillin
and 10 mg/mL streptomycin (Sigma Aldrich, St. Louis, MO,
USA). For all assays, HUVECs were used in passages 1–5
and phenotypically characterized by the evaluation of typical
cobblestone morphology and surface tissue factor (CD142)
(Supplementary Figure 1).

Human peripheral venous blood samples were collected from
healthy volunteers (HbAA genotype) to obtain PBMCs. Written
informed consent was obtained from all study participants,
and the present protocol was conducted in compliance with
the 1975 Helsinki Declaration and its amendments, as well as
the Brazilian ethical guidelines (466-CNS-2012). PBMCs were
obtained by Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden)
density gradient centrifugation following the manufacturer’s
instructions. Both HUVEC and PBMC were cultivated in a
humidified atmosphere at 37◦C under 5% CO2.

Cytotoxicity Assays
The cytotoxic effects of the drugs and hemin on HUVEC were
assessed using a resazurin sodium salt reduction colorimetric
assay. For this, 2 × 104 cells/well (0.2mL) were plated on 96-
well plates (Costar, Corning, NY, USA) and cultivated for 20–
24 h under the culture conditions described above, until reaching
a confluency of 70–80%. Cells were then treated with HU in
combination or not with hemin for 24 h. After incubation,
the medium was collected and the wells were gently washed
once with preheated (37◦C) 0.85% saline solution to avoid cell
damage and detachment. Finally, 0.1mL of 12.5µM resazurin
sodium salt solution (Sigma Aldrich, St. Louis, MO, USA)
diluted in RPMI 1640 with 10% FBS was added to each well,
followed by incubation at 37◦C under 5% CO2 in a humidified
atmosphere for 3 h according to standardization protocols
(Supplementary Figure 2A). Absorbance was simultaneously
read at wavelengths of 570 and 600 nm on a microplate reader.
Cell viability was determined by measuring the percentage of
sodium salt (deep blue fluorescent compound) that was reduced
to resorufin (pink fluorescent product). For PBMC cytotoxicity
assays, 3 × 105 cells were incubated for 24 h with HU in
combination or not with hemin. Cytotoxicity was assessed
using propidium iodide (BD, Pharmigen, USA) following the
manufacturer’s specifications. For each sample, 20,000 events
were acquired on a BD LSRFortessaTM cytometer (Biosciences,
San Jose, CA, USA).

Determination of Intracellular ROS
The detection of reactive oxygen species was determined in
HUVECs using a 2′, 7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) probe (Sigma Aldrich, St. Louis, MO, USA).

Initially, 3.3 × 105 cells (0.5mL) were seeded on 24-well
plates for 20 h in the presence of 70µM hemin to induce the
intracellular production of ROS. Cells were then subjected to
different concentrations of HU (100 and 200µM) in the presence
or absence of 70µM hemin for 2 h. Next, the supernatants
were discarded, the cell monolayers were gently washed twice
with pre-heated (37◦C) sterile saline (0.85% NaCl), followed by
reincubation for 30min with 10µM of DCFH-DA probe in SFB-
depleted medium without phenol red (Gibco, New York, NY,
USA) to avoid probe degradation. Finally, the monolayers were
washed twice with saline and trypsinized with 0.3mL of trypsin-
EDTA (0.25%) for 4min at 37◦C. Trypsin was neutralized with
RPMI medium without phenol red supplemented with 10% SFB,
and cells were transferred to sterile 1.5mL microtubes, washed
twice with saline solution and then placed in specific tubes for
flow cytometry acquisition using Ex/Em:∼492–495/517–527 nm
on a BD LSRFortessaTM cytometer (Biosciences, San Jose, CA,
USA). ROS measurements are expressed by mean fluorescence
intensity (MFI) and replicate values are expressed as means
(10,000 events for each condition).

Nitrite Accumulation in Supernatants
NO production was indirectly quantified in PBMC and HUVEC
supernatants using the Griess method (21) after treatment with
HU (100 and 200µM) alone or in combination with 70µM
hemin for 24 h. First, 1.2× 106 PBMC/well (0.3mL) and 8× 104

HUVEC/well (0.5mL) were seeded on 48-well and 24 well-plates,
respectively, in the presence of stimuli. Next, 50 µL (1:1, v/v) of
the supernatant was added to Griess reagent [1% sulfanilamide
and 0.1% naphthyl ethylenediamine dihydrochloride (Sigma
Aldrich, St. Louis, MO, USA) in 2.5% H3PO4 solution] for 5min.
Absorbance wasmeasured on amicroplate reader at a wavelength
of 550 nm. The conversion of absorbance into micromolar
concentrations of NO was deduced from a standard curve using

a known concentration of NaNO2 diluted in RPMI medium.
The standard curves used to determine molar concentrations
assumed a coefficient of determination (R2) value ≥ 0.999.

Gene Expression and RNA Extraction
Assays
HUVEC and PBMC were challenged with different HU
concentrations in the presence and absence of 70µM hemin
for 4 h. Gene expression assays were performed by real-time
quantitative reverse-transcription polymerase chain reaction
(RT-qPCR). Total RNA was extracted from HUVEC and
PBMC samples using TRIzol Reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s specifications. The
concentration and purity of the extracted RNA were determined
at the optical densities of 260 and 280 nm using a NanoDrop
2000 spectrophotometer (ThermoFisher Scientific, Rockford, IL,
USA) at an absorbance ratio A260/280 of 1.90–2.02. Reverse
cDNA synthesis by reverse transcription of RNA (RT-PCR) was
performed using 250 ng of the RNA transcript in a High-Capacity
cDNA Reverse Transcription Kit (ThermoFisher Scientific,
Rockford, IL, USA) following the manufacturer’s specifications.
Real-time PCR was performed on an ABI PRISM 7500 Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA)
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TABLE 1 | Scavenging activity (corresponding to 50% of 100µM DPPH) of hydroxyurea, L-ascorbate and butylated hydroxytoluene.

Drugs IC50 (µM) ± SD One-way Tukey’s post-hoc test

ANOVA
HU vs. BHT HU vs. L-Asc L-Asc vs. BHT

Hydroxyurea 38.68 ± 0.47 p<0.0001 p<0.0001 p<0.0001 p<0.05

Butylated hydroxytoluene 23.07 ± 2.64

L-Ascorbate 18.22 ± 5.93

IC50 values correspond to the mean inhibitory concentration of three independent experiments. SD, Standard deviation; HU, Hydroxyurea; BHT, Butylated hydroxytoluene;

L-Asc, L-Ascorbate.

under the following cycling conditions: 95◦C for 20 s, 95◦C for

1 s, 60◦C for 20 s for 40 cycles. For the RT-qPCR reactions,
mixtures containing SYBR R© Green PCR Master Mix (SYBR R©

Green I dye, AmpliTaq Gold R© DNA Polymerase, dNTPs with
dUTP, passive reference 1–ROX) (Applied Biosystems, Foster
City, CA, USA), the primers specific to the target genes and
2 µL of the cDNA sample product were added to the optical
plates. The primers used for quantitative PCR were as follows:
[HMOX1: 5′-ATG GCC TCC CTG TAC CAC ATC-3′ (forward);
5′-TGT TGC GCT CAA TCT CCT CCT-3′ (reverse); SOD1:
5′-TGG CCG ATG TGT CTA TTG AA-3′ (forward); 5′-CAC
CTT TGC CCA AGT CAT CT-3′ (reverse); GSR: 5′-ACT TGC
CCA TCG ACT TTT TG-3′ (forward); 5′-GGT GGC TGA
AGA CCA CAG TT-3′ (reverse); GPX1: 5′-CCA AGC TCA
TCA CCT GGT CT-3′ (forward); 5′-TCG ATG TCA ATG
GTC TGG AA-3′ (reverse); β-actin: 5′-CCT GGC ACC CAG
CAC AAT-3′ (forward); 5′-GCC GAT CCA CAC GGA GTA
CT-3′ (reverse); tubulin isotype a1C: 5′-TCA ACA CCT TCT
TCA GTG AAA GG-3′ (forward); 5′-AGT GCC AGT GCG
AAC TTC ATC (reverse). After determining the threshold cycle
(CT), gene expression was measured by relative quantification
using the following expression: fold-change = 2−1(1CT), where
1CT = CTtarget – CThousekeeping and 1(1CT) = 1CTtreated –
1CTcontrol(medium). Beta-actin and tubulin isotype a1C were used
as housekeeping genes.

Microarray Assays with HUVEC
Microarray analyses were performed using a HumanHT-12 v.4
Expression BeadChip Kit (Illumina Inc., San Diego, CA,
USA) and a TargetAmpTM Nano Labeling Kit for Illumina R©

Expression BeadChip R© (Epicenter Technologies, Madison,
Wisconsin, USA), in accordance with the manufacturers’
specifications. Fluorescence values were acquired on an Illumina
HiScan system using iScan Control software (Illumina Inc.,
San Diego, CA, USA). After quality control assessments, the
generated data were exported for analysis using Genome Studio
software (Illumina Inc., San Diego, CA, USA). Results with
a detected p > 0.05 and a differential score < 0.05 were
discarded. After validation, the transcripts were selected and
analyzed using Ingenuity Pathway Analysis (IPA) software
(QIAGEN). Experiments were performed in triplicate and
results reflect relative expression (log fold-change > 1.5),
determined by comparing HUVECs treated with 200µM HU to
untreated cells.

Statistical Analysis
Data are expressed as means ± standard deviation of at least
one representative experiment. All experiments were performed
in triplicate. One-way ANOVA followed by Tukey’s post-hoc
test was applied to test variance between multiple groups.
Significance was considered when p < 0.05. GraphPad Prism
software version v.6.0 was used for statistical analyses (GraphPad,
San Diego, CA, USA).

RESULTS

HU Scavenges Free Radicals
To investigate the possible antioxidant effects of HU, we
performed assays evaluating radical scavenging activity using
100µM DPPH, a stable free radical. Initially, we found that
HU presents significantly superior scavenging activity at 60min
of incubation after standardization (Supplementary Figure 3).
Next, radical scavenging assays involving DPPH demonstrated
a concentration-dependent activity for HU. Our global analysis
found that HU (IC50 = 38.68 ± 0.47 µM) presents lower
DPPH radical scavenging activity than the reference antioxidant
compounds BHT (IC50 = 23.07 ± 2.64 µM, p < 0.05) and
L-ascorbate (IC50 = 18.22 ± 5.93 µM, p < 0.001) (Table 1).
However, scavenging activity equivalent or superior to BHT was
observed at concentrations ≥200µM (Figure 1). Based on these
findings, HU was used in all further assays at concentrations of
100 and 200 µM.

HU and Hemin Present Non-Toxic Effects
in HUVEC and PBMC
Cytotoxicity evaluations in HUVECs and PBMCs were carried
out using resazurin sodium salt and propidium iodide methods,
respectively. For toxicity testing in HUVECs, we initially
standardized the time required to reduce resazurin sodium salt
to a level equivalent to the same percentage of cell viability found
in unstimulated cell cultures (Supplementary Figure 2A).
No decreases in HUVEC viability were seen at the
concentrations evaluated, ranging from 6.25 to 100µM of
hemin (Supplementary Figure 2B). Considering these findings,
all following assays employed a hemin concentration of 70µM,
which corresponds to the plasmatic concentrations of free hemin
observed in a previous study by our group involving steady-state
SCA patients. No toxicity was observed in the HUVEC and
PBMC samples at any of the HU or hemin concentrations
evaluated (Supplementary Figures 2C,D).
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FIGURE 1 | DPPH scavenging activity of different concentrations of hydroxyurea after 60min of incubation. Antioxidant activity was measured by scavenging of the

DPPH free radical using the HU concentrations 3.13 µM (A), 6.25 µM (B), 12.5 µM (C), 25 µM (D), 50 µM (E), 100 µM (F), 200 µM (G), 400 µM (H) and 800 µM (I).

Results correspond to the mean ± standard deviation of four independent experiments. BHT and L-ascorbate were used as reference antioxidant compounds. HU,

hydroxyurea; L-Asc, L-ascorbate; BHT, butylated hydroxytoluene. Statistical significance determined by one-way ANOVA, p < 0.0001, followed by Tukey’s post-hoc

test: HU vs. BHT: *p < 0.05, **p < 0.01, ***p < 0.001; HU vs. L-Asc, #p < 0.05, ##p < 0.01, ###p < 0.001.

HU Increases NO Production and
Decreases the Formation of Cytosolic ROS
in HUVEC Treated with HU plus Hemin
Hemin alone was shown to induce NO production in PBMCs
and HUVECs. PBMCs and HUVECs treated with HU at 100µM
and 200µM did not show any significant increases in NO
(Figures 2A,B). However, when we evaluated the combined
treatment of HU plus hemin vs. negative controls or hemin
alone, significantly increased NO production was seen only
in HUVECs. HU plus 70µM hemin was found to markedly

reduce ROS in HUVECs in a concentration dependent-manner
(Figure 2C).

Treatments with HU Alone or Combined
with Hemin Induce Antioxidant Enzyme
Gene Expression in HUVEC and PBMC
Treatment with 200µMHU increased the expression of SOD1 in
PBMCs and HUVECs by 2.57 ± 0.86-fold (p < 0.05) and 1.84 ±
0.36-fold, (p < 0.01), respectively, compared to negative controls
(Figure 3A). Combined treatments using 100 and 200µMof HU
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FIGURE 2 | NO production and formation of intracellular ROS in the presence of Hydroxyurea and/or hemin. (A) Production of NO in supernatants of PBMCs in

response to various treatment protocols. Results correspond to means ± SD of three independent experiments. Statistical significance determined by one-way

ANOVA, p < 0.0004, followed by Tukey’s post-hoc test: HU alone or in combination with hemin vs medium, or hemin vs medium, **p < 0.01; HU + hemin vs hemin,
##p < 0.01. (B) Production of NO in supernatants of HUVECs in response to various treatment protocols. Results correspond to the mean ± SD of three

independent experiments. Statistical significance determined by one-way ANOVA, p < 0.0001, followed Tukey’s post-hoc test: HU alone or HU + hemin vs. medium,

or hemin vs. medium, ****p < 0.0001; HU + hemin vs. hemin, ##p < 0.01. (C) Decreased ROS formation in HUVECs using the oxidant-sensing fluorescent probe

10µM 2’, 7’-dichlorodihydrofluorescein diacetate (DCFH-DA). Statistical significance determined by mean fluorescence intensity (MFI) values representative of the

mean ± SD of three experimental replicates. One-way ANOVA, p < 0.0001, followed by Tukey’s post-hoc test: HU alone or associated with hemin vs. medium, or

hemin vs. medium, ****p < 0.0001; HU + hemin vs. hemin, ##p < 0.01; ###p < 0.001.

plus 70µM hemin promoted a statistically significant increase of
3.37 ± 0.42-fold (p < 0.01) and 3.39 ± 0.37-fold (p < 0.01) in
SOD1 expression in PMBCs, vs. 1.53 ± 0.07-fold (p < 0.05) in
HUVECs (100µMHU plus hemin).

Considerable GPX expression was observed in PBMCs treated
with 100µM (2.27 ± 0.14-fold, p < 0.0001) and 200µM HU
(2.40 ± 0.12-fold; p < 0.0001) (Figure 3B). Similar expression
values were observed in hemin-treated PBMCs at both HU
concentrations (2.25± 0.05-fold, p < 0.001 and 2.11± 0.11-fold,

respectively). In contrast, GPX expression levels in HUVECS did
not vary in response to the treatments.

Treatment with HU alone did not provoke increased GSR
expression at any of the concentrations evaluated in either
cell type evaluated (Figure 3C). However, an increase in GSR
expression was observed in PBMCs and HUVECs submitted
to combined HU plus hemin treatment. PBMCs treated with
100µM or 200µM of HU and 70µM of hemin presented 1.79
± 0.22-fold (p < 0.05) and 1.42 ± 0.43-fold increases in GSR
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FIGURE 3 | Effect of Hydroxyurea on induction of antioxidant response gene expression in PBMC and HUVEC treated with different concentrations of hydroxyurea

(100 and 200µM) in the presence or absence of 70µM hemin for 4 h. (A) superoxide dismutase-1 (SOD1); (B) glutathione peroxidase (GPX1); (C)

glutathione-disulfide reductase (GSR); (D) Heme-oxygenase 1 (HMOX1). Results correspond to the mean ± standard deviation of three independent experiments.

Expression values determined by relative quantification using the following expression: fold-change = 2−1(1CT), where 1CT = CTtarget-CThousekeeping and 1(1CT)

= 1CTtreated − 1CTcontrol (medium). Data were normalized to represent fold expression above controls for each gene. Statistical significance determined by one-way

ANOVA, p < 0.05, followed by Tukey’s post-hoc test: HU alone or HU + hemin vs. medium, or hemin vs. medium, *p < 0.05; **p < 0.01, ***p < 0.001, ****p <

0.0001; hemin + HU vs. hemin, #p < 0.05; ##p < 0.01; ####p < 0.0001.

expression, respectively, while HUVECs presented 1.30 ± 0.07
(p < 0.05) and 1.48 ± 0.15-fold (p < 0.001) higher expression in
comparison to the negative control.

Significantly higher levels of HMOX1 were observed
in hemin-treated PBMCs and HUVECs, regardless of HU
concentration (Figure 3D). In PBMCs, increased HMOX1
expression was 45.5 ± 6.2-fold (p < 0.0001) vs. controls.
HUVECs exhibited modest increases in HMOX1 expression
(4.6 ± 0.32-fold; p < 0.0001) compared to PBMCs, despite high
statistical significance. Despite a slight decrease in HMOX1
expression in PBMCs treated with 100µM (41.5 ± 4.6-fold)
and 200µM HU (40.31 ± 10.2-fold) compared to hemin alone,

combined HU plus hemin treatment did not significantly reduce
this expression.

Microarray Analysis in HUVEC Suggests
that HU Induces the Nrf2-Antioxidant
Response Element/Electrophile Signaling
Pathway Regulated by p62/SQSTM1
Preliminary canonical pathway analysis identified 39 genes
related to Nrf2-mediated oxidative stress response in HUVECs
(Table 2). HU treatment induced increased expression levels
of SOD2 (1.852 Expr Log Ratio), GSR (2.882 Expr Log Ratio),
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TABLE 2 | Differential expression of genes involved in Nrf2-antioxidant/electrophile response element signaling pathway, identified through microarray analysis of HUVEC

treated with hydroxyurea.

Symbol Gene name Expr log ratio‡ Location Type

ENZYMES

GSR Glutathione-disulfide reductase 2.882 Cytoplasm Enzyme

GSTM2 Glutathione S-transferase mu 2 2.210 Cytoplasm Enzyme

KLB Klotho beta 1.974 Plasma membrane Enzyme

SOD2 Superoxide dismutase 2 1.852 Cytoplasm Enzyme

HACD3 3-hydroxyacyl-CoA dehydratase 3 1.807 Cytoplasm Enzyme

MGST1 Microsomal glutathione S-transferase 1.733 Cytoplasm Enzyme

CBR1 Carbonyl reductase 1 1.727 Cytoplasm Enzyme

RRAS RAS related 1.517 Cytoplasm Enzyme

NRAS NRAS proto-oncogene, GTPase −1.521 Plasma Membrane Enzyme

AOX1 Aldehyde oxidase 1 −2.188 Cytoplasm Enzyme

PEPTIDASES

CLPP Caseinolytic mitochondrial matrix peptidase proteolytic subunit 1.551 Cytoplasm Peptidase

ENC1 Ectodermal-neural cortex 1 −1.996 Nucleus Peptidase

EPHX1 Epoxide hydrolase 1 −3.291 Cytoplasm Peptidase

TRANSCRIPTION REGULATOR

SQSTM1 Sequestosome 1 1.639 Cytoplasm Transcription regulator

ATF4 Activating transcription factor 4 −1.639 Nucleus Transcription regulator

BACH1 BTB domain and CNC homolog 1 −1.721 Nucleus Transcription regulator

PMF1/PMF1-BGLAP Polyamine modulated factor 1 −1.740 Nucleus Transcription regulator

CREBBP CREB binding protein −1.743 Nucleus Transcription regulator

MAFG MAF bZIP transcription factor G −1.823 Nucleus Transcription regulator

UBE2K Ubiquitin conjugating enzyme E2K −1.830 Cytoplasm Transcription regulator

FOS Fos proto-oncogene, AP-1 Transcription factor subunit −3.950 Nucleus Transcription regulator

KINASE/OTHERS

PRKCB Protein kinase C beta 4.026 Cytoplasm Kinase

PRKCZ Protein kinase C zeta 1.902 Cytoplasm Kinase

PIK3C2B Phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 beta 1.892 Cytoplasm Kinase

DNAJB12 DnaJ heat shock protein family (Hsp40) member B12 1.794 Cytoplasm Other

FGFR3 Fibroblast growth factor receptor 3 1.685 Plasma Membrane Kinase

GSK3B Glycogen synthase kinase 3 beta 1.607 Nucleus Kinase

PIK3R3 Phosphoinositide-3-kinase regulatory subunit 3 1.597 Cytoplasm Kinase

PIK3C2A Phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha −1.716 Cytoplasm Kinase

PIK3CB Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta −1.761 Cytoplasm Kinase

DNAJB14 DnaJ heat shock protein family (Hsp40) member B14 −1.532 Cytoplasm Enzyme

DNAJC21 DnaJ heat shock protein family (Hsp40) member C21 −1.649 Other Other

FRS2 Fibroblast growth factor receptor substrate 2 −1.665 Plasma Membrane Kinase

PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1 −1.690 Cytoplasm Kinase

PRKCE Protein kinase C epsilon −1.679 Cytoplasm Kinase

DNAJB4 DnaJ heat shock protein family (Hsp40) member B4 −1.843 Nucleus Other

DNAJC18 DnaJ heat shock protein family (Hsp40) member C18 −1.897 Other Enzyme

GAB1 GRB2 associated binding protein 1 −2.156 Cytoplasm Kinase

MAPK14 Mitogen-activated protein kinase 14 −2.418 Cytoplasm Kinase

‡Based on relative expression (log fold-change > 1.5).

GSTM2 (2.210 Expr Log Ratio), microsomal glutathione S-

transferase 1 (MGST1) (1.733 Expr Log Ratio) and carbonyl
reductase 1 (CR1) (1.727 Expr Log Ratio). We also found
increased expression of phosphatidylinositol-4-phosphate
3-kinase catalytic subunit type 2 beta (PIK3C2B) (1.892 Expr

Log Ratio), phosphoinositide-3-kinase regulatory subunit

3 (PIK3R) (1.597 Expr Log Ratio), protein kinases C beta
(PRKCB) (4.026 Expr Log Ratio) and zeta (PRKCZ) (1.902
Expr Log Ratio), and glycogen synthase kinase 3 beta
(GSK3B) (1.607 Expr Log Ratio). Moreover, HU induced
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TABLE 3 | Upstream analysis of genes identified through microarray analysis of HUVEC treated with hydroxyurea.

Upstream regulator Molecule type Predicted activation Activation p-value of

state z-sore overlap

15-deoxy-delta-12,14 -PGJ 2 Chemical–endogenous non-mammalian Inhibited −2.125 1.00E00

Pkc(s) Group Inhibited −3.043 1.00E00

Vegf Group Inhibited −2.126 1.41E−02

PRKAA2 Kinase Inhibited −2.101 4.06E−03

CD24 Other Inhibited −4.459 5.89E−04

GJA1 Transporter Inhibited −2.190 2.56E−02

FOXM1 Transcription regulator Inhibited −2.242 1.40E−06

FOXO1 Transcription regulator Inhibited −2.628 2.12E−01

S100A6 Transporter Inhibited −2.345 1.42E−02

YAP1 Transcription regulator Inhibited −2.449 1.23E−02

TCF4 Transcription regulator Inhibited −2.252 2.59E−02

OSM Cytokine Inhibited −2.123 4.56E−01

ESR1 Ligand-dependent nuclear receptor Inhibited −2.662 3.28E−07

Ellagic acid Chemical–endogenous non-mammalian Inhibited −2.000 4.71E−02

Imatinib Chemical drug Inhibited −2.097 3.11E−01

GW9662 Chemical reagent Inhibited −2.055 2.31E−01

Isoproterenol Chemical drug Inhibited −2.789 3.52E−01

Cholecalciferol Chemical–endogenous mammalian Inhibited −2.331 1.00E00

R-WIN 55,212 Chemical reagent Inhibited −2.063 3.88E-04

zVAD-FMK Chemical–protease inhibitor Inhibited −2.000 1.36E-01

Cocaine Chemical drug Inhibited −2.193 1.00E00

25-hydroxycholesterol Chemical reagent Inhibited −2.190 1.00E00

Hyaluronic acid Chemical–endogenous mammalian Activated 2.000 1.00E00

E2f Group Activated 2.725 8.25E−06

SPDEF Transcription regulator Activated 2.158 2.85E−01

EPAS1 Transcription regulator Activated 2.059 1.00E00

SPI1 Transcription regulator Activated 2.565 1.00E00

miR-155-5p (miRNAs w/seed UAAUGCU) Mature microRNA Activated 2.840 2.12E−01

mir-15 MicroRNA Activated 2.277 9.16E−02

miR-29b-3p (and other miRNAs w/seed AGCACCA) Mature microRNA Activated 2.255 4.19E−01

miR-141-3p (and other miRNAs w/seed AACACUG) Mature microRNA Activated 2.801 2.69E−02

mir-145 MicroRNA Activated 2.236 4.67E−01

NUPR1 Transcription regulator Activated 4.357 1.63E−05

JUN Transcription regulator Activated 2.560 1.00E00

SRSF3 Other Activated 2.229 1.78E−02

KLF4 transcription regulator Activated 2.020 1.00E00

SYK Kinase Activated 2.695 1.78E−01

TBX5 Transcription regulator Activated 2.000 1.00E00

MEOX2 Transcription regulator Activated 2.200 4.96E−01

IFNB1 Cytokine Activated 2.183 1.00E00

IL15 Cytokine Activated 2.280 1.00E00

Sulindac sulfide Chemical drug Activated 2.192 2.65E−01

GW3965 Chemical reagent Activated 2.204 1.00E00

Mifepristone Chemical drug Activated 2.201 3.74E−01

increased p62/sequestosome (p62/SQSTM1) (1.639 Expr Log
Ratio) expression and decreased expression of BTB domain
and CNC homolog 1 (BACH1) (-1.721 Expr Log Ratio),
as well as ubiquitin-conjugating enzyme E2K (UBE2K)
(−1.830 Expr Log Ratio). Table 3 presents the results of our

upstream analyses, which predicted the activation of mature
microRNAs, such as miR-155-5p (activation z-score = 2.840)
and miR-141-3p (activation z-score = 2.801), as well as
the activation of the Jun transcription regulator (activation
z-score= 2.560).
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DISCUSSION

The present study aimed to confirm the antioxidant potential
of HU and investigate its effects on the modulation of the
antioxidant cellular response. DPPH scavenging activity assays
revealed that, despite higher IC50 values determined for HU at
100 and 200µM, HU demonstrated considerable scavenging
activity compared to controls. This finding suggests that
HU may be able to directly neutralize free radicals in the
extracellular microenvironment, which could be explained
by its ability to donate a hydrogen atom electron in the
neutralization of the radical compound DPPH (22). Moreover,
our results also indicate that HU may scavenge ROS/RNS
by inducing the antioxidant enzyme system. This finding
is of great importance, as HU could potentially confer an
important protective effect against direct oxidative attacks
on membrane phospholipids, as well as prevent/minimize
the triggering of activation responses involved in the
initiation of the oxidative cascade and establishment of
inflammation (23–26).

Both concentrations mentioned above are consistent with the
plasma levels of HU generally observed in patients with SCA,
which have been extensively used in in vitro studies (27–30).
Accordingly, we chose these concentrations for our additional
assays, in addition to combined therapy with hemin at 70µM
based on the findings from Carvalho et al. (31). Cytotoxicity
assays involving hemin did not reveal any significant effects
on cell viability in either PBMCs or HUVECs. This may be
explained by the degree of resilience both cell types present
in the pro-oxidative microenvironment promoted by hemin. It
was previously shown that hemin can induce HO-1 production
in monocytes, which promotes a cytoprotective effect through
the inhibition of apoptosis (32). Our results corroborate this
finding, as we observed higher levels of HMOX1 expression
in PBMCs and HUVECs following treatment with hemin.
HUVECs treated with HUs plus hemin presented significant
increases in NO production, which corroborates previously
published results. Other studies have suggested that treatment
with HU in the presence of heme resulted in the production
of iron nitrosyl-heme (Fe2+-NO), nitrite, and nitrate in SCA

individuals (33–37).
Our investigation of antioxidant gene expression indicated

differential expression profiles for each cell type after 4 h of
incubation with HU in combination or not with hemin. Higher
gene expression was seen in PBMCs than in HUVECs, which
can be explained by the substantial capacity of recognition and
effector responses in leukocytes, especially monocytes, present
in PBMCs (38, 39). Our results show that treatment with
HU in combination or not with hemin significantly provoked
increases in SOD1 and GSR expression in both cell types,
similarly to the higher GPX expression found in PBMCs.
Previous studies have demonstrated that HU activates the GPX-
mediated NO-cGMP pathway in patients with SCA (40, 41).
This activation may be due to the induction of transcriptional
factors and/or H2O2 production controlled by the production
of GPX, which is dependent on the reduced glutathione
(GSH) synthesized by GSR (33, 42–45). This would seem to

corroborate the higher levels of SOD1, GPX and GSR expression
found herein in response to HU treatment. Interestingly, no
association between HU and HMOX1 expression was found,
suggesting that the mechanism by which the antioxidant
response system becomes activated does not involve the
activation of HMOX1.

Microarray analyses were performed in HUVECs treated
with HU to investigate the possible pathways involved in
the antioxidant response system. HU induced significant
increases in the expression of genes encoding antioxidant
enzymes, such as SOD2, GSR, GSTM2, CBR1, MGST1,
and KLB, as well as p62/SQSTM1. This antisickling agent
was also associated with decreases in BACH1 and UBE2K
expression. Studies have demonstrated a positive correlation
between p62/SQSTM1 expression and Nrf2 induction (46–
48), leading to the activation of antioxidant systems (49–51).
BACH1 acts as a negative regulator of Nrf2, preventing
the induction of an antioxidant response, while UBE2K is
involved in Nrf2 degradation via the ubiquitin-proteasome
system (49, 52, 53). Accordingly, the negative correlations
observed between p62/SQSTM1 and BACH1, as well as
between p62/SQSTM1 and UBE2K, suggest that HU may be
capable of inducing an antioxidant response via the Nrf2
signaling pathway.

HUVECs treated withHU also presented increased expression
of genes encoding PIK3C2B, PIK3R3, PRKCB, PRKCZ and
GSK3B. Previous results have demonstrated that the activation
of these genes is associated with the induction of the antioxidant
response, mediated by the Nrf2 signaling pathway (54–57).

In addition, our upstream analyses performed in HUVECs
treated with HU indicate the activation of miR-155-5p and miR-
141-3p, which are involved in the inhibition of BACH1 and
Keap1, respectively, in addition to the activation of Jun, which
is involved in the activation of the Nrf2-mediated antioxidant
pathway (55, 58–60).

Our results suggest that HU directly scavenges free radicals
and can induce the expression of antioxidant genes via induction
of the Nrf2 signaling pathway. In addition, the findings herein
preliminarily expand on the previously described primary
mechanisms of HU, i.e., the induction of HbF production and
NO release. However, further in vitro and in vivo studies will be
necessary to validate the role of the Nrf2-mediated antioxidant
pathway proposed by the present study.
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Hemopexin is the main plasmatic scavenger of cell-free heme, released in the context

of intravascular hemolysis or major cell injury. Heme is indispensable for the oxygen

transport by hemoglobin but when released outside of the erythrocytes it becomes

a danger-associated molecular pattern, contributing to tissue injury. One of the

mechanisms of pro-inflammatory action of heme is to activate the innate immune

complement cascade. Therefore, we hypothesized that injection of hemopexin will

prevent hemolysis-induced complement activation. Human plasma-derived hemopexin

is compatible with the heme clearance machinery of the mice. 100 or 500 mg/kg of

hemopexin was injected in C57Bl/6 mice before treatment with phenylhydrazine (inducer

of erythrocytes lysis) or with PBS as a control. Blood was taken at different timepoints

to determine the pharmacokinetic of injected hemopexin in presence and absence

of hemolysis. Complement activation was determined in plasma, by the C3 cleavage

(western blot) and in the kidneys (immunofluorescence). Kidney injury was evaluated

by urea and creatinine in plasma and renal NGAL and HO-1 gene expression were

measured. The pharmacokinetic properties of hemopexin (mass spectrometry) in the

hemolytic mice were affected by the target-mediated drug disposition phenomenon due

to the high affinity of binding of hemopexin to heme. Hemolysis induced complement

overactivation and signs of mild renal dysfunction at 6 h, which were prevented by

hemopexin, except for the NGAL upregulation. The heme-degrading capacity of the

kidney, measured by the HO-1 expression, was not affected by the treatment. These

results encourage further studies of hemopexin as a therapeutic agent in models of

diseases with heme overload.

Keywords: hemopexin, heme, hemolysis, complement, kidney injury, C3

INTRODUCTION

In physiological conditions heme is compartmentalized inside the cells and serves as an
indispensable cofactor for aerobic life, by its interaction with conventional heme-binding proteins,
such as hemoglobin, myoglobin and cytochromes. Nevertheless, it becomes a danger associated
molecular pattern, when released in the circulation or in tissues during intravascular hemolysis
[red blood cells (RBC) lysis during sickle cell disease (SCD), hemolytic uremic syndrome (HUS),
malaria, transfusion reactions, etc.] or rhabdomyolysis (crush syndrome, muscle damage as
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in car accidents, natural cataclysms, or military trauma)
(1). Heme triggers inflammation by activating immune and
endothelial cells (EC) or plasma systems, such as the complement
cascade, coagulation, or inducing antibody polyreactivity (2–4).
In physiological conditions excess of cell-free heme is scavenged
by its natural binding protein hemopexin (Hpx).

Hpx is a liver-produced plasma glycoprotein (0.5–1.15 g/l)
of 60 kDa. Hpx binds free heme with a very high affinity (Kd
< 10−13 M) (5, 6), which makes it virtually irreversible. The
heme:Hpx complex binds to CD91/LRP1 and is endocytosed
(7). Part of Hpx may be recycled, but the majority is degraded,
creating acquired Hpx deficiency in case of massive hemolysis
(6). Hpx-knockout mice presented severe renal injury upon
phenylhydrazine (PHZ triggered hemolysis), contrary to the WT
mice (8).Moreover, Hpx deficiency promoted acute kidney injury
in sickle mice under hemolytic stress, which was blocked by pre-
treatment with purified Hpx (9). Injection of heme in SCD mice
induce stasis (10, 11), cardiovascular injury and cardiomyocytes
alteration (12–14), all of which have been prevented by pre-
treatment with Hpx. Heme-carrying erythrocyte microparticles
from SCD patients, injected in a SCDmice, induced kidney vaso-
occlusion and endothelium injury, which was also prevented by
Hpx administration (15, 16). Hpx also prevents the activation
of the pro-inflammatory complement system in the kidneys
of hemolytic mice (PHZ model) and in vitro, in serum and
on endothelial cells. Moreover, it prevented the complement
deposition on endothelial cells, incubated with serum from SCD
patients (17). This complement activation plays a key role in the
organ injury in SCD and in hemolyticmice, since C3 deficiency or
complement blockade alleviate the vaso-occlusion and the kidney
and liver damage, respectively (18, 19).

Taken together, these examples demonstrate that replenishing
the Hpx pool is a potential promising therapeutic strategy to
avoid the heme-mediated toxicity. In order to be tested as a
therapeutic agent in pre-clinical models, the pharmacokinetic,
and the active concentrations of Hpx have to be evaluated
in the context of an intravascular hemolysis. Here we
demonstrate that the pharmacokinetic properties of Hpx in
the hemolytic mice were affected by the target-mediated
drug disposition phenomenon. The dose of 100 mg/kg is
well tolerated and sufficient to prevent the hemolysis-induced
complement activation.

METHOD

Animal Experimentation
Experimental protocols were approved by Charles Darwin
ethical committee (Paris, France) and of French Ministry of
Agriculture (Paris, France) number #3764 201601121739330
v3. All experiments were conducted in accordance with the
recommendations for the care and use laboratory animal.

A first experiment was performed to determine the
pharmacokinetic properties of Hpx in hemolytic mice
(Figure 1A). Three groups of mice were injected in i.v.
with 100 mg/kg of human plasma derived Hpx (CSL Behring)
and three other groups with 500 mg/kg of Hpx. An i.p. PHZ

injection (0.125 mg/g body weight) was performed immediately
after Hpx administration. The mice from each Group 1 were
bled at 15min, 1 and 6 h. They were sacrificed at 6 h. Each Group
2 was bled at 30min, 10 and 24 h and sacrificed at 24 h. Each
Group 3 was bled at 3, 48, and 72 h followed by a sacrifice at 72 h.
The bleeding schema is given in Supplementary Table 1.

A second experiment aimed to evaluate the complement
inhibition capacity of Hpx and its impact on complement
activation and renal function. Three groups of 8-week-old
C56BL/6 male mice (n = 10) were pretreated with human Hpx
(CSL Behring) in i.v. with 100 or 500 mg/kg or equivalent volume
of PBS (0 mg/kg) immediately before i.p. PHZ injection (0.125
mg/g body weight) (Figure 2A). A control group of 8 mice
received two injections of PBS, corresponding to the volume of
Hpx and PHZ. All mice were sacrificed by cervical dislocation,
6 or 72 h after Hpx administration. Whole blood was collected 3
days before experimentation and at day 1 into microtubes filled
with 2 µL of heparin (Heparine Choay R© 5000 ui/ L Sanofi)
by venipuncture in the cheek. Microtubes were centrifuged
at 604 g for 10min at room temperature to separate plasma.
Kidneys were harvested for immunofluorescence (IF) and gene
expression analyses. Plasma and organs were directly frozen in
liquid nitrogen and stored at−80◦C.

Quantification of Human Hpx in Animal
Plasma by LC/MS
Ten microliters of plasma sample were placed into a clean
Eppendorf tube followed by the addition of 80 µL MeOH
to precipitate the protein. The methanol was removed after
centrifugation and the pellet was air-dried and afterwards
re-suspended in 50mM NH4HCO3/0.16% ProteaseMAX
containing a heavy-isotope labeled peptide, which is specific for
human Hpx and is used as internal standard. After incubation at
56◦C/550 rpm for 45min the samples were reduced by adding
0.5M DTT (56◦C/550 rpm for 20min). The samples were then
alkylated by addition of 0.5M IAA and incubation for 20min
at RT protected from light. Tryptic digestion was carried out at
37◦C/550 rpm and stopped after 3 h by addition of formic acid.
After centrifugation the samples were separated immediately on
a C18 column (AdvanceBio Peptide Mapping, 2.1 × 150mm).
The measurements were conducted using an Agilent 1290
Infinity II – 6550 iFunnel QTOF LC-MS system.

Data was analyzed by calculating the peak area of the analyte
and the internal standard using Agilent MassHunter Quant
software. A standard curve was created in Agilent MassHunter
Quant by plotting the average response ratio of analyte to internal
standard against concentration for each standard sample. The
analyte concentration in the plasma samples was backcalculated
using the standard curve equation.

Preparation of Heme
Hemin (Frontier Scientific) was dissolved in 10mL NaOH (100
mmol/L) at 37◦C. The pH of the solution was adjusted to pH 7.8
using phosphoric acid. The solution was sterile-filtered (0.22µm)
and used immediately.
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FIGURE 1 | The pharmacokinetic of hemopexin in hemolytic mice is affected by target-mediated drug disposition phenomenon. (A) Protocol to study pharmacokinetic

of Hpx. Three groups of mice were injected with PHZ and Hpx and bled as follows: Group 1 (15min, 1 and 6 h), Group 2 (30min, 10 and 24 h), and Group 3 (3, 48,

and 72 h). (B,C) In vivo Hpx exposure in presence and absence of induced hemolysis. (B) Mean ± SD plasma concentration vs. time plotted for human hemopexin

administered to mice (100 mg/kg i.v.; n = 3/timepoint). In presence of PHZ (0.125 mg/g weight, blue circles) or control (PBS, gray circles). Pharmacokinetic parameter

estimates are shown in Table 1. (C) Mean ± SD plasma concentration vs. time plotted for human hemopexin administered to mice (500 mg/kg; n = 3/timepoint). In

presence of PHZ (0.125 mg/g weight, blue circles) or control (PBS, gray circles). Pharmacokinetic parameter estimates are shown in Table 1.

Total Heme in Mouse Plasma
Total plasma heme concentration in mouse plasma was
determined according manufacturer’s protocols using the
QuantiChromTM Heme Assay Kit (BioAssay Systems). Briefly,
50 µL of sample (diluted in water 1:2) was placed into a 96-well

plate. Assay reagent (200 µl per well) was added and incubated
for 5min at room temperature. Absorbance at λ400 nm was
measured using a microplate reader (Synergy BioTek). Heme
concentration was determined by comparison to a hemin
standard curve (hemin preparation see above).
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FIGURE 2 | Heme scavenging upon PHZ induced hemolysis by hemopexin. (A) Mean total heme plasma concentration at 6 h, (B) mean cell free hemoglobin at 6 h

and (C) hemopexin:heme complexes at 6 h, and (D) 72 h shown for each group [(1) PBS; n = 7, (2) PHZ, (3) PHZ + 100 mg/kg, and (4) PHZ + 500 mg/kg; n = 10].

Box and whiskers plots represent means ± Min to Max. ****p < 0.0001, **p < 0.01, and *p < 0.05 comparisons to PBS treated, Two-way ANOVA Kruskal Wallis test,

ns, not significant.

Detection of Heme:Hpx Complexes in
Mouse Plasma
Fifty microliters of plasma sample were placed into a clean
Eppendorf tube followed by the addition of 150 µL Buffer
A (Multiple Affinity Removal Systems, Agilent). In a first
chromatography step high abundant mouse proteins were

depleted and carried out according to the manufacturer’s

protocol on an Ultimate 3000SD HPLC attached to two LPG-
3400SD quaternary pumps and a photodiode array detector

(DAD) (ThermoFisher). Briefly, the diluted plasma sample was

injected onto a multi affinity removal column depleting mouse
albumin, IgG, and Transferrin (Mouse-3, 4.6 × 50mm, Agilent)
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and separated with Buffer A (Multiple Affinity Removal Systems,
Agilent) as the mobile phase at a flow rate of 0.25 mL/min.
Depleted plasma was collected into a fresh HPLC vial and re-
injected and separated on a Diol-300 (3µm, 300 × 8.0mm)
column (YMCCo., Ltd.) with PBS, pH 7.4 (Bichsel) as the mobile
phase at a flow rate of 1 mL/min. For all samples two wavelengths
were recorded (λ = 280 nm and λ = 414 nm). The amount of
Heme:Hpx complexes was determined by calculating the peak
area of the complex (9min retention time). Values from depleted
plasma samples were interpolated by generating a standard curve
based on peak area and plotted against the concentrations.

Plasma Hb Measurements
Hp-bound and unbound fractions of Hb (cell free Hb) were
determined by SEC–high-performance liquid chromatography
(SEC-HPLC) using an Ultimate 3000SD HPLC attached to a
LPG-3400SD quaternary pump and a photodiode array detector
(DAD) (ThermoFisher). Plasma samples and Hb standards were
separated on a Diol-120 (3µm, 300 × 8.0mm) column (YMC
Co., Ltd.) with PBS, pH 7.4 (Bichsel) as the mobile phase at a
flow rate of 1 mL/min. For all samples two wavelengths were
recorded (λ = 280 nm and λ = 414 nm). Bound and unbound
Hb in plasma was determined by calculating the peak area of
both peaks (6min retention time for Hb:Hp, 8min retention time
for cell free Hb). Values from plasma samples were interpolated
by generating a standard curve based on peak area and plotted
against the concentrations.

Pharmacokinetic (PK) Analysis
Four groups were evaluated: (I) PBS+ Hpx (100 mg/kg i.v.), (II)
PHZ + Hpx (100 mg/kg i.v.), (III) PBS + Hpx (500 mg/kg i.v.),
and PHZ+Hpx (500 mg/kg i.v.) (group size n= 3/timepoint).

Hpx PK in PBS vs. PHZ treated mice were conducted via
non-compartmental analysis (NCA) using Phoenix WinNonlin
version 7.4 (Certara, St. Louis, MO, USA). Linear up-log down
method was used for area under the concentration curve (AUC)
calculation. Besides directly observed maximum concentration
(Cmax) and AUC0−72h, other derived PK parameters including
area under the concentration curve till infinity (AUCinf),
clearance (CL), volume at steady state (Vss), and half-life (T1/2)
were reported.

Evaluation of the Kidney and Liver Function
Kidney function was evaluated by blood urea nitrogen (urea)
and creatinine, measured by a colorimetric analysis using
Konelab Clinical Chemistry Analyzers in the Renal Function
Exploration platform of the Cordeliers Research Center. ALT was
measured using Olympus AU400 multiparameter equipment on
the biochemistry platform in Hospital Bichat (Centre Recherche
sur l’Inflammation-Paris).

Immunofluorescence
Six micrometer thick frozen kidney sections were cut with
Cryostat at −20◦C (Leica AS-LMD, Leica Biosystem) and fixed
in acetone on ice for 10min. The primary antibody was C3b/iC3b
(rat anti-mouse, Hycult biotech, HM1065, 1µg/ml) and CD31
(rat anti-mouse, AbcamAb7388, 2µg/mL). Staining was revealed

by Donkey anti-rabbit AF647 (Thermoscientific, A21447,
5µg/mL) and chicken anti-rat AF488 (Thermoscientific,
A21470, 5µg/mL). Slides were scanned by Axio ScanTM Z1
(Zeiss, Oberkochen, Germany). Images were analyzed using Zen
lite software (Zeiss). C3 and CD31 staining were quantified using
HALO R© (Indica Labs) software.

Gene Expression Analysis
Frozen kidneys were sectioned at 30µm with Cryostat at
−20◦C (Leica AS-LMD, Leica Biosystem). Twenty sections
were recovered and homogenized in the tubes with 200
µL of 1-Thioglycerol/Homogenization Solution (Maxwell R©

16 LEV simplyRNA Tissue Kit Promega AS1280). The
quality and quantity of mRNA were evaluated with the
Agilent 2100 bioanalyzer using the Agilent TNA 6000
NanoKit, followed by retro-transcription to cDNA. All RNA
Integrity Numbers superior to 7 were retained for reverse
transcription in cDNA. Gene markers of early kidney injury
[LCN2 (Lcn2-Mm01324470_m1)], and for cytoprotection
[HO-1 (Hmox1-Mm00516005_m1)] was analyzed with SDS
2.1 R© software (ThermoFisher), after normalization on actin
(Actb_Mm02613580_g1) housekeeping gene expression. The
gene expression for the PHZ-treated mice was expressed as fold
change compared to the gene expression from the pool of the
PBS treated mice.

Detection of C3 Cleavage in the Plasma of
Mice by Western Blot (WB)
Plasma was diluted 1/100 in H2O. Two volumes of this sample
were mixed with one volume of NuPAGE R© LDS sample buffer
(4X) (Thermofisher) containing reducing agent (DTT 0.33M)
and then denatured at 90◦C for 10min. Proteins were separated
in NuPAGE 10% Bis-Tris gel (Thermofisher). The proteins
were transferred onto a nitrocellulose membrane using iBlot
(Invitrogen). The membranes were incubated overnight with
primary antibody (Goat IgG fraction anti-mouse complement
C3, MP BIOMEDICALS, #55463), followed by a secondary
antibody (rabbit anti-goat HRP, Thermofisher, #31402).
Revelation was done by chemiluminescence using a substrate
for HRP (SuperSignal R© WestDuraLuminol Thermofisher,
#1856145), detected by iBright Western Blot Imaging System
(iBright FL1500 Thermofisher).

Statistics
Analyses were performed with GraphPad Prism 8.0.
Comparisons of multiple treatment groups were made using
one-way analysis of variance (ANOVA) (Dunnett’s multiple
comparisons test) or Two-way ANOVA Kruskal Wallis test,
as indicated in the figure legends. Statistical significance was
defined as p < 0.05.

RESULTS

Pharmacokinetics of Human Hpx in Mice in
Presence of Induced Hemolysis
To characterize potential differences in the pharmacokinetics
(PK) and the exposure time of Hpx in a mouse model of
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TABLE 1 | Pharmacokinetic parameters of human Hpx in mice (± induced hemolysis).

Group Dose

(mg/kg)

CL

(mL/h/kg)

Vss

(mL/kg)

Cmax

(mg/mL)

T1/2

(h)

AUC0–72 h

(h*mg/mL)

AUCinf

(h*mg/mL)

PBS + Hpx 100 2.11 140 1.62 49.2 31.4 47.3

PHZ + Hpx 100 8.13 78.7 1.52 13.6 12.2 12.3

PBS + Hpx 500 2.79 154 7.35 41.4 128 179

PHZ + Hpx 500 4.30 107 7.63 19.1 109 116

CL, clearance; Vss, volume at steady state; C, concentration; AUC, area under the curve.

intravascular hemolysis, induced by phenylhydrazine (PHZ;
0.125 mg/g) two different Hpx doses were administered by bolus
intravenous administration through the tail vein (Figure 1A).
That allowed the investigation of the PK profile in presence
and absence of circulating plasma heme. Blood sampling was
performed to cover the range of plasma concentrations from
Cmax and to monitor clearance over 72 h in plasma. Figure 1B
shows the mean ± SD of human Hpx analyzed at the given
timepoint. Pharmacokinetic parameter estimates for human Hpx
in absence and presence of hemolysis were calculated via non-
compartmental analysis (NCA) and are summarized in Table 1.
Upon injection of a lower Hpx dose (100 mg/kg), clearance
seemed to be facilitated in presence of circulating plasma
heme demonstrated by the decreased half-life (T1/2) of 13.6 h
compared to 49.2 h under non-hemolytic conditions. Similar
finding, although less pronounced, was observed upon injection
of a high Hpx dose (500 mg/kg) with determined half-life of
19.1 h under hemolytic conditions and 41.4 h in absence of
plasma heme. Hpx clearance at 100 mg/kg was around 4-fold
higher and 2-fold higher at 500 mg/kg in PHZ treated groups
compared to PBS groups (Figure 1C).

The difference of Hpx pharmacokinetic profiles at the
100 mg/Kg dose, between the PHZ mice pre-treated vs. the
non-PHZ pre-treated mice, demonstrated that the Heme:Hpx
complexes distribution and elimination were strongly influenced
by the complexes affinity to their receptors. This phenomenon
was observed as well in the groups of mice treated with a
500 mg/Kg dose of Hpx. However, the difference of Hpx
clearance between the non-hemolytic and the PHZ induced
hemolytic condition was less important for the 500 vs. the
100 mg/kg Hpx treated mice. This results in a non-linear
elimination phase of Hpx in the hemolytic condition, while
Hpx terminal elimination phase appears to be linear in the non-
hemolytic mice. This demonstrates that in presence of accessible
heme in the blood compartment, Hpx pharmacokinetic
profile is strongly influence by its affinity to its receptors
which is characteristic of a target-mediated drug disposition
(TMDD) phenomenon.

PHZ Induced Hemolysis Increases Total
Plasma Heme, Which Is Scavenged by Hpx
In a next study we characterized the different heme binding
proteins, especially the presence of Heme:Hpx complexes upon
PHZ induced hemolysis. In a similar experimental setup as
before, we performed an intravenous injection of human

Hpx at two different doses (100 and 500 mg/kg) followed
by administration of phenylhydrazine (PHZ; 0.125 mg/g) to
induce intravascular hemolysis. Mice were sacrificed at 6 or
72 h after infusion. All mice in the PBS and PHZ-injected
group survived (as usual). In the Hpx-injected groups, all
mice survived but the dose of 100 mg/kg seems to be well-
tolerated at the background of PHZ injection, contrary to 500
mg/kg, for which some mice showed adverse effects. At 6 h
2/10 mice of the 500 mg/kg + PHZ showed weakness, their
body temperature was decreased as sensed by the manipulator
in comparison to the other mice and had paler paws, nose and
ears. At 72 h 2/10 mice showed moderate neurological symptoms
(abnormal movement), decreased body temperature and paler
paws, nose and ears.

The plasma was analyzed for the presence of total plasma
heme, cell free hemoglobin, and Hpx heme complexes. As
expected and previously shown (20), total plasma heme
increased significantly upon PHZ induced hemolysis assessed
after 6 h in all groups in a similar fashion compared to the
control group (Figure 2A). In addition, we could demonstrate
a significant increase of cell-free Hb, but only in absence
of human Hpx (Figure 2B). Dose dependent lower levels
of cell free hemoglobin with concurrent dose dependent
increase of complexes Hpx (Hpx:heme) at 6 h, as shown in
Figure 2C, demonstrates that Hpx scavenges heme from oxidized
hemoglobin (metHb). In alignment with the pharmacokinetic
behavior of human Hpx in presence of intravascular hemolysis
almost no Heme:Hpx complexes were detected after 72 h of
infusion (Figure 2D).

Hpx Partially Prevents Renal Suffering
The kidney function was evaluated at 6 and 72 h after induction
of hemolysis, in presence or absence of Hpx (Figure 3A).
We detected signs of kidney injury in PHZ-treated mice by
measuring plasma urea and creatinine levels at 6 h, which
were significantly decreased in mice pretreated with Hpx
(Figures 3B,C). Further, we studied hypoxic cellular stress
response protein Lcn2 (NGAL), a sensitive marker for acute
kidney injury. The expression of NGAL in PHZ-treated mice
increased compared to PBS controls, but remained unchanged
after injection of Hpx (Figure 4A). The upregulation of the
cytoprotective enzyme HO-1 by the hemolytic event was
also unaffected by the Hpx injection, since injection of Hpx
at 100 or 500 mg/kg did not modify expression of HO-
1 in PHZ-treated mice (Figure 4B). At 72 h NGAL and
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FIGURE 3 | Hemopexin prevents hemolysis-induced complement activation. (A) Protocol of mice with or without pretreatment to Hpx in PHZ-treated mice and

control (B) urea and (C) creatinine concentrations in blood 6 h after pretreatment with Hpx or PBS of the PHZ-treated mice, compared to control mice without PHZ

treatment measured by KONELAB equipment. (D) C3b/iC3b (green) deposition in kidney after 6 h treatment with Hpx to 100 and 500 mg/kg in kidney section (E)

quantification of C3b/iC3b staining in glomeruli after 6 h treatment with Hpx C3 and CD31 staining were quantified using HALO® (Indica Labs) software. (F) Western

blot analysis of C3 cleavage in plasma from mice treated with PHZ, PHZ + Hpx 100 and 500 mg/kg and PBS only. Statistical analyses: *p < 0.05, **p <0.005, and

***p < 0.001, Two-way ANOVA Kruskal Wallis test.

HO-1 were still elevated, without effect of the treatment
(Figures 4C,D), while urea and creatinine were back to
normal (not shown).

No liver injury was detected at the selected time points, since
ALAT remained at basal level in presence and in absence of PHZ
and Hpx at 6 h (Figure 4E) and at 72 h (not shown).
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FIGURE 4 | Impact of hemopexin pre-treatment on the kidney parameters (6 and 72 h). Kidney mRNA expression of tubular aggression markers (A) LCN2

(NGAL) and (B) cytoprotective markers HO-1 statistical analyst 6 h after treatment with Hpx and after 72 h (C) LCN2 (NGAL) and (D) HO-1. (E) ALAT levels in

blood 6 h after pretreatment with Hpx on PHZ-treated mice and control. Statistical analyses: *p < 0.05, ****p < 0.0001, Two-way ANOVA Kruskal Wallis test. ns,

non significant.
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Hpx Inhibits the Deposits of C3b/iC3b in
the Kidneys of Mice With Intravascular
Hemolysis
Since intravascular hemolysis was already evident 6 h after
injection of PHZ, we evaluated complement deposits at 6 h in
presence and absence of Hpx. We detected a significant increase
in C3b/iC3b staining in renal glomeruli within 6 h after inducing
intravascular hemolysis with PHZ, which was attenuated by 100
and 500 mg/kg of Hpx (Figures 3D,E). At 72 h the staining
was indistinguishable between PBS and PHZ injected mice (data
not shown).

Hpx Inhibits the C3 Activation in Plasma of
Hemolytic Mice
Intravascular hemolysis induced by PHZ was associated with
C3 activation in the circulation, 72 h after injection. This was
evident by the appearance of the α’ band on the WB, attesting for
appearance of C3b (Figure 3F). The cleavage was heterogeneous.
In the PHZ group, among 9 tested plasma samples, the intensity
of the α’ band was strong in 4; weaker but detectable in 4 and
undetectable in 1. Very weak intensity of the α’ band was detected
in 2/10 tested plasma samples of mice injected with 100 mg/kg
Hpx (Figure 3F) and for the remaining 8/10 it was undetectable.
In all 8 tested plasma samples of mice injected with 500 mg/kg
(Figure 3F), the α’ band was absent.

DISCUSSION

Here we show that during intravascular hemolysis injected
Hpx is rapidly complexed with heme and cleared from the
circulation, contrary to the context of non-hemolytic mice.
The pharmacokinetic characteristics of Hpx were affected by
the target-mediated drug disposition phenomenon. Nevertheless,
even the lower dose of 100 mg/kg was sufficient to prevent the
heme-mediated complement activation in the plasma and in
the kidney.

The target mediated drug disposition is a phenomenon in
which a drug binds with high affinity to its pharmacological
target to such an extent that this affects its pharmacokinetic
characteristics (21). The target binding and subsequent
elimination of the drug-target complexes could affect both
drug distribution and elimination and result in non-linearity of
PK in a dose-dependent manner. Our results show formation
of Hpx-heme complexes which are rapidly eliminated in the
hemolytic mice. This can explain the rapid disappearing of the
injected Hpx from the circulation of the PHZ-injected mice,
contrary to the control animals. This results in an increase of
the effective exposure time to the drug. The target mediated
drug disposition and the effective exposure time to the drug,
needed to achieve the biological effect are key parameters to be
evaluated during the design of therapeutic pre-clinical protocols.
Our results provide a rational about the selection of doses to be
tested in future experiments.

Increased extracellular concentration of heme is an important
driver of the disease state associated with hemolysis. In normal
condition the excess of heme is complexed with Hpx and

transported to the liver and detoxified. Interestingly, the amount
of detected cell-free Hb decreased and the Hpx:heme complexes
increased simultaneously when Hpx was injected. This suggests
that heme may be taken out from oxidized forms of cell free Hb
(MetHb or hemichromes) by Hpx, thus preventing heme to be
present in the circulation.

The kidney is one of the most affected organs during
intravascular hemolysis (22). In SCD a consumption of Hpx
occurs, heme binds to alpha-1-microglobulin, is directed
to the kidney and contributes to an acute kidney injury
(9). Intravascular hemolysis induces intrarenal complement
activation, contributing to the kidney injury (20). Our results
show that this complement activation is an early event, detectable
at 6 h post-hemolysis but disappearing at 72 h. Moreover, the pre-
treatment with Hpx prevented the C3 fragments deposition at
the early timepoint, complexing the excess of heme. Even though
the concentration of injected Hpx decreased rapidly afterwards,
new complement activation did not occur, suggesting that the
majority of the cell-free heme was already scavenged. Moreover,
new hemolysis did not occur in this model after the initial
burst (23). The prevention of complement activation could be
attributed to a direct effect of Hpx, preventing the access of
heme to C3 (19, 24) and to an indirect, cytoprotective effect,
especially on macrophages and endothelial cells (10, 14, 19, 20,
24–27). Glomerular endothelial cells are particularly vulnerable
to heme-mediated complement activation in part because they
are unable to overexpress HO-1 in hemolytic conditions (23, 28).
Therefore, it is likely that Hpx protects glomerular endothelial
cells from heme toxicity and they, in turn, do not express
complement-activating phenotype. The inflammatory cytokines,
released by heme-activated macrophages could also contribute
to the endothelial activation and complement deposits, process
which also will be indirectly prevented by Hpx. Interestingly,
C3 cleavage in plasma was not detected at the early but at
the late timepoint. Therefore, the intrarenal C3b/iC3b deposits
and the plasma C3 cleavage are separated phenomena occurring
consecutively. Although at 72 h there was no more heme release,
the tissue injury persisted, as evidenced by the upregulation of
the NGAL and HO-1. It is, therefore, tempting to speculate
that cell debris released in the circulation from the injured
tissues at later timepoints could serve as complement activators
in the fluid phase. The cell/tissue protective effect of the
heme scavenging even with the lower dose of 100 mg/kg at
the early phase of the hemolytic process could explain the
fact that Hpx-treated hemolytic mice had no fluid phase C3
cleavage even at a moment, when most of the injected Hpx was
already eliminated.

The kidney injury marker NGAL was elevated in hemolytic
conditions, which was not prevented by Hpx in agreement
with previous studies (23, 29). This result suggests that
other factors, such as released Hb and its different oxidation
forms or covalently crosslinked Hb multimers or the oxidative
stress, hallmarks of intravascular hemolysis (30–33) could be
responsible for NGAL upregulation. HO-1 was also up-regulated,
but independently of the presence of Hpx, as reported previously
(23, 29) and contrary to mice with SCD, where Hpx resulted
in further enhancement of the HO-1 expression (11). We
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hypothesized that in the previous studies the dose of injected
Hpx was not high enough to downregulate NGAL and to further
enhance the expression of HO-1. Nevertheless, this was not
the case, since these makers remained unaltered in our model
even at 500 mg/kg Hpx, dose at which Hpx remained in the

circulation for the duration of the experiment. Therefore, Hpx
could prevent some but not all adverse effects of the hemolytic
conditions. Nevertheless, the creatinine and urea were decreased
suggesting overall beneficial effect of Hpx on the hemolysis-
induced kidney injury. Attention should be made, though, to not

TABLE 2 | Use of Hpx as a therapeutic molecule in different disease model.

Disease model Animals Used to dose of Hpx Effect of Hpx References

Rat liver model of cold

storage and reperfusion and

tested the potential

anti-oxidant effects of Hpx

Rat Sprague-Dawley Reperfused with 5µM

Hpx

Decreasing oxyradical production in a model of cold

storage/reperfusion

(35)

Implanted intracranially with

50,000 U87 glioma cells

Nude and BALB/C mice Intra cerebral delivery to

PEX (recombinant Hpx)

0.25–1 with minipumps

mg/kg/day

(29 days)

Local intracerebral delivery of endogenous inhibitors

decreased of tumors growth

(36)

Mesenchymal stem cells-PEX

(hMSC-Hpx) injected adjacent

to glioblastoma tumors

Nude mice No dose reported Mice treated with hMSC-PEX reduction tumor

volume and weight measurements decrease 22

days

(37)

SCD and B-thalassemic

model

HbS SCD mice and

B-thalassemic mice

I.P. To 700 µg injection

purified human Hpx

Hpx to treat vasculopathy in hemolytic disorders

Decrease cardiac output, aortic valve peak pressure

in different mice model

(13)

SCD mouse models NYDD and Townes SCD

mice

I.V. 0.4 or 1.6µmol/kg Hemoglobin-induced vaso-occlusion was blocked

by the heme-binding protein Hpx

(10)

Hemorrhagic shock (HS) and

resuscitated with either

FRBCs or SRBCs

C57BL/6 mice HS and resuscitated with

FRBCs/SRBCs to

simultaneous infusion of

7.5mg Hpx

Increase the survival rate and reduced the early

proinflammatory response after HS resuscitation

with stored blood

(29)

Atherosclerosis Hpx and Hpx/ApoE KO

mice

I.P. human Hpx to

HpxApoE KO during 24 h

hHpx significantly reduced serum heme levels

Increase in the expression of LXR-α and ABCA1

genes

Reduction in expression of CCR-2, and a significant

increase in expression of Arg-1

(38)

SCD model Townes SCD model I.P. human Hpx (4mg) Administration of Hpx is beneficial to counteract

heme-driven macrophage-mediated inflammation

and its pathophysiologic consequences in sickle cell

disease

(14)

Hpx KO and B-thalassemic

model

C57BL/6 Hpx−/− and

Hbbth3/+ mice

160 mg/kg Hpx Hpx rescued contraction defects of heme-treated

cardiomyocytes and preserved cardiac function in

hemolytic mice

(33)

Spinal Cord Injury (SCI) Hpx KO mice I.P. 0.5–50 ng/mL Hpx Acute-phase plasma glycoprotein, in the regulation

of microglia polarization Hpx in alleviating the

secondary injury and improving functional repair

after SCI

(39)

Intravascular hemolysis

induced by PHZ and heme

injection

C57BL/6 and C3−/− mice I.P. injection of 40µmol/kg

of human Hpx 1 h before

heme or PHZ injection

Decreased kidney complement deposition (20)

Intravascular hemolysis

induced by PHZ and heme

injection

C57BL/6 mice I.P. injection of 40µmol/kg

of human Hpx 1 h before

heme or PHZ injection

No effect on renal NGAL, Kim1, and HO-1 genes

expression

(23)

Cerebral Ischemia reperfusion

Injury (CIRI)

Rat Sprague-Dawley Insert beneath the dural

surface to inject rat Hpx

(10 µL, 1.86 g/L Hpx)

HPX can alleviate cognitive dysfunction after focal

CIRI through HO-1 pathway and preventing the

impairment of the blood-brain barrier in rats

(40)

SCD model Hpx KO and littermate

SCD mice Hpx KO (SS

Hpx−/− and SS Hpx +/+)

Hpx deficiency promotes AKI development in SCD,

and we provide proof-of-principle for Hpx

replacement therapy to treat AKI in SCD

(41)

Intravascular hemolysis

induced by PHZ and heme

injection

C57BL/6, C3−/−, and

TLR4−/− mice

I.P. injection of 40µmol/kg

of human Hpx 1 h before

heme or PHZ injection

Decreased NGAL gene expression, decreased liver

complement deposition

(19)
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exceed the dose of 500mg/kg for mice with hemolytic conditions.
Even though this concentration is very well-tolerated by the
control animals, some hemolytic mice showed signs of suffering
at this dose.

Based on our data, administration of Hpx could be a possible
approach to counteract heme driven toxicity under hemolytic
conditions. Therefore, Hpx could potentially be applied as a
human blood-derived product similar to other plasma proteins,
such as albumin, α1-antitrypsin or immunoglobulins, which are
well-established therapies (34). Hpx has already been tested in
numerous animal models and showed beneficial effect in most
of the tested parameters [(10, 13, 14, 19, 20, 23, 29, 33, 35–41);
Table 2].

In conclusion, hemolysis-induced complement activation is
prevented by injection of heme scavenger Hpx. These results
encourage further studies of Hpx as a potential therapeutic
agent in models of diseases with heme overload, such as
SCD, transfusion reactions, etc., taking into account its
pharmacokinetic properties.
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Emerging data indicate that free heme promotes inflammation in many different disease

settings, including in sickle cell disease (SCD). Although free heme, proinflammatory

cytokines, and cardiac hypertrophy are co-existing features of SCD, no mechanistic links

between these features have been demonstrated. We now report significantly higher

levels of IL-6 mRNA and protein in hearts of the Townes sickle cell disease (SS) mice

(2.9-fold, p ≤ 0.05) than control mice expressing normal human hemoglobin (AA). We

find that experimental administration of heme 50 µmoles/kg body weight induces IL-6

expression directly in vivo and induces gene expression markers of cardiac hypertrophy

in SS mice. We administered heme intravenously and found that within three hours

plasma IL-6 protein significantly increased in SS mice compared to AA mice (3248± 275

vs. 2384 ± 255 pg/ml, p ≤ 0.05). In the heart, heme induced a 15-fold increase in

IL-6 transcript in SS mice heart compared to controls. Heme simultaneously induced

other markers of cardiac stress and hypertrophy, including atrial natriuretic factor (Nppa;

14-fold, p ≤ 0.05) and beta myosin heavy chain (Myh7; 8-fold, p ≤ 0.05) in SS mice.

Our experiments in Nrf2-deficient mice indicate that the cardiac IL-6 response to heme

does not require Nrf2, the usual mediator of transcriptional response to heme for heme

detoxification by heme oxygenase-1. These data are the first to show heme-induced

IL-6 expression in vivo, suggesting that hemolysis may play a role in the elevated IL-6 and

cardiac hypertrophy seen in patients and mice with SCD. Our results align with published

evidence from rodents and humans without SCD that suggest a causal relationship

between IL-6 and cardiac hypertrophy.
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INTRODUCTION

Sickle cell disease (SCD) is a complex hematological disorder that
affects ∼100,000 Americans and millions of people worldwide,
especially in sub-Saharan Africa and India (1). Hemolysis
and chronic inflammation are major components of the
pathophysiology of SCD. Hemolysis is caused by erythrocyte
injury due to secondary defects in erythrocyte fragility,
deformability and increased endothelial adhesion resulting in
release of hemoglobin and heme (2, 3). Chronic inflammation
in SCD is partly due to leukocytosis with the abnormally
high leukocytes and monocytes that secrete proinflammatory
cytokines. In addition, products of hemolysis act as damage-
associated molecular patterns (DAMPs) potentiating activation
of many inflammatorymechanisms (4). Additionally, products of
intravascular hemolysis such as free hemoglobin and arginase-1
impair nitric oxide bioavailability, endothelial function and organ
function in SCD (2). Limited data indicate that heme can induce
production of proinflammatory cytokines such as interleukin-6
(IL-6) by stimulating immune responses and inflammatory
reactions (5). Hemolysis and inflammation are components of
a wide spectrum of other clinical conditions including sepsis
(6, 7), malaria (8, 9), and preeclampsia (10, 11). Common to
patients with all these syndromes is an increased risk of cardiac
dysfunction (12–15). Notable among proinflammatory cytokines
elevated in SCD is IL-6. Serum levels of IL-6 are elevated
both at steady state and during vaso occlusive crisis in both
children and adults with SCD (16–20), concurrently with severe
anemia and increased markers of hemolysis. Furthermore, IL-6
is associated with cardiomyopathies such as cardiac hypertrophy
and fibrosis in experimental animals (21, 22) and in the general
human population (23, 24). Importantly, cardiopulmonary
complications are one of the leading causes of death in SCD
(25, 26). This accounts for about 26% of deaths in adults with
SCD (27), with left ventricular hypertrophy (LVH) found in over
60% of children and 37% in adults with SCD (28, 29). No prior
publications have investigated any potential linkage between IL-6
and hemolysis in mice and patients with SCD, particularly in
cardiac disease. In this study, we assess direct heme induction
in vivo of IL-6 and genes relevant to cardiac hypertrophy in the

heart of sickle cell mice. Our study shows that IL-6 is highly
expressed in the circulation and in the heart of sickle cell mice at
steady state. Furthermore, administration of extracellular heme
further increased IL-6 and cardiac hypertrophy genes expression.
To gain insight of the mechanism by which heme induces IL-6,
we investigated the role of nuclear factor (erythroid derived 2)-
like 2 (Nfe2L2 or Nrf2). Nrf2 is the master regulator of the
cellular oxidative defense system and plays a significant role in
the regulation of multiple heme-induced genes (30, 31).

MATERIALS AND METHODS

Mouse Strains and Treatment
Male and female Townes’ knocked-in transgenic sickle mouse
(SS) and strain controls expressing normal humanHb (AAmice),
C57BL/6J (Nrf2+/+) and Nrf2−/− mice were used. C57BL/6
mice were obtained from the Jackson Laboratory (stock #000664)

while SS, AA and Nrf2−/− mice were obtained from a colony
maintained by Dr. Solomon Ofori-Acquah’s laboratory in our
institution. Mouse genotypes were confirmed by PCR. Hemin
[Fe(III)PPIX, Sigma-Aldrich, St. Louis, MO] was prepared as
described elsewhere (32, 33). Freshly prepared hemin solution
was protected from light and injected into 12–16 week old mice.
A range of doses and times were tested and 3 h after injection
produced consistent survival with no adverse effects on all strains
of mice in this study. The mice were injected in the tail vein with
a hemin dose of 50 µmoles/kg body weight for SS and AA mice,
and 120 µmoles/kg body weight for Nrf2+/+ and Nrf2−/− mice.
Higher doses were needed for Nrf2+/+ and Nrf2−/− mice to be
able to neutralize the endogenous hemopexin and other heme-
binding proteins and mimic the increase in circulating heme
in chronic hemolysis. This allows comparable assessment of the
transcriptional response. Control mice received sterile vehicle
containing 0.25M NaOH adjusted to pH 7.5 with HCl used in
preparation of hemin.

Plasma Analysis
Freshly collected blood samples were centrifuged at 1,200 × g
for 15min to separate blood plasma. Plasma IL-6 concentration
was measured using the mouse IL-6 ELISA kit (Sigma-Aldrich)
following the manufacturer’s instructions.

Real-Time PCR
Whole organs were harvested from mice 3 h after hemin
injection. Freshly isolated organs (300mg) were snap-frozen
and kept at −80◦C until use. Organs were homogenized in
Qiazol lysis reagent using the Next Advance Bullet Blender
(Next Advance, Inc. Troy, NY). Clear lysates were obtained by
centrifuging homogenized samples at 18,800 × g for 10min.
All tissue processing was carried out at 4◦C. Total RNA was
extracted from the tissue lysates using the miRNeasy Mini
Kit (#217004, QIAGEN, Germantown, MD) and quantified
using the Nanodrop 8000 microvolume spectrophotometer
(ThermoFisher Scientific). Real-time PCR reactions were set-
up in duplicates using 50 ng of RNA. Genes of interest
were evaluated using the TaqMan R© Gene expression assay
(ThermoFisher) and the TaqMan R© RNA-to-CtTM 1-Step Kit
(ThermoFisher) according to the manufacturer’s instructions.
Relative quantification was calculated with the standard 11Ct
method; amplification signals from target gene transcripts were
normalized to those from beta-glucuronidase (Gusb) transcripts.
Relative fold induction was calculated by further normalization
to gene transcripts from vehicle treated animals. Gusb gene
expressions were similar across all mouse strains used and
across all organs within a given mouse strain. Gusb gene
expression in organs from control mice was similar to that
from the corresponding organs from hemin-injected mice.
We have previously published this in different organs from
SS mice here (32) and in the heart of AA control mice in
Supplementary Figure 1 in this study.

IL-6 Protein Quantification
Mice were perfused with phosphate-buffered saline under
anesthesia. Harvested organs (300mg) were homogenized
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in RIPA buffer using the Next Advance Bullet Blender
(Next Advance, Inc. Troy, NY). Homogenized samples were
centrifuged at 18,800 x g for 10min to obtain clear lysates.
All tissue processing was carried out at 4◦C. Heart IL-6
concentration was measured using the mouse IL-6 ELISA kit
(Sigma-Aldrich) following the manufacturer’s instructions. Total
protein was quantified in the lysates using the BCA assay kit
(ThermoFisher Scientific, #23225).

Statistical Analysis
GraphPad Prism 7 software was used for all statistical analyses.
Results are reported as mean ± SEM. Group means were
compared using parametric tests, such as t-test (for 2 groups)
and One-way ANOVA for more than two conditions. Statistical
significance was set at p values of < 0.05.

RESULTS

High Basal Expression and Heme-Induced
Cardiac IL-6 in Sickle Cell Mice
We investigated the basal expression of IL-6 transcripts in the
heart of Townes SS mice and AA control mice. IL-6 expression
was 2.9-fold higher in the heart of Townes SS mice compared
to AA controls (Figure 1A, p ≤ 0.05). Hmox1 expression was
significantly elevated in the heart (2.1-fold) of untreated Townes
SS mice compared to AA controls (Figure 1B, p ≤ 0.01). We
tested the hypothesis that products of hemolysis, specifically
heme, would promote IL-6 expression in the AA heart to mimic
the SS steady state expression. Injection of heme as previously
described (32, 34) increased cardiac IL-6 transcript expression
to levels comparable to vehicle-treated SS mice (Figure 1C,
p < 0.05). This suggests that heme release in SS mice may be the
critical factor that stimulates high SS basal IL-6 expression. SS
mice were even more responsive to heme injection, with cardiac
IL-6 transcripts rising 15.4-fold higher in heme-treated SS mice
compared to vehicle controls (Figure 1D, p≤ 0.05) and by about
53% in SS mice compared to AA mice controls (Figure 1C, p ≤

0.001). We confirmed these mRNA results with analysis of IL-
6 protein, which documented a 34% increase in IL-6 protein in
the heart of SS mice injected with heme compared to vehicle
controls (Figure 2A, p≤ 0.05). These data support a role of heme
in cardiac IL-6 regulation at steady-state and during acute heme
increase in sickle cell disease.

Increased Levels of Circulating IL-6 in
Heme-Treated Sickle Mice
Elevated heme (3, 35) and IL-6 (16, 18) have been individually
reported in the serum of SCD patients. We hypothesized that
increase in extracellular heme rapidly upregulates IL-6 in the
plasma of SS and AA mice. Heme treatment significantly
increased plasma IL-6 protein levels about 25-fold in both AA
and SS mice 3 h after heme injections. The heme-induced IL-
6 level was significantly higher in SS mice than AA mice (3249
± 276 vs. 2385 ± 256 pg/ml, p ≤ 0.05, Figure 2B). These data
indicate a role for free heme in systemic regulation of IL-6.

Heme-Induced Cardiac IL-6 Expression Is
Negatively Regulated via Nrf2 Pathway
Our recent studies confirmed that the Nrf2 pathway mediates
heme induction of cardiac Hmox-1 expression in SS mice (32),
human monocytes (36), and keratinocytes (37). This led us to
investigate whether the same pathway regulates cardiac IL-6
expression and its response to heme. We find no significant
differences in cardiac IL-6 mRNA expression in vehicle-treated
Nrf2+/+ and Nrf2−/− mice (Figure 3A). Treatment with heme
significantly augmented cardiac IL-6 mRNA levels in both
strains (Figure 3A, p ≤ 0.001). Unexpectedly, IL-6 mRNA rose
significantly higher in the hearts of the heme-treated Nrf2-
deficient mice compared to the heme-treated Nrf2+/+ control
mice. Confirming this mRNA finding, cardiac IL-6 protein was
about 51% higher in heme-treated Nrf2−/− mice compared to
heme-treated Nrf2+/+ mice (p < 0.01, Figure 3B). The result
shows that Nrf2 is not required for heme induction of cardiac
IL-6 expression.

Heme Upregulates Markers of Cardiac
Hypertrophy in Sickle Mice
Our results above showed elevated basal expression of cardiac
IL-6 in SS mice, which was further elevated by increase in
extracellular heme. Elevated IL-6 is associated with higher risk
of left ventricular dysfunction and progression to heart failure
in humans (38), and hypertrophy in rodents (39). Furthermore,
in SCD patients LV dysfunction was an independent risk factor
for death (40, 41), while diastolic dysfunction and myocardial
fibrosis were reported in sickle cell mouse model (42). Therefore,
we hypothesized that heme might induce cardiac hypertrophy
genes in sickle cell mice. We evaluated expression of atrial
natriuretic factor (Nppa) and β-Myosin heavy chain 7 (Myh7),
known to be associated with cardiac hypertrophy (43). Baseline
expression of both Nppa and myh7 were similar in the hearts
of AA and SS mice (Supplementary Figure 2). Heme treatment
resulted in a 14.8-fold increase in Nppa transcripts and 8.1-
fold increase in Myh7 transcripts in the heart of SS mice 3 h
after injection of heme (Figures 4A–C), but not AA control mice
(Figure 4C). The heart in SCD appears to be more sensitive to
heme induction of these two cardiac hypertrophy genes.

DISCUSSION

Intravascular hemolysis is an important modifier of outcome
and pathogenesis of SCD (2). The plasma cell-free hemoglobin
and heme are elevated at steady state in SCD and are associated
with disease severity and end organ damage (2, 44). Cardiac-
related complications represent a leading cause of death in SCD
(26). In SCD patients, there is also a dysregulated expression of
IL-6 and other inflammatory cytokines linked to vaso-occlusive
crisis and other complications (18, 20). In this study, we report
for the first time elevated basal cardiac IL-6 mRNA and protein
levels in SS mice compared to AA controls. We also showed that
experimental increase in circulating heme further elevates cardiac
and plasma IL-6 expression in control mice and even more so in
SS mice. Our result is consistent with earlier studies that reported
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FIGURE 1 | Cardiac expression of IL-6 and Hmox1 in SS mice. Heart mRNA expression of (A) IL-6 and (B) Hmox1 in naïve in 14 week old SS mice compared to

age-matched AA mice (n = 3). The SS mice Hmox1 data was published here (32). (C) Heme induced cardiac IL-6 mRNA in SS and AA mice (n = 3–10). (D) Relative

fold change in heme-induced cardiac IL-6 mRNA expression in heme treated AA and SS mice (n = 6–10). For DeltaCt, lowest value = highest expression and highest

value = lowest expression. Target gene transcripts were normalized to Gusb for all mRNA expression levels. Gusb expression was similar in all mice strains used and

in all of these organs in animals injected with either vehicle or hemin. For relative fold change, samples were further normalized to vehicle control gene transcripts.

Unpaired Student’s t-test or one-way ANOVA. Error bars indicate SEM. *p ≤ 0.05; **p ≤ 0.01. #p < 0.05 AA vs. SS. V, Vehicle and H, Heme.

elevated serum IL-6 in SCD patients (16, 18), but those studies
did not investigate the heart. It is possible that cardiomyocytes
and non-cardiomyocytes including fibroblasts and macrophages
in the heart as well as cells in other organs may be contributing to
the elevated plasma IL-6 after heme injection.

Hemopexin, the endogenous scavenger of free heme, is
depleted from the serum of both human (45, 46) and mice
(34, 47) with SCD, making them more susceptible to acute
increases in heme concentration. This promotes the elevated
circulating heme levels reported in human (35) and mice
with SCD (34). Once the plasma heme scavenging system is
saturated, circulating heme can generate reactive oxygen species,
resulting in tissue injury. Our results indicate that heme also

upregulates inflammatory cytokine IL-6. Our finding of heme
induction of cardiac IL-6 complements a recent report of higher
cardiac IL-6 transcripts in hemopexin deficientmice compared to
wildtype control (48). The protective effect of hemopexin in heme
injection experiments in sickle cell and hemopexin deficient mice
has previously been published by our group (34, 49) and other
authors (47, 50).

Our findings show that Nrf2 is dispensable for heme induction
of IL-6 expression. Further investigation of this pathway was
beyond the scope of this current investigation, with several
possible mechanisms that might be involved in this heme
response. Multiple regulatory elements in the promoter region
of the IL-6 gene may contribute to its regulation in a cell
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FIGURE 2 | Heme induces IL-6 protein with a more pronounced effect in SS mice compared to AA controls. (A) Heme induced cardiac IL-6 protein in SS mice

(n = 3–4). (B) Plasma IL-6 in SS and AA mice injected (IV) with 50 µmoles/kg body weight heme or vehicle (n = 5–7). Unpaired Student’s t-test or one-way ANOVA.

Error bars indicate SEM. *p < 0.05, ****p < 0.0001. #p < 0.05 AA vs. SS. V, Vehicle and H, Heme.

FIGURE 3 | Nrf2 is not required for heme-induced cardiac IL-6. Heme-induced cardiac IL-6 in Nrf2+/+ and Nrf2−/− mice. (A) RNA (B) Protein. Nrf2+/+ and Nrf2−/−

mice were injected with vehicle or heme (120 µmoles/Kg body weight). For DeltaCt, lowest value = highest expression and highest value = lowest expression. Target

gene transcripts were normalized to Gusb for all mRNA expression level. Gusb expression was similar in all mice strains used and in all of these organs in animals

injected with either vehicle or hemin. This dose was selected after standardization for producing consistent survival with no adverse effects on both strains of mice.

One-way ANOVA. Error bars are SEM. ***p ≤ 0.001; ****p ≤ 0.0001, vehicle vs. heme within strain. #p ≤ 0.05 ##p ≤ 0.01 Nrf2+/+ vs. Nrf2−/− (n = 3–7; 14–16 weeks

old). V, Vehicle and H, Heme.

type-specific manner (51). Nrf2 might act as a transcriptional
repressor or it might regulate another transcriptional inhibitor
of IL-6 expression (52). Additionally, reduced inducibility in
Nrf2−/− mice of cardiac Hmox1, the principal enzyme in heme
catabolism (32), could result in slower degradation of heme
leading to prolonged heme-induced activation of IL-6 through
an Nrf2-independent pathway. Chronic long-term signaling of
IL-6 induces inflammation and promotes cardiac hypertrophy in
other models (53). Both features are risk factors for morbidity
and mortality in SCD (29, 40, 54), although their relationship to
each other has not been investigated in SCD.

Our pilot analysis of other cardiac mRNAs shows a concurrent
induction of transcripts of cardiac hypertrophy genes Nppa
and MyH7 by heme in the heart of SS mice. Additional

inflammatory cytokines such as PlGF contributes to cardiac
hypertrophy through IL-6 signaling (55) and it is a predictor
of increased left ventricular mass in non-hemolytic diseases
such as chronic kidney disease (56). We recently published
evidence of elevated basal cardiac expression of PlGF in SS mice
with further inducibility by heme (32). These results support a
hypothetical model that chronic hemolysis induces expression
of both PlGF and IL-6, and this elevation of inflammatory
cytokines might contribute to the development of LVH in SCD
through a yet to be experimentally identified mechanism. The
association of hemolysis, IL-6 induction and organ damage in
SCD is supported by previous published research. A recent
report showed an association between a polymorphism in the
IL-6 gene and development of leg ulcer in SCD patients (57),
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FIGURE 4 | Heme induces high expression of transcripts of cardiac hypertrophy markers in SS mice. Heme induced the expression of (A) Nppa (B) Myh7 in the heart

of SS mice 3 h after heme or vehicle injection (C) Myh7 in the heart of SS and AA mice 3 h after heme (50 µmoles/kg body weight) or vehicle injection. For DeltaCt,

lowest value = highest expression and highest value = lowest expression. Target gene transcripts were normalized to Gusb for all mRNA expression level. Gusb

expression was similar in all mice strains used and in all of these organs in animals injected with either vehicle or hemin. For relative fold change, samples were further

normalized to vehicle control gene transcripts. Unpaired student’s t-test and one-way ANOVA. Error bars indicate SEM. ***p ≤ 0.001; **p ≤ 0.001, vehicle vs. heme

within strain. #p ≤ 0.05 AA vs. SS (n = 3–8; 14–16 weeks old). V, Vehicle and H, Heme.

while previous publications showed hemolysis as a risk factor
for leg ulcer in these patients (2, 58). Taken together, these
suggest that increased hemolysis and inflammatory cytokines
including IL-6 may play an important role in organ injury and
pathophysiology of SCD.

Our study has several limitations. We did not evaluate the
hemopexin levels in plasma or the heart and we did not
test whether hemopexin would be protective against heme
induction of IL-6. We did not determine a specific cell type
in the heart in which heme activates IL-6 expression, and
this is a future goal. The mechanism of heme-induced IL-
6 expression remains to be determined, although our present
evidence unequivocally demonstrates that Nrf2 is not required.
An alternative mechanism might involve the activation of the
Toll-like receptor 4 (TLR4) induction of MyD88, activator
protein-1 (AP-1) and nuclear factor–κB (NF-κB) pathways (59–
61). The specific mechanisms by which hemolysis-induced IL-6
contributes to the development of cardiac hypertrophy in SCD
warrants future investigation. Despite these limitations, the
findings of this study are novel and set the stage for detailed
mechanistic studies of heme induction of cardiac IL-6 in SCD.
This may lead to the development of novel therapeutic targets
for ameliorating or preventing heme-induced IL-6 and cardiac
dysfunction in SCD.

In conclusion, we show for the first time direct induction
of IL-6 by heme in the plasma and heart of SS mice, in a
mechanism that does not require Nrf2. We also show for the first
time that heme induces cardiac expression of genes associated
with cardiac hypertrophy, a clinically significant complication
found in SCD patients with especially severe chronic hemolysis.
These new observations provide the basis for a previously
unknown heme/IL-6 axis in the development of cardiac disease
in patients with SCD. This new model provides potential
therapeutic targets for intervention in the heme response and
IL-6 pathways to prevent cardiac disease in SCD that merit
additional investigation.
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Supplementary Figure 1 | GUSB expression in vehicle and haem-injected mice.

Endogenous GUSB expression in vehicle and hemin-treated AA mice (n = 3–6).

For Ct, lowest value = highest expression and highest value = lowest expression.

All values are mean ± SEM. Exp, Expression. There were no significant differences

between vehicle control and hemin treated values.

Supplementary Figure 2 | Similarity in baseline transcripts of markers of cardiac

hypertrophy in AA and SS mice. Baseline expression of Nppa and Myh7 in the

heart of AA and SS mice. For DeltaCt, lowest value = highest expression and

highest value = lowest expression. Target gene transcripts were normalized to

Gusb for all mRNA expression level. All values are mean ± SEM. Exp, Expression.
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Malaria is a hemolytic disease that, in severe cases, can compromise multiple organs.

Pulmonary distress is a common symptom observed in severe malaria caused by

Plasmodium vivax or Plasmodium falciparum. However, biological components involved

in the development of lung malaria are poorly studied. In experimental models of

pulmonary malaria, it was observed that parasitized red blood cell-congested pulmonary

capillaries are related to intra-alveolar hemorrhages and inflammatory cell infiltration.

Thus, it is very likely that hemolysis participates in malaria-induced acute lung injury.

During malaria, heme assumes different biochemical structures such as hemin and

hemozoin (biocrystallized structure of heme inside Plasmodium sp.). Each heme-derived

structure triggers a different biological effect: on the one hand, hemozoin found in lung

tissue is responsible for the infiltration of inflammatory cells and consequent tissue

injury; on the other hand, heme stimulates heme oxygenase-1 (HO-1) expression and

CO production, which protect mice from severe malaria. In this review, we discuss

the biological mechanism involved in the dual role of heme response in experimental

malaria-induced acute lung injury.

Keywords: hemolysis, MA-RD, Plasmodium, heme, severe malaria, HO-1

INTRODUCTION

Malaria remains one of the major public health problems. In 2018, 228 million cases and 405,000
deaths from malaria were estimated worldwide (1). Malaria is particularly prevalent in tropical
and subtropical low-income regions of the world such as the African region, which accounts for
93% of the cases, followed by the Southeast Asia region with 3.4% and the Eastern Mediterranean
region with 2.1% (1). The World Health Organization’s (WHO) mission is to reduce global
malaria mortality rates by 90% by 2030 (2). Malaria is caused by at least six known species of
Plasmodium infecting humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,
Plasmodium ovale, Plasmodium knowlesi (3), and the more recently described Plasmodium
simium (4). Its transmission occurs by female anopheles mosquito bites, transfusion of infected
blood, or transplacentally, from infected mother to fetus [reviewed in (5)]. The vast majority of
human malaria worldwide is uncomplicated resulting in fever, and factors involved in disease
complications are unknown.

Severe malaria is a complication that affects multiple organs, including lungs (6). (7)
reviewed the incidence of lung dysfunction in malaria patients and showed data ranging
from 2 to 29%. The wide range is related to different methods to diagnose dysfunction
severity. Considering the classification of pulmonary complications, it is worth mentioning that
malaria is most prevalent in poor countries where methods of diagnoses, documentation, and
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reporting are weak. Furthermore, a large proportion of severe
malaria illnesses and deaths occur in people’s homes without
coming to the attention of a formal health service. In accordance,
although the Berlin definition is a robust and reproducible
tool for identifying acute respiratory distress syndrome (ARDS),
it could not be applied in low-income countries because
of inaccessibility of mechanical ventilators, arterial blood gas
diagnostics, and chest radiography. For instance, none of the
patients with malaria in the studies of Leopold et al. (8)
could be diagnosed with ARDS using the conventional Berlin
definition because the requirements for positive end-expiratory
pressure criteria were not known since patients were managed
outside of the intensive care unit (ICU). This limitation could
have the unintended consequence of underestimating and
undertreating the burden of malaria-induced ARDS in many
countries (9). Thus, available data concerning malaria induced-
ARDS incidence worldwide may be underestimated. Herein, we
use the term malaria-induced respiratory distress (MA-RD) to
present studies in which ARDS has not been formally diagnosed.

Almost all Plasmodium species that infect humans can induce
MA-RD [reviewed in (10)], including P. malariae (11), P. ovale
(12), and P. knowlesi (13); however, this syndrome is more
common in P. falciparum and P. vivax malaria (14–17). MA-
RD can be observed at early time points after diagnosis or even
when the parasitemia decreases or disappears [reviewed in (7)].
Besides, antimalarial treatment can also lead to lung dysfunction.
For instance, during quinine therapy, it is possible to observe
pulmonary exacerbated inflammatory response and reduced
alveolar-capillary gas exchange (18). Primaquine treatment also
leads to hemolysis and consequent ARDS in malaria patients that
present G6PD deficiency (19).

The most common pathologies associated with MA-RD are
pulmonary edema, dyspnea, reduction in the capacity of gas
exchange, and increased levels of inflammatory mediators (7).
Autopsies in patients who have died of severe malaria and
ARDS symptoms showed pleural and pulmonary hemorrhages,
sequestered parasitized red blood cells (PRBC), neutrophils, and
monocytes containing malarial pigment in lung tissue (20).
Nevertheless, the biological process that triggers MA-RD is not
clear. In this way, animal models have been an indispensable
tool to understand lung dysfunction during malaria. However,
since most experimental studies did not evaluate all factors
that characterize ARDS, it is more appropriate to use the
term malaria-induced acute lung injury (MA-ALI) to depict
experimental results. Unlike cerebral malaria, which is mainly
studied in P. berghei-infected C57BL/6 mice (21), lung malaria
can be observed in P. berghei ANKA-infected C57BL/6 (22,
23), P. berghei NK65-infected C57BL/6 (24, 25), P. berghei
ANKA-infected DBA mice (26), P. berghei ANKA-infected
CBA mice (27), among others (28). These models show that
malaria-induced experimental lung dysfunction is characterized
by vascular dysfunction induced by CD8+ T cells, presence
of PRBC, hemorrhages, neutrophils, and monocytes containing
malarial pigment. On the other hand, it has been shown that,
at 24 h after infection, a time point at which inflammatory
mediators are not yet detected, it is possible to observe PRBC,
neutrophils, and mononuclear cells in the lung tissue (29, 30).

Thus, it is unclear whether inflammatory cells, PRBC, blood,
and pigment from malaria are a consequence or trigger the
pulmonary pathology seen during malaria.

THE ROLE OF HEME DERIVATIVES IN
LUNG PATHOLOGY DURING MALARIA

The study of heme and its derivatives in MA-RD is not
elementary. The complex named heme (protoporphyrin IX+ Fe
II) is an important cofactor in several biological processes such as
oxygen transfer, storage and activation, and electron transfer (31).
During the respiratory process, the hemoglobin (Hb) containing
heme captures and releases the oxygen without modifying iron
oxidative state (32). However, 1–3% of Hb undergoes auto-
oxidation, and oxygen is reduced to superoxide anion (O2

•−) and
generates methemoglobin [Hb plus hemin (Fe III)] (32).

Heme and its analogs localize differently on erythrocyte
membranes and exhibit distinct roles in its partitioning,
leakage, and fusion (33). Under physiological conditions,
when intravascular hemolysis occurs during the destruction of
senescent erythrocytes and/or enucleation of erythroblasts, some
hemoglobin, free heme, or hemin can be released into the plasma
where they bind to soluble haptoglobin (Hp) or hemopexin (Hx)
(reviewed by 27; 28). In the liver, the complexes are recognized by
specific receptors on Kupffer cells such as CD163 and CD91/LRP-
1, respectively, and metabolized by heme oxygenase-1 (HO-1) to
iron, carbon monoxide, and biliverdin that will be stored or act
as antioxidant molecules (34–36) (Figure 1A).

However, in hemolytic diseases, intravascular hemolysis
increases, becoming a serious pathological complication (37).
During the intraerythrocytic stage, parasites lyse the erythrocyte
to release merozoites that rapidly invade new host cells (38). This
lytic process also releases the infected red blood cell contents
into the host bloodstream, including undigested hemoglobin,
free heme, and hemozoin. The augment of extracellular levels of
hemoglobin may reduce levels of available free Hp, making this
pathway ineffective (39), while the large content of heme and
hemin circulating in plasma can exhaust the binding capacity
of Hx and their metabolism by HO-1. These events result in
the increase in oxidation from heme to hemin and consequently
methemoglobin (hemoglobin plus hemin) formation (40). It is
important to note that the binding affinity of globin to hemin is
weak and can lead to free heme release (32). The free heme leads
to oxidative damage by the generation of reactive oxygen species
(ROS) [e.g., superoxide (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radical (HO•)], reactive nitrogen species (RNS) (e.g.,
nitric oxide (•NO), nitrogen dioxide (•NO2)], and peroxynitrite
(ONOO−) (41). These reactive species mediate the activation
of inflammatory pathways and tissue damage, in addition to
the loss of erythrocyte deformation ability and the endothelial
barrier integrity by inducing lipid peroxidation of the membrane
(42–44). Therefore, the consequences of heme derivative release
might depend on their concentration and the environment in
which they are found (38, 40).

As mentioned above, malaria is a hemolytic disease;
thus, free heme and hemin released during hemolysis due
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FIGURE 1 | Hemolysis under physiological conditions and malaria infection. (A) During hemolysis, hemoglobin (HB) and free heme/hemin are captured by haptoglobin

(Hp) and hemopexin (Hx), respectively, in blood vessels. These complexes (HB-Hp and Heme-Hx) target macrophages CD163+ and CD91/LRP-1+ in the liver and

spleen to be metabolized by heme oxygenase 1 (HO-1) to biliverdin, carbon monoxide (CO), and iron (Fe). (B) The hemolysis increases during the release of

merozoites saturates the activity of haptoglobin (Hp) and hemopexin (Hx), leading to heme, hemin, and hemozoin (Hz) circulating in plasma. These heme derivatives

increase ROS and RNS production and activate leukocytes to produce cytokines and chemokines that damage lung tissue and endothelial barriers. HO-1 induction

would decrease leukocyte activation and migration, reduce inflammatory mediators production, and restore the integrity of the endothelial cell barrier in lung tissue.

to erythrocyte rupture during the plasmodium life cycle
exert effects that contribute to malaria pathology. Beyond
the free heme and hemin, heme can also be found in a
biocrystallized structure named hemozoin in the Plasmodium
sp. Plasmodium digest ∼65% of total erythrocyte hemoglobin
during intraerythrocytic development. Part of the hemoglobin’s
amino acids is incorporated in parasite proteins; however,
since free heme released during hemoglobin digestion is a
toxic by-product, Plasmodium biocrystallizes heme to hemozoin
to store it as a nontoxic molecule in the digestive vacuole
(45, 46).

The erythrocyte content (cytoplasm, parasite components,
hemozoin, and free heme) released during hemolysis is engulfed
by phagocytes such as macrophages, neutrophils, and dendritic
cells (47). The accumulation of hemozoin in these immune
phagocytic cells reflects the parasite burden and coincides with
periodic fevers and high circulating levels of proinflammatory
cytokines. In this way, this pigment is used to measure
malaria severity and identify parasite developmental stages (6).
Adult patients who died of severe P. falciparum malaria had
significantly higher proportions of neutrophils and monocytes
containing hemozoin than surviving patients (48). In addition,
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patients with MA-RD demonstrated high lung deposition of
hemozoin and internal alveolar hemorrhage compared with
those with non-MA-RD lungs (49). The same group also showed
that hemozoin leads to loss of alveolar integrity by increasing the
production of interleukin (IL)-1β by monocytes, which induces
pneumocytes type II apoptosis (50). These observations are also
seen in mouse lungs. The C57BL/6 mice infected with P. berghei
NK65 showed a grayish-brown discoloration due to hemorrhages
and hemozoin deposition, in addition to tissue edema and a
marked inflammatory cells influx (24, 51).

The use of purified hemozoin has already been proposed to
access its pathological role in vitro and in vivo (52). However,
the method used to extract hemozoin is not effective in
purifying it, since biological effects observed were attributed
to a DNA contamination in hemozoin extract (53). In this
context, some authors resort to the use of β-hematin, a
compound produced in vitro using parasite lysate to provide
necessary enzymes to biocrystallization. However, the artificial
process to produce β-hematin results in substances different
in shape and size from the natural ones, which could mask
the results [reviewed in (46)]. Despite the immunological
activity of synthetic hemozoin being controversial, several studies
have demonstrated that both parasite-derived hemozoin and
synthetically produced hemozoin, once phagocytized, activates
both mouse and human leukocytes to produce proinflammatory
cytokines such as tumor necrosis factor alpha (TNF-α) and IL-
1β (54) and macrophage inflammatory protein (MIP)-1α/CCL3,
MIP-1β/CCL4, MIP-2/C-X-C Motif Chemokine Ligand 2
(CXCL2), and MCP-1/CCL2 chemokines through oxidative
stress-dependent and stress-independent mechanisms (55).
Besides, Huy and coworkers showed that the treatment with β-
hematin increased myeloperoxidase activity of peritoneal cells in
vivo and neutrophil chemotaxis in vitro (56).

Despite the compelling data showing the deleterious effects
of heme during malaria, in the last decade, several studies have
shown that heme pathway could be beneficial to host outcomes.
Balb/c mice, a resistant strain to multiorgan dysfunction (MOD)
triggered by P. berghei-ANKA infection, expressed HO-1 in
brain tissue during P. berghei infection. In addition, HO-1
knockout Balb/c mice succumb to P. berghei infection, through
a mechanism that can be reversed by CD8+ T cell depletion,
which suggests that heme metabolism is involved in malaria
resistance by modulating immunological response. Interestingly,
studies with C57BL/6mice, a susceptible strain toMOD triggered
by P. berghei-ANKA infection, also produced HO-1 in brain
tissue, however, correlated with parasite inoculum. It is well
established that parasite inoculum modulates disease outcome
(57). Additionally, the 105 P. berghei pRBC inoculum did not
induce HO-1 expression in the brain tissue (58), while the 106

P. berghei pRBC inoculum induces HO-1 expression in the brain
4 days postinfection (59). It is noteworthy that parasite inoculum
did not interfere in increased levels of free heme in plasma, which
suggests that heme in malaria-susceptible hosts is not enough
to induce HO-1; HO-1 is insufficiently produced/activated to
induce free heme clearance, or the produced HO-1 is saturated.
For instance, C57BL/6 P. berghei-infected mice treated with

cobalt protoporphyrin, a pharmacological intervention that
stimulates HO-1 production and activity, reduced brain edema
and microvascular congestion (58). The authors also gave CO,
a downstream metabolite in the heme clearance pathway, and
further observed a reduction in CD8+ T cells in the brain tissue,
showing that the appropriate amounts of HO-1 are effective
to protect susceptible mice from MOD. In accordance, the
balance between free heme and HO-1 production is important
to improve the outcome of P. berghei-infected mice that carry
hemoglobin beta-chain mutation, named sickle Hb (HbS). The
authors observed that mice with HbS phenotype did not develop
cerebral malaria by two differentmechanisms, and both pathways
depend on low levels of free heme on the bloodstream. The
first mechanism involves the stimulation of HO-1 production,
and the second one involves heme-induced immunoregulatory
roles. The authors suggest that there is a pathogenic and
a protective concentration of circulating free heme during
malaria (60).

In recent reviews by Frimat et al. (61) and Immenschuh
et al. (40), the heme clearance pathway has been proposed as
targets to treat hemolytic diseases. Frimat suggests that two
different approaches should be considered to treat hemolytic
disease: first, by modulating molecules from the heme clearance
pathway as by administering hemopexin or inducing HO-
1, and second, by treating oxidative stress and inflammation
induced by heme (61). In addition, Immenschuh and colleagues
state that heme exerts different effects depending on the target
cell. Endothelial cells rapidly respond to heme by means of
HO-1 production, which suggests that the lung, as a highly
vascularized organ, is an important organ to study therapeutic
interventions aiming at heme clearance. Compounds such as
desoxyrhapontigenin, statins, curcumin, hemin, quercetin, and
cobalt protoporphyrin have already been used to attenuate
experimental lung dysfunction by inducing HO-1 expression
(40). However, few studies have been dedicated to assessing
whether HO-1 induction would attenuate malaria-induced ALI.
Pereira et al. (62), using the P. berghei-infected DBA/2 mice
model of MA-ALI, gave hemin to infected mice and observed an
increase in HO-1 production correlated with attenuation of lung
dysfunction and inflammatory response associated to alteration
in lung histoarchitecture. As well, Liu et al. (59) showed that
HO-1 expression in the lung tissue during experimental malaria
depends on CXCL10 and signal transducer and activator of
transcription 3 (STAT3). The authors further show that free heme
is detectable in plasma since the second day of infection. At the
same time point, they also observed HO-1 expression in the lung
tissue but not in the brain tissue, supporting the idea that the
lung is one of the most important organs for the heme clearance
pathway (Figure 1B).

Thus, considering the biological mechanism by which HO-
1 induction attenuates brain dysfunction during experimental
cerebral malaria, we can speculate that during experimental
MA-ALI, the induction of HO-1 downmodulates CD8+ T
cell activation and migration to lung tissue, reduces the
production of inflammatory mediators, and restores endothelial
cell barrier integrity.
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CONCLUSION

Free heme and heme derivatives have been widely recognized
as pathological molecules in several hemolytic conditions. The
participation of heme in malaria is very peculiar because
it exerts its effects through different molecular structures as
free heme, hemin, and hemozoin. Several studies concerning
malaria-induced lung dysfunction show that heme derivatives
affect alveolar integrity, induce the production of inflammatory
mediators, and accumulate the inflammatory cells in the lung
tissue. On the other hand, more recent studies propose that
heme exerts a beneficial role duringmalaria infection by inducing
cytoprotective pathways such as HO-1 production. Indeed,
more studies are necessary to define the role of heme during

malaria-induced lung dysfunction. Overall, we can conclude that
the imbalance between free concentration, production/saturation
of HO-1, and the activation of coexisting anti-inflammatory
pathways dictate if heme is a friend or foe to malaria patients.
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Sickle cell disease (SCD) is a hemoglobinopathy affecting multiple organs and featuring

acute and chronic pain. Purkinje cell damage and hyperalgesia have been demonstrated

in transgenic sickle mice. Purkinje cells are associated with movement and neural

function which may influence pain. We hypothesized that Purkinje cell damage and/or

chronic pain burden provoke compensatory gait changes in sickle mice. We found that

Purkinje cells undergoe increased apoptosis as shown by caspase-3 activation. Using an

automated gait measurement system, MouseWalker, we characterized spatiotemporal

gait characteristics of humanized transgenic BERK sickle mice in comparison to control

mice. Sickle mice showed alteration in stance instability and dynamic gait parameters

(walking speed, stance duration, swing duration and specific swing indices). Differences

in stance instability may reflect motor dysfunction due to damaged Purkinje cells.

Alterations in diagonal and all stance indices indicative of hesitation during walking

may originate from motor dysfunction and/or arise from fear and/or anticipation of

movement-evoked pain. We also demonstrate that stance duration, diagonal swing

indices and all stance indices correlate with both mechanical and deep tissue

hyperalgesia, while stance instability correlates with only deep tissue hyperalgesia.

Therefore, objective analysis of gait in SCD may provide insights into neurological

impairment and pain states.

Keywords: purkinje cell, sickle cell disease, gait, hyperalgesia, histopathology

INTRODUCTION

Chronic pain and organ damage are major comorbidities of sickle cell disease (SCD) (1–5). Organ
pathology has been observed in humanized sickle mice, which show several clinical features of
SCD including chronic pain and multi-organ pathology (6, 7). Interestingly, Purkinje cell damage
in the brain of the HbSS-BERK mice has been previously observed (6). Purkinje cells are the
principal output neurons of the cerebellar cortical microcircuit, and thus play a fundamental role in
coordinating cerebellar function by integrating massive excitatory synaptic input, as well as firing
high–frequency and highly regular action potentials in the absence of synaptic drive (8). Purkinje
cell malfunction has been observed in mouse models of several forms of ataxia, which exhibit
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alterations in gait (9, 10). Since Purkinje cells regulate the
sensory-motor functions, it is likely that the pathological changes
in Purkinje cells of sickle mice may contribute to alterations
in gait.

The Pain in Sickle Cell Epidemiology Study (PiSCES) cohort
demonstrated that the adult sickle population suffers from knee-
skin, lower back, and hip pain for about one-third of the chronic
pain days (11). Additionally, bone complications-associated joint
pain is common in SCD with about 50% adults developing
avascular osteonecrosis due to loss of blood supply to the femoral
head in addition to osteoporosis and osteopenia (12–14). Femurs
from transgenic sickle mice exhibit altered microstructure with
40% reduced mechanical strength compared to control mice
(15). In addition to sudden and intractable acute pain, chronic
joint and back pain in combination with reduced bone strength
could contribute to difficulty in mobility and subsequent postural
adjustment to compensate for the pain, i.e., change in gait (16).
Therefore, gait patterns in SCD can be a result of compensatory
adaptation to avoid movement-evoked pain in addition to
alterations in gait due to Purkinje cell damage.

Analysis of dynamic gait parameters such as walking speed,
stand/swing duration, and step length are of interest for
assessing locomotion function in many motion-affected human
conditions (17). Automated gait measurement has also been
used as an objective measure of pain in inflammatory and
neuropathic pain models in mice (18). In the present study,
we evaluated the Purkinje cell pathology and gait changes in
transgenic HbSS-BERK sickle mice compared to HbAA-BERK
control mice. We utilized the novel video-based automated
“MouseWalker” system to analyze gait and simultaneously
examine the correlation of hyperalgesia with gait in
sickle mice.

MATERIALS AND METHODS

Animals
We used a total of 24 mice consisting of control (HbAA-
BERK) and sickle (HbSS-BERK), hereafter referred to as
control and sickle mice, respectively. All mice were bred and
raised in-house with ad libitum access to food and water
on a 12-h light/dark cycle in conventional housing and used
at ∼3.5 months of age (7). Control and sickle mice are
homozygous for knockout of both murine α and β globins.
Control mice express normal human hemoglobin A and sickle
mice express human α and βS globin chains with >99%
human hemoglobin S, but no murine α or β globin (19).
Sickle mice show similarities with human SCD including
erythrocytic sickling, intravascular hemolysis, reticulocytosis,
severe anemia (hematocrit, 10–30%), leukocytosis, elevation of
inflammatory cytokines, pulmonary congestion, and shortened
life-span (6, 20, 21). Interestingly, increased multiorgan infarcts
and pyknotic Purkinje cells have been observed in sickle
mice compared to non-sickle control mice (6, 22). Sickle
pain is characteristically complex in nature with nociceptive,
neuropathic, and inflammatory components in its etiology
(1, 2). Humanized HbSS-BERK sickle mice exhibit enhanced
mechanical, thermal and deep tissue hyperalgesia compared to

control mice (23, 24). All mice were validated by phenotyping for
sickle and normal human hemoglobin by isoelectric focusing as
previously described (7).

Assessment of Hyperalgesia
Mice were acclimatized to each test protocol in a quiet room
at constant temperature, and tested for mechanical (von Frey)
and spontaneous musculoskeletal/deep (grip force) as previously
described (7, 23). Behavioral tests were performed consecutively
at a 5-min interval between tests, in a double-blind manner.

Mechanical hyperalgesia was measured by applying a
1.0 g (4.08 mN) von Frey (Semmes-Weinstein) monofilament
(Stoelting Co, Wood Dale, IL) to the mid-plantar surface of each
hindpaw for a total of 10 trials per hindpaw with a 5-s inter-
stimulus interval, and paw withdrawal frequency (PWF) was
recorded. Deep tissue/musculoskeletal hyperalgesia was assessed
by placing mice on a wire-mesh gauge by their forepaws, and the
peak grip force exerted in grams was recorded by a computerized
grip-force meter (SA Maier Co, Milwaukee, WI).

Histopathological Analysis
Whole brains were collected immediately following euthanasia
and fixed in 10% formalin (575A-14 43mm; Medical Chemical
Corporation, Torrance, CA, USA). Using routine histology
methods, fixed tissues were processed, embedded in paraffin,
and sections were stained with hematoxylin and eosin (H&E)
or with routine immunohistochemical methods. H&E stained
sections were analyzed using a Nikon eclipse 50i light microscope
equipped with a 10× ocular with an edged-in 1mm scale with
0.01mm divisions calibrated to the 10× objective. Images were
acquired by an attached Nikon DS-Fi1 camera.

Immunohistochemistry
Slides with 5µm sections of brain were deparaffinized and
rehydrated with Histo-Clear (National Diagnostics, Atlanta,
GA, USA) and ethanol gradient, respectively. Sections were
processed for cleaved caspase-3 (an activated form) detection to
assess Purkinje cell apoptosis. Antigen retrieval was performed
with Target Retrieval Solution (Agilent, Santa Clara, CA, USA),
and subsequently processed with ABC detection kit (ab64261;
Abcam, Cambridge, MA, USA). Endogenous peroxidase was
inactivated by incubating with manufacturer-provided hydrogen
peroxide solution (Abcam) for 10min. Non-specific binding
was blocked with blocking solution (Abcam) for additional
10min. Sections were incubated for 1 h at room temperature
in 1:500 rabbit anti-mouse cleaved caspase-3 primary antibody
(ab2302; Abcam), then in prediluted biotinylated goat-anti
rabbit secondary antibody (Abcam). Slides were then incubated
for 10min with streptavidin peroxidase and stained with DAB
chromagen (Abcam), after which samples were counterstained
with hematoxylin. Slides were dehydrated with ethanol gradient
and Histo-Clear before cover slipping. Stained sections
were examined and analyzed by a board-certified surgical
pathologist with expertise in mouse histopathology, in a
double-blind manner.
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Assessment of Gait
The MouseWalker system was assembled in our laboratory
following the design described for gait measurement of mice
(25). Each mouse was individually placed in a transparent
corridor (8 × 80 cm2) with acrylic glass floor panel mounted
with LED lights, which produced a detectable touch sensor. Total
internal reflection (TIR) of the LEDs in the acrylic surface was
measured with embedded light sensors. During mouse natural
walking gait, foot contact disrupted TIR causing frustrated total
internal reflection (fTIR) within the transparent material. The
fTIR-illuminated points of contact were detected by a high-speed
CMOS camera (Lumenera Lt425C, Lumenera Corporation,
Ottawa, Ontario) with a 16mm lens. Constant background
lighting was established with a backlit board placed 40 cm over
the corridor, which comprised two colored LEDs and aluminum

bar sets (HL-LS5050_RGB300NW44K, HitLights, LA, USA;
9001 K25, MacMaster-Carr, IL, USA). The light color was set
by a controller box and remote control. The background light
and fTIR light were set to blue (intensity: 60%) and white
(intensity: 100%), respectively, for optimum video quality.
High-performance digital video recording software was used
(StreamPix 7, Norpix, Montreal, Quebec) at a resolution of 2048
× 2048 for data analysis. Mice were habituated in the corridor
during the 3 days prior to experiment date. Four videos were
acquired of each mouse and 2 videos of uninterrupted walking
were selected and analyzed. The MouseWalker program was
run in Matlab (The Mathworks, MA, USA). Both the program
and manual are available online (biooptics.markalab.org).
Matlab software was used to distinguish the footprints
from background, and convert the videos to grayscale prior

FIGURE 1 | Sickle mice show increased Purkinje cell damage compared to control mice. Cerebellum from ∼3.5 month old female HbSS-BERK sickle and

HbAA-BERK control mice. (A) H&E and capase-3 stained sections of cerebellum at 20x objective, size bar 100µm and at 60x objective, size bar 10µm. Open

arrows: normal Purkinje cells with well-organized nucleus. Solid arrows: apoptotic Purkinje cells with smudged and irregular nuclei with condensed chromatin. (B)

Quantification of Purkinje cell apoptosis per 20 cells/mouse brain from 5 control 5 sickle mice (unpaired two-tailed t-test). (C) Incubation of sickle mice brain sections

without primary antibody showed no cross reactivity with secondary antibody as a negative control. Open arrows: normal Purkinje cells. Solid arrows: apoptotic

Purkinje cells with smudged irregular nuclei.
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to analysis in the MouseWalker software. The mislabeled
footprints or body features were manually adjusted following
automatic detection with MouseWalker software. Gait-
related parameters including walking speed, stance instability,
and stance duration were extracted and exported from the
MouseWalker software to determine correlation with measures
of hyperalgesia.

Statistical Analysis
All data were analyzed using Prism software (v 6.0f, GraphPad
Prism Inc., San Diego, CA). Data between groups were analyzed
using 1-way analysis of variance (ANOVA) with post hoc
Bonferroni’s multiple comparisons. Data within groups were
compared using 2-way repeated measures ANOVA with post hoc
Bonferroni’s/Sidak’s multiple comparisons tests. Gait parameters
were analyzed using Student’s unpaired two-tailed t-test, and
Pearson correlation analysis was performed to detect associations
of gait parameters with hyperalgesia—normality of data for
correlation analysis was determined with Anderson-Darling test.
A p < 0.05 was considered statistically significant. All data are
represented as mean± SEM.

RESULTS

Increased Purkinje Cell Apoptosis in the
Cerebellum of Sickle Mice
H&E staining shows that Purkinje cells in control mice have a
well-shaped nucleus, finely granular distributed chromatin, and
an intact nucleolus (Figure 1A, open arrows). In contrast, H&E
stained sections from sickle mice brains show morphological
features of apoptosis in Purkinje cells with a smudged
nucleus with condensed chromatin and lack of a well-formed
nucleolus (Figure 1A, solid arrows). Cellular apoptosis was
further validated by immunostaining the brain section with
cleaved caspase-3 (active form), a critical protease in the pro-
apoptosis pathway (26–29). Purkinje cells of control mice did
not show the expression of cleaved caspase-3, consistent with
histopathological observations of intact nucleus and well-shaped
cellular morphology. However, Purkinje cells of sickle mice
clearly showed cleaved caspase-3 immunoreactivity, consistent
with histopathology suggestive of apoptosis (Figure 1A, solid
arrows). Purkinje cell apoptosis was quantified by counting the
number of damaged cells per 20 cells/brain of each mouse.
Sickle mice showed significantly more Purkinje cell apoptosis

compared to control mice (Figure 1B; p ≤ 0.0001). These

FIGURE 2 | MouseWalker Apparatus. Each mouse was individually placed in a transparent corridor (8 × 80 cm2) with acrylic glass floor panel mounted with LED

lights, which produced a detectable touch sensor. Total internal reflection (TIR) of the LEDs in the acrylic surface was measured with embedded light sensors. During

natural walking, foot contact disrupted TIR causing frustrated total internal reflection (fTIR) within the transparent material. The fTIR illuminated points of contact, which

were detected by a high-speed CMOS camera (Lumenera Lt425C, Lumenera Corporation, Ottawa, Ontario) with a 16mm lens. Constant background lighting was

established with a backlit board placed 40 cm over the corridor, which comprised two-colored LEDs and aluminum bar sets (HL-LS5050_RGB300NW44K, HitLights,

LA, USA; 9001 K25, MacMaster-Carr, IL, USA). The light color was set by a controller box and remote control. The background light and FTIR light were set to blue

(intensity: 60%) and white (intensity: 100%), respectively, for optimum video quality. High-performance digital video recording software was used (StreamPix 7, Norpix,

Montreal, Quebec) at a resolution of 2048 × 2048 for data assessment. Mice were habituated in the corridor during 3 days before experiment date. Four videos were

taken of each mouse and 2 videos of uninterrupted walking were selected and analyzed. The MouseWalker program was developed and compiled in MATLAB (The

Mathworks, MA, USA). Matlab software was used to distinguish the footprints from background and convert the videos to grayscale prior to analysis in the

MouseWalker software. The mislabeled footprints or body features were manually adjusted following automatic detection with MouseWalker software. Gait-related

parameters such as stance instability, walking speed, and swing/stance duration were extracted and exported from the MouseWalker software to determine

correlation with measures of hyperalgesia.
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FIGURE 3 | Sickle mice with chronic pain present stance instability. Hyperalagesia and gait parameters were measured in the test groups of untreated HbSS-BERK

sickle (SS) and HbAA-BERK control (AA) mice. (A) Mechanical hyperalgesia assessed by Paw Withdrawal Frequency (PWF) in response to 1.0-g von Frey filaments.

(Continued)
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FIGURE 3 | Mechanical and (B) deep tissue hyperalgesia assessed by a computerized grip-force measure. (C) shows representative stance trace of one sickle (right)

and control mouse (left) walking at 21.59 and 21.20 cm/s, respectively. The traces were determined by measuring the position of the stance phase footprints relative

to the body center. The anterior extreme position (AEP) indicates stance onset and the posterior extreme position (PEP) indicates stance offset (positions encircled by

a dashed line for the right fore paw). For each stance trace (maroon), a smoothed trace is generated (using data from every five frames; yellow trace), and the average

of the difference between these two lines (orange arrows) corresponds to the stance instability. (D,E) Perpendicular AEP and (F,G) perpendicular PEP plots for both

fore and hind legs, respectively. (H,I) show stance instability and body instability, respectively. Gait parameters were analyzed using Student’s unpaired two-tailed

t-test. Significance was determined by t-test (unpaired, two-tailed). A p < 0.05 was considered statistically significant. All data are represented as mean ± SEM.

[n = 7 per group in (A,B,D–I)].

results (along with previous observations) indicate that Purkinje
cell apoptosis is a characteristic feature of sickle pathobiology
(Figure 1C). As Purkinje cell apoptosis is often associated with
motor dysfunction, we tested whether sickle mice with chronic
pain display altered gait compared to control mice, using our
custom-built in-houseMouseWalker platform (Figure 2).

Spatiotemporal Changes in Gait in Sickle
Mice
Hyperalgesia and Stance Instability Are Significantly

Higher in Sickle Mice
Mechanical hyperalgesia was assessed by quantifying the PWF
in response to 10 applications of von Frey monofilaments to
the hind paw of mice. Higher PWF is indicative of more
pain, which was the case in sickle mice compared to control
mice. Deep tissue hyperalgesia was measured by assessing the
grip force applied by the fore limbs of the mouse while
pulling a wire gauge. Mice with more pain exert lower force
and sickle mice showed lower grip force compared to control
mice. Together, these data show that sickle mice demonstrate
significantly increased mechanical (Figure 3A; p < 0.0001) and
deep tissue/musculoskeletal hyperalgesia (Figure 3B; p< 0.0001)
compared to control mice.

All the gait and body parameters extracted fromMouseWalker
software were compared between sickle and control mice to
examine the difference in walking speeds within the range of 10–
40 cm/s. A single gait cycle of movement is known as stride that
is divided into two major phases: stance phase and swing phase.
The phase/duration in which the paw/foot stays in touch with
the ground is referred to as stance phase and conversely, in the
swing phase the paw/foot is not in contact with the ground. A
major gait measure is the stance trace during the stride that is
defined as the position of the foot relative to the center of the
body from paw touchdown (anterior extreme position, AEP) to
the end of the stance phase (posterior extreme position, PEP) and
reflects the amount of body wobble during stance phases (25).
Representative stance traces from a sickle and control mouse each
with similar walking velocity (control: 14.50 cm/s, sickle: 14.56
cm/s) are presented (Figure 3C). Compared to the control mice,
the stance traces of sickle mice at ∼14.50 cm/s displayed large
variations of AEP and PEP for both fore- and hind-limbs with
fore-limb traces being less variable than the hind-limb traces,
although no statistical difference was observed (Figures 3D–G;
p = 0.3269, p = 0.3733, p = 0.7576, p = 0.5076, respectively).
Interestingly, sickle mice with pain showed significantly higher
stance instability compared to control mice (Figure 3H; P =

0.0302) while the body stability remained similar among the
two groups (Figure 3I; p = 0.9607). The stance instability is
determined from the stance linearity index, which reflects the
linearity of the stance traces by calculating the average difference
between the actual stance trace and a smoothed version of
the trace (25). Thus, higher stance instability in sickle mice
may be indicative of locomotion abnormality either due to
hyperalgesia or due to motor dysfunction suggested by Purkinje
cell damage.

Stance and Swing Phase Durations Are Significantly

Longer and Posit Non-uniform Distribution for Sickle

Mice
Mendes et al. demonstrated that the step distances of C57BL/6J
mice were exponentially increased with faster velocities (25).
However, we have observed that the majority of sickle mice
walked at a visibly lower velocity in comparisonwith controlmice
(Figure 4A; p = 0.0062), although the step lengths were similar
(Figure 4B; p = 0.5829). Consistent with Mendes’ study (25), we
also observed a large variation in the stance duration (Figure 4C;
p = 0.0009) and smaller variation of swing duration (Figure 4D;
p = 0.1009) in both sickle and control mice which exponentially
decreased as the speed increased [data not shown]. Lastly, stance
phases lasted longer than swing phases at all speeds in both mice
(Figures 4C,D). These data indicate that sickle mice inherently
suffer from altered walking gait patterns that may have resulted
from hyperalgesia/motor dysfunction.

Diagonal Swing Indices Are Decreased and All Stance

Indices Are Significantly Increased for Sickle Mice
Walking/running gait involves swing modalities depending on
how the legs are being moved/lifted during swing phase. We
analyzed seven walking modes of leg combinations in sickle and
control mice: no swing (stance), single-limb swing (lifting of one
limb, four modes), diagonal-limb swing (lifting left/right fore
limb with right/left hind limb, two modes), lateral-limb swing
(both left or both right limbs, two modes), bound-limb swing
(both hind or both fore legs, two modes), three-limb swing
(lifting of any three legs, 4 modes), or all-limb swing (lifting
of all limbs, one mode) (Figure 4E). A walking speed of 52.8
cm/s is the transitional speed from walking to running in which
situation swing duration basically surpasses stance duration (25).
Since we have only included sickle and control mice with walking
speeds (10–40 cm/s) instead of running (>52.8 cm/s) speed,
all swing indices turned out to be zero for both control and
sickle mice, meaning at no point of time all the limbs were in
the air (Figure 4F). Three limb swing and lateral swing indices
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FIGURE 4 | Alterations of gait parameters in sickle mice. Gait parameters were analyzed and compared between HbSS-BERK sickle (SS) and HbAA-BERK control

(AA) mice The average walking speed (A), step length (B), stance (C), swing duration (D), and swing speed (E), were compared at walking speed between 10–40

cm/s. The seven stance indices of all-leg swing analyzed were (F), three-leg swing (G), lateral swing (H), diagonal swing (I), bound swing (J), single swing (K), and all

stance (L). Gait parameters were analyzed using Student’s unpaired two-tailed t-test. Significance was determined by t-test (unpaired, two-tailed). [n = 7 per group in

(A–E)]. (F–H) Individual results of 3 videos per mouse. A p < 0.05 was considered statistically significant. All data are represented as mean ± SEM.
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FIGURE 5 | Comparison of step pattern and modalities between sickle and control mice under same walking velocity. (A) Representative stance trace and gait

parameters of inter-leg coordination of HbSS-BERK sickle (SS) and HbAA-BERK control (AA) mice with walking speeds at 14.50 and 14.56 cm/s, respectively. (B)

Representative stance trace and gait parameters of inter-leg coordination of SS and AA mice with walking speeds at 21.2 and 21.59 cm/s, respectively. The upper

images of all graphs are gait patterns are composed of two phases which are swing phase (white areas) and stance phase (gray areas). The lower panel shows

step combinations.

approach “0” in both groups (Figures 4G,H; p = 0.9544 and
p = 0.9579, respectively). Diagonal swing conformations were
the most representative configuration and constituted more than
50% of the frames in our control mice and significantly reduced
to 40% in sickle mice (Figure 4I; p = 0.0063). Moreover, BERK
sickle mice showed increased but insignificant bound (Figure 4J;
p = 0.1766) and single swing (Figure 4K; p = 0.3219) modality
(vs. control mice). Consistent with our observation during the
whole course of the experiment, the frequent hesitant stops in
sickle mice resulted in significantly increased all stance index
(Figure 4L; p = 0.0088). Moreover, compared to control mice,

sickle mice with nearly the same walking speed showed unequally
distributed gait patterns with more frequent swing phases
(increased appearance of white squares) and extended stance
duration (elongated gray square) at certain points, leading to an
incoherent walking speed with frequently altered gait patterns
(Figures 5A,B). Cumulatively, these data indicate an important
behavioral aspect of sickle mice—a hesitation in breaking inertia
to move on to the next phase, be it swing or stance phase.
This hesitation may be a reflection of motor dysfunction due to
Purkinje cell damage or may result from fear or anticipation of
movement-evoked pain.
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FIGURE 6 | Correlation of gait parameters with deep tissue and mechanical hyperalgesia measures. Pearson correlation analysis was performed to detect

associations of gait parameters with hyperalgesia in HbSS-BERK sickle (SS) and HbAA-BERK control (AA) mice. Correlation test results of grip force measures and

paw withdrawal frequency (PWF) in response to 1.0-g von Frey filament, respectively, with stance instability (A,B), stance duration (C,D), swing duration (E,F),

diagonal swing index (G,H), and all stance index (I,J) are shown. [n = 7 per group in (A–J)] A p < 0.05 was considered statistically significant. All data are represented

as mean ± SEM.
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Selective Spatial and Temporal Gait
Parameters Correlate With Hyperalgesia
To evaluate the utility of automated gait measurement as a
complementary approach for assessing pain, we conducted a
Pearson correlation analysis between conventional mechanical
and deep tissue hyperalgesia measurements and gait parameters
for combined groups of sickle and control mice. The stance
instability demonstrated a strong correlation with deep tissue
hyperalgesia (Figure 6A; r = −0.70, p = 0.0075) but no
significant correlation with mechanical hyperalgesia (Figure 6B).
However, the strongest correlation with hyperalgesia are
observed for the stance duration with both grip force (Figure 6C;
r = −0.84, p = 0.0002) and PWF (Figure 6D; r = 0.72, p =

0.004) indicating that stance duration is affected by existence
of deep tissue and mechanical hyperalgesia. There was no
correlation for the swing duration with both mechanical and
deep tissue hyperalgesia (Figures 6E,F), even though there
was a significant difference in swing duration between the
sickle and control mice as described above. Among the swing
indices, the diagonal swing index had strong (Figure 6G; r =

0.77, p = 0.0014) correlation with grip force and moderate
(Figure 6H; r = −0.53, p = 0.0522) correlation with PWF,
thus indicating a moderate decrease in the trot gait (walking
with higher speed) with increasing hyperalgesia. All stance
indices moderately correlated with both grip force (Figure 6I;
r = −0.56, p = 0.034) and PWF (Figure 6J; r = 0.65, p =

0.011), demonstrating that anticipation of movement-evoked
pain may contribute to more frequent hesitant stops with
increasing pain.

DISCUSSION

Our results demonstrate increased caspase-3 activation in
Purkinje cells of sickle mice compared to control mice, indicative
of apoptosis and neurodegenerative changes in the cerebellar
cortex. In sickle mice, the nucleolus is missing and the nucleus
is smudged with condensed chromatin, clearly morphological
signs of apoptosis. These misshapen nucleoli are immunopositive
for cleaved caspase-3 (active form), a key protease in the
apoptotic pathway and a known marker of cellular apoptosis
including Purkinje cell apoptosis in the cerebellum (26–29).
Therefore, increased cleaved caspase-3 positive immunostaining
in the Purkinje cells of BERK sickle mice compared to control
mice validates the histological observations of Purkinje cell
apoptosis. It is likely that increased numbers of apoptotic
Purkinje cells in the cerebellum of sickle mice contribute to
alterations in their motor function leading to changes in gait.
Gait characteristics during walking are significantly different
in sickle mice compared to control mice perhaps due to
increased Purkinje cell apoptosis. Purkinje cells provide primary
outputs from the cerebellar cortex and are known to modulate
motor functions.

Preclinical studies using transgenic sickle mice to elucidate
mechanisms of sickle pain have evolved around traditional
methods of stimulus-evoked hyperalgesia assessments (7) that
are limited to the subjective nature of observations and an

associated potential for bias (30). Most importantly, these
methods performed in restraint and with noxious stimuli can
generate stress (30). Therefore, objective measure of spontaneous
pain without any stimuli are of growing interest. We have
previously demonstrated that image analysis of facial expressions
using mouse grimace scale (MGS) could detect pain in response
to cold stimuli, although the method suffers from observer
bias (31). Simultaneously, we tested the utility of static body
length and curvature parameters (e.g., eccentricity of a fitted
ellipse) extracted from image analysis as objective measures of
hyperalgesia, and found that sickle mice had higher percent
change in these parameters compared to control mice in response
to cold stimuli, which was reversed upon analgesic treatment in
sickle mice (31).

Complementary to the static gait changes sickle mice
demonstrate alterations in walking gait parameters. Sickle mice
displayed more stance instability and body sway from the
center of the mass during their movement suggesting loss
of balance during movement. Interestingly, human subjects
with spinocerebellar ataxia type 6 (SCA6) standing on a flat
surface demonstrate global stance instability with body sway that
strongly correlates with disease severity (32). Human brain tissue
examination and mouse models of SCA6 showed involvement
of apoptotic Purkinje cells and their dysfunctional firing in
SCA6–a predominantly hereditary neurodegenerative disease
(33, 34). Therefore, higher stance instability in sickle mice
suggests cerebellar Purkinje cell damage-associated disruption
in sensorimotor processing of balance control. Sickle mice
evinced significantly decreased walking speed, increased stance
and swing duration, and also exhibit avoidance behaviors
in hind paw gait parameters (increased hind paw bound
swing), compared to control mice. Sickle mice consistently
exhibited hesitation during recording for gait measurement,
which is also reflected in their significantly increased swing
and stance duration. Moreover, diagonal swing indices were
significantly reduced in sickle mice in addition to reduced
walking speed. Lower speed and increased reluctance to walk
in sickle mice may be indicative of compensation for existing
hyperalgesia and fear/anticipation of movement-evoked pain,
respectively. Stance duration exhibited significantly positive
correlation with deep tissue- and mechanical-hyperalgesia; and
stance instability demonstrated significant correlation with
deep tissue hyperalgesia. Also, diagonal swing indices and all
stance indices demonstrate moderate to strong negative and
positive correlation, respectively, with both deep tissue and
mechanical hyperalgesia—indicating that gait compensation to
avoid movement-evoked pain may contribute to reduced speed
and increased hesitation during mobility. The evaluation of
gait parameters, thus, can provide objective estimates of sickle
pain devoid of observer bias and restraint-evoked stress in
preclinical studies.

Alongside a large number of studies on experimental
osteoarthritis (18), recent preclinical studies have tested the
efficacy of automated gait analysis systems in murine models
of neuropathic pain by spinal nerve injury (30, 35, 36),
chronic constriction injury-induced pain [AU—(37)], CFA-
induced pain (35, 36), paclitaxel-induced polyneuropathy (38)
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and post-operative pain in bone-reconstruction surgery (39).
Commercially available systems such as CatWalk XT (Noldus)
and GaitLab (ViewPoint Behavior Technology) rely on imaging
paw prints reflected internally across an elevated glass floor
where the animal walks (40). Other systems such as DigiGait
(Mouse Specifics Inc.) and GaitScan/TreadScan (CleverSys) use
video recordings to analyze paw prints of walking animals (41–
43). However, these platforms do not offer user-customization
according to specific needs as their software source codes are
proprietary. On the contrary, MouseWalker system (used in this
study) is a simpler system with walking apparatus assembled
from readily available materials and inexpensive components,
and the software is available free of cost (25).

Traditionally human sickle pain studies have relied on
patient-reported visual analog scores or pain diaries, or relatively
recent objective tools such as quantitative sensory testing
(QST) (44–51). However, QST measures hypersensitivity to
evoked thermal or mechanical stimuli. A 6-min walk study
demonstrated that reduction of walking distance among children
on hydroxyurea treatment and without cardiopulmonary
complications correlated with history of silent strokes (52).
Using 36-item short form (SF-36) survey that assesses quality
of life (QoL) in patients, bodily pain that affects activities of
daily life (ADL) was found to be significantly associated with
chronic pain in thoracic spine and hip/lower limbs in adult
sickle patients (53). In a study of children hospitalized for VOC,
the rate of improvement of daily physical functions and rate of
reduction in pain intensities were significant over the course
of hospital stay, with negative effects in mood being associated
proportionately with pain intensities and inversely with physical
functioning scores (53). Therefore, negative scores of physical
functioning or movement-gait changes may be indicative of pain.
Peripheral neuropathy leading to acute loss of lower extremity
mobility have been reported recently in sickle patients (54, 55).
Our murine data indicates that if a similar correlation between
pain scores and gait changes is seen in humans, monitoring
gait in sickle patients to detect any onset/offset of abnormal or
altered patterns may serve as tools to evaluate post-treatment
improvement and/or monitoring chronic pain and associated
QoL. Automated gait analysis using wearable technology has
been used for objective detection of gradual improvement in
physical functioning in post-operative period in patients with
total hip arthroplasty (53). Thus, early assessment of dynamic
gait features and locomotion deficits may help in early diagnosis
of avascular necrosis and associated bone disorders prompting
preventive measures.

An important characteristic of gait in sickle mice is the
existence of longer and frequent hesitant stops reflected by
significantly higher all stance indices compared to control mice
which were also moderately associated with mechanical and
deep tissue hyperalgesia independently–which may represent
stalling due to fear or anticipation of movement-evoked
pain. Autonomic nervous system (ANS) responses have been
shown to be significantly disrupted in sickle patients (56).
Vasoconstriction (or decrease in microvascular perfusion) is
influenced greatly in response to anticipation of thermal
pain in human sickle patients (57), and degree and rate

of such neurally mediated-vasoconstriction is correlated with
anxiety scores (51). While mental stress causes vasoconstriction
in both sickle and healthy individuals (58), such vascular
response may increase transit time of sickled RBCs and
contribute to entrapment in microvasculature resulting in
acute VOC. Additionally, neuroimaging analysis revealed
that resting state functional connectivity is intensified in
the locus coeruleus of the brain stems of SCD subjects
compared to non-SCD anemic controls—indicating possibility
of hyperactive sympathetic neurons contributing to modulation
in peripheral microvascular blood flow (58). In patients with
type1 and type2 diabetes (compared to healthy controls)
decreased walking speed, more frequent stops and altered
joint gait during movement were observed, while these
patients also demonstrated 50% impairment in local tissue
blood flow and other autonomic functions (vs. controls)
(58). Thus, it is possible that gait alteration in sickle mice
is both a function of existing pain and its effect on the
sympathetic nervous system. Conversely, anticipation of pain
may contribute to VOC. Thus, monitoring of gait characteristics
of SCD subjects may provide information regarding prognosis
of the disease, onset of acute crises and/or transition to
chronic pain.

The role of cerebellar Purkinje cells in peripheral nociception
is unclear. However, A-delta and C-fiber signals are relayed
to Purkinje cells in the cerebellum (59–61) and nociceptive
somatosensory and visceral signals stimulate Purkinje cell
firing (62, 63). Interestingly, Purkinje cells in the vermis of
the cerebellum project into the fastigial nucleus and these
cerebellar structures are connected to cerebral areas controlling
autonomic functions (64). Additionally, recent neuroimaging
studies demonstrated enhanced cerebellar activity both in
anticipation of and violation of expected level of pain (65,
66). Another study demonstrated overlapping cerebellar activity
suggestive of pain-evoked motor adaptation (67). Therefore,
Purkinje cell damage and altered stance behaviors in sickle
mice with chronic pain in relation to sympathetic modulation
of anticipated pain and pain-induced gait adaptation warrant
further investigation.

CONCLUSION

In conclusion, we provide first evaluation of walking-gait
differences in sickle mice compared to control mice. Increased
Purkinje cell apoptosis could contribute to altered movement
leading to changes in gait. Importantly, several parameters of
gait correlate with deep tissue and mechanical hyperalgesia in
sickle mice. Thus, gait analysis can be used as a complementary
and objective pain assessment tool devoid of stimuli-evoked
techniques for assessing sickle pain. Recent advances in wearable
technology offer the potential of monitoring gait from remote
access in an unbiased and natural environment. Therefore,
our observations provide a proof of principle to examine gait
in SCD as a predictor of pain and other consequences of
the disease.
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Chronic hemolysis, enhanced oxidative stress, and decreased nitric oxide (NO)
bioavailability promote vasculopathy in sickle cell anemia (SCA). Oxidative stress and
NO are known to modulate eryptosis in healthy red blood cells (RBCs); however, their role
in SCA eryptosis and their impact on the genesis of RBC-derived microparticles (RBC-
MPs) remains poorly described. RBC-MPs could play a role in vascular dysfunction in
SCA. The aims of this study were to evaluate the roles of oxidative stress and NO in
eryptosis and RBC-MPs release, and to determine whether RBC-MPs could be involved
in vascular dysfunction in SCA. Markers of eryptosis and oxidative stress, plasma RBC-
MPs concentration and arterial stiffness were compared between SCA and healthy (AA)
individuals. In-vitro experiments were performed to test: 1) the effects of oxidative stress
(antioxidant: n-acetylcysteine (NAC); pro-oxidant: cumene hydroperoxide) and NO (NO
donor: sodium nitroprusside (SNP); NO-synthase inhibitor (L-NIO)) on eryptosis, RBC
deformability and RBC-MP genesis; 2) the effects of SCA/AA-RBC-MPs on human aortic
endothelial cell (HAEC) inflammatory phenotype and TLR4 pathway. Eryptosis, RBC-MPs,
oxidative stress and arterial stiffness were increased in SCA. NAC increased RBC
deformability and decreased eryptosis and RBC-MPs release, while cumene did the
org November 2020 | Volume 11 | Article 5514411152
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opposite. SNP increased RBC deformability and limited eryptosis, but had no effect on
RBC-MPs. L-NIO did not affect these parameters. Arterial stiffness was correlated with
RBC-MPs concentration in SCA. RBC-MPs isolated directly from SCA blood increased
adhesion molecules expression and the production of cytokines by HAEC compared to
those isolated from AA blood. TLR4 inhibition alleviated these effects. Our data show that
oxidative stress could promote eryptosis and the release of RBC-MPs that are potentially
involved in macrovascular dysfunction in SCA.
Keywords: sickle cell anemia, eryptosis, red blood cell microparticles, vascular dysfunction, endothelial cells, TLR4
INTRODUCTION

Sickle cell anemia (SCA) is the most prevalent genetic disease
worldwide. SCA is caused by a mutation in the b-globin gene that
leads to the substitution of a glutamic acid by a valine at the 7th

codon, which results in the production of abnormal hemoglobin
called hemoglobin S (HbS). HbS can polymerize in deoxygenated
conditions, causing red blood cell (RBC) sickling. Sickled RBCs
are poorly deformable and very fragile. Indeed, patients with
SCA suffer from chronic hemolytic anemia and repeated vaso-
occlusive crises (1). Accumulating evidence suggests that
chronic hemolysis, enhanced oxidative stress and decreased
bioavailability of nitric oxide (NO) are at the origin of the
vascular dysfunction observed in patients with SCA (2–4),
which could be involved in the pathogenesis of several acute
and chronic complications (3). In addition, heme released by red
blood cells into the plasma could play a role in vascular
dysfunction by promoting inflammation through the activation
of Toll Like Receptor 4 (TLR4) (5).

Furthermore, it has been shown that oxidative stress could
promote eryptosis, i.e., RBC suicidal death, in healthy RBCs in
vitro (6). A previous study has also suggested that NO prevents
eryptosis induced by calcium ionophore stimulation (7).
Eryptosis is characterized by increased intra-erythrocyte
calcium levels, increased phosphatidylserine (PS) exposure,
RBC shrinkage (followed by a decrease of RBC deformability),
energetic depletion and membrane blebbing (8). Eryptosis has
been shown to be increased in SCA (8). Several authors reported
alteration in the PS asymmetry of the RBC membrane (9) and
high RBC calcium levels in SCA (10–12) but the exact role of
oxidative stress and NO in eryptosis in SCA is unknown.

RBC membrane blebbing during eryptosis could lead to the
release of microparticles (MPs) into the blood circulation (8, 13).
Several studies observed increased levels of MPs in the blood of
SCA patients compared to healthy individuals at steady state (14,
15), and a further rise during vaso-occlusive crisis (16, 17), with
platelet- and RBC-derived MPs (RBC-MPs) representing the
majority of the circulating MPs detected (18). It has been
suggested that RBC-MPs may promote vascular dysfunction in
SCA. A recent study by Camus et al. (19) showed that SCA RBC-
MPs could promote the apoptosis of endothelial cells in vitro,
and stimulate renal vaso-occlusion in a sickle cell mice model.
However, the MPs used in this study were artificially generated
ex vivo, and were not representative of RBC-MP properties
org 2153
in vivo. Furthermore, the mechanisms at the origin of the
enhanced RBC-MPs release, and especially the implications of
high oxidative stress and decreased NO bioavailability, are still
poorly understood in SCA.

The primary aims of our study were to investigate the effects
of oxidative stress and NO on eryptosis and the release of MPs by
sickle RBCs, and to explore the role of RBC-MPs generated in
vivo, and thus isolated from SCA patients, in the vascular
dysfunction associated with SCA. We compared several
markers of eryptosis and RBC-MPs plasma concentrations
between healthy individuals and patients with SCA, and then
modulated these biological parameters in vitro using agents that
modify oxidative stress and NO bioavailability. In vivo
macrovascular function was also evaluated in patients, and
activation of endothelial cells from the macrocirculation were
evaluated after in vitro incubation with RBC-MPs directly
isolated from blood of AA individuals and SCA patients, with
and without a TLR4 inhibitor.
METHODS

Subjects and Sampling
A total of sixty-two patients with SCA (SS, 25 children, 37 adults)
and 22 healthy controls (AA, 10 children, 12 adults) were
included in the different experiments (see Table 1 for subject
characteristics). Patients with SCA were recruited from the
Edouard Herriot Hospital (Lyon, France), the Institut
d’Hématologie et d’Oncologie Pédiatrique (Lyon, France) and
the University hospital of Pointe à Pitre (Guadeloupe, France).
All subjects were in clinical steady-state at the time of the study;
TABLE 1 | Hematological characteristics of subjects and patients included.

AA SCA

N [HU+] 22 62 [55]
Age (yrs) 21.5 ± 2.2 24.5 ± 2.1
Hb (g/dl) / 8.5 ± 0.4
HbF (%) / 15.7 ± 8.4
MCV (fl) / 95 ± 13.1
November 2020 | Volume 11 | A
AA, healthy subjects; SCA, sickle cell anemia patients; N, number; HU+, patients under
hydroxyurea treatment; yrs, years; Hb, hemoglobin; HbF, fetal hemoglobin; MCV, Mean
Corpuscular Volume.
Data are presented as mean ± SD.
rticle 551441
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i.e., without any vaso-occlusive crisis or other acute medical
complication within the last 2 months, and without any blood
transfusions for at least 3 months before inclusion. Patients
received common treatment as recommended in sickle cell
disease (vitamin B9 and vitamin D). The mean daily dose of
hydroxyurea for patients receiving this therapy (n = 55/62) was
18.8 ± 0.9 mg/kg. The study was conducted in accordance with
the guidelines set by the Declaration of Helsinki, and all subjects
gave informed written consent before their participation. The
study was approved by the CPP Sud-Est IV (Lyon, France, L16-
47) and the CPP Sud/Ouest Outre Mer III (Bordeaux, France,
2012‐A00701‐42) Ethics Committees.

Venous blood was taken from the antecubital vein and
collected into EDTA tubes for RBC deformability and
hematological measurements, and into citrate tubes for eryptosis
and microparticle analyses (BD Vacutainer, Plymouth, UK).
Serum lactate dehydrogenase (LDH) concentration was
determined by standard biochemical methods.

Arterial Stiffness
Arterial stiffness is considered to be a relevant indicator of
macrovascular function (20), and is increased in patients with
SCA (21). We evaluated arterial stiffness by measuring carotid-
radial pulse wave velocity (CR-PWV) with a non-invasive
automated device (SphygmoCor System, Actor, Sydney,
Australia). A 3-lead electrocardiogram was used and pressure
waves were recorded using an arterial tonometer. Pulse wave
velocity (PWV) was calculated as the distance between two
measuring sites, divided by the transit time (in seconds) of the
related pulse waves. Transit time was defined as the difference
between the delay of the distal pulse wave to the R wave of the
ECG and the delay of the proximal pulse wave to R wave of the
ECG. The pulse wave delay was determined by calculating
the time elapsed from the peak of the R wave and the foot of
the pressure pulse wave. The same experienced operator
conducted the measurements throughout the whole study.
Measurements were repeated two times at each measurement
site, and the mean values were calculated and used for analyses.
This technique has been demonstrated to be highly reproducible
in both healthy and diseased populations (22, 23), and has been
previously been used in individuals with SCA (21, 24).
RBC Deformability
RBC deformability was assessed at 37°C, at 3 and 30 Pa by laser
diffraction analysis (ektacytometry), using the Laser-assisted
Optical Rotational Cell Analyzer (LORRCA MaxSis, RR
Mechatronics, Hoorn, The Netherlands). The system has been
described in detail elsewhere (25). Briefly, 10 ml of blood were
mixed with 1 ml polyvinylpyrrolidone (PVP; viscosity ≈ 30 cP)
and sheared into a Couette system. A laser beam was directed
through the samples. The shear stress-induced deformation of
RBCs affected the laser beam’s diffraction pattern, which was
measured by the LORRCA software, and used to calculate an
elongation index. A higher elongation index represents greater
RBC deformability. The procedure was carried out according to
the international methodological recommendations (25, 26).
Frontiers in Immunology | www.frontiersin.org 3154
For pharmacological modulation experiments, whole blood
was centrifuged (800g, 10 min at 20°C), and plasma and buffy
coat were discarded. RBCs were washed in PBS 1× buffer, and the
RBC pellets were resuspended at a hematocrit (Hct) of 20% in
PBS with either sodium nitroprusside (SNP; 100 µM), a NO
donor, L-NIO (10 µM), a nitric oxide synthase (NOS) inhibitor,
n-acetylcysteine (NAC; 2,5 mM), an antioxidant agent, or
cumene hydroperoxide (100 µM), a pro-oxidant molecule, or
vehicle for the control condition, and then incubated for 40 min
at 37°C. RBC suspensions were then washed with PBS
and resuspended in PBS buffer (Hct = 20%), and RBC
deformability was measured as previously described.

Measurement of RBC Nitrite
Previous studies have shown that nitrite levels reflect NO content
in both physiological and pathophysiological conditions (27, 28).
RBC nitrite content in control condition and after incubation
with SNP was measured in order to confirm the effectiveness of
the NO donor properties of the molecule within RBCs.
Measurements of RBC nitrite content were realized according
to previous studies (29, 30).

For nitrite measurement in RBCs, methanol (VWR
international, Darmstadt, Germany) was added to the RBC
frozen samples in a 1:2-ratio to remove proteins and the
suspensions were centrifuged at 21 000 g, at 4°C for 15 min to
collect the supernatants.

An ozone-based chemiluminescence NO detector was used to
determine Nitrite levels (CLD 88e, EcoPhysics, Switzerland).
Samples were injected into an acidified tri-iodide solution that
reduces nitrite but also iron-nitrosylheme, and S-nitrosothiols to
NO gas. NO is transported by a helium gas stream to a NaOH
trap and finally transported to the CLD device where it can be
measured by its gas-phase chemiluminescent reaction with
ozone. The tri-iodide solution stoichiometrically releases NO
from nitrite. Samples were measured in triplicate. A calibration
curve with solution containing known concentrations of nitrite
was realized to calculate nitrite concentration in the samples.

Nitrite content of methanol was also determined and nitrite
concentrations measured in RBC samples were adjusted
accordingly. Data analysis was done with the Chart FIA
software (Ecophysics, Switzerland) to integrate the area under
the curve.

RBC b-Spectrin S-Nitrosylation
NO has been shown to S-nitrosylate cytoskeletal protein b-
spectrin (28). S-nitrosylation of the b-spectrin in SCA patients
in control and SNP conditions was assessed using the S-
Nitrosylated Protein Detection Assay kit (Cayman Chemical,
Ann Arbor, MI, USA) according to manufacturer’s instructions.
The protocol contains three steps: 1) blocking of free SH groups;
2) cleavage of potential S-NO bonds and 3) biotinylation and
avidin labeling of the newly formed SH groups. Additionally, the
protein concentration of the samples was determined using the
DC-Protein Assay Kit (BioRad, Munich, Germany) to ensure
that equal amounts of protein were analyzed. A total of 20 mg
protein was loaded into each lane of a 3–8% Tris-acetate gel
(BioRad) and separated for 1 h under constant 90 mA current in
November 2020 | Volume 11 | Article 551441

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nader et al. Eryptosis in Sickle Cell Disease
a 1 × XT Tricine running buffer (BioRad). Proteins were blotted
onto a polyvinylidene difluoride (PVDF) membrane (0.45 mm
pore size). Background was blocked in 2% bovine serum albumin
(in 1× TBS with 0.1% Tween 20) overnight at room temperature.
Horseradish peroxidase (dilution 1:2000) was added which binds
to the biotin-avidin complex, and the reaction was developed
using a chemiluminescence kit containing peroxidase substrate
(Thermo Fischer Scientific, Darmstadt, Germany). S-nitrosylated
protein band of 220 kDa, previously identified as b-spectrin,
was analyzed for differing “Integrated densities” using
“Image J” software.

Systemic Oxidative Stress Markers
Plasma Advanced Oxidation Protein Products (AOPP) were
determined using the semi-automated method developed by
Witko-Sarsat et al. (31), as previously described (32).
Concentrations of plasma MDA were determined as previously
described (32), using a modified method reported by Ohkawa
et al. (33), based on thiobarbituric acid reactions.

Eryptosis Markers
RBC Preparation
Citrate tubes were centrifuged (800 g, 10 min at 20°C) and plasma
and buffy coat were discarded. RBCs were washed in PBS 1×, and
RBC pellets resuspended at 0.4% Hct in PBS buffer containing 2.5
mMCa2+ (for PS, ROS, and Ca2+ analysis) or 5 mMEDTA (for the
PS negative control). For pharmacological modulation
experiments, suspensions were incubated at 37°C for 40 min with
either SNP (100 µM), L-NIO (10 µm), NAC (2.5 mM), cumene
hydroperoxide (100 µM) or the vehicle for the control condition.
Then, RBC suspensionswerewashedwithPBS 1× and resuspended
in PBS buffer as mentioned above.

Phosphatidylserine Exposure
PSexposureon theoutermembrane leafletof theRBCswasevaluated
by usingAnnexinV-FITC,whichbinds toPS. RBC suspensionswere
protected from light and incubated for 30 min at room temperature
(RT) with Annexin V-FITC (1:200 dilution, Beckman Coulter,
California, US). Immediately after incubation, samples were diluted
and analyzed by FACS (BD Accuri C6, Franklin Lakes, USA). PS
exposure was measured in the FITC channel (with an excitation
wavelength of 488 nm and an emission wavelength of 530 nm)
according to manufacturer’s instructions. Negative controls were
obtained by replacing Ca2+ by EDTA to prevent Annexin V from
binding to PS. For each sample, 50 000 events, gated for the
appropriate Forward Scatter (FSC), were counted.

Reactive Oxygen Species (ROS)
Intracellular RBC oxidative stress was determined using 2′,7′–
dichlorofluorescin diacetate (DCFDA, Sigma-Aldrich, Saint-
Quentin-Fallavier, France). RBC suspensions at 0.4% Hct were
incubated for 30 min at RT in the dark with 10 mM of DCFDA
(Sigma-Aldrich, Saint-Quentin-Fallavier, France). The samples
were then analyzed using FACS, according to manufacturer’s
instructions. The Median Fluorescence Intensity (MFI) of 50 000
gated events was recorded to quantify ROS levels.
Frontiers in Immunology | www.frontiersin.org 4155
Intracellular Calcium (Ca2+)
RBC Ca2+ content was measured with a Fluo3/AM (Biotium,
Fremont, USA) probe. RBC suspensions were incubated for
30 min at RT with 5 mM of Fluo3/AM, and analyzed using
FACS, according to the manufacturer’s instructions. MFI of the
50 000 gated events was recorded to quantify Ca2+ levels.

Glucose Uptake
RBC glucose uptake was analyzed using the 2-NBD-Glucose
(Abcam, Cambridge, USA) probe. RBC suspensions were
incubated for 30 min at RT with 200 µM of 2-NBD-Glucose, and
analyzed by FACS according to manufacturer’s instructions. The
MFI of the 50 000 gated events was recorded to quantify levels of
glucose uptake.

RBC Microparticles Extraction and
Quantification
Microparticles were quantified as previously reported (34). Briefly,
citrate tubes were centrifuged at 1 000 g for 10min at 20°C. Platelet
poor plasma was then submitted to ultracentrifugation (20 000 g,
20 min at 20°C) to extractMPs. Supernatant was discarded and the
pellet was washed twice in working buffer (10 mMHEPES pH 7.4,
136 mM NaCl, 5 mM KCl, 2 mM MgCl2) containing 5 mM of
EDTA for the first washing step and no EDTA for the second one.
Working buffer was finally added to the MPs pellet, and the
suspensions were stored at −80°C until the day of analysis. MPs
quantification was performed with the FC500 Beckman Coulter
flow cytometer (Beckman Coulter, Brea, CA, USA) and calibrated
fluorescent microbeads (Flowcount; Beckman Coulter). MPs were
incubatedwithAnnexinV-FITC and an anti-CD235a-PE antibody
to specifically quantifyMPs fromRBCs. TheMegamix kit was used
to standardizeMPsacquisitiongatebasedonfluorescentmicrobead
size (0.5, 0.9, and3mm;Biocytex,Marseille, France) according to the
supplier’s instructions. MPs were defined as events both smaller or
equal in size to the 0.9 µm-large microbeads, and positively labeled
with Annexin V-FITC.

For pharmacological modulation experiments, whole blood
collected in citrate tube was centrifuged (800g, 10 min at 20°C),
and plasma and buffy coat were discarded. RBCs were washed in
PBS, and RBC pellets were resuspended at 20% Hct in PBS
buffer containing 2.5 mMCa2+ with either SNP (100 µM), L-NIO
(10 µM), NAC (2.5 mM), cumene hydroperoxyde (100 µM) or
vehicle for control condition for 24 h at 37°C and under constant
shaking. Then, microparticles were extracted in the supernatant
and quantified as previously described.

Red Blood Cell Microparticle Isolation
Red blood cell microparticles were negatively selected from total
purified MPs by using a depletion kit composed of anti-PE
microbeads and LD columns (130-097-054 and 130-042-901,
both from Macs, Miltenyi Biotec, Bergisch Gladbach, Germany)
according to the manufacturer’s instructions. Briefly, total MPs
were incubated with relevant PE conjugated antibodies targeting
unwanted MPs (anti-CD15, anti-CD41, anti-CD14, and anti-
CD106 antibodies). Then, microbeads coupled with antibody
directed against PE were added to bind to these antibodies and
allowed subsequent depletion of unwanted MPs by applying a
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strong magnetic field. FACs was used to quantify purified RBC-
MPs using the method previously described. The depletion
procedure allowed to obtain a suspension containing 95% of
RBC-MPs (see Figure 1 in Supplementary Data).

Endothelial Cell Incubation With Sickle
RBC-Derived Microparticles and Cytokine
Supernatant Analysis
Human aortic endothelial cells (HAEC, Promocell Germany) were
grown at 90% confluence in 96 well plates with fetal bovine serum
(MV2medium). Cells were pre-activated with TNF-a (0.6 ng/ml),
as previously described (35, 36). Then, RBC-MPs that had been
directly isolated from the plasma of SCA patients and healthy
individuals, were incubated with HAEC cells for 24 h at a
concentration of 50 000 MPs/100 µl with or without TAK 242 (2
µM), a TLR4 inhibitor. For negative controls, cells were incubated
with TAK 242 vehicle (DMSO). Then, cells were washed twice with
PBS containing BSA, detached from wells with Accutase (StemPro
Accutase, Thermofisher Scientific) and resuspended in PBS-BSA.
Cells were stained for 20 min at RT with anti-CD62E-FITC (0.125
µg/100 µl) and anti-CD54-PE (0.125 µg/100 µl) antibodies to assess
E-Selectin and ICAM-1expression at the surfaceof the cells. Stained
cells were washed and re-suspended in FACS buffer, and analyzed
by flow cytometry, according to manufacturer’s instructions. MFI
or percentage of positive cells were recorded to quantify E-Selectin
and I-CAM1 expression.

Cell supernatant in the wells was immediately collected after
the 24-h incubation, and stored at −80°C until analysis.
Cytokines and stimulating factors in the supernatant were
quantified by Bio-Plex Multiplex immunoassay (Biorad,
California, USA), using the Bio-Plex Pro™ Human Cytokine
17-plex Assay kit and the BioPlex 3D platform (Biorad,
California, USA), according to manufacturer’s instructions.

Statistical Analysis
Data are represented as individual points with mean.
Comparisons between AA and SCA groups were achieved by
using student T-tests or Mann-Whitney tests, when appropriate.
The effects of molecules on SCA RBCs were analyzed by using
paired t-tests and a Friedman test for RBC-MPs production
modulation. Pearson or Spearman correlations were performed
to test the associations between the parameters investigated.
Multivariate linear regression analysis was performed to test
the presence of independent associations. Effects of RBC-MPs on
endothelial cells were analyzed using Friedmann test followed by
Dunn’s post hoc test for multiple comparisons. GraphPad Prism
7 (La Jolla, CA, USA) and SPSS 23.0 (IBM, Armonk, NY, USA)
softwares were used for statistical analyses. A p-value < 0.05 was
considered as significant.
RESULTS

Eryptosis andRBC-MPsAre Increased inSCA
As expected, RBC deformability was lower in SCA patients than in
healthy individuals (p < 0.001, Figure 1A). Analysis of eryptosis
Frontiers in Immunology | www.frontiersin.org 5156
markers by FACS revealed that all markers were significantly
increased in SCA RBCs compared to healthy RBCs: PS
externalization at the surface of SCA RBCs (p < 0.001, Figure
1B, see Figures 2A, B in Supplementary Data for representative
dot plots), RBC ROS content (p < 0.001, Figure 1C), intracellular
levels of Ca2+ (p < 0.01, Figure 1E) and glucose uptake (p < 0.05,
Figure 1F). ROS levels and the percentage of RBCs with
externalized PS were positively correlated (p < 0.0001, r = 0.70,
Figure 1D). RBC-MPs concentration was increased in SCA
patients compared to healthy individuals (p < 0.01, Figure 1G).
Figure 1H represents a flow-cytometric dot-plot image used to
specifically identify RBC-MPs.

NO and Oxidative Stress Modulate RBC
Deformability, Eryptosis Markers, and MPs
Emission by Sickle RBCs
Incubation of SCA RBCs with the anti-oxidant agent NAC
caused an increase of RBC deformability (p < 0.01, Figure 2A)
and a decrease of the percentage of PS-exposing RBCs (p < 0.01,
Figure 2B), RBC ROS content (p < 0.01, Figure 2C), RBC Ca2+

content (p < 0.05, Figure 2D) and RBC glucose uptake (p < 0.05,
Figure 2E). The experiments performed with cumene
hydroperoxide showed a decrease of RBC deformability (p <
0.01, Figure 2F), and an increase of the percentage of PS-
exposing RBCs (p < 0.01, Figure 2G), RBC ROS content (p <
0.05, Figure 2H), RBC Ca2+ content (p < 0.01, Figure 2I), and
RBC glucose uptake (p < 0.05, Figure 2J).

The use of the NO donor SNP also led to a rise of RBC
deformability (p < 0.01, Figure 2K), a decrease of the percentage
of PS-exposing RBCs (p < 0.05, Figure 2L) and RBC ROS
content (p < 0.05, Figure 2M), but no significant change was
observed for RBC Ca2+ content (Figure 2N) or RBC glucose
uptake (Figure 2O). SNP also significantly increased RBC nitrite
content and RBC b-Spectrin S-nitrosylation (see Figures 3A, B
in Supplementary Data). The NOS inhibitor L-NIO had no
significant effect on RBC nitrite content, deformability and
eryptosis markers (data not shown).

SCA RBCs were also incubated for 24 h with NAC, cumene,
SNP and L-NIO to test the effects of these chemical agents on the
release of MPs. The results (Figure 2P) demonstrated that NAC
decreased the amount of RBC-MPs (p < 0.05) while cumene
hydroperoxide increased their release (p < 0.05). No significant
effect of SNP and L-NIO was observed.

Following the quantification of RBC-MPs, AOPP and MDA
levels in the blood of a SCA cohort at steady state (n = 28),
positive correlations between several parameters were observed
(RBC-MPs vs AOPP: r = 0.44, p < 0.01; RBC-MPs vs MDA: r =
0.66, p < 0.001; Figures 3A, B, respectively). These results
suggest that the higher the systemic oxidative stress, the higher
the amount of circulating RBC-derived MPs.

Arterial Stiffness Is Increased in SCA
Patients and Correlates With the Amount
of Circulating RBC-MPs
CR-PWV was measured in a cohort of 24 SCA patients, and
compared to a group of AA (n = 16) of the same ethnic origin. As
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previously reported (21), PWV was higher in SCA than in AA
(Figure 3C, p < 0.01), indicating increased arterial stiffness in the
former group. Circulating RBC-MPs were also measured in 24
patients of this cohort to test the association with the carotid-
radial PWV. Our results showed a positive association between
these two parameters (Figure 3D, p < 0.01, r = 0.55). Because
chronic anemia may lead to important cardiovascular
adaptations in order to compensate for the decrease in
hemoglobin concentration (37), and because chronic hemolysis
participates in the development of vasculopathy in SCA (38), a
multivariate linear analysis was performed between carotid-
radial PWV and RBC-MPs, LDH, AOPP, MDA and
hemoglobin levels. The model was significant (R2 = 0.74, p <
0.05), and only RBC-MPs were independently associated with
the carotid-radial PWV (p < 0.01).

RBC-MPs Activate Endothelial Cells and
Promote Inflammation Through TLR4
To better understand the relationship between RBC-MPs and
macrovascular dysfunction, we analyzed the effects of RBC-MPs
Frontiers in Immunology | www.frontiersin.org 6157
isolated from SCA and AA blood on the expression of ICAM-1
and E-selectin in HAEC. Incubation of plasma RBC-MPs with
HAEC revealed that MPs from SCA patients significantly
increased ICAM-1 (p < 0.01) and E-selectin (p < 0.05)
expression compared to AA MPs (Figures 4A, B, respectively).
The large amount of heme transported by RBC-MPs in SCA has
been suspected to play a key role in endothelial dysfunction (19,
39). Because heme is an erythrocytic danger-associated
molecular pattern (eDAMP) molecule, we further tested the
effects of SCA RBC-MPs on ICAM-1 expression in HAEC in
the presence or absence of TAK-242, a TLR4 inhibitor. We
observed a decrease in the ICAM-1 expression induced by SCA
RBC-MPs when inhibiting TLR4 (p < 0.05), although ICAM-1
expression was still higher than in the control condition (Figure
4C). Furthermore, the use of TAK-242 decreased the production
of IL-1b, IL-6, and GM-CSF by HAEC in comparison to the
condition in which HAEC were incubated with RBC-MPs
without this inhibitor, but the concentrations of these
molecules in the supernatant were still greater than in the
control condition (Figures 4D–F p < 0.05 for all, 18).
A B

D E F

G
H

C

FIGURE 1 | RBC deformability, eryptosis markers, and RBC-MPs in SCA and healthy (AA) individuals. (A) RBC deformability in SCA (n = 35) and AA (n = 20) subjects.
(B) RBC PS exposure in SCA (n = 30) and AA (n = 20) subjects. (C) ROS content in SCA (n = 31) and AA (n = 20) subjects. (D) Correlation between PS exposure and
ROS level in SCA (correlation was made in 23 patients who had both RBC-PS exposure and RBC ROS measurements, using Pearson correlation).
(E) RBC Ca2+ level in SCA (n = 10) and AA (n = 9) subjects. (F) Glucose uptake in SCA (n = 9) and AA (n = 9) subjects. (G) RBC-MP plasma concentrations in SCA (n =
24) and AA (n = 16) subjects. (H) Representative flow-cytometric dot-plot used to quantify RBC-MPs in SCA patient. RBC-MPs were determined as events smaller than
0.9 µm and both positive for annexin-V and CD235a. Significant difference between AA and SCA. **p < 0.01, ***p < 0.001. Statistical comparisons between AA and SCA
for RBC deformability, PS exposure, ROS content and MPs concentration were achieved using Student T-test. Statistical comparisons between AA and SCA for Ca2+

level and glucose uptake content were achieved using Mann Whitney test. MFI, mean fluorescence intensity; %RBC PS+, percentage of RBCs positive for Annexin-V;
ROS, level of reactive oxygen species in RBCs detected with DCFDA; Ca2+, level of calcium in RBCs detected with Fluo3.
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FIGURE 2 | In vitro modulation of RBC deformability, eryptosis, and RBC-MPs by oxidative stress and NO related agents on SCA RBCs. Impact of NAC (n = 7)
ROS level (C), RBC Ca2+ content (D) and glucose uptake (E). Effect of cumene hydroperoxide (n = 7) on SCA RBC deformability (F), RBC PS exposure (G), RO
Effect of SNP (n = 7) on SCA RBC deformability (K), RBC PS exposure (L), ROS level (M), RBC Ca2+ content (N) and glucose uptake (O). Impact of NAC, cume
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DISCUSSION

Our study reports for the first time that 1) oxidative stress and
NO modulate eryptosis in SCA, 2) oxidative stress increases the
release of RBC-MPs in SCA and 3) RBC-MPs directly isolated
from SCA blood partly modulate the inflammatory phenotype of
endothelial cells through TLR4 activation. In addition, our study
confirmed that increased levels of circulating RBC-MPs are
associated with increased arterial stiffness in SCA (40).

As previously demonstrated, our results showed higher levels
of eryptosis in SCA patients compared to healthy individuals (9,
10, 41, 42). Indeed, we demonstrated that SCA RBCs had higher
Ca2+ content and increased PS exposure compared to RBC from
healthy subjects. Increased PS exposure (1.5% in SCA compared
to 0.1% in AA, i.e. a 15-fold increase) could promote RBCs
adhesion to the vascular wall and activate coagulation, hence
contributing to vaso-occlusive complications (41, 43). In vitro
studies performed on healthy RBCs have suggested that oxidative
stress could trigger eryptosis (6). Several mechanisms contribute
to the increased levels of ROS in both plasma and RBCs in SCA
(13, 44, 45). We detected higher levels of ROS in RBCs from SCA
patients compared to healthy RBCs, and a positive association
between RBC ROS level and RBC-PS exposure. We also observed
higher glucose uptake in RBCs from patients with SCA
compared to healthy RBCs, suggesting an increased metabolic
demand and/or an energy depletion; conditions known to trigger
Frontiers in Immunology | www.frontiersin.org 8159
eryptosis (46). Several proteins regulate RBC hydration state
(47), Ca2+ concentration (48) and membrane asymmetry (49) in
an energy dependent manner. Therefore, ATP depletion could be
involved in eryptosis. Unfortunately, we were not able to assess
the impact of hydroxyurea therapy on eryptosis markers as the
majority of the cohort was under this treatment. Indeed,
hydroxyurea could affect RBC physiology by its effects on
oxidative stress and its NO donor properties (50).

Challenging SCA RBCs with antioxidant and pro-oxidant
molecules demonstrated that oxidative stress could play an
important role in eryptosis. Cumene hydroperoxide promoted
eryptosis, while NAC, an antioxidant, limited this phenomenon
by improving RBC deformability (+25%), and decreasing ROS
(−33.5%), Ca2+ (−11.3%) and PS exposure levels (−40%). The
increase of RBC deformability observed with NAC could be
particularly relevant in the pathophysiological context of SCA,
since the loss of deformability is a major contributor of several
acute and chronic complications (51, 52). Clinical trials
performed in SCA patients showed that NAC limits oxidative
stress, hemolysis and RBC dehydration (53, 54). However, the
recent study of Sins et al. (55) failed to clearly detect any clinical
impact of NAC treatment in SCA. One possible explanation of
this disappointing result could be that adherence to NAC
treatment was very low in this study. Another explanation for
the failure of NAC to provide a significant clinical effect could be
its low bioavailability and its hydrophobicity. For this reason it
A B

DC

FIGURE 3 | Relationship betweent RBC-MPs, oxidative stress and carotid-radial pulse wave velocity (PWV) in SCA patients, and comparaison of PWV between AA
and SCA individuals. Correlation between RBC-MPs plasma concentration and AOPP (n = 28) (A) and MDA (n = 19) (B) concentration in SCA patients. Carotid-
radial PWV measured in 24 SCA and 16 AA subjects (C). Correlation between RBC-MPs plasma concentration and carotid-radial PWV in 24 SCA patients (D).
**p < 0.01, ***p < 0.001. Statistical correlations were determined using Pearson correlation test. Comparison between PWV in SCA and AA individuals were
performed using Student T-test. PWV, pulse wave velocity.
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has been suggested that N-Acetylcysteine amides could be more
efficient (56). Interestingly, the findings of Sins et al. showed that
rates of vaso-occlusive crisis (VOC) were decreased in adherent
patients (55). NAC is a precursor of reduced glutathione (GSH),
an endogenous antioxidant, and GSH has been shown to be
reduced in RBCs of SCA patients (57, 58). Therefore, our results
suggest that GSH depletion could be involved in the enhanced
eryptosis found in SCA by increasing levels of RBC-ROS. ROS
are suspected to activate Ca2+ permeable unselective cation
channels with subsequent Ca2+ entry (6). Increased Ca2+

concentration promotes membrane scrambling by inhibiting
flippase and activating scramblase and floppase, which disrupt
membrane asymmetry, and results in the exposure of PS on the
outer leaflet of the membrane (49). Furthermore, the influx of
Ca2+ into RBCs may activate proteases, like caspase 3 and
calpains, that alter membrane and cytoskeleton interactions,
leading to membrane blebbing and the release of MPs (59). In
the present study, we showed that Cumene hydroperoxide
increased Ca2+ level in SCA RBCs which could explain the
greater RBC-MPs release induced by this oxidative molecule.
On the opposite, NAC treatment decreased SCA RBCs Ca2+ level
which could have contributed to the decrease of RBC-MPs
Frontiers in Immunology | www.frontiersin.org 9160
release observed. However, it is unknown whether the MPs
production modulation was directly related to oxidative stress
process or Ca2+ influx.

We also found that the concentrations of RBC-MPs were
higher in patients with SCA than in healthy individuals, in
accordance with previous studies (14, 15). The positive
associations found between AOPP or MDA and the amount of
circulating RBC-MPs suggested that oxidative stress would likely
play a role in the release of MPs by SCA RBCs. Enhanced
oxidative stress during VOC is also suspected to promote
RBC-MPs release (16). Indeed, Hierso et al. suggested that
exacerbation of oxidative stress during VOC may induce the
recruitment of oxidized band 3 in membrane aggregates which
could lead to RBC-MPs release (16). It has also been shown in
SCD mice model that hemoglobin oxidation and subsequent b-
globin posttranslational modifications, including the irreversible
oxidation of bCys93 and the ubiquitination of bLys96 and
bLys145, were related to band 3 clustering and RBC-MPs
emission (60).

NO bioavailability is decreased in SCA (38). It has been
suggested that NO modulates eryptosis in healthy RBCs. Nikolay
et al. (7) showed that NO could limit PS externalization induced by
A B
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C

FIGURE 4 | Endothelial cell activation by RBC-MPs and TLR4 inhibition. Impact of RBC-MPs from AA (n = 7) and SCA (n = 12) subjects on ICAM-1 (A) and E-
Selectin (B) expression by HAEC. Impact of TLR4 inhibition (TAK 242) on the effect mediated by SCA RBC-MPs (n = 7) on ICAM-1 expression by HAEC (C). Effects
of SCA RBC-MPs incubation on IL-1b (D), IL-6 (E) as well as GM-CSF (F) production by HAEC, with or without TAK 242. *p < 0.05, **p < 0.01, ☨p < 0.05 vs ctrl
vehicle, ☨☨p < 0.01 vs ctrl vehicle. Statistical comparisons were achieved with Friedmann test followed by Dunn’s test.
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Ca2+ ionophore in healthy RBCs, but no study has tested whether
this is also the case in SCA RBCs. Our results showed that
incubation of SCA RBCs with SNP effectively increased
intracellular NO metabolites. SNP decreased slightly but
significantly PS exposure and ROS level and had no effect on Ca2+

content. This latter result suggests that the rupture of membrane
asymmetry may not be uniquely driven by Ca2+ influx, and could
explain why no decrease in the concentration of RBC-MPs was
observed in the SNP experiments. It has been observed that ROS
may directly activate scramblase activity and promote PS exposure
(61). Further studies need to be carried out to better understand
themechanism bywhich SNP can decrease levels of ROS. However,
Ca2+ can inhibit thioredoxin, an antioxidant and antiapoptotic
enzyme. NO has been shown to protect thioredoxin activity by S-
nitrosylation of the protein (62),which could explain the decrease in
levels of ROS and PS exposure in samples treated with SNP. The
increasedRBCdeformability after incubationwith SNP could be the
consequence of the lower levels of RBC-ROS, since increasing RBC
oxidative stress impairs RBC rheological properties (28). Moreover,
the increased RBC b-Spectrin S-nitrosylation caused by SNP could
have participated in the improvement of RBC deformability (28).
Besides, inhibition of RBC NOS using L-NIO did not affect RBC
nitrite content, deformability and eryptosis markers. These results
could indicate that RBCNOSwas not activated in basal condition in
our cohort. We previously showed that RBC-NOS in SCA patients
under HU treatment was less activated compared to AA and SCA
patients without HU, because of the NO donor properties of the
molecule. In the current study, themajorityof thepatientswasunder
HU treatmentwhich could explain why no effect of L-NIO and only
a slight effect of SNP were observed. Indeed, patients under HU
treatment had already high level of NO metabolites in RBC which
could have limited the potential effects of SNP (50).

Vascular function has been shown to be altered in SCA in both
the micro- (21, 63, 64) and macro-circulation (21, 65). It has been
suggested that RBC-MPs could participate in the alterations of
vascular function in SCA. Camus et al. showed that RBC-MPs
generated ex vivo induced renal arterial vaso-occlusion in a murine
model of SCA, and compromised vasodilation in isolated micro-
vessels (66). These effects weremediated by the PS exposed onMPs,
which is a common feature of all sub-cellular types ofMPs. In 2015,
the same group showed that heme-laden RBC-MPs generated ex
vivo could transfer heme to the vascular endothelium and mediate
in vitro oxidative stress and apoptosis of endothelial cells (19).
However, the MPs used by Camus et al. were generated ex vivo by
shearing sickle RBCs in a high viscous buffer (30 cP; i.e., 25-fold the
viscosity of plasma) with thrombospondin-1 at 1500 s−1 (i.e., a very
high shear rate that may occur in arterial stenosis or artificial
devices). These conditions clearly do not recapitulate those
leading to the in vivo release of RBC-MPs, and the characteristics
of the in vitro produced RBC-MPs could be very different from
RBC-MPs isolated directly from sickle patients with various clinical
histories. Our study revealed an independent association between
the concentration of circulating RBC-MPs and arterial stiffness, a
marker of macrovascular dysfunction. Tantawy et al. (40)
previously found a correlation between RBC-MPs concentration
and aortic stiffness, evaluated by echocardiography, in SCA
Frontiers in Immunology | www.frontiersin.org 10161
children. However, the direct impact of SCA RBC-MPs on
endothelial cells from the macrocirculation has never been
investigated. Compared to AA RBC-MPs, RBC-MPs from SCA
patients increased the expression of adhesion molecules (ICAM-1
and E-selectin) in human aortic endothelial cells, indicating higher
cell activation. These findings are in agreement with a recent study
showing an impact of SCA RBC-MPs on microcirculation
endothelial cells phenotype (67). ICAM-1 and E-selectin are
implicated in circulating cell interactions with the endothelium,
which contribute to vascular dysfunction (68). We further showed
that inhibition of TLR4 partially decreased the deleterious
consequences of MPs on the endothelial cells by limiting ICAM-1
expression and the production of the pro-inflammatory cytokines
IL-1b and IL-6. Indeed, RBC-MPs would be able to activate TLR4
and promote inflammasome activation. This mechanism would
lead to endothelial cell activation, cell adhesion, and a pro-
inflammatory environment that supports vascular dysfunction.
IL-1b and IL-6 can activate platelets and leukocytes, promote
their adhesiveness (55), and damage the endothelium itself (68).
IL-1b has been associated with stroke in SCA (69), and it has been
suggested that IL-6 could be related to the development of
pulmonary hypertension in SCA children (70). TLR4 inhibition
only partially limited the effectsmediated by SCARBC-MPs, which
suggests that other mechanisms could be involved in the
detrimental consequences of SCA RBC-MPs on endothelial cells.
Garnier et al. recently showed that the deleterious effects of SCA
MPs on endothelial cells weremediated by the PS exposure on their
surface (67). Evaluating the specific phenotype of RBC-MPs from
SCA patients could help in better understanding the mechanisms
involved in their deleterious effects on endothelial function.

Limitations
Due to logistical reasons (i.e. limited quantity of collected blood
and purified RBC-MPs, and necessity to work on fresh blood
sample), in vivo modulation experiments have only been
performed in a sub-set of the total population recruited.
Further studies involving larger cohort are required to fully
evaluate the mechanisms at the origin of eryptosis in SCA and
the consequences of RBC-MPs on endothelial cells. Besides, in
this study, vascular function has been evaluated by pulse wave
velocity only. Studies investigating vascular reactivity, and more
particularly endothelium-dependent macro- and microvascular
reactivity, would help in understanding more deeply the link
between vascular dysfunction and RBC-MPs in SCA and could
increase the biological relevance of our findings.
CONCLUSION

Together, our results suggest that RBC-MPs, that are released
during enhanced eryptosis, could play a crucial role in
macrovascular dysfunction in SCA patients, and that oxidative
stress would modulate eryptosis and RBC-MPs release. RBC-MPs
could exert deleterious properties on endothelial cells of the
macrocirculation, partly through the activation of TLR4,
promoting the expression of adhesion molecules and cytokine
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production, whichmay contribute to vascular dysfunction. Further
investigations are required to identify the specificity of SCA RBC-
MPs at the origin of TLR4 activation, but this study opens new
perspectives to understand the underlying mechanisms of vascular
dysfunction in SCA. It also points toward new therapeutic targets
focusing on preventing eryptosis and/or TLR4 activation in SCA.
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Biochimie et de Biologie Moléculaire (UF de Biochimie des
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Araújo AS, Lucena-Araújo AR,
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Endothelial Barrier Integrity Is
Disrupted In Vitro by Heme
and by Serum From Sickle
Cell Disease Patients
Vanessa Araujo Gomes Santaterra1, Maiara Marx Luz Fiusa1,
Bidossessi Wilfried Hounkpe1, Francine Chenou1, Wouitchekpo Vincent Tonasse1,
Loredana Nilkenes Gomes da Costa1,2, Diego Garcia-Weber3, Igor de Farias Domingos4,5,
Franciele de Lima1, Ivanio Teixeira Borba-Junior1, Aderson da Silva Araújo6,
Antonio Roberto Lucena-Araújo4, Marcos André Cavalcante Bezerra4,
Magnun Nueldo Nunes dos Santos1, Fernando Ferreira Costa1,7, Jaime Millán3

and Erich Vinicius De Paula1,7*

1 School of Medical Sciences, University of Campinas, Campinas, Brazil, 2 Department of Biomedicine, Federal University of
Piaui, Parnaiba, Brazil, 3 Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas,
Universidad Autonoma de Madrid, Madrid, Spain, 4 Genetics Postgraduate Program, Federal University of Pernambuco, Recife,
Brazil, 5 Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil, 6 Department
of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco (HEMOPE), Recife, Brazil, 7 Hematology and
Hemotherapy Center, University of Campinas, Campinas, Brazil

Free extracellular heme has been shown to activate several compartments of innate immunity,
acting as a danger-associated molecular pattern (DAMP) in hemolytic diseases. Although
localized endothelial barrier (EB) disruption is an important part of inflammation that allows
circulating leukocytes to reach inflamed tissues, non-localized/deregulated disruption of the
EB can lead to widespreadmicrovascular hyperpermeability and secondary tissue damage. In
mouse models of sickle cell disease (SCD), EB disruption has been associated with the
development of a form of acute lung injury that closely resembles acute chest syndrome
(ACS), and that can be elicited by acute heme infusion. Here we explored the effect of heme
on EB integrity using human endothelial cell monolayers, in experimental conditions that
include elements that more closely resemble in vivo conditions. EB integrity was assessed by
electric cell-substrate impedance sensing in the presence of varying concentrations of heme
and sera from SCD patients or healthy volunteers. Heme caused a dose-dependent decrease
of the electrical resistance of cell monolayers, consistent with EB disruption, which was
confirmed by staining of junction protein VE-cadherin. In addition, sera from SCD patients, but
not from healthy volunteers, were also capable to induce EB disruption. Interestingly, these
effects were not associated with total heme levels in serum. However, when hemewas added
to sera from SCD patients, but not from healthy volunteers, EB disruption could be elicited,
and this effect was associated with hemopexin serum levels. Together our in vitro studies
provide additional support to the concept of heme as a DAMP in hemolytic conditions.

Keywords: endothelial barrier, heme, sickle cell disease, electric cell-substrate impedance sensing, danger-
associated molecular pattern, hemopexin
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INTRODUCTION

Heme is a ubiquitous molecule present in almost all forms of life,
that is normally found conjugated to hemoproteins such as
hemoglobin (Hb), the most abundant pool of heme in
mammals. However, despite its importance in biological
pathways such as oxygen transportation, several lines of
evidence demonstrate that free extracellular heme (FEH) can
also be toxic to cells, a concept supported by the selection of
extremely effective extracellular scavenging mechanisms (e.g.,
hemopexin) that preclude the circulation of FEH (1–3).

The toxicity of FEH is particularly important for the
pathogenesis of conditions associated with increased
intravascular hemolysis (hence, high free Hb levels), since
oxidation of free Hb has been shown to increase the rate of
heme release to the extracellular space (4). FEH toxicity can be
caused by direct (i.e., intercalation of heme in cellular
membranes) or indirect (i.e., immune-mediated) mechanisms,
and in regard to the latter, several studies demonstrated that
heme can activate a myriad of innate immunity compartments
such as TLR4-dependent pathways (5), neutrophil/neutrophil
extracellular trap release (6, 7), complement (8, 9),
inflammasomes (10), and hemostasis (11–13). Together, these
studies support the notion that heme can act as a danger-
associated molecular pattern (DAMP) in diseases characterized
by high hemolytic rates such as malaria, sepsis, hemolytic uremic
syndrome and sickle cell disease (SCD), where FEH could trigger
and/or contribute to the underlying inflammatory response
(14–17).

Localized endothelial barrier (EB) disruption is an important
and finely regulated part of innate immune response that allows
circulating leukocytes to reach inflamed tissues (18). However,
deregulated EB disruption can lead to widespread microvascular
hyperpermeability and secondary tissue damage (19, 20). While
this possibility is more evident in conditions such as sepsis-
associated acute lung injury (ALI) and cerebral malaria, studies
in mice models of SCD recently demonstrated that EB disruption
could contribute to the pathogenesis of acute chest syndrome
(ACS), a form of ALI that figures among the main causes of
death in SCD (21). Moreover, these studies demonstrated that
FEH can cause a severe and fatal form of ALI in SCD mice,
preceded by congestion and edema of alveolar spaces (22). In
fact, the barrier-disrupting effects of heme have been
demonstrated more than 15 years ago (23), and were recently
confirmed in studies using endothelial cell cultures stimulated by
FEH by independent groups, using different experimental
designs (24–26). However, to the best of our knowledge no
study evaluated the effect of sera from SCD patients with varying
levels of heme on EB integrity. Moreover, one of the caveats of
studying the pathological relevance of heme refers to the unstable
nature of FEH in biological systems due to its fast binding
kinetics to circulating proteins (such as hemopexin and
albumin), allowing some authors to question the concept that
heme can act as a DAMP in living organisms (27). Here we
explored the effect of heme on human endothelial cell
monolayers in experimental conditions designed to address
some of these caveats, using a robust functional assay (28, 29)
Frontiers in Immunology | www.frontiersin.org 2166
that has been previously used in studies of EB function in other
inflammatory conditions (30, 31).
MATERIALS AND METHODS

Reagents, Antibodies, and Cells
Heme was obtained from Frontier Scientific (Frontier Scientific,
USA) and TNFa from Biolegend (Biolegend, USA). Endothelial
basal medium (EBM-2), endothelial cell growth medium
supplement (EGM-2), and primary human umbilical vein
endothelial cells (HUVEC) were obtained from Lonza
(Walkersville, MD, USA). Rabbit monoclonal anti–VE-
cadherin antibody was from Cell Signaling Technology
(Boston, MA, USA), and Alexa fluor 555-phalloidin was
obtained from Life Technologies (Gaithersburg, MD, USA).

Cell Culture
HUVECs were grown in fibronectin (10 μg/ml) pre-coated 75 cm²
flasks inEBM-2mediumsupplementedwith2%fetal bovine serum
and with EGM-2, at 37°C in an atmosphere of 5% CO2/95% air, as
previously described (32). Medium was replaced every 48 h until
confluence (approximately 80%) was reached. All experiments
were performed in HUVECs between passages 3 to 5.

In Vitro Evaluation of Endothelial Barrier
Function
EB integrity was measured using ECIS, an electric cell-substrate
impedance sensing system (ECIS Zq, Applied BioPhysics, Troy,
NY) (28, 29, 33). Cells were seeded (2.5 × 105 cells/well) and
grown to confluency on fibronectin-coated (10 μg/ml) eight-well
arrays (8WE10, Applied BioPhysics, Troy, NY) containing
interdigitated gold electrodes, specific for this system. The
system is based on the application of a weak alternating
current through the electrode array, and on the continuous
measurement of the ability of the cell monolayer to impede the
movement of electrons between adjacent endothelial cells. This
resistance is expressed by the parameter R (resistance), a
component of the impedance measured by ECIS (34). As
previously shown, at low frequencies the movement of current
between cells is mostly restricted by the presence of intercellular
junctions (35, 36). Endothelial cells were normally seeded 48 h
before experiments and R was recorded after 48 h. Only wells
with R > 1,500 ohms and stable impedance/resistance readings
were used. Before stimulation, resistance was continuously
monitored for 2 h, to confirm EB stability represented by a
plateau in the R curve. Stimuli were then added to wells under
continuous impedance/resistance monitoring, for the time
indicated in each experiment. A baseline R value was recorded
immediately prior to the addition of each stimuli, and results
were then expressed as a ratio from baseline resistance
(normalized R). The lower the normalized R value, the higher
the magnitude of EB disruption of cell monolayers.

Stimulation of Endothelial Cells
Heme was diluted to an initial working concentration of 5 mM in
NaOH 0.1 M. This solution was filtrated through a 0.22-μm filter
December 2020 | Volume 11 | Article 535147
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and immediately used in experiments, at concentrations from 5
to 100 μM (diluted in serum free EBM-2 medium). Of note, the
final concentration of NaOH in these solutions varied from 0.01
to 0.2 μM respectively. NaOH solutions with concentrations
equivalent to those used to in heme dilutions of 30, 50, and 100
μM were used as negative controls (vehicle), as detailed in figure
legends. TNFa was diluted in serum free EBM-2 medium and
immediately added to cell monolayers. Sera from patients or
healthy volunteers were diluted (20% v/v) in EBM-2, as
previously described (37). The protein concentration of final
sera preparations corresponded to 20% of serum total protein
concentration from each subject (shown in Table S1) and varied
from varied from 1.24 to 1.98 g/dl in patients, and 1.22 to 1.54 g/
dl in healthy volunteers.

Patients and Healthy Volunteers
The study was performed in accordance with the Declaration of
Helsinki and approved by the local Institutional Review Boards
of both HEMOPE and University of Campinas (protocols
510.517 and 3.291.418 respectively). Written informed consent
was obtained from all subjects or their legal representatives prior
to enrollment. The study population consisted of 20 patients with
SCD (all with sickle cell anemia—HbSS) followed at HEMOPE
Foundation (Recife, PE, Brazil) and 10 healthy volunteers from
the same geographic region and ethnic background. These
individuals were part of a cohort from an ongoing
collaborative study aimed to investigate the association of
haptoglobin polymorphisms with markers of endothelial
activation in SCD. Patients were selected from this cohort
based on pre-determined serum heme levels measured by a
colorimetric assay (QuantiChrom Heme Assay Kit, BioAssay
Systems, USA), so that patients with highest and lowest heme
levels were represented in sample. All included SCD patients
were in steady state (i.e., at least 3 months from the last vaso-
occlusive crisis or red blood cell transfusion), and 8/20 were
using hydroxyurea. Whole blood samples were obtained by
venipuncture and allowed to clot at room temperature for
30 min, and then centrifuged at 1,000g (4°C, 15 min) for
serum separation, which was stored at −80°C until analysis.
Subject characteristics were recorded at the time of sample
collection. Based on ECIS results from a previous study from
our laboratory with sepsis patients, a sample size of 20 patients
and 10 controls was planned, to obtain a power of 80% and a type
II error rate of 0.05.

Immunofluorescence
Cells were grown to confluence for 48 h on fibronectin (10 μg/
ml) pre-coated microscopy-grade glass coverslips, serum starved
for 2 h, and stimulated with heme 30 μM for 6 h. HUVECs were
then fixed in paraformaldehyde (4% for 20 min), washed with
phosphate-buffered saline (PBS), treated (5 min) with 10 mM
glycine, permeabilized with 0.2% Triton-X in PBS, rinsed and
blocked with 3% bovine serum albumin in PBS (15 min). Cells
were then incubated with anti VE-cadherin antibody (30 min),
rinsed and incubated with Alexa Fluor-coupled secondary
antibodies (30 min). Actin filaments were detected with
Frontiers in Immunology | www.frontiersin.org 3167
fluorescent phalloidin. Confocal laser scanning microscopy was
carried out using a Zeiss LSM 510 microscope, equipped with a
63 × 1.3 oil immersion objective. Intercellular gaps were
quantified using Image J, by an investigator blinded to
experimental condition, as previously described (38). Briefly, a
total of 10 images, each containing approximately twenty cells
were analyzed for each experiment. Image contrast was adjusted
semi-automatically until saturation, so that areas of the confluent
monolayer that yielded no signal in all fluorescence channels
could be identified as gaps, and selected by creating a threshold.
Then, the proportion of empty areas in respect to total image
area was calculated. To show the empty areas, the region
obtained with the threshold was blue-colored and flattened to
the original image.

Measurement of Hemopexin and
sVCAM-1 Levels
Hemopexin and sVCAM-1 levels were measured in serum by
Elisa in accordance with manufacturer’s instructions (Abcam
ab171576, Cambridge, UK; and R&D #DY809, Minneapolis,
USA, respectively).

Statistical Analysis
Differences in continuous variables were analyzed using
Student’s t-test/Anova or Mann-Whitney/Kruskal-Wallis tests
according to: variable distribution (Gaussian or non-Gaussian
respectively) assessed by the D’Agostino & Pearson normality
test, and to the number of groups in each comparison.
Correlation was calculated using the Spearman correlation
coefficient. Data are expressed as mean ± SEM or median and
range, as specified. A P-value ≤ 0.05 was considered statistically
significant. All statistical analysis was performed with GraphPad
Prism 7.0 Software (GraphPad Inc., San Diego, CA, USA).
RESULTS

Heme Induces a Transient and Dose-
Dependent Disruption of EB
We first demonstrated that heme is capable to induce a dose-
dependent disruption of EB in HUVECs, which attains statistical
significance as early as 10 min after stimulation, and that persists
for 30 min with heme concentrations between 20 and 30 μM, for
60 min with heme 50 μM, returning to baseline values after these
timepoints except for heme 100 μM concentration (Figure 1A).
Of note, the effect vehicle (NaOH) caused no changes in EB
integrity measured by ECIS (Figure S1A). In order to confirm if
these functional changes were associated with morphological
changes, we selected a representative heme concentration (30
μM) to stimulate HUVECs, which increased intercellular gap
counts in VE-cadherin stained slides (Figures 1B, C).

Sera From SCD Patients Cause EB
Disruption In Vitro
Next, we investigated whether sera from patients with SCD,
containing varying levels of heme, could elicit changes in EB
December 2020 | Volume 11 | Article 535147
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integrity in HUVECs. Characteristics of our study population are
shown in Table S1. First, we compared the effect of sera from all
SCD patients with those from healthy volunteers. As shown in
Figure 2, after a period of EB stability observed in both groups,
SCD sera elicited a significant decrease in normalized resistance,
consistent with EB disruption (Figure 2A). This effect persisted
for at least 4 h. We then separated patients in two groups
according to median levels of total heme in serum (63.0 μM).
However, no differences could be observed between these two
patient subgroups (Figure 2B). It should be noted that while
statistically significant, the effects of serum presented a lower
magnitude than the effects of heme in aqueous solutions. Of note,
no difference could be observed between HU users and non-users
(Figure S1B).
Frontiers in Immunology | www.frontiersin.org 4168
Sera From Healthy Volunteers, but Not
From SCD Patients, Inhibit EB-Disrupting
Effects of Heme
Since total serum heme (which includes mainly the protein-
bound fraction of this molecule) was not a significant
determinant of the magnitude of EB disruption, we
hypothesized that an acute increase in heme levels would be
necessary to reproduce the effect of heme shown in Figure 1,
based on the assumption that FEH might not be available in a
protein-rich matrix such as serum. In order to test this
hypothesis, cells were incubated with serum from healthy
volunteers or SCD patients for 24 h in ECIS arrays, and then
challenged with heme to a final concentration of 30 μM. While
the presence of sera from healthy volunteers prevented the effects
A

B

C

FIGURE 1 | Endothelial barrier integrity after heme stimulation. (A) Each line represents the mean ± SEM of the normalized resistance of HUVECs stimulated with
heme in serum-free solutions measured by ECIS at 4,000 Hz. Differences between vehicle and heme-stimulated cells were compared using the Kruskal-Wallis test
with the Dunn’s posttest. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01; ***P< 0.001; n = 5 to 15
independent experiments in at least three different days per heme concentration. (B) HUVECs were treated for 6 h with vehicle or heme 30 µM, and stained for the
cell-cell junction marker VE-cadherin and for filamentous actin (F-actin). White arrows indicate intercellular gaps. (C) Semi-automated image processing identified
intercellular gaps in the images that were quantified respect to the total area of the cell monolayer (n= 4 to 5 per group in two independent experiments). Mann-
Whitney test; *P =0.01. Vehicle corresponds to the same solution used to dilute heme (NaOH 0.1 M), without heme. The final NaOH concentration in each heme
dilution varied from 0.01 to 0.2 µM for heme 5 µM to heme 100 µM. In vehicles, higher NaOH concentrations were used (0.06 to 0.2 µM in panel A, and 0.06 µM in
panel B).
December 2020 | Volume 11 | Article 535147
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of heme on EB integrity, a milder, yet significant disruption of EB
was observed when heme was added to cells incubated with sera
from SCD patients (Figure 3).

Heme-Induced EB Disruption Is
Associated With Hemopexin Levels
Since free heme is quickly removed from the circulation by
hemopexin, we hypothesized that the induction of EB disruption
by the addition of heme to SCD sera could be associated with lower
hemopexin levels when compared to healthy volunteers. In fact,
hemopexin levels were significantly lower in SCD patients
compared to controls (0.33 ± 0.32 vs 1.29 ± 0.23; P< 0.001)
(Figure 4A). As expected, a strong correlation (Rs = 0.90; P <
0.0001) was observed between heme and hemopexin levels (Figure
4B). Interestingly, when all participants were divided according to
median hemopexin levels (0.59 mg/ml), lower values of normalized
resistance (which indicate heme-induced EB disruption) were
observed in individuals with lower hemopexin levels (Figure 4C).
Frontiers in Immunology | www.frontiersin.org 5169
Moreover, the magnitude of heme-induced EB disruption at 12min
(the timepoint when this effect was more evident) were correlated
with hemopexin levels (Rs = 0.68; P < 0.0001) (Figure 4D). Of note,
a strong correlation was observed between hemopexin and
sVCAM-1 (Rs = −0.72; P< 0.001). However, while levels of
sVCAM-1 were also associated with normalized resistance, the
correlation coefficient was weak (Rs = −0.42; P = 0.03).
DISCUSSION

EB disruption is a hallmark of several inflammatory diseases (39–
42), and studies in animal models suggest that this process is
involved in the pathogenesis of acute complications of SCD,
namely ACS (21, 22). Accordingly, the effects of hemolysis
byproducts such as free hemoglobin and heme on EB integrity
in endothelial cell monolayers have been recently investigated,
with consistent data supporting an EB-disrupting effect of heme
A

B

FIGURE 2 | Effect of sera from SCD on EB integrity. Confluent HUVEC monolayers were incubated with sera (20% v/v) from SCD patients (n=20) or healthy
volunteers (n=10) and normalized resistance was recorded at 4,000 Hz. Each line represents the mean ± SEM in the specified time points from experiments
comparing (A) patients and healthy volunteers; or (B) patients subgrouped by total levels of heme in serum. Differences were compared using the Mann-Whitney
test. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Santaterra et al. Endothelial Barrier, Heme, and Hemopexin
FIGURE 3 | Heme is capable to induce EB disruption in the presence of serum from patients with SCD, but not from healthy volunteers. Confluent HUVEC
monolayers were incubated with sera (20% v/v) from SCD patients (n = 20) or healthy volunteers (n = 10) for 24 h, followed by challenge with heme 30 µM (black
arrow). Normalized resistance was recorded at 4,000 Hz. Each line represents the mean ± SEM in the specified time points. Differences were compared using the
Mann-Whitney test. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01; ***P<0.001. Heme was diluted
in NaOH, and the final NaOH concentration in heme dilutions was 0.06 µM.
A B

C D

FIGURE 4 | Heme-induced EB disruption in the presence of serum is associated with hemopexin levels. (A) Hemopexin levels were measured by Elisa and were
lower in SCD patients (n=19) compared to healthy volunteers (n=10) (Mann-Whitney test). (B) A strong negative correlation was observed between hemopexin and
heme levels (Spearman correlation coefficient). (C) Lower values of normalized resistance at the timepoint of peak heme-induced EB disruption were observed in
individuals with lower hemopexin levels (t test). Accordingly, peak heme-induced EB disruption (i.e., after 12 min) was statistically correlated with hemopexin levels
(Spearman correlation coefficient) (D).
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(24–26). However, due to the strong affinity of heme to
circulating proteins, coupled with the possible interplay of
heme with other inflammatory mediators, it is important to
confirm these effects in experimental conditions that more
closely resemble those observed in the clinic. The most
important result of our study was the demonstration that heme
is capable to induce EB disruption even in the presence of serum
proteins, but that this effect only occurs with serum from SCD
patients, but not from healthy volunteers, and is associated with
hemopexin levels.

Based on the demonstration that heme can trigger innate
immunity activation (1, 13–15), excess heme was associated with
the pathogenesis of vaso-occlusion (43) and ACS (22, 44) in
SCD. Accordingly, a growing interest emerged on whether
alterations of the alveolar-capillary barrier participated in the
pathogenesis of ACS, as well as if heme was capable to induce EB
disruption. In regard to the former, studies using mice models of
SCD suggested that EB disruption was involved in the
pathogenesis of ACS (21, 22). Moreover, isolated pulmonary
endothelial cells from homozygous sickle mice (SS) were shown
to be more sensitive to the EB-disrupting effects of LPS
(measured by ECIS) than cells from heterozygous (AS) mice
(45). In regard to the latter question, the first demonstration that
heme could elicit EB disruption was published almost 20 years
ago in a study that demonstrated the accumulation of
radiolabeled liposomes in different organs of C57Bl/6 mice
treated with heme (46), a finding that was also demonstrated
using other in vivo assays of EB integrity in mice (11). In the last
4 years this observation was confirmed and further explored in
cell-based assays, in which the exposure of pulmonary or
microvascular endothelial cells to heme (diluted in aqueous
solutions of NaOH) consistently induced EB disruption in
both static and flow-based (microfluidic) assays (24–26). These
studies also demonstrated that these effects occurred in the
context of the effects of heme on innate immunity, since they
were TLR4-dependent. However, one of the caveats of studies
about the effects of heme on innate immunity is the strong
affinity of this molecule for proteins that are abundant in serum
such as hemopexin and albumin, so that some authors recently
questioned their biological relevance at all (27). Of note, all of the
recent cell-based studies about the effects of heme on EB
disruption used heme diluted in protein-free solutions.

In our study we first confirmed that heme can disrupt EB, in a
dose dependent (in our system, in concentrations above 10 μM)
and transient fashion. Barrier integrity returned to normal
within 25 to 60 min in cells exposed to the lower range of
heme concentrations used in our study (below 30 μM), which
more closely resemble the concentrations of FEH in contact to
cells in humans. This transient nature indicates that heme-
induced barrier disruption is not caused by cell death, and
raises the question on which of the signaling pathways
involved in the regulation of EB integrity are modulated by
heme. This observation is also consistent with a previous study
that also showed a dose-dependent effect of heme on EB
integrity, and that showed that heme used at a higher
concentration (40μM) was associated with a more delayed
disruption of EB integrity that was attributed to necroptotic
Frontiers in Immunology | www.frontiersin.org 7171
cell death (25), but other pathways that are modulated by heme
such as autophagy (47–49) and MKK3/p38MAPK (50) have also
been recently associated with EB changes. It should be noted that
our results also confirm that the EB of HUVECs behave similarly
to pulmonary and microvascular endothelial cells in response to
heme, supporting their use in our subsequent experiments.

We also demonstrated that sera from patients with SCD, but
not from healthy volunteers, induce EB disruption of HUVEC
monolayers. Regulation of EB integrity is a complex process that
involves cellular and humoral mediators (51–53), both altered in
SCD. In this regard, our results suggest that soluble inflammatory
mediators contribute at least in part to EB disruption in SCD, and
that their identification could generate important insights about
the pathogenesis of this disease. Given the complex nature of this
process, high-throughput strategies such as proteomics or
metabolomics would possibly be more adequate than the testing
of isolated candidate modulators by immunological methods. As
far as we are aware, only one group studied evaluated the effect of
specific plasma components on EB integrity in SCD. This study
showed that exosomes from SCDpatients with a higher frequency
of ACS (mainly derived from red blood cells), induced a more
pronounced disturbance of the EB on human microvascular
endothelia cells than exosomes from patients with no history of
ACS (54).Ofnote, the samegrouphadpreviously shown that these
exosomes were mainly derived from endothelial cells, and had a
miRNA cargo capable to discriminate mild from severe clinical
phenotypes (55). As in our study, all patients from the former
study were in steady-state when samples were collected, and EB
function was measured by ECIS. Since our study was focused on
the role of heme as an EB-disrupting agent in SCD, we first
investigated whether total heme levels in these serum samples
influenced the magnitude of EB disruption, which was not
confirmed. Our negative results can be probably explained by
the fact that total heme levels encompass not only FEH, butmainly
heme bound to hemopexin, albumin and hemoglobin (56), which
is not capable to activate the immune system. Accordingly, it is
likely that levels of FEH in stored serumsamples are extremely low,
or even absent, as suggested by others (56). So, we added heme to
cells in the presence of serum to investigate whether an acute
increase in serumheme concentrations could reproduce the effects
of heme on EB. By doing this, we were able to show that proteins
present in serum from patients with SCD are not sufficient to
inhibit the EB-disruption induced by an acute challenge with
heme. Interestingly, addition of heme to sera from healthy
volunteers did not elicit any effect on EB, suggesting that the
inflammatory milieu characteristic of serum from SCD patients is
required for heme-induced EB disruption.

Of all heme scavenging proteins present in serum, hemopexin is
the one with the highest affinity, recognized as a critical line of
defense against FEH. As expected, hemopexin levels were
markedly lower in SCD patients compared to healthy volunteers.
Moreover, hemopexin levels were also correlated with both heme
and sVCAM-1, which is amarker of endothelial activation in SCD.
Interestingly, we demonstrated that peak heme-induced EB
disruption in the presence of serum was associated with
hemopexin levels, which as far as we are aware represent the first
time when human hemopexin levels were associated with
December 2020 | Volume 11 | Article 535147

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Santaterra et al. Endothelial Barrier, Heme, and Hemopexin
modulation of EB function. Together these results provide
additional support for the concept that FEH can directly
contribute to EB disruption in SCD. Of note, in a recent study,
the mechanisms by which heme disrupts the EB were further
elucidated and shown to involve endothelial cytoskeleton
remodeling (50), paving the way for the study of these pathways
inSCD.Finally, our results alsodemonstrate that the effects ofheme
on endothelial cells are not restricted to serum free conditions.

Our study has limitations that need to be acknowledged. First,
although theECISmethodhas been validated as amethod to assess
the integrity of intercellular junctions by both empirical data (35,
36), as well as by its use in the description of several key features of
endothelial barrier function (57–61), it only evaluates the response
of endothelial cells to a discrete stimulus, compared to the much
more complex regulation of endothelial function in vivo. On the
other hand, this very characteristic represents an advantage to
answer focused research questions such as the one from our study.
Another limitation is the use ofHUVECs as opposed to other adult
organ-specific endothelial cell types, since phenotypic differences
have been reported between different endothelial cell types. It
should be noted however, that HUVECs have been a valuable
tool for studies of vascularphenotype for several decades, including
studies about central aspects of endothelial barrier biology during
inflammation (62, 63). In addition, in the first part of our study
using heme in NaOH solutions we demonstrated that HUVECs
respond to heme in a similar fashion compared to pulmonary and
microvascular endothelial cells in regard to EB function. We
should also mention that although our results demonstrate a yet
unknown association of serum hemopexin levels with heme-
induced in vitro EB disruption in SCD, this association does not
allow us to claim for a causal relationship between hemopexin
deficiency and EB disruption, which requires additional studies
investigating whether hemopexin can reverse these changes.
Another limitation of our study is related to the fact that
methods used to measure heme in most studies involving SCD
are not capable to separate total or cell free heme, fromprotein-free
heme (i.e., not bound to hemopexin, albumin or other proteins).
This fraction, referred in our study as FEH, is the one that is
expected to be toxic to cells and tissues. This methodological
limitation could explain why total heme levels were not
associated with EB disruption, whereas hemopexin levels, which
is consumed by the release of free heme, were. Studies using
recently described methods capable to measure protein-free
heme (64, 65) are warranted to address this issue. Another
limitation that deserves to be discussed is the relevance of adding
NaOH-solubilized heme to cell cultures, as a model of heme
release. In fact, important details about the kinetics of heme
release from damaged red blood cells in patients with hemolytic
disorders are yet to be clarified, and the very existence of FEH in
vivo has been discussed (27). Although the role of red blood cell
microparticles as mediators of heme transfer has been recently
demonstrated (66), one cannot exclude that other aspects of the
interaction of heme with blood components that are not included
in our model may be key to its pathological effects in vivo.
Nevertheless, we believe that our strategy of adding heme to
patient serum, and measuring EB function in real time can
overcome at least some of these limitations, potentially
Frontiers in Immunology | www.frontiersin.org 8172
representing a closer model to the pathological effects of heme in
vivo. Since all our experiments were performed with serum, we
should also mention the fact that some of the pro-inflammatory
effects of heme in cell models were only observed in serum free
conditions (1). Finally, the relatively low sample size of our study
should also be considered when interpreting our results.

In conclusion, we demonstrated that the previously described
transient disruption of EB by heme is also observed in the
presence of sera from SCD patients, corroborating the role of
FEH in the pathogenesis of this condition, through the
demonstration that its effects are not restricted to serum free
conditions. The fact that the effects of heme on EB are only
observed in serum from SCD and that this effect is associated
with hemopexin levels support the concept that heme could
directly contribute to EB disruption in SCD, thus warranting
additional studies to confirm this causal relationship. Together
our in vitro studies provide additional support to the concept
that heme may act as a danger-associated molecular pattern
(DAMP) in hemolytic conditions.
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SUPPLEMENTARY FIGURE 1 | Exploration of the effects of NaOH and
hydroxyurea (HU) on EB. In (A), different concentrations of NaOH, which was the
vehicle used to dilute heme, were used under the same experimental conditions.
Each line represents the mean ± SEM of the normalized resistance of HUVECs
stimulated with either NaOH or thrombin used as a positive control. Normalized
resistance was measured by ECIS at 4,000 Hz. As shown in the upper panel, NaOH
at different concentrations did not affect EB. In (B), data from SCD patients used in
Figure 3 were subdivided according to the use or not of hydroxyurea (HU). No
difference in ECIS readings after heme stimulation could be detected between these
two subgroups. Kruskall Wallis and Dunn’s posttest.
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Endothelial TLR4 Expression
Mediates Vaso-Occlusive Crisis
in Sickle Cell Disease
Joan D. Beckman†, Fuad Abdullah, Chunsheng Chen, Rachel Kirchner ,
Dormarie Rivera-Rodriguez , Zachary M. Kiser , Aithanh Nguyen, Ping Zhang,
Julia Nguyen, Robert P. Hebbel , John D. Belcher* and Gregory M. Vercellotti*

Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN,
United States

Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like
receptor 4 (TLR4) to activate NF-kB leading to the production of cytokines and adhesion
molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition
has been shown to modulate heme-induced microvascular stasis and lung injury. We
sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by
developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency
state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-
SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts
and serum chemistries as SS-Tlr4+/+ mice. However, SS-Tlr4-/- mice developed
significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4+/+ mice
in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/
reoxygenation (H/R). To define a potential mechanism for decreased microvascular
stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-kB and adhesion
molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4+/+

livers, SS-Tlr4-/- livers had lower adhesion molecule and cytokine mRNAs, NF-kB
phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin
and vonWillebrand factor immunostaining was reduced. Next, to establish if endothelial or
hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created
chimeric mice by transplanting SS-Tlr4-/- or SS-Tlr4+/+ bone marrow into AA-Tlr4-/- or AA-
Tlr4+/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased
when the recipient was AA-Tlr4-/-. These data demonstrate that endothelial, but not
hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in
SS mice.
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INTRODUCTION

Sickle cell disease (SCD), which is caused by a single point
mutation in the b-globin gene of hemoglobin, manifests with
chronic intra- and extravascular hemolysis, oxidative stress,
inflammation, and vaso-occlusive crisis (VOC). Recently, the
role of the innate immune system in perpetuating SCD
inflammation and vaso-occlusive physiology has been
recognized (1–9). Specifically, heme, which is released during
intravascular hemolysis, is able to serve as a damage-associated
molecular pattern (DAMP) to stimulate TLR4 signaling on blood
cells and the vasculature leading to vaso-occlusion and
pulmonary injury (8–11). Heme mediates pain via TLR4 in
SCD mice and blockade or knockout of TLR4 attenuates
hyperalgesia suggesting heme -induced microglial activation
via TLR4 in the central nervous system contributes to the
initiation and maintenance of sickle pain (12). Consequentially,
downstream of TLR4, activation of the pro-inflammatory
transcription factor NF-kB leads to the production of cytokines
and adhesion molecules that promote inflammation,
coagulation, and vaso-occlusion (8, 9). Additionally, work done
in drug-induced hemolysis models suggests that TLR4-mediated
P-selectin release increases complement activation to further
drive endothelial activation (13). Collectively, these studies
have raised speculation that TLR4 and complement-targeted
therapies may reduce severity of VOC in SCD.

Several critical questions regarding the consequences of TLR4
inhibition in SCD remain. Our prior work demonstrated that
knockout of TLR4 in the vessel wall was sufficient to ablate SCD
VOC physiology (8). However, those transplant studies of SS
bone marrow into TLR4 knockout mice could not examine the
effects of TLR4 knockout in hematopoietic cells on VOC. We
previously showed that monocytes isolated from SCD patients
can activate endothelial monolayers and others have shown that
heterocellular aggregates play an important role in vaso-
occlusion (14–16). Here we asked the question, does knockout
of TLR4 in circulating hematopoietic-derived cells, but not the
vessel wall, ablate microvascular stasis?

Therefore, we bred a global Tlr4-/- deficiency state into
Townes-AA mice expressing normal human adult hemoglobin
A and Townes-SS mice expressing sickle hemoglobin S. We
demonstrate that loss of TLR4 in SCD does not alter chronic
hemolysis, but does decrease response to an acute stimulus with
hemin, LPS or ischemia through loss of downstream NF-kB
signaling. Downstream of NF-kB, SS-Tlr4-/- mice exhibit
decreased pro-inflammatory and adhesive protein expression.
Importantly, using bone marrow chimeras, we demonstrated
that endothelial, but not hematopoietic, TLR4 signaling is critical
in mediating SCD VOC.
MATERIALS AND METHODS

Mice
All animal experiments were approved by the University of
Minnesota’s Institutional Animal Care and Use Committee.
These studies used male and female Townes-AA and -SS mice
Frontiers in Immunology | www.frontiersin.org 2176
on a 129/B6 mixed genetic background (17) and Tlr4-/- mice
(TLR4lps-del, Jackson Labs) with knockout of the entire Tlr4 gene,
expressing murine alpha and beta globins on a C57B6 genetic
background. We bred a global Tlr4-/- deficiency state into
Townes-AA mice expressing normal human adult hemoglobin
A and Townes-SS mice expressing sickle hemoglobin S. These
Tlr4-/- Townes mice were backcrossed 10 generations to
homogenize their genetic background with our Tlr4+/+ Townes
mouse colony. All animals were housed in specific pathogen-free
rooms to limit infections and kept on a 12 hour (h) light/dark
cycle at 21°C. All animals were monitored daily for health
problems, food and water levels, and cage conditions. All
animals were included in each endpoint analysis and there
were no unexpected adverse events that required modification
of the protocol. Mice were aged 8–24 weeks.

Bone Marrow Transplants
Chimeric mice were generated by harvesting bone marrow (BM)
from SS-Tlr4+/+ or SS-Tlr4-/- mice followed by transplant into
lethally irradiated AA-Tlr4+/+ or AA-Tlr4-/- mice. Recipients (8–10
weeks of age) were irradiated with 2 doses of 5 Gy (X-RAD 320
Biological Irradiator) 3 hours apart. During the 3-hour interval,
BM donors were sacrificed and BM was collected from both
femurs. Ten million BM cells were injected via tail vein into
each irradiated recipient. Drinking water containing 0.2%
neomycin sulfate (Sigma-Aldrich) was given to transplanted
mice for 3 weeks immediately after transplantation. Eight weeks
post-transplant, globin phenotype was confirmed by hemoglobin
isoelectric focusing and Tlr4 genotype was verified by PCR.
Chimeric mice were employed 16 to 24 weeks after transplant.

Blood Analysis
Blood was collected via cardiac puncture at the time of
euthanasia from mice into sodium EDTA or serum separator
tubes at time points indicated. Complete blood counts with
differential, hematocrit levels, and reticulocytes were measured
in EDTA blood by the University of Minnesota Veterinary
Diagnostic Laboratory.

Measurement of Vaso-Occlusion
(Microvascular Stasis)
Mice were anesthetized with a mixture of ketamine (106 mg/kg)
and xylazine (7.2 mg/kg) and implanted with dorsal skin-fold
chambers (Supplemental Figure 1). After implantation, mice
were placed on an intravital microscopy stage and 20–24 flowing
subcutaneous venules in the chamber window were selected and
mapped as previously described (18). After baseline selection of
flowing venules, mice were infused with a bolus infusion via tail
vein with the indicated doses of hemin (3.2 µmol/kg) or
lipopolysaccharide (LPS, 1 mg/kg; Escherichia coli, serotype
O111:B4; Sigma-Aldrich) or exposed to H/R which consisted
of 1-hour hypoxia (7%O2/93%N2) followed by 4-hours
normoxia. Each of the same venules selected and mapped at
baseline were visually re-examined for stasis (no flow) at 1, 2, 3,
and 4 hours after infusion or H/R. The static venules in each
mouse were counted and percent stasis at 1–4 h was calculated by
January 2021 | Volume 11 | Article 613278
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dividing the number of static venules by the total (static +
flowing) number of venules.

Western Blots
Microsomes and nuclear extracts were isolated from tissues of
mice as previously described (19). Immunoblots of cellular
subfractions (15–30 mg of protein) were immunostained with
primary antibodies to NF-ĸB phospho-p65 (Ser536, Cell
Signaling #3031), total p65 (Cell Signaling #3034), VCAM-1
(Abcam #174279), ICAM-1 (Abcam #ab124759), E-selectin
(BioVision #3631) and loading control GAPDH (Sigma-
Aldrich #G9545). Primary antibodies were detected with
appropriate secondary antibodies conjugated to alkaline
phosphatase and visualized with ECF substrate (GE
Healthcare) and a Typhoon FLA 9500 imager (GE Healthcare).

RNA Analysis
RNA was extracted using RNeasy kit (Qiagen), followed by
cDNA generation according to the manufacturer’s protocol
(Bio-Rad). Prime PCR RNA array was used for genes. Each
reaction contained 20 ng of cDNA, lyophilized primers,
SSoAdvanced SYBR Green QPCR master mix (BioRad). The
PCR conditions included activating the DNA polymerase at 95°C
for 10 min, followed by 40 cycles of three step PCR (95°C for 10 s,
60°C for 30 s). Melt curves for each primer set was run and
verified. The cycle threshold (Ct) values from samples of each
gene and the internal control (GAPDH) were obtained and the
relative quantification for each gene was calculated using the
DDCt method (20).

Immunohistology
Mice were infused with hemin (3.2 mmol/kg) 4 hours before
tissue collection. Lungs were collected and placed in optimal
cutting temperature (OCT) compound, snap-frozen in liquid
nitrogen and stored at -85°C prior to frozen sectioning in a
microtome-cryostat into 6 µm sections. Tissues were stained
with primary antibodies to P-selectin (R&D Systems #AF737)
and vonWillebrand factor (vWF, Cedarlane #CL20176A-R), and
with the nuclear stain DAPI (Sigma-Aldrich). Primary
antibodies in tissues were identified with the appropriate
fluorescent- labe led secondary ant ibodies ( Jackson
Immunoresearch). Slides were mounted using DPX mounting
medium (Electron Microscope Sciences #13514), visualized, and
images acquired using a FluoView FV1000 BX2 upright confocal
microscope (Olympus, Center Valley, PA) with UPlanSApo 20X/
0.80 and UPlanApo N 60X/1.42 objectives with zoom (Z) 2.
Images were processed with FluoView (Olympus) and Adobe
Photoshop software (San Jose, CA).

Statistics
Descriptive statistics are presented as mean ± standard error.
Normality assessments were conducted for groups. Analysis for
each experiment is included in legends, with multiple
comparisons analyzed using ANOVA with the Holm-Sidak
method or Kruskal-Wallis with the Dunn’s test for multiple
comparisons using GraphPad Prism (v 8).
Frontiers in Immunology | www.frontiersin.org 3177
RESULTS

Generating Townes-AA and –SS Tlr4
Knockout Mice
In SCD mice, inhibition of TLR4 signaling using the small
molecule inhibitor TAK-242 reduces microvascular stasis in
presence of hemin, LPS, and hypoxia/reoxygenation (H/R) (8,
9). Furthermore, TLR4 inhibition prevents hemin-mediated
lethality. Therefore, to determine if knockout of Tlr4 in mice
carrying human hemoglobin S (Townes-SS) would reduce
hemolysis and inflammation, we generated Townes-SS mice
with Tlr4-/- genotype. Tlr4-/- mice (TLR4lps-del, Jackson Labs)
with knockout of the entire Tlr4 gene, expressing murine alpha
and beta globins on a C57B6 genetic background were breed with
Townes-AA Tlr4+/+ mice expressing human alpha- and beta-
globins on a mixed 129/B6 genetic background. Male and female
heterozygous offspring were bred together and pups expressing
exclusively human alpha- and beta-globins and at least one
deleted Tlr4 gene were selected for backcrossing 9 generations
with Townes-AA Tlr4+/+ mice from our colony with AA mice
heterozygous for Tlr4 knockout selected for breeding with AA-
Tlr4+/+ mice at each new generation. After 9 backcrosses,
heterozygous AA-Tlr4+/- were bred with SS-Tlr4+/+ mice from
the colony for the 10th backcross. AS-Tlr4+/- offspring were breed
together and AA, AS and SS-Tlr4-/- offspring were selected for
breeding to expand the Townes-AA-, AS-, and SS-Tlr4-/- colony
and generate mice for experimentation (Supplemental
Figure 2).

Compared to SS-Tlr4+/+ mice, SS-Tlr4-/- mice had no
differences in white blood cell counts or in markers of
hemolysis (Table 1). Likewise, there was no difference in organ
function, as demonstrated by serum chemistries (Table 1).
Therefore, knockout of the Tlr4 gene in SS mice does not
appear to reduce chronic hemolysis.

Tlr4 Knockout Reduced Microvascular
Stasis in Sickle Cell Mice
We have previously demonstrated that compared to AA mice, SS
mice exhibit a chronic baseline hemolysis that leads to increased
occlusion of skin venules (8). However, SS, but not AA mice, also
exhibit robust microvascular vaso-occlusion when stimulated with
excess hemin, LPS, or H/R (8). Therefore, to determine if TLR4
knockout would protect SS mice from vaso-occlusion, we used
dorsal skin fold chambers to assess microvascular stasis at 1h, 2h,
3h, and 4h post-stimulation with hemin, LPS or H/R in SS-Tlr4+/+

and SS-Tlr4-/- mice (Supplemental Figure 1). Compared to hemin-
stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-Tlr4-/- mice had a
significant reduction in % venules occluded at 1–4 h post-infusion
(Tlr4+/+ % occluded range 17.5%-28.7% versus Tlr4-/- % occluded
range 1.8%-3.9%, p < 0.005, Figure 1A). With LPS stimulation,
compared the SS-Tlr4+/+ mice, SS-Tlr4-/- mice also exhibited
decreased % venules occluded at 1–4 h post-infusion (Tlr4+/+ %
occluded range 17.7–37.1% vs. Tlr4-/- % occluded range 3.3–11.3%,
p < 0.02, Figure 1B). After H/R, compared to SS-Tlr4+/+, SS-Tlr4-/-

exhibited decreased occlusion at 1 h (Tlr4+/+ % occluded 20.1 vs.
Tlr4-/- % occluded 3.2%, p < 0.01, Figure 1C) and 2 h time points
January 2021 | Volume 11 | Article 613278
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(Tlr4+/+ % occluded 13.9 vs. Tlr4-/- % occluded 3.2%, p < 0.01,
Figure 1C). Collectively, these data suggest that loss of TLR4 in SS
mice does not reduce baseline hemolysis, but does eliminate
microvascular stasis after challenge with hemin, LPS, or H/R.

Loss of TLR4 Reduces NF-ĸB Signaling
The innate immune system activates signaling cascades within
cells in order to promote inflammation. The TLR4 and NADPH
oxidase (NOX)-dependent signaling cascades converge to
increase pro-inflammatory NF-kB signaling (21). When
stimulated with hemin, Tlr4-/- mouse pulmonary vein
endothelial cells demonstrate reduced NF-kB activation (8).
Likewise, treatment of human umbilical vein endothelial cells
with the TLR4 inhibitor TAK-242 also reduces NF-kB signaling.
Frontiers in Immunology | www.frontiersin.org 4178
To evaluate if knockout of TLR4 reduces NF-kB signaling in SS
mice, we performed western blots on nuclear extracts from livers
isolated from hemin-stimulated SS-Tlr4+/+ and SS-Tlr4-/- mice.
Compared to hemin-stimulated SS-Tlr4+/+, hemin-stimulated
SS-Tlr4-/- mice lacked phosphorylation of NF-kB p65 (Figure
2). This suggests that loss of TLR4 reduces inflammation through
abrogation of NF-kB signaling.

SS-Tlr4-/- Mice Challenged With Hemin
Exhibit Reduced Pro-Inflammatory
Cytokine and Adhesion Molecule mRNA
Vaso-occlusion requires both inflammation and adhesion to
occur, with NF-kB signaling serving as a crucial transcription
signaling for numerous pro-inflammatory and adhesive genes.
A B C

FIGURE 1 | Townes SS-Tlr4-/- mice are protected from developing microvascular stasis under inflammatory stimuli. (A) Microvascular stasis in Townes SS-Tlr4+/+

(black) and SS-Tlr4-/- (red) mice after stimulation with 3.2 µmol/kg hemin. (B) Microvascular stasis after stimulation with LPS (1 mg/kg). (C) Microvascular stasis after
1 h hypoxia at 7%. All treatment groups with n = 4 mice/group. P < 0.05 for all time point except where n.d. is present to signify no difference as done by multiple
t-tests via Holm-Sidak method.
TABLE 1 | Complete blood count and serum chemistries from AA-Tlr4+/+, AA-Tlr4-/-, SS-Tlr4+/+ and SS-Tlr4-/- mice.

Complete Blood Count AA-Tlr4+/+ (n = 4–5, ± std dev) AA-Tlr4-/- (n = 5–6, ± std dev) SS-Tlr4+/+ (n = 5–6, ± std dev) SS-Tlr4-/- (n = 4, ± std dev)

White blood cells 1.68 ± 0.68 2.04 ± 1.20 36.62 ± 19.0 33.24 ± 9.66
(WBC), 103/µl
Neutrophils (%)
Lymphocytes (%)
Monocytes (%)
Eosinophils (%)
Basophils (%)

22.8
72.8
1.3
2.5
0.8

19.4
76.6
1.8
1.8
0.4

9.8
87.3
2.5
0.0
0.3

14.5
80.8
3.3
0.8
0.8

Red blood cells
(RBC), 106/µL

10.8 ± 1.1 11.3 ± 1.8 5.1 ± 1.1 4.4 ± 1.1

Hemoglobin (Hgb). g/dL 9.5 ± 0.9 9.8 ± 1.5 4.8 ± 1.0 3.9 ± 1.1
Hematocrit (Hct), % 32.1 ± 5.6 35.2 ± 6.1 20.6 ± 4.8 20.3 ± 3.0
Platelets, 103/µl 700 ± 112 1012 ± 74 480.1 ± 65.3 445.5 ± 63.3
Reticulocytes (%) 6.6 ± 1.4 11.8 ± 7.9 40.2 ± 29.1 44.9 ± 26.9
Serum Chemistries AA-Tlr4+/+ AA-Tlr4-/- SS-Tlr4+/+ SS-Tlr4-/-

AST 169 ± 43.5 132.7 ± 45.8 653.4 ± 422 416.5 ± 299
ALT 73.2 ± 22.6 57.2 ± 25.7 515.8 ± 478 617.3 ± 720
Total bilirubin 0.1 ± 0.05 0.2 ± 0.11 1.5 ± 0.80 1.2 ± 0.25
Albumin 2.5 ± 0.14 2.5 ± 0.23 2.9 ± 0.13 2.6 ± 0.23
Blood urea nitrogen 26.4 ± 4.3 22.8 ± 4.4 22.0 ± 2.9 25.0 ± 3.2
Creatinine 0.2 ± 0.08 0.1 ± 0.09 0.1 ± 0.1 0.2 ± 0.08
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A B
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E F
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FIGURE 3 | Hemin-stimulated Townes SS-Tlr4-/- mice do not upregulate pro-inflammatory cytokine and adhesive genes. Liver mRNA was extracted and underwent
qRT-PCR analysis. (A) Macrophage inflammatory protein 1-a (MIP-1a, Ccl3). (B) Macrophage inflammatory 2-a (MIP-2a, Cxcl2) mRNA. (C) IL-6 (Il6) mRNA.
(D) Vcam1 mRNA (E) Icam1 mRNA. (F) E-selectin (Sele) mRNA. Values are mean ± standard error of mean (SEM), with p-values determined by one-way analysis of
variance with Holm-Sidak’s multiple comparison testing.
FIGURE 2 | Hemin-stimulated Townes SS-Tlr4-/- mice do not activate NF-kb signaling. Western blot of liver nuclear extracts isolated from hemin-stimulated Townes
SS-Tlr4+/+ and SS-Tlr4-/- mice probed for NF-kB phopsho-p65 and total p65. (n = 4 per group).
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Therefore, we sought to evaluate the downstream consequences of
reduced NF-kB activation in hemin-stimulated SS-Tlr4-/- mice by
assessing the livers of SS-Tlr4+/+ and SS-Tlr4-/- mice for changes in
pro-inflammatory and adhesion gene expression. First, compared
to untreated SS-Tlr4+/+ mice, hemin-treated SS-Tlr4+/+ mice have
significant upregulation of macrophage inflammatory protein 1-a
(MIP-1a, Ccl3) and macrophage inflammatory 2-a (MIP-2a,
Cxcl2) mRNA by 3.5-fold (Ccl3, P < 0.004, n = 4–5 mice per
group, Figure 3A) and 16-fold respectively (Cxcl2, P < 0.0004, n =
4–5 mice per group, Figure 3B). Compared to untreated SS-Tlr4-/-

mice, hemin-stimulated SS-Tlr4-/- mice do not upregulate either
Ccl3mRNA (Figure 3A) or Cxcl2mRNA (Figure 3B). Moreover,
for both chemokines, comparison between hemin-treated SS-
Tlr4+/+ mice to hemin-treated SS-Tlr4-/- mice demonstrated
significant loss of Ccl3 and Cxcl2 mRNA upregulation in
absence of TLR4. Next, we assessed IL-6 (Il6) mRNA
expression. Similar to Ccl3 and Cxcl2, compared to untreated
SS-Tlr4+/+ mice, hemin-treated SS-Tlr4+/+ mice had an 11-fold
increase in Il6 mRNA (P < 0.03, n = 4–6 mice per group, Figure
3C). In untreated and hemin-stimulated SS-Tlr4-/-, there was no
difference in Il6 mRNA (n = 4–6 mice per group, Figure 3C).
Additionally, comparison between hemin-treated SS-Tlr4+/+ mice
to hemin-treated SS-Tlr4-/- mice demonstrated a reduced Il6
mRNA upregulation (p=0.09) in absence of TLR4. This was also
seen in the kidneys (Supplemental Figure 3A). Collectively, these
data suggest that loss of TLR4 in SCD leads to decreased
inflammation-mediated cytokine gene expression.

Next, to determine if loss of TLR4 reduces hemin-mediated
upregulation of endothelial adhesion molecules, we assessed
mRNA expression of Vcam1, Icam1, and E-selectin (Sele).
Compared to untreated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4+/+ mice had a significant 1.8-fold upregulation of Vcam1
mRNA (P < 0.05, Figure 3D) and 1.6-fold upregulation of Icam1
mRNA (P < 0.05, Figure 3E). In SS-Tlr4-/- mice, compared to
untreated, hemin-stimulated SS-Tlr4-/- mice had no difference in
Vcam1 mRNA (Figure 3D) or Icam1 mRNA (Figure 3E).
Similar to pro-inflammatory markers, comparison between
hemin-treated SS-Tlr4+/+ mice and SS-Tlr4 - / - mice
demonstrated significant loss of Vcam1 mRNA and Icam1
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mRNA upregulation in absence of TLR4. Last, for Sele,
compared to untreated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4+/+ mice upregulated Sele mRNA 9-fold (P < 0.05, Figure
3F), whereas compared to untreated SS-Tlr4-/-mice, hemin-
stimulated SS-Tlr4-/-mice did not upregulate Sele mRNA
(Figure 3F). Similar pattern of mRNA expression changes were
also observed for these genes in the kidney (Supplemental Figures
3B–D). Collectively, these data suggest that in SS mice, loss of TLR4
reduces upregulation of both pro-inflammatory and endothelial
adhesion genes.

Hemin-Stimulated SS-Tlr4-/- Mice Do Not
Upregulate Endothelial Adhesion Proteins
In SCD, upregulation of endothelial adhesion proteins
contributes to vaso-occlusion. Therefore, to evaluate if
endothelial adhesion molecule protein expression is reduced in
SS mice by TLR4 knockout, we performed western blots on liver
microsomes isolated from SS-Tlr4+/+ and SS-Tlr4-/- mice after
hemin stimulation. Consistent with mRNA data, compared to
hemin-stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-Tlr4-/-

mice do not increase VCAM-1 (Figure 4A). Likewise, compared
to hemin-stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4-/- mice do not increase ICAM-1 or E-selectin (Figures
4B–D). Together with mRNA data, these data suggest that loss
of TLR4 in SS mice reduces heme-mediated endothelial cell
activation leading to reduced adhesion molecule expression and
decreased inflammation.

Hemin-Stimulated SS-Tlr4-/- Mice Exhibit
Reduced P-Selectin and VWF Release
From Endothelium
TLR4 blockade reduces heme-mediated release of P-selectin and
VWF from endothelial cell Weibel Palade bodies (8). Therefore,
we performed immunofluorescence of SS-Tlr4-/- and SS-Tlr4+/+

lungs in mice treated with and without hemin to evaluate heme-
mediated P-selectin and VWF release. Compared to SS-Tlr4+/+

mice, SS-Tlr4-/- treated with hemin exhibit decreased P-selectin
and VWF release (Figure 5). Collectively, these data confirm that
loss of TLR4 signaling in SS mice reduces pro-adhesive and
A

B

D

C

FIGURE 4 | Hemin-stimulated Townes SS-Tlr4-/- mice lose upregulation of adhesion proteins. Western blot of liver microsomes isolated from hemin-stimulated
Townes SS-Tlr4+/+ and SS-Tlr4-/- mice probed for (A) VCAM-1, (B) ICAM-1, (C) E-selectin, and (D) GAPDH loading control. (n = 4 per group).
January 2021 | Volume 11 | Article 613278

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Beckman et al. Endothelial TLR4 in SCD
thrombotic P-selectin and VWF secretion from endothelial
Weibel-Palade bodies.

Endothelial, Not Hematopoietic, TLR4
Drives SS Vaso-Occlusion
Several groups have demonstrated that knockdown of TLR4 in
endothelial cells reduces monocyte and neutrophil adhesion (22,
23). Further, prior work demonstrated that knockout of TLR4 in
the vessel wall was sufficient to ablate SCD VOC physiology (1).
However, those studies transplanted SS BM into TLR4 knockout
mice and therefore could not examine the effects of TLR4
knockout in circulating hematopoietic cells on VOC. This
is an important question because monocytes isolated from
SCD patients can activate endothelial monolayers (14)
and heterocellular aggregates play an important role in
vaso-occlusion (15, 16). Here we addressed the question does
knockout of TLR4 in circulating hematopoietic-derived cells
ablate microvascular stasis? Therefore, we performed BM
chimera studies using the SS-Tlr4-/- and SS-Tlr4+/+ mice into
AA-Tlr4-/- or AA Tlr4+/+ recipients followed by assessment of
hemin-stimulated vaso-occlusion in dorsal skin fold chambers
(Figures 6A, C). First, to assess the contribution of
hematopoietic expression of TLR4, we compared chimeras
generated from SS-Tlr4-/- mice transplanted into AA-Tlr4+/+ or
AA-Tlr4-/- recipients (Figure 6A). Hemin-stimulated SS or SS-
Tlr4+/+ mice exhibit average % occlusion of ~30% (historic and
Figure 1A); loss of TLR4 in hematopoietic cells (SS-Tlr4-/- mice
into AA-Tlr4+/+ recipients) lead to no change in % venules
occluded (range % occluded 21.0–31.6%, Figure 6B).
Comparatively, and consistent with SS-Tlr4-/- mice, transplant
of SS-Tlr4-/- marrow into AA-Tlr4-/- recipients significantly
reduced the % venules occluded (range 3.1–11.0% occluded
vessels, p < 0.001, Figure 6B). Overall, these data suggest that
Frontiers in Immunology | www.frontiersin.org 7181
hematopoietic TLR4 signaling is not essential in triggering vaso-
occlusive response. Next, to assess effects of endothelial TLR4
knockout, we created chimeras transplanting SS-Tlr4+/+

hematopoietic cells into AA-Tlr4+/+ and AA-Tlr4-/- recipients
(Figure 6C). Similar to SS and SS-Tlr4+/+ mice, transplant of SS-
Tlr4+/+ hematopoietic cells into AA-Tlr4+/+ lead to vaso-
occlusion (range 17.2–31.3% occluded vessels Figure 6D).
Strikingly, transplant of SS-Tlr4+/+ marrow into AA-Tlr4-/-

mice abrogated vessel occlusion (range 1.6–7.2% occluded
vessels, p < 0.001, Figure 6D). Collectively, these data
demonstrate that endothelial, but not hematopoietic, TLR4
expression is necessary to initiate vaso-occlusive physiology in
SS mice.
DISCUSSION

Intravascular hemolysis of sickle red blood cells release
hemoglobin S (HbS) into the plasma which is promptly
oxidized to methemoglobin, which readily releases free heme.
Heme is a DAMP that can activate the innate immune pattern
recognition receptor complex of CD14, MD-2 and TLR4 (8–10);
this process promotes a pro-inflammatory and pro-adhesive
phenotype, which ultimately leads to VOC (1, 8–10). Herein,
we demonstrate that loss of TLR4 signaling in SCD leads to
decreased VOC stimulated by numerous agonists, including
heme, LPS and H/R. Importantly, we also demonstrate that
endothelial, but not hematopoietic, TLR4 expression is
necessary to initiate vaso-occlusion in SS mice. Collectively,
these data illustrate the indispensable role of the endothelium
in mediating the crosstalk between hemolysis and the innate
immune system in SCD VOC physiology.
FIGURE 5 | Hemin-stimulated Townes SS-Tlr4-/- mice have decreased pulmonary expression of VWF and P-selectin. Immunostaining of surface P-selectin (green)
and von Willebrand factor (red) on blood vessels in the lungs of hemin-infused Townes-SS Tlr4+/+ and Tlr4-/- mice (3.2 µmol/kg and lungs removed at 1h). Scale bars
(white) 30 µm. Representative images are presented.
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In SCD, chronic hemolysis leads to organ dysfunction due to
recurrent cycles of I/R physiology. However, VOC occurs when
pro-inflammatory stimuli are present, such as heme or LPS and
the compensatory mechanisms responsible for rebalancing the
system are overcome (24). Therefore, when approaching SCD
pathogenesis, acute verses chronic stimulation of the innate
immune system should be considered. Our work demonstrates
that compared to Townes SS-Tlr4+/+ mice, Townes SS-Tlr4-/-

mice did not have changes in baseline hemolytic markers.
However, importantly, our studies demonstrate that in
response to an acute increase in heme, such as would be
expected during an acute VOC, loss of TLR4 signaling results
in decreased pro-inflammatory and adhesive gene expression
and ultimately decreased stasis. Therefore, we speculate that
during VOC, strategies to target TLR4 may reduce incidence
and perhaps duration of VOC.

In SCD, the prominent end-organ damage is associated with
the vasculature, including pulmonary hypertension, strokes, and
priapism and retinal disease. However, renal failure, liver damage
Frontiers in Immunology | www.frontiersin.org 8182
and hyposplenism are also manifestations of chronic, progressive
I/R damage (25). Therefore, we performed analysis of
inflammatory markers and adhesion markers in the liver, lungs
and kidneys. In the liver, resident hepatic macrophages, also
known as Kupffer cells, and hepatic stellate cells are key
mediators of hepatic fibrogenesis. Hepatic stellate cells are the
main target of TLR4 ligands in the liver (26). Once stimulated,
hepatic stellate cells stimulate chemokine secretion, which drives
Kupffer cell chemotaxis and pro-fibrotic TGF-b production.
Overall, it has been found that loss of hepatic stellate cell
TLR4-MyD88 signaling reduces development of hepatic
fibrosis. Of note, during chimera generation, hepatic stellate
cells are not replaced by BM-derived cells, and without
clodraonate-mediated depletion, only a proportion of Kupffer
cells become replaced by BM-derived cells (26, 27). Therefore, in
our chimera studies, the AA-Tlr4-/- recipients lack hepatic stellate
cells responsive to TLR4 ligands. Of note, when comparing SS-
Tlr4-/- mice to hemin-treated SS-Tlr4-/- mice, there was a trend
toward decreased pro-fibrotic TGF-b expression in both liver
A B

D
C

FIGURE 6 | Loss of endothelial, but not hematopoietic, TLR4 expression prevents microvascular stasis. (A) Schematic for bone marrow chimera crosses using SS-
Tlr4-/- donor marrow into AA-Tlr4+/+ or AA-Tlr4-/- recipients. (B) Hemin-stimulated microvascular stasis in chimeric AA-Tlr4+/+ (black) and AA-Tlr4-/- (red) recipients
that received SS-Tlr4-/- marrow. (C) schematic for bone marrow chimera crosses using SS-Tlr4+/+ donor marrow into AA-Tlr4+/+ or AA-Tlr4-/- recipients. (D) Hemin-
stimulated microvascular stasis in chimeric AA-Tlr4+/+ (black) and AA-Tlr4-/- (red) that received SS-Tlr4+/+ marrow. All treatment groups with n = 4 mice/group.
P < 0.05 for all time points analyzed by multiple t-tests via Holm-Sidak method.
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and kidney samples (Supplemental Figure 4). Therefore one
may speculate that long-term SS-Tlr4-/- mice may be protected
from fibrosis.

In other I/R models, such as cardiac transplant, loss of
endothelial TLR4/Trif-mediated signaling reduces neutrophil
adhesion and recruitment (23). Our data is consistent with
these models, as the livers of hemin-treated Townes SS-Tlr4-/-

mice demonstrate loss of Ccl3 and Cxcl2 gene upregulation, two
chemokines important for the initiation of selectin-mediated
rolling and leukocyte recruitment. Of note, in our kidney mRNA
assessment, we did not see a significant change in Ccl3 or Cxcl2
mRNA changes; this likely reflects that kidneys lack cells similar
to stellate cells and that renal disease in SCD is not characterized
by inflammatory cell infiltrates. Last, our data demonstrates loss
of heme-mediated release of Weibel-Palade bodies from the lung
endothelium in SS Tlr4-/- mice. This is important as surface
expression of von Willebrand factor and P-selectin are involved
in platelet binding, leukocyte recruitment, and stasis (8, 28–31).
Collectively, these data suggest that endothelial TLR4 response to
heme leads to increased leukocyte recruitment, rolling, and
adhesion to amplify I/R physiology.

With the advent of gene-therapy on the horizon for SCD, the
importance of hematopoietic verses non-hematopoietic TLR4
signaling is a crucial distinction as TLR4 expression on
hematopoietic cells is essential for bacterial clearance. As
current transplant paradigms incorporate myelo-ablation,
which increases risk of infections, strategies that reduce VOC
but maintain effective pathogen clearance in SCD are desirable.
Therefore, within the context of SCD, targeting of heme-
mediated vascular TLR4 signaling, but not LPS-mediated TLR4
signaling, may be a strategy to prevent or decrease I/R injury
while maintaining immune function.

One limitation of this work is we did not quantitate leukocyte
recruitment during VOC physiology; however, we have
previously demonstrated reduced leukocyte rolling in Tlr4-/-

mice transplanted with SS BM (8). Second, our studies have
not evaluated SS-Tlr4-/- mice for reductions in acute pain but
recent studies by Lei et al. used BERK- SS-Tlr4-/- mice to
demonstrate a causal role of free heme in the genesis of acute
and chronic sickle pain (12).

In conclusion, endothelial TLR4 signaling triggered by heme is
critical for SCD VOC. We demonstrate the knockout of vascular,
not hematopoietic, TLR4 signaling reduces heme-mediated
inflammation and VOC. Overall, these data suggest that targeted
inhibition of heme-mediated vascular endothelial TLR4 signaling
may be a potential strategy to break the inflammatory cycle of I/R
that is initiated by HbS-driven hemolysis.
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Hemolysis is a pathological feature of several diseases of diverse etiology such as
hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the
release of large quantities of hemoglobin into the blood circulation and the subsequent
generation of harmful metabolites like labile heme. Protective mechanisms like
haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1
enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules.
The capacity of these protective systems is exceeded in hemolytic diseases, resulting in
high residual levels of hemolysis products in the circulation, which pose a great oxidative
and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia
which impacts the phenotypic variability and disease severity. Not only is circulating heme
a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular
pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle
complications such as vaso-occlusion and acute lung injury. Exposure to extracellular
heme in SCD can also augment the expression of placental growth factor (PlGF) and
interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and
pulmonary hypertension, and potentially the development of renal and cardiac
dysfunction. This review focuses on heme-induced mechanisms that are implicated in
disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and
IL-6 related mechanisms and their role in SCD disease progression.
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INTRODUCTION

Sickle Cell Disease (SCD) is an inherited hematological disorders,
with a multi-organ complication affecting millions of people
worldwide, especially in sub-Saharan Africa (1). In the United
States, there are about 100,000 people with SCD. There are
variability and often concurrent complications related to the
disease, which may differ in frequency and severity. Accumulating
evidence suggests that intravascular hemolysis and hemolysis
byproducts including hemoglobin and heme instigate a series of
events leading to vascular damage. While hemolysis is a prominent
feature of SCD, it is certainly not unique to this disease. Red cell
destruction may occur as a result of a hereditary hemolytic disorder,
an infection, a medication, cancer, an autoimmune disorder, a
cardiomyopathy, a hemorrhagic stroke, trauma or even a blood
transfusion, to mention a few (2). The current review focuses on
the heme-induced mechanisms that are implicated in disease
pathways, mainly in SCD and downstream effects of non-bound
(free) heme as a result of intravascular hemolysis caused by sickle cell
anemia and other hemolytic disorders (Figure 1).

Heme as a Signaling Molecule in
Normal Physiology
Heme synthesis, transport and turnover occurs under normal
physiological conditions, and it exerts a physiological signal that
helps to control these pathways. For example, heme feeds back to
the first committed step in porphyrin synthesis, a-levulinic acid
synthase. Heme regulates the Ras-Mitogen Activated Protein
Kinase (MAPK) pathway, and it regulates the BACH1
transcriptional repressor, impacting expression of HMOX-1
and b-globin. Heme-regulated inhibitor (HRI) is a eukaryotic
initiation factor 2a kinase that coordinates protein synthesis
with heme availability in reticulocytes (3). Heme is a crucial
prosthetic group for activity of many hemoproteins, include
oxygen transport, electron transport, oxygen reduction, and
others (4). Heme modulates macrophage differentiation of
monocytes to tissue-resident macrophages and stimulates
macrophage inflammatory response (5). In sickle cell disease,
Frontiers in Immunology | www.frontiersin.org 2186
heme from red cells is turned over via both intravascular and
extravascular hemolysis pathways that leads to extensive
pathology described in the remainder of this review.
OXIDATIVE STRESS AND HEMOLYSIS
IN SICKLE CELL DISEASE

Reactive Oxygen Species Production
in SCD Contributes to Hemolysis
Oxidative stress occurs due to dysregulation between production
of reactive oxygen species (ROS) and antioxidants. ROS are vital
for cell signaling and homeostasis and are produced as a natural
by-product of the normal metabolism of oxygen or exogenously
by ionizing radiation and xenobiotic compounds (6–8).
Oxidative stress contributes to pathophysiological pathways
that underlie inflammation in many hemolytic disorders
including SCD (8), b-thalassemia (9, 10), paroxysmal
nocturnal hemoglobinuria (11, 12), hereditary spherocytosis
(13), and glucose-6-phosphate dehydrogenase deficiency (14–
16). RBCs are constantly subjected to oxidative stress due to their
role as an oxygen transporter and continuous exposure to both
endogenous and exogenous sources of ROS that can damage the
RBC and alter blood rheology in SCD patients (17, 18). ROS is
generated in SCD through several pathways. Sickle hemoglobin
(HbS) produces ROS such as superoxide anion (O2-), hydrogen
peroxide (H2O2), peroxynitrite (OONO-) and hydroxyl radical
(OH.) following auto-oxidation (19). Auto-oxidation is a normal
physiological process that generates methemoglobin (metHb, Hb
oxidized to Fe3+ state with no ability to bind O2) and O

−
2 in about

3% of the total Hb every day (19). A small rate of auto-oxidation
can produce substantial levels of ROS due to the high
concentration of oxygenated Hb (about 5 mM), which can
cause enormous damage to the RBC itself, because RBCs make
up 40% of the blood volume (20). Moreover, O2- is
spontaneously converted to H2O2 by superoxide dismutase,
thereby increasing ROS in the system (19). Excessive amounts
of reactive oxygen metabolites is produced due to the unstable
FIGURE 1 | Graphical overview of sickle cell hemolysis-associated topics addressed in the current review manuscript.
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nature of HbS resulting in conformational change in the Hb in
low O2 environment and the continuous auto-oxidation of iron
in heme released from Hb (6–8). This heme can oxidize membrane
lipids and proteins (21), as evidenced by elevated levels of products
of lipid peroxidation including malondialdehyde (MDA) in the
plasma of SCD patients (22). Other Hb oxidation products such as
ferryl Hb which is also formed in RBCs under conditions of
oxidative stress also occurs in HbS (23–25), causing actin
remodeling, thereby compromising membrane integrity and
transport (26, 27).

Mitochondrial Dysfunction
The major source of intracellular ROS is the mitochondria in
most cells (28) but mature red blood cells (RBCs) from healthy
individuals extrude their mitochondria and other organelles
during the terminal process of erythropoiesis (29–32). In
contrast, a higher percentage of mature RBCs from SCD
patients and mice retain their mitochondria leading to
excessive ROS accumulation and oxidative stress (25, 33, 34).
It has been shown that treatment with products of hemolysis
including ferric Hb, ferryl Hb or heme causes bioenergetics
changes, abnormal membrane permeability and ROS-induced
lipid peroxidation in endothelial and alveolar cells mitochondria
(35, 36), which may contribute to inflammatory process and lung
injury (37, 38). Additionally, platelets from SCD patients have
abnormal mitochondrial activity resulting in oxidant generation
and increased activation during vaso-occlusive crisis (VOC) (39).
Exposure to cell-free hemoglobin exacerbates this aberrant
platelet mitochondrial activity and correlates with markers of
hemolysis, NO scavenging and severity of pulmonary arterial
hypertension (40).

Microparticles
Another source of oxidative stress in SCD is erythrocyte-derived
submicron membrane vesicles called microparticles (eMPs) (41–
44). Plasma eMPs are elevated in sickle cell mice (25), in SCD
patients at steady state (41, 44) and during vaso occlusive crisis
(45, 46). These eMPs are generated during reoxygenation of
sickled erythrocyte (42, 43) or during hemolysis (41, 47).
Additionally, thrombospondin-1 (TSP1) may trigger shedding
of phosphatidylserine positive eMPs and injection of these eMPs
into SCD mice caused vaso occlusion in the kidney (48). These
hemoglobin-laden eMPs can transfer heme to endothelial cells,
adhere to vascular endothelium and scavenge NO thereby
mediating oxidative stress (49–51). Staining of human renal
biopsies has been shown to contain hemoglobin-laden eMPs
adherent to the capillary endothelium in kidney tissue samples
from hyperalbuminuric SCD patients, suggesting that eMPs may
contribute to renal injury in SCD (51). Finally, other blood cells
such as neutrophils and macrophages also release ROS into the
plasma which are neutralized by anti-oxidants such as
superoxide dismutase before they can be taken up by RBCs (52).

Nicotinamide Adenine Dinucleotide
Phosphate Oxidases
Vascular smooth muscle and phagocytic cells express
nicotinamide adenine dinucleotide phosphate (NADPH)
Frontiers in Immunology | www.frontiersin.org 3187
oxidases, which can generate endogenous ROS (53). NADPH
oxidase activity is mediated by activation of the small Ras-like
GTPase Rac via protein kinase C (PKC) stimulation (53). Some
plasma factors such as transforming growth factor b1 (TGFb1)
and endothelin-1 (ET-1) have also been shown to stimulate
NADPH oxidase activity in neutrophils, monocytes and
endothelial cells and many of these factors are present at
higher levels in the plasma of SCD patients as a result of
persistent inflammatory state associated with SCD (54). RBCs
from SCD patients also contain NADPH oxidases, which can
generate endogenous ROS, thereby contributing to RBC rigidity
and fragility (55).

Oxidant–Antioxidant Balance
Accumulation of oxidative injury to the erythrocyte distorts
membrane integrity, alters blood flow rheology, membrane
transport abnormalities, exposure of phosphatidylserine, and
cell death (56–58). Despite the numerous pathways by which
ROS is generated in SCD, oxidative stress in patients appears to
be compensated at steady state, and only becomes deleterious
when the balance between ROS production and antioxidants is
perturbed due to excessive ROS generation, low antioxidant
levels or during crisis (59). Likewise, ROS production becomes
markedly amplified in low antioxidant microenvironments, as
found in SCD, resulting in damage of macromolecules including
lipids (60, 61), DNA (62, 63), and proteins (64, 65).

However, studies of antioxidant levels in SCD patients have
yielded variable results, with several studies reporting low (66–
69) and others reporting high levels (70, 71) of activity of
antioxidant enzymes including glutathione peroxidase (66, 67),
superoxide dismutase (67, 70, 72), and catalase (68, 72). These
differences may be due to variations in level of disease severity
including hemolysis, lipid peroxidation, VOC, acute splenic
sequestration and pulmonary hypertension reported in these
patients (73–78). Irrespective of the levels detected, the total
antioxidant capacity in SCD patients is insufficient to neutralize
excess ROS, resulting in oxidative stress (79). Other non-
enzymatic antioxidants such as vitamin C and E (80, 81), zinc
(76), and selenium (69, 77, 80) are also decreased in
SCD patients.

Several approaches to mitigate the harmful effects of oxidative
stress in SCD have been proposed such as use of antioxidants
(82), neutralization of products of hemolysis with haptoglobin
(Hp) and hemopexin (Hpx) (83) and moderate strength and
endurance exercise therapy (84). Recent studies showed that
increase in physical activity improves blood rheology, increases
NO bioavailability and reduction in oxidative stress and
hemolysis in mice (85–87) and SCD patients (88).

Intravascular Hemolysis, Free Hemoglobin,
and NO Deficiency
Intravascular and extravascular hemolysis, due in large part to
recurrent sickling and unsickling and oxidative stress discussed
above, causes premature destruction of RBCs, and contributes to
anemia in SCD (56, 89). Rapid production of RBCs ensues to
compensate for anemia, resulting in an increased proportion of
January 2021 | Volume 11 | Article 561917
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reticulocytes and younger RBCsin the circulation. Younger RBCs
have a higher content of arginase, and with lysis of these younger
cells, arginase is released into the plasma during hemolysis (90).
This ectopic plasma arginase consumes plasma L-arginine
(substrate needed for NO production), and together with
consumption of endothelial NO by cell-free plasma Hb
contributes to decreased NO bioavailability (91–93). Although
consequences of hemolysis in SCD are multifactorial, induction of
NO deficiency and oxidative stress by acute and chronic release
of products of hemolysis into circulation are major sequelae of
hemolysis (94). Depletion of NO promotes a chronic vasculopathy
endophenotype that predisposes to pre-capillary pulmonary
hypertension, leg ulceration, cerebrovascular arteriopathy, chronic
kidney disease and priapism. Details of nitric oxide deficiency and
pulmonaryhypertensionarebeyondthe scopeof this reviewandhave
been reviewed in detail elsewhere (94–96).

Compensatory Mechanisms
Several distinct and overlapping mechanisms have evolved to
mitigate the cytotoxic effect of products of hemolysis. Hb dimers
are avidly bound by the serum glycoprotein haptoglobin (Hp),
in the plasma to form Hb-Hp complex, which protects against
oxidative damage (97–100). The Hb-Hp complex is recognized
and internalized via its receptor, CD163, and subsequently
cleared by the phagocytic cells in the reticuloendothelial system
(97–99). Continuous formation of Hb-Hp complexes in diseases
with severe intravascular hemolysis including SCD and
paroxysmal nocturnal hemoglobinuria results in depletion of
Hp to undetectable levels, leading to some accumulation in
plasma of cell-free Hb (101, 102).

Heme Scavenging Proteins
Cell-free Hb that becomes oxidized or denatured prior to
clearance is prone to release free heme. Plasma free heme
becomes elevated in SCD patients (103, 104). About 80% of
total heme initially binds to plasma lipoproteins including low-
density lipoproteins (LDLs) (105, 106) and high-density
lipoproteins (HDLs) (107, 108), before being transferred to
albumin and Hpx (107, 109). Low levels of these lipoproteins
are reported in SCD patients which may be due to increased
catabolism or decreased synthesis (110, 111), as low plasma levels
also negatively correlated with markers of hemolysis in SCD
patients (112–114). Free heme reversibly binds to albumin to
formmetalbumin (115–117), or with high affinity to hemopexin
(Hpx) (118, 119), and a1-microglobulin (120–122).

Hemopexin
Of all these plasma proteins, Hpx, a plasma glycoprotein produced
in the liver has the highest affinity for binding free heme (118, 119,
123), resulting in the formation of Hpx-heme complexes that are
removed by endocytosis via the Hpx receptor (CD91) in
hepatocytes and macrophages (124, 125). After delivering heme
to CD91-expressing cells for internalization and degradation by
heme oxygenase 1 (HMOX-1), at least some of the Hpxmolecules
can be recycled back into plasma. Elevated eMPs also correlated
with increase in hemolysis markers and low Hpx in SCD patients
(126). In the same patients cohort, high eMPs positively correlated
Frontiers in Immunology | www.frontiersin.org 4188
with elevated TRV, linking Hpx depletion to increased eMPs and
hemolysis, which may predispose patients to pulmonary
hypertension (126). In another study, low Hpx negatively
correlated with lipid oxidation in human and mice with SCD,
with postmortem analysis in SCD patients showing oxidized LDL
deposits in the pulmonary artery (127). These reports showed that
delayed clearance of heme in circulation due to low plasma Hpx
may activate deleterious downstream pathological pathways that
may contribute to morbidity and mortality in SCD patients.

Heme Oxygenase-1
HMOX-1 is an evolutionarily conserved and rate limiting enzyme
that degrades heme into equimolar amount of iron, biliverdin
and carbon monoxide (108, 128, 129). HMOX-1 is highly
expressed in human and mice with SCD and further upregulated
on exposure to heme (130, 131). Heme-induced oxidative stress
exceeds the capacity of HMOX-1 to prevent cellular and
organ injury in transgenic murine model of SCD. Augmentation
of HMOX-1 level and activity via gene transfer approaches,
or pharmacological activation through NRF2 (132), the
transcription factor that regulates HMOX-1 expression,
conferred protection from heme-induced lung injury (133),
vaso-occlusion (134), liver injury (135), kidney injury (136),
erythrocyte membrane damage (137), endothelium activation
and adherence (135), activation of immune cells and production
of inflammatory cytokines (138). Still, the effect ofNRF2 activation
on hemolysis, g-globin levels or stress erythropoiesis in mouse
model of SCD is controversial (136–138). Not all heme andHb are
bound to proteins or other macromolecules. Unbound heme or
hemoglobin in circulation causes erythrocyte membrane damage
and injury, activates proinflammatory signaling pathways inRBCs,
immune and endothelial cells, hepatocytes, macrophages and
neutrophils (105, 139).

Antioxidant Enzymes
Heme induces a program of antioxidant enzymes that
compensate for its intrinsic oxidant stress. These include
glutathione S-transferase pi (GSTpi) and NAD(P)H
dehydrogenase [quinone] 1 (NQO1) (140).
HEME AND STERILE INFLAMMATION
IN SICKLE CELL DISEASE

Hemolysis is a major driver of sterile inflammation in
pathological conditions including SCD (94, 103, 141), malaria
(142, 143), sepsis (144, 145), and also a marker of severity and
survival in these patients (146–149). Following hemolysis, Hb is
oxidized to unstable methemoglobin resulting in release of free
heme (139), which can intercalate into cell membrane and alter
cellular structures or taken up by cells (150, 151).

Intravascular Hemolysis Releases
Cell-Free Heme
Free heme accumulates in the plasma in both acute and chronic
hemolysis when the rate of intravascular hemolysis exceeds the
January 2021 | Volume 11 | Article 561917
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capacity of circulating heme-binding proteins (152), including
Hp and Hpx, which are depleted in human and mice with SCD
patients (59, 104, 114, 126, 127, 153–156). There is an emerging
concept of small molecular weight scavenging protein such as
a1-microglobulin, becoming the predominant heme scavenger
when plasma Hpx is low (59). Binding of free heme to different
scavenger impacts clinical manifestation of excess heme in
circulation as heme-Hpx is trafficked to and recycled primarily
in the liver while heme-bound a1-microglobulin are taken to the
kidney (59). This phenomenon was demonstrated in a recent
publication from Ofori-Acquah and colleagues. They showed
that hemopexin deficiency correlates with a compensatory
increase in a1-microglobulin in both human and mice with
SCD (155). Elevated a1-microglobulin and low hemopexin was
also associated with increase in acute kidney injury biomarkers
urinary KIM-1 and serum NGAL in SCD patients. The authors
showed that this heme-bound a1-microglobulin is directed to
the kidney for clearance resulting in acute kidney injury in sickle
cell mice (155). Also, acute kidney injury may occur via
complement deposition in the kidney during intravascular
hemolysis and in Hpx deficient condition in SCD mice (157).
Patients with SCD with higher plasma levels of free heme also
have greater frequency of VOC and acute chest syndrome (158).
Accumulation of free heme in plasma is not only cytotoxic, but
also mediates generation of free radicals via the Fenton pathway
(159–161).

Detection of Heme and Hemoglobin
Assay of cell-free heme and Hb may be an important tool for
diagnosis in disease conditions characterized by hemolysis (152,
162). Accurate quantification of heme species may result in early
therapeutic intervention before irreversible damage to organs
occurs. Currently, most commercially available assays measure
total heme (free heme and heme bound to proteins) and are not
specific for measuring cell-free heme or Hb. There is a possibility
of overestimating or underestimating these heme species.
Moreover, free heme is likely a more potent mediator of organ
injury and signal transductions, its accurate quantification as a
biomarker in disease conditions may be vital. Researchers have
developed detection methods using the spectral deconvolution
method, antibody capture ELISA or western blotting, reversed‐
high‐performance liquid chromatography, and fluorescence-
based assays to measure Hb and CFH (103, 152, 162–165).
Although these are not commercially available currently, they
present an opportunity to quantify different heme species in
relation to pathogenesis and therapeutic efficacy in
hemolytic conditions.

Cell-Free Heme in Inflammation
Free heme can induce inflammation via direct activation of RBCs
(166, 167), macrophages (168–170), neutrophils (171), and
endothelial cells (139, 172–174) to secret proinflammatory
cytokines including toll-like receptors (TLRs), tumor necrosis
factor (TNF), interleukin-6 (IL-6), placenta growth factor
(PlGF), interleukin 1 beta (IL-1b) (105, 139, 169, 175, 176) and
release of erythroid damage-associated molecular patterns
(eDAMPs) that potentiates inflammation (177, 178). Heme has
Frontiers in Immunology | www.frontiersin.org 5189
been shown to induce production of IL-1b by activated
monocytes/macrophages, endothelial and smooth muscle cells
through a nucleotide-binding domain and leucine-rich repeat-
containing protein 3 (NLRP3) inflammasome dependent
mechanism (139, 169, 172). High mobility group box 1
(HMGB1), a nuclear protein released during systemic
inflammatory response, has also been shown to mediate ROS-
dependent activation of endothelial cells to secrete IL-1b via
NLRP3 activation (179, 180). Elevated circulating HMGB1 is
associated with inflammation in hemolytic disorders including
SCD and sepsis (181–184), suggesting a shared inflammatory
signaling pathway through TLR4/Bruton tyrosine kinase for both
heme and HMGB1 in SCD (185, 186). Heme can also directly
affect the vasculature in mice, as recently shown with loss of
heme exporter, feline leukemia virus subgroup C receptor 1a
(FLVCR1a) in endothelial cells resulted in disruption of
microvessel architecture (187).

Cell Adhesion Pathways
Cell-free heme also contributes to inflammation by activating cell
adhesion pathways. This includes activation of adhesion
molecules such as vascular cell adhesion molecule-1 (VCAM-
1), intercellular adhesion molecule 1 (ICAM-1), selectins (L, P
and E), all involved in mediating cell adhesion to the vascular
endothelium via activation of integrin aMb2 on neutrophils
(188–192). Besides, several studies in the last decade have
associated hemolysis and selectins expression with RBCs
adhesion to endothelial cells (193–195), acute lung injury
(196), vaso occlusion (197), pain (198, 199), liver injury (200–
202), and kidney injury in SCD (83).

P-selectin is associated with platelet-neutrophil aggregate
formation that contributes to inflammation, pulmonary
dysfunction and lung vaso occlusion in SCD (200, 203). In
addition, a recent study by Merle and colleagues, showed a
direct link between heme-induced TLR4 and complement
system activation on liver endothelium mediated by P-selectin,
with genetic or pharmacological blockade of P-selectin or
complement system ameliorating liver injury in mice (202).
This expansive body of works culminated in clinical trial and
eventual FDA approval of P-selectin blockade therapy for the
prevention of pain crises in SCD (198, 199). Furthermore,
persistent inducibility of endothelium-derived adhesion
molecules by proinflammatory cytokines such as TNF-a and
IL-6 coupled with chronic hemolysis in SCD patients ultimately
results in VOC, organ dysfunction and early mortality (101, 204–
208). There are several ongoing clinical trials in SCD looking at
mediating the effect of inflammation-induced organ damage via
some of the mechanisms discussed above.

Hemolysis, Inflammation, and microRNAs
Recent evidence supports a potential role of microRNAs
(miRNAs) in complications of SCD (209, 210) and malaria
(211, 212), both pathological conditions with hemolysis,
suggesting a role for heme modulation of miRNAs. miRNAs
are noncoding RNAs of 22 nucleotides in length that regulate the
expression of their target genes post-transcriptionally (213).
miRNAs are involved in important biological processes
January 2021 | Volume 11 | Article 561917
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including apoptosis (214), hematopoietic differentiation (215)
and cell proliferation (216). miRNAs are important regulatory
molecules and activation of immune response during initiation
and progression of many diseases inflammatory diseases such as
cancer, Crohn’s disease, rheumatoid arthritis, systemic lupus
erythematosus, and asthma, via expression of proinflammatory
cytokines including TNF-a and TLRs (217–222). There are
studies linking heme and miRNAs processing in mammalian
cells. Heme binds directly to the RNA-binding protein DiGeorge
critical region-8 (DGCR8), which is essential for the first miRNA
processing step (213, 223–225). Hemolysis elevates the
expression of several miRNAs found in RBCs including miR-
16, miR-92a, miR-451, and miR-486 (226, 227). There is
upregulation of some miRNAs including miR-16, miR-451 and
miR-144 in reticulocytes from SCD patients (228, 229).
Conversely, elevated levels of these miRNAs also correlated
with severe anemia, increased sensitivity to oxidative stress,
downregulation of NRF2 and decreased intracellular
glutathione levels (230, 231). On the other hand, members of
the miR-154, the miR-329 and miR-376 family, involved in TGF-
b signaling pathway are downregulated in platelets of SCD
patients (210). Although few numbers of studies have reported
the involvement of miRNAs in complications of SCD (232),
however, there is a gap in knowledge of how stress or heme
regulation of these miRNAs and exposure of immune cells to
proinflammatory cytokines that are elevated in SCDmight play a
role in organ dysfunction. Targeting these miRNAs in SCD
might offer novel therapeutic strategy in preventing hemolysis-
induced inflammation and end organ damage, especially in the
heart, lung, liver, and kidney where miRNAs are abundant (222,
233–240).
HEMOLYSIS AND ORGAN DAMAGE IN
SICKLE CELL DISEASE

SCD patients on average live longer today than 50 years ago. This
is due to progress in understanding the mechanisms and risk
factors of several complications of the disease, associated clinical
findings and mouse models, approval of new treatment
therapies, multi-disciplinary approach to care, penicillin
prophylaxis and high-tech diagnostic tools (241). However,
this reduction in childhood mortality gives rise to an older
population of patients that develop age-related chronic organ
damage, driven in part by hemolysis (94). Hemolysis-induced
extensive and sometimes irreversible organ damage continues to
be a major source of morbidity and mortality in SCD. Even
transplanted organs are also at risk of failure in SCD patients due
to hemolysis and sickling (242). Therefore, there is a need for
research to understand the fundamental mechanisms involved in
heme-mediated organ damage in SCD patients. Over the years,
several studies in the general population as well as in SCD
suggest that hemolysis causes injury to the kidney (243–245),
lung (246), heart, and liver. We have summarized some of the
impacts of hemolysis on different organs in Table 1.
Frontiers in Immunology | www.frontiersin.org 6190
PLACENTA GROWTH FACTOR

In addition to its role as a DAMP, heme promotes the expression
and secretion of placenta growth factor (PlGF), a pleiotropic
growth factor already known to influence multiple pathways
contributing to the pathophysiology of SCD (167, 176, 280).
PlGF is a member of the Vascular Endothelial Growth Factor
(VEGF) family. It was originally cloned from a human placenta
cDNA library in 1991 (281), hence the name, but since then it
has been detected in a wide variety of tissues (282). PlGF has a
partial sequence similarity to VEGF-A but the two molecules
share a remarkable topological identity (283). There are four
human isoforms (PlGF 1–4), which are generated by alternative
splicing and are slightly different in size. PlGF-1 (131 aa) and
PlGF-2 (152 aa) are the predominant isoforms in humans. On
the contrary, mice carry a single isoform, PlGF-2 (140 aa).

PlGF exists as a homodimer or as a heterodimer with VEGF.
PlGF is a ligand for the transmembrane and soluble form of the
vascular endothelial growth factor receptor 1 (VEGFR-1, Flt-1)
(284), which can also bind VEGF. Distinct from VEGF, PlGF
does not bind vascular endothelial growth factor receptor 2
(VEGFR-2, Flk-1) but it can affect VEGFR-2 signaling in an
indirect manner (285–287). PlGF-2 can also bind heparin and
the transmembrane neuropilin receptors 1 and 2 (NRP1 and
NRP2) (288, 289). In addition to its role as a receptor binding
competitor of VEGF (284), PlGF can exert its own biological
effect upon binding to VEGFR-1. Depending on the cell type,
PlGF binding upregulates VEGF, fibroblast growth factor 2
(FGF2), platelet derived growth factor beta (PDGFB) and
matrix metalloproteases (MMPs) (290, 291). Furthermore,
PlGF receptor binding is shown to activate an intermolecular
crosstalk regulator between VEGFR-1 and VEGFR-2, often
resulting in enhancing VEGF/VEGFR-2 signaling (287). It is
important to emphasize here that PlGF or VEGF binding to
FLT1 results in discernible receptor phosphorylation patterns
and induction of distinct signaling pathways (287, 292, 293).
PlGF expression is induced by hypoxia, probably in a cell specific
manner, but the exact mechanism remains elusive in the absence
of hypoxia responsive elements (HRE) at the gene’s promoter
region (294, 295). So far, the association of only a few
transcription factors has been verified for the PlGF promoter:
metal transcription factor 1 (MTF-1) (295), NF-kB (296),
forkhead box D1 (FoxD) (297), erythroid Kruppel-like factor
(EKLF) (167), nuclear factor erythroid 2 like 2 (NRF2) (176),
glial cell missing 1 (GCM1) (298). Posttrascriptional regulation
of PlGF has also been reported through the regulation of the
protein kinase C (PKC), p38 mitogen activated protein kinases
(p38 MAPK), c-jun N-terminal kinase (JNK) and Ras-dependent
extracellular signal-regulated kinase 1/2 (ERK1/2) signaling
pathways (299, 300).

Surprisingly, PlGF seems to have a redundant role under
normal conditions (285) but becomes very important in disease
situations, where fluctuations of its levels cause a variety of issues
in multiple biological processes. Because of that reason, PlGF-
based therapeutic approaches have been proposed as disease
specific with minimal impact for healthy cells (301). The most
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well established role of PlGF is in angiogenesis and more
specifically in neo-angiogenesis in pathological conditions such
as ischemia or cancer (285, 302, 303). PlGF’s pleiotropic nature
in evident in its angiogenic role where it exerts a paracrine or
autocrine effect on endothelial cells, smooth-muscle cells,
fibroblasts, bone marrow progenitor cells and monocytes, to
orchestrate vessel growth and maturation (304). The description
of the full spectrum of PlGF’s biological role is beyond the scope
of this review but to mention a few, PlGF plays a role in
inflammatory response (305, 306), promotes bone repair (307),
sustains the proangiogenic M2 phenotype of tumor associated
macrophages (308), affects dendritic cell differentiation and
maturation (309), supports the generation of an inflammatory
status driving adaptive cardiac remodeling (310). To summarize,
all the evidence to date supports a role for PlGF in pathogenic
angiogenesis and inflammation well outside the realm of
pregnancy. Through mitogen and migratory effects on
endothelial cells as well as macrophage activation and
chemoattraction, PlGF emerges as a driver and marker of a
plethora of seemingly diverse pathologies, especially
angiogenesis and inflammation.
HEMOLYSIS, PLGF, AND
COMPLICATIONS OF SICKLE CELL
DISEASE

One of the least appreciated roles of PlGF is the one that it has in
hematopoiesis (311, 312) and in hemoglobinopathies (313)
(Figure 2). Plasma PlGF is elevated in SCD patients and the
increase correlates with the severity of hemolysis, endothelin 1
(ET-1) expression, the occurrence of pulmonary hypertension
(167, 280, 314, 315) and VOC (316, 317).
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Pulmonary Hypertension
PH is a serious complication in sickle cell patients, which is
associated with high mortality (318). A variety of biological
pathways and disease related pathologies contribute to the
development of PH and many of them involve free heme and
upregulation of PlGF. Along with PlGF, ET-1, a potent
vasoconstrictor, is significantly higher in the blood of sickle
patients (167, 316, 319, 320) suggesting a mechanistic link
between the two factors. In support of this connection, the
overexpression of PlGF in healthy mice using lentiviral gene
transfer results in increased ET-1, increased right ventricle
pressure and right ventricle hypertrophy as early as 8 weeks
after PlGF gene transfer (280). In vitro PlGF stimulation of
cultured human pulmonary microvascular endothelial cells
(HPMVEC) revealed that ET-1 induction was mediated by PI-
3 Kinase, NADPH-oxidase, and HIF-1a (314). Interestingly,
HIF-1a stimulation of the ET-1 promoter is hypoxia
independent and occurs upon the direct binding of HIF-1a on
the HRE elements of the ET-1 promoter. In a similar manner,
PlGF upregulates endothelin-B receptor (ET-BR) in monocytes,
priming them to be over-stimulated by ET-1 and produce higher
levels of chemokines MCP-1 and IL-8 (314). Both MCP-1 and
IL-8 are elevated in SCD patients (321) supporting the PlGF-ET-
1 synergy as another contributing factor to the development of
PH in SCD.

Regulation of miRNAs
On a post-transcriptional level, PlGF attenuates miR-648 and
miR-454, which recognize and bind the 3’ UTR of ET-1 mRNA.
The association of low miR-648/miR-454 with high ET-1 and
PlGF levels is supported in both in vivo and in vitro studies (322,
323). Furthermore, PlGF attenuates miR-199-5p, which binds
the 3’UTR of HIF-1a mRNA, creating another level of control
over ET-1 expression (324). The molecular repression of miR-
TABLE 1 | Summary of current literature supporting a damaging role of hemolysis in different organs.

Organ Impact of heme damage References Disease/model

Kidney Proximal tubule dysfunction and impaired vitamin D metabolism (247, 248) Cell culture/mice
Proteinuria, acute and chronic injury, and iron deposition (244, 245, 249–253) Human
Acute renal failure, oxidative stress, inflammation, and toxicity (254–257) Human/mice
Acute renal vasoconstriction via TLR4 signaling (258, 259) Cell culture/Mice
Apoptosis in proximal tubular epithelial cells via caspase-dependent/-independent pathways (260, 261) Cell culture
Endothelial apoptosis and vaso occlusion (262) Human/cell culture/mice

Lung Acute chest syndrome via TLR4, NRF2 and p-selectin signaling (133, 196, 263) Cell culture/mice
Oxidative injury and progression of pulmonary hypertension (PH) (262) Cell culture/mice
Angioproliferative PH via accelerated purine metabolism (264) Rats
Acute lung injury via increased alveolar capillary barrier dysfunction (265, 266) Human/cell culture/mice
Oxidation and mitochondrial dysfunction in epithelial lung cells (36) Cell culture

Liver Increased vascular ICAM-1 expression on blood vessels and vaso occlusion (267) Cell culture/mice
Advanced fibrosis and iron overload (268)
Oxidative stress, neutrophil infiltration, and extravasation through NF-kB activation (269)

Heart Impaired nitric oxide bioavailability and pulmonary hypertension (270, 271) Mice
Smooth muscle proliferation via NADPH oxidase activity, atherosclerosis, and hypertension (101, 272) Cell culture
Increased risk of cardiovascular disease (273, 274) Human
Endothelial activation and altered cardiac function (275, 276) Mice
Mitochondria dysfunction (277) Human/cell line
Ischemic injury (278) Human/cell culture/mice
Contractile dysfunction due to altered contractile proteins (279) Human primary cardiomyocytes
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199-5p by PlGF is mediated by the upregulation of the activating
transcription factor 3 (ATF3) which upon binding causes
deacetylation and chromatin condensation at the miR-199-5p
locus (325). Similar to miR-648, the association of low miR-199-
5p levels with high PlGF and ET-1 levels is supported by in vivo
and in vitro studies (324).

Plasminogen Activator Inhibitor 1
PlGF is also linked to the increase in PAI-1 levels in the plasma
and lungs of sickle cell patients and humanized sickle mice
respectively (326). PAI-1 is increased during steady state SCD
but its expression is exacerbated during VOC. Elevation of PAI-1
levels is associated with decreased fibrinolytic capacity (327) and
is believed to contribute to the SCD prothrombotic state and the
development of PH (328). In vitro PlGF stimulation induced
PAI-1 expression in pulmonary microvascular endothelial cells
and monocytes through the activation of c-jun N-terminal kinase
(JNK), hypoxia inducible factor 1a (HIF-1a) and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (326). In
addition, PlGF expression affects the stability of PAI-1 mRNA
by downregulating microRNAs miR-454, miR-301a, and miR-
30c which recognize and bind the PAI-1 3’-UTR. PlGF
regulation of miR-454 and miR-301 is mediated by PPARa and
HIF-1a (323). All of these microRNAs are detected in
significantly lower levels in SCD patients compared to healthy
controls (323, 329). In vivo experiments using PlGF null and SS
sickle mice as well as adenoviral overexpression of PlGF, have
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confirmed that PlGF plays a significant role in PAI-1
regulation (326).

Inflammation and Airway Hyper-Reactivity
Airway hyper-reactivity is a common complication in SCD,
especially in younger patients (330), and correlates with
biomarkers of hemolysis (331). Patients show elevated levels of
circulating leukotrienes (332) and their monocytes express
higher levels of 5-lipoxygenase (5-LO) and 5-lipoxygenase
activating protein (FLAP), both involved in leukotriene
synthesis (333). Consistent to its proinflammatory nature,
PlGF induces leukotriene production which in turn increases
inflammation and airway hyper-reactivity, both key features of
SCD. As in the case of PAI-1, the induction is mediated by HIF-
1a and NADPH oxidase (333). Further studies have confirmed
PlGF as an important regulator of leukotriene production and
airway hyperactivity in SCD and asthma (332).

Vaso-Occlusion
Activated leukocytes in sickle cell patients are considered a
significant promoting factor for VOC (334). Activated
mononuclear cells from SCD patients express high levels of the
cytochemokines VEGF, IL-1b, monocyte chemotactic protein 1
(MCP-1), IL-8 and macrophage inflammatory protein-1 beta
(MIP-1b). In vitro studies have shown that monocytes from
healthy individuals can be activated by PlGF to increase the
expression of proinflammatory cytokines and chemokines such
FIGURE 2 | In SCD, repeating sickling cycles result in increased hemolysis. Hemolysis byproducts such as heme induce PlGF expression in multiple cell types (for
simplicity purposes only erythroblasts are depicted). Secreted PlGF is a ligand for FLT-1 receptor and triggers the expression of ET-1, PAI-1, leukotrienes and
cytochemokines, affecting the physiology of multiple organs. AH, Airway hyperreactivity; PH, Pulmonary hypertension; FLT1/VEGFR1, Fms related receptor tyrosine
kinase 1; PlGF, placenta growth factor; ET-1, endothelin 1; PAI-1/Serpine1, plasminogen activator inhibitor 1.
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as TNF-a, IL-1b, MCP-1, IL-8, and MIP-1b (316, 335). This
activation is achieved by the PlGF-VEGFR-1 interaction and
involves the PI-3 kinase/AKT and ERK-1/2 signaling pathways
(335). Because VOC in SCD is promoted by inflammation and
leukocyte adhesion stimulated by cytokines (197, 336, 337),
antibody neutralization of PlGF was tried successfully for
reduction of inflammation and vaso-occlusive complications in
murine SCD models (317). Regulation of PlGF levels could also
be achieved by manipulating factors that control its
transcriptional or translational expression. Per instance,
pharmacological upregulation of miR-214 which is known to
bind PlGF 3’-UTR, could be engaged to reduce PlGF levels (338).

Renal Dysfunction
PlGF is significantly upregulated in the serum of patients with
chronic kidney disease and decreased renal function, supporting
a potential mechanistic link between PlGF and kidney function
(339, 340). Sickle cell nephropathy (SCN) is an complex
phenotype which encompasses almost every physiological
process in the kidney, leading to complications that may range
from common and relatively mild to rare and life-limiting (243).
In SCD patients markers of renal dysfunction are associated with
elevated ET-1 serum levels (341) and studies in sickle cell mice
have shown that ET-1 can cause renal injury, likely mediated by
ROS (342). Although it has not been shown experimentally,
sickle cell-related elevated PlGF levels could possibly contribute
to higher ET-1 levels (167, 314) driving renal dysfunction.
However, administration of exogenous heme in control and
sickle cell mice has been shown to result in the upregulation of
PlGF in the murine kidneys in agreement with heme uptake from
renal cells and HMOX-1induction (343). In addition to ET-1,
PAI-1 has also been shown to play a role in nephropathies (344)
but its role in SCD or its potential regulation by PlGF
remains unexplored.

Cardiac Dysfunction
Cardiac complications are common in SCD patients and along
with the pulmonary complications raise their morbidity and
mortality risk (94, 345). There has been accumulating evidence
that PlGF dysregulation is present in multiple heart conditions
although it is often unclear if it is only a disease biomarker or it
actively promotes disease pathogenesis. In patients with chronic
kidney disease, PlGF levels are associated with higher incidence
of cardiovascular events and mortality (340). In the same disease,
PlGF is an independent risk predictor for left ventricular diastolic
dysfunction (346). In human atherosclerotic plaques, the
expression of PlGF is associated with plaque destabilization
and disease manifestation (347). The pro-atherosclerotic role
of PlGF is corroborated in rabbits where PlGF adenoviral
expression promotes atherogenic intimal thickening and
macrophage accumulation in the carotid artery (348). PlGF is
also elevated in the plasma of patients with acute coronary
syndromes where it can be used as a risk predicting biomarker
(349). PlGF promotes cardiac hypertrophy via endothelial cell
release of NO which induces cardiomyocyte growth (350) and by
inducing the secretion of paracrine factors (IL-6, IL-1b, Cxcl1)
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from endothelia and fibroblasts that promote cardiac adaptation
and hypertrophy (351–353). In the case of ischemic
cardiomyopathy, PlGF has been reported both as promoting
the disease (354) and as a potential therapeutic (355). The
apparent controversy could be due to differences between a
local and acute administration of an angiogenic factor (355)
compared to a more systemic and chronic upregulation (354).
Our research has shown that PlGF is elevated in the hearts of
sickle mice and it is further induced after administering
exogenous heme (343). Surprisingly, the level of PlGF
induction is comparable to that of the liver which is
considered the major heme detoxifying organ (343). An
interesting finding of this study is that mouse hearts have high
levels of HMOX-1, which are further increased by heme
induction, and that they show no heme accumulation unless
NRF2 is depleted. These data suggest that cardiac tissue has the
abil ity to detoxify heme via the NRF2 antioxidant
response pathway.
HEMOLYSIS, INTERLEUKIN-6, AND
CARDIOVASCULAR DYSFUNCTION

IL-6 is a ubiquitous and pleiotropic proinflammatory cytokine
produced by many cells including macrophages (356, 357),
neutrophils (358, 359), endothelial and smooth muscle cells
(360, 361), cardiomyocytes (362) and fibroblasts (363), when
stimulated by ligands for toll-like receptors or other pattern
recognition receptors. IL-6 is a glycoprotein composed of 184
amino acids and of 26 kDa in molecular weight (364). Currently,
there are ten cytokines belonging to the IL-6 family; IL-6, IL-11,
ciliary neurotrophic factor (CNTF), leukemia inhibitory factor
(LIF), oncostatin M (OSM), cardiotropin-1 (CT-1),
cardiotrophin-like cytokine (CLC), IL-27, neuropoietin (NP),
and IL-31 (365). IL-6 regulates many biological functions
including hematopoiesis (366), oncogenesis (367) and
differentiation of B cells (368), induction of acute phase
proteins and immune regulation (369). Additionally, IL-6 plays
a vital role in chronic inflammatory processes in various cells and
disease conditions (364). IL-6 signaling is through two pathways;
classic/cis-mediated signaling via membrane-bound IL-6
receptor (mIL-6R) or trans-mediated signaling via the soluble
form of IL-6R (sIL-6R) (364, 369). Classic/cis-signaling occurs in
cells that express IL-6R such as hepatocytes, neutrophils and
monocytes (365, 369). Conversely, trans-mediated signaling
occurs after secretion of sIL-6R by RNA alternative splicing,
ectodomain shedding or proteolytic cleavage of mIL-6R (370),
which in turn stimulate cells (365, 369). Once IL-6 binds to mIL-
6R or sIL-6R, the cytokine forms a complex with the ubiquitously
expressed membrane protein gp130, a shared signal-transducing
receptor of all IL-6 type cytokines (370). Dimerization of the
receptor complex activates Janus kinases (JAKs) resulting in
phosphorylation of the tyrosine residues in the cytoplasmic
domain of gp130 (364, 371). Activation of JAKs triggers the
extracellular-signal-regulated kinase (ERK), mitogen-activated
protein kinase (MAPK) and signal transducer and activator of
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transcription (STAT) signaling pathways (370, 371). However,
IL-6 role in pathophysiology of chronic inflammation and
diseases is driven via IL-6 trans-signaling because classic/cis-
signaling via the mIL-6R is limited to few cells that express IL-6R
(372). Blockade of IL-6 trans-signaling is effective in attenuating
proinflammatory activities of IL-6 in several disease
conditions (365).

Several studies in human and rodents found hemolysis and
elevated IL-6 occurring concurrently. Hemolysis and elevated
IL-6 are associated with disease severity in malaria (373, 374),
sepsis (375) and pre-eclampsia (376), with cardiac dysfunction
as an additional comorbidity in these diseases. Besides, elevated
cardiac IL-6 is also associated with cardiac hypertrophy and
fibrosis in the general population (362, 377) and in rodents
(378, 379). In malaria, elevated IL-6 is found in patients with
severe Plasmodium falciparum/vivax malaria and associated
with development of cardiac complications (373, 374). Sepsis
patients with elevated IL-6 are at a higher risk of developing
cardiac dysfunction which may be due to direct negative
inotropic effect of IL-6 mediated via altered production of
myocardial nitric oxide (375), altered calcium homeostasis
(380, 381) and impaired b-adrenergic signaling (382–384).
Elevated IL-6 in pre-eclampsia patients result in reduced anti-
inflammatory protection in the maternal vascular system (385)
and stimulation of vasoactive substances including angiotensin
II type 1 receptor and endothelin-1 (386). Although, elevated
plasma IL-6 have been reported in human and mice with SCD
(168, 387, 388), and hemolysis is a major comorbidity of SCD
(94), however, there has been no direct link between these two
processes. Conversely, left ventricular hypertrophy (LVH) is
found in over 60% of children and 37% in adults with SCD (389,
390), with cardiopulmonary complications accounting for
about 26% of deaths in adults with SCD (391). In this current
issue and for the first time, our group investigated the
expression of plasma and cardiac IL-6 and its inducibility by
heme in Townes sickle cell (SS) mouse model (392). We
observed significantly elevated cardiac IL-6 and direct heme
induction of circulating and cardiac IL-6 transcripts and protein
in SS mice compared to controls. We showed that this heme-
induced IL-6 is NRF2-independent in the heart. Our results of
heme-induced IL-6 is in agreement with elevated levels of IL-6
reported in cardiac cells treated with Hpx and in heart isolated
from Hpx deficient mice (393). Because our data showed
upregulation of cardiac hypertrophy genes following heme
treatment in SS mice, there is a possibility that heme is
inducing IL-6 in the heart and prolonged activation and
exposure to IL-6 could contribute to LVH in SCD patients.
We are currently investigating potential mechanism(s) and
specific cell-types secreting IL-6 in the heart of SS mice.
There are several pathways through which heme may induce
IL-6 expression. It is possible that parallel heme-induced
pathways are activating IL-6 indirectly and with continuous
hemolysis forming a feedback loop. With elevated cardiac PlGF
at baseline in SCD mice and further inducibility by heme (343),
cardiac hypertrophy may develop via IL-6 signaling (350).
Therefore, it can be envisaged that prolonged hemolysis
induced PlGF and IL-6 in SCD feeds the vicious cycle of
Frontiers in Immunology | www.frontiersin.org 10194
inflammation via an autocrine feedback system resulting in
reactivation of genetic cardiac hypertrophy program.
THERAPEUTIC INTERVENTION
IN HEMOLYSIS AND INFLAMMATION

The role of hemolysis and its attendant oxidant stress and
inflammatory activation in SCD has been supported by the
success of therapies that normalize these pathways. Hydroxyurea
has pleiotropic effects that reduce hemolysis and offset its
pathobiological consequences. The approval of hydroxyurea by
the FDA in 1998 provided a watershed moment in the history of
SCD (394, 395). Hydroxyurea treatment yielded an improved
quality of life for SCD patients attributable to induction of fetal
hemoglobin, slowing of chronic damage to several organs,
including the brain (394–400). More than twenty years later,
three new drugs; L-glutamine (Endari; reduction of pain-related
hospital visit and length of stay) and crizanlizumab-tmca
(Adakveo; reduction of frequency of VOC) and voxelotor
(Oxbryta; inhibition of deoxygenated sickle hemoglobin
polymerization), have been approved by the FDA for treatment
of SCD (401). L-glutamine is thought to reverse the redox
imbalance imposed by hemolysis and other sources of oxidative
stress. Crizanlizumab blocks the inflammation-activated P-
selection adhesive pathway. Voxelotor inhibits polymerization of
sickle hemoglobin, with the most apparent effect of reduced
hemolysis. Curative intent therapies have also shown evidence of
reduced hemolysis. Although permanent cure afforded to patients
through bonemarrow transplant and gene therapy would be ideal,
it would be quite expensive and the majority of patients with SCD
live in areas lackingboth economic andhuman resources needed to
make these curative therapies broadly accessible (402).
Importantly, the global majority of SCD patients live in resource-
poor countries, with minimal access to these newer therapies and
limited capacity for hematological monitoring requirements and
other diagnostic equipment (1, 403).High childhoodmortality rate
ranging from 50–90% still prevail in these areas and acceptance of
hydroxyurea as therapy is very low compared to developed
countries (403–405).

Encouragingly, recent studies show the efficacy, safety and
feasibility of using hydroxyurea treatment in children and adults
with sickle cell anemia living in sub-Saharan Africa (406–408).

Clinical trials areunderway to assess thepotential of hemopexin
intravenous infusion in the treatment of SCD (Clinicaltrials.gov
identifier NCT04285827). In the Townes SCD mouse model,
infusion of hemopexin reduced microvascular occlusion induced
by hemoglobin infusion, hypoxia-reoxygenation, or
lipopolysaccharide (83). Hemopexin mitigated induction of
ICAM-1 and VCAM-1 via inhibition of NF-kB activation (83).
In another study, treatment with Hpx attenuated free heme
activation of complement pathways and kidney injury caused by
complement deposition and inflammation in mice during
hemolysis (157). Hemopexin also significantly decreased plasma
heme concentration, pulmonary neutrophil extracellular trap
(NET) formation, plasma DNA, neutrophil activation and NET-
associated hypothermia in SCD mice (171).
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CONCLUSION

Hemolysis is a feature of many diseases, and in most cases
occurring with acute and chronic inflammation that contributes
to organ injury. Products of hemolysis activate several
inflammatory pathways in many cell types, including cells in
the innate immune system. Hemolysis appears to serve as a
priming stimulus that combines with TLR4 signaling to a cascade
of production of inflammatory cytokines which activate
downstream pathophysiology. Therapeutic intervention targeting
the upstream effects of hemolysis has potential to mitigate
downstream innate immune system response and inflammation
in treating patients with intravascular hemolytic disease.
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Inflammatory Dendritic Cells
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Response in Sickle Cell Disease
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Dulcinéia Martins de Albuquerque, Sara Terezinha Olalla Saad
and Fernando Ferreira Costa

Hematology and Hemotherapy Center, University of Campinas, UNICAMP, Campinas, Brazil

Sickle cell disease (SCD), one of the most common hemoglobinopathies worldwide, is
characterized by a chronic inflammatory component, with systemic release of
inflammatory cytokines, due to hemolysis and vaso-occlusive processes. Patients with
SCD demonstrate dysfunctional T and B lymphocyte responses, and they are more
susceptible to infection. Although dendritic cells (DCs) are the main component
responsible for activating and polarizing lymphocytic function, and are able to produce
pro-inflammatory cytokines found in the serum of patients with SCD, minimal studies have
thus far been devoted to these cells. In the present study, we identified the subpopulations
of circulating DCs in patients with SCD, and found that the bloodstream of the patients
showed higher numbers and percentages of DCs than that of healthy individuals. Among
all the main DCs subsets, inflammatory DCs (CD14+ DCs) were responsible for this rise
and correlated with higher reticulocyte count. The patients had more activated monocyte-
derived DCs (mo-DCs), which produced MCP-1, IL-6, and IL-8 in culture. We found that a
CD14+ mo-DC subset present in culture from some of the patients was the more activated
subset and was mainly responsible for cytokine production, and this subset was also
responsible for IL-17 production in co-culture with T lymphocytes. Finally, we suggest an
involvement of heme oxygenase in the upregulation of CD14 in mo-DCs from the patients,
indicating a potential mechanism for inducing inflammatory DC differentiation from
circulating monocytes in the patients, which correlated with inflammatory cytokine
production, T lymphocyte response skewing, and reticulocyte count.

Keywords: dendritic cell, sickle cell disease, heme oxygenase, inflammation, monocyte
INTRODUCTION

Sickle cell disease (SCD) is a condition that affects millions of people worldwide. It is caused by a
mutation in the b-globin gene that results in the replacement of a single glutamic acid with valine.
As a consequence, an abnormal hemoglobin, HbS, is produced, which polymerizes under
deoxygenation conditions. HbS polymerization causes changes in the shape and physical
properties of erythrocytes, resulting in hemolytic anemia and the occlusion of small blood vessels
(1, 2). Such crises are spontaneous and recurrent complications, in which microvascular infarction
org February 2021 | Volume 11 | Article 6179621207
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leads to episodes of extreme pain, multiple organ dysfunction,
and infection (3–5). The vaso-occlusion process that occurs in
patients with SCD is a complex phenomenon that involves the
aggregation of erythrocytes, which interact with the endothelium
and other blood cells, decreased nitric oxide (NO) bioavailability,
oxidative stress, and the release of inflammatory cytokines into
the bloodstream, such as TNF-a, IL-6, and IL-8 (6–8).

Patients with SCD are more susceptible to infection due to
splenic hypofunction and impaired immune function (9–11). In
addition to the deficiency described in innate immunity,
including insufficient opsonization and phagocytosis of bacteria
(12, 13), evidence of T and B lymphocyte dysfunction in SCD has
also been reported in both patients and animal models. These
changes include reduction in the proportion of circulating CD4+

and CD8+ T cells (14), defects in regulatory T cells (Tregs)
(15), the polarization of cells to a T helper (Th)2 profile (16),
and the loss of immunoglobulin (Ig)M-secreting memory B
lymphocytes (17).

Dendritic cells (DCs) are the main cells responsible for
adaptive immune response activation, polarization, and
regulation. They are activated by both the pathogen- and
damage-associated molecular patterns, which can be released
by tissue necrosis or hemolysis (18–20), which are frequent
occurrences in patients with SCD. Changes in DC activation or
function may, therefore, be responsible for previously observed
dysfunction in the T lymphocyte response. DCs can produce
pro- or anti-inflammatory mediators depending on the tissue,
the situation, and the cell subpopulation, as DCs form a
heterogeneous population of cells with different functions.
There are four main subsets of DCs, which share some roles,
such as presenting antigens to lymphocytes, but they also have
unique functions. Conventional type 1 DCs (cDC1) express the
CD141 and Clec9a markers and are mainly responsible for CD8+

T lymphocyte activation and for polarizing the response to the
Th1 profile. Conventional type 2 DCs (cDC2) express CD1c and
Clec4a4 and are involved in lymphocyte differentiation to Th2
and Th17 profiles. Plasmacytoid DCs (pDCs), in turn, express
the IL-3 receptor, CD123, and BDCA2, and produce large
amounts of type I IFN. Finally, inflammatory DCs are derived
from circulating monocytes during inflammation; they produce
pro-inflammatory cytokines and are difficult to distinguish from
cDCs2 (18, 21–23). Depending on the activation pattern and
expression of inhibitory molecules, DCs are also essential in Treg
differentiation, thus participating in the regulation of the
immune response. The development of DCs and their
differentiation to a specific cell subtype depends on the
cytokines released in the microenvironment (24, 25), and the
bloodstream of patients with SCD contains greater amounts of
GM-CSF and IL-3, which are determinants in the development
of cDCs and pDCs, respectively (8, 26). Nevertheless, the
landscape of DC subsets in SCD remains unknown.

In the present study, we identified the subsets of circulating
DCs in patients with SCD at steady state and showed that
inflammatory DCs are elevated in the patients’ bloodstream,
which correlated with hemolysis and IL-17–producing
lymphocytes. Monocyte-derived DCs from patients produced
Frontiers in Immunology | www.frontiersin.org 2208
inflammatory cytokines and skewed T lymphocyte responses
towards a Th17 profile. Moreover, the inflammatory DCs arose
from the patients’ monocytes in a heme oxygenase (HO)–
dependent pathway. The present data provide new information
on the initiation of the immune response in SCD, which may be
related to susceptibility to infection and the sustained
inflammatory component of the disease.
METHODS

Human Samples
Patients with SCD (n = 47) and healthy controls (n = 46) aged 20
to 59 years were enrolled in the present study. Participants with
HbSS or HbSb0 genotypes were included as patients with SCD,
and hemoglobin patterns were confirmed by high-performance
liquid chromatography (HPLC) (Bio-Rad) and DNA sequence
analysis. Patients who had received blood transfusions in the past
3 months, in vaso-occlusive crises and with apparent infection
were excluded from the study. No patient was being treated with
antibiotics or corticosteroids, and all patients were under
treatment with folic acid, calcium, and vitamin D. Moreover,
most patients were under treatment with hydroxyurea. Blood
samples were obtained from the participants during regular
consultation at the Unicamp Hematology and Hemotherapy
Center, São Paulo, Brazil. Complete blood counts with
reticulocyte counts were performed on blood collected with
EDTA in a hematology analyzer (Beckman Coulter). The study
was approved by the Unicamp Human Research Ethics
Committee (protocol number CAAE: 85061318.0.0000.5404).
All patients and controls had agreed to participate and had
signed informed consent forms.

Separation of Peripheral Blood
Mononuclear Cells (PBMCs) and Isolation
of Monocytes and T Lymphocytes
Blood was collected from all participants in heparin-coated
tubes. The fresh blood was diluted in phosphate-buffered saline
(PBS), and PBMCs were obtained by density gradient
centrifugation on Ficoll-Hypaque (GE Healthcare) at 400g for
30 min at room temperature. The mononuclear leukocyte layer
was separated and washed. The pellet with the remaining
aggregated red blood cells was lysed with lysis buffer and
washed with PBS. PBMCs were resuspended in RPMI 1640
medium (Gibco) supplemented with 10% fetal bovine serum,
penicillin and streptomycin, and L-glutamine. Monocytes were
isolated from the PBMCs by anti-CD14-coated magnetic beads
(Miltenyi Biotec), and T lymphocytes were isolated using human
a pan-T cell isolation kit (Miltenyi Biotec) according to the
manufacturer instructions.

Cell Phenotyping by Flow Cytometry
PBMCs were incubated in staining buffer (PBS; ACD; 10% BSA)
and stained with monoclonal antibodies conjugated to PE, PE-
Cy7, FITC, APC, APC-Cy7, PerCP-Cy5, BV451, BV605, or
BV650 for 30 min at 4°C. DCs were stained using antibodies
February 2021 | Volume 11 | Article 617962
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against CD3, CD19, CD56, CD14, HLA-DR, CD1c, CD141,
CD123, and CD135 (BD Biosciences and BioLegend). The
absolute number of DCs per µl of blood was calculated by
multiplying the percentages by the complete blood leukocyte
count. Monocytes were analyzed using antibodies against CD14
and CD16. Cells were washed and evaluated by flow cytometry
(Cytoflex, Beckman Counter). For analyzing Tregs, surface
marker staining was performed as described above with anti-
CD3 and anti-CD4 antibodies, and then the cells were washed,
fixed, and permeabilized with a Foxp3 Cytofix/Cytoperm kit (BD
Biosciences) according to the manufacturer’s instructions, and
stained with anti-FOXP3 antibody for an additional 30 min at
4°C. The cells were washed before acquisition in flow cytometry.
To evaluate intracellular cytokines in lymphocytes, PBMCs were
stimulated with 500 mg/ml PMA and 50 mg/ml ionomycin in the
presence of GolgiStop (BD Biosciences) for 4 h, then stained with
conjugated antibodies against CD3, CD4, and CD8. The cells
were washed, fixed, and permeabilized using a Cytofix/Cytoperm
kit (BD Biosciences) using the manufacturer’s instructions.
Then, the cells were incubated with monoclonal antibodies
against IFN-g, IL-10, or IL-17 for 30 min at 4°C, washed, and
evaluated by flow cytometry. Data were analyzed using FlowJo
(BD Biosciences).

Generation of Monocyte-Derived DCs
DCs were differentiated from isolated monocytes in culture by
incubation in RPMI 1640 medium (Gibco) supplemented with
10% fetal bovine serum, L-glutamine, penicillin, streptomycin,
and containing 20 ng/ml GM-CSF and 20 ng/ml IL-4 (R&D
Systems) for 7 days. The medium containing the cytokines was
replenished on the third day. In some experiments, monocytes
were incubated with the HO-1 inhibitor SnPP (tin
protoporphyrin IX dichloride, R&D Systems; 50 µM) for 1 h
before and during DC differentiation. The cells were analyzed by
flow cytometry, and the cytokine levels in the supernatant were
quantified. Monocyte-derived DCs (mo-DCs) were stained using
antibodies against CD14, CD209, CD1c, CD86, HLA-DR, and
CD83 (BD Biosciences and BioLegend). In other experiments,
the cells were counted and incubated with T lymphocytes to
perform co-culture.

Co-culture of DCs and T Lymphocytes
The mo-DCs were counted, and 5 × 104 cells were plated in 96-
well culture plates. After 24 h, T lymphocytes were isolated from
the PBMCs from the healthy controls and stained with 2.5 mM
CFSE (carboxyfluorescein succinimidyl ester) for 15 min at room
temperature. T lymphocytes (5 × 105) were incubated with mo-
DCs for an additional 5 days. Lymphocyte proliferation was
evaluated by flow cytometry based on CFSE dilution in the CD4
or CD8 gates after staining with antibodies against CD4 and
CD8. The co-culture supernatant was harvested and used to
measure cytokine levels.

Cytokine Measurement
The cytokines IL-1b, IFN-a2, IFN-g, TNF-a, MCP-1, IL-6, IL-8,
IL-10, IL-12p70, IL-17A, IL-18, IL-23, and IL-33 were measured
in the supernatant of DCs and co-cultures using the
Frontiers in Immunology | www.frontiersin.org 3209
LEGENDplex Human Inflammation Panel 1 (BioLegend)
according to the manufacturer’s instructions. The acquisition
was performed by flow cytometry (Cytoflex, Beckman Coulter),
and the results were analyzed by LEGENDplex software.

Quantitative Real-Time PCR
Total RNA was extracted from monocytes using an RNeasy Mini
Kit (Qiagen), and genomic DNA was digested with DNase I
(Fermentas). Reverse transcription was performed using a
RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo
Scientific), and Hmox1 expression was analyzed using SYBR
Green PCR master mix (Applied Biosystems). The following
primers were used: Hmox1 forward: 5′-GACGGCTTCAAGCTG
GTGAT-3′ and reverse: 5′-GTTGCGCTCAATCTCCTCCT-3′;
Rplpo (ribosomal protein lateral stalk subunit P0) forward:
5′-GGAAGGCTGTGGTGCTGATG-3′ and reverse 5′-
GAGGCAGCAGTTTCTCCAGAG-3′.

Statistical Analyses
The mean ± SEM values are presented in the graphs, and the pair
of groups were compared using the Mann-Whitney test for non-
Gaussian distributed data. Pairs of cells sorted from the culture of
the same patient were analyzed using paired Student’s t-tests.
P values < 0.05 were considered statistically significant. All data
were analyzed using Prism 5.1 software (GraphPad).
RESULTS

Patients With SCD Had Increased Total
DCs and Altered Ratio of DC Subsets
To characterize the main DC subsets in the bloodstream of the
patients, we isolated PBMCs from their blood and performed
multicolor flow cytometry. The gating strategy used for
identifying the DC population (Figure 1A), was to gate on
lymphocyte and monocyte populations by forward scatter and
side scatter plots, followed by gating in single cells. Next, total
DCs were detected as negative for lineage markers (CD3/CD19/
CD56/CD14) and HLA-DR+. Within the total DC population,
additional gates were designed to distinguish the different DC
subsets and pre-DC population. Pre-DCs were considered
lineage−HLA-DR+CD1c−CD141−CD123−CD135+; cDC1 as
lineage−HLA-DR+CD1c−CD141+CD123−; cDC2 as lineage−HLA-
DR+CD1c+CD141−CD123−; and pDC as lineage−HLA-
DR+CD1c−CD141− CD123+ (19, 27, 28). A subset of DCs
expressing CD14, henceforth referred to as inflammatory DCs
(iDCs), was identified as negative for lineage markers (CD3/
CD19/CD56) and were HLA-DR+CD1c+CD14+ (29).

The patients had total DCs increased in the blood (Figure
1B). The result was very heterogeneous among the patients,
some of them had very high numbers of DCs, whereas others
presented numbers similar to controls. The development of DCs
from the bone marrow is possible to be, at least in part,
responsible for this increase, as the percentage and total
number of DC precursors were augmented in the patients’
blood (Figure 1C). Notably, the increased amount of DCs is
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FIGURE 1 | Patients with SCD have an increased number of total DCs in the bloodstream and distinct proportions of DC subsets. The different DC subsets were
identified in the blood from the patients (SS: hemoglobin S) and controls (AA: hemoglobin A) by flow cytometry. (A) The gating strategy used to identify total DCs,
namely, lineage− (CD3/CD19/CD56/CD14) HLA-DR+; pre-DCs (lineage−HLA-DR+CD1c−CD141−CD123−CD135+); cDC1 (lineage−HLA-DR+CD1c−CD141+CD123−);
cDC2 (lineage−HLA-DR+CD1c+CD141−CD123−); pDC (lineage−HLA-DR+CD1c−CD141−CD123+), and iDC is lineage− (CD3/CD19/CD56), HLA-DR+CD1c+CD14+.
(B) The percentage of total DCs in PBMCs and their absolute number per µl blood. (C) The percentage of pre-DCs in total DCs and their absolute number per µl
blood. (D) The percentage within total DCs (top panel) and the absolute number per µl (bottom panel) cDC2, cDC1, pDC, and iDC. N: AA = 20; SS = 22. P-values
were obtained using the Mann-Whitney test. (E) Spearman correlation between %iDC (left panel) and #iDC (right panel) with circulating reticulocyte numbers.
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unlikely to be only a result of leukocyte redistribution due to
splenic hypofunction, as the percentage of DCs among white
blood cells was also increased (Figure 1B). The discrimination of
DC subsets revealed that the ratio of cDC1 was reduced, whereas
that of iDC was increased in the patients relative to the controls.
The percentages of cDC2 and pDC were similar between the
groups (Figure 1D). iDC was the only subset with a significantly
higher total number in the patients’ blood. None of the other
three main subsets alone accounted for the increase in total DCs.
Their numbers were slightly higher in the patients than in the
controls, but the difference was not statistically significant
(Figure 1D), suggesting that all subsets together and pre-DCs
may contribute to the higher number of circulating DCs.
Notably, both the percentage and total number of iDCs were
significantly correlated with the number of reticulocytes in the
blood (Figure 1E), a bona fide hemolysis parameter.

Mo-DCs From Patients With SCD Showed
an Activated Phenotype and Produced
Inflammatory Cytokines
iDCs are cells mainly derived from activated monocytes present
in the circulation. Thus, we characterized the DCs differentiated
in vitro in the presence of GM-CSF and IL-4 from monocytes
(mo-DCs) isolated from the PBMCs of the patients and the
controls. More mo-DCs from the patients presented an activated
phenotype, as shown in the higher expression of the presenting
antigen molecule HLA-DR and the co-stimulator CD86. No
difference was seen in the expression of the DC marker CD209
and the maturation molecule CD83 (Figure 2A). Interestingly,
DCs from the patients produced two- to three-fold more MCP-1,
IL-6, and IL-8 compared to the controls even with no in vitro
stimulation (Figure 2B), indicating a potential role for these cells
in monocyte and neutrophil recruitment to the inflammatory
microenvironment. A more detailed analysis of mo-DCs revealed
the expression of the monocyte marker CD14 in some patients
(Figure 2C). These cells expressed the DC markers CD209
(Figure 2C) and CD1c, and were smaller than monocytes
(data not shown), which characterized them as iDCs.
Furthermore, CD14+ DCs showed higher expression of the DC
maturation marker CD83, and the activation markers HLA-DR
and CD86 than CD14− DCs from the same patient (Figure 2D).
Next, we sorted CD14+ DCs and CD14− DCs and incubated
them for 24 h without any additional stimulation. Surprisingly,
the CD14+ DCs were among the mo-DCs responsible for the
production of MCP-1, IL-6, and IL-8 in the culture supernatant
(Figure 2E).

Patients With SCD Had More Activated T
Lymphocytes and More IL-17 Production
DCs are the major cells responsible for modulating lymphocyte
function (20, 30, 31). Thus, the next step was to determine T cell
responses in the circulation of this cohort of patients to associate
them with the alterations in DC numbers and ratios. We
observed a greater percentage of T lymphocytes from the
patients as compared to that from the controls, especially
CD8+ T lymphocytes, which presented a statistically significant
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difference in CD69 expression, a T cell activation marker
(Figures 3A, B). Although SCD is a chronic inflammatory
disease, the T lymphocytes did not present an exhaustion
profile, as PD-1 expression by both CD4+ and CD8+ T cells
was comparable to that of the controls (Figure 3B). Tregs are
important cells involved in regulating exacerbated inflammation
via several mechanisms (32). Compared with the controls, the
patients had reduced Tregs, as demonstrated by the lower
percentages of FOXP3+CD4+ T lymphocytes in their
bloodstream (Figure 3C). Then, we stimulated PBMCs in vitro
with PMA and ionomycin in the presence of brefeldin to analyze
the profile of cytokines produced by the T cells. Both CD4+ and
CD8+ T lymphocytes from the patients produced higher
amounts of IL-17 (Figures 3D, E). No difference was seen in
IFN-g production by T lymphocytes in this cohort (Figure 3E),
and IL-10 production by in vitro stimulation was very low and
similar between the groups (data not shown). Altogether, these
data suggest that the lower ratio of Tregs and the skewed T cell
response to Th17 and Tc17 (IL-17–secreting CD8 T cells)
profiles can cooperate for the inflammatory phenotype and
altered adaptive immune response seen in the patients.

Mo-Derived DCs From the Patient with
SCD Stimulated T Lymphocyte
Proliferation and IL-17 Production
To address whether DCs are responsible for the T cell phenotype
observed in the patients, we performed a co-culture assay of mo-
DCs from the patients or controls with allogeneic T cells stained
with CFSE. Mo-DCS from the patients induced higher-intensity
proliferation of total T lymphocytes as compared to that of the
controls. When the analysis was stratified in CD4+ and CD8+ T
lymphocytes, we observed that both cells contributed to the
higher proliferation of the T cell population (Figures 4A, B),
showing that mo-DCs from the patients had additional capability
for stimulating both CD4+ and CD8+ T cells, absent in those
from the controls. Notably, when the sorted CD14+ and CD14−

DCs from the same patient were used in co-culture, the CD14+

DCs induced higher IL-17 production than their counterparts,
whereas IFN-g and IL-10 were induced with the same intensity
(Figure 4C), indicating that CD14+ DCs are, at least in part,
responsible for the Th17/Tc17 phenotype in patients with SCD.

Upregulation of HO-1 by Monocytes
Induced CD14+ DC Differentiation in
Patients With SCD
In an attempt to unveil the mechanisms by which monocytes
from some patients differentiate into CD14+ DCs, we evaluated
the distribution of monocyte subtypes in the bloodstream. In the
present cohort, we did not find any difference in the monocyte
subtype ratio between the patients and the controls (Figure 5A),
suggesting no role for subset-specific monocytes in iDC
differentiation and no correlation of a monocyte subset with
DCs compartment changes. Monocytes from patients with SCD
are constantly exposed to heme released during hemolysis, and
there is evidence that they can upregulate HO-1, which
metabolizes heme into CO (carbon monoxide), Fe (iron), and
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biliverdin (33, 34). Thus, we evaluated HO-1 expression by
monocytes, and found that monocytes from the patients
overall demonstrated upregulation of HO-1 compared to that
from the controls. Notably, monocytes from the patients that
differentiated in vitro into CD14+ DCs (SS CD14+ DC) showed
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even higher upregulation of HO-1 expression than the
monocytes that differentiated only into CD14− DCs (SS CD14−

DC) (Figure 5B). Hence, to reveal the role of HO-1 in CD14+

DC differentiation, we treated monocytes from the patients with
the HO-1 inhibitor, SnPP, for 1 h before and during in vitro DC
A

B

D

E

C

FIGURE 2 | Activation profile and inflammatory cytokine production by mo-derived DCs from patients with SCD. Monocytes were isolated from the PBMCs of the
patients (SS) and controls (AA) and cultured with 20 ng/ml GM-CSF and IL-4 for 6 to 7 days for DC differentiation. (A) Flow cytometry analysis of DC activation
marker expression. (B) LEGENDplex measurement and flow cytometry acquisition of cytokine secretion in the supernatant after 24 h. (C) CD14 expression in
CD209+HLA-DR+ DCs after differentiation. (D) Analysis of DC activation markers in the CD14+ and CD14− DC subpopulations. P-values were obtained using the
Mann-Whitney test. (E) CD14+ and CD14− DCs from the same patient were sorted by flow cytometry and incubated for 24 h. Cytokines were measured in the
supernatant by LEGENDplex. P-values were obtained using the paired Student’s t-test.
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differentiation. SnPP treatment increased the percentage of DCs
differentiated in culture, as seem by HLA-DR+ CD209+ cells ratio
(Figure 5C). However, the treatment decreased both the
percentage and mean fluorescence of CD14 on mo-DCs
(Figure 5C), indicating a previously unknown mechanism of
HO-1 in iDC differentiation in patients with SCD.

Altogether, the data show that the number and ratio of DCs are
increased in the circulation of patients with SCD and that the
Frontiers in Immunology | www.frontiersin.org 7213
amount of iDCs correlates with hemolysis. DCs from patients with
SCD, especially CD14+ DCs, show an activated phenotype and
produce inflammatory cytokines seen to be responsible for
monocyte and neutrophil recruitment, indicating that they may
cooperate in the inflammatory milieu. In addition, they
demonstrated an association with T lymphocyte activation and
IL-17 production. Finally, we found that the differentiation of iDCs
frommonocytes may occur through an HO-1–dependent pathway.
A B

D E

C

FIGURE 3 | Profile of T lymphocyte response in patients with SCD. (A, B) Activation and exhaustion of CD4+ and CD8+ T lymphocytes were quantified by staining
of PBMCs from the patients (SS) and controls (AA) with CD69 and PD-1, respectively, within CD3+CD4+ or CD3+CD8+ populations. (A) Representative dot plots of
CD69. (B) The percentage of CD69 (top) and PD-1 (bottom)-stained cells within CD4+ (left) and CD8+ (right) T lymphocytes. (C) Tregs were identified in PBMCs by
the percentage of FOXP3+CD4+ T lymphocytes. The left panel shows the representative dot plots; the right panel shows the percentage of Tregs in the patients (SS)
and controls (AA). (D, E) PBMCs were stimulated in vitro with PMA and ionomycin in the presence of brefeldin for 4 h, then stained for intracellular cytokines.
(D) Representative dot plots of IL-17. (E) The percentage of IL-17 (left) and IFN-g (right)-producing CD4+ (top) and CD8+ (bottom) T lymphocytes. N: AA = 17;
SS = 17. P-values were obtained using the Mann-Whitney test.
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DISCUSSION

Despite exceptional advances in the last decade in SCD therapy,
including new drugs, bone marrow transplantation, and gene
therapy (35–37), both basic and clinical research is ongoing to
obtain greater knowledge of the cells and mediators involved in
Frontiers in Immunology | www.frontiersin.org 8214
the disease, and to develop new and better therapies that improve
patient quality of life.

DCs are key players in the initiation of the immune response
to pathogens and also of tolerance to self, microbiota, and dietary
antigens (20, 38). Changes in DC function can result in
prevention of the fight against infection or in the development
A

B

C

FIGURE 4 | Co-culture of mo-derived DCs and T lymphocytes. Monocytes were isolated from PBMCs of the patients (SS) and controls (AA) and cultured with 20
ng/ml GM-CSF and IL-4 for 6–7 days for DC differentiation. Mo-DCs were co-cultured (1:10) with allogeneic T lymphocytes from healthy individuals; the T
lymphocytes had been previously stained with CFSE for 5 days. (A, B) T lymphocyte proliferation was evaluated by CFSE dilution and CD4 and CD8 staining.
(A) Representative dot plots and (B) graphs of the percentage of proliferation measured by CFSE− gating. AA was considered 100%. P-values were obtained using
a Student’s t-test. (C) CD14+ and CD14− mo-DCs were sorted by flow cytometry before co-culture with T lymphocytes. Cytokines were measured in co-culture
supernatant by flow cytometry. P-values were obtained using a paired Student’s t-test.
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of autoimmune and inflammatory diseases (39–41). The role of
DCs and their specific subsets in the chronic inflammatory
component or adaptive immune dysfunction of SCD remains
elusive. In the present work, we show for the first time that
circulating DCs are increased and that the ratio of DC subsets is
altered in patients with SCD. The higher numbers of circulating
pre-DCs may indicate intensification in DC development from
the bone marrow. In addition, as iDCs can arise from circulating
monocytes, they are likely to be another source of DC expansion
in the bloodstream, as our data show higher numbers of this DC
subpopulation. We also observed a reduction in the circulating
cDC1 in the patients. It remains uncertain whether the
development of this subpopulation is reduced or whether they
are being activated and subsequently migrate to the lymph nodes,
where they prime T lymphocytes. These hypotheses are difficult
to address in humans; nevertheless, they warrant future
investigation. Notably, we found a heterogeneity among the
patients regarding circulating DCs ratios and a correlation
between iDC percentage and number with reticulocyte counts,
suggesting that changes in DCs compartment may be present
only in patients with certain degree of disease severity. Although
we could not establish a clear cause and effect relationship, we
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observed that the percentage of DCs was also increased in the
patients, suggesting a skewing towards DC development rather
than a general leukocyte increase or redistribution.

Here, in vitro differentiation of monocytes into DCs revealed
that the patients’ monocytes could derive more activated and
inflammatory iDCs, as they produced MCP-1, IL-6, and IL-8 even
without stimulation. No difference was observed in the DC or
maturation markers CD209 and CD83, respectively, which was
also shown in an investigation of mo-DCs in the context of SCD
alloimmunization (42). That study also suggests that mo-DCs
from patients with SCD produce more inflammatory cytokines, as
the authors showed that SCD mo-DCs produced more IL-12 than
those from healthy individuals after stimulation with LPS, LPS
+IFN-g, or R848. Additionally, some of the patients’ mo-DCs
expressed the monocyte marker CD14. Despite this, they had the
DC phenotype, expressed CD209 and CD1c, and were smaller
than monocytes. CD14+ mo-DCs are more mature and activated
than CD14− mo-DCs, and are responsible for inflammatory
cytokine production. Patients with SCD present an expansion of
monocyte and neutrophil counts, which interact with the activated
endothelium, cooperating in vaso-occlusion (43, 44). Although
our in vitro system did not allow us to estimate the contribution of
A B

C

FIGURE 5 | The role of HO-1 in iDC differentiation. (A) Phenotyping of monocyte subsets in the controls (AA) and patients (SS) by flow cytometry. (B) Monocytes
were isolated from the PBMCs of the patients (SS) and controls (AA). A portion was cultured with 20 ng/ml GM-CSF and IL-4 for 6 to 7 days for DC differentiation
and evaluation of CD14 expression. The other portion underwent RNA extraction for RT-PCR evaluation of HO-1 transcript expression (Hmox1). The graph shows
data separately from patients with (SS CD14+ DC) or without (SS CD14− DC) CD14+ DC differentiation. P-values were obtained using the Mann-Whitney test.
(C) Monocytes isolated from the PBMCs of the patients were treated with SnPP (50 µM) for 1 h, then induced to differentiate into DCs. The percentage and mean
fluorescence intensity (MFI) were measured by flow cytometry. P-values were obtained using a paired Student’s t-test.
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DCs to inflammatory cytokine production in vivo in the
bloodstream compared to other cells, the present data indicate
that the DCs of patients with SCD, especially CD14+ DCs, produce
these cytokines, which may be associated with their systemic
amounts and the migration of monocytes and neutrophils to
DC sites. Thus, it is important to determine whether DCs are
present and participate in the vaso-occlusion process.

As the T lymphocyte response in patients with SCD varies
according to the cohort evaluated and the parameter analyzed, we
assessed T cells in the present cohort to associate to the DC
phenotype.We found that the patients hadmore CD4+ and CD8+

T lymphocytes and higher IL-17 production. Several studies have
shown the involvement of IL-17 in neutrophil activation and
recruitment and in the development of autoimmune and
inflammatory disease (45–48); thus, IL-17 may participate in
the inflammatory process in patients with SCD and can alter their
immune response to a subsequent infection. Depending on the
context, previous studies have shown variable results for the
production of IFN-g and Th1-biased responses in patients with
SCD (16, 49, 50). In our cohort, IFN-g production by both CD4+

and CD8+ T cells was similar between the patients and the
controls. In addition, the patients showed a reduced percentage
of Tregs, which may contribute to the inflammatory state. We
demonstrate the role of DCs in some T lymphocyte responses in
the patients. Our results show that the DCs of patients with SCD
are more capable of inducing both CD4+ and CD8+ T cell
proliferation, and that CD14+ DCs stimulated higher IL-17
production in co-culture than CD14− DCs. The mechanisms by
which CD14+ DCs induce IL-17 production are still unknown.
IL-6, IL-23, and TGF-b production by DCs polarizes T
lymphocytes to a Th17 profile (51). In our co-culture system,
although we observed higher IL-6 production by the patients’
DCs, especially CD14+ DCs, IL-23 was undetectable in the
supernatant of unstimulated DCs (data not shown), suggesting
no participation of these cytokines in the process.

Although other groups have found changes in monocyte
subpopulations in patients with SCD (52), our patient cohort
did not show any difference in the monocyte subpopulations
compared with the controls, which indicates that no specific
monocyte subset is responsible for CD14+ DC differentiation. The
difference between previous data and ours may be because, for
most of the experiments, all patients from our cohort were under
hydroxyurea treatment, which may directly or indirectly reverse
the changes in monocyte subset ratio caused by the disease, as
previously shown (53). Due to changes in membrane lesion
secondary to HbS polymerization into erythrocytes, SCD is
characterized by a percentage of intravascular hemolysis (54),
which results in the release of free hemoglobin and free heme in
circulation. Free heme can modulate monocyte and mo-DC
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functions in SCD (42, 55) and in several other diseases (56)
through the TLR4 or HO-1 pathways. In our work, we found that
HO-1 expression in the patients’ monocytes was upregulated
compared to that from the controls, as previously reported (33).
Surprisingly, patients whose monocytes could differentiate into
CD14+ DCs in culture expressed even more HO-1 than the
patients whose monocytes differentiated only into CD14− DCs.
The inhibition of HO-1 enzymatic activity in the patients’
monocytes prevented CD14 expression in the posteriorly
derived DCs, indicating a possible mechanism by which the
monocytes from some patients differentiate into these iDCs.
Further investigation is still need to confirm this possibility and
would provide more important information about the stimulus
responsible for HO-1 upregulation, the signaling pathways
downstream to HO-1 involved in DCs differentiation, and the
changes in DCs functions observed. In summary, the present
study reports novel findings regarding the role of DCs in SCD
and provides new insights into the chronic inflammation and the
immune dysfunction observed in patients with SCD.
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Sickle Cell Anemia (SCA) is the most common genetic disorder around the world. The

mutation in the β-globin gene is responsible for a higher hemolysis rate, with further

involvement of immunological molecules, especially cytokines, chemokines, growth

factors, and anaphylatoxins. These molecules are responsible for inducing and attracting

immune cells into circulation, thus contributing to increases in leukocytes and other

pro-inflammatory mediators, and can culminate in a vaso-occlusive crisis (VOC). This

study aimed to characterize the levels of these molecules in SCA patients in different

clinical conditions in order to identify potential hallmarks of inflammation in these patients.

An analytical prospective study was conducted using the serum of SCA patients in

steady-state (StSt; n = 27) and VOC (n = 22), along with 53 healthy donors (HD).

Samples from the VOC group were obtained on admission and on discharge, in the

convalescent phase (CV). Levels of chemokines (CXCL8, CXCL10, CL2, CLL3, CCL4,

CL5, and CCL11), cytokines (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70,

IL-13, IL-17A, TNF-α, and IFN-γ) and growth factors (VEGF, FGFb, PDGF-BB, GM-CSF,

and G-CSF) were measured using a Luminex assay, and anaphylatoxins (C3a, C4a,

and C5a) were measured using Cytometric Bead Array. SCA patients in StSt showed a

pro-inflammatory profile, and were indicated as being higher producers of CCL2, IL-1β,

IL-12p70, IFN-γ, IL-17A, and GM-CSF, while VOC is highlighted by molecules IL-4 and

IL-5, but also IL-2, IL-7, PDGF-BB, and G-CSF. PDGF-BB and IL-1ra seemed to be two

important hallmarks for the acute-to-chronic stage, due to their significant decrease after

crisis inflammation and statistical difference in VOC and CV groups. These molecules
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show higher levels and a strong correlation with other molecules in VOC. Furthermore,

they remain at higher levels even after crisis recovery, which suggest their importance

in the role of inflammation during crisis and participation in immune cell adhesion and

activation. These results support a relevant role of cytokines, neutrophil and monocytes,

since these may act as markers of VOC inflammation in SCA patients.

Keywords: molecules, hemolytic anemia, Brazilian Amazon, immune profile, biomarkers, inflammation

INTRODUCTION

Sickle cell anemia (SCA) is themost prevalent hemoglobinopathy
around the world and the most severe form of a set of genetic
disorders that involve the β-globin gene (1, 2). It is caused by the
homozygous form of a single mutation (adenine > thymine) on
17th nucleotide from region 15.5 of the long arm of chromosome
11, and results in production of a valine (instead of glutamic acid)

and formation of a tetrameric protein known as hemoglobin S
(HbS) (1, 3–7).

The mutation induces major alterations in the structure of
red blood cells (RBC) secondary to the polymerization of HbS
in areas of low oxygen tensions (8). These alterations lead to
changes in the interaction of RBC with platelets, leukocytes
and endothelial cells, contribute to both vaso-occlusion of small

capillaries, and ischemia-reperfusion injury, and result in chronic

hemolysis (1, 3). Accordingly, SCA is considered a chronic sterile
inflammatory disease that occurs through ischemic injuries that
contribute to the inflammatory process through the release of
free hemoglobin during RBC hemolysis, besides other damage-

associated molecular pattern (DAMP), such as heme and
HMGB1. This leads to a stimulus of TLR4 and further promotes

a chronic and sterile inflammation, adhesion of immune cells

and vaso-occlusion process. The cellular response to this chronic
stimulus contributes to the activation of neutrophils, monocytes,
mast cells, endothelial cells, dendritic cells and NK cells, which
are all regulated by levels of inflammatory mediator’s that are
driven mainly by immunological molecules (1, 8–14).

Although caused by a single mutation, the clinical
presentation of SCA is modulated by the manner in which the

immune system responds to chronic hemolysis and ischemia-
reperfusion injury. Moreover, the disease is characterized by

chronic progressive organ damage during periods known as
steady-state (StSt), intercalated with acute episodes of vaso-

occlusion, termed VOC, which are considered exacerbations of
the pro-inflammatory condition of SCA with further formation
of aggregates with immune cells, sickle RBCs and platelets
(1, 8–10).

The aggregate rate is related to increase in the risk
of VOC, and consequences of this include tissue injury,
hypoxia, ischemia-reperfusion, renal dysfunction, acute chest
syndrome, stroke, and finally, a decrease on the patient’s
life expectancy (3, 8, 10, 11, 15, 16). Even though many
studies have analyzed immunological patterns in SCA (17–
21), the relationship between these molecules and VOC
inflammatory status and clinical presentation, there are still some
knowledge gaps.

This study aimed to evaluate whether and to what point
cytokines, chemokines, anaphylatoxins, and growth factors are
hallmarks of inflammatory status for SCA patients in different
clinical conditions treated at a hematological reference hospital
in the Brazilian Amazon. We show here that even after clinical
recovery from VOC, SCA patients still presented a higher
concentration of pro-inflammatory mediators.

MATERIALS AND METHODS

Ethics Statement
The present study was submitted to and approved by the
Ethical Committee at Fundação Hospitalar de Hematologia e
Hemoterapia do Amazonas (CEP-HEMOAM), via the processes
#1.864.640 and #2.478.469. All participants enrolled in the
present investigation read and signed the informed consent form
in accordance with the Declaration of Helsinki and Resolution
466/2012 of the Brazilian National Health Council for research
involving human subjects.

Subjects and Samples
Whole blood samples were collected through venipuncture from
53 healthy donors (HD) that were eligible for blood donation and
had no infectious or genetic disease. Samples were also collected
from 27 patients with SCA in steady-state (StSt) condition
(defined as the absence of clinical symptoms associated with
VOC), who had not received a blood transfusion in the 90
days prior to recruitment, and had negative serology tests for
HIV, HCV, HBV, HTLV and Syphilis. In addition, samples were
also obtained from 22 patients with SCA in VOC (characterized
by acute pain located at lumbar, hip, bone, articulation or
abdominal with no other cause), which had been confirmed by
health professionals at HEMOAM; the reference hospital in the
Amazonas state for treatment of patients with hematological
diseases. An additional blood sample was obtained from patients
in the VOC group, in the period between the patients’ discharge
and their first outpatient visit, within 90 days from enrollment.
These samples were identified as the convalescence (CV) group.
Clinical and epidemiological data was obtained from medical
records. In regards to treatment, the following medications
were recorded: folic acid, hydroxyurea, analgesics, corticoids,
and anti-inflammatory drugs for more than 1 year prior to
sample collection.

From all healthy donors and patients, 8ml of whole blood
was collected and divided equally into EDTA (BD Vacutainer R©

EDTA K2) tubes and Gel separator (Gel BD SST R© II Advance)
tubes. Whole blood in EDTA tubes was used for acquisition
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of hematological data for red blood cells (RBCs), white blood
cells (WBCs) and platelets, which were obtained using an
automatic hematological counter (ADVIA 2120i, Siemens, USA)
at HEMOAM. Using centrifugation, serum was obtained from
the tubes with separator gel and was then stored at −80◦C until
further assays.

Quantification of Immunological Molecules
Serum was used for quantifying chemokines (CXCL8, CXCL10,
CCL2, CCL3, CCL4, CCL5, and CCL11), cytokines (IL-1β, IL-
1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-
17A, IFN-γ, and TNF-α) and growth factors [G-CSF, GM-
CSF, PDGF-BB, VEGF, and FGF Basic (FGFb)], and was
performed using the Luminex technique at Instituto René
Rachou (FIOCRUZ-MG). The Bioplex-Pro Human Cytokine
27-Plex Kit (Bio-Rad, California, USA) was used following
the manufacturer’s instructions and protocol. Data acquisition
and molecule levels were measured on a Luminex 200 System
and Bioplex Manager Software, respectively, using the Five
Parameters Logistic Regression, with results expressed in pg/ml.
The detection limit of molecules is as follows: CXCL8 = 42,150
pg/ml; CXCL10 = 31,236 pg/ml; CCL2 = 24,282 pg/ml;
CCL3 = 960 pg/ml; CCL4 = 11,233 pg/ml; PDGF-BB = 24,721
pg/ml, CCL5 = 16,533 pg/ml; CCL11 = 26,842; IL-1β = 8,608
pg/ml; IL-1ra= 91,661 pg/ml; IL-2= 18,297 pg/ml; IL-4= 4,789
pg/ml; IL-5 = 23,105 pg/ml; IL-6 = 37,680 pg/ml; IL-7 = 16,593
pg/ml; IL-10 = 35,170 pg/ml; IL-12p70 = 37,684 pg/ml; IL-
13= 8,090 pg/ml; IL-17A= 28,850 pg/ml; IFN-γ= 25,411 pg/ml;
TNF-α = 64,803 pg/ml; FGFb = 16,046 pg/ml; G-CSF = 40,049
pg/ml; GM-CSF = 12,844 pg/ml; and VEGF = 29,464 pg/ml.
Due to bead analysis issues, IL-9 and IL-15 levels could not be
performed. In addition, quantification of anaphylatoxins C3a,
C4a, and C5a were performed using EDTA plasma samples with
the BDTM CBA (Cytometric Bead Array) Human Anaphylatoxin
kit (BD R© Biosciences, San Diego, CA, USA). A FACSCanto II
flow cytometer was used for sample acquisition. The analysis
of the concentration of anaphylatoxin molecules was conducted
using FCAP-Array software v.3 (Soft Flow Inc., USA). The
detection limits are as follows: C3a = 0.45 pg/ml; C4a = 0.70
pg/ml; C5a= 1.15 pg/ml.

Statistical Analysis
Data analysis and graphs were performed using GraphPad
Prism v.5.0 software (San Diego, CA, USA). The Shapiro-
Wilk normality test was conducted for analysis of normality
distribution and acquisition of median and (25th and 75th). The
epidemiological data was compared for the groups using the
Chi-square test (χ2). The median of hematological parameters
and molecule levels was used for comparison of HD, StSt, and
VOC using the Kruskal-Wallis test, followed by Dunn’s Multiple
Comparison Test. For VOC and CV group comparison, the
Wilcoxon matched pair test was used. A p-value of < 0.05 was
considered significant for all statistical tests.

Signature of Immunological Molecules
The median of each molecule for HD, StSt and VOC groups
was calculated, as previously described (22), and used as the

cut-off point. This was expressed in pg/ml (CXCL8 = 2.64;
PDGF-BB = 292.0; CCL3 = 0.96; CCL4 = 10.74; CCL2 = 9.07;
CCL5 = 57.0; IL-1β = 1.12; IL-1ra = 29.11; TNF-α = 12.12;
IL-6 = 1.12; IL-7 = 2.82; IL-12p70 = 2.40; IL-2 = 0.44; IFN-
γ = 15.85; IL-4= 0.53; IL-5= 2.93; IL-13= 0.70; IL-17A= 6.74;
IL-10 = 5.20; CXCL10 = 69.68; VEGF = 9.08; GM-CSF = 7.81;
G-CSF = 1.24; FGFb = 3.64; CCL11 = 23.14; C3a = 10.03;
C4a= 7.61; C5a= 316.9). This value was employed to classify the
patients for each group as being either “High” or “Low” molecule
producers. The percentage value was obtained, and presented
in a Venn diagram when higher than the 50th percentile, and
obtained using a public website (http://bioinformatics.psb.ugent.
be/webtools/Venn/).

Immunological Hallmarks Network
The correlation analysis was conducted using Spearman test
in GraphPad Prism v.5.0 software (San Diego, CA, USA), and
employed all molecules and blood cell parameters for each group.
The data was transferred to a spreadsheet (Microsoft Excel 2010),
and the cytokine network was visualized on the open access
software Cytoscape v.3.7.2. For all networks, each parameter was
represented by a circular node, while a significant correlation
was represented by a line connecting both correlated nodes.
Absolute values of the correlation index (r) was used in order
to classify correlation strength as weak (r < 0), moderate (r≥
0.36 and ≤ 0.68), or strong (r > 0.68), which is represented
by line thickness, while positive and negative correlation was
represented by continuous and dashed lines, respectively, as
previously proposed (23).

Heatmap and Decision Tree Analysis
The heatmap analyses were performed using the serum
concentration levels of each biomarker evaluated using
heatmap.2 function in R software (Project for Statistical
Computing Version 3.0.1) and the gplots package. The
decision trees were built using the WEKA software (Waikato
Environment for Knowledge Analysis, version 3.6.11, University
of Waikato, New Zealand) in order to classify SCA patients based
on immunological markers. Leave-one-out-cross-validation
(LOOCV) was applied in order to estimate the classification
accuracy and to test the generalizability of the model.

RESULTS

Epidemiological and Laboratorial Data
SCA patients presented a median of 22 years of age in StSt
and VOC groups, while the median age of the control group
was 30 years (p = 0.0324). Males were the majority gender in
the HD group (70%), while females were the majority in the
StSt group (67%). Data regarding place of residence and chronic
pharmacological treatment is described in Table 1.

Hematological values of each group, the medians and the
results of the statistical analysis are described in Table 2. Patients
in StSt had lower RBC, hemoglobin and hematocrit levels, when
compared to the healthy donors. In addition, SCA patients
(both StSt and VOC) showed increased levels of reticulocytes.
The VOC group was marked by higher WBC counts, which
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TABLE 1 | Epidemiological data of HD and SCA patients, showing age, gender, city of residence, and chronic pharmacological treatment.

Variable HD

n = 53

StSt

n = 27

VOC

n = 22

CV

n = 22

p-value

Age (years, median [IQR]) 30 [23–42] 30 [22–34] 22 [14–34] 22 [14–34] 0.032

Gender, n (%)

Male 37 (70) 9 (37) 11 (50) 11 (50) 0.016a

Female 16 (30) 18 (67) 11 (50) 11 (50)

Place of residence, n (%)

Manaus, AM 53 (100) 23 (85) 20 (91) 20 (91) 0.063

Interior of Amazonas state – 4 (15) 2 (9) 2 (9)

Chronic pharmacological treatment, n (%)

Folic acid – 25 (93) 17 (77) 17 (77) 0.219

Hydroxyureia – 22 (81) 14 (63) 14 (63) 0.202

Analgesic – 12 (44) 12 (54) 12 (54) 0.570

Corticoid – 2 (7) – – 1

Anti-inflammatory – 1 (4) 5 (23) 5 (23) 0.077

HD, Healthy Donors; StSt, Steady-state; VOC, Vaso-Occlusive Crisis; CV, Convalescence.
aSignificant difference for HD vs. StSt.

Statistical analysis performed by Kruskal-Wallis with Dunn’s Multiple Comparison Test for the variable of age in order to compare HD, and SS and VOC. In addition, Wilcoxon test was

performed for VOC and CV comparison. Gender and city of residence was compared using a Chi-Square (χ2 ) test. For both analyses, p was considered significant when < 0.05.

Bold-type font indicates statistical significance.

seem to be driven by neutrophil and monocyte involvement,
although only the neutrophil level was statistically lower after
crisis. Basophil levels decreased in conditions of StSt to VOC,
but no significant difference was observed in conditions of VOC
and the convalescent phase. Even though platelet level had no
statistical difference in SCA patients, it was higher than in the HD
group. SCA patients, regardless of inflammatory status, showed
higher involvement of lymphocytes and platelets.

SCA Is Marked by an Inflammatory
Molecule Profile Regardless of Clinical
Condition
With the aim of characterizing the profile of serum biomarkers
in SCA patients, a range of soluble mediators were quantified in
StSt, VOC groups, and compared to the HD group. Significantly
higher levels of chemokines (CXCL8, CXCL10, CCL3, CCL4,
CCL5), cytokines (IL-1β, IL-12p70, IL-17A, IL-10), growth
factors (VEGF and GM-CSF) and anaphylatoxin C4a were found
in SCA patients, when compared to the HD group, as shown
in Figure 1. Chemokines seemed to be more involved in VOC,
when compared to StSt, through increased levels of CCL3, CCL5,
and CCL11 (Figure 1A). Furthermore, IL-4 and IL-5 levels were
higher (Figure 1B). The inflammatory status observed in the
StSt group was characterized by an increased concentration of
the pro-inflammatory molecules IL-1β, TNF-α, IL12p70, IFN-
γ, and IL-17A, despite there being higher circulating levels of
IL-10, GM-CSF, C4a, and C5a, when compared to the VOC
group (Figures 1A,C,D). In addition, in ourmolecule analysis we
observed that patients in the VOC group have significantly higher
median values of cell proliferation markers.

Signature of Immune Molecules Presented
by HD, StSt, and VOC Groups
Figure 2 summarizes the biomarker signatures and presents
the Venn diagram of immunological molecules, with respective
intersections and elements for the HD, StSt, and VOC groups.
Our aim was to describe which group was classified as being the
highest producer of molecules, and which belong exclusively to
each group (Figure 2A). Inflammatory status in the StSt group
showed that the majority of patients have increased levels of 22
soluble immune molecules, while the StSt group presented as
higher producers of only six: CCL2, IL-1β, IL-12p70, IFN-γ, IL-
17A, and GM-CSF, based on the majority of patients and the
global median (Figure 2B). Our analysis did not identify any
molecule that all three groups share as high producers, however,
the HD and StSt groups both showed higher production of TNF-
α, C5a, and IL-6, and SCA patients, regardless of inflammatory
status presented themselves as higher producers of 13 immune
molecules (Figure 2B). Although 19 molecules were identified
as having higher production in VOC, only six were shown
exclusively in this stage: IL-2, IL-7, IL-4, IL-5, PDGF-BB, and
G-CSF, which suggests that the VOC condition is orchestrated
not just by anti-inflammatory cytokines, but also by intense cell
proliferation (Figure 2B).

Potential of Immunological Markers IL-1β,
IL-10, IL-1ra, and IL-6 for Distinguishing
Clinical Conditions (StSt, VOC, and CV) in
SCA Patients
The heatmap analysis was performed with the serum levels
of the immune molecules of SCA patients to demonstrate
the components used in the clustering of the StSt or VOC
subgroups when compared to the healthy individuals. Even
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TABLE 2 | Laboratorial data of hematological parameters from HD, StSt, VOC and CV groups.

Variables HD

n = 53

StSt

n = 27

VOC

n = 22

CV

n = 22

p-value

RBC (×106/µL, median [IQR]) 4.99

[4.59–5.40]

2.51

[2.19–2.75]

2.39

[2.09–2.94]

2.65

[2.29–3.12]

<0.0001a,b

Hemoglobin (g/dL, median [IQR]) 14.90

[13.55–15.95]

8.0

[7.10–9.0]

7.50

[6.20–8.45]

8.30

[7.20–8.70]

<0.0001a,b

Hematocrit (%, median [IQR]) 43.70

[40.45–47.30]

24.50

[21.70-28.50]

22.0

[18.60–25.0]

24.80

[21.95–26.68]

<0.0001a,b,d

MCV (fL, median [IQR]) 87.80

[84.85–90.4]

99.90

[92.80–110.2]

91.30

[79.60–99.80]

90.55

[86.83–99.15]

<0.0001 a,c

MCH (pg, median [IQR]) 29.70

[28.90–30.60]

32.10

[30.30–36.70]

31.10

[27.35–33.20]

29.70

[27.58–34.03]

0.0008a

MCHC (g/dL, median [IQR]) 34.10

[33.10–34.60]

32.70

[31.90–34.10]

33.60

[32.90–34.05]

33.15

[32.40–33.95]

0.0057a

RDW (fL, median [IQR]) 13.70

[12.95-13.95]

18.20

[17.30–19.80]

21.20

[19.65–23.80]

19.95

[18.08–22.90]

<0.0001a,b

Reticulocyte (×103/µL, median [IQR]) 72.70

[56.90–88.80]

367.6

[226.0–529.9]

257.4

[134.3–349.2]

248.6

[134.5–332.8]

<0.0001a,b

WBC (×106/µL, median [IQR]) 6.33

[5.27–7.10]

7.42

[5.95–9.44]

11.39

[8.82–15.17]

9.51

[8.07–11.38]

<0.0001b,c

Neutrophil (x103/µL, median [IQR]) 3.43

[2.80–4.18]

3.39

[2.13–4.81]

6.90

[4.87–9.46]

4.88

[3.05–6.43]

<0.0001b,c,d

Lymphocyte (v103/µL, median [IQR]) 1.84

[1.55–2.16]

2.41

[2.13–3.36]

3.02

[2.32–4.78]

3.28

[2.43–4.96]

<0.0001a,b

Monocyte (×103/µL, median [IQR]) 0.38

[0.29–0.41]

0.43

[0.33–0.69]

0.66

[0.52–0.86]

0.60

[0.41–0.83]

< 0.0001b,c

Basophil (×103/µL, median [IQR]) 0.03

[0.02–0.05]

0.03

[0.03–0.05]

0.00

[0.00–0.03]

0.00

[0.00–0.04]

0.0002b,c

Eosinophil (×103/µL, median [IQR]) 0.19

[0.12–0.41]

0.24

[0.13–0.50]

0.22

[0.10–0.62]

0.42

[0.24–0.62]

0.6031

Platelet count (×103/µL, median [IQR]) 244

[213–281.5]

420

[372–533]

411

[326–530]

460.5

[339.8–642.0]

<0.0001a,b

aSignificant difference for HD vs. StSt.
bSignificant difference for HD vs. VOC.
cSignificant difference for StSt vs. VOC.
dSignificant difference for VOC vs. CV. Statistical analysis performed using Kruskal-Wallis with Dunn’s Multiple Comparison Test in order to compare HD, StSt and VOC. In addition,

Wilcoxon test was performed for VOC and CV comparison. For both analyses, p was considered significant when <0.05.

Bold-type font indicates statistical significance.

though histograms of the comparison of the HD (top bar yellow)
group with the SCA StSt (top bar red) group (Figure 3A)
and the VOC (top bar green) group (Figure 3B) had better
clustering when compared to SCA patients, our tree decision
analysis for SCA subgroups highlighted IL-10 and IL-1ra levels
as the major attributes for characterizing healthy individuals
and patients in StSt based on molecule profile, with a global

accuracy of 100%, which reached 96% after LOOCV (Figure 3C).

Analysis showed that circulating levels of IL-10 when ≤17.56

pg/ml indicated an HD group, while when >17.56 pg/ml, a

further analysis contributed to identify HD if IL-1ra >62.88
pg/ml or StSt if IL-1ra ≤62.88 pg/ml (Figure 3C). In order to
characterize the HD and VOC groups, the serum biomarker
levels contributed to cluster the HD group if IL-1β >0.43
pg/ml or VOC if IL-1β ≤0.43 pg/ml with 100% accuracy,
which reached 98% after LOOCV (Figure 3D). Under SCA
subgroups, IL-1β can also be used to categorize StSt patients,
when >0.43 pg/ml, or if <0.43 pg/ml, a further analysis

contribute to identify VOC if IL-6 >2.66 pg/ml or CV if IL-6
≤2.66 pg/ml (Figure 3E).

Hallmarks of Immune Molecules in
Acute-to-Chronic SCA Patients After VOC
A follow-up was performed in patients during the VOC
condition, which compared samples obtained on admission and
after convalescence. By analyzing the results obtained, we could
identify the most sensitive markers of SCA physiopathology after
VOC recovery. The median time between sample collection was
53 days. However, our results show that the inflammatory profile
did not change significantly. Both the VOC and the CV states
maintained a similar immunological profile, with the exception
of CXCL8, CCL4, IL-1ra, and PDGF-BB (Figures 4A–C). Even
though CXCL8 and CCL4 had significantly lower levels in CV,
there was no observed difference in median values in StSt and
VOC groups, which was different from IL-1ra and PDGF-BB. As
shown in Figures 1, 4, hallmarks of acute-to-chronic transition
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FIGURE 1 | SCA patients in VOC ( ) condition show an anti-inflammatory cytokine profile, when compared to StSt ( ) and HD ( ) groups. Statistically significant

values were considered when p < 0.05, and are presented as *p < 0.05; **p < 0.01; ***p < 0.001. Chemokines (A), cytokines (B) and growth factors (C) were

measured using Luminex, and anaphylatoxins (D) measured using CBA. Data is presented as median values and interquartile range in pg/ml. Statistical analysis was

performed using Kruskal-Wallis and Dunn’s Multiple Comparison Test. HD, healthy donors; StSt, Steady-state; VOC, vaso-occlusive crisis.

can bemarked by all four of thesemolecules, although only IL-1ra
and PDGF-BB showed significant differences in both states.

SCA Patients Display a Complex
Correlation Network With Different
Involvement in Immune Molecules Based
on Inflammatory Status
Despite the function of most immune molecules being already
known, correlation analysis allows us to observe interaction
among the groups. Thus, we observed that correlation analysis
in the HD group and the SCA StSt and VOC patients had
different patterns. While StSt patients have less interactions, a
chronic inflammatory condition mediated by monocyte, driven
by IL-17A, IL-12p70, CXCL10, and CCL4 (Figure 5B) can be
seen when compared to the HD group (Figure 5A). In contrast,
the VOC group had an increase in correlation molecules, which
was highlighted by the inflammatory pattern and polarized to
an anti-inflammatory response, and showed a main interaction
of IL-1β, IL-2, IL-7, IL-4, IL-5, IL-13, IL-17A, FGFb, and GM-
CSF (Figure 5C). Besides the strong and positive correlations
observed, GM-CSF and IL-1ra had a strong but negative
correlation. The CV group network had a lower correlation

index (Figure 5D), although the molecules described in VOC
still seemed to have higher participation in the acute-to-chronic
inflammation process.

Correlation matrices further corroborate these findings and
highlight that while HD (Figure 6A) displayed a hallmark
network with an overall moderate connectivity and the StSt
group (Figure 6B) presented a panoramic network with less
neighborhood connections, the VOC patients exhibited a higher
level of immune marker connectivity, particularly within the
cytokine axis (Figure 6C). As the VOC group shift toward the
CV group (Figure 6D) a clear downregulation of biomarker
connectivity can be observed.

DISCUSSION

SCA is marked by intense inflammation that is secondary to
systemic injury and clinical status. The inflammatory process is
evidenced by several interactions of cells, such as neutrophils,
monocytes, platelets, and RBCs, which are involved in the
pathogenesis of this condition. Accordingly, immunological
molecules, especially cytokines, chemokines, growth factors, and
anaphylatoxins are also relevant as regulators of this process.
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FIGURE 2 | Immunological molecules in VOC clinical condition of SCA patients presented in a Venn diagram. (A) Ascendant Biomarker Signature of HD, StSt and

VOC groups based on frequency of subjects with biomarker levels above Cut-off. (B) Venn Diagram with respective groups, intersections, and elements reported as

potential hallmarks. The elements describe which molecules are potential hallmarks for each clinical condition and controls. Molecules were measured using Luminex

and CBA. The global median for each soluble molecule was calculated and used as a cut-off point in order to classify groups as low (<50%) or high (>50%)

producers of chemokines, cytokines, growth factors and anaphylatoxins. HD, healthy donors; StSt, steady-state; VOC, vaso-occlusive crisis.

Although several studies have evaluated the levels of these
molecules and their association with clinical characteristics of
SCA, little evidence is available regarding the interaction of these
molecules in the individuals with SCA, particularly during VOC
and in the transition from the acute-to-chronic state after a VOC.
The main finding of our study was the ability to use IL-1β, IL-10,
and IL-1ra levels to segregate subgroups of SCA patients.

Patients in StSt have less disease severity and show no
threatening clinical symptoms, in comparison to those patients in
crisis. Even with no severe symptoms, inflammatory markers are
still present, in comparison to healthy controls. In addition, these
molecules are involved in immune response that contributes to
vaso-occlusion episodes (3, 8, 24). The chronic inflammation
in StSt seem to be characterized by increased levels in the
pro-inflammatory cytokines IL-1β, TNF-α, IL-12p70, IFN-γ, and

circulating cells but with less endothelial involvement, similarly
to what has been observed in other studies (18, 25–28). It
has already been established that neutrophils, monocytes and
pro-inflammatory molecules, together with platelets, play an
important role in disease severity (3, 9, 26, 29). Increased
levels of IL-10 in the StSt has been described as part of T-
cell differentiation (30), VOC development and disease severity
(31), suggesting that this cytokine participates in the process
of regulating the pro-inflammatory state. Furthermore, other
factors, such as infectious or other genetic diseases, influence
inflammatory response and contribute to vaso-occlusion, thus,
reducing patient’s life expectancy (1, 10).

Acute inflammation is characterized by local
ischemia/reperfusion injury, leukocyte recruitment and
circulating cell activation, which contribute to severe

Frontiers in Immunology | www.frontiersin.org 7 March 2021 | Volume 12 | Article 559925225

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Silva-Junior et al. Immunological Hallmarks in SCA Patients

FIGURE 3 | Bioinformatic analysis of serum molecules divided into the attributes of the control group and SCA subgroups according to clinical condition, represented

by heatmaps (A,B) and decision trees (C–E) of z-score normalized events. (A) Molecule attributes showed the ability to cluster healthy individuals and steady-state

SCA patients. (B) Heatmap analysis also shows high ability to distinguish controls and vaso-occlusive SCA patients. (C) Decision tree analysis provides the clustering

based on IL-10 circulating levels in order to classify individuals as HD if ≤ 17.56 pg/ml or if > 17.56 pg/ml, analyze IL-1ra level to categorize as HD if > 62.88 pg/ml or

as StSt if ≤ 62.88 pg/ml. (D) Decision tree analysis provides clustering of HD and VOC groups based on IL-1β circulating levels in order to categorize individuals as

HD if > 0.43 pg/ml or as VOC if ≤ 0.43 pg/ml. (E) Decision tree analysis provides clustering of SCA patients based on IL-1β circulating levels in order to classify

individuals as StSt if > 0.43 pg/ml or if ≤ 0.43 pg/ml, analyze IL-6 level to categorize as VOC if > 2.66 pg/ml or as CV if ≤ 2.66 pg/ml. HD, healthy donors; StSt,

steady-state; VOC, Vaso-occlusive crisis; CV, Convalescence; LOOCV, Leave-One-Out Cross Validation.
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FIGURE 4 | Analysis of the first molecules that decrease after crisis, when compared with VOC ( ) and CV ( ) groups. Statistical analysis was performed using the

Wilcoxon test. A p-value < 0.05 was considered statistically significant and was presented as *p < 0.05; **p < 0.01. Chemokines (A), cytokines (B), and growth

factors (C) were measured using Luminex, and anaphylatoxins (D) using CBA. Data is shown as median values and interquartile range, using data in pg/ml. VOC,

Vaso-occlusive crisis; CV, Convalescence.

clinical symptoms in a VOC (3, 8). Some studies describe the
participation of anti-inflammatory cytokines in this condition
(8, 20, 24, 30) and, in addition, our results show that it is
marked mainly by IL-1ra and IL-4 molecules, with involvement
of adherent neutrophils and monocytes. Many studies have
focused on differences in molecule levels in StSt and VOC (17–
19, 32), However few studies have focused on immunological
hallmarks, which can be used to describe the transition between
inflammatory states (StSt, VOC, and convalescence). Increased
levels of IL-2 and IL-7, together with growth factors, have been
previously observed (20) and contribute to proliferation and
maturation of granulocytes. In addition, the findings regarding
chemokines support the statement that these circulating cells
show a higher capacity to adhere to endothelial cells and
form cell-to-cell and cell-endothelium aggregates in VOC,
which contributes to endothelial injury, inflammatory marker
production, immune cell recruitment, vaso-occlusion and

consequently severe clinical complications, as described by
other authors (3, 10, 29, 30, 33). Our data demonstrated that
VOC patients displayed a lack of canonical pro-inflammatory
factors and a clear increase in regulatory mediators. This may
suggest that VOC is not an anti-inflammatory condition per se,
but it may be linked to a skew in the “type” of inflammation
rather than its magnitude/strength. The analysis of biomarker
networks and the correlation matrices between pairs of soluble
mediators demonstrated that there is strong connectivity
between pro-inflammatory/regulatory cytokines in VOC. The
strength of IL-1β connections in VOC was noteworthy and may
suggest that the inflammasome activation may participate in
SCA pathophysiology.

We identified that the alternative pathway of the complement
system is not that different under StSt or VOC, contrary to what
has been described by other authors. IL-1β and IL-17A might
be indirectly related to classical activation of the complement
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FIGURE 5 | Correlation analysis presented as a network of immunological cytokines, chemokines, growth factors, anaphylatoxins, and leukocytes in healthy donors

(A), steady-state (B) vaso-occlusive crisis (C), and convalescence (D) stages. Each parameter is shown in a node. Statistical analysis was performed using the

Spearman correlation test and the significant correlations (p < 0.05) are represented by a line connecting both nodes. The correlation was classified as weak (r < 0),

moderate (0.36 < r < 0.68) and strong (r > 0.68), based on absolute value of correlation index r, represented by line thickness. Positive correlation is expressed by a

continuous line, while negative correlation by dashed lines. NEU, Neutrophil; LYMP, Lymphocytes; MON, Monocytes; EOS, Eosinophils; BAS, Basophils; PLT,

Platelets; MPV, Mean platelet volume; chemokines (CXCL8; CXCL10; CCL3; CCL4; CCL2; CCL5; CCL11), cytokines (IL-1β; IL-1ra; IL-6; TNF-α; IL-12p70; IFN-γ ;

IL-2; IL-7; IL-4; IL-5; IL-13; IL-17A; IL-10), growth factors (VEGF; FGFb; PDGF; GM-CSF; G-CSF) and anaphylatoxins (C3a; C4a; C5a). HD, Healthy donors; StSt,

Steady-state; VOC, vaso-occlusive crisis; CV, convalescence.

system through C-reactive protein (CRP) production from the
liver (32, 34–36), and further interaction with natural antibodies
(37), culminating in higher C4 cleavage rate. Free heme interacts
with C1q ligands (CRP and immunoglobulin) and leads to
less classical complement activation in VOC (38); and with
C3, culminating on higher C3 cleavage rate (39, 40). Free
heme availability and its direct and indirect interaction to
complement molecules may explain why the SCA groups had
no significant difference in C3a levels. This increased activation
of the complement pathway has already been described in StSt
patients and observed in our results (41). Little information
related to the involvement of the complement system in SCA is
available, but even though the production of anaphylatoxins is
well defined, the function of anaphylatoxins as inflammatory or
regulatory molecules remains unclear in SCA pathophysiology.

Surprisingly, both HD and StSt groups were identified as
higher producers of the pro-inflammatory molecules TNF-α
and IL-6, although only TNF-α levels were significantly higher
in VOC, though not IL-6, as observed in some studies (18,
27, 28) and in contrast to others (17, 20, 32, 36, 42–44).
VOC was characterized as being a higher producer of anti-
inflammatory and immune cell proliferation cytokines. It is
important to notice that IL-4 and IL-5 are also produced by
activated mast cells, in which have been reported during VOC in
mice, and are important contributor on pain (14). Even though
higher levels of some cytokines have been described by other
authors, this characterization has never been described before for
SCA patients.

Complementarily, our bioinformatic analysis permitted the
segregation of SCA patients based on circulating IL-1β, IL-10,
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FIGURE 6 | Biomarker correlation matrices illustrate distinct patterns of biomarker connectivity in healthy donors (A), steady-state (B), vaso-occlusive crisis (C) and

convalescence (D) stages. Biomarker networks were based on the Spearman’s correlation indices (r). Correlation matrices display significant association (p < 0.05)

between biomarker pairs based on the rank indices, which are tagged by color keys, ranging from −1.0 to 1.0 to underscore the correlation strength, according to the

color key provided in the figure. NEU, Neutrophil; LYMP, Lymphocytes; MON, Monocytes; EOS, Eosinophils; BAS, Basophils; PLT, Platelets; MPV, Mean platelet

volume; chemokines (CXCL8; CXCL10; CCL3; CCL4; CCL2; CCL5; CCL11), cytokines ((IL-1β; IL-1ra; IL-6; TNF-α; IL-12p70; IFN-γ ; IL-2; IL-7; IL-4; IL-5; IL-13;

IL-17A; IL-10), growth factors (VEGF; FGFb; PDGF; GM-CSF; G-CSF), and anaphylatoxins (C3a; C4a; C5a). HD, healthy donors; StSt, steady-state; VOC,

vaso-occlusive crisis; CV, convalescence.

IL-1ra, and IL-6 levels, and regardless of their role, we
described these molecules as potential hallmarks for segregating
these patients into StSt, VOC, and CV groups. The decision
trees show novel proposals for biomarkers that should to
be investigated in further studies for a better comprehension
of SCA physiopathology and thus may contribute to better
clinical decisions.

The CV group was an intermediary period in VOC and
StSt stages, for which we observed that the first inflammatory
mediators to decrease were CXCL8, CCL4, IL-1ra, and PDGF-BB
after hospital release after a VOC episode. However, only IL-1ra
and PDGF-BB presented statistical differences in VOC and StSt
groups. Even though IL-1ra is known to be an anti-inflammatory

marker, its concentration was related to increased events of pain
(45). As such, we believe that these results may contribute to
the SCA patient’s follow-up after treatment for VOC episodes.
In addition, the correlations allowed us to identify that, during
this acute-to-chronic transition, some interactions in the main
molecules responsible for cell proliferation still remain, which
indicates that there still is stimulus for leukocytosis, even though
the inflammation pattern does not differ that much from VOC.

A strong and positive correlation under TNF-α and GM-CSF
in VOC was identified in our analysis, which sustains a positive
inflammatory pattern, with further leukocyte recruitment and
activation, especially neutrophils andmonocytes (9, 33). Negative
feedback is observed in both StSt and VOC conditions, the
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first is mediated by IL-10, while the second by IL-1ra, which
is an inactive antagonist of IL-1β. This statement is supported
by the IL-10/CXCL10 and IL-1ra/GM-CSF axis in StSt and
VOC, respectively. IL-10’s role as a biomarker in SCA is still
controversial, since some authors describe lower levels in StSt,
when compared to the control group, together with CXCL10 (43),
while others found increased levels (20, 30, 46, 47) and some
show no difference (17).

The present study has some limitations. Since SCA is
considered a sterile inflammatory disease, the assessment of the
TLRs expression, as well as the analysis of checkpoints in immune
cell subsets along with quantification of other cytokines (IL-1a,
IL-18, and IL-33), would provide a more detailed description
regarding the inflammasome activation in order to more fully
understand SCA pathophysiology and allow for the identification
of novel prognostic factors. These aspects remain to be elucidated
in future investigations.

Our study brought new perspectives for inflammatory
knowledge of SCA. In fact, the role of many molecules in SCA
is still discussable whether inflammatory or regulatory, as well as
their association to a VOC development or as a consequence of
a VOC.

CONCLUSION

Herein, we highlight the interactions of IL-4 and IL-2 cytokines
in VOC, as well as the efficacy of IL-1ra and PDGF-BB as
markers of clinical recovery post-VOC. In addition, we describe
the ability of IL-10 and IL-1ra levels to cluster patients into HD
or StSt, and IL-1β levels to cluster patients into HD or VOC.
Our results contribute to novel markers in the Brazilian Amazon
SCA population, and suggest their potential in prognosis and
follow-up after hospital recovery from VOC. The present
study is the first report on inflammatory hallmarks in VOC
and CV in sickle cell anemia patients and supports greater
understanding of disease pathophysiology mechanisms in order
to identify novel inflammatory biomarkers and contribute to
therapeutic perspectives.
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Recent evidence indicates that hemolysis in sickle cell disease (SCD) promotes
inflammation via innate immune signaling through toll-like receptor 4 (TLR4). Free heme
released by hemolyzed red blood cells can bind to myeloid differentiation factor-2 (MD-2)
and activate TLR4 pro-inflammatory signaling on endothelium to promote vaso-occlusion
and acute chest syndrome in murine models of SCD. MD-2 is co-expressed with TLR4 on
cell membranes, but in inflammatory conditions, soluble MD-2 (sMD-2) is elevated in
plasma. sMD-2 levels were significantly increased in human and murine sickle (SS) plasma
as compared to normal (AA) plasma. Human umbilical vein endothelial cells (HUVEC) and
human lung microvascular endothelial cells incubated with human SS plasma had
significant increases in pro-inflammatory IL-8, IL-6, and soluble VCAM-1 secretion
compared to endothelial cells incubated with AA plasma. The increase in HUVEC IL-8
secretion was blocked by depletion of sMD-2 from SS plasma and enhanced by the
addition of sMD-2 to AA plasma. The TLR4 signaling inhibitor, TAK-242, inhibited HUVEC
IL-8 secretion in response to SS plasma by 85%. Heme-agarose pull-down assays and
UV/Vis spectroscopy demonstrated that heme binds to sMD-2. Hemopexin, a high affinity
heme-binding protein, inhibited HUVEC IL-8 secretion induced by SS plasma or SS and
AA plasma supplemented with sMD-2. These data suggest that sMD-2 bound to heme
might play an important role in pro-inflammatory signaling by endothelium in SCD.

Keywords: soluble MD-2, sickle cell disease, IL-8, endothelial cell, TLR4, heme, hemopexin, IL-6
INTRODUCTION

Sickle cell disease (SCD) is caused by a single point mutation (Glu->Val) at position 6 in the b-
globin gene that leads to polymerization of deoxy-hemoglobin S (HbS) and the characteristic
sickling of red blood cells. The ongoing polymerization of HbS promotes hemolysis, inflammation,
and vaso-occlusive pain crises (1). During hemolysis, HbS is released into the vasculature and
readily oxidized to methemoglobin, which can release free heme (2, 3). Normally, free hemoglobin
org March 2021 | Volume 12 | Article 6327091233
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and heme in plasma are safely cleared by haptoglobin and
hemopexin (4, 5). However in SCD, chronic hemolysis depletes
circulating haptoglobin and hemopexin (6, 7), allowing free
heme to activate toll-like receptor 4 (TLR4) signaling on
endothelial and inflammatory cells (3, 8–10). TLR4 signaling
on endothelium leads to NF-ĸB activation, rapid release of
Weibel-Palade bodies, discharge of P-selectin and von
Willebrand factor, and vaso-occlusion in murine models of
SCD (3).

TLR4 signaling induced by heme or its canonical ligand,
lipopolysaccharide (LPS), requires cofactors CD14 and MD-2 (3,
8, 11–15). The transduction mechanism for TLR4 activation is well
characterized for LPS from gram negative bacteria. CD14 delivers
LPS to MD-2, which forms a stable heterodimer with the
extracellular domain of TLR4 (16), leading to dimerization of the
TLR4-MD-2 complex (17). This brings the toll/interleukin-1
receptor (TIR) domains on the cytoplasmic tails of TLR4 together
allowing recruitment of cytoplasmic adapter molecules that
promote oxidant production by NADPH oxidase and activation
of downstream signaling pathways, leading to activation of pro-
inflammatory transcription factors, such as NF-kB and AP-1, as
well as the production of type 1 interferons (18).

MD-2 is co-expressed with TLR4 on the cell membrane of
various cell types including leukocytes and endothelium (11, 19,
20), but soluble MD-2 (sMD-2) is elevated in plasma from
patients with inflammatory conditions, such as sepsis, HIV
infection, and endotoxemia (21–23). Epithelial cells in the gut
and the airways express TLR4, but not MD-2, and are therefore
entirely reliant on sMD-2 for TLR4 signaling (24–26). sMD-2
circulates in plasma of healthy individuals primarily as disulfide-
linked oligomers (27). During experimental human
endotoxemia, sMD-2 in septic plasma increases rapidly like an
acute phase reactant and contains both sMD-2 oligomers and
monomers. The monomeric form of sMD-2 represents the
biologically active form of MD-2 (28).

In addition to being a required co-factor for TLR4 responses
to LPS, MD-2 is also a required cofactor for TLR4 responses to
heme (15). Heme binds to MD-2 at amino acidsW23 and Y34 on
MD-2, at a site independent of the LPS-binding site, to activate
TLR4 pro-inflammatory signaling (15). Since SCD is a pro-
inflammatory condition with an activated endothelium and
elevated plasma heme, we examined sMD-2 levels in SCD
plasma and its potential role in endothelial cell activation. We
tested the hypothesis that sMD-2 is increased in SCD plasma
and, by binding heme, contributes to pro-inflammatory signaling
by endothelial cells.
MATERIALS AND METHODS

Collection of Human and Mouse Blood
Human EDTA blood was obtained from healthy adult volunteers
and SCD patients in steady-state after informed consent and
according to protocols approved by the University of
Minnesota’s Institutional Review Board in accordance with the
Declaration of Helsinki. Mouse EDTA blood was collected from
Frontiers in Immunology | www.frontiersin.org 2234
the inferior vena cava from homozygous Townes mice (29)
expressing human HbS or HbA in accordance with protocols
approved by University of Minnesota’s Institutional Animal Care
and Use Committee. Human and mouse platelet-free plasma was
stored at -85°C before use.

sMD-2 ELISA
HumanMD-2 ELISA kit (Millipore) was used to measure sMD-2
levels in human normal control and SCD plasma following the
manufacturer’s instructions.

sMD-2 Western Blots
Plasma samples were diluted with PBS (1:2 dilution for
mouse plasma, and 1:5 dilution for human plasma). 2 µl of
the diluted plasma was separated under denaturing conditions
on 4-15% SDS-PAGE (Bio-Rad) and transferred to PVDF
membranes (Millipore). Membranes were incubated with MD-
2 primary antibody (Abcam) and fluorescent secondary
antibodies (LI-COR). Fluorescence was quantitated with an
Odyssey Image System (LI-COR). An IgG western blot or a
total protein stain using AzureRed Fluorescent Total Protein
Stain (Azure Biosystems) was used as a loading control.

Endothelial IL-8, IL-6, and Soluble
VCAM-1 Secretion
HUVEC were isolated and cultured as described previously (30).
Human lung microvascular endothelial cells (HMVEC-L, Lonza)
were cultured with microvascular endothelial cell growth medium-2
(Lonza) with 10% FBS. HUVEC or HMVEC-L in 24 well plates
were treated with 2% of human AA or SS plasma in RPMI-1640 for
18 hours. IL-8, IL-6, and sVCAM-1 in the medium was measured
using IL-8 and IL-6 ELISA kits (BioLegend), and a human VCAM-1
Quantikine ELISA kit (R&D Systems).

Expression and Purification of N-Flag-
Tagged Recombinant hMD-2
pFlag-CMV1–hMD-2 (a gift from Dr. Doug Golenbock,
Addgene #13028) was sub-cloned into a Caggs expression
plasmid. Chinese Hamster Ovary (CHO) cells were transfected
with pT2/Caggs-Flag-hMD-2 to produce recombinant sMD-2 as
described (31). CHO cells were maintained in RPMI-1640 with
L-glutamine (Gibco) plus 10% fetal bovine serum in 5% CO2 at
37°C. Sixteen T225 flasks of CHO cells were used for each
purification. Cells were transfected with polyethylenimine (PEI,
linear, MW 2500, Polysciences) using 4:1 PEI to DNA (w/w).
After 18 hours, cells were changed to ProCHO-AT protein-free
media (Lonza). After 2-4 days, conditioned media were collected
and centrifuged at 6000g for 30 minutes at 4°C and filtered using
a 0.22 mm Stercup vacuum filter (Corning). Media collected after
two days were used to treat HUVECs; media collected after four
days were applied to an anti-Flag M2-affinity-gel (Sigma-
Aldrich) column for sMD-2 purification. MD-2 was eluted
with Flag peptide and concentrated using 10k centrifugal filter
units (Amicon). The purity and concentration of the protein was
determined by using 4-15% SDS-PAGE. Recombinant hMD-2
was confirmed by Western blot.
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Heme-Agarose Pull-Down Assays
To determine the physical interaction between sMD-2 and heme,
human SS plasma was incubated overnight at 4°C with heme-
agarose or control agarose (Sigma-Aldrich). After incubation,
agarose beads were pelleted by centrifugation, washed, subjected
to SDS-PAGE, and anti-MD-2 Western blot (15).

Depletion of sMD-2 From SS Plasma
Anti-hMD-2 antibody (ab24182, Abcam) was coupled to CNBr-
Sepharose (600 mg/ml gel; Sigma-Aldrich). Human SS plasma
was diluted 5-fold in PBS and incubated at 4°C for 18 hours with
the antibody-conjugated Sepharose. MD-2-depleted plasma was
collected after pelleting the antibody-coated Sepharose by
centrifugation and the MD-2 depletion was confirmed by
western blot.

Detecting sMD-2-Heme Binding by UV/Vis
Absorbance
UV/Vis absorption spectra (250–550 nm) of heme, sMD-2, and
heme plus sMD-2 were measured using a Nanophotometer
(Implen). Rat hemopexin (HPX) (Athens Research &
Technology) or recombinant hFlag-HPX was used as a heme-
binding control (15).

Statistical Analysis
Results are presented as means ± standard deviation.
Comparisons of multiple treatment groups were made using
One-Way ANOVA with the Holm-Sidak multiple comparison
test (Sigma Stat). Significance testing between 2 groups was
performed using Student’s paired or unpaired t-test as
appropriate. Statistical significance was p < 0.05.
RESULTS

sMD-2 Is Increased in SCD Plasma
As plasma sMD-2 is elevated in various inflammatory conditions
and SCD is pro-inflammatory, we assessed plasma levels of sMD-
2 in sickle (SS) and normal (AA) humans and mice by Western
blot. sMD-2 was increased by 2.5-fold in human SS plasma
compared to healthy AA plasma (p<0.02, Figures 1A, B).
Similarly, in Townes SS mice, plasma sMD-2 was increased
7.6-fold compared to Townes control AA mice (p<0.002,
Figures 1C, D). In addition, we measured human plasma
sMD-2 level using an MD-2 ELISA kit. Mean sMD-2 levels
were 35.6 ± 45.5 ng/ml in SS plasma, compared to 4.9 ± 6.3 ng/ml
in AA control plasma (p<0.02, Figure 1E). The characteristics of
human control and SCD subjects are summarized in
Supplementary Data Table 1. Complete blood counts and
serum chemistries of Townes AA and SS mice were published
in a recent report from our lab (32).

Endothelial Cells Secrete sMD-2 in
Response to Heme
Potential sources of sMD-2 in plasma include the liver, monocyte-
derived dendritic cells, and endothelial cells (22, 33, 34). LPS and
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TNF-a induce sMD-2 secretion by HUVEC (21, 22). To determine
whether heme can induce sMD-2 secretion by endothelial cells,
HUVEC were incubated with heme (0-30 µM) for 18 hours, and
sMD-2 accumulation in the media was measured. sMD-2 in
HUVEC culture media increased in a dose-responsive manner
(Supplemental Figure 1). LPS (100 ng/ml), a positive control,
also increased sMD-2 in HUVEC media.

SCD Plasma Activates Endothelial Cells
SCD plasma contains a number of pro-inflammatory molecules
(35–39). Platelets can contaminate plasma and release pro-
inflammatory molecules into plasma that can activate endothelial
cells. Therefore platelet-free plasma was used for these experiments
to minimize their effects on endothelial cells. To determine whether
SCD plasma could activate endothelial cells, we incubated HUVEC
and HMVEC-L for 18 hours with media containing 2% AA or SS
human platelet-free plasma and measured IL-8, IL-6 and sVCAM-1
in the media by ELISAs. IL-8 content in RPMI basal medium
containing 2% AA or SS plasma before addition to HUVEC was too
low to be measured by ELISA. IL-8 was 2-fold higher in the media
of HUVEC treated with SS plasma (525.5 ± 167.0 pg/ml) compared
to the media of HUVEC treated with AA plasma (260.9 ± 68.2 pg/
ml, p<0.002, Figure 2A). In addition, sVCAM-1 was significantly
increased in the media of HUVEC treated with SS plasma (13.42 ±
6.93 ng/ml) compared to HUVEC treated with AA plasma (5.48 ±
2.83 ng/ml, p<0.05, Supplementary Figure S2A). IL-6 was also
significantly increased in the media of HUVEC treated with SS
plasma (254.25 ± 33.18 pg/ml) compared to HUVEC treated with
AA plasma (194.56 ± 46.04 pg/ml, p<0.005, Supplementary
Figure S2B).

Like HUVEC, incubation of HMVEC-L with 2% SS plasma
for 18 hours significantly increased IL-8, sVCAM-1 and IL-6
levels in the media compared to AA plasma (Supplementary
Figures S3A–C). In subsequent experiments, we used IL-8
secretion by HUVEC to measure endothelial cell activation.

SCD Plasma Activates TLR4 Signaling in
Endothelial Cells
We have previously shown that heme binds to MD-2 and
activates TLR4 signaling (3, 15). To determine whether SCD
plasma activates endothelial cells through TLR4 signaling, we
incubated HUVEC with media containing 2% SS or AA human
plasma in the presence or absence of the TLR4 inhibitor TAK-
242 and measured IL-8 in the media by ELISA. We found TAK-
242 decreased IL-8 secretion induced by HUVEC incubated with
SS plasma by 85% (p<0.005, Figure 2B). TAK-242 had no
significant effects on IL-8 secretion in HUVEC incubated with
AA plasma (145.1 ± 33.2 with TAK-242 and 152.1 ± 33. 8
without TAK-242, n=6). These results indicate that SS plasma
increased IL-8 through TLR4 signaling.

sMD-2 Contributes to SS Plasma-Induced
IL-8 Secretion by HUVEC
Plasma from SCD patients has many elevated pro-inflammatory
molecules, such as IL-1b, IL-18, IL-6, and HMGB1 (35–39). Any
of these could contribute to the increased IL-8 secretion by
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HUVEC incubated with SS plasma. To determine whether sMD-
2 contributes to increased IL-8 secretion by HUVEC incubated
with SS plasma, we used two approaches: depletion of sMD-2
from SS plasma and addition of sMD-2 to AA plasma (Figure
3A). Plasma samples from these two approaches were then
incubated with HUVEC to determine their effects on IL-8
secretion. When sMD-2 was removed from SS plasma using an
anti-MD-2 affinity column (Figure 3B), the sMD-2-depleted SS
plasma reduced IL-8 secretion by 34.3% as compared to the same
SS plasma without MD-2 depletion (p<0.05, Figure 3C). When
conditioned CHO medium containing recombinant sMD-2
(Figure 3D) was added to AA plasma, the sMD-2-treated AA
plasma increased IL-8 secretion by 1.8-fold (p<0.01, Figure 3E),
and the TLR4 inhibitor, TAK-242, inhibited this increase
(p<0.05, Figure 3E). Together, these results suggest that sMD-
2 contributes to SS plasma-induced IL-8 secretion by HUVECs
through TLR4 signaling.

Polymyxin B Does Not Inhibit HUVEC
IL-8 Secretion
Polymyxin B inhibits LPS-mediated TLR4 signaling (40). To
determine whether the observed increased IL-8 secretion in
A

B D

E

C

FIGURE 1 | sMD-2 is increased in SCD plasma from humans and mice. (A, C) Representative western blots of sMD-2 from sickle (SS) and normal control (AA)
plasma from humans and Townes mice. (B, D) Relative plasma sMD-2 on Western blots is calculated as the density ratios of sMD-2 bands compared to IgG in SS
(n=17 for human, n=9 for mice) and AA (n=16 for human, n=7 for mice) plasma. (E) sMD-2 levels in human AA (n=13) and SS (n=19) plasma measured by ELISA.
Bars are means ± SD, *p<0.02 and #p<0.002.
A B

FIGURE 2 | Human SS plasma induces IL-8 secretion in HUVEC through
TLR4 signaling. (A) HUVEC were cultured with 2% AA (n=9) or SS (n=13)
plasma in RPMI-1640 media for 18 hours. The IL-8 content in the conditioned
medium was measured by ELISA. (B) HUVEC were cultured with 2% SS
plasma plus vehicle or TLR4 signaling inhibitor, TAK-242 (1 µM) for 18 hours
and IL-8 secretion into the media was measured by ELISA (n=6). Bars are
means ± SD, *p<0.002, #p<0.005.
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HUVEC with SS plasma and recombinant sMD-2 was caused by
LPS contamination, we added polymyxin B (Sigma-Aldrich) to
our HUVEC culture media. LPS (10 ng/ml) induced IL-8
secretion in HUVEC that was inhibited by polymyxin B in a
dose-responsive manner (Supplemental Figure 4A).
Importantly, polymyxin B (1000 U/ml) did not inhibit IL-8
secretion in HUVEC treated with SS plasma or AA plasma +
sMD-2 (Supplemental Figures 4B, C). Thus, HUVEC IL-8
secretion induced by SS plasma or AA plasma + sMD-2 was
not mediated by LPS contamination.

sMD-2 Binds Heme
We have previously shown that heme binds to MD-2 to initiate
TLR4 signaling (15). We confirmed heme-binding to sMD-2 in
plasma using heme-agarose pull-down followed by MD-2 Western
blots. Heme-agarose or control agarose was incubated with SS
plasma overnight, and then the agarose was pelleted by
centrifugation. The proteins pulled-downed with the agarose
beads were washed and eluted from the beads with SDS-
containing buffer and run on MD-2 Western blots. Heme-
agarose, but not control agarose, pulled down sMD-2 from SS
human and mouse plasma (Figure 4A). To obtain additional
evidence of heme binding to sMD-2, a standard heme–binding
assay was performed as described previously (31). Heme binding to
recombinant sMD-2 was assessed by scanning UV/Vis absorption
spectrometry (250-550 nm, Figure 4B). Heme binding to
recombinant hemopexin (HPX) was used as a positive control
(Figure 4C). Absorbance spectra show scans of heme alone (black
dashed line), recombinant protein alone (blue line), and
recombinant protein plus heme (red line). The Soret peak at 414
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nm, indicative of heme binding, increased in the presence of added
heme (red line) for HPX and sMD-2. In the absence of added heme,
both recombinant proteins appeared to have some bound heme as
indicated by the Soret peak at 414 nm (blue line).

Hemopexin Inhibits HUVEC IL-8 Secretion
Induced by SS Plasma and AA Plasma
Plus sMD-2
We have previously demonstrated that the high-affinity heme-
binding protein hemopexin (HPX) blocks endothelial cell
activation induced by heme-mediated TLR4 signaling (3). We
examined whether heme plays a role in plasma sMD-2
stimulation of HUVEC IL-8 secretion. HPX has the highest
heme-binding affinity (Kd ~10-13 M) among the known heme-
binding proteins and can readily remove heme from other heme-
binding proteins with lower heme affinity (41–43). When HPX
was added to SS plasma, IL-8 secretion by HUVEC was reduced
by 31.6% (p<0.05, Figure 5A). Adding HPX to AA plasma had
no significant effect on IL-8 secretion. In addition, When HPX
was added to AA or SS plasma plus recombinant sMD-2,
HUVEC IL-8 secretion was significantly inhibited (AA p<0.05
and SS p<0.01, Figure 5B). Taken together, these results indicate
that heme is necessary for enhanced HUVEC IL-8 secretion
induced by SS plasma or AA plasma supplemented with sMD-2.
DISCUSSION

These data demonstrate that SCD plasma has increased levels of
sMD-2 that can bind plasma heme and activate pro-inflammatory
A
B

D E

C

FIGURE 3 | sMD-2 in plasma mediates IL-8 secretion by HUVEC. (A) Diagram shows two approaches to study sMD-2’s contribution to HUVEC IL-8 secretion. In
approach 1, sMD-2 is depleted from SS plasma and in approach 2, sMD-2 is added to AA plasma. Plasma (2%) from both approaches were incubated with HUVEC
for 18 hours and IL-8 secretion into the media was measured by ELISA. (B) Representative western blot of SS plasma after sMD-2 depletion. The IgG western blot
was shown as loading controls. (C) IL-8 secretion by HUVEC after incubation with MD-2-depleted SS plasma. (D) Western blot of recombinant sMD-2 in
conditioned medium from CHO cells transfected with MD-2-containing plasmids or non-transfected control CHO media. The total protein stain was shown as
loading controls (E) sMD-2 CHO-conditioned medium or control CHO medium (10%) were added to HUVEC culture media along with 2% AA plasma in the
presence or absence of TLR4 inhibitor, TAK-242 (1 µM), and incubated with HUVEC for 18 hours. The secreted IL-8 was measured by ELISA. Bars in C and E are
means ± SD (n=3). *p<0.05, **p<0.01.
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IL-8 secretion by endothelial cells through TLR4 signaling. The
combination of heme-induced oxidative stress, inflammation, and
adhesion of circulating blood cells to vascular endothelium is a key
driver of the pro-inflammatory and prothrombotic vasculature
that promotes sludging and stasis of blood flow in the post-
capillary venules and ongoing ischemia-reperfusion physiology
(44–46). Nature provides complicated systems to respond to heme
overload, such as heme oxygenase-1 (HO-1) induction to degrade
heme and heme-binding proteins to neutralize and transport
heme (43, 47). Among the known heme-binding proteins,
plasma HPX sequesters and transports heme to the liver for
catabolism and detoxification via induction of HO-1 and ferritin
(48, 49). Plasma HPX levels are depleted in SCD patients and mice
because of chronic intravascular hemolysis (6, 7, 31). We have
previously shown that increasing HPX through supplementation
(3, 5) or gene transfer (31) prevents heme-induced inflammation
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and vaso-occlusion in SS mice. In this study, HPX-treated SS
plasma lost its enhanced ability to induce IL-8 secretion in
HUVEC, while adding HPX to AA plasma had no effect on
basal IL-8 secretion. These findings demonstrate that heme can
bind to sMD-2 and suggest that the addition of HPX to SS plasma
sequesters heme away from sMD-2, thereby preventing TLR4-
mediated IL-8 production by endothelial cells.

MD-2 expression can be regulated in specific tissue responses to
sterile inflammatory stimuli and bacteria. In human hepatocytes, IL-
6 induces the expression of MD-2 (34). In monocytes, corneal and
intestinal epithelial cells, IL-10 or INF-g can induce MD-2
expression (23, 50–52). Using immunohistochemical analysis,
Wolfs et al. found MD-2 is expressed by endothelial cells and
inflammatory cells in the livers and lungs of septic patients and
suggested these cells are a source of the enhanced circulating sMD-2
levels during acute systemic inflammatory diseases such as
endotoxemia and sepsis (22). In a recently published study, we
found both MD-2 and MIP-2a (a murine IL-8 homologue) mRNA
levels were increased in the livers of Townes SS mice compared to
control AA mice, these differences are consistent with markedly
increased hemolysis in Townes SS mice (32). In this study, we
showed that HUVEC secreted sMD-2 in response to heme or LPS.
We speculate that endothelial cells might be a potential source of
some of the sMD-2 in SCD plasma, which will need further studies
to validate.

MD-2 is a required accessory molecule for TLR4 signaling,
indispensable for LPS recognition and signaling (25, 53). MD-2
knockout mice are hypo-responsive to LPS and are able to survive
endotoxic shock, supporting a significant role of MD-2 in TLR4-
dependent inflammatory responses in vivo (54). As a pattern
recognition protein, MD-2 has been shown to bind to various
ligands besides LPS to activate TLR4 signaling and promote
inflammation, including heme (15), palmitic acid (55),
angiotensin (56), and some synthetic compounds with no
similarity to LPS (57). In our study, we found that heme agarose
pulls-down sMD-2 from SCD plasma and recombinant sMD-2 has
a Soret band at 414 nm, which indicates that sMD-2 binds heme.

Heme-induced microvascular stasis in SS mice requires
endothelial TLR4 signaling (3). Heme activates TLR4 signaling
on endothelial cells, leading to delivery of Weibel-Palade body
constituents P-selectin and VWF to the surface of the vessel wall
and the activation of the pro-inflammatory transcription factor
NF-ĸB (3). Our finding that sMD-2-heme in SS plasma induces
TLR4-dependent IL-8 secretion is in congruence with these
previous observations. Thus, sMD-2 in plasma provides a
potential pathway for heme-MD-2-mediated activation of
TLR4 signaling to induce activation of the endothelium and
vaso-occlusion in SCD.

The low level of IL-8, s-VCAM-1 and IL-6 production in
HUVEC and HMVEC-L incubated with AA plasma and the
incomplete inhibition of IL-8 secretion by HUVEC incubated
with SS plasma depleted of sMD-2 or SS plasma plus TAK-242
indicates that other pro-inflammatory molecules in SS plasma
might also induce HUVEC IL-8 secretion (35, 37, 39). A basal
level TLR4 receptor activity induced by AA plasma has been
reported before. Using a TLR4 reporter cell line that specifically
A
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FIGURE 4 | sMD-2 binds heme. (A) To determine the physical interaction
between sMD-2 and heme, human SS plasma was incubated overnight at
4°C with heme-agarose or control agarose beads. The pelleted beads were
washed with PBS 6 times. The pull-down proteins bound to the beads were
then run on an SDS-PAGE Western bot using anti-MD-2 IgG as the primary
detection antibody. Six SS plasmas were examined in independent
experiments with similar results. Representative Western blots of 2 SS human
and mouse plasmas are shown. (B, C) UV/Vis absorption spectra (250 -
550 nm) of recombinant (B) sMD-2 and (C) hemopexin (HPX, positive
control), with and without added heme. Absorbance spectra show scans of
heme alone (black dashed line), recombinant protein alone (blue line) and
recombinant protein plus heme (red line). The Soret peak at 414 nm,
indicative of heme binding, increases in the presence of added heme (red) for
sMD-2 and HPX. In the absence of added heme, both recombinant proteins
appear to have some bound heme (blue line) as shown by the Soret peak at
414 nm. The UV/Vis scans (B, C) are representative of 3 independent
experiments.
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recognizes ligands that bind and activate TLR4 (TLR4/NF-kB/
SEAP Stable Reporter Cells), Xu et al. (39) found plasma from
healthy AA control subjects induced low levels of TLR4 receptor
activity; about 10% of the total TLR4 receptor activity induced by
AA plasma was from HMGB1-dependent TLR4 receptor
activity. In our study we found the TLR4 inhibitor TAK-242
had no significant effects on AA plasma-induced IL-8 secretion,
suggesting other non-TLR4 pathways are likely contributing to
the low level of IL-8 secretion induced by AA plasma. In SS
plasma, 85% of IL-8 production by HUVEC was inhibited by
TAK-242. The remaining IL-8 production induced by SS plasma
could have been induced by other pro-inflammatory molecules
that do not require TLR4 such as IL-1b, IL-18, and IL-6 (35–39).

The function of sMD-2 has been extensively studied in LPS-
TLR4 signaling. Following synthesis, MD-2 is either secreted
directly into the medium as a soluble, active protein, or binds
directly to TLR4 in the endoplasmic reticulum before migrating
to the cell surface (12). Heme activates TLR4 signaling by
binding to a site on MD-2 that is independent and distinct
from the LPS binding site on MD-2 (15). As shown in other
studies (3, 8), heme-MD-2/TLR4-mediated pro-inflammatory
effects are not due to LPS contamination. In this study,
endothelial cell IL-8 secretion in response to SS plasma was
not blocked by the LPS antagonist, polymyxin B.

SCD patients are known to be at higher risk for contracting
bacterial infections compared to healthy humans (58, 59). The
molecular pathophysiology that contributes to this infection
susceptibility is incompletely understood. Because lung
epithelial cells express TLR4 without MD-2, they remain
resistant to endotoxin (25). sMD-2, produced either by
neighboring cells or brought to the epithelial cells by plasma
exudate, is required for LPS activation of lung epithelial cells
(60). Increased circulating sMD-2 in SCD plasma could make
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SCD patients more susceptible to pulmonary infections and
acute chest syndrome, especially in response to enhanced
hemolysis (9, 61).

There are several limitations of this study. Although we found
SS plasma increased IL-8, sVCAM-1, and IL-6 secretion in both
HUVEC and HMVEC-L, endothelial cells vary widely among
vascular beds such as lung and brain. The functions of sMD-2-
heme in different endothelial cell beds and non-endothelial cells
with TLR4 receptors, such as platelets and macrophages need be
defined by separate studies.

In conclusion, SCD is considered a chronic inflammatory
disease with hemolysis, vaso-occlusion, and ischemia-
reperfusion, resulting in activation of the innate immune
system and persistent activation of leukocytes, platelets, and
endothelial cells. Therapeutic approaches for SCD include
targeting HbS polymerization and the inflammatory processes
that trigger vaso-occlusion (1, 35, 62). Clinical studies targeting
TLR4 signaling as a therapeutic approach for sepsis and septic
shock have brought several compounds and antibodies to clinical
trials, with unsuccessful results. One such unsuccessful
therapeutic is TAK-242, a small-molecule inhibitor of TLR4
signaling, that failed to suppress cytokine levels in patients
with sepsis or respiratory failure in a phase III study (63). The
LPS-MD-2/TLR4 antagonist, eritoran, also failed to reduce
mortality among patients with severe sepsis (64). Nevertheless,
targeting MD-2 to interfere with MD-2–TLR4 signaling has been
extensively explored, and the results support the concept that
MD-2 is an effective target to treat inflammatory disorders such
as sepsis and acute lung injury (53, 65–68). We provide evidence
that sMD-2 is increased in SCD, contributes to pro-
inflammatory signaling in endothelial cells, and therefore,
might be a potential therapeutic target for SCD and other
hemolytic conditions.
A B

FIGURE 5 | Hemopexin inhibits IL-8 secretion by HUVEC stimulated with human SS-plasma and AA-plasma plus sMD-2. (A) HUVEC media containing human AA
or SS plasma (2%) was pre-incubated with recombinant hemopexin (HPX, 10 µM) for 30 minutes before being added to HUVEC for 18 hours. The IL-8 secreted into
the HUVEC media was measured by ELISA (n=4). (B) CHO cells expressing recombinant MD-2 were cultured in protein-free medium for 2 days, the medium was
collected as sMD-2-conditioned medium. HUVEC media containing AA (n=7) or SS (n=5) plasma (2%) plus sMD-2-conditioned medium (10%) was pre-incubated
with HPX (10 µM) for 30 minutes before being added to HUVEC for 18 hours. The secreted IL-8 was measured by ELISA and presented as fold-change compared
to AA-plasma +control conditioned medium without HPX. Bars are means ± SD. *p<0.05 and **p<0.01.
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